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Editorial
by Michael Lawrence

On behalf of the editorial board, I am pleased to publish Volume 8, Issue 2 of the R Journal.
This issue contains 33 contributed research articles. Each of them either presents an R
package, a specific extension of an R package or applications using R packages available
from the Comprehensive R Archive Network (CRAN, http:://CRAN.R-project.org). This
issue highlights the breadth and depth of the R package ecosystem, covering advances
in statistical computing and visualization, as well as novel applications of R in specific
domains. The authors have described a small but representative sample of the now more
than 11000 packages distributed through CRAN and Bioconductor.

As usual the bulk of this issue presents advancements in the field of applied statistics,
including multipleNCC for inverse probability weighting of nested case-control data, Sim-
CorMultRes for simulating correlated categorical responses, Qtools for quantile inference,
and MLCIRTwithin for discovering latent traits in questionnaire responses. The CAVariants
package implements multiple methods for correspodence analysis, and hdm provides tools
for computing uncertainty in high-dimensional, sparse models. There are articles describing
how to analyze normal tolerance intervals with the tolerance package, perform associated
kernel estimation using ake, evaluate principal surrages with pseval, find subgroups using
evolutionary fuzzy methods implemented in SDEFSR, and use the distance covariance func-
tion to analyze time series data with dCovTS. Further articles describe quantreg.nonpar
for quantile regression with non-parametric series, micompr for multivariate independent
comparison of observations, WeDiBaDis for weighted discrimant analysis, TSDist for com-
puting distances for time series, condSURV for estimating conditional survival functions,
and mctest for testing collinearity between regressors.

We are fortunate to present a number of data visualization packages including: rnrfa
for viewing data from the UK National River Flow Archive, easyROC, a GUI for analyzing
ROC curves, geozoo for generating libraries of high-dimensional shapes, and ggfortify for
getting data into shape for plotting.

Researchers continue to find new ways to apply R to scientific pursuits, including QPot
for understanding how stochasticity affects systems of differential equations, nmfgpu4R
for large scale non-negative matrix factorization (NMF) using GPUs, and the units package
for computing on scientific units. Applications to biology include TRONCO for modeling
tumor progression and ACSNMineR for detecting module enrichment and depletion. Other
applications include diverse for analyzing diversity in complex systems, comf for analyzing
thermal comfort data, water for estimating evapotranspiration from satellite images, eiCom-
pare for comparing ecological inference estimates, particularly in the context of analyzing
voting patterns, mixtox for assessing the toxicity of chemical mixtures, tigris for accessing
geographic data from the US Census, and rPref for computing Pareto frontiers, useful for
implementing preference-based database queries.

In addition the News and Notes section contains the usual updates on the R Foundation,
CRAN and the Bioconductor project.

I hope you enjoy the issue.

Michael Lawrence
Michael.Lawrence@r-project.org
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multipleNCC: Inverse Probability
Weighting of Nested Case-Control Data
by Nathalie C. Støer and Sven Ove Samuelsen

Abstract Reuse of controls from nested case-control designs can increase efficiency in many situations,
for instance with competing risks or in other multiple endpoints situations. The matching between
cases and controls must be broken when controls are to be used for other endpoints. A weighted
analysis can then be performed to take care of the biased sampling from the cohort. We present the
R package multipleNCC for reuse of controls in nested case-control studies by inverse probability
weighting of the partial likelihood. The package handles right-censored, left-truncated and additionally
matched data, and varying numbers of sampled controls and the whole analysis is carried out using
one simple command. Four weight estimators are presented and variance estimation is explained.
The package is illustrated by analyzing health survey data from three counties in Norway for two
causes of death: cardiovascular disease and death from alcohol abuse, liver disease, and accidents and
violence. The data set is included in the package.

Introduction

The nested case-control (NCC) design (Thomas, 1977) (incidence density sampling/risk set sampling)
is popular within epidemiology due to its cost-effectiveness and efficiency. At each event time, m
controls are sampled from the subjects at risk. The controls must be event-free at the time their case
experienced the event. They might also be matched to the cases on additional factors. Covariates are
then obtained for cases and sampled controls.

The analysis of nested case-control data has traditionally been carried out using stratified Cox-
regression, where the stratification is with respect to matched case-control sets. That method, however,
does not allow for breaking the matching, i.e., analyze the data without directly considering the
matched sets. Hence, the sampled controls cannot be used for other cases than they originally were
sampled for. In many situations one may want to reuse the controls, for instance when analyzing a
subset of the original cases or when there exist more than one endpoint of interest. A few examples
of such studies are Hultman et al. (1999); Parsonnet et al. (1991); Floderus et al. (1993); Øyen et al.
(1997); Tynes and Haldorsen (1997); Hankinson et al. (1998); Grimsrud et al. (2002); Levine et al. (2004);
Clendenen et al. (2011); Meyer et al. (2013).

We assume a competing risks situation in this paper for ease of presentation. Thus there are
different types of endpoints, and the subjects can experience at most one of them. A special instance
of this is a setting with only one type of endpoint, the single event situation is therefore covered by
the competing risks situation. The R package multipleNCC (Støer and Samuelsen, 2016) is built with
competing risks in mind, however it is not limited to such situations. Even though more complex
event history settings would often call for more advanced multi-state modelling, reuse of controls may
be handled by using multipleNCC together with coxph() from package survival (Therneau, 2016;
Therneau and Grambsch, 2000), see Section The R package multipleNCC.

A method for breaking the matching in NCC designs was introduced by Samuelsen (1997) and
further studied by Chen (2001); Samuelsen et al. (2007); Saarela et al. (2008); Salim et al. (2009); Cai and
Zheng (2012); Salim et al. (2012); Støer and Samuelsen (2012, 2013); Støer et al. (2014). This method
bases the estimation on a weighted partial likelihood, thus weighted Cox-regressions are carried out.
The weights are inverse sampling probabilities, which must be estimated from the data, and different
estimators have been suggested.

Even though it is fairly easy to estimate the weights, it is an extra step in the analysis. Having
a more automatic estimation procedure, i.e., a one-line call in R with similar syntax as coxph() will
make this way of analyzing NCC data more generally available.

We present the R package multipleNCC in this paper. The function wpl() estimates weights
and carries out weighted Cox-regressions. The users can choose between four options for weight
estimation. The function handles both right-censored and left-truncated data and has some possibilities
for variance estimation, apart from robust variances. Additional matching is incorporated for three
of the four weight estimators, and varying number of controls for all four. This is the first statistical
software that performs inverse probability weighting (IPW) aimed at NCC data.

The outline of the paper is as follows; we introduce the general framework of inverse probability
weighting for nested case-control data in Section Inverse probability weighting in NCC. Then Sec-
tions Weight estimation and Variance estimation follow. The package is described in Section The R
package multipleNCC and illustrated in Section Analysis of example data set. A comparison between
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the traditional estimator and the IPW estimators is given in Section Comparison between stratified
coxph and wpl, followed by Section Discussion.

Inverse probability weighting in NCC

We have a cohort consisting of n subjects, where the i-th individual is followed from the left-truncation
time li, which may be zero, to time of event t̃i or time of censoring ci. Thus the cohort members are
followed from li to ti = min (t̃i, ci). There are K competing endpoints, and each subject can at most
experience one of them.

At each event time, m controls are sampled for the case experiencing the event and m = m (t) may
depend on time. Finally, let us introduce what we call sampling-status indicator Si, which is required
input to wpl(). This indicator takes values in {0, 1, . . . , K, K + 1}, zero indicates a non-sampled subject
in the cohort, 1 indicates sampled controls (and not cases) for any of the endpoints in question, while
“2, . . . , K + 1” indicate cases of one of K types.

The NCC design is tightly connected to the Cox proportional hazards model and our model for
endpoint k can be written as

hki (t|xi, zi) = hk0 (t) exp
(

β′kxi + γ′kzi
)

. (1)

Here hk0 (t) is the baseline hazard for endpoint k, xi are covariates and confounders while zi are
additional matching variables (additional to matching on time), if additional matching has been
carried out, otherwise zi will be zero. The βk and γk are the log-hazard ratios connected to x and z for
the k-th endpoint.

Since the matching is broken with IPW, it will generally be important to adjust for the matching
variables (Støer and Samuelsen, 2013). They are included as linear functions in Equation 1 for simplicity,
however more general models with other types of functions are possible.

The controls in a NCC design are matched to the cases on at risk status and possibly additional
factors. Due to this matching, it is not straightforward to reuse the controls for other endpoints/cases
since the matching must be broken. Samuelsen (1997) suggested a weighted partial likelihood which
resembles the standard Cox-likelihood

Lk (β, γ) = ∏
j

exp
(

β′kxj + γ′kzj

)
∑i∈Rj

exp
(

β′kxi + γ′kzi
)

wi
. (2)

This likelihood enables the controls to be used for other endpoints and Saarela et al. (2008) and Salim
et al. (2009) were the first to discuss this likelihood in connection to competing risks. The product
is over all cases of type k, while the sum is over a set Rj, defined as all cases (of all types) and
all controls at risk at tj. The weight, wi = 1/pi, is the inverse probability that individual i is ever
being sampled. This probability will be 1 for cases since all of them are sampled by design, and it
must be estimated from the data for the controls. We assume time invariant covariates, although
time-dependent covariates are in theory possible as long as they are known at all event times at which
the subject is at risk. This has, however, not yet been implemented in package multipleNCC.

The fundamental idea behind inverse probability weighting is to adjust for the biased sample
from the cohort. The sample is biased, first and foremost, with respect to the proportion of cases and
controls, but with additional matching it can also be biased with respect to matching variables. The
idea is then to let each control represent a number of subjects in the cohort by giving them weights
larger than 1. The less probable it was for a given subject to be sampled, the more subjects in the cohort
it should represent since that “type” of controls likely are under-represented in the NCC sample. By
using inverse sampling probabilities as weights, this is accomplished. The analysis is then carried
out “as if the data were from a cohort study”, thus by a weighted Cox-regression. This idea was
first proposed by Hansen and Hurwitz (1943) with a survey sampling perspective for sampling with
replacement, and later generalised to sampling without replacement by Horvitz and Thompson (1952).
Inverse probability weighting is also commonly used in the context of missing data (Robins et al.,
1994).

Additional matching

To increase efficiency and adjust for confounding, the controls in a nested case-control design are often
matched on additional factors than at risk status. This can for instance be year of birth, sex or years
since first employment. We divide such matching into two groups: category matching and caliper
matching (Cochran and Rubin, 1973).
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With category matching, the controls are required to have the same value on the matching variable
as the case, and the matching variable is often a categorical covariate. As an example, the controls
can be matched to the cases on sex and a male case is then required to have a male control. With
caliper matching, the matching variable is typically continuous and the control’s value of the matching
variable must lie within a specified interval around the case’s value. For instance the controls could be
matched on year of birth plus/minus 2 years, i.e., the birth year of a control must be within two years
of the case’s birth year.

Weight estimation

The weights in Equation 2 must be estimated from the data at hand, and three types of estimators
have been considered: Kaplan-Meier (KM) type of weights (Samuelsen, 1997; Salim et al., 2009; Cai
and Zheng, 2012), more model based logistic regression type (Mark and Katki, 2006; Samuelsen et al.,
2007; Saarela et al., 2008; Støer and Samuelsen, 2013) and local averaging (Chen, 2001), referred to as
Chen-weights.

KM type of weights

The Kaplan-Meier type of estimator without additional matching can be formulated as

pi = 1− ∏
li<tj<ti

1− m

n
(

tj

)
− 1

 . (3)

Here n
(

tj

)
is the number at risk in the cohort at time tj and m the number of sampled controls per

case. The estimator in Equation 3 resembles the Kaplan-Meier estimator. The KM weights can be
generalized to situations with additional matching by taking the product only over subjects that
meet the matching criteria, and letting the denominator only consist of subjects at risk that meet the

matching criteria. Let nj

(
tj

)
count the subjects at risk at time tj who meet the matching criteria of

case j. Then the formula with additional matching can be expressed as

pi = 1−∏
j

1− m

nj

(
tj

)
− 1

I (Control i could be sampled for case j)

 . (4)

By replacing m with m
(

tj

)
, where m

(
tj

)
is the number of sampled controls for the case at tj, the

situation with varying number of controls is covered.

Logistic regression weights

A more model based approach is to use logistic regression models, either traditional logistic regression
or the more flexible generalized additive model (GAM; Hastie and Tibshirani, 2009, Chap. 9) with
logit-link. The sampling indicator, Oi, is used as outcome and the left-truncation time and censoring
time as covariates with ξ being an intercept term:

pi = IE[Oi|ti, li] =
exp (ξ + f (ti, li))

1 + exp (ξ + f (ti, li))
. (5)

It is important to note that this regression is carried out on the cohort excluding cases of all types. The
reason for this is that all cases are sampled with a known probability of 1, thus including them in the
regression would interfere with the estimation of the sampling probabilities for the controls.

With f (ti, li) = f1 (ti) + f2 (li) where f . (.) are linear functions, the estimator in Equation 5 is the
traditional logistic regression model, and the inverse of those probabilities are referred to as GLM-
weights. When f . (.) are smooth functions, the result is a GAM-model. In situations with additional
matching, the matching variables should also be included in the regression model. Category matched
variables are included as categorical factors while caliper matched variables are included as continuous
covariates with GLM-weights and as smoothed functions with GAM-weights.

The number of controls for each case is not an explicit part of the estimation procedure for
logistic regression weights and therefore no extra care must be taken in situations with time- and
endpoint-dependent number of controls.
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Local averaging weights

Before we can introduce the Chen-weights method (Chen, 2001), which is also known as local aver-
aging, we need some additional notation. Let 0 = l0 < l1 < . . . < lA be a partition of the range of
left-truncation times and 0 = t0 < t1 < . . . < tB a partition of the range of follow-up times where tA

and tB are the upper limit of the left-truncation times and censoring times respectively. We also define

Ja =
(
la−1, la] and Ib =

(
tb−1, tb

]
. The intervals in each direction are taken to be of the same length

in wpl(), however the interval length can in principle vary. The local averaging weights can then be
expressed as

wab =
∑n

i=1 I (li ∈ Ja, ti ∈ Ib, i is not a case)
∑n

i=1 I (li ∈ Ja, ti ∈ Ib, i is a sampled control and not a case)
.

All controls included in the study in Ja with a censoring time in Ib are given weight wab. Hence, all
subjects sampled within the same combination of intervals will be given the same weight. Samuelsen
et al. (2007) noted that this amounts to post-stratifying on grouped left-truncation and censoring times.

Generalizing these weights to handle additional matching would require partitioning of the
matching variables in addition to the range of left-truncation and right-censoring times, and this will
introduce a large number of combination of intervals. Due to this, the weights will likely be unstable
since a small number of subjects would belong to each group. The Chen-weights are therefore only
implemented for situations without additional matching.

As with logistic regression weights, the number of controls per case is not an explicit part of the
estimation procedure for local averaging. Situations with time- and endpoint-dependent number of
controls are therefore handled with no modification of the estimator.

Variance estimation

Since the subjects enter the weighted partial likelihood (Equation 2) whenever they are at risk, the
likelihood contributions are not independent and the variance estimation cannot be based on the
inverse of the information matrix only. A simple, yet sometimes conservative solution (Cai and Zheng,
2012), is to use robust variances (Lin and Wei, 1989; Barlow, 1994). This is the default option in wpl().
A variance estimator for the KM-weights can be found in Samuelsen (1997) when there is no additional
matching. A variance estimator for Chen-weights is given in Chen (2001), but since Samuelsen et al.
(2007) argues that this estimator can be considered as a post-stratified case-cohort estimator, one may
apply the variance estimator of Borgan et al. (2000). We have implemented the variance estimator
of Samuelsen (1997), which exactly accounts for the procedure used to estimate the weights, and
extended it to allow for additional matching, see details below and web-appendix to Cai and Zheng
(2012). For the Chen-weights, we have implemented the variance estimator based on post-stratification,
but only without additional matching since, as discussed in Section Local averaging weights, the
approach will be difficult to extend to additional matching.

Samuelsen (1997) showed that the covariance matrix with KM-weights (without additional match-
ing) can be estimated by

Γ̂ = Î−1 + Î−1∆̂ Î−1. (6)

Here Î−1 is the inverse of the information matrix returned from the weighted Cox-regression and

∆̂ = ∑
i

UiU>i
1− pi

p2
i

+ ∑
i 6=j

UiU>j
ĉovij

pij pi pj
. (7)

Ui is the score contribution for individual i and U>i its transpose, pij the estimated probability that
both individual i and j were sampled and ĉovij the estimated covariance between sampling indicators
for these two individuals. Note that the score contributions Ui and the Wi’s considered by Samuelsen
(1997) are asymptotically equivalent. The indices i and j in the sums run over all non-cases in the
study. Let also U be a matrix consisting of all Ui for non-cases. It was argued by Samuelsen (1997)
that the term pij can be replaced by pi pj. A formula for ĉovij is given in Samuelsen (1997). We have
implemented this variance formula both with and without additional matching, although in the latter
case the ĉovij needs modification. If two individuals i and j cannot both be sampled for any same case,
then these two individuals are sampled independently and the covariance of their sampling indicators
equals zero. If they can both be sampled for one or more of the same cases then ĉovij is obtained
using Equation (3.1) in Samuelsen (1997), replacing the number at risk at time tj by the number at risk

nj

(
tj

)
at tj satisfying the matching criteria, and taking the product only over the cases where both i
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and j can be sampled as controls.

The covariance matrix estimator in Equation 6 has been considered numerically hard to calculate.
However, it can be simplified by noting that Equation 7 can be expressed as a matrix product. Let R

be a matrix with the terms (1− pi) /p2
i for all non-cases along the diagonal and terms ĉovij/

(
pi pj

)2

otherwise. Let furthermore U(l) be a vector of the l-th component of U. Then the component ∆̂kl of ∆̂
can be expressed as U>

(l)RU(k) and taken together this means that with U being the matrix consisting

of all Ui for the non-cases we get ∆̂ = U>RU. Thus the calculation of the second sum in Equation 7 as
a double for-loop is avoided. However, with additional matching and many sampled non-cases ĉovij
and the matrix R may still be computationally demanding.

The R package multipleNCC

The multipleNCC package provides one main function: wpl() which carries out the weighted Cox-
regressions. It calls one of four internal functions, pKM(), pGAM(), pGLM() and pChen(), for weight
estimation and may call two additional functions, ModelbasedVar() and PoststratVar(), for variance
estimation. The functions that estimate the sampling probabilities can be accessed through the wrapper
functions KMprob(), GAMprob(), GLMprob() and Chenprob(). The function wpl() is used for estimation
of hazard ratios. It has a number of mandatory arguments and some which are set to default values
if not specified by the user, see Table 1. An important part of the wpl() function is the weighted
Cox-regression which is carried out by coxph() from the survival package.

It is important to note that most arguments should have cohort dimension (Table 1). By that we
mean that the arguments should have the same length as the number of subjects n in the cohort. Thus,
partially known covariate information must be imputed. These imputed values are not included in the
estimation, hence any values can be chosen, however NA should be avoided.

The GLM-weights are estimated with the glm() function in R with ‘family = binomial’. For
GAM-weights, the gam() function in the mgcv package (Wood, 2006, 2015) is used, also with ‘family
= binomial’. The KM- and Chen-weights are estimated as explained in Sections KM type of weights
and Local averaging weights.

For GLM-weights, the matching variables are included in the logistic regression as continuous
covariates with caliper matching and as categorical covariates for category matching. For GAM-
weights the matching variables are included as smooth functions with caliper matching and as
categorical covariates for category matching. If a matching variable has many levels, a large number
of parameters must be estimated and some sort of grouping of the levels of the category matching
variable(s) could be sensible. Such grouping must be applied to the matching variable before it enters
wpl().

If the method of variance estimation is not specified, the robust option is chosen by default. The
"Modelbased" option can be chosen for KM-weights. Using the "Modelbased" option for other weights
will result in an error message. Similarly if the option "Poststrat" is chosen together with other
weights than "Chen", an error message will be displayed.

The code for fitting a wpl model is

R> wpl(formula, data, samplestat)

The formula is a formula object and has the same syntax as the formula in the coxph() function. The
minimal code for fitting a wpl model is therefore

R> wpl(Surv(survival_time, status) ~ X, data, samplestat)

This is a model with one control per case, no additional matching or left-truncation and KM-weights.
With left-truncation and GLM-weights it would be

R> wpl(Surv(left_time, survival_time, status) ~ X, data, samplestat,
+ weight.method = "glm")

and with additional matching

R> wpl(Surv(left_time, survival_time, status) ~ X + M, data, samplestat,
+ weight.method = "glm", match.var = M, match.int = c(-2, 2))

In this model the controls are matched to the cases on only one additional factor M, which for
instance could be year of birth, plus/minus two years, represented by ‘match.int = c(-2,2)’.
Generally, it would be important to adjust for the additional matching variables, since the matching
has been broken, thus M is also included as an ordinary covariate. If there are more than one matching
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Argument Description Default value

Surv object A survival object. Mandatory

formula A formula object, with the response on the left of a ˜ operator, and
the terms on the right. The response must be a survival object. The
status variable going into Surv should have one for cases and zero
for controls and non-sampled subjects. Cohort dimension.

Mandatory

data A data.frame used for interpreting the variables named in the
formula. Cohort dimension.

Mandatory

samplestat A vector containing sampling and status information: 0 represents
non-sampled subjects in the cohort; 1 represents sampled controls;
2,3,. . . indicate different events. Cohort dimension.

Mandatory

m Number of sampled controls. A scalar if equal number of controls
for all cases. If unequal number of controls per case: a vector of
length equal to the number of cases. The vector must be in the same
order as the cases in the samplestat vector.

1

weight.method One of four weights: "KM", "gam", "glm", "Chen". "KM"

no.intervals Number of intervals for censoring times for Chen-weights with
only right-censoring.

10

variance "robust", or "Modelbased" for KM-weights and "Poststrat" for
Chen-weights.

"robust"

left.time Entry time if the survival times are left-truncated. Cohort dimen-
sion.

Zero

no.intervals.left Number of intervals for Chen-weights with left-truncation. A vector
of the form [number of intervals for left-truncated time, number of
intervals for survival time].

[3, 4]

match.var If the controls are matched to the cases (on other variables than
time), match.var is the vector or matrix of matching variables. Co-
hort dimension.

Zero

match.int A vector of length 2× number of matching variables. For caliper
matching (matched on value plus/minus epsilon) match.int
should consist of c(-epsilon, epsilon). For exact matching
match.int should consist of c(0,0).

Zero

Table 1: Arguments to wpl().

variable, for instance M1 and M2, both of them should be included as covariates and the match.var
should be a matrix consisting of the M1 and M2. The match.int argument is still a vector with the
intervals in the same order as in match.var. Thus the syntax for a model with one caliper matching
criterion and one category criterion could be

R> wpl(Surv(left_time, survival_time, status) ~ X + M1 + M2, data, samplestat,
+ weight.method = "gam", match.var = cbind(M1, M2), match.int = c(-2, 2, 0, 0))

Note that the interval should be ‘c(0,0)’ for category matching. As an example, if the controls
were matched on year of birth plus/minus 2 years, county of residence and years since first employ-
ment plus/minus 6 months, with year of birth and year since first employment measured in years,
‘match.int = c(-2,2,0,0,-0.5,0.5)’.

In a traditional analysis of NCC data, subjects appear in the data set as many times as they are
sampled. For instance if a subject is first sampled as a control and later itself becomes a case, it appears
in the data set first as a control and then a second time as a case. With IPW, the subjects should only
appear in the data set once, and it is important to let all subjects who at some point became a case, be a
case in the data set.

The event indicator included in the Surv() function could have a one for cases and a zero for
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non-cases. However, this event indicator is not actually used by the program. With only right-censored
data an event indicator is not required by ‘Surv’ and it can thus be omitted. When the data is left-
truncated the event indicator must be included and we therefore suggest to always include it even
though it is not used by the program. All information regarding events, possibly of different types,
controls and non-sampled subjects in the cohort is included through the sampling-status indicator
‘samplestat’. Non-sampled subjects should be given value zero, sampled controls (who are not cases
of any type) should have 1, while cases of the first type should be given 2, cases of the second type 3,
etc. By default all subjects with non-zero values (except for the cases in question) are used as controls.
If this is not desirable, the sampling-status indicator can be modified, see Section Sub-endpoints and
complex multiple endpoint situations.

The estimated weights can be extracted directly from the wpl object by $weights, it is, however
important to note that the data is sorted by inclusion time inside wpl and the ordering of the weights
is therefore not the same as the ordering of the original data. The sampling probabilities can also be
estimated directly with KMprob, GAMprob, GLMprob and Chenprob which also return them in the same
order as the input data. These four functions have similar syntax, although with some differences in
required arguments.

R> KMprob(survtime, samplestat, m, left.time = 0, match.var = 0, match.int = 0)
R> GLMprob(survtime, samplestat, left.time = 0, match.var = 0, match.int = 0)
R> GAMprob(survtime, samplestat, left.time = 0, match.var = 0, match.int = 0)
R> Chenprob(survtime, samplestat, no.intervals = 10, left.time = 0,
+ no.intervals.left = c(3, 4))

Some arguments to these functions are mandatory, while some arguments should only be supplied in
given situations. Those arguments are ‘left.time’ and ‘no.intervals.left’ which should only be
included with left-truncated data, and ‘match.var’ and ‘match.int’ only with additionally matched
data. All arguments to the functions above can be found in Table 1, except for ‘survtime’ which is
the follow-up time. It is important to note that ‘survtime’, ‘samplestat’, ‘left.time’ and ‘match.var’
should have length or number of rows equal to the cohort size n.

When the controls are matched on additional factors it may happen that there are none, or too few,
eligible controls for some cases. Normal practice is then to widen the matching criteria somewhat
for those particular cases. But by doing this there will be fewer subjects at risk that meet the original
matching criterium than there are sampled controls. wpl() will therefore print out a warning telling
the user for which case this happens and that the controls for that particular case are given weight = 1.
This is reasonable since those controls are sampled with probability close or equal to 1.

multipleNCC does not carry out a traditional analysis using a stratified Cox-regression. The main
reason for this is that each subject should only appear once in the data set provided to multipleNCC.
Without explicit information about the original case-control sets it is impossible to reconstruct the
original nested case-control data where each subject appears as many times as they are sampled.
Additionally, it is so simple to carry out a traditional nested case-control analysis with a stratified
Cox-regression that there is no reason to include it in multipleNCC.

Sub-endpoints and complex multiple endpoint situations

A main endpoint can often be divided into sub-endpoints. For instance a cancer endpoint can be
divided into metastatic and non-metastatic cancer. Analysis of sub-endpoints using all sampled
controls can be carried out with wpl() by making a new sampling-status indicator with unique values
for each sub-type. So instead of having a samplestat indicator from 0–2 (0 = non-sampled subjects,
1 = sampled controls, 2 = cancer cases), it will have values 0–3, where 2 corresponds to metastatic
cancer and 3 to non-metastatic cancer.

Many multiple endpoint applications do not fit into a competing risks framework. However, reuse
of controls can still be of interest. The solution can then be to estimate the sampling probabilities with
KMprob, GAMprob, GLMprob or Chenprob and use the inverse of those estimated probabilities as weights
in the ordinary coxph() function with robust variances. An example of a multiple endpoint situation
which does not fit into the competing risks framework is the case of subsequent events (Støer et al.,
2014). This is a situation with two types of events and the second type may only occur after the first,
e.g. incidence of prostate cancer and death from prostate cancer. Using all sampled controls when
analyzing the subsequent endpoint may increase the efficiency substantially.

Other models and estimators

Inverse probability weighting is a standard approach for handling missing data and case-control data
can be considered as data missing by design. Thus the functions for estimating inclusion probabilities
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described above can be used more generally for addressing other models than proportional hazards.
For instance Samuelsen (1997) discussed the possibility of fitting parametric survival models, Suissa
et al. (1998) considered estimation of standardized mortality ratios and Cai and Zheng (2012) discussed
estimation from estimating equations in general with IPW from NCC studies.

Often software allows for weighting and then it is straightforward to obtain the weighted esti-
mators. Examples are the Nelson-Aalen and Breslow estimators for cumulative hazards or additive
hazards models. With respect to variance estimation of weighted estimators we believe that robust
variances often will give results that closely match the model based, although theoretically they
are conservative (Samuelsen, 1997; Cai and Zheng, 2012). In general, however, theory has not been
carefully developed for such estimators and implementation of robust procedures has not generally
been validated, thus care should be taken when interpreting the variance estimates.

Furthermore, we believe that the IPW weights for NCC are in particular useful when considering
time to event data with the original cohort follow-up scheme. We are less convinced that the IPW
approach is the best choice when for instance estimating the population means of the exposures
obtained in the NCC or considering regression models for how such exposures depend on other cohort
information.

Other packages

There exists a number of packages for weighted analysis for different purposes. Some are aimed at
causal inferences such as ipw (van der Wal and Geskus, 2011) and MatchIt (Ho et al., 2011). Others
have a missing data or survey sampling perspective. Two such packages are NestedCohort (Mark
and Katki, 2006; Katki and Mark, 2008) and survey (Lumley, 2004, 2014). The survey package was
developed for analyses of survey data, but include functions for two-phase designs. A nested case-
control design can be seen as a two-phase design where the cohort is collected at Phase 1 and the
Phase 2 data is the cases and sampled controls with additional covariate information. The Phase 2
sampling scheme is of course somewhat more complex than what is usually seen in survey sampling.
However, when Chen-weights are used for the nested case-control design, a stratified Phase 2 sampling
is implicitly assumed, which is a well-known survey sampling design. Hence, a weighted analysis
using Chen-weights can be carried out by specifying a stratified two-phase design with the function
twophase and carry out the Cox-regression using this design with svycoxph.

The NestedCohort package is a general package for cohort analyses with a missing data/two-
phase design perspective. The theory behind it is based to some extent on Robins et al. (1994) and
the variance estimators also build on this paper. Weighted Cox-regressions are carried out with
nested.coxph where a working model is assumed for the sampling probabilities in Phase 2. This
working model is a logistic regression model for the sampling indicator with all variables contributing
to the missingness as covariates. This is identical to specifying weight.method = "glm" in wpl.
However, the variance estimator in nested.coxph may be somewhat better in special situations where
the robust variances are conservative. The NestedCohort package can however only be used for
glm-weights so that the more commonly used KM-weights are not applicable with this package. The
authors of the package also state that fine matching is problematic with NestedCohort. In the data
example below nested.coxph gave identical estimates and standard errors as using glm-weights with
wpl.

Analysis of example data set

The data set CVD_Accidents

We use a collection of cardiovascular health screenings as our cohort, also used in Aalen et al. (2008).
All men and women aged 35–49 from three Norwegian counties: Oppland, Sogn og Fjordane and
Finnmark were invited to participate in health screenings from 1974–1978. The screening consisted of a
health examination including measurement of height and weight. The participants were also asked to
respond to a questionnaire which among other things contained questions regarding smoking status.

More than 90% of the invited subjects chose to participate which resulted in a cohort of about
50 000 subjects. The cohort was linked to the Causes of Death Registry kept by Statistics Norway and
followed up for deaths until the end of year 2000. Since there were few subjects at risk younger than
40 years, the survival times were left-truncated at age 40 or age at health screening. The left-truncation
time is named agestart in the data. The survival time is named agestop and is either the age at death
or censoring.

The data set included in multipleNCC and used as illustration here, is a random sample of
3933 subjects from the cohort. It is a cohort study, but we have carried out a synthetic nested case-
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control study within this smaller cohort. Having full cohort information enables comparison between
wpl() and corresponding analyses carried out on the full cohort. The synthetic data generation
was performed in two steps. In the first step a nested case-control sampling was carried out by
sampling one control per case matched sex and BMI ± 2. This was done in a for-loop over event times
sampling one subject at random from those still alive at that time in addition to fitting the matching
criterium. When the controls are not additionally matched or matched only on a categorical variable
the ccwc-function from the Epi package (Carstensen et al., 2016) offers a simple way to create a nested
case-control design from a cohort. However, if some of the matching variables are continuous it still
has to be done as described above. The second step is necessary only for the weighted Cox-regression
and it involves removing duplicate subjects, due to that some controls are sampled multiple times and
some controls later become cases, from the sampled data. For those controls who later become cases it
is important to keep the “case-entry”, while for those controls sampled multiple times, the entries will
be identical and one of them is kept at random.

Four types of deaths are recorded in the data: (1) cancer, (2) cardiovascular disease, (3) alcohol
abuse, liver disease, accidents and violence, and (4) other medical causes. For simplicity we only use
cardiovascular disease (n = 236) and alcohol abuse, liver disease, accidents and violence, henceforth
referred to as ALAV (n = 60). The data set is included in multipleNCC and can be loaded by
data("CVD_Accidents").

When we analyze this data set with IPW, we will use all sampled controls for both endpoints,
hence supplement the controls for ALAV deaths with the cardiovascular disease controls and cases.
And vice versa, supplement controls for cardiovascular disease cases with cases and controls for ALAV
cases. For ALAV deaths, the number of controls increases substantially when including the controls
for cardiovascular deaths.

The matching variables are BMI (M1 = bmi) and sex (M2 = sex). The matching variables are
adjusted for in the model to remove confounding due to breaking the matching. We included BMI as
continuous variable and sex is a categorical variable. Smoking (X = smoking3gr) is our explanatory
variable and is categorized into never smoked, former smoker and current smoker.

Fitting models

We consider the two models

h1i (ti|X, M1, M2) = h10 (ti) exp
(

β′1Xi + γ11 M1i + γ12 M2i
)

h2i (ti|X, M1, M2) = h20 (ti) exp
(

β′2Xi + γ21 M1i + γ22 M2i
)

.

Here h1 (.) and h2 (.) are the hazard for death from CVD and ALAV, respectively. To fit the weighted
partial likelihoods corresponding to those models, the command below can be used

R> fit <- wpl(Surv(agestart, agestop, dead24) ~ factor(X) + bmi + sex,
+ data = CVD_Accidents, m = 1, samplestat, weight.method = "glm",
+ match.var = cbind(CVD_Accidents$BMI, CVD_Accidents$sex),
+ match.int = c(-2, 2, 0, 0))

The ‘status’ argument to the ‘Surv’ function (in this example ‘dead24’) can in practice contain anything
since the information regarding who are cases and controls, and also which type of endpoint the cases
experienced are provided through samplestat. The ‘match.int’ argument will in this situation be a
vector of two elements, ‘match.int = c(-2,2,0,0)’, since the controls are matched to the cases on
BMI ±2, and sex.

The ‘summary’ and ‘print’ commands can be used to display the results of the analysis. The output
resembles output from traditional Cox-regression (see next page), and the results for the different
endpoints are printed below each other. Both the naive and robust/estimated standard errors are
printed, although only the robust/estimated should be reported.

The $-operator is usually used when specific parts of an object (i.e., ‘fit$coefficients’) are to be
extracted. When there is more than one endpoint this will only give you the corresponding element
for the first endpoint, i.e., ‘fit$coefficients’ will give you (0.47107, 1.34245, 0.08051, −1.22307), thus
only the estimates for the cardiovascular disease endpoint. To extract any element from the object,
[[]] can be used, i.e., ‘fit[[23]]’ will give you the estimates from the second analysis of death from
ALAV. For a full list of elements in the wpl object, the names() function can be used. Each element will
occur the same number of times as there are different endpoints, and the first occurrence corresponds
to the first endpoint, the second occurrence to the second endpoint, etc.

R> summary(fit)

Endpoint 1 :
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Call:
wpl.formula(formula = Surv(agestart, agestop, dead24) ~ factor(smoking3gr) +

bmi + factor(sex), data = CVD_Accidents,
samplestat = CVD_Accidents$samplestat,
match.var = cbind(CVD_Accidents$bmi, CVD_Accidents$sex),
match.int = c(-2, 2, 0, 0), weight.method = "glm")

n= 566, number of events= 236

coef exp(coef) se(coef) robust se z Pr(>|z|)
factor(smoking3gr)2 0.47107 1.60171 0.22099 0.26057 1.808 0.07062 .
factor(smoking3gr)3 1.34245 3.82842 0.19400 0.23424 5.731 9.98e-09 ***
bmi 0.08051 1.08384 0.01799 0.02562 3.143 0.00167 **
factor(sex)2 -1.22307 0.29433 0.15980 0.22475 -5.442 5.27e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95
factor(smoking3gr)2 1.6017 0.6243 0.9611 2.6692
factor(smoking3gr)3 3.8284 0.2612 2.4190 6.0591
bmi 1.0838 0.9226 1.0308 1.1396
factor(sex)2 0.2943 3.3976 0.1895 0.4572

Endpoint 2 :
Call:
coxph(formula = Surv(left.time.ncc, survtime.ncc, status.ncc ==

i) ~ x + cluster(ind.no.ncc), weights = 1/p)

n= 566, number of events= 60

coef exp(coef) se(coef) robust se z Pr(>|z|)
factor(smoking3gr)2 -0.61629 0.53994 0.45484 0.48347 -1.275 0.202413
factor(smoking3gr)3 0.92343 2.51792 0.32202 0.34402 2.684 0.007270 **
bmi 0.08383 1.08744 0.03813 0.04587 1.828 0.067619 .
factor(sex)2 -1.42549 0.24039 0.32702 0.36888 -3.864 0.000111 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95
factor(smoking3gr)2 0.5399 1.8520 0.2093 1.3928
factor(smoking3gr)3 2.5179 0.3972 1.2829 4.9417
bmi 1.0874 0.9196 0.9939 1.1897
factor(sex)2 0.2404 4.1599 0.1167 0.4954

The sampling probabilities can be directly estimated using one of the functions: KMprob, GAMprob,
GLMprob and Chenprob, for instance

R> glmp <- GLMprob(CVD_Accidents$agestop, CVD_Accidents$samplestat,
+ left.time = CVD_Accidents$agestart, match.var = cbind(CVD_Accidents$sex,
+ CVD_Accidents$bmi), match.int = c(0, 0, -2, 2))
R> kmp <- KMprob(CVD_Accidents$agestop, CVD_Accidents$samplestat, 1,
+ left.time = CVD_Accidents$agestart, match.var = cbind(CVD_Accidents$sex,
+ CVD_Accidents$bmi), match.int = c(0, 0, -2, 2))

It is of interest to examine the weights for the sampled controls only, as the cases have weight 1 and
the non-sampled subjects will not affect estimates. We can for instance inspect summary statistics

R> summary(1/glmp[CVD_Accidents$samplestat == 1])

Min. 1st Qu. Median Mean 3rd Qu. Max.
4.575 6.545 9.201 13.240 15.080 73.180

R> summary(1/kmp[CVD_Accidents$samplestat == 1])

Min. 1st Qu. Median Mean 3rd Qu. Max.
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CVD
Former smoker Current smoker

HR (95 % CI) SE(β) Eff. HR (95 % CI) SE(β) Eff.

Cohort 1.72 (1.11–2.66) 0.22 1.00 3.25 (2.21–4.79) 0.20 1.00
Trad. 1.66 (0.94–2.93) 0.29 0.59 3.52 (2.09–5.94) 0.27 0.55
IPW-GLM 1.60 (0.96–2.67) 0.26 0.73 3.83 (2.42–6.06) 0.23 0.72
IPW-KM 1.65 (0.98–2.78) 0.26 0.66 3.97 (2.48–6.35) 0.24 0.69

ALAV
Former smoker Current smoker

HR (95 % CI) SE(β) Eff. HR (95 % CI) SE(β) Eff.

Cohort 0.56 (0.23–1.38) 0.46 1.00 2.05 (1.07–3.90) 0.33 1.00
Trad. 0.48 (0.13–1.69) 0.65 0.50 2.90 (1.11–7.61) 0.49 0.45
IPW-GLM 0.54 (0.21–1.39) 0.48 0.90 2.52 (1.28–4.94) 0.34 0.92
IPW-KM 0.55 (0.21–1.40) 0.49 0.90 2.56 (1.28–5.02) 0.35 0.89

Table 2: Results from analyses on the entire cohort, traditional nested case-control analyses and IPW
analyses with GLM-weights and robust variances, and KM-weights and estimated variances. Never
smoked is used as reference. Eff. – variance for cohort estimator divided by variance for corresponding
estimator. SE(β) – standard error (robust SE for IPW estimators with estimated SE in parentheses for
KM-weights).

2.481 6.839 8.772 13.150 15.020 95.810

The two types of weights correspond well, although KM-weights have a somewhat heavier tail. It
is worth noting that the subjects with the largest weights are those with the shortest follow-up time
and therefore those subjects do not have a too large impact on the analysis even though their weight
is large, since they are included in few risk sets. GAM-weights were similar to GLM-weights, but
with a somewhat heavier tail (not shown) and Chen-weights are not applicable here since they are not
implemented for additional matching.

Comparison between stratified coxph and wpl

Table 2 displays a comparison between the full cohort analysis, the traditional estimator for nested
case-control data and the IPW-estimator using wpl() with GLM- and KM-weights. Being a smoker
significantly increases the risk of death from cardiovascular disease. Being a former smoker also
increases the risk of death from cardiovascular disease, although only significantly in the cohort
analysis. Being a former smoker has a non-significant protective effect on death from ALAV, while
being a smoker significantly increases the risk of dying from ALAV.

The hazard ratios estimated with the traditional estimator and with wpl() are fairly similar to the
cohort estimates taking into account the size of the standard errors. The most pronounced difference
is between the cohort hazard rate and the hazard rate for the traditional estimator for being a smoker
on death from ALAV, 2.05 vs. 2.90. However, considering the size of the standard errors this is not a
large difference.

For the cardiovascular disease endpoint, the standard errors of the IPW analyses are somewhat
smaller than the standard errors of the traditional estimator, resulting in a little bit higher efficiency
for the IPW-estimators. For the ALAV endpoint, the standard errors are substantial lower and a large
efficiency gain is obtained with the IPW-estimators. The reason for this is that the IPW-estimators make
use of a number of extra controls as all cases and controls from the cardiovascular disease endpoint are
used as additional controls. On average the number of controls per case increase from 1 to more than 8.
We have chosen to include cardiovascular disease cases as additional controls for the cases who died
from ALAV, and also the cases who died from ALAV as additional controls for the cases who died
from cardiovascular disease. However, the cases who are used as additional controls will contribute
little to the analysis since they are non-cases (for the particular endpoint) with weight equal to 1. We
have reported robust standard errors for KM-weights in Table 2, however the estimated standard
errors are very similar, for CVD endpoint 0.27 and 0.24 and for ALAV 0.48 and 0.35 for former and
current smoker respectively.
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Discussion

We have demonstrated the multipleNCC package in R which allows for breaking the matching
and reusing controls in NCC designs. The main function wpl() estimates sampling probabilities
and perform weighted Cox-regressions. It handles right-censored, left-truncated and additionally
matched data, and varying number of sampled controls. We have also explained how the variance can
be estimated without additional matching (KM- and Chen-weights) and with additional matching
(KM-weights).

The package is particularly useful in situations with multiple outcomes. It has a competing
risks perspective, in the sense that with more than one type of endpoint, each endpoint is estimated
separately and all controls and cases of other types are used as additional controls. In many situations
the competing risks framework may not be suitable, although reusing controls can still be of interest.
The solution can then be to estimate the sampling probabilities for all cohort members, using one of
the four functions KMprob, GAMprob, GLMprob or Chenprob, and carry out weighted analysis that fit the
situation at hand.

The gam() function from the mgcv package is used for estimation of the GAM-weights. We could
alternatively have used the gam() function from the gam package (Hastie, 2015) or even a different
form of smoothing. It has however become evident that the exact value of the weights are not too
important as long as they are fairly reasonable, thus the choice of smoothing does probably not affect
final hazard ratios and standard errors. For the same reason there are usually only minor differences
with regards to final hazard ratios and standard errors between the four weight estimators discussed
in Section Weight estimation (Støer and Samuelsen, 2012, 2013).

Sometimes the cases and controls are matched closer together than is strictly necessary. Very close
matching can lead to small KM-weights since the probability of being sampled will be large for the
controls that were sampled (and very small for most of the non-sampled subjects) and this could
lead to biased estimates (Støer and Samuelsen, 2013). A solution could be to increase the length of
‘match.int’. For example in the data example above, we could replace ‘match.int = c(-2,2)’ with
‘match.int = c(-4,4)’. Widening the matching interval could introduce bias, thus it is important to
carry this out with caution. The equivalence of this for category matching is to reduce the number of
levels of the matching variable by some sort of grouping.
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QPot: An R Package for Stochastic
Differential Equation Quasi-Potential
Analysis
by Christopher M. Moore, Christopher R. Stieha, Ben C. Nolting, Maria K. Cameron, and Karen C.
Abbott

Abstract QPot (pronounced kyoo + pät) is an R package for analyzing two-dimensional systems of
stochastic differential equations. It provides users with a wide range of tools to simulate, analyze,
and visualize the dynamics of these systems. One of QPot’s key features is the computation of the
quasi-potential, an important tool for studying stochastic systems. Quasi-potentials are particularly
useful for comparing the relative stabilities of equilibria in systems with alternative stable states. This
paper describes QPot’s primary functions, and explains how quasi-potentials can yield insights about
the dynamics of stochastic systems. Three worked examples guide users through the application of
QPot’s functions.

Introduction

Differential equations are an important modeling tool in virtually every scientific discipline. Most
differential equation models are deterministic, meaning that they provide a set of rules for how
variables change over time, and no randomness comes into play. Reality, of course, is filled with
random events (i.e., noise or stochasticity). Unfortunately, many of the analytic techniques developed
for deterministic ordinary differential equations are insufficient to study stochastic systems, where
phenomena like noise-induced transitions between alternative stable states and metastability can occur.
For systems subject to stochasticity, the quasi-potential is a tool that yields information about properties
such as the expected time to escape a basin of attraction, the expected frequency of transitions between
basins, and the stationary probability distribution. QPot (abbreviation of Quasi-Potential; Moore et al.,
2016) is an R package that allows users to calculate quasi-potentials, and this paper is a tutorial of its
application. This package is intended for use by any researchers who are interested in understanding
how stochasticity impacts differential equation models. QPot makes quasi-potential analysis accessible
to a broad range of modelers, including those who have not previously encountered the topic. The key
functions in package QPot are listed in Table 1.

Adding stochasticity to deterministic models

Consider a differential equation model of the form

dx
dt

= f1 (x(t), y(t))

dy
dt

= f2 (x(t), y(t)) .
(1)

In many cases, state variables are subject to continuous random perturbations, which are commonly
modeled as white noise processes. To incorporate these random influences, the original system
of deterministic differential equations can be transformed into a system of stochastic differential
equations:

dX(t) = f1 (X(t), Y(t)) dt + σ dW1(t)
dY(t) = f2 (X(t), Y(t)) dt + σ dW2(t).

(2)

X and Y are now stochastic processes (a change emphasized through the use of capitalization); this
means that, at every time t, X(t) and Y(t) are random variables, as opposed to real numbers. σ ≥ 0 is a
parameter specifying the noise intensity, and W1(t) and W2(t) are Wiener processes. A Wiener process
is a special type of continuous-time stochastic process whose changes over non-overlapping time
intervals, ∆t1 and ∆t2, are independent Gaussian random variables with means zero and standard
deviations

√
∆t1 and

√
∆t2, respectively. The differential notation in equations (2) is a formal way

of representing a set of stochastic integral equations, which must be used because realizations of
Wiener processes are not differentiable (to be precise, with probability one, a realization of a Wiener
process will be almost nowhere differentiable). The functions f1 and f2 are called the deterministic
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Function Main arguments Description

TSTraj() Deterministic skeleton, σ,
T, ∆t

Creates a realization (time series) of the
stochastic differential equations.

TSPlot() TSTraj() output Plots a realization of the stochastic dif-
ferential equations, with an optional his-
togram side-plot. Plots can additionally be
two-dimensional, which show realizations
in (X, Y)-space.

TSDensity() TSTraj() output Creates a density plot of a trajectory in
(X, Y)-space in one or two dimensions.

QPotential() Deterministic skele-
ton, stable equilibria,
bounds, mesh (number of
divisions along each axis)

Creates a matrix corresponding to a
discretized version of the local quasi-
potential function for each equilibrium.

QPGlobal() Local quasi-potential ma-
trices, unstable equilibria

Creates a global quasi-potential surface.

QPInterp() Global quasi-potential,
(x, y)-coordinates

Evaluates the global quasi-potential at
(x, y).

QPContour() Global quasi-potential Creates a contour plot of the quasi-
potential.

VecDecomAll() Global quasi-potential,
deterministic skeleton,
bounds

Creates three vector fields: the deter-
ministic skeleton, the negative gradient
of the quasi-potential, and the remain-
der vector field. To find each field in-
dividually, the functions VecDecomVec(),
VecDecomGrad(), or VecDecomRem() can be
used.

VecDecomPlot() Deterministic skeleton,
gradient, or remainder
field

Creates a vector field plot for the vector,
gradient, or remainder field.

Table 1: Key functions in package QPot.

skeleton. The deterministic skeleton can be viewed as a vector field that determines the dynamics
of trajectories in the absence of stochastic effects. We will forgo a complete overview of stochastic
differential equations here; interested readers are encouraged to seek out texts like Allen (2007) and
Iacus (2009). We note that throughout this paper we use the Itô formulation of stochastic differential
equations.

The quasi-potential

Consider System (2), with deterministic skeleton (1). If there exists a function V(x, y) such that
f1(x, y) = − ∂V

∂x and f2(x, y) = − ∂V
∂y , then System (1) is called a gradient system and V(x, y) is called

the system’s potential function . The dynamics of a gradient system can be visualized by considering
the (x, y)-coordinates of a ball rolling on a surface specified by z = V(x, y). Gravity causes the ball
to roll downhill, and stable equilibria correspond to the bottoms of the surface’s valleys. V(x, y) is a
Lyapunov function for the system, which means that if (x(t), y(t)) is a solution to System (1), then
d
dt (V (x(t), y(t))) ≤ 0, and the only places that d

dt (V (x(t), y(t))) = 0 are at equilibria. This means
that the ball’s elevation will monotonically decrease, and will only be constant if the ball is at an
equilibrium. The basin of attraction of a stable equilibrium e∗ of System (1) is the set of points that lie
on solutions that asymptotically approach e∗.

The potential function is useful for understanding the stochastic System (2). As in the deterministic
case, the dynamics of the stochastic system can be represented by a ball rolling on the surface
z = V(x, y); in the stochastic system, however, the ball experiences random perturbations due to noise
terms in the System (2). In systems with multiple stable equilibria, these random perturbations can
cause a trajectory to move between different basins of attraction. The depth of the potential (that is,
the difference in V at the equilibrium and the lowest point on the boundary of its basin of attraction),
is a useful measure of the stability of the equilibrium (see Nolting and Abbott, 2016). The deeper the
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potential, the less likely it will be for stochastic perturbations to cause an escape from the basin of
attraction. This relationship between the potential and the expected time to escape from a basin of
attraction can be made precise (see formulae in the appendices of Nolting and Abbott, 2016). Similarly,
the potential function is directly related to the expected frequency of transitions between different
basins, and to the stationary probability distribution of System (2).

Unfortunately, gradient systems are very special, and a generic system of the form (1) will al-
most certainly not be a gradient system. That is, there will be no function V(x, y) that satisfies
f1(x, y) = − ∂V

∂x and f2(x, y) = − ∂V
∂y .

Fortunately, quasi-potential functions generalize the concept of a potential function for use in non-
gradient systems. A non-gradient system’s quasi-potential, Φ(x, y), possesses many of the properties
of a gradient system’s potential function; in particular, a non-gradient system’s quasi-potential is
related to its stationary probability distribution in the same way that a gradient system’s potential
function is related to its stationary probability distribution. Furthermore, Φ(x, y) is a Lyapunov
function for the deterministic skeleton of a non-gradient system, just as a potential function is for
a gradient system. Therefore, the surface z = Φ(x, y) is a highly useful stability metric. The quasi-
potential also provides information about the expected frequency of transitions between basins of
attraction and the expected time required to escape each basin.

The mathematical definition of the quasi-potential is rather involved. We refer readers to Cameron
(2012), Nolting and Abbott (2016), and the references therein for the technical construction.

In both this paper and in package QPot, the function that we refer to as the quasi-potential is 1
2

times the quasi-potential as defined by Freidlin and Wentzell (2012). This choice is made so that the
quasi-potential will agree with the potential in gradient systems.

QPot is an R package that contains tools for calculating and analyzing quasi-potentials (which, for
the special case of gradient systems, are simply potentials). The following three examples show how
to use the tools in this package. The first example is a simple consumer-resource model from ecology.
This example is explained in detail, starting with the analysis of the deterministic skeleton, proceeding
with simulation of the stochastic system, and finally demonstrating the calculation, analysis, and
interpretation of the quasi-potential. The second and third examples are covered in less detail, but
illustrate some special system behaviors. Systems with limit cycles, like Example 2, require a slightly
different procedure than systems that only have point attractors. Extra care must be taken constructing
global quasi-potentials for exotic systems, like Example 3.

Example 1: A consumer-resource model with alternative stable states

Consider the stochastic version (sensu (2)) of a standard consumer-resource model of plankton (X) and
their consumers (Y) (Collie and Spencer, 1994; Steele and Henderson, 1981):

dX(t) =
(

αX(t)
(

1− X(t)
β

)
− δ X(t)2 Y(t)

κ + X(t)2

)
dt + σ dW1(t)

dY(t) =
(

γ X(t)2 Y(t)
κ + X(t)2 − µ Y(t)2

)
dt + σ dW2(t).

(3)

The model is formulated with a Type III functional response; the relationship between the plankton
density and the per-capita consumption rate of plankton is sigmoid. α is the plankton’s maximum
population growth rate, β is the plankton carrying capacity, δ is the maximal feeding rate of the
consumers, γ is the maximum conversion rate of plankton to consumer (which takes into account
maximum feeding rate), κ controls how quickly the consumption rate saturates, and µ is the consumer
mortality rate. We will analyze this example with a set of parameter values that yield two stables
states: α = 1.54, β = 10.14, γ = 0.476, δ = 1, κ = 1, and µ = 0.112509.

Step 1: Analyzing the deterministic skeleton

There are preexisting tools in R for analyzing the deterministic skeleton of System (3), which will be
described briefly in this subsection. Many of the these tools can be found in the CRAN Task View for
Differential Equations (https://CRAN.R-project.org/view=DifferentialEquations), but we use a
select few in our analysis. The first step is to find the equilibria for the system and determine their
stability with linear stability analysis. Equilibria can be found using the package rootSolve (Soetaert
and Herman, 2008). rootSolve provides routines that allow users to find roots of nonlinear functions,
and perform equilibria and steady-state analysis of ordinary differential equations (ODEs). In Example
1, the equilibria are eu1 = (0, 0), es1 = (1.4049, 2.8081), eu2 = (4.2008, 4.0039), es2 = (4.9040, 4.0619),
and eu3 = (10.14, 0). Eigenvalues of the linearized system at an equilibrium can be found by using
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eigen() in package base over the Jacobian matrix (jacobian.full() in package rootSolve), which
determines the asymptotic stability of the system. eu1 is an unstable source and eu2 and eu3 are
saddles. The eigenvalues corresponding to es1 are −0.047± 0.458 i and the eigenvalues corresponding
to es2 are −0.377 and −0.093. Hence es1 is a stable spiral point and es2 is a stable node. To ease
transition from packages such as deSolve (Soetaert et al., 2010) and rootSolve to our package QPot,
we include the wrapper function Model2String(), which takes a function containing equations and a
list of parameters and their values, and returns the equations in a string that is usable by QPot (see the
help page for an example).

Figure 1: A stream plot of the deterministic skeleton of System (3). The blue line is an x-nullcline
(where dx

dt = 0) and the red line is a y-nullcline (where dy
dt = 0). Open circles are unstable equilibria

and filled circles are stable equilibria. Made using the package phaseR.

The package phaseR (Grayling, 2014a,b) is an R package for the qualitative analysis of one- and
two-dimensional autonomous ODE systems using phase plane methods (including the linear stability
analysis described in the preceding paragraph). We use phaseR to generate a stream plot of the
deterministic skeleton of System (3) (Figure 1). Note that a stream plot is a phase plane plot that
displays solutions of a system of differential equations; these solutions are also called streamlines. The
deSolve package can be used to find solutions corresponding to particular initial conditions of the
deterministic skeleton of System (3). During the analysis of the deterministic skeleton of a system, it is
important to note several things. The first is the range of x and y values over which relevant dynamics
occur. In Example 1, transitions between the stable equilibria are a primary point of interest, so one
might wish to focus on a region like the one displayed in Figure 1, even though this region excludes eu3.
The regions of phase space that the user finds interesting will determine the window sizes and ranges
used later in the quasi-potential calculations. Second, it is important to note if there are any limit
cycles. If there are, it will be necessary to identify a point on the limit cycle. This can be accomplished
by calculating a long-time solution of the system of ODEs to obtain a trajectory that settles down on
the limit cycle (see Example 2). Finally, it is important to note regions of phase space that correspond
to unbounded solutions. As explained in subsequent sections, it is worth examining system behavior
in negative phase space, even in cases where negative quantities lack physical meaning.

Step 2: Stochastic simulation

QPot contains several tools for generating and visualizing realizations of systems of the form (2).
Examining these realizations can help users understand qualitative features of the system before
computing and analyzing the quasi-potential. Sim.DiffProc (Guidoum and Boukhetala, 2016) and
yuima (Brouste et al., 2014) are two packages that offer a full suite of stochastic differential equation
simulation options, and many of the tools that they contain are more efficient than those in QPot.
Users interested in very large-scale simulation are encouraged to seek out those packages. For general
exploration of a model’s behavior prior to quasipotential analysis, however, TSTraj() is extremely
helpful and does not require the use of a separate package.

Here, we show how to use QPot to obtain realizations of System (3) for a specified level of
noise intensity, σ. To do this, TSTraj() in QPot implements the Euler-Maruyama method. All other
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code/function references hereafter are found in QPot, unless specified otherwise. To generate a
realization, the following arguments are required: the right-hand side of the deterministic skeleton
for both equations, the initial conditions (x0, y0), the parameter values, the step-size ∆t, and the total
time length T. The function TSTraj() accepts strings of equations with the parameter values already
included (supplied by the user or made with Model2String()) or can combine the equations with the
parameter values supplied as parms. We supply the function Model2String() to replace parameters
with their values in an equation, but the user can also input the values themselves and may need to do
so with complicated equations (see the Model2String() help page). Using Model2String() will allow
a user to catch problems before they cause complications in the C code within function QPotential().

var.eqn.x <- "(alpha * x) * (1 - (x / beta)) - ((delta * (x^2) * y) / (kappa + (x^2)))"
var.eqn.y <- "((gamma * (x^2) * y) / (kappa + (x^2))) - mu * (y^2)"
model.parms <- c(alpha = 1.54, beta = 10.14, delta = 1, gamma = 0.476,
kappa = 1, mu = 0.112509)

parms.eqn.x <- Model2String(var.eqn.x, parms = model.parms)
## Do not print to screen.
parms.eqn.y <- Model2String(var.eqn.y, parms = model.parms, supress.print = TRUE)
model.state <- c(x = 1, y = 2)
model.sigma <- 0.05
model.time <- 1000 # we used 12500 in the figures
model.deltat <- 0.025
ts.ex1 <- TSTraj(y0 = model.state, time = model.time, deltat = model.deltat,
x.rhs = parms.eqn.x, y.rhs = parms.eqn.y, sigma = model.sigma)

## Could also use TSTraj to combine equation strings and parameter values.
## ts.ex1 <- TSTraj(y0 = model.state, time = model.time, deltat = model.deltat,
## x.rhs = var.eqn.x, y.rhs = var.eqn.y, parms = model.parms, sigma = model.sigma)

Figure 2: A realization of System (3) created using TSPlot(), with x in blue and y in red. The left
panel shows the time series. The right panel, which is enabled with the default dens = TRUE, shows a
histogram of the x and y values over the entire realization.

Figure 2 shows a realization for σ = 0.05, ∆t = 0.025, T = 1.25 × 104, and initial condition
(x0, y0) = (1, 2). The argument dim = 1 produces a time series plot with optional histogram side-plot.
The dim = 2 produces a plot of a realization in (x, y)-space. If the system is ergodic, a very long
realization will approximate the steady-state probability distribution. Motivated by this, a probability
density function can be approximated from a long realization using the TSDensity() function (e.g.,
Figure 3b).

TSPlot(ts.ex1, deltat = model.deltat) # Figure 2
TSPlot(ts.ex1, deltat = model.deltat, dim = 2) # Figure 3a
TSDensity(ts.ex1, dim = 1) # like Figure 2 histogram
TSDensity(ts.ex1, dim = 2) # Figure 3b

Bounds can be placed on the state variables in all of the functions described in this subsection.
For example, it might be desirable to set 0 as the minimum size of a biological population, because
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negative population densities are not physically meaningful. A lower bound can be imposed on
the functions described in this subsection with the argument lower.bound in the function TSTraj().
Similarly, it might be desirable to set an upper bound for realizations, and hence prevent runaway
trajectories (unbounded population densities are also not physically meaningful). An upper bound
can be imposed on the functions described in this subsection with the argument upper.bound.

Figure 3: (A) The realization of System (3) created using TSPlot() plotted in (x, y)-space with dim =
2. (B) A density plot obtained from a realization of System (3) using the function TSDensity() with
dim = 2. Red corresponds to high density, and blue to low density.

Step 3: Local quasi-potential calculation

The next step is to compute a local quasi-potential for each attractor. Because QPot deals with two-
dimensional systems, attractor will be used synonymously with stable equilibrium or stable limit
cycle . A limit cycle will be considered in example 2. For now, suppose that the only attractors are
stable equilibrium points, esi, i = 1, . . . , n. In the example above, n = 2. For each stable equilibrium
esi, we will compute a local quasi-potential Φi(x, y).

In order to understand the local quasi-potential, it is useful consider the analogy of a particle trav-
eling according to System (2). In the context of Example 1, the coordinates of the particle correspond
to population densities, and the particle’s path corresponds to how those population densities change
over time. The deterministic skeleton of (2) can be visualized as a force field influencing the particle’s
trajectory. Suppose that the particle moves along a path from a stable equilibrium esi to a point (x, y).
If this path does not coincide with a solution of the deterministic skeleton, then the stochastic terms
must be doing some work to move the particle along the path. The more work is required, the less
likely it is for the path to be a realization of System (2). Φi(x, y) is the amount of work required to
traverse the easiest path from esi to (x, y). Note that Φi(x, y) is non-negative, and it is zero at esi.

In the basin of attraction for esi, Φi(x, y) has many properties analogous to the potential function
for gradient systems. Key among these properties is that the quasi-potential is non-increasing along
deterministic trajectories. This means that the quasi-potential can be interpreted as a type of energy
surface, and the rolling ball metaphor is still valid. The difference is that, in non-gradient systems,
there is an additional component to the vector field that causes trajectories to circulate around level
sets of the energy surface. This is discussed in more detail in Step 6, below.

QPot calculates quasi-potentials using an adjustment developed by Cameron (2012) to the ordered
upwind algorithm (Sethian and Vladimirsky, 2001, 2003). The idea behind the algorithm is to calculate
Φi(x, y) in ascending order, starting with the known point esi. The result is an expanding area where
the solution is known.

Calculating Φi(x, y) with the function QPotential() requires a text string of the equations and
parameter values, the stable equilibrium points, the computation domain, and the mesh size. If the
equations do not contain the parameter values, the function Model2String() can be used to insert the
values into the equations, as presented above. For (3), this first means inputting the equations:

f1(x, y) = 1.54x
(

1− x
10.14

)
− x2 y

1 + x2

f2(x, y) =
0.476 x2 y

1 + x2 − 0.112509 y2.
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In R:

## If not done in a previous step.
parms.eqn.x <- Model2String(var.eqn.x, parms = model.parms)
## Do not print to screen.
parms.eqn.y <- Model2String(var.eqn.y, parms = model.parms, supress.print = TRUE)
## Could also input the values by hand and use this version.
## parms.eqn.x <- "1.54 * x * (1.0 - (x / 10.14)) - (y * (x^2)) / (1.0 + (x^2))"
## parms.eqn.y <- "((0.476 * (x^2) * y) / (1 + (x^2))) - 0.112509 * (y^2)"

The coordinates of the points esi, which were determined in Step 1, are es1 = (1.4049, 2.8081) and
es2 = (4.9040, 4.0619).

eq1.x <- 1.40491
eq1.y <- 2.80808
eq2.x <- 4.9040
eq2.y <- 4.06187

Next, the boundaries of the computational domain need to be entered. This domain will be denoted
by [Lx1, Lx2]× [Ly1, Ly2]. The ordered-upwind method terminates when the solved area encounters
a boundary of this domain. Thus, it is important to choose boundaries carefully. For example, if esi
lies on one of the coordinate axes, one should not use that axis as a boundary because the algorithm
will immediately terminate. Instead, one should add padding space. This is important even if the
padding space corresponds to physically unrealistic values (e.g., negative population densities). For
this example, a good choice of boundaries is: Lx1 = Ly1 = −0.5, and Lx2 = Ly2 = 20. This choice of
domain was obtained by examining stream plots of the deterministic skeleton and density plots of
stochastic realizations (Figures 1–3). The domain contains all of the deterministic skeleton equilibria,
and it encompasses a large area around the regions of phase space visited by stochastic trajectories
(Figures 1–3). Note that a small padding space was added to the left and bottom sides of the domain,
so that the coordinate axes are not the domain boundaries.

bounds.x <- c(-0.5, 20.0)
bounds.y <- c(-0.5, 20.0)

In some cases, it may be desirable to treat boundaries differently in the upwind algorithm. This is
addressed below in Section 6.7.

Finally, the mesh size for the discretization of the domain needs to be specified. Let Nx be the
number of grid points in the x-direction and Ny be the number of grid points in the y-direction. Note
that the horizontal distance between mesh points is hx = Lx2−Lx1

Nx
, and the vertical distance between

mesh points is hy =
Ly2−Ly1

Ny
. Mesh points are considered adjacent if their Euclidean distance is less

than or equal to h =
√

h2
x + h2

y. This means that diagonal mesh points are considered adjacent. In this
example, a good choice is Nx = Ny = 4100. This means that hx = hy = 0.005, and h ≈ 0.00707. In
general, the best choice of mesh size will be a compromise between resolution and computational
time. The mesh size must be fine enough to precisely track how information moves outward along
characteristics from the initial point. Too fine of a mesh size can lead to very long computational
times, though. The way that computation time scales with grid size depends on the system under
consideration (see below for computation time for this example), because the algorithm ends when
it reaches a boundary, which could occur before the algorithm has exhaustively searched the entire
mesh area.

step.number.x <- 1000
step.number.y <- 1000 # we used 4100 in the figures

The update radii factors , Kx and Ky, are two other adjustable parameters for the algorithm. These
are k.x and k.y in QPotential(). These two parameters determine the neighborhood of points that
can be used to update a given point. Kx and Ky are the distances (measured in mesh units) in the x
and y direction that bound this neighborhood for any given point. The selection of the best values for
these parameters involves several nuanced considerations. For a discussion of these issues, please see
Cameron (2012). For users who wish to avoid these details, we suggest using the defaults Kx = 20 and
Ky = 20.

The R interface implements the QPotential() algorithm using C code. By default QPotential()
outputs a matrix that contains the quasi-potentials to the R session. The time required to compute
the quasi-potential will depend on the size of the region and the fineness of the mesh. This example
with Kx = Ky = 20 and Nx = Ny = 4100 has approximately 1.7× 107 grid points, which leads to
run times of approximately 2.25 min (2.5 GHz Intel Core i5 processor and 8 GB 1600 MHz DDR3
memory). When one reaches around 5× 108 grid points, computational time can be several hours.
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Setting the argument save.to.R to TRUE (default) outputs the matrix into the R session, and setting the
argument save.to.HD to TRUE saves the matrix to the hard drive as a tab-delimited text file filename
in the current working directory. For Nx = Ny = 4100, the saved file occupies 185 MB.

eq1.local <- QPotential(x.rhs = parms.eqn.x, x.start = eq1.x, x.bound = bounds.x,
x.num.steps = step.number.x, y.rhs = parms.eqn.y, y.start = eq1.y,
y.bound = bounds.y, y.num.steps = step.number.y)

Step 3 should be repeated until local quasi-potentials Φi(x, y) have been obtained for each esi. In
Example 1, this means calculating Φ1(x, y) corresponding to es1 and Φ2(x, y) corresponding to es2.

eq2.local <- QPotential(x.rhs = parms.eqn.x, x.start = eq2.x, x.bound = bounds.x,
x.num.steps = step.number.x, y.rhs = parms.eqn.y, y.start = eq2.y,
y.bound = bounds.y, y.num.steps = step.number.y)

Each local quasi-potential Φi(x, y) is stored in R as a large matrix. The entries in this matrix are
the values of Φi at each mesh point. To define the function on the entire domain (i.e., to allow it to be
evaluated at arbitrary points in the domain, not just the discrete mesh points), bilinear interpolation
is used. The values of Φ(x, y) can be extracted using the function QPInterp(). Inputs to QPInterp()
include the (x, y) coordinates of interest, the (x, y) domain boundaries, and the QPotential() out-
put (i.e., the matrix with rows corresponding to x-values and columns corresponding to y-values).
QPInterp() can be used for any of the local quasi-potential or the global quasi-potential surfaces (see
the next subsection).

Step 4: Global quasi-potential calculation

Recall that Φi(x, y) is the amount of work required to travel from esi to (x, y). This information
is useful for considering dynamics in the basin of attraction of esi. In many cases, however, it is
desirable to define a global quasi-potential that describes the system’s dynamics over multiple basins
of attraction. If a gradient system has multiple stable states, the potential function provides an energy
surface description that is globally valid. We seek an analogous global function for non-gradient
systems. Achieving this requires pasting local quasi-potentials into a single global quasi-potential.
If the system has only two attractors, one can define a global quasi-potential, though it might be
nontrivial (see Example 3 ahead). In systems with three or more attractors such a task might not be
possible (Freidlin and Wentzell, 2012). For a wide variety of systems, however, a relatively simple
algorithm can accomplish the pasting (Graham and Tél, 1986; Roy and Nauman, 1995). In most cases,
the algorithm amounts to translating the local quasi-potentials up or down so that they agree at the
saddle points that separate the basins of attraction. In Example 1, eu1 lies on the boundary of the
basins of attraction for es1 and es2. Creating a global quasi-potential requires matching Φ1 and Φ2 at
eu2. Φ1(eu2) = 0.007056 and Φ2(eu2) = 0.00092975. If one defines

Φ∗2(x, y) = Φ2(x, y) + (0.007056− 0.00092975) = Φ2(x, y) + 0.00612625,

then Φ1 and Φ∗2 match at eu2. Finally, define

Φ(x, y) = min(Φ1(x, y), Φ∗2(x, y)),

which is the global quasi-potential. For systems with more than two stable equilibria, this process is
generalized to match local quasi-potentials at appropriate saddles. QPot automates this procedure.
A fuller description of the underlying algorithm is explained in Example 3, which requires a more
nuanced understanding of the pasting procedure.

ex1.global <- QPGlobal(local.surfaces = list(eq1.local, eq2.local),
unstable.eq.x = c(0, 4.2008), unstable.eq.y = c(0, 4.0039),
x.bound = bounds.x, y.bound = bounds.y)

This function QPGlobal() calculates the global quasi-potential by automatically pasting together
the local quasi-potentials. This function requires the input of all the discretized local quasi-potentials,
and the coordinates of all unstable equilibria. The output is a discretized version of the global quasi-
potential. The length of time required for this computation will depend on the total number of
mesh points; for the parameters used in Example 1, it takes a couple of minutes. As with the local
quasi-potentials, the values of Φ(x, y) can be extracted using the function QPInterp().

Step 5: Global quasi-potential visualization

To visualize the global quasi-potential, one can simply take the global quasi-potential matrix from
QPGlobal() and use it to create a contour plot using QPContour() (Figure 4).

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 27

Figure 4: A contour plot of the of the quasi-potential of System (3). Yellow corresponds to low values
of the quasi-potential, and purple to high values. The c.parm parameter in QPContour() can be used
to generate non-equal contour spacing (e.g., for finer resolution near equilibria). The default creates
evenly spaced contour lines ((A); c.parm = 1). In (B), contour lines are concentrated at the bottom
of the basin (c.parm = 5). Default plot colors are generated from package viridis (Garnier, 2016), by
setting col.contour = viridis(n = 25, option = "D") in QPContour().

QPContour(surface = ex1.global, dens = c(1000, 1000), x.bound = bounds.x,
y.bound = bounds.y, c.parm = 5) # right side of Figure 4

QPContour() is based on the .filled.contour() function from the base package graphics. In
most cases, the mesh sizes used for the quasi-potential calculation will be much finer than what is
required for useful visualization. The argument dens within QPContour() reduces the points used in
the graphics generation. Although it might seem wasteful to perform the original calculations at a
mesh size that is finer than the final visualization, this is not so. Choosing the mesh size in the original
calculations to be very fine reduces the propagation of errors in the ordered upwind algorithm, and
hence leads to a more accurate numerical solution.

An additional option allows users to specify contour levels. R’s default for the contour() function
creates contour lines that are equally spaced over the range of values specified by the user. In some
cases, however, it is desirable to use a non-equidistant spacing for the contours. For example, equally-
spaced contours will not capture the topography at the bottom of a basin if the changes in height
are much smaller than in other regions in the plot. Simply increasing the number of equally-spaced
contour lines does not solve this problem, because steep areas of the plot become completely saturated
with lines. QPContour() has a function for non-equidistant contour spacing that condenses contour
lines at the bottoms of basins. Specifically, for n contour lines, this function generates a list of contour
levels, {vi}n

i=1, specified by:

vi = max(Φ)

(
i− 1
n− 1

)c
.

c = 1 yields evenly-spaced contours. As c increases, the contour lines become more concentrated near
basin bottoms. Figure 4 shows equal contour lines (left panel) and contour lines that are concentrated
at the bottom of the basin (right panel, c.parm = 5).

Finally, creating a 3D plot can be very useful for visualizing the features of more complex surfaces.
This is especially helpful when considering the physical metaphor of a ball rolling on a surface specified
by a quasi-potential (Nolting and Abbott, 2016). R has several packages for 3D plotting, including
static plotting with the base function persp() and with the package plot3D (Soetaert, 2014). Interactive
plotting is provided by rgl (Adler et al., 2015). To create an interactive 3D plot for Example 1 using rgl,
use the code: persp3d(x = ex1.global). Figure 5 shows a 3D plot of example 1 using persp3D(z =
ex1.global) in plot3D that clearly illustrates the differences between the two local basins. Users can
also export the matrix of quasi-potential values and create 3D plots in other programs.
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Figure 5: A 3D plot of the of the quasi-potential of System (3) using persp3D() in package plot3D. 3D
plotting can further help users visualize the quasi-potential surfaces. Plot colors are generated from
package viridis by setting col = viridis(n = 100, option = "A") and contour = TRUE.

Step 6: Vector field decomposition

Recall that the deterministic skeleton (1) can be visualized as a vector field, as shown in Figure 1. In
gradient systems, this vector field is completely determined by the potential function, V(x, y). The
name gradient system refers to the fact that the vector field is the negative of the potential function’s
gradient,  f1(x, y)

f2(x, y)

 = −∇V(x, y) = −
[

∂V
∂x (x, y)
∂V
∂y (x, y)

]
.

In non-gradient systems, the vector field can no longer be represented solely in terms of the gradient

of Φ(x, y). Instead, there is a remainder component of the vector field, r(x, y) =
[

r1(x, y)
r2(x, y)

]
. The vector

field can be decomposed into two terms: f1(x, y)

f2(x, y)

 = −∇Φ(x, y) + r(x, y) = −
[

∂Φ
∂x (x, y)
∂Φ
∂y (x, y)

]
+

[
r1(x, y)
r2(x, y)

]
.

The remainder vector field is orthogonal to the gradient of the quasi-potential everywhere. That is, for
every (x, y) in the domain,

∇Φ(x, y) · r(x, y) = 0.

An explanation of this property can be found in Nolting and Abbott (2016).

The remainder vector field can be interpreted as a force that causes trajectories to circulate around
level sets of the quasi-potential. QPot enables users to perform this decomposition. The function
VecDecomAll() calculates the vector field decomposition, and outputs three vector fields: the original
deterministic skeleton, f(x, y); the gradient vector field, −∇Φ(x, y); and the remainder vector field,
r(x, y). Each of these three vector fields can be output alone using VecDecomVec(), VecDecomGrad(),
or VecDecomRem(). These vector fields can be visualized using the function VecDecomPlot(). Code
to create the vector fields from VecDecomAll() is displayed below; code for generating individual
vector fields can be found in the man pages accessible by help() for VecDecomVec(), VecDecomGrad(),
or VecDecomRem(). The gradient and remainder vector fields are shown in the left and right columns
of Figure 6, respectively, with proportional vectors (top row) and equal-length vectors (bottom
row). Three arguments within VecDecomPlot() are important to creating comprehensible plots: dens,
tail.length, and head.length. The dens parameter specifies the number of arrows in the plot
window along the x and y axes. The argument tail.length scales the length of arrow tails. The
argument head.length scales the length of arrow heads. The function arrows() makes up the base of
VecDecomPlot(), and arguments can be passed to it, as well as to plot(). The code below produces all
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three vector fields from the multi-dimensional array returned by VecDecomAll():

## Calculate all three vector fields.
VDAll <- VecDecomAll(surface = ex1.global, x.rhs = parms.eqn.x, y.rhs = parms.eqn.y,
x.bound = bounds.x, y.bound = bounds.y)

## Plot the deterministic skeleton vector field.
VecDecomPlot(x.field = VDAll[, , 1], y.field = VDAll[, , 2], dens = c(25, 25),
x.bound = bounds.x, y.bound = bounds.y, xlim = c(0, 11), ylim = c(0, 6),
arrow.type = "equal", tail.length = 0.25, head.length = 0.025)

## Plot the gradient vector field.
VecDecomPlot(x.field = VDAll[, , 3], y.field = VDAll[, , 4], dens = c(25, 25),
x.bound = bounds.x, y.bound = bounds.y, arrow.type = "proportional",
tail.length = 0.25, head.length = 0.025)

## Plot the remainder vector field.
VecDecomPlot(x.field = VDAll[, , 5], y.field = VDAll[, , 6], dens = c(25, 25),
x.bound = bounds.x, y.bound = bounds.y, arrow.type = "proportional",
tail.length = 0.35, head.length = 0.025)

Figure 6: The gradient (left column) and remainder (right column) fields, plotted with arrow.type
= "proportional" (top row) and arrow.type = "equal" (bottom row) arrow lengths using
VecDecomPlot() for System (3).
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Figure 7: A stream plot of the deterministic skeleton of System (4). The blue line is an x-nullcline
(where dx

dt = 0) and the red line is a y-nullcline (where dy
dt = 0). The open circle is an unstable

equilibrium. Particular solutions are shown as black lines, with filled circles as initial conditions. Made
using the package phaseR.

Example 2: A model with a limit cycle

Consider the following model:

dX(t) =
(
−(Y(t)− β) + µ (X(t)− α)

(
1− (X(t)− α)2 − (Y(t)− β)2

))
dt + σ dW1(t)

dY(t) =
(
(X(t)− α) + µ (Y(t)− β)

(
1− (X(t)− α)2 − (Y(t)− β)2

))
dt + σ dW2(t).

(4)

This model will demonstrate QPot’s ability to handle limit cycles. We will analyze this example with
µ = 0.2, α = 4, and β = 5.

Step 1: Analyzing the deterministic skeleton

The deterministic skeleton of this system has one equilibrium, e0 = (4, 5), which is an unstable spiral
point. Figure 7 shows a stream plot of the deterministic skeleton of System (4). A particular solution
of the deterministic skeleton of System (4) can be found using rootSolve and deSolve. The stream
plot and a few particular solutions suggest that there is a stable limit cycle. To calculate the limit cycle,
one can find a particular solution over a long time interval (e.g., Figure 7 has three trajectories run
for T = 100). The solution will eventually converge to the limit cycle. One can drop the early part of
the trajectory until only the closed loop of the limit cycle remains. There are more elegant ways to
numerically find a periodic orbit (even when those orbits are unstable). For more information on these
methods, see Chua and Parker (1989). In this example, the limit cycle is shown by the thick black line
in Figure 7. For calculation of the quasi-potential, it is sufficient to input a single point that lies on the
limit cycle. For this example, one such point is z = (4.15611, 5.98774).

Step 2: Stochastic simulation

Figures 8 and 9a show a time series for a realization of (4) with σ = 0.1, ∆t = 5× 10−3, T = 2500
and initial condition (x0, y0) = (3, 3). Figure 9b shows a density plot of a realization with the same
parameters, except T = 2.5× 103.

var.eqn.x <- "- (y - beta) + mu * (x - alpha) * (1 - (x - alpha)^2 - (y - beta)^2)"
var.eqn.y <- "(x - alpha) + mu * (y - beta) * (1 - (x - alpha)^2 - (y - beta)^2)"
model.state <- c(x = 3, y = 3)
model.parms <- c(alpha = 4, beta = 5, mu = 0.2)
model.sigma <- 0.1
model.time <- 1000 # we used 2500 in the figures
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Figure 8: A realization of System (4) created using TSPlot(), with x in blue and y in red. The left side
of (a) shows the time series. The right side of (a), which is enabled with the default dens = TRUE,
shows a histogram of the x and y values over the entire realization.

model.deltat <- 0.005
ts.ex2 <- TSTraj(y0 = model.state, time = model.time, deltat = model.deltat,
x.rhs = var.eqn.x, y.rhs = var.eqn.y, parms = model.parms, sigma = model.sigma)

TSPlot(ts.ex2, deltat = model.deltat) # Figure 8
TSPlot(ts.ex2, deltat = model.deltat, dim = 2, line.alpha = 25) # Figure 9a
TSDensity(ts.ex2, dim = 1) # Histogram
TSDensity(ts.ex2, dim = 2) # Figure 9b

Figure 9: (A) The realization of System (4) plotted in (x, y)-space (dim = 2 in the function TSPlot())
(B) A density plot obtained from a realization of System (4) using TSDensity() with dim = 2. Red
corresponds to high density, and blue to low density.

Step 3: Local quasi-potential calculation

In this example, there are no stable equilibrium points. There is one stable limit cycle, and this can be
used to obtain a local quasi-potential. Using z as the initial point for the ordered-upwind algorithm
and Lx1 = −0.5, Ly1 = −0.5, Lx2 = 7.5, Ly2 = 7.5, Nx = 4000 and Ny = 4000, one obtains a local
quasi-potential, Φz(x, y). The following code generates the local quasi-potential Φz(x, y):
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eqn.x <- Model2String(var.eqn.x, parms = model.parms)
eqn.y <- Model2String(var.eqn.y, parms = model.parms)
eq1.qp <- QPotential(x.rhs = eqn.x, x.start = 4.15611, x.bound = c(-0.5, 7.5),
x.num.steps = 4000, y.rhs = eqn.y, y.start = 5.98774, y.bound = c(-0.5, 7.5),
y.num.steps = 4000)

Figure 10: A contour plot of the quasi-potential of System (4) using QPContour(). Yellow corresponds
to low values of the quasi-potential, and purple to high values.

Step 4: Global quasi-potential calculation

There is only one local quasi-potential in this example, so it is the global quasi-potential, Φ(x, y) =
Φz(x, y).

Step 5: Global quasi-potential visualization

Figure 10 shows a contour plot of the global quasi-potential.

QPContour(eq1.qp, dens = c(1000, 1000), x.bound = c(-0.5, 7.5),
y.bound = c(-0.5, 7.5), c.parm = 10)

Example 3: More complicated local quasi-potential pasting

In Example 1, the procedure for pasting local quasi-potentials together into a global quasi-potential
was a simple, two-step process. First, one of the local quasi-potentials was translated so that the
two surfaces agreed at the saddle point separating the two basins of attraction. Second, the global
quasi-potential was obtained by taking the minimum of the two surfaces at each point. A general
algorithm for pasting local quasi-potentials, as explained in Graham and Tél (1986) and Roy and
Nauman (1995), is slightly more complicated. This process is automated in QPGlobal(), but it is worth
understanding the process in order to correctly interpret the outputs.

To understand the full algorithm, consider the following model:

dX(t) = X(t)
(
(1 + α1)− X(t)2 − X(t)Y(t)−Y(t)2

)
dt + σ dW1(t)

dY(t) = Y(t)
(
(1 + α2)− X(t)2 − X(t)Y(t)−Y(t)2

)
dt + σ dW2(t).

(5)

For this analysis, let α1 = 1.25 and α2 = 2. We have selected this model because it demonstrates how
QPot can handle an exceptionally tricky global quasi-potential construction.
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Step 1: Analyzing the deterministic skeleton

The deterministic skeleton of this system has five equilibria. These are eu1 = (0, 0), es1 = (0, −1.73205),
es2 = (0, 1.73205), eu2 = (−1.5, 0) and eu3 = (1.5, 0). The eigenvalue analysis shows that eu1 is an
unstable node, es1 and es2 are stable nodes, eu2 and eu3 are saddles. Figure 11 shows a stream plot of
the deterministic skeleton of (5). The basin of attraction for es1 is the lower half-plane, and the basin of
attraction for es2 is the upper half-plane.

Figure 11: A stream plot of the deterministic skeleton of System (5). The blue line is an x-nullcline
(where dx

dt = 0) and the red line is a y-nullcline (where dy
dt = 0). Open circles are stable equilibria and

filled circles are unstable equilibria. Made using the package phaseR.

Step 2: Stochastic simulation

Figures 12 and 13a show a time series for a realization of System (5) with σ = 0.8, ∆t = 0.01, T = 5000
and initial condition (x0, y0) = (0.5, 0.5). Figure 13b shows a density plot of this realization.

var.eqn.x <- "x * ((1 + alpha1) - (x^2) - x * y - (y^2))"
var.eqn.y <- "y * ((1 + alpha2) - (x^2) - x * y - (y^2))"
model.state <- c(x = 0.5, y = 0.5)
model.parms <- c(alpha1 = 1.25, alpha2 = 2)
model.sigma <- 0.8
model.time <- 5000
model.deltat <- 0.01
ts.ex3 <- TSTraj(y0 = model.state, time = model.time, deltat = model.deltat,
x.rhs = var.eqn.x, y.rhs = var.eqn.y, parms = model.parms, sigma = model.sigma)

TSPlot(ts.ex3, deltat = model.deltat) # Figure 12
TSPlot(ts.ex3, deltat = model.deltat, dim = 2 , line.alpha = 25) # Figure 13a
TSDensity(ts.ex3, dim = 1) # Histogram of time series
TSDensity(ts.ex3, dim = 2 , contour.levels = 20 , contour.lwd = 0.1) # Figure 13b

Step 3: Local quasi-potential calculation

Two local quasi-potentials need to be calculated, Φ1(x, y) corresponding to es1, and Φ2(x, y) corre-
sponding to es2. In both cases, sensible boundary and mesh choices are Lx1 = −3, Ly1 = −3, Lx2 = 3,
Ly2 = 3, Nx = 6000, and Ny = 6000.
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Figure 12: A realization of System (5) created using TSPlot(), with x in blue and y in red. The left
panel shows the time series. The right panel, which is enabled by default with parameter dens = TRUE
in the function TSPlot(), shows a histogram of the x and y values over the entire realization.

Figure 13: (A) The realization of System (5) plotted in (x, y)-space with TSPlot() with dim = 2. (B) A
density plot obtained from the realization of System (5) by using the function TSDensity() with dim =
2, contour.levels = 20, and contour.lwd = 0.1. Red corresponds to high density, and blue to low
density.

equation.x <- Model2String(var.eqn.x, parms = model.parms)
equation.y <- Model2String(var.eqn.y, parms = model.parms)
bounds.x <- c(-3, 3); bounds.y <- c(-3, 3)
step.number.x <- 6000; step.number.y <- 6000
eq1.x <- 0; eq1.y <- -1.73205
eq2.x <- 0; eq2.y <- 1.73205
eq1.local <- QPotential(x.rhs = equation.x, x.start = eq1.x, x.bound = bounds.x,
x.num.steps = step.number.x, y.rhs = equation.y, y.start = eq1.y,
y.bound = bounds.y, y.num.steps = step.number.y)

eq2.local <- QPotential(x.rhs = equation.x, x.start = eq2.x, x.bound = bounds.x,
x.num.steps = step.number.x, y.rhs = equation.y, y.start = eq2.y,
y.bound = bounds.y, y.num.steps = step.number.y)

Step 4: Global quasi-potential

If one were to naively try to match the local quasi-potentials at eu2, then they would not match at
eu3, and vice versa. To overcome this problem, it is necessary to think more carefully about how
trajectories transition between basins of attraction. This issue can be dealt with rigorously (Graham
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and Tél, 1986; Roy and Nauman, 1995), but the general principles are outlined here. Let Ω1 be the
basin of attraction corresponding to es1 and Ω2 be the basin of attraction corresponding to es2. Let ∂Ω
be the separatrix between these two basins (i.e., the x-axis). The most probable way for a trajectory to
transition from Ω1 to Ω2 involves passing through the lowest point on the surface specified by Φ1
along ∂Ω. Examination of Φ1 indicates that this point is eu2. In the small-noise limit, the transition rate
from Ω1 to Ω2 will correspond to Φ1 (eu2). Similarly, the transition rate from Ω2 to Ω1 will correspond
to Φ2 (eu3). The transition rate into Ω1 must equal the transition rate out of Ω2. Therefore, the two
local quasi-potentials should be translated so that the minimum heights along the separatrix are the
same. In other words, one must define translated local quasi-potentials Φ∗1(x, y) = Φ1(x, y) + c1 and
Φ∗2(x, y) = Φ2(x, y) + c2 so that

min (Φ∗1(x, y)|(x, y) ∈ ∂Ω) = min (Φ∗2(x, y)|(x, y) ∈ ∂Ω).

In Example 1, the minima of both local quasi-potentials occurred at the same point, so the algorithm
amounted to matching at that point. In Example 3, the minimum saddle for Φ1 is eu2 and the minimum
saddle for Φ2 is eu3; the heights of the surfaces at these respective points should be matched. Thus,
c1 = Φ2(eu3) − Φ1(eu3) and c2 = Φ1(eu2) − Φ2(eu2). Conveniently in Example 3, this is satisfied
without requiring any translation (one can use c1 = c2 = 0). Finally, the global quasi-potential is
found by taking the minimum value of the matched local quasi-potentials at each point. This process
is automated in QPot, but users can also manipulate the local quasi-potential matrices manually to
verify the results. This is recommended when dealing with unusual or complicated separatrices. The
code below applies the automated global quasi-potential calculation to Example 3.

ex3.global <- QPGlobal(local.surfaces = list(eq1.local, eq2.local),
unstable.eq.x = c(0, -1.5, 1.5), unstable.eq.y = c(0, 0, 0), x.bound = bounds.x,
y.bound = bounds.y)

Step 5: Global quasi-potential visualization

Figure 14 shows a contour plot of the global quasi-potential. Note that the surface is continuous, but
not smooth. The lack of smoothness is a generic feature of global quasi-potentials created from pasting
local quasi-potentials. Cusps usually form when switching from the part of solution obtained from
one local quasi-potential to the other.

QPContour(ex3.global, dens = c(1000, 1000), x.bound = bounds.x, y.bound = bounds.y,
c.parm = 5)

Figure 14: A contour plot of the quasi-potential of System (5) using the function QPContour(). Yellow
corresponds to low values of the quasi-potential, and purple to high values.
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Boundary behavior

It is important to consider the type of behavior that should be enforced at the boundaries and on
coordinate axes (x = 0 and y = 0). By default, the ordered-upwind method computes the quasi-
potential for the system defined by the user, without regard for the influence of the boundaries or the
significance of these axes. In some cases, however, a model is only valid in a subregion of phase space.
For example, in many population models, only the non-negative phase space is physically meaningful.
In such cases, it is undesirable to allow the ordered-upwind method to consider trajectories that pass
through negative phase space. In the default mode for QPotential(), if (x, y) lies in positive phase
space, Φ(x, y) can be impacted by the vector field in negative phase space, if the path corresponding
to the minimum work passes through negative phase space. The argument bounce = "d" corresponds
to this (d)efault behavior. A user can prevent the ordered upwind method from passing trajectories
through negative phase space by using the option bounce = "p" for (p)ositive values only. This option
can be interpreted as a reflecting boundary condition. It forces the front of solutions obtained by
the ordered upwind method to stay in the defined boundaries, which is positive phase space in this
case. A more generic option is bounce = "b" for (b)ounce, which allows users to supply reflecting
boundaries other than the coordinate axes. These are set with x.bound and y.bound. Small numerical
errors at a reflecting boundary can cause the algorithm to terminate prematurely. To avoid this, the
option bounce.edge adds a small amount of padding between the reflecting boundary and the edge of
the computational domain.

Different noise terms

In the cases considered so far, the noise terms for the X and Y variables have had identical intensity.
This was useful for purposes of illustration in the algorithm, but it will often be not true for real-world
systems. Fortunately, QPot can accommodate other noise terms with coordinate transforms. Consider
a system of the form:

dX(t) = f1 (X(t), Y(t)) dt + σ g1 dW1(t)
dY(t) = f2 (X(t), Y(t)) dt + σ g2 dW2(t).

(6)

σ is a scaling parameter that specifies the overall noise intensity. The parameters g1 and g2 specify
the relative intensity of the two noise terms. To transform this system into a form that is usable
for QPot, make the change of variable X̃ = g−1

1 X and Ỹ = g−1
2 Y. In the new coordinates, the drift

terms (that is, the terms multiplied by dt), are different. These are f̃1
(
X̃, Ỹ

)
= g−1

1 f1
(

g1X̃, g2Ỹ
)

and
f̃2
(
X̃, Ỹ

)
= g−1

2 f2
(

g1X̃, g2Ỹ
)
. These new drift terms should be used as the deterministic skeleton

that is input into QPot. After obtaining the global quasi-potential for these transformed coordinates,
one can switch back to the original coordinates for plotting.

Many models contain multiplicative noise terms. These are of the form:

dX(t) = f1 (X(t), Y(t)) dt + σ g1 X(t) dW1(t)
dY(t) = f2 (X(t), Y(t)) dt + σ g2 Y(t) dW2(t).

(7)

To transform this system into a form that is usable for QPot, make the change of variable X̃ = g−1
1 ln (X)

and Ỹ = g−1
2 ln (Y) . This is called the Lamperti transform (Iacus, 2009). It is not always possible to

transform a multidimensional stochastic differential equation with multiplicative noise into one with
additive noise (Pavliotis, 2014), but in special cases like (7) it is. This coordinate change is non-linear,
so Itô’s lemma introduces extra terms into the drift of the transformed equations. If σ is small, though,
these terms can be discounted, and the new drift terms will remain independent of σ. These new
drift terms can be input into QPot. After obtaining the global quasi-potential for these transformed
coordinates, one can switch back to the original coordinates.

Conclusion

QPot is an R package that provides several important tools for analyzing two-dimensional sys-
tems of stochastic differential equations. Future efforts will work toward extending QPot to higher-
dimensional systems, but this is a computationally challenging task. QPot includes functions for
generating realizations of the stochastic differential equations, and for analyzing and visualizing
the results. A central component of QPot is the calculation of quasi-potential functions, which are
highly useful for studying stochastic dynamics. For example, quasi-potential functions can be used to
compare the stability of different attractors in stochastic systems, a task that traditional linear stability
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analysis is poorly suited for (Nolting and Abbott, 2016). By offering an intuitive way to quantify
attractor stability, quasi-potentials are poised to become an important means of understanding phe-
nomena like metastability and alternative stable states. QPot makes quasi-potentials accessible to R
users interested in applying this new framework.
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Design of the TRONCO BioConductor
Package for TRanslational ONCOlogy
by Marco Antoniotti, Giulio Caravagna, Luca De Sano, Alex Graudenzi, Giancarlo Mauri, Bud
Mishra, and Daniele Ramazzotti

Abstract Models of cancer progression provide insights on the order of accumulation of genetic
alterations during cancer development. Algorithms to infer such models from the currently available
mutational profiles collected from different cancer patients (cross-sectional data) have been defined in
the literature since late the 90s. These algorithms differ in the way they extract a graphical model of the
events modelling the progression, e.g., somatic mutations or copy-number alterations.

TRONCO is an R package for TRanslational ONcology which provides a series of functions
to assist the user in the analysis of cross-sectional genomic data and, in particular, it implements
algorithms that aim to model cancer progression by means of the notion of selective advantage. These
algorithms are proved to outperform the current state-of-the-art in the inference of cancer progression
models. TRONCO also provides functionalities to load input cross-sectional data, set up the execution
of the algorithms, assess the statistical confidence in the results, and visualize the models.
Availability. Freely available at http://www.bioconductor.org/ under GPL license; project hosted
at http://bimib.disco.unimib.it/ and https://github.com/BIMIB-DISCo/TRONCO.
Contact. tronco@disco.unimib.it

Introduction

In the last two decades many specific genes and genetic mechanisms involved in different types of
cancer have been identified. Yet our understanding of cancer and of its varied progressions is still
largely elusive, as it still faces fundamental challenges.

Meanwhile, a growing number of cancer-related genomic data sets have become available (e.g.,
see NCI and the NHGRI (2005))., There now exists an urgent need to leverage a number of sophisticated
computational methods in biomedical research to analyse such fast-growing biological data sets.
Motivated by this state of affairs, we focus on the problem of reconstructing progression models of cancer.
In particular, we aim at inferring the plausible sequences of genomic alterations that, by a process of
accumulation, selectively make a tumor fitter to survive, expand and diffuse (i.e., metastasize).

We developed a number of algorithms (see Olde Loohuis et al. (2014); Ramazzotti et al. (2015))
which are implemented in the TRanslational ONCOlogy (TRONCO) package. Starting from cross-
sectional genomic data, such algorithms aim at reconstructing a probabilistic progression model by
inferring “selectivity relations,” where a mutation in a gene A “selects” for a later mutation in a gene
B. These relations are depicted in a combinatorial graph and resemble the way a mutation exploits
its “selective advantage” to allow its host cells to expand clonally. Among other things, a selectivity
relation implies a putatively invariant temporal structure among the genomic alterations (i.e., events)
in a specific cancer type. In addition, a selectivity relation between a pair of events here signifies that
the presence of the earlier genomic alteration (i.e., the upstream event) is advantageous in a Darwinian
competition scenario raising the probability with which a subsequent advantageous genomic alteration
(i.e., the downstream event) “survives” in the clonal evolution of the tumor (see Ramazzotti et al. (2015)).

Notice that, in general, the inference of cancer progression models requires a complex data
processing pipeline (see Caravagna et al. (2015)), as summarized in Figure 1. Initially, one collects
experimental data (which could be accessible through publicly available repositories such as TCGA)
and performs genomic analyses to derive profiles of, e.g., somatic mutations or copy-number variations
for each patient. Then, statistical analysis and biological priors are used to select events relevant to
the progression (e.g., driver mutations). This complex pipeline can also include further statistics and
priors to determine cancer subtypes and to generate patterns of selective advantage (e.g, hypotheses of
mutual exclusivity). Given these inputs, our algorithms (such as CAPRESE and CAPRI) can extract a
progression model and assess confidence measures using various metrics based on non-parametric
bootstrap and hypergeometric testing. Experimental validation concludes the pipeline. The TRONCO
package provides support to all the steps of the pipeline.

Inference algorithms

TRONCO, provides a series of functions to support the user in each step of the pipeline, i.e., from
data import, through data visualization, and, finally, to the inference of cancer progression models.
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Figure 1: Data processing pipeline for the cancer progression inference. TRONCO implements a
pipeline consisting in a series of functions and algorithms to extract cancer progression models from
cross-sectional input data. The first step of such a pipeline consists in collecting experimental data
(which could be accessible through publicly available repositories such as TCGA) and performing
genomic analyses to derive profiles of, e.g., somatic mutations or copy-number variations for each
patient or single cells. Then, both statistical analysis and biological priors are adopted to select
the significant alterations for the progression; e.g., driver mutations. This complex pipeline can also
include further statistics and priors to determine cancer subtypes and to generate patterns of selective
advantage; e.g., hypotheses of mutual exclusivity. Given these inputs, the implemented algorithms
(i.e., CAPRESE and CAPRI) can extract a progression model and assess various confidence measures on
its constituting relations such as non-parametric bootstrap and hypergeometric testing. Experimental
validation concludes the pipeline, see Ramazzotti et al. (2015) and Caravagna et al. (2015).

Specifically, in the current version, TRONCO implements the CAPRESE and CAPRI algorithms for
cancer progression inference, which we briefly describe in the following.

Central to these algorithms, is Suppes’ notion of probabilistic causation, which can be stated in the
following terms: a selectivity relation between two observables i and j is said to hold if (1) i occurs
earlier than j – temporal priority (TP) – and (2) if the probability of observing i raises the probability
of observing j, i.e., P(j | i) > P(j | i) – probability raising (PR). For the detailed description of the
methods, we refer the reader to Olde Loohuis et al. (2014); Ramazzotti et al. (2015).

CAncer PRogression Extraction with Single Edge

The CAncer PRogression Extraction with Single Edges algorithm, i.e., CAPRESE, extracts tree-based models
of cancer progression with (i) multiple independent starting points and (ii) branches. The former
models the emergence of different progressions as a result of the natural heterogeneity of cancer (cf.,
Olde Loohuis et al. (2014)). The latter models the possibility of a clone to undergo positive selection by
acquiring different mutations.

The inference of CAPRESE’s models is driven by a shrinkage estimator of the confidence in the
relation between pairs of genes, which augments robustness to noise in the input data.

As shown in Olde Loohuis et al. (2014), CAPRESE is currently the state-of-the-art algorithm to infer
tree cancer progression models, although its expressivity is limited to this kind of selective advantage
models (cf., Ramazzotti et al. (2015)). Since this limitation is rather unappealing in analyzing cancer
data, an improved algorithm was sought in Ramazzotti et al. (2015).

CAncer PRogression Inference

The CAncer PRogression Inference algorithm, i.e., CAPRI, extends tree models by allowing multiple
predecessors of any common downstream event, thus allowing construction of directed acyclic graph
(DAGs) progression models.

CAPRI performs maximum likelihood estimation for the progression model with constraints
grounded in Suppes’ prima facie causality (cf., Ramazzotti et al. (2015)). In particular, the search space
of the possible valid solutions is limited to the selective advantage relations where both TP and PR
are verified. On this reduced search space, the likelihood fit is performed. CAPRI was shown to be
effective and polynomial in the size of the inputs.
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Algorithms’ structures

The core of the two algorithms is a simple quadratic loop1 that prunes arcs from an initially totally
connected graph. Each pruning decision is based on the application of Suppes’ probabilistic causation
criteria.

The pseudocode of the two implemented algorithms along with the procedure to evaluate the con-
fidence of the arcs by bootstrap is summarized in Algorithms 1, 2, 3 and 4, which depict the data
preparation step, the CAPRESE and CAPRI algorithms, and finally the optional bootstrap step.

Algorithm 1: TRONCO Data Import and Preprocessing

Input: a data set containing MAF or GISTIC scores (e.g., as obtained from cBio portal)
(Cerami et al. (2012); Beroukhim et al. (2007)).

Result: a data structure containing Boolean flags for “events,” relative frequencies and
other metadata.

1 From the data set (depending on the data format) derive a Boolean matrix M, where
each entry 〈i, j〉 is true if event i is “present” in sample/patient j.

2 forall events e do
3 Compute the frequency of the event e in the data set and save it in a map F.
4 Compute the joint probability of co-occurrence of pair of events in the data set and

save it in a map C.
5 end

6 return A data structure comprising the Boolean matrix M, the maps F and C and other
metadata.

Algorithm 2: CAPRESE algorithm

Input: a data set of n events, i.e., genomic alterations, and m samples packed in a data
structure obtained from Algorithm 1.

Result: a tree model representing all the relations of selective advantage.

Pruning based on Suppes’ criteria.

1 Let G ← a complete directed graph over the vertices n.
2 forall arcs (a, b) in G do
3 Compute a score S(·) for the nodes a and b based on Suppes’ criteria.

Verify Suppes’ criteria, that is:
4 if S(a) ≥ S(b) and S(a) > 0 then
5 Keep (a, b) as edge. I.e., select ‘a’ as “candidate parent”.
6 else if S(b) > S(a) and S(b) > 0 then
7 Keep (b, a) as edge. I.e., select ‘b’ as “candidate parent”.
8 end

Fit of the prima facie directed acyclic graph to the best tree model.

9 Let T ← the best tree model obtained by Edmonds’ algorithm (see Edmonds (1967)).
10 Remove from T any connection where the candidate father does not have a minimum

level of correlation with the child.

11 return The resulting tree model T .

Package design

In this section we will review the structure and implementation of the TRONCO package. For the sake
of clarity, we will structure the description through the following functionalities that are implemented
in the package.

1For CAPRI the n actually depends on the structural complexity of the input “patterns,” i.e., of the Boolean
formulæ employed in the “lifting operation;” more information of this in Ramazzotti et al. (2015).
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Algorithm 3: CAPRI

Input: a data set of n variables, i.e., genomic alterations or patterns, and m samples.
Result: a graphical model representing all the relations of “selective advantage.”

Pruning based on the Suppes’ criteria

1 Let G ← a directed graph over the vertices n
2 forall arcs (a, b) ∈ G do
3 Compute a score S(·) for the nodes a and b in terms of Suppes’ criteria.
4 Remove the arc (a, b) if Suppes’ criteria are not met.
5 end

Likelihood fit on the prima facie directed acyclic graph

6 LetM← the subset of the remaining arcs ∈ G, that maximize the log-likelihood of the
model, computed as: LL(D | M)− ((log m)/2) dim(M), where D denotes the input
data, m denotes the number of samples, and dim(M) denotes the number of
parameters inM (see Koller and Friedman (2009)).

7 return The resulting graphical modelM.

Algorithm 4: Bootstrap Procedure

Input: a model T obtained from CAPRESE or a modelM obtained from CAPRI, and
the initial data set.

Result: the confidence in the inferred arcs.

1 Let counter ← 0
2 Let nboot← the number of bootstrap sampling to be performed.
3 while counter < nboot do
4 Create a new data set for the inference by random sampling of the input data.
5 Perform the reconstruction on the sampled data set and save the results.
6 counter = counter + 1
7 end

8 Evaluate the confidence in the reconstruction by counting the number of times any arc
is inferred in the sampled data sets.

9 return The inferred model T orM augmented with an estimated confidence for each arc.

• Data import. Functions for the importation of data both from flat files (e.g., MAF, GISTIC) and
from Web querying (e.g., cBioPortal Cerami et al. (2012)).

• Data export and correctness. Functions for the export and visualization of the imported data.

• Data editing. Functions for the preprocessing of the data in order to tidy them.

• External utilities. Functions for the interaction with external tools for the analysis of cancer
subtypes or groups of mutually exclusive genes.

• Inference algorithms. In the current version of TRONCO, the CAPRESE and CAPRI algorithms
are provided in a polynomial implementation.

• Confidence estimation. Functions for the statistical estimation of the confidence of the recon-
structed models.

• Visualization. Functions for the visualization of both the input data and the results of the
inference and of the confidence estimation.

Data import

The starting point of TRONCO analysis pipeline is a data set of genomics alterations (i.e., somatic
mutations and copy number variations) which need to be imported as a TRONCO-compliant data
structure, i.e., a R list structure containing the required data both for the inference and the visualization.
The data import functions take as input such genomic data and from them create a TRONCO-
compliant data structure consisting in a list variable with the different parameters needed by the
algorithms.
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The core of data import from text files, is the function

import.genotypes(geno, event.type = "variant", color = "Darkgreen")

This function imports a matrix of 0/1 alterations as a TRONCO compliant data set. The input geno
can be either a dataframe or a file name. In any case the dataframe or the table stored in the file
must have a column for each altered gene and a row for each sample. Column names will be used to
determine gene names; if data are loaded from a file, the first column will be assigned as row names.

TRONCO imports data from other file format such as MAF and GISTIC, by providing wrappers
of the function import.genotypes. Specifically, the function

import.MAF(file, sep = "\t", is.TCGA = TRUE)

imports mutation profiles from a Manual Annotation Format (MAF) file. All mutations are aggregated
as a unique event type labeled "Mutation" and are assigned a color according to the default of function
import.genotypes. If the input is in the TCGA MAF file format, the function also checks for multiple
samples per patient and a warning is raised if any are found. The function

import.GISTIC(x)

also transforms GISTIC scores for copy number alterations (CNAs) in a TRONCO-compliant object.
The input can be a matrix with columns for each altered gene and rows for each sample; (in this case
colnames/rownames mut be provided). If the input is a string, an attempt to load a table from the
indicated file is performed. In this case the input table format should be consistent with TCGA data
for focal CNA; i.e., there should hence be: one column for each sample, one row for each gene, a
column Hugo_Symbol with every gene name and a column Entrez_Gene_Id with every gene’s Entrez
ID. A valid GISTIC score should be any value of: "Homozygous Loss" (−2), "Heterozygous Loss"
(−1), "Low-level Gain" (+1), and "High-level Gain" (+2).

Finally, TRONCO also provides utilities for the query of genomic data from cBioPortal Cerami
et al. (2012). This functionality is provided by the function

cbio.query(cbio.study = NA, cbio.dataset = NA, cbio.profile = NA, genes)

which is a wrapper for the CGDS package Jacobsen (2011). This can work either automatically, if one
sets cbio.study, cbio.dataset and cbio.profile, or interactively. A list of genes to query with less
than 900 entries should be provided. This function returns a list with two dataframes: the required
genetic profile along with clinical data for the cbio.study. The output is also saved to disk as an Rdata
file. See also the cBioPortal webpage at http://www.cbioportal.org.

The function

show(x, view = 10)

prints (on the R console) a short report of a data set x, which should be a TRONCO-compliant data
set.

All the functions described in the following sections will assume as input a TRONCO-compliant
data structure.

Data export and correctness

TRONCO provides a series of function to explore the imported data and the inferred models. All
these functions are named with the ‘as.’ prefix.

Given a TRONCO-compliant imported data set, the function

as.genotypes(x)

returns the 0/1 genotypes matrix. This function can be used in combination with the function

keysToNames(x, matrix)

to translate column names to event names, given the input matrix with colnames/rownames which
represent genotypes keys. Also, functions to get the list of genes, events (i.e., each column in the
genotypes matrix, it differs from genes, as the same genes of different types are considered different
events), alterations (i.e., genes of different types are merged as 1 unique event), samples (i.e., patients
or also single cells), and alteration types. See the functions

as.genes(x, types = NA)
as.events(x, genes = NA, types = NA)
as.alterations(x, new.type = "Alteration", new.color = "khaki")
as.samples(x)
as.types(x, genes = NA)
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Functions of this kind are also implemented to explore the results, most notably the models that have
been inferred

as.models(x, models = names(x$model)))

the reconstructions

as.adj.matrix(x, events = as.events(x), models = names(x$model), type = "fit")

the patterns (i.e., the formulæ)

as.patterns(x)

and the confidence

as.confidence(x, conf)

Similarly, the library defines a set of functions that extract the cardinality of the compliant TRONCO
data structure

nevents(x, genes = NA, types = NA)
ngenes(x, types = NA)
npatterns(x)
nsamples(x)
ntypes(x)

Furthermore, functions to asses the correctness of the inputs are also provided. The function

is.compliant(x,
err.fun = "[ERR]",
stage = !(all(is.null(x$stages)) || all(is.na(x$stages))))

verifies that the parameter x is a compliant data structure. The function

consolidate.data(x, print = FALSE)

verifies if the input data are consolidated, i.e., if there are events with 0 or 1 probability or indistinguish-
able in terms of observations. Any indistinguishable event is returned by the function duplicates(x).

Finally, TRONCO provides functions to access TCGA data.

TCGA.multiple.samples(x)

checks whether there are multiple sample in the input, while

TCGA.remove.multiple.samples(x)

removes them accordingly to TCGA barcodes naming rules.

Data editing

TRONCO provides a wide range of editing functions. We will describe some of them in the following;
for a technical description we refer to the manual.

Removing and merging

A set of functions to remove items from the data is provided; such functions are characterized by the
‘delete.’ prefix. The main functions are

delete.gene(x, gene)
delete.samples(x, samples)
delete.type(x, type)
delete.pattern(x, type)

These respectively remove genes, samples (i.e., tumors profiles), types (i.e., type of alteration such
as somatic mutation, copy number alteratio, etc.), and patterns from a TRONCO data structure x.
Conversely it is possible to merge events and types:

merge.events(x, ..., new.event, new.type, event.color)
merge.types(x, ..., new.type = "new.type", new.color = "khaki")
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Binding

The purpose of the binding functions is to combine different data sets. The function

ebind(...)

combines events from one or more data sets, whose events need be defined over the same set of
samples. The function

sbind(...)

combines samples from one or more data sets, whose samples need to be defined over the same set of
events. Samples and events of two data set can also be intersected via the function

intersect.datasets(x, y, intersect.genomes = TRUE)

Changing and renaming

The functions

rename.gene(x, old.name, new.name)
rename.type(x, old.name, new.name)

can be used respectively to rename genes or alterations types.
The function

change.color(x, type, new.color)

can be used to change the color associated to the specified alteration type in x.

Selecting and splitting

Genomics data usually involve a large number of genes, most of which are not relevant for cancer
development (e.g., they may be passenger mutations). For this reason, TRONCO implements the
function

events.selection(x, filter.freq = NA, filter.in.names = NA,filter.out.names = NA)

which allows the user to select a subset of genes to be analyzed. The selection can be performed
by frequency and gene symbols. The 0 probability events can are removed by the function trim(x).
Moreover, the functions

samples.selection(x, samples)
ssplit(x, clusters, idx = NA)

respectively filter a data set x based on the selected sample’s id and then splits the data set into clusters
(i.e., groups). The last function can be used to analyze specific subtypes within a tumor.

External utilities

TRONCO permits the interaction with external tools to (i) reduce inter-tumor heterogeneity by cohort
subtyping and (ii) detect fitness equivalent exclusive alterations. The first issue can be attacked by
adopting clustering techniques to split the data set in order to analyze each cluster subtype separately.
Currently, TRONCO can export and import data from Hofree et al. (2013) via the function

export.nbs.input(x, map_hugo_entrez, file = "tronco_to_nbs.mat")

and the previously described splitting functions.

In order to handle alterations with equivalent fitness, TRONCO interacts with the tool MUTEX
proposed in Babur et al. (2014). The interaction is ensured by the functions

export.mutex(x,
filename = "to_mutex",
filepath = "./",
label.mutation = "SNV",
label.amplification = list("High-level Gain"),
label.deletion = list("Homozygous Loss"))

import.mutex.groups(file, fdr = 0.2, display = TRUE)

Such exclusivity groups can then be further added as patterns (see the next section).
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Inference algorithms

The current version of TRONCO implements the progression reconstruction algorithms CAPRESE Olde Loohuis
et al. (2014) and CAPRI Ramazzotti et al. (2015).

CAPRESE. The CAPRESE algorithm Olde Loohuis et al. (2014) can be executed by the function

tronco.caprese(data, lambda = 0.5, do.estimation = FALSE, silent = FALSE)

with data being a TRONCO data structure. The parameter lambda can be used to tune the shrinkage-
like estimator adopted by CAPRESE, with the default being 0.5 as suggested in Olde Loohuis et al.
(2014).

CAPRI. The CAPRI algorithm Ramazzotti et al. (2015) is executed by the function

tronco.capri(data,
command = "hc",
regularization = c("bic", "aic"),
do.boot = TRUE,
nboot = 100,
pvalue = 0.05,
min.boot = 3,
min.stat = TRUE,
boot.seed = NULL,
do.estimation = FALSE,
silent = FALSE)

with data being a TRONCO data structure. The parameters command and regularization allow
respectively to choose the heuristic search to be performed to fit the network and the regularizer to be
used in the likelihood fit (see Ramazzotti et al. (2015)). CAPRI can be also executed with or without the
bootstrap preprocessing step depending on the value of the parameter do.boot; this is discouraged,
but can speed up the execution with large input data sets.

As discussed in Ramazzotti et al. (2015), CAPRI constrains the search space using Suppes’ prima
facie conditions which lead to a subset of possible valid selective advantage relations. The members of
this subset are then evaluated by the likelihood fit. Although uncommon, it may so happen (especially
when patterns are given as input) that such a resulting prima facie graphical structure may still contain
cycles. When this happens, the cycles are removed through the heuristic algorithm implemented in

remove.cycles(adj.matrix,
weights.temporal.priority,
weights.matrix,
not.ordered,
hypotheses = NA,
silent)

The function takes as input a set of weights in terms of confidence for any valid selective advantage
edge; ranks all the valid edges in increasing confidence levels; and, starting from the less confident,
goes through each edge removing the ones that can break the cycles.

Patterns

CAPRI allows for the input of patterns, i.e., group of events which express possible selective advantage
relations. Such patterns are given as input using the function

hypothesis.add(data,
pattern.label,
lifted.pattern,
pattern.effect = "*",
pattern.cause = "*")

This function is wrapped within the functions

hypothesis.add.homologous(x,
pattern.cause = "*",
pattern.effect = "*",
genes = as.genes(x),
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FUN = OR)
hypothesis.add.group(x,

FUN,
group,
pattern.cause = "*",
pattern.effect = "*",
dim.min = 2,
dim.max = length(group),
min.prob = 0)

which, respectively, allow the addition of analogous patterns (i.e., patterns involving the same gene of
different types) and patterns involving a specified group of genes. In the current version of TRONCO,
the implemented patterns are Boolean, i.e., those expressible by the Boolean operators AND, OR and
XOR (functions AND(...), OR(...), and XOR(...)).

Confidence estimation

To asses the confidence of the selectivity relations found, TRONCO uses non-parametric and statistical
bootstraps. For the non-parametric bootstrap, each event row is uniformly sampled with repetitions
from the input genotype and then, on such an input, the inference algorithms are performed. The
assessment concludes after K repetitions (e.g., K = 100). Similarly, for CAPRI, a statistical bootstrap is
provided: in this case the input data set is kept fixed, but different seeds for the statistical procedures
are sampled (see, e.g., Wu (1986) for an overview of these methods). The bootstrap is implemented in
the function

tronco.bootstrap(reconstruction,
type = "non-parametric",
nboot = 100,
verbose = FALSE)

where reconstruction is a TRONCO-compliant object obtained by the inference by one of the imple-
mented algorithms.

Visualization and reporting

During the development of the TRONCO package, a lot of attention was paid to the visualization
features which are crucial for the understanding of biological results. Listed below is a summary of
the main features; for a detailed description of each function, please refer to the manual.

ONCOPRINT. ONCOPRINTs are compact means of visualizing distinct genomic alterations, includ-
ing somatic mutations, copy number alterations, and mRNA expression changes across a set of cases.
They are extremely useful for visualizing gene set and pathway alterations across a set of cases, and
for visually identifying trends, such as trends in mutual exclusivity or co-occurence between gene
pairs within a gene set. Individual genes are represented as rows, and individual cases or patients are
represented as columns. See http://www.cbioportal.org/. The function

oncoprint(x)

provides such visualizations with a TRONCO-compliant data structure as input. The function

oncoprint.cbio(x)

exports the input for the cBioPortal visualization, see http://www.cbioportal.org/public-portal/
oncoprinter.jsp.

It is also possible to annotate a description and tumor stages to any oncoprint by means of the
functions

annotate.description(x, label)
annotate.stages(x, stages, match.TCGA.patients = FALSE).

Reconstruction. The inferred models can be displayed by the function tronco.plot. The features
included in the plots are multiple, such as the choice of the regularizer(s), editing font of nodes and
edges, scaling nodes’ size in terms of estimated marginal probabilities, annotating the pathway of
each gene and displaying the estimated confidence of each edge. We refer to the manual for a detailed
description.
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Reports. Finally, TRONCO provides a number of reporting utilities. The function

genes.table.report(x,
name,
dir = getwd(),
maxrow = 33,
font = 10,
height = 11,
width = 8.5,
fill = "lightblue")

can be used to generate LATEX code to be used as report, while the function

genes.table.plot(x, name, dir = getwd())

generates histograms reports.

TRONCO use cases

In this section, we will present a case study for the usage of the TRONCO package based on the work
presented in Ramazzotti et al. (2015). Specifically, the example is from Piazza et al. (2013) where they
used a high-throughput exome sequencing technology to identity somatically acquired mutations in 64
ACML patients, and found a previously unidentified recurring missense point mutation hitting the
SETBP1 gene.

The example illustrates the typical steps that are necessary to perform a progression reconstruction
with TRONCO. The steps are the following:

1. Selecting “Events”.

2. Adding “Hypotheses”.

3. Reconstructing the “Progression Model”.

4. Bootstrapping the Data.

Selecting Events. We will start by loading the TRONCO package in R along with an example data
set that is part of the package distribution.

> library(TRONCO)
> data(aCML)
> hide.progress.bar <<- TRUE

We then use the function show to get a short summary of the aCML data set that has just been loaded.

> show(aCML)
Description: CAPRI - Bionformatics aCML data.
Dataset: n=64, m=31, |G|=23.
Events (types): Ins/Del, Missense point, Nonsense Ins/Del, Nonsense point.
Colors (plot): darkgoldenrod1, forestgreen, cornflowerblue, coral.
Events (10 shown):

gene 4 : Ins/Del TET2
gene 5 : Ins/Del EZH2
gene 6 : Ins/Del CBL
gene 7 : Ins/Del ASXL1
gene 29 : Missense point SETBP1
gene 30 : Missense point NRAS
gene 31 : Missense point KRAS
gene 32 : Missense point TET2
gene 33 : Missense point EZH2
gene 34 : Missense point CBL

Genotypes (10 shown):
gene 4 gene 5 gene 6 gene 7 gene 29 gene 30 gene 31 gene 32 gene 33 gene 34

patient 1 0 0 0 0 1 0 0 0 0 0
patient 2 0 0 0 0 1 0 0 0 0 1
patient 3 0 0 0 0 1 1 0 0 0 0
patient 4 0 0 0 0 1 0 0 0 0 1
patient 5 0 0 0 0 1 0 0 0 0 0
patient 6 0 0 0 0 1 0 0 0 0 0

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 49

Using the function as.events, we can have a look at the genes flagged as “mutated” in the data set
(i.e., the events that TRONCO deals with).

> as.events(aCML)
type event

gene 4 "Ins/Del" "TET2"
gene 5 "Ins/Del" "EZH2"
gene 6 "Ins/Del" "CBL"
gene 7 "Ins/Del" "ASXL1"
gene 29 "Missense point" "SETBP1"
gene 30 "Missense point" "NRAS"
gene 31 "Missense point" "KRAS"
gene 32 "Missense point" "TET2"
gene 33 "Missense point" "EZH2"
...
gene 88 "Nonsense point" "TET2"
gene 89 "Nonsense point" "EZH2"
gene 91 "Nonsense point" "ASXL1"
gene 111 "Nonsense point" "CSF3R"

These events account for alterations in the following genes.

> as.genes(aCML)
[1] "TET2" "EZH2" "CBL" "ASXL1" "SETBP1" "NRAS" "KRAS" "IDH2" "SUZ12"

[10] "SF3B1" "JARID2" "EED" "DNMT3A" "CEBPA" "EPHB3" "ETNK1" "GATA2" "IRAK4"
[19] "MTA2" "CSF3R" "KIT" "WT1" "RUNX1"

Now we can take a look at the alterations of only the gene SETBP1 across the samples.

> as.gene(aCML, genes = 'SETBP1')
Missense point SETBP1

patient 1 1
patient 2 1
patient 3 1
...
patient 12 1
patient 13 1
patient 14 1
patient 15 0
patient 16 0
patient 17 0
...
patient 62 0
patient 63 0
patient 64 0

We consider a subset of all the genes in the data set to be involved in patterns based on the support we
found in the literature. See Ramazzotti et al. (2015) as a reference.

> gene.hypotheses = c('KRAS', 'NRAS', 'IDH1', 'IDH2', 'TET2', 'SF3B1', 'ASXL1')

Regardless from which types of mutations we include, we select only the genes which appear alterated
in at least 5% of the patients. Thus, we first transform the data set into “alterations” (i.e., collapsing all
the event types for the same gene) and then we consider only these events from the original data set.

> alterations = events.selection(as.alterations(aCML), filter.freq = .05)
*** Aggregating events of type(s) {Ins/Del, Missense point, Nonsense Ins/Del, Nonsense point}

in a unique event with label "Alteration".
Dropping event types Ins/Del, Missense point, Nonsense Ins/Del, Nonsense point for 23 genes.

*** Binding events for 2 datasets.
*** Events selection: #events=23, #types=1 Filters freq|in|out = \{TRUE, FALSE, FALSE\}
Minimum event frequency: 0.05 (3 alterations out of 64 samples).
Selected 7 events.

Selected 7 events, returning.
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We now show a plot of the selected genes. Note that this plot has no title, as, by default, the function
events.selection does not add any. The resulting figure is shown in Figure 2.

> oncoprint(alterations, font.row = 12, cellheight = 20, cellwidth = 4)
*** Oncoprint for ""

with attributes: stage=FALSE, hits=TRUE
Sorting samples ordering to enhance exclusivity patterns.

Figure 2: The oncoprint function in TRONCO. Result of the oncoprint function in TRONCO on the
aCML data set.

Adding Hypotheses. We now create the data set to be used for the inference of the progression
model. We consider the original data set and from it we select all the genes whose mutations are
occurring at least 5% of the times together with any gene involved in any hypothesis. To do so, we use
the parameter filter.in.names as shown below.

> hypo = events.selection(aCML,
filter.in.names = c(as.genes(alterations),
gene.hypotheses))

*** Events selection: #events=31, #types=4 Filters freq|in|out = \{FALSE, TRUE, FALSE\}
[filter.in] Genes hold: TET2, EZH2, CBL, ASXL1, SETBP1 ... [10/14 found].
Selected 17 events, returning.
> hypo = annotate.description(hypo, 'CAPRI - Bionformatics aCML data (selected events)')

We now call oncoprint of this latest data set where we annotate the genes in gene.hypotheses in order
to identify them in Figure 3. The sample names are also shown.

> oncoprint(hypo,
gene.annot = list(priors = gene.hypotheses),
sample.id = T,
font.row = 12,
font.column = 5,
cellheight = 20,
cellwidth = 4)

*** Oncoprint for "CAPRI - Bionformatics aCML data (selected events)"
with attributes: stage=FALSE, hits=TRUE
Sorting samples ordering to enhance exclusivity patterns.
Annotating genes with RColorBrewer color palette Set1 .

We now also add the hypotheses that are described in CAPRI’s manuscript. Hypothesis of hard
exclusivity (XOR) for NRAS/KRAS events (Mutation). This hypothesis is tested against all the events
in the data set.

> hypo = hypothesis.add(hypo, 'NRAS xor KRAS', XOR('NRAS', 'KRAS'))

We then try to include also a soft exclusivity (OR) pattern but, since its “signature” is the same of the
hard one just included, it will not be included. The code below is expected to result in an error.
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Figure 3: Annotated oncoprint. Result of the oncoprint function on the selected data set in TRONCO
with annotations.

> hypo = hypothesis.add(hypo, 'NRAS or KRAS', OR('NRAS', 'KRAS'))
Error in hypothesis.add(hypo, "NRAS or KRAS", OR("NRAS", "KRAS")) :
[ERR] Pattern duplicates Pattern NRAS xor KRAS.

To better highlight the perfect (hard) exclusivity among NRAS/KRAS mutations, one can examine
further their alterations. See Figure 4.

> oncoprint(events.selection(hypo,
filter.in.names = c('KRAS', 'NRAS')),
font.row = 12,
cellheight = 20,
cellwidth = 4)

*** Events selection: #events=18, #types=4 Filters freq|in|out = \{FALSE, TRUE, FALSE\}
[filter.in] Genes hold: KRAS, NRAS ... [2/2 found].
Selected 2 events, returning.
*** Oncoprint for ""

with attributes: stage=FALSE, hits=TRUE
Sorting samples ordering to enhance exclusivity patterns.

We repeated the same analysis as before for other hypotheses and for the same reasons, we will include
only the hard exclusivity pattern.

> hypo = hypothesis.add(hypo, 'SF3B1 xor ASXL1', XOR('SF3B1', OR('ASXL1')), '*')
> hypo = hypothesis.add(hypo, 'SF3B1 or ASXL1', OR('SF3B1', OR('ASXL1')), '*')
Error in hypothesis.add(hypo, "SF3B1 or ASXL1", OR("SF3B1", OR("ASXL1")), :
[ERR] Pattern duplicates Pattern SF3B1 xor ASXL1.

Finally, we now repeat the same for genes TET2 and IDH2. In this case three events for the gene TET2
are present: "Ins/Del", "Missense point" and "Nonsense point". For this reason, since we are not
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Figure 4: RAS oncoprint. Result of the oncoprint function in TRONCO for only the RAS genes to
better show their hard exclusivity pattern.

specifying any subset of such events to be considered, all TET2 alterations are used. Since the events
present a perfect hard exclusivity, their patterns will be included as a XOR. See Figure 5.

> as.events(hypo, genes = 'TET2')
type event

gene 4 "Ins/Del" "TET2"
gene 32 "Missense point" "TET2"
gene 88 "Nonsense point" "TET2"
> hypo = hypothesis.add(hypo, 'TET2 xor IDH2', XOR('TET2', 'IDH2'), '*')
> hypo = hypothesis.add(hypo, 'TET2 or IDH2', OR('TET2', 'IDH2'), '*')
> oncoprint(events.selection(hypo, filter.in.names = c('TET2', 'IDH2')), font.row = 12,

cellheight = 20, cellwidth = 4)
*** Events selection: #events=21, #types=4 Filters freq|in|out = \{FALSE, TRUE, FALSE\}
[filter.in] Genes hold: TET2, IDH2 ... [2/2 found].
Selected 4 events, returning.
*** Oncoprint for ""

with attributes: stage=FALSE, hits=TRUE
Sorting samples ordering to enhance exclusivity patterns.

Figure 5: TET/IDH2 oncoprint. Result of the oncoprint function in TRONCO for only the TET/IDH2
genes.

We now finally add any possible group of homologous events. For any gene having more than one
event associated to it, we also add a soft exclusivity pattern among them.

> hypo = hypothesis.add.homologous(hypo)
*** Adding hypotheses for Homologous Patterns
Genes: TET2, EZH2, CBL, ASXL1, CSF3R
Function: OR
Cause: *
Effect: *
Hypothesis created for all possible gene patterns.

The final data set that will be given as input to CAPRI is now finally shown. See Figure 6.
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> oncoprint(hypo,
gene.annot = list(priors = gene.hypotheses),
sample.id = T,
font.row = 10,
font.column = 5,
cellheight = 15,
cellwidth = 4)

*** Oncoprint for "CAPRI - Bionformatics aCML data (selected events)"
with attributes: stage=FALSE, hits=TRUE
Sorting samples ordering to enhance exclusivity patterns.
Annotating genes with RColorBrewer color palette Set1 .

Figure 6: Final data set for CAPRI. Result of the oncoprint function in TRONCO on the data set used
in Ramazzotti et al. (2015).

Reconstructing Progression Models. We next infer the model by running the CAPRI algorithm with
its default parameters: we use both AIC and BIC as regularizers; Hill-climbing as heuristic search
of the solutions; and exhaustive bootstrap (nboot replicates or more for Wilcoxon testing, i.e., more
iterations can be performed if samples are rejected), p-value set at 0.05. We set the seed for the sake of
reproducibility.

> model = tronco.capri(hypo, boot.seed = 12345, nboot = 10)
*** Checking input events.
*** Inferring a progression model with the following settings.

Dataset size: n = 64, m = 26.
Algorithm: CAPRI with "bic, aic" regularization and "hc" likelihood-fit strategy.
Random seed: 12345.
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Bootstrap iterations (Wilcoxon): 10.
exhaustive bootstrap: TRUE.
p-value: 0.05.
minimum bootstrapped scores: 3.

*** Bootstraping selective advantage scores (prima facie).
Evaluating "temporal priority" (Wilcoxon, p-value 0.05)
Evaluating "probability raising" (Wilcoxon, p-value 0.05)

*** Loop detection found loops to break.
Removed 26 edges out of 68 (38%)

*** Performing likelihood-fit with regularization bic.
*** Performing likelihood-fit with regularization aic.
The reconstruction has been successfully completed in 00h:00m:02s

We then plot the model inferred by CAPRI with BIC as a regularizer and we set some parameters to get
a good plot; the confidence of each edge is shown both in terms of temporal priority and probability
raising (selective advantage scores), and hypergeometric testing (statistical relevance of the data set of
input). See Figure 7.

> tronco.plot(model,
fontsize = 13,
scale.nodes = .6,
regularization = "bic",
confidence = c('tp', 'pr', 'hg'),
height.logic = 0.25,
legend.cex = .5,
pathways = list(priors = gene.hypotheses),
label.edge.size = 5)

*** Expanding hypotheses syntax as graph nodes:
*** Rendering graphics

Nodes with no incoming/outgoing edges will not be displayed.
Annotating nodes with pathway information.
Annotating pathways with RColorBrewer color palette Set1 .
Adding confidence information: tp, pr, hg
RGraphviz object prepared.
Plotting graph and adding legends.

Bootstrapping the Data. Finally, we perform non-parametric bootstrap as a further estimation of
the confidence in the inferred results. See Figure 8.

> model.boot = tronco.bootstrap(model, nboot = 10)
Executing now the bootstrap procedure, this may take a long time...
Expected completion in approx. 00h:00m:03s
*** Using 7 cores via "parallel"

*** Reducing results

Performed non-parametric bootstrap with 10 resampling and 0.05 as pvalue
for the statistical tests.

> tronco.plot(model.boot,
fontsize = 13,
scale.nodes = 0.6,
regularization = "bic",
confidence = c('npb'),
height.logic = 0.25,
legend.cex = 0.5,
pathways = list(priors = gene.hypotheses),
label.edge.size = 10)

*** Expanding hypotheses syntax as graph nodes:
*** Rendering graphics
Nodes with no incoming/outgoing edges will not be displayed.
Annotating nodes with pathway information.
Annotating pathways with RColorBrewer color palette Set1 .
Adding confidence information: npb

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 55

Figure 7: Reconstruction by CAPRI. Result of the reconstruction by CAPRI on the input data set.

RGraphviz object prepared.
Plotting graph and adding legends.

We now conclude this analysis with an example of inference with the CAPRESE algorithm. As CAPRESE
does not consider any pattern as input, we use the data set shown in Figure 3. These results are shown
in Figure 9.

> model.boot.caprese = tronco.bootstrap(tronco.caprese(hypo))
*** Checking input events.
*** Inferring a progression model with the following settings.

Dataset size: n = 64, m = 17.
Algorithm: CAPRESE with shrinkage coefficient: 0.5.

The reconstruction has been successfully completed in 00h:00m:00s
Executing now the bootstrap procedure, this may take a long time...
Expected completion in approx. 00h:00m:00s

Performed non-parametric bootstrap with 100 resampling and 0.5
as shrinkage parameter.

> tronco.plot(model.boot.caprese,
fontsize = 13,
scale.nodes = 0.6,
confidence = c('npb'),
height.logic = 0.25,
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Figure 8: Reconstruction by CAPRI and Bootstrap. Result of the reconstruction by CAPRI on the input
data set with the assessment by non-parametric bootstrap.

legend.cex = 0.5,
pathways = list(priors = gene.hypotheses),
label.edge.size = 10,
legend.pos = "top")

*** Expanding hypotheses syntax as graph nodes:
*** Rendering graphics

Nodes with no incoming/outgoing edges will not be displayed.
Annotating nodes with pathway information.
Annotating pathways with RColorBrewer color palette Set1 .
Adding confidence information: npb
RGraphviz object prepared.
Plotting graph and adding legends.

Conclusions

We have described TRONCO, an R package that provides state-of-the-art techniques to support
the user during the analysis of cross-sectional genomic data with the aim of understanding cancer
evolution. In the current version, TRONCO implements the CAPRESE and CAPRI algorithms for
cancer progression inference together with functionalities to load input cross-sectional data, set up the
execution of the algorithms, assess the statistical confidence in the results, and visualize the inferred
models.
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Figure 9: Reconstruction by CAPRESE and Bootstrap. Result of the reconstruction by CAPRESE on the
input data set with the assessment by non-parametric bootstrap.
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diverse: an R Package to Analyze
Diversity in Complex Systems
by Miguel R. Guevara, Dominik Hartmann, and Marcelo Mendoza

Abstract The package diverse provides an easy-to-use interface to calculate and visualize different
aspects of diversity in complex systems. In recent years, an increasing number of research projects in
social and interdisciplinary sciences, including fields like innovation studies, scientometrics, economics,
and network science have emphasized the role of diversification and sophistication of socioeconomic
systems. However, so far no dedicated package exists that covers the needs of these emerging fields
and interdisciplinary teams. Most packages about diversity tend to be created according to the
demands and terminology of particular areas of natural and biological sciences. The package diverse
uses interdisciplinary concepts of diversity—like variety, disparity and balance— as well as ubiquity
and revealed comparative advantages, that are relevant to many fields of science, but are in particular
useful for interdisciplinary research on diversity in socioeconomic systems. The package diverse
provides a toolkit for social scientists, interdisciplinary researcher, and beginners in ecology to (i)
import data, (ii) calculate different data transformations and normalization like revealed comparative
advantages, (iii) calculate different diversity measures, and (iv) connect diverse to other specialized R
packages on similarity measures, data visualization techniques, and statistical significance tests. The
comprehensiveness of the package, from matrix import and transformations options, over similarity
and diversity measures, to data visualization methods, makes it a useful package to explore different
dimensions of diversity in complex systems.

Introduction

While measuring diversity is a natural topic in ecology and biology, the rise of complexity and big
data research has also provided new opportunities for researchers in various fields of social sciences
to understand the evolution of diversity in social, economic, and political systems (Nature, 2014).

Today, a large range of scientific fields make use of diversity measures, including ecologists cal-
culating the diversity of species (Humphries et al., 1994), sociologists measuring the structure of
communities (Haughton and Mukerjee, 1995), economists studying the diversification of exports or
financial assets (Hidalgo and Hausmann, 2009), scientometrists analyzing the diversity and interdis-
ciplinarity of research fields (Rafols, 2014; Chavarro et al., 2014; Wagner et al., 2011), and computer
scientists searching for new diversity methods to ensemble algorithms (Kuncheva and Whitaker, 2003).

Consequently, different fields of science have created several specialized R packages on diversity.
This includes packages that allow for the analysis of species and biodiversity, (e.g. entropart (Marcon
and Hérault, 2015), vegan (Oksanen et al., 2016), biodiversityR (Kindt and Coe, 2005)), social distances
(e.g. Blaunet (Wang et al., 2016)), genetics (e.g. diveRsity (Keenan et al., 2013)), biological systems
(e.g. divo (Pietrzak et al., 2016)), functional ecology (e.g. FD, (Laliberté and Legendre, 2010)), species
complexity (e.g. hierDiversity (Marion et al., 2015)), bootstrapping diversity indices (e.g. simboot
(Scherer and Pallmann, 2014)), disparity of phylogenetic trees (e.g. treescape (Jombart et al., 2016)) or
phylogenetic patterns (e.g. SYNCSA (Debastiani and Pillar, 2012)).

Most packages on diversity are in the fields of ecology, biology and other natural sciences. Each
discipline and respective package uses the particular terminology of its scientific field. It is important
to translate the existing mathematical diversity formulas into the relevant concepts and language of
each community, and thereby also helps to create new specialized measures considering the particular
research topics and demands of each community. But the thematic specialization can also make
interdisciplinary communication difficult and reduces the chances of the adoption of these new
measures, concepts and specialized packages by researchers outside of the particular scientific field.

In recent years, an increasingly large number of research projects in social and interdisciplinary
sciences are exploring the role of diversity in complex socioeconomic systems. These new approaches
in social and interdisciplinary sciences use existing diversity concepts from biological and natural
sciences, but also have their own particular needs and concepts. For instance, recent work in economics,
scientometrics and network science has highlighted the importance of diversification processes in
complex systems, such as research, financial and energy portfolios, cultural diversity, the diversity
of ties in social and economic networks, or the emergence of new or related scientific and economic
fields (Hidalgo et al., 2007; Frenken et al., 2007; Rafols et al., 2010; Chavarro et al., 2014; Guevara et al.,
2016; Eagle et al., 2010; Farchy and Ranaivoson, 2011).

Here we present the package diverse which aims to provide a useful toolkit for social scientists
and interdisciplinary teams to measure and visualize diversity in socioeconomic systems, by providing
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several of the most used measures of diversity and allowing for versatility with existing R packages
on diversity, focusing, for example, on the calculation of similarity and distance measures (proxy
(Meyer and Buchta, 2015)); bias corrected diversity measures (entropart (Marcon and Hérault, 2015));
or the visualization of diversity in matrices, treemaps and networks (pheatmap (Kolde, 2015), treemap
(Kindt and Coe, 2005), and igraph (Kindt and Coe, 2005)).

The package applies a diversity taxonomy that includes the variety, balance and disparity of
complex systems (Stirling, 2007). The package diverse allows researchers to:

1. Read input and process data from complex systems in a simple manner.

2. Compute some of the most commonly used measures of diversity across sciences—including
Shannon-Entropy, Herfindahl-Hirschman Index, Gini-Simpson Index or Berger-Parker Index.

3. Calculate complementary measures that are related to diversity, such as ubiquity, disparity or
similarity between categories and entities.

4. Apply advanced diversity measures such as Rao-Stirling diversity and other diversity measures
including weighting parameters.

5. Visualize different dimensions of diversity as variety, balance, or disparity.

The package diverse is available within CRAN. The newest development version is accessible at
the branch development of the Git repository github.com/mguevara/diverse. In this Git repository
interested users are also very welcome to submit issues.

The remainder of the article is organized as follows. In Section Diversity we describe different
dimensions of diversity. In Section Input data we explain which type of data can be read/imported
into the package and how it can be normalized, using for instance either binary, absolute or relative
values. In Section Measuring diversity we present the measures available in this package discussing
how researchers can use them to calculate different dimensions of diversity. In Section Synthetic data
and performance tests we explain functions that are included in the package to simulate data and
conduct bias, coverage, and performance tests. In Section Conclusions we summarize and briefly
discuss the limitations and advantages of the package.

Diversity

In this section we explain key properties of diversity with the help of example datasets.

Example data

To illustrate the use of the package diverse, we will work with three datasets: Pantheon, Scidat and
Geese.

• Pantheon is a sample of 10 countries from MIT’s Pantheon project (Macro Connections MIT
MediaLab, 2014). This dataset allows for a comparison of the diversity of occupations of
the globally famous people from each country. The complete dataset includes 11341 persons
classified in 88 distinct occupations and assigned to 195 countries (Yu et al., 2016).

• Scidat is an aggregation of the number of scientific publications assigned to 27 areas of science.
This dataset was aggregated over the raw data of SCImago (2007). Scidat includes a sample of
10 countries from the year 2013.

• The third dataset is on the geese population in the Netherlands and was published by the Sovon
Dutch Centre for Field Ornithology (Nederland, 2015). This dataset presents observations of 4
species of geese over a period of 11 years.

The three datasets are included in the package diverse. The subset of the Pantheon dataset is included
as a "data.frame" object and both the Scidat and Geese datasets are included as a "matrix" object.

The actors and concepts of diversity

We use the term entity to describe the systems or agents that host a set of categories. Entities could be,
for example, persons, companies, countries, regions, institutions, or years.

We also use the term category to identify the different types of species that define the diversity of
an entity. Categories could include types of animals, species of plants, fields of research, taxonomies
of products, or technologies. The package assumes that the imported dataset has a previously given
classification scheme.
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The terms value or value of abundance is used for the amount of a category in each entity. This
could be the quantity of each species in an ecosystem, or the total value of the different types of export
goods of an economy.

In Pantheon, entities are countries, categories are different types of occupations, and values are
the respective number of globally famous persons a country has in each category. In Scidat, entities
are countries, categories are SCimago’s areas of science, and values are the total number of citable
documents that a country has published in each area in 2013. In Geese, entities are years, categories
are species of geese, and values are the number of each species of geese observed in the Netherlands
in the respective year.

Pantheon is a good example of data where some entities have missing values in some categories.
Scidat is a useful example where most entities have values in each category yet have very large absolute
differences between their values. The Geese dataset is a good example of the temporal evolution of
natural species.

It must be noted that in most diversity measures (e.g. variety or Shannon entropy) the information
about the number and types of categories of a single entity is sufficient to calculate this entity’s
diversity. However diverse is oriented to also work with multiple entities. Therefore it allows for
the calculation of different distance and similarity matrices across categories and entities, and uses
these distance measures in diversity measures like the Rao-Stirling Index (Stirling, 2007). Moreover,
diverse allows for the calculation of relative specialization measures like the activity index or revealed
comparative advantages (RCAs) that takes the portfolio and size of other entities into account when
evaluating their relative specialization or comparative advantages (e.g. Belgium versus USA) (see
Section Data transformation and normalization). Subsequently, we will mainly use data examples
with multiple entities and categories. Nonetheless, many measures embedded in diverse can also be
used to track the evolution of the diversity within a single entity.

Regarding the concept of diversity, previous interdisciplinary studies on diversity (Rao, 1982;
Stirling, 1998; Mcdonald and Dimmick, 2003; Stirling, 2007) showed that the concept of diversity is
related to three main questions:

1. How many categories does an entity (and/or does each entity in a system) have?

2. How much of each category does an entity (and/or each entity in a system) have?

3. How distinct are the categories of an entity (and/or the categories of each entity in a system)?

Stirling (1998, 2007) categorized these three properties of diversity as variety , balance , and dispar-
ity. Most diversity measures combine and emphasize these aspects with varying weights. Compre-
hensive measures take all three dimensions deliberately into account. Moreover data visualization
methods and R packages like, for instance, treemap (Tennekes, 2016) or igraph (Csardi and Nepusz,
2006) can help to visualize these three dimensions of diversity. For instance, treemaps—allow for an
emphasis on variety and balance (Hausmann et al., 2011, p.105)—or network overlays maps allow for
an emphasis on disparity (Hidalgo et al., 2007; Rafols et al., 2010). The disparity dimension is often
implied by a previous classification scheme, like a given classification of types of animals, scientific
fields or exports, phylogenetic trees and/or it can alternatively be calculated based on a similarity or
distance matrix (see also Section Matrix of dissimilarities between entities).

As an example, Figure 1 presents treemaps about the diversity of occupations of globally famous
individuals from Canada and Uruguay according to MIT’s Pantheon. Variety is represented by the
number of boxes, balance is indicated by the differences in the size of the boxes (= percentage of the
category), and disparity is represented by different colors.

First, regarding the variety, it is clear that Canada has a larger number of different occupations
(27 boxes in Figure 1a) than Uruguay (4 boxes in Figure 1b). Second, regarding the balance , we can
observe that Uruguay’s concentration in terms of soccer players is very high (52.63%), while Canada’s
balance is less concentrated on one category, but is spread across more occupations of the Pantheon
dataset. The R package treemap or other specialized data visualization programs like D3plus allows
for the creation of such treemaps with different colors, text sizes and further visualization options.

To illustrate disparity, Figure 2a shows a similarity network between areas of science that was
obtained by considering each column as a vector of features (i.e. the number of articles of each country
in that category) and then computing the cosine (dis-)similarity between those vectors. The pre-process
options embedded in the package allows for the calculation of different types of similarity and distance
matrices and considers both the absolute shares as well as relative strengths/specializations/comparative
advantages of entities (see Section on Data transformation and normalization).

As expected, we can observe that "Social Sciences" are close to "Arts and Humanities," but more
distant from "Mathematics" or "Engineering." We can also see the clustering between natural sciences
and technological fields, like "Chemistry" and "Material Sciences." The disparity within a country is
high if the dissimilarities between the areas/categories, in which the country has values, are also high.
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(a) Canada (b) Uruguay

Figure 1: Globally famous people according to Pantheon dataset. The size of the boxes is proportional
to the number of people assigned to each occupation and born in that country. The color is according
to main domains of occupations. Source http://pantheon.media.mit.edu.

In so-called overlay networks (Rafols et al., 2010), the values of entities (which are countries in the
present dataset) are overlaid on the global network structure. Moreover, the variety is represented by
the number of colored nodes, and the dimension balance can be represented by the size of the nodes.
Figure 2b illustrates that in the Scidat example, Germany has comparative advantages (see the section
on Data transformation and normalization for details) in many fields of science across the network,
while China (Figure 2c) is more specialized (concentrated) in technological areas and engineering. In
consequence the disparity, variety and balance in Germany are higher than in China. Such network
overlay maps can, for instance, be made with the R package igraph.

(a) Network of similarities between areas of science.

(b) Overlay network for Germany. (c) Overlay network for China.

Figure 2: Cosine similarity network of 27 areas of science obtained with Scidat dataset. Links represent
the (dis)similarities between areas. Links below the threshold of 0.015 of Cosine similarity are not
illustrated. The force-directed algorithm Fruchterman-Reingold was used for the network layout. The
size of the nodes in 2a represents the total number of papers authored by the 10 countries included in
Scidat; the size of the nodes in 2b and 2c is proportional to the papers authored for each country. Colors
are according to communities detected by the algorithm fastgreedy . The grey-colored nodes identify
areas with Revealed Comparative Advantages RCA below 1 (see section on Data transformation and
normalization for details).

In the following sections we will detail how to import and transform data, and how to use the
diverse package to quantify the described properties of diversity.
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Input data

This section details the type of the data object that is required by the package, how to import data from
an external data file, and how to pre-process or normalize the raw data.

Input formats

Since diverse was created to be able to work with multiple categories (N) and multiple entities (M)
simultaneously, the data objects used for most of the functions in the package diverse can be either a
data frame or a matrix of size M× N.

In the case of a data frame—meaning that the data is shaped as an edge list—it has to have three
columns in this order: entity, category and value. The first two columns are of the type "factor" and
the third column is of type "numeric". The pantheon data frame is an example of this type of data
object.

str(pantheon)
'data.frame': 119 obs. of 3 variables:
$ Country : Factor w/ 10 levels "Canada","Chile",..: 10 5 4 9 2 8 7 6 3 1 ...
$ Occupation: Factor w/ 52 levels "Actor","Architect",..: 40 40 40 40 40 40 40 40 40 40
$ Value : int 6 2 8 5 10 9 17 36 38 10 ...

When the data is in a "matrix" format, each cell has to contain numeric values and the rownames
and colnames must be defined with the names of entities and the names of categories. Non-existent
values (NA) or 0 have to be used to indicate the lack of a category in an entity. The matrix of the scidat
dataset is an example of this type of object.

str(scidat)
num [1:10, 1:27] 3507 35351 15603 1346 4158 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:10] "Argentina" "China" "Germany" "Hungary" ...
..$ : chr [1:27] "Agricultural and Biological Sciences" "Arts and Humanities"...

If the matrix has categories in the rows and entities in the columns, the parameter category_row
must be set to TRUE when using the functions included in diverse. The matrix of the geese dataset is
an example of this kind of object.

str(geese)
num [1:4, 1:11] 274 10788 4786 39273 247 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:4] "Little Grebe" "Crested Grebe" "Mute Swan" "Greylag Goose"
..$ : chr [1:11] "1996" "1997" "1998" "1999" ...

Importing data

To simplify the input of data from external files, diverse includes the function read_data(). This
function reads CSV files and automatically detects whether the data file is a matrix or an edge shape.
Moreover, it retrieves a data frame ready to be passed to the parameter data of all the functions
included in diverse. The user has to provide the path to the external CSV file by using the argument
path.

In addition, to facilitate the import of data from different software formats, the function read_data()
includes the parameter type that can be used to indicate whether the external data file comes for
instance from Stata or SPSS . This functionality depends on the package foreign (R Core Team, 2015).

Data transformation and normalization

Depending on the characteristics of the dataset, researchers often need to normalize, transform or
filter the data before measuring diversity. For instance, in some cases the absolute quantity or share of
each category in the portfolio of an entity is important. In other cases, the relative specialization and
diversification of entities in comparison to a set of other entities (e.g. revealed comparative advantages
of countries, or the relative activity in certain research fields) is more important. There are also cases
where binary values (e.g. are certain categories present or not present) or discrete steps (e.g. not
present, low, middle, high value) are important, depending on the respective research question. For
this purpose, diverse includes the function values() which allows for the filtering and exclusion of
data below a certain threshold value, and to binarize or normalize the data.
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The normalization process could include forming proportion values, Revealed Comparative Advan-
tages (RCA) (Balassa, 1986) and normalized RCAs (which is also called Activity Index). With the term
proportions we refer to normalization within an entity (dividing the value of an entity in each category
by the sum of values of the entity in all categories). The calculation of RCAs or the Activity Index
is a normalization related to the other entities. For instance in economics, RCA computes the ratio
between the proportion of a category within an entity, e.g. a country or region, and the proportion
that represents that category in the global system (e.g. the world economy). The purpose of this
measure is to understand in which categories an entity is relatively more specialized than others
and thus seems to have a comparative advantage (Balassa, 1965). Typically, values of RCA greater
than 1 are considered to "reveal" comparative advantages in the respective categories. Values below 1
reveal comparative disadvantages. The same idea can be found in Scientometrics where the RCAs are
normalized between −1 and 1, and named "Activity Index." Both options, RCA and Activity Index are
included in diverse.

To use these functionalities, the arguments norm, filter, and binary should be used. Argument
norm can be set, for instance, to ‘p’ for proportions, ‘rca’ for RCAs, or ‘ai’ for Activity Index. The
argument filter allows the user to indicate a threshold, below which all the values are discarded
(replaced with NA). The argument binary has to be set to TRUE if binary values are required. If the
three arguments are applied, then the function values() first applies the normalization, then the filter
and finally creates binary values.

The following matrix visualizations show the importance of the normalization process in datasets
like Scidat where most entities produce all categories and the absolute differences (e.g. between the
values of a small and a large country) are very large.

library(pheatmap)
colfunc <- colorRampPalette(c("deepskyblue4", "deepskyblue", "cyan"))
plot_mat <- function(data)

pheatmap(data, colfunc(100), cluster_rows = FALSE, cluster_cols = FALSE)

col_l <- names(sort(colSums(values(scidat)))) #order
row_l <- names(sort(rowSums(values(scidat)), decreasing = TRUE))
plot_mat(values(scidat)[row_l,col_l])
plot_mat(values(scidat, norm = 'p')[row_l,col_l])
plot_mat(values(scidat, norm = 'rca')[row_l,col_l])
plot_mat(values(scidat, norm = 'rca', filter = 1)[row_l,col_l])

In Figure 3a we see the absolute values of authored papers by country in each area. The large
number of papers from the United States in "Medicine" and "Biochemistry", as well as from China
in "Engineering" and "Material Sciences" are the outstanding features of this matrix. If we consider
proportions instead of absolute values, we can observe that "Medicine" is an important field of science
for most countries, while a large proportion of the publication portfolios in Argentina or Mexico are
in agricultural and biological sciences (see Figure 3b). Moreover, if we want to compare the relative
specialization and comparative advantages of each country within the global system, an RCA based
matrix will be more useful. Figure 3c presents the values of all RCAs, while Figure 3d presents the
values of an RCA matrix in which values below 1 are represented by empty cells.

Measuring diversity

In this section we explain the measures included in the package diverse by illustrating their use with
our sample datasets.

Measures included

The diversity measures included in the package diverse allow for different dimensions of diversity—
like variety, balance and disparity—to be analyzed separately or jointly.

To compute these measures, the main function diversity() must be used. All diversity measures
available in the package diverse are listed in Table 1. These measures are organized from simple to
complex, considering the properties of diversity they take into account.

Regarding the parameters of the function diversity(), the dataset to be analyzed should be
provided in the data parameter, and the required diversity measure(s) should be provided in the type
parameter.

The argument data has to fulfill the characteristics analyzed in the previous section on Input data.
The argument type can be a single string or a vector of strings, with either the complete name of the
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(a) Raw values (b) Proportions

(c) RCA (d) RCA filtered

Figure 3: Pheatmaps for matrices. The lighter the color, the higher the value. The white color represents
empty cells.

ID Measure Formula Reference

v Variety v = ∑i
(

p0
i
)

hhi Herfindahl–Hirschman Index HHI = ∑i
(

p2
i
)

Rhoades (1993)
b, gs Blau Index, Gini-Simpson B = 1−∑i

(
p2

i
)
= 1− HHI Blau (1977); Gini (1912)

s Simpson DS = ∑i ni(ni − 1)/Nt(Nt − 1) Simpson (1949)
bp Berger-Parker DBP = maxi (pi) Berger and Parker (1970)
e Shannon Entropy H = −∑i (pi log pi) Shannon (1948)

ev Pielou Evenness J = −∑i (pi log pi) / log v Pielou (1970)
re Rényi-Entropy q H = (1− q)−1 log

(
∑i pq

i

)
Rényi (1961)

hcdt HCDT Entropy q H = (q− 1)−1
(

1−∑i pq
i

)
Havrda and Charvát (1967); Tsallis (1988)

hn Hill Numbers qDHN =
(

∑i pq
i

)1/(1−q)
Hill (1973)

d Disparity DIS = ∑ij dij/N
rao Rao DRAO = ∑ij dij pi pj Rao (1982)

rs Rao-Stirling ∆ = ∑ij dij
α(pi pj

)β Stirling (2007)

Table 1: Summary of measures available in the package diverse. The first block of measures are
associated mainly with the dimensions variety and balance of the diversity, while the second block
presents measures that use also the dimension disparity. C is the set of categories present in the entity.
i, j ∈ C. i 6= j and ij 6= ji; ni is the value of abundance and pi the proportion of the category i in the
entity. v = n(C) is the number of categories present in the entity—the variety. Nt = ∑ ni. Here log is
the logarithm usually natural, and q, α, β > 0. For HCDT and Rény entropies when q→ 1 converge
to the Shannon entropy. Additionally, for Hill numbers, when q→ 1, it results in the exponential of
Shannon Entropy.
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measure or a mnemonic term (see column ID in Table 1). In the following sections we will explain the
function diversity() and the related functions variety(), balance(), and disparity().

Variety or richness

Variety measures how many categories or types an entity has. Variety is useful as a first approach to the
diversity of an entity since the number of categories (e.g. species, scientific fields or export categories)
is easy to understand and calculate. Users can compute variety both within the function diversity()
indicating type='v', or with the function variety(). Both options return a data frame with the values
of variety. In the case of the function variety() values are sorted in an decreasing order. For an
increasing order, the argument decreasing should be set to FALSE.

For instance, we can compare the variety of the 10 countries included in our sample of Pantheon.
Canada and China rank at the top of variety, while Uruguay and Vietnam rank at the bottom. In
Scidata, US and Germany (see Figure 2b) have the highest level of variety, while China (see Figure
2c) and Mexico have the lowest variety. It is important to note that we are only considering fields of
science in which these countries have Revealed Comparative Advantages (RCAs) equal to or higher
than 1.

variety(data = pantheon)
variety

Canada 27
China 24
...
Uruguay 4
Vietnam 4

#using function values() to normalize the dataset
scidat_rca_fil <- values(data = scidat, norm = 'rca', filter = 1)

variety(scidat_rca_fil)
variety

United States 17
Germany 16
...
China 10
Mexico 9

Being related to the concept of variety, it is helpful in some cases to know the ubiquity or rareness
of each category by considering its presence in all entities. Ubiquity could also be considered as the
variety of entities that each category has (Hidalgo et al., 2007). We include this concept and measure
through the function ubiquity() that returns the number of entities in which the category is present.
A decreasing order is retrieved by default. In our sample of Pantheon “politicians” and “soccer players”
are more common (ubiquitous) than “referees” or “wrestlers.”

ubiquity(data = pantheon)

ubiquity
Politician 10
Writer 8
Soccer.Player 6
...
Referee 1
Wrestler 1

Diversity measures that emphasize abundance and balance

Balance measures how much of each category the entity has. The raw indicators of balance are the values
of abundance or the relative values of abundance which are the proportions pi of each i-th category.
The package diverse includes the function balance() which retrieves the matrix of entities-categories
with their correspondent shares, proportions or probabilities.

The word balance is used when the values of abundance are more equally distributed across the
categories. For a given variety, a more balanced system is considered more diverse. Extreme cases
are those where the quantity of elements for each category is exactly the same (i.e. perfect balance) or
conversely, where all the elements are concentrated in just one category (i.e. total concentration).
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As pointed out by Tuomisto (2012), measuring balance alone is a complicated task because it is
difficult to remove the effect of variety on it. The only measure of "balance" in a strict sense that is
facilitated in this package is Pielou’s evenness (Pielou, 1970), which according to Jost (2010) is also the
best measure of balance.

However, diverse also allows for the calculation of a series of commonly used "balance" measures
like the Herfindahl-Hirschman Index (HHI), Gini-Simpson or Blau-Index that emphasize the evenness
or balance of a system (while also being affected by the variety of categories).

Diversity measures related to the property "balance" could be understood as statistical dispersion
and are mainly a function of pi. While some of them measure the evenness or heterogeneity of the
distribution such as the Blau Index , others emphasize the concentration , such as the Herfindahl-
Hirschman Index (HHI) .

The Herfindahl-Hirschman Index (HHI), for example, computes the probability that two individ-
uals taken randomly belong to the same category. This probability is calculated with replacement,
which means that after taking the first individual into account, it is replaced with an identical one;
and thus neither affecting the total number of individuals in that category (ni) nor the total amount of
individuals in the entity (Nt). HHI is used in economics, for instance, to estimate the concentration of
markets or wealth (Ceriani and Verme, 2011).

Taking into account that balance is the opposite to concentration, the Gini-Simpson Index (1−HHI)
subtracts HHI from 1 to estimate balance. The same idea is behind the Blau Index . The Blau Index was
created to measure the heterogeneity of social communities and its use is very common in sociology
and other social sciences.

Similar to HHI, Simpson measure Ds has the same probabilistic idea of measuring concentration,
but it computes the probability without replacement—meaning that the values of Nt and ni decreases
in 1 after the first probability is calculated (see Table 1). This measure of concentration and its
equivalent balance or index of diversity (1− Ds) are widespread in ecology. Moreover, the reciprocal
index (RS = 1/DS) can be calculated.

In the following example, the Herfindahl-Hirschman Index (HHI) , the Gini-Simpson Index and
the Blau Index from Pantheon are computed by using the function diversity(). We can observe that
Uruguay and Vietnam have a higher HHI value and are thus more concentrated and less balanced
than Canada and Chile. Note that the opposite occurs with the Gini-Simpson or Blau indexes. Besides
the Gini-Simpson index, the concentration gini.simpson.C and the reciprocal of the concentration
gini.simpson.R are also retrieved.

round(diversity(data = pantheon, type = c('hhi', 'gs', 'b','ev')), 3)
HHI gini.simpson gini.simpson.C gini.simpson.R blau.index evenness

Canada 0.372 0.628 0.372 2.689 0.628 0.843
Chile 0.133 0.867 0.133 7.538 0.867 0.959
...
Uruguay 0.235 0.765 0.235 4.263 0.765 0.820
Vietnam 0.139 0.861 0.139

Graphical representations can help to understand the importance of balance and how it is captured
by specific diversity measures. Figure 4a illustrates how the share of the dominant species Greylag
Goose increases over time and how the share of Crested Grebe declines. The result is an unbalance
between the species in this ecosystem.

The decrease in diversity of geese—understood here mainly as the balance of the abundance
of different types of geese—can, for instance, be captured by Berger-Parker measures. The Berger-
Parker Dominance Index (DBP) is a measure based on the dominant category (max(pi)) and thus
captures the dominance of the Greylag Goose. On the other hand, the Berger-Parker Index of Diversity
(IBP = 1/DBP) captures the balance between the species. Figure 4b shows how the Berger-Parker
Index of Diversity decreases over time.

bal <- balance(geese, category_row = TRUE) #note the function balance
barplot(t(bal), legend = TRUE, xlab = "Years", ylab = "Proportions",

col=c("darkblue","blue","sky blue", "light blue") )

bp <- diversity(geese, type = 'bp', category_row = TRUE)
plot(bp$berger.parker.I~rownames(bp), xlab = "Years",

ylab = "Berger-Parker Index of Diversity", pch = 19, col = "brown")

diversity(data = geese, type = c('e','ev','s','bp'), category_row = TRUE)
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(a) Proportions of geese species. (b) Berger-Parker Index of diversity.

Figure 4: Analysis of balance for Geese dataset.

entropy evenness simpson.D simpson.I simpson.R berger.parker.D berger.parker.I
1996 0.7993160 0.5765846 0.5534977 0.4465023 1.806692 0.7124871 1.403534
1997 0.7764028 0.5600563 0.5674638 0.4325362 1.762227 0.7247953 1.379700
...
2005 0.5790954 0.4177290 0.7160910 0.2839090 1.396471 0.8392823 1.191494
2006 0.5633026 0.4063369 0.7245616 0.2754384 1.380145 0.8446653 1.183901

Entropy measures and Hill numbers

Shannon Entropy is a frequently used measure of balance and diversity. Entropy is a measure first
created and used in information theory (Shannon, 1948) and has been widely adopted by other
disciplines such as computation, ecology, and economy.

Entropy H measures the minimum volume of communication required to code a message. Fur-
thermore, as pointed by Hidalgo (2015, p.17), “entropy is a measure of the multiplicity of states”. A
high value of multiplicity of states (categories) implies more evenness and less concentration: as a
consequence, the higher the variety and the balance, the higher the entropy. In the example above
we could observe how the entropy in Geese decreased from 0.78 in 1996 to 0.56 in 2006. This is a
consequence of an increase of the population of the dominant species.

A generalization of Shannon Entropy that is also included in diverse is Rényi’s entropy (see Table
1). Rényi’s entropy allows the users to give more or less relative importance to rare categories through
the parameter q.

Another parameterized entropy is the HCDT entropy (Havrda and Charvát, 1967; Daróczy, 1970;
Tsallis, 1988). It is noteworthy that Variety, Shannon, Blau’s and Berger-Parker’s indexes are special
cases of HCDT (respectively with the parameter q = 0, 1, 2 and infinity).

Finally, Hill numbers (Hill, 1973) are a mathematically unified family of diversity indexes that
differ only by a parameter q and that take the effective number of categories into account, i.e. the
number of equally abundant species that would be needed to give the same value of a diversity
measure (Chao et al., 2014b). Hill numbers are of particular interest since entropy is not linear to
the number of categories hosted by an entity Jost (2006). Moreover, several widely used diversity
indexes, like variety/richness, Shannon entropy, Gini-Simpson Index, Rényi’s or HDCT entropy, can
be obtained from Hill numbers (Chao et al., 2014a).

By using diverse we can observe the similarities between entropy measures and Hill numbers,
when q has values of 0, 1 and 2.

When q = 0 , variety, HCDT entropy and Hill numbers are the same. Rényi entropy is equal to
log(variety). When q = 1, Rényi entropy and HCDT entropy are equal to Shannon entropy (H), while
Hill numbers are equal to the exponential of H. When q = 2, HCDT entropy is equal to Gini-Simpson,
while the Hill numbers index is equal to the reciprocal (gini.simpson.R) of the index of concentration
of Gini (or Herfindahl-Hirschman Index (gini.simpson.C)).

diversity(pantheon, type=c("v","hcdt","hn","re"), q=0)[1,]
variety hcdt.entropy hill.numbers renyi.entropy

Canada 27 27 27 3.295837

diversity(pantheon, type=c("e","re","hcdt", "hn"), q=1)[2,]
entropy renyi.entropy hcdt.entropy hill.numbers

Chile 1.626709 1.626709 1.626709 5.087107

diversity(pantheon, type=c("hcdt","gs","hn"), q=2)[3,]
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hcdt.entropy gini.simpson gini.simpson.C gini.simpson.R hill.numbers
China 0.8168554 0.8168554 0.1831446 5.460167 5.460167

Generally for the three parameterized measures that are included in diverse (i.e. Rényi Entropy,
HCDT and Hill numbers), the parameter value q = 0 calculates variety, q < 1 considers rare categories
more important for diversity, q = 1 considers all categories as equally important, and q > 1 mainly
shows the impact of dominant categories in diversity.

Disparity

Another significant dimension of diversity is the disparity or dissimilarity between categories or
entities (Stirling, 2007; Rafols and Meyer, 2009). Disparity is important for all diversity measures,
though, often pre-given in form of classification schemes, like, for example, phylogenetic trees or
types of species in ecology, or the type of research fields in scientometrics. Here, we explicitly take the
diversity dimension disparity into account.

The dimension of disparity provides a notion of how different the categories of an entity are. For
example the areas “Mathematics” and “Physics” are arguably more similar than “Mathematics”
and “Nursing.” Measures of diversity, therefore, are also closely related to distance and similarity
measures like Euclidean distances, cosine similarity, Jaccard-Index, or expert classifications of different
categories.

Matrix of dissimilarities between entities

Beside computing disparity, the dissimilarity matrix between entities is also useful for the visualization
of networks, such as those proposed to evaluate economic complexity (Hidalgo et al., 2007; Hartmann
et al., 2016) or the research capabilities of scholars (Guevara et al., 2016). Moreover, it helps to analyze
the portfolio of entities in so-called network overlay maps and to explore the path of diversification as
a function of the disparity in the network (Rafols et al., 2010; Guevara et al., 2016).

Based on the 10 countries included in Scidat, we calculate the dissimilarities between categories
and then we create a network of areas of science in the following example. The resulting network is
the one presented in Figure 2a in Section Diversity.

adj <- dis_categories(data = scidat, method = 'cosine')
adj[adj > 0.015] <- 0 #filter

library(igraph)
g <- graph.adjacency(adjmatrix = adj, mode = 'undirected', weighted = TRUE)
totals <- colSums(values(scidat))
V(g)$size = log(totals[match(V(g)$name, names(totals))], base = 2) - 9
fc <- fastgreedy.community(g); colors <- rainbow(max(membership(fc)))
V(g)$color = colors[membership(fc)]
set.seed(67)
g$layout <- layout.fruchterman.reingold(g)
plot.igraph(g, vertex.label.cex = 0.9, vertex.label.font = 0,

vertex.label.family = 'Helvetica', vertex.label.color='black', asp = FALSE)

Calculating dissimilarities between entities

The function dis_entities() can be used to calculate a matrix of dissimilarities between entities. The
following example computes the matrices of dissimilarities between countries (entities) for the 10
countries included in Scidat. In this example, Argentina is more similar to Mexico (0.04) and less
similar to China (0.32). In addition, Germany is more similar to Hungary (0.02) and less similar to
Singapore (0.10).

round(dis_entities(scidat, method = 'cosine'), 2)
Argentina China Germany Hungary Iran Mexico Singapore...

Argentina 0.00 0.32 0.09 0.07 0.17 0.04 0.25
China 0.32 0.00 0.20 0.19 0.06 0.18 0.06
Germany 0.09 0.20 0.00 0.02 0.07 0.05 0.10
Hungary 0.07 0.19 0.02 0.00 0.07 0.03 0.11
Iran 0.17 0.06 0.07 0.07 0.00 0.07 0.05
Mexico 0.04 0.18 0.05 0.03 0.07 0.00 0.13
...
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Average or Sum Disparity

The function disparity() computes the average and/or the sum of dissimilarities among categories,
either based on a given dissimilarity matrix of the user or through calculating the dissimilarity matrix
within the function. The first case is based on a matrix of dissimilarities that the user provides in
the argument dis. The dissimilarity matrix has to include the same names of the categories in the
rownames and in the colnames.

In the second case, when the argument dis is not provided, diverse computes the disparities by
using the dissimilarity matrix calculated by using the previously detailed function dis_categories(),
as in the following example where the argument dis is not defined.

In this example with Scidat, we note that the average dissimilarities of categories in the US are
greater than the disparities in Argentina or China.

scidat_rca_fil <- values(scidat, norm = 'rca', filter = 1)
disparity(scidat_rca_fil)

disparity.sum disparity.mean
Argentina 121.12704 0.3450913
China 54.86895 0.1563218
...
Spain 147.35440 0.4198131
United States 190.86552 0.5437764

Diversity measures that explicitly take variety, disparity and balance into account

The package includes also “full” measures of diversity that are able to capture variety, balance and
disparity at the same time. These measures are Rao and Rao-Stirling , where the former is widespread
in ecology, while the latter is more commonly applied in social sciences and scientometrics (Rafols,
2014; Wang et al., 2015).

Both measures compute the sum of the multiplication of the distances (disparity) and the propor-
tions (balance) between the pairs of two distinct categories i and j (see Table 1). However, Rao-Stirling
diversity allows users to assign the weights/parameters α and β according to the importance of the
disparity or balance, respectively.

Rao diversity is equivalent to Rao-Stirling diversity with the parameter values α = β = 1. These
values are also the default values in the function diversity(). Note that when the argument dis is
not provided, the default method ’Euclidean distances’ is used for the calculation of the dissimilarity
matrix. Users can also provide their own dissimilarity matrix by using the argument dis in the
function diversity().

In the following example from Scidat, we calculate Rao diversity as well as the Rao-Stirling
diversity with the parameter values α =0.7 and β = 0.3 and cosine dissimilarities between the entities.
This example shows that Rao-Stirling diversity provides the possibility to emphasize different aspects
of diversity. When we use the Rao Index, then Spain is considered to be more "diverse" than the US,
but when we assign more importance to disparity, by increasing the parameter α in the Rao-Stirling
index, then the US is more "diverse."

scidat_rca_fil <- values(scidat, norm = 'rca', filter = 1)
diversity(data = scidat_rca_fil, type = c('rao', 'rs') ,

alpha=0.7, beta = 0.3, method = 'cosine')
rao.stirling rao

rao rao.stirling
Argentina 0.1526983 7.072576
China 0.1346935 4.814975
...
Spain 0.2137356 12.842799
United States 0.1874783 12.864261

Thus, the Rao-Stirling index and the package diverse allows the user to analyze the impact of
different similarity measures as well as different weights of disparity and balance on the resulting
diversity values and rankings.

It must be noted that, so far, we focus in "diverse" on the Stirling taxonomy (Stirling, 2007, 1998).
In ecology another set of "similarity-based" measures has been developed and can be accessed in the
package entropart and treescape.
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Synthetic data and performance tests

In this Section, we show how to use diverse to create synthetic data to the level of individuals , entities
and datasets. An individual is an independent object that belongs to a category (e.g. a paper in a
certain discipline of Scidat or a person in a certain type of occupation in Pantheon). Entities are
constituted by a set of categories and their values of abundance. A set of several entities constitutes a
synthetic dataset for the type of diversity measures we apply in diverse.

The functions included in diverse to simulate data are sim_individuals(), sim_entities() and
sim_dataset(). In each function the user can define the size (i.e. number of individuals), the required
level of variety or richness and the method to define the distribution or values of abundance.

For example, if we want to create individuals of an entity, we can use the function sim_individuals()
to generate synthetic data with 10000 individuals assigned to 50 different species (categories). More-
over, the values of absolute abundance of species can be, for instance, distributed according to a
log normal distribution with µ = 0.50 and σ = 1.183 (see histogram in Figure 5a and (Beck and
Schwanghart, 2010)).

set.seed(99)
synt_ind <- sim_individuals(n_categ=50, size=100000,

category_prefix='ctg', type='log-normal', mean=0.507, sd=1.183)
hist(table(synt_ind), breaks = 30, xlab = "Values of abundance",

probability = TRUE, main = NULL)
lines(density(table(synt_ind)), col="red")

library(fitdistrplus)
f <- fitdist(as.vector(table(synt_ind)), "lnorm")
x = rlnorm(50, mean=f$estimate['meanlog'][[1]], sd = f$estimate['sdlog'][[1]])
lines(density(x), col="blue", lwd=2)
legend("topright",legend = c('Empirical', 'Fitted'), col = c("red", "blue"), lty=1)
head(synt_ind)

[1] "ctg49" "ctg3" "ctg41" "ctg49" "ctg4" "ctg25"

(a) Histogram of simulated 10K
individuals.

(b) Simulated entity with 200
categories.

(c) Pheatmap of simulated
dataset. 15K entities, 100
categories. Colors according to
value of abundance.

Figure 5: Analysis of simulated data.

If the user wants to generate a simulated entity with values of abundance produced by the
aggregation of individuals in categories, diverse provides the function sim_entity(). This function
allows the user to define a distribution and/or a required number of categories (n_categ()). See
Figure 5b.

sim_ent <- sim_entity(n_categ=200, values=sample(1:1000, replace=TRUE))
plot(sim_ent$Value, ylab = "Value of abundance", xlab="Categories")
head(sim_ent)
Category Value
1 1 757
2 2 124
...
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The simulation of a full dataset is also provided with diverse. The function sim_dataset() allows
for users to define the number of categories in each entity (variety) as well as the number of required
entities. A crucial argument of the function sim_dataset() is the vector of integers with the desired
values of variety for each entity (n_categ). In the following example, we create a dataset of 1500
entities and 100 categories with random integer values of abundance between 10 and 5000. The values
of variety for each entity are also randomly sampled between 1 and 100. The resulting dataset is
retrieved as a dataframe of values of abundance. By using the function values() we can plot this
dataset as a matrix (see Figure 5c).

n_entities <- 1500
v_values <- sample(10:5000, size= n_entities, replace=TRUE)
v_n_categ <- sample(1:100, size = n_entities, replace=TRUE)
data_set <- sim_dataset(n_categ = v_n_categ, values= v_values,
category_prefix = "C", category_random = TRUE)

pheatmap(values(data_set),cluster_rows = FALSE, cluster_cols = FALSE,
show_rownames = FALSE, show_colnames = FALSE)

head(data_set)

...

Performance

To test the performance of diverse we use the previously generated synthetic dataset (1500 entities
by 100 categories), then we calculate the time used to perform two measures, namely Shannon
entropy and Rao-Stirling diversity. Note that the second one is more time consuming since it involves
the computation of a distance matrix. However, the time necessary to compute both measures is
reasonable (0.021 and 2.697 seconds respectively). The time used to create the simulated dataset is
more time consuming (3̃5 secs.) since the dataset must ensure that the assigned number of categories
for each entity accomplishes the requirements. Still it is a reasonable amount of time considering the
dimensions and characteristics of the obtained data.

system.time(data_set <- sim_dataset(n_categ = v_n_categ, values= v_values,
category_prefix = "C", entity_prefix = "E"))

user system elapsed
29.590 5.245 34.871
system.time(diversity(data_set, type=c("e")))

user system elapsed
0.019 0.001 0.021

system.time(diversity(data_set, type=c("rs")))
user system elapsed

2.478 0.206 2.697

Coverage, biases and caveats

The package diverse is designed to work with datasets with a known number of categories and a
comparatively low level of variety (i.e. scientific fields, occupations, or industrial sectors, in comparison
to datasets in ecology with millions of species, including many unknown species). For instance, in
ecology it has been demonstrated that diversity measures are biased in cases of small samples (e.g.
in a very limited spatial area, limited amount of soil, etc.). Accordingly, in datasets on biodiversity,
it is difficult to sample rare species appropriately (Beck and Schwanghart, 2010). To solve this issue
associated to this type of datasets, measures of bias correction, e.g. of Shannon Entropy, have been
proposed (Chao and Shen, 2003). These measures, mainly used in the area of ecology and biodiversity,
are not yet implemented in diverse. Furthermore, considering for example phylogenetic diversity
or functional diversity, other advanced measures, such as the generalization of the Rao’s cuadratic
entropy (Chao et al., 2014a), are not yet included. To address these current limitations it must be noted
that diverse can also be used in combination with several specialized packages such as entropart,
vegan or spadeR. For instance, diverse provides a function (to_entropart()) that allows the user to
transform the datasets from the package diverse into values of abundance to be used in entropart.
Here we present a simple example to compute the richness of the metacommunity (see the entropart
manual for details (Marcon and Hérault, 2015)) generated with our synthetic dataset (the variable
data_set of a previous example).

library(entropart)
abundance <- to_entropart(data_set)
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mc <- MetaCommunity(abundance)
Richness(mc$Ps);Shannon(mc$Ps)

It must also be noted that the ability to statistically test differences in diversity measures across time
and across systems could provide important insights for researchers. The following example shows a
strong linear correlation between the Shannon Entropy in two different time steps of Scidat (dataframes
scidat for 2013, and scidat_2 for 2003). Further statistical test functions need to be implemented
in subsequent versions of of diverse, in order to also allow for the testing of the differences across
systems. diverse will continue to learn from other disciplines, with the aim of implementing and
adapting statistical test functions to the particular needs of researchers exploring the diversity in
complex socioeconomic systems.

d_1 <- diversity(scidat, type="e")
d_2 <- diversity(scidat_2, type="e")
cor.test(d_1[,1], d_2[,1])

Pearson's product-moment correlation

data: d_1[, 1] and d_2[, 1]
t = 3.7171, df = 8, p-value = 0.005896
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.3330683 0.9496172
sample estimates:

cor
0.795807

Conclusions

This paper introduced the package diverse which allows users to compute some of the most common
measures of diversity from different fields of science. In summary, measuring diversity has become
an important topic in many disciplines which analyze complex systems. The R package diverse
allows for a combination of common measures from several disciplines and recent approaches from
interdisciplinary research.

It must be noted that diverse has limitations that we aim to address in subsequent versions of the
package. Possible future improvements include methods for considering diversity at different levels
of aggregation (in hierarchical classification schemes, like mammals and insects, or agricultural or
industrial goods, natural or social sciences, and their respective subcategories). Moreover, further
emphasis on the role of different similarity measures at different levels of aggregations, as well as
analyzing estimation error biases in incomplete samples are important future research areas in the
measurement of diversity in socioeconomic systems, where social sciences can significantly learn
from ecology and biology. Finally diverse can also continue to learn from ecology, biology, and other
disciplines about how to apply statistical tests on the differences of diversity measures across systems.

In general, diverse offers a toolkit to analyze and visualize the diversity of entities, categories, and
complex systems that is useful in particular for social scientists and interdisciplinary social research, as
well as beginners in ecology and natural sciences. The package diverse provides different data import
and export options and allows for the calculation of the different data transformations and similarity
matrices, diversity measures, and diversity visualization options.

In order to present the functions provided by the package, we took advantage of an interdis-
ciplinary taxonomy of diversity that defines variety, balance and disparity as three dimensions of
diversity (Stirling, 2007). This taxonomy favors the creation of interdisciplinary bridges and helps in
understanding how each diversity measure captures different aspects of diversity.
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Simulating Correlated Binary and
Multinomial Responses under Marginal
Model Specification: The SimCorMultRes
Package
by Anestis Touloumis

Abstract We developed the R package SimCorMultRes to facilitate simulation of correlated categori-
cal (binary and multinomial) responses under a desired marginal model specification. The simulated
correlated categorical responses are obtained by applying threshold approaches to correlated contin-
uous responses of underlying regression models and the dependence structure is parametrized in
terms of the correlation matrix of the latent continuous responses. This article provides an elaborate
introduction to the SimCorMultRes package demonstrating its design and usage via three examples.
The package can be obtained via CRAN.

Introduction

Fitting marginal models with correlated binary or multinomial responses is required in many applica-
tions in which the responses are assumed to be correlated. The obvious instance of such studies is
longitudinal studies (Diggle et al., 2002) where the categorical responses for each subject are collected
across time points and form a cluster. For each cluster, the associated covariates are also recorded
as they might influence the true marginal probabilities. Ordinary regression models designed for
independent responses might not lead to consistent estimators of the marginal regression parameters
or of their standard errors. For this reason, many authors have developed and proposed procedures for
estimating the regression parameters of a marginal model with categorical responses that are robust
to misspecification of the dependence structure, including maximum likelihood methods (Fitzmau-
rice and Laird, 1993; Glonek and McCullagh, 1995), copula approaches (Masarotto and Varin, 2012),
quasi-least squares approaches (Shults and Chaganty, 1998), generalized quasi-likelihood methods
(Sutradhar and Das, 1999; Sutradhar, 2003) and generalized estimating equations (GEE) approaches
(Lipsitz et al., 1991; Chaganty and Joe, 2004; Touloumis et al., 2013). Although the asymptotic prop-
erties of these methods are well-established, the evaluation of their performance in finite samples
under misspecification of the correlation structure relies on simulations. The crucial step of these
empirical studies is to simulate correlated categorical responses that satisfy a desired marginal model
and dependence structure specification.

Motivated by this, we present the R package SimCorMultRes (Touloumis, 2016) which makes
it easy to simulate correlated categorical responses under a given marginal model and dependence
structure configuration. The package implements marginal models for correlated binary responses
(two response categories) as well as for correlated multinomial responses (three or more response
categories) while taking into account the nature of the response categories (ordinal or nominal). In
summary, the correlated binary/multinomial responses are obtained as realizations of an under-
lying continuum. This means that latent regression models with correlated continuous responses
are utilized so as to generate the correlated categorical responses that satisfy the desired marginal
model specification. The categorical responses are obtained by applying threshold approaches to the
correlated continuous responses. In order to avoid theoretical pitfalls outlined in the next paragraph,
the desired dependence structure is expressed in terms of the correlation matrix of the latent responses.
To the best of our knowledge, SimCorMultRes is the first package in R that allows direct simulation
of correlated categorical responses under a marginal model specification with categorical and/or
continuous covariates.

To fully appreciate the features of SimCorMultRes, we briefly compare it with two R packages: i)
GenOrd (Barbiero and Ferrari, 2015), that implements the methods presented by Ferrari and Barbiero
(2012) and its features being discussed in greater detail in Barbiero and Ferrari (in press), and ii) Mul-
tiOrd (Amatya and Demirtas, 2016), that is described in Amatya and Demirtas (2015) and relies on the
simulation techniques proposed by Demirtas (2006). These packages are designed to simulate random
vectors of correlated binary or ordinal responses subject to fixed but common marginal probabilities
across all subjects and a predefined correlation matrix for the correlated categorical responses. There-
fore, unlike SimCorMultRes, it is not straightforward to utilize GenOrd or MultiOrd for simulating
categorical responses conditional on a regression model specification for the marginal probabilities,
especially when the marginal probabilities vary across subjects. In addition, SimCorMultRes has the
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unique feature (to the best of our knowledge) to simulate correlated nominal responses. Another
difference between SimCorMultRes and the R packages GenOrd and MultiOrd is that the former
requires the association among the categorical responses to be directly expressed via their correlation
matrix and that the joint specification of the marginal probabilities and of the correlation matrix leads
to a valid joint distribution for the correlated categorical responses. A necessary condition for this is
that the so-called Frétchet-Hoeffding bounds are satisfied, which can be verified by employing the
method of Demirtas and Hedeker (2011). As noted by one of the reviewers, both GenOrd and Multi-
Ord have built-in mechanisms to check the restrictions imposed by the Frétchet-Hoeffding bounds.
Unfortunately, even if these restrictions are met, it is still theoretically possible that a legitimate joint
distribution does not exist for the correlated categorical responses (Bergsma and Rudas, 2002). To
circumvent this difficulty, the methodology implemented in SimCorMultRes always defines the joint
distribution of the correlated categorical responses in terms of the joint distribution of correlated latent
random variables and thus, it allows the user to generate correlated categorical responses under any
configuration of the marginal probabilities provided that the user-defined correlation matrix of the
latent continuous responses is positive definite, a condition that can be more easily verified.

The remainder of this paper is organized as follows. First we present the theoretical background
of the threshold approaches implemented in SimCorMultRes. In particular, we introduce the gen-
eral two-stage algorithm for simulating correlated categorical responses, focusing on the threshold
approaches that give rise to the marginal models with correlated categorical responses and on the
modified version of the NORmal To Anything (NORTA) method (Cario and Nelson, 1997), the default
simulation method of correlated latent random variables in SimCorMultRes. Next, we describe the
core and utility functions of the package. Then, we demonstrate the use of SimCorMultRes by consid-
ering the problems of evaluating two estimation methods for marginal models with correlated nominal
multinomial responses, of assessing the quality of an approximation that links the uniform local odds
ratios structure with the correlation parameter of an underlying bivariate normal distribution, and of
simulating correlated categorical random variables under no marginal model specification. Finally, we
summarize the features of SimCorMultRes and discuss future extensions.

Theoretical background

In this section, we introduce the threshold approaches that give rise to marginal models with correlated
binary, ordinal or nominal responses. Since the thresholds are applied to correlated continuous
responses, simulation of correlated continuous responses is required. This step can be performed in
various ways, eġ,̇ directly from an appropriate multivariate distribution, by utilizing distributional
properties about the sum or the difference of random vectors or by employing copula approaches.
Herein we discuss a simple and straightforward simulation method that is based on the NORTA
method, and we present a general algorithm that combines the threshold approaches with the modified
NORTA method, enabling us to generate correlated categorical responses subject to a marginal model
specification in a unified manner. However, we underline that the use of the NORTA method is optional
in the general algorithm and that it can be replaced with another simulation method/technique as
long as the distributional restrictions regarding the correlated continuous variables that are imposed
by the thresholds are met.

For notational ease, adopt a longitudinal set-up for generating the correlated binary or multinomial
variables. Let Yit be the random variable of subject i (i = 1, . . . , N) at time t (t = 1, . . . , T) and let
xit denote the associated covariates vector. To be consistent with the notation in the majority of the
literature, let Yit ∈ {0, 1} when there are two response categories and let Yit ∈ {1, 2, . . . , J ≥ 3} for at
least three categories.

Binary responses

Suppose the aim is to simulate correlated binary variables such that the marginal probabilities satisfy
the model

Pr (Yit = 1|xit) = F
(

βt0 + β′txit
)

(1)

where βt0 is the intercept and βt is the covariates parameter vector at time t, respectively, and where F
is a cumulative distribution function (c.d.f.).

Now, consider the multivariate latent regression model

UB
i =

UB
i1
...

UB
iT

 =

µB
i1
...

µB
iT

+

eB
i1
...

eB
iT

 = µB
i + eB

i
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where µB
it = β′txit and {eB

i : i = 1, . . . , N} are independent random vectors such that eB
it ∼ F for all i

and t. Under these assumptions, generation of binary responses under the threshold

Yit = I
(

eB
it ≤ βt0 + µB

it

)
= I

(
UB

it ≤ βt0 + 2µB
it

)
gives rise to the marginal model (1), where I (A) denotes the indicator function of the event A. This
approach is a straightforward extension of the gold-standard simulation method proposed by Emrich
and Piedmonte (1991), in the sense that it also permits marginal modeling of the univariate probabilities
through covariates. Implementation of the method of Emrich and Piedmonte (1991) can be found in
the orphaned R package mvtBinaryEP (By and Qaqish, 2011).

Ordinal responses

Options for marginal modelling of correlated ordinal responses include the marginal cumulative link
model

Pr (Yit ≤ j|xit) = F
(

βtj0 + β′txit

)
(2)

and the marginal continuation-ratio model

Pr (Yit = j|Yit ≥ j, xit) = F
(

βtj0 + β′txit

)
. (3)

In both models, F is a c.d.f. and βt is the parameter vector at time t when the corresponding (J − 1)

category-specific intercepts
(

βt10, βt20, . . . , βt(J−1)0

)
are excluded.

First, consider the marginal cumulative link model (2) and suppose the multivariate latent regres-
sion model

UO1
i =

UO1
i1
...

UO1
iT

 =

µO1
i1
...

µO1
iT

+

eO1
i1
...

eO1
iT

 = µO1
i + eO1

i

holds, where µO1
it = −β′txit, and {eO1

i : i = 1, . . . , N} are independent random vectors such that
eO1

it ∼ F for all i and t. To generate an ordinal response Yit that satisfies model (2), one can categorize
UB

it by using the corresponding category-specific intercepts according to the threshold

Yit = j⇔ βt(j−1)0 < UO1
it ≤ βtj0

where
−∞ = βt00 < βt10 < βt20 < · · · < βt(J−1)0 < βtJ0 = ∞.

This threshold approach extends the approach discussed in McCullagh (1980) from cumulative link
models with independent ordinal responses to marginal cumulative link models with correlated
ordinal responses.

Next, consider the marginal continuation-ratio model (3) and suppose the following multivariate
latent regression model holds

UO2
i =

UO2
i1
...

UO2
iT

 =

µO2
i1
...

µO2
iT

+

eO2
i1
...

eO2
iT

 = µO2
i + eO2

i

where UO2
it =

(
UO2

it1 , . . . , UO2
itJ

)′
, µO2

it = − (β′txit, . . . , β′txit)
′ and eO2

it =
(

eO2
it1 , . . . , eO2

itJ

)′
for all i and t,

and {eO2
i : i = 1, . . . , N} are independent random vectors such that:

1. eO2
itj ∼ F for all i, t and j,

2. eO2
itj and eO2

itj′ are independent for all j 6= j′ (local independence assumption).

The marginal continuation-ratio model (3) arises by applying the threshold

Yit = j, given Yit ≥ j⇔ UO2
itj ≤ βtj0

to the components of Uit’s in a sequential order. This approach extends the latent variable representa-
tion described in Tutz (1991) which gives rise to the continuation-ratio model for independent ordinal
responses (see Agresti, 2013).
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Nominal responses

Consider the marginal baseline-category logit model

log
[

Pr (Yit = j|xit)

Pr (Yit = J|xit)

]
=
(

βtj0 − βtJ0

)
+
(

βtj − βtJ

)′
xit = β∗tj0 + β∗′tj xit (4)

where βtj0 and βtj is the j-th category-specific intercept and parameter vector at time t, respectively.
For identifiability reasons, restrictions such as βtJ0 = 0 and βtJ = 0 for all t are required, which imply
that β∗tj0 = βtj0 and β∗tj = βtj for all t and for all j = 1, . . . , J − 1. Note that model (4) relates with the
baseline-category logit model (see Agresti, 2013) and hence it is appropriate for marginal modelling of
correlated nominal responses.

To connect the marginal baseline-category logit model (4) with underlying regression models,
consider the multivariate latent regression model

UNO
i =

UNO
i1
...

UNO
iT

 =

µNO
i1
...

µNO
iT

+

eNO
i1
...

eNO
iT

 = µNO
i + eNO

i

where UNO
it =

(
UNO

it1 , . . . , UNO
itJ

)′
, µNO

it =
(

βt10 + β′t1xit, . . . , βt(J−1)0 + β′tJxit

)′
and eNO

it =
(
eNO

it1 , . . . ,

eNO
itJ
)′ for all i and t, and {eNO

i : i = 1, . . . , N} are independent random vectors such that:

1. eNO
itj follow a standard extreme distribution for all i, t and j,

2. the assumption of choice independence is met at each measurement occasion, that is eNO
itj and

eNO
itj′ are independent for all j 6= j′.

The threshold
Yit = j⇔ Uitj = max{Uit1, . . . , UitJ}

extends the principle of maximum random utility (McFadden, 1974) and it generates correlated
nominal responses that give rise to the marginal baseline-category logit model (4).

Simple version of the NORTA method

Li and Hammond (1975) proposed a simple method for generating continuous random vectors with
given marginal distributions and a prescribed correlation matrix. Cario and Nelson (1997) introduced
the NORTA method which essentially modifies the approach of Li and Hammond (1975) to account for
any type of marginal distributions (discrete, continuous or mixed). Here, we describe a simple version
of the NORTA method in which the desired marginal distributions are continuous and identical which
is required by all the threshold approaches implemented in SimCorMultRes.

Let F be the c.d.f. of the target marginal distribution. To generate a p-variate random vector
W =

(
W1, . . . , Wp

)′ with correlation matrix cor (W) = RW such that Wk ∼ F for all k = 1, . . . , p, the
following NORTA transformation can be utilized:

1. Generate a random vector Z =
(
Z1, . . . , Zp

)′ from a standard multivariate normal distribution
with correlation matrix cor (Z) = RZ. The elements of RZ are calculated by solving numerically
p (p− 1) /2 equations, such that each equation relates cor (Zk, Zk′ ) with cor (Wk, Wk′ ) for all
k < k′. The exact formulae are given by Li and Hammond (1975).

2. Apply the transformation Wk = F−1 [Φ (Zk)] for all k, where Φ is the cumulative distribution of
the standard normal distribution.

If F = Φ, then the second step of the above modified NORTA algorithm is not needed. Otherwise,
the correlation matrices RZ and RW are expected to differ. In fact, Cario and Nelson (1997) showed that
under mild conditions it is possible to have RZ ≈ RW . For example, if F is the cumulative distribution
function of the standard logistic distribution (which might be the case in the marginal models for
correlated binary and ordinal responses), then RZ ≈ RW due to the well-known approximation
Φ (x) = F (xπ/3) for all x ∈ <. This simplifies the computational task as the p (p− 1) /2 equations
are not needed to be solved and issues regarding non-existence of a valid correlation matrix RZ for a
given choice of the correlation matrix RW (Li and Hammond, 1975) are avoided provided that RZ is
positive-definite under mild conditions (Cario and Nelson, 1997).

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 83

General generative process

We propose a simple and efficient two-staged general algorithm for generating correlated categorical
responses:

Stage 1. Marginal model specification: Provide the covariates, the regression parameters and the link
function (if required) of the desired marginal model (1), (2), (3), or (4).

Stage 2. Simulation of continuous random vectors via the NORTA method and threshold approach: Define the
desired dependence structure by fixing RZ to generate the continuous random vectors Ui’s from
the multivariate latent regression model implied by the marginal model specification selected in
Stage 1. Apply the corresponding threshold approach to obtain the correlated binary, ordinal or
nominal responses.

In the marginal models described above, we usually choose F to be the c.d.f. of a standard normal,
logistic or extreme value distribution. In either of these cases, it can be shown that the simulated
categorical responses are independent if and only if RZ is the identity matrix, which is true if and only
if the random variables in the latent random vectors ei’s are independent (Cario and Nelson, 1997).
For all other forms of RZ, correlated categorical responses will be generated.

Expressing the association structure in terms of RZ ensures the existence of a joint distribution for
the correlated categorical responses regardless of the marginal model specification which is not the
case when the association is expressed directly via the correlation matrix of the correlated categorical
responses. This well-known fact has been mentioned by Bergsma and Rudas (2002) among others, and
it has been exemplified in the case of correlated binary and multinomial responses by Chaganty and
Joe (2004), Chaganty and Joe (2006) and Touloumis et al. (2013), respectively. The simplest scenario
where adopting a common correlation matrix for the correlated categories responses across subjects is
problematic is when the linear predictor in the marginal model is allowed to vary freely on the real
line. In this case, only the identity matrix is a feasible value for the correlation matrix.

As mentioned before, the proposed version of the NORTA method is not the only option to
simulate continuous random vectors in Stage 2 and instead, alternative simulation techniques can
be easily employed. However, the user must be cautious in order to respect the corresponding
marginal distributional assumptions and the assumption of local independence or choice independence
whenever the marginal models (3) or (4) are used, respectively.

We emphasize that the proposed algorithm can also handle the situation in which no marginal
model specification is provided. For more details, please refer to the third example below.

Description of SimCorMultRes

SimCorMultRes contains four core functions (rbin, rmult.bcl, rmult.clm and rmult.crm) that enable
the user to generate correlated categorical responses and two utility functions (rnorta and rsmvnorm)
initially designed for internal use in the core functions. We describe in detail the arguments and the
output of the core and utility functions.

Core functions

Each core function in SimCorMultRes simulates correlated categorical responses under a marginal
model specification. In particular, rbin simulates correlated binary responses that satisfy the marginal
model (1), rmult.clm simulates correlated ordinal responses that satisfy the marginal cumulative link
model (2), rmult.crm simulates correlated ordinal responses that satisfy the marginal continuation-
ratio model (3) and rmult.bcl simulates correlated nominal responses that satisfy the marginal
baseline-category logit model (4).

The common cluster size (clsize) of the subjects is required in all core functions.

The ncategories argument in rmult.bcl indicates the number of nominal response categories.
The number of ordinal response categories in rmult.clm and rmult.crm is indirectly defined by the
intercepts argument. It contains the values of the threshold parameters which can be provided
either as a T × (J − 1) matrix or as a vector of length J − 1. In the first case, the (t, j)-th element of
intercepts corresponds to βtj0 and in the second case, it is assumed that βtj0 = β j0 for all t in the
marginal models (2) or (3). The intercepts argument is also employed in rbin to specify whether the
intercepts in the marginal model (1) are time-dependent. If βt0 = β0 for all t, then intercepts should
be a single number that reflects the value of β0. Otherwise, it should be a vector of size T with the t-th
element equal to the value of βt0.

The values for the marginal regression parameters (betas) should be provided as a numeric vector
whenever βt = β for all t in models (1), (2) or (3), and whenever βtj = β j and βtj = β j for all t in
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model (4). In all other cases, betas should be provided as a matrix with T rows such that the t-th
row contains the value of the marginal parameter vector at time t. It is important to emphasize that
(category-specific) intercept values should not be included in betas unless the function rmult.bcl is
used.

The functional relationship of the covariates in the marginal model (xformula) is specified similarly
as in other regression models with the single difference that no response variable should be provided.
The covariates defined in xformula can be imported via the xdata argument in “long” format, meaning
that each row contains all the subject-specific covariates information at a given time. When xdata is
missing, then the covariates are extracted from the environment that the core function is called.

The link argument in rbin, rmult.clm or rmult.crm determines the c.d.f. F in the marginal
models (1), (2) or (3) respectively, i. e., the link function. Options for the link function include the probit
("probit"), the logit ("logit"), the complimentary log-log ("cloglog") and the cauchit ("cauchit").
It is worth mentioning that there is no link argument in the function rmult.bcl because the marginal
distribution of the latent continuous random variables eNO

itj ’s is always the standard extreme value
distribution.

In all core functions, the latent random vectors ei’s can be either simulated using the proposed
NORTA approach or provided by the user via the rlatent argument. In the first case, the correlation
matrix RZ of the multivariate normal distribution (cor.matrix) in the modified NORTA method and
the link argument, wherever present, are required. Checks are carried out to ensure that cor.matrix is
a positive-definite correlation matrix and whenever rmult.crm or rmult.bcl is employed, cor.matrix
is forced to satisfy the restrictions of the latent dependence structure that are implied by the threshold
approach associated with models (3) or (4), respectively. In the case where the preferred simulation
method is not the NORTA method, rlatent should contain the values of the latent random vectors
while cor.matrix and link are ignored. Examples of using the rlatent argument can be found in the
help files and the vignette of SimCorMultRes.

The output of any core function is displayed as a list with three items: (i) a matrix with the
simulated responses such that the (i, t)-th element corresponds to the realization of Yit (Ysim), (ii) a
data frame (simdata) that contains the simulated responses (y), the covariates specified by xformula,
subjects’ identities (id) and the measurement occasions (time), and (iii) the NORTA generated or
user-defined latent random vectors (rlatent).

Utility functions

The utility function rnorta offers a more general implementation of the NORTA method described
earlier. The user needs to specify the number of random vectors (R), the correlation matrix RZ of
the multivariate normal distribution (cor.matrix) and the names of the quantile functions of the
desired marginal distributions (distr). The optional qparameters argument permits users to consider
parameter values for the marginal distributions other than the default (obtained when qparameters
= NULL). The function returns R random vectors with marginal distributions specified by distr (and
qparameters) when cor.matrix is the correlation matrix of the multivariate normal distribution in the
NORTA method. We highlight that rnorta has been extended to handle situations that are beyond
the scope of simulation of correlated categorical responses subject to a marginal model specification.
Unlike the simple version of the NORTA method needed for our purposes, rnorta does not require
marginal distributions to be identical. In fact, any univariate discrete or continuous distribution whose
quantile function is available in R can be employed in distr provided that the required R package is
available.

The function rsmvnorm generates R random vectors from a multivariate normal distribution with
mean vector the zero vector and covariance matrix cor.matrix.

Note that an error message is returned whenever cor.matrix in functions rnorta or rsmvnorm is
not a positive-definite correlation matrix.

Empirical illustration

We now illustrate the use of SimCorMultRes to: i) evaluate the performance of GEE approaches for
estimating the regression parameters of a marginal baseline-category logit model, ii) to verify approxi-
mations that relate a uniform local odds ratios structure to the correlation coefficient of a bivariate
normal distribution (Goodman, 1979) and, iii) to simulate correlated categorical random variables
with fixed arbitrary univariate probabilities that are not subject to a marginal model specification.
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Parameter estimation of marginal models

The motivation behind the creation of SimCorMultRes lies on evaluating statistical methods that esti-
mate the regression coefficients of marginal models with correlated binary or multinomial responses.
To exemplify this, we employ two GEE models for estimating a marginal model with correlated nomi-
nal responses: i) the local odds ratios GEE approach (Touloumis et al., 2013) and ii) the independence
“working” model, which treats all observations as independent when solving the estimating equations.
Although the two competing GEE models are asymptotically equally efficient, in the sense that they
both produce consistent estimators for the marginal regression parameters and of their standard errors,
the regression coefficient estimators of the independence “working” model are expected to be slightly
less precise than those of the local odds ratios GEE approach in small and moderate sample sizes due
to the fact that the independence “working” model does not account for the dependence among the
correlated responses (Touloumis et al., 2013).

To investigate this assertion for the case of correlated nominal responses, we employed the marginal
baseline-category logit model

log
[

Pr (Yit = j|xit)

Pr (Yit = 5|xit)

]
= β j0 + β j1xit (5)

where (β10, β11, β20, β21, β30, β31, β40, β41) = (2, 1, 1, 2, 1.5, 1.5, 2.5, 0.5) and xit
i.i.d.∼ N (0, 1) for all i =

1, . . . , 100 and t = 1, 2, 3, 4. Further, the correlation matrix RZ among the normally distributed variables
Zitj’s in the NORTA method was given by

cor
(

Zitj, Zit′ j′
)
=


1 if t = t′ and j = j′

0 if t = t′ and j 6= j′

0.56tj−t′ j′ if otherwise.

> library("SimCorMultRes")
> library("multgee")
Loading required package: gnm
Loading required package: VGAM
Loading required package: stats4
Loading required package: splines
> set.seed(1)
> N <- 100
> clsize <- 4
> ncategories <- 5
> betas <- c(2, 1, 1, 2, 1.5, 1.5, 2.5, 0.5, 0, 0)
> x <- rnorm(N * clsize)
> cor.matrix <- toeplitz(0.56^seq(0, clsize * ncategories - 1))
> for (i in 1:clsize) {
+ diag.index <- 1:ncategories + (i - 1) * ncategories
+ cor.matrix[diag.index, diag.index] <- diag(1, ncategories)
+ }

Conditional on the above marginal model specification and dependence structure, we simulated
correlated nominal responses and we fitted the local odds ratios GEE approach with an RC-type de-
pendence structure and the independence “working” model using the R package multgee (Touloumis,
2015). We replicated this procedure 1000 times and at each iteration we recorded the estimates of the
marginal regression parameter vector of the two competing models:

> B <- 1000
> indeGEEcoefs <- matrix(NA_real_, B, 8)
> RCGEEcoefs <- matrix(NA_real_, B, 8)
> for (b in 1:B) {
+ SimNomRes <- rmult.bcl(clsize = clsize, ncategories = ncategories,
+ betas = betas, xformula = ~x, cor.matrix = cor.matrix)
+ fitRC <- try(nomLORgee(y ~ x, id = id, repeated = time, data = SimNomRes$simdata,
+ LORstr = "RC", add = 0.05), silent = TRUE)
+ if (!inherits(fitRC, "try-error")) {
+ if (fitRC$convergence$conv)
+ RCGEEcoefs[b, ] <- coef(fitRC)
+ }
+ fitinde <- try(nomLORgee(y ~ x, id = id, repeated = time, data = SimNomRes$simdata,
+ LORstr = "independence"), silent = TRUE)
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Table 1: Simulation results for the local odds GEE approach (LOR) and the independence “working”
model (IEE) for estimating the regression parameter vector and their standard errors (second row) in
the marginal model (5).

Model β10 = 2 β11 = 1 β20 = 1 β21 = 2 β30 = 1.5 β31 = 1.5 β40 = 2.5 β41 = 0.5

IEE 2.0701 1.0308 1.0494 2.0530 1.5682 1.5441 2.5702 0.5209
0.3567 0.3232 0.4011 0.3601 0.3740 0.3412 0.3627 0.2995

LOR 2.0471 0.9951 1.0378 1.9832 1.5487 1.4943 2.5473 0.4946
0.3512 0.3105 0.3944 0.3490 0.3673 0.3319 0.3562 0.2873

SRE 1.0522 1.0927 1.0405 1.0852 1.0526 1.0738 1.0573 1.0921

+ if (!inherits(fitinde, "try-error")) {
+ if (fitinde$convergence$conv)
+ indeGEEcoefs[b, ] <- coef(fitinde)
+ }
+ }

Although the local odds GEE approach did not always converge, the convergence rate for the local
odds ratios GEE model was high

> convergence <- c(mean(!is.na(indeGEEcoefs)), mean(!is.na(RCGEEcoefs))) * 100
> convergence
[1] 100.0 99.7

and therefore, we can conduct a fair comparison by excluding the results from those 3 iterations in
which the local odds ratios GEE approach failed to converge.

Table 1 summarizes the simulation results by displaying the simulated mean and standard error of
the regression estimates from the two competing GEE models and the simulated relative efficiency
(SRE) for each regression parameter of model (5). For a given coefficient of model (5), the SRE criterion
was defined as the ratio of the simulated mean square error of the corresponding Monte Carlo estimate
based on the local odds ratios GEE approach to that based on the independence “working” model.
Values of the SRE criterion greater (less) than 1.0 imply that the local odds ratios GEE approach is more
(less) efficient than the independence “working” model in estimating this specific regression parameter.
As expected, the two GEE models seem to estimate consistently the marginal model (5), with the local
odds ratios GEE approach being 4.05%–9.27% more efficient in estimating each regression coefficient.

The results of Table 1 were calculated using the following R commands:

> simindemean <- colMeans(indeGEEcoefs, na.rm = TRUE)
> simindesd <- apply(indeGEEcoefs, 2, function(x) sd(x, na.rm = TRUE))
> simRCmean <- colMeans(RCGEEcoefs, na.rm = TRUE)
> simRCsd <- apply(RCGEEcoefs, 2, function(x) sd(x, na.rm = TRUE))
> simindesmse <- (betas[-c(9:10)] - simindemean)^2 + simindesd^2
> simRCsmse <- (betas[-c(9:10)] - simRCmean)^2 + simRCsd^2
> SRE <- simindesmse/simRCsmse
> rbind(simindemean, simindesd, simRCmean, simRCsd, SRE)

Uniform association model and bivariate normal distribution

Let fab denote the observed frequency of the cell (a, b) in a two-way contingency table and let Fab be
the corresponding expected frequency under some model, for a = 1, . . . , A and b = 1, . . . , B. Goodman
(1979) proposed the uniform association model

log (Fab) = ν + κa + λb + φ (6)

where the parameters ν, {κa : a = 1, . . . , A}, {λb : b = 1, . . . , B} and φ are identifiable once restrictions,
such as sum to zero constraints (Agresti, 2013), are applied to {κa : a = 1, . . . , A} and {λb : b =
1, . . . , B}. The association between the row and column variables is modelled parsimoniously by
assuming a common value φ for the (A− 1)× (B− 1) log local odds ratios. The key property of the
uniform association model is that φ relates to the correlation parameter ρ of an underlying bivariate
normal distribution (Goodman, 1979) via the approximations

φ ≈ ρ

1− ρ2
11
12

(7)
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or

ρ ≈
(√

1 + η2 − η

)
× 13/12 (8)

where η = (2φ)−1. The validity of these approximations has been explored only for ρ = 0.5 by
Goodman (1979). Here, we perform a more detailed empirical investigation by considering a grid of
values for ρ, namely ρ = 0.05, 0.10, . . . , 0.95.

For each value of ρ, we simulated 1000 random vectors from a bivariate normal distribution with
mean vector the zero vector and covariance matrix the correlation matrix(

1 ρ
ρ 1

)
.

In a similar fashion as in Goodman (1979), correlated ordinal responses were generated by applying
the threshold approach linked to model (2), with F = Φ and equi-distanced category-specific intercepts
(β10, β20, β30, β40, β50, β60, β70) = (−3,−2,−1, 0, 1, 2, 3). The sampling scheme does not involve any
covariates, that is βt = 0 and xit = 0 for all t. Next, we cross-classified the correlated simulated
responses to obtain a 8× 8 contingency table and we estimated φ by fitting the uniform association
model (6). We repeated this procedure 10000 times:

> library("SimCorMultRes")
> set.seed(123)
> commonlogoddsratio <- function(N, rho, intercepts, B) {
+ cor.matrix <- toeplitz(c(1, rho))
+ x <- rep(0, 2 * N)
+ ans <- rep(0, B)
+ for (b in 1:B) {
+ CorOrdRes <- rmult.clm(clsize = 2, intercepts = intercepts, betas = 0,
+ xformula = ~x, link = "probit", cor.matrix = cor.matrix)
+ simdata <- data.frame(table(CorOrdRes$Ysim[, 1], CorOrdRes$Ysim[, 2]))
+ if (any(simdata[, 3] == 0))
+ simdata[, 3] <- simdata[, 3] + 0.001
+ colnames(simdata) <- c("x", "y", "Freq")
+ fit <- glm(Freq ~ x + y + as.numeric(x):as.numeric(y), family = poisson(),
+ data = simdata)
+ ans[b] <- as.numeric(coef(fit)[length(coef(fit))])
+ }
+ ans
+ }
> N <- 1000
> intercepts <- c(-3, -2, -1, 0, 1, 2, 3)
> B <- 10000
> rho <- seq(0.05, 0.95, 0.05)
> logoddsratio <- rep(0, length(rho))
> for (i in seq_along(rho)) {
+ simdata <- commonlogoddsratio(N, rho[i], intercepts, B)
+ logoddsratio[i] <- mean(simdata)
+ }
There were 50 or more warnings (use warnings() to see the first 50)
> eta <- 1/(2 * logoddsratio)
> rhophi <- (sqrt(1 + eta^2) - eta) * 13/12

The produced warnings() reflect the fact that we have added 0.001 to each cell of the two-way
contingency table whenever an observed zero count occurred to ensure the existence of the maximum
likelihood estimator of φ (Birch, 1963). We estimated the underlying correlation parameter ρ with ρφ̂

obtained by replacing φ in (8) with its Monte Carlo counterpart φ̂. The following R commands were
run to obtain Figure 1.

> absdif <- abs(rhophi - rho)
> plot(rho, absdif, xlab = expression(rho), ylab = expression(abs(rho[hat(phi)] -
+ rho)), xaxt = "n")
> axis(1, at = seq(0.05, 0.95, 0.1), labels = seq(0.05, 0.95, 0.1))

Figure 1 displays the absolute difference between the true correlation parameter ρ and ρφ̂. In general,
approximation (8) seems to work well for weak correlation patterns, that is when ρ ≤ 0.20. The
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Figure 1: The absolute difference between the true correlation parameter ρ and ρφ̂, the correlation
implied by the association model (6).

simulated absolute difference increases slightly for 0.25 ≤ ρ ≤ 0.55 and then it decreases as 0.6 ≤
ρ ≤ 0.95. In addition, the Monte Carlo estimates of φ increase as the true value of ρ increases, which
suggests that φ does capture the strength of the underlying correlation structure. Therefore, we may
conclude that approximations (7) and (8) can adequately describe the relationship between the uniform
local odds ratios parameter φ in the uniform association model (6) and the correlation parameter ρ of
an underlying bivariate normal distribution.

Simulating correlated categorical responses under no marginal model specification

For completeness’ sake, we illustrate how to utilize SimCorMultRes in order to generate correlated
categorical random variables conditional on a desired dependence structure and known marginal
probabilities that are not determined by a regression model.

Suppose the goal is to simulate 5000 trivariate vectors Yi = (Yi1, Yi2, Yi3)
′ of multinomial responses

such that Yit ∈ {1, 2, 3, 4},

Pr (Yi1 = 1) = 0.1 Pr (Yi1 = 2) = 0.3 Pr (Yi1 = 3) = 0.4 Pr (Yi1 = 4) = 0.2

Pr (Yi2 = 1) = 0.2 Pr (Yi2 = 2) = 0.2 Pr (Yi2 = 3) = 0.2 Pr (Yi2 = 4) = 0.4

Pr (Yi3 = 1) = 0.2 Pr (Yi3 = 2) = 0.4 Pr (Yi3 = 3) = 0.3 Pr (Yi3 = 4) = 0.1

and a common uniform local odds ratio structure

φtt′ =
Pr (Yit = j, Yit′ = j′)Pr (Yit = j + 1, Yit′ = j′ + 1)
Pr (Yit = j, Yit′ = j′ + 1)Pr (Yit = j + 1, Yit′ = j′)

= 2

holds for all i = 1, . . . , 5000, t < t′ and j, j′ = 1, 2, 3. The above sampling scheme can be reparametrized
in terms of the threshold approach related to the marginal cumulative link model (2) while utilizing
the conclusions of the previous example to obtain the desired dependence structure.

To this direction, first define βtj0 = Φ−1 [Pr (Yit ≤ j)] for all t (t = 1, 2, 3) and j (j = 1, 2, 3) as the
category-specific intercepts of a marginal cumulative probit model with no covariates:

> library(SimCorMultRes)
> set.seed(123)
> N <- 5000
> clsize <- 3
> mprobs_1 <- c(0.1, 0.3, 0.4, 0.2)
> mprobs_2 <- c(0.2, 0.2, 0.2, 0.4)
> mprobs_3 <- c(0.2, 0.4, 0.3, 0.1)
> cprobs_1 <- cumsum(mprobs_1[-4])
> cprobs_2 <- cumsum(mprobs_2[-4])
> cprobs_3 <- cumsum(mprobs_3[-4])
> intercepts <- qnorm(rbind(cprobs_1, cprobs_2, cprobs_3))
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> x <- rep(0, clsize * N)

Next, for the pairwise dependence structure, approximate the desired pairwise uniform local odds
ratios φ12, φ13, φ23 via the correlation parameters of an underlying trivariate normal distribution
with mean vector the zero vector. Since the desired pairwise local odds ratios are all equal (φ12 =
φ13 = φ23 = 2), we may assume that the corresponding correlation parameters are all equal. This
common correlation parameter ρ can be sufficiently approximated by equation (8), which suggests
that ρ ≈ 0.5543:

> CommomLOR <- log(2)
> eta <- 1/(2 * CommomLOR)
> rhophi <- (sqrt(1 + eta^2) - eta) * 13/12
> rhophi
[1] 0.5543136

To sum up, the desired correlated multinomial responses can be simulated under a cumulative probit
model with no covariates and an exchangeable correlation matrix for the underlying trivariate normal
distribution with correlation parameter equal to 0.5543:

> cor.matrix <- toeplitz(c(1, rhophi, rhophi))
> simdata <- rmult.clm(clsize = clsize, intercepts = intercepts, betas = 0,
+ xformula = ~x, link = "probit", cor.matrix = cor.matrix)

The simulated category-specific probabilities satisfy the desired marginal configuration

> t(apply(simdata$Ysim, 2, function(x) table(x)/N))
1 2 3 4

[1,] 0.0970 0.2986 0.4068 0.1976
[2,] 0.1996 0.2046 0.1978 0.3980
[3,] 0.2068 0.3868 0.3068 0.0996

and a simulated correlation matrix for the latent random variables

> cor(simdata$rlatent)
[,1] [,2] [,3]

[1,] 1.0000000 0.5476759 0.5527712
[2,] 0.5476759 1.0000000 0.5534464
[3,] 0.5527712 0.5534464 1.0000000

This approach can also be employed to generate correlated binary random variables with known
marginal probabilities provided that the desired correlation structure of the binary responses can be
expressed in terms of a correlation matrix in the NORTA method. In this case SimCorMultRes is
essentially implementing the simulation method of Emrich and Piedmonte (1991) without performing
the first step of their algorithm.

Summary

We have presented the R package SimCorMultRes that simulates correlated binary or multinomial
random variables conditional on a marginal model specification while expressing the dependence
structure via the correlation structure of latent random variables. We outlined the underlying theory
that SimCorMultRes is based on and illustrated the use of the package with three examples. To
the best of our knowledge, SimCorMultRes is the first R package that targets specifically on the
generation of correlated binary, nominal or ordinal responses under marginal model specification.
In some instances, it could also be used to simulate correlated categorical responses even when
no model specification is provided for the marginal probabilities by exploiting the relationship of
association measures for discrete variables and the bivariate normal distribution. This can be achieved
by following a similar approach as the one adopted in the third example herein. The results in this
paper were obtained using SimCorMultRes version 1.4.1 and R 3.3.1.

Although the NORTA method is the default tool for simulating the latent random vectors denoted
by ei’s, it is extremely important to emphasize that these can be provided by the user via the rlatent
argument in the core functions. For example, generating correlated binary responses under a marginal
logit model specification and with an exchangeable correlation matrix, can be accomplished by taking
the difference of two independent random vectors from the multivariate Gumbel distribution each
with correlation matrix the desired correlation matrix. This approach can be found in standard
textbooks, such as Balakrishnan (1992). A working example, can be found in the vignette of this
package.
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A future direction is to increase the scope of marginal regression models for nominal and ordinal
responses, e.g., by including threshold approaches that give rise to a marginal adjacent-categories
logit model and allowing category-specific regression parameters in the marginal models with ordinal
responses.
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eiCompare: Comparing Ecological
Inference Estimates across EI and EI:R×C
by Loren Collingwood, Kassra Oskooii, Sergio Garcia-Rios, and Matt Barreto

Abstract Social scientists and statisticians often use aggregate data to predict individual-level behavior
because the latter are not always available. Various statistical techniques have been developed to
make inferences from one level (e.g., precinct) to another level (e.g., individual voter) that minimize
errors associated with ecological inference. While ecological inference has been shown to be highly
problematic in a wide array of scientific fields, many political scientists and analysis employ the
techniques when studying voting patterns. Indeed, federal voting rights lawsuits now require such
an analysis, yet expert reports are not consistent in which type of ecological inference is used. This
is especially the case in the analysis of racially polarized voting when there are multiple candidates
and multiple racial groups. The eiCompare package was developed to easily assess two of the more
common ecological inference methods: EI and EI:R×C. The package facilitates a seamless comparison
between these methods so that scholars and legal practitioners can easily assess the two methods and
whether they produce similar or disparate findings.

Introduction

Ecological inference is a widely debated methodology for attempting to understand individual, or
micro behavior from aggregate data. Ecological inference has come under fire for being unreliable,
especially in the fields of biological sciences, ecology, epidemiology, public health and many social
sciences. For example, Freedman (1999) explains that when confronted with individual level data,
many ecological aggregate estimates in epidemiology have been proven to be wrong. In the field
of ecology Martin et al. (2005) expose the problem of zero-inflation in studies of the presence or
absence of specific species of different animals and note that ecological techniques can lead to incorrect
inference. Greenland (2001) describes the many pitfalls of ecological inference in public health due to
the nonrandomization of social context across ecological units of analysis. Elsewhere, Greenland and
Robins (1994) have argued that the problem of ecological confounder control leads to biased estimates
of risk in epidemiology. Related, Frair et al. (2010) argue that while some ecological analysis can be
informative when studying animal habitat preference, existing methods of ecological inference provide
imprecise information on variation in the outcome variables and that considerable improvements are
necessary. Wakefield (2004) provides a nice comparison of how ecological inference performs across
epidemiological versus social scientific research. He concludes that in epidemiological applications
individual-level data are required for consistently accurate statistical inference.

However, within the narrow subfield of racial voting patterns in American elections ecological
inference is regularly used. This is especially common in scholarly research on the voting rights
act where the United States Supreme Courts directly recommended ecological inference analysis as
the main statistical method to estimate voting preference by racial group (e.g. Thornburg v. Gingles
478 U.S. 30, 1986). Because Courts in the U.S. have so heavily relied on ecological inference, it has
gained prominence in political science research. The American Constitution Society for Law and Policy
explains that ecological inference is one of the three statistical analyses that must be performed in
voting rights research on racial voting patterns.1 As ecological inference evolved a group of scholars
developed the eiPack package and published an article in R News announcing the new package (Lau
et al., 2006).

This article does not conclude that ecological inference is appropriate or reliable outside the specific
domain of American elections. Indeed, scholars in the fields of epidemiology and public health have
correctly pointed out the limitations of individual level inference from aggregate date. However, its
application to voting data in the United States represents one area where it may have utility, if model
assumptions are met (Tam Cho and Gaines, 2004). Indeed, the main point of our article is not to settle
the debate on the accuracy of ecological inference in the sciences writ large, but rather to assess the
degree of similarity or difference with respect to two heavily used R packages within the field of
political science, ei and eiPack. Our package, eiCompare offers scholars who regularly use ecological
inference in analyses of voting patterns the ability to easily compare, contrast and diagnose estimates
across two different ecological methods that are recommended statistical techniques in voting rights
litigation.

Today, although there is continued debate among social scientists (Greiner, 2007, 2011; Cho, 1998) —
the courts generally rely on two statistical approaches to ecological data. The first, ecological inference

1http://www.acslaw.org/sites/default/files/VRI_Guide_to_Section_2_Litigation.pdf
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(EI), developed by King (1997), is said to be preferred when there are only two racial or ethnic groups,
and ideally only two candidates contesting office. However, Wakefield (2004) notes that EI methods
can be improved with the use of survey data as Bayesian priors. The second, ecological inference R×C
(R×C) developed by Rosen et al. (2001), is said to be preferred when there are multiple racial or ethnic
groups, or multiple candidates contesting office. However, it is not clear that when faced with the
exact same dataset, they would produce different results. In one case, analysis of the same dataset
across multiple ecological approaches found they tend to produce the same conclusion (Grofman and
Barreto, 2009). However, others have argued that using King’s EI iterative approach with multiple
racial groups or multiple candidates will fail and should not be relied on (Ferree, 2004). Still others
have gone further and stated that EI cannot be used to analyze multiple racial group or multiple
candidate elections, stating that “it biases the analysis for finding racially polarized voting,” going
on to call this approach “problematic” and stating that “no valid statistical inferences can be drawn”
(Katz, 2014).

As with any methodological advancement, there is a healthy and rigorous debate in the literature.
However, very little real election data has been brought to bear in this debate. Ferree (2004) offers
a simulation of Black, White, and Latino turnout and voting patterns, and then examines real data
from a parliamentary election in South Africa using a proportional representation system. (Grofman
and Barreto, 2009) compare an exit poll to precinct election data in Los Angeles, but only compare
Goodman’s ecological regression against King’s EI, using the single-equation versus double-equation
approach, and do not examine the R×C approach at all.

Debates over ecological inference

The challenges surrounding ecological inference are well documented. Robinson (2009) pointed
out that relying on aggregate data to infer the behavior of individuals can result in the ecological
fallacy, and since then scholars have applied different methods to discern more accurately individual
correlations from aggregate data. Goodman (1953, 1959) advanced the idea of ecological regression
where individual patterns can be drawn from ecological data under certain conditions. However
Goodman’s logic assumed that group patterns were consistent across each ecological unit, and in
reality that may not be the case.

Eventually, systematic analysis revealed that these early methods could be unreliable (King,
1997). Ecological inference is King’s (1997) solution to the ecological fallacy problem inherent in
aggregate data, and since the late 1990s has been the benchmark method courts use in evaluating
racial polarization in voting rights lawsuits, and has been used widely in comparative politics research
on group and ethnic voting patterns. Critics claim that King’s EI model was designed primarily for
situations with just two groups (e.g., blacks and whites; Hispanics and Anglos, etc.). While many
geographic areas (e.g., Mississippi, Alabama) still contain essentially two groups and hence pose
no threat to traditional EI estimation procedures, the growth of racial groups such as Latinos and
Asians have challenged the historical biracial focus on race in the United States (thereby challenging
traditional EI model assumptions). Rosen et al. (2001) suggest a rows by columns (R×C) approach
which allows for multiple racial groups, and multiple candidates; however, their Bayesian approach
suffered computational difficulties and was not employed at a mass level. Since then, computing power
has steadily improved, making R×C a realistic solution for many scenarios and accessible packages
now exist in R that are widely used. These two methodological approaches are now both regularly
used in political science; however, there is no consistent evidence how they perform side-by-side, and
are different.

Ferree (2004) critiques King’s EI model, arguing that the conditions for iterative estimation (e.g.,
black vs. non black, white vs. non-white, Hispanic vs. non-Hispanic) can be considerably biased due
to aggregation bias and multimodality in the data. In a hypothetical simulation dataset, Ferree shows
that combining blacks and whites into a single “non-Hispanic” group in order to estimate Hispanic
turnout can vastly overestimate Hispanic turnout, for example. However, the analysis did not provide
any clues as to the specific conditions when and how R×C is significantly better or preferred to EI.
For example, if there are three racial groups in equal thirds of the electorate, does aggregation bias
create more error in EI than a scenario in which two dominant groups comprise 90% and a small
group is just 10%? Likewise, is EI’s iterative approach to candidates more stable when analyzing
three candidates and far less stable when eight candidates contest the election? These questions
have not been considered empirically. Instead, the existing scholarship uses simulation data to prove
theoretically that EI might create bias and that R×C is preferred. We argue that real election data
should be considered in a side-by-side comparison.

Despite some critiques, other political scientists have defended ecological inference and even
ecological regression using both simulations and real data. Owen and Grofman (1997) assess whether
or not ecological fallacy in ecological regression is a theoretical problem only, a real problem for
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empirical analysis. In an extensive review, Owen and Grofman conclude that despite the valid
theoretical concerns, linear ecological regression still holds up and provides meaningful and accurate
estimates of racially polarized voting. A decade later, Grofman and Barreto (2009) again take up the
question of how ecological models compare to one another using a combination of simulation, actual
election precinct data, and an accompanying individual-level exit poll. Their analysis argues that there
is general consistency across all ecological models and that once voter turnout rates are accounted for,
ecological regression and King’s EI lead scholars to the same results. However, Grofman and Barreto
did not consider R×C in their comparison.

Greiner and Quinn (2010) combine R×C methods with individual level exit poll data, and argue
that this hybrid model can be preferable to a straight aggregation model. However, using exit poll data
is not always available to all researchers and practitioners. Indeed, in most county or city elections, exit
poll data does not exist which is why scholars often attempt to infer voting patterns through aggregate
data. Herron and Shotts (2003) also criticize EI estimates when used for second-stage regression -
given that error is baked into the second-level regression estimation. However Adolph and King
(2003) respond by adjusting the EI procedure to reduce inconsistencies when estimating second-stage
regressions. Nevertheless, these issues with EI do not speak specifically to R×C methods.

Greiner and Quinn (2009) extend the 2×2 EI contingency problem to 3×3 and estimate voting
preferences simultaneously for three candidates across three racial groups (but using counts instead
of percentages). We extend this work by analyzing real-world datasets with sizes greater than 3×3
(multiple candidates and at least three racial groups). In all of this, our main goal is to assess whether
using iterative EI or simultaneous R×C approaches change the conclusions social scientists can make
from the data.

Finally, some have gone even further in arguing that EI is ill-equipped to handle complex datasets
with multiple candidates and multiple racial groups, and that only R×C can produce reliable results
(Katz, 2014). In explaining the theoretical reasons why EI cannot accurately process such elections
Katz argues “adding additional groups and vote choices to King’s (1997) EI is not straightforward,”
and also adds “given the estimation uncertainty, it may not be possible to infer which candidate is
preferred by members of the group.” The argument against EI in multiple racial group, or especially
multiple candidate elections is that EI takes an iterative approach pitting candidate A versus all others
who are not candidate A. If the election features four candidates (A, B, C, D) critics state that you
cannot accurately estimate vote choice quantities if you compare the vote for candidate A against the
combined vote for B, C, D. The iterative approach would then move on to estimate the vote share for
candidate B against the combined vote for A, C, D and so on, so that four separate equations are run.
Katz (2014) claims that EI biases the findings in favor of bloc-voting stating “this jerry rigged approach
to dealing with more than two vote choices stacks the deck in favor of finding statistical evidence for
racially polarized.” Given these debates, our package allows scholars to quite easily make side-by-side
comparisons and evaluate these competing claims.

While important advancements have been made in ecological inference techniques by King (1997)
and Rosen et al. (2001) there is no consistency in which technique is used and how results are presented.
What’s more, legal experts and social scientists often argue during voting rights lawsuits that one
technique is superior to the other, or that their results are more accurate. There is no question that both
social scientists and legal experts would greatly benefit from a standardized software package that
presents both ecological inference results (EI and R×C) simultaneously and metrics to compare each
set of results. Thus, eiCompare was designed to compare the most commonly used methods today,
EI and R×C, but also incorporates Goodman methods. The package lets analysts seamlessly assess
whether EI and R×C estimates are similar (see King (1997) and Rosen et al. (2001) for a methodological
description of the techniques). It incorporates functions from ei (King and Roberts, 2013) and eiPack
(Lau et al., 2012) into a new package that relatively quickly compares ecological inference estimates
across the two routines.

The package includes several functions that ultimately produce tables of results from the different
ecological inference methods. Thus, in the case of racially polarized voting, analysts can quickly
assess whether different racial groups preferred different candidates, according to the EI, R×C, and
Goodman approaches. The eiCompare package wraps the ei() procedure (King and Roberts, 2012)
into a generalized function, has a variety of table-making functions, and a plotting method that
graphically depicts the difference between estimates for the two main EI methods (EI and R×C).
Below, we use a working example of a voter precinct dataset in Corona, CA. To use the package, the
process is simple: 1) Load the package, the appropriate data, run the EI generalized function, and
create an EI table of results, 2) Run the R×C function (from eiPack) and create a table of results, 3)
Run the Goodman regression generalized function if the user chooses, 4) Combine the results of all the
algorithms together into a comparison table, and 5) Plot the comparison results. Before we conclude,
we also compare EI and R×C findings against exit poll data from a 2005 Los Angeles mayoral run-off
election. The rest of the paper follows this aforementioned outline.
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EI generalize

To begin, we install (install.packages("eiCompare")) and load the eiCompare package (library(eiCompare))
from the CRAN repository. First, we load the aggregate-level dataset (data(cor_06)) into R, in this
case a precinct (voting district) dataset from a 2006 election in the city of Corona, CA. Table 1 below
displays the first five rows and column headers of the dataset. This dataset includes all the necessary
variables to run the code in the eiCompare package. The first column is "precinct", which essentially
operates as a unique identifier. The second column, "totvote", is the total number of votes cast within
the precinct. Columns three and four are the two racial groups of whom we seek to determine their
mean voting preference. The rest of the columns are the percent of the total vote for each respective
candidate.

precinct totvote pct_latino pct_other pct_breitenbucher pct_montanez pct_spiegel pct_skipworth
1 22000 942 0.21 0.79 0.20 0.21 0.29 0.30
2 22002 1240 0.16 0.84 0.22 0.22 0.29 0.27
3 22003 1060 0.21 0.79 0.22 0.22 0.30 0.26
4 22004 1280 0.45 0.55 0.18 0.27 0.30 0.24
5 22008 1172 0.31 0.69 0.23 0.25 0.30 0.22
6 22012 1093 0.21 0.79 0.20 0.24 0.32 0.24

Table 1: Precinct dataset of Corona, CA, used for ecological inference. Each row is a precinct, the
dataset must have a total column, racial/ethnic percentages of people living in the precinct, and vote
percent for each candidate.

We are interested in how the four candidates (Breitenbucher, Montanez, Spiegel, Skipworth)
performed with Latino voters and non-Latino voters (mostly non-Hispanic white), so we can asses
whether racially polarized voting exists. The process begins with the ei_est_gen() function, which is
a generalized version of the ei() function from the ei package. Instead of having to estimate EI results
for each candidate and each racial group separately, ei_est_gen() automates this process.

The ei_est_gen() function takes a vector of candidate names, a character vector of tilde-prefixed
racial group names, the name of the column representing the total number of people in the jurisdiction
(e.g., registered voters, ballots cast), the "data.frame" object holding the data, and the table names
used to display the results. The function also has four optional arguments, rho, sample, tomog, and
density_plot. The former two can be used to adjust the parameters of the ei() algorithm. These are
especially useful when the initial run does not compile or warnings are produced. The latter two plot
out tomography and density plots, respectively, into the working directory but are set to off by default.
These plots can be used to assess the stability – and thus veracity – of the EI procedure (see King and
Roberts (2012) and King (1997) for details). Finally, the ... argument passes additional arguments
onto the ei() function from the ei package.

One final note, given its iterative nature, the ei_est_gen() function can take a while to execute.
This typically depends on features unique to the dataset, including the number of candidates and
groups, the amount of racial/ethnic segregation within the city/area, as well as the number of precincts.
This particular example does not take especially long, executing in about a minute on a standard
Macbook Pro.

# LOAD DATA
data(cor_06)
# SET SEED FOR REPRODUCIBILITY
set.seed(294271)
# CREATE CHARACTER VECTORS REQUIRED FOR FUNCTION
cands <- c("pct_breitenbucher","pct_montanez","pct_spiegel", "pct_skipworth")
race_group2 <- c("~ pct_latino", "~ pct_other")
table_names <- c("EI: Pct Lat", "EI: Pct Other")
# RUN EI GENERALIZED FUNCTION
results <- ei_est_gen(cand_vector=cands, race_group = race_group2,

total = "totvote", data = cor_06, table_names = table_names)
# LOOK AT TABLE OF RESULTS
results

The call to the results object produces a table of results indicating the mean estimated voting
preferences for Latinos and non-Latinos within the city of Corona (see Table 2). The results strongly
suggest the presence of racially polarized voting, as Latinos prefer Montanez as their number one
choice, whereas non-Latinos do not.
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Candidate EI: Pct Lat EI: Pct Other
pct_breitenbucher 19.68 21.12
se 0.75 0.13
pct_montanez 35.95 20.13
se 0.03 0.08
pct_spiegel 28.43 31.01
se 0.57 0.23
pct_skipworth 18.64 26.84
se 0.71 0.23
Total 102.69 99.10

Table 2: EI mean estimates for Latino and Non-Latino candidate vote preferences in Corona, 2006

EI: R×C

The R×C builds off of code from the eiPack package, where eiCompare simply takes the former’s
results and puts them into a similar "data.frame"/"table" object similar to the results from the
ei_est_gen() function. First, the user follows the code from the eiPack package (here we use the
ei.reg.bayes() function), and creates a formula object including all candidates and all groups. The
user must ensure that the percentages on both signs of the ∼ symbol add to 1. Thus, the initial table()
code is a simple data check to ensure that this rule is followed. The R×C model is then run using
the ei.reg.bayes() model. Users can read the eiPack documentation to familiarize themselves with
this procedure. Depending on the nature of one’s data, the R×C code can take a while to run. Finally,
the results are passed onto the bayes_table_make() function, along with a vector of candidate names,
and a vector of table names, similar to what was passed to ei_est_gen().

# CHECK TO MAKE SURE DATA SUMS TO 1 FOR EACH PRECINCT
with(cor_06, pct_latino + pct_other)
with(cor_06, pct_breitenbucher + pct_montanez + pct_spiegel + pct_skipworth)
# SET SEED FOR REPRODUCIBILITY
set.seed(124271)
#RxC GENERATE FORMULA
form <- formula(cbind(pct_breitenbucher,pct_montanez,

pct_spiegel, pct_skipworth) ~ cbind(pct_latino, pct_other))
# RUN EI:RxC MODEL
ei_bayes <- ei.reg.bayes(form, data = cor_06, sample = 10000, truncate = TRUE)
# CREATE TABLE NAMES
table_names <- c("RxC: Pct Lat", "RxC: Pct Other")

# TABLE CREATION
ei_bayes_res <- bayes_table_make(ei_bayes, cand_vector = cands, table_names = table_names)
# LOOK AT TABLE OF RESULTS
ei_bayes_res

Candidate RxC: Pct Lat RxC: Pct Other
pct_breitenbucher 18.22 21.58
se 1.62 0.53
pct_montanez 34.96 20.44
se 1.72 0.56
pct_spiegel 28.24 31.05
se 1.08 0.35
pct_skipworth 18.61 26.91
se 1.73 0.56
Total 100.03 99.99

Table 3: EI:R×C mean estimates for Latino and Non-Latino candidate vote preferences in Corona,
2006

The results are presented in Table 3, and look remarkably similar to those presented in Table 2.
Indeed, the exact same conclusions would be drawn from an analysis of both tables: Latinos prefer
Montanez as their first choice and non-latinos prefer Spiegel as their top choice.
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Goodman generalize

While many users will skip over the Goodman regression when conducting ecological inference, given
the documented issues with the method (Shively, 1969; King, 1997), eiCompare nevertheless has a
Goodman regression generalized function, similar to the ei_est_gen() function. This function takes a
character vector of candidate names, a character vector of racial groups, the name of the column, a
data object, and a character vector of table names. Because Goodman is simply a linear regression, the
execution is very fast.

table_names <- c("Good: Pct Lat", "Good: Pct Other")
good <- goodman_generalize(cands, race_group2, "totvote", cor_06, table_names)
good

Table 4 shows the Goodman regression results. In this particular case, these results align quite
closely with results from the two EI models. All three approaches essentially tell us the same thing.

Candidate Good: Pct Lat Good: Pct Other
pct_breitenbucher 17.51 20.34
se 3.18 3.74
pct_montanez 35.00 20.48
se 3.41 4.01
pct_spiegel 28.52 31.61
se 2.16 2.54
pct_skipworth 18.97 27.57
se 3.45 4.05
Total 100.00 100.00

Table 4: Goodman regression estimates for Latino and Non-Latino candidate vote preferences in
Corona, 2006

Combining results

The last two sections address the comparison component of the package. The function, ei_rc_good_table(),
takes the objects from the EI, R×C, and Goodman regression, and puts them into a "data.frame""table"
object. To simplify comparison, the table adds an EI-R×C column differential for each racial group.
This format lets the user quickly assess how the EI and R×C methods stack up against one another.
The function takes the following arguments: EI results object (e.g., results), an R×C object (e.g.,
ei_bayes_res), and a character vector groups (e.g., c("Latino","Other")) argument. The good argu-
ment for the Goodman regression is set to NULL, and the include_good argument defaults to FALSE. If
the user wants to include a Goodman regression in the comparison of results they need to change the
latter to TRUE and specify the the good argument as the object name from the goodman_generalize()
call.

Candidate EI: Pct Lat RxC: Pct Lat EI_Diff EI: Pct Other RxC: Pct Other EI_Diff
pct_breitenbucher 19.68 18.22 -1.46 21.12 21.58 0.46
se 0.75 1.62 0.13 0.53
pct_montanez 35.95 34.96 -0.99 20.13 20.44 0.31
se 0.03 1.72 0.08 0.56
pct_spiegel 28.43 28.24 -0.19 31.01 31.05 0.04
se 0.57 1.08 0.23 0.35
pct_skipworth 18.64 18.61 -0.02 26.84 26.91 0.07
se 0.71 1.73 0.23 0.56
Total 102.69 100.03 -2.66 99.10 99.99 0.88

Table 5: EI and R×C comparisons for Latino and Non-Latino candidate vote preferences in Corona,
2006

The results of ei_rc_good_table() is a new class "ei_compare", which includes a "data.frame"
and groups character vector. This output is ultimately passed to plot().

ei_rc_combine <- ei_rc_good_table(results, ei_bayes_res,
groups = c("Latino", "Other"))

ei_rc_combine@data
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ei_rc_g_combine <- ei_rc_good_table(results, ei_bayes_res, good,
groups = c("Latino", "Other"), include_good = TRUE)

ei_rc_g_combine

Table 5 displays the output of a call to the ei_rc_good_table() function for the first line of code
above. The user must include the code @data onto the outputted table name to extract just the table.
This table basically summarizes the results of the EI and R×C analyses. Clearly, very little difference
emerges between the two methods in this particular instance.

Plotting results

Finally, users can plot the results of the EI, and R×C comparison to more visually determine whether
the two methods are similar. Plotting is simple, as plot methods have been developed for the
"ei_compare" class. The code below produces the plot depicted in Figure 1.

# PLOT COMPARISON -- adjust the axes labels slightly
plot(ei_rc_combine, cex.axis = .5, cex.lab = .7)
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Figure 1: Comparison of EI and R×C methods for Corona 06 precinct data
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Comparing ecological and individual-level data

One possible question remains, whether or not ecological estimates line up with individual level
estimates. Many studies have pointed out that ecological fallacy and aggregation bias can produce
ecological inference results that are highly questionable. In this section we implement the eiCompare
package for a mayoral election in a multiethnic setting in which an individual-level exit poll survey
was also administered. The eiCompare package provides EI and R×C results for the 2005 Los Angeles
mayoral runoff election between Antonio Villaraigosa and James Hahn, and we also add results for
the Los Angeles Times exit poll. Results are displayed in Table 6.

EI: AV EI: JH RxC: AV RxC: JH Exit: AV Exit: JH MOE
White 45 54 48 52 50 50 +/- 2.5
Black 58 40 50 50 48 52 +/-4.2

Latino 82 17 81 19 84 16 +/-3.6
Asian 48 51 47 53 44 56 +/-6.1

Table 6: Percent voting for Antonio Villaraigosa (AV) and James Hahn (JH) by ethnic group. Compari-
son between EI, R×C, and exit poll methods, Los Angeles mayoral election runoff, May 2005. Exit poll
taken from Los Angeles Times.

The results presented in Table 6 demonstrate that not only do EI and R×C produce remarkably
consistent results, but they very closely match the individual level estimates for the Los Angeles Times.
The EI R×C estimates are all with the confidence range of the individual level data reported by the
exit poll.

Summary

eiCompare is a new package that builds on the work of King and others that attempts to address the
ecological inference problem of making individual-level assessments based on aggregate-level data.
As we have reviewed above, there is considerable debate in the sciences about the utility and accuracy
of ecological techniques. Despite these well documented questions, ecological inference is widely
used in political science and will continue to grow in importance when the constitutionally mandated
redistricting in 2021 occurs. The redistricting cycle will bring with it extensive academic, legislative,
and legal research using ecological inference to assess racial voting patterns across all 50 states.

While this new package does not develop a new method, per se, it improves analysts’ ability to
quickly compare different commonly used EI algorithms to assess the veracity of the methods and also
produce tables of their findings. While R×C has been touted as the method necessary in situations
with multiple groups and multiple candidates, the results do not always demonstrate face validity.
In these scenarios – and others – analysts may want to incorporate original EI methods so they can
compare how the two approaches stack up. Ultimately, this approach provides a needed assessment
between two commonly used methods in voting behavior research.
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rnrfa: An R package to Retrieve, Filter
and Visualize Data from the UK National
River Flow Archive
by Claudia Vitolo, Matthew Fry and Wouter Buytaert

Abstract The UK National River Flow Archive (NRFA) stores several types of hydrological data and
metadata: daily river flow and catchment rainfall time series, gauging station and catchment informa-
tion. Data are served through the NRFA web services via experimental RESTful APIs. Obtaining NRFA
data can be unwieldy due to complexities in handling HTTP GET requests and parsing responses in
JSON and XML formats. The rnrfa package provides a set of functions to programmatically access,
filter, and visualize NRFA data using simple R syntax. This paper describes the structure of the rnrfa
package, including examples using the main functions gdf() and cmr() for flow and rainfall data,
respectively. Visualization examples are also provided with a shiny web application and functions
provided in the package. Although this package is regional specific, the general framework and
structure could be applied to similar databases.

Introduction

The increasing volume of environmental data available online poses non-trivial challenges for efficient
storage, access and share of this information (Vitolo et al., 2015). An integrated and consistent use of
data is achieved by extracting data directly from web services and processing them on-the-fly. This
improves the flexibility of modelling applications allowing a more seamless workflow integration,
and also avoids the need to store local copies that would need to be periodically updated, therefore
reducing maintenance issues in the system.

In the hydrology domain, various data providers are adopting web services and Application
Programming Interfaces (APIs) to allow users a fast and efficient access to public datasets, such as the
National River Flow Archive (NRFA) hosted by the Centre for Ecology and Hydrology in the United
Kingdom. The NRFA is a primary source of information for hydrologists, modellers, researchers and
practitioners operating on UK catchments. It stores several types of hydrological data and metadata:
gauged daily flow and catchment mean rainfall time series as well as gauging station and catchment
information. Data are typically served through the NRFA web services via a web-based graphical
user interface (http://nrfa.ceh.ac.uk/) and, more recently, via experimental RESTful APIs. REST
(Representational State Transfer) is an architectural style that uses the HyperText Transfer Protocol
(HTTP) to perform operations such as accessing resources on the web via a Uniform Resource Identifier
(URI). In simple terms, the location of a NRFA dataset on the web is a unique string of characters that
follows a pattern. This string is assembled using the rules described in the API documentation and
can be tested by typing the string in the address bar of a web browser.

This paper describes the technical implementation of the rnrfa package (Vitolo, 2016). The rnrfa
package takes the complexities related to web development and data transfer away from the user,
providing a set of functions to programmatically access, filter, and visualize NRFA data using simple
R syntax. Although the NRFA APIs are still in their infancy and prone to further consolidation and
refinement, the experimental implementation of the rnrfa package can be used to test these data
services and provide useful feedback to the provider.

The package is in line with a Virtual Observatory approach (Beven et al., 2012) as it can be used as
back-end tool to link data and models in a seamless fashion. It complements R’s growing functionality
in environmental web technologies (Leeper et al., 2016), amongst which are rnoaa (Chamberlain,
2015, interface to NOAA climate data API), waterData (Ryberg and Vecchia, 2014, interface to the U.S.
Geological Survey daily hydrologic data services) and RNCEP (Kemp et al., 2011, interface to NASA
NCEP weather data).

This paper first presents the NRFA archive, its web services and related APIs. We then illustrate
the design and implementation of the rnrfa package, and how it can be used in synergy with existing
R packages such as shiny (Chang et al., 2016), leaflet (Cheng and Xie, 2015), rmarkdown(Allaire
et al., 2016), DT (Xie, 2015a), dplyr (Wickham and Francois, 2015) and parallel to generate interactive
mapping applications, dynamic reports and big data analytics experiments.
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NRFA web services

The NRFA web services allow to view, filter and download data via a graphical user interface. This
approach has a number of limitations. Firstly, time series of daily streamflow discharge and catchment
rainfall can only be downloaded one at the time. Therefore, for large scale analyses, downloading
datasets for hundreds of sites becomes a rather tedious task. Secondly, metadata can only be visualised
(in table format) but not be downloaded. Metadata analyses may require copying and pasting large
amounts of information introducing potential errors. Due to the above limitations, the NRFA is also
accessible programmatically via a set of RESTful APIs. The API documentation is not in the public
domain yet, therefore it must be considered experimental and subject to changes.

Station metadata (called catalogue hereafter) is available in JavaScript Object Notation (JSON)
format. The catalogue contains a total of 18 attributes, which are listed in Table 1. The NRFA also
provides time series of Gauged Daily Flow (gdf, in m3/s) and Catchment Mean Rainfall (cmr, in
mm per month), formatted in an XML variant called WaterML2 (http://www.opengeospatial.org/
standards/waterml). WaterML2 is an Open Geospatial Consortium (OGC) standard used worldwide
to rigorously and unambiguously describe hydrological time series. It builds upon existing standards
such as Observations & Measurements (Cox et al., 2011) for the metadata section and GML (Open
Geospatial Consortium, 2013) for the observed time series. It is typically defined as a “Collection” and
made up of five sections:

• The metadata section contains the document metadata (e.g., the generation date, the version,
the generation system and the list of profiles utilised).

• The temporalExtent contains a description of the time period for which there are recordings
(with a time stamp of start and end date).

• The localDictionary is a gml-based dictionary which stores the identifier (e.g., United Kingdom
National River Flow Archive) and two dictionary entries: The first one describes the type of
measurement (e.g., Gauged Daily Flow) with details on the variable measured (e.g., flow), units
(e.g., m3/s) and frequency of measurements (e.g., daily); the second entry describes the gauging
site with details on ratings and their limitations.

• The samplingFeatureMember describes the monitoring point (e.g., vertical datum and time
zone) and the station owner.

• The observationMember contains a set of nodes which schema is borrowed from the OGC
Observation and Measurement standard. This section contains a gml-based identifier (station
identification number) and additional information, such as ObservationMetadata (contact info,
identification info, etc.), phenomenonTime (beginning and end of recordings), ObservationPro-
cess (process type and reference). Finally the sub-section result contains the measurements in a
gml-based format.

The nested structure of the WaterML2 files makes parsing of long time series and related metadata
relatively slow and complex. In order to improve access to NRFA’s public data and metadata, we
implemented a set of functions to assemble HTTP GET requests and parse XML/JSON responses
from/to the catalogue and WaterML2 services using simple R syntax.

Package availability and dependencies

The rnrfa package is a package designed to extend basic R functionalities to interact with the NRFA.
It builds on the following packages that should be installed beforehand: cowplot (Wilke, 2016),
plyr (Wickham, 2011), httr (Wickham, 2016a), xml2 (Wickham and Hester, 2016), stringr (Wickham,
2016b), xts (Ryan and Ulrich, 2014), rjson (Couture-Beil, 2014), ggmap (Kahle and Wickham, 2013),
ggplot2 (Wickham, 2009), rgdal (Bivand et al., 2016), sp (Pebesma and Bivand, 2005; Bivand et al.,
2013) and parallel1. The stable version of the package is available on the Comprehensive R Archive
Network repository (CRAN; https://CRAN.R-project.org/package=rnrfa/) and can be downloaded
and installed by typing the following command in the R console:

> install.packages("rnrfa")

The development version is available from a GitHub repository (https://github.com/cvitolo/rnrfa)
and can be installed via devtools (Wickham and Chang, 2016), using the following commands:

> install.packages("devtools")
> devtools::install_github("cvitolo/rnrfa")

1In order to run the examples in this manuscript, the following packages should also be installed: shiny, leaflet,
DT, ggrepel (Slowikowski, 2016), knitr (Xie, 2016, 2015b, 2014) and rmarkdown.
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Colum Column Description
number name

1 id Station identification number.
2 name Name of the station.
3 location Area in which the station is located.
4 river Name of the river catchment.
5 stationDescription General station description, containing information on

weirs, ratings, etc.
6 catchmentDescription Information on topography, geology, land cover, etc.
7 hydrometricArea UK hydrometric area identification number, the related

map is based on the Surface Water Survey designed
in the 1930s and available at http://www.ceh.ac.uk/
data/nrfa/hydrometry/has.html.

8 operator UK measuring authorities, the related map is available
at http://www.ceh.ac.uk/data/nrfa/hydrometry/
mas.html.

9 haName Name of the hydrometric area.
10 gridReference The Ordnance Survey grid reference number.
11 stationType Type of station (e.g., flume, weir, etc.).
12 catchmentArea Catchment area in Km2.
13 gdfStart First year of monitoring.
14 gdfEnd Last year of monitoring.
15 farText Information on the regime (e.g., natural, regulated, etc.).
16 categories Various tags (e.g., FEH_POOLING, FEH_QMED, HI-

FLOWS_INCLUDED).
17 altitude Altitude measured in metres above Ordnance Datum or,

in Northern Ireland, Malin Head.
18 sensitivity Sensitivity index calculated as the percentage change in

flow associated with a 10 mm increase in stage at the
Q95 flow.

Table 1: Gauging station metadata, more detail is provided at http://www.ceh.ac.uk/data/nrfa/
data/gauging_stations.html.

The package is loaded using the following command:

> library(rnrfa)

The package is fully documented and additional sample applications are available on the dedicated
web page http://cvitolo.github.io/rnrfa/. Feedbacks and contributions can be submitted through
the GitHub issue tracking system (https://github.com/cvitolo/rnrfa/issues) and pull requests
(https://github.com/cvitolo/rnrfa/pulls), respectively.

Design and implementation

In many hydrological analyses the importance of efficient data retrieval is often underestimated with
the consequence of allocating more time to this first task then to the data processing and analysis of
results. The rnrfa packages provides re-usable functions, based on a consistent syntax, that attempts
to simplify data retrieval and makes it scalable to multiple data requests.

Catalogue metadata

The full list of gauging stations is in JSON format and can be retrieved using the function catalogue(),
used with no inputs.

> allStations <- catalogue()

This converts the information into a data frame with one row per station and 18 columns (Table 1
contains a detailed description of the attributes). The reader should note that the server response
includes the Ordnance Survey (OS) grid reference, not latitude and longitude coordinates. The
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catalogue() function converts the grid reference to latitude and longitude, then joins the coordinates
to the data frame containing the list of stations.

The conversion is handled by the osg_parse() function which can transform OS grid references
of different lengths to: a) latitude and longitude, in the WSGS842 coordinate system; b) easting and
northing, in the BNG3 coordinate system. This function accepts two arguments: gridRef, a character
string containing the OS grid reference, and CoordSystem, that can be either "WGS84" (default) or "BNG".
The code below shows how to convert an example OS grid reference, "NC581062", to the two types of
coordinates.

> # Option a: from OS grid reference to WGS84
> osg_parse(gridRef = "NC581062", CoordSystem = "WGS84")

> # Option b: from OS grid reference to BNG
> osg_parse(gridRef = "NC581062", CoordSystem = "BNG")

Filtering stations

The catalogue() function provides 5 optional arguments that can be used to filter metadata based on
various criteria. The argument all, for instance, is TRUE by default and forces all the metadata to be
retrieved. If all is set to FALSE, the resulting data frame contains only the following columns: id, name,
river, catchmentArea, lat, lon. This can be used, for instance, to print a concise version of the table
to the screen.

At the time of writing, 1539 stations are monitored within NRFA. Very rarely the full set of
stations is used. Depending on the aim of the analysis, stations might need to be filtered based on a
geographical bounding box, length of the recording period, thresholds, etc. Below are some examples
showing how to filter stations based on one or multiple criteria.

Filtering based on a geographical bounding box. Stations can be filtered based on a bounding box
thanks to the NRFA web service and a specific functionality of its API. A bounding box should be
defined as a list of four named elements (minimum longitude, minimum latitude, maximum longitude
and maximum latitude) and passed as input to the catalogue() function using the argument bbox.
The following example shows how to define a bounding box for the Plynlimon area (mid-Wales,
United Kingdom), filter the related stations and map their location using the ggmap package. In
Figure 1 the location of each station is shown as a red dot, while the name of the station is used as a
label.

> # Define a bounding box.
> bbox <- list(lonMin = -3.76, latMin = 52.43, lonMax = -3.67, latMax = 52.48)
> # Filter stations based on bounding box.
> someStations <- catalogue(bbox)
> # Map
> library(ggmap)
> library(ggrepel)
> m <- get_map(location = as.numeric(bbox), maptype = 'terrain')
> ggmap(m) + geom_point(data = someStations, aes(x = lon, y = lat),
+ col = "red", size = 3, alpha = 0.5) +
> geom_text_repel(data = someStations, aes(x = lon, y = lat, label = name),
+ size = 3, col = "red")

Filtering based on recording period. To calculate summary statistics, it is often useful to select only
stations with at least x number of recording years. In the example below, we select only gauging
stations with a minimum of 100 years of recordings, using the argument minRec. The result is a list of
three stations, two of which are located in South England and one in Wales.

> # Select stations with more than 100 years of recordings.
> s100Y <- catalogue(minRec = 100, all = FALSE)
> # Print s100Y to the screen.
> s100Y

id name river catchmentArea lat lon

2World Geodetic System 1984, EPSG code: 4326.
3British/Irish National Grid, EPSG codes: 27700/29902.
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Figure 1: Map of Plynlimon area with NRFA selected gauging stations (red dots).

636 38001 Lee at Feildes Weir Lee 1036 51.76334 0.01277874
665 39001 Thames at Kingston Thames 9948 51.41501 -0.30887638
1130 55032 Elan at Caban Dam Elan 184 52.26907 -3.57239164

Filtering based on metadata entries. It is also possible to filter stations based on a number of
metadata entries using the arguments: columnName (name of the column to filter) and columnValue
(string or numeric value to match or compare). The function catalogue() looks for records containing
the string columnValue in the column columnName. If columnName refers to a character field, the search
is case sensitive and can be used to filter the stations based on the river name, catchment name, location
and so on. In the example below we filter 34 stations falling within the Wye (Hereford) hydrometric
area:

> stationsWye <- catalogue(columnName = "haName", columnValue = "Wye (Hereford)")

If columnName refers to a numeric field and columnValue contains special characters such as >, <, ≥
and ≤ followed by a number, stations are filtered using a threshold. For instance, there are 7 stations
with drainage area smaller than 1 Km2, which can be filtered using the command below:

> stations1KM <- catalogue(columnName = "catchmentArea", columnValue = "<1")

Combined filtering

Filtering capabilities can also be combined. In the example below we filter all the stations within the
above defined bounding box that belong to the Wye (Hereford) hydrometric area and have a minimum
of 50 years of recordings. The only station that satisfies all the criteria is the Wye at Cefn Brwyn.

> catalogue(bbox, columnName = "haName", columnValue = "Wye (Hereford)",
+ minRec = 50, all = FALSE)

id name river catchmentArea lat lon
6 55008 Wye at Cefn Brwyn Wye 10.6 52.43958 -3.724108

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 107

WaterML2 services

Once a certain number of stations are selected, time series of gauged daily flow and catchment mean
rainfall data can be obtained by requesting access to the NRFA WaterML2 service using the functions
gdf() and cmr(), respectively. These functions assemble and send data requests to the WaterML2
service, parse responses and convert them to a time series object (of class from package xts). They use
the same syntax and require the following arguments:

• id, the station identification numbers. This can either be a single string or a character vector.

• metadata, a logical variable. If set to FALSE (default), metadata are not parsed. If it is set to
TRUE, the result for a single station is a list of two named elements: data (time series) and meta
(metadata).

When gdf() and cmr() are executed, the assembled data request is printed to the screen. This
is very useful if the user wants to understand how the API works behind the scenes, but not when
incorporating the code in automated scripts. Although the NRFA API documentation is not public yet,
the patterns are simple and can be easily extrapolated running a few examples.

Get gauged daily flow

Raw flow data are typically measured in m3/s, at 15-minute intervals. Data are first quality controlled,
then the daily mean is calculated and stored in the NRFA public database. These data are typically
collected for the monitoring of river networks but can also be used to calibrate hydrological models
and build forecasting systems. The example below shows how to get the daily flow for the Tanllwyth
at Tanllwyth Flume and the assembled data request (printed to the console).

> flow <- gdf(id = "54090")

http://nrfaapps.ceh.ac.uk/nrfa/xml/waterml2?db=nrfa_public&stn=54090&dt=gdf

The result is a time series (of class “xts”). No station-specific information is stored, because the
argument metadata is set to FALSE by default. An “xts” object can be easily converted into a data frame
object and exported to a text file (e.g., csv) for use in other modelling software, as demonstrated in the
example below.

> # Get gauged daily flow for station 54090.
> flow <- gdf(id = "54090")
> # Convert to csv.
> write.csv(as.data.frame(flow), "flowDF.csv", quote = FALSE)

Get catchment mean rainfall

The main forcing input in any hydrological model is rainfall. In many cases it is important to calculate
the average rainfall over a catchment, this is achieved by using geospatial interpolation methods
or, more simplistically, calculating the weighted average using a number of weather stations within
the catchment and/or in the nearby areas. The NRFA provides pre-calculated monthly catchment
mean rainfall, measured in mm, for a number of UK catchments. As the calculation is consistent
across catchments, these datasets are a valuable resource to ensure reproducibility of hydrological
analyses. Similar to gdf(), the function cmr() allows users to retrieve the catchment mean rainfall
data by specifying the argument id. The example below shows that, if we set the argument metadata
to TRUE, we can use metadata to automatically populate title and labels in a plot, as in Figure 2. The
reader should note that rain$data is an “xts” object, therefore plot(rain$data) uses the S3 method
for “xts”.

> rain <- cmr(id = "54090", metadata = TRUE)
> data <- rain$data
> meta <- rain$meta
> plot(data, main = paste(meta$variable, "-", meta$stationName),
+ xlab = "", ylab = meta$units)

Station information consists of: the station name, location in latitude and longitude coordinates,
the variable measured (i.e., rainfall), units (i.e., mm), aggregation function (i.e., accumulation), time
step of recording (i.e., month) and time zone.

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 108

Figure 2: Monthly catchment mean rainfall for the Tanllwyth at Tanllwyth Flume catchment.

Figure 3: Monthly catchment mean rainfall and daily flow for the Tanllwyth at Tanllwyth Flume
catchment.

Convert and compare flow and rainfall for a given catchment

In the NRFA, flow and rainfall are stored in m3/s and mm/month, respectively, therefore they are not
directly comparable. However, given the catchment area (from the metadata catalogue), the flow can
be easily converted into mm/day and then compared to the rainfall, for instance by plotting them on
the same time line. Although the operations are trivial, it is a relatively lengthy procedure that can be
simplified using the function plot_rain_flow(). This function uses the station id as input to request
metadata as well as flow and rainfall time series for the given catchment, converts the flow from its
original units to mm/day and then plots the converted flow and rainfall on two different y-axes so
that they can be visually compared, as shown in Figure 3.

> plot_rain_flow(id = "54090")

Multiple sites

The package rnrfa is particularly useful for large scale data acquisition. If the id argument is a vector,
the functions gdf() and cmr() can be used to sequentially fetch time series (meta)data from multiple
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Test min lq mean median uq max neval

a 17.598647 17.95601 18.419300 18.355630 19.037328 19.16267 10
b 3.564888 8.91512 8.411546 9.504491 9.666812 10.58291 10

Table 2: Benchmark tests comparing retrieval time for sequential (a) and simultaneous calls to
the server (b). Results show time in seconds, obtained by averaging over 10 repetitions using the
microbenchmark package (Mersmann, 2015).

sites. As the server can handle multiple requests, concurrent calls can be sent simultaneously using the
parallel package. In order to send concurrent calls, a cluster object, created by the parallel package,
should be passed to gdf() or cmr() using the argument cl. Below is a simple benchmark test in which
we compare the processing time for collating flow time series data for the 9 stations in the Plynlimon
area sending: a) 1 data request at the time and b) 9 simultaneous requests. The operations are repeated
10 times. The results are averaged and summarised in Table 2, which shows that (a) takes about 18
seconds, while (b) about 8 seconds. The reader should note that the time for retrieval does not reduce
proportionally with the number of simultaneous requests because there is a limit in the number of
calls the server can handle, which depends on the infrastructure and the number of incoming requests
from other users.

> library(microbenchmark)
> library(parallel)
> cl <- makeCluster(getOption("cl.cores", 9))
> microbenchmark(# sequential requests
+ gdf(id = someStations$id, metadata = FALSE, cl = NULL),
+ # concurrent requests
+ gdf(id = someStations$id, metadata = FALSE, cl = cl), times = 10)
> stopCluster(cl)

Some applications

The rnrfa package is an ideal building block for many scientific workflows but can also work as
back-end tool for a number of web applications, from interactive mapping and dynamic reports that
improve reproducibility of analysis, to the integration into more sophisticated big data analytics
experiments. This can be achieved thanks to the intrinsic interoperability of the R environment. Some
example applications are given in the following sections.

Dynamic mapping and reporting application

Here we demonstrate the generation of a dynamic mapping and reporting application to summarise
stations’ metadata and map the spatial distribution of the monitoring network for each operator.
The user can select the name of the operator using a drop-down menu and the dynamic document
automatically renders an interactive map showing a marker for each station in the network on top
of a background map based on OpenStreetMap. Users can zoom in/out and navigate to a specific
area. Finally, the user can click on a marker to read name and station identification number from a
pop-up window. Figure 4 shows a screenshot of the web application. At the bottom of the page is a
dynamic table that summarises the metadata associated with the selected stations in the network. The
table can be filtered using an interactive search box. The textual content also updates automatically
the reporting of the number of stations within the selected network. The web application depends on
the following packages: rmarkdown, knitr, shiny, leaflet and DT and its source code is available as
gist at the following URL: https://gist.github.com/cvitolo/d5d46b5e8f3676013857.

Geoprocessing based on user-defined areas

The NRFA web site does not allow users to execute geoprocessing tasks, for instance, to intersect the list
of stations with user-defined or externally sourced areas. In some cases it might be of interest to explore
the distribution of stations based on high-level administrative boundaries such as regions/countries.
This is useful to understand whether there are differences in the reliability of the networks that can be
explained by the different management approaches. Eurostat established a hierarchy of three levels of
administrative divisions within each European country, called Nomenclature of Territorial Units for
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Figure 4: RNRFA application for dynamic reporting and mapping.

Statistics (NUTS)4. At the first level, UK is divided into 12 regions: Northern Ireland, Scotland, Wales
and 9 English sub-regions (East Midlands, East of England, Greater London, North East, North West,
South East, South West, West Midlands, Yorkshire and the Humber). Calculating, for instance, the
number/density of stations by region is not possible using the NRFA web site because the stations’
metadata does not contain information on this type of administrative region and users cannot specify
their own. However, these simple geoprocessing operations become relatively trivial using the rnrfa
package.

The procedure consists of five steps:

• retrieve the list of NRFA stations (using the catalogue() function);

• load the NUTS (level 1) shapefile and reproject the polygon to the geographic coordinate system
WGS84 (using the rgdal and sp packages);

• transform the NRFA list of stations into a SpatialPointDataFrame ;

• spatially overlay NRFA stations (points) and NUTS1 regions (polygons);

• add a new column, containing the name of the NUTS1 regions, to the list of NRFA stations.

The updated list of stations is included, as sample dataset, in the data folder of this package, under
the name stationSummary. Table 3 summarises the number of stations per region, the area of each
region (in Km2), and the density of stations (number of stations/Km2). The metadata can now be easily
summarised by NUTS1 region, for instance the boxplot in Figure 5 shows the distribution of years of
recording. Northern Ireland seem to have the youngest network, with recording years in the range
[16, 44]. Only three regions have stations with more than 100 years of recordings: East of England,
London and Wales. Scotland and Northern Ireland have the lowest density of gauging stations, while
Greater London the highest. The code to reproduce this example is available as gist at the following
URL: https://gist.github.com/cvitolo/aa3bc6f08a8394f653442e276568f9b3.

4The Nomenclature of Territorial Units for Statistics (NUTS), is a standard for referencing the administrative
divisions of European countries. There are three levels of NUTS and a shapefile is available from the Eurostat web
site (http://ec.europa.eu/eurostat/cache/GISCO/geodatafiles/NUTS_2013_01M_SH.zip).
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NUTS_ID Region # stations Area (Km2) Density

1 UKC North East (England) 54.00 8601.77 0.006
2 UKD North West (England) 137.00 14170.34 0.010
3 UKE Yorkshire and the Humber 102.00 15418.70 0.007
4 UKF East Midlands 101.00 15637.21 0.006
5 UKG West Midlands 103.00 12999.97 0.008
6 UKH East of England 149.00 19159.91 0.008
7 UKI Greater London 36.00 1575.97 0.023
8 UKJ South East (England) 169.00 19105.67 0.009
9 UKK South West (England) 176.00 23912.24 0.007

10 UKL Wales 132.00 20817.37 0.006
11 UKM Scotland 324.00 78984.40 0.004
12 UKN Northern Ireland 56.00 14175.46 0.004

Table 3: Summary of number of stations per NUTS1 region, area of each region and density of stations.

Figure 5: Distribution of recording years for NRFA stations by NUTS1 regions.

Big data analytics experiment

In the last few years, the UK MetOffice has reported “unusual warmth and lack of rainfall during
March and April, particularly over England and Wales”5. Dry springs can affect water resources,
because river flow below average translates, for instance, in reduced availability of drinking water. In
this section we present a big data analytics experiment in which we try to understand if there is any
evidence, in the NRFA data, that springs in the UK are becoming drier, both in terms of rainfall and
river flow. This type of experiment consists of retrieving all the available rainfall and flow time series
and find out, for each station, whether there is an increasing/decreasing trend.

Using the NRFA web site, the comparison of time series is only feasible for a limited number of
sites. Time series should be first downloaded as text files and then compared manually. The biggest
advantage of using the rnrfa package, instead, is that multiple downloads can be automated using a
single line of code.

In this experiment we used a cluster of 64 cores to download and analyse all the time series
available from the NRFA stations with more than 10 years of recordings. The time series were first

5http://www.metoffice.gov.uk/climate/uk/interesting/2011_spring
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Figure 6: Map and boxplot of rainfall trend during spring.

downloaded, then summarised in terms of annual averages over the spring period. Seasonal averages
can be calculated using the function seasonal_averages(), which takes as input a time series and
a period of interest (e.g., spring) and calculates the related annual average. Using a very simplistic
approach, a linear model was fit to the annual averages and the slope coefficient was used to estimate
the trend. Negative slopes correspond to decreasing flow/rainfall, while positive slopes correspond to
an increase of flow/rainfall over time. Once the fitted slope is calculated for each station, the results
can be plotted using the function plot_trend(). Figures 6 and 7 show only the statistically significant
trends for rainfall and flow respectively. Each figure is divided into two plots: Plot A shows the spatial
distribution of negative trends with red dots and positive trends with blue dots; plot B shows the
variability of trends over NUTS1 regions. In the latter plot, outliers are removed by showing only
values between the 5th and 95th quantiles. From a meteorological perspective (Figure 6), there are
only positive statistically significant trends and Scotland shows the largest. In terms of hydrological
responses (Figure 7), trends are more subtle as the interquartile range is concentrated around zero.
The most extreme negative trends were found in Scotland and North East England.

The entire run took about 31 minutes, the code to reproduce this example is available as gist at
the following URL: https://gist.github.com/cvitolo/612eb2ae9b47fe8f11a1ed8d06e3b434. There
are certainly more rigorous methodologies to estimate seasonal trends. This experiment was just an
attempt to demonstrate that the rnrfa can simplify large scale data acquisition tasks.

A note on package usage

The cranlogs (Csardi, 2015) package provides an API interface to download logs from the RStudio
CRAN mirror which contains download counts from unique IP addresses and can be used as a proxy
to estimate the volume of package users. By September 2016, the rnrfa package had been downloaded
from CRAN 6372 times, just from this mirror, following a trend very similar to the waterData package
(see Figure 8). Because the RStudio mirror is located in the US, it is expected that the download counts
from UK mirrors could be even higher. We derive that this package is of interest for a large community
of users, which gives us scope for future developments.

Summary

This article describes the rnrfa package for interacting programmatically with the UK National River
Flow Archive. It allows to access web resources such as the catalogue of stations’ metadata and the
WaterML2 service to retrieve gauged daily flow and (monthly) catchment mean rainfall. The package
provides functions to query the catalogue based on various criteria (e.g., geographical bounding
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Figure 7: Map and boxplot of flow trend during spring.

Figure 8: Comparison between rnrfa and waterData download counts from independent IP addresses.

box, minimum number of recording years, river catchment/hydrometric area/operators amongst
many other options), retrieve and visualise flow and rainfall time series, convert coordinates and
flow measurements, and plot basic seasonal trends grouped on user defined regions. Some of these
capabilities are strongly linked to the particular content of the NRFA database and are not directly
transferable/applicable to other data sources. However the gdf() and cmr() functions could be
re-used, with minimal changes, to get data/metadata from other providers adopting the WaterML2
standard.

The package is a convenient standalone application that allows NRFA users a more efficient
access to the public database, compared to the web interface, e.g., the possibility to efficiently retrieve
data from multiple sites. The rnrfa package can also be used as back-end tool for web applications.
Amongst the existing R interfaces to data APIs, rnrfa follows a logic similar to waterData: Sites are
first identified through a catalogue, streamflow data are imported via the station identification number,
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then data are visualised and/or used in analyses. However, our package does not implement any
function for data cleanup, because NRFA data are highly quality controlled. Users can currently
take advantage of other packages such as xts to calculate aggregate variables, evd (Stephenson, 2002)
for the analysis of extreme events, outliers (Komsta, 2011) to identify possible outliers and sp and
spacetime (Pebesma, 2012; Bivand et al., 2013) for more advanced spatio-temporal processing.

In the future, we plan to implement additional processing functions (e.g., to compare gdf with
flow in bankfull condition which is highly important for flood frequency estimations). Further
developments are also scheduled on the NRFA side to include Web Feature Service (WFS), Sensor
Observation Services (SOS) and updates to WaterML2 OGC standards. WFS layers can already be
loaded and manipulated using rgdal (Bivand et al., 2016), while sos4R (Nüst et al., 2011) can be used
as client for SOS.
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Qtools: A Collection of Models and Tools
for Quantile Inference
by Marco Geraci

Abstract Quantiles play a fundamental role in statistics. The quantile function defines the distribution
of a random variable and, thus, provides a way to describe the data that is specular but equivalent
to that given by the corresponding cumulative distribution function. There are many advantages in
working with quantiles, starting from their properties. The renewed interest in their usage seen in the
last years is due to the theoretical, methodological, and software contributions that have broadened
their applicability. This paper presents the R package Qtools, a collection of utilities for unconditional
and conditional quantiles.

Introduction

Quantiles have a long history in applied statistics, especially the median. The analysis of astronomical
data by Galileo Galilei in 1632 (Hald, 2003, p.149) and geodic measurements by Roger Boscovich in
1757 (Koenker, 2005, p.2) are presumably the earliest examples of application of the least absolute
deviation (L1) estimator in its, respectively, unconditional and conditional forms. The theoretical
studies on quantiles of continuous random variables started to appear in the statistical literature of
the 20th century. In the case of discrete data, studies have somewhat lagged behind most probably
because of the analytical drawbacks surrounding the discontinuities that characterise discrete quantile
functions. Some forms of approximation to continuity have been recently proposed to study the
large sample behavior of quantile estimators. For example, Ma et al. (2011) have demonstrated the
asymptotic normality of unconditional sample quantiles based on the definition of the mid-distribution
function (Parzen, 2004). Machado and Santos Silva (2005) proposed inferential approaches to the
estimation of conditional quantiles for counts based on data jittering.

Functions implementing quantile methods can be found in common statistical software. A con-
siderable number of R packages that provide such functions are available on the Comprehensive
R Archive Network (CRAN). The base package stats contains basic functions to estimate sample
quantiles or compute quantiles of common parametric distributions. The quantreg package (Koenker,
2013) is arguably a benchmark for distribution-free estimation of linear quantile regression models, as
well as the base for other packages which make use of linear programming (LP) algorithms (Koenker
and D’Orey, 1987; Koenker and Park, 1996). Other contributions to the modelling of conditional
quantile functions include packages for Bayesian regression, e.g. bayesQR (Benoit et al., 2014) and
BSquare (Smith and Reich, 2013), and the lqmm package (Geraci and Bottai, 2014; Geraci, 2014) for
random-effects regression.

The focus of this paper is on the R package Qtools, a collection of models and tools for quantile
inference. These include commands for

• quantile-based analysis of the location, scale and shape of a distribution;

• transformation-based quantile regression;

• goodness of fit and restricted quantile regression;

• quantile regression for discrete data;

• quantile-based multiple imputation.

The emphasis will be put on the first two topics listed above as they represent the main contribution
of the package, while a short description of the other topics is given for completeness.

Unconditional quantiles

Definition and estimation of quantiles

Let Y be a random variable with cumulative distribution function (CDF) FY and support SY . The CDF
calculated at y ∈ SY returns the probability FY(y) ≡ p = Pr(Y ≤ y). The quantile function (QF) is
defined as Q(p) = infy{FY(y) ≥ p}, for 0 < p < 1. (Some authors consider 0 ≤ p ≤ 1. For practical
purposes, it is simpler to exclude the endpoints 0 and 1.) When FY is continuous and strictly monotone
(hence, fY(y) ≡ F′Y(y) > 0 for all y ∈ SY), the quantile function is simply the inverse of FY . In other
cases, the quantile p is defined, by convention, as the smallest value y such that FY(y) is at least p.
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Quantiles enjoy a number of properties. An excellent overview is given by Gilchrist (2000). In
particular, the Q-tranformation rule (Gilchrist, 2000) or equivariance to monotone transformations
states that if h(·) is a non-decreasing function on R, then Qh(Y)(p) = h {QY(p)}. Hence QY(p) =

h−1
{

Qh(Y)(p)
}

. Note that this property does not generally hold for the expected value.

Sample quantiles for a random variable Y can be calculated in a number of ways, depending on
how they are defined (Hyndman and Fan, 1996). For example, the function quantile() in the base
package stats provides nine different sample quantile estimators, which are based on the sample order
statistics or the inverse of the empirical CDF. These estimators are distribution-free as they do not
depend on any parametric assumption about F (or Q).

Let Y1, Y2, . . . , Yn be a sample of n independent and identically distributed (iid) observations
from the population FY . Let ξp denote the pth population quantile and ξ̂p the corresponding sample
quantile. (The subscripts will be dropped occasionally to ease notation, e.g. F will be used in place of
FY or ξ in place of ξp.) In the continuous case, it is well known that

√
n
(
ξ̂p − ξp

)
is approximately

normal with mean zero and variance

ω2 =
p(1− p)
{ fY(ξp)}2 . (1)

A more general result is obtained when the Yi’s, i = 1, . . . , n, are independent but not identically
distributed (nid ). The density evaluated at the pth quantile, f (ξp), is called the density-quantile
function by Parzen (1979). Its reciprocal, s(p) ≡ 1/ f (ξp), is called the sparsity function (Tukey, 1965)
or quantile-density function (Parzen, 1979).

As mentioned previously, the discontinuities of FY when Y is discrete represent a mathematical
inconvenience. Ma et al. (2011) derived the asymptotic distribution of the sample mid-quantiles, that
is, the sample quantiles based on the mid-distribution function (mid-CDF). The latter is defined as
Fmid

Y (y) = FY(y)− 0.5pY(y), where pY(y) denotes the probability mass function (Parzen, 2004). In

particular, they showed that, as n becomes large,
√

n
(

ξ̂mid
p − ξp

)
is approximately normal with mean

0. Under iid assumptions, the expression for the sampling variance is similar to that in (1); see Ma
et al. (2011) for details.

The package Qtools provides the functions midecdf() and midquantile(), which return objects
of class "midecdf" or "midquantile", respectively, containing: the values or the probabilities at which
mid-cumulative probabilities or mid-quantiles are calculated (x), the mid-cumulative probabilities or
the mid-quantiles (y), and the functions that linearly interpolate those coordinates (fn). An example is
shown below using data simulated from a Poisson distribution.

> library("Qtools")
> set.seed(467)
> y <- rpois(1000, 4)
> pmid <- midecdf(y)
> xmid <- midquantile(y, probs = pmid$y)
> pmid

Empirical mid-ECDF
Call:
midecdf(x = y)

> xmid

Empirical mid-ECDF
Call:
midquantile(x = y, probs = pmid$y)

A confidence interval for sample mid-quantiles can be obtained using confint.midquantile().
This function is applied to the output of midquantile() and returns an object of class "data.frame"
containing sample mid-quantiles, lower and upper bounds of the confidence intervals of a given level
(95% by default), along with standard errors as an attribute named stderr. This is shown below using
the sample y generated in the previous example.

> xmid <- midquantile(y, probs = 1:3/4)
> x <- confint(xmid, level = 0.95)
> x

midquantile lower upper
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Figure 1: Cumulative distribution (a) and quantile (b) functions for simulated Poisson data. The
ordinary cumulative distribution function (CDF) and quantile function (QF) are represented by step-
functions (grey lines), with the convention that, at the point of discontinuity or jump , the function
takes its value corresponding to the ordinate of the filled circle as opposed to that of the hollow circle.
The mid-CDF and mid-QF are represented by filled squares, while the piecewise linear functions
(dashed lines) connecting the squares represent continuous versions of, respectively, the ordinary CDF
and QF.

25% 2.540000 2.416462 2.663538
50% 3.822816 3.693724 3.951907
75% 5.254902 5.072858 5.436946

> attr(x, "stderr")
[1] 0.06295447 0.06578432 0.09276875

Finally, a plot method is available for both midecdf() and midquantile() objects. An illustration
is given in Figure 1. The mid-distribution and mid-quantile functions are discrete and their values
are marked by filled squares. The piecewise linear functions connecting the filled squares represent
continuous versions of the CDF and QF which interpolate between the steps of, respectively, the
ordinary CDF and quantile functions. Note that the argument jumps is a logical value indicating
whether values at jumps should be marked.

> par(mfrow = c(1,2))
> plot(pmid, xlab = "y", ylab = "CDF", jumps = TRUE)
> points(pmid$x, pmid$y, pch = 15)
> plot(xmid, xlab = "p", ylab = "Quantile", jumps = TRUE)
> points(xmid$x, xmid$y, pch = 15)

LSS - Location, scale and shape of a distribution

Since the cumulative distribution and quantile functions are two sides of the same coin, the location,
scale, and shape (LSS) of a distribution can be examined using one or the other. Well-known quantile-
based measures of location and scale are the median and inter-quartile range (IQR), respectively.
Similarly, there are also a number of quantile-based measures for skewness and kurtosis (Groeneveld
and Meeden, 1984; Groeneveld, 1998; Jones et al., 2011).

Define the central portion of the distribution as that delimited by the quantiles Q(p) and Q(1− p),
0 < p < 0.5, and define the tail portion as that lying outside these quantiles. Let IPR(p) = Q(1− p)−
Q(p) denote the inter-quantile range at level p. Building on the results by Horn (1983) and Ruppert
(1987), Staudte (2014) considered the following identity:

IPR(p)
IPR(r)︸ ︷︷ ︸
kurtosis

=
IPR(p)
IPR(q)︸ ︷︷ ︸

tail-weight

· IPR(q)
IPR(r)︸ ︷︷ ︸

peakedness

, (2)
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where 0 < p < q < r < 0.5. These quantile-based measures of shape are sign, location and scale
invariant. As compared to moment-based indices, they are also more robust to outliers and easier to
interpret (Groeneveld, 1998; Jones et al., 2011).

It is easy to verify that a quantile function can be written as

Q(p) = Q(0.5)︸ ︷︷ ︸
median

+
1
2

IPR(0.25)︸ ︷︷ ︸
IQR

· IPR(p)
IPR(0.25)︸ ︷︷ ︸
shape index

·
(

Q(p) + Q(1− p)− 2Q(0.5)
IPR(p)︸ ︷︷ ︸

skewness index

−1
)

. (3)

This identity establishes a relationship between the location (median), scale (IQR) and shape of a
distribution. (This identity appears in Gilchrist (2000, p.74) with an error of sign. See also Benjamini
and Krieger (1996, eq.1).) The quantity IPR(p)/IPR(0.25) in (3) is loosely defined as the shape index
(Gilchrist, 2000, p.72), although it can be seen as the tail-weight measure given in (2) when p < 0.25.
For symmetric distributions, the contribution of the skewness index vanishes. Note that the skewness
index not only is location and scale invariant, but is also bounded between −1 and 1 (as opposed to
the Pearson’s third standardised moment which can be infinite or even undefined). When this index is
near the bounds −1 or 1, then Q(1− p) ≈ Q(0.5) or Q(p) ≈ Q(0.5), respectively.

The function qlss() provides a quantile-based LSS summary with the indices defined in (3) of
either a theoretical or an empirical distribution. It returns an object of class "qlss", which is a list
containing measures of location (median), scale (IQR and IPR), and shape (skewness and shape
indices) for each of the probabilities specified in the argument probs (by default, probs = 0.1). The
quantile-based LSS summary of the normal distribution is given in the example below for p = 0.1.
The argument fun can take any quantile function whose probability argument is named ‘p’ (this is the
case for many standard quantile functions in R, e.g. qt(), qchisq(), qf(), etc. ).

> qlss(fun = "qnorm", probs = 0.1)

call:
qlss.default(fun = "qnorm", probs = 0.1)

Unconditional Quantile-Based Location, Scale, and Shape

** Location **
Median
[1] 0
** Scale **
Inter-quartile range (IQR)
[1] 1.34898
Inter-quantile range (IPR)

0.1
2.563103
** Shape **
Skewness index
0.1
0

Shape index
0.1

1.900031

An empirical example is now illustrated using the faithful data set, which contains 272 observa-
tions on waiting time (minutes) between eruptions and the duration (minutes) of the eruption for the
Old Faithful geyser in Yellowstone National Park, Wyoming, USA. Summary statistics are given in
Table 1.

Minimum Q1 Q2 Q3 Maximum

Waiting time 43.0 58.0 76.0 82.0 96.0
Duration 1.6 2.2 4.0 4.5 5.1

Table 1: Minimum, maximum and three quartiles (Q1, Q2, Q3) for waiting time and duration in the
Old Faithful Geyser data set.

Suppose the interest is in describing the distribution of waiting times. The density is plotted in
Figure 2, along with the mid-quantile function. The distribution is bimodal with peaks at around 54
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Figure 2: Estimated density (a) and empirical mid-quantile (b) functions of waiting time between
eruptions in the Old Faithful Geyser data set.

and 80 minutes. Note that the arguments of the base function quantile(), including the argument
type, can be passed on to qlss().

> y <- faithful$waiting
> par(mfrow = c(1,2))
> plot(density(y))
> plot(midquantile(y, probs = p), jumps = FALSE)
> qlss(y, probs = c(0.05, 0.1, 0.25), type = 7)

call:
qlss.numeric(x = y, probs = c(0.05, 0.1, 0.25), type = 7)

Unconditional Quantile-Based Location, Scale, and Shape

** Location **
Median
[1] 76
** Scale **
Inter-quartile range (IQR)
[1] 24
Inter-quantile range (IPR)
0.05 0.1 0.25
41 35 24

** Shape **
Skewness index

0.05 0.1 0.25
-0.3658537 -0.4285714 -0.5000000
Shape index

0.05 0.1 0.25
1.708333 1.458333 1.000000

At p = 0.1, the skewness index is approximately −0.43, which denotes a rather strong left
asymmetry. As for the shape index, which is equal to 1.46, one could say that the tails of this
distribution weigh less than those of a normal distribution (1.90), though of course a comparison
between unimodal and bimodal distributions is not meaningful.
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Conditional quantiles

Linear models

In general, the pth linear QR model is of the form

QY|X(p) = x>β(p) (4)

where x is a k-dimensional vector of covariates (including 1 as first element) and β(p) = [β0(p), β1(p),
. . . , βk−1(p)]> is a vector of coefficients. The slopes β j(p), j = 1, . . . , k− 1, have the usual interpretation
of partial derivatives. For example, in case of the simple model QY|X(p) = β0(p)+ β1(p)x, one obtains

∂QY|X(p)
∂x

= β1(p).

If x is a dummy variable, then β1(p) = QY|X=1(p)−QY|X=0(p), i.e. the so-called quantile treatment
effect (Doksum, 1974; Lehmann, 1975; Koenker and Xiao, 2002). Estimation can be carried out using
LP algorithms which, given a sample (xi, yi), i = 1, . . . , n, solve

min
b∈Rk

n

∑
i=1

κp

(
yi − x>i b

)
,

where κp(u) = u(p − I(u < 0)), 0 < p < 1, is the check loss function. Large-n approximation
of standard errors can be obtained from the sampling distribution of the linear quantile estimators
(Koenker and Bassett, 1978).
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Figure 3: (a) Waiting times between eruptions against durations of eruptions (dashed vertical line
drawn at 3 minutes) in the Old Faithful Geyser data set. (b) Mid-CDF of waiting time by duration of
eruption (solid line, shorter than 3 minutes; dashed line, longer than 3 minutes).

Waiting times between eruptions are plotted against the durations of the eruptions in Figure 3.
Two clusters of observations can be defined for durations below and above 3 minutes (see also
Azzalini and Bowman, 1990). The distribution shows a strong bimodality as already illustrated in
Figure 2. A dummy variable for durations equal to or longer than 3 minutes is created to define
the two distributions and included as covariate X in a model as the one specified in (4). The latter
is then fitted to the Old Faithful Geyser data using the function rq() in the package quantreg for
p ∈ {0.1, 0.25, 0.5, 0.75, 0.9}.

> require("quantreg")
> y <- faithful$waiting
> x <- as.numeric(faithful$eruptions >= 3)
> fit <- rq(formula = y ~ x, tau = c(0.1, 0.25, 0.5, 0.75, 0.9))
> fit

Call:
rq(formula = y ~ x, tau = c(0.1, 0.25, 0.5, 0.75, 0.9))
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Coefficients:
tau= 0.10 tau= 0.25 tau= 0.50 tau= 0.75 tau= 0.90

(Intercept) 47 50 54 59 63
x 26 26 26 25 25

Degrees of freedom: 272 total; 270 residual

From the output above, it is quite evident that the distribution of waiting times is shifted by an
approximately constant amount at all considered values of p. The location-shift hypothesis can be
tested by using the Khmaladze test. The null hypothesis is that two distributions, say F0 and F1, differ
by a pure location shift (Koenker and Xiao, 2002), that is

H0 : F−1
1 (p) = F−1

0 (p) + δ0,

where δ0 is the quantile treatment effect, constant over p. The location–scale-shift specification of the
test considers

H0 : F−1
1 (p) = δ1F−1

0 (p) + δ0.

The alternative hypothesis is that the model is more complex than the one specified in the null
hypothesis. The Khmaladze test is implemented in quantreg (see ?quantreg::KhmaladzeTest for
further details). The critical values of the test and corresponding significance levels (Koenker, 2005)
are not readily available in the same package. These have been hardcoded in the Qtools function
KhmaladzeFormat() which can be applied to "KhmaladzeTest" objects. For the Old Faithful Geyser
data, the result of the test is not statistically significant at the 10% level.

> kt <- KhmaladzeTest(formula = y ~ x, taus = seq(.05, .95, by = .01),
> KhmaladzeFormat(kt, 0.05)

Khmaladze test for the location-shift hypothesis
Joint test is not significant at 10% level
Test(s) for individual slopes:
not significant at 10% level

Goodness of fit

Distribution-free quantile regression does not require introducing an assumption on the functional
form of the error distribution (Koenker and Bassett, 1978), but only weaker quantile restrictions (Powell,
1994). Comparatively, the linear specification of the conditional quantile function in Equation 4 is a
much stronger assumption and thus plays an important role for inferential purposes.

The problem of assessing the goodness of fit (GOF) is rather neglected in applications of QR.
Although some approaches to GOF have been proposed (Zheng, 1998; Koenker and Machado, 1999;
He and Zhu, 2003; Khmaladze and Koul, 2004), there is currently a shortage of software code available
to users. The function GOFTest() implements a test based on the cusum process of the gradient vector
(He and Zhu, 2003). Briefly, the test statistic is given by the largest eigenvalue of

n−1
n

∑
i

Rn(xi)R
>
n (xi)

where Rn(t) = n−1/2 ∑n
j=1 ψp(rj)xj I(xj ≤ t) is the residual cusum (RC) process and ψp(rj) is the

derivative of the loss function κp calculated for residual rj = yj − x>j β(p). The sampling distribution
of this test statistic is non-normal (He and Zhu, 2003) and a resampling approach is used to obtain the
p-value under the null hypothesis.

An example is provided further below using the New York Air Quality data set, which contains
111 complete observations on daily mean ozone (parts per billion – ppb) and solar radiation (Langleys
– Ly). For simplicity, wind speed and maximum daily temperature, also included in the data set, are
not analysed here.

Suppose that the model of interest is

Qozone(p) = β0(p) + β1(p) · Solar.R. (5)

Three conditional quantiles (p ∈ {0.1, 0.5, 0.9}) are estimated and plotted using the following code:

> dd <- airquality[complete.cases(airquality), ]
> dd <- dd[order(dd$Solar.R), ]
> fit.rq <- rq(Ozone ~ Solar.R, tau = c(.1, .5, .9), data = dd)
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> x <- seq(min(dd$Solar.R), max(dd$Solar.R), length = 200)
> yhat <- predict(fit.rq, newdata = data.frame(Solar.R = x))
> plot(Ozone ~ Solar.R, data = dd)
> apply(yhat, 2, function(y, x) lines(x, y), x = x)
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Figure 4: Predicted 10th (solid line), 50th (dashed line), and 90th (dot-dashed line) centiles of ozone
conditional on solar radiation in the New York Air Quality data set.

As a function of solar radiation, the median of the ozone daily averages increases by 0.09 ppb for
each Ly increase in solar radiation (Figure 4). The 90th centile of conditional ozone shows a steeper
slope at 0.39 ppb/Ly, about nine times larger than the slope of the conditional 10th centile at 0.04
ppb/Ly.

The RC test applied to the the object fit.rq provides evidence of lack of fit for all quantiles
considered, particularly for p = 0.1 and p = 0.5. Therefore the straight-line model in Equation 5 for
these three conditional quantiles does not seem to be appropriate. The New York Air Quality data
set will be analysed again in the next section, where a transformation-based approach to nonlinear
modelling is discussed.

> gof.rq <- GOFTest(fit.rq, alpha = 0.05, B = 1000, seed = 987)
> gof.rq

Goodness-of-fit test for quantile regression based on the cusum process
Quantile 0.1: Test statistic = 0.1057; p-value = 0.001
Quantile 0.5: Test statistic = 0.2191; p-value = 0
Quantile 0.9: Test statistic = 0.0457; p-value = 0.018

Transformation models

Complex dynamics may result in nonlinear effects in the relationship between the covariates and the
response variable. For instance, in kinesiology, pharmacokinetics, and enzyme kinetics, the study of
the dynamics of an agent in a system involves the estimation of nonlinear models; phenomena like
human growth, certain disease mechanisms and the effects of harmful environmental substances such
as lead and mercury, may show strong nonlinearities over time. In this section, the linear model is
abandoned in favor of a more general model of the type

QY|X(p) = g
{

x>β(p)
}

, (6)

for some real-valued function g. If g is nonlinear, the alternative approaches to conditional quantile
modelling are

Nonlinear parametric models which may provide substantive interpretability, possibly parsimo-
nious (in general more parsimonious than polynomials), and valid beyond the observed range
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of the data. A nonlinear model depends on either prior knowledge of the phenomenon or the
introduction of new, strong theory to explain the observed relationship with potential predictive
power. Estimation may present challenges;

Polynomial models and smoothing splines falling under the label of nonparametric regression , in
which the complexity of the model is approximated by a sequence of locally linear polynomials
(a naïve global polynomial trend can be considered to be a special case). A nonparametric model
need not introducing strong assumptions about the relationship and is essentially data-driven.
Estimation is based on linear approximations and, typically, requires the introduction of a
penalty term to control the degree of smoothing; and

Transformation models a flexible, parsimonious family of parametric transformations is applied to
the response seeking to obtain approximate linearity on the transformed scale. The data provide
information about the “best” transformation among a family of transformations. Estimation is
facilitated by the application of methods for linear models.

The focus of this section is on the third approach. More specifically the functions available in Qtools
refer to the methods for transformation-based QR models developed by Powell (1991), Chamberlain
(1994), Mu and He (2007), Dehbi et al. (2016) and Geraci and Jones (2015). Examples of approaches to
nonlinear QR based on parametric models or splines can be found in Koenker and Park (1996) and Yu
and Jones (1998), respectively.

The goal of the transformation-based QR is to fit the model

Qh(Y;λp)(p) = x>β(p). (7)

The assumption is that the transformation h is the inverse of g, h
(
Y; λp

)
≡ g−1(Y), so that the pth

quantile function of the transformed response variable is linear. (In practice, it is satisfactory to achieve
approximate linearity.) The parameter λp is a low-dimensional parameter that gives some flexibility to
the shape of the transformation and is estimated from the data. In general, the interest is on predicting
QY|X(p) and estimating the effects of the covariates on QY|X(p). If h is a non-decreasing function on
R (as is the case for all transformations considered here), predictions can be easily obtained from (7)
by virtue of the equivariance property of quantiles,

QY|X(p) = h−1
{

x>β(p); λp

}
. (8)

The marginal effect of the jth covariate xj can be obtained by differentiating the quantile function
QY|X(p) with respect to xj. This can be written as the derivative of the composition Q ◦ η, i.e.

∂Q(p)
∂xj

=
∂Q(p)
∂η(p)

· ∂η(p)
∂xj

, (9)

η(p) = x>β(p). Once the estimates β̂(p) and λ̂p are obtained, these can be plugged in Equations 8
and 9.

The package Qtools provides several transformation families, namely the Box–Cox (Box and
Cox, 1964), Aranda-Ordaz (Aranda-Ordaz, 1981), and Jones (Jones, 2007; Geraci and Jones, 2015)
transformations. A distinction between these families is made in terms of the support of the response
variable to which the transformation is applied and the number of transformation parameters. The Box–
Cox model is a one-parameter family of transformations which applies to singly bounded variables,
y > 0. The Aranda-Ordaz symmetric and asymmetric transformations too have one parameter and
are used when responses are bounded on the unit interval, 0 < y < 1 (doubly bounded). Geraci and
Jones (2015) developed two families of transformations which can be applied to either singly or doubly
bounded responses:

Proposal I transformations with one parameter and assuming both symmetric and asymmetric
forms;

Proposal II transformations with two parameters, with one parameter modelling the symmetry (or
lack thereof) of the transformation.

Originally, Box and Cox (1964) proposed using power transformations to address lack of linearity,
homoscedasticity and normality of the residuals in mean regression modelling. Sakia (1992, p.175)
reported that “seldom does this transformation fulfil the basic assumptions of linearity, normality and
homoscedasticity simultaneously as originally suggested by Box & Cox (1964). The Box-Cox transfor-
mation has found more practical utility in the empirical determination of functional relationships in a
variety of fields, especially in econometrics”.

Indeed, the practical utility of power transformations has been long recognised in QR modelling
(Powell, 1991; Buchinsky, 1995; Chamberlain, 1994; Mu and He, 2007). Model 7 is the Box–Cox QR
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model if

hBC
(
Y; λp

)
=


Yλp − 1

λp
if λp 6= 0

log Y if λp = 0.

(10)

Note that when λp 6= 0, the range of this transformation is not R but the singly bounded interval(
−1/λp, ∞

)
. This implies that the inversion in (8) is defined only for λpx>β(p) + 1 > 0.

The symmetric Aranda-Ordaz transformation is given by

hAOs
(
Y; λp

)
=


2

λp

Yλp − (1−Y)λp

Yλp + (1−Y)λp
if λp 6= 0,

log
(

Y
1−Y

)
if λp = 0.

(11)

(The symmetry here is that hAOs
(
θ; λp

)
= −hAOs

(
1− θ; λp

)
= hAOs

(
θ;−λp

)
.) There is a range prob-

lem with this transformation too since, for all λp 6= 0, the range of hAOs is not R, but
(
−2/|λp|, 2/|λp|

)
.

The asymmetric Aranda-Ordaz transformation is given by

hAOa
(
Y; λp

)
=


log

{
(1−Y)−λp − 1

λp

}
if λp 6= 0,

log {− log (1−Y)} if λp = 0.

(12)

For λp = 0, this is equivalent to the complementary log-log. The asymmetric Aranda-Ordaz trans-
formation does have range R. Note that hAOa(Y; 1) = log(Y/(1− Y)), i.e. the transformation is
symmetric.

To overcome range problems, which give rise to computational difficulties, Geraci and Jones (2015)
proposed to use instead one-parameter transformations with range R. Proposal I is written in terms of
the variable (say) W, where

hI
(
W; λp

)
=


1

2λp

(
Wλp − 1

Wλp

)
if λp 6= 0

log W if λp = 0,

(13)

which takes on four forms depending on the relationship of W to Y, as described in Table 2. For each
of domains (0, ∞) and (0, 1), there are symmetric and asymmetric forms.

Support of Y Symmetric Asymmetric

(0, ∞) W = Y W = log(1 + Y)
hIs
(
Y; λp

)
hIa
(
Y; λp

)
(0, 1) W = Y/(1−Y) W = − log(1−Y)

hIs
(
Y; λp

)
hIa
(
Y; λp

)
Table 2: Choices of W and corresponding notation for transformations based on (13).

Since the transformation in (13) has range R for all λp, it admits an explicit inverse transformation.
In addition, in the case of a single covariate, every estimated quantile that results will be monotone
increasing, decreasing or constant, although different estimated quantiles can have different shapes
from this collection. Geraci and Jones (2015) also proposed a transformation that unifies the symmetric
and asymmetric versions of hI into a single two-parameter transformation, namely

hI I
(
W; λp

)
= hI

(
Wδp ; λp

)
, (14)
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where hI is given in (13) and

Wδp = hBC
(
1 + W; δp

)
=


(1 + W)δp − 1

δp
if δp > 0

log(1 + W) if δp = 0,

with W = Y, if Y > 0, and W = Y/(1− Y), if Y ∈ (0, 1). The additional parameter δp controls the
asymmetry: symmetric forms of hI correspond to δp = 1 while asymmetric forms of hI to δp = 0.

All transformation models discussed above can be fitted using a two-stage (TS) estimator (Cham-
berlain, 1994; Buchinsky, 1995) whereby β(p) is estimated conditionally on a fine grid of values for
the transformation parameter(s). Alternatively, point estimation can be approached using the RC
process (Mu and He, 2007), which is akin to the process that leads to the RC test introduced in the pre-
vious section. The RC estimator avoids the troublesome inversion of the Box-Cox and Aranda-Ordaz
transformations, but it is computationally more intensive than the TS estimator.

There are several methods for interval estimation, including those based on large-n approximations
and the ubiquitous bootstrap. Both the TS and RC estimators have an asymptotic normal distribution.
The large-sample properties of the TS estimator for monotonic quantile regression models have been
studied by Powell (1991) (see also Chamberlain, 1994; Machado and Mata, 2000). Under regularity
conditions, it can be shown that the TS estimator is unbiased and will converge to a normal distribution
with a sandwich-type limiting covariance matrix which is easy to calculate. In contrast, the form of
the covariance matrix of the sampling distribution for the RC estimator is rather complicated and its
estimation requires resampling (Mu and He, 2007). Finally, if the transformation parameter is assumed
to be known, then conditional inference is apposite. In this case, the estimation procedures simplify to
those for standard quantile regression problems.

In Qtools, model fitting for one-parameter transformation models can be carried out using the
function tsrq(). The formula argument specifies the model for the linear predictor as in (7), while
the argument tsf provides the desired transformation h as specified in Equations 10-13: "bc" for
the Box–Cox model, "ao" for Aranda-Ordaz families, and "mcjI" for proposal I transformations.
Additional arguments in the function tsrq() include

symmetry a logical flag to specify the symmetric or asymmetric version of "ao" and "mcjI";

dbounded a logical flag to specify whether the response variable is doubly bounded (default is strictly
positive, i.e. singly bounded);

lambda a numerical vector to define the grid of values for estimating λp; and conditional, a logical
flag indicating whether λp is assumed to be known (in which case the argument lambda provides
such known value).

There are other functions to fit transformation models. The function rcrq() fits one-parameter
transformation models using the RC estimator. The functions tsrq2() and nlrq2() are specific to
Geraci and Jones’s (2015) Proposal II transformations. The former employs a two-way grid search while
the latter is based on Nelder-Mead optimization as implemented in optim(). Simulation studies in
Geraci and Jones (2015) suggest that, although computationally slower, a two grid search is numerically
more stable than the derivative-free approach.

A summary of the basic differences between all fitting functions is given in Table 3. The table also
shows the available methods in summary.rqt() to estimate standard errors and confidence intervals for
the model’s parameters. Unconditional inference is carried out jointly on β(p) and the transformation
parameter by means of bootstrap using the package boot (Canty and Ripley, 2014; Davison and
Hinkley, 1997). Large-n approximations (Powell, 1991; Chamberlain, 1994; Machado and Mata, 2000)
are also available for the one-parameter TS estimator under iid or nid assumptions.

When summary.rqt() is executed with the argument conditional = TRUE, confidence interval
estimation for βp is performed with one of the several methods developed for linear quantile re-
gression estimators (Koenker, 2005, p.110) (see options "rank", "iid", "nid", "ker", and "boot" in
quantreg::summary.rq()).

In the New York Air Quality data example, a linear model was found unsuitable to describe
the relationship between ozone and solar radiation. At closer inspection, Figure 4 reveals that the
conditional distribution of ozone may in fact be nonlinearly associated with solar radiation, at least for
some of the conditional quantiles. The model

QhIs{ozone}(p) = β0(p) + β1(p) · Solar.R, (15)

where hIs denotes the symmetric version of (13) for a singly bounded response variable, is fitted for
the quantiles p ∈ {0.1, 0.5, 0.9} using the following code:
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Function Transformation Estimation Standard errors or confidence intervals
name parameters Unconditional Conditional

tsrq() 1 Two-stage "iid", "nid",
"boot"

All types

rcrq() 1 Residual cusum
process "boot" All types

tsrq2() 2 Two-stage "boot" All types
nlrq2() 2 Nelder–Mead "boot" –

Table 3: Transformation-based quantile regression in package Qtools. All types consists of options
"rank", "iid", "nid", "ker", and "boot" as provided by function summary() in package quantreg.

> system.time(fit.rqt <- tsrq(Ozone ~ Solar.R, data = dd, tsf = "mcjI",
+ symm = TRUE, dbounded = FALSE, lambda = seq(1, 3, by = 0.005),
+ conditional = FALSE, tau = c(.1, .5, .9)))

user system elapsed
0.5 0.0 0.5

> fit.rqt

call:
tsrq(formula = Ozone ~ Solar.R, data = dd, tsf = "mcjI", symm = TRUE,

dbounded = FALSE, lambda = seq(1, 3, by = 0.005), conditional = FALSE,
tau = c(0.1, 0.5, 0.9))

Proposal I symmetric transformation (singly bounded response)

Optimal transformation parameter:
tau = 0.1 tau = 0.5 tau = 0.9

2.210 2.475 1.500

Coefficients linear model (transformed scale):
tau = 0.1 tau = 0.5 tau = 0.9

(Intercept) -3.3357578 -48.737341 16.557327
Solar.R 0.4169697 6.092168 1.443407

Degrees of freedom: 111 total; 109 residual

The TS estimator makes a search for λp over the grid 1.000, 1.005, . . . , 2.995, 3.000. The choice of the
search interval usually results from a compromise between accuracy and performance: the coarser the
grid, the faster the computation but the less accurate the estimate. A reasonable approach would be to
start with a coarse, wide-ranging grid (e.g. seq(-5,5,by = 0.5)), then center the interval about the
resulting estimate using a finer grid, and re-fit the model.

The output above reports the estimates β̂(p) and λ̂p for each quantile level specified in tau. Here,
the quantities of interest are the predictions on the ozone scale and the marginal effect of solar radiation,
which can obtained using the function predict.rqt().

> x <- seq(9, 334, length = 200)
> qhat <- predict(fit.rqt, newdata = data.frame(Solar.R = x),
+ type = "response")
> dqhat <- predict(fit.rqt, newdata = data.frame(Solar.R = x),
+ type = "maref", namevec = "Solar.R")
The linear component of the marginal effect is calculated as derivative of
Ozone ~ beta1 * Solar.R
with respect to Solar.R

The calculations above are based on a sequence of 200 ozone values in the interval [9, 334] Ly, as
provided via the argument newdata (if this argument is missing, the function returns the fitted values).
There are three types of predictions available:

link predictions of conditional quantiles on the transformed scale (7), i.e. Q̂h(Y;λ̂p)(p) = xT β̂(p);

response predictions of conditional quantiles on the original scale (8), i.e. Q̂Y|X(p) =

h−1
{

x> β̂(p); λ̂p

}
; and
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Figure 5: Predicted 10th (solid line), 50th (dashed line), and 90th (dot-dashed line) centiles of ozone
conditional on solar radiation (a) and corresponding estimated marginal effects (b) using the symmetric
proposal I transformation in the New York Air Quality data set.

maref predictions of the marginal effect (9).

In the latter case, the argument namevec is used to specify the name of the covariate with respect
to which the marginal effect has to be calculated. The function maref.rqt() computes derivatives
symbolically using the stats function deriv() and these are subsequently evaluated numerically.
While the nonlinear component of the marginal effect in Equation 9 (i.e. ∂Q(p)/∂η(p)) is rather
straightforward to derive for any of the transformations (10)-(13), the derivative of the linear predictor
(i.e. ∂η(p)/∂xj) requires parsing the formula argument in order to obtain an expression suitable for
deriv(). The function maref.rqt() can handle simple expressions with common functions like log(),
exp(), etc. , interaction terms, and "AsIs" terms (i.e. I()). However, using functions that are not
recognised by deriv() will trigger an error.

The predicted quantiles of ozone and the marginal effects of solar radiation are plotted in Figure 5
using the following code:

> par(mfrow = c(1, 2))
> plot(Ozone ~ Solar.R, data = dd, xlab = "Solar radiation (lang)",
+ ylab = "Ozone (ppb)")
> for(i in 1:3) lines(x, qhat[ ,i], lty = c(1, 2, 4)[i], lwd = 2)
> plot(range(x), range(dqhat), type = "n", xlab = "Solar radiation (lang)",
+ ylab = "Marginal effect")
> for(i in 1:3) lines(x, dqhat[ ,i], lty = c(1, 2, 4)[i], lwd = 2)

The effect of solar radiation on different quantiles of ozone levels shows a nonlinear behavior,
especially at lower ranges of radiation (below 50 Ly) and on the median ozone. It might be worth
testing the goodness-of-fit of the model. In the previous analysis, it was found evidence of lack of fit
for the linear specification (5). In contrast, the output reported below indicates that, in general, the
goodness of fit of the quantile models based on the transformation model (15) has improved since the
test statistics are now smaller at all values of p. However, such improvement is not yet satisfactory for
the median.

> GOFTest(fit.rqt, alpha = 0.05, B = 1000, seed = 416)

Goodness-of-fit test for quantile regression based on the cusum process
Quantile 0.1: Test statistic = 0.0393; p-value = 0.025
Quantile 0.5: Test statistic = 0.1465; p-value = 0.005
Quantile 0.9: Test statistic = 0.0212; p-value = 0.127

The TS and RC estimators generally provide similar estimates and predictions. However, compu-
tation based on the cusum process tends to be somewhat slow, as shown further below. This is also
true for the RC test provided by GOFTest().

> system.time(fit.rqt <- rcrq(Ozone ~ Solar.R, data = dd, tsf = "mcjI",
+ symm = TRUE, dbounded = FALSE, lambda = seq(1, 3, by = 0.005),
+ tau = c(.1, .5, .9)))
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user system elapsed
36.88 0.03 37.64

An example using doubly bounded transformations is demonstrated using the A-level Chemistry
Scores data set. The latter is available from Qtools and it consists of 31022 observations of A-level
scores in Chemistry for England and Wales students, 1997. The data set also includes information
of prior academic achievement as assessed with General Certificate of Secondary Education (GCSE)
average scores. The goal is to evaluate the ability of GCSE to predict A-level scores. The latter are
based on national exams in specific subjects (e.g. chemistry) with grades ranging from A to F. For
practical purposes, scores are converted numerically as follows: A = 10, B = 8, C = 6, D = 4, E = 2,
and F = 0. The response is therefore doubly bounded between 0 ad 10. It should be noted that this
variable is discrete, although, for the sake of simplicity, here it is assumed that the underlying process
is continuous.

The model considered here is

QhAOa{score}(p) = β0(p) + β1(p) · gcse, (16)

where hAOa denotes the asymmetric Aranda-Ordaz transformation in (12). This model is fitted for
p = 0.9:

> data(Chemistry)
> fit.rqt <- tsrq(score ~ gcse, data = Chemistry, tsf = "ao", symm = FALSE,
+ lambda = seq(0, 2, by = 0.01), tau = 0.9)

The predicted 90th centile of A-level scores conditional on GCSE and the marginal effect of GCSE
are plotted in Figure 6. There is clearly a positive, nonlinear association between the two scores. The
nonlinearity is partly explained by the floor and ceiling effects which result from the boundedness of
the measurement scale. Note, however, that the S-shaped curve is not symmetric about the inflection
point. As a consequence, the marginal effect is skewed to the left. Indeed, the estimate λ̂0.9 = 0 and
the narrow confidence interval give support to a complementary log-log transformation:

> summary(fit.rqt, conditional = FALSE, se = "nid")

call:
summary.rqt(object = fit.rqt, se = "nid", conditional = FALSE)

Aranda-Ordaz asymmetric transformation (doubly bounded response)

Summary for unconditional inference

tau = 0.9

Optimal transformation parameter:
Value Std. Error Lower bound Upper bound
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Figure 6: Predicted 90th centile of A-level scores conditional on GCSE scores (a) and corresponding
estimated marginal effect (b) using the asymmetric Aranda-Ordaz transformation in the A-level
Chemistry Scores data set.
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0.000000000 0.001364422 -0.002674218 0.002674218

Coefficients linear model (transformed scale):
Value Std. Error Lower bound Upper bound

(Intercept) -4.3520060 0.015414540 -4.3822179 -4.3217941
gcse 0.8978072 0.002917142 0.8920898 0.9035247

Degrees of freedom: 31022 total; 31020 residual

Alternatively, one can estimate the parameter δp using a two-parameter transformation:

> coef(tsrq2(score ~ gcse, data = chemsub, dbounded = TRUE,
+ lambda = seq(0, 2, by = 0.1), delta = seq(0, 2, by = 0.1),
+ tau = 0.9), all = TRUE)

(Intercept) gcse lambda delta
-4.1442274 0.8681246 0.0000000 0.0000000

These results confirm the asymmetric nature of the relationship since δ̂0.9 = 0. Similar results (not
shown) were obtained with nlrq2().

In conclusion, the package Qtools offers several options in terms of transformations and estimation
algorithms, the advantages and disadvantages of which are discussed by Geraci and Jones (2015). In
particular, they found that the symmetric Proposal I transformation improves considerably on the
Box-Cox method and marginally on the Aranda-Ordaz transformation in terms of mean squared error
of the predictions. Also, asymmetric transformations do not seem to improve sufficiently often on
symmetric transformations to be especially recommendable. However, the Box-Cox and the symmetric
Aranda-Ordaz transformations should not be used when individual out-of-range predictions represent
a potential inconvenience as, for example, in multiple imputation (see section further below). Finally,
in some situations transformation-based quantile regression may be competitive as compared to
methods based on smoothing, as demonstrated by a recent application to anthropometric charts
(Boghossian et al., 2016).

Conditional LSS

Quantile-based measures of location, scale, and shape can be assessed conditionally on covariates. A
simple approach is to a fit a linear model as in (4) or a transformation-based model as in (7), and then
predict Q̂Y|X(p) to obtain the conditional LSS measures in Equation 3 for specific values of x.

Estimation of conditional LSS can be carried out by using the function qlss.formula(). The
conditional model is specified in the argument formula, while the probability p is given in probs. (As
seen in Equation 3, the other probabilities of interest to obtain the decomposition of the conditional
quantiles are 1− p, 0.25, 0.5, and 0.75.) The argument type specifies the required type of regression
model, more specifically "rq" for linear models and "rqt" for transformation-based models. The
function qlss.formula() will take any additional argument to be passed to quantreg::rq() or tsrq()
(e.g. subset, weights, etc. ).

Let’s consider the New York Air Quality data example discussed in the previous section and assume
that the transformation model (15) holds for the quantiles p ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}. Then
the conditional LSS summary of the distribution of ozone conditional on solar radiation for p = 0.05
and p = 0.1 is calculated as follows:

> fit.qlss <- qlss(formula = Ozone ~ Solar.R, data = airquality, type =
+ "rqt", tsf = "mcjI", symm = TRUE, dbounded = FALSE, lambda =
+ seq(1, 3, by = 0.005), probs = c(0.05, 0.1))
> fit.qlss

call:
qlss.formula(formula = Ozone ~ Solar.R, probs = c(0.05, 0.1),

data = airquality, type = "rqt", tsf = "mcjI", symm = TRUE,
dbounded = FALSE, lambda = seq(1, 3, by = 0.005))

Conditional Quantile-Based Location, Scale, and Shape
-- Values are averaged over observations --

** Location **
Median
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[1] 30.2258
** Scale **
Inter-quartile range (IQR)
[1] 43.40648
Inter-quantile range (IPR)

0.05 0.1
88.02909 73.93430
**Shape**
Skewness index

0.05 0.1
0.5497365 0.5180108
Shape index

0.05 0.1
1.960315 1.661648

The output, which is of class "qlss", is a named list with the same LSS measures seen in the case
of unconditional quantiles. However, these are now conditional on solar radiation. By default, the
predictions are the fitted values, which are averaged over observations for printing purposes. An
optional data frame for predictions can be given via the argument newdata in predict.qlss(). If
interval = TRUE, the latter computes confidence intervals at the specified level using R bootstrap
replications (it is, therefore, advisable to set the seed before calling predict.qlss()). The conditional
LSS measures can be conveniently plotted using the plot.qlss() function as shown in the code below.
The argument z is required and specifies the covariate used for plotting. Finally, the argument whichp
specifies one probability (and one only) among those given in probs that should be used for plotting
(e.g. p = 0.1 in the following example).

> set.seed(567)
> x <- seq(9, 334, length = 200)
> qhat <- predict(fit.qlss, newdata = data.frame(Solar.R = x),
+ interval = TRUE, level = 0.90, R = 500)
> plot(qhat, z = x, whichp = 0.1, interval = TRUE, type = "l",
+ xlab = "Solar radiation (lang)", lwd = 2)

Figure 7 shows that both the median and the IQR of ozone increase nonlinearly with increasing
solar radiation. The distribution of ozone is skewed to the right and the degree of asymmetry is highest
at low values of solar radiation. This is due to the extreme curvature of the median which takes on
values close to the 10th centile (Figure 5). (Recall that the index approaches 1 when Q(p) ≈ Q(0.5).)
However, the sparsity of observations at the lower end of the observed range of solar radiation
determines substantial uncertainty as reflected by the wider confidence interval (Figure 7). At p = 0.1,
the conditional shape index is on average equal to 1.66 and it increases monotonically from 1.32 to
about 1.85, remaining always below the tail-weight threshold of a normal distribution (1.90).

Other functions in Qtools

Restricted quantile regression

Besides a loss of precision, high sparsity (low density) might also lead to a violation of the basic
property of monotonicity of quantile functions. Quantile crossing occurs when x>i β̂(p) > x>i β̂(p′)
for some xi and p < p′. This problem typically occurs in the outlying regions of the design space
(Koenker, 2005) where also sparsity occurs more frequently. Balanced designs with larger sample sizes
would then offer some assurance against quantile crossing, provided, of course, that the QR models
are correctly specified. Model misspecification, indeed, can still be a cause of crossing of the quantile
curves. Restricted regression quantiles (RRQ) (He, 1997) might offer a practical solution when little
can be done in terms of modelling. This approach applies to a subclass of linear models

Y = x>β + ε

and linear heteroscedastic models
Y = x>β +

(
x>γ

)
ε,

where x>γ > 0 and ε ∼ F. Basically, it consists in fitting a reduced regression model passing through
the origin. The reader is referred to He (1997) for details. Here, it is worth stressing that when the
restriction does not hold, i.e. if the model is more complex than a location–scale-shift model, then RRQ
may yield unsatisfactory results He (1997). See also Zhao (2000) for an examination of the asymptotic
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Figure 7: Location, scale and shape of ozone levels conditional on solar radiation in the New York Air
Quality data set. Dashed lines denote the bootstrapped 90% point-wise confidence intervals.

properties of the restricted QR estimator. In particular, the relative efficiency of RRQ as compared to
RQ depends on the error distribution. For some common unimodal distributions, Zhao (2000) showed
that RRQ in iid models is more efficient than RQ. This property is lost when the error is asymmetric.
In contrast, the efficiency of RRQ in heteroscedastic models is comparable to that of RQ even for small
samples.

The package Qtools provides the functions rrq(), rrq.fit() and rrq.wfit() which are, respec-
tively, the restricted analogs of rq(), rq.fit(), and rq.wfitv in quantreg. S3 methods print(),
coef(), predict(), fitted(), residuals(), and summary() are available for objects of class "rrq". In
particular, confidence intervals are obtained using the functions boot() and boot.ci() from package
boot. Future versions of the package will develop the function summary.rrq() to include asymptotic
standard errors (Zhao, 2000). An application is shown below using an example discussed by Zhao
(2000). The data set, available from Qtools, consists of 118 measurements of esterase concentrations
and number of bindings counted in binding experiments.

> data("esterase")
> taus <- c(.1, .25, .5, .75, .9)
> fit.rq <- rq(Count ~ Esterase, data = esterase, tau = taus)
> yhat1 <- fitted(fit.rq)
> fit.rrq <- rrq(Count ~ Esterase, data = esterase, tau = taus)
> yhat2 <- fitted(fit.rrq)

The predicted 90th centile curve crosses the 50th and 75th curves at lower esterase concentrations
(Figure 8). The crossing is removed in predictions based on RRQs.

As discussed above, the reliability of the results depends on the validity of the restriction carried
by RRQ. A quick check can be performed using the location–scale-shift specification of the Khmaladze
test.

> kt <- KhmaladzeTest(formula = Count ~ Esterase, data = esterase,
+ taus = seq(.05,.95,by = .01), nullH = "location-scale")
> KhmaladzeFormat(kt, 0.05)
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Figure 8: Predicted quantiles of number of bindings conditional on esterase concentration using
regression quantiles (a) and restricted regression quantiles (b) in the Esterase data set.

Khmaladze test for the location-shift hypothesis
Joint test is not significant at 10% level
Test(s) for individual slopes:
not significant at 10% level

The quantile crossing problem can be approached also by directly rearranging the fitted values
Q̂Y|X=x(p) to obtain monotone (in p) predictions for each x (Chernozhukov et al., 2010). This method is
implemented in the package Rearrangement (Graybill et al., 2016). As compared to RRQ, this approach
is more general as it is not confined to, for example, location–scale-shift models (Chernozhukov et al.,
2010); however, in contrast to RRQ, it does not yield estimates of parameters (e.g. slopes) of the model
underlying the final monotonised curves. Such estimates, available from "rrq" objects, may be of
practical utility when summarising the results.

Conditional quantiles of discrete data

Modelling conditional functions of discrete data is less common and, on a superficial level, might
even appear as an unnecessary complication. However, a deeper look at its rationale will reveal that
a distribution-free analysis can provide insightful information in the discrete case as it does in the
continuous case. Indeed, methods for conditional quantiles of continuous distributions can be—and
have been—adapted to discrete responses.

The package Qtools offers some limited functionalities for count and binary data. Further research
is needed to develop the theory of QR for discrete data and to improve computational algorithms.
Therefore, the user should use these functions with caution.

Let Y be a count variable such as, for example, the number of car accidents during a week or the
number of times a patient visits their doctor during a year. As usual, X denotes a vector of covariates.
Poisson regression, which belongs to the family of generalised linear models (GLMs), is a common
choice for this kind of data, partly because of its availability in many statistical packages. Symbolically,

Y ∼ Pois(θ), where θ ≡ IE(Y|X = x) = h−1
(

x>β
)

and h is the logarithmic link function. Note that
the variance also is equal to θ. Indeed, moments of order higher than 2 governing the shape of the
distribution depend on the same parameter. Every component of the conditional LSS in a Poisson
model is therefore controlled by θ. If needed, more flexibility can be achieved using a distribution-free
approach.

Machado and Santos Silva (2005) proposed the model

Qh(Z;p)(p) = x>β(p), (17)

where Z = Y + U is obtained by jittering Y with a [0, 1)-uniform noise U, independent of Y and
X. In principle, any monotone transformation h can be considered. Given the continuity between
counts induced by jittering, standard inference for linear quantile functions (Koenker and Bassett,
1978) can be applied to fit (17). In practice, a sample of M jittered responses Z is taken to estimate
β̂m(p), m = 1, . . . , M; the noise is then averaged out, β̂(p) = 1

M ∑m β̂m(p).
Machado and Santos Silva’s (2005) methods, including large-n approximations for standard errors,

are implemented in the function rq.counts(). The formula argument specifies a linear model as
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in (17), while the argument tsf provides the desired transformation h. By default, this is the log
transformation (i.e. Box-Cox with parameter λp = 0) but other transformations are allowed. Note that
GOFTest() can be applied to "rq.counts" objects as well.

Qtools provides functions for modelling binary responses as well. First of all, it is useful to note
that the classical GLM for a binary response Y ∼ Bin(1, π) establishes a relationship between the
probability Pr (Y = 1) = π and a set of predictors x. The application of QR to binary outcomes relies
on the continuous latent variable regression formulation

Y∗ = x>β + ε (18)

and assumes that the binary observations are the result of the dichotomization Y = I (Y∗ > 0), with
Y∗ unobserved.

Maximum score estimation, originally developed by Manski (1975, 1985), is equivalent to esti-
mating the conditional quantiles of the latent variable Y∗. However, the optimization problem offers
numerical challenges due to the the piecewise linearity of the indicator function and the nonconvexity
of the loss function. The function rq.bin() is the main function to obtain binary regression quantiles.
It is a wrapper for the function rqbin.fit() which calls Fortran code written for simulated anneal-
ing estimation (Goffe et al., 1994). Qtools offers a limited number of functions for objects of class
"rq.bin" including coef() and predict(). These methods should be considered still experimental.
In particular, the user should be aware that the estimates obtained from the fitting procedure may be
sensitive to different settings of the simulated annealing algorithm. The latter can be controlled using
rqbinControl().

Quantile-based multiple imputation

Regression models play an important role in conditional imputation of missing values. QR can be
used as an effective approach for multiple imputation (MI) when location-shift models are inadequate
(Muñoz and Rueda, 2009; Bottai and Zhen, 2013; Geraci, 2016).

In Qtools, mice.impute.rq() and mice.impute.rrq() are auxiliary functions written to be used
along with the functions of the R package mice (van Buuren and Groothuis-Oudshoorn, 2011). The
former is based on the standard QR estimator (rq.fit()) while the latter on the restricted counterpart
(rrq.fit()). Both imputation functions allow for the specification of the transformation-based QR
models discussed previously. The equivariance property is useful to achieve linearity of the conditional
model and to ensure that imputations lie within some interval when imputed variables are bounded.
An example is available from the help file ?mice.impute.rq using the nhanes data set. See also Geraci
(2016) for a thorough description of these methods.

Final remarks

Quantiles have long occupied an important place in statistics. The package Qtools builds on re-
cent methodological and computational developments of quantile functions and related methods to
promote their application in statistical data modelling.
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Two-Tier Latent Class IRT Models in R
by Silvia Bacci and Francesco Bartolucci

Abstract In analyzing data deriving from the administration of a questionnaire to a group of individu-
als, Item Response Theory (IRT) models provide a flexible framework to account for several aspects
involved in the response process, such as the existence of multiple latent traits. In this paper, we focus
on a class of semi-parametric multidimensional IRT models, in which these traits are represented
through one or more discrete latent variables; these models allow us to cluster individuals into homo-
geneous latent classes and, at the same time, to properly study item characteristics. In particular, we
follow a within-item multidimensional formulation similar to that adopted in the two-tier models,
with each item measuring one or two latent traits. The proposed class of models may be estimated
through the package MLCIRTwithin, whose functioning is illustrated in this paper with examples
based on data about quality-of-life measurement and about the propensity to commit a crime.

Introduction

Several fields of human knowledge require the measurement of unobservable constructs (or latent
traits) through ad hoc methods based on questionnaires consisting of multiple items having dichoto-
mously or ordered politomously scored response categories. This is the case of measurement of
customer satisfaction, quality-of-life, level of physical and/or psychological disabilities, ability in
certain subjects, and so on.

Item Response Theory (IRT) models (Hambleton and Swaminathan, 1985; Van der Linden and
Hambleton, 1997; Bartolucci et al., 2015) are well-known statistical models to deal with these data.
In their original formulation, these models are characterized by: (i) unidimensionality (i.e., only one
latent trait is assumed to be measured by all items); (ii) a parametric (usually normal) distribution for
the latent variables used to represent the trait of interest; and (iii) no effect of individual covariates on
this latent trait. These elements often turn out to be restrictive in modern applications and, therefore,
several extensions of IRT models have been proposed in the literature. Among the possible extensions,
in this paper we consider the class of multidimensional Latent Class (LC) IRT models proposed
by Bartolucci (2007) and von Davier (2008); see also Bacci et al. (2014). Models of this type are
characterized by: (i) multidimensionality, in the sense that more latent traits may be measured by the set
of items (Reckase, 2009); (ii) discreteness of the latent variables, so that homogeneous subpopulations
(or latent classes; Lazarsfeld and Henry, 1968; Goodman, 1974) of individuals are detected with respect
to the constructs measured by the questionnaire; and (iii) possible presence of individual covariates
affecting the probabilities to belong to each latent class.

In particular, we focus on a specific extension of IRT models based on within-item multidimension-
ality (Adams et al., 1997), which is characterized by items affected by more than one latent variable.
This is opposed to the more common between-item multidimensionality , where each item may mea-
sure only one latent variable as in the original approach of Bartolucci (2007). More in detail, the model
here proposed represents a discrete version of the item bifactor model and of the more general two-tier
IRT model (Bock et al., 1988; Gibbons and Hedeker, 1992; Gibbons et al., 2007; Cai, 2010; Cai et al.,
2011; Reise, 2012; Bonifay, 2015), based on a particular within-item multidimensional formulation
with each item loading on at most two latent variables that are mutually uncorrelated. With respect to
traditional item bifactor and two-tier models, which assume the normality of the latent variables, the
discreteness assumption increases the flexibility of the approach and allows us to cluster individuals
in homogeneous latent classes. Formann and Kohlmann (2002) propose a general approach based
on latent classes that includes the discrete two-tier model here proposed as special case. However,
different from the proposal of these authors, we let the class membership probability depend on
individual covariates and we also allow for more flexibility in terms of specification of model link
function. Limited to binary items, a recent example of application of the proposed two-tier LC-IRT
model is provided in Bacci and Bartolucci (2015) to jointly study certain students’ abilities and the
propensity to skipping item responses.

The procedures to estimate the proposed class of two-tier LC-IRT models are implemented in
the R package MLCIRTwithin (Bartolucci and Bacci, 2016), downloadable from http://CRAN.R-
project.org/package=MLCIRTwithin, whose illustration is the primary focus of the present paper. In
particular, we are interested in providing a detailed description of the main functions of this package,
named est_multi_poly_within and search.model_within, also through some applications.

The remainder of the paper is organized as follows. In the next section we provide the formulation
of the proposed class of two-tier LC-IRT models and, then, some details about likelihood inference
for these models. Furthermore, we describe the main functions implemented in the R package
MLCIRTwithin for model estimation. In the following, the functioning of the package is illustrated
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through two applications: the first one concerns the measurement of Heath-related Quality Of Life
(HQOL) on cancer patients and the second one is about the measurement of propensity to commit
crimes. Some final remarks conclude the work.

The class of models

The proposed class of models is formulated on the basis of two independent vectors of latent variables
representing the unobservable individual characteristics measured by the test items. For each unit
i = 1, . . . , n, these vectors are denoted by U i = (Ui1, . . . , UiD1 )

′ and V i = (Vi1, . . . , ViD2 )
′ and are

of dimension D1 and D2, respectively. Similarly to the item bifactor model, we assume that each
item response Yij, with i = 1, . . . , n and j = 1, . . . , r, where r is the number of items, may depend
on (and then measures) at most two latent variables, under the constraint that these two variables
do not belong to the same vector. This is formalized by introducing the disjoint subsets U1, . . . ,UD1

and V1, . . . ,VD2 of J = {1, . . . , r}, where U d1
contains the indices of the items depending on latent

variable Uid1
and Vd2 is the set of those depending on latent variable Vid2 . Equivalently, Yij depends on

Uid1
if and only if j ∈ U id1

and on Vid2 if and only if j ∈ V id2 . Note that, even if the subsets U1, . . . ,UD1

cannot overlap, and the same is assumed for V1, . . . ,VD2 , the same item j may belong both to a set
of the first type and to a set of the second type (within-item multidimensionality); more formally,
there may exist d1 and d2 such that j ∈ U d1

and j ∈ Vd2 . In practice, some items belonging to U d1
,

d1 = 1, . . . , D1, will be present also in Vd2 , d2 = 1, . . . , D2. With respect to the specification commonly
encountered in the literature on item bifactor and two-tier models, our proposal is more general, as
any value of D1 and D2 is allowed, whereas D1 = 1 (or, alternatively, D2 = 1) in the item bifactor
model and D1 = 2 (or, alternatively, D2 = 2) in the two-tier model. Moreover, components of U i are
allowed to be correlated; the same holds for components of V i.

An illustrative example of the above assumptions is provided in Figure 1, where D1 = 2, D2 = 1,
and four items out of r = 7 measure two latent traits (item 2 measures dimensions Ui1 and Vi1; items 3,
5, and 6 measure dimensions Ui2 and Vi1); the two dimensions Ui1 and Ui2 do not share any item.

Ui1

Yi1 Yi2

Ui2

Yi3 Yi4

Vi1

Yi5 Yi6 Yi7

Figure 1: Path diagram of the proposed two-tier model for two latent vectors with two and one
dimension, respectively, and seven items (U1 = {1, 2}, U2 = {3, 4, 5, 6}, V1 = {2, 3, 5, 6, 7}).

Adopting a semi-parametric approach for the latent distribution, the first latent vector U i is
assumed to have a discrete distribution based on k1 support points u1, . . . , uk1

and, in absence of
individual covariates, common mass probabilities λ1, . . . , λk1

. Similarly, the distribution of the second
latent vector V i has k2 support points v1, . . . , vk2 and, again in absence of individual covariates,
common mass probabilities π1, . . . , πk2 . In both cases, the support points identify classes of individuals
that are homogeneous with respect to the latent traits represented by U i and V i. Note that cases with
k1 = 1 or k2 = 1 detect a special situation in which vector of latent variables U i or V i, respectively, has
no role in explaining the observed item responses.

For binary response variables, the measurement model assumes that, for i = 1, . . . , n, j = 1, . . . , r,
h1 = 1, . . . , k1, and h2 = 1, . . . , k2,

logit p(Yij = 1|U i = uh1
, V i = vh2 ) = γ1j

D1

∑
d1=1

1{j ∈ U d1
}uh1d1

+ γ2j

D2

∑
d2=1

1{j ∈ Vd2}vh2d2 − β j, (1)

where 1{·} is the indicator function and γ1j, γ2j, and β j are suitable item parameters. As usual for IRT
models, γ1j and γ2j represent the discrimination power of item j with respect to the latent variables in
U i and V i, respectively, whereas β j denotes the difficulty level of item j. In the previous expression,
uh1d1

denotes the d1-th element of uh1
, whereas vh2d2 denotes the d2-th element of vh2 .

Different from traditional LC models characterized by constant mass probabilities, a more general
approach is based on assuming that the probabilities to belong to every latent class defined by the
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distribution of U i and V i depend on individual covariates, when such covariates are observed. For
this aim, we denote the vector of covariates for individual i = 1, . . . , n by X i and we assume that U i
and V i are conditionally independent given X i. Moreover, we adopt the following multinomial logit
parametrization (Formann, 2007) for each latent vector:

log
λh1

(xi)

λ1(xi)
= x′iδ1h1

, h1 = 2, . . . , k1, (2)

log
πh2 (xi)

π1(xi)
= x′iδ2h2 , h2 = 2, . . . , k2, (3)

with λh1
(xi) = p(U i = uh1

|X i = xi) and πh2 (xi) = p(V i = vh2 |X i = xi), where xi contains the
constant term. The vectors of coefficients δ1h1

and δ2h2 measure the effect of the covariates on the
logit to belong to class h1 = 2, . . . , k1 and h2 = 2, . . . , k2, with respect to class h1 = 1 and h2 = 1,
respectively. Alternatively, a global logit formulation may be adopted. This is related to a cumulative
logit formulation (Agresti, 2013), where the logits in equations (2) and (3) are substituted with

log
p(U i ≥ uh1

|X i = xi)

p(U i < uh1
|X i = xi)

= log
λh1

(xi) + . . . + λk1
(xi)

λ1(xi) + . . . + λh1−1(xi)
, h1 = 2, . . . , k1

and

log
p(V i ≥ vh2 |X i = xi)

p(V i < vh2 |X i = xi)
= log

πh2 (xi) + . . . + πk2 (xi)

π1(xi) + . . . + πh2−1(xi)
, h2 = 2, . . . , k2,

respectively. The main advantage of the global logit parametrization is the easier interpretation of the
regression coefficients that now refer to the effect of the covariates on the logit to belong to a specific
class (or higher) with respect to a lower class. However, this parameterization requires the latent
classes to be ordered according to a specific criterion (e.g., requiring an increasing trend of the support
points for a given dimension).

In the case of polytomously scored items with ordered categories indexed from 0 to lj − 1, the
model based on Equation (1) may be extended according to a global logit link function, so that a
graded response model (Samejima, 1969) results in:

log
p(Yij ≥ y|U i = uh1

, V i = vh2 )

p(Yij < y|U i = uh1
, V i = vh2 )

= γ1j

D1

∑
d1=1

1{j ∈ U d1
}uh1d1

+ γ2j

D2

∑
d2=1

1{j ∈ Vd2}vh2d2 − β jy. (4)

Alternatively, using a local logit link function, we may assume a partial credit model (Masters, 1982):

log
p(Yij = y|U i = uh1

, V i = vh2 )

p(Yij = y− 1|U i = uh1
, V i = vh2 )

= γ1j

D1

∑
d1=1

1{j ∈ U d1
}uh1d1

+ γ2j

D2

∑
d2=1

1{j ∈ Vd2}vh2d2 − β jy.

(5)

In the above expressions, y = 1, . . . , lj − 1 and the difficulty parameter β jy is now specific of item j
and response category y. A more parsimonious model is obtained by expressing β jy as the sum of two
components (rating scale parametrization; Andrich, 1978), that is,

β jy = β j + τy, j = 1, . . . , r; y = 1, . . . , lj − 1, (6)

so that the distance in terms of difficulty from category to category (i.e., τy) is the same for all items.
Note that the rating scale parametrization is allowed only when items have the same number of
response categories (i.e., lj = l, j = 1, . . . , r). For more details about the possible item parametrizations
in the presence of ordinal items see Bacci et al. (2014) and Bartolucci et al. (2015).

In order to ensure the identification of the proposed class of models, two necessary conditions
must hold. First, as usual in the IRT modeling, we must constrain one discriminant index to be equal
to 1 and one difficulty parameter to be equal to 0 for each dimension. More in detail, let jd1

be a
specific element of U d1

and jd2 a specific element of Vd2 for d1 = 1, . . . , D1 and d2 = 1, . . . , D2. Then
we assume γ1jd1

= 1, γ2jd2
= 1, and, when item difficulties are free, β jd1 1 = 0 and β jd2 1 = 0, whereas in

the presence of a rating scale parametrization we assume β jd1
= 0, β jd2

= 0, and τ1 = 0. In the case of
binary items, constraints on difficulties simplify to β jd1

= 0 and β jd2
= 0. Generally speaking, jd1

and
jd2 may be chosen in an arbitrary way, paying attention to select a different item for each dimension.
So, in the example illustrated in Figure 1, if we constrain item j = 1 for dimension Ui1 and item j = 3
for dimension Ui2, then for dimension Vi1 we may constrain any one of the items in the subset V1 with
the only exception of item j = 3. As an alternative to constraining item parameters, we may fix the
support points, as in the general diagnostic model of von Davier (2008).

A further identification condition requires that at least one item belongs to one of the subsets U d1
or
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to one of the subsets Vd2 ; more formally, the union of U1, . . . ,UD1 must be different from the union of
V1, . . . ,VD2 . In other words, we restrict γ1j = 0 or γ2j = 0 for at least one j and the maximum number
of items shared by U i and V i is equal to r− 1. Alternatively, we may skip this restrictive condition
by specifying in a suitable way linear constraints (e.g., equality restrictions) on some discriminant
parameters (for some examples see Cai, 2010; Cai et al., 2011).

To specify in a flexible way constraints on the support points and item parameters, we denote
the complete vectors of support points by u = (u11, u12, . . . , uk1D1

)′ for latent variable U i and v =
(v11, v12, . . . , vk2D2 )

′ for latent variable V i, the complete vectors of item discriminating indices as γ1 =
(γ11, . . . , γ1r)

′ for items affected by U i (then γ1j is missing if item j does not belong to U1, . . . ,UD1 )
and γ2 = (γ21, . . . , γ2r)

′ for items affected by V i (then γ2j is missing if item j does not belong to
V1, . . . ,VD2 ), and the complete vector of item difficulties as β = (β11, . . . , βr,lr−1)

′ (or β = (β1, . . . , βr)′

in the binary case). The corresponding vectors of free support points and free item parameters are
denoted by ũ, ṽ, γ̃1, γ̃2, and β̃, respectively. A wide range of linear constraints and fixed values of
the parameters are specified through a suitable definition of matrices Zu, Zv, Zγ1 , Zγ2 , and Zβ and
vectors zu, zv, zγ1 , zγ2 , and zβ, as follows:

u = Zuũ + zu, (7)

v = Zvṽ + zv, (8)

γ1 = Zγ1 γ̃1 + zγ1 , (9)

γ2 = Zγ2 γ̃2 + zγ2 , (10)

β = Zβ β̃ + zβ. (11)

For instance, according to the usual IRT parametrization with free support points and constraints on
the item parameters (i.e., one discriminant index equal to 1 and one difficulty parameter equal to 0
for each dimension), Zu and Zv are identity matrices of dimensions k1D1 × k1D1 and k2D2 × k2D2,
respectively, and zu and zv are null vectors. Moreover, matrices Zγ1 , Zγ2 , and Zβ are defined as
identity matrices without those columns corresponding to the constrained item parameters, whereas
zγ1 and zγ2 are vectors with ones in correspondence of constrained item discrimination parameters
and zeros otherwise; zβ is a vector of zeros. Further examples of specification of constraints on
model parameters are provided in the sequel, when the functioning of the estimation functions of the
proposed R package and an example on criminal data (Example 2) are illustrated.

Likelihood inference

The proposed two-tier LC-IRT model can be estimated by maximizing the marginal log-likelihood

`(η) =
n

∑
i=1

log Li(yi|xi), (12)

where η is the vector of free model parameters, that is, support points of U i and V i, item difficulty and
discrimination parameters, and regression coefficients for the covariates; in the previous expression,
yi = (yi1, . . . , yir)

′ is the vector of observed item responses for subject i. Due to the local independence
assumption, the marginal likelihood Li(yi|xi) for subject i (or manifest probability of yi) used in
equation (12) is given by:

Li(yi|xi) =
k1

∑
h1=1

k2

∑
h2=1

λh1
(xi)πh2 (xi)

r

∏
j=1

ph1h2 (yij),

where, ph1h2 (y) = p(Yij = y|U i = uh1
, V i = vh2 ), which depends on (1) in the case of binary items and

on (4) or (5) in the case of ordinal items, if a global logit or a local logit parametrization is adopted.

We maximize `(η) through the Expectation Maximization (EM) algorithm (Dempster et al., 1977),
which is based on alternating two steps until convergence:

E-step: the expected value of the complete data log-likelihood (i.e., the log-likelihood for the observed
and latent variables) is computed, given the current parameter vector η. In practice, this consists
in computing the posterior probability qh1h2i for h1 = 1, . . . , k1, h2 = 1, . . . , k2, and i = 1, . . . , n;
this is the probability that unit i belongs to latent class h1, according to the first vector of latent
variables, and to latent class h2, according to the second vector of latent variables, given the
observed data, that is, p(U i = uh1

, V i = vh2 |xi, yi). By the Bayes’ theorem we have that

qh1h2i =
λh1

(xi)πh2 (xi)∏r
j=1 ph1h2 (yij)

Li(yi|xi)
.

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 143

The resulting complete data log-likelihood is, in expected value, equal to

`∗(η) =
k1

∑
h1=1

k2

∑
h2=1

n

∑
i=1

qh1h2i log

λh1
(xi)πh2 (xi)

r

∏
j=1

ph1h2 (yij)

 . (13)

M-step: the parameter vector η is updated by maximizing function (13) obtained at the previous
step. Note that single parameter subvectors of η may be updated separately, as this function
factorizes in three components involving the mass probabilities λh1

(xi), the mass probabilities
πh2 (xi), and the conditional response probabilities ph1h2 (yij), respectively. Iterative algorithms
of Newton-Raphson type are necessary to maximize all components (for details see Bacci and
Bartolucci, 2015, and references therein) with the exception of the first two in the case of absence
of individual covariates. In fact, in this case we have the following explicit expressions to update
the class weights:

λh1
=

1
n

k2

∑
h2=1

n

∑
i=1

qh1h2i, h1 = 1, . . . , k1,

πh2 =
1
n

k1

∑
h1=1

n

∑
i=1

qh1h2i, h2 = 1, . . . , k2.

Similar to the other iterative algorithms, the first iteration of the EM algorithm needs to be
initialized through suitable values for the model parameters that can be chosen according to certain
deterministic or random rules. A common problem with finite mixture models, and then with
the proposed model, is due to the presence of several local maximum points of the log-likelihood
function. Therefore, in order to avoid a solution that does not correspond to the global maximum, a
good practice consists in repeating the estimation process for a specific model a certain number of
times using random starting values and, in the presence of different values of the log-likelihood at
convergence, the solution corresponding to the highest log-likelihood value is selected.

A crucial point is that of model selection, mainly as concerns the choice of the number of support
points (or latent classes) for both latent vectors (i.e., k1 and k2). For this aim, a likelihood-ratio test
cannot be directly used, as the regularity conditions for having an asymptotic null distribution of
χ2-type are not satisfied for this type of test when it is applied to compare two models with different
values of k1 and k2. We then suggest to rely on suitable forms of penalization of the maximum
log-likelihood, such as the Akaike Information Criterion (AIC; Akaike, 1973), which is related to
Kullback-Leibler distance between the true density and the estimated density of a model. This criterion
is based on the following index:

AIC = −2ˆ̀(η) + 2#par,

with ˆ̀(·) denoting the estimated maximum log-likelihood and #par the number of free parameters.
Alternatively, we suggest the use of the Bayesian Information Criterion (BIC; Schwarz, 1978) based on
the index

BIC = −2ˆ̀(η) + log(n)#par.

According to both these criteria, one should select the model with the minimum value of AIC or BIC.

Other selection criteria may be based on the entropy, whose computation involves the individual
posterior probabilities. Entropy is a measure of the capability of the model to provide a neat partition
of the sample units, which is computed as

E = −
k1

∑
h1=1

k2

∑
h2=1

n

∑
i=1

qh1h2i log qh1h2i,

based on the posterior probabilities qh1h2i. If the components are well separated, the posterior probabil-
ities tend to define a clear partition of the units, assuming values close to one, and, as a consequence,
the entropy will be close to zero. Usually, the entropy is not directly used to assess the number of
support points and, to also account for the goodness of fit of the model, a normalized version of
entropy is used by Celeux and Soromenho (1996). This is defined as

NEC =
E

ˆ̀k1k2 − ˆ̀11
, k1 > 1, k2 > 1,

where ˆ̀k1k2 is the maximum log-likelihood of the model with k1 and k2 support points and ˆ̀11 is
the maximum log-likelihood value of the model with just one component for both latent variables.
According to this criterion, the optimal number of components is the one that minimizes the NEC
index. Note that NEC is not defined when k1 = k2 = 1, in which case NEC = 1 by convention.
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In practice, we propose to fit a series of models with similar specifications that distinguish one
other for values assigned to k1 and k2 and, then, to make comparisons through one or more of the
mentioned criteria. In more detail, given k1, we consider increasing values of k2 and, similarly, given
k2 we consider increasing values of k1 until AIC, BIC, or NEC do not start to increase and, then, the
previous value of support points is taken as the optimal one.

More in general, for certain values of k1 and k2 we suggest that the choice between two competing
models is driven by the likelihood-ratio test in the presence of nested models (i.e., when one model
is obtained by the other one through constraints on the parameters), whereas the selection criteria
above mentioned are suitable in the presence of non-nested models. The likelihood-ratio test is also
used to evaluate the global fit of a model, when this is compared with the saturated model, that is,
the largest model one can fit. Note that in the context at issue the saturated model is defined only
for model specifications without covariates. Other proposals, coming from the literature on logistic
regression models and on IRT models, consist of parametric and non-parametric tests that allow us
to verify specific hypotheses concerning, among others, the unidimensionality of the questionnaire,
the validity of the Rasch paradigm, the validity of the local independence assumption. In addition to
the global fit of a model, also item-specific fit statistics, which are usually based on the comparison
between observed and expected item responses, are useful to evaluate the goodness of each item and
the need of removing it from the questionnaire. For a wide review of the mentioned methods see
Bartolucci et al. (2015), Chap. 5.7, and the references therein.

Finally, in order to facilitate the interpretation of the results, we suggest to standardize the
estimated support points ûd1h1

and v̂d2h2 , so as to obtain latent variables that have mean 0 and variance
equal to 1, and coherently transform the estimated item parameters γ̂1j, γ̂2j, and β̂ jy.

Let µ̂Ud1
and σ̂Ud1

denote the mean and the standard deviation of ûd11, . . . , ûd1k1
and let µ̂Vd2

and σ̂Vd2
denote the mean and the standard deviation of v̂d21, . . . , v̂d2k2 . Then, ûd1h1

and v̂d2h2 are
standardized as follows:

û∗d1h1
=

ûd1h1
− µ̂Ud1

σ̂Ud1

, d1 = 1, . . . , D1, (14)

v̂∗d2h2
=

v̂d2h2 − µ̂Vd2

σ̂Vd2

, d2 = 1, . . . , D2. (15)

Moreover, γ̂1j, γ̂2j, and β̂ jy are transformed as

γ̂∗1j = γ̂1j

D1

∑
d1=1

1{j ∈ U d1
}σ̂Ud1

, (16)

γ̂∗2j = γ̂2j

D2

∑
d2=1

1{j ∈ Vd2}σ̂Vd2
, (17)

β̂∗jy = β̂ jy − γ̂1j

D1

∑
d1=1

1{j ∈ U d1
}µ̂Ud1

− γ̂2j

D2

∑
d2=1

1{j ∈ Vd2}µ̂Vd2
, (18)

for j = 1, . . . , r and y = 0, . . . , lj − 1, with lj = 2 for a dichotomously scored item.

The R package MLCIRTwithin

The class of two-tier LC-IRT models previously described may be estimated through the R package
MLCIRTwithin; for technical details see the official documentation provided in CRAN (Bartolucci
and Bacci, 2016).

Before illustrating the main functions in the package at issue, it is worth mentioning some alter-
native R packages, which estimate models with a formulation resembling the one proposed. A first
example is provided by the R package MultiLCIRT (Bartolucci et al., 2014, 2016), whose functions are
similar, in terms of input and output, to those of MLCIRTwithin; however, MultiLCIRT is limited
to the estimation of LC-IRT models under between-item multidimensionality, in the sense that items
loading on more than one latent trait are not allowed and then a single vector of latent variables U i
is used. Moreover, constraints on the item parameters or fixed values for the support points cannot
be specified. Package CDM (Robitzsch et al., 2016) performs the estimation of the class of cognitive
diagnostic models (Tatsuoka, 1983; Jang, 2008; Rupp and Templin, 2008), in which the proposed,
discrete, two-tier model may be included. The class of models estimated through CDM may be
characterized, among the main options, by normally distributed latent traits or, alternatively, discrete
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latent traits whose support points may be freely estimated or may be specified as fixed values. As
concerns item parameters, item-by-category specific slopes as well as linear constraints are allowed.
However, different from our proposal, individual covariates affecting the class membership as well
as the specification of a global logit link are not allowed. Moreover, attention must be paid to the
interpretation of the latent classes, which are defined in a quite different and general way with respect
to our proposal. The estimation of within-item multidimensional IRT models and item bifactor models
is also performed through packages mirt (Chalmers, 2012; Chalmers et al., 2016) and flirt (Jeon et al.,
2014), under the assumption of normally distributed latent variables. Package mirt also allows for dis-
crete latent variables; however, in such a case just the multidimensional LC model without a classical
IRT parametrization (mainly, without item difficulties) and without covariates is estimated. A major
flexibility with respect to mirt is provided by package covLCA (Bertrand and Hafner, 2013), which
is focused on multidimensional LC models with covariates affecting both the class membership and
the manifest variables. Other two packages to mention are lavaan (Rosseel et al., 2015) and OpenMx
(Neale et al., 2016) that perform the estimation of the wide class of structural equation models, in
which unidimensional and multidimensional IRT models are included, under the assumption of
normality of the latent variables. Finally, we mention two general and flexible softwares that may
accommodate the estimation of the model here proposed, that is, Mplus (Muthén and Muthén, 2012)
and LatentGold (Vermunt and Magidson, 2005): the former is tailored to the estimation of latent
variable models under the assumption of normal or discrete latent variables, whereas the latter is
focused on LC models. In both cases, the user may formulate IRT models with a variety of features,
among which multidimensionality and presence of covariates.

Functions est_multi_poly_within and est_multi_poly_between

The main function of MLCIRTwithin is est_multi_poly_within, which performs the maximum
likelihood estimation of the model specified through equations (1) to (5), allowing for several options.

Function est_multi_poly_within requires the following main input arguments:

• S: matrix of item response configurations listed row-by-row; items with a different number of
categories and missing responses are allowed.

• yv: vector of the frequencies of every row in S; by default, yv is a vector of ones.

• k1: number of latent classes for latent variable U i.

• k2: number of latent classes for latent variable V i.

• X: matrix of covariates affecting the class weights; by default, X is NULL.

• start: method of initialization of the algorithm: "deterministic" (default value) for values
chosen according to a deterministic rule, "random" for values randomly drawn from suitable
distributions (continuous uniform between 0 and 1 for the class weights and standard normal
for the other parameters), and "external" for values provided by the researcher through inputs
Phi, ga1t, ga2t, De1, and De2.

• link: type of link function: "global" for global logits as in Equation (4) and "local" for local
logits as in Equation (5). With binary items, any type of link function may be specified, resulting
in a Rasch (Rasch, 1960) or a two-parameter logit (2PL; Birnbaum, 1968) type model depending
on the value assigned to input disc.

• disc: constraints on the discriminating item parameters: FALSE (default value) for parameters
γ1j and γ2j all equal to one and TRUE for free values. With binary items, option disc = FALSE
results in a Rasch model, whereas a 2PL model is obtained when option disc = TRUE.

• difl: constraints on the difficulty item parameters, in the case of ordinal polytomously scored
items: FALSE (default value) for unconstrained parameters β jy and TRUE for a rating scale
parametrization as in (6). This option is not allowed in the presence of items with a different
number of response categories.

• multi1: matrix with one row for each component of U i and elements in each cell indicating the
indices of the items measuring the dimension corresponding to that row; the number of rows
is D1 and that of columns equals the number of items in the largest dimension. If dimensions
differ in the number of items, zeros are inserted in the empty cells. Each item corresponding to
the first column of each row has discriminating index constrained to 1 and difficulty parameter
constrained to 0 to ensure model identifiability. For instance, in the presence of 6 items, with
items 1 and 2 measuring the first dimension of latent variable U i and the remaining items 3 to 6
measuring another dimension of U i, as in Figure 1, matrix multi1 is specified as

(multi1 <- rbind(c(1,2,0,0), c(3,4,5,6)))
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[,1] [,2] [,3] [,4]
[1,] 1 2 0 0
[2,] 3 4 5 6

• multi2: same as multi1 for latent variable V i. For model identifiability, attention must be payed
on the item indices in the first column of multi2 that cannot be the same as the indices in the
first column of multi1. For instance, in the situation described in Figure 1, the matrix multi2
specified as

(multi2 <- c(7, 2:3, 5:6))

[1] 7 2 3 5 6

implies γ27 = 1 and β7 = 0. A particular case is when the intersection between matrices multi1
and multi2 is empty: in such a case a between-item multidimensional LC-IRT model is specified,
based on two completely independent latent vectors U i and V i.

• fort: if TRUE, Fortran routines are used whenever possible to speed up computation.

• tol: level of tolerance of the algorithm in terms of relative difference between the log-likelihood
corresponding to two consecutive algorithm iterations (default value is 10−10).

• disp: if TRUE, the log-likelihood evolution is displayed step-by-step.

• output: if TRUE, additional output arguments are returned.

• out_se: if TRUE, standard errors and variance-covariance matrix for the parameter estimates are
returned.

• glob: type of parametrization for the sub-model assumed on the individual-specific latent class
weights: FALSE (default value) for a multinomial logit model as in (2)-(3) and TRUE for a global
logit model.

• Zth1, Zth2: matrices for the specification of linear constraints on the support points, according
to (7) and (8), respectively; by default these are identity matrices with a number of rows (and
columns) equal to the total number of support points, that is, k1D1 and k2D2, respectively.

• zth1, zth2: vectors of length k1D1 and k2D2, respectively, for the specification of linear con-
straints and fixed support points, according to (7) and (8), respectively; by default they are null
vectors.
Under the default specifications of Zth1, Zth2, zth1, and zth2, the support points are freely
estimated and, for the model identification, certain constraints are assumed on the item parame-
ters. On the contrary, to fix the values of the support points, Zth1, Zth2, zth1, and zth2 must be
supplied by the user. For instance, in the situation described in Figure 1 under the assumption
k1 = k2 = 2, we define u = (−1,−1, 1, 1)′ and v = (−0.5, 0.5)′ as follows:

Zth1 <- matrix(0,2*2,0)
zth1 <- c(rep(-1, times=2), rep(1, times = 2))
Zth2 <- matrix(0,2,0)
zth2 <- c(-0.5,0.5)

• Zga1, Zga2, Zbe: matrices for the specification of linear constraints on the vectors of item
parameters γ1, γ2, and β, as in (9), (10) and (11), respectively. In more detail, the number
of rows of Zga1 and Zga2 is equal to the number of non-null entries in multi1 and multi2,
respectively, and coincides with the length of vectors γ1 and γ2; whereas the number of rows of
Zbe corresponds to the total number of item difficulties and coincides with the length of vector
β. The number of columns of Zga1, Zga2, Zbe is equal to the total number of free parameters,
corresponding to the length of vectors γ̃1, γ̃2, and β̃, respectively. By default these are identity
matrices without those columns corresponding to the constrained parameters. For instance, in
the situation described in Figure 1 with the usual IRT constraints γ11 = γ13 = 1 and γ27 = 1
resulting from matrices multi1 and multi2 defined above, and β1 = β3 = β7 = 0 in the case of
binary items, the following matrices are used by default in function est_multi_poly_within:

(Zga1 <- diag(6)[, -c(1,3)])
[,1] [,2] [,3] [,4] [,5]

[1,] 0 0 0 0
[2,] 1 0 0 0
[3,] 0 0 0 0
[4,] 0 1 0 0
[5,] 0 0 1 0
[6,] 0 0 0 1
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(Zga2 <- diag(5)[, -5])

[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 0 1 0
[4,] 0 0 0 1
[5,] 0 0 0 0

(Zbe <- diag(7)[, -c(1,3,7)])

[,1] [,2] [,3] [,4]
[1,] 0 0 0 0
[2,] 1 0 0 0
[3,] 0 0 0 0
[4,] 0 1 0 0
[5,] 0 0 1 0
[6,] 0 0 0 1
[7,] 0 0 0 0

Whenever we are interested in introducing further constraints, then the matrices at issue must
be supplied by the user. For instance, to restrict γ14 = γ15, then matrix Zga1 must be defined as

Zga1 <- diag(6)[ , -c(1, 3, 5)]; Zga1[5, 2] <- 1
Zga1

[,1] [,2] [,3]
[1,] 0 0 0
[2,] 1 0 0
[3,] 0 0 0
[4,] 0 1 0
[5,] 0 1 0
[6,] 0 0 1

• zga1, zga2, and zbe: vectors whose length is equal to the number of rows of Zga1, Zga2, and Zbe,
respectively. In other words, length of zga1, zga2, and zbe is given by the number of elements
in γ1, γ2, and β. The suitable specification of these vectors, combined with that of matrices Zga1,
Zga2, and Zbe, allows for linear constraints and fixed values of the item parameters, as in (9),
(10), and (11). By default, zga1 and zga2 are vectors with elements 1 for each constrained item
and 0 otherwise; by default zbe is a null vector. For instance, in the situation depicted in Figure
1 and matrices multi1 and multi2, default values assumed for vectors at issue are

zga1 <- c(1, 0, 1, 0, 0, 0)
zga2 <- c(0, 0, 0, 0, 1)
zbe <- rep(0, times = 7)

Any other constraint may be defined by modifying in a suitable way these three vectors and
matrices Zga1, Zga2, Zbe. For instance, if we are interested in fixing the difficulty of (binary)
item 4 to be equal to 2 (i.e., β4 = 2), then we define Zbe and zbe as follows:

Zbe <- diag(7)[, -c(1,3,4,7)]
Zbe

[,1] [,2] [,3]
[1,] 0 0 0
[2,] 1 0 0
[3,] 0 0 0
[4,] 0 0 0
[5,] 0 1 0
[6,] 0 0 1
[7,] 0 0 0

zbe <- c(0, 0, 0, 2, 0, 0, 0)

Function est_multi_poly_within supplies the following output:

• piv1 and piv2: vectors of the estimated weights of latent classes for U i and V i, respectively;
in the presence of individual covariates, these are averages of the individual-specific mass
probabilities.
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• Th1 and Th2: matrices of estimated and constrained support points for each dimension (by row)
and each latent class (by column) for U i and V i, respectively.

• Bec: matrix of estimated and constrained item difficulty parameters; exact zeros correspond to
identifiability constraints.

• ga1c and ga2c: vectors of estimated and constrained item discriminating parameters for U i and
V i, respectively; exact ones correspond to identifiability constraints and NA to items that do not
load on the latent variable.

• th1t, th2t, bet, ga1t, and ga2t: estimated parameters (i.e., parameters without constraints)
related to Th1,Th2,Bec,ga1c,ga2c, respectively.

• Th1s, Th2s, Becs, ga1cs, and ga2cs: standardized values of Th1, Th2, Bec, ga1c, and ga2c,
respectively; in Th1s and Th2s classes are re-ordered according to the increasing values of the
support points for the first dimension.

• piv1s and piv2s: the same as piv1 and piv2, but re-ordered according to Th1s and Th2s.

• fv1 and fv2: vectors indicating the reference items for each dimension of U i and V i, respectively.

• Phi: conditional response probabilities for every item and each pair of latent classes of U i and
V i.

• De1 and De2: matrices of estimated regression coefficients for the model on the class weights
for U i and V i, respectively, in the presence of individual covariates; for each covariate and the
constant term, the number of estimated coefficients is equal to the number of latent classes
minus one.

• Piv1, Piv2, Pp1, Pp2, and lkv: optional output (obtained if output = TRUE) referred to the
matrices of weights for every covariate configuration for latent variables U i and V i, the matrices
of the posterior probabilities for each response configuration and latent class for latent variables
U i and V i, and the values of the log-likelihood during the estimation process, respectively.

• XX1dis and XX2dis: design matrices for the covariates affecting the first and the second vector
of latent variables, respectively (optional output obtained if output = TRUE).

• lk: value of the log-likelihood at convergence.

• np: number of estimated model parameters.

• aic, bic, and ent: AIC, BIC, and entropy indices, respectively.

• seDe1, seDe2, seTh1, seTh2, seBec, sega1, sega2, seth1t, seth2t, sebet, sega1t, sega2t, and Vn:
standard errors of the corresponding estimated parameters and estimated variance-covariance
matrix (if out_se = TRUE).

Some relevant commands to display output from function est_multi_poly_within are based
on the S3 methods summary for the main estimates; coef and confint for the point estimates and
confidence intervals (at a specified level of confidence) of support points, item parameters, and
regression coefficients; logLik for the value of log-likelihood at convergence; and vcov for the estimated
variance-and-covariance matrix.

Another relevant function of package MLCIRTwithin is est_multi_poly_between, which per-
forms the maximum likelihood estimation of an LC-IRT model under between-item multidimensional-
ity. The main differences with respect to function est_multi_poly of the R package MultiLCIRT are
that the latter does not allow for items with a different number of response categories and refers to a
slightly different specification of item difficulties (for details see Bacci et al., 2014).

Input arguments required by est_multi_poly_between are very similar to those of function
est_multi_poly_within. The main difference is that only one vector of latent variables is involved
in the model specification. Consequently, the number of latent classes (input k) is common to all the
dimensions and the multidimensional structure of the items is specified through one matrix (input
multi), having one row for each dimension. Constraints on model parameters are also possible through
a suitable definition of arguments Zth, zth, Zbe, zbe, Zga, and zga, whose functioning is the same as
the corresponding arguments in function est_multi_poly_within. The function provides as its main
output argument a vector of estimated average weights of the latent classes (output piv) and a matrix
of estimated support points for each dimension and each latent class of the latent trait before (output
Th) and after the standardization (output Ths). Besides, a matrix of difficulty item parameters (outputs
Bec and, in the case of standardization, Becs), a vector of discriminating indices (output gac and, in the
case of standardization, gacs), and a matrix of regression coefficients (output De) are provided, other
than other output arguments similar to those above described for est_multi_poly_within, included
the S3 methods.

Finally, we clarify that a model specification of type

out1 <- est_multi_poly_between(S, k = k0, link = "global", multi = rbind(1:3, 4:6)),
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with k0 latent classes, is substantially different from a model specification of type

out2 <- est_multi_poly_within(S, k1 = k0, k2 = k0, link = "global", multi1 = c(1:3),
multi2 = c(4:6)).

In fact, the model corresponding to out2 involves two completely independent latent variables, having
incidentally the same number of latent classes: thus, an individual belonging to a specific class (say,
class 1) according to the first latent variable may belong to any latent class under the second latent
variable (say, class 2). On the contrary, model out1 involves only one latent variable decomposed in
two dimensions: thus, belonging to a given latent class under one dimension implies belonging to
the same class under the other dimension. Overall, model out2 has k0−1 free parameters more than
model out1.

Functions search.model_within and search.model_between

As outlined in Section “Likelihood inference,” the selection of a two-tier LC-IRT model may be a quite
demanding procedure, requiring the choice of the number of support points for the latent variables
and a check for the possible presence of local maxima. Function search.model_within allows us to
search for the global maximum of the log-likelihood of a model with a specific formulation (in terms
of multidimensional structure, link function, and constraints on the item parameters) given a vector of
possible number of latent classes to try for.

In practice, function search.model_within applies function est_multi_poly_within a given num-
ber of times for each pair of values for k1 and k2, initializing the estimation algorithm with deterministic
and random values of the model parameters and holding, for each pair of k1 and k2, that model with
the highest value of the log-likelihood at convergence. To make the entire process computationally
less demanding, the search of the global maximum may be performed with a relatively large tolerance
level for checking convergence of the estimation algorithm. Then, in order to improve the precision of
parameters estimates, the estimates provided by the model with the best value of the log-likelihood are
used as starting values in the last step of the model selection process, using an augmented tolerance
level. Note that when k1 = 1 or k2 = 1 the model estimation is actually performed by the function
est_multi_poly_between, which is automatically retrieved by search.model_within.

The function at issue requires the following main input arguments:

• S, yv, X, link, disc, difl, multi1, multi2, fort, disp, output, out_se, Zth1, zth1, Zth2, zth2,
Zbe, zbe, Zga1, zga1, Zga2, and zga2: are the same as in function est_multi_poly_within.

• kv1 and kv2: vectors of number of latent classes to try for latent variable U i and V i, respectively;
single values are also allowed for.

• tol1 and tol2: tolerance levels (default value are 10−6 and 10−10, respectively) for checking
convergence of the algorithm as relative difference between consecutive log-likelihoods. The
value of tol1 is used for checks based on deterministic and random starting values, whereas
the value of tol2 is used for improving the precision of estimates for the model with the best
log-likelihood level.

• nrep: constant value that drives the number of estimations of each model with random starting
values, given by nrep(k1k2 − 1); the default value for nrep is 2. In the case of nrep equal to 0,
only the estimation with deterministic starting values is performed.

Note that if single values for kv1 and kv2 are specified and nrep equals 0, function search.model_within
performs just one call of function est_multi_poly_within (or function est_multi_poly_between if
kv1 or kv2 equal 1) with option start = "deterministic".

Function search.model_within supplies the following output:

• aicv, bicv, and necv: vectors of AIC, BIC, and NEC indices, respectively, for each of the
estimated models.

• errv: trace of any error occurred during the estimation process.

• lkv: values of log-likelihood at convergence for each of the estimated models.

• out.single: output of each single model, similar to the output of est_multi_poly_within, with
the addition of values of k1 (output k1); k2 (output k2); and the sequence of log-likelihoods
(output lktrace) for the deterministic start, for each random start, and for the final estimation
provided by a tolerance level equal to tol2 (if tol2 > tol1).

Finally, we outline that a function with input and output arguments similar to those of the
function search.model_within is available to perform the model selection in the case of between-item
multidimensional LC-IRT models. This function is named search.model_between and it relies on
est_multi_poly_between.
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Examples in R

In the following we illustrate package MLCIRTwithin through two data analysis examples. In
Example 1 we describe the model selection procedure, as well as the interpretation of the output,
considering a set of ordered items measuring two latent variables. In Example 2, the specification of
constraints on the support points and on the item parameters is illustrated through the analysis of
data concerning repeated item responses along two time occasions. The detailed software scripts to
implement the two examples, named Example1.R and Example2.R, are available in the Supplementary
Online Material at https://sites.google.com/site/bartstatistics/sm_mlcirtwithin.zip.

Example 1: analysis of multidimensionality

Data set SF12_nomiss, already provided in the R package MLCIRTwithin, refer to a sample of 493
oncological Italian patients who were asked to fill in the Italian validated Short Form 12 version 2
questionnaire (SF-12; Stewart and Ware, 1992; Ware et al., 2002) concerning the assessment of HQOL.
The questionnaire is comprised by 12 items having five ordered response modalities, except items
2 and 3 having only three modalities; a high score means a worse level of HQOL and vice-versa
(note that, in the original scoring system, modalities of items 9 and 10 are reversed). Also the age is
available for each patient. In the following we show the first few records of the data set and the related
summaries.

library(MLCIRTwithin)

data(SF12_nomiss)
head(SF12_nomiss)

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 age
1 1 0 1 1 0 2 2 2 1 1 1 0 74.94593
2 0 0 1 1 2 1 2 1 0 2 1 1 84.49829
3 1 1 1 2 1 0 0 2 1 1 1 1 77.44285
4 3 2 2 4 4 4 4 3 4 4 4 4 80.55305
6 1 1 2 2 2 2 2 2 2 2 2 2 81.68104
7 1 0 1 3 2 2 1 2 1 2 1 3 78.55168

str(SF12_nomiss)

'data.frame': 493 obs. of 13 variables:
$ Y1 : num 1 0 1 3 1 1 1 1 2 2 ...
$ Y2 : num 0 0 1 2 1 0 0 2 1 1 ...
$ Y3 : num 1 1 1 2 2 1 1 2 1 2 ...
$ Y4 : num 1 1 2 4 2 3 1 3 2 3 ...
$ Y5 : num 0 2 1 4 2 2 2 2 2 3 ...
$ Y6 : num 2 1 0 4 2 2 2 2 3 3 ...
$ Y7 : num 2 2 0 4 2 1 1 2 3 3 ...
$ Y8 : num 2 1 2 3 2 2 2 1 3 3 ...
$ Y9 : num 1 0 1 4 2 1 2 3 3 3 ...
$ Y10: num 1 2 1 4 2 2 1 2 2 2 ...
$ Y11: num 1 1 1 4 2 1 2 1 4 3 ...
$ Y12: num 0 1 1 4 2 3 1 2 3 3 ...
$ age: num 74.9 84.5 77.4 80.6 81.7 ...

# For the description of each item see the online documentation
?SF_nomiss

According to the main current literature (see, mainly, Ware et al., 2002), the SF-12 questionnaire
may be used to properly evaluate two main aspects of HQOL: physical and emotional. The standard
scoring algorithm for summarizing these two latent dimensions is based on an orthogonal factor
analysis, on the basis of which positive and negative weights are assigned to each item. More in detail,
items 1 to 5 and item 8 have positive weights for physical HQOL and negative weights for emotional
HQOL, whereas items 6, 7, 9, 11, and 12 have negative weights for physical HQOL and positive
weights for emotional HQOL; item 10 has positive weights for both components. According to this
scoring system, the scores of physical and emotional HQOL result by a suitable weighted average of
the item responses.
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A low score on physical HQOL has the following meaning (Ware and Gandek, 1998): substantial
limitations in self-care, physical, social and role activities; severe bodily pain; frequent tiredness;
health rated as poor. On the contrary, a high level of physical component corresponds to: no physical
limitations, disabilities or decrements in well-being; high energy level; health rated as excellent. As
regards the emotional component, a low score implies: frequent psychological distress, social and role
disability due to emotional problems; health rated poor. On the other hand, a high level of emotional
component corresponds to: frequent positive affect; absence of psychological distress and limitations
in usual social activities due to emotional problems; health rated excellent.

The main drawback of the above algorithm based on the orthogonal factor analysis is that the
summary score may be inconsistent due to weights of opposite sign for the same items, as higher
emotional health scores drive physical health scores down and, similarly, higher physical health scores
drive emotional health scores down (Farivar et al., 2007). An alternative approach for clustering
patients according to their physical and emotional health status is based on IRT analysis (see, among
others, Hays et al., 1993). In such a context, we analyze the multidimensional structure of SF-12
questionnaire through a two-dimensional model allowing items measuring both latent variables. In
more detail, we compare several plausible multidimensional structures, defined through the following
matrices, with the first one referred to the physical HQOL and the second one referred to the emotional
HQOL:

Type 1: within-item multidimensional model with two independent latent variables and no shared
item; items are allocated according to the sign of weights resulting by the factor analysis
mentioned above:

(multi1_dim1 <- c(1:5, 8))

[1] 1 2 3 4 5 8

(multi1_dim2 <- c(6:7, 9:12))
[1] 6 7 9 10 11 12

Type 2: model with two latent variables sharing items that do not explicitly affect a specific dimension

(multi2_dim1 <- c(1:5, 8:12))

[1] 1 2 3 4 5 8 9 10 11 12

(multi2_dim2 <- c(6:12, 1))

[1] 6 7 8 9 10 11 12 1

Type 3: multidimensional structure similar to the previous one, but with three items (9, 10, and 11)
assigned only to the emotional HQOL

(multi3_dim1 <- c(1:5, 8, 12))

[1] 1 2 3 4 5 8 12

(multi3_dim2 <- c(6:12, 1))

[1] 6 7 8 9 10 11 12 1

Type 4: multidimensional structure similar to that defined through multi21 and multi22, but one
more item (number 8), concerning the presence of pain, is assigned only to physical HQOL,
since pain is usually intended in terms of physical health (i.e., bodily pain)

(multi4_dim1 <- c(1:5, 8, 12))

[1] 1 2 3 4 5 8 12

(multi4_dim2 <- c(6:7, 9:12, 1))

[1] 6 7 9 10 11 12 1

The allocation of every item according to one of the above proposed structures is suggested by the
more or less explicit reference of the item text to physical or emotional component of HQOL (or to
both of them).

Considering the possible multidimensional structures above defined, we focus on models with
global logit link function and free discriminating item parameters; also the effect of age on the mass
probabilities is investigated.
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# Item responses and covariates
S <- SF12_nomiss[ , 1:12]
X <- SF12_nomiss[ , 13]

For each type of multidimensional structure, we select the optimal number of latent classes on
the basis of BIC index according to the procedure described in Section “Likelihood inference”. Also
the check of local maxima solutions follows the same lines described therein. For these aims we use
function search.model_within, as follows:

### Model selection
maxk1 <- 6
maxk2 <- 6

tol1 <- 10^-3
tol2 <- 10^-6

# Multidimensional structure of Type 1
set.seed(0)
out1 <- search.model_within(S, kv1 = 1:maxk1, kv2 = 1:maxk2, X = X, link = "global",

disc = TRUE, multi1 = multi1_dim1, multi2 = multi1_dim2,
fort = TRUE, tol1 = tol1, tol2 = tol2, nrep = 1)

# Multidimensional structure of Type 2
set.seed(0)
out2 <- search.model_within(S, kv1 = 1:maxk1, kv2 = 1:maxk2, X = X, link = "global",

disc = TRUE, multi1 = multi2_dim1, multi2 = multi2_dim2,
fort = TRUE, tol1 = tol1, tol2 = tol2, nrep = 1)

# Multidimensional structure of Type 3
set.seed(0)
out3 <- search.model_within(S, kv1 = 1:maxk1, kv2 = 1:maxk2, X = X, link = "global",

disc = TRUE, multi1 = multi3_dim1, multi2 = multi3_dim2,
fort = TRUE, tol1 = tol1, tol2 = tol2, nrep = 1)

# Multidimensional structure of Type 4
set.seed(0)
out4 <- search.model_within(S, kv1 = 1:maxk1, kv2 = 1:maxk2, X = X, link = "global",

disc = TRUE, multi1 = multi4_dim1, multi2 = multi4_dim2,
fort = TRUE, tol1 = tol1, tol2 = tol2, nrep = 1)

We advise that the entire estimation process may take a very long computational time; then, we
suggest to reduce the tolerance level of the algorithm (we adopted 10−3 instead of the default value
10−6 for argument tol1 and 10−6 instead of the default value 10−10 for argument tol2) and the
number of repetitions with random initializations (we specified nrep = 1 instead of the default
value nrep = 2). Outputs out1, out2, out3, and out4 are contained in the file ‘Example1.RData’,
available in the supplementary online material at https://sites.google.com/site/bartstatistics/
sm_mlcirtwithin.zip.

In order to select the optimal model, values of BIC index are displayed in the following 36-by-4
matrix, having one row for each model and one column for each multidimensional structure:

# BIC indices
BIC <- cbind(out1$bicv, out2$bicv, out3$bicv, out4$bicv)
colnames(BIC) <- c("Type 1", "Type 2", "Type 3", "Type 4")
k1 <- rep(1:6, times = 1, each = 6)
k2 <- rep(1:6, times = 6)
BIC <- cbind(k1, k2, BIC)
BIC

k1 k2 Type 1 Type 2 Type 3 Type 4
[1,] 1 1 16041.95 16041.95 16041.95 16041.95
[2,] 1 2 14952.57 14758.90 14758.90 14857.40
[3,] 1 3 14637.43 14397.05 14397.05 14523.30
[4,] 1 4 14457.90 14186.90 14186.90 14323.75
[5,] 1 5 14457.16 14182.29 14182.29 14322.70
[6,] 1 6 14456.62 14181.76 14181.76 14323.05
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[7,] 2 1 15245.74 14755.76 15106.47 15106.47
[8,] 2 2 14180.93 14010.29 14071.65 14097.89
[9,] 2 3 13865.85 13721.04 13750.05 13784.53
[10,] 2 4 13686.27 13543.49 13554.24 13595.26
[11,] 2 5 13685.48 13543.77 13553.30 13599.42
[12,] 2 6 13684.91 13559.40 13563.59 13604.91
[13,] 3 1 14945.39 14292.43 14748.77 14748.77
[14,] 3 2 13880.61 13674.91 13783.16 13791.13
[15,] 3 3 13565.50 13435.72 13482.17 13495.04
[16,] 3 4 13385.96 13291.34 13303.73 13319.80
[17,] 3 5 13385.83 13294.18 13306.15 13324.50
[18,] 3 6 13392.96 13308.42 13318.83 13334.18
[19,] 4 1 14897.97 14183.55 14678.01 14678.01
[20,] 4 2 13837.48 13606.69 13728.08 13732.33
[21,] 4 3 13522.40 13369.83 13441.26 13451.80
[22,] 4 4 13342.82 13245.49 13262.09 13271.06
[23,] 4 5 13342.45 13251.35 13269.85 13277.34
[24,] 4 6 13341.56 13265.77 13271.07 13293.80
[25,] 5 1 14858.93 14122.61 14610.54 14610.54
[26,] 5 2 13851.00 13549.28 13744.75 13674.28
[27,] 5 3 13538.57 13353.08 13383.57 13387.67
[28,] 5 4 13356.25 13196.32 13215.00 13219.66
[29,] 5 5 13298.70 13207.16 13216.58 13226.12
[30,] 5 6 13298.20 13212.85 13237.74 13242.02
[31,] 6 1 14932.45 14110.19 14613.70 14613.70
[32,] 6 2 13805.78 13557.76 13683.30 13683.43
[33,] 6 3 13495.08 13339.91 13393.67 13410.61
[34,] 6 4 13311.17 13205.40 13231.35 13230.88
[35,] 6 5 13312.05 13214.68 13237.86 13240.88
[36,] 6 6 13310.90 13222.19 13241.50 13243.07

On the basis of the above matrix we observe that the minimum value of the BIC index, that is,
13196.32, is displayed in column 2, denoting the multidimensional structure of type 2, and row 28,
which refers to models with k1 = 5 and k2 = 4 latent classes. The output of the selected model is
contained in the object out2$out.single[[28]].

# Minimum BIC
min(BIC[ , 3:6])

[1] 13196.32

# Detect model with the minimum BIC
arrayInd(which.min(BIC[ , -c(1:2)]), .dim = dim(BIC))

[,1] [,2]
[1,] 28 2

# Number of support points for the best model
out2$out.single[[28]]$k1

[1] 5

out2$out.single[[28]]$k2
[1] 4

# Selected model
outsel = out2$out.single[[28]]

We also observe that the same number of support points is selected for the other multidimensional
structures with shared items (i.e., structures of types 3 and 4).

# Minimum BIC and selected model for multidimensional structures of types 1, 3, 4
min(BIC[, "Type 1"])

[1] 13298.2
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which.min(BIC[ ,"Type 1"])

[1] 30

min(BIC[, "Type 3"])

[1] 13215

which.min(BIC[ ,"Type 3"])

[1] 28

min(BIC[, "Type 4"])

[1] 13219.66

which.min(BIC[ ,"Type 4"])

[1] 28

After selecting the number of latent classes and the type of within-item multidimensional structure,
we estimate again the selected model out with option out_se = T for the computation of standard
errors. To reduce the computational time, we use function est_multi_poly_within with option start
= "external" and specified as input for options Phi, ga1c, ga2c, De1, and De2 the corresponding
output from the selected model.

# Re-estimate model to compute standard errors
out <- est_multi_poly_within(S = S, k1 = outsel$k1, k2 = outsel$k2, X = X,

start = "external",
multi1 = multi2_dim1, multi2 = multi2_dim2,
Phi = outsel$Phi, ga1t = outsel$ga1t, ga2t = outsel$ga2t,
De1 = outsel$De1, De2 = outsel$De2,
link = "global", disc = TRUE, fort = TRUE, output = TRUE,
out_se = TRUE, disp = TRUE)

Details of the output of the estimated model may be displayed through the usual methods summary,
coef, and confint.

### Display output of the estimated model
# summary(out)
# coef(out)
# confint(out)

# Estimates of support points and average mass probabilities for physical HQOL
lv1 <- rbind(out$Th1, t(out$piv1))
rownames(lv1) <- c("Physical HQOL", "Average prob.")
round(lv1, 3)

1 2 3 4 5
Physical HQOL 0.823 1.684 2.854 0.093 -2.024
Average prob. 0.199 0.387 0.310 0.083 0.021

# Estimates of support points and average mass probabilities for emotional HQOL
lv2 <- rbind(out$Th2, t(out$piv2))
rownames(lv2) <- c("Emotional HQOL", "Average prob.")
round(lv2, 3)

1 2 3 4
Emotional HQOL 0.471 11.526 7.585 4.151
Average prob. 0.149 0.141 0.390 0.321

According to the estimated model, patients are clustered in 5 latent classes denoting different
levels of physical HQOL (output out$Th1) and in 4 latent classes denoting different levels of emotional
HQOL (output out$Th2). To simplify the interpretation of the latent classes, it is useful to re-order and
standardize the estimated support points. For this aim, function est_multi_poly_within provides
the values of support points, which are standardized according to equations (14)-(18) and re-ordered
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according to increasing values of the first dimension of the corresponding latent variable (outputs
out$Th1s and out$Th2s with related weights out$piv1s and out$piv2s, respectively).

# Standardized support points of physical HQOL
lv1s <- rbind(out$Th1s, t(out$piv1s))
rownames(lv1s) <- c("Stand. Physical HQOL", "Average prob.")
round(lv1s, 3)

5 4 1 2 3
Stand. Physical HQOL -3.561 -1.517 -0.812 0.019 1.149
Average prob. 0.021 0.083 0.199 0.387 0.310

# Standardized support points of emotional HQOL
lv2s <- rbind(out$Th2s, t(out$piv2s))
rownames(lv2s) <- c("Stand. Emotional HQOL", "Average prob.")
round(lv2s, 3)

1 4 3 2
Stand. Emotional HQOL -1.667 -0.553 0.486 1.679
Average prob. 0.149 0.321 0.390 0.141

We observe that classes 5, 4, and 1 of physical HQOL and classes 1 and 4 of emotional HQOL collect
patients with negative levels of the related latent trait, whereas patients with levels of HQOL above
the mean belong to the remaining classes (i.e., classes 2 and 3 for physical HQOL and classes 3 and 2
for emotional HQOL). We also observe that the distribution of physical HQOL is strongly skewed to
negative values, whereas that of emotional HQOL is symmetric (Figure 2).
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Figure 2: Standardized mass probability distribution of physical (left panel) and emotional (right
panel) HQOL.

As concerns item parameters, the discriminating indices and the corresponding standard errors
and confidence intervals are displayed as follows:

# Item discriminating parameters and related standard errors
gamma1 <- cbind(out$ga1c, out$sega1c)
colnames(gamma1) <- c("gamma1", "st.err.")
round(gamma1, 3)

gamma1 st.err.
[1,] 1.000 0.000
[2,] 1.988 0.329
[3,] 1.193 0.199
[4,] 3.519 0.570
[5,] 3.394 0.582
[6,] NA NA
[7,] NA NA
[8,] 1.579 0.255
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[9,] -0.006 0.117
[10,] 0.732 0.151
[11,] 0.145 0.125
[12,] 1.002 0.184

gamma2 <-cbind(out$ga2c, out$sega2c)
colnames(gamma2) <- c("gamma2", "st.err.")
round(gamma2, 3)

gamma2 st.err.
[1,] 0.212 0.042
[2,] NA NA
[3,] NA NA
[4,] NA NA
[5,] NA NA
[6,] 1.000 0.000
[7,] 0.809 0.076
[8,] 0.128 0.037
[9,] 0.599 0.079
[10,] 0.429 0.059
[11,] 0.793 0.093
[12,] 0.606 0.074

# Confidence intervals at 95% of item discriminating parameters (columns 1-4)
confint(out)

[...] Output omitted

Confidence interval for the item parameters:
gamma1_1 gamma1_2 gamma2_1 gamma2_2 beta1_1 beta1_2 beta2_1 beta2_2 beta3_1 beta3_2 beta4_1 beta4_2

1 1.0000 1.0000 0.1293 0.2939 0.0000 0.0000 2.2927 3.0763 5.4703 6.6560 7.0976 8.9132
2 1.3425 2.6326 NA NA -0.2428 1.8308 3.6945 6.1378 NA NA NA NA
3 0.8036 1.5825 NA NA -1.4885 -0.0974 1.1539 2.5872 NA NA NA NA
4 2.4010 4.6368 NA NA -1.3097 2.1941 1.2833 4.9066 5.2791 9.4358 8.5939 13.4278
5 2.2542 4.5348 NA NA -0.8427 2.5507 1.9437 5.5126 5.3510 9.4330 8.2434 12.8277
6 NA NA 1.0000 1.0000 0.0000 0.0000 2.4866 3.9477 5.4657 7.6420 8.4771 11.2498
7 NA NA 0.6612 0.9574 -0.4397 0.7189 1.7730 3.0777 4.1602 5.8143 7.1608 9.3353
8 1.0790 2.0796 0.0556 0.2010 -2.8325 -0.8067 0.3711 2.0693 3.0574 4.9355 4.5989 6.6225
9 -0.2348 0.2235 0.4451 0.7529 -1.9089 -0.6523 1.0767 2.2309 3.5534 5.0154 6.9565 9.1180
10 0.4366 1.0274 0.3135 0.5451 -0.7823 0.3940 1.9615 3.1901 4.6207 6.1860 7.3341 9.3617
11 -0.0999 0.3905 0.6100 0.9762 -1.1600 0.1005 1.6032 2.9576 4.8700 6.7528 7.4612 9.8398
12 0.6411 1.3637 0.4611 0.7503 -1.5644 0.0124 1.4481 2.8845 4.6337 6.4619 6.9167 9.0782

[...] Output omitted

In the previous output, the first two tables show the estimates of item discriminating parameters γ̂1j
and γ̂2j, respectively, and the related standard errors, whereas the last table shows the corresponding
inferior and superior limits of the confidence intervals at 95% level. Entries denoted by NA refer to
those items that do not load on the corresponding latent variable.

We observe that discriminating parameters are generally highly significant, with two notable
exceptions: discriminating indices for items 9 and 11 referred to physical HQOL (i.e., parameters
γ19 and γ1,11). This result suggests that these two items do not contribute in a significant way to the
measurement of physical HQOL.

The standardized estimates of parameters γ̂∗1j and γ̂∗2j are provided by

# Standardized discriminating parameters
gammas <- rbind(out$ga1cs, out$ga2cs)
rownames(gammas) <- c("Physical HQOL", "Emotional HQOL")
round(gammas, 3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
Physical HQOL 1.036 2.059 1.236 3.645 3.516 NA NA 1.636 -0.006 0.758 0.151 1.038
Emotional HQOL 0.699 NA NA NA NA 3.304 2.674 0.424 1.979 1.419 2.621 2.001

Note that the judgment about general health (item 1) is affected by both components of HQOL, but
the physical dimension has a more relevant role (γ̂∗11 = 1.036 vs γ̂∗21 = 0.699). On the contrary, the
self-evaluation of the consequences of physical or emotional health on social activities (item 12) is
mainly affected by the emotional component of HQOL (γ̂∗1,12 = 1.038 vs γ̂∗2,12 = 2.001).
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We also highlight relevant differences among items in terms of difficulty, as results by the related
standardized item parameters:

# Standardized difficulty parameters
round(out$Becs, 3)

cutoff
item 1 2 3 4
1 -2.929 -0.245 3.134 5.076
2 -2.514 1.608 NA NA
3 -2.778 -0.115 NA NA
4 -5.414 -2.761 1.501 5.155
5 -4.795 -1.921 1.743 4.887
6 -5.979 -2.762 0.575 3.884
7 -4.700 -2.414 0.148 3.409
8 -5.215 -2.175 0.601 2.215
9 -4.853 -1.918 0.712 4.465
10 -3.979 -1.209 1.618 4.563
11 -5.514 -2.704 0.827 3.667
12 -6.066 -3.124 0.258 2.707

In particular, positive responses to items related only (items 4 and 5) or mainly (item 1) to physical
HQOL require a level of the latent trait in average higher than items related only (items 6 and 7) or
mainly (items 9, 11, and 12) to emotional HQOL. In other words, the emotional component of HQOL
interferes less than physical component of HQOL on work, daily activities, and social life.

In the estimated model we assume an effect of patient’s age on the HQOL, according to the
multinomial logit parametrization, as in equation (3). Estimates of regression coefficients δ1h1

and
δ2h2 , with h1 = 2, 3, 4, 5 and h2 = 2, 3, 4, and related standard errors, are provided by:

# Effect of covariate age on physical HQOL
De1 <- cbind(out$De1, out$seDe1)
colnames(De1) <- c("delta12", "delta13", "delta14", "delta15", "se(delta12)",

"se(delta13)", "se(delta14)", "se(delta15)")
round(De1, 3)

delta12 delta13 delta14 delta15 se(delta12) se(delta13) se(delta14) se(delta15)
intercept 2.960 3.021 -0.997 -4.773 1.035 0.937 1.862 2.453
X1 -0.038 -0.043 0.002 0.039 0.017 0.015 0.026 0.035

# Effect of covariate age on emotional HQOL
De2 <- cbind(out$De2, out$seDe2)
colnames(De2) <- c("delta22", "delta23", "delta24", "se(delta22)", "se(delta23)",

"se(delta24)")
round(De2, 3)

delta22 delta23 delta24 se(delta22) se(delta23) se(delta24)
intercept 0.743 2.581 1.905 0.951 0.791 0.850
X1 -0.013 -0.027 -0.019 0.015 0.013 0.014

# Confidence intervals at 95% of regression coeffic. for physical and emotional HQOL
confint(out)

[...] Output omitted

Confidence interval for the regression coefficients for the 1st latent variable:
logit

2_1 2_2 3_1 3_2 4_1 4_2 5_1 5_2
intercept 0.9301 4.9890 1.1833 4.8581 -4.6451 2.6520 -9.5808 0.0355
X1 -0.0709 -0.0055 -0.0717 -0.0146 -0.0489 0.0528 -0.0295 0.1075

Confidence interval for the regression coefficients for the 2nd latent variable:
logit

2_1 2_2 3_1 3_2 4_1 4_2
intercept -1.1204 2.606 1.0306 4.1313 0.2383 3.5707
X1 -0.0434 0.017 -0.0521 -0.0021 -0.0458 0.0081
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We observe a negative, although not particularly significant, effect of age on the probability to
belong to a specific latent class with respect to the worst one (i.e., class 1), for both components of
HQOL. A more parsimonious and more easily interpretable solution is provided by specifying a global
logit parametrization through option glob = TRUE of the function est_multi_poly_within, as follows:

# Model with global logit parametrization for covariates
outgl <- est_multi_poly_within(S = S, k1 = 5, k2 = 4, X = X,

multi1 = multi2_dim1, multi2 = multi2_dim2, link = "global",
disc = TRUE, fort = TRUE, tol = 10^-8, disp = TRUE, output = TRUE,
out_se = TRUE, glob = TRUE)

# Effect of covariate age on physical HQOL
De1glob <- cbind(outgl$De1, outgl$seDe1)
colnames(De1glob) <- c("coef", "se")
round(De1glob, 3)

coef se
cutoff1 5.093 0.544
cutoff2 2.827 0.467
cutoff3 1.050 0.443
cutoff4 -0.777 0.477
X1 -0.028 0.007

# Effect of covariate age on emotional HQOL
De2glob <- cbind(outgl$De2, outgl$seDe2)
colnames(De2glob) <- c("coef", "se")
round(De2glob, 3)

coef se
cutoff1 2.306 0.463
cutoff2 0.664 0.453
cutoff3 -1.312 0.461
X1 -0.010 0.007

# Confidence intervals at 95% of regression coeffic. for physical and emotional HQOL
confint(outgl)

[...] Output omitted

Confidence interval for the regression coefficients for the 1st latent variable:
logit

_1 _2
cutoff1 4.0265 6.1586
cutoff2 1.9112 3.7427
cutoff3 0.1816 1.9187
cutoff4 -1.7110 0.1575
X1 -0.0422 -0.0132

Confidence interval for the regression coefficients for the 2nd latent variable:
logit

_1 _2
cutoff1 1.3987 3.2124
cutoff2 -0.2229 1.5509
cutoff3 -2.2153 -0.4088
X1 -0.0240 0.0049

In such a case just one regression coefficient for each latent variable is estimated instead of k1 − 1 or
k2 − 1, denoting a negative effect of patient’s age on the logit to belong to a specific class or higher
with respect to a lower class.
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Example 2: analysis of repeated item responses

An interesting example of a real problem that can be solved through the discrete two-tier models is
encountered when a questionnaire is used on multiple waves to measure the same latent variable at
each time occasion. In such a situation, following Cai (2010) we distinguish a “specific” dimension Uid1

for each item within the questionnaire to capture the dependence between an individual’s responses
to the same item d1 (d1 = 1, . . . , D1, D1 = r) at the different occasions, and we introduce one “primary”
dimension Vid2 for each wave d2 (d2 = 1, . . . , D2), representing the latent variable of interest at a given
occasion. Through a suitable choice of identifiability and equality constraints on the item parameters,
it is possible to estimate the support points of V i and, then, obtain a class-specific time trajectory of the
latent variable measured by the questionnaire. The resulting multidimensional structure is illustrated
in Figure 3 for the case D2 = 2.

Vi1

Yi1 Yi2 . . . Yir

Ui1 Ui2 . . . Uir

Vi2

Yi,r+1 Yi,r+2 . . . Yi,2r

Figure 3: Path diagram of the discrete two-tier model for longitudinal data for r items and D2 = 2
waves.

To illustrate specification and estimation of the discrete two-tier model for longitudinal data
we refer to a simulated data set about 10 different types of crime committed by a cohort of 10,000
hypothetical subjects on 6 waves; each crime corresponds to a binary item, which assumes value 1 if
the crime was committed and 0 otherwise. The latent variable of interest denotes the propensity to
commit a crime at each time occasion. The data set is available from the R package LMest (Bartolucci
and Pandolfi, 2016).

library(MLCIRTwithin)

### Load and prepare data
library(LMest)
data(data_criminal_sim)
data_criminal_sim[1:12,]

id sex time y1 y2 y3 y4 y5 y6 y7 y8 y9 y10
[1,] 1 1 1 0 0 0 0 0 0 0 0 0 0
[2,] 1 1 2 0 0 0 0 0 0 0 0 0 0
[3,] 1 1 3 0 0 0 0 0 0 0 0 0 0
[4,] 1 1 4 0 0 0 0 0 0 0 0 0 0
[5,] 1 1 5 0 0 0 0 0 0 0 0 0 0
[6,] 1 1 6 0 0 0 0 0 0 0 0 0 0
[7,] 2 1 1 0 0 0 0 0 0 0 0 0 0
[8,] 2 1 2 0 0 0 0 0 0 0 0 0 0
[9,] 2 1 3 0 0 0 0 0 0 0 0 0 0
[10,] 2 1 4 0 0 0 0 0 0 0 0 0 0
[11,] 2 1 5 0 0 0 0 0 0 0 0 0 0
[12,] 2 1 6 0 0 0 0 0 0 0 0 0 0

In order to simplify the illustration of the application, we keep the first two waves and five types of
crime, as follows:

# Keep items: y1,y3,y5,y7,y10; keep occasions: 1, 2
criminal_red <- data_criminal_sim[(data_criminal_sim[,3]==1 | data_criminal_sim[,3]==2),

c(1:3,4,6,8,10,13)]
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Moreover, in order to estimate the model at issue through the R package MLCIRTwithin, we need
to reshape the data from “long” to “wide” format; we also aggregate records corresponding to the
same patterns. Note that, after reshaping the data set, the total amount of items is 10, that is, 5 items
observed at time 1 (j = 1, . . . , 5) and the same 5 items observed again at time 2 (j = 6, . . . , 10).

# Data reshape in wide format
criminal_red <- data.frame(criminal_red)
crim_wide <- reshape(criminal_red, v.names = c("y1", "y3", "y5", "y7", "y10"),

timevar = "time", idvar = "id", direction = "wide")
head(crim_wide)

id sex y1.1 y3.1 y5.1 y7.1 y10.1 y1.2 y3.2 y5.2 y7.2 y10.2
1 1 1 0 0 0 0 0 0 0 0 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0
5 3 1 0 0 0 0 0 0 0 0 0 0
7 4 1 0 0 0 0 0 0 0 0 0 0
9 5 1 0 0 0 0 0 0 0 0 0 0
11 6 1 0 0 0 0 0 0 0 0 0 0
dim(crim_wide)
[1] 10000 12

# Aggregate records with the same pattern
crim_wide <- as.matrix(crim_wide)
crim_wide2 <- aggr_data(crim_wide[, -1])

# Item responses, covariates, and vector of weights
S <- crim_wide2$data_dis[,-1]
X <- crim_wide2$data_dis[,1]; X <- X - 1
yv <- crim_wide2$freq

The multidimensional structure is defined through the specification of matrices multi1 and multi2,
with multi1 referring to specific dimensions capturing the dependence between responses to the same
item at the two different waves, whereas multi2 refers to the propensity to commit a crime at time 1
and at time 2. Then, U i = (Ui1, . . . , Ui5)

′ and V i = (Vi1, Vi2)
′; we also assume k1 = k2 = 2 .

### Define the multidimensional structure
multi1 <- matrix(0, nrow=5, ncol=2)
multi2 <- matrix(0, nrow=2, ncol=5)
multi1[1,] <- c(6, 1)
multi1[2,] <- c(2, 7)
multi1[3,] <- c(3, 8)
multi1[4,] <- c(4, 9)
multi1[5,] <- c(5, 10)
multi2[1,] <- c(1:5)
multi2[2,] <- c(7, 6, 8:10)
multi1

[,1] [,2]
[1,] 6 1
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10
multi2

[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 7 6 8 9 10

# Number of latent classes
k1 <- 2
k2 <- 2

The next step of the model specification consists in fixing some support points to identify the model
and adding equality constraints on difficulties and discriminating indices to properly account for the
longitudinal data structure, similarly to Cai (2010). In more detail, we fix the support points of the
latent variable U i, that is, u = (−1,−1,−1,−1,−1, 1, 1, 1, 1, 1)′, and on the first dimension of the latent
variable V i, whereas the support points on the second dimension of V i are freely estimated, that is,
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v = (−1, v12, 1, v22)
′: in such a way, we estimate how the propensity to commit a crime changes over

the time. Moreover, we constrain difficulty and discriminating parameters of each item at time 1 to be
equal to the parameters of the same item at time 2, that is, β j = β5+j, γ1j = γ1,5+j, γ2j = γ2,5+j, with
j = 1, . . . , 5.

### Specification of model constraints
# Fix support points on latent variable U
# Fix support points on the first dimension of latent variable V
# Free support points on the second dimension of latent variable V

(Zth1 <- matrix(0, nrow(multi1)*k1, 0))

[1,]
[2,]
[3,]
[4,]
[5,]
[6,]
[7,]
[8,]
[9,]
[10,]

(zth1 <- c(rep(-1, times = nrow(multi1)), rep(1, times = nrow(multi1))))
[1] -1 -1 -1 -1 -1 1 1 1 1 1

(Zth2 <- diag(nrow(multi2)*k2)[ , -c(1,3)])
[,1] [,2]

[1,] 0 0
[2,] 1 0
[3,] 0 0
[4,] 0 1

(zth2 <- c(-1, 0, 1, 0))
[1] -1 0 1 0

# Equality constraints on difficulties and discriminating indices to account
# for the longitudinal data structure

(Zbe <- matrix(1, nrow(multi2), 1) %x% diag(nrow(multi1)))
[,1] [,2] [,3] [,4] [,5]

[1,] 1 0 0 0 0
[2,] 0 1 0 0 0
[3,] 0 0 1 0 0
[4,] 0 0 0 1 0
[5,] 0 0 0 0 1
[6,] 1 0 0 0 0
[7,] 0 1 0 0 0
[8,] 0 0 1 0 0
[9,] 0 0 0 1 0
[10,] 0 0 0 0 1
Zga2 <- Zbe
Zga1 <- Zbe

The final step consists in estimating the model according to the structure specified above. The main
difference with respect to the model presented in the previous section (Example 1) is that now all items
are shared by both the latent variables U i and V i and suitable constraints on the model parameters
are introduced through arguments Zth1, zth1, Zth2, zth2, Zbe, Zga1, and Zga2, according to equations
(7)-(11).

out <- est_multi_poly_within(S = S, yv = yv, k1 = k1, k2 = k2, X = X, link = "global",
disc = TRUE, multi1 = multi1, multi2 = multi2, disp = TRUE,
output = TRUE, out_se = TRUE, Zth1 = Zth1, zth1 = zth1, Zth2 = Zth2,
zth2 = zth2, Zbe = Zbe, Zga1 = Zga1, Zga2 = Zga2)

Estimates of support points and item parameters may be displayed through the usual methods
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summary, coef, and confint:

### Display output
# summary(out)
# coef(out)
# confint(out)

# Support points and average weights of latent variable V
out$Th2

class
dimension 1 2

1 -1.0000000 1.000000
2 -0.6925198 1.679367

out$piv2

[,1]
[1,] 0.91757919
[2,] 0.08242081

# Conditional response probabilities for latent variable V
# Note that the latent classes are numbered following an increasing order,
# starting from latent variable U
round(out$Phi[,, 3:4], 3)

, , class = 3

item
category 1 2 3 4 5 6 7 8 9 10

0 0.994 0.982 0.944 0.986 0.998 0.991 0.974 0.919 0.981 0.997
1 0.006 0.018 0.056 0.014 0.002 0.009 0.026 0.081 0.019 0.003

, , class = 4

item
category 1 2 3 4 5 6 7 8 9 10

0 0.897 0.799 0.551 0.874 0.882 0.758 0.618 0.335 0.758 0.628
1 0.103 0.201 0.449 0.126 0.118 0.242 0.382 0.665 0.242 0.372

We observe that 91.8% of the individuals belong to class 1, which is characterized by the smallest
propensity to commit a crime, whereas the remaining 8.24% of individuals are allocated in class 2.
Both classes present a tendency to increase the propensity to commit a crime from time 1 to time 2.
Indeed, the estimated support points of the propensity to commit a crime at time 2 (i.e., estimates of
v12 and v22) are higher than the corresponding values at time 1, for both the latent classes (−0.693
vs −1 for class 1 and 1.679 vs 1 for class 2). Moreover, the conditional probabilities of observing a
given crime is higher for items observed at time 2, that is, items 6 to 10, with respect to the same
items observed at time 1, that is, items 1 to 5, mainly in the case of latent class 2. For instance, for an
individual belonging to class 2 the conditional probability of observing a crime of type 1 equals 10.3%
at time 1 and it increases to 24.2% at time 2.

Finally, we outline that the constraints specified through matrices Zbe, Zga1, and Zga2 result in the
following estimates, which are equal for every pair of items referring to the same type of crime (i.e.,
items 1-6, 2-7, 3-8, 4-9, 5-10):

# Estimates of item parameters
beta <- cbind(out$Bec[1:5], out$Bec[6:10])
colnames(beta) <- c("time 1", "time 2")
gamma1 <- cbind(out$ga1c[1:5], out$ga1c[6:10])
colnames(gamma1) <- c("time 1", "time 2")
gamma2 <- cbind(out$ga2c[1:5], out$ga2c[6:10])
colnames(gamma2) <- c("time 1", "time 2")

beta
time 1 time 2

[1,] 4.994018 4.994018
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[2,] 4.891019 4.891019
[3,] 2.700745 2.700745
[4,] 5.991825 5.991825
[5,] 5.544927 5.544927

gamma1
time 1 time 2

[1,] 1.318531 1.318531
[2,] 2.195804 2.195804
[3,] 1.184268 1.184268
[4,] 2.883623 2.883623
[5,] 1.353772 1.353772

gamma2
time 1 time 2

[1,] 1.510292 1.510292
[2,] 1.317424 1.317424
[3,] 1.311341 1.311341
[4,] 1.169848 1.169848
[5,] 2.183823 2.183823

Summary

In this paper we illustrate the R package MLCIRTwithin, whose main function est_multi_poly_within
implements an Expectation Maximization based approach to estimate the parameters of two-tier latent
class item response theory (IRT) models. This class of models, which extends in a flexible way the
class of basic IRT models, is based on two independent vectors of latent variables. Moreover, two
main assumptions hold: (i) items are allowed to measure one or two latent variables (within-item
multidimensionality) and (ii) latent variables are assumed to have a discrete distribution with a finite
number of support points, which identify homogeneous latent classes of individuals, and related mass
probabilities that may depend on individual covariates.

We illustrate the R package through two examples based on data about the measurement of health-
related quality of life in cancer patients (Example 1) and about the measurement of the propensity to
commit a crime in two time occasions (Example 2). The first example investigates the multidimensional
structure of the questionnaire and is focused on the interpretation of the estimated model parameters.
The second example illustrates how to treat longitudinal item responses through the specification of
suitable constraints on support points and item parameters.
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Variants of Simple Correspondence
Analysis
by Rosaria Lombardo and Eric J. Beh

Abstract This paper presents the R package CAvariants (Lombardo and Beh, 2017). The package
performs six variants of correspondence analysis on a two-way contingency table. The main function
that shares the same name as the package – CAvariants – allows the user to choose (via a series of
input parameters) from six different correspondence analysis procedures. These include the classical
approach to (symmetrical) correspondence analysis, singly ordered correspondence analysis, doubly
ordered correspondence analysis, non symmetrical correspondence analysis, singly ordered non
symmetrical correspondence analysis and doubly ordered non symmetrical correspondence analysis.
The code provides the flexibility for constructing either a classical correspondence plot or a biplot
graphical display. It also allows the user to consider other important features that allow to assess the
reliability of the graphical representations, such as the inclusion of algebraically derived elliptical
confidence regions. This paper provides R functions that elaborates more fully on the code presented
in Beh and Lombardo (2014).

Introduction

Computational procedures for detecting the association between two or more categorical variables are
important aspects of statistical theory and practice. In particular, correspondence analysis provides a
quick and simple graphical summary of how categories and variables are associated with one another.
The theoretical aspects of the analysis are well documented in the statistical and allied disciplines;
see, for example, Benzécri (1973), Greenacre (1984), Lebart et al. (1984), Beh (2004a), Nishisato (2007),
and Beh and Lombardo (2014). Despite the necessity for programs and functions that allow their user
to perform correspondence analysis, the availability for many of the varied approaches is generally
limited. Commercially available statistical software, such as MATLAB, Minitab, SAS and SPSS provide
a means of carrying out correspondence analysis, although their procedures often provide only the
most basic of features as part of their output. Generally nothing beyond the calculation of principal
inertia values, profile coordinates, contribution to inertia and a two-dimensional correspondence plot
are provided. Other popular statistical languages, such as R, provide some packages for performing
simple and multiple correspondence analysis of the classical (symmetrical) type, (Murtagh, 2005;
Nenadic and Greenacre, 2007; Alberti, 2015; De Leeuw, 2006; De Leeuw and Mair, 2009a; Ringrose,
2012; Kostov et al., 2015). Nevertheless, at present, no popular statistical packages provide functions
to perform ordered variants of symmetrical and non symmetrical correspondence analysis.

Overview of correspondence analysis in R

Since the mid 2000’s the programming environment of R has proven to be extremely popular in all
areas of theoretical and applied statistics. This is due in part to the free availability of the program
from the Comprehensive R Archive Network (CRAN; http://CRAN.R-project.org/), the versatility
of the coding environment and the ever increasing number of packages that are now available on the
CRAN.

Various R packages have received a great deal of attention for their contribution to the computing
of correspondence analysis (CA). One of the first is the MASS package (Venables and Ripley, 2002;
Ripley, 2016). It provides the user with a means of performing simple and multiple correspondence
analysis with the option of including supplementary points onto a display. More recently the ca
package of Nenadic and Greenacre (2007) includes functions for performing simple, multiple and joint
correspondence analysis using two and three dimensions for the graphical displays. Supplementary
points were incorporated into the R code of Murtagh (2005) while the anacor package of De Leeuw and
Mair (2009a) allows the user to perform classical and canonical correspondence analysis with missing
values (De Leeuw, 2006; De Leeuw and Mair, 2009b). Further, one may refer to the CA or MCA functions
in the FactoMineR package by Lê et al. (2008). For lexical tables, the CaGalt function incorporated into
the FactoMineR package by Kostov et al. (2015) may be used. Another recent package – cabootcrs – by
Ringrose (2012) checks the reliability of association by superimposing onto a plot bootstrap confidence
regions. The CAinterprTools package by Alberti (2015) makes use of graphical features to enrich a
visual interpretation of CA results. Alternatively, De Leeuw and Mair (2009a) prepared the homals
package for performing Gifi’s approach to correspondence analysis. As well also, Clavel et al. (2014)
presented dualScale package for doing dual scaling (i.e., multiple correspondence analysis) of multiple
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Variants of correspondence analysis

package CA NSCA MCA JCA SOCA DOCA SONSCA DONSCA CCA CNSCA DCA

ade4 x x x x x
anacor x x x

ca x x x
cabootcrs x

CAinterprTools x x
CAvariants x x x x x x

cncaGUI x x
dualScale x x

ExPosition x x x
FactoMineR x x

homals x x
MASS x x
PTAk x
vegan x x x

Table 1: R packages and some CA variants. CA: simple CA; NSCA: non symmetrical CA; MCA:
multiple CA; JCA: joint CA; SOCA: singly ordered CA; DOCA: doubly ordered CA; SONSCA: singly
ordered NSCA; DONSCA: doubly ordered NSCA; CCA: canonical CA; CNSCA: canonical NSCA;
DCA: discriminant CA

choice data. Baxter and Cool (2010) and Alberti (2015) provide a good overview of correspondence
analysis using R with an archaeological focus. Another R based package that can be downloaded freely
from CRAN is ExPosition (Beaton et al., 2014). It is written by Herve Abdi and his team and performs
a variety of different multivariate data analysis techniques, including correspondence analysis and
multiple correspondence analysis. Abdi’s group has also been responsible for other variations of
correspondence analysis including multi-block discriminant correspondence analysis (Williams et al., 2010)
and discriminant correspondence analysis (Abdi, 2007). Furthermore, another suite of R functions that
enables the user to perform a variety of correspondence analysis techniques is vegan (Oksanen et al.,
2016), which was developed primarily for vegetation ecologists. It includes functions that provide
the user with a large array of techniques to choose from including classic correspondence analysis,
canonical correspondence analysis and detrended correspondence analysis. One may also consider
the ade4 package (Dray and Dufour, 2007; Chessel et al., 2004; Thioulouse et al., 1997), which also
includes non symmetric correspondence analysis, to analyze ecological and environmental data in
the framework of numerous euclidean exploratory methods. Further, the cncaGUI package (Librero
et al., 2015) allows canonical correspondence analysis and canonical non symmetrical correspondence
analysis providing inferential results by using bootstrap methods. The PTAk package includes
(Leibovici, 2010, 2015) functions for doing multiway data decomposition, and in particular, it also
allows simple correspondence analysis and a generalization of correspondence analysis for k-way
tables. Lastly, but certainly not least, the R code of Murtagh (2005) for performing simple and multiple
correspondence analysis may also be considered.

An overview of the broad areas of correspondence analysis that these packages cover is summa-
rized in Table 1. While non symmetrical correspondence analysis for nominal variables is included in
some of the R packages on the CRAN that perform correspondence analysis, the remaining ordered
variants have not yet been made available in any R package. However, fragments of R code for some
of these CA variants are available in Beh and Lombardo (2014). Therefore, this paper provides a
comprehensive description of R code that enhances, beyond the classics, the type of correspondence
analysis that one may use. The advantages of these variants is that they enable the user to incorpo-
rate categorical predictor/response associations and the ordinal structure of a variable. For ordered
variables we can easily identify any linear and non-linear sources of association that may exist in the
data. The ordered variants also provide a visualization of non-linear trends of association; the classical
approaches to correspondence analysis do not encompass these features.

The theoretical aspects underlying all the six variants of correspondence analysis considered in
this paper can be found in Beh and Lombardo (2014) and Lombardo et al. (2016). However, here we
will provide the reader with a brief overview of the theoretical aspects of these analyses. We also
describe how the algebraic confidence ellipses for polynomial biplots can be derived; this aspect of the
analysis has not been described elsewhere.
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Some theory

Symmetrical and non symmetrical correspondence analysis

Consider a two-way contingency table N of dimension I × J such that it is a cross-classification of two
variables consisting of I row categories and J column categories, respectively. Denote the matrix of the

joint relative frequencies by P =
(

pij

)
so that ∑I

i=1 ∑J
j=1 pij = 1. Let pi• = ∑J

j=1 pij and p•j = ∑I
i=1 pij

be the ith marginal row proportion and the jth marginal column proportion, general elements of the
diagonal matrices, DI and DJ , respectively.

There are many ways that correspondence analysis can be performed and Nishisato (2007, Chapter
2) provides an excellent overview of some of them. Here, we present the chi-squared statistic expressed
in terms of the weighted sum-of-squares of the centered column profiles since this alternative expres-
sion of X2 is useful when comparing symmetrical correspondence analysis with its non symmetrical
variant. Therefore, consider the chi-squared statistic of N which is defined as

X2 = n
I

∑
i=1

J

∑
j=1

p•j

pi•

(
pij

p•j
− pi•

)2

= n
I

∑
i=1

J

∑
j=1

p•j

pi•
π2

ij ,

where =
(

πij

)
is the I × J matrix of centered column profiles. In this case, the weight matrices in <I

and <J are defined by the elements of the matrices D−1
I and DJ , respectively.

Suppose we now treat the column variable as a predictor variable and the row variable as its
response variable. When such an asymmetric association structure exists between the two categorical
variables one may consider non symmetrical correspondence analysis (Lauro and D’Ambra, 1984;
D’Ambra and Lauro, 1989; Kroonenberg and Lombardo, 1999). To quantify this asymmetric association,
consider the Goodman-Kruskal (1954) tau index

τ =
∑I

i=1 ∑J
j=1 p•j

(
pij
p•j
− pi•

)2

1−∑I
i=1 p2

i•
=

∑I
i=1 ∑J

j=1 p•jπ
2
ij

1−∑I
i=1 p2

i•
=

τnum

τden
.

For this asymmetric case, the weight matrices are I (an I × I identity matrix) and DJ respectively.
Notice that the denominator can be treated as a constant term since it does not depend on the predictor
variable. For this reason it can be neglected without losing any information about the structure
of the association. Therefore τnum is the measure of association considered in non symmetrical
correspondence analysis.

In order to graphically depict the association or the prediction of the rows given the columns in a
low dimensional space, we may consider the generalized singular value decomposition of the centered
column matrix using the suitable weight matrices (Kroonenberg and Lombardo, 1999).

Suppose we consider a general framework for the symmetrical and non symmetrical variants of
CA (Lombardo et al., 2016), that considers generic weight matrices, VI and WJ , in <I and <J . This
general framework may be defined by considering the weighted centered column profile matrix

˜ = V1/2 W1/2.

Therefore, symmetric (or classical) correspondence analysis may be performed by considering V =

D−1
I and W = DJ , while non symmetrical correspondence analysis is defined when V = I and

W = DJ . Doing so leads to the generalized singular value decomposition (GSVD) of

GSVD (˜) = A BT .

where the right and left singular vectors are A(= aim) and B(= bjm), respectively. These quantities
have the orthonormality properties with metrics D−1

I or I (identity) (in<I , depending on the symmetric
or asymmetric relationship between the rows and columns) and DJ (in <J), respectively. As usual, the
elements of the diagonal matrix of singular values, = diag (λm), are arranged in descending order.
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Ordered symmetrical and non symmetrical correspondence analysis

When both variables are ordered, we adapt SVD by using basis vectors for the row and column spaces
by performing the bivariate moment decomposition (BMD) on the matrix ˜ . The BMD of ˜ is expressed
as

BMD (˜) = AZBT ,

where A and B are the row and column polynomial matrices defined by Emerson (1968), respectively,
and Z is the matrix of the generalized correlations (Rayner and Beh, 2009). The construction of
polynomials A and B requires the specification of a priori scores, sX (i) and sY (j) (defined by mi and
mj in CAvariants, respectively), to reflect the ordinal structure of the row and column variables. These
polynomials are orthonormal with respect to the weight matrices. For the analysis of nominal variables,
when a symmetrical association between the variables is considered, the weights in <I and <J are
D−1

I and DJ , respectively. When an asymmetric association is considered, the weights are given by I
and DJ , respectively.

When only one of the two variables consists of ordered categories, rather than considering the
BMD or the GSVD of ˜ , one may consider instead its hybrid decomposition (HD) (Beh, 2001, 2008;
Lombardo et al., 2016). This method of decomposition consists of singular vectors for the nominal
variable and orthogonal polynomials for the ordered variable. Consider the case, as does the package
CAvariants, where the column variable consists of ordered categories and the row variable consists of
nominal categories. Then the HD of ˜ takes the form

HD (˜) = AZBT ,

where A is the column matrix of singular vectors for the nominal row categories and B is the column
matrix of orthogonal polynomials for the ordered column categories. The generic elements of Z, zmv,
are the hybrid generalized correlations; for further details on these elements see Beh and Lombardo
(2014) and Lombardo et al. (2016).

Generalized correlations in ordered CA variants

The generalized correlation matrix, Z, in the BMD of ˜ reflects the various sources of association
between the variables and is derived using orthogonal polynomials (Best and Rayner, 1996; Beh, 1997;
Rayner and Beh, 2009). For example, when the row and column scores are defined as consecutive
integers such that sX (i) = i for i = 1, . . . , I and sY (j) = j for j = 1, . . . , J, then z11 is Pearson’s
product moment correlation of N. A simple generalization of this correlation is z12 which is a measure
of the correlation between any change in the location of the row categories and dispersion of the
column categories. For this reason, z12 is a generalized correlation describing the linear-by-quadratic
association between the row and column categories.

For ordered CA variants, the total inertia is

Inertia (˜) =
I−1

∑
u=1

J−1

∑
v=1

z2
uv,

which can also be written in matrix form as

Inertia (˜) = trace
(

ZTZ
)
= trace

(
ZZT

)
= trace

(
2
)

.

From the matrix of generalized correlations Z, we can obtain the inertia of each polynomial axis
by considering the sum-of-squares of zuv over either u or v. Using BMD or HD, the symmetric
and asymmetric measures of association (X2 and τ) can be partitioned into polynomial components
that reflect various sources of variation for each of the categories. The inertias of the polynomial
components will henceforth be referred to as sources of inertia and are akin to the principal inertia
values in (symmetrical or non symmetrical) correspondence analysis.

A formal statistical test of the X2 or τ index can be made. To test the statistical significance of the
total inertia in the symmetrical and non symmetrical case, we can compare the chi-squared statistic,
or the C-statistic, C = τ · (n− 1) · (I − 1) (Light and Margolin, 1971), with the χ2 distribution with
(I − 1)(J − 1) degree of freedom; see, for example, Beh and Lombardo (2014) for further details.

Unequal inertias of the row and column polynomials. When considering the BMD of ˜ , the total
inertia of the row and column spaces (<I and <J , respectively) will be identical. However, the inertia
associated with each of the row and column polynomials will often be different. For the row categories,

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 171

there are I − 1 row inertia values – one for each of the axes – where the inertia of the uth polynomial
axis is z2

u•. Similarly, there are J − 1 column inertia values – one for each of the axes – where the inertia
of the vth axis is z2

•v. For this reason, we recommend constructing polynomial biplots for the ordered
variants of correspondence analysis instead of the traditional correspondence plots constructed using
principal coordinates. See Beh and Lombardo (2014) and Lombardo et al. (2016) for more details on
these features.

For the HD of ˜ , the interpretation and properties of the Z matrix are a mixture (or hybrid) of
from the GSVD and Z from the BMD. When considering the space <J , calculating ∑M∗

m=1 z2
m1 = z2

•1
gives the location component of the ordered columns and represents the principal inertia for this
variable along the first polynomial axis. Similarly in <I , computing ∑J−1

v=1 z2
1v = z2

1• = λ2
1 yields the

principal inertia of the first principal axis for the nominal row variable. Like BMD, HD yields different
sets of inertia values for each axis in the <I and <J spaces.

Polynomial biplots and elliptical confidence regions

When constructing a polynomial biplot, the ordered row and column categories can be displayed
in a single plot since the row and column coordinates are computed with respect to the same set of
polynomial axes. For example, in a polynomial row metric preserving (or row isometric) biplot, the
column standard polynomial coordinates are

G = B
(

gjv = β jv

)
,

while the principal polynomial coordinates for the row categories are

F = AZ = ˜WJB

 fiv = αiuzuv =
J

∑
j=1

w•jπ̃ijβ jv

 .

In practice, the coordinates for both the row and column categories are computed using the same
orthonormal polynomial axes, i.e., the column polynomials.

The plot method for objects returned by CAvariants provides the user with the option of con-
structing parametric (or algebraic) elliptical confidence regions for all the six CA variants not only
for the nominal CA variants as originally proposed by Beh (2010). We compute the semi-major and
semi-minor axis lengths of the elliptical region for the row and column categories. Here, we provide
the ellipse axes lengths for the ordered symmetric variants of correspondence analysis. For example,
the semi-major axis length of the confidence ellipse for the ith row category is

xi(α) = z2
11

√√√√ χ2
α

n× trace(Z′Z)

(
1

pi•
−

I−1

∑
m=3

a2
im

)
, (1)

while the semi-minor axis length for this row is

yj(α) = z2
22

√√√√ χ2
α

n× trace(Z′Z)

(
1

pi•
−

I−1

∑
m=3

a2
im

)
. (2)

Similar semi-axis lengths can also be derived for the column categories and for the non-symmetrical
CA variants. Furthermore, note that ellipsoids can be constructed for three- or higher- dimensional
correspondence plots by considering the input parameter M >2 in the plot method. For further details
on this issue see Beh (2010); Beh and Lombardo (2014).

Unlike the confidence circles of Lebart et al. (1984) and the more computationally intensive
bootstrap techniques proposed in the literature (Markus, 1994; Linting et al., 2007; Ringrose, 2012;
Greenacre, 1984; Lombardo and Ringrose, 2012), constructing confidence ellipses in this manner takes
into consideration the contribution of the ith row principal polynomial coordinate in dimensions
higher than the second. In fact, since all I dimensions are reflected in the semi-major and semi-minor
axis lengths, all of the contribution that a point has to the symmetrical or asymmetrical association can
be accounted for in a two-dimensional plot using equations (1) and (2). Additional information for how
to compute the p-values of each category point can be easily found by considering a similar theoretical
development of the p-values described in Beh and Lombardo (2014, 2015) for a correspondence
analysis of a contingency table with nominal variables.
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An overview of the CAvariants package

The primary function discussed in this paper is CAvariants. It allows the user to select which
analysis to perform from a suite of six correspondence analysis techniques. These include symmetrical
(or classical) correspondence analysis, non symmetrical correspondence analysis and their ordered
variants, described in Beh and Lombardo (2014, 2015).

The six variations of simple correspondence analysis included in the package CAvariants are:

• The classical approach to simple correspondence analysis (the default analysis which is defined
by the input parameter catype = "CA").

• Two-way, or doubly ordered, symmetrical correspondence analysis (the user can perform this
analysis by defining the input parameter catype = "DOCA").

• One-way, or singly ordered, correspondence analysis for tables of symmetrically related vari-
ables, where the column variable is ordered (the user can perform this analysis by defining the
input parameter catype = "SOCA").

• Non symmetrical correspondence analysis where the nominal column variable is a predictor of
the nominal row variable (the user can perform this analysis by defining the input parameter
catype = "NSCA")

• Two-way, or doubly ordered, non symmetrical correspondence analysis where the ordered
column variable is a predictor of the ordered row variable (the user can perform this analysis by
defining the input parameter catype = "DONSCA").

• One-way, or singly ordered, non symmetrical correspondence analysis, where the ordered
column variable is a predictor of the nominal row variable (the user can perform this analysis
by defining the input parameter catype = "SONSCA")

The input parameters of the function CAvariants are:

• The two-way contingency table, Xtable.

• The assigned ordered scores for the row categories. By default, mi = NULL which gives consecu-
tive integer valued (natural) scores.

• The assigned ordered scores for the column categories. By default, mj = NULL which gives
consecutive integer valued (natural) scores.

• The horizontal polynomial or principal axis. By default firstaxis = 1.

• The vertical polynomial or principal axis. By default lastaxis = 2.

• The input parameter for specifying what variant of correspondence analysis is considered. By
default catype = "CA", other possible values are: catype = "SOCA",catype = "DOCA",catype
= "NSCA",catype = "SONSCA",catype = "DONSCA".

• The input parameter, ellcomp, ensures that the characteristics of the algebraic confidence ellipses
are computed and stored. When ellcomp = TRUE (which is the default), the output includes
the characteristics of the ellipses. The eccentricity of the confidence ellipses is summarized
by the quantity eccentricity, this is the distance between the center and either of its two
foci, which can be thought of as a measure of how much the conic section deviates from being
circular (when it is equal to zero then the region becomes circular). The semi-major axis length
of the ellipse for each row and column point is given by HL Axis 1 while HL Axis 2 gives the
semi-minor axis length of the points along the second axis. The area of the ellipse for each row
and column category is given by Area while the p-value of each category is defined by P-value.

• The number of axes Mell considered in determining the structure of the elliptical confidence
regions. By default, Mell = min(nrow(Xtable),ncol(Xtable)), i.e., the rank of the data matrix.

• The confidence level, alpha, of the elliptical regions. By default, alpha = 0.05.

To visually portray and assess the statistical significance of the categories to the association between
the variables of a contingency table, the plot method can be called by the user. As well as displaying
the classic correspondence plot or biplot, this function allows one to superimpose onto the plot
algebraically derived elliptical confidence regions for each of the principal coordinates (Lebart et al.,
1984; Beh, 2010; Lombardo and Ringrose, 2012; Beh and Lombardo, 2015) for all CA variants. There
are other features of the plot, i.e., through the plot method for “CAvariants” objects, the user may
utilize. Some of these are applicable to all of the analyses and some are applicable to only a few. The
input parameters of the plot method for “CAvariants” objects are:

• The name of the output object, for example say res, used with the main function CAvariants.

• The horizontal polynomial or principal axis, firstaxis. By default, firstaxis = 1.
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• The vertical polynomial or principal axis, lastaxis. By default, lastaxis = 1.

• The size of characters, cex, displayed on the correspondence plot or biplot. By default, cex =
0.8.

• The parameter, cex.lab that specifies the size of character labels of axes in graphical displays.
By default, cex.lab = 0.8.

• The scaling parameter, prop, for specifying the limits of the plotting area. By default, prop = 1.

• The type of graphical display required (either a classical correspondence plot or a biplot). The
user can look at a classical correspondence plot by defining the input parameter plottype =
"classic". When plottype = "biplot", it produces biplot graphical displays, or polynomial
biplots in case of an ordered analysis. Note that for an ordered analysis only polynomial biplots
are suitable. In particular for the singly ordered variants, only row isometric polynomial biplots
make sense, as we assume that the ordered variable is the column variable (the column coordi-
nates are standard polynomial coordinates and the row coordinates are principal polynomial
coordinates). By default, plottype = "biplot".

• For a biplot, one may specify that it be a row-isometric biplot (biptype = "row") or a column-
isometric biplot (biptype = "column"). This feature is available for the nominal symmetrical
and the non symmetrical correspondence analyses. By default, a row-isometric biplot, biptype
= "row", is produced.

• The parameter for scaling the biplot coordinates, scaleplot, originally proposed in Section
2.3.1 of Gower et al. (2011) and described on page 135 of Beh and Lombardo (2014). By default,
scaleplot = 1.

• The parameter posleg for specifying the position of the legend when portraying trends of
ordered categories in ordered variants of correspondence analysis. By default, posleg =
"topleft".

• The parameter pos for specifying the position of point symbols in the graphical displays. By
default, pos = 2.

• The logical parameter, ell which specifies whether algebraic confidence ellipses are to be
included in the plot or not. Setting the input parameter to ell = TRUE will allow the user to
assess the statistical significance of each category to the association between the variables. The
ellipses will be included when the plot is constructed using principal coordinates (being either
row and column principal coordinates or row and column principal polynomial coordinates).
By default, this input parameter is set to ell = FALSE. See also the input parameter ellcomp
of the function CAvariants for a description of the numeric characteristics of the confidence
ellipses (eccentricity, area, etc.), as well as the input parameter ellprint of the print method
for “CAvariants” objects for getting a print of these parameters.

• The number of axes Mell considered when portraying the elliptical confidence regions. By
default, it is equal to Mell = min(nrow(Xtable),ncol(Xtable)), i.e., the rank of the data matrix.
This parameter is identical to the input parameter Mell of the function CAvariants.

• The confidence level of the elliptical regions. By default, alpha = 0.05.

The print method for “CAvariants” objects included in the package, CAvariants, and displays
the main results of the analysis specified by the user. The results displayed depends on the type of
analysis being performed. The principal inertia values, total inertia and p-values are included as part
of its output when catype = "CA", catype = "SOCA" or catype = "DOCA" and are based on Pearson’s
chi-squared statistic. The Goodman Kruskal tau-index is the association measure of interest when
catype = "NSCA", catype = "SONSCA" or catype = "DONSCA". When an ordered analysis is specified
– such as when catype = "DOCA", catype = "SOCA", catype = "SONSCA" or catype = "DONSCA" – a
table describing the significant polynomial components of inertia will also be reported.

The input parameters of the print method for “CAvariants” objects are:

• The name of the output object, for example say res, used with the main function CAvariants.

• The number of dimensions, printdims, that are used to generate the correspondence plot, or
biplot, and for summarizing the numerical output of the analysis. By default, printdims = 2.

• The flag parameter, ellprint, allows that the characteristics of the confidence ellipses (eccen-
tricity, semi-axis, area, p-values) are displayed. By default, ellprint = TRUE.

• The number of axes, Mell, used for the construction of the confidence ellipses. By default,
it is equal to its maximum value, Mell = min(nrow(Xtable),ncol(Xtable)), i.e., the rank of
the data matrix. This input parameter is identical to the parameter Mell of both, function
CAvariants and the plot method for “CAvariants” objects.
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• The level of significance used for the construction of the elliptical regions, alpha. By default,
alpha = 0.05.

• The minimum number of decimal places, digits, used for displaying the numerical summaries
of the analysis. By default, digits = 3.

In general, this function produces the following output:

• The two-way contingency table, Xtable.

• The matrix of row weights, Row weights: Imass. These weights depend on the type of analysis
performed.

• The matrix of column weights, Column weights: Jmass. These weights are equal to the data
column margins for all types of analysis performed.

• The total inertia, Total inertia, of the analysis performed. For example, when considering the
variants of non symmetrical correspondence analysis, the numerator of the Goodman-Kruskal
tau index, the associated C-statistic and its p-value are produced.

• The inertia values, their percentage contribution to the total inertia and the cumulative percent
inertias of the row and column space Inertias. When performing an ordered correspondence
analysis, this output summary describes both the row and column spaces for each principal or
polynomial axis. When catype is "CA" or "NSCA", the associated inertia values in the row and
column spaces are identical.

• The generalized correlation matrix Generalized correlation matrix, when performing an
ordered correspondence analysis, catype should be "DOCA", "DONSCA", "SOCA" or "SONSCA".

• The row principal coordinates, Row principal coordinates, when catype is "CA" or "NSCA".

• The column principal coordinates, Column principal coordinates, when catype is "CA" or
"NSCA".

• The row standard coordinates, Row standard coordinates , when catype is "CA" or "NSCA".

• The column standard coordinates, Column standard coordinates, when catype is "CA" or
"NSCA".

• The row principal polynomial coordinates, Row principal polynomial coordinates, when
performing an ordered correspondence analysis.

• The column principal polynomial coordinates, Column principal polynomial coordinates,
when performing a doubly ordered correspondence analysis.

• The Row standard polynomial coordinates, i.e., standard polynomial coordinates for the row
categories when performing a doubly ordered correspondence analysis.

• The Column standard polynomial coordinates, i.e., standard polynomial coordinates for the
column categories when performing an ordered correspondence analysis.

• The Euclidean distance of the row categories from the origin of the plot, Row distances from
the origin of the plot.

• The Euclidean distance of the column categories from the origin of the plot, Column distances
from the origin of the plot.

• The polynomial components of the total inertia and their p-values, Polynomial components.
The total inertia of the column space is partitioned to identify polynomial components when
catype is "SOCA" or "SONSCA". When catype is "DOCA" or "DONSCA", the total inertia of both the
row and column space is partitioned to identify of polynomial components.

• The inner product, Inner product, of the biplot coordinates (concerning the first two axes when
firstaxis = 1 and lastaxis = 2).

• When the input flag parameter is ellprint = TRUE, then the print includes the eccentricity of
the confidence ellipses, the semi-major axis length of the ellipse for each row and column point,
HL Axis 1, the semi-minor axis length for the ellipse for each row and column point, HL Axis
2, the area of the ellipse for each row and column point, Area and the p-value for each row
and column point, P-value, see also the parameter ellcomp of the function CAvariants for a
detailed description of these parameters.

Furthermore, package CAvariants contains a summary method for the objects returned by CAvariants.
This method provides the list of the objects names of the output and a selection of the main output
objects described in the print method for objects returned by CAvariants.
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Numerical outputs

As an example of the complete set of numerical results that is obtained from performing a particular
variant of correspondence analysis, consider the case where a singly ordered non symmetrical cor-
respondence analysis is performed on the data table shopdataM available in the package CAvariants.
This object is the contingency table being analyzed and is described more fully in Section Application.
The output object name of the main function is called res and is the execution of the CAvariants
function on the shopdataM. The object res is obtained using

R> res <- CAvariants(shopdataM, catype = "SONSCA")

The results are available in the following entries which can be obtained using

R> names(res)

which gives

[1] "Xtable" "rows" "cols" "r" "rowlabels"
[6] "collabels" "Rprinccoord" "Cprinccoord" "Rstdcoord" "Cstdcoord"
[11] "tauden" "tau" "inertiasum" "inertias" "inertias2"
[16] "comps" "catype" "mj" "mi" "pcc"
[21] "Jmass" "Imass" "Trend" "Z" "ellcomp"
[26] "risell" "Mell"

These results may be printed to the screen by using

R> print(res)

while a summary of each of these numerical features is produced by using

R> summary(res)

Application

To demonstrate the application of a variant of simple correspondence analysis described in the
CAvariants package, we present the following example. We shall confine our attention to the non
symmetrical correspondence analysis of a singly ordered contingency table. The contingency table
that we are examining is concerned with shoplifting in The Netherlands and summarizes, in part,
the results of a survey of the Dutch Central Bureau of Statistics (Israëls, 1987). The data considers a
sample of 20819 men who were suspected of shoplifting in Dutch stores between 1977 and 1978. The
predictor variable consists of the age groups of the perpetrators (less than 12yrs, 12 to 14yrs, 15 to
17yrs, 18 to 20yrs, 21 to 29yrs, 30 to 39yrs, 40 to 49yrs, 50 to 64yrs, 65yrs and over) while the response
variable of the table consists of the items stolen. These items are clothing, clothing accessory, tobacco
and/or provisions, stationary, books, records, household goods, candy, toys, jewelry, perfume, hobby and/or tools
and other items. For an extensive description of this example, and the application of correspondence
analysis, see Lombardo et al. (2016).

After choosing the suitable variant of correspondence analysis, we create the object res that
consists of the complete features of the analysis by running the command

R> res <- CAvariants(shopdataM, catype = "SONSCA")

print(res) will return as part of its output the following numerical features:

RESULTS for SONSCA Correspondence Analysis

Data Table:
M12< M13 M16 M19 M25 M35 M45 M57 M65+

clothing 81 138 304 384 942 359 178 137 45
accessories 66 204 193 149 297 109 53 68 28
tobacco 150 340 229 151 313 136 121 171 145
stationary 667 1409 527 84 92 36 36 37 17
books 67 259 258 146 251 96 48 56 41
records 24 272 368 141 167 67 29 27 7
household 47 117 98 61 193 75 50 55 29
candy 430 637 246 40 30 11 5 17 28
toys 743 684 116 13 16 16 6 3 8
jewelry 132 408 298 71 130 31 14 11 10
perfumes 32 57 61 52 111 54 41 50 28
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hobby 197 547 402 138 280 200 152 211 111
other 209 550 454 252 624 195 88 90 34

Row Weights: Imass
clothing accessories tobacco stationary books records household

clothing 1 0 0 0 0 0 0
accessories 0 1 0 0 0 0 0
tobacco 0 0 1 0 0 0 0
stationary 0 0 0 1 0 0 0
books 0 0 0 0 1 0 0
records 0 0 0 0 0 1 0
household 0 0 0 0 0 0 1
candy 0 0 0 0 0 0 0
toys 0 0 0 0 0 0 0
jewelry 0 0 0 0 0 0 0
perfumes 0 0 0 0 0 0 0
hobby 0 0 0 0 0 0 0
other 0 0 0 0 0 0 0

candy toys jewelry perfumes hobby other
clothing 0 0 0 0 0 0
accessories 0 0 0 0 0 0
tobacco 0 0 0 0 0 0
stationary 0 0 0 0 0 0
books 0 0 0 0 0 0
records 0 0 0 0 0 0
household 0 0 0 0 0 0
candy 1 0 0 0 0 0
toys 0 1 0 0 0 0
jewelry 0 0 1 0 0 0
perfumes 0 0 0 1 0 0
hobby 0 0 0 0 1 0
other 0 0 0 0 0 1

Column Weights: Jmass
12< 13 16 19 25 35 45 57 65+

12< 0.137 0.00 0.000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000
13 0.000 0.27 0.000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000
16 0.000 0.00 0.171 0.0000 0.000 0.0000 0.0000 0.0000 0.0000
19 0.000 0.00 0.000 0.0808 0.000 0.0000 0.0000 0.0000 0.0000
25 0.000 0.00 0.000 0.0000 0.166 0.0000 0.0000 0.0000 0.0000
35 0.000 0.00 0.000 0.0000 0.000 0.0665 0.0000 0.0000 0.0000
45 0.000 0.00 0.000 0.0000 0.000 0.0000 0.0394 0.0000 0.0000
57 0.000 0.00 0.000 0.0000 0.000 0.0000 0.0000 0.0448 0.0000
65+ 0.000 0.00 0.000 0.0000 0.000 0.0000 0.0000 0.0000 0.0255

Total inertia 0.038

Inertias, percent inertias and cumulative percent inertias of the row space

inertia inertiapc cuminertiapc
1 0.0300 79.88 79.88
2 0.0037 9.86 89.74
3 0.0032 8.44 98.18
4 0.0003 0.92 99.10
5 0.0003 0.67 99.77
6 0.0001 0.17 99.94
7 0.0000 0.05 99.99
8 0.0000 0.01 100.00
Inertias, percent inertias and cumulative percent inertias of the column space

inertia2 inertiapc2 cuminertiapc2
1 0.0225 59.83 59.83
2 0.0096 25.58 85.41
3 0.0028 7.33 92.74
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4 0.0019 5.18 97.92
5 0.0003 0.82 98.74
6 0.0003 0.74 99.48
7 0.0001 0.35 99.83
8 0.0001 0.17 100.00

Predictability Index for Variants of Non symmetrical Correspondence Analysis:

Numerator of Tau Index predicting the rows given the column categories

[1] 0.038

Tau Index predicting the rows given the column categories

[1] 0.041

C-statistic 10331.51 and p-value 0

Polynomial Components of Inertia

** Column Components **
Component Value P-value

Location 6181.536 0
Dispersion 2642.363 0
Cubic 757.192 0
Error 750.418 0
** C-Statistic ** 10331.509 0

Generalized correlation matrix of Hybrid Decomposition
v1 v2 v3 v4 v5 v6 v7 v8

m1 -0.147 0.084 0.018 -0.030 0.011 0.005 -0.005 0.003
m2 -0.028 -0.034 -0.032 0.024 0.005 -0.010 0.003 0.001
m3 -0.013 -0.037 0.036 -0.016 -0.004 0.006 -0.006 0.002
m4 -0.001 0.002 0.006 0.014 -0.010 0.005 -0.001 -0.001
m5 -0.001 -0.001 -0.007 -0.006 -0.007 0.009 -0.004 -0.004
m6 0.000 0.000 -0.001 0.000 0.000 -0.001 -0.006 0.005
m7 0.000 0.000 0.000 -0.001 -0.002 -0.003 -0.001 -0.002
m8 0.000 0.000 0.000 0.000 -0.001 0.000 0.001 0.001
m9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Column standard polynomial coordinates = column polynomial axes
Axis 1 Axis 2

M12< -1.232 1.352
M13 -0.759 0.142
M16 -0.285 -0.652
M19 0.188 -1.029
M25 0.661 -0.991
M35 1.135 -0.536
M45 1.608 0.336
M57 2.081 1.624
M65+ 2.554 3.328

Row principal polynomial coordinates
Axis 1 Axis 2

clothing 0.072 -0.056
accessories 0.017 -0.014
tobacco 0.039 0.017
stationary -0.084 0.033
books 0.012 -0.012
records 0.000 -0.021
household 0.015 -0.004
candy -0.045 0.027
toys -0.067 0.049
jewelry -0.017 -0.006
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perfumes 0.014 0.000
hobby 0.030 0.015
other 0.014 -0.030

Column distances from the origin of the plot
Axis 1 Axis 2

M12< 0.057 0.002
M13 0.027 0.000
M16 0.000 0.000
M19 0.027 0.002
M25 0.046 0.004
M35 0.041 0.000
M45 0.031 0.005
M57 0.021 0.022
M65+ 0.010 0.047

Row distances from the origin of the plot
Axis 1 Axis 2

clothing 0.005 0.003
accessories 0.000 0.000
tobacco 0.001 0.000
stationary 0.007 0.001
books 0.000 0.000
records 0.000 0.000
household 0.000 0.000
candy 0.002 0.001
toys 0.005 0.002
jewelry 0.000 0.000
perfumes 0.000 0.000
hobby 0.001 0.000
other 0.000 0.001

Inner product of coordinates (first two axes when 'firstaxis=1' and 'lastaxis=2')
M12< M13 M16 M19 M25 M35 M45 M57 M65+

clothing 0.111 0.097 0.014 -0.112 -0.150 -0.118 -0.065 -0.012 0.044
accessories 0.029 0.022 0.002 -0.024 -0.031 -0.027 -0.019 -0.011 -0.002
tobacco 0.057 0.017 -0.010 -0.003 0.004 -0.023 -0.059 -0.094 -0.122
stationary -0.132 -0.089 -0.003 0.089 0.114 0.110 0.098 0.085 0.064
books 0.023 0.015 0.000 -0.014 -0.018 -0.018 -0.018 -0.017 -0.015
records 0.011 0.008 0.000 -0.008 -0.010 -0.010 -0.008 -0.006 -0.004
household 0.023 0.014 0.000 -0.013 -0.016 -0.018 -0.018 -0.018 -0.017
candy -0.074 -0.049 -0.001 0.048 0.061 0.061 0.055 0.049 0.039
toys -0.122 -0.070 0.004 0.061 0.074 0.088 0.101 0.113 0.115
jewelry -0.021 -0.013 0.000 0.012 0.015 0.016 0.016 0.016 0.015
perfumes 0.021 0.010 -0.001 -0.008 -0.009 -0.013 -0.018 -0.023 -0.026
hobby 0.048 0.007 -0.012 0.010 0.021 -0.011 -0.055 -0.098 -0.135
other 0.026 0.030 0.007 -0.039 -0.054 -0.036 -0.010 0.017 0.043

Eccentricity of ellipses
[1] 0.757

Ellipse axes, Area, p-values of rows
HL Axis 1 HL Axis 2 Area P-value

clothing 0.013 0.009 0 0.000
accessories 0.010 0.007 0 0.000
tobacco 0.011 0.007 0 0.000
stationary 0.010 0.007 0 0.000
books 0.012 0.008 0 0.000
records 0.008 0.005 0 0.000
household 0.015 0.010 0 0.000
candy 0.013 0.008 0 0.000
toys 0.011 0.007 0 0.000
jewelry 0.013 0.008 0 0.000
perfumes 0.015 0.010 0 0.297
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hobby 0.011 0.007 0 0.000
other 0.011 0.007 0 0.000

Ellipse axes, Area, p-values of columns
HL Axis 1 HL Axis 2 Area P-value

M12< 0.034 0.022 0.002 0
M13 0.020 0.013 0.001 0
M16 0.020 0.013 0.001 0
M19 0.023 0.015 0.001 0
M25 0.025 0.016 0.001 0
M35 0.026 0.017 0.001 0
M45 0.031 0.020 0.002 0
M57 0.046 0.030 0.004 0
M65+ 0.070 0.046 0.010 0

The total inertia of data, defined by the Goodman-Kruskal tau index (which may also be referred
to as the index of predictability) when performing a non symmetrical correspondence analysis, is
τ = 0.0414; in the output this is reflected by Tau Index predicting the rows given the column. To
determine whether this index is statistically significant, we compute the C-statistic and find that it is
equal to 10331.5 (with 96 degrees of freedom). Therefore, with a p-value that is less than 0.0001, the
age of the perpetrators is a strong predictor of the items that are stolen. The Goodman-Kruskal tau
index and the statistical significance of the C-statistic are summarized as part of the output, together
with the partition of the C-statistic, which identifies significant sources of variation in the ordered
column categories. Indeed, we can look at the inertia explained by each polynomial axis to mark
differences with the other non-ordered analysis. We can see that the most dominant contribution to the
total inertia of the data is due to the component associated with the linear polynomial of the columns.
This location component is 6182 and explains 59.8% of the total inertia. The next most dominant is
the dispersion component of 2642 and reflects that 25.6% of the variation in the column categories is
due to their difference in dispersion. Similarly, the cubic component is 757 and accounts for about
7% of the column variation. Even if the remaining, higher order, components are all statistically
significant (their associated p-value is less than 0.001), they will be not taken into consideration since
polynomials with degree higher than three (and more commonly, four) show limited information
about the association structure and variation of the variables. Hence, collectively, components higher
than the fourth are referred to as the error polynomial component. Note that the first two components
(linear and dispersion) explain 85.4% of the total inertia, so the first two polynomial axes will provide
a sufficient graphical display of the variation of the categories. Furthermore, with the specification of
ellprint = TRUE in the print method for “CAvariants” objects, the output consists of the eccentricity
value of the ellipses, the semi-axis lengths of the ellipse for each of the categories, the area of each
ellipse and the associated p-values.

Polynomial biplot: Portraying the predictability

When an ordered analysis is performed, the trend plots of the row and column categories are depicted.
For example, when performing a singly ordered NSCA, the variation, or trend, of the row categories is
examined by observing how it is affected by the ordered column categories when using a polynomial
transformation. Figure 1 shows a parabolic trend of the row category clothing. This trend highlights
that there is a greater propensity to steal clothing by people aged 25 to 45 years than those of a younger,
or older, age. Figure 2 provides an alternative visual display of these trends and is constructed by
depicting the row (items) categories using principal coordinates and the column (age) categories using
standard coordinates. Hence a row isometric biplot is constructed. Since the analysis also incorporates
the ordered nature of the column categories and the nominal structure of the row categories, Figure 2
is referred to as the row isometric polynomial biplot of the data.

The trend plot of Figure 1 and the polynomial biplot given by Figure 2 can be obtained using the
following command:

R> plot(res, plottype = "biplot", biptype = "row", scaleplot = 5, pos = 1)

When the first two polynomial axes are used to construct the biplot of Figure 2, the resulting configu-
ration has a parabolic shape. Observe that the explained inertia of the polynomial axes is as follows:
The first polynomial axis accounts for 59.8% of the inertia and the second polynomial axis for 25.6% of
the inertia. We can therefore see that the novelty of the polynomial biplot is based on the polynomial
representation of the predictor variable. The first linear polynomial axis represents the deviation from
the mean centered profile accounting for the ordered structure of the age groups, which is reflected in
the correct ordering of the age categories along the first polynomial axis. The second polynomial axis
shows a parabolic shape of the categories with positive concavity. Furthermore, note that the left-hand

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 180

10 20 30 40 50 60 70

−
0

.2
−

0
.1

0
.0

0
.1

0
.2

0
.3

0
.4

Age group scores

In
c
re

a
s
e

 i
n

 P
re

d
ic

ta
b

ili
ty

clothing
accessories
tobacco
stationary
toys
other

Figure 1: Trend of rows: A selection of rows of the centered column profile table reconstructed by
using the first two polynomials.
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Figure 2: Row-isometric polynomial biplot of singly ordered NSCA of shoplifting data: first two
polynomial components, Stolen goods and Age.

side of the first axis is dominated by the young age groups with adolescents and young adults at the
center of the display (who steal items consistent with the average number of thefts of all items). The
mid-adult and older age groups are on the right-hand side of Figure 2.

The magnitude of the coordinates indicate the importance of the first two polynomial components
for modeling the trends of the items. In particular, we see that the first two polynomial coordinates are
sufficient to model the trends for most stolen goods. The reliability of the graphical representation can
be assessed by constructing elliptical confidence regions for the row categories which are depicted
using row principal polynomial coordinates. These ellipses can be obtained using the plot method for
“CAvariants” objects such that
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Figure 3: 95% confidence ellipses in the row isometric polynomial biplot of singly ordered NSCA of
the shoplifting data: Stolen goods and Age.

R> plot(res, scaleplot = 1, ell = TRUE, alpha = 0.05)

Figure 3 gives the 95% confidence ellipses for the row categories and are constructed so that the
weights of the semi-axes are expressed in terms of the hybrid generalized correlations rather than the
squared singular values associated to each axis. These ellipses are constructed so that the information
contained in all of the dimensions is depicted so that, for the plot method for “CAvariants” objects, M
= 8. Since this figure does not show clearly ellipses for a scale problem of coordinates, we can focus
our attention more closely to those points closer to the origin of Figure 3 by specifying that

R> plot(res, scaleplot = 1, ell = TRUE, alpha = 0.05, prop = 60)

By zooming closer to the origin, the configuration of points near the origin is given by Figure 4. It
shows the overlap of the confidence region for perfumes with the origin. It means that all of the
items, except perfumes, are important contributors to the asymmetric association since their confidence
ellipses do not overlap with the origin of the plot.

The contribution of all items to the association structure is also reflected in the p-values that are
summarized as part of the output of the print method for “CAvariants” objects with M = 8 and appear
in the last column of the table, titled Ellipse axes,Area,p-values of rows where alpha = 0.05.
These results show that the only non-statistically significant row category is perfumes, as expected from
its ellipse, with a p-value of 0.297. If we now consider the age of the males in the sample, and specify M
= 8 when constructing confidence ellipses and calculating p-values, see the last column of the table
titled Ellipse axes,Area,p-values of columns, all age groups are useful predictors of the items that
are stolen.

Conclusion

There are many freely downloadable programs/code available for performing classical correspondence
analysis. For example, the R code of Nenadic and Greenacre (2007) and De Leeuw and Mair (2009a)
may be considered for performing simple and joint correspondence analysis. However, the CAvariants
package provides variants of correspondence analysis which are not offered by other correspondence
analysis R packages on CRAN. To the best of these authors’ knowledge, CAvariants is the only package
available that provides the user with the option of performing six variants of two-way correspondence
analysis and, in particular, ordered symmetrical and non symmetrical correspondence analysis variants.
Indeed, symmetrical correspondence analysis for ordered variables was implemented in SPLUS by
Beh (2004b) and has been easily adapted for R.

Subsequent versions of the function may allow for more flexibility by giving the user more tools
to assess the reliability of graphical results. These may include bootstrap confidence regions to
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Figure 4: A zoomed view of the origin of the row-isometric polynomial biplot given by Figure 3.

complement the algebraic regions developed by these authors, or three-dimensional polynomial
biplots. While Beh and Lombardo (2014) and Lombardo et al. (2016) describe the theoretical aspects of
these variants of correspondence analysis for two-way contingency tables in detail, they also provide
fragments of R code to undertake the relevant calculations. However, this paper has described the
CAvariants package by demonstrating the applicability of one variant and providing new insight into
the development of elliptical regions for ordered variants of correspondence analysis.
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hdm: High-Dimensional Metrics
by Victor Chernozhukov, Chris Hansen, and Martin Spindler

Abstract In this article the package High-dimensional Metrics hdm is introduced. It is a collection of
statistical methods for estimation and quantification of uncertainty in high-dimensional approximately
sparse models. It focuses on providing confidence intervals and significance testing for (possibly many)
low-dimensional subcomponents of the high-dimensional parameter vector. Efficient estimators and
uniformly valid confidence intervals for regression coefficients on target variables (e.g., treatment or
policy variable) in a high-dimensional approximately sparse regression model, for average treatment
effect (ATE) and average treatment effect for the treated (ATET), as well for extensions of these param-
eters to the endogenous setting are provided. Theory grounded, data-driven methods for selecting
the penalization parameter in Lasso regressions under heteroscedastic and non-Gaussian errors are
implemented. Moreover, joint/ simultaneous confidence intervals for regression coefficients of a
high-dimensional sparse regression are implemented. Data sets which have been used in the literature
and might be useful for classroom demonstration and for testing new estimators are included.

Introduction

Analysis of high-dimensional models, models in which the number of parameters to be estimated
is large relative to the sample size, is becoming increasingly important. Such models arise naturally
in readily available high-dimensional data which have many measured characteristics available per
individual observation as in, for example, large survey data sets, scanner data, and text data. Such
models also arise naturally even in data with a small number of measured characteristics in situations
where the exact functional form with which the observed variables enter the model is unknown,
and we create many technical variables, a dictionary, from the raw characteristics. Examples of this
scenario include semiparametric models with nonparametric nuisance functions. More generally,
models with many parameters relative to the sample size often arise when attempting to model
complex phenomena.

For R, many packages for estimation high-dimensional models are already available. For example,
glmnet (Friedman et al., 2010) and lars (Hastie and Efron, 2013) are popular for Lasso estimation. The
section "Regularized & Shrinkage Methods" in the task view on "Machine Learning and Statistical
Learning" contains further implementation of Lasso and related methods.

The methods which are implemented in this package (hdm) are chiefly distinct from already
available methods in other packages in offering the following four major features:

1) First, we provide a version of Lasso regression that expressly handles and allows for non-
Gaussian and heteroscedastic errors.

2) Second, we implement a theoretically grounded, data-driven choice of the penalty level λ in
the Lasso regressions. To underscore this choice, we call the Lasso implementation in this
package “rigorous” Lasso (=rlasso). The prefix r in function names should underscore this. In
high-dimensional settings cross-validation is very popular; but it lacks a theoretical justification
for use in the present context and some theoretical proposals for the choice of λ are often
not feasible. Moreover, the theoretically grounded, data-driven choice makes cross-validation
redundant, as it is time-consuming particularly in large data sets.

3) Third, we provide efficient estimators and uniformly valid confidence intervals for various
low-dimensional causal/structural parameters appearing in high-dimensional approximately
sparse models.1 For example, we provide efficient estimators and uniformly valid confidence
intervals for a regression coefficient on a target variable (e.g., a treatment or policy variable) in a
high-dimensional sparse regression model. Target variable in this context means the object not
interest, e.g. a prespecified regression coefficient. We also provide estimates and confidence
intervals for average treatment effect (ATE) and average treatment effect for the treated (ATET),
as well extensions of these parameters to the endogenous setting.

4) Fourth, joint/ simultaneous confidence intervals for estimated coefficients in a high-dimensional
approximately sparse models are provided, based on the methods and theory developed
in Belloni et al. (2014b). They proposed uniformly valid confidence regions for regressions
coefficients in a high-dimensional sparse Z-estimation problems, which include median, mean,
and many other regression problems as special cases. In this article we apply this method to the
coefficients of a Lasso regression and highlight this method with an empirical example.

1A formal definition of approximately sparse models can be found in the accompanying vignette.
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In the following we will give a short overview over the functionality of the package with simple
examples. A detailed introduction on how to use the functions is given in the accompanying vignette.

A very short guide to the literature

In this section we give a very short introduction to the literature with a focus on the methods which
are implemented in the package.

Lasso under heteroscedastic and non-Gaussian errors was analysed in Belloni et al. (2012). Post-
Lasso, i.e. a least squares fit with the variables selected by a Lasso regression, is introduced and
analysed in Belloni and Chernozhukov (2013). Inference for a low-dimensional component of a
potentially high-dimensional vector has been conducted in Belloni et al. (2014a). Belloni et al. (2014a)
also consider inference on average treatment effects in a heterogeneous treatment effect setting after
selection amongst high-dimensional controls. Inference in high-dimensional settings is enabled by
the so-called orthogonality condition. The systematic development of the orthogonality condition for
inference on low-dimensional parameters in high-dimensional settings is given in Chernozhukov et al.
(2015a).

Instrumental variables estimation is a central topic in Econometrics and also becoming more
popular in fields such as Biostatistics, Epidemiology, and Sociology. Good introductions to instrumen-
tal variables and treatment effects are the books Angrist and Pischke (2008) and Imbens and Rubin
(2015). The case of selection on high-dimensional instrumental variables is given in Belloni et al. (2012),
the case of selection on the instruments and control variables in Chernozhukov et al. (2015b). For
further discussion of estimation of treatment effects in a high-dimensional setting including cases with
endogenous treatment assignment, we refer to Belloni et al. (2013).

Estimation of Lasso under heteroscedastic and non-Gaussian errors and
inference for low-dimensional subcomponents

An important feature of our package is that it allows Lasso estimation under heteroscedastic and
non-Gaussian errors. This distinguishes the package hdm from other already available software
implementations of Lasso. As an additional benefit, the theoretical grounded choice of the penalty
does not require cross-validation which might lead to a considerable saving of computation time in
many applications.

Prediction in linear models using approximate sparsity

Consider high dimensional approximately sparse linear regression models. These models have a
large number of regressors p, possibly much larger than the sample size n, but only a relatively small
number s = o(n) of these regressors are important for capturing accurately the main features of the
regression function. The latter assumption makes it possible to estimate these models effectively by
searching for approximately the right set of regressors.

The model reads

yi = x′i β0 + εi, E[εixi] = 0, β0 ∈ Rp, i = 1, . . . , n

where yi are observations of the response variable, xi = (xi,j, . . . , xi,p)’s are observations of p−dimensional
regressors, and εi’s are centered disturbances, where possibly p� n. Assume that the data sequence
is i.i.d. for the sake of exposition, although the framework covered is considerably more general. An
important point is that the errors εi may be non-Gaussian or heteroskedastic (Belloni et al., 2012).

The model can be exactly sparse, namely

‖β0‖0 ≤ s = o(n),

or approximately sparse, namely that the values of coefficients, sorted in decreasing order, (|β0|(j))
p
j=1

obey,
|β0|(j) ≤ Aj−a(β0), a(β0) > 1/2, j = 1, ..., p.

An approximately sparse model can be well-approximated by an exactly sparse model with sparsity
index

s ∝ n1/(2a(β0)).

In order to get theoretically justified performance guarantees, we consider the Lasso estimator
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with data-driven penalty loadings:

β̂ = arg min
β∈Rp

En[(yi − x′i β)
2] +

λ

n
||Ψ̂β||1

where ||β||1 = ∑
p
j=1 |β j|, Ψ̂ = diag(ψ̂1, . . . , ψ̂p) is a diagonal matrix consisting of penalty loadings, and

En abbreviates the empirical average. The penalty loadings are chosen to insure basic equivariance of
coefficient estimates to rescaling of xi,j and can also be chosen to address heteroskedasticity in model
errors. We discuss the choice of λ and Ψ̂ below.

Regularization by the `1-norm naturally helps the Lasso estimator to avoid overfitting, but it also
shrinks the fitted coefficients towards zero, causing a potentially significant bias. In order to remove
some of this bias, consider the Post-Lasso estimator that applies ordinary least squares to the model T̂
selected by Lasso, formally,

T̂ = support(β̂) = {j ∈ {1, . . . , p} : |β̂| > 0}.

The Post-Lasso estimate is then defined as

β̃ ∈ arg min
β∈Rp

En

yi −
p

∑
j=1

xi,jβ j

2

: β j = 0 if β̂ j = 0, ∀j.

In words, the estimator is ordinary least squares applied to the data after removing the regressors that
were not selected by Lasso. The Post-Lasso estimator was introduced and analysed in Belloni and
Chernozhukov (2013).

A crucial matter is the choice of the penalization parameter λ. With the right choice of the penalty
level, Lasso and Post-Lasso estimators possess excellent performance guarantees: They both achieve
the near-oracle rate for estimating the regression function, namely with probability 1− γ− o(1),√

En[(x′i(β̂− β0))2] .
√
(s/n) log p.

In high-dimensions setting, cross-validation is very popular in practice but lacks theoretical
justification and so may not provide such a performance guarantee. In sharp contrast, the choice of the
penalization parameter λ in the Lasso and Post-Lasso methods in this package is theoretical grounded
and feasible. Therefore we call the resulting method the “rigorous”Lasso method and hence add a
prefix r to the function names.

In the case of homoscedasticity, we set the penalty loadings ψ̂j =
√

Enx2
i,j, which insures basic

equivariance properties. There are two choices for penalty level λ: the X-independent choice and
X-dependent choice. In the X-independent choice we set the penalty level to

λ = 2c
√

nσ̂Φ−1(1− γ/(2p)),

where Φ denotes the cumulative standard normal distribution, σ̂ is a preliminary estimate of σ =
√

Eε2,
and c is a theoretical constant, which is set to c = 1.1 by default for the Post-Lasso method and c = .5
for the Lasso method, and γ is the probability level, which is set to γ = .1 by default. The parameter
γ can be interpreted as the probability of mistakenly not removing X’s when all of them have zero
coefficients. In the X-dependent case the penalty level is calculated as

λ = 2cσ̂Λ(1− γ|X),

where
Λ(1− γ|X) = (1− γ)− quantile of n||En[xiei]||∞|X,

where X = [x1, . . . , xn]′ and ei are iid N(0, 1), generated independently from X; this quantity is
approximated by simulation. The X-independent penalty is more conservative than the X-dependent
penalty. In particular the X-dependent penalty automatically adapts to highly correlated designs,
using less aggressive penalization in this case Belloni et al. (2010).

In the case of heteroskedasticity, the loadings are set to ψ̂j =
√

En[x2
ij ε̂

2
i ], where ε̂i are preliminary

estimates of the errors. The penalty level can be X-independent (Belloni et al., 2012):

λ = 2c
√

nΦ−1(1− γ/(2p)),

or it can be X-dependent and estimated by a multiplier bootstrap procedure (Chernozhukov et al.,
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2013):
λ = c× cW(1− γ),

where cW(1− γ) is the 1− γ-quantile of the random variable W, conditional on the data, where

W := n max
1≤j≤p

|2En[xij ε̂iei]|,

where ei are iid standard normal variables distributed independently from the data, and ε̂i denotes an
estimate of the residuals.

Estimation proceeds by iteration. The estimates of residuals ε̂i are initialized by running least
squares of yi on five regressors that are most correlated to yi. This implies conservative starting values
for λ and the penalty loadings, and leads to the initial Lasso and Post-Lasso estimates, which are
then further updated by iteration. The resulting iterative procedure is fully justified in the theoretical
literature.

R implementation

The core of the package are the functions rlasso and rlassoEffects. They allow estimation of a
Lasso regression under heteroscedastic and non-Gaussian errors and inference on a set of prespecified,
low-dimensional objects. As Lasso regression introduces shrinkage bias, a post-Lasso option, which
can be described as Lasso estimation followed by a final refit with ols including only the selected
variables, is available.

The function rlasso implements Lasso and post-Lasso. The default option is to use post-Lasso,
post=TRUE. The user can also decide if an unpenalized intercept should be included (TRUE by default),
LassoShooting.fit contains the computational algorithm that underlies the estimation procedure.
This function implements a version of the Shooting Lasso Algorithm (Fu, 1998). The option penalty of
the function rlasso allows different choices for the penalization parameter and loadings. It allows
for homoscedastic or heteroscedastic errors with default homoscedastic = FALSE. Moreover, the
dependence structure of the design matrix might be taken into consideration for calculation of the
penalization parameter with X.dependent.lambda = TRUE. With the option lambda.start initial values
for the algorithm can be set.2

The option penalty allows to set the constants c and γ which are necessary for the calculation
of the penalty. For a detailed description how the penalty and variable loadings are calculated, we
refer to the accompanying vignette. The maximum number of iterations and the tolerance when the
algorithms should stop can be set with control.

rlasso returns an object of S3 class rlasso for which methods like predict, print, summary are
provided. The methods print and summary have the option all. By setting this option to FALSE only
the coefficients estimated to be non-zero are shown.

The function rlassoEffects does inference for prespecified target variables. Those can be specified
either by the variable names, an integer valued vector giving their position in x, or by a logical
vector indicating the variables for which inference should be conducted. It returns an object of
S3 class rlassoEffects for which the methods summary, print, confint, and plot are provided.
rlassoEffects is a wrapper function for rlassoEffect which does inference for a single target
regressor.

The function rlassoEffects might either be used in the form rlassoEffects(x,y,index) where
x is a matrix, y denotes the outcome variable and index specifies the variables of x for which inference
is conducted. This can done by an integer vector (postion of the variables), a logical vector or the name
of the variables. An alternative usage is as rlassoEffects(formula,data,I) where I is a one-sided
formula which specifies the variables for which is inference is conducted. For further details we refer
to the help page of the function and the following examples where both methods for usage are shown.

For logistic regression the corresponding functions are implemented in an analogous manner,
named rlassologit and rlassologitEffects.

Example

First, we generate a data set on which we demonstrate the basic functions:

2In some cases the user might want to use a predefined, fixed penalization parameter. This can be done by
a special option in the following way: set homoscedastic to "none" and supply a value (vector) lambda.start.
Then this value is used as penalty parameter with independent design and heteroscedastic errors to weight the
regressors.
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set.seed(12345)
> n <- 100 #sample size
> p <- 100 # number of variables
> s <- 3 # number of variables with non-zero coefficients
> X <- matrix(rnorm(n*p), ncol=p)
> beta <- c(rep(5,s), rep(0,p-s))
> Y <- X%*%beta + rnorm(n)

Next we use Lasso for fitting and prediction, show the results and make predictions for the old
and for new X-variables

> lasso.reg <- rlasso(Y~X, post=FALSE, intercept=TRUE) # use Lasso, not-post-Lasso
> # lasso.reg <- rlasso(X,Y, post=FALSE, intercept=TRUE) # alternative use
> summary(lasso.reg, all=FALSE)

Call:
rlasso.formula(formula = Y ~ X, post = FALSE, intercept = TRUE)

Post-Lasso Estimation: FALSE

Total number of variables: 100
Number of selected variables: 11

Residuals:
Min 1Q Median 3Q Max

-2.09008 -0.45801 -0.01237 0.50291 2.25098

Estimate
(Intercept) 0.057
1 4.771
2 4.693
3 4.766
13 -0.045
15 -0.047
16 -0.005
19 -0.092
22 -0.027
40 -0.011
61 0.114
100 -0.025

Residual standard error: 0.8039
Multiple R-squared: 0.9913
Adjusted R-squared: 0.9902
Joint significance test:
the sup score statistic for joint significance test is 64.02 with a p-value of 0

> yhat.lasso <- predict(lasso.reg) #in-sample prediction
> Xnew <- matrix(rnorm(n*p), ncol=p) # new X
> Ynew <- Xnew%*%beta + rnorm(n) #new Y
> yhat.lasso.new <- predict(lasso.reg, newdata=Xnew) #out-of-sample prediction

To reduce bias, now use post-Lasso for fitting and prediction

> post.lasso.reg <- rlasso(Y~X, post=TRUE, intercept=TRUE)
> summary(post.lasso.reg, all=FALSE)

Call:
rlasso.formula(formula = Y ~ X, post = TRUE, intercept = TRUE)

Post-Lasso Estimation: TRUE

Total number of variables: 100
Number of selected variables: 3
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Residuals:
Min 1Q Median 3Q Max

-2.83981 -0.80339 0.02063 0.75573 2.30421

Estimate
(Intercept) 0.000
1 5.150
2 4.905
3 4.912

Residual standard error: 1.059
Multiple R-squared: 0.9855
Adjusted R-squared: 0.9851
Joint significance test:
the sup score statistic for joint significance test is 66.87 with a p-value of 0

> yhat.postlasso <- predict(post.lasso.reg) #in-sample prediction
> yhat.postlasso.new <- predict(post.lasso.reg, newdata=Xnew) #out-of-sample prediction

We can do inference on a set of variables of interest, e.g. the first, second, third, and the fiftieth:

> lasso.effect <- rlassoEffects(x=X, y=Y, index=c(1,2,3,50))
> print(lasso.effect)

Call:
rlassoEffects.default(x = X, y = Y, index = c(1, 2, 3, 50))

Coefficients:
V1 V2 V3 V50

5.0890 4.7781 4.8292 0.1384

> summary(lasso.effect)
[1] "Estimates and significance testing of the effect of target variables"

Estimate. Std. Error t value Pr(>|t|)
V1 5.0890 0.1112 45.781 <2e-16 ***
V2 4.7781 0.1318 36.264 <2e-16 ***
V3 4.8292 0.1314 36.752 <2e-16 ***
V50 0.1384 0.1122 1.234 0.217
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The confidence intervals for the coefficients are given by

> confint(lasso.effect)
2.5 % 97.5 %

> confint(lasso.effect)
2.5 % 97.5 %

V1 4.8710981 5.306834
V2 4.5198436 5.036332
V3 4.5716439 5.086726
V50 -0.0814167 0.358284

Moreover, simultaneous / joint confidence intervals can be calculated which will be discussed in
more detail later.

> confint(lasso.effect, joint = TRUE)
2.5 % 97.5 %

V1 4.8464078 5.3315239
V2 4.4315649 5.1246107
V3 4.4864563 5.1719131
V50 -0.1720149 0.4488822

Finally, we can also plot the estimated effects with their confidence intervals:

> plot(lasso.effect, main="Confidence Intervals")

A strength of the package is that it can also handle non-Gaussian and heteroscedastic error what
we illustrate with a small example:
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> Y <- X%*%beta + rnorm(n, sd=sin(X%*%beta)^2)
> Y <- X%*%beta + rt(n, df=5)
> lasso.reg = rlasso(Y~X, post=FALSE, intercept=TRUE) # use Lasso, not-post-Lasso
> summary(lasso.reg, all=FALSE)

Call:
rlasso.formula(formula = Y ~ X, post = FALSE, intercept = TRUE)

Post-Lasso Estimation: FALSE

Total number of variables: 100
Number of selected variables: 8

Residuals:
Min 1Q Median 3Q Max

-2.51449 -0.76567 0.09798 0.80007 2.11780

Estimate
(Intercept) 0.032
1 4.959
2 4.686
3 4.671
8 0.083
21 0.010
36 0.047
58 -0.070
100 -0.133

Residual standard error: 1.051
Multiple R-squared: 0.9858
Adjusted R-squared: 0.9845
Joint significance test:
the sup score statistic for joint significance test is 66.87 with a p-value of 0

Joint/ simultaneous confidence intervals

Introduction

Belloni et al. (2014b) provide uniformly valid confidence intervals for p1 target parameters which are
defined via Huber’s Z-problems. The Z-framework encompasses, among other things, mean regression,
median regression, generalized linear models, as well as many other methods. The dimension p1 of the
target parameter might be potentially much larger than the sample size. Here we apply their results
to the Lasso regression which can be embedded into this framework. This enables the provision of
uniformly valid joint/ simultaneous confidence intervals for the target parameters. This functionality
is implemented via the functions rlassoEffects and confint. To get joint confidence intervals the
option joint of the latter function has to be set to TRUE. In the next section we illustrate this with an
empirical illustration, analysing the effect of gender on wage, to quantify potential discrimination.

Empirical application: the effect of gender on wage

In Labour Economics an important question is how the wage is related to the gender of the employed.
We use US census data from the year 2012 to analyse the effect of gender and interaction effects of
other variables with gender on wage jointly. The dependent variable is the logarithm of the wage,
the target variable is female (in combination with other variables). All other variables denote some
other socio-economic characteristics, e.g. marital status, education, and experience. For a detailed
description of the variables we refer to the help page.

First, we load and prepare the data.

> library(hdm)
> data(cps2012)
> X <- model.matrix( ~ -1 + female + female:(widowed + divorced + separated +
+ nevermarried + hsd08 + hsd911+ hsg + cg + ad + mw + so + we + exp1 + exp2 + exp3) +
+ (widowed + divorced + separated + nevermarried +
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+ hsd08 + hsd911 + hsg + cg + ad + mw + so + we + exp1 + exp2 + exp3)^2, data=cps2012)
> dim(X)
[1] 29217 136
> X <- X[,which(apply(X, 2, var)!=0)] # exclude all constant variables
> dim(X)
[1] 29217 116
> index.gender <- grep("female", colnames(X))
> y <- cps2012$lnw

The parameter estimates for the target parameters, i.e. all coefficients related to gender (i.e. by
interaction with other variables) are calculated and summarized by the following commands

> effects.female <- rlassoEffects(x=X, y=y, index=index.gender)
> summary(effects.female)
[1] "Estimates and significance testing of the effect of target variables"

Estimate. Std. Error t value Pr(>|t|)
female -0.154923 0.050162 -3.088 0.002012 **
female:widowed 0.136095 0.090663 1.501 0.133325
female:divorced 0.136939 0.022182 6.174 6.68e-10 ***
female:separated 0.023303 0.053212 0.438 0.661441
female:nevermarried 0.186853 0.019942 9.370 < 2e-16 ***
female:hsd08 0.027810 0.120914 0.230 0.818092
female:hsd911 -0.119335 0.051880 -2.300 0.021435 *
female:hsg -0.012890 0.019223 -0.671 0.502518
female:cg 0.010139 0.018327 0.553 0.580114
female:ad -0.030464 0.021806 -1.397 0.162405
female:mw -0.001063 0.019192 -0.055 0.955811
female:so -0.008183 0.019357 -0.423 0.672468
female:we -0.004226 0.021168 -0.200 0.841760
female:exp1 0.004935 0.007804 0.632 0.527139
female:exp2 -0.159519 0.045300 -3.521 0.000429 ***
female:exp3 0.038451 0.007861 4.891 1.00e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Finally, we estimate and plot confident intervals, first "pointwise" and then the joint confidence
intervals.

> joint.CI <- confint(effects.female, level = 0.95, joint = TRUE)
> joint.CI

2.5 % 97.5 %
female -0.244219905 -0.06562666
female:widowed -0.036833704 0.30902467
female:divorced 0.097104065 0.17677471
female:separated -0.066454223 0.11305975
female:nevermarried 0.149932792 0.22377417
female:hsd08 -0.230085134 0.28570576
female:hsd911 -0.215291089 -0.02337899
female:hsg -0.046383541 0.02060398
female:cg -0.023079946 0.04335705
female:ad -0.072370082 0.01144259
female:mw -0.035451308 0.03332443
female:so -0.043143587 0.02677690
female:we -0.043587197 0.03513494
female:exp1 -0.008802488 0.01867301
female:exp2 -0.239408202 -0.07963045
female:exp3 0.024602478 0.05229868
> plot(effects.female, joint=TRUE, level=0.95)

This analysis allows a closer look how discrimination according to gender is related to other
socio-economic variables.

As a side remark, the version 0.2 allows also now a formula interface for many functions including
rlassoEffects. Hence, the analysis could also be done more compact as

> effects.female <- rlassoEffects(lnw ~ female + female:(widowed + divorced + separated +
+ nevermarried + hsd08 + hsd911 + hsg + cg + ad + mw + so + we + exp1 + exp2 + exp3) +
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+ (widowed + divorced + separated + nevermarried +
+ hsd08 + hsd911 + hsg + cg + ad + mw + so + we + exp1 + exp2 + exp3)^2, data=cps2012,
+ I = ~ female + female:(widowed + divorced + separated + nevermarried +
+ hsd08 + hsd911 + hsg + cg + ad + mw + so + we + exp1 + exp2 + exp3))

The one-sided option I gives the target variables for which inference is conducted.

Data sets

The package contains six data sets which are made available for researchers. The growth data set
contains the so-called Barro-Lee data (Barro and Lee, 1994). It contains macroeconomics information
for large set of countries over several decades to analyse the drivers of economic growth. Next,
the package includes a data set on settler mortality and economic outcomes which was used in the
literature to illustrate the effect of institutions on economic growth (Acemoglu et al., 2001). The data
set pension contains information about the choice of 401(k) pension plans and savings behaviour in
the United States (Chernozhukov and Hansen, 2004). A data set for analysing the effect of judicial
decisions regarding eminent domain on economic outcomes (e.g. house prices), is included. More
information is given in Chen and Sethi (2010) and Belloni et al. (2012). The BLP data (Berry et al.,
1995) set was analysed in Berry, Levinsohn and Pakes (1995). The data stem from annual issues of
the Automotive News Market Data Book. The data set inlcudes information on all models marketed
during the the period beginning 1971 and ending in 1990 cotaining 2217 model/years from 997 distinct
models. Finally, US census data (CPS2012) is included.

All data sets are described in their help pages where also further references can be found.

Further functions for inference on structural parameters

Additionally, the package contains functions for estimation and inference on structural parameters in
a high-dimensional setting. An important tool for estimation in the potential presence of endogeneity
is instrumental variable (IV) estimation. The function rlassoIV implements methods for IV estimation
in a high-dimensional setting. This function is a wrapper for several methods. The user can specify
if selection shall be done on the instruments (z-variables), on the control variables (x-variables), or
on both. For the low-dimensional case where no selection is done for the x- or z-variables rlassoIV
performs classical 2SLS estimation by calling the function tsls.

The goal of many empirical analyses is to understand and estimate the causal effect of a treatment,
e.g. the effect of an endogenous binary treatment D, on a outcome, Y, in the presence of a binary
instrumental variable, Z, in settings with very many potential control variables. We provide functions
to estimate the local average treatment effect (LATE), the local average treatment effect of the treated
(LATET) and as special cases the average treatment effect (ATE) and the average treatment effect of
the treated (ATET) in this setting in functions rlassoLATE, rlassoLATE, rlassoATE, and rlassoATET
respectively. These functions also allow calculation of treatment effect standard errors with different
bootstrap methods (“wild”, “normal”, “Bayes”) besides to the classical plug-in standard errors.
Moreover, methods print, summary, and confint, are available.

Both the family of rlassoIV-functions and the family of the functions for treatment effects , which
are introduced in the next section, allow use with both formula-interface and by handing over the
prepard model matrices. Hence the general pattern for use with formula is function(formula,data,...)
where formula consists of two-parts and is a member of the class Formula. These formulas are of the
pattern y d + x | x + z where y is the outcome variable, x are exogenous variables, d endogenous
varialbes (if several ones are allowed depends on the concrete function), and z denote the instrumental
variables. A more primitive use of the functions is by simply hand over the required group of variables
as matrices: function(x=x,d=d,y=y,z=z). In some of the following examples both alternatives are
displayed.

Example: IV estimation

In this section, we briefly present how instrumental variables estimation is conducted in a high-
dimensional setting. The eminent domain example, for which the data set is contained in the package,
serves as an illustration. The underlying goal is to estimate the effect of pro-plaintiff decisions in cases
of eminent domain (government’s takings of private property) on economic outcomes. The analysis of
the effects of such decisions is complicated by the possible endogeneity between judicial decisions
and potential economic outcomes. To address the potential endogeneity, we employ an instrumental
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variables strategy based on the random assignment of judges to the federal appellate panels that
make the decisions. Because judges are randomly assigned to three-judge panels, the judges and
their demographics are randomly assigned conditional on the distribution of characteristics of federal
circuit court judges in a given circuit-year.

First, we load the data and construct the matrices with the controls (x), instruments (z), outcome
(y), and treatment variables (d). Here we consider regional GDP as the outcome variable.

> data(EminentDomain)
> z <- EminentDomain$logGDP$z
> x <- EminentDomain$logGDP$x
> y <- EminentDomain$logGDP$y
> d <- EminentDomain$logGDP$d

As mentioned above, y is the economic outcome, the logarithm of the GDP, d the number of pro
plaintiff appellate takings decisions in federal circuit court c and year t, x is a matrix with control
variables, and z is the matrix with instruments. Here we consider socio-economic and demographic
characteristics of the judges as instruments.

Next, we estimate the model with selection on the instruments.

> lasso.IV.Z <- rlassoIV(x=x, d=d, y=y, z=z, select.X=FALSE, select.Z=TRUE)
> # or lasso.IV.Z <- rlassoIVselectZ(x=X, d=d, y=y, z=Z)
> summary(lasso.IV.Z)
[1] "Estimates and significance testing of the effect of target variables in the

IV regression model"
coeff. se. t-value p-value

d1 0.01543 0.01926 0.801 0.423

Finally, we do selection on both the x and z variables.

> lasso.IV.XZ <- rlassoIV(x=x, d=d, y=y, z=z, select.X=TRUE, select.Z=TRUE)
> summary(lasso.IV.XZ)
Estimates and Significance Testing of the effect of target variables in the

IV regression model
coeff. se. t-value p-value

d1 -0.03488 0.15881 -0.22 0.826

> confint(lasso.IV.XZ)
2.5 % 97.5 %

d1 -0.3461475 0.2763868

Example: treatment effects

Here we apply the treatment functions to 401(k) plan participation. Though it is clear that 401(k) plans
are widely used as vehicles for retirement saving, their effect on assets is less clear. The key problem
in determining the effect of participation in 401(k) plans on accumulated assets is saver heterogeneity
coupled with nonrandom selection into participation states. In particular, it is generally recognized
that some people have a higher preference for saving than others. Thus, it seems likely that those
individuals with the highest unobserved preference for saving would be most likely to choose to
participate in tax-advantaged retirement savings plans and would also have higher savings in other
assets than individuals with lower unobserved saving propensity. This implies that conventional
estimates that do not allow for saver heterogeneity and selection of the participation state will be
biased upward, tending to overstate the actual savings effects of 401(k) and IRA participation.

Again, we start first with the data preparation. For a detailed description of the data set we refer
to the help page help(pension).

data(pension)
y <- pension$tw; d = pension$p401; z = pension$e401
X <- pension[,c("i2", "i3", "i4", "i5", "i6", "i7", "a2", "a3", "a4", "a5",

"fsize", "hs", "smcol", "col", "marr", "twoearn", "db", "pira", "hown")]
# simple model
xvar <- c("i2", "i3", "i4", "i5", "i6", "i7", "a2", "a3", "a4", "a5",

"fsize", "hs", "smcol", "col", "marr", "twoearn", "db", "pira", "hown")
xpart <- paste(xvar, collapse = "+")
form <- as.formula(paste("tw ~ ", paste(c("p401", xvar), collapse ="+"), "|",

paste(xvar, collapse = "+")))
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formZ <- as.formula(paste("tw ~ ", paste(c("p401", xvar), collapse ="+"), "|",
paste(c("e401", xvar), collapse = "+")))

Now we can compute the estimates of the target treatment effect parameters:

> #pension.ate = rlassoATE(X,d,y)
> pension.ate = rlassoATE(form, data = pension)
> summary(pension.ate)
Estimation and significance testing of the treatment effect
Type: ATE
Bootstrap: not applicable

coeff. se. t-value p-value
TE 10490 1920 5.464 4.67e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> #pension.atet <- rlassoATET(X,d,y)
> pension.atet <- rlassoATET(form, data = pension)
> summary(pension.atet)
Estimation and significance testing of the treatment effect
Type: ATET
Bootstrap: not applicable

coeff. se. t-value p-value
TE 11810 2844 4.152 3.29e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> pension.late <- rlassoLATE(X,d,y,z)
> #pension.late <- rlassoLATE(formZ, data=pension)
> summary(pension.late)
Estimation and significance testing of the treatment effect
Type: LATE
Bootstrap: not applicable

coeff. se. t-value p-value
TE 12189 2734 4.458 8.27e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> pension.latet <- rlassoLATET(X,d,y,z)
> #pension.latet <- rlassoLATET(formZ, data=pension)
> summary(pension.latet)
Estimation and significance testing of the treatment effect
Type: LATET
Bootstrap: not applicable

coeff. se. t-value p-value
TE 12687 3590 3.534 0.00041 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The results are summarized in Table 1. We see that in this example the estimates are quite similar,
while the standard errors differ.

Table 1: Estimation of treatment effects

Estimate Std. Error
ATE 10490.07 1919.99

ATET 11810.45 2844.33
LATE 12188.66 2734.12

LATET 12686.87 3590.09
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Application: estimation of the effect of price on demand

Introduction

A core problems in Economics is to estimate the effect of price on the demand of products. This is
usually impeded by the fact that price are not exogenously given, but determined by demand and
supply in a simultaneous system of equations, introducing endogeneity. A possible way to solve this
problem is to employ instrumental variables - a technique which is also getting more popular outside
of Economics. The results found here are a replication in Rof the results in Chernozhukov et al. (2015b)
and Chernozhukov et al. (2015a).

here we are interested in estimating the coefficients in a simple logit model of demand for automo-
biles using market share data. Our example is based on the data and most basic strategy from Berry
et al. (1995). The goal is to estimate the influence / effect of the price on demand (=market share).
Specifically,

log(sit)− log(s0t) = α0 pit + x′itβ0 + εit,

pit = z′itδ0 + x′itγ0 + uit,

where sit is the market share of product i in market t with product zero denoting the outside
option, pit is the price and is treated as endogenous, xit are observed included product characteristics,
and zit are instruments. In the data set the variable y is defined as log(sit)− log(s0t).

In our example, we use the same set of product characteristics (x-variables) as used in obtaining
the basic results in Berry et al. (1995). Specifically, we use five variables in xit: a constant, an air
conditioning dummy, horsepower divided by weight, miles per dollar, and vehicle size. We refer to
these five variables as the baseline set of controls.

We also adopt the argument from Berry et al. (1995) to form our potential instruments. BLP argue
that that characteristics of other products will satisfy an exclusion restriction, E[εit|xjτ ] = 0 for any τ
and j 6= i, and thus that any function of characteristics of other products may be used as instrument for
price. This condition leaves a very high-dimensional set of potential instruments as any combination
of functions of {xjτ}j 6=i,τ≥1 may be used to instrument for pit. To reduce the dimensionality, BLP
use intuition and an exchangeability argument to motivate consideration of a small number of these
potential instruments formed by taking sums of product characteristics formed by summing over
products excluding product i. Specifically, we form baseline instruments by taking

zk,it =

 ∑
r 6=i,r∈I f

xk,rt, ∑
r 6=i,r/∈I f

xk,rt


where xk,it is the kth element of vector xit and I f denotes the set of products produced by firm f . This
choice yields a vector zit consisting of 10 instruments. We refer to this set of instruments as the baseline
instruments.

While the choice of the baseline instruments and controls is motivated by good intuition and
economic theory, it should be noted that theory does not clearly state which product characteristics or
instruments should be used in the model. Theory also fails to indicate the functional form with which
any such variables should enter the model. High-dimensional methods outlined offer one strategy
to help address these concerns which complements the economic intuition motivating the baseline
controls and instruments. As an illustration, we consider an expanded set of controls and instruments.
We augment the set of potential controls with all first order interactions of the baseline variables,
quadratics and cubics in all continuous baseline variables, and a time trend which yields a total of 24
x-variables. We refer to these as the augmented controls. We then take sums of these characteristics as
potential instruments following the original strategy which yields 48 potential instruments.

Estimation

The data set is included in the package an can be accessed in the following way

data(BLP)
BLPData <- BLP$BLP

A detailed description of the data is given in Berry et al. (1995) and also on the help page.

In the base line model we consider five x-variables and ten instrumental variables as described
above. First we process the data, in particular we construct the design matrices for the x- and z-
variables.The matrix of instruments Z is shipped with the data set but could also be constructed with
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the internal function constructIV in the package hdm.

attach(BLPData)
X <- as.matrix(cbind(1, BLPData[,c("hpwt", "air", "mpd", "space")]))
Z <- BLP$Z
#Z <- hdm:::constructIV(firm.id, cdid, id, X)

With the baseline x- and z- variables, we estimate the price-effect with ols, tsls, and finally with
selection on the x- and z-variables.

ols.reg <- lm(y~ price + hpwt + air + mpd + space, data =BLPData)
tsls.reg <- tsls(x=X, d=price, y=y, z=Z, intercept =FALSE, homoscedastic = FALSE)
lasso.reg <- rlassoIV(x=X[,-1], y=y, z=Z, d=price, select.X=TRUE, select.Z=TRUE,
intercept = TRUE)

The results are summarized in the table below:

Table 2: Results baseline model

Method Price coefficient Standard error
Baseline OLS -0.089 0.004

Baseline TSLS -0.136 0.012
Baseline TSLS with Lasso selection -0.174 0.013

Next, we estimate the augmented model which in total has 24 controls and 48 instruments First,
we construct the data needed to estimate the augmented model. The set of augmented IVs can be
accessed by

augZ <- BLP$augZ

tu <- trend/19
mpdu <- mpd/7
spaceu <- space/2
augX = cbind(1, hpwt, air, mpdu, spaceu, tu, hpwt^2, hpwt^3, mpdu^2, mpdu^3,

spaceu^2, spaceu^3, tu^2, tu^3, hpwt*air, mpdu*air, spaceu*air, tu*air,
hpwt*mpdu, hpwt*spaceu, hpwt*tu, mpdu*spaceu, mpdu*tu, spaceu*tu)

colnames(augX) <- c("constant", "hpwt", "air", "mpdu", "spaceu", "tu", "hpwt^2", "hpwt^3",
"mpdu^2", "mpdu^3", "spaceu^2", "spaceu^3", "tu^2", "tu^3", "hpwt*air", "mpdu*air",
"spaceu*air", "tu*air", "hpwt*mpdu", "hpwt*spaceu", "hpwt*tu", "mpdu*spaceu", "mpdu*tu",
"spaceu*tu")
# augZ <- hdm:::constructIV(firm.id, cdid, id, augX) # construction of augmented set of IVs

Next, we redo the analysis with augmented set of variables:

ols.reg <- lm(y~ -1 + cbind(price, augX))
tsls.reg <- tsls(x=augX, d=price, y=y, z=augZ, intercept =FALSE, homoscedastic = FALSE)
lasso.reg <- rlassoIV(x=augX[,-1], y=y, z=augZ, d=price, select.X=TRUE, select.Z=TRUE,
intercept = TRUE)

The results for the augmented model are presented in the table:

Table 3: Results augmented model

Method Price coefficient Standard error
Augmented OLS -0.099 0.004

Augmented TSLS -0.127 0.008
Augmented TSLS with Lasso selection -0.286 0.02

Results

We report estimation results from the baseline and augmented setting in the tables above. The
estimations all give a negative effect of price on demand as expected, but they differ considerably in
size of the effects. In the augmented model we get the strongest influence of price on the market share
and we see that the choice of instruments is an important issue.
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Summary

The package hdm contains methods for estimation and inference in a high-dimensional setting. We
have presented a short overview of the functions implemented. The package also contains data sets
which might be useful for classroom presentations and as applications for newly developed estimators.
More examples and a short introduction in the underlying theoretical concepts are provided in the
accompanying vignette. It is planned to extend the functionality and to improve the performance of
the functions in subsequent versions of the package.

Bibliography

D. Acemoglu, S. Johnson, and J. A. Robinson. The colonial origins of comparative development: An
empirical investigation. American Economic Review, 91(5):1369–1401, 2001. [p193]

J. D. Angrist and J.-S. Pischke. Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton
University Press, 2008. [p186]

R. J. Barro and J.-W. Lee. Data set for a panel of 139 countries. NBER,
http://www.nber.org/pub/barro.lee.html, 1994. [p193]

A. Belloni and V. Chernozhukov. Least squares after model selection in high-dimensional sparse
models. Bernoulli, 19(2):521–547, 2013. ArXiv, 2009. [p186, 187]

A. Belloni, V. Chernozhukov, and C. Hansen. Inference for high-dimensional sparse econometric
models. Advances in Economics and Econometrics. 10th World Congress of Econometric Society. August
2010, III:245–295, 2010. ArXiv, 2011. [p187]

A. Belloni, D. Chen, V. Chernozhukov, and C. Hansen. Sparse models and methods for optimal
instruments with an application to eminent domain. Econometrica, 80:2369–2429, 2012. Arxiv, 2010.
[p186, 187, 193]

A. Belloni, V. Chernozhukov, I. Fernández-Val, and C. Hansen. Program evaluation with high-
dimensional data. arXiv:1311.2645, 2013. ArXiv, 2013. [p186]

A. Belloni, V. Chernozhukov, and C. Hansen. Inference on treatment effects after selection amongst
high-dimensional controls. Review of Economic Studies, 81:608–650, 2014a. ArXiv, 2011. [p186]

A. Belloni, V. Chernozhukov, and K. Kato. Uniform post-selection inference for least absolute deviation
regression and other z-estimation problems. Biometrika, 2014b. doi: 10.1093/biomet/asu056. [p185,
191]

S. Berry, J. Levinsohn, and A. Pakes. Automobile prices in market equilibrium. Econometrica, 63:
841–890, 1995. [p193, 196]

D. L. Chen and J. Sethi. Does forbidding sexual harassment exacerbate gender inequality. unpublished
manuscript, 2010. [p193]

V. Chernozhukov and C. Hansen. The impact of 401(k) participation on the wealth distribution: An
instrumental quantile regression analysis. Review of Economics and Statistics, 86(3):735–751, 2004.
[p193]

V. Chernozhukov, D. Chetverikov, and K. Kato. Gaussian approximations and multiplier bootstrap
for maxima of sums of high-dimensional random vectors. Annals of Statistics, 41:2786–2819, 2013.
[p187]

V. Chernozhukov, C. Hansen, and M. Spindler. Valid post-selection and post-regularization inference:
An elementary, general approach. Annual Review of Economics, 7(1):649–688, 2015a. doi: 10.1146/
annurev-economics-012315-015826. [p186, 196]

V. Chernozhukov, C. Hansen, and M. Spindler. Valid post-selection and post-regularization inference in
linear models with many controls and instruments. American Economic Review: Papers and Proceedings,
2015b. [p186, 196]

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010. [p185]

W. J. Fu. Penalized regressions: The bridge versus the lasso. Journal of Computational and Graphical
Statistics, 7(3):397–416, 1998. doi: 10.1080/10618600.1998.10474784. [p188]

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 199

T. Hastie and B. Efron. lars: Least Angle Regression, Lasso and Forward Stagewise, 2013. URL https:
//CRAN.R-project.org/package=lars. R package version 1.2. [p185]

G. W. Imbens and D. B. Rubin. Causal Inference for Statistics, Social, and Biomedical Sciences: An Intro-
duction. Cambridge University Press, New York, NY, USA, 2015. ISBN 0521885884, 9780521885881.
[p186]

Victor Chernozhukov
Massachusetts Institute of Technology
Economics Department and Center for Statistics
50 Memorial Drive, Cambridge, MA 02142
USA
vchern@mit.edu

Chris Hansen
University of Chicago
Booth School of Business
5807 South Woodlawn Avenue, Chicago, Illinois 60637
USA
chansen1@chicagobooth.edu

Martin Spindler
University of Hamburg and Max Planck Society
Von-Melle-Park 5
20146 Hamburg
Germany
spindler@mea.mpisoc.mpg.de

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

https://CRAN.R-project.org/package=lars
https://CRAN.R-project.org/package=lars
mailto:vchern@mit.edu
mailto:chansen1@chicagobooth.edu
mailto:spindler@mea.mpisoc.mpg.de


CONTRIBUTED RESEARCH ARTICLES 200

Normal Tolerance Interval Procedures in
the tolerance Package
by Derek S. Young

Abstract Statistical tolerance intervals are used for a broad range of applications, such as quality
control, engineering design tests, environmental monitoring, and bioequivalence testing. tolerance
is the only R package devoted to procedures for tolerance intervals and regions. Perhaps the most
commonly-employed functions of the package involve normal tolerance intervals. A number of new
procedures for this setting have been included in recent versions of tolerance. In this paper, we discuss
and illustrate the functions that implement these normal tolerance interval procedures, one of which
is a new, novel type of operating characteristic curve.

Introduction and overview of the tolerance package

Statistical tolerance intervals of the form (1− α, P) provide bounds to capture at least a specified
proportion P of the sampled population with a given confidence level 1− α. The quantity P is called
the content of the tolerance interval and the confidence level 1− α reflects the sampling variability.
There is an extensive literature on tolerance intervals with some of the earliest works being Wilks
(1941, 1942) and Wald (1943). The texts by Guttman (1970) and Krishnamoorthy and Mathew (2009)
are devoted to the theoretical development and application of tolerance intervals, while the text by
Hahn and Meeker (1991) discusses their application in the broader context of statistical intervals.

tolerance (Young, 2010) is a popular R package for constructing exact and approximate tolerance
intervals and regions. Since its initial release in 2009, the package has grown to include tolerance
interval procedures for a large number of parametric distributions, nonparametric settings, and
regression models. There are also tolerance region procedures for the multivariate normal and
multivariate regression settings. Procedures for more specific settings are also included, such as
one-sided tolerance limits for the difference between two independent normal random variables
(Hall, 1984) and fiducial tolerance intervals for the function of parameters from discrete distributions
(Mathew and Young, 2013). The package also includes some graphical capabilities for visualizing the
tolerance intervals (regions) by plotting the limits (regions) on histograms, scatterplots, or control
charts of the data.

tolerance has been used for a broad range of applications, including cancer research (Heck et al.,
2014), wildlife biology (Pasquaretta et al., 2012), assessing the performance of genetic algorithms
(Van der Borght et al., 2014), ratio editing in surveys (Young and Mathew, 2015), air quality assessment
(Hafner et al., 2013), and instrumentation testing (Burr and Gavron, 2010). General interest in tolerance
can be gauged by the cranlogs package (Csardi, 2015), which pulls download logs of the RStudio
(RStudio Team, 2015) CRAN mirror. Figure 1 shows the daily number of downloads of tolerance from
the beginning of 2013 to the beginning of 2016. There is clearly a general increasing trend over the
years as the average number of daily downloads per year is approximately 5, 10, and 15 in 2013, 2014,
and 2015, respectively.

Capabilities of tolerance have been discussed in Young (2010, 2014). Even with those varied
capabilities, perhaps the most commonly used methods involve the normal distribution. Normal
tolerance intervals are often required during design verification or process validation. The utility of
normal tolerance intervals is further highlighted in documents published by the EPA (Environmental
Protection Agency, 2006), the IAEA (International Atomic Energy Agency, 2008), and standard 16269-6
of the ISO (International Organization for Standardization, 2014). In this paper, we discuss new
capabilities in tolerance specifically involving normal tolerance intervals. This includes the calculation
of exact and equal-tailed normal tolerance intervals, Bayesian normal tolerance intervals, tolerance
intervals for fixed-effects ANOVA, and sample size determination strategies. We also introduce novel
pseudo-operating characteristic (OC) curves that illustrate how the k-factor, sample size, confidence
level, and content level each change relative to one another. Such curves can be useful for planning
design tests.

As noted earlier, tolerance also includes a function for constructing multivariate normal tol-
erance regions. The mvtol.region() function was included with the initial release of tolerance.
mvtol.region() includes several Monte Carlo procedures developed in Krishnamoorthy and Mathew
(1999) and Krishnamoorthy and Mondal (2006) for finding the k-factor of the multivariate normal
tolerance region. The plottol() function can also be used to plot tolerance ellipses over bivariate
normal data and tolerance ellipsoids over trivariate normal data. The latter is accomplished using
plot3d() from the rgl package (Adler and Murdoch, 2014). We will not discuss the mvtol.region()
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Figure 1: Number of daily downloads for tolerance from the RStudio CRAN mirror over a three-year
time span (2013–2016).

function further since it is already well-documented (Young, 2010, 2014) and our present focus is on
newer capabilities in tolerance for normal tolerance intervals.

For our discussion, we assume that the reader has already installed and loaded tolerance using
the usual commands:

> install.packages("tolerance")
> library(tolerance)

Normal tolerance intervals - classical and Bayesian

Let X = (X1, X2, . . . , Xn) be a random sample of continuous random variables that have cumulative
distribution function FX , which is parameterized by θ ∈ Θ ⊂ Rd. Let X ∼ FX , independently of X. In
the classical set-up, a (1− α, P) one-sided upper tolerance limit (U1(X)) and one-sided lower tolerance
limit (L1(X)) satisfy the expressions

PX (PX [X ≤ U1(X)|X] ≥ P) = 1− α (1)

and

PX (PX [L1(X) ≤ X|X] ≥ P) = 1− α, (2)

respectively. Similarly, a (1− α, P) two-sided tolerance interval , (L2(X), U2(X)), satisfies

PX (PX [L2(X) ≤ X ≤ U2(X)|X] ≥ P) = 1− α. (3)

Sometimes, controlling the proportion in the tails is required, in which case we have a (1− α, P)
equal-tailed tolerance interval , (Le(X), Ue(X)), that satisfies

PX ({PX [Le(X) ≤ X|X] ≤ (1− P)/2} ∩ {PX [Ue(X) ≥ X|X] ≤ (1− P)/2}) = 1− α. (4)

Equal-tailed tolerance intervals ensure that we simultaneously have no more than (1− P)/2 of the
sampled population below the lower tolerance limit and no more than (1− P)/2 of the sampled
population above the upper tolerance limit.

Let X1, . . . , Xn be iid N
(
µ, σ2); i.e. a normal distribution with unknown mean µ and unknown

variance σ2. Let X̄ and S2 denote the sample mean and sample variance, respectively. The formulas
for (1− α, P) lower and upper normal tolerance limits are

Lh(X) = X̄− kh(n, α, P)S and Uh(X) = X̄ + kh(n, α, P)S, (5)

respectively, where h ∈ {1, 2, e}. In other words, h is an index specifying whether we want one-sided
tolerance limits, two-sided tolerance intervals, or equal-tailed tolerance intervals. k1(n, α, P) and
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k2(n, α, P) are the k-factors for these two settings. The k-factor ensures that we capture at least a
proportion P of the sampled population with confidence level (1− α). k1(n, α, P) is calculated by

k1(n, α, P) =
1√
n

tn−1;1−α(
√

nzP), (6)

where t f ;q(δ) is the qth quantile of a noncentral t-distribution with f degrees of freedom and noncen-
trality parameter δ and zq is the qth quantile of the standard normal distribution. k2(n, α, P) is the
solution to the integral equation√

2n
π

∫ ∞

0
P

(
χ2

n−1 >
(n− 1)χ2

1;P(z
2)

k2(n, α, P)2

)
e−

1
2 nz2

dz = 1− α, (7)

where χ2
f is the chi-square random variable with f degrees of freedom and χ2

f ;q(δ) is the qth quantile
of the noncentral chi-squared distribution with f degrees of freedom and noncentrality parameter δ.

Owen (1964) was the first to propose equal-tailed tolerance intervals for the normal distribution.
Equal-tailed normal tolerance intervals still take the form of (5), but where the tolerance factor
ke(n, α, P) is found as the solution to the integral equation(

2
n−1

2 Γ
(

n− 1
2

))−1 ∫ ∞

(n−1)ϑ2
n

nke (n,α,P)2

(
2Φ
(
−ϑn +

ke(n, α, P)
√

nz√
n− 1

)
− 1
)

e−z/2z
n−1

2 −1dz = 1− α, (8)

where ϑn =
√

nz 1+P
2

and Φ(·) denotes the standard normal cumulative distribution function. A
general discussion comparing the utility of two-sided tolerance intervals versus equal-tailed tolerance
intervals is found in Jensen (2009).

The normtol.int() function in tolerance is able to calculate all of the one-sided tolerance limits,
two-sided tolerance intervals, and equal-tailed tolerance intervals discussed above. In the past, chal-
lenges with computing noncentral distributions necessitated the use of approximations for k1(n, α, P),
k2(n, α, P), and ke(n, α, P). For the two-sided tolerance intervals, early versions of tolerance simply
used various approximations that appeared in the literature over the years for computing the k-factors.
These are controlled through the method argument and their specific formulas are outlined in Young
(2010), which utilized tolerance version 0.2.2. Since then, the exact k-factor in (7) and the exact equal-
tailed k-factor in (8) have been included. These are implemented by setting method = "EXACT" and
method = "OCT", respectively. Both of these methods use adaptive quadrature via the integrate()
function as well as box-constrained optimization via the optim() function. The original approximation
methods are still available primarily to retain all functionality of previous versions of tolerance.

The dataset that we will use to illustrate most of the procedures in our discussion is a quality
control dataset from Krishnamoorthy and Mathew (2009). The data are from a machine that fills
plastic containers with a liter of milk. At the end of a particular shift, a sample of n = 20 containers
was selected and the actual amount of milk in each container was measured using a highly-accurate
method. These measurements are as follows:

> milk <- c(0.968, 0.982, 1.030, 1.003, 1.046,
+ 1.020, 0.997, 1.010, 1.027, 1.010,
+ 0.973, 1.000, 1.044, 0.995, 1.020,
+ 0.993, 0.984, 0.981, 0.997, 0.992)

A quick check of normality with the Shapiro-Wilk test confirms that this is an appropriate assumption:

> shapiro.test(milk)

Shapiro-Wilk normality test

data: milk
W = 0.96364, p-value = 0.6188

For the milk data, the (0.95, 0.90) one-sided tolerance limits, two-sided tolerance interval, and
equal-tailed tolerance interval are found as follows:

> normtol.int(x = milk, alpha = 0.05, P = 0.90, side = 1)
alpha P x.bar 1-sided.lower 1-sided.upper

1 0.05 0.9 1.0036 0.9610333 1.046167

> normtol.int(x = milk, alpha = 0.05, P = 0.90, side = 2, method = "EXACT", m = 50)
alpha P x.bar 2-sided.lower 2-sided.upper
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1 0.05 0.9 1.0036 0.9523519 1.054848

> normtol.int(x = milk, alpha = 0.05, P = 0.90, side = 2, method = "OCT", m = 50)
alpha P x.bar 2-sided.lower 2-sided.upper

1 0.05 0.9 1.0036 0.9471414 1.060059

Note that the equal-tailed tolerance interval is wider than the corresponding two-sided tolerance
interval due to the more stringent requirement of controlling the proportions in the tails. For the
two-sided tolerance intervals, the additional argument m is used to control the number of subintervals
to use for performing the numerical integration via integrate(). While not illustrated above, there
is an additional argument that can be used if one wishes to construct log-normal tolerance intervals.
The argument log.norm is a logical argument set to FALSE by default. If set to TRUE, log-normal
tolerance intervals are calculated using the fact that if X is log-normally distributed, then Y = log(X)
is normally distributed. Thus, the normtol.int() function simply takes the logarithm of the data in
the x argument, constructs the desired normal tolerance limits, and then takes the anti-log of those
limits.

Users of normal tolerance intervals are often interested in summarizing a variety of possible
k-factors for given sample sizes n, confidence levels 1− α, and content level P. The K.table function
allows the user to specify a vector of possible values for each of these three quantities. A list is
then returned whose elements are summarized according to the by argument. For example, suppose
we are interested in the k1(n, α, P) values for all combinations of n ∈ {10, 20}, α ∈ {0.01, 0.05}, and
P ∈ {0.95, 0.99}. Moreover, we would like to summarize the list by the levels of P. This is accomplished
as follows:

> K.table(n = c(10, 20), alpha = c(0.01, 0.05), P = c(0.95, 0.99),
+ side = 1, by.arg = "P")
$`0.95`

10 20
0.99 3.738315 2.807866
0.95 2.910963 2.396002

$`0.99`
10 20

0.99 5.073725 3.831558
0.95 3.981118 3.295157

For example, the first entry of the first matrix is the k-factor for a one-sided (0.99, 0.95) tolerance limit
when n = 10. One can also set side = 2, which requires the user to specify the method argument; e.g.
"EXACT" for values of k2(n, α, P) or "OCT" for values of ke(n, α, P). The by.arg argument can also be set
to "alpha" or "n" depending on which quantity you want to represent the elements of the outputted
list.

Bayesian tolerance intervals were first presented in Aitchison (1964). For the Bayesian set-up, let x
be a vector of realizations of X, L(θ|x) be the likelihood function, π(θ) be a prior distribution for θ,
and p(θ|x) be the posterior distribution of θ given by

p(θ|x) = L(θ|x)π(θ)∫
Θ L(θ|x)π(θ)dθ

. (9)

Then, (1− α, P) Bayesian one-sided upper and lower tolerance limits satisfy

PΘ (PX [X ≤ U1(θ)|θ] ≥ P|X) = 1− α (10)

and

PΘ (PX [L1(θ) ≤ X|θ] ≥ P|X) = 1− α, (11)

respectively, a (1− α, P) Bayesian two-sided tolerance interval satisfies

PΘ (PX [L2(θ) ≤ X ≤ U2(θ)|θ] ≥ P|X) = 1− α, (12)

and a (1− α, P) Bayesian equal-tailed tolerance interval satisfies

PΘ ({PX [Le(θ) ≤ X|θ] ≤ (1− P)/2} ∩ {PX [Ue(θ) ≥ X|θ] ≤ (1− P)/2}|X) = 1− α. (13)

Notice that the Bayesian set-up is calculated with respect to the probability measure PΘ while the
classical set-up is calculated with respect to the distribution of the random sample X. We refer the
reader to the texts by Guttman (1970) and Krishnamoorthy and Mathew (2009) for more details on
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both classical and Bayesian tolerance intervals.

The parameters µ and σ2 are still assumed unknown. We use the conjugate priors π(µ|σ2) and
π(σ2), which are

µ|σ2 ∼ N
(

µ0, σ2/n0

)
and σ2 ∼ Scale-inv-χ2

(
m0, σ2

0

)
, (14)

respectively, where Scale-inv-χ2 (ν, τ2) is the scaled inverse chi-squared distribution with ν de-
grees of freedom and scaling parameter τ2. Thus, the joint prior density of

(
µ, σ2) is π

(
µ, σ2) =

π
(
µ|σ2)π

(
σ2). The four hyperparameters for this prior structure are µ0 ∈ R, σ2

0 > 0, m0 > 0, n0 > 0.
m0 and n0 are not prior sample size quantities, but are tunable quantities to reflect the prior precision
relative to the sample size. The joint posterior distribution is then

p
(

µ, σ2|x
)
= p

(
µ|σ2

)
p
(

σ2
)

, (15)

where p
(
µ|σ2) and p

(
σ2) are the distributions

µ|σ2 ∼ N
(

¯̄x,
σ2

n0 + n

)
and σ2 ∼ Scale-inv-χ2

(
m0 + n− 1, q2

)
, (16)

respectively, such that

¯̄x =
n0µ0 + nx̄

n0 + n
and q2 = (m0 + n− 1)−1

[
m0σ2

0 + (n− 1)s2 +
n0n

n0 + n
(x̄− µ0)

2
]

. (17)

Note that the formulas in the Bayesian set-up are written such that they are conditioned on realizations
of the observed data; i.e. X = x. Furthermore, they are written in terms of the sample estimates of the
mean (x̄) and variance (s2). Additional details on the above can be found, for example, in Chapter 3 of
Gelman et al. (2013).

Similar to the classical setting, (1− α, P) Bayesian lower and upper normal tolerance limits are,
respectively,

Lh

(
x̄, s2

)
= ¯̄x− kh (n, n0, m0, α, P) q and Uh

(
x̄, s2

)
= ¯̄x + kh (n, n0, m0, α, P) q, (18)

where, again, h is used as an index for one-sided limits, a two-sided interval, or an equal-tailed interval.
Note that these limits are expressed in terms the maximum likelihood estimates of µ and σ2, which
occur through how ¯̄x and q are defined. Thus, the one-sided k-factor is calculated by

k1 (n, n0, m0, α, P) =
1√

n0 + n
tm0+n−1;1−α

(√
n0 + nzP

)
, (19)

the two-sided k-factor k2 (n, n0, m0, α, P) is calculated by finding the solution to√
2(n0 + n)

π

∫ ∞

0
P

(
χ2

m0+n−1 >
(m0 + n− 1) χ2

1;P
(
z2)

k2 (n, n0, m0, α, P)2

)
e−

1
2 (n0+n)z2

dz = 1− α, (20)

and the equal-tailed k-factor ke (n, n0, m0, α, P) is calculated by finding the solution to

2−
(

m0+n−1
2

)
Γ
(

m0+n−1
2

) ∫ ∞
(m0+n−1)ϑ2

n0+n
(n0+n)ke (n,n0,m0,α,P)2

(
2Φ
(
−ϑn0+n +

ke(n, n0, m0, α, P)
√

n0 + nz√
m0 + n− 1

)
− 1
)

× e−z/2z
m0+n−1

2 −1dz = 1− α.

(21)

Finally, if one considers the non-informative prior distribution

π(µ, σ2) ∝ σ−2, (22)

the solutions for the one-sided Bayesian normal tolerance limits and two-sided Bayesian normal
tolerance intervals are the same as for the classical setting given in Equations (5)–(8); see Chapter 11 of
Krishnamoorthy and Mathew (2009) for the details.

The bayesnormtol.int() function for computing Bayesian normal tolerance intervals is new as
of tolerance version 1.1.1. It was composed to closely mirror the normtol.int() function. For the
milk data, suppose we use the conjugate prior structure in (14). Assuming we have some historical
knowledge about the milk filling process, the following hyperparameter values are used: µ0 = 1.000,
σ2 = 0.001, and m0 = n0 = 20. Then, the Bayesian (0.95, 0.90) one-sided tolerance limits, two-sided
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tolerance interval, and equal-tailed tolerance interval are found as follows:

> bayesnormtol.int(x = milk, alpha = 0.05, P = 0.90, side = 1,
+ hyper.par = list(mu.0 = 1.000, sig2.0 = 0.001,
+ m.0 = 20, n.0 = 20))
alpha P 1-sided.lower 1-sided.upper

1 0.05 0.9 0.9551936 1.048406

> bayesnormtol.int(x = milk, alpha = 0.05, P = 0.90, side = 2, method = "EXACT",
+ m = 50, hyper.par = list(mu.0 = 1.000, sig2.0 = 0.001,
+ m.0 = 20, n.0 = 20))
alpha P 2-sided.lower 2-sided.upper

1 0.05 0.9 0.9453603 1.05824

> bayesnormtol.int(x = milk, alpha = 0.05, P = 0.90, side = 2, method = "OCT",
+ m = 50, hyper.par = list(mu.0 = 1.000, sig2.0 = 0.001,
+ m.0 = 20, n.0 = 20))
alpha P 2-sided.lower 2-sided.upper

1 0.05 0.9 0.9407625 1.062838

The bayesnormtol.int() function has the arguments x, alpha, P, side, method, and m just as in the
normtol.int(). However, here we also have hyper.par, which is a list with elements for the four
hyperparameters. The output is structured identically to the output obtained using normtol.int(),
which allows for easy comparison between the classical and Bayesian results.

Fixed-effects ANOVA tolerance intervals

The approach for classical normal tolerance intervals can be easily extended for the balanced fixed-
effects ANOVA model

Yij...kl = θ + αi + β j + . . . + γk + εij...kl , (23)

where θ is the grand mean, αi, β j, . . . , γk are the factor effects each subject to the constraint that the
summation of the effects over the respective index is equal to 0, εij,...kl are iid N

(
0, σ2) error terms,

and the indices are i = 1, . . . , a, j = 1, . . . , b, . . ., k = 1, . . . , c, and l = 1, . . . , n. The approach discussed
below is for the classical setting. Currently, the tolerance package does not have a function for
calculating Bayesian ANOVA tolerance intervals.

Let Y ∈ Rab···cn be a vector of all of the measured responses in (23), which are iid N
(
0, σ2). The

formulas for the tolerance limits in the fixed-effects ANOVA setting are:

Li;h(Y) = Ȳi·...·· − kh (ni, f , α, P)
√

MSE and Ui;h(Y) = Ȳi·...·· + kh (ni, f , α, P)
√

MSE

Lj;h(Y) = Ȳ·j...·· − kh

(
nj, f , α, P

)√
MSE and Uj;h(Y) = Ȳ·j...·· + kh

(
nj, f , α, P

)√
MSE

...
...

Lk;h(Y) = Ȳ··...k· − kh (nk, f , α, P)
√

MSE and Uk;h(Y) = Ȳ··...k· + kh (nk, f , α, P)
√

MSE
(24)

Conceptually, the formulas in (24) are similar to those in (5). We take a point estimate of the mean
at each factor level (i.e. the quantities Ȳi·...··, Ȳ·j...··, . . . , Ȳ··...k·) and then add or subtract the k-factor
times the standard deviation. The standard deviation is now estimated by the root mean square error,√

MSE.

The k-factor in (24), again, has the subscript h to indicate an index for one-sided limits, a two-sided
interval, or an equal-tailed interval. However, the formulas are modified for the ANOVA setting. In
formulas (6)–(8), the quantity (n− 1) reflects the degrees of freedom when estimating the sample
variance S2. In the ANOVA setting, this is replaced by the degrees of freedom due to the error; i.e. the
degrees of freedom associated with the MSE. Thus, we replace each occurrence of (n− 1) in (6)–(8)
with f , the error degrees of freedom. Moreover, all occurrences of the sample size n are replaced with
the number of observations at each factor level; i.e. ni, nj, . . . , nk. Note that the tolerance intervals
presented are only accurate for balanced (or nearly-balanced) ANOVA settings.

We analyze the well-known dataset that resulted from an experimental design regarding the effects
of wool type and the amount of tension applied to a loom of yarn on the number of warp breaks that
occur on that loom of yarn (Tippett, 1950). The first factor is wool type, which has two levels: A or B.
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The second factor is tension level, which has three levels: low (L), medium (M), or high (H). The six
treatments (i.e. factor level combinations) are randomly assigned to one of 54 looms of yarn. Thus, we
have n = 9 replicates per treatment. Suppose we want to construct (0.85, 0.90) equal-tailed tolerance
intervals for each factor level’s mean. Below is how we would do this in the tolerance package:

> lm.out <- lm(breaks ~ wool + tension, data = warpbreaks)
> out <- anovatol.int(lm.out, data = warpbreaks, alpha = 0.10,
+ P = 0.85, side = 2, method = "OCT")
These are 90%/85% 2-sided tolerance intervals.
> out
$wool

mean n k 2-sided.lower 2-sided.upper
A 31.03704 27 1.886857 9.117165 52.95691
B 25.25926 27 1.886857 3.339387 47.17913

$tension
mean n k 2-sided.lower 2-sided.upper

L 36.38889 18 1.948567 13.7521219 59.02566
M 26.38889 18 1.948567 3.7521219 49.02566
H 21.66667 18 1.948567 -0.9701003 44.30343

In the anovatol.int() function, we have similar arguments as in the normtol.int() function, except
now we input an object of class "lm" and we also tell the function the name of the original dataset
using the data argument. The output is a list summarizing the tolerance interval results for each factor
level. For example, the (0.90, 0.85) equal-tailed tolerance interval for the medium tension applied to
the yarn is about (3.75, 49.03).
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Figure 2: Plot of the (0.85, 0.90) equal-tailed tolerance intervals for the yarn strength data.

We can also produce a figure of the above output by using the plottol() function as follows:

> plottol(out, x = warpbreaks)

The above produces the plot in Figure 2. This figure has a separate panel for each factor. The y-axis is
the response and the x-axis is the levels of the respective factor. The solid black point is the factor level
mean and the red lines extend to the lower and upper tolerance limits calculated earlier. Such a figure
provides a relative comparison of the tolerance intervals for each factor level.

Sample size determination strategies

As noted in Faulkenberry and Weeks (1968), an important question for statistical practitioners is "What
sample size should be used to determine the tolerance limits?" Those same authors addressed this
problem by developing an approach to ensure that the calculated tolerance intervals are "close" to
the quantiles that result in a content level at least as large as P. Their solution was developed for
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sample size determination of one-sided tolerance limits and two-sided tolerance intervals, but it is not
applicable to equal-tailed tolerance intervals. In order to briefly present their approach, let Cµ,σ(X)
denote any of the three inner probabilities in Equations (1)–(3) or any of the three analogous inner
probabilities for the Bayesian set-up in Equations (10)–(12). To ensure the "goodness" of the tolerance
limits (interval), one must choose an arbitrary P′ > P and small δ > 0 to determine a sample size n∗

such that

PX
{

Cµ,σ(X) ≥ P′
}
≥ δ (25)

or

Pθ

{
Cµ,σ(X) ≥ P′

}
≥ δ (26)

for the classical or Bayesian setting, respectively.

The norm.ss function for sample size determination of normal tolerance limits (intervals) is new
as of tolerance version 1.1.1. The function finds the minimum sample size n∗ for the approach
due to Faulkenberry and Weeks (1968) discussed above. For our example, suppose the quality
engineer overseeing the milk-filling process wants to submit a future sample of liters of milk to
the highly-accurate measurement method. Per the company’s guidelines, the engineer needs to
know the minimum sample size to construct a (0.95, 0.90) two-sided tolerance interval such that
PX
{

Cµ,σ(X) ≥ 0.97
}
≥ 0.10. This is calculated as follows:

> norm.ss(alpha = 0.05, P = 0.90, delta = 0.10, P.prime = 0.97,
+ side = 2, m = 50, method = "FW")
alpha P delta P.prime n

1 0.05 0.9 0.1 0.97 60

Thus, the engineer would need a minimum sample size of n∗ = 60 to ensure that there is only a small
probability δ = 0.10 that the (0.95, 0.90) tolerance interval will have a content exceeding P = 0.90 by
(P′ − P) = 0.07.

In the norm.ss() function, the argument method is set to "FW". There are two additional sample
size determination strategies that can be calculated, which are controlled through the method argument.
Both of these strategies assume there is some historical data and specification limits for the process
at-hand. We briefly illustrate these strategies below and refer the reader to Young et al. (2016) for
further details.

The first alternative strategy is a simple “back-of-the-envelope” calculation. We consider the
problem of designing a study to demonstrate that a process or product falls within the specification
limits (SL, SU). We are interested in the minimum sample size necessary such that a (1− α, P) one-
sided lower tolerance limit exceeds SL, a (1− α, P) one-sided upper tolerance limit falls below SU , or
a (1− α, P) two-sided tolerance interval is contained within (SL, SU). In other words, this requires
finding the minimum sample size n∗ such that

SL < µ− k1(n, α, P)σ; (27)

SU > µ + k1(n, α, P)σ; or (28)

µ± ke(n, α, P)σ ⊂ (SL, SU), (29)

for one-sided upper tolerance limits, one-sided lower tolerance limits, or equal-tailed tolerance
intervals, respectively. As emphasized in Young et al. (2016), this approach is intended simply for
planning purposes and it does not guarantee any specific bounds relative to the nominal coverage
probability. Note that (29) is for an equal-tailed tolerance interval since we posit values for µ and σ
and, thus, the resulting tolerance interval would be built around a (hypothetically) true center of the
normal population.

For our example, suppose that the quality engineer is overseeing the launch of a new process for
filling the one-liter containers of milk, which is intended to be more accurate than the previous process.
The company set specification limits at (0.990, 1.010). For determining the minimum sample size
necessary to construct a (0.95, 0.90) two-sided tolerance interval that is within the specification limits,
the engineer assumes the mean and variance from the data of the original process. This calculation
can then be done as follows:

> norm.ss(alpha = 0.05, P = 0.90, side = 2, spec = c(0.990, 1.010),
+ method = "DIR", hyper.par = list(mu.0 = 1.004, sig2.0 = 0.001))
alpha P delta P.prime n

1 0.05 0.9 5

Thus, the minimum sample size is n∗ = 5. This calculation was done by setting method = "DIR",
entering the specification limits in the spec argument, and entering the assumed µ and σ2 in the
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argument hyper.par.

The second alternative strategy presented in Young et al. (2016) is a method for providing data-
dependent values of the precision quantities P′ and δ in the approach due to Faulkenberry and Weeks
(1968). The approach assumes there is information on historical data, a set of current data, and
specification limits that can be used for calculating values of P′ and δ. The approach is intended to be
used when there is no practical guidance for setting these values other than using “rule-of-thumb”
quantities suggested in Faulkenberry and Weeks (1968).

For the milk filling process, suppose the engineer has historical measurements, which have a
combined mean 0.994 liters and variance 0.002. Suppose the specification limits on the original process
are (0.900, 1.100) and that the engineer needs a minimum sample size to construct a (0.95, 0.90) two-
sided tolerance interval to show that the process meets the specification limits. However, the engineer
is unsure about levels to choose for δ and P′. We can use the norm.ss() function as follows:

> norm.ss(x = milk, alpha = 0.05, P = 0.90, side = 2, spec = c(0.900, 1.100),
+ method = "YGZO", hyper.par = list(mu.0 = 0.994, sig2.0 = 0.002))
alpha P delta P.prime n

1 0.05 0.9 0.1807489 0.9733307 42

Thus, the engineer would need a minimum sample size of n∗ = 42 to ensure that there is only a
probability of about δ = 0.181 that the (0.95, 0.90) tolerance interval will have a content exceeding
P = 0.90 by about (P′ − P) = 0.073.

OC curves involving k-factors

Sometimes, engineers and industrial statisticians are interested in understanding how the confidence
level or content level changes as a function of n for a given level of the k-factor. If one has normally
distributed data that they intend to demonstrate meets certain specification limits, then it is important
to understand the type of values for 1− α and P that one can reasonably expect to use. In this section,
we present OC curves for such planning purposes.

The first type of OC curve is used when one specifies a range of values of the sample size n and a
target value of the k-factor. Then, one can either specify a set of 1− α values and solve for P or one can
specify a set of P values and solve for 1− α. The values of n are plotted on the x-axis and the value
being solved for – either P or 1− α – is plotted on the y-axis. The different OC curves pertain to the
set of specified values – either 1− α or P. Since too many curves can become cumbersome, we have
placed an upper limit of 10 curves that can be overlaid on a given plot. Also, the colors used for the
curves were chosen using a colorblind-friendly palette that was established by Okabe and Ito (2002).

Suppose a company is designing a product and the engineer needs to collect enough data so that
the resulting two-sided tolerance interval will have a k-factor of 4. Content levels under consideration
are P ∈ {0.90, 0.95, 0.99} while the possible number of samples that can be used for the test are
n = 10, 11, . . . , 20. In order to determine the resulting confidence levels that can be obtained under
these conditions, the engineer can construct an OC curve for 1− α using the following code:

norm.OC(k = 4, alpha = NULL, P = c(0.90, 0.95, 0.99), n = 10:20,
side = 2, method = "EXACT", m = 25)

The resulting plot is given in Figure 3. For example, if the engineer chooses n = 15, then they can
construct a two-sided tolerance interval with k = 4 and content level of P = 0.99 with confidence level
near 0.96. However, if the engineer wishes to decrease the content of the tolerance interval to P = 0.95
or P = 0.90, then a confidence level very near 1 can be achieved.

In the norm.OC() function, the arguments of side, method, and m are, again, passed down to the
underlying K.factor() function. In order to generate Figure 3, we need to specify a single value for k
(i.e. the k-factor) and at least one value for P. Since we are constructing curves where the sample size is
on the x-axis, we need at least two values for n. Note that alpha must be left at its default NULL value.

Suppose now that the same engineer considers confidence levels of 1− α ∈ {0.90, 0.95, 0.99} with
the same values of k and n from before. In order to determine the resulting content levels that can be
obtained under these conditions, the engineer can construct an OC curve for P using the following
code:

norm.OC(k = 4, alpha = c(0.01, 0.05, 0.10), P = NULL, n = 10:20,
side = 2, method = "EXACT", m = 25)

The resulting plot is given in Figure 4. For example, if the engineer chooses n = 12, then they can
construct a two-sided tolerance interval with k = 4 and confidence level of 1− α = 0.99 that captures
about 95% of the sampled population. However, if the engineer wishes to decrease the confidence level
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Figure 3: OC curves for 1 − α given the set of content levels P ∈ {0.90, 0.95, 0.99}, sample sizes
n = 10, 11, . . . , 20, and a two-sided k-factor of 4.
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Figure 4: OC curves for P given the set of confidence levels 1− α ∈ {0.90, 0.95, 0.99}, sample sizes
n = 10, 11, . . . , 20, and a two-sided k-factor of 4.

of the tolerance interval to 1− α = 0.95 or 1− α = 0.90, then a tolerance interval that captures about
99% of the sampled population can be achieved. Note that the code using the norm.OC() function is
similar to the previous example, except that now we specify at least one value for alpha and leave P
must at its default NULL value.

Finally, the norm.OC() function can also be used to construct an OC-curve where the k-factor is
calculated for specified values of n, 1− α, and P. The different curves will be for each combination of
the specified 1− α and P levels. For our example, suppose the engineer is interested in the k-factors
for two-sided tolerance intervals for the set of confidence levels 1− α ∈ {0.90, 0.95, 0.99}, the set of
content levels P ∈ {0.90, 0.95, 0.99}, and sample sizes n = 10, 11, . . . , 20. Then, we can specify the
respective arguments in the norm.OC() function while leaving the k argument at its default NULL value:

norm.OC(k = NULL, P = c(0.90, 0.95, 0.99), alpha=c(0.01, 0.05, 0.10),
n = 10:20, side = 2, method = "EXACT", m = 25)

The resulting plot is given in Figure 5. This OC-curve allows the user to assess the width of the
tolerance interval as n changes for the given (1− α, P) tolerance levels.

Summary

tolerance is the only R package devoted to the calculation of tolerance intervals and regions. Since its
earlier versions (Young, 2010), there have been many updates to the package that include additional
parametric tolerance interval procedures, improved nonparametric tolerance interval procedures, and
some multivariate tolerance region procedures.
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Figure 5: OC curves for the k-factor when given the set of confidence levels 1− α ∈ {0.90, 0.95, 0.99},
the set of content levels P ∈ {0.90, 0.95, 0.99}, and sample sizes n = 10, 11, . . . , 20.

In this paper, we focused on the varied capabilities of tolerance pertaining to tolerance intervals
for the normal distribution. Many of these procedures have been added to the package since the
discussion presented in Young (2010). We discussed the calculation of one-sided normal tolerance
limits, exact and equal-tailed normal tolerance intervals, Bayesian normal tolerance intervals, tolerance
intervals for fixed-effects ANOVA, and sample size determination strategies. We also introduced novel
operating characteristic (OC) curves that illustrate how the k-factor, sample size, confidence level, and
content level each change relative to one another. As pointed out throughout our discussion, all of
these procedures have a large degree of utility in a variety of practical contexts.

The tolerance package continues to expand the functions available for constructing tolerance
intervals and regions. We note that some of the updates over the years have been a direct result of
requests by end users of the package. Thus, one can expect additional capabilities in future versions of
tolerance, both for the normal setting and other data settings.

Bibliography

D. Adler and D. Murdoch. rgl: 3D visualization device system (OpenGL), 2014. URL http://CRAN.R-
project.org/package=rgl. R package version 0.95.1201. [p200]

J. Aitchison. Bayesian tolerance regions. Journal of the Royal Statistical Society, Series B, 26(2):161–175,
1964. [p203]

T. Burr and A. Gavron. Pass/fail criterion for a simple radiation portal monitor test. Modern Instru-
mentation, 1(3):27–33, 2010. [p200]

G. Csardi. cranlogs: Download Logs from the ’RStudio’ ’CRAN’ Mirror, 2015. URL http://CRAN.R-
project.org/package=cranlogs. R package version 2.1.0. [p200]

Environmental Protection Agency. Data Quality Assessment: Statistical Methods for Practitioners. U.S.
Environmental Protection Agency, Washington, DC, USA, 2006. URL http://www.epa.gov/sites/
production/files/2015-08/documents/g9s-final.pdf. [p200]

G. D. Faulkenberry and D. L. Weeks. Sample size determination for tolerance limits. Technometrics, 10
(2):343–348, 1968. [p206, 207, 208]

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. Bayesian Data Analysis.
CRC Press, Boca Raton, FL, 3rd edition, 2013. [p204]

I. Guttman. Statistical Tolerance Regions: Classical and Bayesian. Charles Griffin and Company, London,
1970. [p200, 203]

S. D. Hafner, C. Howard, R. E. Muck, R. B. Franco, F. Montes, P. G. Green, F. Mitloehner, S. L. Trabue,
and C. A. Rotz. Emission of volatile organic compounds from silage: Compounds, sources, and
implications. Atmospheric Environment, 77:827–839, 2013. [p200]

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=rgl
http://CRAN.R-project.org/package=rgl
http://CRAN.R-project.org/package=cranlogs
http://CRAN.R-project.org/package=cranlogs
http://www.epa.gov/sites/production/files/2015-08/documents/g9s-final.pdf
http://www.epa.gov/sites/production/files/2015-08/documents/g9s-final.pdf


CONTRIBUTED RESEARCH ARTICLES 211

G. J. Hahn and W. Q. Meeker. Statistical Intervals: A Guide for Practitioners. Wiley-Interscience, New
York, NY, 1991. [p200]

I. J. Hall. Approximate one-sided tolerance limits for the difference or sum of two independent normal
variates. Journal of Quality Technology, 16(1):15–19, 1984. [p200]

M. M. Heck, M. Retz, M. Bandu, M. Souchay, E. Vitzthum, G. Weirich, M. Mollenhauer, T. Schuster,
M. Autenrieth, H. Kübler, T. Maurer, M. Thalgott, K. Herkommer, J. E. Gschwend, and R. Nawroth.
Topography of lymph node metastases in prostate cancer patients undergoing radical prostatectomy
and extended lymphadenectomy: Results of a combined molecular and histopathologic mapping
study. European Urology, 66(2):222–229, 2014. [p200]

International Atomic Energy Agency. Safety Report Series No. 52: Best Estimate Safety Analysis for
Nuclear Plants: Uncertainty Evaluation. IAEA Publishing Section, Vienna, Austria, 2008. URL
http://www-pub.iaea.org/MTCD/publications/PDF/Pub1306_web.pdf. [p200]

International Organization for Standardization. ISO 16269-6: Statistical Interpretation of Data – Part 6:
Determination of Statistical Tolerance Intervals. International Organization for Standardization, Geneva,
Switzerland, 2014. URL http://www.iso.org/iso/catalogue_detail.htm?csnumber=57191. [p200]

W. A. Jensen. Approximations of tolerance intervals for normally distributed data. Quality and
Reliability Engineering International, 25(5):571–580, 2009. [p202]

K. Krishnamoorthy and T. Mathew. Comparison of approximation methods for computing tolerance
factors for a multivariate normal population. Technometrics, 41(3):234–249, 1999. [p200]

K. Krishnamoorthy and T. Mathew. Statistical Tolerance Regions: Theory, Applications, and Computation.
Wiley, Hoboken, NJ, 2009. [p200, 202, 203, 204]

K. Krishnamoorthy and S. Mondal. Improved tolerance factors for multivariate normal distributions.
Communications in Statistics - Simulation and Computation, 35(2):461–478, 2006. [p200]

T. Mathew and D. S. Young. Fiducial-based tolerance intervals for some discrete distributions. Compu-
tational Statistics and Data Analysis, 61:38–49, 2013. [p200]

M. Okabe and K. Ito. Color Universial Design (CUD) - how to make figures and presentations that are
friendly to colorblind people, 2002. URL http://jfly.iam.u-tokyo.ac.jp/color/. [p208]

D. B. Owen. Control of percentages in both tails of the normal distribution. Technometrics, 6(4):377–387,
1964. [p202]

C. Pasquaretta, G. Bogliani, L. Ranghetti, C. Ferrari, and A. von Hardenberg. The animal locator: A
new method for accurate and fast collection of animal locations for visible species. Wildlife Biology,
18(2):202–214, 2012. [p200]

RStudio Team. RStudio: Integrated Development Environment for R. RStudio, Inc., Boston, MA, 2015.
URL http://www.rstudio.com/. [p200]

L. H. C. Tippett. Technological Applications of Statistics. Wiley, New York, NY, 1950. [p205]

K. Van der Borght, G. Verbeke, and H. van Vlijmen. Multi-model inference using mixed effects from a
linear regression based genetic algorithm. BMC Bioinformatics, 15(88):1–11, 2014. [p200]

A. Wald. An extension of Wilks’ method for setting tolerance limits. Annals of Mathematical Statistics,
14(1):45–55, 1943. [p200]

S. S. Wilks. Determination of sample sizes for setting tolerance limits. The Annals of Mathematical
Statistics, 12(1):91–96, 1941. [p200]

S. S. Wilks. Statistical prediction with special reference to the problem of tolerance limits. The Annals of
Mathematical Statistics, 13(4):400–409, 1942. [p200]

D. S. Young. tolerance: An R package for estimating tolerance intervals. Journal of Statistical Software,
36(5):1–39, 2010. URL http://www.jstatsoft.org/v36/i05/. [p200, 201, 202, 209, 210]

D. S. Young. Computing tolerance intervals and regions using r. In M. B. Rao and C. R. Rao, editors,
Handbook of Statistics, Volume 32: Computational Statistics with R, pages 309–338. North Holland -
Elsevier, Amsterdam, Netherlands, 2014. [p200, 201]

D. S. Young and T. Mathew. Ratio edits based on statistical tolerance intervals. Journal of Official
Statistics, 31(1):77–100, 2015. [p200]

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

http://www-pub.iaea.org/MTCD/publications/PDF/Pub1306_web.pdf
http://www.iso.org/iso/catalogue_detail.htm?csnumber=57191
http://jfly.iam.u-tokyo.ac.jp/color/
http://www.rstudio.com/
http://www.jstatsoft.org/v36/i05/


CONTRIBUTED RESEARCH ARTICLES 212

D. S. Young, C. M. Gordon, S. Zhu, and B. D. Olin. Sample size determination strategies for normal
tolerance intervals using historical data. Quality Engineering, 28(3):335–349, 2016. [p207, 208]

Derek S. Young
Department of Statistics
University of Kentucky
323 Multidisciplinary Science Building
725 Rose Street
Lexington, KY 40536-0082 USA
derek.young@uky.edu

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

mailto:derek.young@uky.edu


CONTRIBUTED RESEARCH ARTICLES 213

easyROC: An Interactive Web-tool for
ROC Curve Analysis Using R Language
Environment
by Dincer Goksuluk, Selcuk Korkmaz, Gokmen Zararsiz and A. Ergun Karaagaoglu

Abstract ROC curve analysis is a fundamental tool for evaluating the performance of a marker in a
number of research areas, e.g., biomedicine, bioinformatics, engineering etc., and is frequently used
for discriminating cases from controls. There are a number of analysis tools which are used to guide
researchers through their analysis. Some of these tools are commercial and provide basic methods
for ROC curve analysis while others offer advanced analysis techniques and a command-based user
interface, such as the R environment. The R environmentg includes comprehensive tools for ROC curve
analysis; however, using a command-based interface might be challenging and time consuming when a
quick evaluation is desired; especially for non-R users, physicians etc. Hence, a quick, comprehensive,
free and easy-to-use analysis tool is required. For this purpose, we developed a user-friendly web-
tool based on the R language. This tool provides ROC statistics, graphical tools, optimal cutpoint
calculation, comparison of several markers, and sample size estimation to support researchers in their
decisions without writing R codes. easyROC can be used via any device with an internet connection
independently of the operating system. The web interface of easyROC is constructed with the R
package shiny. This tool is freely available through www.biosoft.hacettepe.edu.tr/easyROC.

Introduction

The receiver operating characteristics (ROC) curve is a graphical approach used to visualize and assess
the performance of a binary classifier system. This unique feature of ROC curve analysis makes it
one of the most extensively used methods in various fields of science. It was originally developed
during World War II to detect whether a signal on the radar screen represented an object or a noise
(Egan, 1975; Swets et al., 2000; Fan et al., 2006) and today it is widely used in medicine, radiology,
biometrics, bioinformatics and various applications of machine learning and data mining research
(Fawcett, 2006; Sonego et al., 2008). ROC curve analysis can be implemented for several reasons: (i)
to assess the overall performance of a classifier using several performance measures, (ii) to compare
the performances of classifiers, and (iii) to determine the optimal cutpoint for a given classifier,
diagnostic test or marker/biomarker. For simplicity of language, we will use the terms classifier
and diagnostic test throughout the manuscript. The performance of a classifier can be summarized
using the point estimations and confidence intervals of several basic performance measures such as
sensitivity, specificity or combined measures of sensitivity and specificity such as likelihood ratios,
accuracy, area under the ROC curve (AUC), etc. A ROC curve is basically a plot of a classifier’s true
positive rates (TPR: sensitivity) versus false positive rates (FPR: 1− specificity) where each point is
generated by a different threshold value, i.e., cutpoint. For the simplicity of equations, we will use the
terms TPR and FPR in the equations. One of the major tasks is to determine the optimum cutpoint
value which corresponds to the reasonable TPR and FPR values. The determination of an optimum
value is usually a trade-off between performance measures. The ROC curve is used to find the optimal
cutpoint located on the curve which is the closest point to the top-left corner. However, finding the
“optimum” cutpoint is not always based on maximizing the sensitivity and specificity. It is reasonable
to select an optimum cutpoint value by regarding alternative selection criteria such as maximization
of predictive values, diagnostic odds ratio, etc.

There are a number of commercial (e.g., IBM SPSS, MedCalc, Stata, etc.) and open-source (R)
software packages which are used to guide researchers through their ROC curve analysis. Some
of these software packages provide basic features for ROC curve analysis while others, such as R,
offer advanced features but also a command-based user interface. The R environment includes
comprehensive tools for ROC curve analysis, such as ROCR (Sing et al., 2005), pROC (Robin et al.,
2011), ROC (Carey and Redestig, 2015) and OptimalCutpoints (Lopez-Raton et al., 2014).

All of the R packages mentioned above perform ROC curve analysis using the related package
functions. Although these packages are comprehensive and flexible, they require a good program-
ming knowledge of the R language. However, working with a command-based interface might be
challenging and time consuming when a quick evaluation is desired especially for non-R users, such
as physicians and other health care professionalists. Fortunately, an R package shiny (Chang et al.,
2015) allows users to create interactive web-tools with a nicely designed, user-friendly and easy-to-use
user interface. In this context, we developed a web-tool, easyROC, for ROC curve analysis. The
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user interface of easyROC is constructed via shiny and HTML codes. easyROC combines several R
packages for ROC curve analysis. This tool has three main parts including ROC statistics, cutpoint
calculations and sample size estimation. Detailed information about easyROC and the related methods
together with mathematical background are given in Section Material and methods. easyROC is
freely available at http://www.biosoft.hacettepe.edu.tr/easyROC and all the source codes are on
GitHub1.

Material and methods

Theory behind ROC analysis

Let us consider the binary classification problem where X denotes the value of the classifier for cases
and controls. Consider the values of controls distributed as X0 ∼ G0(.) and cases as X1 ∼ G1(.).
Let Ŷ = {0, 1} be the estimated class labels of the subjects for a given threshold value c as given in
Equation 1.

Ŷ =

{
1, if X ≥ c
0, if X < c

(1)

Parametric ROC curve. The parametric ROC curve is plotted using the FPR (1− Specificity) and
TPR (Sensitivity) values given in Equation 2 for all possible cutpoints of a classifier.

FPRc =P (X ≥ c | Y = 0) =
∫ ∞

c
G0(x)dx

TPRc =P (X ≥ c | Y = 1) =
∫ ∞

c
G1(x)dx (2)

When the distribution of the classifier is Normal, the parametric ROC curve is fitted using binormal
ROC properties. Suppose X0 ∼ Normal(µ0, σ2

0 ) and X1 ∼ Normal(µ1, σ2
1 ). The ROC curve is the

function of FPRs; as in Equation 3.

ROC(t) = Φ
(

a + bΦ−1 (t)
)

, (3)

where a = (µ1 − µ0)/σ1, b = σ0/σ1, t = FPRc and Φ is the cumulative distribution function of
the standard normal distribution (Zhou et al., 2002). The area under the curve is calculated using
Equation 4.

AUC =

1∫
0

ROC(t)dt = Φ
(

a√
1 + b2

)
(4)

Fitting the ROC curve by using Equation 3 has two major drawbacks: (i) incorrect ROC curves
may arise when the underlying distribution is not normal, (ii) ROC lines are improper when within
class variations are not similar, i.e., heteroscedasticity. An example of improper ROC curves is given
in Figure 1. To overcome these problems, one may nonparametrically fit the ROC curve without
considering distributional assumptions or use parametric/semiparametric alternatives to the binormal
model (Gönen and Heller, 2010).

Nonparametric ROC curve. Consider the estimated class labels in Equation 1. The FPR and TPR
given in Equation 2 are estimated; as given in Equation 5.

1http://www.github.com/dncR/easyROC
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Figure 1: Parametric ROC curves.

F̂PRc =
1

n0

n0

∑
j=1

I
[

X0j ≥ c
]

T̂PRc =
1

n1

n1

∑
i=1

I [ X1i ≥ c ] (5)

The empirical ROC curve is plotted using F̂PRc and T̂PRc and the area under the curve, given
in Equation 6, is estimated by summing the trapezoids enclosed by the points of the ROC curve.
The nonparametric AUC is related to the Mann-Whitney statistic of the rank-sum test (Bamber, 1975;
Hanley and McNeil, 1982).

ÂUC =
1

n0n1

n0

∑
j=1

n1

∑
i=1

Ψ
(

X1i, X0j

)
, (6)

where Ψ = 0 if X0 > X1, Ψ = 1 if X1 > X0 and Ψ = 1/2 if X0 = X1.

Performance measures and optimal cutpoints. The predicted and actual classes, i.e., gold standard
test results, can be shown with a 2× 2 cross table; as seen in Table 1. The performance of a classifier is
basically measured using the total proportion of true positive (TP) and true negative (TN) cases. By
using Table 1, several performance measures are also calculated. Among these performance measures,
we focused on the measures given in Table 1 which are widely used and well-known. The optimal
cutpoint is determined by using one or more performance measures together. An ideal cutpoint, for
example, might be selected by maximizing the sensitivity and specificity of a classifier. A classifier
with perfect discriminative ability would have sensitivity and specificity measures equal to 1. Hence,
the area under the curve for a perfect separation will be equal to 1.

Although researchers are usually interested in the overall diagnostic performance of a classifier,
it is sometimes useful to focus on a portion of the ROC curve to compute the partial AUCs (pAUC).
pAUC is an extension of the AUC measure which considers the trapezoids within a given interval of
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Predicted Labels Actual Labels Total
Positive (Y = 1) Negative (Y = 0)

Positive (Ŷ = 1) TP FP TP + FP
Negative (Ŷ = 0) FN TN FN + TN

Total TP + FN FP + TN n
TP: True positive
FP: False positive
TN: True negative
FN: False negative
NPV: Negative predictive value
PPV: Positive predictive value
PLR: Positive likelihood ratio
NLR: Negative likelihood ratio

Sensitivity = TP/(TP + FN)
Specificity = TN/(FP + TN)
PPV = TP/(TP + FP)
NPV = TN/(TN + FN)
PLR = Sensitivity/(1− Speci f icity)
NLR = (1− Sensitivity)/Speci f icity

Table 1: A 2× 2 classification table and performance measures.

sensitivity and/or specificity. Let us consider the pAUC where specificity (or sensitivity) lies within
the interval [t1, t2]. The pAUC is calculated by taking the integral (parametric) as given in Equation 7
or by summing the trapezoids within the interval (nonparametric).

pAUC(t1, t2) =

t2∫
t1

ROC(x)dx (7)

As the interval [t1, t2] converges to [0, 1], the pAUC will converge to the overall AUC. The best classifier
can be selected using either AUC or pAUC values.

Identification of the optimal cutpoint is an important task to avoid incorrect conclusions. Various
methods are available in the literature to determine the optimal cutpoint. Most of these methods are
based on the sensitivity and specificity measures. However, other methods are also available based on
cost-benefit, prevalence, predictive values and diagnostic likelihood ratios. Two popular methods are,
for example, the Youden index and the minimization of the distance of the point on the curve to the
top-left corner, i.e., the point indicating perfect discrimination.

Youden(c) = max{TPRc − FPRc} (8)

Table 1 gives the list of optimal cutpoint methods we consider in easyROC. For detailed information
and mathematical background, see Lopez-Raton et al. (2014).

Statistical inference. A common subject of interest in ROC analysis is to compare the performances
of several classifiers to select the best one to discriminate cases from controls. For a classifier with
random chance discrimination ability, the equation TPR = FPR holds. In that case, the area under the
curve is 0.50. Hence, the discrimination ability of a classifier is mostly tested against the value 0.50.

H0 : AUC = 0.50

H1 : AUC 6= 0.50

Under the large sample theory, the significance of AUC is tested using the Wald test statistic as
given in Equation 9.

z =
ÂUC− AUC

Var(ÂUC)1/2
(9)

When the parametric approach is used, the variance of AUC is estimated using Equation 10 (McClish,
1989; Zhou et al., 2002).

Var
(

ÂUC
)
= f 2Var(â) + g2Var(b̂) + 2 f g Cov(â, b̂), (10)
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where

f =
e−a2/2(1+b2)√

2π(1 + b2)
and g = − abe−a/2(1+b2)√

2π(1 + b2)3
(11)

and the estimated variances for a and b as follows:

V̂ar(â) =
n1(â2 + 2) + 2n0b̂2

2n0n1
,

V̂ar(b̂) =
(n1 + n0)b̂2

2n0n1
, (12)

Ĉov(â, b̂) =
âb̂

2n0
.

The estimated values of a and b are used in Equation 11. A number of methods have been proposed
for the estimation of the variance of AUC when the nonparametric approach is used. In this paper, we
will focus on the methods described below:

1. Mann-Whitney version of rank-sum test:
Hanley and McNeil (1982) propose the variance estimation given in Equation 13. This method
estimates the variance using an approximation based on exponential distribution as

Var
(

ÂUC
)
=

1
n0n1

{
AUC(1− AUC) + (n1 − 1)(Q1 − AUC2)

+(n0 − 1)(Q2 − AUC2)
}

, (13)

where Q1 = ÂUC/(2− ÂUC) and Q2 = 2ÂUC
2
/(1 + ÂUC). The Mann-Whitney version

might underestimate the variance when the area is nearly 0.5 and overestimate it when the area
is close to 1 (Hanley and McNeil, 1982; Hanley and Hajian-Tilaki, 1997; Obuchowski, 1994). This
estimate is mostly used in sample-size estimation.

2. DeLong et al. (1988)’s estimate:
Since the exponential distribution approximation in Equation 13 gives biased variance estimates,
DeLong et al. (1988) suggest an alternative method which is free from distributional assumptions.
Define the components T1i for the ith subject from cases and T0j for the jth subject from controls
as follows:

ψ (T1i) =
1

n0

n0

∑
j=1

Ψ
(

X1i, X0j

)
i = 1, 2, . . . , n1

ψ
(

T0j

)
=

1
n1

n1

∑
i=1

Ψ
(

X1i, X0j

)
j = 1, 2, . . . , n0 (14)

Using the Equation 14 the variance of AUC is estimated as

Var
(

ÂUC
)
=

1
n1

S2
T1
+

1
n0

S2
T0

, (15)

where S2
T1

and S2
T0

are variance estimates of T1 and T0 as in Equation 16.

S2
Ti
=

1
ni − 1

ni

∑
j=1

[
ψ
(

Tij

)
− ÂUC

]2
i = 0, 1 (16)

3. Normal approximation of binomial proportion:
Another alternative for variance estimation is to use binomial approximation under the large
sample theory, as given in Equation 17. For small samples, this method may give biased
estimates.
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Var(ÂUC) =
AUC(1− AUC)

n0 + n1
(17)

The estimated variance derived from one of the methods described above is used to construct the
confidence intervals of the AUC. A common method is to use large sample approximation as below:

ÂUC− z1−α/2Var(ÂUC)1/2 < AUC < ÂUC + z1−α/2Var(ÂUC)1/2. (18)

When the area under the curve is close to 1 or the sample size is relatively small, the large sample
approximation in Equation 18 produces improper confidence intervals since the upper limit exceeds 1.
To solve this problem, Agresti and Coull (1998) proposed the score confidence interval that guarantees the
upper limit is less than or equal to 1. Another alternative is to construct the binomial exact confidence
intervals given in Equation 19 using the relationship between binomial and F-distribution (Morisette
and Khorram, 1998)

1

1 +
n− x + 1

x
F2(n−x+1),2x,α/2

≤ p ≤

x + 1
n− x

F2(x+1),2(n−x),α/2

1 +
x + 1
n− x

F2(x+1),2(n−x),α/2

, (19)

where p = x/n is the binomial proportion such as sensitivity, specificity and AUC.

Sample size calculation. In most studies, determining the required sample size is an important step
for the research to be able to detect significant results. Sample size determination is required for both
constructing the confidence interval of the unknown population parameter and testing a research
hypothesis. Obuchowski (1998) reviewed sample size determination for several study designs. In
this paper, we cover the sample size determination for three types of studies based on AUCs. In
addition, the following sample size calculations can be extended to other performance measures such
as sensitivity, specificity, etc.

The variance estimates of AUCs can be obtained using one of the Equations 13, 15 and 17. While
Equation 13 is a good approximation for a variety of underlying distributions, the estimated variance
will be underestimated if the test results are in a discrete rating format. To overcome this problem,
Obuchowski (1998) and Obuchowski et al. (2004) suggest an alternative variance estimation method
for rating data using the variance function as given in Equation 20 which is based on an underlying
binormal distribution. In this section, we focused on sample size calculation for discrete scale data.
However, the same formulas are valid for continuous scale diagnostic tests since the only difference is
about estimating the variance of diagnostic test accuracy.

V(ÂUC) = 0.0099 e−a2/2 ×
[
(5a2 + 8) + (a2 + 8)/R

]
, (20)

where a =
√

2 Φ−1(AUC) and R = n0/n1 is the allocation ratio, i.e., the ratio of the number of controls
to the number of cases. The estimated variance is then Var(ÂUC) = V(ÂUC)/n1. The total sample
size is equal to n = n1(1 + R). One of the variance estimations from Equations 13, 15, 17 and 20 is
used for the sample size calculations. The selection of the appropriate variance estimation method is
based on the variable type of the test results and underlying distributions.

1. Hypothesis test to determine the AUC of a single classifier:
In most of the studies with a single classifier, the aim of the study is to determine whether the
diagnostic test performs well for discriminating diseased patients from controls. Consider the
hypotheses H0 : AUC = 0.5 versus H1 : AUC > 0.5 (i.e, one-sided test). The required number
of cases is determined using Equation 21 (Obuchowski et al., 2004).
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n1 =

[
z1−α

√
Var0(ÂUC) + z1−β

√
Var1(ÂUC)

]2

(AUC− 0.5)2

=

[
z1−α

√
0.0792× (1 + 1/R) + z1−β

√
Var1(ÂUC)

]2

(AUC− 0.5)2 , (21)

where Var0 and Var1 are the variance estimations under the null and alternative hypotheses
using Equation 20. z1−α and z1−β are lower-tailed percentile values of the cumulative standard
normal distribution. Finally, the total sample size is obtained using n = n1 + n1 × R.

2. Comparing the AUCs of two classifiers:
When the aim of a study is to compare two classifiers, one may consider the hypotheses
H0 : AUC1 = AUC2 versus H1 : AUC1 6= AUC2. The two classifiers will be equally performing
under the null hypothesis. The required number of cases is calculated using Equation 22.

n1 =

[
z1−α/2

√
Var0(ÂUC1 − ÂUC2) + z1−β

√
Var1(ÂUC1 − ÂUC2)

]2

(AUC1 − AUC2)2 , (22)

where Var0 and Var1 are the variance estimations under the null and alternative hypotheses; as
given in Equation 23 (Zhou et al., 2002; Obuchowski et al., 2004).

Var(ÂUC1 − ÂUC2) = Var(ÂUC1) + Var(ÂUC2)− 2Cov(ÂUC1, ÂUC2) (23)

The total sample size is calculated using the allocation ratio. When two classifiers are performed
on the same subjects, the design will be paired yielding the covariance term to be a nonzero
(usually positive) quantity. However, the covariance term will be zero (i.e., independent
classifiers) if each test is performed on different subjects. Detailed information on the calculation
of the covariance term can be found in Zhou et al. (2002).

3. Non-inferiority of a new classifier to a standard one:
In addition to comparing two classifiers, some studies are designed to explore the performance
of a new classifier to that of a standard one. The new classifier should perform as well as but
not necessarily better than the standard test (Obuchowski et al., 2004). The hypotheses are
H0 : AUCstd − AUCnew ≥ ∆ versus H1 : AUCstd − AUCnew < ∆. The required number of cases
is calculated using Equation 24

n1 =
(z1−α + z1−β)

2 Var1(ÂUCstd − ÂUCnew)

(AUCstd − AUCnew − ∆)2 , (24)

where ∆ is the non-inferiority margin, i.e., the minimum acceptable difference between the
AUCs of the standard and new classifiers.

Current ROC analysis tools and easyROC

ROC curve analysis is one of the standard procedures included in most statistical analysis tools such as
IBM SPSS, Stata, MedCalc and R. Each tool offers different features within ROC curve analysis. Among
commercial software packages, IBM SPSS, which is one of the most widely used commercial software
packages, plots the ROC curve and computes some basic statistics such as AUC and its standard error,
confidence interval and statistical significance. However, it does not provide any method for sample
size calculation or cutpoint determination. Stata offers a variety of calculations for ROC curve analysis
including partial AUC, multiple comparisons of ROC curves, optimal cutpoint determination using
the Youden index and several performance measures. Another commercial software alternative for
ROC curve analysis is MedCalc, which has comprehensive features compared to most of the other
available commercial software packages and is especially developed for biomedical research. MedCalc
provides sample size estimation for a single diagnostic test, but it does not have an option for pAUC
calculation.

Unlike commercial software packages, R is an open source and free software package that includes
all the features of commercial software packages and more through several packages such as ROC,

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 220

IBM SPSS Stata MedCalc ROC ROCR pROC easyROC

Plots Yes Yes Yes* Yes Yes* Yes* Yes*
Conf. intervals Yes Yes* Yes Yes Yes Yes* Yes*
pAUC No Yes No Yes Yes Yes* Yes*
Statistical tests No Yes No Yes Yes Yes* Yes*
Diagnostic measures No Yes Yes No Yes* Yes Yes
Multiple comp. No Yes Yes* No No Yes* Yes
Cutpoints No Yes Yes No No Yes Yes*
Sample size No No Yes No No Yes Yes*
Free license No No No Yes* Yes* Yes* Yes*
Open source No No No Yes* Yes* Yes* Yes*
Web-tool access No No No No No No Yes*
User interface Yes Yes* Yes* No No Yes* Yes*

* Comprehensive ones.

Table 2: Comparison of easyROC with other tools.

ROCR, pROC and OptimalCutpoints. ROC is an R/Bioconductor package which can plot the
ROC curve and calculate the AUC. It also calculates pAUCs based on false positive rates. This
package is originally developed to be used for the ROC analysis with DNA microarrays. ROCR is
a comprehensive R package providing over 25 different performance measures (based on package
version 1.0-7). It allows users to create two dimensional performance curves. Although ROCR is
one of the most comprehensive packages for assessing the performance measures, it provides limited
options to select the optimum cutpoint. One may use any of the two-dimensional performance graphs
to determine the optimal cutpoint graphically. It computes the AUC and its confidence interval,
however, it does not provide a statistical test for performance measures.

pROC, on the other hand, offers more comprehensive and flexible features than its free and
commercial counterparts. It performs statistical tests for the comparison of ROC curves using DeLong
et al. (1988), Venkatraman and Begg (1996) and Venkatraman (2000) for AUC, and Hanley and McNeil
(1983) and Pepe et al. (2009) for both AUC and pAUC. It also calculates the confidence intervals for the
sensitivity, specificity, ROC curves, pAUC, and smoothed ROC curves. The confidence intervals are
computed using DeLong et al. (1988)’s method for AUCs and using bootstrap for pAUCs, sensitivity
and specificity at given threshold(s). Bootstrap confidence intervals and pAUC regions are shown in
the ROC curve plot. Several diagnostic measures, such as sensitivity, specificity, negative and positive
predictive values, are computed for a given threshold. Like ROCR, pROC also offers limited features
for detecting the optimal cutpoint. Two methods, i.e., Youden index and closest point to the top-left
corner, are available to find the optimal cutpoint. In addition, pROC is an alternative among the ROC
packages on CRAN to find the required sample size for a single diagnostic test or the comparison of
two diagnostic tests. Two versions of pROC are available: (i) for the R programming language and (ii)
with a graphical user interface for the S-PLUS statistical software package.

There are several packages providing optimal cutpoint calculations through R. OptimalCutpoints
is a sophisticated R package specifically developed to determine the optimal cutpoint of a test or
biomarker (Lopez-Raton et al., 2014). It includes 34 different cutpoint calculation methods based on
sensitivity/specificity measures, cost-benefit analysis, predictive values, diagnostic likelihood ratios,
prevalences and p-values. A brief description of these methods is given in Supplementary 1. Although
these R packages, especially pROC, seem to be a perfect match for ROC curve analysis, none of them
has a graphical user interface and all require coding knowledge, which makes them hard to use;
especially for non-R users.

Another R package worth mentioning is plotROC (Sachs, 2016) which is available on CRAN and
also for shiny platforms. plotROC is a flexible and sophisticated R package which can be used to
create nice-looking and interactive ROC graphs. Unlike the packages described above, plotROC has a
web-based user interface which is very useful for non-R users. Researchers can use its web service to
create ROC graphics and download the figures to their local computer. However, it does not provide
any statistical tests or sample size calculations.

easyROC aims to extend the features of several ROC packages in R and allows researchers to
conduct their ROC curve analysis through a single and easy-to-use interface without writing any R
code. This tool is a web-based application created via shiny and HTML programming. easyROC
makes use of the R packages plyr (Wickham, 2011), pROC and OptimalCutpoints for conducting ROC
analysis. plyr is used for manipulating data while pROC is used for estimation and hypothesis testing
of pAUCs. easyROC has comprehensive options for ROC curve analysis which other tools do not have
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Modules (Tab panels) Features

ROC curve • Parametric/Nonparametric ROC
• AUC, pAUC

– Confidence interval (Exact and Asymptotic)
– Significance test (Wald)

• Standard error estimation
– DeLong (1988)
– Mann-Whitney
– Binomial approximation

• Multiple comparison of AUCs
– Bonferroni
– False discovery rate

• ROC plot (customizable)

Cutpoints • 34 different methods for optimum cutpoints
(Lopez-Raton et al., 2014)

• Performance measures with confidence intervals
– Exact CIs
– Asymptotic CIs

• Cutpoint graphs (fully customizable)
– ROC curve
– Sensitivity & specificity plot
– Density plot
– Scatter plot

Sample size • Single diagnostic test
• Comparison of two diagnostic tests
• Noninferiority of a new test to a standard test

Table 3: Features of easyROC.

(or partially shares some features). The ROC curve can be estimated using parametric or nonparametric
approaches. It offers four different methods for the calculation of the standard error and confidence
interval of the AUC. Researchers can calculate the pAUCs based on sensitivity and specificity, if
necessary. One may perform pairwise comparisons to find the classifiers which have similar or
different discrimination ability. However, the pairwise comparison should be carried out carefully
since the type I error increases with the increasing number of comparisons. easyROC offers multiple
test corrections in order to keep type I error at a given level. Multiple comparisons of diagnostic tests
can be applied using either Bonferroni or false discovery rate correction. Furthermore, the optimal
cutpoints are determined using the methods from OptimalCutpoints and the corresponding measures
at a given cutpoint, including sensitivity, specificity, positive and negative predictive values, and
positive and negative likelihood ratios are also returned. One can determine the desired sample size
for ROC curve analysis using this tool for three different cases. All these comprehensive features are
accessible through a graphical user interface, which makes the analysis process easier for all users. The
comparison with other tools is given in Table 2 and the features of each module are given in Table 3.

Results

Case study on non-alcoholic fatty liver disease

To illustrate our application, we used the non-alcoholic fatty liver disease (NAFLD) dataset of Celik-
bilek et al. (2014). This study was designed to identify the non-invasive miRNA biomarkers of NAFLD.
The authors obtained the serum samples of 20 healthy and 20 NAFLD observations and quantified
the expression levels of eight miRNAs using quantitative Real-Time PCR (qPCR) technology. After
performing the necessary statistical analysis, the authors revealed that miR-197, miR-146b, miR-181d
and miR-99a may be potential biomarkers in identifying NAFLD. The normalized expression values
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Figure 2: Uploading data into easyROC.

of these miRNAs and the class information (the column named “Group”, where 0 refers to controls
and 1 refers to cases) of each observation are given in Supplementary 2. This file can be directly
used as input to the easyROC web-tool and users can arrange their own data based on this file. Two
example datasets, Mayo and PBC (Murtaugh et al., 1994), are also available in the web-tool for users
to practice the application. In our example, the aim is to investigate the discriminative performances
of each miRNA, compare each other and identify the optimal cutpoints for each miRNA in identifying
NAFLD.

Implementation of easyROC web-tool

The data are uploaded to the easyROC interface using the Data upload tab (Figure 2). easyROC accepts
a delimited text file with variable names in the first row. The status variable is also set by the same tab
panel. easyROC automatically detects the variable names and exports them into related fields. When
data are correctly uploaded, researchers may proceed with ROC curve analysis, cutpoint estimations
or sample size calculations. The area under the curve, confidence intervals and significance tests for
AUC, multiple comparisons (if multiple markers are selected) and pAUCs are calculated with the
ROC curve tab (Figures 3 and 4). The ROC curve is estimated using the nonparametric approach. The
advanced option allows researchers to select a method for standard error estimation and confidence
intervals. easyROC selects the DeLong et al. (1988) method by default.

Here, we select mir197, mir146b, mir181d and mir99a miRNAs to assess their performances and
to compare them with each other in identifying NAFLD. Since the expression levels of all miRNAs
are underexpressed in the NAFLD group, lower values will indicate higher risk and therefore we
should uncheck the “Higher values indicate higher risks” box. Using DeLong et al. (1988) standard
error estimations, we obtained the ROC curves for each miRNA biomarker and AUC values as 0.86
(0.75–0.97), 0.77 (0.61–0.92), 0.76 (0.60–0.93) and 0.75 (0.59–0.91) for mir181d, mir197, mir99a and
mir146b, respectively. The results revealed that all miRNAs’ predictive performances are significant
and higher than random chance in identifying NAFLD (Figure 3). By controlling the type I error using
Bonferroni correction, all pairwise comparisons showed non-significant results (p > 0.05). This may
be due to the small sample size of the data. Increasing the sample size, thus the statistical power of the
test, may concretize the predictive ability of mir181d as compared to other miRNAs.

Finding a suitable cutpoint is one of the aims of ROC curve analysis. We made use of the
OptimalCutPoints package from R (Lopez-Raton et al., 2014), which has 34 different methods, to
calculate cutpoints for each marker. An optimal cutpoint can be computed via the Cut point tab
by selecting a marker and a method. Then, the application will calculate an optimal cutpoint and
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Figure 3: ROC curve analysis results.

Figure 4: Multiple comparison of the diagnostic tests.

performance measures such as sensitivity, specificity, positive and negative predictive value, and
positive and negative likelihood ratio based on the corresponding cutpoint value. The “ROC01”
method, for example, determines the optimal cutpoint as −0.12977 for mir181d. Using this cutpoint,
a new test observation with a mir181d expression level lower than this value can be assigned as an
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Figure 5: Determination of optimal cutpoint(s).

NAFLD patient. Based on the identified cutpoint, we obtained statistical diagnostic measures with
95% confidence intervals (Figure 5). We obtain a sensitivity of 0.75 (0.51–0.91) and specificity of 0.80
(0.56–0.94). If users select the “Include plots” option, four plots will appear under the statistics results.
The first plot in the upper-left corner displays the optimal cutpoint on the ROC curve. Users can
observe the change of sensitivity and specificity measures based on the value of the marker on the plot
placed in the upper-right corner. The density and scatter of the expression values in each group are
displayed in the bottom-left and bottom-right corners. The plots can be modified through the “More
plot options” section. All the results and figures can be downloaded using the related “Download”
buttons in each tab panel.

Conclusion

Since ROC curve analysis is one of the principal statistical analysis methods, it is used by a wide
range of the scientific community. Both commercial and free software tools are available for users to
perform it. Generally, easy-to-use and nicely-designed interfaces are offered by commercial software
packages whereas flexible and comprehensive tools are available in free, open-access, code-based
software packages, such as R. The first novelty of our tool is that it allows the user to use free and
open-access software with an easy-to-use interface. In other words, we combine the power of an
open-source and free language with a nicely designed and easily accessible interface. This tool offers
more comprehensive features and a wide variety of implementations for ROC curve analysis than
its commercial and free counterparts, which is another novelty of this application. It is specifically
constructed for ROC curve analysis, unlike the commercial software packages, such as IBM SPSS, Stata
and MedCalc.

This web-based application is intended for research purposes only, not for clinical or commercial
use. Since it is a non-profit service to the scientific community, it comes with no warranty and no
data security. However, since this web server uses the R package shiny, each user performs his/her
analyses in a new R session. After uploading data, the application only saves responses within its
R session and prints the results instantly. After a user has quit the application, the corresponding
R session will be closed and any uploaded data, responses or outputs will not be saved locally or
remotely.

This tool is freely available through http://www.biosoft.hacettepe.edu.tr/easyROC/ and all
the source codes are available at http://www.github.com/dncR/easyROC under GPL version 3. It will
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be regularly updated upon the dependent R packages used in this application, including shiny and
OptimalCutpoints, and new features will be continually added as they are developed.

Bibliography

A. Agresti and B. A. Coull. Approximate is better than “exact” for interval estimation of binomial
proportions. The American Statistician, 52(2):119–126, 1998. doi: 10.2307/2685469. [p218]

D. Bamber. The area above the ordinal dominance graph and the area below the receiver operating
characteristic graph. Journal of Mathematical Psychology, 12(4):387–415, 1975. doi: 10.1016/0022-
2496(75)90001-2. [p215]

V. Carey and H. Redestig. ROC: Utilities for ROC, with Uarray Focus, 2015. URL https://www.
bioconductor.org. R package version 1.44.0. [p213]

M. Celikbilek, M. Baskol, S. Taheri, K. Deniz, S. Dogan, G. Zararsiz, S. Gursoy, K. Guven, O. Ozbakir,
M. Dundar, and M. Yucesoy. Circulating microRNAs in patients with non-alcoholic fatty liver
disease. World Journal of Hepatology, 6(8):613–620, 2014. [p221]

W. Chang, J. Cheng, J. Allaire, Y. Xie, and J. McPherson. shiny: Web Application Framework for R, 2015.
URL https://CRAN.R-project.org/package=shiny. R package version 0.12.1. [p213]

E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson. Comparing the areas under two or more
correlated receiver operating characteristic curves: A nonparametric approach. Biometrics, 44(3):
837–845, 1988. doi: 10.2307/2531595. [p217, 220, 222]

J. P. Egan. Signal Detection Theory and ROC Analysis. Series in Cognition and Perception. Academic
Press, New York, NY, 1975. [p213]

J. Fan, S. Upadhye, and A. Worster. Understanding receiver operating characteristic (ROC) curves.
Canadian Journal of Emergency Medicine, 8:19–20, 2006. doi: 10.1017/s1481803500013336. [p213]

T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861–874, 2006. doi:
10.1016/j.patrec.2005.10.010. [p213]

M. Gönen and G. Heller. Lehmann family of ROC curves. Medical Decision Making, 30(4):509–517, 2010.
doi: 10.1177/0272989x09360067. [p214]

J. A. Hanley and K. O. Hajian-Tilaki. Sampling variability of nonparametric estimates of the areas
under receiver operating characteristic curves: An update. Academic Radiology, 4(1):49–58, 1997. doi:
10.1016/s1076-6332(97)80161-4. [p217]

J. A. Hanley and B. J. McNeil. The meaning and use of the area under a receiver operating characteristic
(ROC) curve. Radiology, 143(1):29–36, 1982. doi: 10.1148/radiology.143.1.7063747. [p215, 217]

J. A. Hanley and B. J. McNeil. A method of comparing the areas under receiver operating characteristic
curves derived from the same cases. Radiology, 148(3):839–843, 1983. doi: 10.1148/radiology.148.3.
6878708. [p220]

M. Lopez-Raton, M. X. Rodriguez-Alvarez, C. Cadarso-Suárez, and F. Gude-Sampedro. OptimalCut-
points: An R package for selecting optimal cutpoints in diagnostic tests. Journal of Statistical Software,
61(8):1–36, 2014. doi: 10.18637/jss.v061.i08. [p213, 216, 220, 221, 222]

D. K. McClish. Analyzing a portion of the ROC curve. Medical Decision Making, 9(3):190–195, 1989. doi:
10.1177/0272989x8900900307. [p216]

J. T. Morisette and S. Khorram. Exact binomial confidence interval for proportions. Photogrammetric
Engineering and Remote Sensing, 64(4):281–283, 1998. [p218]

P. A. Murtaugh, E. R. Dickson, G. M. Van Dam, M. Malinchoc, P. M. Grambsch, A. L. Langworthy, and
C. H. Gips. Primary biliary cirrhosis: Prediction of short-term survival based on repeated patient
visits. Hepatology, 20(1):126–134, 1994. doi: 10.1002/hep.1840200120. [p222]

N. A. Obuchowski. Computing sample size for receiver operating characteristic studies. Investigative
Radiology, 29(2):238–243, 1994. doi: 10.1097/00004424-199402000-00020. [p217]

N. A. Obuchowski. Sample size calculations in studies of test accuracy. Statistical Methods in Medical
Research, 7(4):371–392, 1998. [p218]

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

https://www.bioconductor.org
https://www.bioconductor.org
https://CRAN.R-project.org/package=shiny


CONTRIBUTED RESEARCH ARTICLES 226

N. A. Obuchowski, M. L. Lieber, and F. H. Wians. ROC curves in clinical chemistry: Uses, misuses,
and possible solutions. Clinical Chemistry, 50(7):1118–1125, 2004. doi: 10.1373/clinchem.2004.031823.
[p218, 219]

M. Pepe, G. Longton, and H. Janes. Estimation and comparison of receiver operating characteristic
curves. The Stata Journal, 9(1):1, 2009. [p220]

X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.-C. Sanchez, and M. Müller. pROC: An
open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12(1):
77, 2011. doi: 10.1186/1471-2105-12-77. [p213]

M. C. Sachs. plotROC: Generate Useful ROC Curve Charts for Print and Interactive Use, 2016. URL
http://sachsmc.github.io/plotROC. R package version 2.0.1. [p220]

T. Sing, O. Sander, N. Beerenwinkel, and T. Lengauer. ROCR: Visualizing classifier performance in R.
Bioinformatics, 21(20):3940–3941, 2005. [p213]

P. Sonego, A. Kocsor, and S. Pongor. ROC analysis: Applications to the classification of biological
sequences and 3D structures. Briefings in Bioinformatics, 9(3):198–209, 2008. [p213]

J. A. Swets, R. M. Dawes, and J. Monahan. Better decisions through science. Scientific American, 283(4):
82–87, 2000. doi: 10.1038/scientificamerican1000-82. [p213]

E. Venkatraman. A permutation test to compare receiver operating characteristic curves. Biometrics, 56
(4):1134–1138, 2000. doi: 10.1111/j.0006-341x.2000.01134.x. [p220]

E. Venkatraman and C. B. Begg. A distribution-free procedure for comparing receiver operating
characteristic curves from a paired experiment. Biometrika, 83(4):835–848, 1996. doi: 10.1093/
biomet/83.4.835. [p220]

H. Wickham. The split-apply-combine strategy for data analysis. Journal of Statistical Software, 40(1):
1–29, 2011. URL http://www.jstatsoft.org/v40/i01/. [p220]

X.-H. Zhou, D. K. McClish, and N. A. Obuchowski. Statistical Methods in Diagnostic Medicine, volume
569. John Wiley & Sons, 2002. doi: 10.1002/9780470317082. [p214, 216, 219]

Dincer Goksuluk
Department of Biostatistics, School of Medicine, Hacettepe University
Sihhiye Campus, 06100 - Ankara
Turkey
dincer.goksuluk@hacettepe.edu.tr

Selcuk Korkmaz
Department of Biostatistics, School of Medicine, Hacettepe University
Sihhiye Campus, 06100 - Ankara
Turkey
selcukorkmaz@hotmail.com

Gokmen Zararsiz
Department of Biostatistics, School of Medicine, Erciyes University
Genome and Stem Cell Center, Erciyes University
Talas, 38039 - Kayseri
Turkey
gokmenzararsiz@hotmail.com

A. Ergun Karaagaoglu
Department of Biostatistics, School of Medicine, Hacettepe University
Sihhiye Campus, 06100 - Ankara
Turkey
ekaraaga@gmail.com

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

http://sachsmc.github.io/plotROC
http://www.jstatsoft.org/v40/i01/
mailto:dincer.goksuluk@hacettepe.edu.tr
mailto:selcukorkmaz@hotmail.com
mailto:gokmenzararsiz@hotmail.com
mailto:ekaraaga@gmail.com


C
O

N
T

R
IB

U
T

E
D

R
E

SE
A

R
C

H
A

R
T

IC
L

E
S

227

Supplementary material

Supplementary 1: A brief description of optimal cutpoint methods.

Method Description

Youden Youden index identifies the cutpoint that maximizes the sum of Sensitivity and Speci f icity.

CB CB is a measure based on the cost and benefit method, and is calculated from the slope of the ROC curve.

MinValueSp
MinValueSe

For a given minimum value for Speci f icity, MinValueSp identifies the optimal value as the one that gives the maximum Sensitivity.
In contrast, for a given minimum value for Sensitivity, MinValueSe identifies the optimal value as the one that gives the maximum
Speci f icity.

ValueSp
ValueSe

For a given particular value for Speci f icity, ValueSp identifies the optimal value as the one that gives the maximum Sensitivity. In
contrast, for a given particular value for Sensitivity, ValueSe identifies the optimal value as the one that gives the maximum Speci f icity.

MinValueSpSe For given minimum values for Speci f icity and Sensitivity measures, MinValueSpSe identifies the optimal value as the one that gives the
maximum Sensitivity or Speci f icity (user-defined).

MaxSp
MaxSe

MaxSp and MaxSe are two measures based on the maximization of Speci f icity and Sensitivity, respectively.

MaxSpSe MaxSpSe is a measure based on the simultaneous maximization of both Speci f icity and Sensitivity measures.

MaxProdSpSe MaxProdSpSe is a measure based on the maximization of the product of Sensitivity and Speci f icity.

ROC01 ROC01 identifies the optimal cutpoint that is closest to the upper-left corner (0, 1) of the ROC graph.

SpEqualSe SpEqualSe is a measure based on the minimization of the absolute difference between Sensitivity and Speci f icity.

MaxEfficiency MaxEfficiency is a measure based on the minimization of the misclassification error, (FP + FN)/n.

Continued on next page
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Supplementary 1 – Continued from previous page

Method Description

Minimax Minimax is a measure based on the minimization of the most frequent error. Minimax is computed using the equation Minimaxc =
minc(max(p(1− Sensitivity) + (1− p)(1− Speci f icity))) where c is the cutpoint and p is the prevalence.

MaxDOR MaxDOR is a measure based on the maximization of the diagnostic odds ratio, calculated using the equation MaxDORc =
maxc[(Sensitivity× Speci f icity)/((1− Sensitivity)(1− Speci f icity))].

MinValueNPV
MinValuePPV

For a given minimum value for NPV, MinValueNPV identifies the optimal value as the one that gives the maximum PPV. In contrast,
for a given minimum value for PPV, MinValuePPV identifies the optimal value as the one that gives the maximum NPV.

ValueNPV
ValuePPV

For a given particular value for NPV, ValueNPV identifies the optimal cutpoint as the one that gives the maximum PPV. In contrast, for
a given particular value for PPV, ValuePPV identifies the optimal cutpoint as the one that gives the maximum NPV.

MinValueNPVPPV For given minimum values for predictive values, MinValueNPVPPV identifies the optimal value as the one that gives the maximum
NPV or PPV (user-defined).

PROC01 PROC01 identifies the optimal cutpoint that is closest to the upper-left corner (0, 1) of the partial ROC (pROC) graph.

NPVEqualPPV NPVEqualPPV is a measure based on the minimization of the absolute difference between NPV and PPV.

MaxNPVPPV MaxNPVPPV is a measure based on the simultaneous maximization of both NPV and PPV measures.

MaxSumNPVPPV MaxSumNPVPPV is a measure based on the maximization of the sum of NPV and PPV measures.

MaxProdNPVPPV MaxProdNPVPPV is a measure based on the maximization of the product of NPV and PPV.

ValueDLR.Negative
ValueDLR.Positive

These two measures are based on setting particular values for negative and positive diagnostic likelihood ratios, respectively.

MinPvalue MinPvalue is a measure based on the minimization of the p-value of the Chi-square test on assessing the independence between the
diagnostic and gold standard test.

Continued on next page
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Supplementary 1 – Continued from previous page

Method Description

ObservedPrev ObservedPrev is a measure which identifies the optimal cutpoint closest to the observed prevalence by minimizing the quantity |c− p|.
This method is valid when the diagnostic test takes values within the interval [0, 1].

MeanPrev MeanPrev is a measure which identifies the optimal cutpoint closest to the average of the diagnostic test values. It is suggested to use
this measure if the diagnostic test takes values between 0 and 1.

PrevalenceMatching PrevalenceMatching is a measure based on the equality of actual and predicted prevalence. The cutpoint minimizes the absolute quantity
|p(1− Sensitivity)− (1− p)(1− Speci f icity)|. This method is valid when the diagnostic test takes values within the interval [0, 1].

For details, see Lopez-Raton et al. (2014).
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Supplementary 2: Non-alcoholic fatty liver disease (NAFLD) data (Çelikbilek et al., 2014).

Grup mir197 mir146b mir181d mir99a Grup mir197 mir146b mir181d mir99a

1 0.921 0.687 0.474 −0.941 0 1.214 1.122 0.882 1.610
1 0.967 1.059 0.474 0.575 0 1.401 0.148 0.444 0.625
1 0.854 1.105 0.722 0.936 0 0.494 −0.179 1.386 0.134
1 −1.088 −1.353 −0.577 −1.077 0 1.608 1.386 2.242 0.926
1 0.107 0.515 −0.286 0.560 0 1.274 1.609 0.769 1.108
1 0.547 1.191 0.583 1.119 0 0.827 1.128 0.452 0.374
1 −1.081 −1.445 −1.303 −1.202 0 −0.147 −0.545 0.878 0.044
1 −1.081 −1.308 −1.276 −1.066 0 0.353 0.320 −0.225 0.367
1 0.841 0.463 −0.290 0.747 0 −1.635 −0.677 −0.838 −0.543
1 −1.188 −0.975 −1.407 −2.123 0 1.848 1.523 1.712 0.940
1 −1.014 −0.649 −1.194 −1.786 0 0.987 0.606 0.626 0.542
1 −1.081 −1.256 −1.229 −0.679 0 0.020 0.503 0.600 0.367
1 −1.295 −1.204 −1.607 −2.216 0 1.061 1.518 1.217 0.209
1 −1.081 −1.268 −0.829 −0.658 0 0.474 0.572 0.292 0.786
1 −1.081 −1.365 −1.376 −1.457 0 −0.868 −0.505 −0.408 −0.117
1 −1.081 −1.371 −0.812 −1.804 0 −0.414 −0.259 0.665 0.363
1 −1.081 −0.769 −1.359 −0.156 0 0.394 0.417 1.000 0.130
1 0.854 1.243 0.444 1.460 0 0.941 0.543 0.431 1.083
1 −1.074 −1.365 −1.572 −0.339 0 −0.387 −0.202 −0.568 0.345
1 −0.634 −0.276 −0.130 −0.081 0 −0.674 −0.689 0.995 0.893

T
he

R
JournalVol.8/2,D

ecem
ber

2016
ISSN

2073-4859



CONTRIBUTED RESEARCH ARTICLES 231

tigris: An R Package to Access and Work
with Geographic Data from the US
Census Bureau
by Kyle Walker

Abstract TIGER/Line shapefiles from the United States Census Bureau are commonly used for the
mapping and analysis of US demographic trends. The tigris package provides a uniform interface
for R users to download and work with these shapefiles. Functions in tigris allow R users to request
Census geographic datasets using familiar geographic identifiers and return those datasets as objects
of class "Spatial*DataFrame". In turn, tigris ensures consistent and high-quality spatial data for R
users’ cartographic and spatial analysis projects that involve US Census data. This article provides
an overview of the functionality of the tigris package, and concludes with an applied example of a
geospatial workflow using data retrieved with tigris.

Introduction

Analysis and visualization of geographic data are often core components of the analytical workflow
for researchers and data scientists; as such, access to open and reliable geographic datasets are of
paramount importance. The United States Census Bureau provides access to such data in the form
of its TIGER/Line shapefile products (United States Census Bureau, 2016a). The files are extracts
from the Census Bureau’s Master Address File/Topologically Integrated Geographic Encoding and
Referencing (TIGER) database, which in turn are released to the public as shapefiles, a common format
for encoding geographic data as vectors (e.g. points, lines, and polygons). Available TIGER/Line
shapefiles include all of the Census Bureau’s areal enumeration units, such as states, counties, Census
tracts, and Census blocks; transportation data such as roads and railways; and both linear and areal
hydrography. The TIGER/Line files are updated annually, and include attributes that allow them to be
joined with other tabular data, including demographic data products released by the Census Bureau.

The tigris package aims to simplify the process of working with these datasets for R users (Walker,
2016). With functions in tigris, R users can specify the data type and geography for which they would
like to obtain geographic data, and return the corresponding TIGER/Line data as an R object of class
"Spatial*DataFrame". This article provides an overview of the tigris package, and gives examples
that show how it can contribute to common geographic visualization and spatial analysis workflows
in R. Examples in the article include a discussion of how tigris helps R users retrieve and work with
data from the US Census Bureau, as well as an applied example of how tigris can fit within a common
geospatial workflow in R, in which data from the United States Internal Revenue Service are visualized
with both static and interactive cartography.

Geographic data and Census visualization in R

The TIGER/Line files were first released by the US Census Bureau in ASCII format in 1989, and
represented street centerline data for the entire United States. Since then, the Census Bureau has
expanded the coverage of the TIGER/Line data, and transitioned the core format of the publicly-
available files to the shapefile in 2007. TIGER/Line shapefiles include boundary files , which encompass
the boundaries of governmental units or other areal units for which the Census Bureau tabulates data.
This includes the core Census hierarchy of areal units from the Census block (analogous to a city block)
to the entire United States, as well as common geographic entities such as city boundaries. The Census
Bureau distinguishes between legal entities , which have official government standing, and statistical
entities , which have no legal definition but are used for the tabulation of data. The Census Bureau
also makes available shapefiles of geographic features , which include entities such as roads, rivers,
and railroads. All TIGER/Line shapefiles are distributed in a geographic coordinate system using the
North American Datum of 1983 (NAD83) (United States Census Bureau, 2014).

As the TIGER/Line datasets are available in shapefile format, they can be read into and trans-
lated to R objects by the rgdal package (Bivand et al., 2015). rgdal is an R interface to the open-
sourced Geospatial Data Abstraction Library, or GDAL, an open-source translator that can convert
between numerous common vector and raster spatial data formats (GDAL Development Team, 2015).
When loaded into R, shapefiles will be represented as objects of class "Spatial*" by the sp pack-
age (Bivand et al., 2013). Most Census datasets obtained by tigris will be loaded as objects of class
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"SpatialPolygonsDataFrame" given that they represent Census areal entities; selected geographic
features, such as roads, linear water features, and landmarks, may be represented as objects of class
"SpatialLinesDataFrame" or "SpatialPointsDataFrame". "Spatial*DataFrames" are R objects that
represent spatial data as closely as possible to regular R data frames, yet also contain information about
the feature geometry and coordinate system of the data (see Bivand et al., 2013, for more information).

Several R packages provide access to Census geographic and demographic data. The UScen-
sus2000 (no longer on CRAN) and UScensus2010 packages by Zack Almquist allow for access to
several geographic datasets for the 2000 and 2010 Censuses, including blocks, Census tracts, and
counties (Almquist, 2010). These datasets can also be linked to demographic data from the 2000 and
2010 Censuses, which are stored in related, external packages. The USABoundaries package similarly
provides access to some Census geographic boundary files such as zip code tabulation areas (ZCTAs)
and counties; it also makes available historical boundary files dating back to 1629 (Mullen, 2015).
Another R package, choroplethr, wraps ggplot2 (Wickham, 2009) to map data from the US Census
Bureau’s American Community Survey aggregated to common Census geographies (Lamstein and
Johnson, 2015). The purpose of the tigris package is to help R users work with US Census Bureau
geographic data by granting direct access to the Census shapefiles via a simple, uniform interface.
Further, as tigris interfaces directly with Census Bureau data stores, it ensures access to high-quality
and up-to-date geographic data for R projects.

Core functionality of tigris

The core functionality of tigris consists of a series of functions, each corresponding to a single Census
Bureau geography of interest, that grant access to geographic data from the US Census Bureau.
tigris allows R users to obtain both the core TIGER/Line shapefiles as well as the Census Bureau’s
Cartographic Boundary Files. Cartographic Boundary Files, following the United States Census
Bureau (2015), "are simplified representations of selected geographic areas from the Census Bureau’s
MAF/TIGER geographic database" (United States Census Bureau, 2015).

To download geographic data using tigris, the R user calls the function corresponding to the
desired geography. For example, to obtain a "SpatialPolygonsDataFrame" of US states from the
TIGER/Line dataset, the user calls the states() function in tigris, which can then be plotted with the
plot() function from the sp package, which is loaded by tigris automatically:

library(tigris)
us_states <- states()
plot(us_states)

Figure 1: Basic plot of US states retrieved from the Census TIGER/Line database.
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The states() function call instructs tigris to fetch a TIGER/Line shapefile from the US Cen-
sus Bureau that represents the boundaries of the 50 US states, the District of Columbia, and US
territories. tigris then uses rgdal to load the data into the user’s R session as an object of class
"Spatial*DataFrame". Many functions in tigris have a parameter, cb, that if set to TRUE will direct
tigris to load a cartographic boundary file instead. Cartographic boundary files default to a simplified
resolution of 1:500,000; in some cases, as with states, resolutions of 1:5 million and 1:20 million are
available. For example, an R user could specify the following modifications to the states() function,
and retrieve a simplified dataset.

us_states_20m <- states(cb = TRUE, resolution = "20m")
ri <- us_states[us_states$NAME == "Rhode Island", ]
ri_20m <- us_states_20m[us_states_20m$NAME == "Rhode Island", ]
plot(ri)
plot(ri_20m, border = "red", add = TRUE)

Figure 2: Difference between default TIGER/Line and 1:20 million cartographic boundary outlines of
Rhode Island.

The plot illustrates some of the differences between the TIGER/Line shapefiles and the cartographic
boundary files, in this instance for the state of Rhode Island. The TIGER/Line shapefiles are the most
detailed datasets in interior areas, and represent the legal boundaries for coastal areas which extend
three miles beyond the shoreline. The Cartographic Boundary Files have less detail in interior areas,
but are clipped to the shoreline of the United States, which may be preferable for thematic mapping
but can introduce additional detail for coastal features. A full list of the geographic datasets available
through tigris is found in Table 1; datasets with an asterisk are available as both TIGER/Line and
cartographic boundary files.

When Census data are available for download at sub-national levels, they are referenced by
their Federal Information Processing Standard (FIPS) codes, which are codes that uniquely identify
geographic entities in the Census database. When applicable, tigris uses smart state and county
lookup to simplify the process of data acquisition for R users. This allows users to obtain data by
supplying the name or postal code of the desired state – along with the name of the desired county,
when applicable – rather than their FIPS codes. In the following example, the R user fetches roads data
for Kalawao County Hawaii, the smallest county in the United States by area, located on the northern
coast of the island of Moloka’i.

kw_roads <- roads("HI", "Kalawao")
plot(kw_roads)

While many Census shapefiles correspond to these common geographic identifiers in the United
States, not all datasets are identifiable in this way. A good example is the Zip Code Tabulation
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Family Functions

General area functions nation*; divisions*; regions*; states*; counties*;
tracts*; block_groups*; blocks; places*; pumas*;
school_districts; county_subdivisions*; zctas*

Legislative district functions congressional_districts*;
state_legislative_districts*;
voting_districts (2012 only)

Water functions area_water; linear_water; coastline
Metro area functions core_based_statistical_areas*;

combined_statistical_areas*;
metro_divisions; new_england*; urban_areas*

Transportation functions primary_roads; primary_secondary_roads; roads;
rails

Native/tribal geometries functions native_areas*; alaska_native_regional_corporations*;
tribal_block_groups;
tribal_census_tracts;
tribal_subdivisions_national

Other landmarks; military

Table 1: Functions available in the tigris package. Functions denoted with an asterisk are also available
as cartographic boundary files.

Figure 3: Roads in Kalawao County, Hawaii.
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Area (ZCTA), a geographic dataset developed by the US Census Bureau to approximate zip codes,
postal codes used by the United States Postal Service. Social data in the United States are commonly
distributed at the zip code level, including an example later in this article; however, zip codes
themselves are not coherent geographic entities, and change frequently. ZCTAs, then, function as
proxies for zip codes, and are built from Census blocks in which a plurality of addresses on a given
block have a given zip code (United States Census Bureau, 2016b).

ZCTAs commonly cross county lines and even cross state lines in certain instances; as such, the US
Census Bureau only makes the entire ZCTA dataset of over 33,000 zip codes available for download.
Often, analysts will not need all of these ZCTAs for a given project. tigris allows users to subset ZCTAs
on load with the starts_with parameter, which accepts a vector of strings that contains the beginning
digits of the ZCTAs that the analyst wants to load into R. The example below retrieves ZCTAs in the
area around Fort Worth, Texas.

fw_zips <- zctas(cb = TRUE, starts_with = "761")
plot(fw_zips)

Figure 4: Zip Code Tabulation Areas that start with "761" (near Fort Worth, Texas).

When tigris downloads Census shapefiles to the R user’s computer, it uses the rappdirs package
to cache the downloads for future access (Ratnakumar et al., 2014). In turn, once the R user has
downloaded the Census geographic data, tigris will know where to look for it and will not need to
re-download. To turn off this behavior, a tigris user can set options(tigris_use_cache = FALSE)
after loading the package; this will direct tigris to download shapefiles to a temporary directory on
the user’s computer instead, and load data into R from there.

The Census Bureau releases updated TIGER/Line shapefiles every year, and these yearly updates
are available to tigris users. tigris defaults to the 2015 shapefiles, which at the time of this writing is
the most recent year available.. However, tigris users can supply a different year to a tigris function
as a named argument to obtain data for a different year; for example, year = 2014 in the function call
will fetch TIGER/Line shapefiles or cartographic boundary files from 2014. Additionally, R users can
set this as a global option in their R session by entering the command options(tigris_year = 2014).

Data manipulation with tigris

The primary utility of the tigris package is for consistent and quick data access for R users with a
minimum of code. As tigris loads objects of class "Spatial*" from the sp package, data analysis
and visualization using the acquired data can be handled with R’s suite of cartographic and spatial
analysis packages, which will be addressed later in the article. However, tigris does include two
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functions, rbind_tigris() and geo_join(), to assist with common operations when working with
Census Bureau geographic data: combining datasets with one another, or merging them to tabular
data.

Some Census shapefiles, like roads, are only available by county; however, an R user may want
a roads dataset that represents multiple counties. tigris has built-in functionality to handle these
circumstances. Data loaded into R by tigris functions are assigned a special "tigris" attribute that
identifies the type of geographic data represented by the object. This attribute can be checked with the
function tigris_type():

> tigris_type(kw_roads)
[1] "road"

Objects with the same "tigris" attributes can then be combined into a single object using the
function rbind_tigris(). In the example below, the user loads data for Maui County, which comprises
the remainder of the island of Moloka’i as well as the islands of Maui and Lana’i. As the roads data do
not explicitly contain information about counties, an identifying "county" column is specified in the
example below. The data are then plotted and colored by county; Kalawao County is colored red in
the figure.

maui_roads <- roads("HI", "Maui")
kw_roads$county <- "Kalawao"
maui_roads$county <- "Maui"
maui_kw_roads <- rbind_tigris(kw_roads, maui_roads)
plot(maui_kw_roads, col = c("red", "black")[as.factor(maui_kw_roads$county)])

Figure 5: Roads in Maui County and Kalawao County, Hawaii.

The rbind_tigris() function also accepts a list of sp objects with the same "tigris" attributes.
This is particularly useful in the event that an analyst needs a dataset that covers the United States,
but is only available at sub-national levels. An example of this is the Public Use Microdata Area
(PUMA), the Census geography at which individual-level microdata samples are associated. PUMAs
are available by state in tigris via the pumas() function; however, an analyst will commonly want
PUMA geography for the entire United States to facilitate national-level analyses. In this example,
rbind_tigris() can be used with lapply() to fetch PUMA datasets for each state and then combine
them into a dataset covering the continental United States.
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tigris includes a built-in data frame named fips_codes that used to match state and county names
with Census FIPS codes in the various functions in the package. It can also be used to generate vectors
of codes to be passed to tigris functions as in this example, so that the analyst does not have to generate
the full list of state codes by hand.

us_states <- unique(fips_codes$state)[1:51]
continental_states <- us_states[!us_states %in% c("AK", "HI")]
us_pumas <- rbind_tigris(
lapply(
continental_states, function(x) {
pumas(state = x, cb = TRUE)

}
)

)
plot(us_pumas)

Figure 6: Public Use Microdata Areas (PUMAs) for the continental United States, generated with
rbind_tigris.

The above code directs R to iterate through the state codes for the continental United States,
fetching PUMA geography for each state and storing it in a list which rbind_tigris() then combines
into a continental PUMA dataset.

The other data manipulation function in tigris, geo_join(), is designed to assist with the common
but sometimes-messy process of merging tabular data to US Census Bureau shapefiles. Such joined
data can then be used for statistical mapping, such as a choropleth map that shows variation in an
attribute by the shading of polygons.

In the example below, an analyst uses functions in tigris to help create a choropleth map that
shows how the areas represented by legislators in the Texas State House of Representatives, the lower
house of the Texas state legislature, vary by political party. By convention in the United States, areas
represented by members of the Republican Party are shaded in red, and areas represented by members
of the Democratic Party are shaded in blue.

To accomplish this, the analyst loads in a CSV containing information on party representation
in Texas by legislative district, and uses the state_legislative_districts() function to retrieve
boundaries for the legislative districts. The two datasets can then be joined with geo_join(). The
first argument in the geo_join() call represents the object of class "Spatial*DataFrame"; the second
argument represents a regular R data frame. The third and fourth arguments specify the columns in
the spatial data frame and regular data frame, respectively, to be used to match the rows; if the names
of these columns are the same, that name can be passed as a named argument to the by parameter,
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which is unused here. Once the two datasets are joined, they can be visualized with sp plotting
functions.

df <- read.csv("http://personal.tcu.edu/kylewalker/data/txlege.csv",
stringsAsFactors = FALSE)

districts <- state_legislative_districts("TX", house = "lower", cb = TRUE)
txlege <- geo_join(districts, df, "NAME", "District")
txlege$color <- ifelse(txlege$Party == "R", "red", "blue")
plot(txlege, col = txlege$color)
legend("topright", legend = c("Republican", "Democrat"),

fill = c("red", "blue"))

Figure 7: State legislative districts for the Texas State House of Representatives, colored by the party
affiliations of their representatives. Data derived from The Texas Tribune, https://www.texastribune.
org/directory/

As the plot illustrates, Democrats in Texas tend to represent areas in and around major cities such as
Dallas, Houston, and Austin, as well as areas along the United States-Mexico border. Republicans, on
the other hand, tend to represent rural areas in addition to suburban areas on the edges of metropolitan
areas in the state.

Analytic visualization in R using data obtained with tigris

To this point, this paper has employed simplified examples to demonstrate the functionality of tigris;
the following scenario combines these examples into an applied analytic and visualization workflow.
The goal here is to show how tigris fits in with a broader spatial analysis workflow in R. R has a
plethora of packages available for geographic visualization and spatial analysis; for analysts working
with United States geographies, tigris can contribute to the analytic process by providing ample data
access with a minimum of code, and without having to retrieve datasets outside of R.

This example demonstrates how to create metropolitan area maps of taxation data from the United
States Internal Revenue Service (IRS), which are made available at the zip code level (United States
Internal Revenue Service, 2015). As discussed earlier, zip codes are not physical areas but rather
designations given by the United States Postal Service (USPS) to guide mail routes; as such, ZCTAs
will be used instead, and accessed with the zctas function.

As ZCTAs do not have a clear correspondence between their boundaries and those of other Census
units, ZCTA boundaries will commonly cross those of metropolitan areas, which are county-based.
However, tigris provides programmatic access to metropolitan area boundaries as well, which in turn
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can be used to identify intersecting ZCTAs through spatial overlay with the sp package. The resultant
spatial data can then be merged to data from the IRS and visualized.

Such a workflow could resemble the following. An analyst reads in raw data from the IRS website
as an R data frame, and uses the dplyr package (Wickham and Francois, 2015) to subset the data frame
and identify the average total income reported to the IRS by zip code in thousands of dollars in 2013,
assigning it to the variable df. In the original IRS dataset, A02650 represents the aggregate total income
reported to the IRS by zip code in thousands of dollars, and N02650 represents the number of tax
returns that reported total income in that zip code.

library(dplyr)
library(stringr)
library(readr)

# Read in the IRS data
zip_data <- "https://www.irs.gov/pub/irs-soi/13zpallnoagi.csv"
df <- read_csv(zip_data) %>%
mutate(zip_str = str_pad(as.character(ZIPCODE), width = 5,

side = "left", pad = "0"),
incpr = A02650 / N02650) %>%

select(zip_str, incpr)

The analyst then defines a function that will leverage tigris to read in Census ZCTA and metropoli-
tan area datasets as objects of class "SpatialPolygonsDataFrame", and return the ZCTAs that intersect
a given metropolitan area as defined by the analyst.

library(tigris)
library(sp)

# Write function to get ZCTAs for a given metro
get_zips <- function(metro_name) {
zips <- zctas(cb = TRUE)
metros <- core_based_statistical_areas(cb = TRUE)
# Subset for specific metro area
# (be careful with duplicate cities like "Washington")
my_metro <- metros[grepl(sprintf("^%s", metro_name),

metros$NAME, ignore.case = TRUE), ]
# Find all ZCTAs that intersect the metro boundary
metro_zips <- over(my_metro, zips, returnList = TRUE)[[1]]
my_zips <- zips[zips$ZCTA5CE10 %in% metro_zips$ZCTA5CE10, ]
# Return those ZCTAs
return(my_zips)

}

The analyst can then fetch ZCTA geography for a given metropolitan area, which in this example
will be Dallas-Fort Worth, Texas, and merge the IRS income data to it with geo_join(). For visualiza-
tion, this example uses the tmap package (Tennekes, 2015), an excellent option for creating high-quality
cartographic products in R, to create a choropleth map. To provide spatial reference to the Census
tracts on the map, major roads obtained with the primary_roads() function in tigris are added to the
map as well.

library(tmap)
rds <- primary_roads()
dfw <- get_zips("Dallas")
dfw_merged <- geo_join(dfw, df, "ZCTA5CE10", "zip_str")
tm_shape(dfw_merged, projection = "+init=epsg:26914") +
tm_fill("incpr", style = "quantile", n = 7, palette = "Greens", title = "") +
tm_shape(rds, projection = "+init=epsg:26914") +
tm_lines(col = "darkgrey") +
tm_layout(bg.color = "ivory",

title = "Average income by zip code \n(in $1000s US), Dallas-Fort Worth",
title.position = c("right", "top"), title.size = 1.1,
legend.position = c(0.85, 0), legend.text.size = 0.75,
legend.width = 0.2) +

tm_credits("Data source: US Internal Revenue Service",
position = c(0.002, 0.002))
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Figure 8: Map of average reported total income to the Internal Revenue Service by zip code for the
Dallas-Fort Worth, Texas metropolitan area in 2013, created with tmap.

Given that both geographic data obtained through tigris and the IRS data are available for the
entire country, an R developer could extend this example and create a web application that generates
interactive income maps based on user input with the shiny package (Chang et al., 2016). Below is an
example of such an application, which is viewable online at http://walkerke.shinyapps.io/tigris-
zip-income; the code for the application can be viewed at http://github.com/walkerke/tigris-zip-
income.

In the application, the user selects a metropolitan area from the drop-down menu, instructing
the Shiny server to generate an interactive choropleth map of average reported total income by zip
code from the IRS, as in the above example, but in this instance using the leaflet package (Cheng and
Xie, 2015). The application uses the same process described above for the static map to subset the
data; in this instance, however, the Shiny server makes these computations on-the-fly in response
to user input. In the figure, the Los Angeles, California metropolitan area is selected; however, all
metropolitan areas in the United States are available to users of the application. While both of these
cartographic examples require considerable R infrastructure to process the data and ultimately create
the visualizations, tigris plays a key role in each by providing direct access to reliable spatial data
programmatically from R.

Conclusion

This paper has summarized the functionality of the tigris package for retrieving and working with
shapefiles from the United States Census Bureau. Access to high-quality spatial data is essential for the
geospatial analyst, but can be difficult to access. For R users working on projects that can benefit from
United States Census Bureau data, tigris provides direct access to the Census Bureau’s TIGER/Line
and cartographic boundary files using a simple and consistent API. In turn, tasks such as looking
up FIPS codes to identify the correct datasets to download or combining several Census datasets are
reduced to a few lines of R code in tigris.

More significantly, the utility of tigris is exemplified when included in a larger geospatial project
that incorporates US Census data, such as the static and interactive maps of IRS data included in
this article. These examples illustrate some clear advantages that R has over traditional desktop
Geographic Information Systems software for geographic analysis and visualization. To create an
interactive application showing IRS data by zip code as in Figure 9, a GIS analyst would traditionally
have to search out and download the data from the web; load it into a desktop GIS for merging and
calculating new columns; publish the data to a server; and build the application with a web mapping
client and web application framework, often requiring several software applications. As shown in
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Figure 9: Interactive Leaflet map of average reported total income to the Internal Revenue Service by
zip code for the Los Angeles, California metropolitan area in 2013, built in Shiny.

this article, this entire process now can take place inside of an R script, helping ensure quality and
reproducibility. For projects that require US Census Bureau geographic data, tigris aims to fit well
within these types of workflows.
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Escape from Boxland
Generating a Library of High-Dimensional Geometric Shapes

by Barret Schloerke, Hadley Wickham, Dianne Cook, and Heike Hofmann

Abstract A library of common geometric shapes can be used to train our brains for understanding data
structure in high-dimensional Euclidean space. This article describes the methods for producing cubes,
spheres, simplexes, and tori in multiple dimensions. It also describes new ways to define and generate
high-dimensional tori. The algorithms are described, critical code chunks are given, and a large
collection of generated data are provided. These are available in the R package geozoo, and selected
movies and images, are available on the GeoZoo web site (http://schloerke.github.io/geozoo/).

Introduction

This paper describes how to build a library of high-dimensional geometric shapes: cubes, spheres,
simplexes, and tori. Data describing numerous 4D polytopes and polyhedra generated by other
researchers are included in the library, a single location to describe the many different object structures.
The purpose is to enable people to train their brains for understanding data structures residing in
high-dimensional Euclidean space. This work extends the work described in Cook (1997) which
concentrated on samples from statistical distributions.

The geozoo package in R contains the code to create the geometric shapes. Code fragments,
describing the key components of the algorithms for generating the shapes, are included in this paper.
The shapes in the library are best viewed using the dynamic graphical method called a tour (Asimov,
1985; Buja et al., 2005; Cook et al., 2007), such as that available in GGobi (Swayne et al., 2003) and the
tourr R package (Wickham et al., 2011).

The structure of the paper is that basic shapes are described first followed by more complex shapes,
in this order, cubes, spheres, simplexes, polyhedra, polytopes, and tori.

Cubes

Cubes are the first shape that a person should examine when starting to learn about higher dimensions.
Cubes are relatively simple to understand: they have orthogonal, uniform length sides and are convex
shapes. A 0-D cube is a single point. A 1-D cube is a line segment. A 2-D cube is a square and a 3-D
cube is a box.

The 4-D cube may be hard to imagine, partly because we are accustomed to describing our physical
world using only three dimensions. The leap to 4-D is more understandable after watching the movie
“Flatland” (Martin, 1965) or reading the novella of the same name (Abbott, 1884). In “Flatland”, the
world is 2-D and characters struggle with the concept of 3-D.

Working from this name, we might think of our world as “Boxland”: we live in 3-D and struggle
with the concept of higher dimensions. Shadows created by light sources help perceive the third
dimension. In Flatland, the inhabitants see only 1-D line segments. For a Flatlander who has never
seen the world we live in, the third dimension is hard to understand. Similarly, for inhabitants of our
world, it might seem daunting to imagine the fourth dimension. But it’s not that difficult!

Figure 1 shows the evolution of the cube from 2-D to 5-D. Each figure is a 2-D projection of a
wireframe cube from two to five dimensions. To increase the dimension of a cube, replicate and shift
a cube of one dimension lower along a new orthogonal axis, connecting the corresponding vertices.
The 3-D cube grows from 2×2-D squares, connected with four new edges. The 4-D cube is born from
2×3-D cubes and a 5-D cube emerges from 2×4-D cubes. Any object with more than 2 dimensions has
infinitly many projections onto a 2-D plane. The projections chosen in Figure 1 (and the remaining
figures of the paper) were done to highlight the overall structure or features that make each object
distinct from each other.

Vertices of a high-dimensional cube can be considered as all permutations of the binary digits (0
and 1) in p-D. A line is defined by two points: (0), (1). A square is defined by four points: (0, 0), (0, 1),
(1, 0), (1, 1), which are all of the permutations of 0 and 1 in two columns, that is, the Cartesian product
of two lines. A 3-D cube is the Cartesian product of two squares, and has all of the permutations of 0
and 1 in three columns.
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Figure 1: Wireframe cubes, (from left to right) 2-D, 3-D, 4-D, 5-D.

Points on vertices

The two different ways to define a high-dimensional cubes leads to two different methods to create
a p-D cube. Both methods yield the same result, which is shown for p = 1, 2, 3 in Table 1.

1-D:
row # 1 edges
1 0 2
2 1

2-D:
row # 1 2 edges
1 0 0 2 3
2 1 0 4
3 0 1 4
4 1 1

3-D:
row # 1 2 3 edges
1 0 0 0 2 3 5
2 1 0 0 4 6
3 0 1 0 4 7
4 1 1 0 8
5 0 0 1 6 7
6 1 0 1 8
7 0 1 1 8
8 1 1 1

Table 1: 1-D, 2-D and 3-D cube vertices and edges.

• Method 1: Recursively double a lower-dimensional cube.
Using the standard coordinate system, the base is 0 and 1. After establishing the base, we
recursively double the base in the first column(s), and add an additional column containing a
0 in the first half of the rows and a 1 in the second half of the rows. The process is repeated
(p− 1) times, to obtain a p−D cube.

cube_iterate <- function(p) {
if (p == 1) {
return(rbind(0, 1))

}
lower_dim_cube <- cube_iterate(p - 1)
rbind(
cbind(lower_dim_cube, 0),
cbind(lower_dim_cube, 1)

)
}

• Method 2: Generate all permutations of 0, 1 in p columns.
This method takes advantage of an existing function in R, expand.grid. It produces all permu-
tations by generating the Cartesian product of a set of vectors. For our purposes, the number
of columns is not fixed, so we use do.call, to convert a function call of the form x(a,b,c) to
do.call(x,list(a,b,c)), allowing specification of an arbitrary number of arguments.

cube_permute <- function(p) {
as.matrix(
do.call(
expand.grid,
rep(list(c(0, 1)), p)

)
)

}
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Completing the wire frame

The wire frame for a cube draws the edges of the cube, connecting all points that differ in one of the
values, e.g. (0, 0, 0) and (1, 0, 0), or (0, 0, 0) and (0, 1, 0) for a 3-D cube. Each edge is a vector of length 1
and is defined by specifying the row numbers of the two corresponding elements of the vertex data,
e.g. in a 3-D cube (2, 4) would connect rows (1, 0, 0) and (1, 1, 0). Table 1 gives vertex and edge lists
for p = 1, 2, and 3. Edges are not ordered (1, 2) = (2, 1), and we use just one of the two, with the
smaller number first. Presented below are three ways to generate an edge set, the last being the most
computationally efficient but less intuitive.

• Method 1: Distance of 1.
The distances between all p ∗ (p− 1)/2 pairs of vertices are computed, and the pairs of vertices
which have distance 1 are returned. This is the simplest approach to generate the edge set but
obviously slow to compute as p increases.

cube_edges_length1 <- function(cube) {
p <- ncol(cube)
num_points <- 2 ^ p
from_to <- matrix(NA, nrow = num_points * p / 2, ncol = 2)
next_store_position <- 1
for (i in 1:(num_points - 1)) {
for (j in (i + 1):num_points) {
d1 <- sum((cube[i, ] - cube[j, ]) ^ 2)
if (d1 == 1) {
from_to[next_store_position, ] <- c(i,j)
next_store_position <- next_store_position + 1

}
}

}
from_to

}

• Method 2: The binomial approach.
This is faster to compute than the first method because it involves only a single loop over the
cube vertices. For this approach to work, the vertices of the cube need to have been created
using the methods described in Section 32.2.1. Each vertex, that has c elements equal to 0,
will be connected to c other vertices, and we need to determine the row numbers for these
other vertices. (The row number for a corresponding connected vertex is obtained by adding
2(j−1), j = 1, ..., p, if column j contains a 0, to the row number, i, i = 1, ..., (#vertices− 1) of the
originating vertex.) For example, for a 3-D cube, the first vertex (0, 0, 0) will be connected to
vertices 20 + 1 = 2, 21 + 1 = 3 and 22 + 1 = 5.

cube_edges_binomial <- function(cube) {
p <- ncol(cube)
num_points <- 2 ^ p
from_to <- matrix(NA, nrow = num_points * p / 2, ncol = 2)
next_store_position <- 1
for (i in 1:(num_points - 1)) {
for (j in 1:p) {
if (cube[i, j] == 0) {
from_to[next_store_position, ] <- c(i, 2 ^ (j - 1) + i)
next_store_position <- next_store_position + 1

}
}

}
from_to

}

• Method 3: Binary relationships.
The final method is the most computationally efficient but the least intuitive. Here we will use the
fact that the vertices of the cube can be represented as binary numbers, e.g. (0, 1, 1) = 0112 = 310.
This allows us to both vectorize the code and use the C bitwise operations provided by the
bitops package.
The key insight to note is that edges connect vertices which have a single bit flipped. For
example, 011 connects to 111, 001 and 010 (vertex 3 connects to 7, 1, and 2). We can flip a single
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bit with the exclusive or function, 011⊕ 100 = 111, 011⊕ 010 = 001, 011⊕ 001 = 010. This leads
to a fast and efficient method for generating the edges.

library(bitops)
cube_edges_binary <- function(p) {
vertices <- 0:(2 ^ p - 1)
from_verts <- vertices[
rep(1:(2 ^ p), each = p)

]
from_to <- data.frame(
from = from_verts,
to = bitXor(from_verts, 2 ^ (0:(p - 1)))

)
from_to <- subset(from_to, from < to) + 1
from_to

}

Solid cube

A solid cube has points in the interior (Figure 2). It is easy to generate, using either random sampling
or a fixed grid.

Figure 2: Solid cubes in 2-D, 3-D, and 4-D made of (top) independent random samples from p uniform
distributions and (bottom) fixed grid points. As the dimensions increase, the vertices look sparse,
more so with the random samples.

• Method 1: Random uniform.
The R function runif generates samples from a uniform distribution between 0 and 1. Generat-
ing p random uniform values creates a p-dimensional vector corresponding to a point inside
a p-dimensional cube. The number of points needed to make the cube appear solid increases
exponentially as p increases. For example, a 3-D cube with k points on each side has k3 total
points, and a 4-D cube with the same k points per side k4 total points. Thus, every time the
dimension is increased, the number of points must be increased substantially for the shape to
look similarly solid. In our cube_solid_random function, we use a base of 850 points, and the
total number of points is capped at 50000 points for speed of viewing.

cube_solid_random <- function(p, n = 850 * 2 ^ p) {
matrix(runif(n * p), ncol = p)

}

• Method 2: Equidistant.
A solid cube can be generated using equidistant points. As with the second vertex generation
method, the expand.grid function is used. The input n allows the number of grid points to be
varied.

cube_solid_grid <- function(p, n) {
grid <- list(seq(0, 1, length = n))
do.call(expand.grid, rep(grid, p))

}
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There are advantages and disadvantages to the methods provided. The first method, random
uniform points, produces a solid cube that looks more solid, but as p increases, points near the vertices
become more scarce. The second method, equidistant points, fills the vertex regions, but the structure
produces regular patterns which can be distracting to the viewer.

Hollow cube

The “face” of a cube is a surface that is one dimension lower than that of the cube. For example, a face
of a 3-D cube is a 2-D square and a face of a 4-D cube is a 3-D cube.

To generate points on the faces of a cube, points are created in all dimensions except one. The
remaining dimension is given the value 0 or 1, to create the opposing faces. Because the face of a cube
is a (p− 1)-dimensional cube with a 0 or 1 in the remaining column, we may perform two different
methods to produce the p-dimensional cube’s faces.

• Method 1: Equidistant faces.
Equidistant faces may leverage the fact that each “face” contains the same data. Therefore, we
may calculate a single (p− 1)-dimensional equidistant cube and place it in the return matrix
multiple times with the ith column missing from the return matrix. The number of rows of the
return matrix is equivalent to 2 ∗ p ∗ nrow( f ace) with the first half of the return matrix being 0’s
and the last half being 1’s. The input n is supplied directly to the cube_solid_grid function.

cube_face_grid <- function(p, n = 10) {
face <- cube_solid_grid(p - 1, n)
face_n <- nrow(face)
faces <- do.call(data.frame, rep(list(X = rep(0:1, each = p * face_n)), p))
for(i in seq_len(p)) {
faces[(face_n * (i - 1) + 1):(face_n * i), -i] <- face
faces[(face_n * (i - 1) + 1):(face_n * i) + (p * face_n), -i] <- face

}
return(as.matrix(faces))

}

• Method 2: Random uniform faces.
Naively creating a 3-D cube, the X1 and X2 components of the cube are given random values
and the X3 components would be set to 0 in the first half and 1 in the second half. The process
would then be repeated for the remaining columns, as shown in Figure 3. This will create six
2-D squares which form the faces of a 3-D cube. The bottom row shows the different faces of
a 4-D cube. The left side plot shows the first pair of faces, a solid 3-D cube in X1, X2, X3, with
fixed values on the fourth dimension X4. The subsequent plots show the remaining faces.

Figure 3: Faces of a 3-D cube (top row) and a 4-D cube (bottom row), obtained by fixing one column
of values to be 0 or 1, and allowing the other columns to vary freely between 0 and 1.

Unlike the equidistant faces of a cube, each random uniform face must be different from
every other face. To avoid repetitive calculations, we leverage the fact that a p-dimensional
random uniform cube with one column missing is equivalent a (p− 1)-dimensional random
uniform cube. Therefore, we generate a p-dimensional cube and insert 0’s or 1’s for each of the
corresponding faces in each dimension. The input n matches the number of random points for a
(p− 1)-dimensional cube.
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cube_face_random <- function(p, n = 850 * 2 ^ (p - 1)) {
faces <- cube_solid_random(p, 2 * p * n)
for (i in seq_len(p)) {
faces[(n * (i - 1) + 1):(n * i), i] <- 0
faces[(n * (i - 1) + 1):(n * i) + (p * face_n), i] <- 1

}
faces

}

Figure 4: Vertices of cubes, (left to right) 3-D, 5-D, 10-D, and 15-D. Cubes look more rounded in
projections as the dimension increases.

High-D cubes look spherical!

As the dimension increases, the shape of the cube appears more rounded than square in a 2-D
projection. Explaination is given in Diaconis and Freedman (1984) and is related to the Central Limit
Theorem. When we use a tour to visualize high-dimensional data we examine low-dimensional
projections. Consider the axes for a p-dimensional space labeled as X1, ..., Xp. A 1-D projection is
generated by taking a linear combination of these axes, such as a1Xa + ... + apXp. The squared values
of aj, j = 1, ..., p are constrained to sum to 1. As p increases, combining the values operates like
averaging the values in many dimensions, resulting in views that look Gaussian. Another way to
think about it is that we are looking at rotated cubes rather than a cube through its square face and
this gets increasingly rounded as the dimension increases.

Spheres

A sphere can be described as all points within a fixed radius (for simplicity use 1) around a fixed point
(for simplicity use zerop), {X : X2

1 + · · ·+ X2
p ≤ 1}. A hollow sphere is the set of points with radius

equal to 1, {X : X2
1 + · · ·+ X2

p = 1}. Generating the hollow sphere is simpler than the solid sphere.

Hollow sphere

To generate points uniformly distributed on the surface of a sphere we use the following trick: first,
we generate a random vector from a multivariate standard normal distribution and then normalize its
length. The normalized point is now a random point on a unit sphere (Watson, 1983, 2.6). The top row
of Figure 5 shows the results.

norm_vec <- function(x) {
x / sqrt(sum(x ^ 2))

}

sphere_hollow <- function(p, n = p * 500) {
x <- matrix(rnorm(n * p), ncol = p)
t(apply(x, 1, norm_vec))

}

Don’t reject the solid sphere!

Solid spheres can be generated in much the same way as solid cubes; use random points to fill the
object. While the solid cube fills the box, the sphere’s points are inside a radius of 1 from the center. A
simple approach would be to use a rejection method: generate points in the solid cube and discard
those with radius more than 1. This is problematic as p increases, since most points will eventually
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Figure 5: Hollow (top row) and solid spheres (bottom row) for 2-D, 3-D, 4-D.

be rejected. For example, to generate the points of a 3-D sphere, around 50% of the proposed points
are accepted, but for a 10-D sphere only 0.25% of the proposed points are accepted. The space in the
corners of the enveloping cube, outside the sphere, increases dramatically with p.

The approach we used is a minor modification to the method used to generate a hollow sphere.
Figure 6 illustrates the process. The vector length is randomly sampled from a uniform distribution
on (0, 1) (left plot). The result is raised to the power 1/p to adjust for the volume increase with p,
resulting in points spread evenly throughout the inside of the sphere (middle plot). Taking the sphere
to the 1/p power may seem ad hoc, but the operation ensures that the density is uniform within the
sphere. To see this, compare circles of radius 1 and 2 (right plot). The area of the smaller circle equals
π = 12π. The area of the whole circle equals 4π = 22π, which is four times as large but only twice
the radius. Thus, without accounting for radial distance, more points will be generated closer to the
center than is warranted by the area. Raising the vector length to the power 1/p, 1/2 in our example,
corrects for the volume.

sphere_solid_random <- function(p, n = p * 500) {
sphere_hollow(p, n) * runif(n) ^ (1 / p)

}

Figure 6: Solid sphere in 2-D: (left) generated randomly results in an over-concentration of points in
the center, (middle) adjusted for volume generates a uniform distribution inside the sphere, and (right)
comparison of areas of circles of radius 1 and 2.

Simplexes

Simplexes are one of the simplest objects to create and view. A p-D simplex is a shape that is created
in the (p + 1)th dimension with vertices corresponding to the coordinate axes. The simplex vertices
are then projected, using a Helmert matrix, into the p-dimensional space in which it exists.

Figure 7: Wireframe simplexes: 2-D, 3-D, 4-D, 5-D.
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For example, a 2-D simplex has unprojected 3-D vertices at (1,0,0), (0,1,0), (0,0,1), which are reduced
by the Helmert transformation to points in a 2-D equilateral triangle, (0.7071,0.4082), (-0.7071,0.4082),
(0.0000, -0.8165).

helmert <- function(d) {
helmert_mat <- matrix(NA, nrow = d, ncol = d)
helmert_mat[1, ] <- rep(1 / sqrt(d), d)
for (i in 1:(d - 1)) {
helmert_mat[i + 1, ] <- c(
rep(1 / sqrt(i * (i + 1)), i),
-i / sqrt(i * (i + 1)),
rep(0, d - i - 1)

)
}
helmert_mat

}

simplex <- function(p) {
x <- diag(p)
# center simplex
x <- x - matrix(1 / p, p, p)
hm <- helmert(p)
final <- (x %*% t(hm))[, -1]
final

}

The wire frame for a simplex connects every point to every other point, and can be computed in
just two lines of code, following method 2 of the cube vertices. simplex_wires makes a list of all pairs
of verticies and then removes the edges that connect a vertex to itself.

simplex_wires <- function(simplex) {
wires <- do.call(
expand.grid,
list(
c(1:nrow(simplex)),
c(1:nrow(simplex))

)
)
wires[!wires[,1] == wires[,2],]

}

Polyhedra

A polyhedron is a three dimensional object that contains straight edges and has flat faces. Our
polyhedra data comes from George W. Hart’s website (Hart, 2000). Hart’s website contains an extensive
collection of polyhedra, ranging from Platonic Solids to Stellations of the Rhombic Triacontahedron. In
our data sets, we used the information from Platonic Solids, Kepler-Poinsot Polyhedra, Archimedean
Polyhedra and its duals, Prisms. The data was reformatted from VRML into XML. The vertices and
wire frames from separate files were compiled into tables. Some reformatting of edges was also
necessary.

Surfaces and curves

Paul Bourke’s website (Bourke, 1996) has equations for generating several famous objects, including
the Mobius Strip, Steiner’s Roman Surface and the Klein Bottle (Figure 8). It is interesting to see how
each object twists onto itself. R functions based on these equations were written to produce each object.
For each shape, a set of random angles were generated to seed the equations, producing points on the
surface. For some of the objects, to be displayed in its familiar form, the plot limits for each variable
need to use the same global minimum and maximum values.
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Figure 8: Mobius strip, Steiner’s roman surface, and Boy’s surface.

Polytopes

A polytope is a generalized term of a geometric shape in any dimension. A polygon is a 2-D polytope.
A polyhedron is a 3-D polytope. A polychoron is a 4-D polytope. Beyond that, we typically use
polytope to refer to any p-gon. Our polychoron data comes from Paul Bourke’s website (Bourke, 2003),
where there is also information on some of the objects that have been covered (cube, simplex) in the
preceding sections of this paper, and new objects, 24-cell, 120-cell, 600-cell (Figure 9). The explanations
of these polytopes is very clear. The data has been formatted into XML files allowing descriptions of
the vertices and edges for each shape.

Figure 9: 24-Cell, 120-Cell, and 600-Cell.

Tori

A “doughnut” torus is known as a ring torus. Paul Bourke’s website (Bourke, 1990) on “The Torus
and Super Torus” provides the inspiration. The website explains how the 3-D torus is made. It also
contains information that we used to develop the process of building high-dimensional tori. Figure 10
shows this process: a smaller circle that follows a larger circle, creating a doughnut. The points for the
torus are formed by polar coordinates.

Figure 10: Generating a torus: 2-D to 3-D (top row), and 3-D to 4-D (bottom row).

To produce a 4-D torus, a 3-D torus is rotated around a circle into the fourth dimension (Figure 10
bottom row). This torus still has a hole in the center. The process can be thought of as a recursive circle
system. For a 3-D torus, the smaller radius circle follows the larger radius circle. For a 4-D torus, a 3-D
torus follows an even larger radius circle. That is, the lower-dimensional torus is shifted by a fixed
distance and rotated about a new axis perpendicular to the axis of the hole. This algorithm for a ring
torus has not been previously defined and will be explained in detail in the following section.
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Figure 11: 2-D, 3-D, and 4-D tori with features highlighted.

Ring torus

A ring torus has a hole in the center of the object and is generated recursively. A 2-D circle forms the
base of the torus, which is defined by:

X1 : cos(θ1) ∗ r1

X2 : sin(θ1) ∗ r1

using one radius and one angle. The 3-D torus is defined by:

X1 : cos(θ1) ∗ (r1 + cos(θ2) ∗ r2)

X2 : sin(θ1) ∗ (r1 + cos(θ2) ∗ r2)

X3 : sin(θ2) ∗ r2

r1 > r2

Notice that 3-D torus builds from the 2-D: r1 is replaced by (r1 + cos(θ2)r2). The 3-D torus has four
parameters: two angles and two radii. The third dimension is formed entirely by the additional angle
and radius. A 4-D torus will be generated with the same pattern as the 3-D torus: a new dimension
will be added and material will be inserted recursively into the formulas:

X1 : cos(θ1) ∗ (r1 + cos(θ2) ∗ (r2 + cos(θ3) ∗ r3))

X2 : sin(θ1) ∗ (r1 + cos(θ2) ∗ (r2 + cos(θ3) ∗ r3))

X3 : sin(θ2) ∗ (r2 + cos(θ3) ∗ r3)

X4 : sin(θ3) ∗ r3

r1 > r2 > r3

The steps to building a higher-dimensional torus are:

1. add a new dimension that equals sin(θi) ∗ ri.
2. in all other dimensions, replace ri−1 with ri−1 + cos(θi) ∗ ri.
3. repeat.

However, these steps are not easy to recurse. Replacing values in a formula after it has been
realized is not simple. By rearranging the formulas, a better method to recurse is achieved:

X1 : ((cos(θ3) ∗ r3 + r2) ∗ (cos(θ2) + r1) ∗ cos(θ1)

X2 : ((cos(θ3) ∗ r3 + r2) ∗ (cos(θ2) + r1) ∗ sin(θ1)

X3 : (cos(θ3) ∗ r3 + r2) ∗ sin(θ2)

X4 : sin(θ3) ∗ r3

r1 > r2 > r3

The first step of the recursion, starting from the last dimension, is given as follows:
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X1 : cos(θ3) ∗ r3

X2 : cos(θ3) ∗ r3

X3 : cos(θ3) ∗ r3

X4 : sin(θ3) ∗ r3

which translates to this R code:

torus<-c(
rep(cos(theta[p - 1]) * radius[p - 1], p - 1),
sin(theta[p - 1]) * radius[p - 1]

)

From this start, we recurse backwards from p− 1 to 2. A new radius is added at each iteration
which is multiplied with the previous equation by the cosine of an angle. The final step adds a last
radius and multiplies the result by the sine of the new angle.

for (i in (p - 1):2) {
for (j in (i - 1):1) {
torus[j] <- (torus[j] + radius[i - 1]) * cos(theta[i - 1])

}
torus[i] <- (torus[i] + radius[i - 1]) * sin(theta[i - 1])

}

The construction of a 4-D torus is shown below:

p = 4

Base
X1 : cos(θ3) ∗ r3

X2 : cos(θ3) ∗ r3

X3 : cos(θ3) ∗ r3

X4 : sin(θ3) ∗ r3

i = p− 1 = 3

j = 2 : 1

X1 : (cos(θ3) ∗ r3 + r2) ∗ cos(θ2)

X2 : (cos(θ3) ∗ r3 + r2) ∗ cos(θ2)

X3 : (cos(θ3) ∗ r3 + r2) ∗ sin(θ2)

X4 : sin(θ3) ∗ r3

i = 2

j = 1 : 1

X1 : ((cos(θ3) ∗ r3 + r2) ∗ cos(θ2) + r1) ∗ cos(θ1)

X2 : ((cos(θ3) ∗ r3 + r2) ∗ cos(θ2) + r1) ∗ sin(θ1)

X3 : (cos(θ3) ∗ r3 + r2) ∗ sin(θ2)

X4 : sin(θ3) ∗ r3

This code results in one row of data for one point on the 4-D torus for each value of angle. By
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varying the angle and binding the result, we get points over the surface of the torus:

finished <- rbind(finished, torus.row)

or

matrix(
do.call(rbind, as.list(
replicate(
n,
torus.row(radius, p)

)
)),
ncol = p, byrow = TRUE

)

The angles create the rings, and thus need to vary fully between 0 and 2π:

theta <- runif(p - 1, min = 0, max = 2 * pi)

The radii for the process are fixed at the start. To produce a hole in each dimension the radii need
to decrease with p. We set the hole to have a size of 1 in each dimension, and the radii are reduced by
a power of 2 from the previous dimension.

radius <- 2 ^ ((p - 2):0)

This produces points fairly evenly but not uniformly spread on the surface of the torus. A different
way to generate the torus is to produce the angles at set intervals, resulting in more circular patterns.

Flat torus

Another common hyper-torus is the flat torus. A flat torus is commonly seen expanding into infinity
as a screen saver on some computers. The flat torus has multiple holes in it’s center and is easy to
generate.

A flat torus is formed in pairs of dimensions, defined by a sine and cosine of one angle, for example
the circle is generated in 2-D by cos(θ1) and sin(θ1). A flat torus in any dimension is created from
multiple pairs of sine and cosine, e.g. a 1-D torus is generated by one pair, a 2-D torus by two pairs,
four variables, and a 3-D torus by three pairs, six variables (Figure 12). All values of sine and cosine
are generated from angles, (−2π, 2π), separately for each pair. The flat torus has an even number of
dimensions, but an effective dimension half that size. Figure 13 illustrates the construction of a 6-D
flat torus.

Figure 12: Flat tori in 2-D, 4-D, and 6-D.

Solid tori

These tori are all hollow. To create points in the interior of the tori one would randomly generate the
radii length for each point.

Conclusion

This paper has described how geozoo generates several types of high-dimensional geometric shapes.
The result is a library designed to help conceptualize objects in high-dimensional spaces. It has also
led to some new geometric shape definitions.

This library, although seemingly removed from real high-dimensional data has some strong
connections. Much of our data analytic methods are based in high-dimensional Euclidean space.
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Figure 13: Views of the 6-D flat torus which illustrate its construction. The torus (top right) has its
components highlighted with green, orange and blue, and the same torus is displayed as a scatterplot
matrix, better revealing the construction.

Developing some visual insight into this space can help to understand the methods that operate in
higher dimensions. Some data problems can be closely mapped to the geometric shapes. For example,
ranked data showing preferences for a fixed set of objects, can be mapped to high-dimensional
polytopes (Thompson, 1993). Values in a sample are commonly constrained to sum to a fixed number,
for example, 100%, forming compositional data. This type of data lies inside a p-D simplex. Good
experimental designs commonly have a geometric structure (Hedayat et al., 1999). The ideas to
examine boundaries of supervised classifiers described in Caragea et al. (2008) build on the geometric
shapes described here.

We encourage the reader to look at the movies, and images, and download the data on the project
web site, which can be accessed at http://schloerke.github.io/geozoo/. The geozoo package
contains the R code to generate the geometric shapes and is available to download from CRAN
(http://www.R-project.org). We especially encourage readers to experiment with creating new
high-dimensional geometric shapes, or to contribute ideas and code back to this project.
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Ake: An R Package for Discrete and
Continuous Associated Kernel
Estimations
by Wanbitching E. Wansouwé, Sobom M. Somé and Célestin C. Kokonendji

Abstract Kernel estimation is an important technique in exploratory data analysis. Its utility relies
on its ease of interpretation, especially based on graphical means. The Ake package is introduced
for univariate density or probability mass function estimation and also for continuous and discrete
regression functions using associated kernel estimators. These associated kernels have been proposed
due to their specific features of variables of interest. The package focuses on associated kernel methods
appropriate for continuous (bounded, positive) or discrete (count, categorical) data often found in
applied settings. Furthermore, optimal bandwidths are selected by cross-validation for any associated
kernel and by Bayesian methods for the binomial kernel. Other Bayesian methods for selecting
bandwidths with other associated kernels will complete this package in its future versions; particularly,
a Bayesian adaptive method for gamma kernel estimation of density functions is developed. Some
practical and theoretical aspects of the normalizing constant in both density and probability mass
functions estimations are given.

Introduction

Kernel smoothing methods are popular tools for revealing the structure of data that could be missed
by parametric methods. For real datasets, we often encounter continuous (bounded, positive) or
discrete (count, categorical) data types. The classical kernels methods assume that the underlying
distribution is unbounded continuous, which is frequently not the case; see, for example, Duong
(2007) for multivariate kernel density estimation and discriminant analysis. A solution is provided
for categorical data sets by Hayfield and Racine (2008). In fact, they used kernels well adapted for
these categorical sets (Aitchison and Aitken, 1976). Throughout the present paper, the unidimensional
support T of the variable of interest can be {0, 1, . . . , N}, [a, b] or [0, ∞) for a given integer N and reals
a < b.

The recently developed Ake package, implements associated kernels that seamlessly deal with
continuous (bounded, positive) and discrete (categorical, count) data types often found in applied
settings; see, for example, Libengué (2013) and Kokonendji and Senga Kiessé (2011). These associated
kernels are used to smooth probability density functions (p.d.f.), probability mass functions (p.m.f.) or
regression functions. The coming versions of this package will contain, among others, p.d.f. estimation
of heavy tailed data (e.g., Ziane et al., 2015) and the estimation of other functionals. The bandwidth
selection remains crucial in associated kernel estimations of p.d.f., p.m.f. or regression functions. Some
methods have been investigated for selecting bandwidth parameters but the commonly used is the
least squared cross-validation. A Bayesian approach has been also recently introduced by Zougab et al.
(2012) in the case of a binomial kernel. This method can be extended to various associated kernels with
other functionals. Despite the great number of packages implemented for nonparametric estimation in
continuous cases with unbounded kernels, to the best of our knowledge, the R packages to estimate
p.m.f. with categorical or count variables, p.d.f. with bounded or positive datasets, and regression
functions have been far less investigated.

The rest of the paper is organized as follows. In Section Non-classical associated kernels, we briefly
describe the definition of associated kernels and then illustrate examples in both continuous and
discrete cases which are discussed. Then, the associated kernel estimator for p.d.f. or p.m.f. is presented
and illustrated with some R codes in Section Density or probability mass function estimations. In
particular, three bandwidth selection methods are available: cross-validation for any (continuous
or discrete) associated kernel, the Bayesian local method for the binomial kernel and also a new
theoretical Bayesian adaptive method for the gamma kernel. Also, some practical and theoretical
aspects of the normalizing constant in both p.d.f. and p.m.f. estimations are given. Section Bandwidth
selection for kernel regression involving associated kernels investigates the case of regression functions
with two bandwidth selection techniques: cross-validation and also the Bayesian global method for
the binomial kernel. Section Summary and final remarks concludes.
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Non-classical associated kernels

Recall that the support T of the p.m.f., p.d.f. or regression function, to be estimated, is any set
{0, 1, . . . , N}, [a, b] or [0, ∞) for a given integer N and reals a < b. The associated kernel in both
continuous and discrete cases is defined as follows.

Definition 34.2.1. (Kokonendji and Senga Kiessé, 2011; Libengué, 2013) Let T (⊆ R) be the support of the
p.m.f., p.d.f. or regression function, to be estimated, x ∈ T a target and h a bandwidth. A parametrized
p.m.f. (respectively p.d.f.) Kx,h(·) of support Sx,h (⊆ R) is called “associated kernel” if the following conditions
are satisfied:

x ∈ Sx,h, (1)

E
(
Zx,h

)
= x + a(x, h), (2)

V
(
Zx,h

)
= b(x, h), (3)

where Zx,h denotes the random variable with p.m.f. (respectively p.d.f.) Kx,h and both a(x, h) and b(x, h) tend
to 0 as h goes to 0.

Remark 34.2.2. This definition has the following interesting interpretations:

(i) The function Kx,h(·) is not necessary symmetric and is intrinsically linked to x and h.

(ii) The support Sx,h is not necessary symmetric around x; it can depend or not on x and h.

(iii) The condition (1) can be viewed as ∪x∈TSx,h ⊇ T and it implies that the associated kernel takes into
account the support T of the density f , to be estimated.

(iv) If ∪x∈TSx,h does not contain T then this is the well-known problem of boundary bias.

(v) Both conditions (2) and (3) indicate that the associated kernel is more and more concentrated around x as
h goes to 0. This highlights the peculiarity of the associated kernel which can change its shape according
to the target position.

In order to construct an associated kernel Kx,h(·) from a parametric (discrete or continuous)
probability distribution Kθ , θ ∈ Θ ⊂ Rd on the support Sθ such that Sθ ∩T 6= ∅, we need to establish
a correspondence between (x, h) ∈ T× (0, ∞) and θ ∈ Θ; see Kokonendji and Senga Kiessé (2011).
In what follows, we will call K ≡ Kθ the type of kernel to make a difference from the classical notion
of a continuous symmetric (e.g., Gaussian) kernel. In this context, the choice of the associated kernel
becomes important as well as that of the bandwidth. Moreover, we distinguish the associated kernels
said sometimes of “second order” of those said of “first order” which verify the two first conditions (1)
and (2). The rest of this section is devoted to discuss examples of associated kernels in both discrete
and continuous cases.

Discrete associated kernels

Among the discrete associated kernels found in literature, we here use the best in sense of Defini-
tion 34.2.1. Negative binomial and Poisson kernels are respectively overdispersed (i.e., V(Zx,h) >
E(Zx,h)) and equisdispersed (i.e., V(Zx,h) = E(Zx,h)) and thus are not recommended; see Koko-
nendji and Senga Kiessé (2011) for further details. The first associated kernel listed below, namely the
binomial kernel, is the best of the first order or standard kernels which satisfies

lim
h→0

V(Zx,h) ∈ V(0), (4)

where V(0) is a neighborhood of 0 which does not depend on x. The two other discrete associated
kernels satisfy all conditions of Definition 34.2.1.

• The binomial (bino) kernel is defined on the support Sx = {0, 1, . . . , x + 1} with x ∈ T := N =
{0, 1, . . .} and then h ∈ (0, 1]:

Bx,h(u) =
(x + 1)!

u!(x + 1− u)!

(
x + h
x + 1

)u ( 1− h
x + 1

)x+1−u
1Sx (u),

where 1A denotes the indicator function of any given event A. Note that Bx,h is the p.m.f. of the
binomial distribution B(x + 1; (x + h)/(x + 1)) with its number of trials x + 1 and its success
probability in each trial (x + h)/(x + 1). It is appropriate for count data with small or moderate
sample sizes and, also, it satisfies (4) rather than (3); see Kokonendji and Senga Kiessé (2011)
and also Zougab et al. (2012) for a bandwidth selection by Bayesian method.
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• The following class of symmetric discrete triangular kernels has been proposed in Kokonendji
et al. (2007). The support T of the p.m.f. f to be estimated, can be unbounded (e.g., N, Z) or
finite (e.g., {0, 1, . . . , N}). Then, suppose that h is a given bandwidth parameter and a is an
arbitrary and fixed integer. For fixed arm a ∈N, the discrete triangular (DTra) kernel is defined
on Sx,a = {x, x± 1, . . . , x± a} with x ∈ T = N:

DTx,h;a(u) =
(a + 1)h − |u− x|h

P(a, h)
1Sx,a (u),

where P(a, h) = (2a + 1)(a + 1)− 2 ∑a
k=0 kh is the normalizing constant. It is symmetric around

the target x, satisfying Definition 34.2.1 and suitable for count variables; see Kokonendji and
Zocchi (2010) for an asymmetric version. Note that h→ 0 gives the Dirac kernel.

• A discrete kernel estimator for categorical data has been introduced in Aitchison and Aitken
(1976). Its asymmetric discrete associated kernel version that we here label DiracDU (DirDU) as
“Dirac Discrete Uniform” has been deduced in Kokonendji and Senga Kiessé (2011) as follows.
For fixed c ∈ {2, 3, . . .} the number of categories, we define Sc = {0, 1, . . . , c− 1} and

DUx,h;c(u) = (1− h)1{x}(u) +
h

c− 1
1Sc\{x}(u),

where h ∈ (0, 1] and x ∈ T = Sc. In addition, the target x can be considered as the reference
point of f to be estimated; and, the smoothing parameter h is such that 1− h is the success
probability of the reference point. This DiracDU kernel is symmetric around the target, satisfying
Definition 34.2.1 and appropriated for categorical set T. See, e.g., Racine and Li (2004) for some
uses. Note that h = 0 provides the Dirac kernel.

Continuous associated kernels

One can find several continuous associated kernels in literature among the Birnbaum-Saunders of
Jin and Kawczak (2003). Here, we present seven associated kernels well adapted for the estimations
of density or regression functions on any compact or nonnegative support of datasets. All these
associated kernels satisfy Definition 34.2.1.

• The extended beta (BE) kernel is defined on Sx,h,a,b = [a, b] = T with a < b < ∞, x ∈ T and
h > 0 such that

BEx,h,a,b(u) =
(u− a)(x−a)/{(b−a)h}(b− u)(b−x)/{(b−a)h}

(b− a)1+h−1 B (1 + (x− a)/(b− a)h, 1 + (b− x)/(b− a)h)
1Sx,h,a,b (u),

where B(r, s) =
∫ 1

0 tr−1(1− t)s−1dt is the usual beta function with r > 0, s > 0; see Libengué
(2013). For a = 0 and b = 1, it corresponds to the beta kernel (Chen, 1999) which is the p.d.f. of
the beta distribution with shape parameters 1 + x/h and (1− x)/h. The extended beta kernel is
appropriate for any compact support of observations.

• The gamma (GA) kernel is given on Sx,h = [0, ∞) = T with x ∈ T and h > 0:

GAx,h(u) =
ux/h

Γ (1 + x/h) h1+x/h exp
(
−u

h

)
1[0,∞)(u),

where Γ(v) =
∫ ∞

0 sv−1 exp(−s)ds is the classical gamma function with v > 0; see Chen (2000). It
is the p.d.f. of the gamma distribution GA(1 + x/h, h) with scale parameter 1 + x/h and shape
parameter h. It is suitable for the non-negative real set T = [0, ∞).

• The lognormal (LN) kernel is defined on Sx,h = [0, ∞) = T with x ∈ T and h > 0 such that

LNx,h(u) =
1

uh
√

2π
exp

{
−1

2

(
1
h

log(
u
x
)− h

)2
}
1Sx,h (u);

see Libengué (2013) and also Igarashi and Kakizawa (2015). It is the p.d.f. of the classical
lognormal distribution with mean log(x) + h2 and standard deviation h.

• The reciprocal inverse Gaussian (RIG) kernel is given on Sx,h = (0, ∞) = T with x ∈ T and
h > 0:

RIGx,h(u) =
1√

2πhu
exp

{
− (x2 + xh)1/2

2h

(
u

(x2 + xh)1/2 − 2 +
(x2 + xh)1/2

u

)}
1Sx,h (u);
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(a) (b)

Figure 1: Shapes of univariate (discrete and continuous) associated kernels: (a) DiracDU, discrete
triangular a = 3 and binomial with same target x = 3 and bandwidth h = 0.13; (b) lognormal, inverse
Gaussian, gamma, reciprocal inverse Gaussian, inverse gamma and Gaussian with same target x = 1.3
and h = 0.2.

see Scaillet (2004), Libengué (2013) and also Igarashi and Kakizawa (2015). It is the p.d.f. of
the classical reciprocal inverse Gaussian distribution with mean 1/

√
x2 + xh and standard

deviation 1/h.

Remark 34.2.3. The three continuous associated kernels inverse gamma, inverse Gaussian and Gaussian are
not adapted for density estimation on supports [0, ∞) and thus are not included in the Ake package; see Part (b)
of Figure 1.

Indeed:

• The inverse gamma (IGA) kernel, defined on Sx,h = (0, ∞) = T with x ∈ (0, 1/h) and h > 0
such that

IGAx,h(u) =
h1−1/(xh)

Γ (−1 + 1/(xh))
u−1/(xh) exp

(
− 1

hu

)
1(0,∞)(u)

(Libengué, 2013), is graphically the worst since it does not well concentrate on the target x. Note
that it is the p.d.f. of the inverse gamma distribution with scale parameter −1 + 1/(xh) and
scale parameter 1/h.

• Also, the inverse Gaussian (IG) kernel, defined on Sx,h = (0, ∞) = T with x ∈ (0, 1/3h) and
h > 0 by

IGx,h(u) =
1√

2πhu
exp

{
− (1− 3xh)1/2

2h

(
u

(1− 3xh)1/2 − 2 +
(1− 3xh)1/2

u

)}
1Sx,h (u)

(Scaillet, 2004; Libengué, 2013), has the same graphical properties as the inverse gamma. Note
that it is the p.d.f. of the inverse Gaussian distribution IG(1 + x/h, h) with scale parameter
x/(1− 3xh)1/2 and shape parameter 1/h.

• Fromthe well known Gaussian kernel KG(u) = (h
√

2π)−1 exp(u2)1R(u), we define its associ-
ated version (Gaussian) on Sx,h = R with x ∈ T := R and h > 0:

KG
x,h(u) =

1
h
√

2π
exp

{
1
2

(
u− x

h

)2
}
1R(u).

It has the same shape at any target and thus is well adapted for continuous variables with
unbounded supports but not for [0, ∞) or compact set of R; see also Epanechnikov (1969) for
another example of a continuous symmetric kernel.

Figure 1 shows some forms of the above-mentioned univariate associated kernels. The plots
highlight the importance given to the target point and around it in discrete (a) and continuous (b)
cases. Furthermore, for a fixed bandwidth h, the Gaussian keeps its same shape along the support;
however, they change according to the target for the other non-classical associated kernels. This
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Arguments Description

x The target.
t The single or the grid value where the function is computed.
h The bandwidth or smoothing parameter.
ker The associated kernel.
a0,a1 The left and right bounds of the support for the extended beta kernel.
a The arm of the discrete triangular kernel. Default value is 1.
c The number of categories in DiracDU kernel. Default value is 2.

Result Description

Returns a single value of the associated kernel function.

Table 1: Summary of arguments and results of kern.fun.

explains the inappropriateness of the Gaussian kernel for density or regression estimation in any
bounded interval and of the DiracDU kernel for count regression estimation; see Part (b) of Figure 1.
From Part (v) of Remark 34.2.2, the inverse gamma and inverse Gaussian are the worst since they
do not well concentrate on the target x; see Remark 34.2.3. These previous associated kernels can be
applied to various functionals.

We have implemented in R the method kern.fun for both discrete and continuous associated
kernels. Seven possibilities are allowed for the kernel function. We enumerate the arguments and
results of the default kern.fun.default function in Table 1. The kern.fun is used as follows for the
binomial kernel:

R> x <- 5
R> h <- 0.1
R> y <- 0:10
R> k_b <- kern.fun(x, y, h, "discrete", "bino")

Density or probability mass function estimations

The p.d.f. or p.m.f. estimation is an usual application of the associated kernels. Let X1, . . . , Xn be
independent and identically distributed (i.i.d.) random variables with an unknown p.d.f. (respectively
p.m.f.) f on T. An associated kernel estimator f̂n of f is simply:

f̂n(x) =
1
n

n

∑
i=1

Kx,h(Xi), x ∈ T. (5)

Here, we point out some pointwise properties of the estimator (5) in both discrete and continuous
cases.

Proposition 34.3.1. (Kokonendji and Senga Kiessé, 2011; Libengué, 2013) Let X1, X2, . . . , Xn be an n random
sample i.i.d. from the unknown p.m.f. (respectively p.d.f.) f on T. Let f̂n = f̂n,h,K be an estimator (5) of f with
an associated kernel. Then, for all x ∈ T and h > 0, we have

E{ f̂ (x)} = E{ f (Zx,h)},

where Zx,h is the random variable associated to the p.m.f. (respectively p.d.f.) Kx,h on Sx,h. Furthermore, for a
p.m.f. (respectively p.d.f.), we have respectively f̂n(x) ∈ [0, 1] (respectively f̂n(x) > 0) for all x ∈ T and∫

x∈T
f̂n(x)ν(dx) = Cn, (6)

where Cn = C(n; h, K) is a positive and finite constant if
∫

T
Kx,h(t)ν(dx) < ∞ for all t ∈ T, and ν is a count

or Lebesgue measure on T.

It is easy to see that Cn = 1 for the estimators (5) with DiracDU kernel or any classical (symmetric)
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associated kernel. Indeed, for the DiracDU kernel estimation we have

c−1

∑
x=0

f̂n(x) =
c−1

∑
x=0

{
(1− h)1{x}(X1) +

h
c− 1

1Sc\{x}(X1)

}
= (1− h) +

h
c− 1

(c− 1)

= 1.

In general we have Cn 6= 1 for other discrete and also continuous associated kernels, but it is always
close to 1. In practice, we compute Cn depending on observations before normalizing f̂n to be a
p.m.f. or a p.d.f. The following code helps to compute the normalizing constant, e.g., for gamma kernel
estimation:

R> data("faithful", package = "datasets")
R> x <- faithful$waiting
R> f <- dke.fun(x, ker = "GA", 0.1)
R> f$C_n

[1] 0.9888231

Without loss of generality, we study x 7→ f̂n(x) up to a normalizing constant which is used at the end
of the density estimation process. Notice that that non-classical associated kernel estimators f̂n are
improper density estimates or as kind of “balloon estimators”; see Sain (2002). There are two ways to
normalize these estimators (5). The first method is the global normalization using Cn of (6):

f̃n(x) =
f̂n(x)∫ sup(T)

in f (T)
f̂n(x)ν(dx)

, x ∈ T. (7)

Another alternative is to use an adaptive normalization of (5) according to each target x:

˜̃fn(x) =
1
n

n

∑
i=1

Kx,h(Xi)∫ sup(T)

in f (T)
Kx,h(Xi)ν(dx)

, x ∈ T,

but this approach, with similar results than (7), is not used here. The representations are done with the
global normalization (7). In the package, we also compute the normalizing constant (6) for any data
set.

In discrete cases, the integrated squared error (ISE) defined by

ISE0 = ∑
x∈N

{ f̃n(x)− f0(x)}2,

is the criteria used to measure numerically the discrete smoothness of f̃n from (7) with the empirical or
naive p.m.f. f0 such that ∑x∈N f0(x) = 1; see, e.g., Kokonendji and Senga Kiessé (2011). Concerning
the continuous variables, the histogram gives a graphical measure of comparison with f̃n; see, for
example, Figure 2.

Some theoretical aspects of the normalizing constant

In this section, we present some theoretical aspects of the normalizing constant Cn of (6) and two
examples in the continuous and discrete cases. We first recall the following result on pointwise
properties of the estimator (5).

Lemma 34.3.2. (Kokonendji and Senga Kiessé, 2011; Libengué, 2013) Let x ∈ T be a target and h ≡ hn a
bandwidth. Assuming f is in the class C 2(T) in the continuous case, then

Bias
{

f̂n(x)
}
= A(x, h) f ′(x) +

1
2

{
A2(x, h) + B(x, h)

}
f ′′(x) + o(h2). (8)

Similar expressions (8) hold in the discrete case, except that f ′ and f ′′ are finite differences of the first and second
order respectively.

Furthermore, for the continuous case, if f is bounded on T then there exists r2 = r2
(
Kx,h

)
> 0 the largest
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real number such that
∥∥Kx,h

∥∥2
2 :=

∫
Sx,h

K2
x,h(u)du ≤ c2(x)h−r2 , 0 ≤ c2(x) ≤ ∞ and

V
{

f̂n(x)
}
=

1
n

f (x)
∥∥Kx,h

∥∥2
2 + o

(
1

nhr2

)
. (9)

For discrete situations, the result (9) becomes

V
{

f̂n(x)
}
=

1
n

f (x)[{P(Zx,h = x)}2 − f (x)],

where Zx,h denotes the discrete random variable with p.m.f. Kx,h.

It is noticeable that the bias (8) is bigger than the one with symmetric kernels and thus can be
reduced; see, e.g., Zhang (2010), Zhang and Karunamuni (2010) and Libengué (2013).

Proposition 34.3.3. Following notations in Lemma 34.3.2, the mean and variance of Cn of (6) are respectively:

E (Cn) ' 1 +
∫ sup(T)

in f (T)

{
A(x, h) f ′(x) +

1
2

[
A2(x, h) + B(x, h)

]
f ′′(x)

}
ν(dx), (10)

V (Cn) '


1
n

∫ sup(T)

in f (T)

(
f (x)

∥∥Kx,h
∥∥2

2

)
dx if T is continuous,

1
n ∑

x∈T

(
f (x)[{P(Zx,h = x)}2 − f (x)]

)
if T is discrete,

(11)

where in f (T) and sup(T) are respectively the infimum and supremum of T, the measure ν is Lesbesgue or
count on the support T, and where “'” stands for approximation.

Proof. From Lemma 34.3.2 and the Fubini theorem, we successively show (10) as follows:

E (Cn) = E

(∫ sup(T)

in f (T)
f̂n(x)ν(dx)

)
=
∫ sup(T)

in f (T)
E
(

f̂n(x)
)

ν(dx)

=
∫ sup(T)

in f (T)

(
Bias

{
f̂n(x)

}
+ f (x)

)
ν(dx)

'
∫ sup(T)

in f (T)

{
A(x, h) f ′(x) +

1
2

[
A2(x, h) + B(x, h)

]
f ′′(x) + f (x)

}
ν(dx)

'
∫ sup(T)

in f (T)
f (x)ν(dx) +

∫ sup(T)

in f (T)

{
A(x, h) f ′(x) +

1
2

[
A2(x, h) + B(x, h)

]
f ′′(x)

}
ν(dx)

' 1 +
∫ sup(T)

in f (T)

{
A(x, h) f ′(x) +

1
2

[
A2(x, h) + B(x, h)

]
f ′′(x)

}
ν(dx).

The variance (11) is trivial from Lemma 34.3.2. �

Example 1. Let f be an exponential density with parameter γ > 0. Thus, one has:

f (x) = γ exp(−γx),

f ′(x) = −γ2 exp(−γx),

f ′′(x) = γ3 exp(−γx).

Consider the lognormal kernel with A(x, h) = x(exp(3h2/2)− 1), B(x, h) = x2 exp(3h2)(exp(h2)− 1)
and

∥∥LNx,h
∥∥2

2 = 1/(2πhx1/2); see Libengué (2013). Then, using the Taylor formula around h, the
expressions of E (Cn) and V (Cn) are:

E (Cn) ' 1 +

[(
−1 + exp

3h2

2

)
+

1
2

{(
−1 + exp

3h2

2

)2

+ exp 3h2
(
−1 + exp h2

)}]
' 1− h2

2

and V (Cn) ' γ(2nh
√

π)−1 ∫ ∞
0 z−1 exp(−z)dz with

∫ ∞
0 z−1 exp(−z)dz ≈ 16.2340 by computation

with R. Thus, the quantity Cn cannot be equal to 1.

Example 2. Let f be a Poisson p.m.f. with parameter λ and thus f (x) = λx exp(−λ)/x!. The finite
differences f (k)(x) of order k ∈ {1, 2, . . .} at x ∈N are given by the recursive relation:

f (k)(x) = { f (k−1)(x)}(1) with f (1)(x) =
{
{ f (x + 1)− f (x− 1)} /2, if x ∈N \ {0} ,
f (1)− f (0), if x = 0,
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and

f (2)(x) =

 {
f (x + 2)− 2 f (x) + f (x− 2)} /4, if x ∈N \ {0, 1} ,
{ f (3)− 3 f (1) + f (0)} /4, if x = 1,
{ f (2)− 2 f (1) + f (0)} /2, if x = 0.

Considering the binomial kernel with A(x, h) = x + h, B(x, h) = (x + h)(1 − h)/(x + 1), we
successively obtain

E (Cn) ' 1 +
h
4

(
f (3) + 3 f (2)− 3 f (1)− 2 f (0)

+
∞

∑
x=2

2 { f (x + 1)− f (x− 1)}+ (x + 3){ f (x + 2)− 2 f (x) + f (x− 2)}
x + 1

)

+

(
3 f (3) + 8 f (2)− 17 f (1) + 3 f (0)

2

+
∞

∑
x=2

x { f (x + 1)− f (x− 1)}
2

+
(x3 + x2 + 1){ f (x + 2)− 2 f (x) + f (x− 2)}

x + 1

)

' 1 +
h exp(−λ)

4

[
λ3

3!
+ 3

λ2

2!
− 3λ− 2

+
∞

∑
x=2

{
2λx+1

(x + 1)!
− 2λx−1

(x− 1)!
+

x + 3
x + 1

(
λx+2

(x + 2)!
− 2

λx

x!
+

λx−2

(x− 2)!

)}]

+

[
λ3

4
+ 2λ2 − 17λ

2
+ 3

+
∞

∑
x=2

{
x
2

(
λx+1

(x + 1)!
− λx−1

(x− 1)!

)
+

x3 + x2 + 1
x + 1

(
λx+2

(x + 2)!
− 2

λx

x!
+

λx−2

(x− 2)!

)}]

and

V (Cn) '
exp(−λ)

n ∑
x∈T

(
λx

x!

[{
(1 + h)

(
x + h
x + 1

)x}2

− λx exp(−λ)

x!

])
.

Bandwidth selection

Now, we consider the bandwidth selection problems which are generally crucial in nonparametric
estimation. Several methods already existing for continuous kernels can be adapted to the discrete
case as the classical least-squares cross-validation method; see, for example, Bowman (1984), Marron
(1987) and references therein. Here, we simply propose three procedures for the bandwidth selection:
cross-validation, Bayesian local for binomial and adaptive for the gamma kernel. Also, a review of
bayesian bandwidth selection methods is presented. Each time, the smoothing parameter selection is
done with the non-normalized version f̂n of the estimator (5) before the global normalization f̃n of (7).

Cross-validation for any associated kernel

For a given associated kernel Kx,h with x ∈ T and h > 0, the optimal bandwidth hcv of h is obtained
by cross-validation as hcv = arg min

h>0
CV(h) with

CV(h) =
∫

x∈T

{
f̂n(x)

}2
ν(dx)− 2

n

n

∑
i=1

f̂n,−i(Xi),

where f̂n,−i(Xi) = (n− 1)−1 ∑
j 6=i

KXi ,h(Xj) is being computed as f̂n(Xi) by excluding the observation

Xi and ν is the Lebesgue or count measure. This method is applied to all estimators (5) with associated
kernels cited in this paper, independently on the support T of f to be estimated.

Table 2 gives the arguments and results of the cross-validation function hcvc.fun defined for
continuous data are below. The hcvd.fun is the corresponding function for discrete data. The hcvc.fun
is performed with the Old Faithful geyser data described in Azzalini and Bowman (1990) and Härdle
(2012). The dataset concerns waiting time between eruptions and the duration of the eruption for the
Old Faithful geyser in Yellowstone National Park, Wyoming, USA. The following codes and Figure 2
give smoothing density estimation with various associated kernels of the waiting time variable.
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Arguments Description

Vec The positive continuous data sample.
seq.bws The sequence of bandwidths where to compute the cross-validation function.
ker The associated kernel.
a0,a1 The bounds of the support of extended beta kernel. Default values are

respectively 0 and 1.
a The arm of the discrete triangular kernel. Default value is 1.
c The number of categories in DiracDU kernel. Default value is 2.

Results Description

hcv The optimal bandwidth obtained by cross-validation.
seq.h The sequence of bandwidths used to compute hcv.
CV The values of the cross-validation function.

Table 2: Summary of arguments and results of hcvc.fun.
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Figure 2: Smoothing density estimation of the Old Faithful geyser data (Azzalini and Bowman, 1990)
by some continuous associated kernels with the support of observations [43, 96] = T.

R> data("faithful", package = "datasets")
R> x <- faithful$waiting
R> f1 <- dke.fun(x, 0.1, "continuous", ker = "GA")
R> f2 <- dke.fun(x, 0.036, "continuous", ker = "LN")
R> f3 <- dke.fun(x, 0.098, "continuous", ker = "RIG")
R> f4 <- dke.fun(x, 0.01, "continuous", ker = "BE", a0 = 40, a1 = 100)
R> t <- seq(min(x), max(x), length.out = 100)
R> hist(x, probability = TRUE, xlab = "Waiting times (in min.)",
+ ylab = "Frequency", main = "", border = "gray")
R> lines(t, f1$fn, lty = 2, lwd = 2, col = "blue")
R> lines(t, f2$fn, lty = 5, lwd = 2, col = "black")
R> lines(t, f3$fn, lty = 1, lwd = 2, col = "green")
R> lines(t, f4$fn, lty = 4, lwd = 2, col = "grey")
R> lines(density(x, width = 12), lty = 8, lwd = 2, col = "red")
R> legend("topleft", c("Gamma", "Lognormal", "Reciprocal inverse Gaussian",
+ "Extended beta", "Gaussian"), col = c("blue", "black", "green", "grey", "red"),
+ lwd = 2, lty = c(2, 5, 1, 4, 8), inset = .0)
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A review of Bayesian bandwidth selection

Bayesian inference grows out of the simple formula known as Bayes rule. Assume we have two
random variables A and B. A principle rule of probability theory known as the chain rule allows us to
specify the joint probability of A and B taking on particular values a and b, P(a, b), as the product of
the conditional probability that A will take on value a given that B has taken on value b, P(a|b), and
the marginal probability that B takes on value b, P(b). Which gives us:

Joint probability = Conditional Probability ×Marginal Probability.

Thus we have: P(a, b) = P(a|b)P(b).

This expression (Bayes rule) indicates that we can compute the conditional probability of a variable
A given the variable B from the conditional probability of B given A. This introduces the notion of
prior and posterior knowledge.

Prior and posterior knowledge. A prior probability is the probability available to us beforehand,
and before making any additional observations. A posterior probability is the probability obtained
from the prior probability after making additional observation to the prior knowledge available.

Summarizing the Bayesian approach. The Bayesian approach to parameter estimation works as
follows:

1. Formulate our knowledge about a situation.

2. Gather data.

3. Obtain posterior knowledge that updates our beliefs.

How do we formulate our knowledge about a situation?

a. Define a distribution model which expresses qualitative aspects of our knowledge about the
situation. This model will have some unknown parameters, which will be dealt with as random
variables.

b. Specify a prior probability distribution which expresses our subjective beliefs and subjective
uncertainty about the unknown parameters, before seeing the data.

After gathering the data, how do we obtain posterior knowledge?

c. Compute posterior probability distribution which estimates the unknown parameters using the
rules of probability and given the observed data, presenting us with updated beliefs.

Zougab et al. (2013) proposed a Bayesian approach based upon a likelihood cross-validation
approximation and a Markov chain Monte Carlo (MCMC) method for deriving the global optimal
bandwidth using the famous binomial kernel. However, a global bandwidth does not generally
provide a good estimator for complex p.m.f.’s, in particular for small and moderate sample sizes. Gen-
erally, the global discrete associated kernel estimator tends to simultaneously under- and oversmooth
f (x).

In order to improve the global discrete associated kernel estimator, in particular for complex count
data with small and moderate sample sizes, Zougab et al. (2012) and Zougab et al. (2013) adapted
two versions of variable bandwidths for discrete associated kernel estimator and proposed Bayesian
approaches for selecting these variable bandwidths. Note that these two versions are originally
proposed for kernel density estimation (see, e.g., Sain and Scott 1996; Breiman et al. 1977; Abramson
1982; Brewer 2000; Zhang et al. 2006; Zougab et al. 2014a and Zhang et al. 2016).

Recently, Zougab et al. (2012) have considered the local discrete associated kernel estimator
(balloon estimator in discrete case) and have derived the closed form of the variable bandwidth
at each point x for which the p.m.f. is estimated by considering the binomial kernel estimator and
locally treating the bandwidth as a random quantity with a beta prior distribution. This approach
outperforms existing classical global methods, namely, MISE and CV in particular for small and
moderate sample sizes. Zougab et al. (2013) have also proposed the adaptive discrete associated kernel
estimator (sample-point estimator in discrete situation), which replaces h by hi for each observation xi
with i = 1, . . . , n, and then employs the Bayesian approach for estimating the adaptive bandwidths hi.
The authors have considered the binomial kernel and the beta prior for each variable bandwidth hi,
and have shown that this approach performs better than the popular classical global selectors.
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Bayesian estimation of localized bandwidth for the binomial kernel

An alternative to the cross-validation for bandwidth selection is by using Bayesian methods. These
methods have been investigated with three different procedures: local, global and adaptive; see
respectively Zougab et al. (2012, 2013, 2014b). In terms of integrated squared error and execution
times, the local Bayesian outperforms the other Bayesian procedures. In the local Bayesian framework,
the variable bandwidth is treated as parameter with prior π(·). Under squared error loss function, the
Bayesian bandwidth selector is the posterior mean; see Zougab et al. (2012).

First, as we have mentioned above, f (x) can be approximated by

f (x|h) = fh(x) = ∑
u∈T

f (u)Bx,h(u) = E{Bx,h(X)},

where Bx,h is the binomial kernel and X is a random variable with p.m.f. f . Now, considering h as
a scale parameter for fh(x), the local approach consists of using fh(x) and constructing a Bayesian
estimator for h(x).

Indeed, let π(h) denote the beta prior density of h with positive parameters α and β. By the Bayes
theorem, the posterior of h at the point of estimation x takes the form

π(h|x) = fh(x)π(h)∫
fh(x)π(h)dh

.

Since fh is unknown, we use f̂h as natural estimator of fh, and hence we can estimate the posterior by

π(h|x, X1, X2, . . . , Xn) =
f̂h(x)π(h)∫
f̂h(x)π(h)dh

.

Under the squared error loss, the Bayes estimator of the smoothing parameter h(x) is the posterior
mean and is given by ĥn(x) =

∫
hπ̂(h|x, X1, X2, . . . , Xn)dh. Exact approximation is

ĥn(x) =

n

∑
i=0

Xi

∑
k=0

xk

(x + 1− Xi)!k!(Xi − k)!
B(Xi + α− k + 1, x + β + 1− Xi)

n

∑
i=0

Xi

∑
k=0

xk

(x + 1− Xi)!k!(Xi − k)!
B(Xi + α− k, x + β + 1− Xi)

, ∀x ∈N with Xi ≤ x + 1,

where B(·, ·) is the beta function; see Zougab et al. (2012) for more details.

Bayesian estimation of adaptive bandwidth for the gamma kernel

The bandwidth h in the gamma kernel density estimation can be allowed to be adaptive. This
approach gives a variable bandwidth hi for each observation Xi in place of the initial fixed bandwidth
h. Following Zougab et al. (2014a), we suggest using Bayesian methods to estimate such adaptive
bandwidths or variable bandwidths hi, i = 1, . . . , n. Thus, we treat hi as a random variable with a
prior distribution π(·). The estimator (5) with gamma kernel of Section Continuous associated kernels
and variable bandwidths are reformulated as

f̂n(x) =
1
n

n

∑
i=1

GAx,hi
(Xi). (12)

The leave-one-out kernel estimator of f (Xi) deduced from (12) is

f̂ (Xi | {X−i}, hi) =
1

n− 1

n

∑
j=1,j 6=i

GAXi ,hi
(Xj), (13)

where {X−i} denotes the set of observations excluding Xi. The posterior distribution for each variable
bandwidth hi given Xi provided from the Bayesian rule is expressed as follow

π(hi | Xi) =
f̂ (Xi | {X−i}, hi)π(hi)∫ ∞

0 f̂ (Xi | {X−i}, hi)π(hi)dhi
. (14)

We obtain the Bayesian estimator h̃i of hi by using the quadratic loss function

h̃i = E(hi | Xi). (15)
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In the following, we assume that each hi = hi(n) has an inverse gamma prior distribution IGA(α, β)
with the shape parameter α > 0 and scale parameter β > 0. The density of IGA(a, b) with a, b > 0 is
defined as

Φa,b(z) =
ba

Γ(a)
z−a−1 exp(−b/z)1(0,∞)(z). (16)

This allows us to obtain the closed form of the posterior density and the Bayesian estimator given by
the following result.

Theorem 34.3.4. For fixed i ∈ {1, 2, . . . , n}, consider each observation Xi with its corresponding bandwidth
hi. Using the gamma kernel estimator (12) and the inverse gamma prior distribution IGA(α, β) given in (16)
with α > 1/2 and β > 0 for each hi, then:

(i) The posterior density (14) is the following weighted sum of inverse gamma

π(hi | Xi) =
1

Dij

n

∑
j=1,j 6=i

{
Aij Φα+1/2,Bij

(hi)1(0,∞)(Xi) + Cj Φα+1,Xj+β(hi)1{0}(Xi)
}

with Aij = [Γ(α + 1/2)]/(βαX1/2
i

√
2πBα+1/2

ij ), Bij = Xi log Xi − Xi log Xj + Xj − Xi + β,

Cj = Γ(α + 1)/[β−α(Xj + β)α+1] and Dij = ∑n
j=1,j 6=i

{
Aij1(0,∞)(Xi) + Cj1{0}(Xi)

}
.

(ii) The Bayesian estimator h̃i of hi, given in (15), is

h̃i =
1

Dij

n

∑
j=1,j 6=i

{
AijBij

α− 1/2
1(0,∞)(Xi) +

(Xj + β)Cj

α
1{0}(Xi)

}

according to the previous notations of Aij, Bij, Cj and Dij.

Proof. (i) Let us represent π(hi | Xi) of (14) as the ratio of N(hi | Xi) := f̂ (Xi | {X−i}, hi)π(hi)
and

∫ ∞
0 N(hi | Xi)dhi. From (13) and (16) the numerator is, first, equal to

N(hi | Xi) =

 1
n− 1

n

∑
j=1,j 6=i

GAXi ,hi
(Xj)

( βα

Γ(α)
h−α−1

i exp(−β/hi)

)

=
[Γ(α)]−1

(n− 1)

n

∑
j=1,j 6=i

GAXi ,hi
(Xj)

β−αhα+1
i

exp(−β/hi). (17)

Following Chen (2000), we assume that for all Xi ∈ (0, ∞) one has 1 + (Xi/hi) → ∞ as n → ∞.
Using the Stirling formula Γ(z + 1) '

√
2πzz+1/2 exp(−z) as z→ ∞, the term of the sum in (17) can

be successively calculated as

GAXi ,hi
(Xj)

β−αhα+1
i

exp(−β/hi) =
X(Xi/hi)

j exp(−Xj/hi)

h1+(Xi/hi)
i Γ[1 + (Xi/hi)]β−αhα+1

i

exp(−β/hi)

=
exp[−(Xj + β − Xi log Xj)/hi]

β−αh(Xi/hi)+α+2
i

√
2π exp(−Xi/hi)(Xi/hi)(Xi/hi)+1/2

=
Γ(α + 1/2)

β−αX1/2
i

√
2πBα+1/2

ij

×
Bα+1/2

ij exp[−Bij/hi]

hα+3/2
i Γ(α + 1/2)

= Aij Φα+1/2,Bij
(hi), (18)

with Bij = Xi log Xi − Xi log Xj + Xj − Xi + β , Aij = [X−1
j Γ(α + 1/2)]/(β−αX−1/2

i

√
2πBα+1/2

ij ) and
Φα+1/2,Bij

(hi) is given in (16).
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Also, for Xi = 0, the term of the sum (17) can be expressed as follows

GA0,hi
(Xj)

β−αhα+1
i

exp(−β/hi) =
exp(−Xj/hi)

β−αhα+2
i

exp(−β/hi)

=
Γ(α + 1)

β−α(Xj + β)α+1 ×
(Xj + β)α+1 exp[−(Xj + β)/hi]

hα+2
i Γ(α + 1)

= Cj Φα+1,Xj+β(hi), (19)

with Cj = Γ(α + 1)/[β−α(Xj + β)α+1] and Φα+1,Xj+β(hi) is given in (16). Combining (18) and (19),
the expression of N(hi | Xi) in (17) becomes

N(hi | Xi) =
[Γ(α)]−1

(n− 1)

n

∑
j=1,j 6=i

{
Aij Φα+1/2,Bij

(hi)1(0,∞)(Xi) + Cj Φα+1,Xj+β(hi)1{0}(Xi)
}

. (20)

From (20), the denominator is successively computed as follows:∫ ∞

0
N(hi | Xi) dhi =

[Γ(α)]−1

(n− 1)

n

∑
j=1,j 6=i

(
Aij

∫ ∞

0
Φα+1/2,Bij

(hi)1(0,∞)(Xi) dhi

+Cj

∫ ∞

0
Φα+1,Xj+β(hi)1{0}(Xi) dhi

)
=

[Γ(α)]−1

(n− 1)

n

∑
j=1,j 6=i

{
Aij1(0,∞)(Xi) + Cj1{0}(Xi)

}
=

[Γ(α)]−1

(n− 1)
Dij, (21)

with Dij = ∑n
j=1,j 6=i

(
Aij1(0,∞)(Xi) + Cj1{0}(Xi)

)
. Finally, the ratio of (20) and (21) leads to the result

of Part (i).

(ii) Let us remember that the mean of the inverse gamma distribution IG(α, β) is β/(α− 1). Thus,
the expression of π(hi | Xi) in (14) is given by

π(hi | Xi) =
1

Dij

n

∑
j=1,j 6=i

{
Aij Φα+1/2,Bij

(hi)1(0,∞)(Xi) + Cj Φα+1,Xj+β(hi)1{0}(Xi)
}

and, therefore, h̃i = E(hi | Xi) =
∫ ∞

0 hiπ(hi | Xi) dhi is finally

h̃i = E(hi | Xi) =
1

Dij

n

∑
j=1,j 6=i

{
AijBij

α− 1/2
1(0,∞)(Xi) +

(Xj + β)Cj

α
1{0}(Xi)

}
.

This new method of selecting bandwidth by the Bayesian adaptive procedure will be implemented
in a future version of the Ake package.

Bandwidth selection for kernel regression involving associated kernels

One of the most often encountered models in nonparametric statistics is the regression model. The
function that provides the best prediction of a dependent variable y in terms of an independent
variable x is the conditional expectation E(y/x) = m(x). This is called regression function and its
estimation from a sequence of n pairs (xi, yi), i = 1, . . . , n is a problem in statistics. We will consider
the case (x, y) ∈ T×R. For simplicity, we take T = R if x is a continuous variable and T = N in the
discrete case. The classical non parametric regression model between two variables y and x is

yi = m(xi) + εi, (22)

where y = (y1, . . . , yn) is a response vector, x = (x1, . . . , xn) is an explanatory vector, ε = (ε1, . . . , εn)
is the error following a Gaussian distribution with zero mean and finite variance σ2, i.e., εi ∼ N (0, σ2)
and m : T 7→ R is the unknown regression function. Several methods have been proposed to estimate
the regression function in the continuous case. We cite for example the histograms introduced by
Tukey (1961) and studied by Geoffroy (1980) and Lecoutre (1990), the spline method which can be
found in Reinsch (1967), Silverman (1985) and Wahba (1990) and also the regression using partition
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proposed by Breiman et al. (1984).

As for the density or probability mass function, the estimate of the regression function by the kernel
method is the most used because of its good asymptotic properties and interest in practice. Introduced
initially for continuous density estimation by Rosenblatt (1956) and Parzen (1962), this method was
adopted by Nadaraya (1964) and Watson (1964) for estimating the continuous regression function. It
was also applied to smooth the discrete regression function m for x ∈ N. Some studies have been
done to estimate the discrete regression function, using the Dirac-type kernel (naive estimator) or
discrete kernels of Aitchison and Aitken (1976). However, the naive estimator is appropriate only
when the sample size is large, and the discrete kernel of Aitchison and Aitken (1976) is only suitable
for categorical data; see Hayfield and Racine (2008) and also Hayfield and Racine (2014). Kokonendji
et al. (2009) adapted the Nadaraya (1964) and Watson (1964) kernel to the discrete unknown function
m, using the discrete associated kernels. In their work, using the integrated mean square error and the
coefficient of determination R2, they showed that the binomial or discrete triangular kernels are better
compared to the optimal Epanechnikov kernel. In this section we present the theoretical foundations
of the estimated regression function with continuous and discrete associated kernels.

Both in continuous and discrete cases, consider the relation between a response variable Y and an
explanatory variable x given by

Y = m (x) + ε, (23)

where m is an unknown regression function from T ⊆ R to R and ε the disturbance term with
null mean and finite variance. Let (X1, Y1), . . . , (Xn, Yn) be a sequence of i.i.d. random variables on
T×R(⊆ R2) with m(x) = E (Y|X = x) of (23). Using (continuous or discrete) associated kernels, the
Nadaraya (1964) and Watson (1964) estimator m̂n of m is

m̂n(x; h) =
n

∑
i=1

YiKx,h (Xi)

∑n
i=1 Kx,h (Xi)

= m̂n(x), ∀x ∈ T ⊆ R, (24)

where h ≡ hn is the smoothing parameter such that hn → 0 as n→ ∞.

Besides the criterion of kernel support, we retain the root mean squared error (RMSE) and also the
practical coefficient of determination given respectively by

RMSE =

√
1
n

n

∑
i=1
{Yi − m̂n(Xi)}2

and

R2 =
∑n

i=1 {m̂n(Xi)− y}2

∑n
i=1(Yi − y)2 ,

with y = n−1(Y1 + . . . + Yn).

In discrete cases, the reg.fun function for (24) is used with the binomial kernel on milk data as
follows. This dataset is about average daily fat (kg/day) yields from milk of a single cow for each of
the first 35 weeks.

R> data("milk", package = "Ake")
R> x <- milk$week
R> y <- milk$yield
R> h <- reg.fun(x, y, "discrete", "bino", 0.1)
R> h

Bandwidth h:0.1 Coef_det=0.9726

Number of points: 35; Kernel = Binomial

data y
Min. : 1.0 Min. :0.0100
1st Qu.: 9.5 1st Qu.:0.2750
Median :18.0 Median :0.3600
Mean :18.0 Mean :0.3986
3rd Qu.:26.5 3rd Qu.:0.6150
Max. :35.0 Max. :0.7200
eval.points m_n
Min. : 1.0 Min. :0.01542
1st Qu.: 9.5 1st Qu.:0.27681
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Arguments Description

Vec The explanatory data sample can be discrete or continuous.
y The response variable.
ker The associated kernel.
h The sequence of bandwidths where to compute the optimal bandwidth.
a0,a1 The bounds of the support of extended beta kernel. Default values are

respectively 0 and 1.
a The arm of the discrete triangular kernel. Default value is 1.
c The number of categories in DiracDU kernel. Default value is 2.

Results Description

kernel The associated kernel.
hcv The optimal bandwidth obtained by cross-validation.
CV The values of the cross-validation function.
seqbws The sequence of bandwidths used to compute hcv.

Table 3: Summary of arguments and results of hcvreg.fun.

Median :18.0 Median :0.35065
Mean :18.0 Mean :0.39777
3rd Qu.:26.5 3rd Qu.:0.60942
Max. :35.0 Max. :0.70064

The above reg.fun is also used for continuous cases; see Figure 3 and Table 4 for the motorcycle
impact data of Silverman (1985).

Bandwidth selection

We present two bandwidth selection methods for the regression: the well-known cross-validation for
any associated kernel and the Bayesian global for the binomial kernel.

Cross-validation for any associated kernel

For a given associated kernel, the optimal bandwidth parameter is ĥcv = arg min
h>0

LSCV(h) with

LSCV(h) =
1
n

n

∑
i=1
{Yi − m̂−i(Xi)}2 , (25)

where m̃−i(Xi) is computed as m̂n of (24) excluding Xi; see, e.g., Kokonendji et al. (2009). The
hcvreg.fun function to compute this optimal bandwidth is described in Table 3.

The following code helps to compute the bandwidth parameter by cross-validation on milk data.
The associated kernel used is the discrete triangular kernel with arm a = 1.

R> data("milk", package = "Ake")
R> x <- milk$week
R> y <- milk$yield
R> f <- hcvreg.fun(x, y, type_data = "discrete", ker = "triang", a = 1)
R> f$hcv

[1] 1.141073

When we consider the continuous associated kernel, one needs to set the type of data parameter to
“continuous” in the hcvreg.fun function. Thus, the hcvreg.fun and reg.fun functions are used with
gamma, lognormal, reciprocal inverse Gaussian and Gaussian kernel on the motor cycle impact data
described in Silverman (1985). The observations consist of accelerometer reading taken through time
in an experimentation on the efficiency of crash helmets. The results in Table 4 agree with the shapes
of continuous associated kernels of Part (b) of Figure 1; see also Figure 3. In fact, since the lognormal
kernel is well concentrated around the target x, it gives the best R2 which is 75.9%. The gamma and the
reciprocal inverse Gaussian kernels give similar R2 in the order 73%. Although the Gaussian kernel is
well concentrated on the target, it gives the lower result of R2 = 70.90%. This is mainly due to the
symmetry of the kernel which cannot change its shapes according to the target.
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Gamma Lognormal Rec. Inv. Gaussian Gaussian

R2 0.7320 0.7591 0.7328 0.7090

Table 4: Some expected values of R2 of nonparametric regressions of the motor cycle impact data
(Silverman, 1985) by some continuous associated kernels.

Figure 3: Nonparametric regressions of the motors cycle impact data (Silverman, 1985) by some
continuous associated kernels.

Bayesian global for binomial kernel

Using Bayes theorem, the joint posterior distribution of h given the observations is

π(h|X1, X2, . . . , Xn) ∝ hα−1(1− h)β−1

(
1
2

n

∑
i=1
{yi − m̂−i(Xi)}2 + b

)−(n+2a)/2

,

where ∝ denotes proportional, the reals a and b are the parameters of the inverse gamma distribution
IG(a, b), and α and β those of the beta distribution Be(α, β). The estimate ĥbay of the smoothing
parameter h is given by Markov chain Monte Carlo (MCMC) techniques with Gibbs sampling:

ĥbay =
1

N − N0

N

∑
N0+1

h(t),

where N0 is the burn-in period and N the number of iterations; see Zougab et al. (2014b) for further
details. It will be implemented in a future version of the Ake package.

Summary and final remarks

The Ake package offers easy tools for R users whose research involves kernel estimation of density
functions and/or regression functions through associated kernels that are capable of handling all
categorical, count and real positive datasets. Figure 1 shows the importance of the associated kernel
choice as well as the bandwidth selection. In fact, symmetric (e.g., Gausssian) kernel estimators
(respectively empirical estimators) are not suitable for bounded or positive continuous datasets
(respectively discrete small samples). We then need an appropriate associated kernel. The binomial
kernel is suitable for small size count data while the discrete triangular or the naive kernel are more
indicated for large sample sizes. In continuous cases, the lognormal and gamma kernels give the best
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estimation for positive data while the extended beta is suitable for any compact support.

This package includes various continuous and discrete associated kernels. It also contains func-
tions to handle the bandwidth selection problems through cross-validation, local and global Bayesian
procedures for binomial kernel and also the adaptive Bayesian procedure for the gamma kernel. In
general, Bayesian choices of smoothing parameters will be better than their cross-validation counter-
parts. Future versions of the package will contain Bayesian methods with other associated kernels.
Also, these associated kernels are useful for heavy tailed data p.d.f. estimation and can be added
later in the package; see, e.g., Ziane et al. (2015). The case of multivariate data needs to be taken in
consideration; see Kokonendji and Somé (2015) for p.d.f. estimation and Somé and Kokonendji (2016)
for regression. We think that the Ake package can be of interest to nonparametric practitioners of
different applied settings.
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An Introduction to Principal Surrogate
Evaluation with the pseval Package
by Michael C. Sachs and Erin E. Gabriel

Abstract We describe a new package called pseval that implements the core methods for the evaluation
of principal surrogates in a single clinical trial. It provides a flexible interface for defining models for
the risk given treatment and the surrogate, the models for integration over the missing counterfactual
surrogate responses, and the estimation methods. Estimated maximum likelihood and pseudo-score
can be used for estimation, and the bootstrap for inference. A variety of post-estimation methods are
provided, including print, summary, plot, and testing. We summarize the main statistical methods
that are implemented in the package and illustrate its use from the perspective of a novice R user.

Introduction

A valid principal surrogate endpoint, also called a specific nonmechanistic correlate of protection
(Plotkin and Gilbert, 2012), can be used as a target for treatment improvement in early phase trials
and, in the specific setting of evaluation, for predicting individual treatment effects post-licensure. A
surrogate is considered to be valid if it provides reliable predictions of treatment effects on the clinical
endpoint of interest. Frangakis and Rubin (2002) introduced the concept of principal stratification
and the definition of a principal surrogate (PS). Informally, a post-treatment intermediate response
variable is a principal surrogate if causal effects of the treatment on the clinical outcome only exist
when causal effects of the treatment on the intermediate variable exist. The criteria for a PS have been
modified and extended in more recent works, with most current literature focusing on wide effect
modification as the primary criterion of interest.

The goal of PS evaluation is estimation and testing of how treatment efficacy on the clinical outcome
of interest varies over subgroups defined by possible treatment and surrogate combinations of interest;
this is an effect modification objective. The combinations of interest are called the principal strata
and they include a set of unobservable counterfactual responses: responses that would have occurred
under a set of conditions counter to the observed conditions. To finesse this problem of unobservable
responses, a variety of clever trial designs and estimation approaches have been proposed. Several of
these have been implemented in the pseval package (Sachs and Gabriel, 2016).

Methods

Notation

Let Zi be the treatment indicator for subject i, where 0 indicates the control or standard treatment,
and 1 indicates the experimental treatment. We currently only allow for two levels of treatment
and assume that the treatment assignments are randomized. Let Si be the observed value of the
intermediate response for subject i. Since Si can be affected by treatment, there are two naturally
occurring counterfactual values of Si: Si(1) under treatment, and Si(0) under control. Let sz be the
realization of the random variable S(z), for z ∈ {0, 1}. The outcome of interest is denoted Yi. We
consider the counterfactual values of Yi(0) and Yi(1). We allow for continous, binary, count, and
time-to-event outcomes, thus Yi may be a vector containing a time variable and an event/censoring
indicator, i.e. Yi = (Ti, ∆i) where ∆i = 1 if Ti is an event time, and ∆i = 0 if Ti is a censoring time.
In event driven settings, Si(z) is only defined if the event, Yi(z), does not occur before the potential
surrogate Si(z) is measured at a fixed time τ after entry into the study. The data analyses only include
participants who have not experienced the event outcome by time τ.

Estimands

Criteria for S to be a good surrogate are based on risk estimands that condition on the potential
intermediate responses. The risk is defined as a mapping g of the cumulative distribution function of
Y(z) conditional on the intermediate responses. The joint risk estimands conditions on the candidate
surrogate under both level of treatment, (S(1), S(0)).

risk1(s1, s0) = g {Fs1 [Y(1)|S(0) = s0, S(1) = s1]} ,

risk0(s1, s0) = g {Fs1 [Y(0)|S(0) = s0, S(1) = s1]} .
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For instance, for a binary outcome, the risk function may simply be the probability riskz(s1, s0) =
P(Y(z) = 1|S(0) = s0, S(1) = s1), or for a time-to-event outcome the risk function may be the
cumulative distribution function riskz(s1, s0) = P(Y(z) ≤ t|S(0) = s0, S(1) = s1).

Currently we focus only on marginal risk estimands which condition only on S(1), the intermediate
response or biomarker under active treatment:

risk1(s1) = g {Fs1 [Y(1)|S(1) = s1]} ,

risk0(s1) = g {Fs1 [Y(0)|S(1) = s1]} .

Neither of the joint risk estimands are indentifiable in a standard randomized trial, as either S(0)
or S(1) or both will be missing for each subject. In the special case where S(0) is constant, such as the
immune response to HIV antigens or Hep B in the placebo arm of a vaccine trial, the joint and marginal
risk estimands are equivalent. This special case is referred to as case constant biomarker (CB) in much
of the literature (Gilbert and Hudgens, 2008); i.e., Si(0) = c for subjects i. This may occur outside the
vaccine setting when one considers the AUC of a treament drug as a surrogate; those recieving placebo
will have no drug and therefore all placebo AUC will be 0 or undefined. Under assumptions given
below, and in the case CB setting, the marginal risk estimand is indentifiable in the treatment arm; it is
not indentifiable in the control arm without further assumptions or trial agumentation (Wolfson and
Gilbert, 2010).

There are specific trial augmentations that allow for the measurement or imputation of the missing
counterfactual Ss, in the control and treament arms. As well, Under one of these augmentations case
CB can sometimes be induced by considering a function of the a candidate surrogate for evaluation.
Greater detail on this point given below.

Specification of the distributions of Y(z)|S(1) determines the likelihood, we will denote this
as f (y|β, s1, z). If S(1) were fully observed, simple maximum likelihood estimation could be used.
The key challenge in estimating these risk estimands is solving the problem of conditioning on
counterfactual values that are not observable for at least a subset of subjects in a randomized trial. This
involves integrating out missing values based on some model, and under some set of assumptions
and/or trial augmentations.

Prinicipal surrogate criteria

Frangakis and Rubin (2002) gave a single criterion for a biomarker S to be a PS: causal effects of the
treatment on the clinical outcome only exist when causal effects of the treatment on the intermediate
variable exist. In general this can only be evaluated using the joint risk estimands, which consider
not only the counterfactual values of the biomarker under treatment, but also under control S(0).
However, in the special case where all S(0) values are constant, say at level C, such as an immune
response to HIV in a HIV negative population pre-vaccination this criteria, often referred to as average
causal necessity (ACN), can by written in terms of the marginal risk estimands as:

risk1(C) = risk0(C).

More recently, other works Gilbert and Hudgens (2008), Wolfson and Gilbert (2010), Huang and
Gilbert (2011), Huang et al. (2013), Gabriel and Gilbert (2014), and Gabriel and Follmann (2016) have
suggested that this criterion is both too restrictive and in some cases can be vacuously true. Instead
most current works suggest that the wide effect modification (WEM) criterion is of primary importance,
ACN being of secondary importance. WEM is given formally in terms of the risk estimands and a
known contrast function h satisfying h(x, y) = 0 if and only if x = y by:

|h(risk1(s1), risk0(s1))− h(risk1(s1
∗), risk0(s1

∗))| > δ,

for at least some s1 6= s∗1 and δ > 0, with the larger the δ the better the surrogate. Examples of contrast
functions are the treatment efficacy, h(x, y) = 1− x/y, and the risk difference h(x, y) = x − y. To
evaluate WEM and ACN we need to identify the risk estimands, which condition on data that is
missing for at least half of the subjects in a standard randomized trial.

Augmentation and assumptions

We first make three standard assumptions used in much of the literature for absorbing events outcomes:

• Stable Unit Treatment Value Assumption (SUTVA): Observations on the independent units in
the trial should be unaffected by the treatment assignment of other units.
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• Ignorable Treatment Assignment: The observed treatment assignment does not change the
counterfactual clinical outcome.

• Equal individual risk up to the time of candidate surrogate measurement τ.

In time-to-event settings one more assumption is needed:

• Non-informative censoring.

It should be noted that the equal individual risk assumption requires that time-to-event analysis start
at time τ, rather than at randomization.

Wolfson and Gilbert (2010) outlines how these assumptions are needed for identification of the
risk estimands. Now to deal with the missing S(1) values among those with Z = 0, we next focus
on three trial augmentations: Baseline immunogenicity predictor (BIP), closeout placebo vaccination
(CPV), a concept that was extend to the setting of general treatment trials under the name of closeout
control treatment (CCT) in Gabriel and Follmann (2016), and baseline surrogate measurement (BSM).
For further details on these augmentations, we refer you to Follmann (2006), Gilbert and Hudgens
(2008), Gabriel and Gilbert (2014), and for further augmenations not yet implemented to Gabriel and
Follmann (2016).

BIP

Briefly, a BIP W is any baseline measurement or set of measurements that is highly correlated with S.
It is particularly useful if W is unlikely to be associated with the clinical outcome after conditioning on
S, i.e. Y ⊥W|S(1); some of the methods leverage this assumption. The BIP W is used to integrate out
the missing S(1) among those with Z = 0 based on a model for S(1)|W that is estimated among those
with Z = 1. We describe how this model is used in the next section.

The assumptions needed for a BIP to be useful depend on the risk model used. If the BIP is
included in the risk model, only the assumption of no interaction with treatment and the candidate
surrogate are needed. However, if the BIP is not included in the risk model, the assumption that that
clinical outcome is independent of the BIP given the candidate surrogate is needed. Although not a
requirement for identification of the risk estimands, it has been found in most simulations studies that
a correlation between the BIP and S(1) of greater than 0.7 is needed for unbiased estimation in finite
samples.

CPV or CCT

Under a CPV or CCT augmented design, control recipients that do not have events, or all willing
control subjects for a non-event driven clinical outcome, are given the experimental treatment at
the end of the follow-up period. Then, their intermediate response is measured at some time after
that treatment. This measurement is then used as a direct imputation for the missing S(1). The
CPV augmentation was developed in the setting of vaccine trials, where the surrogate is an immune
response and the outcome is infection. One set of conservative assumptions to use CPV as a direct
imputation for S(1) in a vaccine trial are given in Wolfson and Gilbert (2010) are:

• Individual time constancy of the true intermediate response under active treatment, S(1) =
SCPV almost surely, for placebo recipients that are crossed over at the end of the trial, where
SCPV is the measurement of the candidate surrogate after crossover treatment of the placebo
subjects.

• No events (infections) during the close-out period.

In the general treatment trial setting, the CCT augmentation can be used under the same Individual
time constancy assumption, and the assumption that drop-out or unwillingness to receive close-out
treatment is completely at random.

BSM

Gabriel and Gilbert (2014) suggested the baseline augmentation BSM, which is a pre-treatment
measurement of the candidate PS, denoted SB. The BSM may be a good predictor of S(1) without
any further assumptions. It can be used in the same way as a BIP. Alternatively you can transform
S(1)− SB and use this as the candidate surrogate, further increasing the association with the BSM/BIP.
Under the BSM assumption outlined in Gabriel and Gilbert (2014);

• Time constancy of the true intermediate response under control,
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then S(0) = SBSM almost surely. You do not need this assumption to use a BSM, but if it holds then it
induces the CB case, thus the joint and marginal risk estimands are equivalent.

Risk estimation

Estimated maximum likelihood

Let f (y|β, s1, z) denote the density of Y|S(1), Z with parameters β. Further let Ri denote the indicator
for missingness in Si(1). We proceed to estimate β by maximizing

n

∏
i=1
{ f (Yi|β, Si(1), Zi)}R

i

{∫
f (Yi|β, s, Zi) dF̂S(1)|W(s|Wi)

}1−Ri

with respect to β.

This procedure is called estimated maximum likelihood (EML) and was developed in Pepe and
Fleming (1991). The key idea is that we are averaging the likelihood contributions for subjects missing
S(1) with respect to the estimated distribution of S(1)|W, denoted by F̂S(1)|W(s|Wi). The model for
this distribution is referred to as the integration model. Recall that a BIP W that is strongly associated
with S(1) is needed for adequate performance.

Closed-form inference is not available for EML estimates, thus we recommend use of the bootstrap
for estimation of standard errors. It was suggested as an approach to principal surrogate evaluation
by Gilbert and Hudgens (2008) and Huang and Gilbert (2011).

Pseudoscore

Huang et al. (2013) suggest a different estimation procedure that does have a closed form variance
estimator. Instead of numerically optimizing the estimated likelihood, the pseudoscore approach
iteratively finds the solution to weighted versions of the score equations. Pseudoscore estimates were
also suggested in Wolfson (2009) and implemented for several special cases in Huang et al. (2013).
We have implemented here only one of the special cases: categorical BIP and binary Y (S may be
continuous or categorical). In addition to having closed form variance estimators, it has been argued
that the pseudo-score estimators are more efficient than the EML estimators. The closed form variance
estimates are not yet implemented.

Package features

Typically, users would have to code up the likelihood, integration model, and perform the optimization
themselves. This is beyond the reach of many researchers who desire to use these methods. The goal
of pseval is to correctly implement these methods with a flexible and user-friendly interface, enabling
researchers to implement and interpret a wide variety of models.

The pseval package allows users to specify the type of augmented design that is used in their
study, specify the form of the risk model along with the distribution of Y|S(1), and specify different
integration models to estimate the distribution of S(1)|W. Then the likelihood can be maximized and
bootstraps run. Post-estimation summaries are available to display and analyze the treatment efficacy
as a function of S(1). All of this is implemented with a flexible and familiar interface.

Package information

Usage

Here we will walk through some basic analyses from the point of view of a new R user. Along the
way we will highlight the main features of pseval. We support binary, continuous, count, and time-to-
event outcomes, thus we will also need to load the survival package (Therneau, 2015; Therneau and
Grambsch, 2000).

Example dataset

First let’s create an example dataset. The pseval package provides the function generate_example_data
which takes a single argument: the sample size.
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set.seed(1492)
fakedata <- generate_example_data(n = 800)
head(fakedata)

## Z BIP CPV BSM S.obs time.obs
## 1 0 0.3353179 1.4851399 0.45961614 0.35268095 0.3301972
## 2 0 1.4536863 2.6379400 1.39591042 1.46688905 0.1195136
## 3 0 -0.7243934 NA -0.62723499 -0.73190763 0.2631222
## 4 0 -0.1183592 0.9421504 0.07738308 -0.01833409 0.1373458
## 5 0 -0.2352566 NA -0.14971448 -0.18470242 0.8543703
## 6 0 -0.7782851 0.1159434 -0.65721609 -0.66313714 0.2200481
## event.obs Y.obs S.obs.cat BIP.cat
## 1 0 0 (-0.198,0.503] (0.0574,0.766]
## 2 1 0 (1.36, Inf] (0.766, Inf]
## 3 1 1 (-Inf,-0.198] (-Inf,-0.678]
## 4 1 0 (-0.198,0.503] (-0.678,0.0574]
## 5 1 1 (-0.198,0.503] (-0.678,0.0574]
## 6 1 0 (-Inf,-0.198] (-Inf,-0.678]

The example data includes both a time-to-event outcome, a binary outcome, a surrogate, a BIP,
CPV, and BSM, and a categorical version of the surrogate. The true model for the time is exponential,
with parameters (intercept) = -1, S(1) = 0.0, Z = 0.0, S(1):Z = -0.75. The true model for binary is logistic,
with the same parameter values.

In the above table S.obs.cat and BIP.cat are formed as S.obs.cat <- factor(S.obs,levels=c(-Inf,
quantile(c(S.0, S.1), c(.25, .5, .75), na.rm = TRUE), Inf)) and similarly for BIP.cat. Alter-
natively a user could input arbitrary numeric values to represent different discrete subgroups (e.g., 0s
and 1s to denote 2 subgroups).

The "psdesign" object

We begin by creating a "psdesign" object with the synonymous function. This is the object that
combines the raw dataset with information about the study design and the structure of the data.
Subsequent analysis will operate on this psdesign object. It is designed to be analogous to the
svydesign function in the survey package (Lumley, 2014, 2004). The first argument is the data frame
where the data are stored. All subsequent arguments describe the mappings from the variable names
in the data frame to important variables in the PS analysis, using the same notation as above. Other
covariates or variables can be mapped to arbitrary variable names using the same syntax. An optional
weights argument describes the sampling weights, if present. Our first analysis will use the binary
version of the outcome, with continuous S.1 and the BIP labeled BIP. The object has a print method,
so we can inspect the result.

binary.ps <- psdesign(data = fakedata, Z = Z, Y = Y.obs, S = S.obs, BIP = BIP)
binary.ps

## Augmented data frame: 800 obs. by 6 variables.
## Z Y S.1 S.0 cdfweights BIP
## 1 0 0 NA 0.3527 1 0.335
## 2 0 0 NA 1.4669 1 1.454
## 3 0 1 NA -0.7319 1 -0.724
## 4 0 0 NA -0.0183 1 -0.118
## 5 0 1 NA -0.1847 1 -0.235
## 6 0 0 NA -0.6631 1 -0.778
##
## Empirical TE: 0.526
##
## Mapped variables:
## Z -> Z
## Y -> Y.obs
## S -> S.obs
## BIP -> BIP
##
## Integration models:
## None present, see ?add_integration for information on integration models.
##
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## Risk models:
## None present, see ?add_riskmodel for information on risk models.
## No estimates present, see ?ps_estimate.
## No bootstraps present, see ?ps_bootstrap.

The printout displays a brief description of the data, including the empirical treatment efficacy
estimate, the variables used in the analysis and their corresponding variables in the original dataset.
Finally the printout invites the user to see the help page for add_integration, in order to add an
integration model to the psdesign object, the next step in the analysis.

Missing values in the S variable are allowed. Note that any cases where S(1) is missing will be
integrated over in the likelihood or score equations. Thus any cases that experienced an event prior
to the time τ when the surrogate was measured should be excluded from the dataset. The equal
individual risk assumption allows us to make causal inferences even after excluding such cases.

psdesign easily accommodates case-control or case-cohort sampling. In this case, the surrogate
S is only measured on a subset of the data, inducing missingness in S by design. Let’s modify the
fake dataset to see how it works. We’re going to sample all of the cases, and 20% of the controls for
measurement of S.

fakedata.cc <- fakedata
missdex <- sample((1:nrow(fakedata.cc))[fakedata.cc$Y.obs == 0],

size = floor(sum(fakedata.cc$Y.obs == 0) * .8))
fakedata.cc[missdex, ]$S.obs <- NA
fakedata.cc$weights <- ifelse(fakedata.cc$Y.obs == 1, 1, .2)

Now we can create the "psdesign" object, using the entire dataset (including those missing S.obs)
and passing the weights to the weights field.

binary.cc <- psdesign(data = fakedata.cc, Z = Z, Y = Y.obs, S = S.obs,
BIP = BIP, weights = weights)

The other augmentation types can be defined by mapping variables to the names BIP, CPV, and/or
BSM. The augmentations are handled as described in the previous section: CPV is used as a direct
imputation for S(1), and BSM is used as a direct imputation for S(0). BIPs and BSMs are made
available in the augmented dataset for use in the integration models which we describe in the next
subsection.

For survival outcomes, a key assumption is that the potential surrogate is measured at a fixed time
τ after entry into the study. Any subjects who have a clinical outcome prior to τ will be removed from
the analysis, with a warning. If tau is not specified in the psdesign object, then it is assumed to be 0.
Survival outcomes are specified by mapping Y to a Surv object, which requires the survival package:

surv.ps <- psdesign(data = fakedata, Z = Z, Y = Surv(time.obs, event.obs), S = S.obs,
BIP = BIP, CPV = CPV, BSM = BSM)

## Warning in psdesign(data = fakedata, Z = Z, Y = Surv(time.obs,
## event.obs), : tau missing in psdesign: assuming that the
## surrogate S was measured at time 0.

Integration models

The EML procedure requires an estimate of FS(1)|W , and we refer to this as the integration model.
Details are available in the help page for add_integration. Several integration models are imple-
mented, including a parametric model that uses a formula interface to define a regression model, a
semiparametric model that specifies a location and a scale model is robust to the specification of the
distribution, and a non-parametric model that uses empirical conditional probability estimates for
discrete W and S(1).

For this first example, let’s use the parametric integration model. We specify the mean model for
S(1)|W as a formula. The predictor is generally a function of the BIP and the BSM, if available. We
can add the integration model directly to the psdesign object and inspect the results. Note that in the
formula, we refer to the variable names in the augmented dataset.

binary.ps <- binary.ps + integrate_parametric(S.1 ~ BIP)
binary.ps

## Augmented data frame: 800 obs. by 6 variables.
## Z Y S.1 S.0 cdfweights BIP
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## 1 0 0 NA 0.3527 1 0.335
## 2 0 0 NA 1.4669 1 1.454
## 3 0 1 NA -0.7319 1 -0.724
## 4 0 0 NA -0.0183 1 -0.118
## 5 0 1 NA -0.1847 1 -0.235
## 6 0 0 NA -0.6631 1 -0.778
##
## Empirical TE: 0.526
##
## Mapped variables:
## Z -> Z
## Y -> Y.obs
## S -> S.obs
## BIP -> BIP
##
## Integration models:
## integration model for S.1 :
## integrate_parametric(formula = S.1 ~ BIP )
##
## Risk models:
## None present, see ?add_riskmodel for information on risk models.
## No estimates present, see ?ps_estimate.
## No bootstraps present, see ?ps_bootstrap.

We can add multiple integration models to a psdesign object, say we want a model for S(0)|W:

binary.ps + integrate_parametric(S.0 ~ BIP)

## Augmented data frame: 800 obs. by 6 variables.
## Z Y S.1 S.0 cdfweights BIP
## 1 0 0 NA 0.3527 1 0.335
## 2 0 0 NA 1.4669 1 1.454
## 3 0 1 NA -0.7319 1 -0.724
## 4 0 0 NA -0.0183 1 -0.118
## 5 0 1 NA -0.1847 1 -0.235
## 6 0 0 NA -0.6631 1 -0.778
##
## Empirical TE: 0.526
##
## Mapped variables:
## Z -> Z
## Y -> Y.obs
## S -> S.obs
## BIP -> BIP
##
## Integration models:
## integration model for S.1 :
## integrate_parametric(formula = S.1 ~ BIP )
## integration model for S.0 :
## integrate_parametric(formula = S.0 ~ BIP )
##
## Risk models:
## None present, see ?add_riskmodel for information on risk models.
## No estimates present, see ?ps_estimate.
## No bootstraps present, see ?ps_bootstrap.

In a future version of the package, we will allow for estimation of the joint risk estimands that
depend on both S(0) and S(1). We can also use splines, other transformations, and other variables in
the formula:

library(splines)
binary.ps + integrate_parametric(S.1 ~ BIP^2)
binary.ps + integrate_parametric(S.1 ~ bs(BIP, df = 3))
binary.ps + integrate_parametric(S.1 ~ BIP + BSM + BSM^2)
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To include additional baseline covariates in the model for S(1), such as age or gender, these
variables that are present in the data frame must be mapped in the psdesign function call so that they
are visible in the subsequent functions:

binary.ps <- psdesign(data = fakedata, Z = Z, Y = Y.obs, S = S.obs, BIP = BIP,
BSM = BSM, age = age)

binary.ps + integrate_parametric(S.1 ~ BIP + age)

These are shown as examples, we will proceed with the simple linear model for integration. The
other integration models are called integrate_bivnorm, integrate_nonparametric, and
integrate_semiparametric. See their help files for details on the models and their specification.

The next step is to define the risk model.

Risk models and likelihoods

The risk model is the specification of the distribution for the outcome Y given S(1) and Z. We
accommodate a variety of flexible specifications for this model, for continous, binary, time-to-event,
and count outcomes. We have implemented exponential and weibull survival models, and a flexible
specification for binary models, allowing for standard or custom link functions. See the help file for
add_riskmodel for more details.

Let’s add a simple binary risk model using the logit link. The argument D specifies the number of
samples to use for the simulated annealing, also known as empirical integration, in the EML procedure.
In general, D should be set to something reasonably large, like 2 or 3 times the sample size.

binary.ps <- binary.ps + risk_binary(model = Y ~ S.1 * Z, D = 50, risk = risk.logit)
binary.ps

## Augmented data frame: 800 obs. by 6 variables.
## Z Y S.1 S.0 cdfweights BIP
## 1 0 0 NA 0.3527 1 0.335
## 2 0 0 NA 1.4669 1 1.454
## 3 0 1 NA -0.7319 1 -0.724
## 4 0 0 NA -0.0183 1 -0.118
## 5 0 1 NA -0.1847 1 -0.235
## 6 0 0 NA -0.6631 1 -0.778
##
## Empirical TE: 0.526
##
## Mapped variables:
## Z -> Z
## Y -> Y.obs
## S -> S.obs
## BIP -> BIP
##
## Integration models:
## integration model for S.1 :
## integrate_parametric(formula = S.1 ~ BIP )
##
## Risk models:
## risk_binary(model = Y ~ S.1 * Z, D = 50, risk = risk.logit )
##
## No estimates present, see ?ps_estimate.
## No bootstraps present, see ?ps_bootstrap.

Estimation and bootstrap

We estimate the parameters and bootstrap using the same type of syntax. We can add a "ps_estimate"
object, which takes optional arguments start for starting values, and other arguments that are passed
to the optim function in base R. The method argument determines the optimization method, we have
found that “BFGS” works well in these types of problems and it is the default. Use "pseudo-score" as
the method argument for pseudo-score estimation for binary risk models with categorical BIPs.

The ps_bootstrap function takes the additional arguments n.boots for the number of bootstrap
replicates, and progress.bar which is a logical that displays a progress bar in the R console if true.
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It is helpful to pass the estimates as starting values in the bootstrap resampling. With estimates and
bootstrap replicates present, printing the psdesign object displays additional information.

binary.est <- binary.ps + ps_estimate(method = "BFGS")
binary.boot <- binary.est + ps_bootstrap(n.boots = 500, progress.bar = FALSE,

start = binary.est$estimates$par, method = "BFGS")
binary.boot

## Augmented data frame: 800 obs. by 6 variables.
## Z Y S.1 S.0 cdfweights BIP
## 1 0 0 NA 0.3527 1 0.335
## 2 0 0 NA 1.4669 1 1.454
## 3 0 1 NA -0.7319 1 -0.724
## 4 0 0 NA -0.0183 1 -0.118
## 5 0 1 NA -0.1847 1 -0.235
## 6 0 0 NA -0.6631 1 -0.778
##
## Empirical TE: 0.526
##
## Mapped variables:
## Z -> Z
## Y -> Y.obs
## S -> S.obs
## BIP -> BIP
##
## Integration models:
## integration model for S.1 :
## integrate_parametric(formula = S.1 ~ BIP )
##
## Risk models:
## risk_binary(model = Y ~ S.1 * Z, D = 50, risk = risk.logit )
##
## Estimated parameters:
## (Intercept) S.1 Z S.1:Z
## -0.920 -0.028 -0.220 -1.133
## Convergence: TRUE
##
## Bootstrap replicates:
## Estimate boot.se lower.CL.2.5. upper.CL.97.5.
## (Intercept) -0.920 0.182 -1.286 -0.580
## S.1 -0.028 0.128 -0.276 0.220
## Z -0.220 0.250 -0.697 0.277
## S.1:Z -1.133 0.214 -1.581 -0.780
## p.value
## (Intercept) 4.02e-07
## S.1 8.27e-01
## Z 3.80e-01
## S.1:Z 1.29e-07
##
## Out of 500 bootstraps, 500 converged ( 100 %)
##
## Test for wide effect modification on 1 degree of freedom. 2-sided p value < .0001

Do it all at once

The next code chunk shows how the model can be defined and estimated all at once.

binary.est <- psdesign(data = fakedata, Z = Z, Y = Y.obs, S = S.obs, BIP = BIP) +
integrate_parametric(S.1 ~ BIP) +
risk_binary(model = Y ~ S.1 * Z, D = 50, risk = risk.logit) +
ps_estimate(method = "BFGS")
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Plots and summaries

We provide summary and plotting methods for the psdesign object. If bootstrap replicates are present,
the summary method does a test for wide effect modification. Under the parametric risk models
implemented in this package, the test for wide effect modification is equivalent to a test of the null
hypothesis that the S(1) : Z coefficient is equal to 0. This is implemented using a Wald test using the
bootstrap estimate of the variance.

Another way to assess wide effect modification is to compute the standardized total gain (STG)
(Huang and Gilbert, 2011) and (Gabriel et al., 2015). This is implemented in the calc_STG function.
The standardized total gain can be interpreted as the area sandwiched between the risk difference
curve and the horizontal line at the marginal risk difference. It is a measure of the spread of the
distribution of the risk difference, and is a less parametric way to test for wide effect modification.
The calc_STG function computes the STG at the estimated parameters and at the bootstrap samples, if
present. The function prints the results and invisibly returns a list containing the observed STG, and
the bootstrapped STGS.

calc_STG(binary.boot, progress.bar = FALSE)

## $obsSTG
## [1] 0.3397774
##
## $bootstraps
## STG.boot.se STG.lower.CL.2.5 STG.upper.CL.97.5
## V1 0.1243311 0.1573031 0.6382418

The summary method also computes the marginal treatment efficacy marginalized over S(1) and
compares it to the average treatment efficacy conditional on S(1). This is an assessment of model fit. A
warning will be given if the two estimates are dramatically different. These estimates are presented in
the summary along with the empirical TE and the model-based marginal treatment efficacy that does
not condition on S(1).

smary <- summary(binary.boot)

## Augmented data frame: 800 obs. by 6 variables.
## Z Y S.1 S.0 cdfweights BIP
## 1 0 0 NA 0.3527 1 0.335
## 2 0 0 NA 1.4669 1 1.454
## 3 0 1 NA -0.7319 1 -0.724
## 4 0 0 NA -0.0183 1 -0.118
## 5 0 1 NA -0.1847 1 -0.235
## 6 0 0 NA -0.6631 1 -0.778
##
## Empirical TE: 0.526
##
## Mapped variables:
## Z -> Z
## Y -> Y.obs
## S -> S.obs
## BIP -> BIP
##
## Integration models:
## integration model for S.1 :
## integrate_parametric(formula = S.1 ~ BIP )
##
## Risk models:
## risk_binary(model = Y ~ S.1 * Z, D = 50, risk = risk.logit )
##
## Estimated parameters:
## (Intercept) S.1 Z S.1:Z
## -0.920 -0.028 -0.220 -1.133
## Convergence: TRUE
##
## Bootstrap replicates:
## Estimate boot.se lower.CL.2.5. upper.CL.97.5.
## (Intercept) -0.920 0.182 -1.286 -0.580
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## S.1 -0.028 0.128 -0.276 0.220
## Z -0.220 0.250 -0.697 0.277
## S.1:Z -1.133 0.214 -1.581 -0.780
## p.value
## (Intercept) 4.02e-07
## S.1 8.27e-01
## Z 3.80e-01
## S.1:Z 1.29e-07
##
## Out of 500 bootstraps, 500 converged ( 100 %)
##
## Test for wide effect modification on 1 degree of freedom. 2-sided p value < .0001
##
## Treatment Efficacy:
## empirical marginal model
## 0.526 0.526 0.539
## Model-based average TE is 2.3 % different from the empirical and 2.3 % different
## from the marginal.

The calc_risk function computes the risk in each treatment arm, and contrasts of the risks. By
default it computes the treatment efficacy, but there are other contrast functions available. The contrast
function is a function that takes 2 inputs, the risk0 and risk1, and returns some one dimensional
function of those two inputs. It must be vectorized. Some built-in functions are “TE” for treatment
efficacy = 1− risk1(s)/risk0(s), “RR” for relative risk = risk1(s)/risk0(s), “logRR” for log of the
relative risk, and “RD” for the risk difference = risk1(s)− risk0(s). You can pass the name of the
function, or the function itself to calc_risk. See ?calc_risk for more information about contrast
functions.

Other arguments of the calc_risk function include t, the time at which to calculate the risk for
time-to-event outcomes, n.samps which is the number of samples over the range of S.1 at which
the risk will be calculated, and CI.type, which can be set to "pointwise" for pointwise confidence
intervals or "band" for a simultaneous confidence band. sig.level is the significance level for the
bootstrap confidence intervals. If the outcome is time-to-event and t is not present, then it will use the
restricted mean survival time.

head(calc_risk(binary.boot, contrast = "TE", n.samps = 20), 3)

## S.1 Y R0 R1 Y.boot.se
## V1 -2.2756987 -1.7437221 0.2980453 0.8177536 1.1622104
## V2 -1.4262708 -1.1360482 0.2930970 0.6260692 0.6957994
## V3 -0.5973759 -0.3532827 0.2883149 0.3901715 0.3328793
## Y.upper.CL.0.95 Y.lower.CL.0.95 R0.boot.se R0.upper.CL.0.95
## V1 -0.30455106 -3.780389 0.08994238 0.4766278
## V2 -0.05541741 -2.556452 0.06901664 0.4331237
## V3 0.29675970 -1.275280 0.04941685 0.4007098
## R0.lower.CL.0.95 R1.boot.se R1.upper.CL.0.95 R1.lower.CL.0.95
## V1 0.1188411 0.06911306 0.9368827 0.6720409
## V2 0.1468385 0.07592515 0.7762517 0.4768403
## V3 0.1734875 0.05079824 0.5248493 0.2834909

head(calc_risk(binary.boot, contrast = function(R0, R1) 1 - R1/R0, n.samps = 20), 3)

## S.1 Y R0 R1 Y.boot.se
## V1 -0.97417991 -0.71327775 0.2904830 0.4976780 0.4840781
## V2 -0.11875337 0.05966359 0.2855748 0.2685364 0.1882398
## V3 -0.09236484 0.08009338 0.2854242 0.2625636 0.1820450
## Y.upper.CL.0.95 Y.lower.CL.0.95 R0.boot.se R0.upper.CL.0.95
## V1 0.1395560 -1.6775172 0.05815888 0.4084405
## V2 0.4746753 -0.4357974 0.03903555 0.3909614
## V3 0.4835707 -0.4036444 0.03849822 0.3904263
## R0.lower.CL.0.95 R1.boot.se R1.upper.CL.0.95 R1.lower.CL.0.95
## V1 0.1763127 0.06531273 0.6258814 0.3695242
## V2 0.2043944 0.03260224 0.3454742 0.1923057
## V3 0.2053113 0.03176977 0.3379838 0.1879937

It is easy to plot the risk estimates. By default, the plot method displays the TE contrast, but this
can be changed using the same syntax as in calc_risk.
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plot(binary.boot, contrast = "TE", lwd = 2)
abline(h = smary$TE.estimates[2], lty = 3)

expit <- function(x) exp(x)/(1 + exp(x))
trueTE <- function(s){

r0 <- expit(-1 - 0 * s)
r1 <- expit(-1 - 1.25 * s)
1 - r1/r0

}

rug(binary.boot$augdata$S.1)
curve(trueTE(x), add = TRUE, col = "red")
legend("bottomright", legend = c("estimated TE", "95\\% CB",

"marginal TE", "true TE"),
col = c("black", "black", "black", "red"),
lty = c(1, 2, 3, 1), lwd = c(2, 2, 1, 1))
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Figure 1: Plot showing the estimates using the example data, along with confidence bands (CB), and
the true treatment efficacy (TE) curve.

By default, plots of psdesign objects with bootstrap samples will display simultaneous confidence
bands for the curve. These bands Lα satisfy

P

{
sup
s∈B
|T̂E(s)− TE(s)| ≤ Lα

}
≤ 1− α,

for confidence level α. The alternative is to use pointwise confidence intervals, with the option
CI.type = "pointwise". These intervals satisfy

P
{

L̂α ≤ TE(s) ≤ Ûα
}
≤ 1− α, for all s.
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Different summary measures are available for plotting. The options are “TE” for treatment efficacy
= 1− risk1(s)/risk0(s), “RR” for relative risk = risk1(s)/risk0(s), “logRR” for log of the relative risk,
“risk” for the risk in each treatment arm, and “RD” for the risk difference = risk1(s)− risk0(s). We can
also transform using the log option of plot.

plot(binary.boot, contrast = "logRR", lwd = 2,
col = c("black", "grey75", "grey75"))

plot(binary.boot, contrast = "RR", log = "y", lwd = 2,
col = c("black", "grey75", "grey75"))

plot(binary.boot, contrast = "RD", lwd = 2,
col = c("black", "grey75", "grey75"))

plot(binary.boot, contrast = "risk", lwd = 2, lty = c(1, 0, 0, 2, 0, 0))
legend("topright", legend = c("R0", "R1"), lty = c(1, 2), lwd = 2)
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Figure 2: Plot illustrating ways that different risk contrast functions can be plotted.

The calc_risk function is the workhorse that creates the plots. You can call this function directly
to obtain estimates, standard errors, and confidence intervals for the estimated risk in each treatment
arm and transformations of the risk like TE. The parameter n.samps determines the number of points
at which to calculate the risk. The points are evenly spaced over the range of S.1. Use this function to
compute other summaries, make plots using ggplot2 (Wickham, 2009) or lattice (Sarkar, 2008) and
more.

te.est <- calc_risk(binary.boot, CI.type = "pointwise", n.samps = 200)
head(te.est, 3)

## S.1 Y R0 R1 Y.boot.se
## V1 -2.328509 -1.770899 0.2983546 0.8267105 1.1943792
## V2 -2.275699 -1.743722 0.2980453 0.8177536 1.1622104
## V3 -1.694556 -1.360959 0.2946547 0.6956675 0.8334835
## Y.lower.CL.2.5 Y.upper.CL.97.5 R0.boot.se R0.lower.CL.2.5
## V1 -4.768551 -0.6276106 0.09125321 0.1460172
## V2 -4.671015 -0.6184582 0.08994238 0.1475266
## V3 -3.456249 -0.4524787 0.07557692 0.1648504
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## R0.upper.CL.97.5 R1.boot.se R1.lower.CL.2.5 R1.upper.CL.97.5
## V1 0.4890998 0.06786962 0.6663453 0.9237321
## V2 0.4856823 0.06911306 0.6556765 0.9183559
## V3 0.4513863 0.07721039 0.5287710 0.8307616

Summary and conclusion

We have implemented the core methods for principal surrogate evaluation in our pseval package. Our
aim was to create a flexible and consistent user interface that allows for the estimation of a wide variety
of statistical models in this framework. There has been some other work in this area. The Surrogate
package implements the core methods for the evaluation of trial-level surrogates using a meta-analytic
framework. It also has a wide variety of models, each implemented in a different function each with a
long list of parameters (der Elst et al., 2016).

Our package uses the + sign to combine function calls into a single object. This is called “over-
loading the + operator” and is most famously known from the ggplot2 package. Conceptually, this
was appealing to us because it allows users to build up analysis objects starting from the design, and
ending with the estimation. The distinct analysis concepts of the design, risk model specification,
integration model, and estimation/bootstrap approaches are separated into distinct function calls,
each with a limited number of parameters. This makes it easier for users to keep track of their models,
makes it easier to understand the methods involved, and allows for the specification of a wide variety
of models by mixing and matching the function calls. This framework will also make it easier to
maintain the codebase, and to extend it in the future as the methods evolve. Our package is useful for
novice and expert R users alike, and implements an important set of statistical methods for the first
time.

Appendix

Additional examples

Plot both types of CI

plot(binary.boot, contrast = "TE", lwd = 2, CI.type = "band")
sbs <- calc_risk(binary.boot, CI.type = "pointwise", n.samps = 200)
lines(Y.lower.CL.2.5 ~ S.1, data = sbs, lty = 3, lwd = 2)
lines(Y.upper.CL.97.5 ~ S.1, data = sbs, lty = 3, lwd = 2)
legend("bottomright", lwd = 2, lty = 1:3,

legend = c("estimate", "simultaneous CI", "pointwise CI"))

Plot with ggplot2

library(ggplot2)
TE.est <- calc_risk(binary.boot, n.samps = 200)
ggplot(TE.est,

aes(x = S.1, y = Y, ymin = Y.lower.CL.0.95, ymax = Y.upper.CL.0.95)) +
geom_line() + geom_ribbon(alpha = .2) + ylab(attr(TE.est, "Y.function"))

Case-control design

cc.fit <- binary.cc + integrate_parametric(S.1 ~ BIP) +
risk_binary(D = 10) + ps_estimate()

cc.fit

Survival outcome

surv.fit <- psdesign(fakedata, Z = Z, Y = Surv(time.obs, event.obs),
S = S.obs, BIP = BIP, CPV = CPV) +

integrate_semiparametric(formula.location = S.1 ~ BIP, formula.scale = S.1 ~ 1) +
risk_exponential(D = 10) + ps_estimate(method = "BFGS") + ps_bootstrap(n.boots = 20)

surv.fit
plot(surv.fit)
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Continuous outcome

fakedata$Y.cont <- log(fakedata$time.obs + 0.01)
cont.fit <- psdesign(fakedata, Z = Z, Y = Y.cont,

S = S.obs, BIP = BIP, CPV = CPV) +
integrate_semiparametric(formula.location = S.1 ~ BIP, formula.scale = S.1 ~ 1) +
risk_continuous(D = 10) + ps_estimate(method = "BFGS") + ps_bootstrap(n.boots = 20)

cont.fit
plot(cont.fit, contrast = "risk")

Categorical S

S.obs.cat and BIP.cat are factors:

with(fakedata, table(S.obs.cat, BIP.cat))

cat.fit <- psdesign(fakedata, Z = Z, Y = Y.obs,
S = S.obs.cat, BIP = BIP.cat) +

integrate_nonparametric(formula = S.1 ~ BIP) +
risk_binary(Y ~ S.1 * Z, D = 10, risk = risk.probit) + ps_estimate(method = "BFGS")

cat.fit
plot(cat.fit)

Pseudo-score

Categorical W allows for estimation of the model using the pseudo-score method for binary outcomes.
S may be continuous or categorical:

cat.fit.ps <- psdesign(fakedata, Z = Z, Y = Y.obs,
S = S.obs, BIP = BIP.cat) +

integrate_nonparametric(formula = S.1 ~ BIP) +
risk_binary(Y ~ S.1 * Z, D = 10, risk = risk.logit) +
ps_estimate(method = "pseudo-score") +
ps_bootstrap(n.boots = 20, method = "pseudo-score")

summary(cat.fit.ps)
plot(cat.fit.ps)

Bug reports

• Please file bugs and suggestions here as a github issue: https://github.com/sachsmc/pseval/
issues.
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Calculating Biological Module
Enrichment or Depletion and Visualizing
Data on Large-scale Molecular Maps with
ACSNMineR and RNaviCell Packages
by Paul Deveau, Emmanuel Barillot, Valentina Boeva, Andrei Zinovyev and Eric Bonnet

Abstract Biological pathways or modules represent sets of interactions or functional relationships
occurring at the molecular level in living cells. A large body of knowledge on pathways is organized in
public databases such as the KEGG, Reactome, or in more specialized repositories, the Atlas of Cancer
Signaling Network (ACSN) being an example. All these open biological databases facilitate analyses,
improving our understanding of cellular systems. We hereby describe ACSNMineR for calculation of
enrichment or depletion of lists of genes of interest in biological pathways. ACSNMineR integrates
ACSN molecular pathways gene sets, but can use any gene set encoded as a GMT file, for instance
sets of genes available in the Molecular Signatures Database (MSigDB). We also present RNaviCell,
that can be used in conjunction with ACSNMineR to visualize different data types on web-based,
interactive ACSN maps. We illustrate the functionalities of the two packages with biological data
taken from large-scale cancer datasets.

Introduction

Biological pathways and networks comprise sets of interactions or functional relationships, occurring
at the molecular level in living cells (Adriaens et al., 2008; Barillot et al., 2012). A large body of
knowledge on cellular biochemistry is organized in publicly available repositories such as the KEGG
database (Kanehisa et al., 2011), Reactome (Croft et al., 2014) and MINT (Zanzoni et al., 2002). All
these biological databases facilitate a large spectrum of analyses, improving our understanding of
cellular systems. For instance, it is a very common practice to cross the output of high-throughput
experiments, such as mRNA or protein expression levels, with curated biological pathways in order
to visualize the changes, analyze their impact on a network and formulate new hypotheses about
biological processes. Many biologists and computational biologists establish list of genes of interest
(e.g. a list of genes that are differentially expressed between two conditions, such as normal vs disease)
and then evaluate if known biological pathways have significant overlap with this list of genes.

We have recently released the Atlas of Cancer Signaling Network (ACSN), a web-based database
which describes signaling and regulatory molecular processes that occur in a healthy mammalian
cell but that are frequently deregulated during cancerogenesis (Kuperstein et al., 2015). The ACSN
atlas aims to be a comprehensive description of cancer-related mechanisms retrieved from the most
recent literature. The web interface for ACSN is using the NaviCell technology, a software framework
dedicated to web-based visualization and navigation for biological pathway maps (Kuperstein et al.,
2013). This environment is providing an easy navigation of maps through the use of the Google Maps
JavaScript library, a community interface with a web blog system, and a comprehensive module for
visualization and analysis of high-throughput data (Bonnet et al., 2015).

In this article, we describe two packages related to ACSN analysis and data visualization. The
package ACSNMineR is designed for the calculation of gene enrichment and depletion in ACSN
maps (or any user-defined gene set via the import function), while RNaviCell is dedicated to
data visualization on ACSN maps. Both packages are available on the Comprehensive R Archive
Network (https://cran.r-project.org/web/packages/ACSNMineR/ and https://cran.r-project.
org/web/packages/RNaviCell/), and on the GitHub repository (https://github.com/sysbio-curie/
ACSNMineR and https://github.com/sysbio-curie/RNaviCell). For the remainder of this article, we
describe the organization of each package and illustrate their capacities with several concrete examples
demonstrating their capabilities.

Packages organization

ACSNMineR

Currently, ACSN maps cover signaling pathways involved in DNA repair, cell cycle, cell survival,
cell death, epithelial-to-mesenchymal transition (EMT) and cell motility. Each of these large-scale
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molecular maps is decomposed in a number of functional modules. The maps themselves are merged
into a global ACSN map. Thus the information included in ACSN is organized in three hierarchical
levels: a global map, five individual maps, and several functional modules. Each ACSN map covers
hundreds of molecular players, biochemical reactions and causal relationships between the molecular
players and cellular phenotypes. ACSN represents a large-scale biochemical reaction network of 4,826
reactions involving 2,371 proteins (as of today), and is continuously updated and expanded. We have
included the three hierarchical levels in the ACSNMineR package, in order to be able to calculate
enrichments at all three levels. The calculations are made by counting the number of occurences
of gene symbols (HUGO gene names) from a given list of genes of interest in all ACSN maps and
modules. Table 1 is detailling the number of gene symbols contained in all the ACSN maps.

Table 1: ACSN maps included in the ACSNMineR package. Map: map name, Total: total number of
gene symbols (HUGO) used to construct the map, Nb mod.: number of modules, Min: mimimum
number of gene symbols in the modules, Max: maximum number of gene symbols in the modules,
Mean: average number of gene sybols per module. N.B.: one gene symbol may be present in several
modules of the map.

Map Total Nb mod. Min Max Mean

ACSN global 2239 67 2 629 79
Survival 1053 5 208 431 328
Apoptosis 667 7 19 382 136
EMT & Cell motility 634 9 18 629 137
DNA repair 345 21 3 171 45
Cell cycle 250 25 2 130 20

The statistical significance of the counts in the modules is assessed by using either the Fisher exact
test (Fisher, 1922, 1934) or the hypergeometric test, which are equivalent for this purpose (Rivals et al.,
2007).

The current ACSN maps are included in the ACSNMineR package, as a list of character matrices.

> length(ACSN_maps)
[1] 6
> names(ACSN_maps)
[1] "Apoptosis" "CellCycle" "DNA_repair" "EMT_motility" "Master"
[6] "Survival"

For each matrix, rows represent a module, with the name of the module in the first column,
followed by a description of the module (optional), and then followed by all the gene symbols of the
module. The maps will be updated according to every ACSN major release.

The main function of the ACSNMineR package is the enrichment function, which is calculating
over-representation or depletion of genes in the ACSN maps and modules. We have included a small
list of 12 Cell Cycle related genes in the package, named genes_test that can be used to test the main
enrichment function and to get familiar with its different options.

> genes_test
[1] "ATM" "ATR" "CHEK2" "CREBBP" "TFDP1" "E2F1" "EP300"
[8] "HDAC1" "KAT2B" "GTF2H1" "GTF2H2" "GTF2H2B"

The example shown below is the simplest command that can be done to test a gene list for over-
representation on the six included ACSN maps. With the list of 12 genes mentionned above and a
default p-value cutoff of 0.05, we have a set of 8 maps or modules that are significantly enriched. The
results are structured as a data frame with nine columns displaying the module name, the module
size, the number of genes from the list in the module, the names of the genes that are present in the
module, the size of the reference universe, the number of genes from the list that are present in the
universe, the raw p-value, the p-value corrected for multiple testing and the type of test performed.
The module field in the results data frame indicate the map name and the module name separated by
a column character. If a complete map is significantly enriched or depleted, then only the map name
is shown, without any module or column character. For instance, the third line of the results object
below concern the E2F1 module of the CellCycle map.

> library(ACSNMineR)
> results <- enrichment(genes_test)
> dim(results)
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[1] 8 9
> results[3,]

module module_size nb_genes_in_module
V161 CellCycle:E2F1 19 12

genes_in_module
V161 ATM ATR CHEK2 CREBBP TFDP1 E2F1 EP300 HDAC1 KAT2B GTF2H1 GTF2H2 GTF2H2B

universe_size nb_genes_in_universe p.value p.value.corrected test
V161 2237 12 3.735018e-21 2.353061e-19 greater

The enrichment function can take up to nine arguments: the gene list (as a character vector), the
list of maps that will be used to calculate enrichment or depletion, the type of statistical test (either
the Fisher exact test or the hypergeometric test), the module minimal size for which the calculations
will be done, the universe, the p-value threshold, the alternative hypothesis ("greater" for calculating
over-representation, "less" for depletion and "both" for both tests) and a list of genes that should be
removed from the universe (option "Remove_from_universe"). This option may be useful for instance
if we know beforehand that a number of genes are not expressed in the samples considered.

Only the gene list is mandatory to call the enrichment function, all the other arguments have
default values. The maps argument can either be a dataframe imported from a GMT file with the
format_from_gmt function or a list of dataframes generated by the same procedure. The GMT format
corresponds to the Broad Institute’s Gene Matrix Transposed file format, a convenient and easy way to
encode named sets of genes of interest in tab-delimited text files (it is not a graph or network format).
By default, the function enrichment uses the ACSN maps previously described. The correction for
multiple testing is set by default to use the method of Benjamini & Hochberg, but can be changed to
any of the usual correction methods (Bonferroni, Holm, Hochberg, Holm, or Benjamini & Yekutieli
(Reiner et al., 2003)), or even disabled . The minimal module size represents the smallest size value of
a module that will be used to compute enrichment or depletion. This is meant to remove results of
low significance for module of small size. The universe in which the computation is made by default
is defined by all the gene symbols contained in the maps. All the genes that were given as input and
that are not present on the maps will be discarded. To keep all genes, the user can change the universe
to HUGO, and in that case, the complete list of HUGO gene symbols will be used as the reference (>
39,000 genes). The threshold corresponds to the maximal value of the corrected p-value (unless the
user chose not to correct for multiple testing) that will be displayed in the result table.

It may be of interest to compare enrichment of pathways in different cohorts or experiments. For
example, enrichment of highly expressed pathways can reveal differences between two cancer types
or two cell lines. To facilitate such comparisons, ACSNMineR provides a multisample_enrichment
function. It relies on the enrichment function but takes a list of character vector genes. The name of
each element of the list will be assumed to be the name of the sample for further analysis. Most of the
arguments given to multisample_enrichment are the same as the ones passed to enrichment. How-
ever, the cohort_threshold is designed to filter out modules which would not pass the significance
threshold in all samples.

Finally, to facilitate visualization of results, ACSNMineR integrates a representation function
based on ggplot2 syntax (Wickham, 2009). It allows representation of results from enrichment or
multisample_enrichment with a limited number of parameters. Two types of display are available:
heat-map tiles or bars. For multiple samples using a barplot representation, the number of rows
used can be provided, otherwise all plots will be on the same row. For the heatmap, the color of the
non-significant modules, and boundaries of the gradient for significant values can also be tuned.

We previously computed the p-value of the genes_test list with default parameters. The number
of modules which have a p-value below 0.05 was 8, that can be compared to the 16 obtained without
correction with the simple command shown below (some of the results are displayed in table 2).

enrichment(genes_test,correction_multitest = FALSE)

We can now plot the first six rows of the results obtained for corrected and uncorrected fisher test
with heatmap format (Figure 1) or barplot (Figure 2) with the following commands:

# heatmap

represent_enrichment(enrichment = list(Corrected = results[1:6,],
Uncorrected = results_uncorrected[1:6,]),

plot = "heatmap", scale = "reverselog",
low = "steelblue" , high ="white", na.value = "grey")

# barplot
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Table 2: First rows of the results from enrichment analysis without correction. Module : name of the
module. Mod. size: size of the module. Genes in module: genes from input which are found in the
module. p-value: uncorrected p-value. Test : null hypothesis used, greater is synonym of enrichment.

Module Mod. size Genes in module p-value Test

CellCycle 242 ATM ATR CHEK2 5.4× 10−7 greater
CREBBP TFDP1 E2F1
EP300 HDAC1 KAT2B

GTF2H1 GTF2H2 GTF2H2B
CellCycle:APOPTOSIS_ENTRY 10 ATM ATR CHEK2 E2F1 3.5× 10−7 greater
CellCycle:CYCLINB 7 ATM 0.04 greater

represent_enrichment(enrichment = list(Corrected = results[1:6,],
Uncorrected = results_uncorrected[1:6,]),
plot = "bar", scale = "reverselog",
nrow = 1)

Figure 1: Representation of the enriched modules (first six rows for each setting), with either Bonferroni
correction or no correction. Grey tiles means that the data is not available for this module in this
sample. P-values of low significance are in white, whereas p-values of high significance are represented
in blue.
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RNaviCell

The NaviCell Web Service provides a server mode, which allows automating visualization tasks and
retrieving data from molecular maps via RESTful (standard http/https) calls. Bindings to different
programming languages are provided in order to facilitate the development of data visualization
workflows and third-party applications (Bonnet et al., 2015). RNaviCell is the R binding to the NaviCell
Web Service. It is implemented as a standard R package, using the R object-oriented framework known
as Reference Classes (Wickham, 2015). Most of the work done by the user using graphical point-and-
click operations on the NaviCell web interface are encoded as functions in the library encapsulating
http calls to the server with appropriate parameters and data. Calls to the NaviCell server are
performed using the library RCurl (Lang and the CRAN team, 2015), while data encoding/decoding
in JSON format is performed with the RJSONIO library (Lang, 2014).

Once the RNaviCell library is installed and loaded, the first step is to create a NaviCell object
and launch the browser session. This will automatically create a unique session ID with the NaviCell
server. Once the session is established, various functions can be called to send data to the web
session, set graphical options, visualize data on a map or get data from the map. There are 125
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Figure 2: Representation of the enriched modules (first six rows for each setting), with either Bonferroni
correction (left) or no correction (right). The modules are on the X axis and the p-values are on the Y
axis.

1e−15

1e−10

1e−05

1e+00

C
el

lC
yc

le

C
el

lC
yc

le
:A

P
O

P
TO

S
IS

_E
N

T
R

Y

C
el

lC
yc

le
:E

2F
1

D
N

A
_r

ep
ai

r

D
N

A
_r

ep
ai

r:
G

1_
S

_C
H

E
C

K
P

O
IN

T

D
N

A
_r

ep
ai

r:
G

2_
M

_C
H

E
C

K
P

O
IN

T

module

p.
va

lu
es

1e−17

1e−12

1e−07

1e−02

C
el

lC
yc

le

C
el

lC
yc

le
:A

P
O

P
TO

S
IS

_E
N

T
R

Y

C
el

lC
yc

le
:C

Y
C

LI
N

B

C
el

lC
yc

le
:E

2F
1

C
el

lC
yc

le
:E

2F
4

C
el

lC
yc

le
:E

2F
1_

TA
R

G
E

T
S

module

p.
va

lu
es

functions available in the current version of RNaviCell. All of them are described with their different
options in the RNaviCell documentation, and we provide a tutorial on the GitHub repository wiki
(https://github.com/sysbio-curie/RNaviCell/wiki/Tutorial).

In the simple example detailed below, we create a NaviCell session, then load an expression data
set from a local (tab-delimited) file. The data represent gene expression measured in a prostate cancer
cell line resistant to hormonal treatment (agressive), and is taken from the Cell Line Encyclopedia
project (Barretina et al., 2012). We visualize the data values on the Cell Cycle map (the default map),
using heat maps. With this visualization mode, gene expression values are represented as a color
gradient (green to red) in squares positioned next to the entities where the gene has been mapped
(Figure 3). Note that the map is displayed in a browser and is interactive, i.e. users can zoom in to
display more information and for example look in what reactions are involved the genes selected to be
displayed, and lots of other informations (see Bonnet et al. (2015) and Kuperstein et al. (2015) for more
details).

# a short RNaviCell script example

# load RNaviCell library

library(RNaviCell)

# create a NaviCell object and launch a server session
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Figure 3: Gene expression values from a prostate cancer cell line visualized on the cell cycle map
as heat map plots. The figure is a screenshot of the NaviCell map browser, with the map set at the
top (the less detailed) zoom level. The essential phases of the cell cycle are indicated on the map
(G1/S/G2/M). Note that on the web browser the map is interactive and the user can zoom in and out,
change the graphical parameters, import additional data and perform functional analysis.

# this will automatically open a browser on the client

navicell <- NaviCell()
navicell$launchBrowser()

# import a gene expression matrix and
# send the data to the NaviCell server
# NB: the data_matrix object is a regular R matrix

data_matrix <- navicell$readDatatable('DU145_data.txt')
navicell$importDatatable("mRNA expression data", "DU145", data_matrix)

# set data set and sample for heat map representation

navicell$heatmapEditorSelectSample('0','data')
navicell$heatmapEditorSelectDatatable('0','DU145')
navicell$heatmapEditorApply()

Case studies

Analysis of breast cancer expression data

In a study published in 2008, Schmidt and colleagues analyzed gene expression patterns of 200 breast
cancer patients not treated by systemic therapy after surgery using discovery approach to reveal
additional prognostic motifs (Schmidt et al., 2008). Estrogen receptor (ER) expression and proliferative
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activity of breast carcinomas are well-known and described prognostic markers. Patients with ER-
positive carcinomas have a better prognosis than those with ER-negative carcinomas, and rapidly
proliferating carcinomas have an adverse prognosis. Knowledge about the molecular mechanisms
involved in the processes of estrogen-dependent tumor growth and proliferative activity has led to the
successful development of therapeutic concepts, such as antiendocrine and cytotoxic chemotherapy.

The dataset corresponding to this study is available as a Bioconductor package. The code shown
below is creating a list of differentially expressed genes between ER positive and ER negative samples,
and calculates the enrichment in ACSN maps from this list of genes. As seen in Table 3, there is one
map (DNA repair) and seven modules (belonging to the Cell Cycle, DNA repair and Apoptosis maps)
enriched.

# load all necessary packages
library(breastCancerMAINZ)
library(Biobase)
library(limma)
library(ACSNMineR)
library(hgu133a.db)
library(RNaviCell)

# load data and extract expression and phenotype data
data(mainz)
eset <- exprs(mainz)
pdat <- pData(mainz)

# Create list of genes differentially expressed between ER positive and
# ER negative samples using moderated t-test statistics
design <- model.matrix(~factor(pdat$er == '1'))
lmFit(eset, design) -> fit
eBayes(fit) -> ebayes
toptable(ebayes, coef=2,n=25000) -> tt
which(tt$adj < 0.05) -> selection
rownames(tt[selection,]) -> probe_list
mget(probe_list, env = hgu133aSYMBOL) -> symbol_list
symbol_list <- as.character(symbol_list)

# calculate enrichment in ACSN maps

enrichment(symbol_list) -> results

dim(results)
[1] 8 9

Table 3: ACSN maps enrichment for genes differentially expressed between ER positive and ER
negative samples in breast cancer. Module : name of the map/module. Mod. size: size of the module.
Nb genes: number of genes from input which are found in the module. pval: raw p-value. Cor. pval:
corrected p-value.

Module Mod. size Nb genes pval Cor. pval

Apoptosis:AKT_MTOR 79 47 0.00043 0.0068
CellCycle:E2F2_TARGETS 35 22 0.0055 0.043
CellCycle:E2F3_TARGETS 51 31 0.0023 0.025
CellCycle:E2F4_TARGETS 100 60 5.8× 10−5 0.0037
DNA_repair 346 172 0.00038 0.0068
DNA_repair:CELL_CYCLE 82 49 0.00029 0.0068
DNA_repair:G1_CC_PHASE 25 18 0.0013 0.016
DNA_repair:S_CC_PHASE 46 28 0.0036 0.033

The Molecular Signatures Database (MSigDB) is one of the most widely used repository of well-
annotated gene sets representing the universe of biological processes (Liberzon et al., 2011). We
downloaded the canonical pathways set, counting more than 1,300 gene sets representing canonical
pathways compiled by domain experts. The dataset is encoded with the GMT format, and can be
imported within ACSNMineR with the format_from_gmt function. We calculate the enrichment for the
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breast cancer differentially expressed gene list, simply specifying the MSigDB data we just imported
as the maps option. Table 4 is displaying the pathways having a corrected p-value < 0.05. The prefix is
indicating the database source, so we see that we have pathways from the KEGG, Reactome and PID
databases. Consistent with our previous results, most of the enriched pathways are related to the cell
cycle regulation.

# Import MSigDB canonical pathways and calculate enrichment on this database

mtsig <- format_from_gmt('c2.cp.v5.0.symbols.gmt')
enrichment(symbol_list, maps = mtsig)

Table 4: MSigDB canonical pathway database enrichment for genes differentially expressed between
ER positive and ER negative samples in breast cancer. This table presents the 10 modules with lowest
p-value out of 125 with corrected p-value lower than 0.05. Module : name of the module. Mod. size:
size of the module. Nb genes: number of genes from input which are found in the module. Cor. pval:
corrected p-value.

Pathway Mod. size Nb genes Cor. pval

KEGG_CELL_CYCLE 128 76 3.9× 10−8

REACTOME_CELL_CYCLE_MITOTIC 325 159 3.9× 10−8

REACTOME_DNA_REPLICATION 192 98 4.9× 10−6

PID_FOXM1PATHWAY 40 29 3.1× 10−5

REACTOME_MITOTIC_M_M_G1_PHASES 172 87 3.1× 10−5

REACTOME_CELL_CYCLE 421 182 5× 10−5

REACTOME_MITOTIC_G1_G1_S_PHASES 137 71 9× 10−5

PID_AURORA_B_PATHWAY 39 27 0.0002
REACTOME_S_PHASE 109 58 0.00024
PID_SYNDECAN_1_PATHWAY 46 30 0.00026

At last, we visualize the mean expression values for ER negative samples for all genes differentially
expressed on the ACSN master (global) map using RNaviCell commands to create heatmaps.

# Select ER negative samples and calculate mean expression values

apply(eset[probe_list,pdat$er == 0],1,mean) -> er_minus_mean
names(er_minus_mean) <- symbol_list
er_minus_mean <- as.matrix(er_minus_mean)
colnames(er_minus_mean) <- c('exp')

# create a NaviCell session, import the expression matrix on the map and create
# heatmaps to represent the data points.

navicell <- NaviCell()
navicell$proxy_url <- "https://acsn.curie.fr/cgi-bin/nv_proxy.php"
navicell$map_url <- "https://acsn.curie.fr/navicell/maps/acsn/master/index.php"

navicell$launchBrowser()
navicell$importDatatable("mRNA expression data", "GBM_exp", er_minus_mean)
navicell$heatmapEditorSelectSample('0','exp')
navicell$heatmapEditorSelectDatatable('0','GBM_exp')
navicell$heatmapEditorApply()

The Figure 4 is displaying the map for genes having a corrected p-value < 0.05.

Analysis of glioblastoma mutation frequencies

Recent years have witnessed a dramatic increase in new technologies for interrogating the activity
levels of various cellular components on a genome-wide scale, including genomic, epigenomic, tran-
scriptomic, and proteomic information (Hawkins et al., 2010). Integrating these heterogeneous datasets
provides more biological insights than performing separate analyses. For instance, international con-
sortia such as The Cancer Genome Atlas (TCGA) have launched large-scale initiatives to characterize

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 301

Figure 4: Mean expression values for ER negative differentially expressed genes in breast cancer
visualized as heatmaps on the ACSN master map.

multiple types of cancer at different levels on hundreds of samples. These integrative studies have
already led to the identification of novel cancer genes (McLendon et al., 2008).

Malignant gliomas, the most common subtype of primary brain tumors, are aggressive, highly
invasive, and neurologically destructive tumors considered to be among the deadliest of human
cancers. In its most aggressive manifestation, glioblastoma (GBM), median survival ranges from 9 to 12
months, despite maximum treatment efforts (Maher et al., 2001). In this study we have analyzed whole-
genome mutation data generated by the TCGA project on hundreds of patients. More specifically, we
parsed the MAF (Mutation Annotation Format) GBM files produced by different sequencing centers to
count and calculate gene mutation frequencies. We kept the mutations having a status likely to disturb
the target protein’s function (i.e. Frame_Shift_Del, Nonstop_Mutation, In_Frame_Del, In_Frame_Ins,
Missense_Mutation, Nonsense_Mutation, Splice_Site, Translation_Start_Site). In total, we collected
mutations for more than 13,000 genes in a total of 379 mutated samples. In order to retain the most
frequently mutated genes, we calculated frequencies across all mutated samples, and kept genes
having a frequency greater than 1% (3,293 genes). We further labelled genes having a frequency greater
than 1% and less than 5% as "1" and genes highly mutated (frequency higher than 5%) as "2".

We loaded the data as a matrix in R and calculated the enrichment in ACSN maps with the ACSN-
MineR function enrichment. The results are displayed in table 5. There are 6 modules significantly
enriched in the DNA repair and EMT motility maps. Cell matrix adhesions and ECM (extra cellular
matrix), part of the EMT motility map, are the modules with highest significance. The EMT motility
map is significantly enriched at the global map level (second line in the table).

Table 5: ACSN maps enrichment for frequently mutated glioblastoma genes. Module : name of the
module. Mod. size: size of the module. Nb genes: number of genes from input which are found in the
module. Cor. pval: corrected p-value.

module Mod. size Nb genes Cor. pval

DNA_repair:S_PHASE_CHECKPOINT 45 19 0.008
EMT_motility 635 181 0.0002
EMT_motility:CELL_MATRIX_ADHESIONS 73 45 3.73e-12
EMT_motility:CYTOSKELETON_POLARITY 154 47 0.022
EMT_motility:DESMOSOMES 29 15 0.002
EMT_motility:ECM 147 69 9.77e-11
EMT_motility:EMT_REGULATORS 629 178 0.0002

Visualization of the list of glioblastoma mutated genes is shown on figure 5. This figure was
generated with the ACSNMineR commands detailed below. Results of the enrichment test correlate
well with the visualization on the map, with a high density of low and high frequency mutated genes
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in the EMT motility and DNA repair regions (maps) of the global ACSN map. Although they are not
statistically significant, quite high densities can also be seen in other regions of the map.

library(RNaviCell)

# Create a NaviCell object, point it to the ACSN master map and launch
# a session.

navicell <- NaviCell()
navicell$proxy_url <- "https://acsn.curie.fr/cgi-bin/nv_proxy.php"
navicell$map_url <- "https://acsn.curie.fr/navicell/maps/acsn/master/index.php"
navicell$launchBrowser()

# Read the GBM data file and import it into the session.

mat <- navicell$readDatatable('gbm.txt')
navicell$importDatatable("Mutation data", "GBM", mat)

# set datatable and sample names for the glyph editor

navicell$drawingConfigSelectGlyph(1, TRUE)
navicell$glyphEditorSelectSample(1, "categ")
navicell$glyphEditorSelectShapeDatatable(1, "GBM")
navicell$glyphEditorSelectColorDatatable(1, "GBM")
navicell$glyphEditorSelectSizeDatatable(1, "GBM")
navicell$glyphEditorApply(1)

# set color, shape and size parameters for glyphs

navicell$unorderedConfigSetDiscreteShape("GBM", "sample", 0, 1)
navicell$unorderedConfigSetDiscreteShape("GBM", "sample", 1, 5)
navicell$unorderedConfigApply("GBM", "shape")

navicell$unorderedConfigSetDiscreteColor("GBM", "sample", 0, "398BC3")
navicell$unorderedConfigSetDiscreteColor("GBM", "sample", 1, "CC5746")
navicell$unorderedConfigApply("GBM", "color")

navicell$unorderedConfigSetDiscreteSize("GBM", "sample", 0, 4)
navicell$unorderedConfigSetDiscreteSize("GBM", "sample", 1, 14)

navicell$unorderedConfigApply("GBM", "size")

Summary and perspectives

In this work, we presented the R package ACSNMineR, a novel package for the calculation of p-
values for enrichment or depletion of genes in biological pathways. The package includes the six
large-scale molecular maps and 67 functional modules of the Atlas of Cancer Signaling Network
(ACSN) . Enrichment can be calculated for those maps and modules with several options to play with,
but can also be calculated for other databases of molecular pathways, that can be imported from GMT
formated files.

We also describe in this work the RNaviCell package, a R package convenient to use with ACSN-
MineR. This package is dedicated to create web-based and interactive data visualization on ACSN
maps. Users can use this tools to represent genes of interest that have been shown to be related to the
maps by calculating enrichment with ACSNMineR. Creating maps with the graphical user interface
of the ACSN website can be a tedious task if the user has multiple samples or gene lists, and wants to
compare their representations on ACSN maps. The RNaviCell package can be used to automate the
process of creating the graphical representations automatically. The maps are displayed in a browser
and are interactive, with the possibility for the user to zoom in and out, search for genes or molecular
species, and see the details of the molecular reactions (what partners are involved, what is the state
of a given species, etc.). For more details on how to use the interface and the different possibilities,
see Kuperstein et al. (2013), Bonnet et al. (2015) and Kuperstein et al. (2015). We have shown how
the packages ACSNMineR and RNaviCell can be combined to analyze expression data from breast
cancer samples, and also to analyze the frequency of mutated genes in glioblastoma cancer samples.
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Figure 5: Glioblastoma gene mutation frequency categories represented as glyphs on the ACSN global
cancer map. High frequency mutated genes are pictured as large red circles, while low frequency
mutated genes are depicted as small blue squares.

Of course, ACSNMineR is not the only R package for enrichment calculations. For instance,
GOstats (Falcon and Gentleman, 2007) is probably one of the first packages that was created to
calculate enrichment for Gene Ontology categories. GOstats can also be used to calculate enrichment
for other biological pathways categories, such as KEGG pathways (by using an instance of the class
KEGGHyperGParams) or PFAM protein families (using PFAMHyperGParams). However, its usage might
not be as straightforward as ACSNMineR, and it does not seem possible to test user-defined biological
pathways. Furthermore, other authors have pointed out that the KEGG database used by this package
has not been updated since 2012. clusterProfiler is a recent R package released for enrichment analysis
of Gene Ontology and KEGG with either hypergeometric test or Gene Set Enrichment Analysis (GSEA)
(Yu et al., 2012). Via other packages, support for analysis of Disease Ontology and Reactome Pathways
is possible. Interestingly, this package also offers the possibility to import user-defined gene set,
through tab-delimited pairwise definition files. Other notable packages for enrichment calculations
are ReactomePA for Reactome molecular pathways (Yu and He, 2016), miRNApath for microRNA
pathways (Cogswell et al., 2008) and gage (Luo et al., 2009). We believe that the main advantages of
ACSNMineR compared to other packages are a direct access to the full set of ACSN maps (updated
on a regular basis) and an easy way to test MSigDB gene sets or any user-defined gene set formatted
appropriately.

In order to improve ACSNMineR, we may in the near future try to improve the speed of cal-
culation, which might be a problem if a very large number of samples or experiments have to be
analyzed rapidly. For instance, we could use the foreach and %dopar% operator to parallelize the most
computationally demanding operations. It could also be useful to implement more sensitive methods
of gene set enrichment measures, such as the Gene Set Enrichment Analysis (GSEA) method.

RNaviCell relies on standard HTTP calls to provide informations and calculations, and we have
developped a number of bindings for popular programming languages such as R, Java and Python
(Bonnet et al., 2015). This open architecture is designed to facilitate the development of utilities by other
programmers and to facilitate the integration of ACSN maps in existing frameworks. The development
of such services, sometimes called “microservices" (Fowler, 2014) is in expansion. Furthermore, this
kind of open architecture could clear the way for a more unified and general access to reaction
networks database, including for example WikiPathways (Kelder et al., 2012), Reactome (Croft et al.,
2014) and other databases. The PSICQUIC project is a successfull example of such an architecture
(Aranda et al., 2011). It is an effort of the HUPO proteomics standard initiative to standardize the
access to molecular interaction databases programmatically, based on the specification of web services
(using REST and SOAP calls) and a common query language (MIQL).
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Subgroup Discovery with Evolutionary
Fuzzy Systems in R: The SDEFSR
Package
by Ángel M. García, Francisco Charte, Pedro González, Cristóbal J. Carmona and María J. del Jesus

Abstract Subgroup discovery is a data mining task halfway between descriptive and predictive data
mining. Nowadays it is very relevant for researchers due to the fact that the knowledge extracted
is simple and interesting. For this task, evolutionary fuzzy systems are well suited algorithms
because they can find a good trade-off between multiple objectives in large search spaces. In fact, this
paper presents the SDEFSR package, which contains all the evolutionary fuzzy systems for subgroup
discovery presented throughout the literature. It is a package without dependencies on other software,
providing functions with recommended default parameters. In addition, it brings a graphical user
interface to avoid the user having to know all the parameters of the algorithms.

Introduction

Subgroup discovery (SD) is a data mining field that aims to describe data using supervised learning
techniques. The goal is to find simple, general and interesting patterns with respect to a given variable
of interest. Throughout the literature, SD has been applied with success to different real-world
problems in areas such as marketing (del Jesus et al., 2007; Berlanga et al., 2006), medicine (Carmona
et al., 2015, 2013a; Stiglic and Kokol, 2012; Carmona et al., 2011; Gamberger et al., 2003) and e-learning
(Poitras et al., 2016; Lemmerich et al., 2011; Carmona et al., 2010b), amongst others (Atzmueller et al.,
2016; Jin et al., 2014; Carmona et al., 2013b; Rodriguez et al., 2013; Carmona et al., 2012).

SD is an useful rule learning process for complex search spaces. Therefore, the search strategy used
becomes a key factor in the efficiency of the method. Different strategies can be found in the literature
such as beam search in the algorithm CN2-SD (Lavrač et al., 2004b) and Apriori-SD (Kavšek and
Lavrač, 2006), exhaustive algorithms such as SDMap (Atzmueller and Puppe, 2006) or Evolutionary
Algorithms (EAs), for example.

EAs are stochastic algorithms for optimising and searching tasks, based on the natural evolution
process (John, 1992). There are different paradigms within EAs: genetic algorithms (John, 1992;
Goldberg, 1989), evolution strategies (Schwefel, 1995), evolutionary programming (Fogel, 2006) and
genetic programming (Koza, 1992). With these methods the use of rules to represent the knowledge
is known as evolutionary rule-based systems (Freitas, 2003) and has the advantage of allowing the
inclusion of domain knowledge, also returning better rules. The use of EAs is very well suited for SD
because these algorithms perform a global search in the space in a convenient way, stimulating the
obtaining of simple, interesting and precise subgroups.

Fuzzy logic is an extension of traditional set theory whose main aim is to model imprecise
knowledge (Zadeh, 1975). The main element is the fuzzy set, which allows belonging degrees in the
range [0,1] where zero means not belonging at all and one means absolute belonging. A ling??istic
variable is a set of overlapped fuzzy sets which define ling??istic labels that cover all the range
of a numeric variable. The main advantage of using fuzzy logic on SD is obtaining a knowledge
representation for numeric variables more understandable for experts. It improves the interpretability
of rules and the knowledge representation is very close to human reasoning (Hüllermeier, 2011). In
addition, it avoids the possible loss of information in variables with continuous domains due to a
previous discretisation stage.

Nowadays, there are several frameworks that allow one to perform data mining tasks, but only a
few of them have implementations of SD algorithms. The best known frameworks with SD algorithms
are KEEL (Alcalá-Fdez et al., 2011) and VIKAMINE (Atzmueller and Lemmerich, 2012), but ORANGE
(Demšar et al., 2013), and CORTANA (Meeng and Knobbe, 2011) also provide some implementations.
In fact, VIKAMINE also provides an R package called rsubgroup (Atzmueller, 2014) which is an
interface for R to VIKAMINE Java algorithms.

In this contribution the SDEFSR package is introduced. It provides the user with the most
important evolutionary fuzzy rule-based methods for SD documented in the literature, being a major
contribution to the R community. In addition, it also brings the capability of reading datasets in the
KEEL data format (Alcalá-Fdez et al., 2011). This file format is not natively supported by R. Similarly,
this package provides a Graphical User Interface (GUI) to make this task easier for the user, especially
the unexperienced one.
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This contribution is organized according to the following structure: The first section presents SD
concepts, main properties and features. In the second section, the structure of the SDEFSR package
and its operations are described. In the third section, a complete example of use of the package is
presented. Finally, the GUI of SDEFSR is shown in the last section.

Subgroup discovery

SD was defined by (Wrobel, 2001) as:

“In subgroup discovery, we assume we are given a so-called population of individuals (objects,
customers, . . .) and a property of those individuals we are interested in. The task of subgroup dis-
covery is then to discover the subgroups of the population that are statistically “most interesting”,
i.e. are as large as possible and have the most unusual statistical (distributional) characteristics
with respect to the property of interest.”

SD tries to find relationships between different properties of a set with respect to one interesting or
target variable. Such relations must be statistically interesting, so it is not necessary to find complete
relations, partial relations could be interesting too.

Usually these relations are represented by means of rules, one per relation. A rule is defined as
(Lavrač et al., 2004a; Gamberger and Lavrac, 2002):

R : Cond→ Targetvalue (1)

where Targetvalue is the value for the variable of interest (target variable) for the SD task and Cond
is normally a conjunction of attribute-value pairs which describe the characteristics of the induced
subgroup.
SD is a data mining task halfway between description and classification, because it has a target variable
but its objective is not to predict but rather to describe. The use of a target variable is not possible in
description, because description simply finds relationships between unlabeled objects.
A key point to fully understanding the goal of SD is how it differentiates from the classification
objective. Classification is a predictive task that tries to split the entire search space, usually in a
complex way, aiming to find the correct value for the variable in new incoming instances. On the
other hand, SD aims to find interesting relationships among these instances regarding the variable of
interest.
For instance, assuming there is a group of patients, the variable of interest is whether they have heart
disease or not. The predictive data mining objective is to predict if new patients will have heart disease.
However, SD tries to find which subgroup of patients are more likely to have heart disease according
to certain characteristics. This could be relevant to develop a treatment against this disease.

Main elements of subgroup discovery algorithms

Below, the most relevant aspects of SD algorithms are presented (Atzmueller et al., 2004):

• Type of the target variable: This is the kind of information the interest variable can hold. The target
variable could be binary (two possible values), categorical (n posible values) or numerical (a real
value within a range). Nevertheless, the majority of SD algorithms can only deal with binary or
categorical target variables.

• Description language: Knowledge representation is a key factor in SD due to its descriptive nature.
In this way, rules must be as simple as possible. Rules are usually represented by conjunctions
of attribute-value pairs or in disjunctive normal form. Fuzzy logic could also be included in the
rules in order to improve the interpretability of the knowledge (Zadeh, 1975; Hüllermeier, 2005).

• Quality measures: This is the most important aspect in the design of SD algorithms. The quality
measures must guide the learning process and must show the quality of the extracted knowledge.
They are briefly described below.

• Search strategy: The search space grows exponentially with the number of variables.The use of a
search strategy able to find a good solution, or the optimal one, by searching efficiently through
the whole search space is very important.

Quality measures for subgroup discovery

A quality measure tries to measure the interestingness of a given rule or subgroup, but there is not
a formal definition of what interestingness is. However, the interestingness could be defined as a
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concept that emphasises conciseness, coverage, reliability, peculiarity, diversity, novelty, surprisingness,
utility, and actionability (Geng and Hamilton, 2006). For SD, the most used criteria to measure the
interestingness of a rule are conciseness, generality or coverage, reliability, and novelty (Carmona
et al., 2014).

Quality measures that accomplish this criteria available in the SDEFSR package are:

• Measures for conciseness (or complexity). It measures the complexity of the induced rules.
Rules with a few number of attribute-value pairs are easy to remember and add to the expert’s
knowledge. The quality measures associated to this criterion are:

– Nr: The number of rules generated. A rule set with a large number of rules is much more
difficult to remember than other that has less rules. Additionally, the lower the number of
rules, the easier for the expert to filter those rules that are interesting.

– Nv: The number of variables of the rules generated. Rules with less variables are easier
to understand and to remember; also they tend to be more general. Thus, rules with low
number of variables are interesting.

• Measures for generality (or coverage). It measures the capacity of a rule to match with a great
number of examples in the dataset. Also, the capacity to generalise the rule to other instances
that are not in the training dataset is greater. The quality measures associated to this criterion
are:

– Support: It measures the frequency of correctly classified examples covered by the rule:

Sup (R) =
n (Cond ∧ Targetvalue)

ns
(2)

where n (Cond ∧ Targetvalue) means the number of examples that satisfy the antecedent
and consequent part of the rule and ns is the number of examples in the dataset.

– Coverage: It measures the percentage of examples covered by the rule related to the total
number of examples:

Cov (R) =
n (Cond)

ns
(3)

where n (Cond) means the number of examples that satisfy the antecedent part of the rule.

• Measures for reliability. A rule is reliable when the relation described in the rule occurs in a
high percentage of cases where the rule can be applied. The quality measures associated to this
criterion are:

– Confidence: It measure the percentage of examples correctly covered of the total of covered
examples:

Con f (R) =
n (Cond ∧ Targetvalue)

n (Cond)
(4)

• Measures for novelty. A rule is novel if the knowledge obtained from this one is unknown by
the user or it is unable to infer such knowledge from other rules. For this kind of criterion, the
quality measures availables in the package are:

– Significance: It reflects the novelty in the distribution of the examples covered by the rule
regarding the whole dataset:

Sign (R) = 2 ·
nc

∑
k=1

n
(
Cond ∧ Targetvaluek

)
· log

(
n
(
Cond ∧ Targetvaluek

)
n (Cond ∧ Targetvalue) · p (Cond)

)
(5)

where p (Cond) = n(Cond)
ns

, nc is the number of possible values of the target variable and
Targetvaluek

is the k-th value of the target variable.

• Hybrid measures. These measures try to maximise more than one criterion with a single
expression that finds a good trade-off between the criteria used. The hybrid quality measures
implemented are:

– Unusualness: It is defined as the weigthed relative accuracy of a rule and tries to maximise
generality and realiability:

WRAcc (R) =
n (Cond)

ns

(
n (Cond ∧ Targetvalue)

n (Cond)
− n (Targetvalue)

ns

)
(6)

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 310

– True Positive Rate (TPR) or Sensitivity: It measures the proportion of covered examples that
has been correctly classified.

TPR (R) =
n (Cond ∧ Targetvalue)

n (Targetvalue)
(7)

– False Positive Rate (FPR): It measures the proportion of examples that are covered that do
not belong to the target variable.

FPR (R) =
n
(
Cond ∧ Targetvalue

)
n
(
Targetvalue

) (8)

where Targetvalue means the negation of Targetvalue, i.e., the examples that not belong to
the target class.

A more complete classification and definition of quality measures for SD is available in (Herrera
et al., 2011) and (Atzmueller, 2015).

Evolutionary fuzzy systems

Evolutionary fuzzy systems (EFSs) are the union of two powerful tools for aproximate reasoning: EAs
and fuzzy logic.

In one side, EAs (Eiben and Smith, 2003) are stochastic algorithms based on the natural evolution
to solve complex optimisation problems. They are based on a population of representations of possible
solutions, called chromosomes. A basic EA scheme is:

1. Generate the initial population

2. Evaluate the chromosomes of the population. This is the most important and expensive part
of the EA. In the algorithms of this package, quality measures described above are used as
evaluation function.

3. Select the chromosomes which the genetic operators will be applied.

4. Apply the genetic operators. The most used are:

• Crossover operator. Which takes two chromosomes and generates two descendants as a
combination of the elements of the parents.

• Mutation operator. Which takes a chromosome and changes randomly a gene (a value of
the possible solution).

5. Replace the population with the new generated chromomes.

6. Go to step 2 until a stopping criterion is reached. Normally this criterion is a number of
evaluations or generations.

These algorithms perform efficiently a global stochastic search through a huge search space.
However, it is possible that these algorithms can not find an optimal solution (a global optimum), but
a good one (a local optimum) that can solve the problem too. They are well suited for SD because
the problem of finding subgroups can be formulated from the optimisation point of view as coding
rules as a parameter structure that optimise some measures. Additionally, different kinds of rules
exist in SD (with inequality, with intervals, fuzzy rules...). This can change dramatically the size of the
search space and EAs can adapt these structures easily without performance degradation. Likewise,
the selection of the genetic operators can make EAs great candidates to introduce expert knowledge in
the search process (Carmona et al., 2014).

On the other side, fuzzy logic (Zadeh, 1975) is an extension of the traditional set theory. Its main
objective is to model and deal with imprecise knowledge. The main difference with traditional set
theory is that belonging degree is not zero or one, but a real value in [0,1]. This possibility allow one to
define fuzzy limits and the chance of overlapping between fuzzy sets.

A fuzzy variable is a set of linguistic labels, e.g. low, medium and high, which are defined by
overlapped fuzzy sets (Hüllermeier, 2011). This information is closer to human reasoning and it is
possible to calculate with precission the value of each belonging degree. This expressivity allows one
to obtain simpler rules because continuous variables are more understandable for humans. A rule can
be represented by means of a set of fuzzy variables. To determine if the rule covers an example it is
neccesary to calculate the belonging degree of each variable in the rule with respect to the example. If
all the variables have a belonging degree grater than zero, the example is covered.

EFSs are the union of both techniques, and work three ways(Herrera, 2008):
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• EAs that evolve the fuzzy rules (changing the number of variables and their values) and use
fuzzy set definitions defined by the user. This way of work is used by all the algorithms
implemented in the SDEFSR package.

• EAs that evolve the fuzzy sets, changing the number of fuzzy sets for each variable, its shapes,
etc.

• EAs that evolve both rules and fuzzy sets.

The SDEFSR package

SDEFSR is a package entirely written on R from scratch. To the best of our knowledge, this package
includes all the EFSs for SD presented throughout the literature. In addition, SDEFSR has the capacity
to read data in different standard and well-known formats such as ARFF (Weka), KEEL, CSV and
data.frame objects. Similarly, all functions included in the SDEFSR package have default parameters
with values recommended by the authors. This allows the algorithms to be executed in an easy way
without the necessity of knowing the parameters for final users.

Algorithms included in the package

SDEFSR implements the following SD algorithms (Ventura and Luna, 2016):

• SDIGA (del Jesus et al., 2007). This is a mono-objective EA (Back et al., 1997) based on an
Iterative Rule Learning (IRL) approach in which only the best rule is extracted from an execution
of the EA. This EA is executed iteratively until a stopping criterion is reached.

• MESDIF (Berlanga et al., 2006). A multi-objective EA (Deb, 2001) based on the SPEA2 (Zitzler
et al., 2002) algorithm. It returns the best n rules (where n is an user parameter) in the pareto
front.

• NMEEF-SD (Carmona et al., 2010a). Another multi-objective EA, based on the NSGA-II (Deb
et al., 2000) algorithm which returns rules in the pareto front with a confidence greater than
a given threshold. It has a reinitialisation operator to promote diversity and maximise the
covering of all examples for target variable.

• FuGePSD (Carmona et al., 2015). An algorithm that uses genetic programming in which a
competitive-cooperative scheme is implemented in order to obtain the best global rules. The
key operation of this algorithm is the Token Competition (Leung et al., 1992), which promotes
the extraction of precise, general and also diverse rules from the evolutionary process.

All these methods share the following characteristics:

• They use fuzzy logic to improve the interpretability of results, making them robust when
working with noisy data (Luengo et al., (In Press) and also allowing one to include expert
knowledge on the evolutionary learning process.

• Rules can be represented by a conjunction of attribute-value pairs (canonical form) or in disjunc-
tive normal form (DNF). In (Carmona et al., 2009) there is an analysis justifying not using the
DNF rule representation on some SD algorithms.

• It is possible to specify the quality measures used to guide the evolutionary process.

• All of the algorithms can deal with categorical (or multi-class) target variables.

Package architecture, extensibility, limitations and comparison with similar packages

The main advantage of the SDEFSR package is that it provides all EFSs for SD that exist in the
literature. These algorithms are not included in R at the moment. Therefore, this package provides to
the R community a brand new possibility for data mining and data analysis.

The base of the package is defined by two S3 classes. These classes are:

• "SDEFSR_Dataset". This object defines a dataset and contains information about it. Such
information are stored in the following fields:

– relation. Defines the name of the relation that this dataset belongs to, e.g. "german
credit".

– attributeNames. Stores the names of the attributes.
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– attributeTypes. A character that defines the data type of the attribute, i.e. ’r’ for real
values, ’e’ for integers and ’c’ for categoricals variables.

– min. A vector with the minimum value for numerical variables, for categorical variables,
this value is zero.

– max. A vector with the maximum value for numerical variables or the number of different
categorical values that has a categorical variable.

– nVars. The number of variables in the dataset (excluding the target class).

– data. A list that contains each example of the dataset. The categorical variables in data
are codified. This means that a categorical value is represented as a value in [0, max −1]
that represents the position of the value. For example, in the german-credit dataset, the
variable ForeignWorker has two values: "A201" and "A202", these values are represented
in the data field of a "SDEFSR_Dataset" class as 0 or 1, respectively.

– class_names. A vector with the categorical values of the target class. By default, the target
variable is the last one. If it is not categorical, the method that reads the dataset fails. The
user can select other target class when executing the algorithms.

– examplesPerClass. A list with the number of examples belonging to each class.

– lostData. A logical that indicates the presence of lost data.

– covered. A logical vector with length the number of examples that indicates which
examples are covered by the generated rules. This value by default is NA, but it is used in
some algorithms like SDIGA.

– fuzzySets. A list that indicates the fuzzy sets definitions for each variable. This value is
NA by default.

– crispSets. A list that indicates the crisp sets obtained from the fuzzy sets. As this value is
infered from fuzzySets, this is NA by default.

– sets. A vector that defines the number of fuzzy sets that each variable has or the number
of categorical values.

– categoricalValues. A list that contains a vector of names of each categorical variable or
NA if the variable is numerical.

– Ns. The number of examples in the dataset.

This class also exports the well-known S3 methods print() and summary() that show the
data structure without codification and a summary with basic information about the dataset
respectively.

• "SDEFSR_Rules". This class is a list that contains the rules generated by an algorithm. To know
the number of rules generated, it is possible to use length(SDEFSR_RulesObject). Each rule has
the following fields:

– rule. The string that represents the rule description.

– qualityMeasures. A list that contains the quality measures of the rule. Such measures are
the same as described in the quality measures section.

This object must be returned for all the SD algorithms of this package, and it is neccesary to
make an analysis of the generated rules. This object is necessary for the exported functions
plotRules() that plots an FPR vs TPR graph that allows the visualisation of rules, and the
well-known method sort() that return other "SDEFSR_Rules" object with the rules sorted by a
given quality measure in descendant order. Likewise, this object overloads the subset operator
('[') to allow filtering operations easily.

Additionally, the package has a general function that reads datasets in ARFF, KEEL or CSV
format called read.dataset() and SDEFSR_DatasetFromDataFrame() to transform a data.frame into
a "SDEFSR_Dataset". In summary, exported functions and S3 objects are presented in Table 1.

A potential future extension of the package will be the inclusion of the confusion matrix for each
rule. With this matrix it would be possible to infer the rest of the quality measures. Also, additional
quality measures could be easily added. Statistical validation of the results are now implemented in
package rsubgroup, which is already available on CRAN. Therefore, SDEFSR delegates this task to
that package.

The rsubgroup package contains SD algorithms that can complement the algorithms available
in the SDEFSR package. rsubgroup includes more established algorithms for SD like beam search
(Lowerre, 1976) or SD-Map (Atzmueller and Puppe, 2006). This opens a wide range of SD algorithms
that a user can execute in R. Nevertheless, both packages have great differences when calling SD
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S3 Objects and methods SD Algorithms Other methods

"SDEFSR_Dataset" SDIGA() read.dataset()
print.SDEFSR_Dataset() MESDIF() SDEFSR_DatasetFromDataFrame()
summary.SDEFSR_Dataset() NMEEF_SD() plotRules()
"SDEFSR_Rules" FUGEPSD()
"[.SDEFSR_Rules"
"sort.SDEFSR_Rules()"

Table 1: Methods and rules exported by the SDEFSR package.

methods and the results. This means that a future package, which joins both into one standard
framework would be interesting.

Below, the neccesary methodology to perform the inclusion of new algorithms in the SDEFSR
package is shown:

1. The SD algorithm must use an "SDEFSR_Dataset" object as input and return an "SDEFSR_Rules"
object with the results. Optionally, these results can be displayed on the console in a human-
readable way.

2. The method can be executed with a parameter that contains the path of a parameter file. This
file must contain the same parameters as the algorithm. This means that the algorithm must be
executed either by a parameter file or by writting all neccesary parameters.

3. The majority of the parameters must have default values to ease the use of the algorithm.

4. The SD algorithm must not depend on other packages that are not in the "base" set of packages.

5. The source code of the algorithm must be added in a separate file with the name of such method.

As many others packages in R, this package does not have any automated test that control the
quality of the code or results obtained. Instead, as the algorithms implemented exists in other platforms
(KEEL), we check the quality of the methods comparing the results with the original implementation
against a significant number of datasets with a 5-fold cross validation schema. This test showed that
the results of the methods in SDEFSR are very close or equal to the results obtained from the reference
implementations. Developers who want to add a new method to the package, must demonstrate the
validity of the results obtained.

An example of use

This section describes an example of use of the package, covering the installation and loading of the
package to the execution of a SD algorithm and the analysis of the rules generated.

Installing and loading the SDEFSR package

The SDEFSR package is now available at CRAN, so it can be installed like any other package by
simply typing:

> install.packages("SDEFSR")

The development version is available on GitHub at https://github.com/SIMIDAT/SDEFSR. To
install and use the development version you need to install the devtools (Wickham and Chang, 2015)
package and then use the command:

> devtools::install_github("SIMIDAT/SDEFSR")

The package can be loaded using either the library() or require() functions. Once the pack-
age has been loaded, there are six sample datasets stored as "SDEFSR_Dataset" objects available:
‘carTra’, ‘carTst’, ‘germanTra’, ‘germanTst’, ‘habermanTra’ and ‘habermanTst’ that correspond to the
‘car’, ‘german’ and ‘haberman’ (Alcalá-Fdez et al., 2011) training and test datasets respectively. These
are contained in the ‘carTra.rda’, ‘carTst.rda’, ‘germanTra.rda’, ‘germanTst.rda’, ‘habermanTra.rda’ and
‘habermanTst.rda’ files respectively, which are lazily loaded with the package. Also, rules gener-
ated by the SDIGA algorithm with default parameters over the ‘haberman’ dataset are loaded as
‘habermanRules’ as a "SDEFSR_Rules" object. These rules are stored in the ‘habermanRules.rda’ file.
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Loading a dataset

In order to use SD algorithms available in the SDEFSR package, a "SDEFSR_Dataset" object is nec-
essary. This object can be generated using the read.dataset() function. This function reads ".dat"
files with the KEEL data mining tool format, ARFF files (".arff") from WEKA or even CSV files (".csv").
The source code for reading ARFF files has been taken from the mldr package(Charte and Charte,
2015). Assuming the files ‘iris.dat’, ‘iris.arff’ and ‘iris.csv’ corresponding to the classical iris dataset in
KEEL, ARFF and CSV formats respectively in the working directory, the loading of these files will be
as follows:

> irisFromKEEL <- read.dataset("iris.dat")
> irisFromARFF <- read.dataset("iris.arff")
> irisFromCSV <- read.dataset("iris.csv")

Note that the function detects the type of data by the extension. To read csv files, the function has
optional parameters that defines the separator used between fields, the decimal separator, the quote
indicator and the NA identifier as parameters. By default, these options and values are sep = ",",quote
= ""̈,dec = "." and na.strings = "?" respectively. It is important to remark that sparse ARFF data
is not supported.

If the dataset is not available in these formats, it is possible to obtain a "SDEFSR_Dataset" object
from a data.frame. This data.frame could be loaded by read.table() or similar functions. Eventually,
the resulting data.frame has to be given to the SDEFSR_DatasetFromDataFrame() function. As we can
see, this function allows the creation of datasets on the fly, as in this example:

> df <- data.frame(matrix(data = runif(1000), ncol = 10))
#Add class attribute (It must be the last attribute and it must be categorical)
> df[,11] <- c("Class 0", "Class 1", "Class 2", "Class 3")
> SDEFSR_DatasetObject <- SDEFSR_DatasetFromDataFrame(df, relation = "random")

This will assign to SDEFSR_DatasetObject a new dataset created randomly with 100 examples and
11 attributes. Note that the target variable must be categorical, because the SD algorithms can only
deal with categorical target variables.

The SDEFSR_DatasetFromDataFrame() function has three additional parameters: names, types, and
classNames. These allow the manual assignment of attribute names, their types, and a vector with
values of target variable, respectively. Leaving the default values (NA), the function automatically
retrieves these values through the information found on the dataset. However, if the information in
the dataset is not accurate, it could cause unexpected results for the SD algorithms.

Obtaining information from a loaded dataset

Once the dataset is loaded, it is possible to view a simple summary of its content by using the usual
summary() function:

> summary(irisFromKEEL)
Summary of the SDEFSR_Dataset object: 'irisFromKEEL'

- relation: iris
- nVars: 4
- Ns: 150
- attributeNames: SepalLength, SepalWidth, PetalLength, PetalWidth, Class
- class_names: Iris-setosa, Iris-versicolor, Iris-virginica
- examplesPerClass: 50, 50, 50

Any of these values can be obtained individually using the ‘$’ operator on the "SDEFSR_Dataset"
object:

> irisFromKEEL$nVars
[1] 4
> irisFromKEEL$attributeNames
[1] "SepalLength" "SepalWidth" "PetalLength" "PetalWidth" "Class"

Also, it is possible to print the dataset as a data.frame with the print() function.

Executing subgroup discovery algorithms

It is possible to execute a SD algorithm in two ways: through a parameter file, specifying as argument
the path to such file, or by entering all the parameter names and values at the command line. You can
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find the structure of the parameter file, among other useful information, on the help pages of each
function.

Assuming the "SDEFSR_Dataset" object ‘irisFromKEEL’ that has been loaded, and that the ‘params.txt’
parameter file is stored in the working directory, the easiest way to run the MESDIF() algorithm, for
example, will be:

> ruleSet <- MESDIF(paramFile = "param.txt")
#or
> ruleSet <- MESDIF(training = irisFromKEEL)

The first way will execute the algorithm with the parameters and datasets defined in the parameter
file. The second one will execute the algorithm with the specified "SDEFSR_Dataset" object, and
default values for remainder parameters. By default, the target variable used is the last defined in the
dataset and the algorithm searches rules for all the values of the target variable.

An example of an execution with all parameters and the result obtained could be:

> ruleSet <- MESDIF(paramFile = NULL, training = irisFromKEEL, test = NULL,
+ output = c("optionsFile.txt", "rulesFile.txt", "testQM.txt"),
+ seed = 0, nLabels = 3, nEval = 300, popLength = 100,
+ eliteLength = 2, crossProb = 0.6, mutProb = 0.01,
+ RulesRep = "can", Obj1 = "CSUP", Obj2 = "CCNF", Obj3 = "null",
+ Obj4 = "null", targetVariable = "Class",
+ targetClass = "Iris-virginica")
--------------------------------
Algorithm: MESDIF
Relation: iris
Training dataset: training
Test dataset: test
Rules Representation: CAN
Number of evaluations: 300
Number of fuzzy partitions: 3
Population Length: 100
Elite Population Length: 2
Crossover Probability: 0.6
Mutation Probability: 0.01
Obj1: CSUP (Weigth: )
Obj2: CCNF (Weigth: )
Obj3: null (Weigth: )
Obj4: null
Number of examples in training: 150
Number of examples in test: 150
Target Variable: Class
Target Class: Iris-virginica
--------------------------------

Searching rules for only one value of the target class...

GENERATED RULE 1
Variable SepalWidth = Label 1 ( 2 , 3.2 , 4.4 )
THEN Iris-virginica

GENERATED RULE 2
Variable PetalWidth = Label 2 ( 1.3 , 2.5 , 3.7 )
THEN Iris-virginica

Testing rules...

Rule 1 :
- N_vars: 2
- Coverage: 0.8
- Significance: 0.602743
- Unusualness: 0.02
- Accuracy: 0.357724
- CSupport: 0.286667
- FSupport: 0.245
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- CConfidence: 0.358333
- FConfidence: 0.351955
- True Positive Rate: 0.86
- False Positive Rate: 0.77

Rule 2 :
- N_vars: 2
- Coverage: 0.193333
- Significance: 27.673033
- Unusualness: 0.128889
- Accuracy: 0.9375
- CSupport: 0.193333
- FSupport: 0.201667
- CConfidence: 1
- FConfidence: 0.889706
- True Positive Rate: 0.58
- False Positive Rate: 0

Global:
- N_rules: 2
- N_vars: 2
- Coverage: 0.496666
- Significance: 14.137888
- Unusualness: 0.074444
- Accuracy: 0.647612
- CSupport: 0.3
- FSupport: 0.223334
- FConfidence: 0.620831
- CConfidence: 0.679166
- True Positive Rate: 0.72
- False Positive Rate: 0.385

The output has three defined sections:

• The first one provides to the user information about the current execution, i.e., the values given
to the parameters.

• After that, the rules obtained are shown one by one. These rules are numbered, starting at 1.

• Finally, the quality measures applied over the test (or training if test = NULL) dataset for each
rule are shown. At the end of results, the "Global" section shows the average results for the
quality measures analysed,

As this output could be extremely large, the function also saves it to three files, one for each of the
above sections. The name of these files by default are ‘optionsFile.txt’, ‘rulesFile.txt’ and ‘testQM.txt’ and
being saved into the working directory, overwriting existing files. The format of these files is identical
to the output generated by the algorithm, but divided into the sections described above.

The output parameter must be included if the authors desire the modification of the names of
paths in the stored files. It accepts a vector with the names or paths to be used instead of the default
ones. Additionally to this output, the function returns the "SDEFSR_Rules" object which contains the
rules generated and the quality measures associated to each rule.

Analysing the rules obtained

After the execution of a SD algorithm, it returns a "SDEFSR_Rules" object that contains the rules
obtained. Following the example, with the ruleSet object obtained we can plot a TPR vs FPR plot to
view the reliability and generality of the rule (Kralj et al., 2005). Reliable rules have low values of FPR
and high TPR values, and too general variables have high values for both TPR and FPR. To plot the
rules, we can use the function plotRules(). (This function depends on the package ggplot2. If this is
not installed, the user will be queried to install it.) The resulting plot is shown in Figure 1.

Additionally, we can directly order the rule set by a quality measure with the sort() function
which returns another "SDEFSR_Rules" object with the rules sorted. By default, the ordering is done
by confidence.

rulesOrderedBySignificance <- sort(x = ruleSet, decreasing = TRUE, by = "Significance")
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Figure 1: Plot generated after executing plotRules() on the "SDEFSR_Rules" object obtained in
the example.

Filtering rules by number of attribute-value pairs or keeping those rules with a quality measure
greater than a given threshold are interesting functionalities to extract only high-quality rules. Such
filtering operations are quite simple to apply in SDEFSR. Using the subset operator ('[]') and
introducing the filtering conditions will generate a new "SDEFSR_Rules" object with the result:

Apply filter by unusualness:

> filteredRules <- ruleSet[Unusualness > 0.05]

We check only if the number of rules decrease. In this case, this value must be 1.

> length(filteredRules)
[1] 1

Also, you can make the filter as complex as you can Filter by Unusualness, TPr and number of
variables:

> filteredRules <- ruleSet[Unusualness > 0.05 & TPr > 0.9 & nVars == 3]

In this case, there are not rules that match the conditions. Therefore, the number of rules must be 0.

> length(filteredRules)
[1] 0

The user interface

The SDEFSR package provides the user with a GUI to ease the use of SD algorithms. It also allows
basic exploratory analisys of the data to be performed. This GUI is accessible by calling the function:

> SDEFSR_GUI()

The GUI was generated using the shiny package, therefore this function depends on this package.
It depends on package ggplot2 too. If shiny or ggplot2 are not installed in the system, the user is
given the option to install them.

> SDEFSR_GUI()
Package 'shiny' is not installed and must be installed to run this GUI.
Do you want to install it? (Y/n): Y
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...

Once the package has been installed, the GUI is launched. In Figure 2 the initial state of the GUI is
shown. It is structured into two areas. On the left the user can select the training and test files to be
used, the target variable, and the value to be used by the SD algorithm as target variable. Finally,
the group of radio buttons allows the user to change between different graphics to perform a basic
exploratory analysis. On the right there is a tab panel where tabs are organised by the logical process
of execution and visualisation of results of a SD algorithm.

Figure 2: Initial screen of the SDEFSR user interface.

At this moment, the user only can perform the loading of datasets as a training or test file. The
in Figure 2 within the red box intitiate the reading of files with the the same file formats as the
read.dataset() function. Once a dataset has been loaded, an initial plot appears. This will be a pie
chart if the last variable is categorical or a histogram otherwise. Figure 3 shows an example of such a
graph. This graph could show information about all the variables in the dataset. For example, the pie
chart shows the value and the number of examples that belongs to this value. To the right of this plot,
a table provides some information about the distribution of the data samples. This becomes interesting
with numerical variables where basic statistical information is displayed. To change the variable being
visualised, use the "Select the target variable" dropdown menu.

The ‘Keep this data’ button brings an interesting function. This button allows to filter examples
whose values contain unselected values from the ‘Select attributes’ field for categorical variables
or values from numerical variables that are not within the range specified on the ‘Show range’ slider.

Figure 3: Screenshot of the GUI once a dataset has been loaded.

Another functionality is the ‘Variable vs Variable’ dataset visualisation. As shown in Figure 4 ,
it is possible to select two variables of the dataset and visualise their behaviour with respect to the
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target class. In this case, the target class is the last variable of the dataset. The plot shown depends
on the types of variables choosen. If both are numerical, a scatter plot like in Figure 4 is shown and
if both are categorical, a bar plot is shown. A numerical variable versus a categorical variable is an
undefined functionality, thus, no plot is shown.

Figure 4: Screenshot of the ‘Variable vs Variable’ functionality.

On the "Algorithm Selection" tab, the user can choose a SD algorithm to execute, and easily modify
all the available parameters.

After the execution of a SD algorithm the "Rules Generated" tab is automatically selected as shown
in Figure 5. Here the user can see the rules over a DataTable. The most important function is the
"Search" field where the user can find rules with a specific variable. For example, with the results
obtained executing MESDIF with the ‘banana’ (Alcalá-Fdez et al., 2011) dataset, which is an artificial
dataset whose classes form a banana shape, and leaving the default parameters of the GUI. Typing
"At1" on the search box filter rules with the variable At1 on the antecedent. Similarly, typing "THEN
1.0" filter rules with the value 1.0 on the consequent.

Figure 5: Screen of the "Rules Generated" tab with generated rules.

Tab "Test Quality Measures" shows another DataTable with the quality measures for each rule.
The filter options are similar to the DataTable of "Rules Generated". As shown in Figure 6, the button
‘Show/Hide Graph’ shows a FPR vs TPR plot of the generated rules, similar to the plotRules() function.

Finally, "Execution Info" shows information about the current execution, i.e., the parameters used
in this execution. This information is like the execution information of a console execution (See Sec.
40.4.4).
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Figure 6: Screen of the "Quality Measures" tab with the FPR vs TPR graph displayed.

Summary

In this paper the SDEFSR package has been introduced. This package implements all the EFS-based
algorithms for SD that exist in the specialised literature. The package can use datasets in ARFF, ".dat"
of KEEL and CSV formats or a data.frame object. The main contribution of this package is the ease of
use of the algorithms by means of functions with recommended parameters by default and different
ways of execution, saving the user from the need to know the names of all the parameters of each
algorithm. Also, a GUI is presented in order to make this task even easier.
The development of the package will continue in the future, including more functionality to work
with datasets in more different formats, adding new SD algorithms, improving the performance of
existing ones, and also bringing all this functionality to the GUI, which will be extended with more
advanced tools for exploratory analysis.
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dCovTS: Distance Covariance/Correlation
for Time Series
by Maria Pitsillou and Konstantinos Fokianos

Abstract The distance covariance function is a new measure of dependence between random vectors.
We drop the assumption of iid data to introduce distance covariance for time series. The R package
dCovTS provides functions that compute and plot distance covariance and correlation functions
for both univariate and multivariate time series. Additionally it includes functions for testing serial
independence based on distance covariance. This paper describes the theoretical background of
distance covariance methodology in time series and discusses in detail the implementation of these
methods with the R package dCovTS.

Introduction

There has been a considerable recent interest in measuring dependence by employing the concept of
the distance covariance function . Székely et al. (2007) initially introduced the distance covariance as a
new measure of dependence defined as the weighted L2-norm between the joint characteristic function
of two random vectors of arbitrary, but not necessarily of equal dimensions, and their marginal
characteristic functions. However, the idea of using distance covariance for detecting independence
can be also found in some early work by Feuerverger (1993). He considered measures of this form,
with the main differences being the restriction to the univariate case and the choice of the weight
function. Since Székely et al.’s (2007) work, there has been a wide range of studies extending the
distance covariance definition and methodology in various topics; see Gretton et al. (2009) and Josse
and Holmes (2014) and the references therein for a nice review.

Székely et al.’s (2007) distance covariance methodology is based on the assumption that the
underlying data are iid. However, this assumption is often violated in many practical problems.
Remillard (2009) proposed to extend the distance covariance methodology to a time series context
in order to measure serial dependence. There have been few works on how to develop a distance
covariance methodology in the context of time series (Zhou, 2012; Dueck et al., 2014; Davis et al.,
2016). Motivated by the work of Székely et al. (2007), Zhou (2012) recently defined the so-called auto-
distance covariance function (ADCV) - and its rescaled version, the so-called auto-distance correlation
function (ADCF), for a strictly stationary multivariate time series. Compared to the classical Pearson
autocorrelation function (ACF) which measures the strength of linear dependencies and can be equal
to zero even when the variables are related, ADCF vanishes only in the case where the observations
are independent. However, Zhou (2012) studied the asymptotic behavior of ADCV at a fixed lag
order. Fokianos and Pitsillou (2016a) relaxed this assumption and constructed a univariate test of
independence by considering an increasing number of lags following Hong’s (1999) generalized
spectral domain methodology. Although the proposed methodology is for univariate processes, it can
be extended for multivariate processes.

Zhou (2012) developed a distance covariance methodology for multivariate time series, but he did
not explore the interrelationships between the various time series components. Fokianos and Pitsillou
(2016b) made this possible by defining the matrix version of pairwise auto-distance covariance and
correlation functions. In particular, they construct multivariate tests of independence based on these
new measures in order to identify whether there is some inherent nonlinear interdependence between
the component series.

The energy (Rizzo and Szekely, 2014) package for R is a package that involves a wide range of
functions for the existing distance covariance methodology. However, there is no package for the
aforementioned distance covariance methodology in time series. Thus, we aim at filling this gap by
publishing an R-package named dCovTS. In this first version of the package, we provide functions
that compute and plot ADCV and ADCF using the functions dcov() and dcor() respectively from
energy package. The new testing methodology proposed by Fokianos and Pitsillou (2016a,b) is also
included in the package.

The structure of the paper is as follows. In the first two sections we introduce the theoretical back-
ground of distance covariance function for both univariate and multivariate time series respectively.
In the next section, we briefly state the main results about the asymptotic properties of distance covari-
ance function. The proposed testing methodology for both univariate and multivariate time series are
also described. Empirical p-values of the tests and empirical critical values for the distance correlation
plots are computed via the wild bootstrap methodology (Dehling and Mikosch, 1994; Shao, 2010;
Leucht and Neumann, 2013b) which is explained in the corresponding section. The implementation
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section demonstrates the usage of the package with two real data examples. Lastly, we give some
concluding remarks and some further points for future extensions of the dCovTS package.

Distance covariance function

Denote a univariate strictly stationary time series by {Xt, t ∈ Z}. Motivated by Székely et al. (2007)
and Zhou (2012), we define the distance covariance function as a function of the joint and marginal
characteristic functions of the pair (Xt, Xt+j). Denote by φj(u, v) the joint characteristic function of Xt
and Xt+j; that is

φj(u, v) = E
[
exp

(
i
(

uXt + vXt+j

))]
, j = 0,±1,±2, . . . ,

and the marginal characteristic functions of Xt and Xt+j as φ(u) := φj(u, 0) and φ(v) := φj(0, v)
respectively, where (u, v) ∈ R2, and i2 = −1. For a strictly stationary α-mixing univariate time series,
Hong (1999) defined a new measure of dependence between the joint characteristic function of Xt and
its lagged observation Xt+j and the product of their marginals, namely

σj(u, v) = φj(u, v)− φ(u)φ(v), j = 0,±1,±2, . . . , (1)

where (u, v) ∈ R2. Considering the property that the joint characteristic function factorizes under
independence of Xt and Xt+j, σj(u, v) equals 0 if and only if Xt and Xt+j are independent. Thus,
compared to the classical autocorrelation function (ACF), σj(·, ·) can capture all pairwise dependencies
including those with zero autocorrelation. The auto-distance covariance function (ADCV), VX(j),
between Xt and Xt+j is then defined as the square root of

V2
X(j) =

∫
R2

∣∣∣σj(u, v)
∣∣∣2 dW(u, v), j = 0,±1,±2, . . . (2)

whereW(·, ·) is a positive weight function for which the above integral exists.

Although Hong (1999) suggests the use of an arbitrary integrable weight function, W(·, ·), we
propose the use of a non-integrable weight function, i.e.

W(u, v) =W0(u)W0(v) =
1

π |u|2
1

π |v|2
, (u, v) ∈ R2 (3)

which avoids missing any potential dependence among observations (Székely et al., 2007, p. 2771).
Rescaling (2), one can define the auto-distance correlation function (ADCF) as the positive square root
of

R2
X(j) =

V2
X(j)

V2
X(0)

, j = 0,±1,±2, . . . (4)

for V2
X(0) 6= 0 and zero otherwise. Székely et al. (2007) showed that by applying a non-integrable

weight function, like (3), ADCF is scale invariant and is not zero under dependence.

The empirical ADCV, V̂X(·), is the non-negative square root of

V̂2
X(j) =

1
(n− j)2

n

∑
r,l=1+j

Arl Brl , 0 ≤ j ≤ (n− 1) (5)

and V̂2
X(−j) = V̂2

X(j), for −(n − 1) ≤ j < 0, where A = Arl and B = Brl are Euclidean distance
matrices given by

Arl = arl − ār. − ā.l + ā..,

with arl = |Xr − Xl |, ār. =
(

∑n
l=1+j arl

)
/(n− j), ā.l =

(
∑n

r=1+j arl

)
/(n− j), ā.. =

(
∑n

r,l=1+j arl

)
/(n−

j)2. Brl is defined analogously in terms of brl = |Yr −Yl |, where Yt ≡ Xt+j. Székely and Rizzo (2014)
proposed an unbiased version of the sample distance covariance. In the context of time series data this
is given by

Ṽ2
X(j) =

1
(n− j)(n− j− 3) ∑

r 6=l
Ãrl B̃rl , (6)

for n > 3, where Ãrl is the (r, l) element of the so-called U -centered matrix Ã, defined by
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Ãrl =

 arl −
1

n− j− 2

n

∑
t=1+j

art −
1

n− j− 2

n

∑
s=1+j

asl +
1

(n− j− 1)(n− j− 2)

n

∑
t,s=1+j

ats, r 6= l;

0, r = l.

The empirical ADCF, R̂X(j) (or its unbiased version, R̃X(j)), can be obtained by replacing (5) (or
(6)) into (4). The functions ADCV() and ADCF() in dCovTS return the empirical quantities V̂X(·) and
R̂X(·) respectively. Using the same functions with argument unbiased=TRUE, the results correspond
to the unbiased sqaured quantities Ṽ2

X(·) and R̃2
X(·). Note that the default option has been set to

unbiased=FALSE (corresponding to (5)).

Distance covariance matrix

We denote by {Xt : t = 0,±1,±2, . . . } a d-dimensional time series process, with components {Xt;i}d
i=1.

The characteristic functions can be defined in analogous way as in the univariate case. In particular,
the joint characteristic function of Xt;r and Xt+j;m is given by

φ
(r,m)
j (u, v) = E

[
exp

(
i
(

uXt;r + vXt+j;m

))]
, j = 0,±1,±2, . . .

and the marginal characteristic functions of Xt;r and Xt+j;m by φ(r)(u) := φ
(r,m)
j (u, 0) and φ(m)(v) :=

φ
(r,m)
j (0, v) respectively, with (u, v) ∈ R2, r, m = 1, . . . d and i2 = −1. The pairwise ADCV between

Xt;r and Xt+j;m is denoted by Vrm(j) and it is defined as the non-negative square root of

V2
rm(j) =

∫
R2

∣∣∣σ(r,m)
j (u, v)

∣∣∣2W(u, v)dudv, j = 0,±1,±2, . . .

whereW(·, ·) is given by (3) and σ
(r,m)
j (u, v) is similarly defined as in the univariate case, namely

σ
(r,m)
j (u, v) = φ

(r,m)
j (u, v)− φ(r)(u)φ(m)(v).

Clearly, V2
rm(j) ≥ 0, ∀ j and Xt;r and Xt+j;m are independent if and only if V2

rm(j) = 0. The ADCV
matrix, V(j), is then defined by

V(j) =
[
Vrm(j)

]d

r,m=1
, j = 0,±1,±2, . . . (7)

The pairwise ADCF between Xt;r and Xt+j;m, Rrm(j), is a coefficient that lies in the interval [0, 1]
and also measures dependence and is defined as the positive square root of

R2
rm(j) =

V2
rm(j)√

V2
rr(0)

√
V2

mm(0)
, (8)

for Vrr(0)Vmm(0) 6= 0 and zero otherwise. The ADCF matrix of Xt, is then defined as

R(j) =
[

Rrm(j)
]d

r,m=1
, j = 0,±1,±2, . . .

Vrm(j) measures the dependence of Xt;r on Xt+j;m. In general, Vrm(j) 6= Vmr(j) for r 6= m, since they
measure different dependence structure between the series {Xt;r} and {Xt;m} for all r, m = 1, 2, . . . , d.
Thus, V(j) and R(j) are non-symmetric matrices. Moreover, because of the assumed stationarity and
relation Cov(x, y) = Cov(y, x), V(j) = V′(−j) and consequently R(j) = R′(−j). More properties of
these new defined functions can be found in Fokianos and Pitsillou (2016b).

Estimation of V2
rm(·) can be dealt in a similar way as in the univariate case. In particular, let first

Yt;m ≡ Xt+j;m. Based on the sample {(Xt;r, Yt;m) : t = 1 + j, . . . , n}, we define the Euclidean distance
matrices by (ar

ts) = |Xt;r − Xs;r| and (bm
ts) = |Yt;m −Ys;m| and the centered distance matrices by

Ar
ts = ar

ts − ār
t. − ār

.s + ār
..,

Bm
ts = bm

ts − b̄m
t. − b̄m

.s + b̄m
.. ,

where the quantities in the right hand side are defined analogously as those defined in the univariate
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case. The biased estimator of V2
rm(·) is then given by

V̂2
rm(j) =


1

(n− j)2

n

∑
t,s=1+j

Ar
tsBm

ts , 0 ≤ j ≤ (n− 1);

1
(n + j)2

n+j

∑
t,s=1

Ar
tsBm

ts , −(n− 1) ≤ j < 0.
(9)

Analogously to (6), an unbiased estimator of V̂2
rm(·) is given by

Ṽ2
rm(j) =


1

(n− j)(n− j− 3)

n

∑
t,s=1+j

Ãr
ts B̃m

ts , 0 ≤ j ≤ (n− 1);

1
(n + j)(n + j− 3)

n+j

∑
t,s=1

Ãr
ts B̃m

ts , −(n− 1) ≤ j < 0,
(10)

where Ãr
ts are computed appropriately.

The sample ADCV matrix, V̂(·), is then obtained by replacing its elements by the positive square
root of (9) and can be calculated from dCovTS using the mADCV() function. The estimator based on
(10), Ṽ(·), is obtained from dCovTS using the argument unbiased = TRUE. The package also gives the
sample ADCF matrix R̂(·) (function mADCF()) which is obtained after replacing (9) (or R̃X(j) which is
based on (6)) into (8). The distance correlation plots for both univariate and multivariate time series
are obtained by the ADCFplot() and mADCFplot() functions respectively, where the shown critical
values (blue dotted horizontal line) are computed by employing bootstrap methodology described
in the appropriate section. Recall that these are computed by using the biased definition of distance
covariance and correlation.

Consistency and asymptotic distribution of distance covariance

Consider first the univariate case. For a strictly stationary and α-mixing process Xt, with E |Xt| < ∞,
then for all j = 0,±1,±2, . . .

V̂2
X(j)→ V2

X(j)

almost surely, as n→ ∞. A detailed proof of this result can be found in Fokianos and Pitsillou (2016a).
Under mild conditions, Zhou (2012) obtained the weak consistency of V̂2

X(·) and its asymptotic
distribution at a fixed lag, but under alternative mixing conditions.

In addition, Fokianos and Pitsillou (2016b) showed that for a d-dimensional strictly stationary and
ergodic time series process {Xt} with E |Xt;r| < ∞ for r = 1, . . . , d, then for all j = 0,±1,±2, . . .

V̂(j)→ V(j)

almost surely as n→ ∞. Under pairwise independence, the empirical pairwise ADCV is a degenerate
V-statistic of order two with a measurable kernel function that is symmetric, continuous and positive
semidefinite Then

(n− j)V̂2
X(j)→ Z := ∑

k
λkZ2

k (11)

in distribution, as n → ∞, where {Zk} is an iid sequence of N(0, 1) random variables, and (λk) is a
sequence of nonzero eigenvalues. A similar result showing the limiting distribution of V̂rm(·) can be
obtained by replacing V̂X(·) by V̂rm(·) in (11).

Testing for pairwise dependence in univariate time series

As shown in the previous section, the asymptotic distribution of distance covariance is derived
at a fixed lag, for both univariate and multivariate time series. Fokianos and Pitsillou (2016a,b)
constructed the asymptotic behavior of distance covariance considering an increasing number of lags
by employing Hong’s (1999) generalized spectral domain methodology. Hong (1999) highlighted that
standard spectral density approaches become inappropriate for non-Gaussian and nonlinear processes
with zero autocorrelation. Considering a univariate strictly stationary α-mixing process, he proposed
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the generalized spectral density, which is the Fourier transform of σj(u, v) defined in (1), given by

f (ω, u, v) =
1

2π

∞

∑
j=−∞

σj(u, v)e−ijω .

Under the null hypothesis of independence, the corresponding null density is given by

f0(ω, u, v) =
1

2π
σ0(u, v), ω ∈ [−π, π].

Any deviation of f from f0 is a strong evidence of pairwise dependence. Thus, Hong (1999) compares
the Parzen’s (1957) kernel-type estimators f̂ (ω, u, v) and f̂0(ω, u, v) via an L2-norm resulting in a test
statistic of the form

T(2)
n =

∫
R2

n−1

∑
j=1

(n− j)k2(j/p)
∣∣∣σ̂j(u, v)

∣∣∣dW(u, v), (12)

whereW(·, ·) : R2 → R is an arbitrary nondecreasing function with bounded total variation, p is a
bandwidth of the form p = cnλ for c > 0 λ ∈ (0, 1) and k(·) is a Lipschitz-continuous kernel function
satisfying the following assumption:

Assumption 1. k : R→ [−1, 1] is symmetric and is continuous at 0 and at all but a finite number of
points, with k(0) = 1,

∫ ∞
−∞ k2(z)dz < ∞ and |k(z)| ≤ C |z|−b for large z and b > 1/2.

The function kernelFun() in dCovTS computes a number of such kernel functions including the
truncated (default option), Bartlett, Daniell, QS and Parzen kernels.

Fokianos and Pitsillou (2016a) proposed a portmanteau type statistic based on ADCV

Tn =
n−1

∑
j=1

(n− j)k2(j/p)V̂2
X(j). (13)

Under the null hypothesis that the data are iid and some further assumptions about the kernel function
k(·), the standardized version of Tn follows a N(0, 1) asymptotically, and it is consistent. The authors
also considered a similar test statistic based on ADCF

n−1

∑
j=1

(n− j)k2(j/p)R̂2
X(j). (14)

The function UnivTest from dCovTS package performs univariate tests of independence based on
(13) and its rescaled version (14), using the arguments testType = "covariance" and testType =
"correlation" respectively.

Testing for pairwise dependence in multivariate time series

Following a similar methodology described in the previous section, Fokianos and Pitsillou (2016b)
suggested a test statistic suitable for testing pairwise independence in a multivariate time series
framework. The proposed test statistic is based on the ADCV matrix (7), and it is given by

T̃n =
n−1

∑
j=1

(n− j)k2(j/p)trV̂∗(j)V̂(j). (15)

where k(·) is a univariate kernel function satisfying Assumption 1, p is a bandwidth as described
before. Moreover, V̂∗(·) denotes the complex conjugate matrix of V̂(·) and tr(A) denotes the trace of
the matrix A. The authors formed the statistic (15) in terms of the ADCF matrix as follows

Tn =
n−1

∑
j=1

(n− j)k2(j/p)trV̂∗(j)D̂−1V̂(j)D̂−1, (16)

where D = diag{Vrr(0), r = 1, 2, . . . , d}. Under the null hypothesis of independence and some
further assumptions about the kernel function k(·), the standardized version of the test statistics T̃n
and Tn given in (15) and (16) were proved to follow N(0, 1) asymptotically and they are consistent.
The multivariate tests of independence based on T̃n and Tn are performed via mADCVtest() and
mADCFtest() respectively in dCovTS package.
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Table 1: Functions in dCovTS

Function Description
ADCF, mADCF Estimates distance correlation for a univariate and multivariate

time series respectively
ADCV, mADCV Estimates distance covariance for a univariate and multivariate

time series respectively
ADCFplot, mADCFplot Plots sample distance correlation in a univariate and multivariate

time series framework respectively
kernelFun Gives a range of univariate kernel function, k(·), that satisfy As-

sumption 1
UnivTest Performs a univariate test of independence based on Tn
mADCFtest, mADCVtest Perform multivariate tests of independence based on Tn and T̃n

respectively

Bootstrap methodology

To examine the asymptotic behavior of the proposed test statistics, a resampling method is proposed.
First, recall that all test statistics Tn, T̃n and Tn of equations (13), (15) and (16) respectively, are
functions of degenerate V- statistics of order two. Dehling and Mikosch (1994) proposed wild bootstrap
techniques to approximate the distribution of degenerate U-statistics for the case of iid data. Recently,
Leucht and Neumann (2013a,b) suggested the use of a new variant of dependent wild bootstrap (Shao,
2010) to approximate the limit distribution of degenerate U- and V-statistics for dependent data. The
method relies on generating auxiliary random variables (W∗tn)

n−j
t=1 . Shao (2010) highlighted that the

methodology of wild bootstrap for time series extends that of Wu (1986) by allowing the auxiliary
random variables W∗tn to be dependent. In particular, Leucht and Neumann (2013b) proposed to
generate the sequence W∗tn by a first order autoregressive model. In the case of independent data,
Dehling and Mikosch (1994) studied the wild bootstrap methodology by employing independent
auxiliary variables W∗tn. Because our focus is on testing independence we implement the calculation of
the test statistics by using W∗tn iid standard normal random variables. Thus, the empirical p-values of
the tests are derived based on this methodology.

We also suggest the use of independent wild bootstrap for obtaining simultaneous 95% empirical
critical values for the distance correlation plots. In the case of a univariate time series, we additionally
propose the subsampling approach suggested by Zhou (2012, Section 5.1) for computing the pairwise
95% critical values (argument method = "Subsampling"). The choice of the subsampling block size is
based on the minimum volatility method proposed by Politis et al. (1999, Section 9.4.2). In addition,
the package provides the ordinary independent bootstrap methodology to derive empirical p-values of
the tests and simultaneous 95% critical values for the ADCF plots (argument method = "Independent
Bootstrap"). The default bootstrap method provided to the user is the independent wild bootstrap
technique.

The computation of the bootstrap replications, and thus the empirical p-values and the critical
values, can be distributed to multiple cores simultaneously (argument parallel = TRUE). To do this,
the doParallel (Analytics and Weston, 2015) package needs to be installed first, in order to register a
computing cluster.

Implementation of dCovTS package

The current version of dCovTS package (version number 1.1) is available from CRAN and can
be downloaded via https://cran.r-project.org/web/packages/dCovTS/. The aim of the dCovTS
package is to provide a set of functions that compute and plot distance covariance and correlation
functions in both univariate and multivariate time series. As we mentioned, the package supports
both versions of biased and unbiased estimators of distance covariance and correlation functions.
Moreover, it offers functions that perform univariate and multivariate tests of independence based
on distance covariance function using the biased estimator (corresponding to (5) and (9)). All these
functions are provided in Table 1. Apart from these functions, the package also provides two real
datasets listed in Table 2. A more detailed description of the functions and datasets can be found in
the help files. We apply dCovTS to two real data examples.
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Table 2: Datasets in dCovTS

Data Description
ibmSp500 Monthly returns of IBM and S&P 500 composite index from Jan-

uary 1926 to December 2011
MortTempPart Mortality, temperature and pollution data measured daily in Los

Angeles County over the period 1970-1979

Regression with autocorrelated errors

We first consider the pollution, temperature and mortality data measured daily in Los Angeles County
over the 10 year period 1970-1979 (Shumway et al., 1988). The data are available in our package by
the argument MortTempPart and contain 508 observations and 3 variables representing the mortality
("cmort"), temperature ("tempr") and pollutant particulates ("part") data.

library(dCovTS)
data(MortTempPart)
MortTempPart[1:10,] # the first ten observations
## cmort tempr part
## 1 97.85 72.38 72.72
## 2 104.64 67.19 49.60
## 3 94.36 62.94 55.68
## 4 98.05 72.49 55.16
## 5 95.85 74.25 66.02
## 6 95.98 67.88 44.01
## 7 88.63 74.20 47.83
## 8 90.85 74.88 43.60
## 9 92.06 64.17 24.99
## 10 88.75 67.09 40.41
attach(MortTempPart)

Following the analysis of Shumway and Stoffer (2011), the possible effects of temperature (Tt) and
pollutant particulates (Pt) on daily cardiovascular mortality (Mt) are examined via regression. In
particular, once the temperature is adjusted for its mean (T. = 74.3), we fit the following regression
model using the function lm()

M̂t = 2831.49− 1.396(0.101)t− 0.472(0.032) (Tt − T.)

+ 0.023(0.003) (Tt − T.)2 + 0.255(0.019)Pt, (17)

where the standard errors of the estimators are given in parentheses. Figure 1 provides the sample
autocorrelation (ACF), partial correlation (PACF) and ADCF plots of the residuals of model (17). The
plots shown in Figure 1 suggest an AR(2) process for the residuals. The new fit is

M̂t = 3075.15− 1.517(0.423)t− 0.019(0.050)(Tt − T.)

+ 0.015(0.002)(Tt − T.)2 + 0.155(0.027)Pt, (18)

where the standard errors of the estimators are given in parentheses. The above model fit was derived
by using the arima() function of R. The correlation plots for the residuals from the new model (18)
are shown in Figure 2 indicating that there is no serial dependence. The calls for both model fits and
their diagnostic plots are given below. ADCF plots (lower plots of Figures 1 and 2) are constructed
using both resampling schemes explained in the previous section: independent wild bootstrap (with
b = 499 replications) and subsampling.

temp <- tempr - mean(tempr) # center temperature
temp2 <- temp^2
trend <- time(cmort)
fit <- lm(cmort ~ trend + temp + temp2 + part, na.action = NULL)
Residuals <- as.numeric(resid(fit))
##Correlation plots
acf(Residuals, lag.max = 18,main = "")
pacf(Residuals, lag.max = 18,main = "")
ADCFplot(Residuals, MaxLag = 18, main = "Wild Bootstrap", method = "Wild")
ADCFplot(Residuals, MaxLag = 18, main = "Subsampling", method = "Subsampling")
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Figure 1: Sample ACF, PACF and ADCF plots of the mortality residuals of model (17).

fit2 <- arima(cmort, order =c(2, 0, 0), xreg = cbind(trend, temp, temp2, part))
Residuals2 <- as.numeric(residuals(fit2))
##Correlation plots
acf(Residuals2, lag.max = 18, main = "")
pacf(Residuals2, lag.max = 18, main = "")
ADCFplot(Residuals2, MaxLag = 18, main = "Wild Bootstrap", method = "Wild")
ADCFplot(Residuals2, MaxLag = 18, main = "Subsampling", method = "Subsampling")

To formally confirm the absence of any serial dependence among the new residuals of model (18), as
shown in Figure 2, we perform univariate tests of independence based on the test statistic Tn given
in (13). We use the UnivTest() function from our package with argument testType = "covariance"

(default option). In order to examine the effect of using different bandwidths, we choose p =
[
3nλ

]
for λ = 0.1, 0.2 and 0.3, that is p = 6, 11, and 20, and we apply Bartlett kernel. The resulting p-values
are 0.118, 0.170 and 0.208 respectively suggesting acceptance of independence. We calculated p-values
for b = 499 independent wild bootstrap replications. The bootstrap procedure can be computed on
multiple cores simultaneously by using the argument parallel = TRUE (they take about 10, 14 and 23
seconds respectively on a standard laptop with Intel Core i5 system and CPU 2.30 GHz):

UnivTest(Residuals2, type = "bartlett", p = 6, b = 499, parallel = TRUE)

## Univariate test of independence based on distance covariance
##
## data: Residuals2, kernel type: bartlett, bandwidth=6, boot replicates 499
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Figure 2: Sample ACF, PACF and ADCF plots of the mortality residuals of model (18) indicating that
the new residuals can be taken as white noise.

## Tn = 67.7344, p-value = 0.118

UnivTest(Residuals2, type = "bartlett", p = 11, b = 499, parallel = TRUE)

## Univariate test of independence based on distance covariance
##
## data: Residuals2, kernel type: bartlett, bandwidth=11, boot replicates 499
## Tn = 125.6674, p-value = 0.170

UnivTest(Residuals2, type = "bartlett", p = 20, b = 499, parallel = TRUE)

## Univariate test of independence based on distance covariance
##
## data: Residuals2, kernel type: bartlett, bandwidth=20, boot replicates 499
## Tn = 225.9266, p-value = 0.208

We compare the proposed test statistic with other test statistics to check its performance. In particular,
we consider the Box-Pierce (Box and Pierce, 1970) test statistic

BP = n
p

∑
j=1

ρ̂2(j),
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the Ljung-Box (Ljung and Box, 1978) test statistic

LB = n(n + 2)
p

∑
j=1

(n− j)−1ρ̂2(j),

the test statistic proposed by Hong (1996)

T(1)
n = n

n−1

∑
j=1

k2(j/p)ρ̂2(j)

and the test statistic T(2)
n proposed by Hong (1999) defined in (12) withW(u, v) = Φ(u)Φ(v), and Φ(·)

being the cumulative distribution function of standard normal. For the aforestated bandwidth values,
all these alternative test statistic give large p-values indicating the absence of any serial dependence
among the new residuals. More precisely, BP and LB give 0.848, 0.906, 0.170 and 0.844, 0.901, 0.142
respectively. BP and LB based tests are performed in R by the function Box.test() as follows:

box1 <- Box.test(Residuals2, lag = 6)
box2 <- Box.test(Residuals2, lag = 11)
box3 <- Box.test(Residuals2, lag = 20)
ljung1 <- Box.test(Residuals2, lag = 6, type = "Ljung")
ljung2 <- Box.test(Residuals2, lag = 11, type = "Ljung")
ljung3 <- Box.test(Residuals2, lag = 20, type = "Ljung")

The p-values obtained by T(1)
n are 0.896, 0.930 and 0.870 respectively. T(2)

n gives the following p-values:

0.854, 0.752 and 0.504 respectively. T(1)
n and T(2)

n are calculated by employing the Bartlett kernel. These
p-values are calculated for b = 499 ordinary bootstrap replications. The R functions for constructing
these test statistics are beyond the scope of this paper and are available from the authors upon request.

Bivariate financial time series

We now analyze the monthly log returns of the stocks of International Business Machines (IBM) and the
S&P 500 composite index starting from 30 September 1953 to 30 December 2011 for 700 observations.
A larger dataset is available in our package by the object ibmSp500 starting from January 1926 for 1032
observations. It is actually a combination of two smaller datasets: the first one was first reported by
Tsay (2010) and the second one was first reported by Tsay (2014). ACF and ADCF plots of the original
series are provided in Figure 3, whereas Figure 4 shows the ACF and ADCF plots of the squared series.

The R commands for constructing these plots are as follows:

data(ibmSp500)
new_data <- tail(ibmSp500[,2:3], 700)
series <- log(new_data + 1)
t=scale(lseries, center = TRUE, scale = FALSE)
t2 <- at^2
olnames(at) <- c("IBM", "SP")
olnames(at2) <- c("IBM_sq", "SP_sq")
cf(at, lag.max = 18)
cf(at2, lag.max = 18)
ADCFplot(at, MaxLag = 18, ylim = c(0, 0.2))
ADCFplot(at2, MaxLag = 18, ylim = c(0, 0.2))

The ACF plots of the original series (upper panel of Figure 3) suggest no serial correlation among
observations, while the ACF plots of the squared series (upper panel of Figure 4) imply strong
dependence. This confirms the conditional heteroscedasticity in the monthly log returns. However, the
ADCF plots for both original and squared series (lower panels of Figures 3 and 4) suggest dependence.

Indeed, choosing p =
[
3nλ

]
for λ = 0.1, 0.2 and 0.3, that is p = 6, 12 and 22, and employing Bartlett

kernel, Tn gives low p-values (0.022, 0.014 and 0.020 respectively). The calls for these three multivariate
tests of independence can be found below (they take about 2, 3 and 6 minutes respectively for b = 499
bootstrap replications on a standard laptop with Intel Core i5 system and CPU 2.30 GHz):

mADCFtest(at, "bartlett", p = 6, b = 499, parallel = TRUE)
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Figure 3: (a) The sample ACF of the original series. (b) The sample ADCF of the original series.
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Figure 4: (a) The sample ACF of the squared series. (b) The sample ADCF of the squared series.
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## Multivariate test of independence based on distance correlation
##
## data: at, kernel type: bartlett, bandwidth=6, boot replicates 499
## Tnbar = 34.1743, p-value = 0.022

mADCFtest(at, "bartlett", p = 12, b = 499, parallel = TRUE)

## Multivariate test of independence based on distance correlation
##
## data: at, kernel type: bartlett, bandwidth=12, boot replicates 499
## Tnbar = 71.1713, p-value = 0.014

mADCFtest(at, "bartlett", p = 22, b = 499, parallel = TRUE)

## Multivariate test of independence based on distance correlation
##
## data: at, kernel type: bartlett, bandwidth=22, boot replicates 499
## Tnbar = 122.9424, p-value = 0.02

To compare the performance of the proposed test statistic Tn, we consider the multivariate Ljung-Box
statistic (Hosking, 1980) defined by:

mLB = n2
p

∑
j=1

(n− j)−1tr{Γ̂′(j)Γ̂−1(0)Γ̂(j)Γ̂−1(0)}

where Γ̂(·) is the ordinary covariance matrix. In contrast to the Mn’s results, mLB gives large p-values
(0.218, 0.731 and 0.525) respectively. The portes (Mahdi and McLeod, 2012) package needs to be
installed in order to perform tests of independence based on mLB statistic:

> library(portes)
> LjungBox(at, c(6, 12, 22))

Assuming that the bivariate log returns follows a VAR model and employing the AIC to choose its
best order, we obtain that a VAR(2) model fits the data well. Figure 5 shows the ACF plots (upper
panel) and ADCF plots (lower panel) of the residuals after fitting a VAR(2) model to the original
bivariate log return series using the function VAR() from the MTS (Tsay, 2015) package. In contrast
to the ACF plot, the ADCF plot still indicates some dependence among the residuals. Constructing
tests of independence based on Tn and mLB for the same choices of bandwidth, p = 6, 12, 22, we
confirm this visual result. In particular, employing a Bartlett kernel, Tn statistic gives low p-values
(0.036, 0.018 and 0.034 respectively) whereas the mLB statistic yields large p-values (0.669, 0.958 and
0.806 respectively). The calls for the plots of Figure 5 and the corresponding tests of independence are
as follows:

library(MTS)
model <- VAR(at, 2)
resids <- residuals(model)
colnames(resids) <- c("IBM_res", "SP_res")
windows(9, 6)
acf(resids, lag.max = 18)
mADCFplot(resids, MaxLag = 18, ylim = c(0, 0.13))

## Tests of independence based on \overline{T}_n
mADCFtest(resids, "bartlett", p = 6, b = 499, parallel = TRUE)

## Multivariate test of independence based on distance correlation
##
## data: resids, kernel type: bartlett, bandwidth=6, boot replicates 499
## Tnbar = 29.9114, p-value = 0.036

mADCFtest(resids, "bartlett", p = 12, b = 499, parallel = TRUE)

## Multivariate test of independence based on distance correlation
##
## data: resids, kernel type: bartlett, bandwidth=12, boot replicates 499

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

https://CRAN.R-project.org/package=portes
https://CRAN.R-project.org/package=MTS


CONTRIBUTED RESEARCH ARTICLES 337

(a)

0 5 10 15

0.
0

0.
4

0.
8

Lag

A
C

F

IBM_res

0 5 10 15

0.
0

0.
4

0.
8

Lag

IBM_res & SP_res

−15 −10 −5 0

0.
0

0.
4

0.
8

Lag

A
C

F

SP_res & IBM_res

0 5 10 15

0.
0

0.
4

0.
8

Lag

SP_res

(b)

0 5 10 15

0.
00

0.
04

0.
08

0.
12

IBM_res

Lag

A
D

C
F

0 5 10 15

0.
00

0.
04

0.
08

0.
12

IBM_res & SP_res

Lag

A
D

C
F

0 5 10 15

0.
00

0.
04

0.
08

0.
12

SP_res & IBM_res

Lag

A
D

C
F

0 5 10 15

0.
00

0.
04

0.
08

0.
12

SP_res

Lag

A
D

C
F

Figure 5: (a) The sample ACF and (b) sample ADCF of the residuals after fitting VAR(2) model to the
original series.
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## Tnbar = 64.7754, p-value = 0.018

mADCFtest(resids, "bartlett", p = 22, b = 499, parallel = TRUE)

## Multivariate test of independence based on distance correlation
##
## data: resids, kernel type: bartlett, bandwidth=22, boot replicates 499
## Tnbar = 115.3462, p-value = 0.034

## Tests of independence based on mLB
LjungBox(resids, c(6, 12, 22))

Summary and further research

There have been many works in the literature based on Székely et al.’s (2007) distance covariance
methodology. The R package energy (Rizzo and Szekely, 2014), provides functions that cover this
methodology. However, there is no published package that includes functions about distance covari-
ance for time series data. dCovTS contributes to filling this gap by providing functions that compute
distance covariance and correlation functions for both univariate and multivariate time series. We
also include functions that develop univariate and multivariate tests of serial dependence based on
distance covariance and correlation functions.

There is a number of possible extensions of this package, and some of them are not covered by
existing theory and can be seen as further research. One possible direction is to develop a theory based
on partial ADCV or conditional ADCV and a related testing methodology to identify possible depen-
dencies among time series (see Székely and Rizzo (2014) for partial distance covariance methodology
and Poczos and Schneider (2012), Wang et al. (2015) for conditional distance covariance methodology;
all three works deal with independent random variables). Among the many applications of partial
correlation are graphical models. Thus, a graphical modeling theory based on partial ADCV could be
carried out and this methodology can be included for a future version of this package.
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comf: An R Package for Thermal Comfort
Studies
by Marcel Schweiker

Abstract The field of thermal comfort generated a number of thermal comfort indices. Their code
implementation needs to be done by individual researchers. This paper presents the R package, comf,
which includes functions for common and new thermal comfort indices. Additional functions allow
comparisons between the predictive performance of these indices. This paper reviews existing thermal
comfort indices and available code implementations. This is followed by the description of the R
package and an example how to use the R package for the comparison of different thermal comfort
indices on data from a thermal comfort study.

Introduction

Since the 1960’s, researchers in the field of thermal comfort generated a number of thermal comfort
indices (see 44.1.1 for details). The three most common indices are the predicted mean vote (PMV)
introduced by Fanger (1970), the standard effective temperature (SET) by Gagge et al. (1986), and the
adaptive comfort equation as presented e.g. in DIN EN 15251 (2012) and ASHRAE (2013). The latter is
based on the work of Auliciems (1981a), de Dear et al. (1997), Nicol and Humphreys (2002) and others.

The purpose of these indices is the prediction of a) thermally acceptable indoor conditions or
b) the evaluation of indoor conditions by a group of persons. The calculation procedures and/or
equations for the indices are described in the literature they are introduced. However, in most cases
the code implementation needs to be done by each researcher individually. Such process is a source
for errors; chances are high that the codes of two researchers do not lead to the same outcome given
identical input parameters. Therefore, I introduce the R package, comf, that enables the calculation
of the most common thermal comfort indices and several new indices. The objective is to create a
publicly available reference for comparisons and benchmarking.

Additional functions of this package allow a comparison between the outcome of those indices
compared to subjective evaluations obtained by a given sample of occupants in a building. Such
evaluation of the indices performance is seldom found in thermal comfort research. Given the
increasing number of indices, such comparison needs to be done more often in order to judge under
which circumstances which index performs best (Schweiker and Wagner, 2015, 2016).

In this paper, existing thermal comfort indices are reviewed together with available tools and code
implementations for their calculation. This is followed by the introduction of the R package, comf,
and an example application to an existing dataset.

Review of thermal comfort indices

Table 1 gives an overview of the indices dealt with in this article or included in the R package, comf.
Thereby, this list is not exclusive given the high number of additional comfort indices.

The indices can be grouped according to their outcome in those predicting

• a mean vote on the 7-point thermal sensation scale,

• a neutral or comfortable temperature, or

• other values related to the perception of the thermal indoor environment.

The 7-point thermal sensation scale is the standard scale for the assessment of thermal perception
given to subjects and is coded −3 cold, −2 cool, −1 slightly cool, 0 neither cold nor warm, +1 slightly
warm, +2 warm, +3 hot (ISO 7726, 1998). Traditionally, this scale was used as categorical scale, but
recent studies are using either a categorical or a continuous version (Schweiker et al., 2016a).

The neutral temperature is a set of operative temperatures evaluated in average as neutral (neither
cold nor warm) on the 7-point thermal sensation scale (Auliciems, 1981b; Humphreys, 1978). Some-
times, this is also referred to as comfortable temperature (Schweiker et al., 2016a). Additional members
of this group of indices are the adaptive comfort temperatures (Brager and de Dear, 2001; Nicol and
Humphreys, 2010)

The other values are e.g. related to the thermal strain of an individual due to the indoor thermal
environment (Gagge et al., 1986), the exergy consumption rate of the human body (Shukuya, 2009), or
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Index Input variables1 Output Reference

PMV ta, tr, rh, vel, clo,
met

Predicted mean vote
(−3 to +3)

(Fanger, 1970)

PMVadj ta, tr, rh, vel, clo,
met

Predicted mean vote
(−3 to +3)

(ASHRAE, 2013;
Schiavon et al.,
2014)

ePMV ta, tr, rh, vel, clo,
met, e or asv

Predicted mean vote
(−3 to +3)

(Fanger and Tof-
tum, 2002)

aPMV ta, tr, rh, vel, clo,
met, λ or asv

Predicted mean vote
(−3 to +3)

(Yao et al., 2009)

ATHBpmv ta, tr, rh, vel, met,
trm, psych

Predicted mean vote
(−3 to +3)

(Schweiker and
Wagner, 2015)

PTS ta, tr, rh, vel, clo,
met

Predicted thermal sensa-
tion (−3 to +3)

(McIntyre, 1980)

PTSe ta, tr, rh, vel, clo,
met, e or asv

Predicted thermal sensa-
tion (−3 to +3)

(Gao et al., 2015)

PTSa ta, tr, rh, vel, clo,
met, λ or asv

Predicted thermal sensa-
tion (−3 to +3)

(Gao et al., 2015)

ATHBpts ta, tr, rh, vel, met,
trm, psych

Predicted thermal sensa-
tion (−3 to +3)

(Schweiker and
Wagner, 2016)

tAdapt15251 trm Adaptive comfort tempera-
ture

(DIN EN 15251,
2012; Nicol and
Humphreys, 2010)

tAdaptASHRAE tmmo Adaptive comfort tempera-
ture

(Brager and
de Dear, 2001)

tnAuliciems ta, tmmo Neutral temperature (Auliciems, 1981b)
tnHumphreysNV tmmo Neutral temperature in

natural-ventilated build-
ings

(Humphreys, 1978)

tnHumphreysAC tmmo Neutral temperature in
climate-controlled build-
ings

(Humphreys, 1978)

PPD ta, tr, rh, vel, clo,
met

Predicted percentage dissat-
isfied (0 to 100)

(Fanger, 1970)

SET ta, tr, rh, vel, clo,
met

Standard effective tempera-
ture

(Gagge et al., 1986)

dTNZ ta, vel, clo, met Distance to thermoneutral
zone

(Kingma et al.,
2016)

Ex ta, tr, rh, vel, clo,
met, tao, rho

Human body exergy con-
sumption rate

(Shukuya, 2009)

1ta = air temperature; tr = radiant temperature; rh = relative humidity; vel = air velocity; clo = clothing insulation
level; met = metabolic rate; tao = outdoor air temperature; rho = outdoor relative humidity; trm = running mean
outdoor temperature; tmmo = monthly mean outdoor temperature; e = expectancy factor; λ = adaptive coefficient;
psych = factor related to psychological adaptation; asv = actual sensation vote

Table 1: Thermal comfort indices included in the R package, comf, their input variables, output
description, values, and references
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the distance of observed operative temperature or mean skin temperature to the thermoneutral zone
(Kingma et al., 2016) and will be explained below.

The first group of indices predicting a mean vote on the thermal sensation scale consists of the
PMV-index and its alterations (s. below) together with the predicted thermal sensation (PTS) based on
the SET-index and corresponding adjusted versions.

The PMV index is based on the assumption that comfortable conditions are perceived when
there is a balance between the heat generated by the metabolism and the heat lost or gained through
convection, radiation, and evaporation (Fanger, 1970).

Alterations to the PMV-index are

• the adjusted PMV (PMVadj), which modifies the PMV model for elevated air velocities (ASHRAE,
2013; Schiavon et al., 2014),

• the ePMV, which uses the expectancy factor, e, to account for variations in the expectation of
people (Fanger and Toftum, 2002),

• the aPMV, which alters the PMV based on an adaptive coefficient, λ, which represents the sum
of behavioural, physiological, and psychological adaptation (Yao et al., 2009), and

• the ATHBpmv, which adjusts the input values for clothing level and metabolic rate based on
individual equations for the three just mentioned adaptive processes (Schweiker and Wagner,
2015).

In order to calculate the PTS it is necessary to calculate the SET first (s. below). Then, PTS can be
calculated through the equation (McIntyre, 1980):

PTS = .25 · SET − 6.03. (1)

Adjusted versions of the PTS are parallel to the alterations to PMV,

• the PTSe using the expectancy factor (Gao et al., 2015),

• the PTSa using the adaptive coefficient (Gao et al., 2015), and

• the ATHBpts changing the input values of clothing level and metabolic rate for the calculation
of SET (Schweiker and Wagner, 2016).

The second group of indices consists of the adaptive comfort equations given e.g. in DIN EN
15251 (2012) and Brager and de Dear (2001) as well as the equations for the neutral temperatures by
Auliciems (1981b) and Humphreys (1978). Both types of equations calculate the indoor environmental
temperature to be evaluated as neutral on the 7-point thermal sensation scale or as comfortable.

The third group consists of the predicted percentage of dissatisfied (PPD), the SET, the distance to
the thermoneutral zone (dTNZ), and the exergy consumption rate (Ex).

The predicted percentage of dissatisfied (PPD) is calculated based on the PMV value as described
in Fanger (1970) by

PPD = 100− 95e[−(.3353·PMV4+.2179·PMV2)]. (2)

The SET is "the temperature of an imaginary environment at 50% relative humidity, <0.1 m/s
average air speed, and mean radiant temperature equal to average air temperature, in which total heat
loss from the skin of an imaginary occupant with an activity level of 1.0 met and a clothing level of 0.6
clo is the same as that from a person in the actual environment, with actual clothing and activity level"
(ASHRAE, 2013) and is based on the work by Gagge and his group (Gagge et al., 1986).

The dTNZ was introduced by Kingma et al. (2016) and presents a biophysical approach to predict
thermal sensation. Similar to the ATHB, the dTNZ is a new concept and still needs to be further
evaluated. The same is true for the concept of Ex. A lower Ex was shown to be related to conditions
regarded as thermally comfortable. Schweiker et al. (2016b); Simone et al. (2011) demonstrated that
there is a relationship between Ex, thermal sensation, and thermal acceptance.

Existing software and tools

Only few of the thermal comfort indices can be calculated with existing tools. Table 2 gives an overview
of existing software, applications, and code implementations. In addition, several building energy
performance simulation programs, e.g. Energy+, do offer the option to calculate the PMV value or
other value.
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Name Type Comfort indices Link/Source

ASHRAE
Thermal
Comfort
Tool

Software PMV, PMVadj, PPD,
SET, Tadapt

https://www.ashrae.
org/resources--
publications/
bookstore/thermal-
comfort-tool

CBE comfort
tool

Web application PMV/PMVadj,
PPD, SET, Tadapt

http://comfort.cbe.
berkeley.edu/1, Foun-
tain and Huizenga (1995);
Schiavon et al. (2014)

USYD home-
page

Web application PMV, PPD, SET, ET,
+ 2

http://web.arch.usyd.
edu.au/~rdedear/

ISO 7730 Code snippets in
BASIC

PMV, PPD
ISO 7730 (2005)

Gagge et al. Code snippets in
FORTRAN

SET, ET, + 2

Gagge et al. (1986)

ASHRAE
PMV

Code snippets in
BASIC

PMV, PPD
ASHRAE (2013)

ASHRAE
SET 3

Code snippets in
Java

SET
ASHRAE (2013)

Schweiker et
al.

Code snippets in R HbExUnSt
Schweiker et al. (2016b)

Shukuya Excel sheet HbExUnSt Shukuya

1The source code is available at https://github.com/CenterForTheBuiltEnvironment/comfort_tool
2+ = and other indices
3A version of SET fit for adjusting PMV to higher air velocities

Table 2: Existing applications, software, and code snippets for the calculation of thermal comfort
indices

Notable exceptions are the calculations of the most common indices: a BASIC code is given in ISO
7730 (2005) for the calculation of PMV and PPD and a FORTRAN code for the calculation of SET was
presented in Gagge et al. (1986). Recently a JavaScript-version for SET calculation was included in
ASHRAE (2013). However, this version does not use the full code for calculation of SET by Gagge
et al. (1986) or Fountain and Huizenga (1995), but a modified version. The difference is that for the
SET-code used in ASHRAE (2013), the part related to convection from metabolically-generated air
movement has been removed. This was done in order to have a smooth transition from original PMV
values up to .15 m/s of air velocity to the adjusted PMV values starting above this air velocity.

Another source for code implementations is the source code of the CBE comfort tool, which is
available at https://github.com/CenterForTheBuiltEnvironment/comfort_tool. This includes code
in JavaScript and Python for the calculation of PMV, PMVadj, the adaptive comfort temperature and
range, and the modified SET calculation as described in ASHRAE (2013).

Introduction to the package comf

The idea behind the R package, comf is to support researchers in the field of thermal comfort not only
through publicly available code implementations for the calculation of comfort indices in R, but also
through additional functions. Therefore, the main functions of this package can be grouped into those
related to

• the preparation of a dataset and transformation of physical variables,

• the calculation of one or more comfort indices (see Table 1), and

• the evaluation of the performance of a comfort index.
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Preparation of a dataset and conversion of physical variables

Each thermal comfort index requires different input parameters. Therefore, the R package, comf, offers
two procedures in order to prepare a dataset to be used as input to the calculation of one or more
thermal comfort indices.

The first procedure starts with calling the function createCond. This function creates a list with
standard values for the variables required for all comfort indices included in this package. Own data
or further adjustments to these values could be done as follows:

install.packages("comf_0.1.6.tar.gz", repos=NULL, type="source")
library(comf)

lsCond <- createCond()
lsCond$ta <- 21:30
lsCond$rh <- 51:60
lsCond$met <- 1.0

It is important that the length of vectors assigned to the elements of this list are either 1 or do have
the same length. In above example, it is not possible to assign a vector with 11 items to ta, the indoor
air temperature, and a vector with 10 items to rh, the relative humidity indoors.

The second procedure starts with a dataframe containing all variables to be used for the calculation.
This procedure requires the user to know the required variables. This dataframe can then be transferred
into a list or used directly.

ta <- 21:30
rh <- 51:60
met <- 1.0
dfCond <- data.frame(ta, rh, met)
lsCond2 <- as.list(dfCond)

In addition, comf offers a variety of small functions to convert variables from one type to another.
This includes among others

• calcDewp, which calculates the dew point temperature, given air temperature and relative
humidity,

• calcEnth, which calculates the enthalpy of the air, given air temperature, relative humidity, and
barometric pressure,

• calcRH, which calculates the relative humidity of air, given air temperature, mixing ratio, and
barometric pressure,

• calcTroin, which calculates the operative and radiant temperature for standard globe measure-
ments according to ISO 7726 (1998), given air temperature, globe temperature, air velocity, and
metabolic rate.

Calculating one or more comfort indices

Before the preparation of a dataset, it is important to know that the structure of the input to functions for
the calculation of one specific index such as calcATHB differs to that of the main function, calcComfInd.
The latter requires a list or data frame with variables as described below, while the former works with
vectors or data frames.

There are again two possibilities to calculate one or more comfort indices.

The first one uses the main function of this package, calcComfInd. This function requires a list or
data frame of variables together with a vector of comfort indices to be calculated, e.g. request="all"
to calculate all indices or request=c("ATHBpmv","pmv") to calculate these two. The list of variables can
consist of one item per variable or several items per variable, i.e. one value for each input parameter,
or for some parameters 234 values and for the others one parameter. The rationale behind this is that
very often, variables such as age, gender, or metabolic rate do not differ in a given dataset, while others
like the indoor air temperature are different for each case. A complete list of indices to be calculated
can be found in the help file of calcComfInd or obtained calling listOfRequests().

The function calcComfInd checks whether there is only one or more values for each variable and
whether all variables required for the thermal comfort index to be calculated exist in the list. In case
one or more required variables do not exist, the index is calculated using pre-defined standard values
for these variables. In such case a warning is given at the end of the calculation in order to inform the
user about the missing variable(s) and the value(s) used for the calculation.
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# using lsCond from above does not produce a warning
calcComfInd(lsCond, request="all")

# using lsCond2 from above displays 31 warnings which report
# the corresponding standard values used
calcComfInd(lsCond2, request="all")
warnings()

# the results however are identical

Individual functions, e.g. calcSET to calculate SET, can be used for the second possibility to
calculate one or more comfort indices. With this procedure, one can use a data frame or a list of vectors
to calculate a specific thermal comfort index. The list of required variables as well as information
about the standard values used when a variable is missing is included in each helpfile, e.g. ?calcSET.

The following example illustrates the usage for multiple input lines:

ta <- c(20,22,24)
tr <- ta
vel <- rep(0.15,3)
rh <- rep(50,3)

maxLength <- max(sapply(list(ta, tr, vel, rh), length))
SET <- sapply(seq(maxLength),
function(x) { calcSET(ta[x], tr[x], vel[x], rh[x]) } )

Evaluating the performance of one or more comfort indices

Due to the number of new or adjusted indices being presented in the scientific literature, the compari-
son between the performance of them will be an important aspect in future studies. The R package,
comf, includes functions for different performance criteria.

The function calcBias calculates the mean bias, its standard deviation, and standard error between
the actual (observed) thermal sensation vote (ASV) and the predicted thermal sensation vote (PSV)
(Humphreys and Nicol, 2002). This is calculated according to

mean bias = mean(PSVi − ASVi), (3)

where i denotes the individual vote.

The true positive rate (TPR) is the proportion of true predicted cases, where the categorical ASV is
equal to the categorical PSV (Schweiker and Wagner, 2015). This can be calculated using the function
calcTPRTSV, which calculates

TPR =
1
n

k

∑
i=1

tpk, (4)

where k denotes the category of the sensation scale (e.g. cold), n the total number of votes, and tp the
true positive cases, where the categorical PSV is equal to the categorical ASV.

The function calcAvgAcc calculates the average accuracy between PSV and ASV according to
Sokolova and Lapalme (2009) by

average accuracy =
1
l

l

∑
i=1

tpi + tni
tpi + f ni + f pi + tni

, (5)

where l denotes the number of categories of the sensation scale, tp, tn, f n, and f p the number of true
positives, true negatives, false positives, and false negatives for the corresponsing class. Note that the
value of the average accuracy depends strongly on the distribution of ASV, i.e. in case most of the
ASV’s are in the same category, e.g. neutral, the average accuracy is very high due to the fact that for
all other categories the number of true negative predicted votes is high as well.
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Column Variable name Unit Derivation

ta Air temperature ◦C Measured
tr Radiant temperature ◦C Assumed to be equal to ta
rh Relative humidity % Measured
trm Running mean outdoor

temperature

◦C Calculated from tout using the equation
from DIN EN 15251 (2012)

clo Clothing insulation level CLO Assessed during visit
tout Outdoor air temperature ◦C Measured
vel Air velocity m/s Assumed based on state of window(s) and

door
met Metabolic rate MET Assumed based on ISO 7730 (2005)
asv Actual sensation vote − Obtained through questionnaire

Table 3: Variables included in the dataset together with their derivation

An example using data from a field experiment

The R package, comf, includes a data set deriving from a field experiment. This field measurement is
described in detail in Hawighorst et al. (2016) and Schweiker and Wagner (2016). The data set included
in this package contains 156 samples, which is a subset of the original data set with 620 samples, and
was drawn with the R function sample.

The original data set was obtained by two field experiments in six office buildings in southern
Germany. They were conducted during the summer periods of 2011 and 2012. Data loggers for air
temperature and relative humidity were placed in the offices. In addition outdoor air temperature and
relative humidity were measured with another data logger on the roof of each building.

Subjects were visited up to 4 times during a two week period. The number of votes obtained by
each subject differs due to absence periods of subjects. During each visit, subjects were asked about
their thermal sensation (7-point categorical scale with the categories −3 cold, −2 cool, −1 slightlqy
cool, 0 neutral, +1 slightly warm, +2 warm, +3 hot) together with a set of additional questiqons
not relevant for this paper. While the subjects answered the paper-pencil based questionnaire the
investigator noted down the clothing level of each subject. Written informed consent was obtained
from the subjects prior to the installment of the data loggers. The air velocity included in the data set
was estimated based on the state of window(s), door, and table fan and detailed measurements in a
single room.

The variables included in the dataset are presented in Table 3. Descriptive statistics of the data set
included in the package can be explored using:

library(comf)
library(psych)
data(dfField)
describe(dfField)

In order to calculate a number of comfort indices for the conditions present in the data, it is
recommended to start with the list of standard values and assign the values of the data set to the
corresponding items of the list by:

# creating a list with standard values
lsField <- createCond()

# assigning the variables included in the data set to the list
variables <- c("ta", "tr", "vel", "rh", "clo", "met", "trm", "asv", "tao")
for(i in 1:length(variables)) {

lsField[[variables[i]]] <- dfField[[variables[i]]]
}

For this example, the following 8 thermal comfort indices will be calculated and compared: PMV,
PMVadj, ATHBpmv, aPMV, ePMV, PTS, PTSa, PTSe, and ATHBpts. In order to be able to calculate
aPMV, ePMV, PTSa, and PTSe, one needs to get an estimate for the adaptive coefficient and expectancy
factor. This is done using the corresponding functions of the package by:

lsField$epCoeff <- calcepCoeff(lsField)$epCoeff
lsField$apCoeff <- calcapCoeff(lsField)$apCoeff
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lsField$esCoeff <- calcesCoeff(lsField)$esCoeff
lsField$asCoeff <- calcasCoeff(lsField)$asCoeff

Then, the thermal comfort indices are calculated at once using the function calcComfInd. Note
that it would be also possible to calculate all eight indices individually by calling their function as
described above.

indices <- c('pmv', 'pmvadj', 'apmv', 'epmv', 'ATHBpmv',
'pts', 'ptsa', 'ptse', 'ATHBpts')
results <- calcComfInd(lsField, request = indices)

For the comparison between predicted thermal sensation votes and actual thermal sensation
votes, the predicted continuous sensation votes need to be converted into categorical ones. This is
necessary, because the actual sensation vote included in the dataset was obtained using a categorical
scale. This can be done using the function cutTSV, which converts continuous thermal sensation votes
to categorical ones. The conversion is done using intervals closed on the right, e.g. setting all values
higher than −2.5 and lower or equal −1.5 to the value of −2.

asv.cat <- cutTSV(dfField$asv)
results.cat <- lapply(seq(length(indices)), function(i) {cutTSV(results[,i])})
names(results.cat) <- indices

With the binned predicted values of thermal sensation votes, the mean bias, its standard error, and
the true positive rate (TPR) can be calculated for each thermal comfort index individually:

# calculating mean value of bias between predicted and actual sensation vote
# for each comfort index
meanBias <- sapply(indices, function(i) {

calcBias(asv.cat, results.cat[[i]])$meanBias
})

# calculating standard error of bias between predicted and actual sensation vote
# for each comfort index
seBias <- sapply(indices, function(i) {

calcBias(asv.cat, results.cat[[i]])$seBias
})

# calculating the true positive rate for each comfort index
TPR <- sapply(indices, function(i) {

calcTPRTSV(asv.cat, results.cat[[i]])
})

The comparison of bias and true positive rate can be done e.g. graphically using the R package,
ggplot2:

library(ggplot2)
library(plyr)
library(reshape2)

group <- c("PMV", "PMVadj", "aPMV", "ePMV", "ATHB pmv", "PTS", "PTSa",
"PTSe", "ATHB pts")

lower <- meanBias - seBias
upper <- meanBias + seBias

fig4Win <- data.frame(meanBias, TPR, group, lower, upper)
fig4Win$variable <- rep(2,9)
fig4Win$group <- factor(fig4Win$group, levels = fig4Win$group)

addline_format <- function(x,...){
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gsub('\\s','\n',x)
}

means.barplot <- qplot(x=group, y=meanBias, data=fig4Win, geom="point",
stat="identity", position="dodge", ymax=.5) +

scale_x_discrete(breaks=unique(fig4Win$group),
labels=addline_format(c("PMV","PMVadj","aPMV","ePMV",
"ATHB pmv","PTS","PTSa","PTSe","ATHB pts")))

means.barplot + geom_errorbar(aes(ymax=upper,ymin=lower),
position=position_dodge(0.9), data=fig4Win) +
theme_bw() +
xlab("Comfort indices") +
ylab("bias PSV - ASV") +
ylim(c(-1,.5))

## uncomment next line to save file to current working directory
#ggsave("Fig1_MeanBias.png")

means.barplot <- qplot(x=group, y=TPR*100, data=fig4Win, geom="point",
stat="identity", position="dodge", ymax=100) +
scale_x_discrete(breaks=unique(fig4Win$group),
labels=addline_format(c("PMV", "PMVadj", "aPMV", "ePMV", "ATHB pmv",
"PTS", "PTSa", "PTSe", "ATHB pts")))

means.barplot +
theme_bw() +
xlab("Comfort indices") +
ylab("True positive rate") +
ylim(c(0,100))

## uncomment next line to save file to current working directory
#ggsave("Fig1_TPR.png")

The result can be seen in Figure 1. This shows, that for this particular data set, the indices
ATHBpmv and ATHBpts have the lowest mean bias between predicted and actual sensation votes.
Related to the true positive rate, there are five indices with a similar performance of around 42% of
truly predicted sensation votes, while the true positive rate of the other three indices is around 34%.

(a) Mean bias and standard error. (b) True positive rate.

Figure 1: True positive rate for eight comfort indices.
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Summary

This article has described the R package comf. This package implements several functions to assist
researchers in the field of thermal comfort. The main functions calculate various common and less
common thermal comfort indices. Additional functions are related to the preparation of a suitable
data set and to the comparison of observed and predicted assessment.
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water: Tools and Functions to Estimate
Actual Evapotranspiration Using Land
Surface Energy Balance Models in R
by Guillermo Federico Olmedo, Samuel Ortega-Farías, Daniel de la Fuente-Sáiz, David Fonseca-
Luego and Fernando Fuentes-Peñailillo

Abstract The crop water requirement is a key factor in the agricultural process. It is usually estimated
throughout actual evapotranspiration (ETa). This parameter is the key to develop irrigation strategies,
to improve water use efficiency and to understand hydrological, climatic, and ecosystem processes.
Currently, it is calculated with classical methods, which are difficult to extrapolate, or with land surface
energy balance models (LSEB), such as METRIC and SEBAL, which are based on remote sensing data.
This paper describes water, an open implementation of LSEB. The package provides several functions
to estimate the parameters of the LSEB equation from satellite data and proposes a new object class
to handle weather station data. One of the critical steps in METRIC is the selection of “cold” and
“hot” pixels, which water solves with an automatic method. The water package can process a batch
of satellite images and integrates most of the already published sub-models for METRIC. Although
water implements METRIC, it will be expandable to SEBAL and others in the near future. Finally, two
different procedures are demonstrated using data that is included in water package.

Introduction and motivation

The crop water requirement is a key factor in the agricultural process. It is usually estimated through-
out actual evapotranspiration (ETa). An accurate quantification of ETa helps to develop irrigation
strategies, improve the efficiency of water use and increase the irrigated area and the production
(Millar, 1993; Baruch and Fisher, 1991; Ferreyra et al., 1985).

Traditional methods to estimate ETa are based on (a) direct measurements by sophisticated
instruments, such as lysimeters (Payero and Irmak, 2008; López-Urrea et al., 2009), Eddy covariance
systems (Paço et al., 2006; Parent and Anctil, 2012; Poblete-Echeverría and Ortega-Farias, 2013) or
Bowen ratios (Cragoa and Brutsaert, 1996; Ortega-Farías et al., 1995; Twine et al., 2000), or on (b)
empirical methods, such as the FAO-56 approach (Allen et al., 1998). This method uses a reference
evapotranspiration (ETr) from an automatic weather station multiplied by crop coefficients (Kc) from
literature (Allen et al., 2005). Although all these methods can be accurate enough, they are restrictive
to be extrapolated to a farm or a regional level since they do not take into account the effect that the
spatial and temporal variation of the soil, the climate and the crop have over the ETa (Allen et al.,
2011).

However, new physical methods to estimate ETa have been developed using remote sensing data,
considering the land spatial and temporal patterns. A major restriction for the estimation of ETa using
remote sensing is the need of an absolute surface temperature for calibration. One of the first methods
to be developed and applied worldwide was the Surface Energy Balance Algorithms for Land (SEBAL)
model (Bastiaanssen et al., 1998a,b). This model calculates ETa from satellite-based land surface energy
balance (LSEB) equation and uses a near-surface temperature gradient (dT) for calibration. dT is
computed by taking two pixels with extreme water condition (anchor pixels) selected in the scene to
generate a linear relationship between surface temperature and the difference between surface and air
temperatures. Based on this, Allen et al. (2007b) developed the Mapping EvapoTranspiration at High
Resolution with Internalized Calibration (METRIC) model. The main difference between SEBAL and
METRIC is that the latter uses the ETr from a weather station, incorporating climatic conditions, while
SEBAL uses the potential evaporation from a water body in the scene considering that sensible heat
and soil heat fluxes are zero.

METRIC has been widely applied to estimate ETa at field and regional scale over different crops
such as wheat, corn, soybean and alfalfa, with errors ranging between 3 and 20% (Allen et al., 2007a;
Choi et al., 2009; Mkhwanazi and Chávez, 2012). In recent years METRIC has been used to compute
ETa over sparse woody canopies such as vineyards and olive orchards (Carrasco-Benavides et al., 2012,
2014; Santos et al., 2012; Pôças et al., 2014) in both flat and mountainous terrains (Allen et al., 2013b).

The current implementations of SEBAL and METRIC imply the need to use more than one software
to run the model (Allen et al., 2010) and they involve multiple steps. There are many different sub-
models published for the estimation of some parameters (e.g. leaf area index, momentum roughness
length, land surface temperature) that are not integrated into the current implementation of METRIC.
Allen et al. (2013a) proposed a methodology for an automation procedure by using statistical conditions
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and expert knowledge. This technique reduced the effect of human criteria helping to increase the
model robustness. However, a software tool for the automatic selection of anchor pixels has not been
published yet.

About land surface energy balance models and crop evapotranspiration

As mentioned above, METRIC estimates ETa as the residual from the surface energy balance equation
considering information from satellite images and weather stations located near to the study site.
Bellow, the key equations are detailed, beginning with the estimation of ETa as the residual from the
surface energy balance equation:

LE = Rn − G− H (1)

where LE is latent heat flux consumed by ETa (W ·m−2); Rn is net radiation (W ·m−2); G is soil
heat flux (W ·m−2); and H is the sensible heat flux convected to the air (W ·m−2).

Rn is calculated considering information obtained at the time of satellite overpass. Some correction
processes are necessary, such as radiometric and atmospheric corrections. G is estimated using an
empirical equation that considers mainly Rn, surface temperature, normalized difference vegetation
index (NDVI), soil-adjusted vegetation index (SAVI) and albedo. More detailed information concerning
the equations and models used in METRIC can be found in Allen et al. (2007b).

H is the general equation of heat transport and is estimated using an approach called “calibration
using inverse modeling at extreme conditions” (CIMEC) (Allen et al., 2013a). This method involves
the selection of pixels with near extreme conditions (hot and cold anchor pixels) from which the ETa
can be estimated and assigned. H is computed as follows:

H =
ρ · cp · dT

rah
(2)

where dT is the difference between land surface and near-surface air temperatures, rah is the
aerodynamic resistance to heat transport (s ·m−1), ρ is the air density (kg ·m−3) and cp is the specific
heat of air (1004 · J · kg−1 ·◦ K−1). dT is solved by using a linear relationship between air temperature
and the estimated surface temperature of the the anchor pixels (Bastiaanssen et al., 1998a). To calculate
rah, wind speed is extrapolated to a height at which forces of buoyancy and mechanical mix are equal
(about 200 meters), using an iterative correction process based on the Monin-Obhukov equations
(Allen, 1996; Bastiaanssen et al., 1998a).

After LE from Equation 1, it is possible to compute the instantaneous evapotranspiration values:

ETinst = 3600 · LE
λρw

(3)

where ETinst is the instantaneous ETa at the satellite overpass (mm · h−1); 3600 is the conversion
factor from seconds to hours; ρw is the density of water (1000kg ·m−3); and λ is the water latent heat
of vaporization (J · kg−1).

Finally, the daily ET is computed pixel by pixel as:

ET24 =
ETinst
ETr

ETr_24 (4)

where ETinst in the instantaneous ETa estimated on equation 3; ETr is the standardized 0.5 m tall
alfalfa reference evapotranspiration at the image time and ETr_24 is the cumulative 24 h ETr for the
image day. The relationship between ETinst and ETr is the reference ET fraction and is the same as the
alfalfa based coefficient, Kc, and is used to extrapolate ETa from the image time to periods of 24 hours
or longer (Allen et al., 2007b).

Sensible heat flux

As Allen et al. (2007b) mentioned, the computation of latent heat flux (LE) is only as accurate as
the summed estimates for Rn, G, and H. Table 1 shows some errors reported by METRIC models
for different crops. It can be seen that net radiation (Rn) and soil heat flux (G) present the lowest
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Crop Validation tool Rn (Wm−2(%)) G (Wm−2(%)) H (Wm−2(%)) LE (Wm−2(%)) ET (mmh−1(%)) Source

grass lysimeter nr nr nr nr (4-22%) (mean = 4%) 1
sugar beet lysimeter nr nr nr nr (6-137%) (mean = 1%) 1
soybean lysimeter 22.1 (4.1%) 14.2 (27.6%) nr nr 0.14 (17.6%) 2
corn, soybean EC nr nr 39-48 34-44 0.58-0.89 3
olive EC nr nr nr nr 0.14-1.2 4
vineyard EC 24 (3.8%) 16 (9.4%) 39-59 (10-26.0%) 33-54 (14-27.2%) 0.9 (9%) 5

nr: not reported; EC: Eddy covariance
Sources: 1: Allen et al. (2007a); 2: Mkhwanazi and Chávez (2012, 2013); 3: Gonzalez-Dugo et al. (2009); 4: Santos et al. (2012); Pôças et al. (2014); 5: Poblete-Echeverría and Ortega-Farias (2012);
Carrasco-Benavides et al. (2012, 2014)

Table 1: Root mean square error (RMSE) of energy balance components estimated using METRIC for
different crops

estimation errors, while sensible heat flux (H), is the hardest component of the surface energy balance
to estimate.

One of the weaknesses of METRIC model reported in the literature is the selection of the anchor
pixels. Long and Singh (2013) and Morton (2013) indicated that the selection of anchor pixels is
subjective and depends on the ability of the operator to search and isolate the most appropriates hot
and cold pixels. This process produces important biases in the estimation of H. Also, Choragudi
(2011); Wang et al. (2009) mentioned that METRIC was very sensitive to the selection of the hot pixel. A
group of possible candidates could have minimal differences in some attributes, but these can generate
a big bias in the estimations. It means that the estimation of H in METRIC is very sensitive to the
selection of anchor pixels.

The objective of this article is to propose an open implementation of a land surface energy balance
model (LSEB) as an R package that integrates most of the METRIC sub-models and allows automatic
selection of the anchor pixels. In this version of the package, specific functions for METRIC model
(Allen et al., 2007b) are provided. Apart from the previous features, this package: i) is written in R,
one of the most used scientific programming languages; ii) can be automated for batch processing of
many satellite images; iii) provides functions for loading and processing satellite images; iv) provides
functions and a new class object to manage weather station data; and v) is a free and open software.

About the water package

Package organization

The water package is developed in R to estimate actual evapotranspiration (ETa) from Landsat satellite
scenes using Land Surface Energy Balance (LSEB) models, such as METRIC (Allen et al., 2007b).

Functions in water package are arranged in three groups: i) general functions to estimate sub-
components of LSEB (e.g. leaf area index, albedo, land surface temperature, momentum roughness
length); ii) specific functions to estimate the components of LSEB; iii) internal functions and methods
to handle data from a weather station using a new proposed S3 class and functions to control global
options such as saving results to disk, overwrite files, etc.

The first group of functions consist of models and equations to estimate the sub-components, which
generally are controlled by the argument method. Most of the models available here are presented in
the Appendix. In the second group, there are three functions: i) METRIC.Rn(); ii) METRIC.G() and iii)
METRIC.EB(). The first one estimates net radiation using METRIC model. The second one estimates
soil heat flux, and the third one estimate all the components of energy balance: Rn, G, H and LE
according to METRIC model.

Three example datasets are provided with the water package: i) a subset of a Landsat 7 scene
path 223, row 85 from 15th February 2013, bands 1 to 7; ii) data from a weather station from the same
Landsat subset in CSV file format (comma separated values); iii) a subset of NASA SRTM digital
elevation model, with the same spatial extent as the example image. These datasets are used in
examples in Sections Simple procedure and Advanced procedure, and also in the vignettes included
with the package.

The water package is available on The Comprehensive R Archive Network at
https://CRAN.R-project.org/package=water. This software is made freely available under the terms
and conditions of the GNU General Public License.

Key functions in the water package

The key functions included in the package are:
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read.WSdata() This function allows to import weather station data from a table in comma-separate
values (CSV) format. The result is a new object of class "waterWeatherStation". The main
input arguments are the CSV file and a vector with the order of the needed variables (radiation,
temperature, wind speed and relative humidity) called columns. An optional argument is a
Landsat metadata file (MTL). When this function is used with the CSV and the MTL files, it will
interpolate the weather conditions to the moment of the satellite overpass.

METRIC.EB() This is the main function of water package. It runs each of the sub-models needed to
get all the components of the LSEB (equation 1), from satellite and weather station data. The
input arguments are: a satellite scene and a "waterWeatherStation" object. The arguments
alb.coeff, LAI.method, Zom.method and anchors.method allow choosing between the different
sub-models or coefficients used. More information about the sub-models available in water
is presented in the Appendix. An optional logical argument is plain, which allows to use a
digital elevation model or to consider that the surface is flat. When using a digital elevation
model, the net radiation estimation and the land surface temperature are corrected using the
elevation, slope and aspect of the surface. The output of this function is a raster layer object
(from raster package) with 4 different layers: net radition, soil heat flux, sensible heat flux and
surface temperature.

ET24h() This function estimates the ETr for a 24-hour period. The input arguments are the compo-
nents of the LSEB (Rn, G, H) and a "waterWeatherStation" object. The argument ET allows to
select between two ETr methods. ET="ETo", is the method for short crops, similar to clipped,
cool-season grass and ET="ETr", is the method for tall crops, similar to 0.5 m tall full-cover
alfalfa. By default, it will use ET="ETr", but the user should choose according to the conditions
of the weather station. The output of this function is a raster layer object (from raster package)
with the 24-hour ETa in mm · day−1.

METRIC.EB() uses many different steps to estimate the parameters needed to calculate the compo-
nents of the LSEB. These steps are available as individual functions like:

albedo() This function is used to calculate the broadband albedo from narrowband satellite data.
This process involves applying a weighting function with empirical coefficients. water includes
models and coefficients described by Tasumi et al. (2008) and Liang (2001), as well as new
coefficients for Landsat 8 estimated by The Simple Model of the Atmospheric Radiative Transfer
of Sunshine (SMARTS2) version 2.9.5 (Gueymard, 1995). coeff="Olmedo" computes clear sky
spectral irradiances for the spectral range of each Landsat 8 OLI band (see Appendix, Section
Included models for albedo). The output of this function is a raster layer object (from raster
package) with the albedo.

LAI() This function estimates the leaf area index (LAI) from Landsat data. water includes many
different models to estimate LAI (see Appendix, Section Included models for Leaf Area Index).
In the Examples Section of this article, the METRIC 2010 method (Allen et al., 2010) will be used.
This method estimates LAI from SAVI (Huete, 1988), as follows:

SAVI = (1 + L)(ρNIR − ρR)/(L + ρNIR + ρR) (5)

where ρ is the reflectance at the top-of-atmosphere from R, the red band, and from NIR, the
near infrared band; L is a soil correction factor. By default water uses L=0.5, although Allen
et al. (2007b) suggested a value of L=0.1 in METRIC applications for western USA. This value
varies by the amount or coverage of green vegetation: in very high coverage vegetation regions,
L=0 and SAVI = NDVI; in areas with no green vegetation, L=1. Then SAVI is used to estimate
LAI as follows:

LAI = 11 · SAVI3 (6)

The output of this function is a raster layer object (from raster package) with the estimated LAI.

As it was mentioned before, the critical part in the estimation of the LSEB is the sensible heat flux
estimation. The key functions used to estimate this are: momentumRoughnessLength(); calcAnchors()
and calcH().

momentumRoughnessLength() This function estimates the Momentum Roughness Length (Zom) from
the average vegetation height around the weather station. water includes several methods
to estimate Zom from Landsat data (see Appendix, Section Included models for Momentum
Roughness Length). For example, when method="short-crops" (Allen et al., 2007b) Zom is
estimated as:
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Variable Cold pixel Hot pixel

albedo∗ 0.18 - 0.25 0.13 - 0.15
NDVI∗ 0.76 - 0.84 0.10 - 0.28
LAI (m2 ·m−2) 3 - 6 -
Zom (m) 0.03 - 0.08 ≤ 0.005

* dimensionless

Table 2: Ranges of variables used for selection of anchor (cold and hot) pixels in
calcAnchors(method="CITRA-MCB")

Zom = 0.0018LAI (7)

And if mountainous=TRUE, this value of Zom is corrected as:

Zom_mtn = Zom · (1 +
(180/π) · slope− 5

20
) (8)

The output of this function is a raster layer object with the estimated Zom

calcAnchors() This function automatically select anchor pixels that represent the dry and wet ends
of the ET spectrum within the satellite scene using information of land surface characteristics
(LAI, albedo, Zom, Ts). When the anchor pixels are found, it assigns the ETa estimates.
The criteria to select “hot” and “cold” pixels were adapted from Allen et al. (2011), Tasumi (2003)
and shown in Table 2. The methodology searches for image-specific pixels with the lowest and
highest temperature values that match with these criteria. The output of this function is a data
frame with the coordinates of the selected anchor pixels.

calcH() This function applies the CIMEC self-calibration method in order to generate an iterative
process for the “hot” and “cold” pixels and absorb all biases in the computation of H. A near
surface temperature difference (dT) is used in place of a surface air temperature difference to
drive the determination of sensible heat flux, in an iterative correction process. The convergence
of the function is reached when the change in the estimated aerodynamic resistance is less than
1% for the cold and hot condition. There is an argument called verbose to control how much
information about the iterative process is shown in the output. The output of this function is a
raster layer object with the estimated soil heat flux.

Input data requirements

METRIC uses two sources to estimate the LSEB: a satellite image and a weather station with hourly
data.

METRIC can be run using different satellite sensors. Currently, the coefficients needed for Landsat
7 and 5 are available in Allen et al. (2007b). Those coefficients can also be applied to Landsat 8 data. In
the Appendix Section Included models for albedo, we propose specific coefficients for the estimation of
albedo using this satellite sensor. Other coefficients to run METRIC using MODIS images are available
in Allen et al. (2007b), and will be included in future versions of water package.

The weather station data should include near-surface air temperature, wind speed, relative humid-
ity and solar radiation. The water package uses the function read.WSdata() to convert the weather
station data from a comma-separate values table to a special R object. The input data should be on
an hourly or shorter time basis. The expected units are ◦C for temperature; m · s−1 for wind speed;
% for relative humidity and W ·m−2 for solar radiation. However, this function uses a parameter cf
when conversion factors are needed to convert the variables from different units (e.g. if wind speed is
in km · h−1 the conversion factor for this variable should be 0.278). To estimate ETr from the weather
station data using Allen et al. (2005) equation, more information is needed: position in latitude and
longitude, and the wind sensor height in meters. When the weather station data is being imported, a
satellite metadata file can be included as a function argument. This allows interpolating the weather
conditions at the exact moment of the satellite overpass.

The water package only uses one weather station to estimate ETr for an entire Landsat scene of
180× 180 km. The model uses ETr to derive the ET reference fraction (ETrF) at image time (using
equation 4). This assumes that ETa in the entire area changes in proportion to the change in ETr at
the weather station (Allen et al., 2007b). This means that ETr is only used as an index of the relative
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Figure 1: Plot of the hourly weather station data. The conditions at the time of the sattelite overpass
are marked by a gray bar. This is the default plot for waterWeatherStation objects.

change and this is retained through the ETrF. Any biases caused by variation in weather conditions
should be canceled by using the same ETrF for both instantaneous and 24 h period. Nevertheless, it is
recommended to use a spatial mask when the weather conditions are heterogeneous, for example in
irrigated areas surrounded by deserts.

Performance and memory use

The water package uses large temporal memory in order to obtain the results and sub products.
Most of the results are "RasterLayer" or "RasterStack" objects from raster package (Hijmans, 2015).
Processing an entire Landsat scene could need more than 2 gigabytes of memory to store the temporal
data. One approach to solve this is to write products and sub-products to the disk. There is an option
writeResults=TRUE in function waterOptions() to force water to store the results on the disk, instead
of on temporal memory.

If water runs out of memory while processing data, it will usually stop working without a warning
message. We suggest processing only a portion of a Landsat scene using an area-of-interest (aoi)
polygon or storing results to disk.

Example code and datasets

Two different approaches to estimate land surface energy balance demonstrate the features and
procedures in water. The first example in Section Simple procedure is a simple procedure, and the
second one in Section Advanced procedure refers to an advanced procedure. Finally, the estimation
of ETa from the output of any of the previous procedures is demonstrated in Section Daily crop
evapotranspiration estimation.

In Section Estimating ETa using METRIC model and water package functions createAoi() and
read.WSdata() are summarized. Then, in Section Simple procedure function METRIC.EB() is shown.
In Section Advanced procedure the LSEB is estimated step by step. And later, in Section Daily crop
evapotranspiration estimation daily ETr is estimated using functions dailyET() and ET24h().

Estimating ETa using METRIC model and water package

Base data preparation

To calculate METRIC Actual Evapotranspiration using water package, three sources are needed:

1. A raw Landsat 7-8 satellite image.

2. A Weather Station data (.csv file).

3. A polygon with our Area-of-interest (AOI) Spatial-Polygon object, to run the model using only
a portion of the satellite scene.

First, AOI is created as a polygon using bottomright and topleft coordinates:

aoi <- createAoi(topleft = c(272955, 6085705),
bottomright = c(288195, 6073195), EPSG = 32719)
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Figure 2: Schematic diagram with the functions, data inputs and outputs used in the simple procedure
when running the METRIC model with water package. The green rounded boxes represent data, the
blue boxes represent the functions and the yellow box is the final result.

Then, the weather station data is loaded using the function read.WSdata(). This function converts
the CSV file into a "waterWeatherStation" object. Then, if a Landsat metadata file (MTL file) is
provided, the time-specific weather conditions at the time of satellite overpass will be calculated. This
is shown on Figure 1 as a gray bar. Files ‘apples.csv’ and ‘L7.MTL.txt’ are included in the package as
raw data. In R, system.file() is used to call this files.

csvfile <- system.file("extdata", "apples.csv", package = "water")
MTLfile <- system.file("extdata", "L7.MTL.txt", package = "water")

WeatherStation <- read.WSdata(WSdata=csvfile,
date.format = "%d/%m/%Y",
lat = -35.42222, long = -71.38639,
elev = 201, height = 2.2,
MTL = MTLfile)

Next, the Landsat satellite image is loaded. water provides a function to load a Landsat image
(loadImage()) from TIFF files. Landsat images can be downloaded directly from USGS archives in
Earth Explorer (http://earthexplorer.usgs.gov/). In this article, an example dataset will be used
which comes with water package as demonstration data.

image.DN <- L7_Talca

Finally, Digital Elevation Model (DEM) will be created for the area being processed. water
provides two functions to do this: checkSRTMgrids() will search for the downloadable grid files in
http://earthexplorer.usgs.gov/. However, this function will only print the links to the files. The
downloading process has to be done manually. After this, prepareSRTMdata() can be used to mosaic
and clip those files using the same extent of the image. In this article, the example data, provided with
water package, will be loaded.

DEM <- DEM_Talca

Simple procedure

The simple procedure is summarized on Figure 2. The function METRIC.EB() will be used to estimate
the land surface energy balance. This function has many parameters to choose from the different
METRIC model equations. e.g. changes can be made in:

• Coefficients used to estimate broadband albedo from narrowband data.

• Model to estimate Leaf Area Index (LAI) from satellite data.
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Figure 3: Land surface energy balance (W ·m−2) estimated using METRIC with water package

• Model to estimate momentum roughness length (Zom)

• Automatic method for the selection of anchor pixels

• Reference ET coefficient and momentum roughness length estimated for the weather station

When this function is run, the energy balance and the surface temperature (Ts) used are assigned
to the Energy.Balance object. This function prints the position and characteristics of the anchor pixels
to the console. Also, a plot with the values of the aerodynamic resistance during the iterative process
is generated after every iteration. Here, the logical argument verbose controls how much information
is shown in the output, and the plotting of the diagnostic graph.

Energy.Balance <- METRIC.EB(image.DN = image.DN,
plain = FALSE, DEM = DEM,
WeatherStation = WeatherStation, ETp.coef = 1.2,
MTL = MTLfile, sat = "L7",
thermalband = image.DN$thermal.low)

The results of the energy balance estimated using this function are shown in Figure 3. The console
output with information related to the anchor pixels goes like this:

pixel X Y Ts LAI type
1 139253 282420 -3922830 323.1587 0.13 hot
2 121566 274710 -3921780 310.0151 4.40 cold

Advanced procedure

The advanced procedure involves running many different functions one-by-one, this is summarized
in figures 4 and 5. These functions were run inside the code of METRIC.EB() in the previous example.
Running water with this procedure allows to have more control in the different arguments used.

Net Radiation estimation

In order to calculate the Rn for the loaded Landsat satellite data, a surface model (slope + aspect) from
the DEM is calculated, then the solar angles (latitude, declination, hour angle and solar incidence
angle) are calculated. Then incSWradiation() is used to calculate incoming solar radiation.

surface.model <-METRICtopo(DEM)

solar.angles.r <- solarAngles(surface.model = surface.model,
WeatherStation = WeatherStation, MTL = MTLfile)

Rs.inc <- incSWradiation(surface.model = surface.model,
solar.angles = solar.angles.r,
WeatherStation = WeatherStation)
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Figure 4: Schematic diagram with the functions, data inputs and outputs used in the advanced
procedure when estimating Net Radiation and Soil Heat Flux running the METRIC model with water
package. The green rounded boxes represent data and the blue boxes represent the functions. The
functions marked with “*” have multiple methods available.
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After this, reflectances are calculated at the top-of-atmosphere (TOA), and surface reflectance
derived from the Landsat image as:

image.TOAr <- calcTOAr(image.DN = image.DN, sat = "L7", MTL = MTLfile,
incidence.rel = solar.angles.r\$incidence.rel)

image.SR <- calcSR(image.TOAr = image.TOAr, sat = "L7",
surface.model = surface.model,
incidence.hor = solar.angles.r\$incidence.hor,
WeatherStation = WeatherStation, ESPA = FALSE)

Following this, broadband albedo is calculated as the sum of visible to near infrared narrowband
satellite bands and coefficients related to atmospheric transmittance of global solar beam radiation. In
this example coeff="Tasumi" was used.

albedo <- albedo(image.SR=image.SR, coeff="Tasumi")

Later on, Leaf Area Index (LAI) is calculated using the satellite data. In this example method=metric2010
is used:

LAI <- LAI(method="metric2010", image=image.TOAr, L=0.1)

Land surface temperature (Ts) is estimated using computed LAI values in order to estimate
consequently the surface emissivity and brightness temperature from Landsat’s thermal band (TIR).
Then this information is used to compute the incoming and outgoing long-wave radiation as:

Ts <- surfaceTemperature(LAI = LAI, sat = "L7",
thermalband = image.DN\$thermal.low,
WeatherStation = WeatherStation)

Rl.out <- outLWradiation(LAI = LAI, Ts = Ts)

Rl.inc <- incLWradiation(WeatherStation, DEM = surface.model\$DEM,
solar.angles = solar.angles.r, Ts = Ts)

Finally, Net Radiation (Rn) can be estimated pixel by pixel as follows:

Rn <- netRadiation(LAI, albedo, Rs.inc, Rl.inc, Rl.out)

Soil Heat Flux estimation

Soil heat flux is estimated G, using as input data the Rn, surface reflectance, Ts, LAI and albedo. In
this example the original METRIC (2007) based-method will be used, which is:

G <- soilHeatFlux(image = image.SR, Ts = Ts, albedo = albedo,
Rn = Rn, LAI = LAI)

Sensible Heat Flux estimation

To estimate the sensible heat fluxes derived from the Landsat satellite data, first, the calculation of the
momentum roughness length (Zom) is needed.

Z.om <- momentumRoughnessLength(LAI = LAI, mountainous = TRUE,
method = "short.crops",
surface.model = surface.model)

Then, calcAnchors() is used to search for the anchor pixels within the Landsat scene. And finally,
calcH() is used to run the CIMEC process and estimate the sensible heat flux:

hot.and.cold <- calcAnchors(image = image.TOAr, Ts = Ts,
LAI = LAI, plots = FALSE, albedo = albedo,
Z.om = Z.om, n = 1,
anchors.method = "CITRA-MCB",
deltaTemp = 5, verbose = FALSE)

H <- calcH(anchors = hot.and.cold, Ts = Ts, Z.om = Z.om,
WeatherStation = WeatherStation, ETp.coef = 1.05,
Z.om.ws = 0.0018, DEM = DEM, Rn = Rn, G = G, verbose = TRUE)
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Figure 5: Schematic diagram with the functions, data inputs and outputs used in the advanced
procedure when estimating the sensible heat flux running the METRIC model with water package.
The green rounded boxes represent data, the blue boxes represent the functions and the yellow box is
the final result. The functions marked with * have multiple methods available.

When the function calcH() is runnig, and verbose=TRUE, the output shows the intermediate values
of the CIMEC process parameters. Also, the value for the aerodynamic resistance and its change for
every iteration is plotted iteratively by this function. This plot is shown on Figure 6. In this example,
the change in the value of the aerodynamic resistance goes down after iteration #9, and in iteration #14
is less than 1%.

Figure 6: Leaf area index m2m−2 and the position of the hot pixel (red cross), cold pixel (blue X) and
the weather station (circle with a X) (left). Change on aerodynamic resistance convergence in the
iterative process for hot (red) and cold (blue) conditions (right).

Daily crop evapotranspiration estimation

To estimate the daily actual evapotranspiration from the Landsat scene, the daily reference ET (ETr)
is needed. The daily ETr can be calculated with dailyET(). This function calculates the cumulative
24h standardized reference evapotranspiration for the day of the image using the ASCE standardized
Penman-Monteith method (Allen et al., 2005). Finally, 24h crop ET can be estimated for every pixel of
the Landsat scene using the function ET24h() (Figure 7):

ET_WS <- dailyET(WeatherStation = WeatherStation, ET = "ETr")

ET.24 <- ET24h(Rn = Rn, G = G, H = H\$H,
Ts = Ts, WeatherStation = WeatherStation,
ETr.daily = ET_WS)
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Figure 7: Crop evapotranspiration in mm/day, estimated using METRIC and water package

Conclusions

The water package offers a fast and reliable platform for estimating actual evapotranspiration using
the land surface energy balance. It includes different methods for many sub-models. The simple
procedure showed in this article allows to estimate the ETa in a simple and fast way. The advanced
procedure allows to have more control in the different available methods. Further versions of this
package will implement other LSEB models such as SEBAL. Also, other satellite sensors such as
MODIS will be included. Because water is written in R, a language very popular in the scientific
community and published as free software, further developments could come from a wide community
of users.
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Appendix

Included models for albedo

1. coeff="Tasumi" (Tasumi et al., 2008)

albedo =ρs,B · 0.254 + ρs,G · 0.149 + ρs,R · 0.147 + ρs,NIR · 0.311

+ ρs,SWIR1 · 0.103 + ρs,SWIR2 · 0.036
(9)

2. coeff="Liang" (Liang, 2001)

albedo =ρs,B · 0.356 + ρs,R · 0.130 + ρs,NIR · 0.373 + ρs,SWIR1 · 0.085

+ ρs,SWIR2 · 0.072− 0.0018
(10)

3. coeff="Olmedo"

albedo =ρs,B · 0.246 + ρs,G · 0.146 + ρs,R · 0.191 + ρs,NIR · 0.304

+ ρs,SWIR1 · 0.105 + ρs,SWIR2 · 0.008
(11)

where ρs,b is the surface reflectance for band b.

Included models for Leaf Area Index

1. method="metric" (Allen et al., 2007b)

SAVIID = (1 + L)(ρt,NIR − ρt,R)/(L + ρt,NIR + ρt,R) (12)

where ρ is the reflectance at top-of-atmosphere, and the subindex refers to bands R:red or
NIR:near infrared; and L is a soil correction factor. The default value used for L is 0.5, and in
METRIC applications in western us, Allen et al. (2007b) suggested a value of L=0.1. And Leaf
Area Index is:

LAI = − ln((0.69− SAVIID)/0.59)
0.91

(13)

2. method="metric2010" (Pôças et al., 2014)

LAI = 11 · SAVI3
ID (14)

3. method="vineyard" (Johnson et al., 2003)

NDVI = (ρt,NIR − ρt,R)/(ρt,NIR + ρt,R) (15)

where ρ is the reflectance at top-of-atmosphere, and the subindex refers to bands R:red or
NIR:near infrared. And Leaf Area Index is:

LAI = 4.9 ·NDVI− 0.46 (16)

4. method="MCB" (Carrasco-Benavides et al., 2014)

LAI = 1.2− 3.08 · exp(−2013.35 ·NDVI6.41) (17)

5. method="turner" (Turner et al., 1999)

NDVI = (ρs,NIR − ρs,R)/(ρs,NIR + ρs,R) (18)
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where ρ is the reflectance at surface level, and the subindex refer to bands R:red or NIR:near
infrared. And Leaf Area Index is:

LAI = 0.5724 + 0.0989 ·NDVI− 0.0114 ·NDVI2 + 0.0004 ·NDVI3 (19)

Included models for Land Surface Temperature

1. method="metric" (Allen et al., 2007b) (Landsat 7)

εNB = 0.97 + 0.0033LAI (20)

and εNB = 0.98 when LAI > 3; where ε0 is the broadband surface emissivity (dimesionless);
and LAI is the leaf area index (m2 ·m−2).

Ts =
K2

ln[(εNBK1/Rc) + 1]
(21)

where Ts is the land surface temperature (K); K1 and K2 are specific constants for Landsat 7
(K1 = 666.1 and K2 = 1283W ·m−2 · sr−1 · µm); and Rc is the corrected thermal radiance from
the surface using the spectral radiance from band 6 of Landsat following Wukelic et al. (1989).

2. method="SC" (Jimenez-Munoz et al., 2009, 2014) (Landsat 8)

Ts = γ[
1
ε
(υ1L + υ2) + υ3] + δ (22)

where ε is the broadband surface emissivity; and γ and δ are two parameters given by

γ =
T2

bγ · L
(23)

δ = T − T2

bγ
(24)

where T is the at-sensor brightness temperature; bγ is a coefficient equal to 1324K for L8 band
10, or 1199K for band 11. And υ1, υ2 and υ3 are the atmosferic functions, given by

υ1 =
1

τNB
; υ2 = −Rsky −

Rp

τNB
; υ3 = Rsky (25)

where τNB is the narrow band transmissivity of air; Rsky is the narrow band downward thermal
radiation from a clear sky (Wm−2sr−1µm−1); and Rp is path radiance in the 10.4–12.54 µm band
(Wm−2sr−1µm−1).

3. method="SW" (Jimenez-Munoz et al., 2014) (Landsat 8)

Ts = Ti + 1.378(T10 − T11) + 0.183(T10 − T11)
2 − 0.268 + (54.30− 2.238w)(1− ε)

+(−129.20 + 16.40w)∆ε (26)

where Ts is the land surface temperature (K); T10 and T11 are the at-sensor brightness tempera-
tures for bands 10 and 11 of Landsat 8 (K); ε is the mean emissivity; w is the total atmospheric
water vapor content (in g · cm−2) and ∆ε is the emissivity difference.

Included models for Momentum Roughness Length

1. method="short-crops" (Allen et al., 2007b)

Zom = 0.018 ∗ LAI (27)
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2. method="custom" (Allen et al., 2007b)

Zom = exp((a ∗NDVI/albedo) + b) (28)

where a and b are the regression coefficients derived by adjusting a lineal model between
log Zom ∼ NDVI/albedo for points inside the Landsat scene representing specific vegetation
types.

3. method="Perrier" (Santos et al., 2012; Pôças et al., 2014)

Zom = ((1− exp(−a ∗ LAI/2)) ∗ exp(−a ∗ LAI/2))h (29)

where h is the crop height in meters, and a is:

a < −(2 ∗ (1− f LAI))−1

when f LAI > 0.5, or

a < −2 ∗ f LAI

when f LAI < 0.5. And f LAI is the proportion of LAI lying above h/2.
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quantreg.nonpar: An R Package for
Performing Nonparametric Series
Quantile Regression
by Michael Lipsitz, Alexandre Belloni, Victor Chernozhukov, and Iván Fernández-Val

Abstract The R package quantreg.nonpar implements nonparametric quantile regression methods
to estimate and make inference on partially linear quantile models. quantreg.nonpar obtains point
estimates of the conditional quantile function and its derivatives based on series approximations to
the nonparametric part of the model. It also provides pointwise and uniform confidence intervals
over a region of covariate values and/or quantile indices for the same functions using analytical
and resampling methods. This paper serves as an introduction to the package and displays basic
functionality of the functions contained within.

Introduction: Nonparametric series quantile regression

Let Y be an outcome variable of interest, and X a vector of observable covariates. The covariate vector
is partitioned as X = (W, V), where W is the key covariate or treatment, and V is a possibly high
dimensional vector with the rest of the covariates that usually play the role of control variables. We
can model the τ-quantile of Y conditional on X = x using the partially linear quantile model

QY|X (τ | x) = g (τ, w) + v′γ (τ) , τ ∈ [0, 1].

Belloni et al. (2011) developed the nonparametric series quantile regression (QR) approximation

QY|X (τ | x) ≈ Z (x)′ β (τ) , β (τ) =
(

α (τ)′ , γ (τ)′
)′

, Z (x) =
(

Z (w)′ , v′
)′

,

where the unknown function g(τ, w) is approximated by a linear combination of series terms Z(w)′α(τ).
The vector Z(w) includes transformations of w that have good approximation properties such as pow-
ers, indicators, trigonometric terms or B-splines. The function τ 7→ α(τ) contains quantile-specific
coefficients. The quantreg.nonpar package implements estimation and inference method for lin-
ear functionals of the conditional quantile function based on the series QR approximation. These
functionals include:

1. Conditional quantile function itself: (τ, x) 7→ QY|X(τ | x) ≈ Z(x)′β(τ).

2. Partial first and second derivative functions with respect to w:
(τ, x) 7→ ∂kQY|X(τ | x)/∂wk = ∂kg(τ, w)/∂wk ≈ ∂kZ(w)′β(τ)/∂wk, k ∈ {1, 2}.

3. Average partial first and second derivative functions with respect to w:
(τ) 7→

∫
∂kg(τ, w)/∂wkdµ ≈

∫
∂kZ(w)′β(τ)/∂wkdµ, k ∈ {1, 2}, where µ is a measure for W.

Both pointwise or uniform inference over a region of quantile indices and/or covariate values are
implemeted.

The coefficient vector β(τ) is estimated using the QR estimator of Koenker and Basset (1978). Let
{(Yi, Xi) : 1 ≤ i ≤ n} be a random sample from (Y, X) and let β̂(τ) be the QR estimator of β(τ), i.e.,

β̂ (τ) ∈ arg min
β∈Rm

n

∑
i=1

ρτ

(
Yi − Z (Xi)

′ β
)

, τ ∈ T ⊆ (0, 1) ,

where ρτ(z) = (τ − 1{z < 0})z is the check function, T is a compact set, and m = dim β(τ). We
then construct estimators of the linear functionals of the conditional quantile function by applying
the plug-in principle to the series approximations. For example, the series QR quantile estimator of
QY|X(τ | x) is

Q̂Y|X (τ | x) = Z (x)′ β̂ (τ) .

A challenge to perform inference in this setting is that m should increase with the sample size
in order to reduce approximation error. Accordingly, the empirical series QR coefficient process
τ 7→

√
n(β̂(τ)− β(τ)) has increasing dimension with n and therefore does not have a limit distribution.

Belloni et al. (2011) dealed with this problem by deriving two couplings or strong approximations
to τ 7→

√
n(β̂(τ) − β(τ)). A coupling is a construction of two processes on the same probability

space that are uniformly close to each other with high probability. In this case, Belloni et al. (2011)
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constructed a pivotal process and a Gaussian process of dimension m that are uniformly close to
τ 7→

√
n(β̂(τ)− β(τ)). They also provided four methods to estimate the distribution of these coupling

processes that can be used to make inference on linear functionals of the conditional quantile function:

1. Pivotal: analytical method based on the pivotal coupling.

2. Gradient bootstrap: resampling method based on the pivotal coupling.

3. Gaussian: analytical method based on the Gaussian coupling.

4. Weighted bootstrap: resampling method based on the Gaussian coupling.

The quantreg.nonpar package implements all these methods.

Additionally, the linear functionals of interest might be naturally monotone in some of their
arguments. For example, the conditional quantile function τ 7→ QY|X(τ | x) is increasing, and in
the growth chart application of the next section the conditional quantile function of height, (τ, x) 7→
QY|X(τ | x), is increasing with respect to both the quantile index, τ, and the treatment age, w. The
series QR estimates might not satisfy this logical monotonicity restriction giving rise to the so-called
quantile crossing problem in the case of τ 7→ Q̂Y|X(τ | x). The quantreg.nonpar package deals with
the quantile crossing and other non monotonicity problems in the estimates of the linear functionals
by applying the rearrangement method of Chernozhukov et al. (2009) and Chernozhukov et al. (2010).

Related R packages

Several existing R packages are available to estimate conditional quantile models. The package
quantreg (Koenker, 2016) includes multiple commands for parametric and nonparametric quantile
regression. The command rqss estimates univariate and bivariate local nonparametric smoothing
splines, and the command rearrange implements the rearrangement method to tackle the quantile
crossing problem. The package QuantifQuantile (Charlier et al., 2015) estimates univariate conditional
quantile models using a local nonparametric method called optimal quantization or partitioning. The
nonparametric methods implemented in the previous packages are local or kernel-type, whereas
our methods are global or series-type. Finally, the command gcrq in the package quantregGrowth
(Muggeo et al., 2013) implements a univariate B-spline global nonparametric method with a penalty
to deal with the quantile crossing and to impose monotonicity with respect to the covariate. To
our knowledge, no existing R package allows the user to perform uniform nonparametric inference
on linear functionals of the conditional quantile function over a region of quantile indices and/or
covariate values, making quantreg.nonpar the first package to do so.

The package quantreg.nonpar

Model specification

We illustrate the functionality of the package with an empirical application based on data from
Koenker (2011) for childhood malnutrition in India, where we model the effect of a child’s age and
other covariates on the child’s height. Here, Y is the child’s height in centimeters; W is the child’s
age in months; and V is a vector of 22 controls. These controls include the mother’s body mass index
(BMI), the number of months the child was breastfed, and the mother’s age (as well as the square of
the previous three covariates); the mother’s years of education and the father’s years of education;
dummy variables for the child’s sex, whether the child was a single birth or multiple birth, whether or
not the mother was unemployed, whether the mother’s residence is urban or rural, and whether the
mother has each of: electricity, a radio, a television, a refrigerator, a bicycle, a motorcycle, and a car;
and factor variables for birth order of the child, the mother’s religion and quintiles of wealth.

First, we load the data and construct the variables that will be used in the analysis. Note that
the variable prefixes “c” and “m” refer to “child” and “mother”. For each factor variable (csex,
ctwin, cbirthorder, munemployed, mreligion, mresidence, wealth, electricity, radio, television,
refrigerator, bicycle, motorcycle, and car), we generate a variable “facvar” which is the factor
version of the variable “var”. For each quadratic variable (mbmi,breastfeeding, and mage), we
generate a variable “varsq” which is the variable squared. For example:

R> data <- india
R> faccsex <- factor(csex)
R> mbmisq <- mbmi^2

We also construct the formula to be used for the linear part of the model, v′γ(τ):
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R> form.par <- cheight ~ mbmi + mbmisq + breastfeeding + breastfeedingsq + mage +
+ magesq + medu + edupartner + faccsex + facctwin + faccbirthorder +
+ facmunemployed + facmreligion + facmresidence + facwealth + facelectricity +
+ facradio + factelevision + facrefrigerator + facbicycle + facmotorcycle + faccar

Note that this formula does not contain a term for our variable of interest W; namely, the child’s
age. Let us now construct the nonparametric bases that will be used to estimate the effect of W,
i.e., g(τ, w) ≈ Z(w)′α(τ). For our base case, we construct a cubic B-spline basis with knots at the
{0, 0.1, 0.2, . . . , 0.9, 1} quantiles of the observed values of child’s age.

R> basis.bsp <- create.bspline.basis(breaks = quantile(cage, c(0:10)/10))

Finally, we set the values of some of the other parameters. For the purposes of this example, we
use 500 simulations for the pivotal and Gaussian methods, and 100 repetitions for the weighted and
gradient bootstrap methods. The set of analyzed quantile indices will be {0.04, 0.08, . . . , 0.96}, but we
will have npqr print only results for quantile indices contained in the set {0.2, 0.4, 0.6, 0.8}. Finally, we
will use α = 0.05 as the significance level for the confidence intervals (i.e., the confidence level is 0.95).

R> B <- 500
R> B.boot <- 100
R> taus <- c(1:24)/25
R> print.taus <- c(1:4)/5
R> alpha <- 0.05

Comparison of the inference processes

Initially, we will focus on the average growth rate, i.e., the average first derivative of the conditional
quantile function with respect to child’s age

τ 7→
∫

∂wg (τ, w) dµ (w) , τ ∈ T ,

where µ is a measure for W and T is the set of quantile indices of interest specified with taus. We
specify the average first derivative with the options nderivs = 1 and average = 1. Inference will
be performed uniformly over T , and the standard errors will be computed unconditionally for the
pivotal and Gaussian processes; see Section Confidence intervals and standard errors.

We first construct the four inference processes based on the B-spline basis. By default, npqr
generates output similar to that seen below. In this example, output is suppressed in each call
following the first. Instead of invoking a particular process, we may also set process = "none". In
that case, inference will not be performed, and only point estimates will be reported.

R> piv.bsp <- npqr(formula = form.par, basis = basis.bsp, var = "cage", taus = taus,
+ nderivs = 1, average = 1, print.taus = print.taus, B = B, uniform = TRUE)
R> gaus.bsp <- update(piv.bsp, process = "gaussian", printOutput = FALSE)
R> wboot.bsp <- update(gaus.bsp, process = "wbootstrap", B = B.boot)
R> gboot.bsp <- update(wboot.bsp, process = "gbootstrap")

The output for the pivotal method (which is generated whenever printOutput = TRUE) is given in
Figure 1.

The point estimates represent the average derivative of the conditional quantile function with
respect to the variable of interest: the child’s age. In other words, each value represents the average
rate of growth (in centimeters per month) at each quantile of the height distribution. They are reported,
along with their standard errors and respective two-sided and one-sided confidence intervals, at
each quantile for which output was requested using print.taus. The null hypotheses on which
hypothesis testing is performed state that the average growth rate is negative, positive, and equal to
zero, respectively, at all quantiles of the distribution. We reject, at the 5% level, the null hypotheses
that the growth rate is negative and that the growth rate is equal to zero. We cannot reject, at the 5%
level, the null hypothesis that the growth rate is positive.

Additionally, the following results are saved in piv.bsp:

• piv.bsp$CI: a 1 × length(taus) × 2 array: each pair is the lower and upper bounds of the
95% confidence interval for the average derivative of the conditional quantile function at each
quantile index in taus.

• piv.bsp$CI.oneSided: a 1 × length(taus) × 2 array: each pair contains bounds for two
separate one-sided 95% confidence intervals (a lower bound and an upper bound, respectively)
for the average derivative of the conditional quantile function at each quantile index in taus.
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Figure 1: Output for the pivotal method.

• piv.bsp$point.est: a 1× length(taus) matrix: each entry is the point estimate for the average
derivative of the conditional quantile function at each quantile index in taus.

• piv.bsp$std.error: a 1× length(taus) matrix: each entry is the standard error of the estimator
of the average derivative of the conditional quantile function at each quantile index in taus
(here, unconditional on the sample).

• piv.bsp$pvalues: a three item vector containing the p-values reported above: the first tests the
null hypothesis that the average derivative is less than zero everywhere (at each quantile index
in taus); the second tests the null hypothesis that the average derivative is everywhere greater
than zero; the third tests the null hypothesis that the average derivative is everywhere equal to
zero.

• piv.bsp$taus: the input vector taus, i.e., {0.04, 0.08, . . . , 0.96}.
• piv.bsp$coefficients: a list of length length(taus): each element of the list contains the

estimates of the QR coefficient vector β(τ) at the corresponding quantile index.

• piv.bsp$var.unique: a vector containing all values of the covariate of interest, W, with no
repeated values.

• piv.bsp$load: the input vector or matrix load. If load is not input (as in this case), the output
load is generated based on average and nderivs. Here, it is a vector containing the average
value of the derivative of the regression equation with respect to the variable of interest, not
including the estimated coefficients.

Using piv.bsp$taus, piv.bsp$CI, and piv.bsp$point.est, as well as the corresponding objects
for the Gaussian, weighted bootstrap, and gradient bootstrap methods, we construct plots containing
the estimated average quantile derivatives, as well as 95% uniform confidence bands over the quantile
indices in taus:

R> par(mfrow = c(2, 2))
R> yrange <- c(.65, .95)
R> xrange <- c(0, 1)
R> plot(xrange, yrange, type = "n", xlab = "Quantile Index",
+ ylab = "Average Growth (cm/month)", ylim = yrange)
R> lines(piv.bsp$taus, piv.bsp$point.est)
R> lines(piv.bsp$taus, piv.bsp$CI[1, , 1], col = "blue")

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 374

Figure 2: Comparison of inference methods for growth rate: Point estimates and 95% uniform
confidence bands for the average derivative of the conditional quantile function of height with respect
to age based on B-spline series approximation.

R> lines(piv.bsp$taus, piv.bsp$CI[1, , 2], col = "blue")
R> title("Pivotal")
R> plot(xrange, yrange, type = "n", xlab = "Quantile Index", ylab = "", ylim = yrange)
R> lines(gaus.bsp$taus, gaus.bsp$point.est)
R> lines(gaus.bsp$taus, gaus.bsp$CI[1, ,1], col="blue")
R> lines(gaus.bsp$taus, gaus.bsp$CI[1, ,2], col="blue")
R> title("Gaussian")
R> plot(xrange, yrange, type = "n", xlab = "Quantile Index",
+ ylab = "Average Growth (cm/month)", ylim = yrange)
R> lines(wboot.bsp$taus, wboot.bsp$point.est)
R> lines(wboot.bsp$taus, wboot.bsp$CI[1, , 1], col = "blue")
R> lines(wboot.bsp$taus, wboot.bsp$CI[1, , 2], col = "blue")
R> title("Weighted Bootstrap")
R> plot(xrange, yrange, type = "n", xlab = "Quantile Index", ylab = "", ylim = yrange)
R> lines(gboot.bsp$taus, gboot.bsp$point.est)
R> lines(gboot.bsp$taus, gboot.bsp$CI[1, , 1], col = "blue")
R> lines(gboot.bsp$taus, gboot.bsp$CI[1, , 2], col = "blue")
R> title("Gradient Bootstrap")
R> title("Average Growth Rate with 95% CI", outer = TRUE)

As we can see in Figure 2, the confidence bands generated are roughly similar. Note that the point
estimates are the same for all the methods.

We can compare the computation times of each of the approximations using the command
Sys.time. Additionally, we compare the p-values generated by each of the four inference meth-
ods. Note that computation times may vary widely depending on the machine in use. However, the
relative computation times will be approximately constant across different machines. The computation
times in the table below were obtained on a computer with two eight-core 2.6 GHz processors (note:
npqr does not make use of parallel computing).

R> pval.dimnames <- vector("list", 2)
R> pval.dimnames[[1]] <- c("Pivotal", "Gaussian", "Weighted Bootstrap",
+ "Gradient Bootstrap")
R> pval.dimnames[[2]] <- c("H0: Growth Rate <= 0", "H0: Growth Rate >= 0",
+ "H0: Growth Rate = 0", "Computation Minutes")
R> pvals <- matrix(NA, nrow = 4, ncol = 4, dimnames = pval.dimnames)
R> pvals[1, ] <- c(round(piv.bsp$pvalues, digits = 4), round(piv.time, digits = 0))
R> pvals[2, ] <- c(round(gaus.bsp$pvalues, digits = 4), round(gaus.time, digits = 0))
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Figure 3: Comparison of series bases for growth rate: Point estimates and 95% uniform confidence
bands for the average derivative of the conditional quantile function of height with respect to age
based on B-spline, polynomial, and Fourier series approximations.

R> pvals[3, ] <- c(round(wboot.bsp$pvalues, digits = 4), round(wboot.time, digits = 0))
R> pvals[4, ] <- c(round(gboot.bsp$pvalues, digits = 4), round(gboot.time, digits = 0))
R> pvals

H0: Growth Rate <= 0 H0: Growth Rate >= 0 H0: Growth Rate = 0
Pivotal 0 1 0.0237
Gaussian 0 1 0.0234
Weighted Bootstrap 0 1 0.0221
Gradient Bootstrap 0 1 0.0221

Computation Minutes
Pivotal 0.9
Gaussian 0.6
Weighted Bootstrap 30.0
Gradient Bootstrap 346.0

As expected, we reject at the 5% level the null hypothesis that the growth rate is negative and the null
hypothesis that the growth rate is equal to zero in all cases, and we fail to reject the null hypothesis
that the growth rate is positive in all cases. For the one-sided tests, the relevant null hypothesis is that
the average growth rate is less than or equal to zero (greater than or equal to zero) at all the quantile
indices in taus. For the two-sided test, the relevant null hypothesis is that the average growth rate
is equal to zero at all the quantile indices in taus. Additionally, note that the pivotal and Gaussian
methods are substantially faster than the two bootstrap methods.

Comparison of series bases

Another option is to take advantage of the variety of bases available in the quantreg.nonpar package.
Here, we consider three bases: the B-spline basis used in the analysis above, an orthogonal polynomial
basis of degree 12, and a Fourier basis with 9 basis functions and a period of 200 months. We compare
the estimates of the average quantile derivative function generated by using each of these bases. We
construct the orthogonal polynomial basis and the Fourier basis with the commands:

R> basis.poly <- poly(cage, degree = 12)
R> basis.four <- create.fourier.basis(rangeval = range(data$cage), nbasis = 9,
+ period = 200)

In this section, we focus on the pivotal method for inference. We run npqr for the orthogonal polyno-
mial basis and the Fourier basis, mimicking the analysis run above for the B-spline basis.

R> piv.poly <- update(piv.bsp, basis = basis.poly)
R> piv.four <- update(piv.bsp, basis = basis.four)

Similar to Section Comparison of the inference processes, we plot the point estimates with their
uniform 95% confidence bands for each basis. Figure 3 shows that, given the parameters of the chosen
bases, the type of basis does not have an important impact on the estimation and inference on the
growth rate charts. A table containing the p-values associated with the hypothesis tests for each basis
are generated by the following code:
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R> pval2.dimnames <- vector("list", 2)
R> pval2.dimnames[[1]] <- c("B-spline", "Polynomial", "Fourier")
R> pval2.dimnames[[2]] <- c("H0: Growth Rate <= 0", "H0: Growth Rate >= 0",
+ "H0: Growth Rate = 0")
R> pvals2 <- matrix(NA, nrow = 3, ncol = 3, dimnames = pval2.dimnames)
R> pvals2[1, ] <- round(piv.bsp$pvalues, digits = 4)
R> pvals2[2, ] <- round(piv.poly$pvalues, digits = 4)
R> pvals2[3, ] <- round(piv.four$pvalues, digits = 4)
R> pvals2

H0: Growth Rate <= 0 H0: Growth Rate >= 0 H0: Growth Rate = 0
B-spline 0 1 0.0239
Polynomial 0 1 0.0334
Fourier 0 1 0.0386

For all bases, the tests’ conclusions are identical: at the 5% level, we reject the null hypothesis that
the average growth rate is negative, fail to reject the null hypothesis that the average growth rate is
positive, and reject the null hypothesis that the average growth rate is equal to zero.

Confidence intervals and standard errors

Now, we illustrate two additional options available to the user. First, to perform inference pointwise
over a region of covariate values and/or quantile indices instead of uniformly, and second, to estimate
the standard errors conditional on the values of the covariate W in the sample. When inference is
uniform, the test statistic used in construction of the confidence interval is the maximal t-statistic
across all covariate values and quantile indices in the region of interest, whereas pointwise inference
uses the t-statistic at each covariate value and quantile index. When standard errors are estimated
unconditionally, a correction term is used to account for the fact that the empirical distribution of
W is an estimator of the distribution of W. The option to estimate standard errors conditionally or
unconditionally is not available for the bootstrap methods. The inference based on these methods is
always unconditional.

We will use only the pivotal method with a B-spline basis for this illustration. First, we run npqr
for each combination of options mentioned above:

R> piv.bsp <- npqr(formula = form.par, basis = basis.bsp, var = "cage", taus = taus,
+ B = B, nderivs = 1, average = 1, alpha = alpha, process = "pivotal",
+ uniform = TRUE, se = "unconditional", printOutput = FALSE)
R> piv.bsp.cond <- update(piv.bsp, se = "conditional")
R> piv.bsp.point <- update(piv.bsp, uniform = FALSE, se = "unconditional")
R> piv.bsp.point.cond <- update(piv.bsp, uniform = FALSE, se = "conditional")

We obtain Figure 4 using the graphing techniques described in Sections Comparison of the inference
processes and Comparison of series bases. As is visible in this figure, usage of conditional standard
errors changes the confidence bands only minimally in our example. As expected, the pointwise
confidence bands are narrower than the uniform confidence bands.

We can also compare how much of the differences (or lack thereof) in the confidence bands are
driven by differences in the standard errors versus the test statistics. Here, we compare the estimated
standard errors at the median for conditional versus unconditional inference:

R> piv.bsp.med <- npqr(formula = form.par, basis = basis.bsp, var = "cage", taus = 0.5,
+ B = B, nderivs = 1, average = 1, alpha = alpha, process = "pivotal", uniform = TRUE,
+ se = "unconditional", printOutput = FALSE)
R> piv.bsp.cond.med <- update(piv.bsp.med, se = "conditional")
R> stderr.dimnames <- vector("list", 2)
R> stderr.dimnames[[1]] <- c("Unconditional", "Conditional")
R> stderr.dimnames[[2]] <- c("Standard Error")
R> stderr <- matrix(NA, nrow = 2, ncol = 1, dimnames = stderr.dimnames)
R> stderr[1, ] <- piv.bsp.med$std.error[1]
R> stderr[2, ] <- piv.bsp.cond.med$std.error[1]
R> stderr

Standard Error
Unconditional 0.008104
Conditional 0.007663

Finally, we compare p-values generated by each of the option choices:
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Figure 4: Comparison of pointwise vs. uniform and conditional vs. unconditional inference for growth
rate: 95% uniform and pointwise confidence bands for the average derivative of the conditional
quantile function of height with respect to age based on B-spline series approximation. The left panel
uses unconditional standard errors in the construction of the bands. The right panel uses conditional
standard errors.

R> pval3.dimnames <- vector("list", 2)
R> pval3.dimnames[[1]] <- c("Uniform, Unconditional", "Uniform, Conditional",
+ "Pointwise, Unconditional", "Pointwise, Conditional")
R> pval3.dimnames[[2]] <- c("H0: Growth Rate <= 0", "H0: Growth Rate >= 0",
+ "H0: Growth Rate = 0")
R> pvals3 <- matrix(NA, nrow = 4, ncol = 3, dimnames = pval3.dimnames)
R> pvals3[1, ] <- round(piv.bsp$pvalues, digits = 4)
R> pvals3[2, ] <- round(piv.bsp.cond$pvalues, digits = 4)
R> pvals3[3, ] <- round(piv.bsp.point$pvalues, digits = 4)
R> pvals3[4, ] <- round(piv.bsp.point.cond$pvalues, digits = 4)
R> pvals3

H0: Growth Rate <= 0 H0: Growth Rate >= 0 H0: Growth Rate = 0
Uniform, Unconditional 0 1 0.0239
Uniform, Conditional 0 1 0.0243
Pointwise, Unconditional 0 1 0.0267
Pointwise, Conditional 0 1 0.0222

In this example, where the sample size is large, about 38,000 observations, conditional versus uncon-
ditional standard errors and uniform versus pointwise inference have little impact on the estimated
p-values.

Estimation and uniform inference on linear functionals

Finally, we illustrate how to estimate and make uniform inference on linear functionals of the condi-
tional quantile function over a region of covariate values and quantile indices. These functionals in-
clude the function itself and derivatives with respect to the covariate of interest. The quantreg.nonpar
package is able to perform estimation and inference on the conditional quantile function, its first
derivative, and its second derivative over a region of covariate values and/or quantile indices. We
also illustrate how to report the estimates using three dimensional plots.

First, we consider the first and second derivatives of the conditional quantile function. In the
application they correspond to the growth rate and growth acceleration of height with respect to age
as a function of age (from 0 to 59 months) and the quantile index. To do so, we use the output of
npqr called var.unique, which contains a vector with all the distinct values of the covariate of interest
(cage here). To generate this output, we estimate the first and second derivatives of the conditional
quantile function using a B-spline series approximation over the covariate values in var.unique and
the quantile indices in taus:
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Figure 5: Growth rate and acceleration: Estimates of the first and second derivatives of the conditional
quantile function of height with respect to age.

R> piv.bsp.firstderiv <- npqr(formula = form.par, basis = basis.bsp, var = "cage",
+ taus = taus, nderivs = 1, average = 0, print.taus = print.taus, B = B,
+ process = "none", printOutput = FALSE)
R> piv.bsp.secondderiv <- update(piv.bsp.firstderiv, nderivs = 2)

Next, we generate vectors containing the region of covariate values and quantile indices of interest:

R> xsurf1 <- as.vector(piv.bsp.firstderiv$taus)
R> ysurf1 <- as.vector(piv.bsp.firstderiv$var.unique)
R> zsurf1 <- t(piv.bsp.firstderiv$point.est)
R> xsurf2 <- as.vector(piv.bsp.secondderiv$taus)
R> ysurf2 <- as.vector(piv.bsp.secondderiv$var.unique)
R> zsurf2 <- t(piv.bsp.secondderiv$point.est)

Finally, we create the three dimensional plots for:

(τ, w) 7→ ∂kg (τ, w) /∂wk, (τ, w) ∈ I,

where k ∈ {1, 2}, and I is the region of interest.

R> par(mfrow = c(1, 2))
R> persp(xsurf1, ysurf1, zsurf1, xlab = "Quantile Index", ylab = "Age (months)",
+ zlab = "Growth Rate", ticktype = "detailed", phi = 30, theta = 120, d = 5,
+ col = "green", shade = 0.75, main = "Growth Rate (B-splines)")
R> persp(xsurf2, ysurf2, zsurf2, xlab = "Quantile Index", ylab = "Age (months)",
+ zlab = "Growth Acceleration", ticktype = "detailed", phi = 30, theta = 120,
+ d = 5, col = "green", shade = 0.75, main = "Growth Acceleration (B-splines)")

These commands produce Figure 5. Here, we see that the growth rate is positive at all ages and
quantile indices. The growth rate decreases in the first few months of life and stabilizes afterwards,
which can also be seen in the graph of growth acceleration. Growth acceleration is negative at young
ages but stabilizes around zero at about 15 months. Both growth rate and growth acceleration are
relatively homogeneous across quantiles at all ages. Saved in piv.bsp.firstderiv$pvalues and
piv.bsp.secondderiv$pvalues are the p-values from hypothesis tests to determine whether the first
and second derivatives, respectively, are negative, positive, and equal to zero uniformly over the
region of ages and quantile indices:

Order of Derivative H0: Growth Rate <= 0 H0: Growth Rate >= 0 H0: Growth Rate = 0
First Deriviative 0 1 0.042
Second Derivative 0 1 0.061

Thus, we reject at the 5% level the null hypotheses that growth rate is negative, that growth rate is
equal to zero, and that growth acceleration is positive over all the first five years of the children’s
lifes at all the quantiles of interest. We come close to rejecting at the 5% level the null hypothesis that
growth acceleration is equal to zero over all the first five years of the children’s lifes at all the quantiles
of interest.
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Similarly, we estimate the conditional quantile function over a region of covariate values and
quantile indices, which corresponds to a growth chart in our application. Here, we use a fully saturated
indicator basis for the series approximation to the nonparametric part of the model. We also compare
the original estimates of the resulting growth chart to rearranged estimates that impose that the
conditional quantile function of height is monotone in age and the quantile index. In this example, the
conditional quantile function estimated using all data is nearly monotone without rearrangement. To
illustrate the power of rearrangement when estimates are not monotone, we use a subset of the data
containing the first 1,000 observations:

R> data.subset <- data[1:1000, ]
R> detach(data)
R> attach(data.subset)

Now, we create the fully saturated indicator basis for cage:

R> faccage <- factor(cage)

To perform estimation using this basis, we input faccage for basis:

R> piv.fac.fun <- npqr(formula = form.par, basis = faccage, var = "cage", taus = taus,
+ print.taus = print.taus, B = B, nderivs = 0, average = 0, alpha = alpha,
+ process = "none", rearrange = FALSE, rearrange.vars = "both", se = "conditional",
+ printOutput = FALSE, method = "fn")

We also obtain the rearranged estimates with respect to age and the quantile index using the options of
the command npqr. Note that we input "both" for rearrange.vars. This option performs rearrange-
ment over quantile indices and age. Other allowable options are "quantile" (for monotonization over
quantile indices only) and "var" (for monotonization over the variable of interest only).

R> piv.fac.fun.re <- update(piv.fac.fun, rearrange.vars = "both")

Now, we construct three dimensional plots for the estimates of the conditional quantile function:

(τ, w) 7→ QY|X (τ | x) = g (τ, w) + v′γ (τ) , (τ, w) ∈ I,

where v are evaluated at the sample mean for cardinal variables (mbmi, breastfeeding, mage, medu, and
edupartner) and the sample mode for unordered factor variables (faccsex, facctwin, faccbirthorder,
facmunemployed, facmreligion, facmresidence, facwealth, facelectricity, facradio,
factelevision, facrefrigerator, facbicycle, facmotorcycle, and faccar).

R> xsurf <- as.vector(piv.fac.fun$taus)
R> ysurf <- as.vector(piv.fac.fun$var.unique)
R> zsurf.fac <- t(piv.fac.fun$point.est)
R> zsurf.fac.re <- t(piv.fac.fun.re$point.est)
R> par(mfrow = c(1, 2))
R> persp(xsurf, ysurf, zsurf.fac, xlab = "Quantile Index", ylab = "Age (months)",
+ zlab = "Height", ticktype = "detailed", phi = 30, theta = 40, d = 5,
+ col = "green", shade = 0.75, main = "Growth Chart (Indicators)")
R> persp(xsurf, ysurf, zsurf.fac.re, xlab = "Quantile Index", ylab = "Age (months)",
+ zlab = "Height", ticktype = "detailed", phi = 30, theta = 40, d = 5,
+ col = "green", shade = 0.75, main = "Growth Chart (Indicators, Rearranged)")

Figure 6 shows that the rearrangement fixes the non-monotonic areas of the original estimates.

Conclusion

In this paper we introduced the R package quantreg.nonpar, which implements the methods of Belloni
et al. (2011) to estimate and make inference on partially linear quantile models. The package allows
the user to obtain point estimates of the conditional quantile function and its derivatives based on a
nonparametric series QR approximation. Using pivotal, gradient bootstrap, Gaussian, and a weighted
bootstrap methods, the user is also able to obtain pointwise and uniform confidence intervals. We
apply the package to a dataset containing information on child malnutrition in India, illustrating the
ability of quantreg.nonpar to generate point estimates and confidence intervals, as well as output that
allows for easy visualization of the computed values. We also illustrate the ability of the package to
monotonize estimates by the variable of interest and by quantile index.
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Figure 6: Growth chart, with and without rearrangement: Estimates of the conditional quantile
function of height based on a fully saturated indicator approximation with respect to age.
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nmfgpu4R: GPU-Accelerated
Computation of the Non-Negative Matrix
Factorization (NMF) Using CUDA
Capable Hardware
by Sven Koitka and Christoph M. Friedrich

Abstract In this work, a novel package called nmfgpu4R is presented, which offers the computation
of Non-negative Matrix Factorization (NMF) on Compute Unified Device Architecture (CUDA) platforms
within the R environment. Benchmarks show a remarkable speed-up in terms of time per iteration
by utilizing the parallelization capabilities of modern graphics cards. Therefore the application of
NMF gets more attractive for real-world sized problems because the time to compute a factorization is
reduced by an order of magnitude.

Introduction

Dimension reduction techniques are commonly used in machine learning and data mining tasks. For
instance in text mining a corpora with thousands of words in the vocabulary could be too complex to
be learned by Support Vector Machines (SVM) directly. Therefore the most important structure within
the data must be extracted prior to the learning process. In the context of text mining new data
axes at best represent topics in the corpora, which are used to approximate the original documents.
Furthermore by reducing the feature space of the data it is less likely to be influenced by the Curse of
Dimensionality (CoD) (Bellman, 1961).

There are several methods to reduce the dimension of a data matrix, for example Principal Compo-
nent Analysis (PCA) (Pearson, 1901) and Latent Dirichlet Allocation (LDA) (Blei et al., 2003). Another
powerful technique namely Non-negative Matrix Factorization (NMF) (Lee and Seung, 1999) will be
discussed in the first section of this work. Currently available NMF implementations require a
prohibitively long computation time, which make the usage for real-world applications impracti-
cal. Therefore we present an implementation using the Compute Unified Device Architecture (CUDA)
platform with a binding to the R environment. Furthermore the package is developed platform
independent and is compatible with all three major platforms for R: Windows, Linux and Mac OS X.

Overview of non-negative matrix factorization

Let X ∈ Rn×m
+ be a matrix with n attributes and m observations in the dataset, then the data matrix X

is approximated by the product of two new matrices W and H (Lee and Seung, 2001):

X ≈WH (1)

Each column of the matrix W ∈ Rn×r
+ represents a single basis vector, whereas each column of the

matrix H ∈ Rr×m
+ represents an encoding vector. Therefore a column of the data matrix can be

approximated by the linear combination of all basis vectors with one encoding vector (Lee and Seung,
2001). The importance of each basis vector can be seen by analysing the row sums of matrix H. Row
sums with a low value identify basis vectors with very little influence on the dataset and vice versa
(Skillicorn, 2007). It is also important to note that the data matrix as well as both matrices W and H
contain only non-negative values.

Besides the general convention in the context of data mining, NMF expects columns to represent
observations of the dataset instead of attributes (Skillicorn, 2007), as visualized in Figure 1. For that
reason it is very important to read the data matrix definition in the literature carefully.

Contrary to PCA or Singular Value Decomposition (SVD), the basis vectors are not linearly inde-
pendent and thus the solution is not unique. However the reconstruction of the data matrix is purely
additive and yields a more natural parts-based decomposition (Lee and Seung, 1999).

As the factorization should represent a compressed form of the original data matrix, one approach
is to choose r depending on the number of rows and columns of the data matrix (Lee and Seung, 2001):

r <
n ·m

n + m
(2)
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Figure 1: NMF model which approximates the data matrix by a linear combination of basis vectors
and an encoding matrix.

In general, one should choose r � m (Shahnaz et al., 2006). However, choosing the right parameter
depends on the dataset and usage of the factorization.

Pseudo-code

1. Input: Data matrix X ∈ Rn×m
+ and number of features r

2. Initialize W(0) ∈ Rn×r
+ , H(0) ∈ Rr×m

+ with non-negative values and set k = 0

3. while k < kmax and not converged:

(a) Fix matrix W(k) and compute matrix H(k+1)

(b) Fix matrix H(k+1) and compute matrix W(k+1)

(c) Evaluate error function to check for convergence

(d) k = k + 1

4. Set W = W(k) and H = H(k)

Initialization of factor matrices

Using a good initialization of the matrices can decrease the required number of iterations and further
improve the factorization’s quality. Depending on the chosen algorithm either only matrix W or both
matrices need to be initialized.

Several different approaches were presented to execute step 2 of the pseudo-code, the most simple
one by Lee and Seung (1999, 2001) namely initializing both matrices just with random values. A
more complex initialization uses the SVD of the data matrix (Boutsidis and Gallopoulos, 2008), a very
expensive approach which should be only used if the SVD is already available (Langville et al., 2014).
However this initialization yields a unique factorization because SVD is also unique.

In general, the convergence theory of NMF is not researched enough. For example, Lee and
Seung (2001) had shown that the multiplicative update rules converge to a local minimum. However
Gonzalez and Zhang (2005) disproved that and clearly state the algorithm is only proven to converge
at most to a saddle point. In fact most of the newer algorithms are only guaranteed to converge to a
local minimum. This is mainly because NMF is a non-convex optimization problem (Lee and Seung,
2001). In each computation step only one of two matrices gets updated, independently from the other
one. Hence finding a global minimum is unlikely, however multiple local minima do exist. If the
execution time of an algorithm is short enough, then a Monte-Carlo like approach can be chosen (Berry
et al., 2007). That implies executing the algorithm multiple times using different initializations each
time and picking the factorization with the best quality.

Error function

In the literature, different error or loss functions are proposed. The most common are Kullback-Leibler
Divergence (Lee and Seung, 1999) and Frobenius norm (Paatero and Tapper, 1994; Lee and Seung, 2001).
Since only the Frobenius norm is used in this work, Kullback-Leibler divergence won’t be discussed.

In an abstract sense, the Frobenius norm of a matrix A ∈ Rn×m
+ is equal to the Euclidean distance

of a vector ~a ∈ Rn·m
+ . To be more precise the Frobenius norm is the square root of the sum of all
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squared matrix elements (Reinhardt et al., 2013):

‖A‖F :=

√√√√ n

∑
i=1

m

∑
j=1

∣∣∣aij

∣∣∣2 (3)

Besides this general definition there do exist alternative representations, among others the representa-
tion using the trace of a matrix (Reinhardt et al., 2013):

‖A‖F :=
√

trace (AT A) (4)

For optimized computation the widely used minimization problem is rearranged using this equiva-
lence:

min
1
2
· ‖X−WH‖2

F = min
1
2

(
trace

(
XT X

)
− 2 · trace

(
HTWT X

)
+ trace

(
HHTWTW

))
(5)

Upon first sight the error function seems to be more expensive to compute but actually most terms
get computed during the algorithm execution anyway (Berry et al., 2007; Langville et al., 2014).
Furthermore, the trace

(
XT X

)
is constant and can be precomputed.

The following algorithms minimize the Frobenius norm, but can also easily be derived for other
error functions.

Updating with multiplicative update rules

Multiplicative update rules have been first described by Lee and Seung (1999, 2001) and are the fastest
algorithms in terms of computational cost per iteration. In fact this type of algorithm is a special case
of the gradient-descent algorithm with a specific step size (Lee and Seung, 2001). Both update rules
for the matrices W and H are applied in an alternating fashion to solve step 3a) and 3b) of the NMF
pseudo-code:

H(k+1) = H(k) ⊗
((

W(k)
)T

X
)
�
((

W(k)
)T

W(k)H(k)
)

(6)

W(k+1) = W(k) ⊗
(

X
(

H(k+1)
)T
)
�
(

W(k)H(k+1)
(

H(k+1)
)T
)

(7)

Where ⊗ denotes the element-wise matrix multiplication and � the element-wise matrix division.
However it is advised to add an epsilon to the denominator, e.g. ε ≈ 10−9 for double precision floating
point values, to avoid divisions by zero (Berry et al., 2007). Referring to table 3 in the implementation
section, multiplicative update rules are used in mu and nsNMF for both matrices, in gdcls only for
matrix W.

Updating with alternating least squares

Alternating Least Squares (ALS) type algorithms are another approach to solve step 3a) and 3b) of the
NMF pseudo-code. The central idea is that for one given matrix the other one can be computed using
a least-squares projection (Paatero and Tapper, 1994).(

W(k)
)T

W(k)H(k+1) =
(

W(k)
)T

X (8)

H(k+1)
(

H(k+1)
)T (

W(k+1)
)T

= H(k+1)XT (9)

In the first step, Equation 8 gets solved to H(k+1) whereby the computation of matrix W becomes

possible. Equation 9 gets solved for
(

W(k+1)
)T

, followed by transposing the solution to acquire the

matrix W(k+1).

Since solving a linear equation system possibly yields negative values, the non-negativity con-
straint for both matrices W and H must be ensured after each solving step. One possible solution for
this problem is to set all negative values to zero (Langville et al., 2014).

Langville et al. (2014) describe ALS extensions like Alternating Constraint Least Squares (ACLS) and
Alternating Hoyer Constraint Least Squares (AHCLS), which use additional parameters to provide a more
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sparse factorization. Therefore both diagonal and non-diagonal values of the covariance matrices
WTW and HHT get manipulated. For example, the AHCLS uses the additional parameters λW , λH , αW
and αH to solve the following equations:((

W(k)
)T

W(k) + λH · βH · I − λH · E
)

H(k+1) =
(

W(k)
)T

X (10)

(
H(k+1)

(
H(k+1)

)T
+ λW · βW · I − λW · E

)(
W(k+1)

)T
= H(k+1)XT (11)

Where I ∈ Rr×r denotes the identity matrix and E ∈ Rr×r a matrix of ones, furthermore βW and βH
are defined as:

βW :=
(
(1− αH) ·

√
r + αH

)2 (12)

βH :=
(
(1− αW) ·

√
r + αW

)2 (13)

n The authors have advised to use λW , λH ∈ [0, ∞) and αW , αH ∈ [0, 1), where αW and αH should
represent the requested percentage of sparsity. As a head start all four values should be set to 0.5.
Once more referring to Table 3 in the implementation section, ALS update rules are used in als, acls,
and ahcls for both matrices, in gdcls only for matrix H.

The NMF algorithm for R using CUDA: nmfgpu4R

There already exist some approaches to compute NMF in R, for example the NMF (Gaujoux and
Seoighe, 2010) and NMFN (Liu, 2012) packages on CRAN. However both packages use the CPU for
the computational process and even with parallelization of multiple runs the usage for real-world
datasets is limited.

CUDA-based implementations of NMF are already part of the GPUMLib1 (Lopes and Ribeiro, 2010),
which itself contains various algorithms of machine learning tasks for CUDA platforms. Currently,
as of version 0.3.4, there are two algorithms available, one additive and one multiplicative, for both
Frobenius norm and Kullback-Leibler divergence. Besides that no complex initialization strategies or
algorithms incorporating constraints are available. Furthermore the computation of NMF is restricted
to single precision format, which might not be suitable for every dataset.

In this work we propose a new package called nmfgpu4R2, which is a binding to a separate
library called nmfgpu3 written in C++11 using CUDA (version ≥ 7.0) for Nvidia GPUs with compute
capability ≥ 3.0 (Kepler). When using CUDA, different build tools must be chosen depending on the
platform. This limitation is induced by Nvidia’s nvcc compiler, which only supports one compiler per
platform (nvcc itself is built on top of one compiler). By splitting the package and C++ library in two
separate modules, it is possible to provide both nmfgpu4R and nmfgpu for all three major platforms:
Windows, Linux, and Mac OS X.

Modern Graphics Processing Units (GPU) can also be used as High Performance Computing (HPC)
devices using either OpenCL or CUDA. Latter is restricted to only Nvidia hardware but is more
common and can be integrated directly into C/C++ source code. One advantage of the GPU over CPU
parallelization is that algorithms have to be developed scalable and data parallel. Synchronization
and data transfer logic has to be handled by the developer and therefore these algorithms are able
to profit more from new and more powerful hardware generations. For more information about the
CUDA platform please visit the Nvidia CUDA website4.

Supported data matrix formats

Internally the library computes the algorithms using dense matrices, so one option is to pass in a
numeric matrix with proper dimensions. Furthermore the nmfgpu4R package currently supports S4
classes from the Matrix package, developed by Bates and Maechler (2014), and the SparseM package,
developed by Koenker and Ng (2015). A complete reference about supported S4 classes is listed

1https://sourceforge.net/projects/gpumlib/ (last access: 18.04.2016)
2https://github.com/razorx89/nmfgpu4R (last access: 18.04.2016)
3https://github.com/razorx89/nmfgpu (last access: 18.04.2016)
4http://www.nvidia.com/object/cuda_home_new.html (last access: 18.04.2016)

https://developer.nvidia.com/cuda-zone (last access: 18.04.2016)
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in table 1. It is important to note that the sparse matrices get converted into dense matrices on the
GPU-side. At the moment, a computation using sparse algorithms does not take place at any time.

Storage Format Matrix SparseM

Dense "dgeMatrix" -
Coordinate (COO) "dgTMatrix" "matrix.coo"
Compressed Sparse Column (CSC) "dgCMatrix" "matrix.csc"
Compressed Sparse Row (CSR) "dgRMatrix" "matrix.csr"

Table 1: Supported S4 classes as input data matrix to nmfgpu4R.

However this feature allows large sparse matrices to be converted much faster in GPU memory.
For example this might be quite useful for Bag-of-Words (BoW) in text mining (Salton and Buckley,
1988) or Bag-of-Visual-Words (BoVW) in image classification / retrieval (Cula and Dana, 2001), where
the vocabulary is commonly very large but the frequencies are mostly zero.

Customizing the initialization

Algorithms of the Non-negative Matrix Factorizations solve a non-convex optimization problem. Thus
choosing a good initialization can reduce the number of iterations and yield better results. In NMF
four different initialization strategies are implemented. There are different approaches to choose an
initialization for both matrices W and H. It is important to keep in mind that when an ALS type
algorithm is chosen only matrix W has to be initialized. Matrix H will be computed in the first iteration
from only matrix W and the data matrix.

Strategy Matrix W Matrix H

CopyExisting Copy W Copy H
AllRandomValues Random Random
MeanColumns Mean of k random columns Random
k-means/Random k-means Random
k-means/NonNegativeWTH k-means hij = max

(
0,
(
WT X

)
ij

)
EIn-NMF k-means hij = 1/

(
i

∑
k=1

(
||xj−ck||2
||xj−ci||2

) 2
1−m
)

Table 2: Supported initialization strategies for initializing matrix W and H.

All supported initializations by nmfgpu4R are listed in Table 2. Strategy CopyExisting can be used
to provide user-defined initializations for both matrices W and H which get copied directly into GPU
memory. When using AllRandomValues both matrices W and H get initialized by random values which
is the most common but also the simplest strategy (Pauca et al., 2006). Langville et al. (2014) presented
a method called MeanColumns to form initial basis vectors from data columns. The idea behind this
initialization is that if the data columns are sparse then the initial basis vectors should be sparse as
well. Furthermore, k-means clustering can be used to find initial basis vectors (Gong and Nandi, 2013).
If matrix H has to be initialized in the context of k-means based initializations, then there are different
approaches. Most complex is the EIn-NMF initialization which computes the membership degree of
each data column (Gong and Nandi, 2013).

Using different algorithms

There are currently six different algorithms implemented in nmfgpu4R, because NMF models can
be computed in different ways and, furthermore, can be restricted by constraints. Those algorithms
which do have extra constraints, can also be adjusted through parameters. In Table 3 all implemented
algorithms and their corresponding publications are listed.

A few of these algorithms will be evaluated in the benchmark section, using two different image
datasets. In general the right choice of algorithm depends on the data and noise within the data. For
an overview of all required parameters for a specific algorithm, please have a look at the package
documentation.
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Method Name Publication

acls Alternating Constrained Least Squares Langville et al. (2014)
ahcls Alternating Hoyer Constrained Least Squares Langville et al. (2014)
als Alternating Least Squares Paatero and Tapper (1994)
gdcls Gradient Descent Constrained Least Squares Shahnaz et al. (2006)
mu Multiplicative Update Rules (Frobenius Norm) Lee and Seung (2001)
nsnmf non-smooth Non-negative Matrix Factorization Pascual-Montano et al. (2006)

Table 3: Overview of implemented algorithms in nmfgpu4R.

Adjusting convergence tests

Most NMF implementations only use the number of iterations as a convergence test, as this is a
very cheap test. However, for a mathematically correct convergence test an error function has to be
computed and observed during the algorithm execution. In NMF there are four different stopping
criteria implemented, which can also be combined. The nmfgpu4R package implements both: the
convergence test by observing an error function, as the primary and an upper limit of iterations, as the
secondary convergence criterion.

Setting the threshold value can be done by passing in the parameter threshold. This value is
actually interpreted differently depending on the configured error function. Currently the Frobenius
Norm and Root Mean Squared Deviation (RMSD) are supported. One advantage of the RMSD error
function is that it is normalized by the number of data matrix elements and therefore independent of
the data matrix dimension. By passing in the parameter maxiter the maximum number of iterations
can be overwritten, which is by default set to 2000. For example, execute the algorithm until the delta
error is less than 0.1 regarding the RMSD error function but at most 500 iterations:

result <- nmf(data, r, threshold=0.1, thresholdType="rmsd", maxiter=500)

Depending on the datasets the ALS type algorithms are sometimes not stable and therefore not
monotonically decreasing. In such a case the convergence test using the threshold value will not work
properly.

Encoding matrix for new unseen data

A simple but effective method to calculate an encoding matrix for unseen data was described by Lopes
and Ribeiro (2011), which allows NMF to be used within learning algorithms. Using this method the
training data gets factorized with a normal NMF step. However the factorization step of the testing
data reuses the matrix W and only updates the matrix H. Thus the resulting matrix H is an encoding
of learned basis vectors from the training data. A complete scheme of the process is visualized in
figure 2.

As a result, structures between both training and test data are being preserved, but the feature
dimension in matrix H can be reduced to a fraction of the original dimension. Hence, learning, for
example, a Support-Vector-Machine (SVM) can be speeded up and furthermore prediction accuracy
can be improved.

In the following example code the nmf method is used to train the basis vectors for the training
dataset. After that, the generic predict method can be used to either retrieve the encoding matrix H
of the training data or to generate an encoding matrix for a new data matrix. The objective here is to
reduce the 4 dimensions of the iris dataset (Fischer, 1936) to 2 dimensions.

# Set seed for reproducible results
set.seed(42)

# Split iris dataset into training and test data
idx <- sample(1:nrow(iris), 100, replace=F)
data.train <- iris[idx,-5]
data.test <- iris[-idx,-5]

# Compute model and retrieve encoding matrix H for both training and test data
library(nmfgpu4R)
nmfgpu4R.init()
model <- nmf(t(data.train), 2)
encoding.train <- t(predict(model)) # Identical: encoding.train <- t(model$H)
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Figure 2: (a) Prediction of an encoding matrix for unseen data. The data matrix of the existing NMF
model is "extended" by new data, but the basis vectors are fixed. (b) Data flow visualization of the
prediction process in the context of a SVM (derived from Lopes and Ribeiro (2011)).

encoding.test <- t(predict(model, t(data.test)))

# Use encoding matrices to predict "Species"
library(e1071)
model.svm <- best.svm(x=encoding.train, y=iris$Species[idx])
prediction <- predict(model.svm, encoding.test)
table(iris[-idx,5], prediction)

Using the iris dataset is just an example and should be replaced with a much larger dataset to fully
utilize the GPU. Furthermore an improvement in speed and possibly in accuracy over non-reduced
data is more likely to be observed when the dimension is reduced by a larger magnitude.

This example learns basis vectors from a training dataset and predicts the encoding matrix for
the test dataset. To visualize the encoding matrices of both datasets and their relationships, a simple
scatter plot can be made with the following code:

# Plot encoding matrices
library(ggplot2)
data.plot <- data.frame(rbind(encoding.train, encoding.test),

class=unlist(list(iris[idx,5], iris[-idx,5])),
type=c(rep("Train", nrow(data.train)),
rep("Test", nrow(data.test))))

ggplot(data.plot, aes(x=r1, y=r2, color=class, shape=type)) + geom_point()

As shown in Figure 3, both datasets share the same structure. Observations from each of the three
classes are predicted to belong to the same area as the training observations.

Issues during developement

The nmfgpu4R package provides a binding to an independent C++ library, which uses the latest C++
features from the C++11 standard. In order to support multiple platforms deploying an extra library
is a necessary step since the Nvidia CUDA compiler nvcc only supports the Microsoft Visual C++
compiler on Windows platforms. But R uses its own compilation tool chain and therefore does not
allow the Microsoft Visual C++ compiler.

The main problem is that C++ compilers emit an object code which is not compatible with the
object code of another compiler. R uses g++ from the MinGW tool chain and therefore both compiled
binaries are not link-compatible, virtual tables are only compatible in some situations and struct returns
simply do not work. Furthermore since the object code is not link-compatible one must fall back to
an extern "C" interface, which then can be loaded using native system calls like GetProcAddress on
Windows or dlsym on Linux/Mac OS. Such issues do not come up on Linux or Mac OS because R uses
on these platforms the default configured compiler which is also supported by the nvcc compiler.
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Figure 3: Visualization of the encoding matrices for the iris dataset (Fischer, 1936), which is reduced
by the nmf method (left) and by the pcromp method (right) to 2 dimensions.

Benchmarks

In this section multiple benchmarks are described which were performed on the Yale Face Database
(Belhumeur et al., 1997) and Cropped Extended Yale Face Database B (Lee et al., 2005). As a preprocessing
step all images were scaled to a common height of 64 pixels while preserving the aspect ratio. The
resulting matrix dimensions can be taken from table 4.

Dataset Pixels (orig.) Pixels (scaled) Count Matrix

Yale Face Database 320× 243 64× 64 165 4096× 165
Extended Yale Face Database B 168× 192 56× 64 2414 3584× 2414

Table 4: Dimensions of data matrices which where used to benchmark existing CPU implementations
as well as GPU implementations by the nmfgpu4R package.

For testing, a system server with CentOS 7.2.1511, Intel Xeon E5-2687W v3 @3.10GHz (10 physical
cores), 256GB RAM, Nvidia GeForce GTX Titan X and two Nvidia Tesla K80 was used. R is a custom
build of version 3.3.1 using OpenBLAS5 as BLAS back-end.

In this benchmark the nmfgpu4R (version 0.2.5.1) package is compared to the CRAN packages
NMF (version 0.20.6) and NMFN (version 2.0), which both provide CPU implementations of common
NMF algorithms. The NMF package does provide optimized C++ algorithms as well as pure R
implementations. Regarding the package documentation parallelization is only performed using
clusters for parallelizing multiple runs of the same algorithm with different initializations. In order
to fully utilize the CPU cores, pure R algorithms were benchmarked using an OpenBLAS back-
end with OPENBLAS_NUM_THREADS=10. Algorithms from the NMFN package were modified to accept
preinitialized matrices to be able to compare the algorithms with identical starting points. Both the
CPU and GPU algorithms were executed 10 times each.

As already stated in the previous section Alternating Least Squares algorithms seem to perform
poorly on very dense datasets, leading to a non-stable factorization or even no solution at all. However
the execution times of the ALS algorithms in nmfgpu4R are the highest of all GPU algorithms, but they
are still very low compared to the ALS implementation in NMFN, which is shown by Figure 4 (top).
Furthermore, the optimized C++ algorithms in the NMF package are much slower when computed in
sequential mode compared to the R implementations, which are accelerated by the multi-threaded
OpenBLAS back-end.

Overall the multiplicative algorithm is the fastest algorithm for both GPU and CPU. Depending on
the dataset it might be useful to compute the factorization in single precision format, because modern
GPUs have still more single precision than double precision floating point units. As shown by Figure
4, GPUs of Nvidia’s GeForce series are optimized for single precision calculations, which is sufficient
for end-user gaming experience. However double precision computation is very limited on those
cards, whereas the Tesla series also provides enough double precision units for fast calculations. As
Table 5 indicates, there is no noticeable difference in terms of factorization quality but very much in
execution time. Small variations between error functions can be caused due to computational ordering
and on GPU-side due to dispatching of thread blocks.

5http://www.openblas.net (last access: 31.10.2016)
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Yale Face Database Extended Yale Face Database B+
Device Package Algorithm ||X−WH||F Elapsed Time ||X−WH||F Elapsed Time

Intel Xeon
E5-2687W v3
@3.10GHz

NMF .R#brunet 82.12± 0.68 42.11± 2.28s 218.39± 0.58 857.64± 134.77s
.R#lee 75.68± 0.56 23.10± 0.75s 208.15± 0.78 153.53± 4.98s
.R#nsNMF (θ=0.25) 92.15± 0.69 59.75± 0.64s 243.59± 0.50 732.97± 216.69s
brunet 82.12± 0.68 359.15± 0.34s 218.39± 0.58 20891.94± 718.52s
lee 75.68± 0.56 206.76± 0.08s 208.15± 0.78 11877.49± 121.46s
nsNMF (θ=0.25) 92.15± 0.69 437.58± 3.91s 243.59± 0.50 21503.39± 566.04s

NMFN nnmf_als 227.86± 18.11 35.37± 0.28s 1188.68± 49.38 289.41± 2.41s
nnmf_mm 75.72± 0.52 46.74± 1.23s 208.02± 0.75 356.53± 4.56s

Nvidia
GeForce GTX
TITAN X
(Maxwell)

nmfgpu4R
(double)

als 218.97± 8.71 10.56± 0.38s 1182.94± 50.47 219.77± 9.24s
gdcls (λ=0.01) 92.47± 0.91 2.91± 0.01s 217.94± 0.85 137.75± 1.63s
mu 75.86± 0.49 2.40± 0.01s 208.37± 0.72 70.03± 0.15s
nsNMF (θ=0.25) 88.97± 0.47 2.43± 0.01s 254.38± 0.85 69.20± 0.05s

nmfgpu4R
(float)

als 231.60± 19.44 6.43± 0.07s 1161.70± 34.22 121.20± 2.24s
gdcls (λ=0.01) 92.75± 1.06 1.44± 0.01s 219.04± 0.90 62.95± 0.68s
mu 75.86± 0.49 1.05± 0.01s 208.38± 0.72 4.14± 0.04s
nsNMF (θ=0.25) 86.74± 0.33 0.88± 0.01s 237.35± 0.77 3.76± 0.01s

Nvidia
Tesla K80
(Kepler)

nmfgpu4R
(double)

als 223.00± 14.60 9.84± 0.30s 1160.46± 57.60 173.40± 1.17s
gdcls (λ=0.01) 93.26± 1.31 2.57± 0.01s 218.75± 1.37 88.89± 1.68s
mu 74.24± 0.32 2.84± 0.01s 217.71± 0.94 13.51± 0.01s
nsNMF (θ=0.25) 88.36± 0.93 1.75± 0.01s 254.58± 1.16 13.54± 0.01s

nmfgpu4R
(float)

als 233.16± 21.10 8.01± 0.48s 1147.49± 36.85 130.43± 0.35s
gdcls (λ=0.01) 93.80± 1.53 2.26± 0.01s 218.83± 1.02 70.69± 0.69s
mu 74.25± 0.32 2.19± 0.02s 217.72± 0.94 6.95± 0.06s
nsNMF (θ=0.25) 84.60± 0.39 1.39± 0.02s 246.74± 0.74 6.98± 0.02s

Table 5: Benchmark results for the Yale Face Database with r = 32 features and Cropped Extended Yale
Face Database with r = 128. Each measurement was taken at iteration 2000 with n = 10 computations.
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Figure 4: Computation time for one iteration on the Yale Face Database with r = 32 (top) and Cropped
Extended Yale Face Database B with r = 128 (bottom) shown on a logarithmic scale.
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Summary

In this work a new possibility to compute Non-negative Matrix Factorizations (NMF) using CUDA
hardware is presented. As shown in the benchmarks, the performance gain is remarkable and therefore
much larger datasets can be reduced, without having to wait on completion for weeks or even months.
Currently the implementation is only limited by the available memory on the device, because all
algorithms work directly in device memory without transfering intermediate results back to the
host. Possible extensions to this library/package could make use of out-of-core computation and
multiple CUDA devices, either to compute one distributed factorization or multiple factorizations
with different initializations. Furthermore more complex algorithms and initialization strategies could
be implemented in the future.
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Computing Pareto Frontiers and Database
Preferences with the rPref Package
by Patrick Roocks

Abstract The concept of Pareto frontiers is well-known in economics. Within the database community
there exist many different solutions for the specification and calculation of Pareto frontiers, also called
Skyline queries in the database context. Slight generalizations like the combination of the Pareto
operator with the lexicographical order have been established under the term database preferences . In
this paper we present the rPref package which allows to efficiently deal with these concepts within
R. With its help, database preferences can be specified in a very similar way as in a state-of-the-art
database management system. Our package provides algorithms for an efficient calculation of the
Pareto-optimal set and further functionalities for visualizing and analyzing the induced preference
order.

Introduction

A Pareto set is characterized by containing only those tuples of a data set which are not Pareto-
dominated by any other tuple of the data set. We say that a tuple t Pareto-dominates another tuple
t′ if it is better or equal w.r.t. all relevant attributes and there exists at least one attribute where t is
strictly better than t′. Typically, such sets are of interest when the dimensions looked upon tend to be
anticorrelated. Consider the Pareto set of mtcars where the the fuel consumption shall be minimized
(i.e., miles per gallon shall be maximized) and the horsepower maximized, which is depicted in
Figure 1. These dimensions tend to anticorrelate and hence a car buyer might Pareto-optimize both
dimensions to get those cars which are optimal compromises .
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Figure 1: The bold points represent the Pareto set of cars with high mpg and hp values. The Pareto
front line connecting them isolates the dominated area.

In the database community this concept was introduced under the name Skyline Operator in
Börzsönyi et al. (2001). In this pioneer paper they suggest a SKYLINE OF clause extending a usual SQL
query to specify the optimization goals for Pareto sets. For example, if mtcars is an SQL table, the
Pareto-optimal cars from the example above can be selected using the Skyline Operator by

SELECT * FROM mtcars SKYLINE OF hp MAX, mpg MAX

Such queries can be rewritten into standard SQL, cf. Kießling and Köstler (2002). But such a
rewritten query contains a very complex WHERE clause, which is very inefficient to process for common
query processors. To the best of our knowledge there is no open-source database management system
supporting Skyline queries off-the-shelf.

There exists a commercial database management system EXASolution which supports such
Skylines queries in a slightly generalized manner (Mandl et al., 2015). The idea is to construct
preference terms within the SQL query, which induce strict orders (irreflexive and transitive). This
approach was adapted from the preference framework presented in Kießling (2002). The syntactical
schema of an SQL query in EXASolution using the Skyline-Feature is given by:

SELECT ... FROM ... WHERE ...
PREFERRING {pref-term} [PARTITION BY A_1, ..., A_k]
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The PARITION BY clause splits the data set into groups in which the preference is evaluated separately.
The preference term {pref-term} can contain several sub-constructs:

{pref-term} ::= [LOW | HIGH] {numerical-expression} | {logical-expression} |
{pref-term} PLUS {pref-term} | {pref-term} PRIOR TO {pref-term} |
INVERSE {pref-term}

The LOW and HIGH predicates induce orders where small or high values, respectively, are preferred.
They have to be followed by an expression which evaluates to a numerical value. An expression which
evaluates to a logical value is called a Boolean preference . In the induced order all tuples evaluating
to TRUE are better than the FALSE ones.

These base constructs can be combined to obtain more complex preferences terms using one of
the preference operators . The operator PLUS denotes the Pareto composition . This means that {p1}
PLUS {p2} induces an order, where a tuple is better if and only if, it is better or equal w.r.t. both {p1}
and {p2} and strictly better w.r.t. one of them. The PRIOR TO keyword combines the two given orders
using the lexicographical order, which is also called Prioritization in the wording of Kießling (2002).
Finally, the INVERSE keyword reverses the order. For example, LOW A is equivalent to INVERSE HIGH A.

The above Skyline example simply translates to the EXASolution query:

SELECT * FROM mtcars PREFERRING HIGH hp PLUS HIGH mpg

In this paper we will present our rPref package (Roocks, 2016b) for computing optimal sets
according to preferences within R. We decided to stick closely to the EXASolution semantics of
preferences in our package, which is more general than Skylines but still has a clean and simple syntax.

Our first ideas to process preferences in R were published in Roocks and Kießling (2013) under the
name “R-Pref”. In that approach the Pareto set calculation was done entirely in R, requiring nested
for-loops, which made the preference evaluation very slow. The rPref package is a complete redesign
of this first prototype, where we put special attention to the performance by implementing the main
algorithms in C++.

There are some existing R package around Pareto optimization, e.g., emoa (Mersmann, 2012),
mco (Mersmann, 2014) and TunePareto (Müssel et al., 2012). The two latter ones are designed for
optimizing multi-dimensional functions and optimizing classification tasks, respectively. The emoa
package does a selection of Pareto-optimal tuples from a data set similar to rPref. But it does not offer
a semantic interface to specify the optimization goals and it is slower, as we will see in the performance
evaluation later on.

The remainder of the paper is structured as follows: First, we give some motivating examples.
We proceed with a formal specification of the preference model used in rPref. Next, we describe the
implementation in our package together with some more specific examples. Finally we show some
use cases visualizing preference orders.

Motivating examples

In the following we give some examples based on the mtcars data set explaining the use of rPref.
In this section we follow the introductory vignette of the package. First, we consider pure Pareto
optimizations, followed by some generalizations. For all the following R code examples we assume
that library(rPref) and library(dplyr) was executed before, i.e., our package and dplyr (Wickham
and Francois, 2016) is loaded. The latter package is used for data manipulations like filtering, grouping,
sorting, etc. before and after the preference selection.

Pareto optima

In the simple example from the introduction the dimensions mpg and hp are simultaneously maximized,
i.e., we are not interested in the dominated cars, which are strictly worse in at least one dimensions
and worse/equal in the other dimensions. This can be realized in rPref with

p <- high(mpg) * high(hp)
psel(mtcars, p)

where p is the preference object and psel does the preference selection . The star * is the Pareto operator
which means that both goals should be optimized simultaneously.

We can add a third dimension like minimizing the 1/4 mile time of a car, which is another practical
criterion for the superiority of a car. Additional to the preference selection via psel, preference objects
can be associated with data sets and then processed via peval (preference evaluation). For example,
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p <- high(mpg, df = mtcars) * high(hp) * low(qsec)

creates a 3-dimensional Pareto preference which is associated with mtcars. The string output of p is:

> p
[Preference] high(mpg) * high(hp) * low(qsec)
* associated data source: data.frame "mtcars" [32 x 11]

We run the preference selection and select the relevant columns, where the selection is done using
select from the dplyr package:

> select(peval(p), mpg, hp, qsec)
mpg hp qsec

Mazda RX4 21.0 110 16.46
Merc 450SE 16.4 180 17.40
Merc 450SL 17.3 180 17.60
Fiat 128 32.4 66 19.47
Toyota Corolla 33.9 65 19.90
Porsche 914-2 26.0 91 16.70
Lotus Europa 30.4 113 16.90
Ford Pantera L 15.8 264 14.50
Ferrari Dino 19.7 175 15.50
Maserati Bora 15.0 335 14.60

All these cars have quite different values for the optimization goals mpg, hp and qsec, but no car is
Pareto-dominant over another car in the result set. Hence all these results are optimal compromises
without using a scoring function weighting the relative importance of the different criteria.

Using psel instead of peval we can evaluate the preference on another data set (which does not
change the association of p). We can first pick all cars with automatic transmission (am == 0) and then
get the Pareto optima using psel and the chain operator %>% (which is from dplyr):

mtcars %>% filter(am == 0) %>% psel(p)

Lexicographical order

Database preferences allow some generalizations of Skyline queries like combining the Pareto order
with the lexicographical order. Assume we prefer cars with manual transmission (am == 0). If two
cars are equivalent according to this criterion, then the higher number of gears should be the decisive
criterion. This is known as the lexicographical order and can be realized in rPref with

p <- true(am == 1) & high(gear)

where true is a Boolean preference, where those tuples are preferred fulfilling the logical condition.
The & operator is the non-commutative Prioritization creating a lexicographical order. Symbol and
wording are taken from Kießling (2002) and Mandl et al. (2015).

The base preferences high, low and true accept arbitrary arithmetic (and accordingly logical, for
true) expressions. For example, we can Pareto-combine p with a wish for a high power per cylinder
ratio. Before doing the preference selection, we restrict our attention to the relevant columns:

> mtcars0 <- select(mtcars, am, gear, hp, cyl)
> p <- p * high(hp/cyl)
> psel(mtcars0, p)

am gear hp cyl
Maserati Bora 1 5 335 8

Here the two goals of the lexicographical order, as defined above, and the high hp/cyl ratio are
simultaneously optimized.

Top-k selections

In the above preference selection we just have one Pareto-optimal tuple for the data set mtcars.
Probably we are also interested in the tuples slightly worse than the optimum. rPref offers a top-k
preference selection, iterating the preference selection on the remainder on the data set until k tuples
are returned. To get the three best tuples we use:

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 396

> psel(mtcars0, p, top = 3)
am gear hp cyl .level

Maserati Bora 1 5 335 8 1
Ford Pantera L 1 5 264 8 2
Duster 360 0 3 245 8 3

Additionally the column .level is added to the result, which is the number of iterations needed to
get this tuple. The i-th level of a Skyline is also called the i-th stratum . We see that the first three tuples
have levels {1, 2, 3}. The top parameter produces a nondeterministic cut, i.e., there could be more
tuples in the third level which we do net see in the result above. To avoid this, we use the at_least
parameter, returning all tuples from the last level and avoiding the cut:

> psel(mtcars0, p, at_least = 3)
am gear hp cyl .level

Maserati Bora 1 5 335 8 1
Ford Pantera L 1 5 264 8 2
Duster 360 0 3 245 8 3
Camaro Z28 0 3 245 8 3
Ferrari Dino 1 5 175 6 3

Additionally there is a top_level parameter which allows to explicitly state the number of iter-
ations. The preference selection with top_level = 3 is identical to the statement above in this case,
because just one tuple resides in each of the levels 1 and 2.

Formal background

Now we will formally specify how strict orders are constructed from the preference language available
in rPref. We mainly adapt from the formal framework from Kießling (2002) and the EXASolution
implementation described in Mandl et al. (2015). An extensive consideration of theoretical aspects of
this framework is given in Roocks (2016a).

For a given data set D, a preference p is associated with a strict order <p (irreflexive and transitive)
on the tuples in D. The predicate t <p t′ is interpreted as t′ is better than t. A preference p is also
associated with an equivalence relation =p, modelling which tuples are equivalent for this preference.
In the following, expr is an expression and eval (expr, t) is the evaluation of expr over a tuple t ∈ D.

Base preferences

We define the following base preferences constructs:

• low (expr): Here expr must evaluate to a numerical value. For all t, t′ ∈ D we have

t <low(expr) t′ :⇔ eval
(
expr, t′

)
< eval (expr, t) ,

t =low(expr) t′ :⇔ eval
(
expr, t′

)
= eval (expr, t) ,

i.e., smaller values are preferred. Tuples with identical values are considered to be equivalent.

• high(expr): Analogously to low, larger values are preferred.

• true(expr): Here expr must evaluate to a logical value. Analogously to high, where logical values
are converted to numerical ones (false 7→ 0, true 7→ 1). True values are preferred.

Complex preferences

Building on these base constructs we define complex compositions of preferences. The formal symbols
for these preference operators are taken from Kießling (2002). In the following p, q may either be a
base preference or a complex preference. For tuples t, t′ ∈ D we define the short hand notation

t ≤p t′ :⇔ t =p t′ ∨ t <p t′ .

• The Pareto operator ⊗ (“better in one dimension, better/equal in the other one”) is given by

t <p⊗q t′ :⇔
(
t ≤p t′ ∧ t <q t′

)
∨(

t <p t′ ∧ t ≤q t′
)

.
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• The prioritisation & (lexicographical order) is defined by

t <p&q t′ :⇔ t <p t′ ∨
(
t =p t′ ∧ t <q t′

)
.

• For the intersection preference � (“better in all dimensions”, product order) we have

t <p�q t′ :⇔ t <p t′ ∧ t <q t′ .

For all operators ? ∈ {⊗, &,�} we define that the resulting associated equivalence relation is given by
the product of the equivalence relations, i.e., t =p?q t′ :⇔ t =p t′ ∧ t =q t′.

From these definitions we see that all operators are associative. Moreover⊗ and� are commutative
operators. All induced orders <p are irreflexive and transitive. For the n-ary Pareto preference we can
infer the representation

t <p1⊗p2⊗...⊗pn t′ ⇔ ∃i : t <pi t′ ∧ ∀i : t ≤pi t′ .

When all pi preferences are low or high base preferences, then p1 ⊗ p2 ⊗ ...⊗ pn specifies a Skyline in
the sense of Börzsönyi et al. (2001).

Finally there is the converse preference p−1, reversing the induced order, given by

t <p−1 t′ :⇔ t′ <p t and t =p−1 t′ :⇔ t =p t′ .

Preference evaluation

The most important function to apply these preference objects to data sets is the preference selection ,
selecting the not dominated tuples. For a data set D we define

max
<p

D :=
{

t ∈ D | @t′ ∈ D : t <p t′
}

.

Next, we specify the level for all tuples in a data set D as the number of iterations of max<p being
required to retrieve this tuple. To this end we recursively define the disjoint sets Li by

L1 := max
<p

(D) ,

Li := max
<p

D\
i−1⋃
j=1

Lj

 for i > 1 .
(L)

We say that tuple t has level i if and only if t ∈ Li. This quantifies how far a tuple is away from the
optimum in a given data set. This is the key concept to do top-k preference selections, where one
is interested not only in the Pareto optimum but wants to obtain the k best tuples according to the
preference order.

To investigate and visualize preference orders on smaller data sets, Hasse diagrams are a useful
tool. Formally the set of edges of a Hasse diagram for a preference p on a data set D is given by the
transitive reduction

HassDiag
(

D,<p
)

:=
{(

t, t′
)
∈ D× D | t <p t′ ∧ @t′′ ∈ D : t <p t′′ <p t′

}
. (H)

Implementation in rPref

In the following we describe how the formal framework from the section above is realized within our
package.

Preference objects

The base preferences low, high and true expect the (unquoted) expression to be evaluated as their
argument, e.g., high(hp/wt) for searching for “maximal power per weight” on the mtcars data set.

The complex preferences are realized by overloading arithmetic operators. The Pareto operator
⊗ is encoded with the multiplication operator *, the prioritization & keeps its symbol & and the
intersection preference � is called with the operator |. The reverse preference (·)−1 is implemented
with an unary minus operator.

In rPref all the language elements of the Skyline feature from the EXASolution query language are
supported. For example, a query on the mtcars data set like
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... PREFERRING INVERSE (wt > AVG(wt) PRIOR TO (HIGH qsec PLUS LOW (hp/wt)))

can be translated (manually) to the following R code:

p <- -(true(wt > mean(wt)) & (high(qsec) * low(hp/wt)))

Note that database specific function calls in the expressions (like avg(wt) to calculate the mean value
of the weight column) have to be replaced by their corresponding R functions (here mean(wt)). The
inverse translation of p to the EXASolution query string can be done with show.query(p) in rPref (but
mean→ avg has to be done manually).

Internally preference objects are S4 classes. This allows operator overloading to realize easy
readable complex preference terms. Some generic methods are overloaded for preference objects, e.g.,
as.expression(p) returns the expression of a preference. For complex preferences, length(p) gives
us the number of base preferences, and base preferences have length 1.

Programming in rPref

For the three base preference constructors there are variants low_, high_ and true_, which expect
calls or strings as argument, i.e., low(a) is equivalent to low_('a'). This can be used to implement
user defined preference constructors, e.g., the counterpart to the true preference negating the logical
expression. This base preference false(expr) prefers tuples, where expr evaluates to FALSE values.

false <- function(x) true_(call('!', substitute(x)))

Internally the expressions are mapped to lazy expressions using the lazyeval package (Wickham,
2016). It is also possible to call these constructors with lazy expressions, e.g. low_(as.lazy('mpg')).

Additionally, there is the special preference object empty() which acts as a neutral element for all
complex operators. This can be useful as an initial element for generating preference terms using the
higher-order function Reduce from R. Consider the following example, where a set of attributes of
mtcars, given as a character vector, shall be simultaneously maximized, i.e., a Pareto composition of
high preferences shall be generated.

> sky_att <- c('mpg', 'hp', 'cyl')
> p <- Reduce('*', lapply(sky_att, high_), empty())
> p
[Preference] high(mpg) * high(hp) * high(cyl)

Preference selection

The main function for evaluating preferences is psel(df, p) (for preference selection), returning the
optimal tuples of a data set w.r.t. a preference. It expects a data frame df and a preference object
p. For example, using p from above, psel(mtcars, p) returns the optimal cars having a low fuel
consumption, a high horsepower and a high number of cylinders.

Note that the preference selection of rPref is restricted to data frames. Working directly on the
database, e.g., using tbl on a database connection from dplyr, is currently not supported. To our
knowledge there are no open database management systems directly supporting the Skyline operator.
Hence an implementation to work remotely on a database could either convert the tbl object to a data
frame (i.e., gather the entire data set), or generate a Skyline query by rewriting the query into standard
SQL, as done in Kießling and Köstler (2002). While an automatic conversion would be a misleading
use of such an SQL table object, the rewriting approach would result in a very bad performance. In
our experiences, usual database optimizers cannot process rewritten Skyline queries within reasonable
costs.

As mentioned in the introductory examples, top-k queries are also supported. Using the optional
parameter top = k in psel the k best tuples are returned. For a formal specification we define, using
the levels sets Li from equation (L),

L(j) :=
j⋃

i=1
Li ,

and iterate over j ∈ {1, 2, ...} until |L(j)| ≥ k is fulfilled. If |L(j)| > k then some level-j tuples are
non-deterministically cut off such that k tuples are left. Using a top-k selection the level values of the
tuples are also provided in an additional column .level. By using top = nrow(df) we get the level
values of all tuples from a data frame df.

There are also deterministic variants of the top-k preference selection accessible by using one of
the optional parameters at_least or top_level of the psel function. When at_least = k is set, all
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tuples in L(j) are returned where j is the minimal value fulfilling |L(j)| > k (i.e., top-k without cut-off).
Finally top_level = k simply returns L(k), i.e., the first k levels.

Grouped preference evaluation

Grouped preferences are also supported. We rely on the grouping functionality from the dplyr package.
To get the Pareto-optimal cars with high weight and fast acceleration (i.e., low 1/4 mile time) for each
group with a different number of cylinders we state:

grouped_cars <- group_by(mtcars, cyl)
opt_cars <- psel(grouped_cars, high(wt) * low(qsec))

As this again returns a grouped data frame, we can get the cardinality of each Pareto-optimal set by

> as.data.frame(summarize(opt_cars, n()))
cyl n()

1 4 3
2 6 4
3 8 7

For grouped data sets, the optional top, at_least and top_level arguments are considered for
each group separately. This means that a preference selection with top = 4 on a data set with 3 groups,
where each group contains at least 4 tuples, will return 12 tuples.

Partial evaluation and associated data sets

Base preferences can be associated with a data set using the additional argument df. This association
is propagated when preferences are composed. For example,

> p <- high(mpg, df = mtcars[1:10,]) * low(wt)
> p
[Preference] high(mpg) * low(wt)
* associated data source: data.frame "mtcars[1:10, ]" [10 x 11]

creates a preference object p with a subset of mtcars as associated data source.

Associating a data frame also invokes a partial evaluation of all literals which are not column
names of the data frame. If addressed with df$column the columns are also partially evaluated. For
example, we can create a preference maximizing the normalized sum of hp and mpg by

> p <- high(mpg/max(mtcars$mpg) + hp/max(mtcars$hp), df = mtcars)
> p
[Preference] high(mpg/33.9 + hp/335)
* associated data source: data.frame "mtcars" [32 x 11]

and we directly see the summed values within the preference expression.

To evaluate a preference on the associated data set, we can call peval(p) (for preference evaluation).
Alternatively, by using psel(df,p) we can use another data source without overwriting the associated
data frame of a preference object. The association can be changed using assoc.df(p) <- df, assigning
a new data frame df to p, where assoc.df(p) shows us the current data source.

Algorithms and performance

The default algorithm used for the preference selection is BNL from Börzsönyi et al. (2001). If the given
preference is a pure Pareto composition, i.e., p = p1 ⊗ ...⊗ pn where all pi are base prefererences, then
the Scalagon algorithm from Endres et al. (2015) is used which is faster than BNL in most cases.

A further performance gain is possible by parallelization. A simple approach to speed up the
preference selection on multi-processor systems is to split the calculation over the n different cores
using the formula

max
<p

D = max
<p

(
max
<p

D1 ∪ ... ∪max
<p

Dn

)
where D =

n⋃
+

i=1
Di .

When the option rPref.parallel is set to TRUE then D is split in n parts and the calculation is done in
n threads. This number can be specified using the option rPref.parallel.threads. By default, n is
the number of processor cores. The max<p Di calculation is done in parallel, while the final step of
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merging the maxima is done on one core. This is implemented in our package using RcppParallel
from Allaire et al. (2016). By default, parallel calculation is not used. We will show that parallelization
can lead to a (slight) performance gain.

As mentioned in the introduction, there is already the emoa package (Mersmann, 2012) which is
also suited for calculating Pareto optima. There, all dimensions of the given data set are simultaneously
minimized, i.e., there is no semantic preference model in that package.

In the following we will compare the performance of emoa and the (parallel) preference selection
of the rPref package. For the benchmarks will use 2-dimensional weakly anti-correlated data sets
(correlation value of −0.7), which is a typical example for Skyline computation. The data generator
reads as follows:

gen_data <- function(N, cor) {
rndvals <- matrix(runif(2 * N), N, 2)
corvals <- runif(N)
corvals <- cbind(corvals, 1 - corvals)
df <- as.data.frame((1 - abs(cor)) * rndvals + abs(cor) * (1 - corvals))
colnames(df) <- c('x', 'y')
return(df)

}

First we compare the results of rPref and emoa to ensure that both do the same. In the latter
package, nondominated_points is the equivalent to psel in our package. All dimensions are minimized
simultaneously, corresponding to the preference low(x) * low(y), and nondominated_points expects
a matrix where tuples are columns. We calculate the Pareto optima with both variants and convince
ourselves that the results are identical. As the order of the tuples does not matter, i.e., the routines
may return a different sorted result, we use the setequal function from base R for comparison.

> df <- gen_data(1E6, -0.7)
> result1 <- psel(df, low(x) * low(y))
> result2 <- as.data.frame(t(nondominated_points(t(as.matrix(df)))))
> setequal(result1, result2)
TRUE

Next, we compare the run times. Using the option rPref.parallel we can control if rPref uses
multi-threaded calculation. For each test we generate 10 different data sets with 5 · 106 tuples with a
correlation value of −0.7 and measure the run times to calculate the Pareto optima:

options(rPref.parallel = FALSE)
time_rpref_serial <- vapply(1:10, function(i)
system.time({ psel(gen_data(5E6, -0.7), low(x) * low(y)) })[3], 0)

options(rPref.parallel = TRUE)
time_rpref_parallel <- vapply(1:10, function(i)
system.time({ psel(gen_data(5E6, -0.7), low(x) * low(y)) })[3], 0)

time_emoa <- vapply(1:10, function(i)
system.time({ nondominated_points(t(as.matrix(gen_data(5E6, -0.7)))) })[3], 0)

In Table 1 we summarize the results. We see a slight performance gain by parallelization in rPref
and find out that emoa is slower.

Test setting Run time (seconds)

rPref, serial 1.30± 0.03
rPref, parallel 1.25± 0.03
emoa 8.29± 0.29

Table 1: Comparison of run times between emoa and rPref (mean value and standard deviation of 10
iterations) on a weakly anti-correlated data set containing 5 · 106 tuples.

Visualization use cases

In the following we show two different approaches to visualize a preference order on the entire data
set. Both approaches implicitly assume a sufficiently small data set and are primarily intended to get a
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better understanding of a (potentially complex) preference operating on a small number of tuples.

Hasse diagram

The Hasse diagram as defined in equation (H), also called Better-Than-Graph (BTG) in the context
of preferences, contains the transitive reduction of all better-than-relations. We can retrieve this in
rPref with get_hasse_diag as an n × 2 matrix, where n is the number of better-than-relations. To
visualize this diagram we rely of the Graphviz/dot layouter from Ellson et al. (2004). There is the
R package Rgraphviz (Hansen et al., 2016), only available on Bioconductor, which is used by the
plot_btg function if available (Rgraphviz is suggested by our package).

Let us consider again the preference from the introduction combining a Prioritization and a Pareto
composition. We create appropriate labels showing the relevant values and plot the Better-Than-Graph.
We restrict our attention to the first five Skyline levels.

p <- (true(am == 1) & high(gear)) * high(mpg)
df <- psel(mtcars, p, top_level = 5)
labels <- with(df, paste(am, gear, mpg, sep = '; '))
plot_btg(df, p, labels)

We get the diagram depicted in Figure 2. The row of a tuple node in the diagram, counted from top
to bottom, coincides with the level-value as defined in equation (L). Here we have exactly 5 rows
as we restricted the data set to be plotted with top_level = 5. The correspondence between level
and row is ensured by rPref if the parameter levelwise of the plot_btg function is TRUE (which is the
default). If this parameter is FALSE the vertical arrangement is subject to the dot layouter and it is not
levelwise in general. In any case, the edges will point from top to bottom (unless the entire graph is
flipped using the parameter flip.edges). Additionally we can get the dot source code of the graph
with get_btg_dot. This is useful for using an external dot interpreter (we will not go into details here).

1; 4; 33.91; 5; 30.4

1; 4; 32.4 1; 5; 26

1; 4; 30.4 1; 5; 19.7

1; 4; 27.31; 5; 15.8

1; 4; 22.8 0; 4; 24.41; 5; 15

Figure 2: The Better-Than-Graph for the above example. The directed edges show the “is better than”
relations and the labels denote the am, gear and mpg values for each tuple. The rows correspond to the
levels of the tuples.

If Rgraphviz is not available, the igraph package (Csardi and Nepusz, 2006) is used alternatively.
But igraph has, to our knowledge, no layouting method suited for general strict orders. The edges
will not point from top to bottom in general and hence the diagram will look not very pretty.

Pareto front lines

In Figure 1 we already saw the the points representing the Pareto set. To show more clearly how the
preference orders the given tuples we do the following:

1. Retrieve the levels of all tuples,

2. plot them in a different color,

3. and show the Pareto front line for each level.

The Pareto front line is a stair-shaped line marking the border of the dominance area of these
tuples. We can simply plot that line using geom_step from the ggplot2 package from Wickham (2009).
The following code returns the diagram in Figure 3.
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res <- psel(mtcars, high(mpg) * high(hp), top = nrow(mtcars))
ggplot(res, aes(x = mpg, y = hp, color = factor(.level))) +
geom_point(size = 3) + geom_step(direction = 'vh')
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factor(.level)

1

2

3

4

5

Figure 3: The Pareto front lines for each level for the Pareto preference of maximal mpg and hp values.

We see that the front lines in Figure 3 are overlapping at some points. This is because the Pareto
order only requires a tuple to be strictly better in one dimension to dominate other tuples. For the
other dimensions equivalent value are sufficient, which causes that both level-5 tuples in Figure 3 are
on the Pareto front line of the level-4 tuples.

When substituting the Pareto preference by the intersection preference (| operator instead of *),
where better tuples are required to be strictly better in both dimensions (i.e., the product order), there
are no more overlapping front lines. We generate the corresponding diagram with the following R
code, using dplyr for sorting the Pareto set:

res <- mtcars %>% psel(high(mpg) | high(hp), top = nrow(mtcars)) %>%
arrange(mpg, -hp)

ggplot(res, aes(x = mpg, y = hp, color = factor(.level))) +
geom_point(size = 3) + geom_step(direction = 'vh')

Note that we have to sort the resulting data set res by ascending mpg values and descending hp
values to get the proper stair-shaped front line isolating the dominated area. Without that sorting we
would get U-shaped lines.

The result of the psel function is never sorted by rPref, aside from that top-k queries return tuples
sorted by level. As all tuples within the same level are incomparable w.r.t. the preference, there is no
natural order of these tuples justifying some specific ordering. Usually the order does not matter for
further calculations or visualizations. Only for some visual representations (like in this example) we
need an appropriate sorting, depending on the kind of representation.
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10 15 20 25 30 35
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hp

factor(.level)

1

2

3

Figure 4: The front lines for each level for the intersection preference of maximal mpg and hp values.

The result is shown in Figure 4. When compared to Figure 3, we clearly see the difference between
the Pareto and intersection preference.
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Note that the Pareto and intersection preference coincide in use cases where no duplicate values
occur, e.g., measurement points in continuous domains.

Conclusion

To our knowledge, emoa (Mersmann, 2012) is the most similar existing R package, which also computes
Pareto sets. We have shown that our approach is more general and offers better performance. In
addition to Pareto sets, some generalizations called database preferences from the database community
are also provided in rPref. The preference semantics are adapted from the commercial implementation
EXASolution Skyline, cf. Mandl et al. (2015).

We used existing approaches where possible and appropriate, e.g., Rgraphviz for plotting Better-
Than-Graphs, dplyr for grouping data sets or ggplot2 for plotting Pareto front lines. By doing so, we
tried to keep the package small and focussed on its main task of specifying and computing database
preferences. For the specification it supports a semantically rich preference model.

Although Pareto optima and generalizations are a hot topic in the database community since
the pioneer work of Börzsönyi et al. (2001), there are no open source implementations of database
management systems supporting Skylines. The large majority of papers describe research prototypes
being not publicly accessible, and the only commercially available system is EXASolution. Through
our work, the functionality of the “Skyline” feature of that commercial system is now fully available
for the R ecosystem.
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micompr: An R Package for Multivariate
Independent Comparison of
Observations
by Nuno Fachada, João Rodrigues, Vitor V. Lopes, Rui C. Martins and Agostinho C. Rosa

Abstract The R package micompr implements a procedure for assessing if two or more multivariate
samples are drawn from the same distribution. The procedure uses principal component analysis to
convert multivariate observations into a set of linearly uncorrelated statistical measures, which are then
compared using a number of statistical methods. This technique is independent of the distributional
properties of samples and automatically selects features that best explain their differences. The
procedure is appropriate for comparing samples of time series, images, spectrometric measures or
similar high-dimension multivariate observations.

Introduction

The aim of this paper is to present the micompr package for R (Fachada, 2016), which implements
a procedure for comparing multivariate samples associated with different factor levels or groups.
The research goal is to differentiate among pre-specified, well-defined classes or groups of sampling
entities generating highly multivariate observations in which the dimensions or dependent variables
are correlated, and to test for significant differences among groups. The procedure uses principal
component analysis (PCA; Jolliffe, 2002) to convert multivariate observations into a set of linearly
uncorrelated statistical measures, which are then compared using a number of statistical methods,
such as hypothesis tests and score plots.

This technique has several desirable attributes: a) it automatically selects observation features
that best explain sample differences; b) it does not depend on the distributional properties of samples;
and, c) it simplifies the researchers’ work, as it can be used directly on multivariate observations. The
procedure is appropriate for comparing samples of multivariate observations with highly correlated
and similar scale dimensions, such as time series, images or spectrometric measures. However, the
micompr package goes one step further by also accommodating the simultaneous comparison of
multiple observation types, i.e., multiple outputs from a given “system”. In this context, a “system”
can be defined as an abstract entity capable of generating one or more stochastic data streams, i.e.,
outputs. Thus, micompr can determine if two or more instances of such a “system” display the same
behavior by comparing observations of their outputs.

The remainder of this paper is organized as follows. First, in Section Testing for significant differ-
ences in multivariate samples, commonly used techniques for differentiating samples of multivariate
observations are discussed. The methodology employed by micompr is described in Section Indepen-
dent comparison of multivariate observations. Section The micompr package introduces the software
and its architecture, namely the available objects and functions. Several concrete application examples,
and how the “system”-output terminology fits each one, are presented in Section Examples. The paper
closes with Section Summary, in which the overall approach and the R package are summarized.

Testing for significant differences in multivariate samples

Two-sample or multi-sample hypothesis tests are commonly used for assessing statistically dissimilar-
ity in univariate samples, i.e., samples composed of scalar observations. If samples are drawn from
normally distributed populations, the t (two samples) and ANOVA (n-samples) tests are adequate
(Montgomery and Runger, 2014). Non-parametric tests are more appropriate if population normality
cannot be assumed. The Mann-Whitney U test (Gibbons and Chakraborti, 2010) and the Kolmogorov-
Smirnov test (Massey Jr, 1951) are typically employed for comparing two samples. The Kruskal-Wallis
test (Kruskal and Wallis, 1952) extends the former for the n-sample case.

Multivariate analysis of variance (MANOVA; Krzanowski, 1988; Tabachnick and Fidell, 2013) can
be used as a statistical test for comparing multivariate samples. In this context, samples are composed
of multi-dimensional observations, for which each dimension is a dependent variable (DV). However,
MANOVA is not appropriate for cases with highly correlated DVs and when the number of DVs
or dimensions is higher than the number of observations. Additionally, MANOVA is a parametric
method which makes a series of assumptions on the underlying data which are not always met in
practice.
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Analogous non-parametric tests exist, but they are not as widespread and are commonly oriented
towards specific research topics. Multiple Response Permutation Procedures (MRPP; Mielke Jr et al.,
1976) and associated permutation-based methods, such as ANOSIM (Clarke, 1993) or permutational
MANOVA (Anderson, 2001), test for differences in distances between observations from each group.
These tests are implemented in the vegan package (Oksanen et al., 2016), typically used in Ecology
studies. The Blossom package (Talbert et al., 2016) also provides MRPP and other distance-function
based permutation tests. In a similar note, Székely and Rizzo (2004) proposed a multi-sample test
for equality of multivariate distributions based on the Euclidean distance between sample elements.
The test statistic belongs to a class of multivariate statistics (energy statistics) proposed by the same
authors. The energy package (Rizzo and Szekely, 2016) implements this test and other energy statistics-
related functionality. The cross-match test is another distance-based test (Rosenbaum, 2005), with
the particularity of not requiring permutation techniques. It is available for the R environment via
the crossmatch package (Heller et al., 2012). In turn, the cramer package (Franz, 2014) provides a
multivariate implementation of the non-parametric two-sample Cramér test, originally proposed by
Baringhaus and Franz (2004). The critical value of the test can be determined with bootstrap (ordinary
or permutation-based) or eigenvalue-based methods. Another test which avoids permutation was
proposed by Duong et al. (2012). It is a kernel-based test, originally developed to assess the statistical
differences between two cellular topologies. The test is implemented in the ks package (Duong, 2016),
although limited to six-dimensional data.

An alternative to multivariate tests is to extract a number of statistical summaries (e.g., averages
or extreme values) or specific points from individual multivariate observations, and then perform a
univariate test for each summary measure. This approach also has its issues: a) it does not provide
a single answer, i.e., it will yield as many p-values as there are summary measures; b) the choice
of summary is problem-dependent and empirically driven, and consequently, error-prone, in the
sense that the chosen summaries may not be representative of the original multivariate observations.
While only careful analysis can minimize the latter issue, the former problem can be addressed with a
multiple comparison adjustment procedure, such as the Bonferroni correction (Shaffer, 1995).

Independent comparison of multivariate observations

Given a matrix X(n×m) of n observations and m variables or dimensions, PCA can be used to obtain
matrix T(n×r), which is the representation of X(n×m) in the principal components (PCs) space, and
vector λ(1×r), containing the eigenvalues of the covariance matrix of the original mean-centered data.
Rows of T directly correspond to the observations of the original samples, while columns correspond
to PCs. Columns are ordered by decreasing variance, i.e., the first column corresponds to the first
PC, and so on. Variance is given by the eigenvalues in vector λ, which are likewise ordered, each
eigenvalue corresponding to the variance of the columns of T. The percentage of variance explained
by each PC can be obtained by dividing the respective eigenvalue with the sum of all eigenvalues.
At this stage, PCA-reshaped observations associated with different groups can be compared using
statistical methods. More specifically, hypothesis tests can be used to check if the sample projections
on the PC space are drawn from populations with the same distribution. There are two possible lines
of action:

1. Apply a MANOVA test to the samples, where each observation has q-dimensions, corresponding
to the first q PCs (dimensions) such that these explain a user-defined minimum percentage of
variance.

2. Apply a univariate test to observations in individual PCs. Possible tests include the t-test and
the Mann-Whitney U test for comparing two samples, or ANOVA and Kruskal-Wallis test,
which are the respective parametric and non-parametric versions for comparing more than two
samples.

The MANOVA test yields a single p-value from the simultaneous comparison of observations
along multiple PCs. An equally succinct answer can be obtained with a univariate test using the
Bonferroni correction or a similar method for handling p-values from multiple comparisons. However,
both approaches will not prioritize dimensions, even though the first PCs can be more important for
characterizing an output, as they explain more variance. In the univariate case one can prioritize PCs
according to the explained variance using the weighted Bonferroni procedure (Rosenthal and Rubin,
1983).

Conclusions concerning whether samples are statistically similar can be drawn by analyzing the
p-values produced by the employed statistical tests, which should be below the typical 1% or 5%
when samples are significantly different. In such case, less PCs should be required to explain the same
percentage of variance than when, in the same context, no significant differences are found. The scatter
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plot of the first two PC dimensions can also provide visual, although subjective feedback on sample
similarity.

While the procedure is most appropriate for comparing multivariate observations with highly
correlated and similar scale dimensions, assessing the similarity of “systems” with multiple outputs
of different scales is also possible. The simplest approach would be to apply the proposed method
to samples of individual outputs, and analyze the results in a multiple comparison context. An
alternative approach consists in concatenating, observation-wise, all outputs, centered and scaled to
the same order of magnitude, thus reducing a “system” with k outputs to a “system” with one output.
The proposed method would then be applied to samples composed of concatenated observations
encompassing the existing outputs. This technique is described in detail by Fachada et al. (2017) in the
context of comparing simulation outputs.

The micompr package

Overview

The micompr package for the R statistical computing environment implements the methodology
proposed in Section Independent comparison of multivariate observations. Here we describe version
1.0.1 of the package, which is available at https://CRAN.R-project.org/package=micompr/. The
development version is hosted at https://github.com/fakenmc/micompr. The package is covered by
the MIT license.

The micompr package is built upon two functions, cmpoutput and micomp. The former compares
two or more samples of multivariate observations collected from one output. The latter is used for
comparing multiple outputs and/or comparing outputs in multiple contexts. grpoutputs is a helper
function for loading data from two or more set of files and preparing the data to be processed by the
cmpoutput and/or micomp functions. assumptions is a generic function for assessing the assumptions
of the parametric tests used in sample comparisons.

Architecture

micompr is structured according to the S3 object-oriented system. The cmpoutput, micomp and
grpoutputs functions produce S3 objects with the same name. The package also provides the generic
function assumptions, and two concrete implementations of methods for “cmpoutput” and “micomp”
objects, which return objects of class “assumptions_cmpoutput” and “assumptions_micomp”, re-
spectively. All classes have method implementations of the common S3 generic functions print,
summary and plot. Additionally, method implementations of the toLatex function, for producing
user-configurable LATEX tables with information about the performed comparisons, are provided for
“cmpoutput” and “micomp” objects.

grpoutputs

This function groups outputs from sets of files containing multiple observations into samples. It
returns a list of output matrices, ready to be processed by micomp. Alternatively, individual output
matrices can be handled by cmpoutput. Separate files contain one multivariate observation of one or
more outputs, one column per output, one row per dimension or variable. Each specified set of files
is associated with a different sample. The function is also able to create an additional concatenated
output, composed from the centered and scaled original outputs.

The plot method for “grpoutputs” objects shows k plots, one per output. Output observations
are plotted on top of each other, with different samples colored distinctively. The summary method for
“grpoutputs” objects returns a list containing two elements: a) the n×m dimensions of each output
matrix; and, b) the sizes of individual samples. The print method for “grpoutputs” objects simply
outputs the summary in a more adequate presentation format.

cmpoutput

The cmpoutput function is at the core of micompr. It compares two or more samples of multivariate
observations using the technique described in Section Independent comparison of multivariate ob-
servations. It accepts an output matrix, X(n×m), with n observations and m variables or dimensions,
a factor vector of length n, specifying the group associated with each observation, and a vector of
explained variances with which to determine the number of PCs to use in the MANOVA test (alter-
natively, the number of PCs can also be directly specified). The function returns matrix T(n×r) of
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PCA scores and the p-values for the performed statistical tests, namely: a) a MANOVA test for each
explained variance (or number of PCs); and, b) parametric (t-test or ANOVA) and non-parametric
(Mann-Whitney or Kruskal-Wallis) univariate tests for each PC. Regarding the latter, the function also
returns p-values adjusted with the weighted Bonferroni correction, using the percentages of explained
variance by PC as weights.

The plot implementation for “cmpoutput” objects shows six sub-plots, namely a scatter plot
with the PC1 vs. PC2 scores and five bar plots. The horizontal scale of the latter consists of the r
PCs, and the vertical bars represent the explained variance (one plot) or univariate parametric and
non-parametric p-values, before and after weighted Bonferroni correction (four plots). The summary
method for “cmpoutput” objects returns a list with the following items: a) percentage of variance
explained by each PC; b) p-values of the MANOVA test or tests; c) p-values of the parametric test, per
PC, before and after weighted Bonferroni correction; d) p-values of the non-parametric test, per PC,
before and after weighted Bonferroni correction; and, e) name of the parametric and non-parametric
univariate tests employed (either t-test and Mann-Whitney U test for comparing two samples, or
ANOVA and Kruskal-Wallis for more than two samples). The print method for “cmpoutput” objects
shows the information provided by the summary implementation, but the p-values of the univariate
tests are only shown for the first PC.

micomp

The micomp function performs one or more comparisons of multiple outputs, invoking cmpoutput for
each comparison/output combination. It accepts a list of comparisons, where individual comparisons
can have one of two configurations: a) a vector of folders and a vector of file sets containing data
in the format required by grpoutputs, where each file set corresponds to a different sample; and,
b) a “grpoutputs” object, passed directly. The returned objects, of class “micomp”, are basically
two-dimensional lists of “cmpoutput” instances, with rows associated with individual outputs, and
columns with separate comparisons.

The plot method for “micomp” objects shows the PC1 vs. PC2 score plots for each compari-
son/output combination. The summary implementation for “micomp” objects returns a list of com-
parisons, each one containing a a× k matrix of p-values or number of PCs, associated with a ≥ 6
measures and k outputs. Four rows represent the p-values of the parametric and non-parametric
univariate tests for the first PC, before and after weighted Bonferroni correction. The remaining pairs
of rows are associated with the MANOVA test for a given percentage of variance to explain. One
row shows the p-values, and the other displays the number of PCs required to explain the specified
percentage of variance for the given output. As with other micompr objects, the print method for
“micomp” objects also shows the summary with a better presentation.

assumptions

assumptions is a generic function which performs a number of statistical tests concerning the as-
sumptions of the parametric tests performed by the package functions. Implementations of this
generic function exist for “cmpoutput” and “micomp” objects. The former method returns objects
of class “assumptions_cmpoutput” containing results of the assumptions tests for a single output
comparison. The latter returns a two-dimensional list of “assumptions_cmpoutput” objects, with rows
associated to individual outputs, and columns to separate comparisons. These objects are tagged with
the “assumptions_micomp” class attribute.

The following assumptions are checked: a) observations are normally distributed within each sam-
ple along individual PCs (Shapiro-Wilk test); b) observations follow a multivariate normal distribution
within each sample for all PCs used in MANOVA (Royston test); c) samples have homogeneous vari-
ance along individual PCs (Bartlett test); and, d) samples have homogeneous covariance matrices for
all PCs used in MANOVA (Box’s M test). Assumptions a) and c) should be verified for the parametric
test applied to each PC, while assumptions b) and d) should be verified for individual MANOVA tests
performed for each variance to explain (or, alternatively, for each specified number of PCs).

The plot implementations for classes “assumptions_cmpoutput” and “assumptions_micomp”
display a number of bar plots for the p-values of the performed tests. These are more detailed
for “assumptions_cmpoutput” objects, showing the p-values of the univariate test for all PCs. For
“assumptions_micomp” objects, one bar plot is shown per output/comparison combination, but in
the case of the univariate tests only the p-values of the first PC are shown. Implementations of
summary return a list of tabular data containing the p-values of the assumption tests. The summary
method for “assumptions_cmpoutput” objects returns a list with two matrices of p-values, one for
the MANOVA tests, another for the univariate tests. The summary method for “assumptions_micomp”
objects follows the approach taken by the summary method for “micomp” objects, returning a list
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of p-value matrices, one matrix per comparison. Rows of individual matrices correspond to the
assumptions tests, and columns to outputs. The print methods for “assumptions_cmpoutput” objects
and for “assumptions_micomp” objects again show the summary information in a printable format.

toLatex methods for “cmpoutput” and “micomp” objects

These methods are implementations of the toLatex generic function, and convert “cmpoutput” and
“micomp” objects to character vectors representing LATEX tables. The generated tables are configurable
via function arguments, with sensible defaults. Tables can present the following data for each out-
put/comparison combination: a) number of principal components required to explain a user-specified
percentage of variance; b) MANOVA p-value for a user-specified percentage of variance to explain or
number of PCs; c) parametric test p-value for a given PC, before and/or after weighted Bonferroni
correction; d) non-parametric test p-value for a given PC, before and/or after weighted Bonferroni
correction; e) variance explained by a specific PC; and, f) a score plot with the output projection on the
first two PCs.

Other functions

The micompr package is bundled with additional functions whose purpose is to aid the main package
methods do their job. However, some of these may be useful in other contexts.

The concat_outputs function concatenates outputs collected from multiple observations. It accepts
two arguments, namely a list of output matrices, and the centering and scaling method. Several
centering and scaling methods, such as “range”, “iqrange”, “vast” or “pareto” (Berg et al., 2006), are
recognized in the second argument. The function returns an n× p matrix of n observations with length
p, which is the sum of individual output lengths. Lower-level centering and scaling of individual
outputs is performed by the centerscale function, which accepts a numeric vector and returns a new
vector, centered and scaled with the specified method.

The pvalf generic function formats p-values for LATEX. A concrete default implementation is used
by the micompr toLatex implementations if not specified otherwise. This implementation underlines
and double-underlines p-values lower than 0.05 and 0.01, respectively, although these limits are
configurable, and underlining can be turned off by setting both limits to zero. It is also possible to
specify a limit below which p-values are capped. For example, if this limit is set to 1× 10−5, a p-value
equal to 1× 10−6 would be displayed as “< 1e−5”. The default method of pvalf will format p-values
lower than 5× 10−4 using scientific E notation, which is more compact and thus a better fit for tables.
p-values between 5× 10−4 and 1 are formatted using regular decimal notation with three decimal
places. This aspect is not configurable. However, another implementation of pvalf can be passed to
the micompr toLatex implementations if different formatting is desired.

Simple TikZ 2D scatter plots, as the ones produced by the micompr toLatex implementations, can
be generated with the tikzscat function. The function accepts the data to plot, an n x 2 numeric matrix,
of n observations and 2 dimensions, and a factor vector specifying the levels or groups associated with
each observation. Several plot characteristics, such as mark types, scale and axes color, are configurable
via function arguments. tikzscat returns a string containing the TikZ figure code for plotting the
specified data.

Included data

The package includes test data produced by several implementations of the Predator-Prey for High
Performance Computing (PPHPC) simulation model (Fachada et al., 2015). The data is provided in
rdata format, and is readily available on loading the package. The same data is also provided in
TSV format. This is a limited subset of the complete data, and is included for package testing and
exemplification purposes. The example discussed in Section Simulation model with multiple outputs
uses a superset of this data, which is available for public download, but could not be included with
the package due to its large size.

Dependencies

micompr has a number of optional dependencies, not required for package installation and for using
most of its functionality. The biotools (da Silva, 2016) and MVN (Korkmaz et al., 2014) packages are
required by the assumptions functions, providing the statistical tests for assessing MANOVA and
t-test assumptions. If these functions are invoked without the presence of the specified packages,
they will inform the user of that fact, and terminate cleanly. The testthat (Wickham, 2011), knitr
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(Xie, 2015) and roxygen2 (Wickham et al., 2015) packages are required for package development. The
deseasonalize package (McLeod and Gweon, 2013) is required for building one of the vignettes.

Examples

In this section we discuss four concrete application examples for the micompr package. The complete
scripts used in these examples are available at https://github.com/fakenmc/micompr-examples.

Simulation model with multiple outputs

The replication of a simulation model in a new context highlights differences between the conceptual
and implemented models, as well as inconsistencies in the conceptual model specification (Edmonds
and Hales, 2003), promoting model verification, model validation (Wilensky and Rand, 2007), and
model credibility (Thiele and Grimm, 2015). Some argue that a simulation model is untrustworthy
until it has been successfully replicated (Edmonds and Hales, 2003; David, 2013). Model parallelization
is an illustrative example of the importance of replication, as it is often required for simulating large
models in practical time frames (Fachada et al., in press). By definition, model parallelization implies a
number of changes, or even full reimplementation, of the original model, such that a robust comparison
methodology, as provided by the micompr package, is required in order to make sure a parallelized
model faithfully reproduces the behavior of the original serial model.

PPHPC is a reference model for studying and evaluating implementation strategies for spatial
agent-based models, capturing important characteristics such as agent movement and local agent
interactions (Fachada et al., 2015). The model describes a prototypical predator-prey system, and has
six outputs, namely prey population, Ps, predator population, Pw, cell-bound food quantity, Pc, mean
prey energy, Es, mean predator energy, Ew, and mean cell-bound food levels, C. Since outputs are
collected once per iteration, each simulation run yields six time series, associated with the individual
outputs. With several open source implementations publicly available, the model provides a good test
case for multivariate comparison purposes.

Here we show the main comparison cases discussed in a previous article (Fachada et al., 2017),
in which the model implementations are parameterized with size 400 and parameter set 1 (Fachada
et al., 2015). A canonical PPHPC realization, implemented in NetLogo (Wilensky, 1999), is compared
with three configurations of a parallel Java implementation (Fachada et al., in press). The NetLogo
implementation and the first Java configuration follow the PPHPC conceptual model and the specified
parameters. The second Java configuration disables agent shuffling prior to agent actions, which
is explicitly mandated in the conceptual model description. The third Java configuration performs
a minimal change in one of the parameters specified by parameter set 1. As such, we define three
comparison cases:

Case I Compare the NetLogo implementation with the first Java configuration. These should yield
distributionally equivalent results.

Case II Compare the NetLogo implementation with the second Java configuration. A small misalign-
ment is to be expected.

Case III Compare the NetLogo implementation with the third Java configuration. There should be a
mismatch in the outputs.

Independent samples of the six model outputs were obtained from n = 30 replications for each
implementation or configuration, in a total of 4n = 120 runs. Each replication r = 1, . . . , 4n was
performed with a PRNG seed obtained by taking the MD5 checksum of r, guaranteeing independence
between seeds, and consequently, between replications. The data generated by this computational
experiment, as well as the scripts used to set up the experiment, are made available to other researchers
at https://zenodo.org/record/46848.

The following script performs these comparisons. Note that the concat = TRUE option of the
micomp function specifies that an additional concatenated output, Ã, should be generated from the
original outputs and analyzed in a similar fashion. The dir_data variable specifies the location of the
dataset.

R> # Load package
R> library(micompr)

R> # Output names
R> outputs <- c("$P^s$", "$P^w$", "$P^c$", "$\\mean{E}^s$",
+ "$\\overline{E}^w$", "$\\overline{C}$", "$\\widetilde{A}$")
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R> # Outputs from the NetLogo implementation
R> dir_nl_ok <- paste0(dir_data, "nl_ok")
R> # Outputs from the Java implementation, first configuration
R> dir_jex_ok <- paste0(dir_data, "j_ex_ok")
R> # Outputs from the Java implementation, second configuration
R> dir_jex_noshuff <- paste0(dir_data, "j_ex_noshuff")
R> # Outputs from the Java implementation, third configuration
R> dir_jex_diff <- paste0(dir_data, "j_ex_diff")

R> # Files for model size 400, parameter set 1
R> filez <- glob2rx("stats400v1*.txt")

R> # Perform the three comparison cases
R> mic <- micomp(outputs,
+ ve_npcs = 0.75,
+ list(list(name = "I",
+ folders = c(dir_nl_ok, dir_jex_ok),
+ files = c(filez, filez),
+ lvls = c("NLOK", "JEXOK")),
+ list(name = "II",
+ folders = c(dir_nl_ok, dir_jex_noshuff),
+ files = c(filez, filez),
+ lvls = c("NLOK", "JEXNS")),
+ list(name = "III",
+ folders = c(dir_nl_ok, dir_jex_diff),
+ files = c(filez, filez),
+ lvls = c("NLOK", "JEXDIF"))),
+ concat = TRUE)

The mic object can be inspected at the R prompt using the common S3 generic functions print, summary
and plot. For publication purposes, the toLatex method for “micomp” objects produces LATEX tables
with user-specified information. For example, to generate a table similar to Table 4 of our previous
work (Fachada et al., 2017), toLatex is invoked as follows:

R> toLatex(mic, booktabs = TRUE,
+ data_show = c("npcs-1", "mnvp-1", "parp-1", "scoreplot"),
+ data_labels = c("$\\#$PCs", "MNV", "$t$-test", "PCS"),
+ col_width = TRUE, pvalf_params = list(minval = 1e-8, na_str = "*"),
+ label = "tab:pphpc",
+ caption = paste("Comparison of a NetLogo implementation of",
+ "the PPHPC model against three configurations",
+ "of a parallel Java implementation."))

This call produces Table 1 with booktabs (Fear, 2005) table style (booktabs = TRUE) and width set
to document column width (col_width = TRUE), since the table is somewhat large. The label and
caption parameters set the label and caption of the LATEX table, respectively, while the pvalf_params
argument accepts a list of options for formatting p-values. The data_show parameter specifies what
data to show, which in this case is: 1) npcs-1, the number of PCs for the first specified variance (the
micomp function accepts and performs output comparison with one or more specified variances); 2)
mnvp-1, the MANOVA p-value for the first specified variance; 3) parp-1, t-test p-value for the first PC;
and, 4) score plot for the first two PCs.

In terms of comparison, the method does not find significant differences in case I. However, it
successfully differentiates the configurations compared in cases II and III. This is in line with what
would be expected, and is discussed in further detail by Fachada et al. (2017). While not shown
here, the assumptions(mic) command reveals that most assumptions of the MANOVA and t-tests are
verified.

Monthly sunspots

This example uses the monthly sunspot data (WDC, 2016), included with R, which contains the
monthly numbers of sunspots from 1749 to the present day. The solar cycle is an approximate 11-year
period of changes in the number of sunspots and other associated phenomena. Thus, we divide the
data into 11-year (132-month) periods, and consider each period to be an observation. In practice this
is an oversimplification, since the cycles can be a bit longer or shorter than 11 years.
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Comp. Data Outputs

Ps Pw Pc Es Ew C Ã

I

#PCs 13 18 14 22 28 14 22
MNV 0.325 0.640 0.462 0.052 0.796 0.463 0.523
t-test 0.530 0.836 0.804 0.784 0.378 0.805 0.879

PCS

II

#PCs 13 15 13 1 28 14 21
MNV 4e-05 <1e-08 0.002 * 0.089 0.003 2e-07
t-test 0.042 <1e-08 0.108 <1e-08 0.017 0.109 0.390

PCS

III

#PCs 7 1 2 2 20 1 14
MNV <1e-08 * <1e-08 <1e-08 <1e-08 * <1e-08
t-test <1e-08 <1e-08 <1e-08 <1e-08 <1e-08 <1e-08 <1e-08

PCS

Table 1: Comparison of a NetLogo implementation of the PPHPC model against three configurations
of a parallel Java implementation.

Given the data, we define two samples of 10 observations each, over a period of 110 years or
1320 months. The first sample includes solar cycles from 1749 to 1859, while the second encompasses
cycles from 1902 to 2012. We can now ask the following question: were the solar cycles during the
1749–1859 interval significantly different from the more recent observations? The following code
compares observations from the two time intervals, and attempts to provide an answer:

R> # Load package
R> library(micompr)

R> # Months in the 1749-1859 interval (110 years)
R> # Months in the 1902-2012 interval (110 years)
R> m <- sunspot.month[c(1:1320, 1837:3156)]
R> m <- matrix(m, nrow = 20)

R> # Factor vector, two levels:
R> # a) ten 11-year cycles from 1749 to 1859
R> # b) ten 11-year cycles from 1902 to 2012
R> groups <- factor(c(rep("A", 10), rep("B", 10)))

R> # Compare the two groups, use 9 PCs for MANOVA
R> cmp <- cmpoutput("SunSpots", 9, m, groups)

The cmp object can now be analyzed:

R> cmp

Output name: SunSpots
Number of PCs which explain 85.0% of variance: 9
P-Value for MANOVA along 9 dimensions: 3.40755e-06
P-Value for t-test (1st PC): 2.713985e-06
P-Value for Mann-Whitney U test (1st PC): 4.330035e-05
Adjusted p-Value for t-test (1st PC): 6.513579e-06
Adjusted p-Value for Mann-Whitney U test (1st PC): 0.0001039211

The MANOVA p-value is significant, as well as the t-test and Mann-Whitney PC1 p-values, before
and after weighted Bonferroni correction. As such, it is possible to conclude that solar cycles from
1749 to 1859 were significantly different from cycles between 1902 and 2012. However, is the data
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Figure 1: Plots produced by sunspots example.

in accordance with the assumptions for the MANOVA and t-test? This can be checked with the
assumptions function:

R> assumptions(cmp)

=== MANOVA assumptions ===
NPCs=9

Royston (A) 2.190796e-01
Royston (B) 3.627858e-01
Box's M 1.567180e-08

=== T-test assumptions ===
PC1

Shapiro-Wilk (A) 0.7739058
Shapiro-Wilk (B) 0.3791168
Bartlett 0.9353299

Only Box’s M test, which checks for homogeneity of variance-covariance matrices, is significant.
However, this test is prone to false positives, and this assumption is not critical when samples are of
the same size (Tabachnick and Fidell, 2013). Given this information, it seems plausible to consider
the results provided by the parametric tests in our final decision, i.e., that there is in fact a significant
difference between samples. A good way to visualize the overall results is to plot the “cmpoutput”
object:

R> plot(cmp)

This command generates the plots shown in Figure 1. The score plot shows the samples to be distinctly
separated, and the variance explained by PC decreases abruptly from the first PC to the second.
Univariate p-values for PC1 are visibly significant, though not very much for the remaining PCs.

Saugeen river flow

This example uses the Saugeen River daily flow data (Hipel and McLeod, 1994), included with the
deseasonalize package. This data consists of a time series of the rivers’ daily flow (m3/s) from 1915 to
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1979. Considering one year as an observation, there are a total of 65 observations. We can, for example,
define two samples of 30 observations each, with the first and last 30 years of records, and ask the
following question: is there any statistical difference between the flow dynamics during the 1915–1944
and 1950–1979 periods (perhaps due to climate change or some other factor)? The following code
compares observations from the two periods:

R> # Load packages
R> library(micompr)
R> library(deseasonalize)

R> # Unique years
R> years <- unique(sapply(rownames(SaugeenDay), substr, 1, 4))

R> # Number of days in each year
R> ndays <- sapply(years, function(x) sum(substr(rownames(SaugeenDay), 1, 4) == x))

R> # Indexes of last day in each year
R> lastdays <- cumsum(ndays)

R> # Prepare data for PCA
R> saugdata <- t(mapply(
+ function(nd, ld) {
+ rflows <- rep(NA, 366)
+ rflows[1:nd] <- SaugeenDay[(ld - nd + 1):ld]
+ # Discard last day in leap years
+ rflows[1:365]
+ },
+ ndays, lastdays))

R> # Consider first 30 years and last 30 years (discard 5 years in between)
R> saugdata <- saugdata[c(1:30, 36:65), ]

R> # Factor vector, two levels: first 30 years and last 30 years
R> groups <- factor(c(rep("A", 30), rep("B", 30)))

R> # Compare
R> cmp <- cmpoutput("SaugeenFlow", 0.9, saugdata, groups)

The cmp object can now be analyzed:

R> cmp

Output name: SaugeenFlow
Number of PCs which explain 90.0% of variance: 21
P-Value for MANOVA along 21 dimensions: 0.0740641
P-Value for t-test (1st PC): 0.3088125
P-Value for Mann-Whitney U test (1st PC): 0.3980033
Adjusted p-Value for t-test (1st PC): 1
Adjusted p-Value for Mann-Whitney U test (1st PC): 1

There are no significant p-values. As such, it is not possible to conclude that the river flow dynamic
during the first 30 years of measurements is statistically different from the last 30 years. The MANOVA
assumptions are not verified, as shown by be assumptions function:

R> assumptions(cmp)

=== MANOVA assumptions ===
NPCs=21

Royston (A) 1.309146e-05
Royston (B) 3.947504e-05
Box's M 1.859561e-10

=== T-test assumptions ===
PC1

Shapiro-Wilk (A) 0.02860029
Shapiro-Wilk (B) 0.83367671
Bartlett 0.79716243
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Figure 2: Plots produced by the Saugeen river flow example.

The t-test assumptions mostly hold, in spite of the PC1 normality test for sample A (first 30 years)
being significant at the α = 0.05 level. Nonetheless, the U test p-value provides a similar conclusion.
Plotting the cmp object provides another perspective:

R> plot(cmp)

The previous command will produce plots in Figure 2. The PC1 vs. PC2 score plot does not show
any clear sample separation and the decrease in explained variance from the first PC to the second is
considerably less abrupt than what was observed for the sunspots example. Additionally, no t and U
test p-values are significant for the 60 PCs after weighted Bonferroni correction, further reinforcing the
conclusion that the yearly Saugeen river flow dynamic was similar during the compared periods of
time.

PH2 database of dermoscopic images

In this example we use the tools provided by the micompr package to study the PH2 database of
dermoscopic images (Mendonça et al., 2013). This image database contains a total of 200 dermoscopic
images of melanocytic lesions, including, from benign to more serious, 80 common nevi, 80 atypical
nevi, and 40 melanomas. These are 8-bit RGB color images, with a resolution of purportedly 768× 560
pixels. We have found, however, that resolutions vary between 761× 570 and 769× 577. As such, we
resized all images to 760× 570 prior to our analysis. The goal is to verify if images of the three types
of lesions form statistically distinguishable samples, i.e., this is not a classification exercise such as
performed by Barata et al. (2014).

Each image is considered an observation of three outputs, red, green and blue, corresponding to
the respective color channels. The concatenation of all outputs, i.e., channels, provides a 4th output.
The three lesion samples are compared pairwise, as follows:

1v2 Common nevi and atypical nevi.
1v3 Common nevi and melanomas.
2v3 Atypical nevi and melanomas.

The following code reads the image dataset from disk and compares images grouped by lesion
type. The imgfolder variable specifies the path containing the images (resized to 760× 570), while the
grpsfile variable specifies the path to the file containing the sample to which each image belongs.
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R> # Load packages
R> library(bmp)
R> library(micompr)

R> # Image definitions
R> imgs <- dir(imgfolder)
R> nimgs <- length(imgs)
R> npixels <- 760 * 570

R> # Specify image groups (Common nevi, atypical nevi, melanomas).
R> f <- read.table(grpsfile, row.names = 1)
R> grps <- f[order(row.names(f)), ]

R> # Read images from disk
R> # Use different color channels as outputs, and also use a concatenated output
R> rimgs <- matrix(nrow = nimgs, ncol = npixels)
R> gimgs <- matrix(nrow = nimgs, ncol = npixels)
R> bimgs <- matrix(nrow = nimgs, ncol = npixels)
R> rgbimgs <- matrix(nrow = nimgs, ncol = npixels * 3)

R> for (i in 1:nimgs) {
+ cimg <- read.bmp(paste0(imgfolder, imgs[i]))
+ rimgs[i, ] <- c(cimg[ , , 1])
+ gimgs[i, ] <- c(cimg[ , , 2])
+ bimgs[i, ] <- c(cimg[ , , 3])
+ rgbimgs[i, ] <- c(cimg[ , , 1], cimg[ , , 2], cimg[ , , 3])
+ }

R> # Perform multivariate independent comparison of images
R> mic <-
+ micomp(outputs = c("R", "G", "B", "RGB"),
+ ve_npcs = 0.9,
+ comps = list(
+ list(name = "1v2",
+ grpout = list(
+ data = list(R = rimgs[grps != 3, ],
+ G = gimgs[grps != 3, ],
+ B = bimgs[grps != 3, ],
+ RGB = rgbimgs[grps != 3, ]),
+ obs_lvls = factor(grps[grps != 3]))),
+ list(name = "1v3",
+ grpout = list(
+ data = list(R = rimgs[grps != 2, ],
+ G = gimgs[grps != 2, ],
+ B = bimgs[grps != 2, ],
+ RGB = rgbimgs[grps != 2, ]),
+ obs_lvls = factor(grps[grps != 2]))),
+ list(name = "2v3",
+ grpout = list(
+ data = list(R = rimgs[grps != 1, ],
+ G = gimgs[grps != 1, ],
+ B = bimgs[grps != 1, ],
+ RGB = rgbimgs[grps != 1, ]),
+ obs_lvls = factor(grps[grps != 1])))))

As in the Simulation model with multiple outputs example, the mic object can be inspected at the R
prompt using the common S3 generic functions. Likewise, the toLatex function produces LATEX tables
summarizing the object. The following code generates Table 2:

R> toLatex(mic, booktabs = TRUE, data_show = c("parp-1", "nparp-1", "scoreplot"),
+ data_labels = c("$t$-test", "$U$ test", "PCS"),
+ pvalf_params = list(minval = 1e-8, na_str = "*"), label = "tab:ph2",
+ caption = paste("Comparison of PH$^2$ dataset images",
+ "grouped by lesion type."))

Note that we did not request the MANOVA p-values in the data_show parameter, as in this case
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Comp. Data Outputs

R G B RGB

1v2
t-test 2e-04 0.001 0.033 0.002
U test 8e-05 5e-04 0.024 0.001

PCS

1v3
t-test <1e-08 <1e-08 7e-07 <1e-08
U test <1e-08 <1e-08 7e-06 <1e-08

PCS

2v3
t-test <1e-08 <1e-08 3e-04 <1e-08
U test 6e-08 <1e-08 0.001 8e-07

PCS

Table 2: Comparison of PH2 dataset images grouped by lesion type.

the required assumptions do not appear to be verified. However, assumptions for the t-test on the
first PC seem to hold. In any case, and to complement the information provided by the t-test, we
specified the "nparp-1" option to the data_show argument, such that the table shows the p-value of
the Mann-Whitney U test on the first PC.

Results in Table 2 show that images of different lesions have statistically significant differences,
when compared either by individual color channels or with the three channels concatenated. The
latter seems to provide better differentiation, with the common nevi and melanoma samples (1v3
comparison) appearing to be the most dissimilar.

Summary

In this paper we presented the R package micompr, which implements a procedure for comparing
multivariate samples associated with different factor levels or groups. The package architecture and
its core components were discussed and four examples were examined.
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mixtox: An R Package for Mixture
Toxicity Assessment
by Xiang-Wei Zhu and Jian-Yi Chen

Abstract Mixture toxicity assessment is indeed necessary for humans and ecosystems that are contin-
ually exposed to a variety of chemical mixtures. This paper describes an R package, called mixtox,
which offers a general framework of curve fitting, mixture experimental design, and mixture toxicity
prediction for practitioners in toxicology. The unique features of mixtox include: (1) constructing a
uniform table for mixture experimental design; and (2) predicting toxicity of a mixture with multiple
components based on reference models such as concentration addition, independent action, and
generalized concentration addition. We describe the various functions of the package and provide
examples to illustrate their use and show the collaboration of mixtox with other existing packages
(e.g., drc) in predicting toxicity of chemical mixtures.

Introduction

Environmental chemicals usually occur as complex mixtures rather than a single compound. Humans
and ecosystems are continually exposed to a variety of chemical mixtures with changing composition
under different circumstances. Public concern over environmental chemicals demands extensive risk
assessment of various mixtures. Today, risk assessment of the effect of environmental mixtures is
mainly based on a complex framework in the context of reference models (Backhaus and Faust, 2012).
Predicting toxicity of mixtures using reference models is usually based on the fitting information of
individual concentration response curves (Faust et al., 2003, 2001). Knowledge on the synergistic,
antagonistic and additive effects of multiple stressors will be helpful for regulatory agencies in the risk
assessment of environmental chemicals.

Curve fitting of individual concentration responses is the basis for predicting the effect of mixtures.
Many sigmoidal regression functions have been proposed for the fitting of monotonic nonlinear
concentration response data (Goutelle et al., 2008; Scholze et al., 2001; Spiess and Neumeyer, 2010).
Sigmoidal functions (e.g., Logit and Weibull) with a lower limit of 0 and an upper limit of 1 (Scholze
et al., 2001) are suitable for quantal response data. Other functions like three- or four-parameter
Hill functions (Goutelle et al., 2008) and three- or four-parameter Weibull and Logistic functions
(Spiess and Neumeyer, 2010) could be used for both quantal and continuous response data. Both
proprietary (e.g., Origin) and free-to-download software (e.g., EPA Probit analysis program and BMDS;
https://www.epa.gov/bmds) are available for curve fitting. Focusing on R packages we must mention
drc (Ritz and Streibig, 2005), drfit (Ranke, 2016), and ezec (Kamvar, 2016). Package drc provides a
suite of flexible and versatile model fitting and after-fitting functions to analyze concentration response
data.

Appropriate mixture experiments need to be designed to analyze interactions (synergistic, an-
tagonistic, or additive) between/among mixture components. Usually, fixed-ratio ray design is
employed to systematically measure the effect of mixtures. One popular fixed-ratio ray design is the
equal effect concentration ratio (EECR) (Faust et al., 2003, 2001), which designs mixtures according
to the proportion of a particular effect concentration, say half maximal effect concentration (EC50),
of individual chemicals. EECR has become a de facto standard for the experimental investigation
of chemical interaction for all kind of mixtures. The call for simulating “environmentally realistic”
mixtures (Backhaus and Faust, 2012) requires more sophisticated experimental design for mixtures.
The uniform design concentration ratio (UDCR, or uniform design ray; Liu et al. 2015) was proposed
to construct the “environmentally realistic” mixtures. Constructing appropriate uniform design tables
(Ning et al., 2011) is the key to the sophisticated uniform experimental design. Uniform design tables
with various number of runs, factors, and levels calculated by Professor Fang and his colleagues can
be found on the website http://sites.stat.psu.edu/~rli/DMCE/UniformDesign/. However, those
tables are not specifically tuned for mixture experimental design. The APTox program (Liu et al., 2012),
assessment and prediction on toxicity of chemical mixtures, developed based on Visual Basic, provides
a module to construct uniform design tables. To the best of our information, there is no R package
available for the construction of uniform design table.

Concentration addition (CA) and independent action (IA) are two classical reference concepts that
allow predicting toxicity of mixture substances (Backhaus and Faust, 2012). CA assumes to predict
toxicity of mixture compounds with a similar mechanism of action. In contrast to CA, IA assumes
mixture components act on different biological targets of an exposed organism independently. The
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expected effect of mixtures can hence be calculated according to the joint probability of statistically
independent events. The package drc (Ritz and Streibig, 2005, 2014) provides fitting models (e.g.,
CA, Hewlett, and Voelund) incorporating synergism/antagonism for binary and ternary mixtures.
However, there is a need for evaluating the effect of mixtures with more than three components.
The CA and IA models are suitable for fitting mixtures with quantal concentration response data (or
quantal responses after proper transformation). Generalized concentration addition (GCA) (Howard
and Webster, 2009) was proposed to examine mixtures containing partial agonists. GCA is appropriate
for both quantal and continuous concentration response relationships. A following study (Hadrup
et al., 2013) showed GCA could predict a larger range of the concentration response curve as compared
with the CA and IA models. GCA is appropriate for both quantal and continuous concentration
response relationships.

The goal of this paper is to describe an R package, called mixtox (Zhu, 2016), that allows to perform
curve fitting, experimental design, and mixture toxicity assessment. In this paper, we will introduce
curve fitting of individual concentration response data using a series of sigmoidal models, mixture
experimental design based on different strategies, and mixture toxicity prediction based on CA, IA,
and GCA, as well as follow-up analysis.

The paper is organized as follows. First, the statistical fundamentals underneath the curve fitting,
experimental design, and mixture toxicity prediction are briefly recalled. Then the main functions in
mixtox are listed and their use described. Finally, several examples are provided to illustrate the use
of these functions.

Outline of statistical fundamentals

Consider a set of n concentration response data points (x1, y1), (x2, y2), · · · (xn, yn) and model
function y = f (x, θ) + e with p parameters θ = (θ1, θ2, · · · , θp). A non-linear least square regression
was used to fit the concentration response data. The purpose of non-linear least square regression is
to find the parameter θ to minimize the sum of squares of e (a vector of errors). With the help of the
modified Levenberg-Marquardt algorithm, package minpack.lm (Elzhov et al., 2016) is more efficient
than the built-in nls function in solving nonlinear least-squares problems. It was employed to fit the
concentration response data instead of nls.

Goodness of fit statistics

The mixtox package provides 13 sigmoidal functions to fit concentration response data. A series of
goodness of fit statistics were provided to select the best fit. These statistics include coefficient of
determination (R2), the bias-corrected coefficient of determination (R2

adj), root mean squared error
(RMSE), mean absolute error (MAE), Akaike information criterion (AIC), the bias-corrected AICc,
and Bayesian information criterion (BIC). The mathematical expression of these statistics can be
found in Liao and McGee (2003) and Spiess and Neumeyer (2010). A variety of functions can be used
to fit the concentration responses of one compound on an organism. Previously, the best model was
selected based on the highest R2 and R2

adj, lowest RMSE, and lowest MAE. However, R2 or even R2
adj

are not sensitive measures for nonlinear models as compared with AIC, AICc, and BIC (Spiess and
Neumeyer, 2010). Here, we suggest that users select the best model based on the lowest AIC, AICc,
and BIC.

Confidence intervals

The Delta method (Dybowski and Gant, 2001) is used to construct confidence intervals for predicted
responses. The (non-simultaneous) confidence interval (CI) at the predictor value x is given as follows:

CI = f (θ̂)± t(n−p, (1−α)/2)

√(
νTVar(θ̂)ν

)
, (1)

where t is the inverse of Student’s t cumulative distribution function, α is the confidence level (usually
95%); the superscript T denotes transpose; ν is the row vector of the Jacobian evaluated at a specified
predictor value.

Var(θ̂) in (1) is the covariance matrix of the parameter estimates.

Var(θ̂) = σ2
(

J(θ)T J(θ)
)−1

, (2)
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where σ2 is the squared residual standard error. J(θ) is the Jacobian matrix of f (θ) with respect to the
coefficients.

The (non-simultaneous) prediction bounds for a new observation (Huet et al., 2004) (i.e., prediction
interval, PI) were found to show better characterization on responses at the extremely low concen-
trations (Zhu et al., 2013). The PI (De Gryze et al., 2007; Huet et al., 2004) was recommended as the
primary choice for uncertainty characterization:

PI = f (θ̂)± t(n−m, (1−α)/2)

√
σ2 +

(
νTVar(θ̂)ν

)
. (3)

The PI for new observations should be wider than the CI for the additional variance (σ2) in
predicting new responses (the fit plus random errors).

Uniform design table

Many experimental design methods such as generalized Latin hypercube design (Dette and Pepely-
shev, 2010) and uniform design (Ning et al., 2011) can be used to construct chemical mixtures. The
uniform design was incorporated into package mixtox. Uniform design is an efficient experimental
design method to simulate environmentally realistic mixtures. It allows researchers to investigate
mixtures with more chemicals (i.e., factors in uniform design) and concentrations (levels) while
simultaneously minimizing the number of experiments (Liu et al., 2015).

As a prerequisite for constructing a uniform design table, researchers need to plan the number
of runs, factors, and levels for a mixture experiment according to their experiment. Usually, the
number of runs is an integer multiple of levels. Assume that we want to test the mixture effect of
three compounds each with four different concentrations. Based on the three factors (compounds)
and four levels (concentrations), a uniform design table with four runs would be suitable for this case.
If we want to use a uniform design table with eight runs, then the levels (concentrations) need to be
allocated in repetition to form pseudo-levels (Liang et al., 2001), the number of which equals that of
runs.

The good lattice point method (Zhou and Fang, 2013) with a power generator was used to
construct a uniform table based on the number of runs. The centered L2-discrepancy (CD2) (Hickernell,
1996; Zhou and Fang, 2013) was employed to measure the uniformity and find the one with lowest
discrepancy.

CD2(P) =
[(13

12

)s
− 21−s

n

n

∑
k=1

s

∏
i=1

θki +
1

n2

n

∑
k, l=1

s

∏
i=1

φk, li

]1/2
, (4)

with the definition of θki and φk, li as follows:

θki = 2 +
∣∣xki −

1
2

∣∣− ∣∣xki −
1
2

∣∣2, (5)

φk, li = 1 +
1
2

(∣∣xki −
1
2

∣∣+ ∣∣xli −
1
2

∣∣− |xki − xli|
)

, (6)

and where n and s are the number of runs (levels or pseudo-levels) and the number of factors,
respectively.

Reference models

For a well-defined mixture of n components, concentration addition is expressed mathematically as
(Faust et al., 2001):

n

∑
i=1

ci
ECxi

= 1, (7)

where ECxi is the effect concentration of the ith component that causes an x% effect when applied
individually at ci. The ci is expressed as:

ci = pi · cmix = pi · ECx, mix, (8)

where pi is the proportion of the ith component in a mixture, cmix the concentration of the mixture and
ECx, mix the concentration of the mixture that causes an effect of x%. The formula to predict the effect
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of a mixture can be expressed as:

ECx, mix =
( n

∑
i=1

pi
ECx, i

)−1
. (9)

The theoretical basis for independent action is defined as (Faust et al., 2001):

E(cmix) = 1−
(
1− E(c1)

)(
1− E(c2)

)
· · ·
(
1− E(cn)

)
= 1−

n

∏
i=1

(
1− E(ci)

)
, (10)

where E(cmix) is the total effect caused by a mixture at the concentration of cmix, and E(ci) is the effect
caused at ci of individual chemicals. For a fitted function ( fi) based on the concentration response
data of the ith component, E(ci) is equal to fi(ci). When E(cmix) = x, (10) can be expressed as:

x% = 1−
n

∏
i=1

(
1− fi

(
pi
(
ECx, mix

)))
. (11)

(11) can be used to predict the mixture effect for IA.

Generalized concentration addition (GCA) is a natural extension of CA that could be applied
to mixtures including full agonists and partial agonists or mixtures including full agonists and
competitive antagonists (Howard and Webster, 2009). The general form of GCA is expressed as
follows:

n

∑
i=1

ci

f−1
i (E)

= 1. (12)

Empirical data were used to fit function fi(ci), and then predict the mixture response using the
inverse function f−1

i (E). Previous studies used the Hill function with Hill coefficient equal to 1 to fit
individual concentration response curves (Howard et al., 2010). It is suitable to fit response data with
lower limit fixed at 0 and no fixed maximal effect.

f (c) =
αc

K + c
, (13)

where c is the concentration, K is the concentration causes 50% effect, and α is the maximal effect level
of a chemical on a test organism. In mixtox, function (13) was labeled as Hill_two. The equation to
predict the effect of a multiple-component mixture based on Hill_two is expressed as follows (Howard
and Webster, 2009):

EGCA
mix =

( n

∑
i=1

αici
Ki

)/(
1 +

n

∑
i=1

ci
Ki

)
. (14)

Overview of the package

This section provides a description of functions in the R package mixtox. We first detail the main
functions that allow to fit concentration response data. Second, we describe a function to construct
uniform design tables. Then we discuss functions for mixture toxicity prediction.

Concentration-response curve fitting

Package mixtox provides 13 sigmoidal functions to fit monotonic concentration responses. First, the
name of 13 sigmoidal functions will display through the command showEq("sigmoid"):

[1] "Hill" "Hill_two" "Hill_three"
[4] "Hill_four" "Weibull" "Weibull_three"
[7] "Weibull_four" "Logit" "Logit_three"
[10] "Logit_four" "BCW(Box-Cox-Weibull)" "BCL(Box-Cox-Logit)"
[13] "GL(Generalized Logit)"

Then the formula of those functions can be displayed through querying the function name using
showEq (e.g., showEq("Hill")). Six functions (i.e., Hill, Weibull, Logit, BCW, BCL, and GL) are suitable
to fit quantal responses in the range of [0, 1]. The other 7 functions are suitable to fit continuous
concentration responses with response range out of [0, 1].

The main function for curve fitting in mixtox is curveFit. This function provides various options. It
requires concentration (x), experimental responses (expr), a suitable equation (eq), and corresponding
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starting values (param).

R> curveFit <- function(x, expr, eq , param, effv, sigLev = 0.05)

The eq term can be any of the 13 sigmoidal equations. The default significant level (sigLev) is 0.05 to
calculate the PI and CI. Dunnett test (Dunnett, 1964) was used to calculate the non-observed effect
concentration (NOEC) and lowest observed effect concentration (LOEC) for quantal concentration
response data or response data with lower limit fixed at 0. The response values for the control in those
data were set to 0 in the calculation of NOEC and LOEC.

R> NOEC <- function(x, expr, sigLev = 0.05)

The starting values (param) are indispensable for curveFit. The function tuneFit could help users
to find proper starting values. Users need to provide their experimental concentration (conc), cor-
responding responses (rspn) and the equation (eq) they choose to fit the data (e.g., Weibull). Other
terms (effv, rsq, highBar, bar, and sav) are optional and the detailed explanation can be found in the
reference manual.

R> tuneFit <- function(conc, rspn, eq = "Weibull", effv, rsq = 0.6, highBar = 5000,
+ bar = 1000, sav = FALSE)

tuneFit is essentially a sophisticated wrapper for nlsLM in the package minpack.lm. Like the function
drm in package drc (Ritz and Streibig, 2005) which provides self starting values, tuneFit also provides
starting values for all of the 13 sigmoidal functions. Those starting values were collected through
the fitting of various concentration response data from various sources (e.g., our lab tests, published
literature, and large databases such as ToxCast; Kavlock et al. 2012). The starting values for all of the
13 functions are stored in staval (e.g., staval$Logit would show all of the 1786 starting values for the
Logit function). tuneFit provides a high frequency trial and error approach to deploy those starting
values one by one until getting the best fit. This approach is quite efficient especially for the quantal
concentration response data.

Construction of a uniform design table

The function unidTab can be called to generate uniform design tables.

R> unidTab <- function(lev, fac, algo = "cd2")

To call unidTab, users need to provide the number of runs (levels, lev) and factors (fac). Normally,
the number of runs equals the number of levels. If users need to do more runs than levels (the number
of runs is n times that of levels, n = 1, 2, · · · ), a pseudo-level design needs to be performed. Usually,
unidTab is incorporated into functions (e.g., caPred and iaPred) to predict toxicity of mixtures. Once
users provide the levels (pseudo-levels) and fitting information of individual compounds, the unidTab
will be called by caPred and iaPred to generate uniform table(s) with the lowest discrepancy.

Mixture toxicity prediction

The function caPred can be called to predict the effect of mixtures based on concentration addition.

R> caPred <- function(model, param, mixType = c("acr", "eecr", "udcr"), effv,
+ effPoints)

Mixture toxicity prediction is based on the fitting information of individual concentration response
curves. Users need to fit the individual concentration response data first and provide the fitting
information (model used to fit individual concentration responses and corresponding fitted parameters
param) to caPred. Function caPred provides three optional fix-ratio ray design methods: (1) arbitrary
concentration ratio (acr), users can arbitrarily define the proportion of a component in a mixture. It
also allows users to design mixtures according to certain experimental design methods (e.g., Latin
hypercube design; Dette and Pepelyshev 2010); (2) equal effect concentration ratio (eecr); and (3)
uniform design concentration ratio (udcr). If the mixture type is acr, the term effv is a vector of ratios
or concentrations that will eventually be converted into the proportion of mixture components. If
the mixture type is eecr or udcr, the argument effv is a numeric vector with single or multiple effect
values. The argument effPoints is a vector of effect values (with a range of [0, 1]).

The function iaPred can be called to predict the effect of mixtures based on IA.

R> iaPred <- function(model, param, mixType = c("acr", "eecr", "udcr"), effv,
+ effPoints, lb = 1e-9, ub = 6)
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Most of the arguments in iaPred are the same as those in caPred. The arguments of lb and ub are
the lower and upper bounds of the concentration range where to find a solution for the constructed
IA equation based on (11), respectively. Users can change these values based on their practical
experimental system.

The function caPred can only predict mixture effects of chemicals with quantal concentration
responses. That is, caPred only covers concentration response curves fitted by six functions (i.e., Hill,
Weibull, Logit, BCW, BCL, and GL).

The function gcaHill can be used to predict the effect of mixtures based on (14) on the condition
that all individual concentration responses should be fitted by the function Hill_two.

R> gcaHill <- function(model, param, mixType = c("acr", "eecr", "udcr"), effv,
+ refEffv = c(0.10, 0.50))

The reference effects (refEffv) need to be provided by users to define the range of responses. To extend
the GCA to be more general, 12 more functions (Hill, Hill_three, Hill_four, Weibull, Weibull_three,
Weibull_four, Logit, Logit_three, Logit_four, BCW, BCL, and GL) were incorporated to gcaPred
according to the general form of GCA equation in (12).

R> gcaPred <- function(model, param, mixType = c("acr", "eecr", "udcr"), effv,
+ refEffv = c(0.05, 0.50, 0.90), lb = 1E-8, ub = 0.90)

Illustrations

In this section, we illustrate several examples of the use of the functions described above. Example 1
deals with curve fitting. Example 2 deals with experimental design and mixture toxicity prediction
based on CA, IA, and GCA. Example 3 deals with the connection of mixture toxicity prediction in
mixtox with curve fitting in drc. Example 4 deals with follow-up analysis on mixture prediction. The
mixtox package provides sigmoidal concentration response data (antibiotox) to demonstrate the
usage of different functions.

The antibiotox dataset includes the long term toxicity of seven aminoglycosides (paromomycin
sulfate (PAR), spectinomycin dihydrochloridehydrate (SPE), kanamycin sulfate (KAN), streptomycin
sulfate (STR), dihydrostreptomycin sesquisulfate hydrate (DIH), gentamycin sulfate (GEN), and
Neomycin sulfate (NEO)) and their 12 mixtures designed using different methods on fresh water
photobacteria Vibro-qinghaiensis sp. Q67. The concentration unit of these antibiotics is mole per liter
(mol/L). The bioluminesence of photobacteria was transformed into quantal form with response
approaches 0 if chemical’s concentration was extremely low and 100% inhibition if chemical’s concen-
tration was infinitely high. Detailed information on these data and test systems can be found in the
reference manual.

Example 1: Curve fitting

Mixture toxicity prediction is based on the curve fitting information of individual compounds. For
example, we need to use the Logit function to fit the concentration response data of PAR on photobac-
teria. To get proper starting values of α (location parameter) and β (slope parameter) for Logit, users
need to use the function tuneFit.

R> x <- antibiotox$PAR$x
R> expr <- antibiotox$PAR$y
R> y <- rowMeans(expr)
R> tuneFit(x, y, eq = "Logit")

The function tuneFit will return a list as follows:

$sta
Alpha Beta r2 adjr2 MAE RMSE AIC AICc BIC ecx

fit_1 26.3 4.66 0.995 0.994 0.0234 0.029 -49.1 -47.8 -48.2 1000001

The number 1000001 means the effect concentration (ecx) was not calculated because no effv was
provided to tuneFit. To compare the result with Weibull:

R> tuneFit(x, y, eq = "Weibull")

$sta
Alpha Beta r2 adjr2 MAE RMSE AIC AICc BIC ecx

fit_1 18.3 3.32 0.993 0.992 0.0223 0.0331 -46 -44.6 -45 1000001
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Figure 1: The fitting information of antibiotic PAR on photobacteria: (A) concentration response
curves. Dot: observed; Black line: fitted CRC; Red dotted lines: 95% CI; Blue dotted lines: 95% PI;
and (B) normal Q-Q plots of residuals.

These two functions could well describe the concentration response data of PAR on photobacteria
(r2 > 0.99). It is difficult to distinguish which fit is better purely based on r2. Users need to choose the
better fit (i.e., Logit) based on AIC or BIC (the lower, the better).

Function tuneFit also provides an important feature of fitting a batch of concentration response
data of different chemicals. Here, we would like to example curve fitting of two compounds in a single
run.

R> omim.x <- cytotox$Omim$x
R> omim.y <- rowMeans(cytotox$Omim$y)
R> emim.x <- cytotox$Emim$x
R> emim.y <- rowMeans(cytotox$Emim$y)
R> x <- rbind(omim.x, emim.x)
R> y <- rbind(omim.y, emim.y)
R> tuneFit(x, y, eq = "Weibull")

$sta
Alpha Beta r2 adjr2 MAE RMSE AIC AICc BIC ecx

fit_1 6.42 2.25 0.946 0.941 0.0447 0.0625 -30.7 -29.3 -29.7 1000001
fit_2 5.57 2.27 0.974 0.972 0.0452 0.0545 -34.0 -32.6 -33.0 1000001

In this case, r2 is still useful to give an illustrative evaluation of the goodness of fit. In cases of various
curves fitted by different functions, there is no way to compare their goodness of fit just based on
AIC or BIC. Thus, we provide as many statistics as possible to allow users to choose the best fit in the
context of their experimental systems.

Function curveFit could be used to fit the concentration response data of PAR using the starting
values of 26.31 and 4.66 for Logit.

R> fit <- curveFit(x, expr, eq = "Logit", param = c(26.31, 4.66), effv = c(0.05, 0.5))

The plot of the fitted concentration response curve (Figure 1A) can be shown through function figPlot.
The residuals of curve fitting can be found in fit$res. The normal Q-Q plot of residuals was plotted
in Figure 1B using function qq4res in mixtox. The R code for Figure 1 is as follows:

R> par(mfrow = c(1, 2))
R> x <- antibiotox$PAR$x
R> expr <- antibiotox$PAR$y
R> fit <- curveFit(x, expr, eq = "Logit", param = c(26.31, 4.66), effv = c(0.05, 0.5))
R> figPlot(fit$crcInfo)
R> legend("topleft", legend = "A", border = "white", cex = 1.4)
R> qq4res(fit$res)
R> legend("topleft", legend = "B", border = "white", cex = 1.4)

The effv values of 0.05 and 0.5 imply that the effect concentrations that cause 5% and 50% effect
(EC5 and EC50) are calculated. PIs and CIs were both calculated for comparison. The fitted α and
β are 26.31 and 4.66, respectively. The goodness of fit statistics are 0.995, 0.994, 0.02342, 0.02897,
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−49.13,−47.80, and−48.16 for R2, R2
adj, MAE, RMSE, AIC, AICc and BIC, respectively. The function

curveFit will call ECx to calculate effect concentration of effv. The EC50 of PAR on the inhibition
of luminescence of phtotobacteria is 2.25E−06 mol/L with 95% CI of [2.11E−06, 2.40E−06] mol/L
and 95% PI of [1.95E−06, 2.57E−06] mol/L. The EC5 of PAR on the inhibition of luminescence of
phtotobacteria is 5.24E−07 mol/L with 95% CI of [4.37E−07, 6.44E−07] mol/L and 95% PI of [0,
8.44E−07] mol/L. Similarly, PAR will cause 50% inhibition with 95% PI of [42.7%, 57.3%] and 95% CI
of [46.5%, 53.5%] at the concentration of 2.25E−06 mol/L. PAR will cause 5% inhibition with 95% PI
of [0%, 11.7%] and 95% CI of [3.14%, 6.86%] at the concentration of 5.24E−07 mol/L.

The NOEC and LOEC can be calculated using the function NOEC:

R> NOEC(x, expr)

The values of NOEC and LOEC are 2.29E−07 mol/L and 3.55E−07 mol/L for PAR, respectively.

Example 2: Mixture toxicity prediction

The function caPred can be called to predict the effect of mixtures based on concentration addition. It
provides three optional mixture design methods as mentioned before (ACR, EECR, and UDCR). The
effect of mixtures of seven aminoglycosides combined on photobacteria according to the EECR design
for 5% and 50% effect levels can be predicted by:

R> model <- antibiotox$sgl$model
R> param <- antibiotox$sgl$param
R> caPred(model, param, mixType = "eecr", effv = c(0.05, 0.5))

Function caPred will return a series of effects e in a range of [0, 1], predicted concentrations
ca that cause effects e, and the proportion of individual components (pct) for the EECR mixture.
The proportion of individual components is very useful for users to prepare mixtures in practical
experiments.

Here, we want to design 10 UDCR mixtures based on seven antibiotics and five concentration
levels (effect concentrations at the responses of 5%, 10%, 20%, 30% and 50%, respectively). The function
unidTab can be called in caPred to generate a uniform design table of U10(107). The uniform table can
also be generated with 10 runs (pseudo-levels) and 7 factors as follows:

R> unidTab(10, 7)

No 1 2 3 4 5 6 9

1 1 2 3 4 5 6 9
2 2 4 6 8 10 1 7
3 3 6 9 1 4 7 5
4 4 8 1 5 9 2 3
5 5 10 4 9 3 8 1
6 6 1 7 2 8 3 10
7 7 3 10 6 2 9 8
8 8 5 2 10 7 4 6
9 9 7 5 3 1 10 4

10 10 9 8 7 6 5 2

The CA prediction of those UDCR mixtures is as follows:

R> caPred(model, param, mixType = "udcr", effv = rep(c(0.05, 0.1, 0.2, 0.3, 0.5), 2))

The argument effv exemplifies the pseudo-level design of the five levels. Function caPred also
returns the uniform table employed to construct UDCR mixtures.

Similarly, the effect of mixtures based on IA for the EECR and UDCR design can be predicted as
follows:

R> iaPred(model, param, mixType = "eecr", effv = c(0.05, 0.5))
R> iaPred(model, param, mixType = "udcr", effv = rep(c(0.05, 0.1, 0.2, 0.3, 0.5), 2))

Both the caPred and iaPred would return the proportion of individual compounds in each mixture.

Users need to fit all of the individual concentration response data using Hill_two (13) before
using function gcaHill. Assume we have fitted four curves using Hill_two with corresponding
fitting information stored in model_hill2 and param_hill2. The effect of mixtures predicted based on
generalized concentration addition for the EECR and UDCR design can be calculated as follows:
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R> model_hill2 <- c("Hill_two", "Hill_two", "Hill_two", "Hill_two")
R> param_hill2 <- matrix(c(3.94e-5, 0.97, 5.16e-4, 1.50, 3.43e-6, 1.04, 9.18e-6, 0.77),
+ nrow = 4, ncol = 2, byrow = TRUE)
R> gcaHill(model_hill2, param_hill2, mixType = "eecr", effv = c(0.05, 0.5))
R> effv <- c(0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.50)
R> gcaHill(model_hill2, param_hill2, mixType = "udcr", effv)

Example 3: Connection of mixtox with drc

Package drc is widely used for curve fitting of concentration response data. Many users are accustomed
to its convenience in curve fitting. The two-parameter log-logistic function (LL.2) and two-parameter
Weibull functions (W1.2 and W2.2) with the lower limit fixed at 0 and the upper limit fixed at 1 in drc
are suitable for quantal responses. The function drm is a general model fitting function for analysis of
concentration response data in drc.

Here we would like to show an example of connecting the curve fitting (drm) in drc with the
mixture effects prediction (caPred and iaPred) in mixtox. Assume we need to predict the effect of
mixtures of four antibiotics (PAR, SPE, KAN, and STR) on photobacteria. First, we need to fit these
concentration response data (stored in antibiotox) using drm. The LL.2 function is selected to fit these
response data.

R> library(mixtox)
R> library(drc)
R> PAR.x <- antibiotox$PAR$x
R> PAR.y <- rowMeans(antibiotox$PAR$y)
R> PAR <- data.frame(x = PAR.x, y = PAR.y)
R> SPE <- data.frame(x = antibiotox$SPE$x, y = rowMeans(antibiotox$SPE$y))
R> KAN <- data.frame(x = antibiotox$KAN$x, y = rowMeans(antibiotox$KAN$y))
R> STR <- data.frame(x = antibiotox$STR$x, y = rowMeans(antibiotox$STR$y))

R> PAR.fit <- drm(y ~ x, data = PAR, fct = LL.2())
R> SPE.fit <- drm(y ~ x, data = SPE, fct = LL.2())
R> KAN.fit <- drm(y ~ x, data = KAN, fct = LL.2())
R> STR.fit <- drm(y ~ x, data = STR, fct = LL.2())
R> param.LL.2 <- rbind(PAR.fit$fit$par, SPE.fit$fit$par, KAN.fit$fit$par,
+ STR.fit$fit$par)
R> rownames(param.LL.2) <- c("PAR", "SPE", "KAN", "STR")
R> colnames(param.LL.2) <- c("b", "e")

The fitted parameters b and e for LL.2 (Ritz and Streibig, 2005) are stored in param.LL.2. The formula
of LL.2 in drc and Logit in mixtox seem different, but they are essentially the same expression. The
following equations can be used to transform b and e in LL.2 into α and β in Logit, respectively.

α = − log(e) · β, β = −b · ln(10). (15)

The following code can be used to transform b and e in LL.2 into α and β in Logit numerically.

R> Beta <- -param.LL.2[, 1] * log(10)
R> Alpha <- -log10(param.LL.2[, 2]) * Beta
R> param.Logit <- cbind(Alpha, Beta)

The effect of mixtures of four antibiotics on photobacteria according to, say, the EECR design at 5%
and 50% effect levels can be predicted by:

R> model.Logit <- c("Logit", "Logit"," Logit", "Logit")
R> caPred(model.Logit, param.Logit, mixType = "eecr", effv = c(0.05, 0.5))
R> iaPred(model.Logit, param.Logit, mixType = "eecr", effv = c(0.05, 0.5))

Example 4: Follow-up analysis

Figure 2 shows the comparison of CA and IA prediction with experimental observation of EECR
mixtures. The code for this comparison is shown in Appendix.

We can conclude that the mixture toxicity of seven antibiotics can be predicted by the IA model
since the IA curve locates in the 95% PI of the experimental curve.

Despite the CA and IA prediction at particular effect concentrations, it is also meaningful to know
the CA and IA prediction at particular effects. For example, the luminescence of photobacteria will
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Figure 2: Experimental, predicted CA, and IA concentration response curves of 2 mixtures designed
by equal effect concentration ratio (EE05 and EE50). Dot: observed; Black line: fitted CRC; Grey dotted
lines: 95% PI; Blue dashed line: IA prediction; Red dashed line: CA. The code is listed in Appendix.

be inhibited by 5% at the concentration of 1.41E−7 mol/L and 1.77E−7 mol/L for EE05 and EE50
mixtures, respectively. The CA and IA prediction at the concentration of 1.41E−7 mol/L (EE05) and
1.77E−7 mol/L (EE50) can be calculated based on (7) and (10), respectively. The dichotomy technique
was employed to solve the constructed CA equation based on (7). This calculation requires fitted
concentration response information of individual chemicals, their ratios in the mixtures, and the
established concentration response information of mixtures. Function eiaPred and ecaPred can be
called as follows:

R> model <- antibiotox$eecr.mix$model
R> param <- antibiotox$eecr.mix$param
R> pct <- antibiotox$eecr.pct
R> mix <- list(model = model, param = param)
R> eiaPred(effv = 0.05, antibiotox$sgl, mix, pct)
R> ecaPred(effv = 0.05, antibiotox$sgl, mix, pct)

The two functions first calculate the effect concentrations based on the fitted concentration re-
sponse information of mixtures (i.e., the selected equations and associated coefficients contained
in antibiotox$eecr.mix) according to the input effects effv (e.g., 5.0%). The concentration of an
individual component (ci) is computed from (8) based on the mixture’s effect concentration and the
ratio of components in the mixture antibiotox$pct (pi). The IA predicted effect for EE5 and EE50
are 1.80% and 3.04%, respectively. The CA predicted effect of EE5 and EE50 are 2.78% and 4.25%,
respectively.

Conclusions

Package mixtox mainly targets toxicologists in the study of chemicals’ toxicity and the effect of
mixtures. It offers a general framework of curve fitting, experimental design, and mixture prediction
for practitioners in toxicology. The unique features of mixtox include: (1) construction of uniform
design table; and (2) mixture toxicity prediction for multiple components based on CA, IA, and GCA.
Function gcaHill is capable of examining mixtures containing partial agonists or even full agonists.
However, we are lacking experimental data in mixtox to verify its ability. mixtox aims to predict the
effect of mixtures with more than two components. It cannot make isoboles for binary mixtures. Users
may need to draw isoboles using package drc or other software package based on the results calculated
with mixtox. The current version of mixtox (version number 1.3.1) is available on CRAN. We received
a lot of feedback from users since its release last year. Now it is still under rapid development to
improve its performance and try to include more features in toxicology.
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Appendix

library(mixtox)
par(mfrow = c(1, 2))
model <- antibiotox$sgl$model
param <- antibiotox$sgl$param
eeca <- caPred(model, param, mixType = "eecr", effv = c(0.05, 0.5))
eeia <- iaPred(model, param, mixType = "eecr", effv = c(0.05, 0.5))
# plot EE05 mixture
par(mar = c(5, 5, 1, 1))
x <- antibiotox$ee05$x
expr <- antibiotox$ee05$y
ee05fit <- curveFit(x, expr, eq = antibiotox$eecr.mix$model[1],
param = antibiotox$eecr.mix$param[1, ])

plot(rep(log10(x), ncol(expr)), expr * 100, pch = 20, ylim = c(-10, 110),
xlab = "log(c) mol/L", ylab = "Inhibition[\%]", cex = 1.8, cex.lab = 1.8,
cex.axis = 1.8)

lines(log10(x), ee05fit$crcInfo[, 2] * 100, col = 1, lwd = 2)
lines(log10(x), ee05fit$crcInfo[, 6] * 100, col = "green", lwd = 1.5, lty = 3)
lines(log10(x), ee05fit$crcInfo[, 7] * 100, col = "green", lwd = 1.5, lty = 3)
lines(log10(eeia$ia[1, ]), eeia$e * 100, col = "red", lwd = 2.5, lty = 2)
lines(log10(eeca$ca[1, ]), eeca$e * 100, col = "blue", lwd = 2.5, lty = 2)
legend("topleft", legend = "EE05", border = "white", cex = 1.4)
# plot EE50 mixture
par(mar = c(5, 5, 1, 1))
x <- antibiotox$ee50$x
expr <- antibiotox$ee50$y
ee50fit <- curveFit(x, expr, eq = antibiotox$eecr.mix$model[1],
param = antibiotox$eecr.mix$param[1, ])

plot(rep(log10(x), ncol(expr)), expr * 100, pch = 20, ylim = c(-10, 110),
xlab = "log(c) mol/L", ylab = "", cex = 1.8, cex.lab = 1.8, cex.axis = 1.8)

lines(log10(x), ee50fit$crcInfo[, 2] * 100, col = 1, lwd = 2)
lines(log10(x), ee50fit$crcInfo[, 6] * 100, col = "green", lwd = 1.5, lty = 3)
lines(log10(x), ee50fit$crcInfo[, 7] * 100, col = "green", lwd = 1.5, lty = 3)
lines(log10(eeia$ia[2, ]), eeia$e * 100, col = "red", lwd = 2.5, lty = 2)
lines(log10(eeca$ca[2, ]), eeca$e * 100, col = "blue", lwd = 2.5, lty = 2)
legend("topleft", legend = "EE50", border = "white", cex = 1.4)
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Weighted Distance Based Discriminant
Analysis: The R Package WeDiBaDis
by Itziar Irigoien, Francesc Mestres, and Concepcion Arenas

Abstract The WeDiBaDis package provides a user friendly environment to perform discriminant
analysis (supervised classification). WeDiBaDis is an easy to use package addressed to the biological
and medical communities, and in general, to researchers interested in applied studies. It can be
suitable when the user is interested in the problem of constructing a discriminant rule on the basis
of distances between a relatively small number of instances or units of known unbalanced-class
membership measured on many (possibly thousands) features of any type. This is a current situation
when analyzing genetic biomedical data. This discriminant rule can then be used both, as a means of
explaining differences among classes, but also in the important task of assigning the class membership
for new unlabeled units. Our package implements two discriminant analysis procedures in an R
environment: the well-known distance-based discriminant analysis (DB-discriminant) and a weighted-
distance-based discriminant (WDB-discriminant), a novel classifier rule that we introduce. This new
procedure is based on an improvement of the DB rule taking into account the statistical depth of the
units. This article presents both classifying procedures and describes the implementation of each in
detail. We illustrate the use of the package using an ecological and a genetic experimental example.
Finally, we illustrate the effectiveness of the new proposed procedure (WDB), as compared with DB.
This comparison is carried out using thirty-eight, high-dimensional, class-unbalanced, cancer data
sets, three of which include clinical features.

Introduction

Discriminant analysis (supervised classification) is used to differentiate between two or more naturally
occurring groups based on a suite of discriminating features. This analysis can be used as a means
of explaining differences among groups and for classification. That is, to develop a rule based on
features measured on a group of units with known membership (the so-called training set), and
to use this classification rule to assign a class membership to new unlabeled units. Classification
is used by researchers in a wide variety of settings and fields including biological and medical
sciences. For example, in biology it is used for taxonomic classification, morphometric analysis for
species identification, and to study species distribution. Discriminant analysis is applicable to a
wide range of ecological problems, e.g., testing for niche separation by sympatric species or for the
presence or absence of a particular species. Marine ecologists commonly use discriminant analysis
to evaluate the similarity of distinct populations and to classify units of unknown origin to known
populations. The discriminant technique is also used in genetic studies in order to summarize the
genetic differentiation between groups. In studies with Single Nucleotide Polymorphism (SNP)
or re-sequencing data sets, usually the number of variables (alleles) is greater than the number of
observations (units), so discriminant methods are available for data sets with more variables than
units, as necessary. Furthermore, class prediction is currently one of the most important tasks in
biomedical studies. The diagnosis of diseases, as cancer type or psychiatric disorder, has recently
received a great deal of attention. With actual data, classification presents serious difficulties, because
diagnosis is based on both clinical/pathological features (usually nominal data) and gene expression
information (continuous data). For this reason, classification rules that could be applied to all types of
data are desirable. The most popular classification rules are the linear (LDA) and quadratic (QDA)
discriminant analyses (Fisher, 1936), which are easy to use as they are found in most statistical
packages. However, they require the assumption of normally distributed data; when this condition is
violated, their use may yield poor classification results. Many distinct classifiers exist, differing in the
definition of the classification rule and whether they utilize statistical (Golub et al., 1999; Hastie et al.,
2001) or machine learning (Breiman, 2001; Boulesteix et al., 2008) methods. However, the problem of
classification with data obtained from microarrays is challenging because there are a large number of
genes and a relatively small number of samples. In this situation, the classification methods based on
the within-class covariance matrix fail, as an inverse is not defined. This is known as the singularity
or under-sample problem (Krzanowski et al., 1995). The shrunken centroid method can be seen as
a modification of the diagonal discriminant analysis (Dudoit et al., 2002) and was developed for
continuous high-dimensional data (Tibshirani et al., 2002). Nowadays, another issue that requires
attention is the class-unbalanced situation, that is, the number of units belonging to each class is not the
same. Some classifiers on class-unbalanced data tend to classify most of the new data in the majority
class. This bias is higher when using high dimensional data. Recently, a method which improves
the shrunken centroid method when the high-dimensional data is class-unbalanced was presented
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(Blagus and Lusa, 2013). Furthermore, some statistical approaches are characterized by having an
explicit underlying probability model, but it is not possible to always assume this requirement. One of
the most popular nonparametric, machine-learning, classification methods is the k-nearest neighbor
classification (k-NN) (Cover and Hart, 1967; Duda et al., 2000). Given a new unit to be classified,
this method finds the k nearest neighbors and classifies the new unit in the class to which belong
the majority of neighbours. This classification may depend on the selected value for k. As ecologists
have repeatedly argued, the Euclidean distance is inappropriate for raw species abundance data
involving null abundances (Orloci, 1967; Legendre and Legendre, 1998) and it is necessary to use
discriminant analyses that incorporate adequate distances. In this situation, discriminant analysis
based on distances (DB-discriminant), where any symmetric distance or dissimilarity function can be
used, is a useful alternative (Cuadras, 1989, 1992; Cuadras et al., 1997; Anderson and Robinson, 2003).
To our knowledge, this technique is only included in GINGKO a suite of programs for multivariate
analysis, oriented towards ordination and classification of ecological data (De Caceres et al., 2003;
Bouin, 2005; Kent, 2011). These programs are written in Java language, so it is therefore necessary
to have a Java Virtual Machine to execute it. Even though GINGKO is a very useful tool, it does not
provide the option of a class prediction for new unlabeled units or feature selection. Recently, data
depth was proposed as the basis for nonparametric classifiers (Jornstein, 2004; Ghosh and Chaudhuri,
2005; Jin and Cui, 2010; Hlubinka and Vencalek, 2013). A depth of a unit is a nonnegative number,
which measures the centrality of the unit. That is, depth in the sample version reflects position of the
unit with respect to the observed data cloud. The so-called maximal depth classifier is the simple and
natural classifier defined from a depth function: to allocate a new observation to the class to which it
has maximal depth. There are many possibilities how to define the depth of the data (Liu, 1990; Vardi
and Zhang, 2000; Zuo and Serfling, 2000; Serfling, 2002), nevertheless the computation of the most
popular depth functions is very slow, in particular, for high-dimensional data the time needed for
classification grows rapidly. A new less-computer intensive depth function I (Irigoien et al., 2013a)
was developed, but the authors did not study its use in relation to the classification problem.

A discriminant method should have several abilities. First, the classifier rule has to be able to
properly separate the classes. In this sense, the classifier evaluation is most often based on the error
rate, the percentage of incorrect prediction divided by the total number of predictions. Second, the
rule has to be useful to classify new unlabeled units. Then, cross validation evaluation is needed.
Cross-validation involves a series of sub-experiments, each of which involves the removal of a subset
of objects from a data set (the test set), construction of a classifier using the remaining objects in the
data set (the model building set), and subsequent application of the resulting model to the removed
objects. The leave-one-out method is a special case of cross-validation; it considers each single object
in the data set as a test set. Furthermore, other measures, such as the sensitivity, specificity, positive
predictive value for each class, and the generalized correlation coefficient, are useful to know the
ability of the rule in the prediction task.

Here we introduce WeDiBaDis, an R package which provides a user-friendly interface to run the
DB-discriminant analysis and a new classification procedure, the weighted-distance-based discrimi-
nant (WDB-discriminant) that performs well and improves the DB-discriminant rule. It is based on
both, the DB-discriminant rule and the depth function I (Irigoien et al., 2013a). First, we will describe
the DB and WDB discriminant rules. Then, we will provide details about the WeDiBaDis package
and will illustrate its use and its main outputs using an ecological and a genetic data set. To compare
both DB and WDB rules—and in order to avoid the criticism that artificial data can favour particular
methods—we present a large analysis of thirty-eight, high-dimensional, class-unbalanced, cancer gene
expression data sets, three of which include clinical features. Furthermore, the data sets include more
than two classes. Finally, we conclude the paper presenting the main conclusions. WeDiBaDis is
available at https://github.com/ItziarI/WeDiBaDis.

Discriminant rules and evaluation criteria

Let yi (i = 1, 2, . . . , n) be m-dimensional units measured in any kind of features, with associated class
labels li ∈ {1, 2, . . . , K}, where n and K denote the number of units and classes, respectively. Let Y be
the matrix of all units and d a distance defined between any pair of units, dij = d(yi, yj). Let y∗ be a
new unlabeled unit to be classified in one of the given classes Ck, k = 1, 2, . . . , K.

DB-discriminant

The distance-based or DB-discriminant rule (Cuadras et al., 1997) takes as a discriminant score

δ1
k (y
∗) = φ̂2(y∗, Ck), (1)
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where φ̂2(y∗, Ck) is the proximity function which measures the proximity between y∗ and Ck. This
function is defined by,

φ̂2(y∗, Ck) =
1
nk

nk

∑
i=1

d2(y∗, yi)−
1

2n2
k

nk

∑
i,j=1

d2(yi, yj), (2)

where nk indicates the number of units in class k. Note that the second term in (2),

V̂(Ck) =
1

2n2
k

nk

∑
i,j=1

d2(yi, yj),

called geometric variability of Ck, measures the dispersion of Ck. When d is the Euclidean distance,
V̂(Ck) is the trace of the covariance matrix of Y.

The DB classification rule allocates y∗ to the class which has the minimal proximity value:

CDB(y∗) = l where δ1
l (y
∗) = min

k=1,...,K

{
δ1

k (y
∗)
}

. (3)

That is, this distance-based rule assigns a unit to the nearest group. Furthermore, using appropriate
distances, Equation (3) reduces to some classic and well-studied rules (see Table 1 in Cuadras et al.
1997). For example, under the normality assumption, Equation (3) is equivalent to a linear discriminant
or to a quadratic discriminant if the Mahalanobis distance or the Mahalanobis distance plus a constant
is selected, respectively.

WDB-discriminant

For any unit y, let Ik be the depth function in class Ck defined by (Irigoien et al., 2013a),

Ik(y) =
[

1 +
φ̂2(y, Ck)

V̂(Ck)

]−1

. (4)

Function I takes values in [0, 1] and it verifies the following desirable properties: For a distribution
having a uniquely defined “center” I attains maximum value at this center (maximality at center);
When one unit moves away from the deepest unit (the unit at which the depth function attains
maximum value; in particular, for a symmetric distribution, the center) along any fixed ray through
the center, the depth at this unit decreases monotonically (monotonicity relative to the deepest point)
and the depth of a unit y should approach zero as ||y|| approaches infinity (vanishing at infinity).
According to the distance used, the depth of a unit may or may not depend on the underlying
coordinate system or, in particular, of the scales of the underlying measurements. In any case the
affine invariance holds for translations and rotations. Thus, according to Zuo and Serfling (2000), I is a
type C depth function. As I is a depth function, it assigns to any observation a degree of centrality.
While most of the depth functions assign zero depth to units outside a convex hull and then, it is
possible that some training units have zero depth, the function in Equation (4) attains the zero value if
V(Ck) = 0, that is, in presence of a constant distribution.

For each class Ck we weight the discriminant score δ1
k by 1− Ik(y∗), that is, given a new unit y∗,

we define a new discriminant score for class k by:

δ2
k (y
∗) = δ1

k (1− Ik(y
∗)) = φ2(y∗, Ck)(1− Ik(y

∗)). (5)

The shrinkage we use, reduces the proximity values, this reduction being greater for deeper units.
Thus, this new classification rule,

CWDB(y∗) = l where δ2
l (y
∗) = min

k=1,...,K

{
δ2

k (y
∗)
}

, (6)

allocates a new unit y∗ to the class which has the minimal proximity and maximal depth values.

Evaluation criteria

First consider the case of two classes (K = 2) and the most common measures of performance for
a classification rule. As it is usual in medical statistics, for a fixed class k, let TP, FN, FP, and TN
denote the true positive (number of units of class k correctly classified in class k), the false negative
(number of units of class k misclassified as units in class l, with l 6= k), the false positive (number of
units of class l, with l 6= k misclassified as units in class k), and the true negative (number of units of
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class l, with l 6= k correctly classified as units in class l), respectively. Then (Zhou et al., 2002), the
sensitivity (recall) for class k is defined as the ability of a rule to correctly classify units belonging to
class k, thus Qse

k = TP
TP+FN . The specificity is the ability of a rule to correctly exclude a unit from class

k when it really belongs to another class, thus Qsp
k = TN

TN+FP . Furthermore, the positive predictive
value (precision) is the probability that a classification in class k is correct, thus P+

k = TP
TP+FP and the

negative predictive value is the probability that a classification in class l with l 6= k is correct, thus
P−k = TN

TN+FN . However, these measures do not take into account all the TP, FN, FP and TN values.
For this reason, in biomedical applications the Matthew’s correlation coefficient (Matthews, 1975) MC
it is often used. This is defined by:

MC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
.

It ranges from −1 if all the classifications are wrong to +1 for perfect classification. A value equal to
zero indicates that the classifications are random or the classifier always predicts only one of the two
classes.

In the general case of K classes with K ≥ 2, one obtains a K× K contingency or confusion matrix
Z = (zkl), where zkl is the number of times that units are classified to be in class l while belonging in
reality to class k. Then, zk. = ∑

l
zkl and z.l = ∑

k
zkl represent the number of units belonging to class k

and the number of units predicted to be in class l, respectively. Obviously n = ∑
kl

zkl = ∑
k

zk. = ∑
l

z.l .

One standard criterium to evaluate a classification rule is to compute the percentage of all correct
predictions,

Qt = 100 ∑ zkk
n

, (7)

the percentage of units correctly predicted to belong to class k relative to the total number of units in
class k (sensitivity for class k),

Qse
k = 100

zkk
zk.

, (8)

the percentage of units correctly predicted to belong to any class l with l 6= k relative to the total
number of units in any class l with l 6= k (specificity of class k),

Qsp
k = 100

∑
l 6=k

zl. − ∑
l 6=k

zlk

n− zk.
, (9)

and the percentage of units correctly classified to be in class k with respect to the total number of units
classified in class k (positive predictive value for class k),

P+
k = 100

zkk
z.k

. (10)

However, we also consider a generalization of the Matthew’s correlation coefficient, the so called
generalized squared correlation GC2 (Baldi et al., 2000), which is defined by

GC2 =

∑
k,l
(zkl − ekl)

2/ekl

n(K− 1)
, (11)

where ekl = zk.z.l
n . This coefficient ranges between 0 and 1, and may often provide a much more

balanced evaluation of the prediction than, for instance, the above percentages. A value equal to zero
indicates that there is at least one class in which no units are classified.

Another interesting coefficient is the Kappa statistic, which measures the agreement of classification
to the true class (Cohen, 1960; Landis and Koch, 1977). It can be calculated by:

Kappa =
TP+TN

n − (TN+FP)·(TN+FN)+(FN+TP)·(FP+TP)
n2

1− (TN+FP)·(TN+FN)+(FN+TP)·(FP+TP)
n2

,

and the interpretation is: Kappa < 0, less than chance agreement; Kappa in 0.01− 0.20, slight agree-
ment; Kappa in 0.21 − 0.40, fair agreement; Kappa in 0.41 − 0.60, moderate agreement; Kappa in
0.61− 0.80, substantial agreement; and Kappa in 0.81− 0.99, almost perfect agreement.
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Finally, another measure used as a result of classification is the F1 statistic (Powers, 2011). For each

class, it is calculated based on the precision P+
k and the recall Qse

k as follows: F1 = 2 · P+
k Qse

k
P+

k +Qse
k

. However,

note that F1 does not take the true negatives into account.

Distance functions

The DB and WDB procedures require the previous calculation of a distance between units. In biomed-
ical, genetic, and ecological studies different types of dissimilarities are frequently used. For this
reason, WeDiBaDis includes several distance functions. Although these distances can be found in
other packages they were included for ease their use for non-expert R users.

The package contains the usual Euclidean distance,

dE(yi, yj) =

√
m

∑
k=1

(yik − yjk)2, (12)

the well known correlation distance, where r is the Pearson correlation coefficient,

dc(yi, yj) =
√
(1− r(yi, yj)), (13)

and the Mahalanobis distance (Mahalanobis, 1936) with S the variance-covariance matrix,

dM(yi, yj) =
√
(yi − yj)

′S−1(yi − yj). (14)

The function named mahalanobis() that calculates the Mahalanobis distance already exists in the stats
package, but it is not suitable in our context. While this function calculates the Mahalanobis distance
with respect to a given center, our function is designed to calculate the Mahalanobis distance between
each pair of units given a data matrix.

Next, we briefly comment on the other distances included in the package. The Bhattacharyya distance
(Bhattacharyya, 1946) is a very well-known distance between populations in the genetic context. Each
population is characterized by a vector (pi1, . . . , pim) whose coordinates are the relative frequencies of
the features (usually chromosomal arrangements), with

pij > 0, j = 1, . . . , m and
m

∑
j=1

pij = 1, i = 1, . . . , n.

Then, the distance between two units (populations) with frequencies yi = (pi1, . . . , pim) and yj =

(pj1, . . . , pjm) is defined by:

dB(yi, yj) = arccos
m

∑
l=1

√
pil pjl . (15)

The Gower distance (Gower, 1971), used for mixed variables, is defined by:

dG(yi, yj) =
√

2(1− s(yi, yj)), (16)

where s(yi, yj) is the similarity coefficient between unit yi = (xi, qi, bi) and unit yj = (xj, qj, bj), and
x., q., b. are the values for the m1 continuous, m2 binary and m3 qualitative features, respectively. The
coefficient s(yi, yj) is calculated by:

s(yi, yj) =
∑m1

l=1

(
1− |xil−xjl |

Rl

)
+ a + α

m1 + (m2 − d) + m3
,

with Rl the range of the lth continuous variable (l = 1, . . . , m1); for the m2 binary variables, a and
d represent the number of matches presence-presence and absence-absence, respectively; and α is
the number of matches between states for the m3 qualitative variables. Note that there is also the
daisy() function in the cluster package, which can calculate the Gower distance for mixed variables.
The difference between this function and dGower() in WeDiBaDis is that in daisy() the distance
is calculated as d(yi, yj) = 1− s(yi, yj) and in dGower() as d(yi, yj) =

√
2(1− s(yi, yj)). Moreover,

dGower() allows us to include missing values (such as NA) and therefore calculates distances based
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on Gower’s weighted similarity coefficients. The dGower() function improves the function dgower()
included in the package ICGE (Irigoien et al., 2013b).

The Bray-Curtis distance (Bray and Curtis, 1957) is one of the most well-known ways of quanti-
fying the difference between samples when the information is ecological abundance data collected at
different sampling locations. It is defined by:

dB(yi, yj) =
∑m

l=1 |yil − yjl |
yi+ + yj+

, (17)

where yil , yjl are the abundance of specie l in samples i and j, respectively, and yi+, yj+ are the total
specie’s abundance in samples i and j, respectively. This distance can be also found in the vegan
package.

The Hellinger (Rao, 1995) and Orloci (or chord distance) (Orloci, 1967) distances are also measures
recommended for quantifying differences between sampling locations when the ecological abundance
of species is collected. The Hellinger distance is given by:

dH(yi, yj) =

√√√√ m

∑
l=1

(√
yil

∑m
k=1 yik

−
√

yjl

∑m
k=1 yjk

)2

, (18)

and the Orloci distance that represents the Euclidean distance computed after scaling the site vectors
to length 1 is defined by:

dO(yi, yj) =

√√√√√ m

∑
l=1

 yil√
∑m

k=1 y2
ik

−
yjl√

∑m
k=1 y2

jk

2

. (19)

This distance between two sites is equivalent to the length of a chord joining two points within a
segment of a hypersphere of radius 1.

The Prevosti distance (Prevosti et al., 1975) is a very useful genetic distance between units repre-
senting populations. Now, we consider that genetic data is stored in a table where the rows represent
the populations and the columns represent potential allelic states grouped by loci. The distance
between two units at a single locus k with m(k) allelic states is:

dP(yi, yj) =
1

2ν

ν

∑
k=1

m(k)

∑
s=1
|piks − pjks|, (20)

where ν is the number of loci or chromosomes (in the case of chromosomal polymorphism) considered
and piks, pjks are the sample relative frequencies of the allele or chromosomal arrangement s in the
locus or chromosome k, in the ith and jth population, respectively. With presence/absence data coded
by 1 and 0, respectively, the term 1

2ν is omitted.

As we explain in the next section, WeDiBaDis allows the user to introduce alternative distances by
means of a distance matrix. Therefore, the user can work with any distance matrix that is considered
appropriate for their data set and analysis. For this reason, no more distances were included in our
package.

Using the package

We have developed the WeDiBaDis package to implement both the DB-discriminant and the new
WDB-discriminant. It can be used with different distance functions and NA values are allowed. When
an unit has a NA value in some features, those features are excluded in the computation of the distances
for that unit and the computation is scaled up to the number m of features involved in the data set.
Package WeDiBaDis requires a version 3.3.1 or a greater of R.

The principal function is WDBdisc with arguments:

WDBdisc(data, datatype, classcol, new.ind, distance, type, method)

where:

• data: a data matrix or a distance matrix. If the Prevosti distance will be used, data must
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be a named matrix where the name of the loci and allele must be separeted by a dot (Loci-
Name.AlleleName).

• datatype: if the data is a data matrix, datatype = "m"; if the data is a distance matrix datatype
= "d".

• classcol: a number indicating which column in the data contains the class variable. By default
the class variable is in the first column.

• new.ind: is only required if there are new unlabeled units to be classified; if datatype = "m" it
is a matrix containing the feature values for the new units to be classified; if datatype = "d" it
is a matrix containing the distances between the new units to be classified and the units in the
classes.

• distance: the distance measure to be used. This must be either “euclidean” (default option),
“correlation” , “Bhattacharyya”, “Gower”, “Mahalanobis”, “BrayCurtis”, “Orloci”, “Hellinger”,
or “Prevosti”.

• type: is only required if distance = "Gower". The value for type is a list (e.g., type =
list(cuant,nom,bin)) indicating the position of the columns for continuous (cuant), nomi-
nal (nom) and binary (bin) features, respectively.

• method the discriminant method to be used. This must be either "DB" or "WDB" for the DB-
discriminant and WDB-discriminant, respectively. The default method is WDB.

The function returns an object with associated plot and summary methods offering:

• The classification table obtained with the leave-one-out cross-validation.

• The total well classification rate in percentage (Qt).

• The generalized squared correlation (GC2 ).

• The sensitivity, specificity, and positive predictive values for each class (Qse
k , Qsp

k , and P+
k ,

respectively).

• The Kappa and F1 statistics.

• The assigned class for new unlabeled units to be classified.

• A barplot for the classification table.

• A barplot for the sensitivity, specificity, and positive predictive values for each class.

Moreover, given a data set, the distances commented on in Section “Distance functions” can
be obtained through the functions: dcor (correlation distance); dMahal (Mahalanobis distance);
dBhatta (Bhattacharyya distance); dGower (Gower distance); dBrayCurtis (Bray and Curtis distance);
dHellinger (Hellinger distance); dOrloci (Orloci distance), and dPrevosti (Prevosti distance).

Example 1: Ecological data

We consider the data from Fielding (2007), which relate to the core area (the region close to the nest)
of the golden eagle Aquila chrysaetos in three regions of Western Scotland. The data consist of eight
habitat variables: POST (mature planted conifer forest in which the tree canopy has closed); PRE
(pre-canopy closure planted conifer forest); BOG (flat waterlogged land); CALL (Calluna (heather)
heath land); WET (wet heath, mainly purple moor grass); STEEP (steeply sloping land); LT200 (land
below 200 m), and L4-600 (land between 200 and 400 m). The values are the numbers of four-hectare
grid cells covered by the habitat, whose values are the amounts of each habitat variable, measured as
the number of four hectare blocks within a region defined as a "core area." In order to evaluate if the
habitat variables allow to discriminate between these three regions, for example, a WDB-discriminant
using the Euclidean distance using the following instructions may be performed:

library(WeDiBaDis)
out <- WDBdisc(data = datafile, datatype = "m", classcol = 1)

The summary method shows, as usual, the more complete information:

summary(out)

Discriminant method: WDB
Leave-one-out confusion matrix:

Predicted
Real 1 2 3
1 7 0 0
2 0 14 2
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Figure 1: Plot of leave-one-out classification table for ecological data in Example 1.

3 2 0 15
Total correct prediction: 90%
Generalized squared correlation: 0.7361
Cohen's Kappa coefficient: 0.84375
Sensitivity for each class:
1 2 3

100.00 87.50 88.24
Predictive value for each class:
1 2 3

77.78 100.00 88.24
Specificity for each class:
1 2 3

87.88 91.67 91.30
F1-score for each class:

1 2 3
87.50 93.33 88.24
------ ------ ------ ------ ------ ------
No predicted individuals

As we can observe, perfect classification is obtained for samples from region 1. For regions 2 and 3,
only two samples were not correctly classified.

If we want to obtain the barplot for the classification table (see Figure 1), we use the command

plot(out)

These commands generate the sensitivity, specificity and positive predicted values barplot (see Fig-
ure 2):

outplot <- summary(out, show = FALSE)
plot(outplot)

Finally to perform a DB discriminant using a different distance that the Euclidean, the following
commands are used:

library(WeDiBaDis)
out <- WDBdisc(data = datafile, datatype = "m", distance = "name of the distance",

method = "DB", classcol = 1)
summary(out)
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Figure 2: Plot of the sensitivity, specificity, and positive predicted value for each class for ecological
data in Example 1.

plot(out)
outplot <- summary(out, show = FALSE)
plot(outplot)

Example 2: Population genetics data

The chromosomal polymorphism for inversions is very useful to characterize the natural populations
of Drosophila subobscura. Furthermore, lethal genes located in chromosomal inversions allow the
understanding of important evolutionary events. We consider the data from a study of 40 samples
of this polymorphism for the O chromosome of this species (Solé et al., 2000; Balanyà et al., 2004;
Mestres et al., 2009). Four groups can be considered: NLE with 16 no lethal European samples, LE
with 4 lethal European samples, NLA with 14 no lethal American samples and LA with 6 lethal
American samples. In this example, two samples one of the group NLA and one of the group NLE
were randomly selected, and considered as new unlabeled units to be classified. The Bhattacharyya
distances between all pairs of units were calculated. Therefore, the input for the WDBdisc function is
an n× (n + 1) matrix dat = (li, dB(yi, y1), . . . , dB(yi, yn))i=1,...,n where the first column contains the
class label and the following columns the distance matrix. Furthermore, xnew is a two-row matrix
where each row contains the distances between the new unlabeled units to be classified and the units
in the four classes. In this situation, the commands to call the WDB procedure to classify the xnew
units and to obtain the available graphics in the package, are:

library(WeDiBaDis)
out <- WDBdisc(data = dat, datatype = "d", classcol = 1, new.ind = xnew)
plot(out)
outplot <- summary(out, show = FALSE)
plot(outplot)

The summary method shows the following information. We can see that the xnew units were correctly
classified:

summary(out)

Discriminant method: WDB
Leave-one-out confusion matrix:

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 443

1 2 3 4

Classification Table

0
20

40
60

80
10

0
12

0

Classes

P
er

ce
nt

ag
e 

of
 c

la
ss

ifi
ca

tio
n 

in
 e

ac
h 

cl
as

s

1 2 3 4

Figure 3: Plot of leave-one-out classification table for population genetics data in Example 2.

Predicted
Real LA LE NLA NLE
LA 6 0 0 0
LE 0 3 0 1
NLA 0 0 13 0
NLE 0 3 0 12

Total correct prediction: 89.47%
Generalized squared correlation: 0.7442
Cohen's Kappa coefficient: 0.8509804
Sensitivity for each class:
LA LE NLA NLE
100.00 75.00 100.00 80.00
Predictive value for each class:
LA LE NLA NLE
100.00 50.00 100.00 92.31
Specificity for each class:
LA LE NLA NLE
87.50 91.18 84.00 95.65
F1-score for each class:

LA LE NLA NLE
100.00 60.00 100.00 85.71
------ ------ ------ ------ ------ ------
Prediction for new individuals:
Pred. class
1 "NLE"
2 "NLA"

Now, the two unlabeled new units were correctly classified. The barplots are in Figure 3 and Figure 4,
respectively.

Data files

The package contains some examples of data files, each with a corresponding explanation. The
data sets are corearea, containing the data for the example presented in the subsection Example 1:
Ecological data; abundances, which is a simulated data set for abundance data matrix; and microsatt,
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Figure 4: Plot of the sensitivity, specificity, and positive predicted value for each class for population
genetics data in Example 2.

a data set containing allele frequencies for 18 cattle breeds (bull or zebu), of French and African descent,
typed on 9 microsatellites.

Computing time

To illustrate the time consumed by the WDB procedure, which requires more computation than DB, we
performed the following simulation with artificial data. We generated multinormal samples containing
50, 100, 200, 300,. . . ,900, 1000, 2000, and 3000 units, respectively. Then, for each sample size we created
sets containing respectively 50, 100, 500, 1000, 1500, 2000, 2500, . . . , 4500, and 5000 features. For each
combination of sample sizes and features, we considered 2, 3, 4, and 10 classes. All the computations
presented in this paper have been performed on a personal computer with Intel(R) Core(TM) i5-2450M
and 6 GB of memory using a single 2.50GHz CPU processor. The results of the simulation for two
classes are displayed in Figure 5, where the elapsed time (the actual elapsed time since the process
started) is reported in seconds. We can observe that the runtime is mainly affected by the number
of units (Figure 4, top), but affected very little by the number of variables (Figure 4, bottom). This is
expected, as the procedure is based on distances and therefore the dimension of the distance matrix
(number of units) determines the runtime required. The number of classes also affects the runtime,
although its variation with increasing the number of classes is very slight. For example, with 300 units
and 4000 variables, the elapsed time for 2, 3, 4, and 10 classes are 3.38, 3.40, 3.62, and 4.82 seconds,
respectively.

DB and WDB comparison using cancer data sets

In order to compare the performance of DB and WDB procedures, thirty-eight available cancer data
sets were considered in our analysis (Table 1). These are available at http://bioinformatics.rutgers.
edu/Static/Supplements/CompCancer/datasets.htm and Lê Cao et al. (2010). As we can observe in
Table 1, three of them include clinical features and some of the data sets have unbalanced classes. We
performed the evaluation for DB and WDB classifiers using the leave-one-out procedure. We present
the total misclassification rate MQt = 100− Qt and the generalized squared correlation coefficient
GC2 (Table 2). For simplicity, the sensitivity Qkise, the specificity Qsp

k , the positive predictive value P+
k

for each class, the Kappa and F1 statistcis are not presented. For the microarray data sets with only
continuous features we used the Euclidean distance, and for those including clinical and genetic data,
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Figure 5: Artificial data sets with two classes. Top: Elapsed timing in seconds (y axes) for WDB
procedure with respect to the number of units (x axes). Each line (colours in the legend) corresponds
to the set with identical number of features. Bottom: Elapsed timing in seconds (y axes) for WDB
procedure with respect to the number of features (x axes). Each line (colours in the legend) corresponds
to the set with identical number of units.

we considered the Gower distance (Gower, 1971). As we can observe in Table 2, considering only MQt,
the total misclassification percentage rate, WDB was the best classifier in 18 data sets and it shared
this quality in 11 data sets with DB (Wilcoxon signed rank test; one side p-value = 0.0265). Using the
generalized squared correlation GC2 coefficient (Table 2), WDB was the best rule in 16 data sets and
it shared this quality in 11 data sets with DB (Wilcoxon signed rank test; one side p-value = 0.0378).
Note that for data sets 30 and 38 the GC2 value is 0. For example, in the Risinger-2003 case, all units
of the second class (class with 3 units) were badly classified with DB and WDB methods. However,
while with the DB method, 4 units belonging to other classes were badly classified in class 2, with the
WDB method none of the units of other classes were badly classified in class 2, and for this reason the
GC2 is equal to 0. With the Yeoh-2002-v2 data set something similar happened. For all these results,
WDB seems to obtain in general the best results and to be a slightly better in the case where classes are
unbalanced with respect to their sizes.
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ID Data set K n ni p cuant quali

1 Alizadeh-2000-v1 2 42 21(50%), 21(50%) 1095 1095
2 Alizadeh-2000-v2 3 62 42(67.74%), 9(14.52%), 11(17.74%) 2093 2093
3 Armstrong-2002-v1 2 72 24(33.33%), 48(66.67%) 1081 1081
4 Armstrong-2002-v2 3 72 24(33.33%), 20(27.78%), 28(38.89%) 2194 2194
5 Bhattacharjee-2001 5 203 139(68.47%), 17(8.37%), 6(2.96%), 1543 1543

21(10.34%), 20(9.85%)
6 Bittner-2000-V1 2 38 19(50%), 19(50%) 2201 2201
7 Bittner-2000-V2 3 38 19(50%), 12(31.58%), 7(18.42%) 2201 2201
8 Breast 2 256 75(29.30%), 181(70.70%) 5545 5537 8
9 Bredel-2005 3 50 31(62%), 14(28%), 5(10%) 1739 1739
10 Chen-2002 2 179 104(58.10%), 75(41.90%) 85 85
11 Chowdary-2006 2 104 62(59.62%), 42(38.89%) 182 182
12 CNS 2 60 21(35%), 39(65%) 7134 7128 6
13 Dyrskjot-2003 3 40 9(22.5%), 20(50%), 11(27.5%) 1203 1203
14 Garber-2001 4 66 17(25.76%), 40(60.61%), 4(6.06%), 5(7.58%) 4553 4553
15 Golub-1999-v1 2 72 47(65.28%), 25(34.72%) 1877 1877
16 Golub-1999-v2 3 72 38(52.78%), 9(12.5%), 25(34.72%) 1877 1877
17 Gordon-2002 2 181 31(17.13%), 150(82.87%) 1626 1626
18 Khan-2001 4 83 29(34.94%), 11(13.25%), 18(21.69%), 25(30.12%) 1069 1069
19 Laiho-2007 2 37 8(21.62%), 29(78.38%) 2202 2202
20 Lapointe-2004-v1 3 69 11(15.94%), 39(56.52%), 19(27.54%) 1625 1625
21 Lapointe-2004-v2 4 110 11(10%), 39(35.45%), 19(17.27%), 41(37.27%) 2496 2496
22 Liang-2005 3 37 28(75.67%), 6(16.22%), 3(8.11%) 1411 1411
23 Nutt-2003-v1 4 50 14(50%), 7(14%), 14(28%), 15(30%) 1377 1377
24 Nutt-2003-v2 2 28 14(50%),14(50%) 1070 1070
25 Nutt-2003-v3 2 22 7(31.82%),15(68.18%) 1152 1152
26 Pomeroy-2002-v1 2 34 25(73.53%), 9(26.47%) 857 857
27 Pomeroy-2002-v2 5 42 10(23.81%), 10(23.81%), 10(23.81%), 4(9.52%) 1379 1379

8(19.05%)
28 Prostate 2 79 37(46.84%), 42(53.16%) 7892 7884 8
29 Ramaswamy-2001 14 190 11(5.79%), 11(5.79%), 20(10.53%), 11(5.79%), 1363 1363

30(15.79%), 11(5.79%), 22(11.28%), 11(5.79%),
10(5.26%),11(5.79%), 11(5.79%), 10(5.26%),
11(5.79%), 10(5.26%)

30 Risinger-2003 4 42 13(30.95%), 3(7.14%), 19(45.24%), 7(16.67%) 1771 1771
31 Shipp-2002-v1 2 77 58(75.32%), 19(24.67%) 798 798
32 Singh-2002 2 102 50(49.02%), 52(50.98%) 339 339
33 Su-2001 10 174 8(4.60%), 26(14.94%), 23(13.22%), 12(6.90%), 1571 1571

11(6.32%), 7(4.02%), 28(16.09%), 27(15.52%),
6(3.45%), 26(14.94%)

34 Tomlins-2006-v1 5 104 27(25.96%), 20(19.23%), 32(30.77%), 13(12.5%), 2315 2315
12(11.54%) 2315 2315

35 Tomlins-2006-v2 4 92 27(26.35%), 20(21.74%), 32(34.78%), 13(14.13%) 1288 1288
36 West-2001 2 49 25(51.02%), 24 (48.98%) 1198 1198
37 Yeoh-2002-v1 2 248 43(17.34%), 205(82.66%) 2526 2526
38 Yeoh-2002-v2 6 248 15(6.05%), 27(10.89%), 64(25.81%), 20(8.06%), 2526 2526

43(17.34%), 79(31.85%)

Table 1: Cancer data sets (ID = identification number). They present different number of classes
(K), number of samples (n), number of samples in each class (ni), number of features (p), number of
continuous features (cuant) and number of qualitative features (quali). The percentage corresponding
to the number of samples belonging to each class is in brackets in column five.

Conclusions

The package WeDiBaDis, available at https://github.com/ItziarI/WeDiBaDis, is an implementa-
tion of two discriminant analysis procedures in an R environment. The classifiers are the Distance-
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ID 100−Qt 100−Qt GC2 GC2

DB WDB DB WDB

1 7.14 7.14 0.74 0.74
2 1.61 0.00 0.94 1.00
3 8.33 5.56 0.684 0.77
4 4.17 4.17 0.88 0.88
5 19.21 15.27 0.49 0.56
6 13.16 13.16 0.56 0.56
7 36.84 36.84 0.25 0.25
8 32.81 30.47 0.11 0.13
9 18.00 18.00 0.34 0.34

10 11.17 8.94 0.61 0.67
11 18.27 9.62 0.42 0.64
12 41.67 38.33 0.01 0.01
13 15.00 12.50 0.58 0.65
14 21.21 28.79 0.38 0.19
15 6.94 4.17 0.72 0.82
16 6.94 6.94 0.81 0.81
17 12.71 13.26 0.47 0.42
18 1.20 1.20 0.97 0.97
19 21.62 21.62 0.23 0.23
20 31.88 30.43 0.23 0.26
21 30.91 30.91 0.34 0.34
22 13.51 10.81 0.72 0.76
23 32.00 34.00 0.40 0.33
24 17.86 10.71 0.43 0.65
25 4.55 9.09 0.80 0.67
26 29.41 20.59 0.12 0.16
27 16.67 21.43 0.65 0.63
28 34.18 34.18 0.10 0.10
29 36.84 29.47 0.44 0.53
30 28.57 26.19 0.36 0.00
31 29.87 12.99 0.24 0.48
32 30.39 30.39 0.18 0.16
33 20.11 16.67 0.63 0.70
34 17.31 21.15 0.66 0.58
35 23.91 26.09 0.46 0.41
36 20.41 14.29 0.35 0.52
37 1.61 2.02 0.89 0.87
38 21.77 24.60 0.57 0.00

Table 2: In the first column identification number for cancer data sets. In the second and third
columns, total leave-one-out misclassification rate 100−Qt (in percentage) for classifiers DB and WDB,
respectively. In bold the smallest misclassification rate. In the forth and fifth columns, generalized
squared correlation GC2 coefficient for classifiers DB and WDB, respectively. In bold the greater GC2

value.

Based (DB) and the new proposed procedure Weighted-Distance-Based (WDB). Thee are useful to
solve the classification problem for high-dimensional data sets with mixed features or when the input
information is a distance matrix. This software provides functions to compute both discriminant
procedures and to assess the performance of the classification rules it offers: the leave-one-out classifi-
cation table; the general correlation coefficient; the sensitivity, specificity, and positive predictive value
for each class; the Kappa and the F1 statistics. The package also presents these results in a graphical
form (barplots for the classification table and, for sensitivity, specificity and positive predictive values,
respectively). Furthermore, it allows the classification for new unlabeled units. WeDiBaDis provides
a user-friendly environment, which can be of great utility in biology, ecology, biomedical, and, in gen-
eral, any applied study involving discrimination between groups and classification of new unlabeled
units. In addition, it can be very useful in multivariate methods courses aimed at biologists, medical
researchers, psychologists, etc.
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Distance Measures for Time Series in R:
The TSdist Package
by Usue Mori, Alexander Mendiburu and Jose A. Lozano

Abstract The definition of a distance measure between time series is crucial for many time series data
mining tasks, such as clustering and classification. For this reason, a vast portfolio of time series
distance measures has been published in the past few years. In this paper, the TSdist package is
presented, a complete tool which provides a unified framework to calculate the largest variety of
time series dissimilarity measures available in R at the moment, to the best of our knowledge. The
package implements some popular distance measures which were not previously available in R, and
moreover, it also provides wrappers for measures already included in other R packages. Additionally,
the application of these distance measures to clustering and classification tasks is also supported
in TSdist, directly enabling the evaluation and comparison of their performance within these two
frameworks.

Introduction

In recent years, the increase in data collecting technologies has triggered the creation of time series
databases, where each instance consists of an entire time series. The main features of this type of data
are its high dimensionality, dynamism, auto-correlation and noisy nature, all which complicate the
study and pattern extraction to a large extent. However, in the past few years, tasks such as regression,
classification, clustering or segmentation have been extended and modified successfully for time series
databases (Fu, 2011; Bagnall et al., 2016). In many cases, these tasks require the definition of a distance
measure, which will indicate the level of similarity between time series. Because of this, understanding
suitable measures for this specific type of data has become a crucial area of study.

R is a popular programming language and a free software environment for statistical comput-
ing, data analysis and graphics (R Core Team, 2014), which can be extended by means of packages,
contributed by the users themselves. A few of these R packages, such as dtw (Giorgino, 2009), pdc
(Brandmaier, 2015), proxy (Meyer and Buchta, 2015), longitudinalData (Genolini, 2014) and TSclust
(Montero and Vilar, 2014) provide implementations of some time series distance measures. However,
many of the most popular distances reviewed by Esling and Agon (2012); Wang et al. (2012) and
Bagnall et al. (2016) are not available in these R packages.

In this paper, the TSdist package (Mori et al., 2015) for the R statistical software is presented. In
addition to providing wrapper functions to all the distance measures implemented in the previously
mentioned packages, TSdist implements another 9 distance measures designed for univariate numeri-
cal time series. These distance measures have been selected based on their prevalence, and because
they are mentioned in recent reviews on the topic (Liao, 2005; Esling and Agon, 2012; Wang et al.,
2012). In this manner, and to the best of our knowledge, this package provides the most up-to-date
coverage of the published time series distance measures in R.

Design and implementation of the package

As can be seen in Figure 1, the core of the TSdist package consists of three types of functions. To begin
with, in the lowest level, the functions of the type MethodDistance conform the basis of the package,
and can be used to calculate distances between pairs of numerical and univariate vectors. Of course,
Method must be substituted by the name of a specific distance measure. Most of them are implemented
exclusively in R language but, the internal routines of a few of them are implemented in C language,
for reasons of computational efficiency.

In the next level, the wrapper function called TSDistances enables the calculation of distance
measures between univariate time series objects of type ts, zoo and xts, the latter two defined in
their respective packages: zoo (Zeileis and Grothendieck, 2005) and xts (Ryan and Ulrich, 2013). All
these objects are specific for temporal data and the corresponding packages provide a complete set of
methods to work with them. However, there are slight differences between them. Objects of type ts
are the most basic and are exclusively addressed for regularly sampled time series. The zoo objects
incorporate the possibility of dealing with irregularly sampled time series. Finally, the xts package
further extends the zoo package to provide a uniform handling of all the time series data types in R.
To calculate the distance measure between two objects of one of these types, the TSDistances function
just takes care of the conversion of data types and then makes use of the desired MethodDistance
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MethodDistance(x, y, ...)

TSDistances(x, y, method, ...)

TSDatabaseDistances(X, Y, method, ...)

Figure 1: Structure and organization of the TSdist package.

function. Note that, in addition to ts, xts and zoo objects, we can also introduce basic numeric vectors
into the TSdistances function. In this sense, it generalizes and unifies the calculation of all the distance
measures in one function.

Finally, on some occasions, it is necessary to calculate the distance between each pair of series
in a given database of series (X = {X1, X2, ..., XN}). This will result in a distance matrix such as the
following:

D(X) =


d(X1, X1) d(X1, X2) · · · d(X1, XN)
d(X2, X1) d(X2, X2) · · · d(X2, XN)

...
...

. . .
...

d(XN , X1) d(XN , X2) · · · d(XN , XN)


The TSDatabaseDistances function is specifically designed to build distance matrices from time

series databases saved in matrices, mts objects, zoo objects, xts objects or lists. Upon loading the
TSdist package, the TSDistances function is automatically included in the pr_DB database, which is
a list of similarity measures defined in the proxy package. This directly enables the use of the dist
function, the baseline R function to calculate distance matrices, with the dissimilarity measures defined
in the TSdist package. This is the general strategy followed by the TSDatabaseDistances function
and, only for a few special measures, the distance matrix is calculated in other ad-hoc manners for
efficiency purposes.

As an additional capability of the TSDatabaseDistances function, the distance matrices can not
only be calculated for a single database, but also for two separate databases. In this second case, all
the pairwise distances between the series in the first database and the second database are calculated:

D(X, Y) =


d(X1, Y1) d(X1, Y2) · · · d(X1, YN)
d(X2, Y1) d(X2, Y2) · · · d(X2, YN)

...
...

. . .
...

d(XM, Y1) d(XM, Y2) · · · d(XM, YN)


This last feature is especially useful for classification tasks where train/test validation frameworks

are frequently used.

Summary of distance measures included in TSdist

In Table 1, a summary of the distance measures included in TSdist is presented. Since the package
includes wrapper functions to distance measures hosted in other packages, the original package is
also cited in the table.

Based on the literature, we have divided the distance measures into four groups. Shape-based
distances compare the overall shape of the time series by measuring the closeness of the raw-values of
the time series (Esling and Agon, 2012). Within this category, we separate the (i) lock-step measures,
which compare the i-th point of one time series to the i-th point of another, and the (ii) elastic measures,
which are more flexible and allow one-to-many points and one-to-none point matchings (Wang et al.,
2012). Feature-based distances are based on comparing certain features extracted from the series, such
as Fourier or wavelet coefficients, autocorrelation values, etc. Next, structure-based distances include
(i) model-based approaches, where a model is fit to each series and the comparison is made between
models, and (ii) complexity-based models, where the similarity between two series is measured based
on the quantity of shared information. Finally, prediction-based distances analyze the similarity of the
forecasts obtained for different time series.
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proxy longitudinal
Data TSclust dtw pdc TSdist

Shape based distances
Lock-step measures

Lp distances X
DISSIM X
Short Time Series Distance (STS) X
Cross-correlation based X
Pearson correlation based X
CORT distance X

Elastic measures
Frechet distance X
Dynamic Time Warping (DTW) X
Keogh_LB for DTW X
Edit Distance for Real Sequences (EDR) X
Edit Distance with Real Penalty (ERP) X
Longest Common Subsequence (LCSS) X

Feature-based distances
(Partial) Autocorrelation based X
Fourier Decomposition based X
TQuest X
Wavelet Decomposition based X
(Integrated) Periodogram based X
SAX representation based X
Spectral Density based X

Structure-based distances
Model based

Piccolo distance X
Maharaj distance X
Cepstral based distances X

Compression based
Compression based distances X
Complexity invariant distance X
Permutation distribution based distance X

Prediction based
Non Parametric Forecast based X

Table 1: Summary of distance measures for time series implemented in R.

As can be seen in Table 1, the distance measures implemented specifically in TSdist complement
the set of measures already included in other packages, contributing to a more thorough coverage
of the existing time series distance measures. As the most notable example, edit based distances for
numeric time series (EDR, ERP and LCSS) have been introduced, which were completely overlooked
in previous R packages.

For more extensive explanations on each of the distance measures, the readers can access the
documentation of the TSdist package, where more details or suitable references are provided.

User interface by example

The TSdist package is available from the CRAN repository, where the source files for Unix platforms
and the binaries for Windows and some OS-X distributions can be downloaded. For more information
on software pre-requisites and detailed instructions on the installation process of TSdist, please see
the README file included in the inst/doc directory of the package.

Note that, in the following sections, we will use several time series and time series databases
included in TSdist. These databases are all synthetic, and have been chosen and designed specifically
because of their simplicity and because they allow us to provide straightforward examples which
clearly illustrate the usage of the different functions included in the package, and can be easily
analyzed, replicated and visualized by the reader. However, once the practitioner becomes familiar
with the examples provided in the following sections, it is straightforward to download any real
dataset, such as those included in the UCR archive (Keogh et al.), and work on it.

Examples of distance calculations between numeric vectors

The example.series1 and example.series2 objects (see Figure 2) included in the TSdist package are
two numeric vectors that represent two different synthetic series which were generated based on the
shapes that define the Two Patterns synthetic database of series (Geurts, 2002).

Additionaly, example.series3 and example.series4 (see Figure 3) represent two ARMA(3,2)
series of coefficients AR=(1, -0.24, 0.1) and MA=(1, 1.2) generated with different random seeds and
with different lengths, 100 and 120, respectively.
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(a) example.series1.

0 20 40 60 80 100

(b) example.series2.

Figure 2: The two example series of the same length included in the TSdist package.

0 20 40 60 80 100

(a) example.series3.

0 20 40 60 80 100 120

(b) example.series4.

Figure 3: The two example series of different length included in the TSdist package.

As mentioned previously, the basic calculation of the distance between two series, such as
example.series1 and example.series2, is done by using the MethodDistance functions and replacing
Method with the reference name of the distance measure of choice (for a complete list of reference
names, the user can access the help pages of TSdist):

> CCorDistance(example.series1, example.series2)

[1] 1.192903

> CorDistance(example.series1, example.series2)

[1] 1.399347

Many of the distance measures require the definition of a parameter, which must be included in
the call to the corresponding function:

> EDRDistance(example.series1, example.series2, epsilon=0.1)

[1] 80

> ERPDistance(example.series1, example.series2, g=0)

[1] 98.29833

Additionally, each distance measure has some characteristics which can impose some constraints
on the input time series. For example, some distance measures such as the Euclidean distance can not
deal with time series of different lengths. As such, if the conditions are not fulfilled, the distance can
not be computed and the function will return NA together with the corresponding error message:

> EuclideanDistance(example.series3, example.series4)

Error : Both series must have the same length.
[1] NA

> EDRDistance(example.series3, example.series4, epsilon=0.1, sigma=105)

Error : The window size exceeds the length of the first series
[1] NA
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Finally, note that all these distance calculations can be carried out by using the TSdistances
wrapper function as follows:

> TSDistances(example.series1, example.series2, distance="ccor")

[1] 1.192903

> TSDistances(example.series1, example.series2, distance="cor")

[1] 1.399347

> TSDistances(example.series1, example.series2, distance="edr", epsilon=0.1)

[1] 80

> TSDistances(example.series1, example.series2, distance="erp", g=0)

[1] 98.29833

As can be seen, the distance of choice must be specified within the distance argument, followed
by the necessary parameters.

We must emphasize that each distance measure is scaled differently and so, distance values
obtained from different distance measures are not directly comparable, even when comparing the
two same time series. As such, completely different values can be obtained from different distance
measures, as can be seen in the previous example.

Examples of distance calculations between time series objects

The zoo.series1 and zoo.series2 time series included in the package are replicas of the example.
series1 and example.series2 objects introduced previously but saved as zoo objects with a specific
time index. A basic distance calculation between two series like these is done using the TSDistances
function exactly as shown in the previous section:

> TSDistances(zoo.series1, zoo.series2, distance="cor")

[1] 1.399347

> TSDistances(zoo.series1, zoo.series2, distance="dtw", sigma=10)

[1] 123.8757

The distance calculation between ts or xts objects is done in the same manner.

Examples of distance matrix calculations

The example.database object included in the package is a matrix that represents a database with
6 ARMA(3,2) series of coefficients AR=(1, -0.24, 0.1) and MA=(1, 1.2), but generated with different
random seeds. Each time series corresponds to a row of the matrix. Additionally, the zoo.database
object included in the package is a multivariate zoo object that saves the series of example.database
with a specific time index.

The dist function calculates the pairwise distance between all the rows in a matrix so, the cal-
culation of the distance matrix can be done easily for the example.database object in the following
manner:

> dist(example.database, method="TSDistances", distance="tquest",
+ tau=mean(example.database), diag=TRUE, upper=TRUE)

series1 series2 series3 series4 series5 series6
series1 0.00000000 0.10310669 0.06460465 0.05345349 0.08355246 0.04768702
series2 0.10310669 0.00000000 0.05260503 0.07685220 0.12273356 0.03049604
series3 0.06460465 0.05260503 0.00000000 0.02003566 0.09874005 0.01984044
series4 0.05345349 0.07685220 0.02003566 0.00000000 0.04998743 0.02302477
series5 0.08355246 0.12273356 0.09874005 0.04998743 0.00000000 0.06191323
series6 0.04768702 0.03049604 0.01984044 0.02302477 0.06191323 0.00000000
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When using the dist function with the distances included in TSdist, the method argument will
always be left as "TSDistances", and the selected distance measure must be introduced in the distance
argument, followed by its parameters. The diag and upper options are used to specify if the diagonal
and upper triangle of the matrix should be shown. In any case, this calculation can also be done more
directly by using the TSDatabaseDistances function:

> TSDatabaseDistances(example.database, distance="tquest",
+ tau=mean(example.database))

When the database is not saved as a matrix, such as with zoo.database, the distance matrix
calculation can not be done by using the dist function directly. In this case, the calculation must
necessarily be carried out by using TSDatabaseDistances:

> TSDatabaseDistances(zoo.database, distance="tquest",
+ tau=mean(zoo.database))

series1 series2 series3 series4 series5
series2 0.10310669
series3 0.06460465 0.05260503
series4 0.05345349 0.07685220 0.02003566
series5 0.08355246 0.12273356 0.09874005 0.04998743
series6 0.04768702 0.03049604 0.01984044 0.02302477 0.06191323

Note that, by default, the TSDatabaseDistances function does not show the diagonal and upper
triangle of the computed distance matrix. If we want the whole matrix to appear, we must include the
options diag=TRUE and upper=TRUE as with the dist function.

Finally, as previously stated, an additional capability of the TSDatabaseDistances function is that
it is capable of calculating distances between the time series in two separate databases:

> TSDatabaseDistances(example.database, zoo.database, distance="tquest",
+ tau=mean(zoo.database))

series1 series2 series3 series4 series5 series6
series1 0.00000000 0.10310669 0.06460465 0.05345349 0.08355246 0.04768702
series2 0.10310669 0.00000000 0.05260503 0.07685220 0.12273356 0.03049604
series3 0.06460465 0.05260503 0.00000000 0.02003566 0.09874005 0.01984044
series4 0.05345349 0.07685220 0.02003566 0.00000000 0.04998743 0.02302477
series5 0.08355246 0.12273356 0.09874005 0.04998743 0.00000000 0.06191323
series6 0.04768702 0.03049604 0.01984044 0.02302477 0.06191323 0.00000000

Note that the two databases do not have to be provided in identical formats.

Time series classification and clustering with the TSdist package

The most common usage of time series distance measures is within clustering and classification tasks,1

and all the measures included in this package can be useful within these two frameworks. As a
support for these two tasks, the TSdist package includes two well-known functions.

The first function (OneNN) implements the 1NN classifier. This classifier is commonly used to
evaluate the performance of different distance measures, due to the influence the distance measure
has on its performance together with its reduced number of parameters (Wang et al., 2012). Given a
pair of train/test time series datasets and the class values of the series in the training set, the oneNN
function outputs the predicted class values for the test series. Additionally, if the ground truth class
values of the series in the testing set are provided by the user, the error obtained in the classification
process is also calculated.

As an example of usage, suppose we want to classify the series in the example.database2 database
(included in TSdist), which contains 100 series from 6 classes. In order to simulate a typical classifi-
cation framework, we divide the database into two sets by randomly selecting 30% of the series for
training purposes and 70% for testing.2 Then, we apply the 1-NN classifier to the testing set with any
distance measure of choice:

1Beware when using these distance measures within kernel based classifiers. Some of them, such as DTW, do
not necessarily issue positive definite Gram matrices when inserted directly into common kernel functions, such as
the Gaussian RBF. More information and some possible solutions can be found in (Cuturi, 2011; Pree et al., 2014;
Gaidon et al., 2011; Marteau and Gibet, 2014).

2The code to load and prepare the data is available in the documentation of the OneNN function.
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> OneNN(train, trainclass, test, "euclidean")

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4
[39] 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6

Additionally, if the selected distance measure requires the definition of any parameters, these
should be included at the end of the call:

> OneNN(train, trainclass, test, "tquest", tau=85)

[1] 1 3 3 3 2 3 3 3 5 1 2 3 3 3 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 6 4 4
[39] 4 6 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 6 4 6 6 4 4 6 4 6 6 6 6

If we also provide the true class labels of the test instances, we can obtain the classification
error obtained by the 1NN algorithm and the distance measure of choice:

> OneNN(train, trainclass, test, testclass, "euclidean")$error

[1] 0

> OneNN(train, trainclass, test, testclass, "acf")$error

[1] 0.4142857

> OneNN(train, trainclass, test, testclass, "tquest", tau=85)$error

[1] 0.3285714

> OneNN(train, trainclass, test, testclass, "dtw", sigma=20)$error

[1] 0

For clustering tasks, the k.medoids function can be used, which, given the data and the
number of clusters, outputs the clustering result together with the F evaluation measure
(Wagner and Wagner, 2007), if the ground truth clustering is provided by the user. In the
following example, the popular k-medoids algorithm is applied to the example.database3
database, (which contains series from 5 classes obtained from ARMA processes), using
different distance measures and setting the number of clusters to 5:

> KMedoids(data, 5, "euclidean")

[1] 1 1 1 2 1 2 3 2 1 2 2 4 1 4 5 1 4 1 4 1 5 2 5 5 5 5 2 4 2 4 3 3 2
[34] 3 2 2 3 2 3 2 5 5 2 5 1 2 5 2 5 2

> KMedoids(data, 5, "tquest",tau=0)

[1] 1 1 1 2 1 2 3 1 1 1 2 2 4 2 4 4 2 4 2 4 3 3 3 2 3 3 2 2 3 2 3 3 2
[34] 3 2 2 3 2 3 2 3 5 2 5 1 2 5 2 5 2

As mentioned, if we provide the ground truth clustering result, we can also obtain the F
measure of the obtained clustering:

> KMedoids(data, 5, ground.truth, "euclidean")$F

[1] 0.5154762

> KMedoids(data, 5, ground.truth, "acf")$F

[1] 0.9799499

> KMedoids(data, 5, ground.truth, "tquest", tau=0)$F
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[1] 0.594479

> KMedoids(data, 5, ground.truth, "dtw", sigma=20)$F

[1] 0.8933333

As can be seen, the best results are provided by the Euclidean distance and DTW when
we classify the example.database2 database, and the autocorrelation distance is the best
performing measure from the selected options when clustering the example.database3
database.

In this line, previous experiments show that there is no “best” distance measure which is
suitable for all databases and all tasks, (Wang et al., 2012). In this context, a specific distance
measure must be selected, in each case, in order to obtain satisfactory results (Mori et al.,
2016). The large number of distance measures included in TSdist and the simple design
of this package allows the user to try different distance measures directly, simplifying the
distance measure selection process considerably.

Summary and conclusions

The TSdist package enables the calculation of distances between time series and time series
databases, by using a large variety of measures available in the literature. By including
wrapper functions for time series distances already available in R, and implementing other
unavailable popular measures reviewed in the literature, this package provides the largest
selection of time series distance measures available at R at the moment, to the best of our
knowledge. Additionally, it also simplifies the evaluation of these measures and their
application in classification and clustering contexts by providing several ad-hoc functions.

For more detailed information on the databases and functions included in the TSdist
package, and a more complete set of examples, the reader can consult the help pages or the
manual of the TSdist package and the vignette included within.
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condSURV: An R Package for the
Estimation of the Conditional Survival
Function for Ordered Multivariate Failure
Time Data
by Luis Meira-Machado and Marta Sestelo

Abstract One major goal in clinical applications of time-to-event data is the estimation of survival
with censored data. The usual nonparametric estimator of the survival function is the time-honored
Kaplan-Meier product-limit estimator. Though this estimator has been implemented in several R
packages, the development of the condSURV R package has been motivated by recent contributions
that allow the estimation of the survival function for ordered multivariate failure time data. The
condSURV package provides three different approaches all based on the Kaplan-Meier estimator.
In one of these approaches these quantities are estimated conditionally on current or past covariate
measures. Illustration of the software usage is included using real data.

Introduction

One major goal in survival studies is the estimation of the survival function. The most popular method
for estimating this function is the well-known product-limit estimator also known as Kaplan-Meier
estimator (Kaplan and Meier, 1958). The popularity of the product-limit estimator is explained by its
simplicity and intuitive appeal while requiring very week assumptions. It simply takes into account
the empirical probability of surviving over a certain time. The method does not take into account
of covariates, so it is mainly descriptive. Discrete covariates can be included by splitting the sample
for each level of the covariate and applying the product-limit estimator for each subsample. This
approach is not recommended for continuous covariates. To account for this extra difficulty several
generalizations to the Kaplan-Meier estimator have been proposed throughout the last decades. Beran
(1981) was the first one who proposed an estimator of the conditional distribution (survival) function
with censored data in a fully nonparametric way. His estimator was further studied among others by
Dabrowska (1987), Akritas (1994), Gonzalez-Manteiga and Cadarso-Suárez (1994) and Van Keilegom
et al. (2001). All these estimators can be used to estimate the distribution (or survival) function
conditional on a continuous covariable in a regression model, when data are subject to censoring.
However, none of the above methods can be used to estimate the conditional survival when the
covariate is censored.

Several software packages in the form of R packages have been developed to estimate the survival
function. Though this function can be estimated parametrically or using nonparametric maximum
likelihood estimation, the product limit Kaplan-Meier estimator is still one of the best options for
estimating the survival function. Several R packages have been developed to implement the product-
limit Kaplan-Meier estimator. For instance, the survival package (Therneau, 2015) and the prodlim
package (Gerds, 2015) can be used to obtain Kaplan-Meier estimates. A comprehensive list of the
available packages which can be used to estimate the survival function can be seen in the CRAN Task
View “Survival Analysis” (Allignol and Latouche, 2016) of the Comprehensive R Archive Network
(CRAN).

In many longitudinal medical studies, patients may experience several events through a follow-up
period. In these studies, the analysis of sequentially ordered events are often of interest. The events
of concern can be of the same nature (e.g., recurrent disease episodes in cancer studies) or represent
different states in the disease process (e.g., “alive and disease-free”, “alive with recurrence” and
“dead”). If the events are of the same nature, this is usually referred as recurrent events (Cook and
Lawless, 2007), whereas if they are based on different disease categories they are usually modeled
through their intensity functions (Meira-Machado et al., 2009). Again, several R packages have been
developed to deal with problems that arise in these processes (see for example, Allignol and Latouche
2016). Some of these packages can be used to estimate occupation probabilities, transition probabilities
and the cumulative incidence functions. However, none can be used to estimate conditional survival
probabilities such as: P(T2 > y | T1 > x), P(T3 > y|T1 < x1, T2 > x2) or P(T3 > y|T1 > x1, T2 > x2)
where T1, T2 and T3 are ordered event times of successive events. This issue was recently considered
by Meira-Machado et al. (2016) who proposed nonparametric and semiparametric estimators for such
quantities.

This paper describes the R package condSURV (available from the Comprehensive R Archive
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Network at https://CRAN.R-project.org/package=condSURV/) and its capabilities for implement-
ing nonparametric and semiparametric estimators for conditional survival probabilities for two
multivariate ordered times. The package can also be used to estimate more general functions in-
volving more than two successive event times. The estimation of these quantities is essential for
long-term survival prognosis which arises in many medical contexts such as cancer studies, asthma,
HIV/AIDS, heart disease, dementia and Alzheimer’s disease, etc. The methods implemented in the
package also deal with the possible effect of covariates on the conditional survival probabilities (e.g.,
P(T2 > y | T1 > x1, Z = z) where Z denotes a continuous covariate). To account for the covariate
effect, a flexible approach is based on local smoothing by means of kernel weights based on local
constant (Nadaraya-Watson) regression. In this article we explain and illustrate how numerical and
graphical output for all methods can be obtained using the condSURV package.

The remainder of this paper is organized as follows. The following section provides a brief
introduction to the methodological background. All estimators for the conditional survival function
are presented. Then, a detailed description of the package is presented, and its usage is illustrated
through the analysis of a real data set; and finally, the last section contains the main conclusions of this
work. The use of the package to more than two consecutive events is illustrated in the Appendix.

Methodology background

Suppose that an individual may experience K consecutive events at times T1 < T2 < · · · < TK = T,
which are measured from the start of the follow-up. In this section different methods are proposed
to estimate conditional survival probabilities such as P(T2 > y | T1 > x) or P(T2 > y | T1 ≤ x),
where T1 and T2 are ordered event times of two successive events. The proposed methods are all
based on the Kaplan-Meier estimator and the ideas behind the proposed estimators can also be used
to estimate more general functions involving more than two successive event times. However, for ease
of presentation and without loss of generality, we take K = 2 in this section. The extension to K > 2 is
straightforward.

Let (T1, T2) be a pair of successive event times corresponding to two ordered (possibly consecutive)
events measured from the start of the follow-up. Let T = T2 denote the total time and assume that
both T1 and T are observed subject to a (univariate) random right-censoring variable C assumed to
be independent of (T1, T). Due to censoring, rather than (T1, T) we observe (T̃1, ∆1, T̃, ∆2) where
T̃1 = min(T1, C), ∆1 = I(T1 ≤ C), T̃ = min(T, C), ∆2 = I(T ≤ C), where I(·) is the indicator
function. Let (T̃1i, ∆1i, T̃i, ∆2i), 1 ≤ i ≤ n be independent and identically distributed data with the
same distribution as (T̃1, ∆1, T̃, ∆2).

Let S1 and S be the marginal survival functions of T1 and T; that is, S1(y) = P(T1 > y) and S(y) =
P(T > y). Introduce also the conditional survival probabilities P(T > y|T1 > x) and P(T > y|T1 ≤ x).
without loss of generality, we only consider the estimation of S(y|x) = P(T > y|T1 > x).

The Kaplan-Meier estimator, also known as the product-limit estimator, is the most frequently
used method to estimate survival for censored data. The most used representation of the Kaplan-Meier
estimator of the total time is through a product of the following form

Ŝ(y) = ∏
T̃i≤t

(
1− ∆2i

R(T̃i)

)
,

where R(t) = ∑n
i=1 I(T̃i ≥ t) denotes the number of individuals at risk just before time t. The censoring

is assumed to be independent in the sense that the additional knowledge of the right-censoring times
before any time y does not carry information on the risk of failure at time y. The Kaplan-Meier estimate
is a step function with jumps at event times. The size of the steps depends on the number of events
and the number of individuals at risk at the corresponding time. Below we introduce a weighted
average representation of the Kaplan-Meier estimator which will be used later to introduce estimators
for the conditional survival function

Ŝ(y) = 1−
n

∑
i=1

Wi I
(

T̃(i) ≤ y
)

,

where T̃(1) ≤ . . . ≤ T̃(n) denotes the ordered T̃-sample and

Wi =
∆2[i]

n− i + 1

i−1

∏
j=1

[
1−

∆2[j]

n− j + 1

]
is the Kaplan-Meier weight attached to T̃(i). In the expression of Wi notation ∆2[i] is used for the i-th
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concomitant value of the censoring indicator (that is, ∆2[i] = ∆2j if T̃(i) = T̃j).

In this work we are interested in the estimation of the conditional survival function, S(y | x) =
P(T > y | T1 > x). Below we provide estimators for this quantity, all based on the Kaplan-Meier
estimator.

The conditional survival function S(y | x) can be expressed as S(y | x) = P(T > y|T1 > x) =
1− P(T ≤ y | T1 > x) = 1− P(T1 > x, T ≤ y)/ (1− P (T1 ≤ x)). Then, the denominator of the term
at the right hand side can be estimated using the Kaplan-Meier estimator of survival of the first time;
the quantity at the numerator involves transformations of the pair (T1, T) which cannot be estimated
so simply. This quantity can be estimated using Kaplan-Meier weights pertaining to the distribution of
the total time to weight the bivariate data (Meira-Machado et al., 2016). The corresponding estimator
is given as follows:

ŜKMW(y | x) = 1−
∑n

i=1 Wi I
(

T̃1[i] > x, T̃(i) ≤ y
)

Ŝ1(x)
. (1)

Another way to introduce a (monotonic) nonparametric estimator for the conditional survival is by
considering the landmark approach (Van Houwelingen, 2007). Given the time point x, to estimate
S(y | x) = P(T > y | T1 > x) the analysis can be restricted to the individuals with an observed
first event time greater than x. Then, an estimator for the conditional survival function is just the
Kaplan-Meier estimator of the survival function of T computed from such a subset

ŜLDM(y | x) = Ŝx(y), (2)

where Ŝx(y) is the Kaplan-Meier estimator of survival computed from the
(

T̃, ∆2

)
-sample in

{
i :

T̃1i > x
}

ordered with respect to T̃.

The standard error of the nonparametric landmark estimator (LDM) may be large when the censoring
is heavy, particularly with a small sample size. Interestingly, the variance of this estimator may be
reduced by presmoothing (Dikta, 1998). Here, the idea of presmoothing involves replacing the
censoring indicators (in the expression of the Kaplan-Meier weights) by some smooth fit before the
Kaplan-Meier formula is applied. This preliminary smoothing may be based on a certain parametric
family such as the logistic (thus leading to a semiparametric estimator), or on a nonparametric
estimator of the binary regression curve. The corresponding presmoothed landmark estimator is then
given by

ŜPLDM(y | x) = 1−
nx

∑
i=1

wx
i I
(

T̃x
(i) ≤ y

)
, (3)

where wx
i is defined through

wx
i =

m
(

T̃x
(i)

)
nx − i + 1

i−1

∏
j=1

1−
m
(

T̃x
(i)

)
nx − j + 1

 , 1 ≤ i ≤ nx,

where
(

T̃x
(i), ∆x

2[i]

)
, i = 1, . . . , nx, is the

(
T̃, ∆2

)
-sample in

{
i : T̃1i > x

}
ordered with respect to T̃.

Here, m(t) = P(∆2 = 1 | T̃ = t), where m(T̃) belongs to a parametric (smooth) family of binary
regression curves, e.g., logistic. In practice, we assume that m(t) = m(t; β) where β is a vector of
parameters which will be computed by maximizing the conditional likelihood of the ∆2’s given T̃.

Note that ŜPLDM(y | x) is the presmoothed Kaplan-Meier estimator of survival computed from the(
T̃, ∆2

)
-sample in

{
i : T̃1i > x

}
ordered with respect to T̃.

The practical performance of the proposed estimators for the conditional survival function has
been investigated through simulations (Meira-Machado et al., 2016). It has been demonstrated that all
of the studied estimators perform well, approaching their targets as the sample size increases. Besides,
simulation results reveal that the landmark estimator (LDM) performs favorably when compared
with the first method (KMW). Furthermore, the reported simulation results reveal relative benefits of
presmoothing (PLDM) in the heavily censored scenarios or for small sample sizes.

Now we will explain how to introduce covariate information in the conditional survival func-
tion. Discrete covariates can be also included by splitting the sample for each level of the covariate
and repeating the described procedures for each subsample. This approach is not valid for con-
tinuous covariates. To estimate the survival probabilities conditionally on continuous covariates
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we propose to use local smoothing which is introduced using regression weights. Without loss of
generality the methodology will be explained in the build of the conditional survival probability
P(T > y|T1 > x, Z = z), where Z denotes a continuous covariate. To estimate S(y | x, z) = 1− P(T1 >
x, T ≤ y|Z = z)/ (1− P (T1 ≤ x|Z = z)) we need to estimate the following conditional expectations:
E (I(T1 > x, T ≤ y) | Z) and E (I(T1 ≤ x) | Z).

In the absence of censoring, to estimate these quantities, we may use kernel smoothing techniques
by calculating a local average of the indicator functions. For example, E[I(T1 > x, T ≤ y)|Z = z] could
be estimated as follows

Ê[I(T1 > x, T ≤ y)|Z = z] =
n

∑
i=1

NWi(z, an)I
(

T̃1 > x, T̃ ≤ y
)

,

where NWi(z, an) is a weight function which corresponds to the Nadaraya-Watson (Nadaraya, 1965;
Watson, 1964) estimator (NW) as follows

NWi(z, an) =
K ((z− Zi)/an)

∑n
j=1 K

(
(z− Zj)/an

) ,

where K is a known probability density function (the kernel function) and an is a sequence of band-
widths.

In our case, however, we allow the data to be right-censored. To handle right-censoring, inverse
probability of censoring weighting (IPCW; see for example, Satten and Datta 2001) can be used. In order
to introduce our estimators, note that, assuming that the support of the conditional distribution of T is
contained in that of C | Z, we have E[I(T1 > x, T ≤ y) | Z] = E[I(T̃1 > x, T̃ ≤ y)∆2/GZ(T̃) | Z)] and
E[I(T1 ≤ x) | Z] = E[I(T̃1 ≤ x)∆1/HZ(T̃1) | Z)] where GZ and HZ denote the conditional survival
functions of the censoring variable of the total time and the first event time, respectively, given Z.

The estimation of the conditional survival function, given a covariate under random censoring
has been considered in many papers. This topic was introduced by Beran (1981) and was further
studied by several authors (Dabrowska, 1987; Akritas, 1994; Gonzalez-Manteiga and Cadarso-Suárez,
1994; Van Keilegom et al., 2001). Their proposals can also be used to estimate the conditional survival
function of C | Z = z, say Ĝz. This can be done using the estimator introduced by Beran,

Ĝz(y) = ∏
Ti≤y,∆2i=0

[
1− NWi(z, an)

∑n
j=1 I(Tj ≥ Ti)NWj(z, an)

]
.

In order to introduce our estimators we propose to plug-in Beran’s estimator ĜZ and use NW to
compute

P̂(T1 > x, T ≤ y | Z = z) =
n

∑
i=1

NWi(z, an)
I(T̃1i > x, T̃i ≤ y)∆2i

ĜZi (T̃i)
.

Similarly, we propose to plug-in Beran’s estimator ĤZ and use NW to compute

P̂(T1 ≤ x | Z = z) =
n

∑
i=1

NWi(z, an)
I(T̃1i ≤ x)∆1i

ĤZi (T̃1i)
.

Then, we may introduce the IPCW estimator as follows:

ŜIPCW(y | x, z) = 1− P̂(T1 > x, T ≤ y | Z = z)/(1− P̂(T1 ≤ x | Z = z)). (4)

condSURV in practice

This section introduces an overview of how the package is structured. condSURV is a shortcut for
“conditional survival” and this is its major functionality: to provide estimates of the survival function
conditional to previous (possibly censored) events. This software enables both numerical and graphical
outputs to be displayed for all methods (KMW, LDM, PLDM and IPCW) described in the previous section.
This software is intended to be used with the R environment for statistical computing and graphics.
Our package is composed of 12 functions that allow users to obtain estimates for all proposed methods.
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Function Description

survCOND Conditional survival probabilities based on Kaplan-Meier
weights and the Landmark approaches. This function also im-
plements estimation methods for these quantities conditionally
on current or past covariate measures.

survCS Create a "survCS" object, usually used as a response variable in
a model formula.

plot.survCS Plot for an object of class "survCS".
summary.survCS Summary for an object of class "survCS".
print.survCS Print for an object of class "survCS".
KM Computes the Kaplan-Meier product-limit of survival.
PKM Computes the presmoothed Kaplan-Meier product-limit of sur-

vival.
Beran Computes the conditional survival probability P(T > y|T1 =

x) using Beran’s estimator.
KMW Returns a vector with the Kaplan-Meier weights.
PKMW Returns a vector with the presmoothed Kaplan-Meier weights.
LLW Returns a vector with the local linear weights.
NWW Returns a vector with the Nadaraya-Watson weights.

Table 1: Summary of functions in the condSURV package.

Details on the usage of the functions (described in Table 1) can be obtained with the corresponding
help pages.

It should be noted that to implement the methods described in Section Methodology background
one needs the following variables of data in a specific order (as shown): time1, event1, Stime and
event. The variable time1 represents the observed time to the first event of interest, and event1 the
corresponding status/censoring indicator (if the survival time is a censored observation, the value is 0
and otherwise the value is 1). The variable Stime represents the total survival time. If event1 = 0, then
the total survival time is equal to the observed time to the first event. The variable event is the final
status of the individual (takes the value 1 if the final event of interest is observed and 0 otherwise). The
illustration of the condSURV package for more than two event times is discussed in the Appendix.

Example of application

For illustration, we apply the proposed methods to data from a large clinical trial on Duke’s stage III
patients, affected by colon cancer, that underwent a curative surgery for colorectal cancer (Moertel
et al., 1990). This data set is freely available as part of the R survival package. The data is also available
as part of the R package condSURV. From the total of 929 patients, 468 developed a recurrence and
among these 414 died. For each individual, an indicator of his/her final vital status (censored or not),
the survival times (time to recurrence, time to death) from the entry of the patient in the study (in
days), and a vector of covariates including age (in years) and recurrence (coded as 1 = yes; 0 = no)
were recorded. The covariate recurrence is a time-dependent covariate which can be expressed as an
intermediate event. We will use the methods described in Section Methodology background to study
survival as well as the effect of recurrence on the final outcome (death).

In the following, we will demonstrate the package capabilities using this data. Below is an excerpt
of the data.frame with one row per individual.

> library("condSURV")
> data(colonCS)
> head(colonCS[, 1:7])

time1 event1 Stime event rx sex age
1 968 1 1521 1 Lev+5FU 1 43
2 3087 0 3087 0 Lev+5FU 1 63
3 542 1 963 1 Obs 0 71
4 245 1 293 1 Lev+5FU 0 66
5 523 1 659 1 Obs 1 69
6 904 1 1767 1 Lev+5FU 0 57

Individuals represented in lines 1, 3, 4, 5 and 6 experienced a recurrence of the tumor and have died;
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the individual represented in line 2 is alive and without recurrence at the end of follow-up. We note
that event1 = 1 and event = 0 corresponds to individuals with an observed recurrence that remain
alive at the end of the follow-up.

The development of the condSURV R package has been motivated by recent contributions that
allow the estimation of the (conditional) survival function for ordered multivariate failure time data.
This package contains the function survCS which takes the input data as an R formula and creates a
survival object among the chosen variables for analysis. This function will verify if the data has been
introduced correctly and will create a "survCS" object. Arguments in this function must be introduced
in the following order time1, event1, time2, event2, . . . , Stime and event, where time1, time2, . . . ,
Stime are ordered event times and event1, event2, . . . , event their corresponding indicator statuses.
This function plays a similar role as the Surv function in the survival R package.

The effect of “recurrence” is important on the patient outcome and can be studied through the
ordered multivariate event time data of time-to-event from enrolment, to recurrence and to death.
Results obtained from the estimation of the conditional survival probabilities, S(y | x) = P(T >
y|T1 > x), can be used to understand which individuals without recurring cancer after surgery are
most likely to survive from their disease and which would benefit from more personal attention, closer
follow-up and monitoring. Below we discuss how to estimate this and other quantities using the
condSURV package.

Estimates for the conditional survival probabilities are obtained using function survCOND. The first
argument of this function is a formula object with the response on the left of a ~ operator. The response
must be a "survCS" object which is obtained using the survCS function. A single covariate (qualitative
or quantitative) can be included in the right hand side of the formula allowing the estimation of
survival probabilities conditionally on current or past covariate measures. The use of the main
function survCOND is explained below.

In the absence of covariates, two methods can be used to estimate the conditional survival prob-
abilities: the method based on the use of Kaplan-Meier weights (KMW) and the method based on the
landmark approach (KMW). A smoothed version of the landmark approach is also implemented. Given
x = 365 (one year) and y = 1825 (five years), estimates for S(y | x) = P(T > y|T1 > x) can be
obtained using function survCOND with the method based on the use of Kaplan-Meier weights (method
= "KMW"):

> set.seed(123)
> colon.kmw.1 <- survCOND(survCS(time1, event1, Stime, event) ~ 1, x = 365, y = 1825,
+ data = colonCS, method = "KMW")
> summary(colon.kmw.1)

P(T>y|T1>365)

y estimate lower 95% CI upper 95% CI
1825 0.7303216 0.697005 0.7562444

As can be seen, the survCOND function provides, by default, 95% pointwise confidence intervals (conf
= TRUE) using 200 bootstrap replicates (n.boot = 200). The construction of the pointwise confidence
intervals is obtained by means of the bootstrap percentile method by randomly sampling the n items
from the original data set with replacement (Davison and Hinkley, 1997). Intervals with other levels of
confidence besides 95% (the default value) can be obtained by setting the argument conf.level to the
desired level.

Given a fixed value of x, estimates for the conditional survival can be obtained for a vector of y
values. An example is given below:

> colon.kmw.2 <- survCOND(survCS(time1, event1, Stime, event) ~ 1, x = 365,
+ y = 365 * 1:7, data = colonCS, method = "KMW")
> summary(colon.kmw.2)

P(T>y|T1>365)

y estimate lower 95% CI upper 95% CI
365 1.0000000 1.0000000 1.0000000
730 0.9441430 0.9265015 0.9599035

1095 0.8624983 0.8353103 0.8843765
1460 0.7750519 0.7389898 0.8090082
1825 0.7303216 0.6920535 0.7664671
2190 0.6879923 0.6511133 0.7249555
2555 0.6548414 0.6114144 0.6940938
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If argument y is omitted, then the survCOND function allows the user to obtain estimates for all possible
y values. Then, one can use the summary function to get the estimated values at the desired values
(through argument times of the summary function). A truncated output for the following input
commands is shown below:

> colon.kmw.3 <- survCOND(survCS(time1, event1, Stime, event) ~ 1, x = 365,
data = colonCS, method = "KMW")

> summary(colon.kmw.3)

P(T>y|T1>365)

y estimate lower 95% CI upper 95% CI
365.0 1.0000000 1.0000000 1.0000000
421.0 0.9985694 0.9956263 1.0000000
430.0 0.9971388 0.9928077 1.0000000
448.0 0.9957082 0.9900836 1.0000000
454.5 0.9942758 0.9871742 0.9985958
465.0 0.9928434 0.9853940 0.9985509
485.0 0.9914111 0.9826719 0.9971681
486.0 0.9899787 0.9808888 0.9958287
499.0 0.9885463 0.9797218 0.9956079
..... ......... ......... .........

Similarly, one can obtain the results for the landmark methods (LDM and PLDM) using the same function
survCOND. The unsmoothed landmark estimator is obtained using argument method = "LDM" whereas
for obtaining the presmoothed landmark estimator the argument presmooth = TRUE is also required.

> colon.ldm.1 <- survCOND(survCS(time1, event1, Stime, event) ~ 1, x = 365,
+ data = colonCS, method = "LDM")
> summary(colon.ldm.1, times = 365 * 1:7)

y estimate lower 95% CI upper 95% CI
365 1.0000000 1.0000000 1.0000000
730 0.9441319 0.9296298 0.9614001

1095 0.8624695 0.8418715 0.8877858
1460 0.7750019 0.7413340 0.8002003
1825 0.7302521 0.6957642 0.7584186
2190 0.6878056 0.6515754 0.7196251
2555 0.6543273 0.6119221 0.6916915

> colon.pldm.1 <- survCOND(survCS(time1, event1, Stime, event) ~ 1, x = 365,
+ data = colonCS, method = "LDM", presmooth = TRUE)
> summary(colon.pldm.1, times = 365 * 1:7)

y estimate lower 95% CI upper 95% CI
365 1.0000000 1.0000000 1.0000000
730 0.9429609 0.9236513 0.9590418

1095 0.8624778 0.8373879 0.8844013
1460 0.7788757 0.7430835 0.8137728
1825 0.7411599 0.7046557 0.7710392
2190 0.6795849 0.6377276 0.7118881
2555 0.6467549 0.6028921 0.6821533

In addition, one may also be interested in calculating the conditional survival function, S(y | x) =
P(T > y|T1 ≤ x). This is the probability of the individual to be alive at time y conditional that he/she
is alive with recurrence at a previous time x. This quantity can also be estimated using function
survCOND by considering the argument lower.tail = TRUE:

> colon.ldm.2 <- survCOND(survCS(time1, event1, Stime, event) ~ 1, x = 365,
+ data = colonCS, method = "LDM", lower.tail = TRUE)
> summary(colon.ldm.2, times=c(90, 180, 365, 730, 1095, 1460, 1825))

y estimate lower 95% CI upper 95% CI
90 0.96956522 0.94541818 0.99122998

180 0.89565217 0.85836820 0.93278055
365 0.66086957 0.60452616 0.73021864

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 467

730 0.25652174 0.20552495 0.30834239
1095 0.10434783 0.07551852 0.14219702
1460 0.06956522 0.04000000 0.10000000
1825 0.06086957 0.03553539 0.09006894

It is worth mentioning that, given x, lower.tail = TRUE provides the survival estimates conditional to
T1 ≤ x whereas lower.tail = FALSE provides the survival estimates conditional to T1 > x. It should
be noted that conditioning on T1 > x is the default behavior of survCOND.

The package also provides plots for all methods. The following input commands (shown below)
provide the plots for the conditional survival function P(T > y|T1 > x) along y ≥ x where x is a
predefined fixed value. The corresponding plots for the two landmark methods (LDM and PLDM) are
shown in Figure 1. The plots were obtained for fixed values x equal to 365 and 1095 days, along time y.
This figure allows for an inspection along time of the survival probability (i.e., of being alive with or
without recurrence) for the individuals who are disease free 1 and 3 years after surgery. All curves are
monotonously decreasing. It is also evident that the conditional survival probabilities are smaller for
lower x values. This feature was expected since the survival time increases with an increase in the
recurrence-free survival. Results also suggest that individuals with higher recurrence times are most
likely to survive from their disease.

To illustrate the usage of the graphical parameter arguments of function plot.survCS, plots shown
in the first row in Figure 1 were obtained using arguments col, confcol, xlab, ylab and ylim. Plots
shown on the second row were obtained using the default values. For more details about the graphical
parameter arguments, see the corresponding help file.

> colon.ldm.1 <- survCOND(survCS(time1, event1, Stime, event) ~ 1, x = 365,
+ data = colonCS, method = "LDM")
> plot(colon.ldm.1, col = 1, confcol = 2, xlab = "Time (days)", ylab = "S(y|365)",
+ ylim = c(0.3, 1))
> colon.pldm.1 <- survCOND(survCS(time1, event1, Stime, event) ~ 1, x = 365,
+ data = colonCS, method = "LDM", presmooth = TRUE)
> plot(colon.ldm.1, col = 1, confcol = 2, xlab = "Time (days)", ylab = "S(y|365)",
+ ylim = c(0.3, 1))
> colon.ldm.2 <- survCOND(survCS(time1, event1, Stime, event) ~ 1, x = 1095,
+ data = colonCS, method = "LDM")
> plot(colon.ldm.1)
> colon.pldm.2 <- survCOND(survCS(time1, event1, Stime, event) ~ 1, x = 1095,
+ data = colonCS, method = "LDM", presmooth = TRUE)
> plot(colon.ldm.1)

When comparing the results obtained through the two methods (LDM and PLDM), it is seen that the
semiparametric estimator PLDM has less variability with more jump points, specially at the right tail. It
can also be seen that the semiparametric estimator takes higher values at the right tail.

One important goal is to obtain estimates for the above estimated quantities (conditional survival
probabilities) conditionally on current or past covariate measures. The current version of the package
allows the inclusion of a single covariate. Below we illustrate its usage using two qualitative covariates
rx (treatment: Obs(ervation), Lev(amisole), Lev(amisole)+5FU), sex (1 – male) and a continuous
covariate age (in years). The following input commands provide the estimates of the conditional
survival S(y | x) = P(T > y|T1 > x) for the three treatment groups by including the covariate (rx) in
the right hand side of the formula argument.

> colon.rx.ldm <- survCOND(survCS(time1, event1, Stime, event) ~ rx, x = 365,
+ data = colonCS, method = "LDM")
> summary(colon.rx.ldm, times = 365 * 1:6)

rx = Obs
y estimate lower 95% CI upper 95% CI

365 1.0000000 1.0000000 1.0000000
730 0.9469212 0.9095018 0.9780613

1095 0.8672736 0.8247419 0.9131253
1460 0.7655017 0.7187629 0.8095914
1825 0.7123480 0.6608400 0.7638970
2190 0.6562687 0.6038035 0.7170123

rx = Lev
y estimate lower 95% CI upper 95% CI

365 1.0000000 1.0000000 1.0000000
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Figure 1: Estimation of the conditional survival function given that the subject is alive and disease-free
at x = 365 (top) and x = 1095 (bottom row) days. Landmark estimators at the left and presmoothed
landmark estimator on the right hand side. Colon cancer data.

730 0.9411765 0.9070484 0.9695116
1095 0.8280543 0.7757624 0.8773140
1460 0.7375566 0.6787002 0.7929553
1825 0.7102667 0.6541314 0.7709486
2190 0.6704293 0.6101410 0.7309958

rx = Lev+5FU
y estimate lower 95% CI upper 95% CI

365 1.0000000 1.0000000 1.0000000
730 0.9442231 0.9142632 0.9716684

1095 0.8884462 0.8431373 0.9243251
1460 0.8165244 0.7672650 0.8666731
1825 0.7639544 0.7092081 0.8144077
2190 0.7314409 0.6709950 0.7813303

Results obtained for the three treatment groups reveal that the combined treatment of levamisole plus
fluorouracil have a benefit on overall survival. This is confirmed by the plot shown in Figure 2 which
can be obtained using the following input command:

> plot(colon.rx.ldm, xlab = "Time (days)", ylab = "S(y|365)", conf = FALSE)

Similarly, one can obtain the corresponding survival probabilities S(y | x) = P(T > y|T1 ≤ x) for
both genders (1 – male). Since this variable in the data.frame colonCS is of class "integer" it must be
included in the formula using function factor.

> colon.sex.ldm <- survCOND(survCS(time1, event1, Stime, event) ~ factor(sex), x = 365,
+ data = colonCS, method = "LDM")
> summary(colon.sex.ldm, times = 365 * 1:6)
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Figure 2: Estimates of the conditional survival function for the three treatment groups. Colon cancer
data.

factor(sex) = 0
y estimate lower 95% CI upper 95% CI

365 1.0000000 1.0000000 1.0000000
730 0.9569231 0.9370979 0.9792300

1095 0.8769231 0.8417722 0.9172158
1460 0.7876565 0.7424245 0.8314511
1825 0.7475015 0.7084168 0.7982421
2190 0.6940773 0.6518322 0.7563382

factor(sex) = 1
y estimate lower 95% CI upper 95% CI

365 1.0000000 1.0000000 1.0000000
730 0.9329893 0.9037317 0.9615385

1095 0.8498782 0.8109783 0.8846094
1460 0.7639861 0.7247797 0.8053898
1825 0.7152471 0.6742324 0.7612994
2190 0.6822945 0.6336874 0.7277440

The condSURV package also allows the user to estimate the conditional survival given a continuous
covariate (i.e., objects of class "integer" or "numeric"). For example, estimates and plots for the
conditional survival for individuals aged 48 years, S(y|x, Z = z) = P(T > y|T1 > x, age = 48). This
can be obtained using the following input commands:

> colon.ipcw.age <- survCOND(survCS(time1, event1, Stime, event) ~ age, x = 365,
+ z.value = 48, data = colonCS, lower.tail = FALSE)
> summary(colon.ipcw.age, times = 365 * 1:7)

y estimate lower 95% CI upper 95% CI
365 1.0000000 1.0000000 1.0000000
730 0.9582900 0.8993620 0.9960546

1095 0.8994077 0.8354449 0.9570992
1460 0.8069071 0.7154049 0.8968507
1825 0.7490154 0.6531423 0.8387582
2190 0.7211058 0.6265042 0.8126480
2555 0.6860070 0.5588995 0.8012140

> plot(colon.ipcw.age, col = 1, confcol = 2, xlab = "Time (days)",
+ ylab = "P(T>y|T1>365,age=48)", ylim = c(0.5, 1))

The plot shown in Figure 3 depicts the conditional survival estimates taking into account the influ-
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Figure 3: Estimates of the conditional survival function given that the subject is alive and disease-free
at x = 365 days given the continuous covariate age is equal to 48 years old. 95% pointwise confidence
bands based on the percentile bootstrap. Colon cancer data.

ence of the covariate age together with the 95% pointwise confidence bands based on the percentile
bootstrap which resamples each datum with probability 1/n. The methods for implementing the
conditional survival function conditionally on current or past covariate measures can be computa-
tionally demanding. In particular, the use of bootstrap resampling techniques are time-consuming
processes because it is necessary to estimate the model a great number of times. The CPU time needed
for running the input command required to obtain the plot shown in Figure 3 can take a few minutes.
In such cases we recommend the use of parallelization (cluster = TRUE). This allows to run those
repeated operations (for example, the estimation of the conditional probability in each of the bootstrap
replicates) on multiple processors/cores on your computer, or on multiple nodes of a cluster. Thus,
we can reduce the execution time in the construction of the bootstrap-based confidence interval.

The use of the condSURV package to more than two consecutive events is illustrated in the Ap-
pendix.

Conclusions

This paper discusses the implementation in R of some newly developed methods for the estimation
of the conditional survival function. The condSURV package implements nonparametric and semi-
parametric estimators for these quantities. The package also introduces and implements feasible
estimation methods for these quantities conditionally on current or past covariate measures. Other
related estimators are also implemented in the package. One of these estimators is the Kaplan-Meier
estimator typically assumed to estimate the survival function. A modification of the Kaplan-Meier
estimator based on a preliminary estimation (presmoothing) of the censoring probability for the
survival time, given the available information is also implemented.

Software for multi-state survival analysis has been developed recently. These models deal with
problems that are similar to those implemented in package condSURV. Among other quantities these
packages deal with the estimation of the transition probabilities. It can be shown that in the progressive
model with three states the conditional survival function P(T2 > y | T1 > x) can be expressed as
the sum of two transition probabilities, p11(x, y) + p12(x, y). However, for more than three states no
formal relation can be established between the two quantities. To the best of our knowledge none of
the available software packages can be used to estimate conditional survival probabilities such as:
P(T2 > y | T1 > x), P(T3 > y|T1 < x1, T2 > x2) or P(T3 > y|T1 > x1, T2 > x2) where T1, T2 and T3
are ordered event times of successive events.

We mention some important topics that we shall consider in future versions of the package. One
important issue is about the extension of the proposed methods for interval censoring. Another topic
of much practical interest is to establish a more formal relation between our software and the survival
package.
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The results in this paper were obtained using R 3.2.5. The condSURV package is available from
the Comprehensive R Archive Network at https://CRAN.R-project.org/package=condSURV/.
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Appendix

To illustrate the use of the condSURV package to more than two event times we use data from a bladder
cancer study (Byar, 1980) conducted by the Veterans Administration Cooperative Urological Research
Group. In this study, patients had superficial bladder tumors that were removed by transurethral
resection. Many patients had multiple recurrences of tumors during the study, and new tumors were
removed at each visit. For illustration purposes we use data from 85 individuals in the placebo and
thiotepa treatment groups.

Here, only the first three recurrence times (in months) and the corresponding event times, T1, T2
and T3, are considered. From the total of 85 patients, 47 relapsed at least once and, among these, 29
experienced a new recurrence and 22 individuals had a third recurrence.

Below we illustrate how to obtain estimates for the conditional survival function P(T3 > y|T1 ≤
x1, T2 > x2). First we need to built a formula object using the survCS function as the response. The
three event times and their corresponding indicator statuses have to be specified in this function.
Then, the conditional survival function can be estimated using function survCOND by considering the
argument lower.tail = c(TRUE,FALSE). Below we show the corresponding input commands for the
landmark method (LDM) and for its presmoothed version.

> bladder.ldm <- survCOND(survCS(t1, e1, t2, e2, t3, e3) ~ 1, x = c(8, 12),
+ lower.tail = c(TRUE, FALSE), data = bladderCS, method = "LDM")
> summary(bladder.ldm)

P(T>y|T1<=8,T2>12)

y estimate lower 95% CI upper 95% CI
12 1.0000000 1.0000000 1.0000000
19 0.9444444 0.8174641 1.0000000
22 0.8854167 0.7141053 1.0000000
23 0.7083333 0.4991667 0.9230769
24 0.6493056 0.4117563 0.8461538
25 0.5902778 0.3656623 0.8000893
46 0.3935185 0.0000000 0.7692308
47 0.0000000 0.0000000 0.6675000

> bladder.pldm <- survCOND(survCS(t1, e1, t2, e2, t3, e3) ~ 1, x = c(8, 12),
+ lower.tail = c(TRUE, FALSE), data = bladderCS, method = "LDM", presmooth = TRUE)
> summary(bladder.pldm)

P(T>y|T1<=8,T2>12)

y estimate lower 95% CI upper 95% CI
12 1.0000000 1.00000000 1.0000000
14 0.9734802 0.92306857 1.0000000
18 0.9473931 0.89833894 1.0000000
19 0.8935818 0.80656969 0.9932548
22 0.8663338 0.74760747 0.9691555
23 0.7795092 0.57123322 0.9414341
24 0.7485065 0.49188561 0.9316808
25 0.7163915 0.43525931 0.9189147
26 0.6475479 0.32652371 0.8674366
27 0.6102029 0.32640074 0.8358788
29 0.5709044 0.32624995 0.8159263
43 0.4475656 0.23840137 0.6916276
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46 0.3217597 0.12021360 0.6010603
47 0.2062917 0.03004109 0.6010603

When comparing the unsmoothed estimator with the semiparametric presmoothed estimator it can be
seen that the later has less variability with more jump points, specially at the right tail. Differences
obtained for the estimates using the two methods are explained by the small sample size and the high
censoring percentage. For such cases we recommend the use of the presmoothed estimator.

It is worth mentioning that the condSURV package can be used to estimate other quantities
involving all possible combinations in the argument lower.tail. For example: P(T > y|T1 > 6, T2 ≤
32) or P(T > y|T1 ≤ 12, T2 ≤ 32).
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ggfortify: Unified Interface to Visualize
Statistical Results of Popular R Packages
by Yuan Tang, Masaaki Horikoshi, and Wenxuan Li

Abstract The ggfortify package provides a unified interface that enables users to use one line of code
to visualize statistical results of many R packages using ggplot2 idioms. With the help of ggfortify,
statisticians, data scientists, and researchers can avoid the sometimes repetitive work of using the
ggplot2 syntax to achieve what they need.

Background

R users have many plotting options to choose from, such as base graphics, grid graphics, and lattice
graphics (Sarkar, 2008). Each has their own unique customization and extensibility options. In recent
years, ggplot2 has emerged as a popular choice for creating visualizations (Wickham, 2009) and
provides a strong programming model based on a “grammar of graphics” which enables methodical
production of virtually any kind of statistical chart. The ggplot2 package makes it possible to describe
a wide range of graphics with succinct syntax and independent components and is based on an object-
oriented model that also makes it modular and extensible. It has become a widely used framework for
producing statistical graphics in R.

The distinct syntax of ggplot2 makes it a definite paradigm shift from base and lattice graphics
and presents a somewhat steep learning curve for those used to existing R charting idioms. Often times
users only want to quickly visualize some statistical results from key R packages, especially those
focusing on clustering and time series analysis. Many of these packages provide default base plot()
visualizations for the data and models they generate. These components require transformation before
using them in ggplot2 and each of those transformation steps must be replicated by others when they
wish to produce similar charts in their analyses. Creating a central repository for common/popular
transformations and default plotting idioms would reduce the amount of effort needed by all to create
compelling, consistent and informative charts. To achieve this, we provide a unified ggplot2 plotting
interface to many statistics and machine-learning packages and functions in order to help these users
achieve reproducibility goals with minimal effort.

The ggfortify (Horikoshi and Tang, 2015) package has a very easy-to-use and uniform program-
ming interface that enables users to use one line of code to visualize statistical results of many popular
R packages using ggplot2 as a foundation. This helps statisticians, data scientists, and researchers
avoid both repetitive work and the need to identify the correct ggplot2 syntax to achieve what they
need. With ggfortify, users are able to generate beautiful visualizations of their statistical results
produced by popular packages with minimal effort.

Software architecture

There are many ways to extend the functionality of ggplot2. One straightforward way is through the
use of S3 generic functions 1. Specifically, it is possible to provide custom functions for:

• autoplot(), which enables plotting a custom object with ggplot2, and

• fortify(), which enables converting a custom object to a tidy "data.frame"

The ggforitfy package uses this extensibility to provide default ggplot2 visualizations and data
transformations.

To illustrate this, we consider the implementation for fortify.prcomp() and autoplot.pca_common()
used as a basis of other PCA related implementations:

fortify.prcomp <- function(model, data = NULL, ...) {

if (is(model, "prcomp")) {
d <- as.data.frame(model$x)

1http://adv-r.had.co.nz/S3.html
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values <- model$x %*% t(model$rotation)
} else if (is(model, "princomp")) {
d <- as.data.frame(model$scores)
values <- model$scores %*% t(model$loadings[,])

} else {
stop(paste0("Unsupported class for fortify.pca_common: ", class(model)))

}

values <- ggfortify::unscale(values, center = model$center,
scale = model$scale)

values <- cbind_wraps(data, values)
d <- cbind_wraps(values, d)
post_fortify(d)

}

This S3 function recognizes "prcomp" objects and will extract the necessary components from them
such as the matrix whose columns contain the eigenvectors in "rotation" and rotated data in "x",
which can be drawn using autoplot() later on. The if() call is used here to handle different objects
that are of essentially the same principal components family since they can be handled in the exactly
same way once the necessary components are extracted from ggfortify.

The following autoplot.pca_common() function first calls fortify() to perform the component
extraction for different PCA-related objects, then performs some common data preparation for those
objects, and finally calls ggbiplot() internally to handle the actual plotting.

autoplot.pca_common <- function(object, data = NULL,
scale = 1.0, ...) {

plot.data <- ggplot2::fortify(object, data = data)
plot.data$rownames <- rownames(plot.data)

if (is_derived_from(object, "prcomp")) {
x.column <- "PC1"
y.column <- "PC2"
loadings.column <- "rotation"

lam <- object$sdev[1L:2L]
lam <- lam * sqrt(nrow(plot.data))

} else if (is_derived_from(object, "princomp")) {
...

} else {
stop(paste0("Unsupported class for autoplot.pca_common: ", class(object)))

}

# common and additional preparation before plotting
...

p <- ggbiplot(plot.data = plot.data,
loadings.data = loadings.data, ...)

return(p)
}

Once ggfortify is loaded, users have instant access to 38 pre-defined autoplot() functions and
36 pre-defined fortify() functions, enabling them to immediately autoplot() numerous types of
objects or pass those objects directly to ggplot2 for manual customization. Furthermore, ggfortify is
highly extensible and customizable and provides utility functions that make it easy for users to define
autoplot() and fortify() methods for their own custom objects.

To present a streamlined API, ggfortify groups common implementations for various object-types,
including:

• Time-series

• Principal components analysis (PCA), including clustering and multi-dimensional sacling (MDS)
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Table 1: Supported packages

package supported types package supported types
base "matrix", "table" sp "SpatialPoints",

"SpatialPolygons",
"Line", "Lines", "Polygon",
"Polygons", "SpatialLines",
"SpatialLinesDataFrame",
"SpatialPointsDataFrame",
"SpatialPolygonsDataFrame"

cluster "clara", "fanny", "pam" stats "HoltWinters", "lm",
"acf", "ar", "Arima",
"stepfun", "stl", "ts",
"cmdscale", "decomposed.ts",
"density", "factanal", "glm",
"kmeans", "princomp", "spec"

changepoint "cpt" survival "survfit", "survvfit.cox"
dlm "dlmFilter", "dlmSmooth" strucchange "breakpoints",

"breakpointsfull"
fGarch "fGARCH" timeSeries "timeSeries"
forecast "bats", "forecast", "ets",

"nnetar"
tseries "irts"

fracdiff "fracdiff" vars "varprd"
glmnet "cv.glmnet", "glmnet" xts "xts"
KFAS "KFS", "signal" zoo "zooreg"
lfda "lfda", "klfda", "self" MASS "isoMDS", "sammon"
maps "map"

• 1d/2d kernel density estimation (KDE)

• Survival analysis

• Cartography

A list of currently supported packages and classes can be found in Table 1. Additional packages
that are in development are not shown here but more than 50 object types are supported by ggfortify.
Feedback is being collected from users2 for possible bug fixes and future enhancements.

Illustrations

As previously stated, ggfortify provides methods that enable ggplot2 to work with objects in different
classes from different R packages. The following subsections illustrate how to use ggfortify to plot
results from several of these packages.

Principal components analysis

The ggfortify package defines both fortify() and autoplot() methods for the two core PCA func-
tions in the stats package: stats::prcomp() and stats::princomp(). The values returned by either
function can be passed directly to ggplot2::autoplot() as illustrated in the following code and in
Figure 1. Note that users can also specify a column to be used for the colour aesthetic.

library(ggfortify)
df <- iris[c(1, 2, 3, 4)]
autoplot(prcomp(df), data = iris, colour = "Species")

If label = TRUE is specified, as shown in Figure 2, ggfortify will draw labels for each data point.
Users can also specify the size of the labels via label.size. If shape = FALSE is specified, the shape of
the data points will be removed, leaving only the labels on the plot.

autoplot(prcomp(df), data = iris, colour = "Species", shape = FALSE, label.size = 3)

2https://github.com/sinhrks/ggfortify/issues
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Figure 1: PCA with colors for each class.

Figure 2: PCA with colors and labels for each class.
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The autoplot function returns the constructed ggplot2 object so users can apply additional ggplot2
code to further enhance the plot. For example:

autoplot(prcomp(df), data=iris, colour = "Species", shape = FALSE, label.size = 3)
+ labs(title = "Principal Component Analysis")

Users can also specify loadings = TRUE to draw the PCA eigen-vectors. More aesthetic options
such as size and colors of the eigen-vector labels can also be specified as shown in Figure 3 and the
following code:

autoplot(prcomp(df), data = iris, colour = "Species",
loadings = TRUE, loadings.colour = 'blue',
loadings.label = TRUE, loadings.label.size = 3)

Figure 3: PCA with eigen-vectors and labels.

Linear models

The ggfortify function is able able to interpret lm() fitted model objects and allows the user to select
the subset of desired plots through the which parameter (just like the plot.lm() function). The ncol
and nrow parameters also allow users to specify the number of subplot columns and rows, as seen in
Figure 4 and the following code:

par(mfrow = c(1, 2))
m <- lm(Petal.Width ~ Petal.Length, data = iris)
autoplot(m, which = 1:6, ncol = 3, label.size = 3)

Many plot aesthetics can be changed by using the appropriate named parameters. For example, the
colour parameter is for coloring data points, the smooth.colour parameter is for coloring smoothing
lines and the ad.colour parameter is for coloring the auxiliary lines, as demonstrated in Figure 5 and
the following code:

autoplot(m, which = 1:6, colour = "dodgerblue3",
smooth.colour = "black", smooth.linetype = "dashed",
ad.colour = "blue",
label.size = 3, label.n = 5, label.colour = "blue",
ncol = 3)

Clustering

The ggfortify package also supports various objects like "clara", "fanny", "pam", "kmeans", and
"lfda", from the cluster (Maechler et al., 2015) and lfda (Tang and Deane-Mayer, 2016) packages. It
automatically infers the object type and plots the results from those packages using ggplot2 with a
single function call. Users can specify frame = TRUE to easily draw the clustering boundaries as seen
in Figure 6 and the following code:
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Figure 4: Linear model results.

Figure 5: Linear model results with specified options.
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library(cluster)
autoplot(fanny(iris[-5], 3), frame = TRUE)

Figure 6: Clustering with boundaries.

As illustrated in Figure 7 with frame.type = "norm", by specifying frame.type users are able to
draw boundaries of different shapes. The different frame types can be found in frame.type option in
ggplot2::stat_ellipse().

autoplot(pam(iris[-5], 3), frame = TRUE, frame.type = "norm")

Figure 7: Clustering with boundaries in ellipse shape.

Time series

The ggfortify package makes it much easier to visualize time series objects using ggplot2 and provides
autoplot() and fortify() implementatons for ojects from many time series libraries such as zoo
(Zeileis and Grothendieck, 2005), xts (Ryan and Ulrich, 2014), and timeSeries (Team et al., 2015).

Here is an example of using ggfortify to plot the AirPassengers example time series data set
from the timeSeries package, specifying color via ts.colour, geometric shape via ts.geom as seen in
Figure 8, Figure 9, and Figure 10:
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library(timeSeries)
autoplot(as.timeSeries(AirPassengers), ts.colour = "dodgerblue3")

Figure 8: AirPassengers time series.

autoplot(AirPassengers, ts.geom = "bar", fill = "blue")

Figure 9: AirPassengers time series in bar shape.

autoplot(AirPassengers, ts.geom = "point", shape = 3)

Forecasting

Forecasting packages such as forecast (Hyndman, 2015), changepoint (Killick et al., 2016), struccha-
nge (Zeileis et al., 2002), and dlm (Petris, 2010), are popular choices for statisticians and researchers.
Predictions and statistical results from those packages can now be plotted automatically with ggplot2
using the functions provided by ggfortify. Note that in these cases the order of loading packages
matters. For example, since forecast has its own autoplot() function, if it is loaded before ggfortify,
the autoplot() function in forecast will be used instead.

The ggfortify function automatically plots the original and smoothed line from Kalman filter
function in the dlm package as shown in Figure 11 .
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Figure 10: AirPassengers time series in point shape.

library(dlm)
form <- function(theta){
dlmModPoly(order = 1, dV = exp(theta[1]), dW = exp(theta[2]))

}

model <- form(dlmMLE(Nile, parm = c(1, 1), form)$par)
filtered <- dlmFilter(Nile, model)

autoplot(filtered)

Figure 11: Smoothed time series by Kalman filter.

The ggfortify package automatically plots the change points with optimal positioning for the
AirPassengers data set found in the changepoint package using the cpt.meanvar() function, shown
in Figure 12 .

library(changepoint)
autoplot(cpt.meanvar(AirPassengers))

As well, ggfortify plots the optimal break points where possible structural changes happen in the
regression models built by the strucchange::breakpoints(), shown in Figure 13.

library(strucchange)
autoplot(breakpoints(Nile ~ 1), ts.colour = "blue", ts.linetype = "dashed",

cpt.colour = "dodgerblue3", cpt.linetype = "solid")
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Figure 12: Change points with optimal positioning for AirPassengers.

Figure 13: Optimal break points with possible structural changes.

Future development

We welcome suggestions and contributions from others. Providing default autoplot() and fortify()
methods for additional R objects means researchers will spend less time focusing on ggplot2 plotting
details and more time on their work and research. We are have provided a Github repository https:
//github.com/sinhrks/ggfortify where users can test out development versions of the package and
provide feature requests, feedback and bug reports. We encourage you to submit your issues and pull
requests to help us make this package better for the R community.

Summary

The ggfortify package provides a very simple interface to streamline the process of plotting statistical
results from many popular R packages. Users can spend more time and focus on their analyses instead
of figuring out the details of how to visualize their results in ggplot2.

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

https://github.com/sinhrks/ggfortify
https://github.com/sinhrks/ggfortify


CONTRIBUTED RESEARCH ARTICLES 484

Acknowledgement

We sincerely thank all developers for their efforts behind the packages that ggfortify depend on,
namely, dplyr (Wickham and Francois, 2015), tidyr (Wickham, 2016b), gridExtra (Auguie, 2016), and
scales (Wickham, 2016a).

Bibliography

B. Auguie. gridExtra: Miscellaneous Functions for "Grid" Graphics, 2016. URL http://CRAN.R-project.
org/package=gridExtra. R package version 2.2.1. [p484]

M. Horikoshi and Y. Tang. ggfortify: Data Visualization Tools for Statistical Analysis Results, 2015. URL
http://CRAN.R-project.org/package=ggfortify. R package version 0.1.0. [p474]

R. J. Hyndman. forecast: Forecasting functions for time series and linear models, 2015. URL http://github.
com/robjhyndman/forecast. R package version 6.2. [p481]

R. Killick, K. Haynes, and I. A. Eckley. changepoint: An R package for changepoint analysis, 2016. URL
http://CRAN.R-project.org/package=changepoint. R package version 2.2.1. [p481]

M. Maechler, P. Rousseeuw, A. Struyf, M. Hubert, and K. Hornik. cluster: Cluster Analysis Basics and
Extensions, 2015. R package version 2.0.3 — For new features, see the ’Changelog’ file (in the package
source). [p478]

G. Petris. An R package for dynamic linear models. Journal of Statistical Software, 36(12):1–16, 2010.
URL http://www.jstatsoft.org/v36/i12/. [p481]

J. A. Ryan and J. M. Ulrich. xts: eXtensible Time Series, 2014. URL http://CRAN.R-project.org/
package=xts. R package version 0.9-7. [p480]

D. Sarkar. Lattice: Multivariate Data Visualization with R. Springer, New York, 2008. URL http:
//lmdvr.r-forge.r-project.org. ISBN 978-0-387-75968-5. [p474]

Y. Tang and Z. Deane-Mayer. lfda: Local Fisher Discriminant Analysis, 2016. URL https://github.com/
terrytangyuan/lfda. R package version 1.1.1. [p478]

R. C. Team, D. Wuertz, T. Setz, and Y. Chalabi. timeSeries: Rmetrics - Financial Time Series Objects, 2015.
URL http://CRAN.R-project.org/package=timeSeries. R package version 3022.101.2. [p480]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer Science & Business Media, 2009.
[p474]

H. Wickham. scales: Scale Functions for Visualization, 2016a. URL http://CRAN.R-project.org/
package=scales. R package version 0.4.0. [p484]

H. Wickham. tidyr: Easily Tidy Data with ‘spread()‘ and ‘gather()‘ Functions, 2016b. URL http://CRAN.R-
project.org/package=tidyr. R package version 0.4.1. [p484]

H. Wickham and R. Francois. dplyr: A Grammar of Data Manipulation, 2015. URL http://CRAN.R-
project.org/package=dplyr. R package version 0.4.3. [p484]

A. Zeileis and G. Grothendieck. zoo: S3 infrastructure for regular and irregular time series. Journal of
Statistical Software, 14(6):1–27, 2005. URL http://www.jstatsoft.org/v14/i06/. [p480]

A. Zeileis, F. Leisch, K. Hornik, and C. Kleiber. strucchange: An R package for testing for structural
change in linear regression models. Journal of Statistical Software, 7(2):1–38, 2002. URL http:
//www.jstatsoft.org/v07/i02/. [p481]

Yuan Tang
Uptake Technologies, Inc.
600 West Chicago Ave, Chicago, IL 60654
United States
terrytangyuan@gmail.com

Masaaki Horikoshi
Accenture Japan Ltd.

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=gridExtra
https://CRAN.R-project.org/package=scales
http://CRAN.R-project.org/package=gridExtra
http://CRAN.R-project.org/package=gridExtra
http://CRAN.R-project.org/package=ggfortify
http://github.com/robjhyndman/forecast
http://github.com/robjhyndman/forecast
http://CRAN.R-project.org/package=changepoint
http://www.jstatsoft.org/v36/i12/
http://CRAN.R-project.org/package=xts
http://CRAN.R-project.org/package=xts
http://lmdvr.r-forge.r-project.org
http://lmdvr.r-forge.r-project.org
https://github.com/terrytangyuan/lfda
https://github.com/terrytangyuan/lfda
http://CRAN.R-project.org/package=timeSeries
http://CRAN.R-project.org/package=scales
http://CRAN.R-project.org/package=scales
http://CRAN.R-project.org/package=tidyr
http://CRAN.R-project.org/package=tidyr
http://CRAN.R-project.org/package=dplyr
http://CRAN.R-project.org/package=dplyr
http://www.jstatsoft.org/v14/i06/
http://www.jstatsoft.org/v07/i02/
http://www.jstatsoft.org/v07/i02/
mailto:terrytangyuan@gmail.com


CONTRIBUTED RESEARCH ARTICLES 485

Akasaka Intercity 1-11-44 Akasaka Minato-ku, Tokyo
Japan
sinhrks@gmail.com

Wenxuan Li
Department of Agricultural Economics, Purdue University
403 W State Street, West Lafayette, IN, 47907
United States
wenxuan.tess@gmail.com

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

mailto:sinhrks@gmail.com
mailto:wenxuan.tess@gmail.com


CONTRIBUTED RESEARCH ARTICLES 486

Measurement Units in R
by Edzer Pebesma, Thomas Mailund, and James Hiebert

Abstract We briefly review SI units, and discuss R packages that deal with measurement units, their
compatibility and conversion. Built upon udunits2 and the UNIDATA udunits library, we introduce
the package units that provides a class for maintaining unit metadata. When used in expression, it
automatically converts units, and simplifies units of results when possible; in case of incompatible
units, errors are raised. The class flexibly allows expansion beyond predefined units. Using units may
eliminate a whole class of potential scientific programming mistakes. We discuss the potential and
limitations of computing with explicit units.

Introduction

Two quotes from Cobb and Moore (1997) – “Data are not just numbers, they are numbers with a context”
and “in data analysis, context provides meaning” – illustrate that for a data analysis to be meaningful,
knowledge of the data’s context is needed. Pragmatic aspects of this context include who collected or
generated the data, how this was done, and for which purpose (Scheider et al., 2016); semantic aspects
concern what the data represents: which aspect of the world do the data refer to, when and where
were they measured, and what a value of ‘1’ means.

R does allow for keeping some context with data, for instance

• "data.frame" columns must have and "list" elements may have names that can be used to
describe context, using freetext

• "matrix" or "array" objects may have dimnames

• for variables of class "factor" or "ordered", levels may indicate, using freetext, the categories
of nominal or ordinal variables

• "POSIXt" and "Date" objects specify how numbers should be interpreted as time or date, with
fixed units (second and day, respectively) and origin (Jan 1, 1970, 00:00 UTC)

• "difftime" objects specify how time duration can be represented by numbers, with flexible
units (secs, mins, hours, days, weeks); lubridate (Grolemund and Wickham, 2011) extends some
of this functionality.

Furthermore, if spatial objects as defined in package sp (Pebesma and Bivand, 2005) have a proper
coordinate reference system set, they can be transformed to other datums, or converted to various flat
(projected) representations of the Earth (Iliffe and Lott, 2008).

In many cases however, R drops contextual information. As an example, we look at annual global
land-ocean temperature index1 since 1960:

> temp_data = subset(read.table("647_Global_Temperature_Data_File.txt",
+ header=TRUE)[1:2], Year >= 1960)
> temp_data$date = as.Date(paste0(temp_data$Year, "-01-01"))
> temp_data$time = as.POSIXct(temp_data$date)
> Sys.setenv(TZ="UTC")
> head(temp_data, 3)

Year Annual_Mean date time
81 1960 -0.03 1960-01-01 1960-01-01
82 1961 0.05 1961-01-01 1961-01-01
83 1962 0.02 1962-01-01 1962-01-01
> year_duration = diff(temp_data$date)
> mean(year_duration)
Time difference of 365.2545 days

Here, the time difference units are reported for the difftime object year_duration, but if we would
use it in a linear algebra operation

> year_duration %*% rep(1, length(year_duration)) / length(year_duration)
[,1]

[1,] 365.2545

the unit is dropped. Similarly, for linear regression coefficients we see

1data from http://climate.nasa.gov/vital-signs/global-temperature/
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Base quantity SI base unit
Name Symbol Name Symbol
length l, x, r, etc. meter m
mass m kilogram kg
time, duration t second s
electric current I, i ampere A
thermodynamic temperature T kelvin K
amount of substance n mole mol
luminous intensity Iv candela cd

Table 1: base quantities, SI units and their symbols (from International Bureau of Weights and
Measures et al. (2001), p. 23)

> coef(lm(Annual_Mean ~ date, temp_data))
(Intercept) date
1.833671e-02 4.364763e-05
> coef(lm(Annual_Mean ~ time, temp_data))
(Intercept) time
1.833671e-02 5.051809e-10

where the unit of change is in degrees Celsius but either per day (date) or per second (time). For purely
mathematical manipulations, R often strips context from numbers when it is carried in attributes, the
linear algebra routines being a prime example.

Most variables are somehow attributed with information about their units, which specify what the
value 1 of this variable represents. This may be counts of something, e.g. ‘1 apple’, but it may also
refer to some physical unit, such as distance in meter. This article discusses how strong unit support
can be introduced in R.

SI

The BIPM (Bureau International des Poids et Mesures) is the “the intergovernmental organization through
which Member States act together on matters related to measurement science and measurement standards.
Its recommended practical system of units of measurement is the International System of Units (Système
International d’Unités, with the international abbreviation SI)2”. International Bureau of Weights and
Measures et al. (2001) describe the SI units, where, briefly, SI units

• consist of seven base units (length, mass, time & duration, electric current, thermodynamic
temperature, amount of substance, and luminous intensity), each with a name and abbreviation
(Table 1)

• consist of derived units that are formed by products of powers of base units, such as ‘m/s2’, many
of which have special names and symbols (e.g. angle: 1 rad = 1 m/m; force: 1 N = 1 m kg s−2)

• consist of coherent derived units when derived units include no numerical factors other than one
(with the exception of ‘kg’3); an example of a coherent derived unit is 1 watt = 1 joule per 1
second,

• may contain SI prefixes (k = kilo for 103, m = milli for 10−3, etc.)

• contain special quantities where units disappear (e.g., m/m) or have the nature of a count, in
which cases the unit is ‘1’.

Related work in R

Several R packages provide unit conversions. For instance, measurements (Birk, 2016) provides a
collection of tools to make working with physical measurements easier. It converts between metric
and imperial units, or calculates a dimension’s unknown value from other dimensions’ measurements.
It does this by the conv_unit function:

2http://www.bipm.org/en/measurement-units/
3as a base unit, kg can be part of coherent derived units
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> library(measurements)
> conv_unit(2.54, "cm", "inch")
[1] 1
> conv_unit(c("101 44.32","3 19.453"), "deg_dec_min", "deg_min_sec")
[1] "101 44 19.2000000000116" "3 19 27.1800000000003"
> conv_unit(10, "cm_per_sec", "km_per_day")
[1] 8.64

but uses for instance kph instead of ‘km_per_hour’, and then ‘m3_per_hr’ for flow – unit names seem to
come from convention rather than systematic composition. Object conv_unit_options contains all
173 supported units, categorized by the physical dimension they describe:

> names(conv_unit_options)
[1] "acceleration" "angle" "area" "coordinate" "count"
[6] "duration" "energy" "flow" "length" "mass"
[11] "power" "pressure" "speed" "temperature" "volume"
> conv_unit_options$volume
[1] "ul" "ml" "dl" "l" "cm3" "dm3"
[7] "m3" "km3" "us_tsp" "us_tbsp" "us_oz" "us_cup"
[13] "us_pint" "us_quart" "us_gal" "inch3" "ft3" "mi3"
[19] "imp_tsp" "imp_tbsp" "imp_oz" "imp_cup" "imp_pint" "imp_quart"
[25] "imp_gal"

Function conv_dim allows for the conversion of units in products or ratios, e.g.

> conv_dim(x = 100, x_unit = "m", trans = 3, trans_unit = "ft_per_sec", y_unit = "min")
[1] 1.822689

computes how many minutes it takes to travel 100 meters at 3 feet per second.

Package NISTunits (Gama, 2014) provides fundamental physical constants (Quantity, Value,
Uncertainty, Unit) for SI and non-SI units, plus unit conversions, based on the data from NIST
(National Institute of Standards and Technology). The package provides a single function for every
unit conversion; all but 5 from its 896 functions are of the form ‘NISTxxxTOyyy’ where ‘xxx’ and ‘yyy’
refer to two different units. For instance, converting from W m−2 to W inch−2 is done by

> library(NISTunits)
> NISTwattPerSqrMeterTOwattPerSqrInch(1:5)
[1] 0.00064516 0.00129032 0.00193548 0.00258064 0.00322580

Both measurements and NISTunits are written entirely in R.

UNIDATA’s udunits library and the udunits2 R package

Udunits, developed by UCAR/UNIDATA, advertises itself on its web page4 as: “The udunits package
supports units of physical quantities. Its C library provides for arithmetic manipulation of units and for
conversion of numeric values between compatible units. The package contains an extensive unit database, which
is in XML format and user-extendable. The R package udunits2 (Hiebert, 2015) provides an R level
interface to the most important functions in the C library.

The functions provided by udunits2 are

> library(udunits2)
> ls(2)
[1] "ud.are.convertible" "ud.convert" "ud.get.name"
[4] "ud.get.symbol" "ud.have.unit.system" "ud.is.parseable"
[7] "ud.set.encoding"

Dropping the ud prefix, is.parseable verifies whether a unit is parseable

> ud.is.parseable("m/s")
[1] TRUE
> ud.is.parseable("q")
[1] FALSE

are.convertible specifies whether two units are convertible

4https://www.unidata.ucar.edu/software/udunits/
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> ud.are.convertible("m/s", "km/h")
[1] TRUE
> ud.are.convertible("m/s", "s")
[1] FALSE

convert converts units that are convertible, and throws an error otherwise

> ud.convert(1:3, "m/s", "km/h")
[1] 3.6 7.2 10.8

and get.name, get.symbol and set.encoding get name, get symbol or modify encoding of the charac-
ter unit arguments.

> ud.get.name("kg")
[1] "kilogram"
> ud.get.symbol("kilogram")
[1] "kg"
> ud.set.encoding("utf8")
NULL

Unlike the measurements and NISTunits, udunits2 parses units as expressions, and bases its
logic upon the convertibility of expressions, rather than the comparison of fixed strings:

> m100_a = paste(rep("m", 100), collapse = "*")
> m100_b = "dm^100"
> ud.is.parseable(m100_a)
[1] TRUE
> ud.is.parseable(m100_b)
[1] TRUE
> ud.are.convertible(m100_a, m100_b)
[1] TRUE

This has the advantage that through complex computations, intermediate objects can have units that
are arbitrarily complex, and that can potentially be simplified later on. It also means that the package
practically supports an unlimited amount of derived units.

Udunits versus the Unified Code for Units of Measure (UCUM)

Another set of encodings for measurement units is the Unified Code for Units of Measure (UCUM,
Schadow and McDonald (2009)). A dedicated web site5 describes the details of the differences between
udunits and UCUM, and provides a conversion service between the two encoding sets.

The UCUM website refers to some Java implementations, but some of the links seem to be dead.
UCUM is the preferred encoding for standards from the Open Geospatial Consortium. udunits on the
other hand is the units standard of choice by the climate science community, and is adopted by the CF
(Climate and Forecast) conventions, which mostly uses NetCDF. NetCDF (Rew and Davis, 1990) is a
binary data format that is widely used for atmospheric and climate model predictions.

The udunits library is a C library that has strong support from UNIDATA, and we decided to build
our developments on this, rather than on Java implementations of UCUM with a less clear provenance.

Handling data with units in R: the units package

The units package builds "units" objects from scratch, where m, created by

> library(units)
> m = make_unit("m")
> str(m)
Class 'units' atomic [1:1] 1
..- attr(*, "units")=List of 2
.. ..$ numerator : chr "m"
.. ..$ denominator: chr(0)
.. ..- attr(*, "class")= chr "symbolic_units"

represents ‘1 m’, one meter. Other length values are obtained by using this unit in an expression:

5http://coastwatch.pfeg.noaa.gov/erddap/convert/units.html
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> x1 = 1:5 * m

As an alternative to using make_unit, we can retrieve units directly from the ud_units database, which
is part of units, and was derived from the xml units database that is part of udunits. Two ways of
doing this are

> x2 = 1:5 * ud_units$m
> identical(x1, x2)
[1] TRUE
> x3 = 1:5 * with(ud_units, m)
> identical(x1, x3)
[1] TRUE

Although one could attach ud_units to use the units directly, there are over 3000 and this would not
only clobber the namespace but also lead to conflicts, e.g. for T (Tesla, TRUE) or in (inch, reserved R
language element). The last form using with has the advantage that it can take direct expressions:

> with(ud_units, m/s^2)
1 m/s^2

Several manipulations with "units" objects will now be illustrated.

> m = with(ud_units, m)
> km = with(ud_units, km)
> cm = with(ud_units, cm)
> s = with(ud_units, s)
> h = with(ud_units, h)

Manipulations that do not involve unit conversion are for instance addition:

> x = 1:3 * m/s
> x + 2 * x
Units: m/s
[1] 3 6 9

Explicit unit conversion is done by assigning new units:

> units(x) = cm/s
> x
Units: cm/s
[1] 100 200 300
> as.numeric(x)
[1] 100 200 300

similar to the behaviour of "difftime" objects, this modifies the numeric values without modifying
their meaning (what the numbers refer to).

When mixing units in sums, comparisons or concatenation, units are automatically converted to
those of the first argument:

> y = 1:3 * km/h
> x + y
Units: cm/s
[1] 127.7778 255.5556 383.3333
> y + x
Units: km/h
[1] 4.6 9.2 13.8
> x < y
[1] FALSE FALSE FALSE
> c(y, x)
Units: km/h
[1] 1.0 2.0 3.0 3.6 7.2 10.8

where c(y,x) concatenates y and x after converting x to the units of y. Derived units are created where
appropriate:

> x * y
Units: cm*km/h/s
[1] 100 400 900
> x^3
Units: cm^3/s^3
[1] 1.0e+06 8.0e+06 2.7e+07
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and meaningful error messages appear when units are not compatible:

> e = try(z <- x + x * y)
> attr(e, "condition")[[1]]
[1] "cannot convert cm*km/h/s into cm/s"

The full set of methods and method groups for units objects is shown by

> methods(class = "units")
[1] as.data.frame c diff format hist
[6] Math mean median Ops plot

[11] print quantile Summary [ units<-
[16] units weighted.mean
see '?methods' for accessing help and source code

where the method groups

• Ops include operations that require compatible units, converting when necessary (+, -, ==, !=, <,
>, <=, >=), and operations that create new units (*, /, ˆ and **),

• Math include abs, sign, floor, ceiling, trunc, round, signif, log, cumsum, cummax, cummin, and

• Summary include sum, min, max and range, and all convert to the unit of the first argument.

When possible, new units are simplified:

> a = 1:10 * m/s
> b = 1:10 * h
> a * b
Units: m
[1] 3600 14400 32400 57600 90000 129600 176400 230400 291600 360000
> make_unit(m100_a) / make_unit(m100_b)
1e+100 1

Units are printed as simple R expressions, e.g.

> m^5/s^4
1 m^5/s^4

Another way to print units commonly seen in Climate and Forecast Conventions6 is ‘m2 s-1’ for m2/s.
These are not R expressions, but as they are understood by udunits, they can be converted (by udunits)
but not simplified (by R):

> x = make_unit("m2 s-1")
> y = km^2/h
> z = m^2/s
> x + y
278.7778 (m2 s-1)
> x/y
1 h*(m2 s-1)/km^2
> z/y
0.0036 1

However, parse_unit parses such units, and as_cf returns such unit strings from "units" objects:

> parse_unit("m2 s-1")
1 m^2/s
> as_cf(m^2*s^-1)
[1] "m2 s-1"

The plot and hist methods add units to default axis labels, an example is shown in Figure 1. For
ggplot2 plots (Wickham, 2009), automatic unit placement in default axis label is provided by package
ggforce (Pedersen, 2016); demo(ggforce) gives an example.

Automatic conversion between "units" and "difftime" is provided:

> (dt = diff(Sys.time() + c(0, 1, 1+60, 1+60+3600))) # class difftime
Time differences in secs
[1] 1 60 3600
> (dt.u = as.units(dt))

6CF, http://cfconventions.org/Data/cf-standard-names/34/build/cf-standard-name-table.html
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Figure 1: Plot of 1/consumption against 1/displacement of dataset mtcars, illustrating automatic
units in default axis labels (after conversion to SI) for base plot (left) and ggplot (right); demo(ggforce)
illustrates how these plots are generated.

Units: s
[1] 1 60 3600
> identical(as.dt(dt.u), dt) # as.difftime is not a generic
[1] TRUE

Objects of class "units" can be used as columns in "data.frame" objects, as well as in "tbl_df"
(Wickham et al., 2016).

Discussion and conclusions

The units R package provides a new class, "units", for numeric data with associated measurement
units. Operations on objects of this class retain the unit metadata and provide automated dimensional
analysis: dimensions are taken into consideration in computations and comparisons. Combining
different units that are compatible triggers automatic unit conversion, derived units are automatically
generated and simplified where possible, and meaningful error messages are given when a user tries
to add objects with incompatible units. This verifies that computations are not only syntactically
and numerically allowed, but also semantically, and in the case of physical units, physically allowed,
which may support code verification and provenance tracking. Using this package may eliminate a
whole class of potential scientific programming mistakes.

Where the R packages measurements and NISTunits provide conversion between a fixed number
of units, with the help of the udunits library and unit database R package units allows for arbitrarily
complex derived units. By treating units as expressions it can derive, convert and simplify units. In
addition, beyond the SI units packaged, units handles user-defined units not supported by udunits.

Data in "units" vectors can be stored as columns in "data.frame" or "tbl_df" objects, and can
be converted to and from "difftime". When "units" objects have associated time and location
information, they could be stored in spatial or spatio-temporal objects provided by sp or spacetime
(Pebesma, 2012) as these store attribute data in "data.frame" slots, but for instance not in "zoo"
(Zeileis and Grothendieck, 2005) or "xts" (Ryan and Ulrich, 2014) objects, as these latter two set the
class attribute of a vector or matrix.

Despite all standardization efforts, units may still be ambiguous, or subject to interpretation. For
instance for the duration of one year NISTunits or udunits2 give us an answer that depends on
whether we want a common, leap, Gregorian, Julian, tropical or siderial year (Lang (2006), see also
demo(year)). This illustrates that those who apply unit conversion should be aware of possible pitfalls.
Support for calendars in udunits seems not as well developed as in R.

Future work includes extending packages that read external data from formats, databases or
interfaces with support for measurement unit information into R, preserving the measurement unit
information. Examples would be interfaces to HDF5 (e.g., h5, Annau (2016)), RNetCDF (Michna and
Woods, 2016) or sos4R (Nüst et al., 2011). It would be nice to see units of measurements propagate
into units of regression coefficient estimates.
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mctest: An R Package for Detection of
Collinearity among Regressors
by Muhammad Imdadullah, Muhammad Aslam, and Saima Altaf

Abstract It is common for linear regression models to be plagued with the problem of multicollinearity
when two or more regressors are highly correlated. This problem results in unstable estimates of
regression coefficients and causes some serious problems in validation and interpretation of the model.
Different diagnostic measures are used to detect multicollinearity among regressors. Many statistical
software and R packages provide few diagnostic measures for the judgment of multicollinearity. Most
widely used diagnostic measures in these software are: coefficient of determination (R2), variance
inflation factor/tolerance limit (VIF/TOL), eigenvalues, condition number (CN) and condition index
(CI) etc. In this manuscript, we present an R package, mctest, that computes popular and widely used
multicollinearity diagnostic measures. The package also indicates which regressors may be the reason
of collinearity among regressors.

Brief introduction of collinearity

Consider the conventional multiple linear regression equation

y = Xβ + u,

where y is an n× 1 vector of observation on response variable, X is known design matrix of order
n× p, β is an p× 1 vector of unknown parameters and u is an n× 1 vector of random errors with
mean zero and variance σ2 In, where In is an identity matrix of order n.

One of the important assumptions of the classical linear regression model is that there is no exact
collinearity among the regressors otherwise, the issue is referred to as multicollinearity. Generally,
the problem of multicollinearity may also refer to have not only exact linear relationship but also
high correlations among some or all regressors of a regression model under study. Strictly speaking,
multicollinearity is usually refers to the existence of more than one exact linear relationship among
regressors, while collinearity refers to the existence of a single linear relationship among regressors.
However, in general, the term multicollinearity may be referred to both the cases. Data collection
method, constraints on the fitted regression model, model specification error, overdefined model,
some common trend in time series data and naturally correlated data may be some potential sources
of multicollinearity.

The problem of multicollinearity has potentially serious effect on the regression estimates such
as implausible coefficient signs, impossible inversion of matrix X′X as it becomes either singular (in
the case of perfect multicollinearity) or near to singular (in the case of near to perfect multicollinear-
ity), large magnitude of coefficients in absolute value, large variance or standard errors with wider
confidence intervals and small t-ratios. The ordinary least squared (OLS) estimators and standard
errors also become sensitive to small change in data when regressors are collinear to each other (see
Belsley et al., 1980; Dorsett et al., 1983; Farrar and Glauber, 1967; Gunst and Mason, 1977; Johnston,
1963; Mason et al., 1975). On the basis of theoretical considerations, these indications signify the need
for detection of multicollinearity among regressors (Belsley et al., 1980; Greene, 2002; Younger, 1979).

This paper presents the overview of existing collinearity diagnostic measures along with commonly
used threshold values for the judgment of existence of collinearity among regressors. These diagnostic
measures are being implemented in R with the proposed mctest package (Imdadullah and Aslam,
2016).

Collinearity diagnostic measures

Several numerical methods for the detection of collinearity are available in the existing literature
proposed or discussed by various authors e.g., (see Belsley et al., 1980; Curto and Pinto, 2011; Kout-
soyiannis, 1977; Kovács et al., 2005; Marquardt, 1970; Montgomery and Peck, 1982, etc.). Widely
used and the most suggested collinearity diagnostic measures are values of pair-wise correlations,
R-squared value (c.f. Gujarati and Porter (2008)), variance inflation factor (VIF), tolerance limit (TOL)
(Kutner et al., 2004; Marquardt, 1970), eigenvalues (Kendall, 1957; Silvey, 1969), condition number
(CN) and condition index (CI) (Belsley et al., 1980), Leamer’s method (Greene, 2002), Kleins rule
(Klein, 1962), three tests proposed by Farrar and Glauber (Farrar and Glauber, 1967), the Red indicator
(Kovács et al., 2005), and Theil’s measure (Theil, 1971). However, none of these can be regarded as the
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best choice for the detection of collinearity (Kovács et al., 2005).

Following are the diagnostics that can be considered as the classical symptoms of harmfulness
of multicollinearity. (i) If zero-order (pair-wise) correlation coefficient between two regressors is
high (say >0.8) then multicollinearity may be a serious problem (Gujarati and Porter, 2008; Maddala,
1988). However, it is not sufficient and necessary condition for the detection of multicollinearity
because a linear relation involves many of the regressors, therefore it may not be possible to detect
such a relation with a simple correlation or pairs-wise plot (Chatterjee and Hadi, 2006; Judge et al.,
1985). (ii) High R2 (say >0.8) may indicate the problem of multicollinearity Gujarati and Porter (2008).
In most of the cases, overall F-test rejects the null hypothesis of partial slopes for being zero, but
some or all individual t-ratios of partial slopes may be non-significant. Therefore, a model having
no multicollinearity problem should have high R2 and larger (significant) t-ratios of partial slopes.
(iii) High variance of regression coefficients’ estimates and low t-ratios also suggest the existence of
multicollinearity.

We classified other widely used collinearity diagnostics as overall and individual measures of
collinearity. This classification is due to the fact that there are some diagnostic measures resulting
in a single number, while other yield as many quantities as the number of regressors in the model.
The overall diagnostic measures help to get an idea about only the existence of collinearity and they
do not tell which regressor may be the reason of collinearity, while the individual measures point
out the regressors causing collinearity. Since no specific collinearity diagnostic measure is superior
and each of these measures has different collinearity detection criterion (threshold value) proposed
by various authors in the textbooks and research articles, there is need to study multiple collinearity
diagnostics. That is, there is no clear-cut criterion for evaluating multicollinearity in linear regression
models. Similarly, some diagnostic measures are statistically criticized such as tests proposed by Farrar
and Glauber (1967) while threshold values of many other diagnostic measures are subjective in nature
as no unique or standard critical values exist for these measures. Moreover, different collinearity
detection methods are not comparable with each other. That is why, many regression analysts often
rely on more than one collinearity diagnostic measures.

Following is the list of overall and individual collinearity diagnostic measures along with short
description, formula, detection criterion (threshold value) and reference for each measure. These
diagnostic measures will assist the researchers in determining when and where some corrective
action is necessary. According to Belsley et al. (1980), the investigations concerning the presence of
multicollinearity have been based on judging the magnitudes of various diagnostic measures.

Overall collinearity diagnostic measures

• Determinant:
The matrix X′X will be singular if it contains linearly dependent columns or rows. Therefore,
determinant of normalized correlation matrix (R = X′X) without intercept can be used to
indicate existence of collinearity among regressors. However, determinant does not provide
information about interdependence among regressors, it only provides information about
singularity (departure from orthogonality) of a correlation matrix. The determinant of X′X on
the scale is 0 ≤ |X′X| ≤ 1 (Cooley and Lohnes, 1971). If |X′X| ∼ 0, then collinearity exists
among regressors (Asteriou and Hall, 2007).

• R-squared:
Coefficient of determination (R2) from regression of all x on y. The R2 is a monotonic non-
decreasing function of number of regressors included in the model, that is, R2 indicates how
well the regression fits the data (Gujarati and Porter, 2008; Stock and Watson, 2010). On the other
hand, higher the R2 values, the more chances of regressors to be plagued with multicollinearity
(Asteriou and Hall, 2007; Gujarati and Porter, 2008; Maddala, 1988), since R2 is affected by
regressors sharing their variances (Gujarati and Porter, 2008; Maddala, 1988).

• Farrar χ2:
It is the Chi-square test for detecting the strength of collinearity over the complete set of

regressors. χ2 = −
[
n− 1− 1

6(2p+5)

]
× loge [X

′X] ∼ ψ2
v= 1

2 p(p−1)
. Collinearity exists among

regressors if χ2 > χ2
1
2 p(p−1)

(Farrar and Glauber, 1967).

• Condition index:

CIj =

√
max(λj)

λj
j = 1, 2, · · · , p; λ1 ≥ λ2 · · · ≥ λp. Collinearity exists if any of CIj > 10, 15, or

30 (Belsley et al., 1980; Chatterjee and Hadi, 2006; Maddala, 1988).

• Sum of reciprocal of eigenvalues:

In an orthogonal system
p
∑

j=1

1
λj

= p, therefore, for a sample based correlation matrix R with
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eigenvalues λj comparing p with
p
∑

j=1

1
λ can be used to indicate collinearity. If

p
∑

j=1

1
λj

is (say) five

times larger than the number of regressors used in the model then collinearity exists among
regressors (Chatterjee and Price, 1977; Dillon and Goldstein, 1984).

• Theil’s indicator:
Theil (1971) proposed a measure of collinearity based on an incremental contribution (R2 − R2

j )

to the squared multiple correlation, where R2
j is the R2 from auxiliary regression of regressors.

m = R2 −
p
∑

i=1
(R2 − R2

−i). If m = 0 then all X’s are mutually uncorrelated (no redundancy

exists) as the incremental contribution all add up to R2. However, if m ∼ 1 then collinearity
exists among regressors.

• Red indicator:
Kovács et al. (2005) presented a synthetic and new normalized indicator for diagnostic of
collinearity by using eigenvalues or quantifying the average correlation of the data. Red =√√√√ p

∑
j=1
(λj−1)

2

p√
p−1

. If value of the Red indicator is zero (Red = 0) then it indicates the absence of

redundancy and value near to 1 (Red ∼ 1) indicates maximum redundancy (Red ∼ 1).

Individual collinearity diagnostic measures

• Klein’s rule:
If Rj from the auxiliary regression is greater than the overall R2 (obtained from the regression
of y on all the regressors) then multicollinearity may be troublesome. The decision rule for
detection of collinearity is, R2

xj .x1,x2,··· ,xp
> R2

y.x1,x2,··· , xp
(Klein, 1962).

• VIF and TOL:
VIF measures how much variances of the estimated regression coefficients are increased over
the case of no correlation among p regressors. The diagonal elements of (X′X)−1 matrix are
considered as very important in detecting multicollinearity. VIFj = (X′X)

−1
jj = 1

1−R2
j

and

TOLj =
1

VIFj
= 1− R2

j .

The criticism on VIF is that var(β̂ j) = σ2

∑ x2
j
VIFj depends on σ2, ∑ x2

j and VIF, which shows

that a high VIF can be counterbalanced by a low σ2 or high ∑ x2
j . So a high VIF is neither a

necessary nor a sufficient measure of multicollinearity (Gujarati and Porter, 2008). The value of
VIF > 3, 5, 10 or value of TOL ∼ 0 indicates existence of collinearity among regressors (Kutner
et al., 2004; Marquardt, 1970).

• Eigenvalues:
Kendall (1957) and Silvey (1969) suggested the use of eigenvalues of X′X (correlation matrix) to
check the presence of multicollinearity and set the criteria that small eigenvalues (near to zero)
are indication of high collinearity, however, they did not mentioned how much small it should
be. One or more smaller eigenvalues of X′X or its related correlation matrix indicate collinearity
(Kendall, 1957; Silvey, 1969).

• CVIF:
Curto and Pinto (2011) proposed new measure of multicollinearity to evaluate the impact of
the correlation among regressors in the variance of the OLSEs. CVIFj = VIFj × 1−R2

1−R2
0

where,

R2
0 = R2

yx1
+ R2

yx2
+ · · ·+ R2

yxp
. Collinearity exists if CVIFj ≥ 10 (Curto and Pinto, 2011).

• Leamer’s method:
Leamer (in Greene (2002)) suggested a measure of the effect of multicollinearity for the jth

variable; Cj =

{ (
∑n

i (Xij−X j)
2
)−1

(X′X)−1
jj

}( 1
2 )

. This measure is the square root of the ratio of variances

of estimated coefficients (β̂ j) when estimated without and with the other regressors. If Xj is

uncorrelated with the other regressors Cj would be 1 otherwise will be equal to (1− R2
j )

1
2 , i.e.,

Cj ∼ 0 indicates existence of collinearity among regressors.

• F and R2 relation:
The relationship of F-test and R2 from regressing Xj on the other remaining regressors can

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 498

be used to detect multicollinearity. The relationship is described as: Fj =

R2
xj ,x1,··· ,xp

p−2
1−R2

xj ,x1,··· ,xp

n−p+1

∼

F (p− 2, n− p + 1), where F∗ = Fp−2,n−p+1. If Fj > F∗, then it means that the regressor Xj is
collinear with other regressors and it should be dropped from the model (Gujarati and Porter,
2008).

• Farrar wj:
It is an F-test for locating the regressors which are collinear with others and it makes use

of multiple correlation coefficients among regressors. wj =
R2

j

1−R2
j

(
n−p
p−1

)
∼ F(n−p, p−1). If

wj > F(n−p,p−1), there is indication of considerable collinearity (Farrar and Glauber, 1967).

There are few software and R packages that provide some collinearity diagnostic measures such as
correlation matrix, VIF/TOL, eigenvalues/eigenvectors, and CN/CI. The design goal of our developed
package mctest is primarily to provide a comprehensive suite of all the listed diagnostic measures.
All R packages mentioned in Table 1 are compared with our mctest package regarding diagnostic
measures in these packages. Other features in these packages and collinearity related measures
available in different statistical software are also discussed.

perturb HH car fmsb rms faraway usdm mctest

Overall collinearity diagnostics
|X′X| X
R-squared X
Farrar χ2 X
CN/CI X X
∑

p
j=1

1
λj

X

Theil’s indicator X
Red indicator X

Individual collinearity diagnostics
Correlation matrix X
Var and t-ratios X
Klein’s rule X
VIF X X X X X X X
TOL X
Eigenvalues X
CVIF X
Leamer’s method X
Farrar Wi X
F and R2 relation X

Table 1: Comparison of collinearity related R packages

There are few statistical software (SAS (SAS 9.3, 2011), Stata (StataCorp, 2015), Minitab (Minitab,
Inc., 2014), NCSS (NCSS , 2016), and StatGraphics (Statgraphics Centurion XVII, 2015) etc.), giving
different collinearity diagnostic measures such as (R2, eigenvalues, VIF, CN, and correlation matrix
etc.). The R packages mentioned in Table 1 have some other functionalities related to collinearity.
For example, perturb (Hendrickx, 2012) evaluates collinearity by adding random noise to selected
variables and computes the CN and variance decomposition proportion to test the collinearity and to
uncover its sources. The package car (Fox and Weisberg, 2011) computes the VIF and GVIF for linear
and generalized linear models. The function vif of package usdm (Naimi, 2015) computes the VIF for
a set of variables and excludes highly correlated variables from the set through a stepwise procedure.
The package rms Harrell Jr (2016) computes VIF from the covariance matrix of parameter estimates
from binary or ordinal regression models, Cox regression, accelerated failure time models, ordinary
linear models, the Buckley-James model, generalized least squares for serially or spatially correlated
observations, generalized linear models, and quantile regression. The packages, HH (Heiberger, 2016),
fmsb (Nakazawa, 2015) and faraway (Faraway, 2016) present different statistical methods and an
extensive use of graphical display.

There are some other R packages such as VIF (Lin, 2012), leaps (Lumley, 2009), bestglm (McLeod
and Xu, 2014), glmulti (Calcagno, 2013), and meifly (Wickham, 2014) that are used for collinear
datasets. These packages involved procedures to search for adequate predictors and for parsimonious
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models (subset or all subset regression). The availability of different collinearity diagnostic measures
in R packages, shown in Table 1 and in different statistical software, suggests that the package mctest
is a useful addition on CRAN.

R implementation

In this section, we illustrate the use of our developed package mctest. The R package mctest mainly
implements functions for the detection of collinearity among regressors by calling omcdiag() and
imcdiag() functions. For the graphical representation of VIF values and eigenvalues, mc.plot()
function can also be used. We try to build a simple interface to facilitate the usage of this package.

The functions, omcdiag,imcdiag, and mctest ensure that the number of regressors provided as x
argument should be at least two. Similarly, the values of regressors and response variable (y) should
contain only numbers provided that both have equal number of observations. All the other arguments
are optional and have default threshold values for different collinearity diagnostic measures. Following
is the list of functions available in mctest;

Function Description

omcdiag() Computation of overall collinearity measures.
imcdiag() Computation of individual collinearity measures for each regressor.
mctest() Calls overall and individual collinearity measures.
mc.plot() Graphical representation of VIF and eigenvalues.

Table 2: Functions available in mctest package

Overall collinearity diagnostics

For overall collinearity diagnostic measures, the function omcdiag() has only two mandatory argu-
ments: the vector of response variable y and the matrix of regressors x. The argument na.rm removes
the missing values in dataset and is set to TRUE. Therefore, all calculations will be performed on newly
created data after removing missing observations if any, otherwise, calculations will be performed on
complete observation available in the provided dataset. The optional argument Inter, when it takes
the value TRUE, allows to compute eigenvalues and condition index including intercept term in design
matrix X′X, otherwise, without it. The other arguments detr, red, theil, cn, and conf are used as
threshold values as collinearity detection criteria. If all these optional arguments are not used, the
eigenvalues and CIs with intercept term will be computed and all these values will be compared with
the default threshold values (can be provided by the user) for the indication of existence of collinearity
by each of the diagnostic methods.

omcdiag(x,y,na.rm=TRUE,Inter=TRUE,detr=0.01,red=0.5,conf=0.95,theil=0.5,cn=30,...)

The results from each of overall collinearity diagnostic measures are displayed with an indication
that whether existence of collinearity among regressors is correctly detected by diagnostic methods or
not. The eigenvalues and CIs are also displayed for the confirmation of existence of collinearity.

Example: omcdiag()

This section uses the Hald data (Hald, 1952) bundled in mctest package for checking of existence of
collinearity among regressors using omcdiag() function. Different examples of omcdiag() with use of
difference arguments are provided, however, results are shown only for the last command.

> library('mctest')
> head(Hald)
> x <- Hald[ , -1]
> y <- Hald[ , 1]

> omcdiag (x, y, detr = 0.001, red = 0.6, conf = 0.99, theil = 0.6, cn = 15)
> omcdiag (x, y, Inter = FALSE)
> omcdiag (x, y)

Call:
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omcdiag(x = x, y = y)

Overall Multicollinearity Diagnostics

MC Results detection
Determinant |X'X|: 0.0011 1
Farrar Chi-Square: 59.8700 1
Red Indicator: 0.5414 1
Sum of Lambda Inverse: 622.3006 1
Theil's Method: 0.9981 1
Condition Number: 249.5783 1

1 --> COLLINEARITY is detected
0 --> COLLINEARITY in not detected by the test

===================================
Eigenvalues with INTERCEPT

Intercept X1 X2 X3 X4
Eigenvalues: 4.1197 0.5539 0.2887 0.0376 0.0001
Condition Indexes: 1.0000 2.7272 3.7775 10.4621 249.5783

Results from omcdiag shows that all of the overall collinearity diagnostic measures correctly detected
the presence of multicollinearity among regressors. Similarly, eigenvalues and CIs also indicate
regressors are collinear since, some eigenvalues are small enough and at least one of the CIs is greater
than 30.

Individual collinearity diagnostics

For the individual collinearity diagnostic measures, imcdiag() also has two mandatory arguments like
omcdiag() or mctest() has. The optional argument method, when it takes value "VIF", "TOL", "Wi",
"Fi", "Klein", "conf", "CVIF", or "Leamer", will compute only provided method with an indication of
whether regressor(s) is(are) possible reason of collinearity or not. The other optional arguments (such
as vif, tol conf, cvif, and leamer) are threshold values to compare with diagnostic measures of VIF,
TOL, confidence level for the Farrar-Glauber test of Wi, Fi, CVIF, and Leamer’s method, respectively
for possible detection of collinearity among regressors. The corr argument is set to FALSE, if it takes
value as TRUE, the correlation matrix will also be produced along with collinearity diagnostic measures
with the indication of which pair of regressors are collinear. The computed value of certain diagnostic
measure, provided to method argument, is displayed with an indication of whether diagnostic measure
correctly detected the existence of collinearity or not. The all argument is set to FALSE, if it takes value
as TRUE, the individual collinearity diagnostics will be returned in form of 0 or 1. From "lm" function,
non-significant t-values are also displayed for further subjective judgment and confirmation of the
existence of collinearity among regressors.

imcdiag(x,y,method = NULL,na.rm = TRUE,corr = FALSE,vif = 10,tol = 0.1,
conf = 0.95,cvif = 10,leamer = 0.1,all = FALSE,...)

Example: imcdiag()

Different examples of imcdiag() function with use of different arguments are provided, however,
results are shown only for the last command.

> imcdiag(x, y, corr = TRUE)
> imcdiag(x, y)

Call:
imcdiag(x = x, y = y)

Individual Multicollinearity Diagnostics

VIF TOL Wi Fi Leamer CVIF Klein
X1 38.4962 0.0260 112.4886 187.4811 0.1612 -0.5846 0
X2 254.4232 0.0039 760.2695 1267.1158 0.0627 -3.8635 1
X3 46.8684 0.0213 137.6052 229.3419 0.1461 -0.7117 0
X4 282.5129 0.0035 844.5386 1407.5643 0.0595 -4.2900 1
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1 --> COLLINEARITY is detected
0 --> COLLINEARITY is not detected by the test

X1 , X2 , X3 , X4 , coefficient(s) are non-significant may be due to multicollinearity

* use method argument to check which regressors may be the reason of collinearity

Each column of output from imcdiag(x,y) indicates that the computed values of individual collinear-
ity diagnostic measures for each regressor. The last column results in either 0 (no collinearity due Xj)
or 1 (collinearity due to Xj) due to Klein’s rule.

To get certain individual collinearity diagnostic with custom threshold can be obtained by using
method argument. The first column of output contains the value of diagnostic measure. In the second
column, 1 and 0 denotes the detection and non-detection of collinearity, respectively, for each of the
regressor. The use of switch statement is made to fulfill the purpose of obtaining diagnostic values
and the indication of collinearity detection for certain collinearity diagnostics provided as value to
argument method. Some examples of obtaining certain individual collinearity diagnostic measures are;

> imcdiag(x, y, method = "VIF", vif = 5)
> imcdiag(x, y, method = "VIF", vif = 10, corr = TRUE)
> imcdiag(x, y, method = "CVIF", cvif = 10)

Call:
imcdiag(x = x, y = y, method = "CVIF", cvif = 10)

Individual Multicollinearity Diagnostics

CVIF detection
X1 -0.5846 0
X2 -3.8635 0
X3 -0.7117 0
X4 -4.2900 0

NOTE: CVIF Method Failed to detect multicollinearity

0 --> COLLINEARITY in not detected by the test

If argument all in imcdiag or mctest is set to TRUE, a matrix of either 0 or 1 will be displayed. Few
examples for use of all argument are;

> imcdiag(x, y, all = TRUE)
> imcdiag(x, y, all = TRUE, vif = 15, conf = 0.99, )
> imcdiag(x, y, method = "VIF", all = TRUE)
> mctest(x, y, all = TRUE, type="i")

Call:
imcdiag(x = x, y = y, all = TRUE)

All Individual Multicollinearity Diagnostics in 0 or 1

VIF TOL Wi Fi Leamer CVIF Klein
X1 1 1 1 1 0 0 0
X2 1 1 1 1 1 0 1
X3 1 1 1 1 0 0 0
X4 1 1 1 1 1 0 1

1 --> COLLINEARITY is detected
0 --> COLLINEARITY in not detected by the test

X1 , X2 , X3 , X4 , coefficient(s) are non-significant may be due to multicollinearity

R-square of y on all x: 0.9824

* use method argument to check which regressors may be the reason of collinearity

mctest(x,y,type = c("o","i","b"),na.rm = TRUE,Inter = TRUE,method = NULL,
corr = FALSE,detr = 0.01,red = 0.5,cn = 30,vif = 10,tol = 0.1,conf = 0.95,
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cvif = 10,leamer = 0.1,all = FALSE,... )

The mctest() function also has two mandatory arguments: the vector of response y and the matrix
of regressors as x. The argument type is optional for computation of overall (from omcdiag) by setting
type="o", individual (from imcdiag) by setting type="i" or both overall and individual collinearity
diagnostics by setting type="b", if type argument is not used overall collinearity measures will be
computed and displayed.

Collinearity diagnostic plots: VIF and eigenvalues plot

The mc.plot function can also be used to draw the plots of VIF values and eigenvalues to graphically
judge the existence of collinearity among regressors. The VIF values and eigenvalues are also drawn
for each regressor along the y-axis. A horizontal red dashed line equal to either default threshold or
may be provided by the user of mctest, for both VIF and eigenvalues.

> mc.plot(x, y)
> mc.plot(x, y, vif = 10, ev = 0.1)

The argument, vif = 10 and ev = 0.1 are user provided thresholds for VIF and eigenvalues,
respectively and will be shown as horizontal red dashed line.

Figure 1: The VIF and Eigenvalues Plots.

From VIF plot, the VIF values of each regressor greater than 30 indicates the existence of mul-
ticollinearity among regressors. Similarly, the eigenvalues plot indicates that few regressors have
relatively smaller eigenvalues than others, indicating the existence of collinearity. Note that the graph-
ical output (shown in Figure 1) from mc.plot() and numerical results from, for example, mctest() are
all equivalent. Only difference exits in the way of their representation.

Dealing with multicollinearity

Complete elimination of multicollinearity is not possible, but the degree of collinearity can be reduced.
Depending on the severity of the collinearity problem, there are two schools of thought (a) do nothing
or (b) follow some rules of thumb. According to the first school of thought, Blanchard (1967) suggested
to do nothing with the regressors or model, since multicollinearity is essentially a data deficiency
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problem and sometimes there is no choice over the data available for empirical analysis. Regarding
the second approach, some rules to alleviate the problem of multicollinearity are: (i) Drop one of the
highly collinear regressor. If model has two or more regressors with high VIF, drop one from the
model, because it supplies redundant information. Dropping one of the correlated regressor usually
does not drastically reduce the R2. However, omission of relevant regressor(s) from the model, may
result in a specification error. Hence, the remedy may be worse than the disease in some situations,
because, multicollinearity may prevent the precise estimation of parameters of the regression model.
Therefore, omitting some regressor(s) may seriously mislead to the true values of the parameters
(Gujarati and Porter, 2008, pg. 344). (ii) Use an appropriate experimental design and increase the
sample if possible. However, obtaining additional or better data is not always easy. (iii) Transform
the regressors (iv) Use some alternative methods to the OLS such as principal component regression
and ridge regression etc. to control variance and instability of the OLS estimates. (v) Use stepwise
regression, best subset regression or specialized knowledge of the dataset to remove the redundant
regressors. (vi) Combine the redundant variables, if possible.

Summary

Strong linear relationships among regressors, i.e., the issue of multicollinearity, results in unstable
estimated regression coefficients and other inadequate statistical measures. Therefore, its severity
should be tested. An R package, mctest has been designed with the goal of providing the most widely
used and discussed collinearity diagnostic related statistics. Two main functions omcdiag() and
imcdiag facilitate the users to get information about the existence of collinearity among regressors and
also to get idea about which regressor may be the reason of multicollinearity. A function, mc.plot()
can also be used to detect existence of collinearity among regressors by drawing a graph of VIF and
eigenvalues. For further details about use of the said package and related functions, interested readers
are referred to the documentation of the package.
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R Foundation News
by Torsten Hothorn

Donations and new members

New benefectors

INWT Statistics, Germany

Donations

Radosav Andric, in memory of Ramiro Zurkowski, Canada
Greater Good, Netherlands
Koen-Woong Moon, Korea
Daniel Neumann, Germany
Schukat Electronic Vertriebs GmbH, Germany
Somewhat Retired, USA
Richard Vlasimsky, IMIDEX, USA

New supporting institutions

Inference Technologies, Czech Republic

New supporting members

Ayala S. Allon, Israel
Michael Hahsler, USA
Matthias Häni, Switzerland
Christian Kohlberg, Germany
Wojciech Niemczyk, Poland

Torsten Hothorn
Universität Zürich
Switzerland
Torsten.Hothorn@R-project.org

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

mailto:Torsten.Hothorn@R-project.org


NEWS AND NOTES 507

Changes on CRAN
2016-08-01 to 2017-01-31

by Kurt Hornik and Achim Zeileis

CRAN growth

In the past 6 months, 1169 new packages were added to the CRAN package repository. 18
packages were unarchived and 36 archived. The following shows the growth of the number
of active packages in the CRAN package repository:

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
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Number of CRAN Packages (Log−Scale)

Around 2017-01-27, the number of active packages went above 10000!

New CRAN task views

ExtremeValue Topic: Extreme Value Analysis. Maintainer: Christophe Dutang, Kevin
Jaunatre. Packages: QRM, RTDE, ReIns, SpatialExtremes, VGAM, copula, evd∗,
evdbayes, evir∗, extRemes, extremeStat, extremefit, fExtremes, ismev, lmom, lmom-
RFA, lmomco, mev, texmex.

(* = core package)

New packages in CRAN task views

Bayesian BAS, Boom, BoomSpikeSlab, LaplacesDemon, abn, bayesImageS, bayesmeta,
bsts, nimble.

ChemPhys enpls, wccsom.

ClinicalTrials ThreeGroups.

Cluster ADPclust, CEC, bmixture, clustMixType, edci, largeVis.

DifferentialEquations Sim.DiffProc.
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https://CRAN.R-project.org/view=ExtremeValue
https://CRAN.R-project.org/package=QRM
https://CRAN.R-project.org/package=RTDE
https://CRAN.R-project.org/package=ReIns
https://CRAN.R-project.org/package=SpatialExtremes
https://CRAN.R-project.org/package=VGAM
https://CRAN.R-project.org/package=copula
https://CRAN.R-project.org/package=evd
https://CRAN.R-project.org/package=evdbayes
https://CRAN.R-project.org/package=evir
https://CRAN.R-project.org/package=extRemes
https://CRAN.R-project.org/package=extremeStat
https://CRAN.R-project.org/package=extremefit
https://CRAN.R-project.org/package=fExtremes
https://CRAN.R-project.org/package=ismev
https://CRAN.R-project.org/package=lmom
https://CRAN.R-project.org/package=lmomRFA
https://CRAN.R-project.org/package=lmomRFA
https://CRAN.R-project.org/package=lmomco
https://CRAN.R-project.org/package=mev
https://CRAN.R-project.org/package=texmex
https://CRAN.R-project.org/view=Bayesian
https://CRAN.R-project.org/package=BAS
https://CRAN.R-project.org/package=Boom
https://CRAN.R-project.org/package=BoomSpikeSlab
https://CRAN.R-project.org/package=LaplacesDemon
https://CRAN.R-project.org/package=abn
https://CRAN.R-project.org/package=bayesImageS
https://CRAN.R-project.org/package=bayesmeta
https://CRAN.R-project.org/package=bsts
https://CRAN.R-project.org/package=nimble
https://CRAN.R-project.org/view=ChemPhys
https://CRAN.R-project.org/package=enpls
https://CRAN.R-project.org/package=wccsom
https://CRAN.R-project.org/view=ClinicalTrials
https://CRAN.R-project.org/package=ThreeGroups
https://CRAN.R-project.org/view=Cluster
https://CRAN.R-project.org/package=ADPclust
https://CRAN.R-project.org/package=CEC
https://CRAN.R-project.org/package=bmixture
https://CRAN.R-project.org/package=clustMixType
https://CRAN.R-project.org/package=edci
https://CRAN.R-project.org/package=largeVis
https://CRAN.R-project.org/view=DifferentialEquations
https://CRAN.R-project.org/package=Sim.DiffProc
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Distributions Compositional, QRM, ReIns, bmixture.

Econometrics ExtremeBounds, clubSandwich, clusterSEs, decompr, gvc, pwt9, rdd, rd-
dtools, rdrobust.

ExperimentalDesign BOIN, BayesMAMS, CombinS, GroupSeq, ICAOD, JMdesign,
OBsMD, OptimaRegion, OptimalDesign, PGM2, PwrGSD, RPPairwiseDesign,
SLHD, ThreeArmedTrials, VNM, acebayes, binseqtest, choiceDes, crmPack, de-
signGLMM, designmatch, desplot, dfcomb, dfcrm, dfmta, dfpk, docopulae, dy-
naTree, easypower, ez, gset, hiPOD, ibd, minimaxdesign, optDesignSlopeInt,
ph2bayes, ph2bye, pid, powerAnalysis, powerGWASinteraction, powerbydesign,
qualityTools, seqDesign, ssize.fdr, ssizeRNA, vdg.

Finance Dowd, FinancialMath, GetHFData, GetTDData, InfoTrad, MSGARCH, Net-
workRiskMeasures, PortfolioEffectHFT, QuantTools, factorstochvol, fmdates, pin-
basic, ragtop, sharpeRratio, tidyquant.

HighPerformanceComputing batchtools, pbapply, permGPU.

MachineLearning biglasso, gmum.r, rnn, spa.

MedicalImaging Morpho∗, RNifti∗, Rvcg∗, adaptsmoFMRI, bayesImageS, divest∗, edf-
Reader∗, eegkit∗.

MetaAnalysis MetaAnalyser, MetaIntegrator, esc, metaplotr.

NaturalLanguageProcessing PGRdup, gutenbergr, hunspell, monkeylearn, mscstexta4r,
mscsweblm4r, phonics, quanteda, tesseract, text2vec, tidytext, tokenizers.

NumericalMathematics RSpectra, rmumps, schumaker.

OfficialStatistics BIFIEsurvey, CalibrateSSB, Frames2, GeomComb, MBHdesign, Prac-
Tools, RRTCS, RcmdrPlugin.sampling, gridsample, mapStats, panelaggregation,
quantification, rpms, rspa, samplesize4surveys, srvyr, surveybootstrap, surveydata,
surveyoutliers, svyPVpack.

Phylogenetics outbreaker, phyext2, phyloTop, rmetasim, rotl.

Psychometrics BayesFM, BayesLCA, BigSEM, CAvariants, ClustVarLV, DistatisR,
GDINA, IRTpp, LNIRT, LVMMCOR, LatentREGpp, MCAvariants, ML-
CIRTwithin, SEMID, SOD, SparseFactorAnalysis, TestDataImputation, aspect,
cIRT, cabootcrs, cds, cncaGUI, cocor, covLCA, ctsem, dlsem, edstan, elasticnet,
emIRT, esaBcv, faoutlier, fourPNO, gSEM, gtheory, immer, influence.SEM,
irtDemo, lba, lcda, lsl, ltbayes, nsprcomp, optiscale, paran, piecewiseSEM, plot-
SEMM, regsem, rsem, semGOF, semdiag, semtree, smds, soc.ca, sparseSEM,
subscore, superMDS, xxIRT.

SocialSciences optmatch.

Spatial ExceedanceTools, RQGIS, dggridR∗, gear, geojson, geojsonio, ggsn, postGIS-
tools, rgbif, rpostgis, sf∗, smacpod, smerc, spacom, spselect.

SpatioTemporal CARBayesST, GeoLight, SimilarityMeasures.

Survival AHR, APtools, AdapEnetClass, BayesPiecewiseICAR, Biograph, CFC, Coxnet,
Cyclops, ELYP, FamEvent, GORCure, GSSE, ICBayes, ICGOR, InformativeCen-
soring, JointModel, LTRCtrees, LexisPlotR, PenCoxFrail, SSRMST, SimHaz, Sim-
SCRPiecewise, SurvCorr, SurvLong, SurvRank, SurvRegCensCov, TP.idm, Trans-
Model, addhazard, asaur, bnnSurvival, cmprskQR, compareC, condSURV, con-
trolTest, coxsei, crrp, crskdiag, discSurv, emplik2, fastpseudo, flexPM, flexrsurv,
frailtySurv, gcerisk, glmnet, gte, hdnom, icRSF, icenReg, imputeYn, intercure,
isoph, jackknifeKME, joint.Cox, landest, mexhaz, miCoPTCM, msmtools, npsurv,
pch, plac, popEpi, ranger, reReg, reda, rstpm2, smcure, survMisc, survRM2,
survminer, tdROC, thregI, tranSurv, uniah.
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https://CRAN.R-project.org/view=Distributions
https://CRAN.R-project.org/package=Compositional
https://CRAN.R-project.org/package=QRM
https://CRAN.R-project.org/package=ReIns
https://CRAN.R-project.org/package=bmixture
https://CRAN.R-project.org/view=Econometrics
https://CRAN.R-project.org/package=ExtremeBounds
https://CRAN.R-project.org/package=clubSandwich
https://CRAN.R-project.org/package=clusterSEs
https://CRAN.R-project.org/package=decompr
https://CRAN.R-project.org/package=gvc
https://CRAN.R-project.org/package=pwt9
https://CRAN.R-project.org/package=rdd
https://CRAN.R-project.org/package=rddtools
https://CRAN.R-project.org/package=rddtools
https://CRAN.R-project.org/package=rdrobust
https://CRAN.R-project.org/view=ExperimentalDesign
https://CRAN.R-project.org/package=BOIN
https://CRAN.R-project.org/package=BayesMAMS
https://CRAN.R-project.org/package=CombinS
https://CRAN.R-project.org/package=GroupSeq
https://CRAN.R-project.org/package=ICAOD
https://CRAN.R-project.org/package=JMdesign
https://CRAN.R-project.org/package=OBsMD
https://CRAN.R-project.org/package=OptimaRegion
https://CRAN.R-project.org/package=OptimalDesign
https://CRAN.R-project.org/package=PGM2
https://CRAN.R-project.org/package=PwrGSD
https://CRAN.R-project.org/package=RPPairwiseDesign
https://CRAN.R-project.org/package=SLHD
https://CRAN.R-project.org/package=ThreeArmedTrials
https://CRAN.R-project.org/package=VNM
https://CRAN.R-project.org/package=acebayes
https://CRAN.R-project.org/package=binseqtest
https://CRAN.R-project.org/package=choiceDes
https://CRAN.R-project.org/package=crmPack
https://CRAN.R-project.org/package=designGLMM
https://CRAN.R-project.org/package=designGLMM
https://CRAN.R-project.org/package=designmatch
https://CRAN.R-project.org/package=desplot
https://CRAN.R-project.org/package=dfcomb
https://CRAN.R-project.org/package=dfcrm
https://CRAN.R-project.org/package=dfmta
https://CRAN.R-project.org/package=dfpk
https://CRAN.R-project.org/package=docopulae
https://CRAN.R-project.org/package=dynaTree
https://CRAN.R-project.org/package=dynaTree
https://CRAN.R-project.org/package=easypower
https://CRAN.R-project.org/package=ez
https://CRAN.R-project.org/package=gset
https://CRAN.R-project.org/package=hiPOD
https://CRAN.R-project.org/package=ibd
https://CRAN.R-project.org/package=minimaxdesign
https://CRAN.R-project.org/package=optDesignSlopeInt
https://CRAN.R-project.org/package=ph2bayes
https://CRAN.R-project.org/package=ph2bye
https://CRAN.R-project.org/package=pid
https://CRAN.R-project.org/package=powerAnalysis
https://CRAN.R-project.org/package=powerGWASinteraction
https://CRAN.R-project.org/package=powerbydesign
https://CRAN.R-project.org/package=qualityTools
https://CRAN.R-project.org/package=seqDesign
https://CRAN.R-project.org/package=ssize.fdr
https://CRAN.R-project.org/package=ssizeRNA
https://CRAN.R-project.org/package=vdg
https://CRAN.R-project.org/view=Finance
https://CRAN.R-project.org/package=Dowd
https://CRAN.R-project.org/package=FinancialMath
https://CRAN.R-project.org/package=GetHFData
https://CRAN.R-project.org/package=GetTDData
https://CRAN.R-project.org/package=InfoTrad
https://CRAN.R-project.org/package=MSGARCH
https://CRAN.R-project.org/package=NetworkRiskMeasures
https://CRAN.R-project.org/package=NetworkRiskMeasures
https://CRAN.R-project.org/package=PortfolioEffectHFT
https://CRAN.R-project.org/package=QuantTools
https://CRAN.R-project.org/package=factorstochvol
https://CRAN.R-project.org/package=fmdates
https://CRAN.R-project.org/package=pinbasic
https://CRAN.R-project.org/package=pinbasic
https://CRAN.R-project.org/package=ragtop
https://CRAN.R-project.org/package=sharpeRratio
https://CRAN.R-project.org/package=tidyquant
https://CRAN.R-project.org/view=HighPerformanceComputing
https://CRAN.R-project.org/package=batchtools
https://CRAN.R-project.org/package=pbapply
https://CRAN.R-project.org/package=permGPU
https://CRAN.R-project.org/view=MachineLearning
https://CRAN.R-project.org/package=biglasso
https://CRAN.R-project.org/package=gmum.r
https://CRAN.R-project.org/package=rnn
https://CRAN.R-project.org/package=spa
https://CRAN.R-project.org/view=MedicalImaging
https://CRAN.R-project.org/package=Morpho
https://CRAN.R-project.org/package=RNifti
https://CRAN.R-project.org/package=Rvcg
https://CRAN.R-project.org/package=adaptsmoFMRI
https://CRAN.R-project.org/package=bayesImageS
https://CRAN.R-project.org/package=divest
https://CRAN.R-project.org/package=edfReader
https://CRAN.R-project.org/package=edfReader
https://CRAN.R-project.org/package=eegkit
https://CRAN.R-project.org/view=MetaAnalysis
https://CRAN.R-project.org/package=MetaAnalyser
https://CRAN.R-project.org/package=MetaIntegrator
https://CRAN.R-project.org/package=esc
https://CRAN.R-project.org/package=metaplotr
https://CRAN.R-project.org/view=NaturalLanguageProcessing
https://CRAN.R-project.org/package=PGRdup
https://CRAN.R-project.org/package=gutenbergr
https://CRAN.R-project.org/package=hunspell
https://CRAN.R-project.org/package=monkeylearn
https://CRAN.R-project.org/package=mscstexta4r
https://CRAN.R-project.org/package=mscsweblm4r
https://CRAN.R-project.org/package=phonics
https://CRAN.R-project.org/package=quanteda
https://CRAN.R-project.org/package=tesseract
https://CRAN.R-project.org/package=text2vec
https://CRAN.R-project.org/package=tidytext
https://CRAN.R-project.org/package=tokenizers
https://CRAN.R-project.org/view=NumericalMathematics
https://CRAN.R-project.org/package=RSpectra
https://CRAN.R-project.org/package=rmumps
https://CRAN.R-project.org/package=schumaker
https://CRAN.R-project.org/view=OfficialStatistics
https://CRAN.R-project.org/package=BIFIEsurvey
https://CRAN.R-project.org/package=CalibrateSSB
https://CRAN.R-project.org/package=Frames2
https://CRAN.R-project.org/package=GeomComb
https://CRAN.R-project.org/package=MBHdesign
https://CRAN.R-project.org/package=PracTools
https://CRAN.R-project.org/package=PracTools
https://CRAN.R-project.org/package=RRTCS
https://CRAN.R-project.org/package=RcmdrPlugin.sampling
https://CRAN.R-project.org/package=gridsample
https://CRAN.R-project.org/package=mapStats
https://CRAN.R-project.org/package=panelaggregation
https://CRAN.R-project.org/package=quantification
https://CRAN.R-project.org/package=rpms
https://CRAN.R-project.org/package=rspa
https://CRAN.R-project.org/package=samplesize4surveys
https://CRAN.R-project.org/package=srvyr
https://CRAN.R-project.org/package=surveybootstrap
https://CRAN.R-project.org/package=surveydata
https://CRAN.R-project.org/package=surveyoutliers
https://CRAN.R-project.org/package=svyPVpack
https://CRAN.R-project.org/view=Phylogenetics
https://CRAN.R-project.org/package=outbreaker
https://CRAN.R-project.org/package=phyext2
https://CRAN.R-project.org/package=phyloTop
https://CRAN.R-project.org/package=rmetasim
https://CRAN.R-project.org/package=rotl
https://CRAN.R-project.org/view=Psychometrics
https://CRAN.R-project.org/package=BayesFM
https://CRAN.R-project.org/package=BayesLCA
https://CRAN.R-project.org/package=BigSEM
https://CRAN.R-project.org/package=CAvariants
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TimeSeries BETS, BigVAR, GAS, GeomComb, InspectChangepoint, Tcomp, Wavelet-
Comp, cointReg, dCovTS, dynr, ecm, factorstochvol, forecastHybrid, gdpc, ggseas,
mclcar, onlineCPD, opera, pcdpca, pdc, robets, roll, rucrdtw, scoringRules, season-
alview, smooth, sparsevar, spectral, stR, thief, tsdisagg2, tswge, uroot, x13binary.

WebTechnologies ROpenFIGI, RSmartlyIO, RStripe, anametrix, dataone, datarobot, eu-
ropepmc, fiery, geoparser, googleAnalyticsR, googleCloudStorageR, htmltab, jqr,
jsonvalidate, mscstexta4r, mscsweblm4r, nomadlist, openadds, opencage, osi, osm-
plotr, placement, plumber, rgeospatialquality, rosetteApi, uaparserjs.

(* = core package)
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News from the Bioconductor Project
by Bioconductor Core Team

The Bioconductor project provides tools for the analysis and comprehension of high-
throughput genomic data. Bioconductor 3.4 was released on 18 October, 2016. It is com-
patible with R 3.3 and consists of 1296 software packages, 309 experiment data packages,
and 933 up-to-date annotation packages. The release announcement includes descriptions
of 101 new packages, and updated NEWS files for many additional packages. Start using
Bioconductor by installing the most recent version of R and evaluating the commands

source("https://bioconductor.org/biocLite.R")
biocLite()

Install additional packages and dependencies, e.g., AnnotationHub, with

BiocInstaller::biocLite("AnnotationHub")

Docker and Amazon images provide a very effective on-ramp for power users to rapidly
obtain access to standardized and scalable computing environments. Key resources include:

• bioconductor.org to install, learn, use, and develop Bioconductor packages.

• A listing of available software, linked to pages describing each package.

• A question-and-answer style user support site and developer-oriented mailing list.

• The F1000Research Bioconductor channel for peer-reviewed Bioconductor work flows.

• Our package submission repository for open technical review of new packages.

Our annual conference, BioC 2017: Where Software and Biology Connect, will be on June 26
(‘developer day’), 27 and 28, in Boston, MA.

Bioconductor Core Team
Biostatistics and Bioinformatics
Roswell Park Cancer Institute, Buffalo, NY
USA maintainer@bioconductor.org
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Changes in R
From version 3.3.1 patched to version 3.3.2 patched

by the R Core Team

CHANGES IN R 3.3.2 patched

NEW FEATURES

• The internal methods of download.file() and url() now report if they are unable
to follow the redirection of a ‘http://’ URL to a ‘https://’ URL (rather than failing
silently).

INSTALLATION on a UNIX-ALIKE

• The configure check for the zlib version is now robust to versions longer than 5
characters, including 1.2.10.

UTILITIES

• Environmental variable _R_CHECK_TESTS_NLINES_ controls how R CMD check reports
failing tests (see §8 of the ‘R Internals’ manual).

BUG FIXES

• rep(x,times) and rep.int(x,times) now both work also when times is larger than
the maximal integer, including when it is of length greater than one. (PR#16932)

• vapply(x,*) now works with long vectors x. (PR#17174)

• isS3method("is.na.data.frame") and similar are correct now. (PR#17171)

• grepRaw(<long>,<short>,fixed = TRUE) now works, thanks to a patch by Mikko
Korpela. (PR#17132)

• Package installation into a library where the package exists via symbolic link now
should work wherever () works, resolving PR#16725.

• "Cincinnati" was missing an "n" in the precip dataset.

• Fix buffer overflow vulnerability in pdf() when loading an encoding file. Reported by
Talos (TALOS-2016-0227).

• getDLLRegisteredRoutines() now produces its warning correctly when multiple
DLLs match, thanks to Matt Dowle’s PR#17184.

• Sys.timezone() now returns non-NA also on platforms such as ‘Ubuntu 14.04.5 LTS’,
thanks to Mikko Korpela’s PR#17186.

• format(x) for an illegal "POSIXlt" object x no longer segfaults.

• methods(f) now also works for f "(" or "{".

• (Windows only) dir.create() did not check the length of the path to create, and so
could overflow a buffer and crash R. (PR#17206)

• On some systems, very small hexadecimal numbers in hex notation would underflow
to zero. (PR#17199)
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• pmin() and pmax() now work again for ordered factors and 0-length S3 classed objects,
thanks to Suharto Anggono’s PR#17195 and PR#17200.

• bug.report() did not do any validity checking on a package’s ‘BugReports’ field. It
now ignores an empty field, removes leading whitespace and only attempts to open
‘http://’ and ‘https://’ URLs, falling back to emailing the maintainer.

• Bandwidth selectors bw.ucv() and bw.SJ() gave incorrect answers or incorrectly
reported an error (because of integer overflow) for inputs longer than 46341. Similarly
for bw.bcv() at length 5793.

Another possible integer overflow is checked and may result in an error report (rather
than an incorrect result) for much longer inputs (millions for a smooth distribution).

• findMethod failed if the active signature had expanded beyond what a particular
package used. (Example with packages XR and XRJulia on CRAN).

• qbeta() underflowed too early in some very asymmetric cases. (PR#17178)

CHANGES IN R 3.3.2

NEW FEATURES

• extSoftVersion() now reports the version (if any) of the readline library in use.

• The version of LAPACK included in the sources has been updated to 3.6.1, a bug-fix
release including a speedup for the non-symmetric case of eigen().

• Use options(deparse.max.lines=) to limit the number of lines recorded in
.Traceback and other deparsing activities.

• format(<AsIs>) looks more regular, also for non-character atomic matrices.

• abbreviate() gains an option named = TRUE.

• The online documentation for package methods is extensively rewritten. The goals
are to simplify documentation for basic use, to note old features not recommended
and to correct out-of-date information.

• Calls to setMethod() no longer print a message when creating a generic function in
those cases where that is natural: S3 generics and primitives.

INSTALLATION and INCLUDED SOFTWARE

• Versions of the readline library >= 6.3 had been changed so that terminal window
resizes were not signalled to readline: code has been added using a explicit signal
handler to work around that (when R is compiled against readline >= 6.3). (PR#16604)

• configure works better with Oracle Developer Studio 12.5.

UTILITIES

• R CMD check reports more dubious flags in files ‘src/Makevars[.in]’, including ‘-w’ and
‘-g’.

• R CMD check has been set up to filter important warnings from recent versions of
gfortran with ‘-Wall -pedantic’: this now reports non-portable GNU extensions
such as out-of-order declarations.

• R CMD config works better with paths containing spaces, even those of home directo-
ries (as reported by Ken Beath).
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DEPRECATED AND DEFUNCT

• Use of the C/C++ macro ‘NO_C_HEADERS’ is deprecated (no C headers are included by
R headers from C++ as from R 3.3.0, so it should no longer be needed).

BUG FIXES

• The check for non-portable flags in R CMD check could be stymied by ‘src/Makevars’
files which contained targets.

• (Windows only) When using certain desktop themes in Windows 7 or higher, Alt-Tab
could cause Rterm to stop accepting input. (PR#14406; patch submitted by Jan
Gleixner.)

• pretty(d,..) behaves better for date-time d (PR#16923).

• When an S4 class name matches multiple classes in the S4 cache, perform a dynamic
search in order to obey namespace imports. This should eliminate annoying mes-
sages about multiple hits in the class cache. Also, pass along the package from the
ClassExtends object when looking up superclasses in the cache.

• sample(NA_real_) now works.

• Packages using non-ASCII encodings in their code did not install data properly on
systems using different encodings.

• merge(df1,df2) now also works for data frames with column names "na.last",
"decreasing", or "method". (PR#17119)

• contour() caused a segfault if the labels argument had length zero. (Reported by Bill
Dunlap.)

• unique(warnings()) works more correctly, thanks to a new duplicated.warnings()
method.

• findInterval(x,vec = numeric(),all.inside = TRUE) now returns 0s as docu-
mented. (Reported by Bill Dunlap.)

• (Windows only) R CMD SHLIB failed when a symbol in the resulting library had the
same name as a keyword in the ‘.def’ file. (PR#17130)

• pmax() and pmin() now work with (more ?) classed objects, such as "Matrix" from
the Matrix package, as documented for a long time.

• axis(side,x = D) and hence Axis() and plot() now work correctly for "Date" and
time objects D, even when “time goes backward”, e.g., with decreasing xlim. (Reported
by William May.)

• str(I(matrix(..))) now looks as always intended.

• plot.ts(), the plot() method for time series, now respects cex, lwd and lty. (Re-
ported by Greg Werbin.)

• parallel::mccollect() now returns a named list (as documented) when called with
wait = FALSE. (Reported by Michel Lang.)

• If a package added a class to a class union in another package, loading the first package
gave erroneous warnings about “undefined subclass”.

• c()’s argument use.names is documented now, as belonging to the (C internal) default
method. In “parallel”, argument recursive is also moved from the generic to the
default method, such that the formal argument list of base generic c() is just (...).
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• rbeta(4,NA) and similarly rgamma() and rnbinom() now return NaN’s with a warning,
as other r<dist>(), and as documented. (PR#17155)

• Using options(checkPackageLicense = TRUE) no longer requires acceptance of the
licence for non-default standard packages such as compiler. (Reported by Mikko
Korpela.)

• split(<very_long>,*) now works even when the split off parts are long. (PR#17139)

• min() and max() now also work correctly when the argument list starts with
character(0). (PR#17160)

• Subsetting very large matrices (prod(dim(.)) >= 2^31) now works thanks to Michael
Schubmehl’s PR#17158.

• bartlett.test() used residual sums of squares instead of variances, when the argu-
ment was a list of lm objects. (Reported by Jens Ledet Jensen).

• plot(<lm>,which = *) now correctly labels the contour lines for the standardized
residuals for which = 6. It also takes the correct p in case of singularities (also for
which = 5). (PR#17161)

• xtabs(~ exclude) no longer fails from wrong scope, thanks to Suharto Anggono’s
PR#17147.

• Reference class calls to methods() did not re-analyse previously defined methods,
meaning that calls to methods defined later would fail. (Reported by Charles Tilford).

• findInterval(x,vec,left.open = TRUE) misbehaved in some cases. (Reported by
Dmitriy Chernykh.)
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