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Editorial
by Roger Bivand

This new issue, Volume 9, Issue 1, of the R Journal contains 33 contributed research articles,
like the second issue of 2016. Most of the articles present R packages, and cover a very wide
range of uses of R. Our journal continues to be critically dependent on its readers, authors,
reviewers and editors. Annual submission numbers have grown markedly, but the rate of
growth is less than that of the number of CRAN packages. Table 1 shows the outcomes
of submitted contributed articles by year of submission. The proportion of submissions
reaching publication has been roughly half since 2012.

2009 2010 2011 2012 2013 2014 2015 2016

Published 26 26 26 22 31 36 51 58
Rejected 11 14 11 24 29 32 53 64
Under review 0 0 0 0 0 0 0 19

Total 37 40 37 46 60 68 104 141

Table 1: Submission outcomes 2009–2016, by year of submission.

In order to try to restore some balance to the inflow of submissions, the kinds of arti-
cled solicited were clarified in January 2017. Articles introducing CRAN or Bioconductor
packages — the most common kind of submission — should now provide broader context.
We would like to encourage the submission of reviews and proposals, comparisons and the
benchmarking of alternative implementations, and presentations of applications demon-
strating how new or existing techniques can be applied in an area of current interest using
R.

2009 2010 2011 2012 2013 2014 2015 2016

Page count 109 123 123 136 362 358 479 895
Article count 18 18 20 18 35 33 36 62
Average length 6.1 6.8 6.2 7.6 10.3 10.8 13.3 14.4

Table 2: Published contributed articles 2009–2016, by year of publication.

Not only has the number of submissions increased, but the length of published articles
has also increased (see Table 2). The apparent jump from 2012 to 2013 may be associated
with the change from a two column to a single column format, but page counts have risen,
increasing the workload of reviewers and editors. We only have consistent records of the
time taken to process accepted contributed articles for the 2013–2016 period. Again, the
excellent work done by our generous reviewers and my very hard-working predecessors
and especially Michael Lawrence last year, is evident in holding median times from receipt
to publication online to a little over 200 days, as Table 3 shows.

2013 2014 2015 2016

Median 347.0 225.5 212.5 212.0

Table 3: Median day count from acknowledgement to acceptance and online publication 2013–2016,
by year of publication.

Using gender (Blevins and Mullen, 2015; Mullen, 2016) and genderizeR (Wais, 2016a,b),
it is also possible to use author given names1 to try to monitor author diversity; affiliation

1The articles describing the packages used here stress the uncertainty involved in binary assignment.
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location has not yet been successfully examined. Table 4 shows that there remains plenty to
do to reflect the strengths of our community adequately2.

2009 2010 2011 2012 2013 2014 2015 2016

Women 5 9 8 6 10 18 27 32
Men 32 30 33 27 62 55 55 121
Unknown 3 5 3 3 7 4 9 10

Table 4: Authors of published articles 2009–2016, by year of publication; women/men split based on
author given names.

In addition to re-framing the description of the kinds of articles we invite authors to
contribute to our journal, work has been done on our website. Its appearance has been
brought into line with that of the main R project website, and articles are reached through
“landing” pages containing the abstract and citatation information as well as listings of
CRAN and Bioconductor packages cited in the article. So far very few contributed articles
associate themselves directly with CRAN Task Views, so these are inferred from cited
CRAN packages and listed on the landing pages. Further progress in helping to make work
published in our journal more accessible is planned.

I hope you continue to enjoy and benefit from reading work published in our journal.
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2Although relative binary proportions do not differ greatly from those shown by a recent survey of useR
participants (https://forwards.github.io/blog/2017/01/13/mapping-users/), the Norwegian context of the
editor suggests that complacency or change of focus are unhelpful.
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iotools: High-Performance I/O Tools for R
by Taylor Arnold, Michael J. Kane, and Simon Urbanek

Abstract The iotools package provides a set of tools for input and output intensive data processing in
R. The functions chunk.apply and read.chunk are supplied to allow for iteratively loading contiguous
blocks of data into memory as raw vectors. These raw vectors can then be efficiently converted
into matrices and data frames with the iotools functions mstrsplit and dstrsplit. These functions
minimize copying of data and avoid the use of intermediate strings in order to drastically improve
performance. Finally, we also provide read.csv.raw to allow users to read an entire dataset into
memory with the same efficient parsing code. In this paper, we present these functions through a
set of examples with an emphasis on the flexibility provided by chunk-wise operations. We provide
benchmarks comparing the speed of read.csv.raw to data loading functions provided in base R and
other contributed packages.

Introduction

When processing large datasets, specifically those too large to fit into memory, the performance
bottleneck is often getting data from the hard-drive into the format required by the programming
environment. The associated latency comes from a combination of two sources. First, there is hardware
latency from moving data from the hard-drive to RAM. This is especially the case with “spinning”
disk drives, which can have throughput speeds several orders of magnitude less than those of RAM.
Hardware approaches for addressing latency have been an active area of research and development
since hard-drives have existed. Solid state drives and redundant arrays of inexpensive disks (RAID)
now provide throughput comparable to RAM. They are readily available on commodity systems
and they continue to improve. The second source comes from the software latency associated with
transforming data from its representation on the disk to the format required by the programming
environment. This translation slows down performance for many R users, especially in the context of
larger data sources.

We can compare the time needed to read, parse, and create a data frame with the time needed to
just read data from disk. In order to do this, we will make use of the “Airline on-time performance”
dataset, which was compiled for the 2009 American Statistical Association (ASA) Section on Statistical
Computing and Statistical Graphics biannual data exposition from data released by the United States
Department of Transportation (RITA, 2009). The dataset includes commercial flight arrival and
departure information from October 1987 to April 2008 for those carriers with at least 1% of domestic
U.S. flights in a given year. In total, there is information for over 120 million flights, with 29 variables
related to flight time, delay time, departure airport, arrival airport, and so on. The uncompressed
dataset is 12 gigabytes (GB) in size. While 12 GBs may not seem impressively “big” to many readers, it
is still large enough to investigate the performance properties and, unlike most other large datasets, it
is freely available. Supplemental materials, accessible at https://github.com/statsmaths/iotools-
supplement, provide code for downloading the dataset and running the benchmarks included in this
paper.

In a first step before measuring the time to load the dataset, column classes are defined so that
this part of the data frame processing does not become part of our timings. These can be inferred by
reviewing the dataset documentation and inspecting the first few rows of data. The column data types
for this dataset are given by:

> col_types <- c(rep("integer", 8), "character", "integer", "character",
+ rep("integer", 5), "character", "character",
+ rep("integer", 4), "character", rep("integer", 6))

Now, we will read in the file 2008.csv, which contains comma-separated values with 29 columns and
7,009,728 rows.

> system.time(read.csv("2008.csv", colClasses = col_types))[["elapsed"]]
[1] 68.257

It takes just over 68 seconds to read the file into R and parse its contents into a data frame object. We
can test how much of this time is due to just loading the results from the hard-drive into R’s memory.
This is done using the readBin function to read the file as a raw string of bytes and file.info to infer
the total size of the file; both functions are provided by the base package of R.

> system.time(readBin("2008.csv", "raw",
+ file.info("2008.csv")[["size"]]))[["elapsed"]]
[1] 0.493
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This takes less than one half of a second. It takes about 138 times longer to read and parse the data with
read.csv than to just read the data in as raw bytes, indicating there may be room for improvement.
This is not to say read.csv and its associated functions are poorly written. On the contrary, they are
robust and do an excellent job inferring format and shape characteristics from data. They allow users
to import and examine a dataset without knowing how many rows it has, how many columns it has, or
its column types. Because of these functions, statisticians using R are able to focus on data exploration
and modeling instead of file formats and schemas.

While existing functions are sufficient for processing relatively small datasets, larger ones require
a different approach. For large files, data are often processed on a single machine by first being
broken into a set of consecutive rows or “chunks.” Each chunk is loaded and processed individually,
before retrieving the next chunk. The results from processing each chunk are then aggregated and
returned. Small, manageable subsets are streamed from the disk to the processor with enough memory
to represent a single chunk required by the system. This approach is common not only in single
machine use but also in distributed environments with technologies such as Spark (Zaharia et al., 2010)
and Hadoop MapReduce (Dean and Ghemawat, 2008). Clusters of commodity machines, such as
those provided by Amazon Elastic Compute Cloud (EC2) and Digital Ocean, are able to process vast
amounts of data one chunk at a time. Many statistical methods are compatible with this computational
approach and are justified in a variety of contexts, including Hartigan (1975), Kleiner et al. (2014),
Guha et al. (2012), and Matloff (2016).

However, base R together with the contributed packages currently does not provide convenient
functionality to implement this common computing pattern. Packages such as bigmemory (Kane
et al., 2013) and ff (Adler et al., 2014) provide data structures using their own binary formats over
memory-mapped files stored on disk. The data structures they provide are not native R objects.
They therefore do not exhibit properties such as copy-on-write behavior, which avoids making
unnecessary copies of the dataset in memory (Rodeh, 2008), and, in general, they cannot be seamlessly
integrated with R’s plethora of user contributed packages. The readr package (Wickham et al.,
2016) provides fast importing of "data.frame" objects but it does not support chunk-wise operations
for arbitrarily large files. The foreach package (Revolution Analytics and Weston, 2015a), and its
associated iterators package (Revolution Analytics and Weston, 2015b), provide a general framework
for chunked processing but does not provide the low-level connection-based utilities for transforming
binary data stored on the disk to those native to R.

The iotools package provides tools for data processing using any data source represented as
a connection (Arnold and Urbanek, 2015). Users of the package can import text data into R and
process large datasets iteratively over small chunks. The package’s functions can be several orders of
magnitude faster than R’s native facilities. The package provides general tools for quickly processing
large datasets in consecutive chunks and provides a basis for speeding up distributed computing
frameworks including Hadoop Streaming (The Apache Software Foundation, 2013) and Spark.

The remainder of this paper introduces the use of the iotools package for quickly importing
datasets and processing them in R. Examples center around the calculation of ordinary least squares
(OLS) slope coefficients via the normal equations in a linear regression. This particular application
was chosen because it balances read and write times with processing time.

Input methods and formatters

R’s file operations make use of Standard C input and output operations including fread and fwrite.
Data are read in, elements are parsed, and parsed values populate data structures. The iotools package
also uses the Standard C library but it makes use of “bulk” binary operations including memchr and
strchr. These functions make use of hardware specific, single instruction, multiple data operations
(SIMD) and tend to be faster than their Standard I/O counterparts. (See, for example, Zhou and Ross
(2002) for a complete overview of the benefits and common implementations of SIMD instructions.)
As a result, iotools is able to find and retrieve data at a higher rate. In addition, an entire dataset or
chunk is buffered rather than scanned and transformed line-by-line as in the read.table function.
Thus, by buffering chunks of data and making use of low-level, system functions iotools is able to
provide faster data ingestion than what is available in base R.

Importing data with dstrsplit and read.csv.raw

A core function in the iotools package is dstrsplit. It takes either a raw or character vector and
splits it into a data frame according to a specified separator. Each column may be parsed into a
logical, integer, numeric, character, raw, complex or POSIXct vector. Columns of type factor are
not supported as a method of input, though columns may be converted to a factor once the dataset is
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platform method integer logical num char num & char complex raw

Ubuntu 16.04 readRDS 0.1 0.1 0.2 7.0 7.2 2.0 0.1
Ubuntu 16.04 dstrsplit 0.8 1.0 2.7 2.6 5.2 5.1 0.6
Ubuntu 16.04 read_csv 1.5 1.7 5.9 2.5 9.7 · ·
Ubuntu 16.04 read.csv 11.0 15.0 50.2 9.0 59.4 96.2 8.4

macOS Sierra readRDS 0.2 0.2 0.3 5.4 6.5 1.9 0.1
macOS Sierra dstrsplit 0.9 1.0 2.8 2.4 5.2 5.3 0.6
macOS Sierra read_csv 1.4 1.5 6.2 2.0 8.0 · ·
macOS Sierra read.csv 8.6 11.1 39.3 6.7 46.6 70.1 6.2

Windows 7 readRDS 0.1 0.1 0.3 5.6 6.1 2.3 0.1
Windows 7 dstrsplit 1.5 1.3 4.4 2.7 5.6 8.8 0.7
Windows 7 read_csv 1.3 1.9 8.9 1.7 7.6 · ·
Windows 7 read.csv 6.3 7.5 25.7 4.7 29.7 48.1 3.8

Table 1: Time in seconds (average over 10 replications) to import a data frame by element type.
Each data frame has 1 million rows and 25 columns of the specified data, except for the “num &
char” column which has 25 columns of character values interleaved with 25 columns of numeric
columns. Note that read_csv, from the readr package, does not support complex and raw types. Linux
benchmarks used a server with a 3.7 GHz Intel Xeon E5 and 32 GB of memory. Mac benchmarks used
a mid-2015 MacBook Pro with 2.5 GHz Intel Core i7 and 16 GB of memory. Windows benchmarks
used a desktop machine with a 3.2 GHz Intel Core i5 CPU and 8 GB of memory.

loaded. It will be shown later that dstrsplit can be used in a streaming context and in this case data
are read sequentially. As a result, the set of factor levels cannot be deduced until the entire sequence is
read. However, in most cases, a caller knows the schema and is willing to specify factor levels after
loading the data or is willing to use a single pass to find all of the factor levels.

The tools in iotools were primarily developed to support the chunk-wise processing of large
datasets that are too large to be read entirely into memory. As an additional benefit it was observed
that these functions are also significantly faster when compared to the read.table family of functions
when importing a large plain-text character separated dataset into R. The readAsRaw function takes
either a connection or a file name and returns the contents as a raw type. Combining this with
dstrsplit, we can load the 2008.csv file significantly faster:

> system.time(dstrsplit(readAsRaw("2008.csv"), sep = ",",
+ col_types = col_types))[["elapsed"]]
[1] 14.087

This takes about 14 seconds, which is roughly a five-fold decrease when compared to the read.csv
function. In order to simplify its usage, the function read.csv.raw was written as a wrapper around
dstrsplit for users who want to use iotools to import data in a manner similar to read.table:

> system.time(read.csv.raw("2008.csv", colClasses = col_types))[["elapsed"]]
[1] 14.251

The performance is very similar to the dstrsplit example.

Table 1 shows the time needed to import a data file with 1,000,000 rows and 25 columns using
readRDS, dstrsplit, read_csv (from the readr package), and read.table. Imports were performed
for each of R’s native types to see how their different size requirements affect performance. The
return value of read_csv includes additional metadata because a ‘tbl_df’ object is returned, which is
a subtype of R’s native "data.frame" class. Otherwise all functions return the exact same data. The
benchmarks show that, except for character vectors, readRDS is fastest. This is unsurprising since
readRDS stores the binary representation of an R object and importing consists of copying the file to
memory and registering the object in R. read_csv’s performance is reasonably close to those of iotools
across all three platforms and data types. The iotools functions are generally faster on integer and
numeric types, whereas the readr functions are slightly faster on character types. In both cases, no
performance is lost when dealing with data sets that have mixed data types and results are consistent
across operating systems.
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Processing the model matrix

In this and the following section, we will show how to estimate, based on the entire Airline on-time
performance datase, the slope coefficients for the follwoing linear regression model using OLS:

ArrDelay ∼ DayO f Week + DepTime + Month + DepDelay. (1)

The OLS slope estimates can be calculated by creating the model matrix and applying the normal
equations to derive the coefficients. Given the size of the dataset in this example, it will not be possible
to calculate the normal equation matrices directly in memory. Instead, the model matrix will be created
sequentially over blocks of rows. As this dataset is further split with each year of data being stored in
a separate file, we will also need an outer loop over the available yearly files (1988 to 2008).

We first construct the model matrix and save it in a file on disk; the slope coefficients will be
calculated in a second step. Separate processing and model fitting in this case are mostly for the sake
of breaking down the example into digestible bits. In many real-world data challenges it may still be a
good idea, as it provides an intermediate way of checking whether problems arise while fitting the
model. Regardless if problems occur either due to a bug in the code or an interruption in computing
services, the model matrix does not need to be recalculated.

In order to construct a large model matrix file, we cycle over the individual data files and work
on each separately. Each file is loaded using the read.csv.raw function, the variables DayOfWeek and
Month are converted into factors. The departure time variable is given in a 24-hour format, in local
time, and with the colon removed from a standard representation of time. For example, 4:30pm is
given as “1630” and 5:23am is “523”. Our code extracts the hour and minute and converts the time
into minutes since midnight; less than 0.5% of the flights depart between midnight and 3:59am, so
ignoring the circular nature of time is reasonable in this simple application. Finally, the entire output
is stored as a comma separated file with the first column representing the response.

> out_file <- file("airline_mm.csv", "wb")
> for (data_file in sprintf("%04d.csv", 1988:2008)) {
+ df <- read.csv.raw(data_file, col_types = col_types)
+ df$DayOfWeek <- factor(df$DayOfWeek, levels = 1:7)
+ df$Month <- factor(df$Month, levels = 1:12)
+ df$DepTime <- sprintf("%04d", df$DepTime)
+ df$DepTime <- as.numeric(substr(df$DepTime, 1, 2)) * 60 +
+ as.numeric(substr(df$DepTime, 3, 4))
+
+ mf <- model.frame(ArrDelay ~ DayOfWeek + DepTime + DepDelay + Month, df)
+ mm <- cbind(model.response(mf), model.matrix(mf, df))
+ rownames(mm) <- NULL
+ writeBin(as.output(mm, sep = ","), out_file)
+ }
> mm_names <- colnames(mm)
> close(out_file)

The output connection is recycled in each iteration of the loop thereby appending each year’s data; the
names of the model matrix are stored in memory for the next step. In the end we have one large file
that contains the entire model matrix. The output is representative of the kinds of large datasets often
encountered in industry applications.

Fitting the model with mstrsplit and chunk.apply

With the model matrices created, the next step is to estimate the slope coefficients β in the model

Y = Xβ + ε, (2)

where Y, ε ∈ Rn, and β ∈ Rd, n ≥ d; each element of ε is an i.i.d. random variable with mean zero;
and X is a matrix in Rn×d with full column rank. The analytic solution for estimating the OLS slope
coefficients, β, is

β̂ =
(

XT X
)−1

XTY. (3)
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platform method integer logical num char complex raw

Ubuntu 16.04 readRDS 0.2 0.2 0.2 0.2 0.2 0.2
Ubuntu 16.04 mstrsplit 0.5 0.7 2.4 1.2 4.6 0.4
Ubuntu 16.04 as.matrix 11.2 15.2 50.6 16.0 98.3 12.0

macOS Sierra readRDS 0.2 0.2 0.2 0.2 0.2 0.2
macOS Sierra mstrsplit 0.6 0.8 2.7 1.3 4.8 0.4
macOS Sierra as.matrix 8.8 11.3 39.7 12.4 72.1 9.3

Windows 7 readRDS 0.1 0.2 0.1 0.1 0.3 0.1
Windows 7 mstrsplit 0.7 0.9 3.0 0.8 5.7 0.5
Windows 7 as.matrix 6.5 7.7 26.0 10.7 50.5 8.8

Table 2: Time in seconds to import a matrix by element type. Each matrix has 1 million rows and
25 columns. Linux benchmarks used a server with a 3.7 GHz Intel Xeon E5 and 32 GB of memory.
Mac benchmarks used a mid-2015 MacBook Pro with 2.5 GHz Intel Core i7 and 16 GB of memory.
Windows benchmarks used a desktop machine with a 3.2 GHz Intel Core i5 CPU and 8 GB of memory.

Consider the row-wise partitioning (or chunking) of Equation 2:
Y1
Y2
...

Yr

 =


X1
X2
...

Xr

 β +


ε1
ε2
...

εr

 ,

where Y1, Y2, ..., Yr; X1, X2, ..., Xr; and ε1, ε2, ..., εr are data partitions where each chunk is composed of
subsets of rows of the model matrix. Equation 3 may then be expressed as (Friedman et al., 2001),

β̂ =

(
r

∑
i=1

XT
i Xi

)−1 r

∑
i=1

XT
i Yi. (4)

The matrices XT
i Xi and XT

i Yi can be calculated on each chunk and then summed to calculate the slope
coefficients.

In the previous step, the data were read into a data frame, but we now need to read data into
a numeric matrix. Interestingly enough, this functionality is not provided in base R or the Matrix
(Bates and Maechler, 2017) package. Users who wanted to read data from a file into a matrix must
read it in as a data frame and then convert it using the as.matrix function. The iotools package fills
this gap by providing the function mstrsplit, a matrix import function similar to function dstrsplit.
Table 2 compares the performance of mstrsplit with read.table followed by a call to as.matrix along
binary importing using load. As with dstrsplit, mstrsplit outperforms the base R’s read.table
benchmarks by an order of magnitude.

In order to fit the model we will need to read from airline_mm.csv in chunks. The function
chunk.apply, provided in iotools, allows us to do this easily over an open connection. By default
the data is read in as 32MB chunks, though this can be changed by the CH.MAX.SIZE parameter to
chunk.apply. The parameter CH.MERGE describes how the outputs of all the chunks are combined.
Common options include list or, when the result is a single vector, c. Here, we use chunk.apply to
calculate the matrices XTy and XT X over chunks of the data:

> ne_chunks <- chunk.apply("airline_mm.csv",
+ function(x) {
+ mm <- mstrsplit(x, sep = ",", type= " numeric")
+ colnames(mm) <- mm_names
+ list(xtx = crossprod(mm[, -1]),
+ xty = crossprod(mm[, -1], mm[, 1, drop = FALSE]))
+ }, CH.MERGE = list)

Notice that we do not need to manually specify the chunks; this detail is abstracted away by the
chunk.apply function, which simply selects contiguous sets of rows for our function to evaluate. The
output of the chunk-wise operation can be combined using the Reduce function:

> xtx <- Reduce("+", Map(function(x) x$xtx, ne_chunks))
> xty <- Reduce("+", Map(function(x) x$xty, ne_chunks))

With these results, the regression function can be solved with the normal equations where d is small.
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Figure 1: Average time over ten iterations to fit a linear model over the Airline on-time performance
dataset as a function of the number of cores used and the number of parallel tasks used.

> qr.solve(xtx, xty)
[,1]

(Intercept) 0.5564085990
DayOfWeek2 0.5720431343
DayOfWeek3 0.8480978666
DayOfWeek4 1.2436976583
DayOfWeek5 1.0805744488
DayOfWeek6 -1.2235684080
DayOfWeek7 -0.9883340887
DepTime 0.0003022008
DepDelay 0.9329374752
Month2 0.2880436452
Month3 -0.2198123852
...

The technique used by the lm function is similar to our approach, except that the QR-decomposition
there is done directly on X itself rather that on XT X. The difference is rarely an issue unless the
problem is particularly ill-conditioned. In these cases, a small ridge regression penalty can be added
to stabilize the solution (Friedman et al., 2001).

Parallel processing of chunks

In the example above the xtx and xty chunks are calculated serially. The chunk.apply function
includes a parameter, parallel, allowing the user to specify the number of parallel processes, taking
advantage of the embarrassingly parallel nature of these calculations. However, it is worth noting that
parallelism in the chunk.apply function is slightly different from other functions such as mclapply.

Most parallel functions in R work by having worker processes receive data and an expression
to compute. The master process initiates the computations and waits for them to complete. For
I/O-intensive computations this in general means that either the master loads data before initiating the
computation or the worker processes load the data. The former case is supported in iotools through
iterator functions (idstrsplit and imstrsplit), which are compatible with the foreach package.
However, in this case, new tasks cannot be started until data has been loaded for each of the workers.
Loading the data on the master process may become a bottleneck and it may require much more time
to load the data than to process it. The latter approach is also supported in iotools and ensures the
master process is not a bottleneck. If, however, multiple worker processes on a single machine load
a large amount of data from the same disk, resource contention at the system level may also cause
excessive delays. The operating system has to service multiple requests for data from the same disk
having limited I/O capability.
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A third option, implemented in chunk.apply, provides pipeline parallelism where the master process
sequentially loads data and then calls mcparallel to initiate the parallel computation. When the
maximum number of worker processes has been reached the master process pre-fetches the next chunk
and then blocks on the result of the running worker processes. When the result is returned a newly
created worker begins processing the pre-fetched data. In this way the master does not wait idly
for worker processing and there is no resource contention since only the master is retrieving data.
Pipeline parallelism increases execution throughput when the computation time is around the same
order as the load time. When the load time exceeds the execution time, the overhead involved in
initiating worker processes and getting their results will yield less desirable performance gains from
parallelization. In the case of particularly long load times, the overhead will overwhelm the process
and the parallel execution may be slower than a single serial calculation.

Figure 1 shows the times required to calculate XT X and XTY for the normal equations in the
regression described above using the three approaches described: all workers read, only the master
reads, and pipeline parallelism. Pipeline parallelism performs the best overall, with all workers
reading following close behind. However, all workers reading will only be able to keep pace with
pipeline parallelism as long as there is sufficient hard-drive bandwidth and little contention from
multiple reads. As a result, the pipeline parallel approach is likely a more general and therefore
preferred strategy.

Conclusion

This paper presents the iotools package for the processing of data much larger than memory. Tools
are included to efficiently load medium-sized files into memory and to parse raw vectors into matrices
and data frames. The chunk-wise functionality is used as a building block to enable the processing
of terabyte- and even petabyte-scale data. The examples emphasize computing on a single machine,
however iotools is by no means limited to this configuration. The “chunk” functions are compatible
with any object derived from a connection and can therefore be used with compressed files or even
pipes and sockets. Our current work, in fact, uses iotools as a building block for more tightly
integrating R into the Hadoop Streaming and Spark frameworks.
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IsoGeneGUI: Multiple Approaches for
Dose-Response Analysis of Microarray
Data Using R
by Martin Otava, Rudradev Sengupta, Ziv Shkedy, Dan Lin, Setia Pramana, Tobias Verbeke, Philippe
Haldermans, Ludwig A. Hothorn, Daniel Gerhard, Rebecca M. Kuiper, Florian Klinglmueller and
Adetayo Kasim

Abstract The analysis of transcriptomic experiments with ordered covariates, such as dose-response
data, has become a central topic in bioinformatics, in particular in omics studies. Consequently,
multiple R packages on CRAN and Bioconductor are designed to analyse microarray data from various
perspectives under the assumption of order restriction. We introduce the new R package IsoGene
Graphical User Interface (IsoGeneGUI), an extension of the original IsoGene package that includes
methods from most of available R packages designed for the analysis of order restricted microarray
data, namely orQA, ORIClust, goric and ORCME. The methods included in the new IsoGeneGUI
range from inference and estimation to model selection and clustering tools. The IsoGeneGUI is not
only the most complete tool for the analysis of order restricted microarray experiments available in
R but also it can be used to analyse other types of dose-response data. The package provides all the
methods in a user friendly fashion, so analyses can be implemented by users with limited knowledge
of R programming.

Introduction

Modelling the dose-response relationship plays an important role in the drug discovery process in
the pharmaceutical industry. Typical responses are efficacy or toxicity measures that are modelled
with the aim of identifying the dose that is simultaneously efficacious and safe (Pinheiro et al., 2006).
The recent development of microarray technology introduced gene expression level as an additional
important outcome related to dose. Genes, for which the expression level changes over the dose of the
experimental drug, are of interest, since they provide insight into efficacy, toxicity and many other
phenotypes. Order restriction is often assumed in the dose-response modelling, usually in terms of
monotone trend (Lin et al., 2012b). The restriction is a consequence of the assumption that higher
dose levels induce stronger effects in the response (either increasing or decreasing). However, order
restriction can also be related to umbrella profiles. In such a case, monotonicity is assumed up to a
certain dose level and the direction of the dose-response relationship changes thereafter (Bretz and
Hothorn, 2003).

Order restricted analysis received a lot of attention in previous years and several R packages were
developed for this purpose. Specifically, the R packages IsoGene (Lin et al., 2013 and Pramana et al.,
2010) and orQA (Klinglmueller, 2010) were developed for inference, goric (Gerhard and Kuiper, 2012
and Kuiper and Hoijtink, 2013) for model selection, and ORCME (Kasim et al., 2014) and ORIClust
(Liu et al., 2012) were developed for order restricted clustering of genes.

Inference consists of testing a null hypothesis of a no dose-response relationship, against an ordered
alternative. Multiplicity correction needs to be applied due to the large number of tests. The model
selection framework quantifies the expected relative distance of a given model to the true underlying
model in order to select the best model among a set of candidate models. The model selection approach
is basis for the identification of the minimal effective dose or lowest-observed-adverse-effect level
(Kuiper et al., 2014). Order restricted clustering is a data analysis approach which aims to form subsets
of genes with similar expression profiles. It can be very useful when reference genes are available and
the aim of the analysis is to identify genes that behave in a similar way to the reference genes. The
clusters can be formed in unsupervised way and the genes that share cluster with reference genes can
be identified. Additionally, the resulting clusters can be used to establish potential pathways and gene
sets that react to the exposure in close agreement.

All the different methods mentioned above were scattered across multiple specialized packages.
The IsoGeneGUI package is an envelope package in which all the methods are available together
in user friendly framework, allowing to explore the gene expression data set with collection of
state-of-the-art tools. The overview of the package structure is schematically shown in Figure 1.

Not all scientists performing microarray experiment analysis are necessarily educated in using
R. Hence, the package IsoGeneGUI (Pramana et al., 2012) was originally created as a graphical user
interface extension of the IsoGene package. The large number of IsoGeneGUI package downloads
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Figure 1: The general structure of the IsoGeneGUI package.

from the BioConductor (Gentleman et al., 2004) repository suggests that there is a demand for GUI
data analysis tools for inference, model selection, estimation and order restricted clustering. Therefore,
the IsoGeneGUI package was extended to embrace all currently available tools in one package. In
addition to the data analysis tools for estimation, inference, model selection and clustering, the package
contains many tools for exporting results, their visualization and easy handling of produced figures.
Therefore, IsoGeneGUI provides the most complete and simultaneously user friendly data analysis
tool, dealing with order restricted microarray experiments and other dose-response studies, that is
currently available in R.

The aim of this manuscript is to provide a brief introduction to the package, both the underlying
methodological aspects and its particular implementation are discussed. Methods for inference, esti-
mation, clustering and model selection available in IsoGeneGUI package are introduced in following
section. The structure of the package is described and details about implementation of the methods
are given.

Modelling order-restricted dose-response data

Estimation under order restriction

The methodology described in this section has its roots in the maximum likelihood estimate (MLE)
under the order constraints. The MLE is obtained by least squares minimization, with restriction
on monotonicity of dose-specific means. The estimation procedure under such condition is called
’isotonic regression’ (Barlow et al., 1972). It can be shown that the MLE can be obtained using the ’pool
adjacent violators algorithm’ (PAVA). The algorithm first computes the dose-specific means. If there is
any violation of the monotonicity between any two estimates of means, it assigns to both of them their
weighted average as new estimate for both means. The weights are proportional to the number of
observations for particular dose. The procedure is repeated, until all the estimates comply with the
monotonicity assumption.

Specifically, assume non-decreasing profile and denote µ0, . . . , µK−1 the dose-specific means and
ni, i = 0, . . . , K − 1 number of observations per dose level i. The unrestricted MLE are equal to the
dose-specific sample means denoted by µ̂0, . . . , µ̂K−1. Isotonic means µ̂∗0 , . . . , µ̂∗K−1, i.e. the means
under the assumption of monotonicity, are computed as µ̂∗j = µ̂j, j = 0, . . . , K− 1, if the means fulfill
µ̂j ≤ µ̂j+1. If any µ̂j > µ̂j+1, then µ̂∗j = µ̂∗j+1 = (njµ̂j + nj+1µ̂j+1)/(nj + nj+1). The procedure is
repeated iteratively, until it holds that µ̂∗0 ≤ · · · ≤ µ̂∗K−1.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 16

Inference

The main goal of the inference framework is to test the relationship between the dose level and the
response of interest; gene expression in our case. The primary interest is to test the null hypothesis of
no dose effect on the response, given by

H0 : µ0 = µ1 = µ2 = . . . = µK−1, (1)

against an ordered (monotonic) alternative

Hup : µ0 ≤ µ1 ≤ µ2 ≤ . . . ≤ µK−1, or Hdn : µ0 ≥ µ1 ≥ µ2 ≥ . . . ≥ µK−1, (2)

with at least one strict inequality. Several test statistics for order restricted problems were developed
over the last few decades. In the package, the following methods are available: likelihood-ratio test
(LRT, Barlow et al., 1972), Williams’ test statistic (Williams, 1971), Marcus’ statistic (Marcus, 1976),
M statistic (Hu et al., 2005) and modified M statistic (Lin et al., 2007). The different methods are
sensitive to different possible underlying profiles, so there is no overall best method. The choice
strongly depends on the context of interest. The LRT test is based on the ratio of a residual sum of
squares under monotonicity over a residual sum of squares under the null hypothesis. Williams’ test
statistic is based on difference µ̂∗K−1 − µ̂0, i.e. fold change between isotonic mean of last dose and
sample mean under first dose. Marcus’ statistics is a modification of Williams’ that compares isotonic
means µ̂∗K−1 − µ̂∗0 . The M and modified M test statistics are based on the same difference as Marcus’
test, but they differ in a way how the estimation of standard error is approached. Detailed discussion
about the methods, their usage and advantages and disadvantages can be found in Lin et al. (2007).
The distribution of some of the test statistics cannot be derived analytically. Therefore, resampling
based inference is implemented to approximate distribution of test statistics under the null model
(Westfall and Young, 1993 and Ge et al., 2003).

When the tests are performed for a large number of genes, the multiplicity adjustment is necessary.
Otherwise, the significance level control would be compromised and large number of false positives
is expected. In general, there are two approaches for multiplicity corrections. Either by controlling
the probability of at least one false positive among the findings (Family Wise Error Rate, FWER) or
alternatively by controlling the proportion of false positives among the findings (False Discovery Rate,
FDR). The FWER can be controlled by Bonferroni (Bonferroni, 1936), Holm (Holm, 1979), Hochberg
(Hochberg and Benjamini, 1990) or Šidák single-step and step-down (Šidák, 1971) procedures. The
method of Bonferroni and Šidák’s are conservative methods due to the assumption of independence
among tests, especially in case of large number of tests performed simultaneously, which is often the
case in microarray setting. Hochberg’s method is more powerful, but it only provides control of FWER
under assumption that there is non-negative dependance among the tests (Hochberg and Benjamini,
1990). Therefore, among the FWER methods, we suggest to use Holm’s procedure, unless there is
strong motivation otherwise. The procedure is uniformly more powerful than Bonferroni’s method,
but does not need positive dependence assumption to control FWER, as in case of Hochberg’s method.
The use of FDR instead of FWER is common in microarray studies. It translates into relaxing the
control of false positives, while decreasing false negatives. It is suitable to use, if few false positives
among findings are not a practical problem and we are mainly interested in identification of as many
true positives as possible. The FDR can be controlled using the Benjamini-Hochberg (BH, Benjamini
and Hochberg, 1995) or Benjamini-Yekutieli (BY, Benjamini and Yekutieli, 2001) procedures. Similarly
to FWER, the BY-FDR method is valid only under positive dependence among the tests, so the BH-FDR
should be used unless there is a strong motivation otherwise.

A common issue in gene expression inference is the presence of genes with relatively low variance
that induce large values of the test statistics under consideration, although the magnitude of the effect
is negligible. Formally, the genes are declared statistically significant, but from a biological point of
view, these genes will not be further investigated due to small fold change. Significance Analysis
of Microarrays (SAM, Tusher et al., 2001) was proposed as a solution for this issue by inflating the
standard error.

Clustering

The IsoGeneGUI package provides two clustering approaches based on algorithms that incorporate
order restrictions. The ORCME package implements the δ-clustering algorithm (Kasim et al., 2012)
which is based on the δ-biclustering algorithm proposed by Cheng and Church (2000). The clustering
is not applied on the data themselves, but on the isotonic means. Hence, it ignores the within dose
variability and uncertainty about the mean estimation. Therefore, it is advised that the algorithm is
applied either to a filtered data set (i.e. genes with fold change higher than given threshold) or on the
genes showing significant dose-response profile (i.e. after the inference step). The method is sensitive

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 17

both to differences in shape and to the different magnitude of the effect (even if shape is similar). The
clustering criterion in Kasim et al. (2012) is based on error sum of squares. The more robust version of
the algorithm is achieved by using the median polish algorithm to compute the residuals (Mosteller
and Tukey, 1977) and by replacing the squared error by an absolute value of error. This implies that
less weight is put on outlying residuals and the clusters are allowed for greater deviations under the
same degree of homogeneity.

The ORIClust package implements the one or two-stage Order Restricted Information Criterion
Clustering algorithm (ORICC, Liu et al., 2009, Lin et al., 2012a) which is based on an information
criterion that takes into account order restrictions. The filtering step can be addressed within the
algorithm itself. The ORICC algorithm considers different type of dose-response profiles, such as
monotone profiles and umbrella profiles, that can be used for clustering. Umbrella profiles assume
that the monotonicity holds up to a certain dose and then the trend changes the direction. Practical
example, when such profiles are suitable, is overdosing with the drug, changing beneficial effect to
the harmful one. In contrast to the clustering approach implemented in the δ-clustering method, the
ORICC algorithm pulls together all monotone profiles. Hence, it is not suitable for the separation of
non-decreasing monotone profiles with a true zero effect at some dose levels (i.e. some dose-specific
means are equal) from strictly increasing profiles. This is the main difference between these two
clustering algorithms, ORICC and δ-clustering, proposed by Liu et al. (2009) and Lin et al. (2012a),
respectively. For that reason, they are both needed to provide a complete toolbox for an order restricted
analysis of microarray data.

Model selection

The task of model selection procedures is to select the ’best’ model out of the given set of possible
models. The ’best’ is translated into a combination of the likelihood, i.e. how well the model fits
the data, and a penalty on the number of parameters (i.e. model complexity). The form of penalty
distinguishes various methods developed over past decades. A model selection based method is
implemented in the package goric using Generalized Order Restricted Information Criterion (GORIC,
Kuiper et al., 2011). The GORIC method incorporates the information about the order constraints
when calculating the information criteria. It extends the ORIC (Anraku, 1999) algorithm designed for
simple monotone order restriction by allowing more complicated structure of constraints. The set
of possible models is given and the output of the GORIC provides weights for each of these models
(Kuiper et al., 2014). The weights can be interpreted as posterior model probabilities (Lin et al., 2012a).
It is often the case that a null model is not considered in this step, if the method is applied conditionally
on the inference step that selected genes with significant dose-response relationship. Based on the
model weights, the best model or set of models can be selected. The main motivation for selecting one
or more models is to estimate a quantity of interest that characterize dose-response relationship. For
example, the determination of the minimum effective dose (MED). The MED is defined as the first
dose that exhibits some effect of dose on the response. It can be estimated either based on the best
model or as weighted average of several models, with weights proportional to the model weights
(Kuiper et al., 2014).

The structure of the package

The package IsoGeneGUI encompasses all the methods mentioned in previous section. The summary
is given in Table 1. The GUI was build using Tcl/Tk environment.

Package Analysis type Reference

IsoGene Inference Lin et al. (2012b)
orQA Inference Klinglmueller (2010)
ORCME Clustering Kasim et al. (2014)
ORIClust Clustering Liu et al. (2012)
goric Model selection Gerhard and Kuiper (2012)

Table 1: Packages for the analysis of order-restricted dose-response gene expression data available on CRAN.

The IsoGeneGUI is freely available from R-Forge repository https://r-forge.r-project.org/
projects/isogenegui/. It can be downloaded and run from R with commands:

install.packages("IsoGeneGUI", repos = "http://r-forge.r-project.org")
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library(IsoGeneGUI)
IsoGeneGUI()

The main window of the package is shown in Figure 2. The top tab lists several submenus. First the
submenu ’File’ (A in Figure 2) allows to load the data set and to display the data values as table. The
data compatible with package can be provided either as plain text file, Microsoft Excel spreadsheet or
the .RData file. The submenu ‘Analysis(HD)’ (B) comprises the methods for inference, estimation and
model selection, i.e. it contains the packages IsoGene, orQA and goric. The submenu ‘Analysis(SD)’
(C) is to be used when there is only one sample available. The clustering of the genes based on their
profiles can be performed in a separate submenu (D), using the methods implemented in ORCME
and ORIClust. Some of the plots can be obtained from the analysis windows, but more general plots
are listed in the visualization techniques submenu (E). The graphical techniques listed in submenu
D typically use outputs of the methods implemented in other submenus. The plots can be saved in
multiple file types. The last submenu ’Help’ (F) contains the help files for the IsoGene package, the
IsoGeneGUI package and the vignette for IsoGeneGUI. The box in the center of the main window
(G) gathers the results of the analyses and displays summary statistics of the results. Additionally, it
serves as indicator of which outputs are currently active (if analysis was run multiple times) and will
be plotted by visualization tools.

An example of the package interface is fully shown in Figure 3. We can see the main window
again (A), now with the box showing the properties of active data set (A1) and a summary of results
of a clustering procedure (A2). The window that was used for clustering with δ-clustering method
is displayed on the left side of the Figure 3 (B) and the results are displayed in the table (C). One of
the clusters was plotted using one of the visualization options (D). Further examples are shown in
following section.

Figure 2: The IsoGeneGUI package main menu with highlighted submenus.

Applications

The IsoGeneGUI implementation of the available methods is less flexible than in original packages.
That is natural trade-off between clarity and accessibility of options in GUI compared to plain R
packages that are more flexible but also more difficult to operate without proficient knowledge of R.
This section describes the implementation of the methods for inference, clustering and model selection.
The examples shown in Figure 4 to Figure 6 were obtained using the example data set dopamine that is
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Figure 3: R with opened IsoGeneGUI package.

part of the IsoGeneGUI package. The dopamine data set is subset of a larger dose-response experiment
(Lin et al., 2012b) and consist of 1000 genes with four doses and 3 arrays per dose. In each figure, one
method is presented, accompanied with one of available graphical displays.

Inference

The permutation test is implemented for all five test statistics discussed above, using the functions
from IsoGene package. For the LRT, a much faster implementation of the permutation test is available
from orQA. Both methods produce the same result (within the sampling error), so the slower version
should be used only in case that additional test statistics are of interest. Additionally, there is an
asymptotic solution available for the LRT as well. Note that it is advised to avoid this option in case of
small sample sizes.

The window that facilitates permutation test based on the IsoGene package is shown in Figure 4.
The left panel shows the window itself. The top part allows to select the genes for which the raw p-
values based on permutation test will be obtained. The middle part of window offers seven multiplicity
adjustment methods and computation of significant genes based on any of the five test statistics. The
last part produces three types of plots. The right panel of Figure 4 shows an example of one of the
plots: the adjustment of p-value while controlling FDR. In this case, both BH and BY methods agreed
on same set of genes, but that is not necessarily case in general. For FDR equal to 5%, we expect three
false discoveries among the 62 null hypotheses that were rejected. The left panel of Figure 5 shows the
window for the LRT using the orQA package, providing nearly same options as permutation method.
The right panel of Figure 5 shows example of so called ’volcano plot’ that compares the -log(p-value)
and fold change. Note that the high value for -log(p-value) of genes with fold change around zero is
often caused by a small variance among the observations of these genes. This is an indication that the
SAM method should be applied (Lin et al., 2012b).

Clustering

Order restricted clustering is addressed by two algorithms, the δ-clustering from ORCME and the
ORICC from ORIClust. As mentioned above, the package contains two versions of the δ-clustering
method: clustering based on the least squares and a robust clustering based on least of absolute
residuals. The ORCME window and output is shown in Figure 3. The window implementing ORICC
is shown in left panel of Figure 6. All monotone and umbrella profiles are automatically considered
and the user cannot influence this setting. However, this setting provides the flexible framework for
clustering. The complete profile can be included to the set as well. One or two-stage type of ORICC
can be run and output is automatically saved in both text and visual form. The clustering results are
shown in right panel of Figure 6 for case in which the top 30 genes are kept for final clustering step.
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Figure 4: Resampling based inference. Left panel: The window for performing permutation test. Right
panel: Plot of an effect of multiplicity adjustment.

Figure 5: Inference with orQA. Left panel: The window for performing LRT. Right panel: Volcano
plot.

Figure 6: Order restricted clustering using ORIClust. Left panel: The window for clustering. Right
panel: Plot of all the resulting clusters.
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Model selection

The current implementation in IsoGeneGUI runs automatically GORIC for all possible models for a
given direction (upward or downward trends). Therefore, for an experiment with control and K− 1
dose levels, 2K−1 models are considered, including the null model of no dose effect. In case that some
of these models are a priori not considered for the analysis, the weights can be easily normalized for
the smaller set of models. Only one gene at the time can be analyzed using the GORIC procedure, due
to computational intensity of the derivation of the model weights. For the dopamine data, there are six
dose levels and therefore, for an upward trend that are 32 possible monotone non-decreasing models
(including the null model).

Input and output

The IsoGeneGUI package accepts the data sets to be provided either as plain text file, Microsoft Excel
spreadsheet or the .RData file. The structure of the data set can vary slightly in case of two former file
types, but in general, the structure need to be followed where genes are listed in rows and columns
represent the different conditions (doses). In case of .RData, both microarray results and dose data can
be passed at once, as it is done in case of the example data set available in the package.

Similarly, the output of the procedures can be saved either as Excel spreadsheet or as .RData
file. In general, all the intermediate results can be retrieved, if needed,rather than final result of each
procedure only. In addition, the visualization tools mentioned above provides an option to save
figures in various formats as well as copy them directly to the clipboard. The goal is to provide the
user with option to retrieve most of the relevant results, while emphasizes is put on final results of
the procedures that are easily visualized and typically shown on the screen automatically, once the
method is finished.

Although the IsoGeneGUI package was developed for the analysis of microarray dose-response
experiments, it can be used for an analysis of any high dimensional data in a dose-response setting in
which the basic data structure is a matrix, given in (3), with n variables (or features, the rows of the
matrix) and m observations (or conditions, samples, the columns of the matrix).

X =


X11 X12 . . . X1m
X21 X22 . . . X2m

. . . .

. . . .

. . . .
Xn1 Xn2 . . . Xnm

 . (3)

In addition, the labeling vector R which links each jth sample to a dose related to the sample is
given by

R =
(

d1, d1, . . . , d1, d2, d2, . . . , d2, . . . dK , dK , . . . , dK
)

. (4)

In the manuscript, X refers to a gene expression data (as in Section L1000 Dataset) but the package
can be used to analyze any high dimensional experiment for which X and R are available. For example,
the package can be used for RNA-seq data analysis, after normalization and transformation proposed
by Law et al. (2014) for an analysis of RNA-seq using limma. Furthermore, the case that n = 1, i.e.

X =
(

X11 X12 . . . X1m
)

, (5)

corresponds to a setting in which a dose-response experiment was conducted for one variable of
interest. Such an experiment can be analyzed using the IsoGeneGUI package as well. An example of
such an analysis is given in Section Angina Dataset.

L1000 dataset

The L1000 database (<http://www.lincsproject.org/>) is one of the very new microarray datasets,
which is of interest to many researchers in this field, nowadays. After analyzing several sources of gene
expression data, it was noticed that 1000 carefully selected landmark genes can explain approximately
80% of the information and the dataset produced using this set of genes is known as L1000 dataset. It
is essentially a high-throughput gene expression microarray dataset in which cultured cells are treated
with various chemical and genetic perturbations and the corresponding transcriptional responses are
measured at different concentrations. A computational pipeline is used for data-processing, where
raw fluorescence intensity is converted into differential gene expression signatures and the data at
each stage of this pipeline are available. The IsoGeneGUI package was used for analysis of the
gene expression data from level 2 in order to identify statistically significant genes with respect to
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dose-response profile. Figure 7 shows an example in which the IsoGeneGUI package is used to
analyse L1000 gene data for a specific compound (BRD-A19037878). All the options available under
the tab ‘Analysis(HD)’ can be used for this dataset as well.

Figure 7: L1000 data. Panel A shows the GUI window for Likelihood Ratio Test. Panel B gives
summary of the test results and panel C displays the test results in details.

Angina dataset

This example demonstrates usability of the package on data from a dose-response experiment with a
single response variable. The Angina data set (Westfall et al., 1999, p. 164) represents dose-response
study of a drug to treat angina pectoris. The response is the duration (in minutes) of pain-free walking
after treatment relative to the values before treatment. Four active doses were used together with a
control dose with placebo only. Ten patients per dose were examined. Large values indicate positive
effects on patients. The data were used in Kuiper et al. (2014) and are available under the name angina
in the package mratios (Djira et al., 2012) of the R software. Figure 8 displays the results of the GORIC
analysis when this dataset is used. The GORIC window is shown in left panel of Figure 8. The middle
plot of Figure 8 displays the data and the model with highest weights, M15, increasing in all dose
levels. The right panel shows the weights for all the fitted models.

Figure 8: Angina Dataset. The GORIC method when only one sample is available (Angina data).
Left panel: The window for providing the inputs required to perform the analysis. Middle panel:
Dose-response relationship under model M15. Right panel: GORIC weights for all the models fitted.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=mratios


CONTRIBUTED RESEARCH ARTICLES 23

Summary

The analysis of dose-response relationship for order restricted experiments is highly relevant in the
drug discovery process. Multiple R packages offer methodology within this framework. The new
version of the IsoGeneGUI package encompasses a wide range of these packages in a unified way.
The package contains data analysis tools for estimation, inference, model selection and clustering. To
our knowledge, it is the only software package providing such a wide range of tools simultaneously.
Additionally, the GUI implementation of the package allows non-statisticians to conduct the analysis
with only minimal knowledge of R.

Although the IsoGeneGUI package was developed for the analysis of microarray dose-response
experiments, it can be used for an analysis of any high dimensional data in a dose-response setting. For
example, for analysis of RNA-seq data, the package can be used after normalization and transformation
in same way that it is done by Law et al. (2014). Furthermore, it can be used for the case of single
dose-response experiment.

In summary, the IsoGeneGUI package is a state-of-the-art collection of methodologies covering
a wide range of analyses that are meaningful for order restricted microarray experiments as well
as in more general setting of dose-response experiments. Moreover, the package can be used in a
straightforward way by the general scientific community.
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Network Visualization with ggplot2
by Sam Tyner, François Briatte and Heike Hofmann

Abstract This paper explores three different approaches to visualize networks by building on the
grammar of graphics framework implemented in the ggplot2 package. The goal of each approach is
to provide the user with the ability to apply the flexibility of ggplot2 to the visualization of network
data, including through the mapping of network attributes to specific plot aesthetics. By incorporating
networks in the ggplot2 framework, these approaches (1) allow users to enhance networks with
additional information on edges and nodes, (2) give access to the strengths of ggplot2, such as layers
and facets, and (3) convert network data objects to the more familiar data frames.

Introduction

There are many kinds of networks, and networks are extensively studied across many disciplines
(Watts, 2004). For instance, social network analysis is a longstanding and prominent sub-field of
sociology, and the study of biological networks, such as protein-protein interaction networks or
metabolic networks, is a notable sub-field of biology (Prell, 2011; Junker and Schreiber, 2008). In
addition, the ubiquity of social media platforms, like Facebook, Twitter, and LinkedIn, has brought
the concepts of networks out of academia and into the mainstream. Though these disciplines and the
many others that study networks are themselves very different and specialized, they can all benefit
from good network visualization tools.

Many R packages already exist to manipulate network objects, such as igraph by Csardi and
Nepusz (2006), sna by Butts (2014), and network by Butts et al. (2014) (Butts, 2008, see also). Each
one of these packages were developed with a focus of analyzing network data and not necessarily
for rendering visualizations of networks. Though these packages do have network visualization
capabilities, visualization was not intended as their primary purpose. This is by no means a critique
or an inherently negative aspect of these packages: they are all hugely important tools for network
analysis that we have relied on heavily in our own work. We have found, however, that visualizing
network data in these packages requires a lot of extra work if one is accustomed to working with
more common data structures such as vectors, data frames, or arrays. The visualization tools in
these packages require detailed knowledge of each one of them and their syntax in order to build
meaningful network visualizations with them. This is obviously not a problem if the user is very
familiar with network structures and has already spent time working with network data. If, however,
the user is new to network data or is more comfortable working with the aforementioned common
data structures, they could find the learning curve for these packages burdensome.

The packages described in this paper have, by contrast, have one primary purpose: to create
beautiful network visualizations by providing a wrapper of existing network layout capabilities (see
for example the statnet suite of packages by Handcock et al. (2008)) to the popular ggplot2 package
(Wickham, 2016). And so, our focus here is not on adding to the analysis of network data or to the
field of graph drawing, (cf. Tamassia, 2013) but rather it is on implementing existing graph drawing
capabilities in the ggplot2 framework, using the common data frame structure. The ggplot2 package is
hugely popular, and many other packages and tools interface with it in order to better visualize a wide
variety of data types. By creating a ggplot2 implementation, we hope to place network visualization
within a large, active community of data visualization enthusiasts, bringing new eyes and potentially
new innovations to the field of network visualization. With our approaches, we have two primary
audiences in mind. The first audience is made up of frequent users of network structures and those
who are fluent in the language of packages such as network or igraph. This audience will find that
two of our three approaches (ggnet2 and ggnetwork) directly incorporate the network structures and
functions with which they are familiar with into the less familiar visualization paradigm of ggplot2
(Briatte, 2016). The second audience, targeted by geomnet, consists of those users who are not familiar
with network structures, but are familiar with data manipulation and tidying, and who happen to find
themselves examining some data that can be expressed as a network (Tyner and Hofmann, 2016a). For
this audience, we do the heavy network lifting internally, while also relying on their familiarity with
ggplot2 externally.

The ggplot2 package was designed as an implementation of the ‘grammar of graphics’ proposed
by Wilkinson (1999), and it has become extremely popular among R users.1

1In order to give an indication of how large the user base of ggplot2 is, we looked at its usage statistics
from January 1, 2016 to December 31, 2016 (see http://cran-logs.rstudio.com/). Over this period, the ggplot2
package was downloaded over 3.2 million times from CRAN, which amounts to almost 9,000 downloads per day.
Almost 800 R packages import or depend on ggplot2.
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Because the syntax implemented in the ggplot2 package is extendable to different kinds of vi-
sualizations, many packages have built additional functionality on top of the ggplot2 framework.
Examples include the ggmap package by Kahle and Wickham (2013) for spatial visualization, the
ggfortify package for visualizing statistical models (see Horikoshi and Tang (2016), Tang et al. (2016)),
the package GGally by Schloerke et al. (2016), which encompasses various complementary visualiza-
tion techniques to ggplot2, and the ggbio and ggtree Bioconductor packages by Yin et al. (2012) and
Yu et al. (2017), which both provide visualizations for biological data. These packages have expanded
the utility of ggplot2, likely resulting in an increase of its user base. We hope to appeal to this user
base and potentially add to it by applying the benefits of the grammar of graphics implemented in
ggplot2 to network visualization.

Our efforts rely upon recent changes to ggplot2, which allow users to more easily extend the
package through additional geometries or ‘geoms’.2

In the remainder of this paper, we present three different approaches to network visualization
through ggplot2 wrappers. The first is a function, ggnet2 from the GGally package, that acts as a
wrapper around a network object to create a ggplot2 graph. The second is a package, geomnet, that
combines all network pieces (nodes, edges, and labels) into a single geom and is intended to look the
most like other ggplot2 geoms in use. The final is another package, ggnetwork, that performs some
data manipulation and aliases other geoms in order to layer the different network aspects one on top of
the other. The section Brief introduction to networks introduces the basic terminology of networks and
illustrates their ubiquity in natural and social life. The next section Three implementations of network
visualizations then discusses the structure and capabilities of each of the three approaches that we
offer. The section Examples extends that discussion through several examples ranging from simple
to complex networks, for which we provide the code corresponding to each approach alongside its
graphical result. We follow with some considerations of runtime behavior in plotting networks in the
section Some considerations of speed before closing with a discussion.

Brief introduction to networks

In its essence, a network is simply a set of vertices connected in pairs by a set of edges (Newman,
2010). Throughout this paper, we also use the term node to refer to vertices, as well as the terms ties or
relationships to refer to edges, depending on context. The two sets of graphical objects that make up a
network visualization, points and segments between them, have been used to examine a huge variety
and quantity of information across many different fields of study. For instance, networks of scientific
collaboration, a food web of marine animals, and American college football games are all covered in a
paper on community detection in networks by Girvan and Newman (2002). Additionally, Buldyrev
et al. (2010) study node failure in interdependent networks like power grids. Social networks such as
links between television and film actors found on http://www.imdb.com/ and neural networks, like
the completely mapped neural network of the C. elegans worm are also extensively studied (Watts and
Strogatz, 1998).

These examples show that networks can vary widely in scope and complexity: the smallest
connected network is simply one edge between two vertices, while one of the most commonly used
and most complex networks, the world wide web, has billions of vertices (Web pages) and billions
of edges (hyperlinks) connecting them. Additionally, the edges in a network can be directed or
undirected: directed edges represent an ordering of vertices, like a relationship extending from one
vertex to another, where switching the direction would change the structure of the network. The World
Wide Web is an example of a directed network because hyperlinks connect one Web page to another,
but not necessarily the other way around. Undirected edges are simply connections between vertices
where order does not matter. Co-authorship networks are examples of undirected networks, where
nodes are authors and they are connected by an edge if they have written an academic publication
together.

As a reference example, we turn to a specific instance of a social network. A social network is a
network that everyone is a part of in one way or another, whether through friends, family, or other
human interactions. We do not necessarily refer here to social media like Facebook or LinkedIn, but
rather to the connections we form with other people. To demonstrate the functionality of our tools for
plotting networks, we have chosen an example of a social network from the popular television show
Mad Men. This network, which was compiled by Chang (2013) and made available in gcookbook
(Chang, 2012), consists of 52 vertices and 87 edges. Each vertex represents a character on the show,
and there is an edge between every two characters who have had a romantic relationship.

2Version 2.1.0, released 1 March 2016. See https://cran.r-project.org/web/packages/ggplot2/news.html
for the full list of changes in ggplot2 2.1.0, as well as the new package vignette, “Extending ggplot2”, which
explains how the internal ggproto system of object-oriented programming can be used to create new geoms.
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Figure 1: Graph of the characters in the show Mad Men who are linked by a romantic relationship.

Figure 1 is a visualization of this network. In the plot, we can see one central character who has
many more relationships than any other character. This vertex represents the main character of the
show, Don Draper, who is quite the “ladies’ man." Networks like this one, no matter how simple or
complex, are everywhere, and we hope to provide the curious reader with a straightforward way to
visualize any network they choose.

Coloring the vertices or edges in a graph is a quick way to visualize grouping and helps with
pattern or cluster detection. The vertices in a network and the edges between them compose the
structure of a network, and being able to visually discover patterns among them is a key part of
network analysis. Viewing multiple layouts of the same network can also help reveal patterns or
clusters that would not be discovered when only viewing one layout or analyzing only its underlying
adjacency matrix.

Three implementations of network visualizations

We present two basic approaches to using the ggplot2 framework for network visualization. First,
we implement network visualizations by providing a wrapper function, ggnet2 for the user to vi-
sualize a network using ggplot2 elements (Schloerke et al., 2016). Second, we implement network
visualizations using layering in ggplot2. For the second approach, we have two ways of creating a
network visualization. The first, geomnet, wraps all network structures, including vertices, edges,
and vertex labels into a single geom. The second, ggnetwork, implements each of these structural
components in an independent geom and layers them to create the visualization (Briatte, 2016). In each
package, our goal is to provide users with a way to map network properties to aesthetic properties of
graphs that is familiar to them and straightforward to implement. Each package has a slightly different
approach to accomplish this goal, and we will discuss all of these approaches in this section. For each
implementation, we also provide the code necessary to create Figure 1, and describe the arguments
used. We conclude the section with a side-by-side comparison of the features available in all three
implementations in Table 1.

ggnet2

The ggnet2 function is a part of the GGally package, a suite of functions developed to extend the
plotting capabilities of ggplot2 (Schloerke et al., 2016). A detailed description of the ggnet2 function is
available from within the package as a vignette. Some example code to recreate Figure 1 using ggnet2
is presented below.
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library(GGally)
library(network)
# make the data available
data(madmen, package = 'geomnet')
# data step for both ggnet2 and ggnetwork
# create undirected network
mm.net <- network(madmen$edges[, 1:2], directed = FALSE)
mm.net # glance at network object
## Network attributes:
## vertices = 45
## directed = FALSE
## hyper = FALSE
## loops = FALSE
## multiple = FALSE
## bipartite = FALSE
## total edges= 39
## missing edges= 0
## non-missing edges= 39
##
## Vertex attribute names:
## vertex.names
##
## No edge attributes
# create node attribute (gender)
rownames(madmen$vertices) <- madmen$vertices$label
mm.net %v% "gender" <- as.character(
madmen$vertices[ network.vertex.names(mm.net), "Gender"]

)
# gender color palette
mm.col <- c("female" = "#ff69b4", "male" = "#0099ff")
# create plot for ggnet2
set.seed(10052016)
ggnet2(mm.net, color = mm.col[ mm.net %v% "gender" ],

labelon = TRUE, label.color = mm.col[ mm.net %v% "gender" ],
size = 2, vjust = -0.6, mode = "kamadakawai", label.size = 3)

The ggnet2 function offers a large range of network visualization functionality in a single function
call. Although its result is a ggplot2 object that can be further styled with ggplot2 scales and themes,
the syntax of the ggnet2 function is designed to be easily understood by the users, who may not be
familiar with ggplot2 objects. The aesthetics relating to the nodes are controlled by arguments such as
node.alpha or node.color, while those relating to the edges are controlled by arguments starting with
‘edge’. Additionally, as seen in the code above, the usual ggplot2 arguments like color can be used
without the prefix to map node attributes to aesthetic values. The arguments with the node. prefix
are aliased versions for readability of the code. Thus, while ggnet2 applies the grammar of graphics
to network objects, the function itself still works very much like the plotting functions of the igraph
and network packages: a long series of arguments is used to control every possible aspect of how the
network should be visualized.

The ggnet2 function takes a single network object as input. This initial object might be an object of
class "network" from the network package (with the exception of hypergraphs or multiplex graphs),
or any data structure that can be coerced to an object of that class via functions in the network package,
such as an incidence matrix, an adjacency matrix, or an edge list. Additionally, if the intergraph
package (Bojanowski, 2015) is installed, the function also accepts a network object of class "igraph".
Internally, the function converts the network object to two data frames: one for edges and another
one for nodes. It then passes them to ggplot2. Each of the two data frames contain the information
required by ggplot2 to plot segments and points respectively, such as a shape for the points (nodes)
and a line type for the segments (edges). The final result returned to the user is a plot with a minimum
of two layers, or more if there are edge and/or node labels.

The mode argument of ggnet2 controls how the nodes of the network are to be positioned in
the plot returned by the function. This argument can take any of the layout values supported by
the gplot.layout function of the sna package, and defaults to ‘fruchtermanreingold’, which places
the nodes through the force-directed layout algorithm by Fruchterman and Reingold (1991). In the
example presented above, the Kamada-Kawai layout is used by adding ‘mode = "kamadakawai"’ to the
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function call. Many other possible layouts and their parameters can also be passed to ggnet2 through
the layout.par argument. For a list of possible layouts and their arguments, see ?sna::gplot.layout.

Other arguments passed to the ggnet2 function offer extensive control over the aesthetics of the
plot that it returns, including the addition of edge and/or node labels and their respective aesthetics.
Arguments such as node.shape or edge.lty, which control the shape of the nodes and the line type of
the edges, respectively, can take a single global value, a vector of global values, or the name of an edge
or vertex attribute to be used as an aesthetic mapping. This feature is used to change the size of the
nodes and the node labels by including ‘size = 2’ and ‘label.size = 3’ in the function call.

This last functionality builds on one of the strengths of the "network" class, which can store
information on network edges and nodes as attributes that are then accessible to the user through
the %e% and %v% operators respectively.3 Usage examples of these operators can be seen above. The
attribute of gender is assigned to nodes, which in turn is accessed to color the nodes and node labels
by gender. If the ggnet2 function is given the node.alpha = "importance" argument, it will interpret
it as an attempt to map the vertex attribute called ‘importance’ to the transparency level of the nodes.
This works exactly like the command net %v% "importance", which returns the vertex attribute
‘importance’ of the "network" object net. This functionality allows the ggnet2 function to work in a
similar fashion to ggplot2 mappings of aesthetics within the aes operator.

The ggnet2 function also provides a few network-specific options, such as sizing the nodes as a
function of their unweighted degree, or using the primary and secondary modes of a bipartite network
as an aesthetic mapping for the nodes.

All in all, the ggnet2 function combines two different kinds of processes: it translates a network
object into a data frame suitable for plotting with ggplot2, and it applies network-related aesthetic
operations to that data frame, such as coloring the edges in function of the color of the nodes that they
connect.

geomnet

# also loads ggplot2
library(geomnet)

# data step: join the edge and node data with a fortify call
MMnet <- fortify(as.edgedf(madmen$edges), madmen$vertices)
# create plot
set.seed(10052016)
ggplot(data = MMnet, aes(from_id = from_id, to_id = to_id)) +
geom_net(aes(colour = Gender), layout.alg = "kamadakawai",

size = 2, labelon = TRUE, vjust = -0.6, ecolour = "grey60",
directed =FALSE, fontsize = 3, ealpha = 0.5) +

scale_colour_manual(values = c("#FF69B4", "#0099ff")) +
xlim(c(-0.05, 1.05)) +
theme_net() +
theme(legend.position = "bottom")

Data structure

The package geomnet implements network visualization in a single ggplot2 layer. A stable version is
available on CRAN, with a development version available at https://github.com/sctyner/geomnet.
The package has two main functions: stat_net, which performs all of the calculations, and geom_net,
which renders the plot. It also contains the secondary functions geom_circle and theme_net, which
assist, respectively, in drawing self-referencing edges and removing axes and other background
elements from the plots. The approach in geomnet is similar to the implementation of other, native
ggplot2 geoms, such as geom_smooth. When using geom_smooth, the user does not need to know about
any of the internals of the loess function, and similarly, when using geomnet, the user is not expected
to know about the internals of the layout algorithm, just the name of the algorithm they’d like to use.
On the other hand, if users are comfortable with network analysis, the entire body of layout methods
provided by the sna package is available to them through the parameters layout.alg and layout.par.

In network analysis there are usually two sources of information: one data set consisting of a
description of the nodes, represented as the vertices in the network and vertex attributes, and another
data set detailing the relationship between these nodes, i.e. it consists of the edge list and any additional
edge attributes. The minimum amount of information needed is a vector of all vertex labels and

3See Butts et al. (2014, p. 22-24). The equivalent operators in the igraph package are called E and V.
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a two column data frame that encodes the edge list of the network. In order for this geometry to
work, these two data sets need to be combined into a single data frame. For this, we implemented
several new fortify methods for producing the correct data structure from different S3 objects that
encode network information. Supported classes are "network" from the sna and network packages,
"igraph" from the igraph package, "adjmat", and "edgedf". The last two are new classes introduced
in geomnet that are identical to the "matrix" and "data.frame" classes, respectively. We created
these new classes and the functions as.adjmat() and as.edgedf() so that network data in adjacency
matrix and edgelist (data frame) formats can have their own fortify functions, separate from the very
generic "matrix" and "data.frame" classes. These fortify functions combine the edge and the node
information using a full join. A full join is used because generally, there will be some vertices that
are sinks in the network because they only show up in the ‘to’ column, and so we accommodate
for these by adding artificial edges in the data set that have missing information for the ‘to’ column.
The user may also pass two data frames to the function, e.g. ‘data = edge_data’ and ‘vertices =
vertex_data’, but we recommend using the fortify methods whenever possible.

A usage example of the fortify.edgedf method is presented in the code above with the creation
of the MMnet data set. Two dataframes, madmen$edges and madmen$vertices are joined to create the
required data. The first few rows of these data sets and their merged result are below.

head(as.edgedf(madmen$edges), 3)
## from_id to_id
## 1 Betty Draper Henry Francis
## 2 Betty Draper Random guy
## 3 Don Draper Allison
head(madmen$vertices, 3)
## label Gender
## Betty Draper Betty Draper female
## Don Draper Don Draper male
## Harry Crane Harry Crane male
head(fortify(as.edgedf(madmen$edges), madmen$vertices), 3)
## from_id to_id Gender
## 1 Betty Draper Henry Francis female
## 2 Betty Draper Random guy female
## 3 Don Draper Allison male

The formal requirements of stat_net are two columns, called from_id and to_id. During this
routine, columns x,y and xend,yend are calculated and used as a required input for geom_net.

Other variables may also be included for each edge, such as the edge weight, in-degree, out-degree
or grouping variable.

Parameters and aesthetics

Parameters that are currently implemented in geom_net are:

• layout: the layout.alg parameter takes a character value corresponding to the possible network
layouts in the sna package that are available within the gplot.layout.*() family of functions.
The default layout algorithm used is the Kamada-Kawai layout, a force-directed layout for
undirected networks (Kamada and Kawai, 1989).
In sna, for each layout there is a corresponding set of possible layout parameters, layout.par,
which can be passed as a list to geom_net. If the user wishes to create small multiples using
ggplot2 facets, they can use fiteach, a logical value specifying whether the same layout
should be used for all panels (default) or each panel’s data should be fit separately. Finally, the
singletons parameter is a logical value that dictates whether or not to include nodes with zero
indegree and zero outdegree in the visualization. The default is set to TRUE, and if set to FALSE
nodes will only appear in panels where they have indegree or outdegree of at least one.

• vertices: any of ggplot2’s aesthetics relating to points: colour, size, shape, alpha, x, and y
are available and used for specifying the appearance of nodes in the network. For example
‘aes(colour = Gender)’ is used above to color the nodes and node labels according to the
gender of each character.

• edges: for edges we distinguish between two different sets of aesthetics: aesthetics that only
relate to line attributes, such as linewidth and linetype, and aesthetics that are also used by
the point geom. The former can be used in the same way as they are used in geom_segment, while
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the latter, like alpha or colour, for instance, are used for vertices unless separately specified.
Instead, use the parameters ecolour or ealpha, which are only applied to the edges. If the group
variable is specified, a new variable, called samegroup is added during the layout process. This
variable is TRUE, if an edge is between two vertices of the same group, and FALSE otherwise. If
samegroup is TRUE, the corresponding edge will be colored using the same color as the vertices it
connects. If the edge is between vertices of a different group, the default grey shade is used for
the edge.
The parameter curvature is set to zero by default, but if specified, leads to curved edges using
the newly implemented ggplot2 geom geom_curve instead of the regular geom_segment. Note
that the edge specific aesthetics that overwrite node aesthetics are currently considered as ‘as.is’
values: they do not get a legend and are not scaled within the ggplot2 framework. This is done
to avoid any clashes between node and edge scales.
self-referencing vertices: some networks contain self references, i.e. an edge has the same
vertex id in its from and to columns. If the parameter selfloops is set to TRUE, a circle is drawn
using the new geom_circle next to the vertex to represent this self reference.

• arrow: whenever the parameter directed is set from its default state to TRUE, arrows are drawn
from the ‘from’ to the ‘to’ node, with tips pointing towards the ‘to’ node. By default, arrows have
an absolute size of 10 points. The entire structure of the arrow can be changed by passing an
arrow object from the grid package to the arrow argument. If the user doesn’t wish to change the
whole arrow object, the parameters arrowsize and arrowgap are also available. The arrowsize
argument is of a positive numeric value that is used as a multiple of the original arrow size, i.e.
arrowsize = 2 shows arrow tips at twice their original size. The parameter arrowgap can be
used to avoid overplotting of the arrow tips by the nodes, arrowgap specifies a proportion by
which the edge should be shrunk with default of 0.05. A value of 0.5 will result in edges drawn
only half way from the ‘from’ node to the ‘to’ node.

• labels: the labelon argument is a logical parameter, which when set to TRUE will label the
nodes with their IDs, as is in Figure 1. The aes option label can also be used to label nodes,
in which case the nodes are labeled with the value corresponding to their respective values
of the provided variable. If colour is specified for the nodes, the same values are used for
the labels, unless labelcolour is specified. If fontsize is specified, it changes the label size
to that value in points. Other parameter values, such as vjust and hjust help in adjusting
labels relative to the nodes. The parameters work in the same fashion as in native ggplot2
geoms. Additionally, the label can be drawn by using geom_text (the default) or using the
new geom_label in ggplot2 by adding ‘labelgeom = "label"’ to the arguments in geom_net.
Finally, with the help of the package ggrepel by Slowikowski (2016) we have implemented
the logical repel argument, which when true, uses geom_text_repel or geom_label_repel to
plot the labels instead of geom_text or geom_label, respectively. Using repel can be extremely
useful when the networks are dense or the labels are long, as in Figure 1, helping to solve a
common problem with many network visualizations.

ggnetwork

ggnetwork is a small R package that mimics the behavior of geomnet by defining several geoms to
achieve similar results.

# create plot for ggnetwork. uses same data created for ggnet2 function
library(ggnetwork)
set.seed(10052016)
ggplot(data = ggnetwork(mm.net, layout = "kamadakawai"),

aes(x, y, xend = xend, yend = yend)) +
geom_edges(color = "grey50") + # draw edge layer
geom_nodes(aes(colour = gender), size = 2) + # draw node layer
geom_nodetext(aes(colour = gender, label = vertex.names),

size = 3, vjust = -0.6) + # draw node label layer
scale_colour_manual(values = mm.col) +
xlim(c(-0.05, 1.05)) +
theme_blank() +
theme(legend.position = "bottom")

The approach taken by the ggnetwork package is to alias some of the native geoms of the ggplot2
package. An aliased geom is simply a variant of an already existing one. The ggplot2 package contains
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several examples of aliased geoms, such as geom_histogram, which is a variant of geom_bar see (see
Wickham, 2016, p. 67, Table 4.6).

Following that logic, the ggnetwork package adds four aliased geometries to ggplot2:

• geom_nodes, an alias to geom_point;

• geom_edges, an alias to either geom_segment or geom_curve;

• geom_nodetext, an alias to geom_text; and

• geom_edgetext, an alias to geom_label.

The four geoms are used to plot nodes, edges, node labels and edge labels, respectively. Two of
the geoms that they alias, geom_curve and geom_label, are part of the new geometries introduced in
ggplot2 version 2.1.0. All four geoms behave exactly like those that they alias, and take exactly the
same arguments. The only exception to that rule is the special case of geom_edges, which accepts both
the arguments of geom_segment and those of geom_curve; if its curvature argument is set to anything
but 0 (the default), then geom_edges behaves exactly like geom_curve; otherwise, it behaves exactly
like geom_segment. Three of the four availble aliased geoms are used above to create the visualization
of the Mad Men relationship network.

Just like the ggnet2 function, the ggnetwork package takes a single network object as input. This
can be an object of class "network", some data structure coercible to that class, or an object of class
"igraph" when the intergraph package is installed. This object is passed to the ‘workhorse’ function
of the package, which is also called ggnetwork to create a data frame, and then to the data argument
of ggplot().

Internally, the ggnetwork function starts by computing the x and y coordinates of all nodes in the
network with respect to its layout argument, which defaults to the Fruchterman-Reingold layout
algorithm (Fruchterman and Reingold, 1991). It then extracts the edge list of the network, to which it
adds the coordinates of the sender and receiver nodes as well as all edge-level attributes. The result is
a data frame with as many rows as there are edges in the network, and where the x, y, xend and yend
hold the coordinates of the network edges.

At that stage, the ggnetwork function, like the geomnet package, performs a left-join of that
augmented edge list with the vertex-level attributes of the ‘from’ nodes. It also adds one self-loop per
node, in order to ensure that every node is plotted even when their degree is zero—that is, even if the
node is not connected to any other node of the network, and is therefore absent from the edge list. The
data frame created by this process contains one row per edge as well as one additional row per node,
and features all edge-level and vertex-level attributes initially present in the network.4

The ggnetwork function also accepts the arguments arrow.gap and by. Like in geomnet, arrow.gap
slightly shortens the edges of directed networks in order to avoid overplotting edge arrows and nodes.
The argument by is intended for use with plot facets. Passing an edge attribute as a grouping variable
to the by argument will cause ggnetwork to return a data frame in which each node appears as many
times as there are unique values of that edge attribute, using the same coordinates for all occurrences.
When that same edge attribute is also passed to either facet_wrap or facet_grid, each edge of the
network will show in only one panel of the plot, and all nodes will appear in each of the panels at
the same position. This makes the panels of the plot comparable to each other, and allows the user to
visualize the network structure as a function of a specific edge attribute, like a temporal attribute.

Examples

In this section, we demonstrate some of the current capabilities of ggnet2, geomnet, and ggnetwork
in a series of side by side examples. While the output is nearly identical for each method of network
visualization, the code and implementations differ across the three methods. For each of these
examples, we present the code necessary to produce the network visualization in each of the three
packages, and discuss each application in detail.

For the following examples we will be loading all three packages under comparison. In practice,
only one of these packages would be needed to visualize a network in the ggplot2 framework:

library(ggplot2)
library(GGally)

4One limitation of this process is that it requires some reserved variable names (x, y, xend and yend), which
should not also be present as edge-level or vertex-level attributes (otherwise the function will simply break).
Similarly, if an edge attribute and a vertex attribute have the same name, like ‘na’, which the network package
defines as an attribute for both edges and vertices in order to flag missing data, ggnetwork will rename them to
‘na.x’ (for the edge-level attribute) and ‘na.y’ (for the vertex-level attribute).
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ggnet2 geom_net geom_nodes,
geom_edges, etc

Functionality (GGally) (geomnet) (ggnetwork)

Data object of class
"network" or object
easily converted to

that class (i.e.
incidence or

adjacency matrices,
edge list) or object
of class "igraph"

a fortified
"network",
"igraph",

"edgedf", or
"adjmat" object OR

one edge data
frame and one node

data frame to be
merged internally

same as ggnet2

Naming
conventions

node._, edge._,
label._,

edge.label._ for
alpha, color, etc.

arguments identical
to ggplot2 with

exception of ecolor,
ealpha

same as ggplot2

Layout package &
default

sna, Fruchterman-
Reingold

sna,
Kamada-Kawai

sna, Fruchterman-
Reingold

Aesthetic mappings
to variables

all alpha, color,
shape, size for

nodes, edges, labels

colour, size, shape,
x, y, linetype,

linewidth, label,
group, fontsize

same as ggplot2

Arrows directed = TRUE,
arrow.size, gap

arrowsize, gap,
arrow = arrow()

like ggplot2

specify arrows in
geom_edge like in

code-
geom_segment,

arrow.gap

Theme or palette
changes

done in the function
with arguments like

_.legend,
_.palette, etc. and

adding ggplot2
elements

adding ggplot2
elements

adding ggplot2
elements

Creating small
multiples

created separately,
use grid.arrange

from gridExtra

add group
argument to

fortify() and use
facet_*() from

ggplot2

use by argument in
ggnetwork() and
facet_*() from

ggplot2

Edge labelling? Yes No Yes

Draw self-loops? No Yes No

Table 1: Comparing the three different package side-by-side.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 36

library(geomnet)
library(ggnetwork)

Blood donation

We begin with a very simple example that most should be familiar with: blood donation. In this
directed network, there are eight vertices and 27 edges. The vertices represent the eight different
blood types in humans that are most important for donation: the ABO blood types A, B, AB, and O,
combined with the RhD positive (+) and negative (-) types. The edges are directed: a person whose
blood type is that of a from vertex can to donate blood to a person whose blood type is that of a
corresponding to vertex. This network is shown in Figure 2. The code to produce each one of the
networks is shown above Figure 2. We take advantage of each approach’s ability to assign identity
values to the aesthetic values. The color is changed to a dark red, the size of the nodes is changed
to be large enough to accomodate the blood type label, which we also change the color of, and we
use the directed and arrow arguments of each implementation to show the precise blood donation
relationships. Additionally, we change the node layout to circle, and the placement of the labels with
the hjust and vjust options.

# make data accessible
data(blood, package = "geomnet")

# plot with ggnet2 (Figure 5a)
set.seed(12252016)
ggnet2(network(blood$edges[, 1:2], directed=TRUE),

mode = "circle", size = 15, label = TRUE,
arrow.size = 10, arrow.gap = 0.05, vjust = 0.5,
node.color = "darkred", label.color = "grey80")

head(blood$edges,3) # glance at the data
## from to group_to
## 1 AB- AB+ same
## 2 AB- AB- same
## 3 AB+ AB+ same
# plot with geomnet (Figure 5b)
set.seed(12252016)
ggplot(data = blood$edges, aes(from_id = from, to_id = to)) +
geom_net(colour = "darkred", layout.alg = "circle", labelon = TRUE, size = 15,

directed = TRUE, vjust = 0.5, labelcolour = "grey80",
arrowsize = 1.5, linewidth = 0.5, arrowgap = 0.05,
selfloops = TRUE, ecolour = "grey40") +

theme_net()

# plot with ggnetwork (Figure 5c)
set.seed(12252016)
ggplot(ggnetwork(network(blood$edges[, 1:2]),

layout = "circle", arrow.gap = 0.05),
aes(x, y, xend = xend, yend = yend)) +

geom_edges(color = "grey50",
arrow = arrow(length = unit(10, "pt"), type = "closed")) +

geom_nodes(size = 15, color = "darkred") +
geom_nodetext(aes(label = vertex.names), color = "grey80") +
theme_blank()

In this example every vertex has a self-reference, as blood between two people of matching ABO and
RhD type can always be exchanged. The geomnet approach shows these self-references as circles
looping back to the vertex, which is controlled by using the parameter setting selfloops = TRUE.
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(a) ggnet2
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(b) geomnet
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(c) ggnetwork
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Figure 2: Network of blood donation possibilities in humans by ABO and RhD blood types.

colour and size aesthetics in Figure 2 are set to identity values to change the size and color of all
vertices. We have also used the layout and label arguments to change the default Kamada-Kawai
layout to a circle layout and to print labels for each of the blood types. The circle layout places blood
types of the same ABO type next to each other and spreads the vertices out far enough to distinguish
between the various “in" and “out" types. We can tell clearly from this plot that the O-type is the
universal donor: it has an out-degree of seven and an in-degree of zero. Additionally, we can see that
the AB+ type is the universal recipient, with an in-degree of seven and an out-degree of zero. Anyone
looking at this plot can quickly determine which type(s) of blood they can receive and which type(s)
can receive their blood.

Email network

The email network comes from the 2014 VAST Challenge (Cook et al., 2014). It is a directed network
of emails between company employees with 55 vertices and 9,063 edges. Each vertex represents an
employee of the company, and each edge represents an email sent from one employee to another. The
arrow of the directed edge points to the recipient of the email. If an email has multiple recipients,
multiple edges, one for each recipient, are included in the network. The network contains two
business weeks of emails across the entire company. In order to better visualize the structure of the
communication network between employees, emails that were sent out to all employees are removed.
A glimpse of the data objects used is below.

em.net # ggnet2 and ggnetwork
## Network attributes:
## vertices = 55
## directed = TRUE
## hyper = FALSE
## loops = FALSE
## multiple = FALSE
## bipartite = FALSE
## total edges= 4743
## missing edges= 0
## non-missing edges= 4743
##
## Vertex attribute names:
## curr_empl_type vertex.names
##
## Edge attribute names not shown
emailnet[1,c(1:2,7,21)] # geomnet
## from_id
## 1 Ada.Campo-Corrente@gastech.com.kronos
## to_id day
## 1 Ingrid.Barranco@gastech.com.kronos 10
## CurrentEmploymentType
## 1 Executive

Emails taken by themselves form an event network, i.e. edges do not have any temporal duration.
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(a) ggnet2

# make data accessible
data(email, package = 'geomnet')

# create node attribute data
em.cet <- as.character(
email$nodes$CurrentEmploymentType)

names(em.cet) = email$nodes$label

# remove the emails sent to all employees
edges <- subset(email$edges, nrecipients < 54)
# create network
em.net <- edges[, c("From", "to") ]
em.net <- network(em.net, directed = TRUE)
# create employee type node attribute
em.net %v% "curr_empl_type" <-
em.cet[ network.vertex.names(em.net) ]

set.seed(10312016)
ggnet2(em.net, color = "curr_empl_type",

size = 4, palette = "Set1", arrow.gap = 0.02,
arrow.size = 5, edge.alpha = 0.25,
mode = "fruchtermanreingold",
edge.color = c("color", "grey50"),
color.legend = "Employment Type") +

theme(legend.position = "bottom")}

Employment Type
Administration

Engineering

Executive

Facilities

Information Technology

Security

(b) geomnet

# data step for the geomnet plot
email$edges <- email$edges[, c(1,5,2:4,6:9)]
emailnet <- fortify(
as.edgedf(subset(email$edges, nrecipients < 54)),
email$nodes)

set.seed(10312016)
ggplot(data = emailnet,

aes(from_id = from_id, to_id = to_id)) +
geom_net(layout.alg = "fruchtermanreingold",
aes(colour = CurrentEmploymentType,

group = CurrentEmploymentType,
linewidth = 3 * (...samegroup.. / 8 + .125)),

ealpha = 0.25, size = 4, curvature = 0.05,
directed = TRUE, arrowsize = 0.5) +

scale_colour_brewer("Employment Type", palette = "Set1") +
theme_net() +
theme(legend.position = "bottom")

Employment Type
Administration

Engineering

Executive

Facilities

Information Technology

Security

(c) ggnetwork

# use em.net created in ggnet2step
set.seed(10312016)
ggplot(ggnetwork(em.net, arrow.gap = 0.02,

layout = "fruchtermanreingold"),
aes(x, y, xend = xend, yend = yend)) +

geom_edges(
aes(color = curr_empl_type),
alpha = 0.25,
arrow = arrow(length = unit(5, "pt"),

type = "closed"),
curvature = 0.05) +

geom_nodes(aes(color = curr_empl_type),
size = 4) +

scale_color_brewer("Employment Type",
palette = "Set1") +

theme_blank() +
theme(legend.position = "bottom")

Employment Type
Administration

Engineering

Executive

Facilities

Information Technology

Security

Figure 3: Email network within a company over a two week period.
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Here, however, we can think of emails as observable expressions of the underlying, unobservable,
relationship between employees. We can think of this network as a dynamic temporal network, i.e.
this network has the potential to change over time. The ndtv package by Bender-deMoll (2016) allows
the analysis of such networks and provides impressive animations of the underlying dynamics. Here,
we are using two static approaches to visualize the network: first, we aggregate emails across the
whole time frame (shown in Figure 3), then we aggregate emails by day and use small multiples to
allow a comparison of day-to-day behavior (shown in Figure 4).

For all of the email examples, we have colored the vertices by the variable CurrentEmploymentType,
which contains the department in the company of which each employee is a part of. There are six
distinct clusters in this network which almost perfectly correspond to the six different types of
employees in this company: administration, engineering, executive, facilities, information technology,
and security. Other features in the code include using alpha arguments to change the transparency of
the edges, curvature argumnets to show mutual communication as two edges instead of one edge
with two arrowheads, and the addition of ggplot2 functions like scale_colour_brewer and theme to
customize the colors of the nodes and their corresponding legend.

In Figure 3 we can clearly see the varying densities of communications within departments and the
more sparse communication between employees in different departments. We also see that one of the
executives only communicates with employees in Facilities, while one of the IT employees frequently
communicates with security employees.

A comparison of the results of ggnet, geomnet and ggnetwork reveals some of the more subtle
differences between the implementations:

• In the ggnet2 implementation, the opacity of the edges between employees in the same cluster
is higher than it is for the edges between employees in different clusters. This is due to the fact
that the email network does not make use of edge weights: instead, every email between two
employees is represented by an edge, resulting in edge overplotting. The edge.alpha argument
has been set to a value smaller than one, therefore multiple emails between two employees
create more opaque edges between them. Multiple emails are also taken into account in the
geomnet package. When there is more than one edge connecting two vertices, the stat_net
function adds a weight variable to the edge list, which is passed automatically to the layout
algorithms and taken into account during layout. This is thanks to the sna package, which
supports the use of weights in its edge list. In addition to taking weights into account in the
layout, we can also make use of them in the visualization. geomnet allows to access all of the
internal variables created in the visualization process, such as coordinates ..x..,..y.. and
edge weights ..weight... Note the use of the ggplot2 notation .. for internal variables.

• In the first two layouts of Figure 3, edges between employees who share the same employment
type are given the color of that employment type, while edges between employees belonging to
different types are plotted in grey. This feature is particularly useful to visualize the amount
of within-group connectedness in a network. By contrast, in the last layout, edges are colored
according to the sender’s employment type, because the ggnetwork package does not support
coloring edges as a function of node-level attributes.

• Finally, in the last two layouts of Figure 3, the curvature argument has been set to 0.05, resulting
in slightly curved edges in both plots. This feature, which takes advantage of the geom_curve
geometry released in ggplot2 2.1.0, makes it possible to visualize which edges correspond to
reciprocal connections; in an email communication network, as one might expect, most edges
fall into that category.

To give some insight into how the relations between employees change over time, we facet the
network by day: each panel in Figure 4 shows email networks associated with each day of the work
week. The code for these visualizations is below. The different approaches create small multiples
in different ways. The ggnet2 approach requires that the network be separated, each plot created
individually, then placed together using the grid.arrange function from the gridExtra package
(Auguie, 2016). The geomnet approach uses the facet_* family of functions just as they are used in
ggplot2, and the ggnetwork approach uses the by argument in the ggnetwork function in combination
with the facet_* functions. We present the full code for each of these approaches below.

First, the code for the ggnet2 approach, which results in Figure 4(a):

# data preparation. first, remove emails sent to all employees
em.day <- subset(email$edges, nrecipients < 54)[, c("From", "to", "day") ]
# for small multiples by day, create one element in a list per day
# (10 days, 10 elements in the list em.day)
em.day <- lapply(unique(em.day$day),

function(x) subset(em.day, day == x)[, 1:2 ])
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(a) ggnet2

Day 6 Day 7 Day 8 Day 9 Day 10

Day 13 Day 14 Day 15 Day 16 Day 17

(b) geomnet

day: 13 day: 14 day: 15 day: 16 day: 17

day: 6 day: 7 day: 8 day: 9 day: 10

Employment Type
Administration

Engineering

Executive

Facilities

Information Technology

Security

(c) ggnetwork

day: 13 day: 14 day: 15 day: 16 day: 17

day: 6 day: 7 day: 8 day: 9 day: 10

Employment Type
Administration

Engineering

Executive

Facilities

Information Technology

Security

Figure 4: The same email network as in Figure 3 faceted by day of the week.
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# make the list of edgelists a list of network objects for plotting with ggnet2
em.day <- lapply(em.day, network, directed = TRUE)
# create vertex (employee type) and network (day) attributes for each element in list
for (i in 1:length(em.day)) {
em.day[[ i ]] %v% "curr_empl_type" <-
em.cet[ network.vertex.names(em.day[[ i ]]) ]

em.day[[ i ]] %n% "day" <- unique(email$edges$day)[ i ]
}

# plot ggnet2
# first, make an empty list containing slots for the 10 days (one plot per day)
g <- list(length(em.day))
set.seed(7042016)
# create a ggnet2 plot for each element in the list of networks
for (i in 1:length(em.day)) {
g[[ i ]] <- ggnet2(em.day[[ i ]], size = 2,

color = "curr_empl_type",
palette = "Set1", arrow.size = 0,
arrow.gap = 0.01, edge.alpha = 0.1,
legend.position = "none",
mode = "kamadakawai") +

ggtitle(paste("Day", em.day[[ i ]] %n% "day")) +
theme(panel.border = element_rect(color = "grey50", fill = NA),

aspect.ratio = 1)
}
# arrange all of the network plots into one plot window
gridExtra::grid.arrange(grobs = g, nrow = 2)

Second, the code for the geomnet approach, which results in Figure 4(b):

# data step: use the fortify.edgedf group argument to
# combine the edge and node data and allow all nodes to
# show up on all days. Also, remove emails sent to all
# employees
emailnet <- fortify(as.edgedf(subset(email$edges, nrecipients < 54)), email$nodes, group = "day")

# creating the plot
set.seed(7042016)
ggplot(data = emailnet, aes(from_id = from, to_id = to_id)) +
geom_net(layout.alg = "kamadakawai", singletons = FALSE,
aes(colour = CurrentEmploymentType,

group = CurrentEmploymentType,
linewidth = 2 * (...samegroup.. / 8 + .125)),
arrowsize = .5,
directed = TRUE, fiteach = TRUE, ealpha = 0.5, size = 1.5, na.rm = FALSE) +

scale_colour_brewer("Employment Type", palette = "Set1") +
theme_net() +
facet_wrap(~day, nrow = 2, labeller = "label_both") +
theme(legend.position = "bottom",

panel.border = element_rect(fill = NA, colour = "grey60"),
plot.margin = unit(c(0, 0, 0, 0), "mm"))

Finally, the code for the ggnetwork approach, which results in Figure 4(c):

# create the network and aesthetics
# first, remove emails sent to all employees
edges <- subset(email$edges, nrecipients < 54)
edges <- edges[, c("From", "to", "day") ]
# Create network class object for plotting with ggnetwork
em.net <- network(edges[, 1:2])
# assign edge attributes (day)
set.edge.attribute(em.net, "day", edges[, 3])
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# assign vertex attributes (employee type)
em.net %v% "curr_empl_type" <- em.cet[ network.vertex.names(em.net) ]

# create the plot
set.seed(7042016)
ggplot(ggnetwork(em.net, arrow.gap = 0.02, by = "day",

layout = "kamadakawai"),
aes(x, y, xend = xend, yend = yend)) +

geom_edges(
aes(color = curr_empl_type),
alpha = 0.25,
arrow = arrow(length = unit(5, "pt"), type = "closed")) +

geom_nodes(aes(color = curr_empl_type), size = 1.5) +
scale_color_brewer("Employment Type", palette = "Set1") +
facet_wrap(~day, nrow = 2, labeller = "label_both") +
theme_facet(legend.position = "bottom")

Note the two key differences in the visualizations of Figure 4: whether singletons (isolated nodes)
are plotted (as in the ggnetwork method), and whether one layout is used across all panels (as for the
ggnetwork example) or whether individual layouts are fit to each of the subsets (as for the ggnet2 and
the geomnet examples). Plotting isolated nodes in geomnet is possible by setting singletons = TRUE,
and it would be possible in ggnet2 by including all nodes in the creation of the list of networks. Using
the same layout for plotting small multiples in geomnet is controlled by the argument fiteach. By
default, fiteach = TRUE, but fiteach = FALSE results in all panels sharing the same layout. Having
the same layout in each panel makes seeing specific differences in ties between nodes easier, while
having a different layout in each panel emphasizes the overall structural differences between the
sub-networks. It would be interesting to be able to have a hybrid of these two approaches, but at the
moment this is beyond the capability of any of the methods. Through the faceting it becomes obvious
that there are several days where one or more of the departments does not communicate with any of
the other departments. There are only two days, day 13 and day 15, without any isolated department
communications. Faceting is one of the major benefits of implementing tools for network visualization
in ggplot2. Faceting allows the user to quickly separate dense networks into smaller sub-networks for
easy visual comparison and analyses, a feature that the other network visualization tools do not have.

ggplot2 theme elements

This example comes from the theme() help page in the ggplot2 documentation (Wickham, 2016). It is
a directed network which shows the structure of the inheritance of theme options in the construction
of a ggplot2 plot. There are 53 vertices and 36 edges in this network. Each vertex represents one
possible theme option. There is an arrow from one theme option to another if the element represented
by the ‘to’ vertex inherits its values from the ‘from’ vertex. For example, the axis.ticks.x option
inherits its value from the axis.ticks value, which in turn inherits its value from the line option.
Thus, setting the line option to a value such as element_blank() sets the entire inheritance tree to
element_blank(), and no lines appear anywhere on the plot background.

Code and plots of the inheritance structure are shown in Figure 5. A glimpse of the data is below.

te.net
## Network attributes:
## vertices = 53
## directed = TRUE
## hyper = FALSE
## loops = FALSE
## multiple = FALSE
## bipartite = FALSE
## total edges= 48
## missing edges= 0
## non-missing edges= 48
##
## Vertex attribute names:
## size vertex.names
##
## No edge attributes
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(a) ggnet2

# make data accessible
data(theme_elements, package = "geomnet")

# create network object
te.net <- network(theme_elements$edges)
# assign node attribut (size based on node degree)
te.net %v% "size" <-
sqrt(10 * (sna::degree(te.net) + 1))

set.seed(3272016)
ggnet2(te.net, label = TRUE, color = "white",

label.size = "size", layout.exp = 0.15,
mode = "fruchtermanreingold") aspect.ratio
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axis.text.y
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axis.title
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axis.title.y

legend.background

legend.box

legend.box.just

legend.direction

legend.justification

legend.key

legend.key.heightlegend.key.size
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legend.margin

legend.position

legend.text

legend.text.align

legend.title

legend.title.align

line

panel.background
panel.border

panel.grid
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panel.grid.major.x
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panel.grid.minor.x

panel.grid.minor.y

panel.margin
panel.margin.x
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(b) geomnet

# data step: merge nodes and edges and
# introduce a degree-out variable
# data step: merge nodes and edges and
# introduce a degree-out variable
TEnet <- fortify(
as.edgedf(theme_elements$edges[,c(2,1)]),

theme_elements$vertices)
TEnet <- TEnet %>%
group_by(from_id) %>%
mutate(degree = sqrt(10 * n() + 1))

# create plot:
set.seed(3272016)
ggplot(data = TEnet,

aes(from_id = from_id, to_id = to_id)) +
geom_net(layout.alg = "fruchtermanreingold",
aes(fontsize = degree), directed = TRUE,
labelon = TRUE, size = 1, labelcolour = 'black',
ecolour = "grey70", arrowsize = 0.5,
linewidth = 0.5, repel = TRUE) +

theme_net() +
xlim(c(-0.05, 1.05))
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Figure 5: Inheritance structure of ggplot2 theme elements. This is a recreation of the graph found at
http://docs.ggplot2.org/current/theme.html.
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(c) ggnetwork

set.seed(3272016)
# use network created in ggnet2 data step
ggplot(ggnetwork(te.net,

layout = "fruchtermanreingold"),
aes(x, y, xend = xend, yend = yend)) +

geom_edges() +
geom_nodes(size = 12, color = "white") +
geom_nodetext(
aes(size = size, label = vertex.names)) +

scale_size_continuous(range = c(4, 8)) +
guides(size = FALSE) +
theme_blank()
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Figure 5: (continued) Inheritance structure of ggplot2 theme elements. This is a recreation of the
graph found at http://docs.ggplot2.org/current/theme.html.

head(TEnet)
## Source: local data frame [6 x 3]
## Groups: from_id [2]
##
## from_id to_id degree
## <fctr> <fctr> <dbl>
## 1 text title 6.403124
## 2 text legend.text 6.403124
## 3 text axis.text 6.403124
## 4 text strip.text 6.403124
## 5 line axis.line 5.567764
## 6 line axis.ticks 5.567764

Note the various ways the packages adjust the side of the labels to correspond to the outdegree of
the nodes, including the use of the scale_size_continuous function in Figure 5(c). In each of these
plots, it is easy to quickly determine parent-child relationships, and to assess which theme elements
are unrelated to all others. Nodes with the most children are the rect, text, and line elements, so
we made their labels larger in order to emphasize their importance. In each case, the label size is a
function of the out degree of the vertices.

College football

This next example comes from M.E.J. Newman’s network data web page (Girvan and Newman, 2002).
It is an undirected network consisting of all regular season college football games played between
Division I schools in Fall of 2000. There are 115 vertices and 613 edges: each vertex represents a school,
and an edge represents a game played between two schools. There is an additional variable in the
vertex data frame corresponding to the conference each team belongs to, and there is an additional
variable in the edge data frame that is equal to one if the game occurred between teams in the same
conference or zero if the game occurred between teams in different conferences. We take a look at the
data used in the plots below.

fb.net
## Network attributes:
## vertices = 115
## directed = TRUE
## hyper = FALSE
## loops = FALSE
## multiple = FALSE

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

http://docs.ggplot2.org/current/theme.html


CONTRIBUTED RESEARCH ARTICLES 45

## bipartite = FALSE
## total edges= 613
## missing edges= 0
## non-missing edges= 613
##
## Vertex attribute names:
## conf vertex.names
##
## Edge attribute names:
## same.conf
head(ftnet)
## from_id to_id same.conf value
## 1 AirForce NevadaLasVegas 1 Mountain West
## 2 Akron MiamiOhio 1 Mid-American
## 3 Akron VirginiaTech 0 Mid-American
## 4 Akron Buffalo 1 Mid-American
## 5 Akron BowlingGreenState 1 Mid-American
## 6 Akron Kent 1 Mid-American
## schools
## 1
## 2
## 3
## 4
## 5
## 6

The network of football games is given in Figure 6. Here, the linetype aesthetic corresponds to
games that occur between teams in the same conference or different conferences.

(a) ggnet2#make data accessible
data(football, package = 'geomnet')
rownames(football$vertices) <-
football$vertices$label

# create network
fb.net <- network(football$edges[, 1:2],

directed = TRUE)
# create node attribute
# (what conference is team in?)
fb.net %v% "conf" <-
football$vertices[
network.vertex.names(fb.net), "value"
]

# create edge attribute
# (between teams in same conference?)
set.edge.attribute(
fb.net, "same.conf",
football$edges$same.conf)

set.seed(5232011)
ggnet2(fb.net, mode = "fruchtermanreingold",

color = "conf", palette = "Paired",
color.legend = "Conference",
edge.color = c("color", "grey75"))

Conference

Atlantic Coast

Big East

Big Ten

Big Twelve

Conference USA

Independents

Mid−American

Mountain West

Pacific Ten

Southeastern

Sun Belt

Western Athletic

These lines are dotted and solid, respectively. We have also assigned a different color to each conference,
so that the vertices and their labels are colored according to their conference. Additionally, in the first
two implementations, the edges between two teams in the same conference share that conference
color, while edges between teams in different conferences are a default gray color. This coloring and
changing of the line types make the structure of the game network easier to view. Additionally, we
use the label aesthetic in Figure 6(b) to label only a few schools that are of interest to us. This is the
conference consisting of Navy, Notre Dame, Utah State, Central Florida, and Connecticut, which is
spread out, whereas most other conferences’ teams are all very close to each other because they play
within conference much more than they play out of conference. At the time, these five schools were all
independents and did not have a home conference. Without the coloring capability, we would not
have been able to pick out that difference as easily.
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(b) geomnet

# data step: merge vertices and edges
# data step: merge vertices and edges
ftnet <- fortify(as.edgedf(football$edges),

football$vertices)

# create new label variable for independent schools
ftnet$schools <- ifelse(
ftnet$value == "Independents", ftnet$from_id, "")

# create data plot
set.seed(5232011)
ggplot(data = ftnet,

aes(from_id = from_id, to_id = to_id)) +
geom_net(layout.alg = 'fruchtermanreingold',

aes(colour = value, group = value,
linetype = factor(same.conf != 1),
label = schools),

linewidth = 0.5,
size = 5, vjust = -0.75, alpha = 0.3) +

theme_net() +
theme(legend.position = "bottom") +
scale_colour_brewer("Conference", palette = "Paired") +
guides(linetype = FALSE)

CentralFlorida

Connecticut

Navy

NotreDame

UtahState

Conference

Atlantic Coast

Big East

Big Ten

Big Twelve

Conference USA

Independents

Mid−American

Mountain West

Pacific Ten

Southeastern

Sun Belt

Western Athletic

(c) ggnetwork

# use network from ggnet2 step
set.seed(5232011)
ggplot(
ggnetwork(
fb.net,
layout = "fruchtermanreingold"),

aes(x, y, xend = xend, yend = yend)) +
geom_edges(
aes(linetype = as.factor(same.conf)),
color = "grey50") +

geom_nodes(aes(color = conf), size = 4) +
scale_color_brewer("Conference",

palette = "Paired") +
scale_linetype_manual(values = c(2,1)) +
guides(linetype = FALSE) +
theme_blank()

Conference
Atlantic Coast

Big East

Big Ten

Big Twelve

Conference USA

Independents

Mid−American

Mountain West

Pacific Ten

Southeastern

Sun Belt

Western Athletic

Figure 6: (continued) The network of regular season Division I college football games in the season of
fall 2000. The vertices and their labels are colored by conference.
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Southern women

Bipartite (or ‘two-mode’) networks are networks with two different kinds of nodes and where all
ties are formed between these two kinds. Affiliation networks, which represent the ties between
individuals and the groups to which they belong, are examples of such networks (see Newman, 2010,
p. 53-54 and p. 123-127).

One of the classic examples for a two-mode network is the network of 18 Southern women
attending 14 social events as collected by Davis et al. (1941) and published e.g. as part of the tnet
package (Opsahl, 2009). In this data, a woman is linked by an edge to an event if she attended it. One
of the questions for these type of networks is gain insight in the interplay between the two different
sets of nodes.

The data for the example of the Southern women is reported as edge list in form of ‘lady X
attending event Y’. With a bit of data preparation as detailed below, we can visualize the graph as
shown in Figure 7. In creating the plots, we use the shape and colour aesthetics to map the two
different modes to two different shapes and colours.

# access the data and rename it for convenience
library(tnet)

data(tnet)
elist <- data.frame(Davis.Southern.women.2mode)
names(elist) <- c("Lady", "Event")

The edge list for the Southern women’s data consists of women attending events:

head(elist,4)
## Lady Event
## 1 1 1
## 2 1 2
## 3 1 3
## 4 1 4

In order to distinguish between nodes from different types, we have to add an additional identifier
element, so that we can tell the ‘first’ woman L1 apart from the first event, E1.

elist$Lady <- paste("L", elist$Lady, sep="")
elist$Event <- paste("E", elist$Event, sep="")

davis <- elist
names(davis) <- c("from", "to")
davis <- rbind(davis, data.frame(from=davis$to, to=davis$from))
davis$type <- factor(c(rep("Lady", nrow(elist)), rep("Event", nrow(elist))))

The two different types of nodes are shown by different shapes and colors. We see the familiar
relationship between events and groups of women attending these events. Women attending the
same events then form a tighter knit subset, while events are also thought of as more similar, if they
are attended by the same women. This defines the cluster of events E1 through E5, which are only
attended by women 1 through 9, while events E6 through E9 are attended by (almost) everybody
making them the core group of events.

Bike sharing in Washington D.C.

The data shows trips taken with bikes from the bike share company Capital Bikeshare5 during the
second quarter of 2015. While this bike sharing company is located in the heart of Washington D.C. the
company offers a set of bike stations just outside of Washington in Rockville, MD and north of it. Each
station is shown as a vertex, and edges between stations indicate that at least five trips were taken
between these two stations; the wider the line, the more trips have been taken between stations. In
order to reflect distance between stations, we use as an additional restriction that the fastest trip was at
most ten minutes long. Figure 8 shows four renderings of this data. The first is a geographically true

5https://secure.capitalbikeshare.com/
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representation of the area overlaid by lines between bike stations, the other three are networks drawn
with geomnet, ggnet2, and ggnetwork, respectively. The code for these renderings is shown below:

# make data accessible
data(bikes, package = 'geomnet')
# data step for geomnet
tripnet <- fortify(as.edgedf(bikes$trips), bikes$stations[,c(2,1,3:5)])
# create variable to identify Metro Stations
tripnet$Metro = FALSE
idx <- grep("Metro", tripnet$from_id)
tripnet$Metro[idx] <- TRUE

# plot the bike sharing network shown in Figure 7b
set.seed(1232016)
ggplot(aes(from_id = from_id, to_id = to_id), data = tripnet) +
geom_net(aes(linewidth = n / 15, colour = Metro),

labelon = TRUE, repel = TRUE) +
theme_net() +
xlim(c(-0.1, 1.1)) +
scale_colour_manual("Metro Station", values = c("grey40", "darkorange")) +
theme(legend.position = "bottom")

# data preparation for ggnet2 and ggnetwork
bikes.net <- network(bikes$trips[, 1:2 ], directed = FALSE)
# create edge attribute (number of trips)
network::set.edge.attribute(bikes.net, "n", bikes$trips[, 3 ] / 15)
# create vertex attribute for Metro Station
bikes.net %v% "station" <- grepl("Metro", network.vertex.names(bikes.net))
bikes.net %v% "station" <- 1 + as.integer(bikes.net %v% "station")
rownames(bikes$stations) <- bikes$stations$name
# create node attributes (coordinates)
bikes.net %v% "lon" <-
bikes$stations[ network.vertex.names(bikes.net), "long" ]

bikes.net %v% "lat" <-
bikes$stations[ network.vertex.names(bikes.net), "lat" ]

bikes.col <- c("grey40", "darkorange")

# Non-geographic placement
set.seed(1232016)
ggnet2(bikes.net, mode = "fruchtermanreingold", size = 4, label = TRUE,

vjust = -0.5, edge.size = "n", layout.exp = 1.1,
color = bikes.col[ bikes.net %v% "station" ],
label.color = bikes.col[ bikes.net %v% "station" ])

# Non-geographic placement. Use data from ggnet2 step.
set.seed(1232016)
ggplot(data = ggnetwork(bikes.net, layout = "fruchtermanreingold"),

aes(x, y, xend = xend, yend = yend)) +
geom_edges(aes(size = n), color = "grey40") +
geom_nodes(aes(color = factor(station)), size = 4) +
geom_nodetext(aes(label = vertex.names, color = factor(station)),

vjust = -0.5) +
scale_size_continuous("Trips", breaks = c(2, 4, 6), labels = c(30, 60, 90)) +
scale_colour_manual("Metro station", labels = c("FALSE", "TRUE"),

values = c("grey40", "darkorange")) +
theme_blank() +
theme(legend.position = "bottom", legend.box = "horizontal")
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To plot the geographically correct bike network layout in geomnet, we use the ‘layout.alg = NULL’
option and provide the latitude and longitude coordinates of the bike stations from the company’s
data. A glance of the data that we used in the examples is shown below.

bikes.net
## Network attributes:
## vertices = 20
## directed = FALSE
## hyper = FALSE
## loops = FALSE
## multiple = FALSE
## bipartite = FALSE
## total edges= 53
## missing edges= 0
## non-missing edges= 53
##
## Vertex attribute names:
## lat lon station vertex.names
##
## Edge attribute names:
## n
head(tripnet[,-c(4:5,8)])
## from_id
## 1 Broschart & Blackwell Rd
## 2 Crabbs Branch Way & Calhoun Pl
## 3 Crabbs Branch Way & Calhoun Pl
## 4 Crabbs Branch Way & Calhoun Pl
## 5 Crabbs Branch Way & Calhoun Pl
## 6 Crabbs Branch Way & Calhoun Pl
## to_id n lat long
## 1 <NA> NA 39.10210 -77.20032
## 2 Crabbs Branch Way & Redland Rd 11 39.10771 -77.15207
## 3 Needwood Rd & Eagles Head Ct 14 39.10771 -77.15207
## 4 Rockville Metro East 51 39.10771 -77.15207
## 5 Rockville Metro West 8 39.10771 -77.15207
## 6 Shady Grove Metro West 36 39.10771 -77.15207
## Metro
## 1 FALSE
## 2 FALSE
## 3 FALSE
## 4 FALSE
## 5 FALSE
## 6 FALSE

Because all three approaches result in the same picture, we only show one of these in Figure 8a. The
code for creating the map is given here:

library(ggmap)
metro_map <- get_map(location = c(left = -77.22257, bottom = 39.05721,

right = -77.11271, top = 39.14247))

# geomnet: overlay bike sharing network on geographic map
ggmap(metro_map) +
geom_net(data = tripnet, layout.alg = NULL, labelon = TRUE,

vjust = -0.5, ealpha = 0.5,
aes(from_id = from_id,

to_id = to_id,
x = long, y = lat,
linewidth = n / 15,
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colour = Metro)) +
scale_colour_manual("Metro Station", values = c("grey40", "darkorange")) +
theme_net() %+replace% theme(aspect.ratio=NULL, legend.position = "bottom") +
coord_map()

We can also make use of the option ‘layout.alg = NULL’ whenever we do not want to use an
in-built layout algorithm but make use of a user-defined custom layout. In this case, the coordinates of
the layout have to be created outside of the visualization and x and y coordinates have to be made
available instead.

Some considerations of speed

In our examples thus far, we have focused on rather small social or relationship networks and one
larger communication network. Now we present an example of a biological network, which comes
from Jeong et al. (2001). It is the complete protein-protein interaction network in the yeast species S.
cerevisiae. There are 2,113 proteins that make up the vertices of this network, with a total of 4480 edges
between them. These edges represent “direct physical interactions" between any two proteins (Jeong
et al., 2001, p. 42), resulting in a relatively large network. When these interactions and their associated
proteins are plotted using the Fruchterman-Reingold layout algorithm, the runtime is extremely long,
about 9.5 minutes for 50,000 iterations through the algorithm. The resulting layout is shown in Figure 9.
When testing the three approaches with the larger network, we decided to use a random layout to
save time. Despite its size, each one of the approaches in the ggplot2 framework can be drawn in a
few hundred milliseconds.

Another benefit that emerges from using ggplot2 for network visualization is the speed at which it
can plot fairly large networks. In order to assess the speed gain procured by our three approaches, we
ran two separate tests, both of which designate ggplot2-based approaches as faster than the plotting
functionality offered in the network package. They also show the ggplot2 approaches to be largely
on par with the speed provided by the igraph package. We first investigate average random layout
plotting time of the protein network

shown in Figure 9, and then consider average plotting times of increasingly larger random
networks. Note that in all tests, default package settings were used. The code to create benchmark
results for both of these situations is provided in the vignette of the package ggCompNet (Tyner
and Hofmann, 2016b). See the Supplementary Material section at the end of this paper for more
information.

We plotted the protein interaction network of Figure 9 100 times using the network and igraph
packages, and compared their run times to 100 runs each of the three visualization approaches
introduced in this paper. The results are shown in Figure 10. We can see that on average, the ggplot2
framework provides a two to three-fold increase in speed over the network package, and that geomnet
and ggnetwork are faster than package igraph. The three ggplot2 approaches also have considerably
less variability in time than the network package. Despite the large number of vertices, the protein
interaction network has a relatively small number of edges (4480 out of over 2.2 million theoretically
possible connections resulting in an edge probability of just over 0.0020). Next, we examine networks
with a higher edge probability.

The second test relies on random undirected networks in which the probability of an edge between
two nodes was set to p = 0.2. We generated 100 of these networks at network sizes from 25 to 250
nodes, using increments of 25.

Figure 11 summarizes the results of these benchmarks using a convenience sample of machines
accessible to the authors, including authors’ hardware and additional results from friends’ and
colleagues’ machines. Network sizes are plotted horizontally, execution times of 100 runs under each
visualization approach are plotted on the y-axis. Each panel shows a different machine as indicated
by the facet label. Note that each panel is scaled separately to account for differences in the overall
speed of these machines. What these plots indicate is that we have surprisingly large variability in
relative run times across different machines. However, the results support some general findings.
The network plotting routine is by far the slowest across all machines, while the igraph plotting is
generally among the fastest. Our three approaches generally feature in between igraph and network
with ggnet2 being as fast or faster than igraph plotting, followed by ggnetwork and geomnet, which
is generally the slowest among the three. These differences become more pronounced as the size of
the network increases.

Although speed was not the main rationale for our inquiry into ggplot2-based approaches to
network visualization, a speed-based comparison shows a clear advantage of these approaches over
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the plotting function included in the network package, which very quickly becomes much slower as
network size increases.

Summary and discussion

At first glance, the three visualization approaches may seem nearly identical. However, each one
brings unique strengths to the visualization of networks. Out of our three approaches, ggnetwork is
most flexible and allows for a re-ordering of layers to emphasize one over the other. The flexibility is
useful but does require the user to specify every single part of the network visualization. The geomnet
implementation most closely aligns with the existing ggplot2 paradigm because it provides a single
layer that can be added to other ggplot2 layers. ggnet2 requires the user to know the least about the
ggplot2 framework, while resulting in a valid and extensible ggplot2 object. Many features of the
packages would not have been possible, or would have at least been difficult to implement, in prior
versions of ggplot2. The increased flexibility of the current development version as well as the added
geoms geom_curve and geom_label provided us with a strong, yet flexible, foundation for network
visualization. Our approaches also benefit from the speed of ggplot2, making network visualization
more efficient than the existing framework of network for a lot of the benchmark examples.

All three approaches rely on the package sna for layouts. This allows the user to access the many
layout algorithms available for networks, and in the event that new layouts are implemented in sna,
our packages will accommodate them seamlessly. A larger range of layouts is available through
igraph, and can be implemented into our packages by setting the respective layout arguments to NULL
and passing x,y coordinates calculated from igraph. There are some notable differences between
the packages, such as in the parameters used for specific layout algorithms, e.g. igraph allows the
use of weights for Fruchterman-Reingold placement, even though it is unclear from the original
article how these are supposed to affect the layout. In all three approaches, it is feasible to tap
into igraph’s functionality in a future version so that the user does not need to calculate the layout
separately. Additional future work will explore the implementation of other network data structures,
such as the networkDynamic class from statnet, which would benefit from the faceting capabilities
of our implementations. This work will likely incorporate the fortify approach of ggnetwork and
geomnet::fortify.network() for converting network data structures to a ggplot2-friendly format.

We have found that none of our approaches is unequivocally the best. We can, however, provide
some guidance as to which approach is best for which type of user. The main differences between the
three methods are in the way that network information is passed into the functions. For ggnet2 and
ggnetwork, data management and attribute handling is done through network operators on nodes
and edges, while the geomnet approach does not require any knowledge of networks or existing
network analysis packages from the user. This likely affects the user base of each package. We think
that users who are well-versed with networks will find ggnet2 and ggnetwork more intuitive to use
than geomnet. These users might be looking to ggplot2 as another avenue to create high-quality
visualizations that tap into ggplot2 advantages such as facetting and, for ggnetwork, layering. Users
who are already familiar with ggplot2 and some of the other tidyverse packages (see Wickham (2017)),
and who find themselves dealing with network data will likely be more attracted to the geomnet
implementation of network plotting. The data management skills needed for using geomnet are basic:
some familiarity with the split-apply-combine paradigm, in the form of familiarity with plyr or dplyr,
would be sufficient in order to make full use of the features of geom_net (Wickham, 2011). All in all,
the three approaches we have presented here provide a wealth of resources to users of all skill sets
who are looking to create beautiful network visualizations.

On a personal level we discovered that the collaboration on this paper has helped us to improve
upon our initial versions of each of these packages. For instance, the edge coloring in the ggnet2
function was designed so that edges between two vertices in the same group were colored with that
group’s vertex color. This inspired an implementation of it in geomnet through the traditional ggplot2
group operator. During the process of writing the paper the authors collaborated on a solution for the
problem of nodes being plotted on top of arrow tips. This solution was implemented in the geomnet
arrow.gap parameter, which allows to re-track the tip of an arrow on a directed edge, and was also
added to ggnetwork. In addition, the implementation of a ggplot2 geom for networks within geomnet
inspired the creation of the aliased geoms of the ggnetwork package.

Finally, curious users may be interested in how these three packages can fit together and replicate
each other, since they are in fact so similar. Thanks to the flexibility inherent to ggnetwork, it is
possible to write wrapper functions around ggnetwork functions in order to recreate the behavior and
functionality of ggnet2 and geomnet. Simple examples of such wrapper functions, called ggnetwork2
and geom_network, respecively are shown below.

library(ggnetwork)
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# mimics geom_net behavior
geom_network <- function(edge.param, node.param) {

edge_ly <- do.call(geom_edges, edge.param)
node_ly <- do.call(geom_nodes, node.param)
list(edge_ly, node_ly)

}
# mimics ggnet2 behavoir
ggnetwork2 <- function() { ggplot() + geom_network() }

Similarly, geomnet can mimic the the behavior of ggnet2, as shown below.

library(geomnet)
geomnet2 <- function(net) {
ggplot(data = fortify(net),

aes(from_id = from_id, to_id = to_id)) +
geom_net()

}

Mimicking ggnetwork with geomnet requires a little bit more work because the native data input
for geomnet is a "data.frame" object fortified with geomnet methods, not a "network" object. Instead,
the internal ggplot2 function ggplot_build allows a plot created with geomnet function calls to be
recreated with ggnetwork-like syntax. An example of using a geomnet plot to create a similar plot in
the style of ggnetwork follows to reproduce Figure 2(c).

library(geomnet)
library(ggnetwork)
library(dplyr)
# a ggnetwork-like creation using a geomnet plot
data("blood")
# first, create the geomnet plot to access the data later
geomnetplot <- ggplot(data = blood$edges, aes(from_id = from, to_id =

to)) +
geom_net(layout.alg = "circle", selfloops = TRUE) +

theme_net()
# get the data
dat <- ggplot_build(geomnetplot)$data[[1]]
# ggnetwork-like construction for re-creating network shown in Figure 5
ggplot(data = dat, aes(x = x, y = y, xend = xend, yend = yend)) +
geom_segment(arrow = arrow(type = 'closed'), colour = 'grey40') +
geom_point(size = 10, colour = 'darkred') +
geom_text(aes(label = from), colour = 'grey80', size = 4) +
geom_circle() +
theme_blank() + theme(aspect.ratio = 1)

Supplementary Material

Software: ggnetwork 0.5.1 and geomnet 0.2.0 were used to create the visualizations. ggnet2 is part
of GGally 1.3.0.

Reproducibility: All the code used in the examples is available as a vignette in the CRAN package
ggCompNet. There are two vignettes: one for the speed comparisons and one for the visu-
alizations provided in the Examples section. The package also provide our speed test data
for creating Figure 11. We created this package to accompany this paper with the hope that
interested users will compare these methods on their own systems and against their own code.
Finally, all of the data we use in the examples, with the exception of the bipartite network
example, is included as a part of the geomnet package.
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(a) ggnet2

# Southern women network in ggnet2
# create affiliation matrix
bip = xtabs(~Event+Lady, data=elist)

# weighted bipartite network
bip = network(bip,

matrix.type = "bipartite",
ignore.eval = FALSE,
names.eval = "weights")

# detect and color the mode
set.seed(8262013)
ggnet2(bip, color = "mode", palette = "Set2",

shape = "mode", mode = "kamadakawai",
size = 15, label = TRUE) +

theme(legend.position="bottom")
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Figure 7: Graph of the Southern women data. Women are represented as orange triangles, events as
green circles.
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(b) geomnet

# Southern women network in geomnet
# change labelcolour
davis$lcolour <-
c("white", "black")[as.numeric(davis$type)]

set.seed(8262013)
ggplot(data = davis) +
geom_net(layout.alg = "kamadakawai",
aes(from_id = from, to_id = to,

colour = type, shape = type),
size = 15, labelon = TRUE, ealpha = 0.25,
vjust = 0.5, hjust = 0.5,
labelcolour = davis$lcolour) +

theme_net() +
scale_colour_brewer("Type of node", palette = "Set2") +
scale_shape("Type of node") +
theme(legend.position = "bottom")
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(c) ggnetwork

# Southern women network in ggnetwork. Use data from ggnet2 step
# assign vertex attributes (Node type and label)
set.vertex.attribute(bip, "mode",
c(rep("event", 14), rep("woman", 18)))

set.seed(8262013)
ggplot(data = ggnetwork(bip,

layout = "kamadakawai"),
aes(x = x, y = y, xend = xend, yend = yend)) +

geom_edges(colour = "grey80") +
geom_nodes(aes(colour = mode, shape = mode),

size = 15) +
geom_nodetext(aes(label = vertex.names)) +
scale_colour_brewer(palette = "Set2") +
theme_blank() +
theme(legend.position = "bottom") E1
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Figure 7: Graph of the Southern women data. Women are represented as orange triangles, events as
green circles.
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(a) geographic map
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Figure 8: Network of bike trips using a geographically true representation(top left) overlaid on a
satellite map, a Kamada-Kawai layout in geomnet (top right), a Fruchterman-Reingold layout in
ggnet2 (bottom left) and ggnetwork (bottom right). Metro stations are shown in orange. In both
the Kamada-Kawai and the Fruchterman-Reingold layouts, metro stations take a much more central
position than in the geographically true representation.
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Figure 9: Protein-protein interaction network in S. cerevisiae. A Fruchterman-Reingold algorithm
allowed to run for 50,000 iterations produced the coordinates for the nodes.
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Figure 10: Comparison of the times needed for calculating and rendering the previously discussed
protein interaction network in the three ggplot2 approaches and the standard plotting routines of the
network and igraph packages based on 100 evaluations each.
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Figure 11: Plotting times of random undirected networks of different sizes under each of the available
visualization approaches using their default settings. Note that each panel is scaled independently to
highlight relative differences in the visualization approaches rather than speed of different hardware.
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OrthoPanels: An R Package for
Estimating a Dynamic Panel Model with
Fixed Effects Using the Orthogonal
Reparameterization Approach
by Mark Pickup, Paul Gustafson, Davor Cubranic and Geoffrey Evans

Abstract This article describes the R package OrthoPanels, which includes the function opm(). This
function implements the orthogonal reparameterization approach recommended by Lancaster (2002) to
estimate dynamic panel models with fixed effects (and optionally: wave specific intercepts). This article
provides a statistical description of the orthogonal reparameterization approach, a demonstration of
the package using real-world data, and simulations comparing the estimator to the known-to-be-biased
OLS estimator and the commonly used GMM estimator.

Introduction

Panel data includes observations on N cases repeated over multiple, T > 1, time points (waves). A
dynamic panel model is one that includes one or more lagged dependent variables. When fixed effects
are included in such models, the OLS estimator is biased when T is fixed (small). This has become
known as Nickell bias (Nickell, 1981). A maximum likelihood estimation of such a model leads to
an incidental parameters problem (Neyman and Scott, 1948; Lancaster, 2000). Lancaster proposes an
orthogonal reparameterization approach to produce a conditional likelihood estimator that is exact
and consistent as N → ∞ for T ≥ 2 (Lancaster, 2002).1

This article provides an introduction to the R package OrthoPanels, which includes the function
opm(). This function implements the orthogonal reparameterization approach recommended by
Lancaster (2002) to estimate dynamic panel models with fixed effects (and optionally: wave specific
intercepts). In this article, we first provide a brief review of the methods implemented in OrthoPanels,
and then discuss an empirical illustration using some of the features of the function opm(). Finally, we
conduct some Monte Carlo simulations to demonstrate the performance of the opm() function under
different assumptions about the data generating process.

Review of methods

Panel models are used when we have observations on N cases repeated over T time points. These
models allow us to account for unobservable individual effects (unobserved heterogeneity) that can
neither be identified nor controlled with cross-sectional models (Finkel, 2008; Hsiao, 2014, pages 4–10).
The most general approach to accounting for unobservable individual effects, in that it makes the
fewest assumptions, is a fixed effects panel model (Hsiao, 2014, pages 47–56).

A dynamic panel model contains one or more lags of the dependent variable on the right-hand side.
A dynamic model is necessary if the dependent variable is autoregressive (Arellano, 2003, page 129).
We would expect a dependent variable to be autoregressive if we believe that subsequent to something
happening that temporarily changes the value of the dependent variable (e.g., a temporary shift in
an independent variable), the dependent variable will return partly but not entirely to its original
value before the next observation. The consequence is that we have a dependent variable in which
values that are above/below average at one observation are more likely than not to be above/below
average at the next observation. This autoregressive relationship between current and past values of
the dependent variable is not due to an omitted variable that links current and past values and not
due to correlation between the current and past values of the errors. The autoregressive relationship
is due to past values of the dependent variable having a direct effect on current values (Finkel, 2008,
page 486). A simple example of a data generating process that might require a dynamic model with
fixed effects (and wave specific intercepts) is:

yit = ρyit−1 + β1xit + τt + µit (1)

µit = ηi + εit, εit ∼ NID(0, σ2)

1Note this means two waves of data used in the estimation and data on the dependent variable from a third
earlier wave (T = 0). This is due to the need to have values for the lagged dependent variable at T = 1.
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where i = 1, ...N and t = 1, ..., T; yit is the value of the dependent variable y for case i at time t;
xit is the value of the independent variable x for case i at time t; and ρ and β are parameters. The
process is first order autoregressive with one lag of the dependent variable on the right-hand side.
For each case, there is a case-specific fixed effect ηi, also known as unobservable individual effects.
These represent (over time) average differences between cases. There may also be over time changes
in the average value of yit across cases, τt. These are changes common to all cases at a particular point
in time and include trending as a special case. The following discussion holds whether or not τt are
included. They are a useful control for dynamics like trending and global wave effects but need not be
included if such dynamics do not exist in the data.

The estimation of (1) presents a challenge. The OLS fixed-effects estimator with a lag dependent
variable is biased with a fixed (small) T. In the analysis of econometric panel data this has become
known as Nickell bias. Nickell (1981) provided the analytical expressions of the bias that had been
previously well documented by Monte Carlo work (Nerlove, 1967, 1971). Nickell showed that if the
autoregressive parameter, ρ in (1), is positive, the bias will be negative. He also demonstrated that this
bias persists even as ρ goes to zero. As we will see, the bias in the estimation of the autoregressive
parameter has important biasing effects on the estimation of the short and long-run effects (Greene,
2012, pages 422–423) of dynamic variables (e.g., xit).

A popular alternative to the OLS estimation is the Anderson and Hsiao (1981) instrumental
variable approach and more generally the Arellano and Bond GMM estimator (1991), and other GMM
estimators (Arellano and Bover, 1995; Blundell et al., 2000). The downside of these estimators is that
they are inefficient (Behr, 2003). Further, the GMM approach uses approximate inference methods and
requires assumptions about the appropriateness of past values of the dependent variable (and possibly
independent variables) as instruments. These assumptions may or may not be valid. Lancaster
(2000) argues the GMM estimator contains no data or information that is not already contained in the
likelihood for the model. Hsiao et al. (2002) propose a transformed-likelihood approach to dealing with
the incidental parameters problem. Lancaster (2002) proposes a conditional likelihood estimator (also
a type of transformed-likelihood approach) that can analytically compute the conditional probability
distributions, over our variables of interest, exactly. Such likelihood-based estimators require no
instrumental variable assumptions. We refer to the approach suggested by Lancaster as orthogonal
reparameterization (or OPM for orthogonalized panel model). This approach can be conceived of as a
Bayesian version of the frequentist, transformed-likelihood approach proposed and tested by Hsiao,
Pesaran and Tahmiscioglu (2002). See (Pesaran, 2015, pages 692–695) and (Hsiao, 2014, pages 80–135)
for a review of likelihood-based methods developed to estimate linear dynamic panel models with
fixed effects. The transformed-likelihood approach has been shown to perform better than GMM
estimators (Hsiao, 2014; Hsiao et al., 2002), particularly when the autoregressive parameter is close
to 1. The advantage of the OPM approach, over the transformed-likelihood estimators proposed by
Hsiao et al. (2002) is that the latter requires knowing the appropriate assumptions regarding the initial
conditions for yit at t = 0 and their relationship with the unobservable individual effects. This is often
not known and if the wrong assumptions are made, the estimator is no longer consistent (Anderson
and Hsiao, 1981; Hsiao, 2014, pages 86–98). This is not a requirement of the OPM approach.

The orthogonal reparameterization (OPM) approach

The Lancaster likelihood-based estimator proceeds as follows. The maximum likelihood estimation
of model (1) with a fixed (small) T leads to an incidental parameters problem. Maximum likelihood
estimation is consistent as N increases relative to the number of parameters estimated. With fixed
T, the number of fixed-effects (ηi) approaches infinity at the same rate as N → ∞. In other words,
each time we add a case, we add a parameter to be estimated. Therefore, N relative to the number
of parameters cannot increase and we cannot rely on asymptotics as N → ∞ and the application of
maximum likelihood leads to inconsistent estimates. Lancaster (2002) suggested a solution to this
particular incidental parameters problem.

The key to this approach is that we are not actually interested in estimates of the incidental
parameters (ηi). We are interested in estimates of the “common parameters” – in (1) this is the effect of
dynamic variable xit (β1), and τt , ρ, and σ2. Therefore, we seek a reparameterization of the incidental
parameters so that the incidental and common parameters are information orthogonal. This puts us in
a position to produce an N → ∞ consistent likelihood-based estimate of the parameters of interest that
is independent of the values of the incidental parameters. Therefore, we continue to have incidental
parameters but not an incidental parameter problem.

A straightforward example of the OPM approach (Lancaster, 2002) is as follows. We wish to
estimate a model that includes parameters ηi, τt, ρ and β1 and error variance σ2 – where ηi represents
the fixed effects, τt represents wave specific effects, ρ is the first order autoregressive parameter and
β1 represents the effect of dynamic variable xit. We denote the likelihood function for the data for a
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single case as `i(ηi, τt, ρ, β1, σ2).

Suppose the fixed effects can be reparameterized so that the likelihood function for the data for a
single case factors as:

`i(ηi, τt, ρ, β1, σ2) = `i1(ηi)`i2(τt, ρ, β1, σ2) (2)

Where `i1 and `i2 are themselves likelihood functions. If the parameters (ηi) and (τt, ρ, β1, σ2) are also
variation independent, they are orthogonal. If ∏ `i2 is the product of the `i2 for all observations, it can
then be shown that the application of maximum likelihood to ∏ `i2 produces consistent estimates of
(τt, ρ, β1, σ2) (Lancaster, 2002) as N → ∞ for any T ≥ 2.

Not all likelihoods can be transformed so that the incidental parameters are orthogonalized.
However, a solution with an equivalent intuition may be available. It may be possible to reparameterize
the fixed effects so that they are information orthogonal. If we denote the log of the likelihood for the
data for observation i as Li, then the fixed effects are information orthogonal to a parameter (e.g., β1)
if the following condition is met:

E
(

∂2Li
∂ηi∂β1

)
= 0 (3)

This can be interpreted as meaning that the slope of the log likelihood with respect to ηi is independent
of the slope of the log likelihood with respect to β1. If a transformation of the fixed effects can be
found that meets this condition (and the equivalent condition for the other parameters – in this case
τt, ρ and σ2), it may be possible to place priors on the parameters and integrate out the fixed effects.
Specifically, we use flat priors for the ηi and the remaining parameters. This is essentially a Bayesian
estimation technique. This gives us the marginal posterior for the remaining parameters. Lancaster
(2002) demonstrates how this can be done for the lagged dependent variable model with fixed effects.

Once we have the marginal posterior for our parameters of interest, we can use Monte Carlo
methods to sample values from the marginal posterior to produce estimates and credible intervals for
the parameters, as follows. We wish to estimate (1). To generalize a little, let us allow for K dynamic
variables, so that βXi,t = ∑K

k=1 βkxi,t,k. To simplify the notation, we express Xi,t, yi,t and yi,t−1 in
vector terms Xi, yi and yi−. As the τt are optional, depending on the data generating process, we leave
them out of the following discussion. The appropriate reparameterization of the fixed effects, forming
uniform priors on ρ, β1, σ2, and {ηi}, and integrating out the fixed effects results in the following
posterior density function2:

p(ρ, β, σ2|data) ∝ σ−(N(T−1)−2)exp
{N

T

T−1

∑
t=1

(
T − t

t
ρt
)
− 1

2σ2

N

∑
i=1

(yi − ρyi− − βXi)
′H(yi − ρyi− − βXi)

}
(4)

where H is defined as an operator that subtracts the mean. For example, if

ωi = yi − ρyi− − β1Xi

then H(ωi) ≡ ωi − ω̄.

Sampling from this posterior (4) gives us estimates (distributions) for ρ, β and σ2. To do this we
begin by integrating β out of (4). This gives us the following joint posterior density:

p(ρ, σ2|data) ∝ σ−(N(T−1)−K−2)exp
{N

T

T−1

∑
t=1

(
T − t

t
ρt
)}

exp

{
− 1

2σ2

( N

∑
i=1

(Xi)
′H(yi − ρyi−)

)′ (
N

∑
i=1

(Xi)
′H(Xi)

)−1( N

∑
i=1

(Xi)
′H(yi − ρyi−)

)} (5)

Next, we integrate out σ2 from (5) giving us the marginal posterior density:

p(ρ|data) ∝
exp

{
N
T ∑T−1

t=1

(
T−t

t ρt
)}

(
(yi − ρyi−)′H(yi − ρyi−)−

(
∑N

i=1(Xi)′H(yi − ρyi−)
)′ (

∑N
i=1(Xi)′H(Xi)

)−1 (
∑N

i=1(Xi)′H(yi − ρyi−)
))( N(T−1)−K

2

)

(6)

We can now proceed to sample triplet values (ρ, β, 1/σ2) by: first sampling ρ from (6); then, given
ρ, sample 1/σ2 from (5); then given ρ and 1/σ2, sample β from (4). When we sample values of 1/σ2

from (5) given ρ, we are sampling from a gamma distribution. When we sample values of β from
(4) given ρ and 1/σ2, we are sampling from a multivariate normal. The medians of the sampled

2This varies slightly from 3.24 in Lancaster (2002). The prior density for σ2 had not been included.
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values give us our parameter estimates and the 2.5 and 97.5 percentiles give us our 95 percent credible
intervals.

The limitation of this approach is that it must be worked out for each family of models. For
example, the necessary reparameterization will differ for a panel probit model. Lancaster (2000)
provides reparameterizations for Poisson count models, static linear panel models and dynamic
(stationary and nonstationary) linear panel models. Estimates of dynamic, binary models by this
approach are still in their early days (é and Kyriazidou, 2000; Arellano and Bonhomme, 2009). The
approach relies on the Bayesian idea of integrating out the fixed effects to give us the marginal posterior
distribution for the remaining parameters – although, this has many similarities to the frequentist idea
of a conditional likelihood (Cox and Reid, 1987). For a review and comparison of these approaches,
see Lancaster (2000).

The OrthoPanels package: empirical example

In this section, we demonstrate the use of the OrthoPanels package with an empirical example.3 The
data we will use is from the 2010 British Election Study, using 3 waves of panel survey data with 1845
respondents. Our dependent variable is government approval. The wording of the survey question
that produced the variable is: “On a scale that runs from 0 to 10, where 0 means strongly dislike and
10 means strongly like, how do you feel about the Labour Party?” Response categories were from 0
‘Strongly dislike’ to 10 ‘Strongly like’, and ‘Don’t Know’. Independent variables (xit) included in the
model are:

1. Evaluations of the leaders of the Conservative, Liberal Democrat and Labour parties, measured
using the question: “On a scale that runs from 0 to 10, where 0 means strongly dislike and 10
means strongly like, how do you feel about (David Cameron/Nick Clegg/Gordon Brown)?”
‘0<Strongly dislike’; ‘10>Strongly like’; ‘Don’t Know’.

2. A standard retrospective assessment of the national economic situation, or ‘sociotropic’ evalua-
tion, using the question: “How do you think the general economic situation in this country has
changed over the last 12 months? Has it:” Response options are: ‘got a lot worse’ (1); ‘got a little
worse’ (2); ‘stayed the same’ (3); ‘got a little better’ (4); ‘got a lot better’ (5); ‘Don’t Know’.

3. Two policy evaluation questions. These are evaluations of how the government has handled
the NHS and terrorism.4 For example: “How well do you think the present government has
handled the National Health Service?” ‘Very well’ (5); ‘Fairly well’ (4); ‘Neither well nor badly’
(3); ‘Fairly badly” (2); ‘Very badly’ (1); ‘Don’t Know’.

4. A measure of the respondent’s ideology based on preference for increasing or cutting taxes, using
the question: “Using the 0 to 10 scale below, where the end marked 0 means that government
should cut taxes a lot and spend much less on health and social services, and the end marked
10 means that government should raise taxes a lot and spend much more on health and social
services, where would you place yourself on this scale?” ‘0<Government should cut taxes a lot
and spend much less on health and social services’; ‘10>Government should increase taxes a lot
and spend much more on health and social services’; ‘Don’t Know’.

5. And a measure of whether the respondent identifies with the governing Labour party, using
the question: “Generally speaking, do you think of yourself as Labour, Conservative, Liberal
Democrat or what?” This is recoded 1 for Labour and 0 otherwise.

For each variable, a ‘Don’t know’ response was identified as missing and the corresponding
case was deleted. Note though that OrthoPanels can accomodate unbalanced panel data under the
assumption that the data is missing at random.

Data structure

The variables for the model to be estimated can be contained in a frame, list, or environment and the
model can be specified symbolically with a formula as described below.

The variables for our empirical example are included in the data frame BES_panel. This data frame
is included with the OrthoPanels package.

> head(BES_panel)
n t Econ Clegg Brown Cameron Approve NHS Terror PID Tax

1 1 1 3 0 9 0 7 0 0 1 6

3We include a second empirical example in Appendix 1.
4The terrorism question in 2010 is replaced with a handling of the war in Afghanistan question.
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2 2 1 4 0 10 0 8 0 0 1 8
3 3 1 3 0 5 4 7 0 0 0 6
4 4 1 2 0 7 3 4 0 0 1 6
5 5 1 2 0 0 0 0 0 0 0 5
6 6 1 2 0 7 0 8 0 0 1 4

In this data frame, "Econ" refers to evaluations of the national economy; "Clegg" refers to evalua-
tions of the Liberal Democrat leader; "Brown" refers to evaluations of the Labour leader; "Cameron"
refers to evaluations of the Conservative leader; "Approval" refers to government approval; "NHS"
refers to evaluations on how the government has handled the NHS; "Terror" refers to evaluations
on how the government has handled terrorism; "PID" refers to whether the individual identifies as
Labour; and "Tax" refers to the respondent’s ideology based on their preference for cutting taxes. In
addition to the variables, the data frame contains the vectors "n" and "t" indicating the case number
and wave for each observation. If the independent and dependent variables are contained in 3- and
2-dimension arrays, these vectors are unnecessary because the index is implicit in the organization of
the arrays.

Interface

We begin by specifying our model using a formula, indicating the data to be used, and the case and
time variables:

> BES.opm.model<-opm(Approve ~ Econ + Clegg + Brown + Cameron + NHS + Terror + PID + Tax,
data = BES_panel, index = c('n','t'), n.samp = 10000, add.time.indicators = TRUE)

The first argument is a formula specifying the model symbolically: response ∼ term1 + term2.
This is consistent with the lm() function. It is not necessary to include the lagged dependent variable
or the fixed effects in the model specification. This is done automatically.

The other arguments are: data which specifies the data frame, list or environment containing
the variables in the model; n.samp which specifies the number of Monte Carlo iterations to use to
estimate the parameters; index which is a two-element vector containing the names of the case
and time variables, respectively; and add.time.indicators which is a logical argument. If the
add.time.indicators is TRUE, the model includes dummy variables for each wave (time point). The
default is FALSE. The data and index arguments are optional. If data is not specified, the variables are
taken from the environment from which opm() is called. If index is not specified, the first two vectors
are assumed to be the case and time indices, respectively. An additional optional argument is subset.
This is a vector specifying a subset of observations to be used in the estimation.

The function opm() returns an object of class "opm" which includes a list, samples, with the fol-
lowing elements: "rho", a vector of n.samp parameter samples of ρ; "v", a vector of n.samp parameter
samples of σ2; and "beta", a n.samp by x variable matrix of parameter samples of β. If included in
the model, the parameters for the time dummies are included in this matrix. The summary of the
object provides us with the median, 68% equal tailed credible intervals and 95% equal tailed credible
intervals for each parameter.

> summary(BES.opm.model)
Call:
opm(x = Approve ~ Econ + Clegg + Brown + Cameron + NHS + Terror +
PID + Tax, data = BES_panel, index = c("n", "t"), n.samp = 10000,
add.time.indicators = TRUE)

Parameter estimates:
<--95CI <--68CI med 68CI--> 95CI-->

rho 0.128000 0.15800000 0.189000 0.224000 0.25800000
sig2 1.611477 1.68193076 1.759734 1.846594 1.93906618
beta.Econ -0.038086 0.00077932 0.041545 0.081118 0.12235574
beta.Clegg -0.020535 0.00060795 0.022996 0.045020 0.06678845
beta.Brown 0.297306 0.31959250 0.343490 0.367214 0.39072453
beta.Cameron -0.124476 -0.10195910 -0.077744 -0.054332 -0.03195979
beta.NHS -0.235810 -0.18692841 -0.136087 -0.085502 -0.03647700
beta.Terror -0.153162 -0.11566089 -0.077034 -0.037453 -0.00036214
beta.PID 0.488818 0.64660493 0.804710 0.959541 1.10995704
beta.Tax 0.017598 0.04022762 0.063176 0.086574 0.10903010
beta.tind.2 0.217953 0.27900281 0.342908 0.406506 0.46890678
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The package includes functions that may be of use in exploring the results. The function confint()
computes equal tailed credible intervals for one or more parameters in the fitted opm model. We can
calculate 90% equal tailed credible intervals as follows:

> confint(BES.opm.model, level = 0.90)
5% 95%

rho 0.13800000 0.24700000
sig2 1.63217694 1.90996203
beta.Econ -0.02625512 0.10794038
beta.Clegg -0.01312387 0.06009414
beta.Brown 0.30435125 0.38292909
beta.Cameron -0.11665040 -0.03883916
beta.NHS -0.21928907 -0.05272413
beta.Terror -0.14110536 -0.01271258
beta.PID 0.53904739 1.05947755
beta.Tax 0.02570175 0.10189246
beta.tind.2 0.23669235 0.4483367

The function caterplot() creates side-by-side plots of credible intervals of the opm model param-
eters. The intervals are displayed as horizontal lines, with the 90% interval using a thicker line width
and the 95% interval a thinner one. The posterior median is indicated with a dot.

caterplot(BES.opm.model)
abline(v=0)

We can use the function plot() to obtain the posterior density of each parameter.

plot(BES.opm.model, "rho")

In a dynamic model, the β coefficients are the immediate effects of a change in each of the covariates.
This is known as the short-run effect. However, in a dynamic model, the short-run effect is not the full
effect of a change in a covariate. As the future value of the dependent variable depends on the current
value, the effect of a change in a covariate has a knock on effect into the future. Assuming a stationary
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process, the effects asymptotically declined to zero over time. The cumulation of all these effects is
known as the long-run effect and is estimated as β/(1− ρ), where ρ is the autoregressive parameter
(Wooldridge, 2013; Pickup, 2014). We can calculate the median and 95% equal tailed credible intervals
for the long-run effects from the parameter samples. For example, for the first independent variable
(the economy):

> quantile(BES.opm.model$samples$beta[, 1] / (1 - BES.opm.model$samples$rho),
+ probs = c(0.025, 0.5, 0.975))

2.5% 50% 97.5%
-0.04723233 0.05098789 0.15025695

The opm() function: Monte Carlo simulations

To demonstrate the performance of the OPM estimator operationalized by the opm() function, we
use it to estimate models from simulated data with a known data generating process.5 We use the
following data generating process to generate our simulated data sets:

yit = ρyit−1 + βxit + µit

µit = ηi + ε1it

xit = 0.75ηi + ε2it

ε1it ∼ NID(0, 1); ε2it ∼ NID(0, 16)

We use β = 0.50 and we generate data sets with two values for ρ (0.5 and 0.9). The unobserved
fixed values ηi, are generated from a uniform distribution: U(−1, 1). Note that both the yit and xit are
a function of the fixed effects, with xit containing 75 percent of the fixed effect for yit. As a consequence,
it is necessary to account for the ηi in our data model in order to get an unbiased estimate of β and ρ.6

We generate panel data sets with an N of 1000 and a T of 2, 3, 4, and 9. A T of 2 means we collected
three waves of data but we lose the first wave in order to have a measure of the lagged dependent
variable in the second wave. This effectively means we have 2 waves of data for the purposes of
estimation. This is as small of a T as we can get and still estimate a dynamic model. We generate 1000
data sets for each value of T and ρ.

Table 1, panels A through D, report the results of the simulations when the autoregressive parame-
ter, ρ, is 0.9. This is a ‘close to worst case scenario’ in that the autoregressive parameter is very high.
This is when Nickell bias and the incidental parameters problem will be at their worst. However, the
autoregressive parameter is not so high that we have to begin worrying about issues of near integrated
data. The tables present the results when the number of waves of data available is 3, 4, 5 and 10
respectively (i.e., T of 2, 3, 4, and 9).

The table reports the average value estimated for the autoregressive parameter (ρ), the β and the
long-run effect. This is an indication of how accurate the estimator is on average. The tables also
include the median value estimated for the long-run effect, for reasons described later. The tables
include the proportion of estimates in which the true value for each parameter is included in the 95
percent confidence/credible interval (the coverage probability). This is an indicator of how useful
the estimator is for hypothesis testing. Finally, tables report the root mean squared error for each
parameter. This is an indication of how far off the true value the estimator will be on average. If an
estimator is on average correct but could, for any given estimation, produce estimates far off the true
value, its functionality is greatly diminished.

In addition to presenting the results for the opm() function (denoted OPM), the tables also present
the results from an OLS fixed effects estimation and from a GMM estimation (Blundell and Bond,
1998; Arellano and Bover, 1995). The OLS fixed effects results demonstrate the estimation bias that
the OPM estimator is designed to rectify. It is also a commonly used estimator for this type of panel
data, despite the known bias (Nickell, 1981).The GMM approach is probably the most commonly
used alternative and appears to be the next best performing estimator compared to likelihood-based
estimators (Hsiao et al., 2002). There are a number of variations on the GMM approach (Croissant and
Millo, 2008). We used a difference GMM with a two-step estimator. We use the available lags of the
dependent variable as instruments. This specification was chosen as it seemed to produce the best
results given our data generating process. We used the plm package to produce the GMM estimates
(Croissant and Millo, 2008). This is a very versatile package for estimating panel models within R.

5Example code for running such simulations is provided in the vignette included in Appendix 2.
6When generating the data sets, we set yi0 equal to the series equilibrium and include a burn-in period of 50

waves.
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A (T=2; N=1000; Rho=0.9; Beta=0.5; LR Effect=5)

Approach Rho Beta LR Effect LR Effect Rho Beta LR Effect Rho Beta LR Effect
(Average) (Average) (Average) (Median) (95% CI) (95% CI) (95% CI) (RMSE) (RMSE) (RMSE)

OLS, FE 0.59 0.42 1.05 1.04 0 0 0 0.31 0.08 3.95
GMM 0.92 0.5 1.98 2.21 0.97 0.97 0.72 0.18 0.05 36.57
OPM 0.9 0.5 5.89 5.17 0.93 0.94 0.92 0.03 0.01 2.79

B (T=3; N=1000; Rho=0.9; Beta=0.5; LR Effect=5)

Approach Rho Beta LR Effect LR Effect Rho Beta LR Effect Rho Beta LR Effect
(Average) (Average) (Average) (Median) (95% CI) (95% CI) (95% CI) (RMSE) (RMSE) (RMSE)

OLS, FE 0.71 0.45 1.54 1.54 0 0 0 0.19 0.05 3.46
GMM 0.9 0.5 6.17 3.67 0.95 0.96 0.80 0.09 0.02 60.75
OPM 0.9 0.5 5.29 5.03 0.92 0.94 0.91 0.02 0.007 1.26

C (T=4; N=1000; Rho=0.9; Beta=0.5; LR Effect=5)

Approach Rho Beta LR Effect LR Effect Rho Beta LR Effect Rho Beta LR Effect
(Average) (Average) (Average) (Median) (95% CI) (95% CI) (95% CI) (RMSE) (RMSE) (RMSE)

OLS, FE 0.76 0.47 1.93 1.92 0 0 0 0.14 0.03 3.07
GMM 0.9 0.5 50.22 4.46 0.94 0.94 0.85 0.06 0.01 1633.78
OPM 0.9 0.5 5.09 4.98 0.94 0.94 0.93 0.01 0.005 0.68

D (T=9; N=1000; Rho=0.9; Beta=0.5; LR Effect=5)

Approach Rho Beta LR Effect LR Effect Rho Beta LR Effect Rho Beta LR Effect
(Average) (Average) (Average) (Median) (95% CI) (95% CI) (95% CI) (RMSE) (RMSE) (RMSE)

OLS, FE 0.84 0.49 3.07 3.07 0 0.02 0 0.06 0.01 1.93
GMM 0.9 0.5 4.92 4.81 0.92 0.92 0.88 0.02 0.005 0.92
OPM 0.9 0.5 5.02 5.02 0.95 0.94 0.94 0.005 0.003 0.26

E (T=2; N=1000; Rho=0.5; Beta=0.5; LR Effect=1)

Approach Rho Beta LR Effect LR Effect Rho Beta LR Effect Rho Beta LR Effect
(Average) (Average) (Average) (Median) (95% CI) (95% CI) (95% CI) (RMSE) (RMSE) (RMSE)

OLS, FE 0.29 0.45 0.63 0.63 0 0 0 0.21 0.05 0.37
GMM 0.5 0.5 1.01 1.00 0.96 0.95 0.96 0.04 0.01 0.11
OPM 0.5 0.5 1.01 1.01 0.93 0.94 0.92 0.03 0.01 0.07

F (T=3; N=1000; Rho=0.5; Beta=0.5; LR Effect=1)

Approach Rho Beta LR Effect LR Effect Rho Beta LR Effect Rho Beta LR Effect
(Average) (Average) (Average) (Median) (95% CI) (95% CI) (95% CI) (RMSE) (RMSE) (RMSE)

OLS, FE 0.37 0.47 0.75 0.75 0 0.008 0 0.13 0.03 0.25
GMM 0.5 0.5 1.00 1.00 0.94 0.95 0.94 0.02 0.01 0.06
OPM 0.5 0.5 1.00 1.00 0.92 0.94 0.92 0.02 0.01 0.04

Table 1: Simulation Results
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Beginning with a T of 2 (Table 1, Panel A), we can see just how badly biased the OLS fixed
effects estimates are. With true values ρ = 0.9, β = 0.5 and LR effect of 5. The OLS estimator
produces, on average, values of ρ = 0.59, β = 0.42 and LR effect of 1.05. The bias is substantial for all
parameters. Partly as a result of these very large biases, this approach virtually never produces 95
percent confidence intervals that include the true values of the parameters. The root mean squared
errors are particularly large for the long-run effects and ρ. Clearly, this approach is not appropriate
under these circumstances.

When we look at the results for the OPM and GMM approaches (again with T = 2), both look
very good for the average estimates of ρ and β. There is essentially no bias for either. The 95 percent
confidence intervals include the true values around 95 percent of the time and the root mean squared
errors are generally small, although the root mean squared error for rho is 83 percent smaller for the
OPM approach. When we look at the results for the long-run effects, the two approaches diverge.
Using the average estimate of the long-run effect as a measure of performance, the OPM estimator
overestimates the long-run effect with a bias of 0.89, while the GMM estimator underestimates the
long-run effect with a bias of 3.02. Further, while the 95 percent confidence intervals of the OPM
estimator include the true value about 92 percent of the time, the GMM confidence intervals only
include the true value about 72 percent of the time.

It may seem curious that the GMM estimator is so poor at estimating the long-run effect, when,
on average, it is good at estimating ρ and β – especially since the long-run effect is simply a function
of ρ and β: β/(1− ρ). The problem occurs because of the reasonable but slightly large root mean
squared error on the estimates of ρ. With the true value of 0.9 for ρ, the root mean squared error of the
GMM estimates means it sometimes produces values very close to 1 for ρ. The division of 1− ρ in
the calculation of the long-run effect means that such values for ρ can translate into large errors in
the estimate of the long-run effect.7 Because of a smaller root mean squared error, the OPM estimator
suffers far less from this problem.

It must be noted then that for the reasons just discussed the mean estimate is not a very stable
measure of the performance of the GMM estimates of the long-run effect. For the GMM estimator,
under these circumstances, small differences in the estimates of ρ produce large differences in the
average estimate of the long-run effect. A more stable measure is the median estimated long-run effect.
For the GMM approach this is closer to the true value (2.21). However, the median OPM estimate is
much better (5.17). Further, while the median GMM estimate is better than the mean GMM estimate,
it does not change the fact that in any given application of the estimator, a very large error in the
long-run effect can occur. This is the story of the root mean squared error for the long-run effect. These
are moderate for the OPM estimator, 2.79, but extremely problematic for the GMM estimator: 36.57.
This last result is worse than that for the OLS estimator. As we will see, when the true value of ρ is
smaller or T is bigger, these problems are not so great but when T is very small and ρ is close to 1, the
OPM estimator has the advantage of avoiding these large errors to a much greater degree.

As T increases to 3 and then 4 (Table 1, Panels B & C), the OLS fixed effects estimator continues to
exhibit substantial biases and confidence intervals that are essentially useless for hypothesis testing.
The OPM and GMM approaches continue to produce good estimates of ρ and β. As for the long-run
effects, the OPM approach improves quickly, while the GMM approach continues to suffer from large
root mean squared errors. By the time T increases to 9 (Table 1, Panel D), however, both the OPM and
GMM approaches are performing well for all parameters and the OLS approach continues to perform
poorly.

Table 1, Panels E & F, present the results with a reduced ρ of 0.5. With a smaller ρ, we would expect
less extreme estimation problems. Unfortunately, the OLS fixed effects estimator continues to perform
badly at very small values of T. The GMM and OPM estimators, on the other hand, perform very well
for all parameters. The only real distinction is that the OPM estimator performs a little better, in terms
of the root mean squared error, than the GMM estimator in the estimation of the long-run effect when
T is at its smallest possible value of 2.

Overall, the simulations demonstrate that under the conditions considered (specifically a low T
with a large N), the OLS fixed effects estimator exhibits considerable bias for all parameters. The
GMM estimator is a large improvement on OLS with fixed effects but the OPM estimator consistently
performs as well as or better. The superiority of the OPM results is in the estimation of the long-run
effects when T is very small and ρ is close to 1, which appears to be the primary weakness of the GMM
estimator.

Beyond the poor estimates for the long-run effect under specific conditions, we have also in-
dicated that one of the downsides of GMM estimators is the need to make assumptions about the
appropriateness of instrumental variables. Up to this point, we have been using lagged levels of the

7One should always be cautious whenever the estimate of ρ is close to 1. This suggests that either a poor
estimation has occurred or that the data is (near) integrated and therefore not stationary, for the purposes of
estimation.
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Rho Beta LR Effect LR Effect Rho Beta LR Effect Rho Beta LR Effect
(Average) (Average) (Average) (Median) (95% CI) (95% CI) (95% CI) (RMSE) (RMSE) (RMSE)

(T=3; N=1000; Rho=0.9; Beta=0.5; LR Effect=5)
0.93 0.51 7.74 7.63 0.06 0.62 0.17 0.03 0.01 2.95

(T=4; N=1000; Rho=0.9; Beta=0.5; LR Effect=5)
0.93 0.51 7.45 7.36 0.02 0.48 0.04 0.03 0.01 2.56

(T=9; N=1000; Rho=0.9; Beta=0.5; LR Effect=5)
0.91 0.5 -6.99 4.11 0.05 0.06 0.07 0.07 0.03 147.93

(T=3; N=1000; Rho=0.5; Beta=0.5; LR Effect=1)
0.53 0.51 1.08 0.52 0.48 0.29 0.28 0.03 0.01 0.09

Table 2: Simulation Results, GMM using lagged IVs and instruments

dependent variable as instruments in the GMM estimator. An extension of this is to use the lagged
differences of the dependent variable as instruments (Arellano and Bover 1995; Blundell and Bond
1998). This is possible once the researcher has a T > 2. This can, under the right conditions, improve
the performance of the GMM estimator but it makes assumptions about the suitability of variables as
instruments. If these assumptions are not met, the inclusion of these additional moment conditions
may produce worse results. Table 2 reports the results of using these additional moment conditions.
We see that for the data generating processes we have been using in our simulations, these additional
moment conditions do indeed result in poorer estimates. The additional moment conditions result
in greater bias and confidence intervals that rarely contain the true value. Clearly we do not want
to include these additional moment conditions for our simulated data but the problem is that we
typically do not know if it is appropriate to do so or not. The orthogonal reparameterization approach,
on the other hand, does not require the researcher to make such decisions — decisions which can have
a substantial impact on the validity of the estimation results. This is one further advantage of the OPM
estimator.
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Appendix 1

As a second empirical example, we model the dynamics of labour demand of firm i in the United
Kingdom in year t as a function of real product wages, gross capital stock and industry output. This is
done using the data used by Arellano and Bond (1991). The variables for our second empirical example
are included in the data frame ‘abond_panel’. This dataframe is included with the OrthoPanels
package.

We estimate the following:

> abond.opm.model <- opm(n ~ w + l_w + k + l_k + l2_k + ys + l_ys + l2_ys + yr1980
+ yr1981 + yr1982 + yr1983 + yr1984, data = abond_panel, index = c('id','year'),
n.samp = 10000, add.time.indicators = FALSE)

where n is the log of employment in firm i at time t; w is the log of the real product wage; k is the
log of the gross capital stock; and ys is the log of the gross industry output.

> summary(abond.opm.model)
Call:
opm(x = n ~ w + l_w + k + l_k + l2_k + ys + l_ys + l2_ys + yr1980 +
yr1981 + yr1982 + yr1983 + yr1984, data = abond_panel, index = c("id",
"year"), n.samp = 10000, add.time.indicators = FALSE)

Parameter estimates:
<--95CI <--68CI med 68CI--> 95CI-->

rho 0.123000 0.1400000 0.160000 0.179000 0.198000
sig2 0.042789 0.0452270 0.047862 0.050739 0.053676
beta.w -0.741396 -0.6200462 -0.497854 -0.376953 -0.262932
beta.l_w -0.321563 -0.2077651 -0.088837 0.030969 0.146837
beta.k 0.452300 0.5184428 0.585200 0.655670 0.718653
beta.l_k -0.088889 0.0042183 0.097407 0.188744 0.279613
beta.l2_k -0.031549 0.0319986 0.097301 0.163611 0.229459
beta.ys 0.207566 0.4594758 0.714674 0.971791 1.234787
beta.l_ys -1.055967 -0.6944647 -0.329579 0.030539 0.392799
beta.l2_ys -0.240888 0.0202597 0.301264 0.580882 0.844360
beta.yr1980 -0.040064 -0.0050531 0.029723 0.064730 0.099077
beta.yr1981 -0.057071 -0.0135131 0.029364 0.073729 0.115364
beta.yr1982 -0.019645 0.0192744 0.063018 0.106132 0.146820
beta.yr1983 0.031298 0.0759822 0.121946 0.167622 0.211210
beta.yr1984 0.050123 0.1021425 0.156051 0.207324 0.258260

We calculate 90% equal tailed credible intervals as follows:

> confint(abond.opm.model, level = 0.90)
5% 95%

rho 0.128000000 0.19200000
sig2 0.043604899 0.05267575
beta.w -0.699216408 -0.29845898
beta.l_w -0.283471542 0.10825151
beta.k 0.474339992 0.69903010
beta.l_k -0.057501600 0.25006782
beta.l2_k -0.010780489 0.20708355
beta.ys 0.293130802 1.15175284
beta.l_ys -0.938412547 0.28266139
beta.l2_ys -0.161339807 0.76612707
beta.yr1980 -0.028266743 0.08774348
beta.yr1981 -0.042205375 0.10218775
beta.yr1982 -0.006818364 0.13445195
beta.yr1983 0.045990409 0.19575660
beta.yr1984 0.067247279 0.24236211

We create side-by-side plots of credible intervals of the OPM model parameters. The intervals are
displayed as horizontal lines, with the 90% interval using a thicker line width and the 95% interval a
thinner one. The posterior median is indicated with a dot.
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caterplot(abond.opm.model)
abline(v=0)
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Appendix 2

Let’s investigate the accuracy of opm()’s parameter estimates on 200 simulated datasets.

First, let’s define the parameters used by the data-generating process:

rho <- .5
beta <- .5
sig2 <- 1
set.seed(321)

The following function generates a synthetic dataset of desired dimensions (N cases and T time
points) and distribution parameters ((ρ =rho), (β =beta), and (σ2 = sig2)):

generate <- function(N, T, rho, beta, sig2) {
LT <- T + 50
f <- runif(N, -1, 1)
x <- array(.75 * f, dim = c(N, LT)) + rnorm(N * LT, sd = 4)
y <- matrix(0, N, LT)
for (t in 1:LT) {

yy <- if (t > 1)
y[, t - 1]

else
((f + beta * .75 * f)/(1 - rho))

y[, t] <- rho * yy + f + x[, t] * beta +
rnorm(N, sd = sqrt(sig2))

}
data.frame(i = rep(seq(N), LT - 50),

t = rep(seq(LT - 50), each = N),
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x1 = c(x[(50 * N + 1):(LT * N)]),
y = c(y[(50 * N + 1):(LT * N)]))

}

Now we generate 200 datasets with N = 1000 cases and T = 3 time points (after a 50 wave
burn-in):

N <- 1000
T <- 3
reps <- 200

ds <- replicate(n = reps,
generate(N = N, T = T, rho = rho, beta = beta, sig2 = sig2),
simplify = FALSE)

Now we fit the OPM model to the datasets and save the results:

library(OrthoPanels)
library(knitr)

set.seed(421)
opms <- lapply(ds, function(d) {
opm(y ~ x1, data = d, n.samp = 1000)

})

Let’s check the sampled parameters:

true_param <- c(rho = rho, sig2 = sig2, beta = beta)
est_param <- sapply(opms, coef)
resid <- sweep(est_param, 1, true_param)
rmse <- sqrt(rowMeans(resid ^ 2))
kable(rbind(`True` = true_param,

`Est` = rowMeans(est_param),
`Bias` = rowMeans(resid),
`RMSE` = rmse))

rho sig2 beta

True 0.5000000 1.0000000 0.5000000
Est 0.5038800 1.0050657 0.5018072
Bias 0.0038800 0.0050657 0.0018072
RMSE 0.0252336 0.0517390 0.0106620

Density plot for each parameter, with true value marked with a vertical line:

plot(density(sapply(opms, coef)[1,]),
main = 'Density of median of posterior samples of rho')

abline(v = rho, col = 'darkred')
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plot(density(sapply(opms, coef)[2,]),
main = 'Density of median of posterior samples of sig2')

abline(v = sig2, col = 'darkred')
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plot(density(sapply(opms, coef)[3,]),
main = 'Density of median of posterior samples of beta')

abline(v = beta, col = 'darkred')
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The proportion of time the 95% credible interval includes the true value of the parameter:
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cis <- sapply(lapply(opms, confint),
function(ci) {
ci[, '2.5%'] <= c(rho, sig2, beta) &
ci[, '97.5%'] >= c(rho, sig2, beta)

})
rowSums(cis) / reps

rho sig2 beta

0.930 0.955 0.925
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The mosaic Package: Helping Students to
‘Think with Data’ Using R
by Randall Pruim, Daniel T Kaplan, Nicholas J Horton

Abstract The mosaic package provides a simplified and systematic introduction to the core functional-
ity related to descriptive statistics, visualization, modeling, and simulation-based inference required
in first and second courses in statistics. This introduction to the package describes some of the guiding
principles behind the design of the package and provides illustrative examples of several of the most
important functions it implements. These can be combined to help students “think with data" using R
in their early course work, starting with simple, yet powerful, declarative commands.

Motivation

In order to make sense of rich data that is increasingly available, students need computational tools
and facility for data management, exploratory analysis, visualization, and modeling (e.g., Nolan
and Lang (2010); Horton et al. (2015); Horton and Hardin (2015); Ridgway (2016)). To extract useful
information from the complex systems that generate this rich data, students should learn to “think
with data” (in the phrase coined by Diane Lambert of Google): using previous results from data to
drive statistical investigations and to inform the choice of analysis and presentation possibilities.

Yet many students enter statistics courses with little or no computational experience. Software
such as R that encompass the tools for thinking with data are sometimes regarded as off-putting and
inaccessible to students. With the mosaic package, we have sought to remove unnecessary difficulty
in the use of R by students. Our students have demonstrated that it is feasible to integrate computing
into our curricula early and often, in a way that provides students with success, confidence, and room
to grow.

A guiding principle: Less volume, more creativity

The mosaic (Pruim et al., 2016b) package reflects attempts by each of the authors to make the power of
R accessible and rewarding to students, especially in the context of undergraduate statistics courses,
and, in one case, also in calculus. One of the guiding principles behind the development of the mosaic
package has been “Less volume, more creativity.” By “less volume,” we mean reducing the cognitive
load involved in using R. By “more creativity” we mean two things. First, we want to provide access to
R tools in a way that fosters choices and decision making by students. Such decisions might be about
modes of analysis or visualization or about the variables and covariates to consider when exploring
relationships with data. Second, we want to encourage students to creatively engage with statistical
inference methods via simulation techniques such as randomization and resampling with data analysis
and presentation.

Our route to “less volume” is to provide a set of three command templates — formulas, functions,
and extractors — that standardize usage across many tasks and that highlight the connections between
graphical summaries, numerical summaries, models, and inference. The templates themselves are
designed to be consistent and concise. Consistency enables a student to generalize from a specific task
to a wide set of possibilities. Conciseness means avoiding unnecessary elements so that the essential
inputs to a computation are made clear and organized according a syntax that makes the role of each
input understandable and predictable.

The importance of multivariate thinking

The importance of giving students experience with multivariable thinking is a point of emphasis in the
newly revised ASA Guidelines for assessment and instruction in statistics education (GAISE) report
(ASA GAISE College working group et al., 2016):

When students leave an introductory course, they will likely encounter situations within
their own fields of study in which multiple variables relate to one another in intricate
ways. We should prepare our students for challenging questions that require investigating
and exploring relationships among more than two variables. (page 16)

Perhaps the best place to start is to consider how a third variable can change our un-
derstanding of the relationship between two variables. . . . Simple approaches (such as
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stratification) can help to discern the true associations. Stratification requires no advanced
methods, nor even any inference, though some instructors may incorporate other related
concepts and approaches such as multiple regression. These examples can help to intro-
duce students to techniques for assessing relationships between more than two variables.
Including one or more multivariable examples early in an introductory statistics course
may help to prepare students to deal with more than one or two variables at a time. . .
(page 34)

The mosaic package helps support these goals by providing a unified framework within which
multivariable graphical and numerical summaries are easy to create, even for beginners.

The formula template

Our most important template makes use of a “formula interface” that has long been used by familiar R
functions like t.test(), lm(), and the plotting functions in lattice (Sarkar, 2008). Our initial example
uses the Births78 data set, which records the number of live births in the United States for each day
of 1978.

library(mosaic)
head(Births78, 3)

## date births dayofyear wday
## 1 1978-01-01 7701 1 Sun
## 2 1978-01-02 7527 2 Mon
## 3 1978-01-03 8825 3 Tues

We will use this example to illustrate the difference between using a consistent interface across
graphical and numerical summaries and the limitations of basic R functions that do not use formulas.

We typically introduce the formula template in the context of exploring the relationship between
two variables, e.g.

goal( y ~ x, data = MyData, ... ) # pseudo-code for the formula template

We teach students to read y ~ x as “y wiggle x” and to interpret this in any of several essentially
equivalent forms: “y broken down by x”; “y modeled by x”; “y explained by x”; “y depends on x”; or
“y accounted for by x.” For graphics, it’s reasonable to read the formula as “y vs. x”, which is exactly
the convention used for coordinate axes. But “y vs. x” does not as clearly convey the asymmetry of
the other forms.

This template is not original to mosaic. Those familiar with R will recognize this as the template
already used by functions such as lm() and the lattice plotting functions. The mosaic package extends
this template to numerical summaries and provides some additional features for plotting and fitting
models, thereby bringing all of these activities into a consistent, unified appraoch.

Our first plot of the Births78 data might be a scatterplot showing how the number of births
depends on the date. Using our template and the lattice function xyplot(), we can create this with
the following simple command by filling in the slots in our formula template.

library(lattice)
xyplot(births ~ date, data = Births78)

date

bi
rt

hs

7000

8000

9000

10000

Jan Apr Jul Oct Jan

The scatterplot reveals some interesting patterns over the course of the year. Getting students to
make conjectures about possible explanations can help diagnose how well students understand the
information displayed in the scatterplot. (Students who suggest that there are two parallel waves
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because more children are born at certain times of the year reveal that they are misunderstanding this
plot, for example.)

One reasonable conjecture for the two parallel waves is a weekend effect. We would like our
students to be able to explore this conjecture graphically, numerically, and (eventually) with statistical
models. We might begin by creating side-by-side boxplots. The lattice package makes this as easy as
the scatterplot above. We simply replace xyplot() with bwplot() because we have a different goal. If
we prefer, we can also reverse the order of the variables in the formula to flip which axis is used for
which purpose.

bwplot(births ~ wday, data = Births78)
bwplot(wday ~ births, data = Births78, pch = "|") # a more common way to show median

bi
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Fri

Sat

7000 8000 9000 10000

To quantify the differences observed in these plots, we might like to compute the mean (or median)
number of births for each weekday. Basic statistical calculations can be admirably concise in R. For
instance, the mean number of daily births (over all days) can be calculated with

mean(Births78$births) # or use with() instead of $

## [1] 9132

Unfortunately, this is a dead end when it comes to thinking with data. How, for instance, does
one explore whether there is a day-of-the-week component to the number of births? Here are a few
conventional approaches in R to such a calculation.

aggregate(Births78$births, FUN = mean, by = list(Births78$wday))

or, equivalently,

with(Births78, aggregate(births, FUN = mean, by = list(wday)))

## Group.1 x
## 1 Sun 7951
## 2 Mon 9371
## 3 Tues 9709
## 4 Wed 9498
## 5 Thurs 9484
## 6 Fri 9626
## 7 Sat 8309

or, alternatively,

with(Births78, tapply(births, wday, mean))

## Sun Mon Tues Wed Thurs Fri Sat
## 7951 9371 9709 9498 9484 9626 8309

None of these show any similarity to mean(Births78$births) or to the commands that created the
plots that generated our conjecture. All of them bury mean() in the center or at the end of the
command and require additional structure like aggregate(), tapply(), lists, and nested parentheses.
Even reading the commands is difficult.

The essential elements in each of these calculations are mean(), Births78, births and wday: We
want to see how the mean number of births depends on the day of the week using data from 1978.
The mosaic formula template for this calculation mirrors the template used to create plots in lattice
and highlights these essential elements:
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library(mosaic)
mean(births ~ wday, data = Births78)

## Sun Mon Tues Wed Thurs Fri Sat
## 7951 9371 9709 9498 9484 9626 8309

This form makes clear that the mean() is being calculated and that Births78 holds the data. The
relationship between the variables is specified by the formula. Most importantly, it is the same
template that was used to create the plots that preceded it – we simply replace bwplot() or xyplot()
with mean().

Using the mosaic package, this same template extends to many other numerical summaries, e.g.,

median(births ~ wday, data = Births78)

## Sun Mon Tues Wed Thurs Fri Sat
## 7936 9321 9668 9362 9397 9544 8260

sd(births ~ wday, data = Births78)

## Sun Mon Tues Wed Thurs Fri Sat
## 410 608 527 461 551 488 390

favstats(births ~ wday, data = Births78)

## wday min Q1 median Q3 max mean sd n missing
## 1 Sun 7135 7691 7936 8196 8711 7951 410 53 0
## 2 Mon 7527 9097 9321 9838 10414 9371 608 52 0
## 3 Tues 8433 9304 9668 10084 10711 9709 527 52 0
## 4 Wed 8606 9196 9362 9880 10703 9498 461 52 0
## 5 Thurs 7915 9171 9397 9958 10499 9484 551 52 0
## 6 Fri 8892 9198 9544 10088 10438 9626 488 52 0
## 7 Sat 7527 8007 8260 8586 9170 8309 390 52 0

The mosaic package provides formula interfaces for mean(), median(), sd(), var(), cor(), cov(),
quantile(), max(), min(), range(), IQR(), iqr(), fivenum(), prod(), and sum(). In each case we have
been careful not to break behavior of the underlying functions from base and stats.

Model-building functions such as lm() and glm() also employ the same template:

births.model <- lm(births ~ wday, data = Births78)

so early experience with graphical and numerical summaries prepares students for statistical modeling
later in the course.

When working with categorical data, tabulation is an important technique. The table() function
does not accept formulas and xtabs() uses formulas in a different way. The mosaic package provides
a formula-template tally() function for counting categorical variables. We illustrate its use with
another data set from mosaicData (Pruim et al.). Whickham contains data from a UK study that enrolled
subjects in 1972–74 and conducted a follow-up 20 years later.

tally(outcome ~ smoker, data = Whickham)

## smoker
## outcome No Yes
## Alive 502 443
## Dead 230 139

tally(outcome ~ smoker, data = Whickham, margins = TRUE)

## smoker
## outcome No Yes
## Alive 502 443
## Dead 230 139
## Total 732 582

tally(outcome ~ smoker, data = Whickham, margins = TRUE, format = "proportion")
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## smoker
## outcome No Yes
## Alive 0.686 0.761
## Dead 0.314 0.239
## Total 1.000 1.000

Notice that in the final example, conditional proportions are calculated. The conditional probabilities
were computed in a way that respects the asymmetric meaning of the formula outcome ~ smoker:
using smoker to account for outcome. The probabilities indicate that smokers were more likely to be
alive in the follow-up study. More on this in a moment.

The formula template can be extended to handle one variable or more than two variables, but
for several reasons we recommend introducing it in the context of two-variable plots and numerical
summaries. We offer this recommendation because (1) two-variable plots and numerical summaries
are more “impressive” than one-variable plots and less likely to be something students can as readily
do with tools they already know, (2) working with more than one variable from the start (correctly)
suggests that the most interesting parts of statistics involve more than one variable (Wild et al., 2011),
and (3) the formula syntax for a single variable makes more sense in the context of two-sided formulas
than it does in isolation.

Formulas with a single variable correspond to situations where there is no “explanatory” variable
to be included, for example in simple numerical summaries or depictions of the distribution of a
variable.

mean( ~ age, data = Whickham)

## [1] 46.9

histogram( ~ age, data = Whickham)
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To some instructors, it seems more natural when there is no explanatory variable for the single variable
to be on the left-hand side of ~. But the R parser does not support this: a formula must have a
right-hand side. Even if R allowed such formulas, the use of y ~ would break the analogy to graphical
summaries where a single variable is traditionally displayed on the x-axis, as in the histogram above.

The numerical summary functions provided by mosaic also allow formulas like age ~ NULL to
signify there is no explanatory variable.

mean( age ~ NULL, data = Whickham)

## [1] 46.9

We don’t emphasize this form, however, since it is not supported by the lattice functions.

“Thinking with data” implies the ability to examine relationships among multiple variables. The
formula template accomodates more than one variable on the right-hand side of the tilde, for instance:

mean(age ~ smoker + outcome, data = Whickham)

## No.Alive Yes.Alive No.Dead Yes.Dead
## 40.0 40.1 67.6 59.2

The lattice package provides a number of ways to include additional variables in plots. Inclusion
of | in a formula, for example, specifies a variable to be used for defining subpanels (or facets).

histogram( ~ age | smoker, data = Whickham)
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Another option is to overlay multiple layers in a plot; lattice does this via a groups argument.

xyplot(births ~ date, groups = wday, data = Births78, type = "l")
densityplot( ~ births, groups = wday, data = Births78, auto.key = list(columns = 3))
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Each of these two plots shows a clear difference in the distribution of births on the two weekend days
compared to the other five days of the week.

For ease in moving between plots and numerical summaries, mosaic functions such as mean() and
tally() also accept this expanded syntax.

mean( ~ age | smoker, data = Whickham)

## No Yes
## 48.7 44.7

mean( ~ births, groups = wday, data = Births78)

## Sun Mon Tues Wed Thurs Fri Sat
## 7951 9371 9709 9498 9484 9626 8309

Notice that the mean age for smokers in the Whickham study is substantially lower than for the
non-smokers, so an accurate comparison of survival rates must take age into account.

The formula template allows students to think about relationships between and among two or
more variables and to test conjectures using graphical and numerical summaries. Having learned
the formula interface to graphical and numerical summaries early on, new users are well prepared
for modeling with lm(), glm(), and various “test” functions such as t.test() when the time comes.
More importantly, they begin early to train their minds to ask questions of the form “How does this
depend on that (and some other things)?”.

By emphasizing the formula template, each of the following commands can be viewed as instances
of a common template, rather than as separate things to learn.

bwplot(age ~ smoker, data = Whickham) # standard function in lattice
mean(age ~ smoker, data = Whickham) # formula interface added in mosaic
sd(age ~ smoker, data = Whickham) # formula interface added in mosaic
lm(age ~ smoker, data = Whickham) # standard function in stats

Similarly, by adding additional formula interfaces to t.test(), binom.test(), and prop.test(), and
adding some additional plot types, for one-variable situations we have

mean( ~ age, data = Whickham) # formula interface added in mosaic
sd( ~ age, data = Whickham) # formula interface added in mosaic

favstats( ~ age, data = Whickham) # new function in mosaic
histogram( ~ age, data = Whickham) # standard function in lattice
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t.test( ~ age, data = Whickham) # formula interface added in mosaic
binom.test( ~ smoker, data = Whickham) # formula interface added in mosaic
prop.test( ~ smoker, data = Whickham) # formula interface added in mosaic

Adding covariates to one- or two- variable graphical or numerical summaries fits readily into the
template as well.

mean( ~ age | smoker, data = Whickham) # formula interface added in mosaic
sd( ~ age | smoker, data = Whickham) # formula interface added in mosaic

histogram( ~ age | smoker, data = Whickham) # standard lattice
t.test( ~ age | smoker, data = Whickham) # expanded formula interface in mosaic

While specifying the correct formula can produce some challenges for new users, clearly explaining
the roles of each component for plotting, for numerical summaries, and for model fitting helps
demystify the situation. Instructors have had students create and interpret bivariate and trivariate
graphical displays on the first day of class (Wang et al., 2017). We have also found that explicit,
early, low-stakes assessment of student mastery of the formula interface greatly improves student
performance. A first quiz consisting of a single item (What is the formula template?) followed by one
or two simple pencil-and-paper quizzes asking students to write the commands to recreate a handful
of numerical and graphical summaries suffices.

The model-function template

Modeling functions like lm() and glm() can fit a wide range of statistical models. But functions like
predict() are challenging for new users (primarily because of the user must create a data frame in
order to evaluate the model function on user-specified inputs), and constructing a useful graphical
representation of a data set together with a logistic regression fit even more so. The mosaic functions
makeFun(), plotFun(), and plotModel() make these tasks easier.

In particular, makeFun() extracts from a model object created by lm() or glm() a function that is a
wrapper around predict() and can be used with standard function syntax that is familiar to students
from the way functions are typically described in secondary school and in calculus. This wrapper
around predict() is easier for beginners to use because (1) it returns a function to which inputs can
be supplied without creating a data frame, (2) the resulting function returns values on the response
scale by default, and (3) it back transforms a few common transformations of the response variable,
including log() and sqrt() (and allows the user to provide a custom value to the transformation
argument to handle other cases).

The functions extracted from models using makeFun() (and functions created in other ways) can
be plotted with plotFun(). In the example below, we illustrate the use of makeFun() and plotFun() to
compare linear and quadratic fits to the same data.

cars.mod1 <- lm(dist ~ speed, data = cars)
cars.mod2 <- lm(dist ~ poly(speed,2), data = cars)
# extract functions for each model that compute distance from speed
cars.dist1 <- makeFun(cars.mod1)
cars.dist2 <- makeFun(cars.mod2)
# evaluate these functions as user-specified values of speed
cars.dist2(speed = 15)

## 1
## 38.7

cars.dist2(speed = 15, interval = "confidence")

## fit lwr upr
## 1 38.7 33 44.3

# add plots of these functions to a scatter plot
xyplot(dist ~ speed, data = cars, alpha = 0.4)
plotFun(cars.dist1(speed) ~ speed, add = TRUE, col = 2, lwd = 2)
plotFun(cars.dist2(speed) ~ speed, add = TRUE, col = 3, lwd = 2)
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For logistic regression, when the response is coded as a factor, we need to adjust things slightly
when plotting because the model function returns values between 0 and 1, but 2-level factors are
coded as 1 and 2 in R.

smoker.mod <- glm(outcome ~ smoker + age, data = Whickham, family = binomial)
smoker.fun <- makeFun(smoker.mod)
smoker.fun(age = 60, smoker = "Yes")

## 1
## 0.507

smoker.fun(age = 60, smoker = "No")

## 1
## 0.456

xyplot(outcome ~ age, groups = smoker, data = Whickham, jitter.y = TRUE, alpha = 0.1)
plotFun(1 + smoker.fun(age, smoker = "No") ~ age, col = 1, add = TRUE)
plotFun(1 + smoker.fun(age, smoker = "Yes") ~ age, col = 2, add = TRUE)
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When the response variable in the model is transformed, the transformation argument to
makeFun() can be used to specify the back-transformation. For a few common transformations
(e.g., log() and sqrt()), the value of transformation is determined automatically (by default).

mtcars.mod <- lm(log(mpg) ~ log(wt) + factor(cyl), data = mtcars)
mileage <- makeFun(mtcars.mod)
xyplot(mpg ~ wt, data = mtcars, groups = cyl)
plotFun(mileage(wt, cyl = 4) ~ wt, add = TRUE, col = 1)
plotFun(mileage(wt, cyl = 6) ~ wt, add = TRUE, col = 2)
plotFun(mileage(wt, cyl = 8) ~ wt, add = TRUE, col = 3)
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For models with two quantitative predictors, plotFun() can create a contour plot. The following
model explores how the average SAT score depends on the amount of money spent on education (in
thousands of dollars per student) by a US State and the precent of students in that state who take the
SAT exam.

SAT.mod <- lm(sat ~ expend * frac, data = SAT)
msummary(SAT.mod)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1057.121 42.040 25.15 < 2e-16 ***
## expend 0.629 7.846 0.08 0.936
## frac -4.232 0.818 -5.18 4.9e-06 ***
## expend:frac 0.237 0.135 1.75 0.087 .
##
## Residual standard error: 31.8 on 46 degrees of freedom
## Multiple R-squared: 0.831, Adjusted R-squared: 0.82
## F-statistic: 75.2 on 3 and 46 DF, p-value: <2e-16

sat.pred <- makeFun(SAT.mod)
plotFun(sat.pred(expend, frac) ~ expend + frac,

expend.lim=c(3.6,9.7), frac.lim=c(0,83))

expend

fr
ac

20

40

60

80

4 5 6 7 8 9

800

850

900

950

1000

1050

The msummary() function provides a terser summary of the model object than summary(). The
plot shows that this model predicts performance on the exam to increase with increased expenditure
and decreased participation in the exam. (In states with lower participation rates there is a selection
bias toward stronger students who are seeking admission into out-of-state colleges and universities.)
Furthermore, the effect of increased spending appears to be greater when a larger percent of the
students take the exam. Interestingly, a simpler linear model that includes only expenditure as a
predictor has a negative slope.

For many simple models, creating a plot can be even simpler using plotModel(), which also
eliminates the need to manually adjust logistic regression plots when the response is a factor. For
models with multiple predictors, we can supply a formula to indicate which predictor we prefer to
have on the x-axis.

plotModel(cars.mod2)
plotModel(smoker.mod, outcome ~ age, jitter.y = TRUE)
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The plotModel() function can also simplify visualization of more complex models.

mtcars.mod2 <- lm(mpg ~ log(wt) + factor(cyl) + factor(am), data = mtcars)
plotModel(mtcars.mod2, mpg ~ wt | factor(am))
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The extractor template

The use of makeFun() to create a function from a model illustrates another important template, the
extractor template:

object <- { some computation }
extractor(object) # extract some information from object

R has many such extractors which summarize, display, or extract partial information from an
object. The print(), plot(), and summary() functions are examples of extractors that can be applied
to many types of objects. Other extractors, like coef(), resid(), and fitted() are designed to work
with a much smaller set of objects. The mosaic package defines several extractors including those
listed in Table 1.

confint(t.test( ~ age, data = Whickham)) # works for any "htest" object

## mean of x lower upper level
## 1 46.9 46 47.9 0.95

pval(t.test(age ~ smoker, data = Whickham)) # works for any "htest" object

## p.value
## 2.06e-05

stat(t.test(age ~ smoker, data = Whickham)) # works for any "htest" object

## t
## 4.27

rsquared(lm(age ~ smoker, data = Whickham))

## [1] 0.0131

The mplot() function

Like plot(), mplot() has many uses depending on the kind of input it receives. The two primary uses
cases are creating diagnostic plots for lm and glm objects, and interactively creating data visualizations
using the variables in a data frame.

Given a model object as its first argument, mplot() provides similar diagnostic plots to those
produced via plot() but with two primary differences: the user may select to use either lattice or
ggplot2 (Wickham, 2009) graphics instead of base graphics, and an additional plot type is provided to
visualize the confidence intervals for the coefficients of a regression model.

Extractor Purpose
makeFun() Extract a fitted function from a model.
rsquared() Extract r2 from a linear model.
stat() Extract the test statistic from a hypothesis test.
pval() Extract the p-value from a hypothesis test.
confint() Extract the confidence interval from a hypothesis test.
mplot() Create a plot from an object.

Table 1: Extractors defined in the mosaic package.
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mod <- lm(length ~ width * sex, data = KidsFeet)
mplot(mod, system = "lattice", which = 1:7)
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We can also use mplot() to visually represent the results of TukeyHSD(), which has been modified
so that it can be applied directly to objects produced by lm().

mplot(TukeyHSD(lm(births ~ wday, data = Births78)), order = "pval")
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The resulting plots are formatted in a way that makes them usable in a wider range of scenarios than
are those produced using plot().

A second use for mplot() is to create lattice and ggplot2 plots interactively within RStudio. Issuing
the following command in RStudio will bring up a plot that can be modified by making choices in the
accompanying menu.

mplot(KidsFeet)

The menu allows the user to choose either lattice or ggplot2 graphics, to select the type of plot and the
variables used, and to control a few of the most commonly used features that modify a plot (faceting,
color, legends, log-scaling, fitting a linear model or LOESS smoother). The “Show Expression” button
exports the command used to create the plot into the console. From there it can be edited or copied
and pasted into an R Markdown document. This can be very useful for new users working to master
the syntax for a particular graphical system.

Randomization and resampling

Resampling approaches have become increasingly important in statistical education (Tintle et al.,
2015; Hesterberg, 2015). The mosaic package provides simplified functionality to support teaching
inference based on randomization tests and bootstrap methods. Our goal was to focus attention on the
important parts of these techniques (e.g., where randomness enters in and how to use the resulting
distribution) while hiding some of the technical details involved in creating loops and accumulating
values.

A first example

As a first example, we often introduce (a version of) the story of the lady tasting tea. (See Salsburg
(2002) for the details of this famous story.) But here we will test a coin to see whether it is a “fair coin”.
Suppose we flip the coin 20 times and observe only 6 heads, how suspicious should we be that the
coin is not fair? The statistical punchline for either the lady tasting tea or testing a coin is that we want
to compute the p-value for a binomial test via simulations rather than using formulas for the binomial
distribution or normal approximations. But we want to do this on the first day of class, and without
using any of the jargon of the preceding sentence.

Because students do not know about sampling distributions or random variables yet, but do
understand the idea of a coin toss, we have provided rflip() to simulate tossing a coin one or several
times:

rflip()

##
## Flipping 1 coin [ Prob(Heads) = 0.5 ] ...
##
## H
##
## Number of Heads: 1 [Proportion Heads: 1]

rflip(20)

##
## Flipping 20 coins [ Prob(Heads) = 0.5 ] ...
##
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## H T T T H T H H H H H T T H H T T H H T
##
## Number of Heads: 11 [Proportion Heads: 0.55]

To test a null hypothesis of a fair coin, we need to simulate flipping 20 coins many times, recording
for each simulation the number of heads that were observed. The do() function allows us to do just
that using the following template

do(n) * {stuff to do} # pseudo-code

where {stuff to do} is typically a single R command, but may be something more complicated. We
teach this syntax by reading it aloud: “Do n times . . . ” For example, we can flip 20 coins three times as
follows.

do(3) * rflip(20) # do 3 times flip 20 coins

## n heads tails prop
## 1 20 10 10 0.50
## 2 20 8 12 0.40
## 3 20 15 5 0.75

Notice that do() (technically cull_for_do()) has been clever about what information is stored for
each group of 20 coin tosses and that the results are returned in a data frame.

It is now a simple matter to do this many more times and use numerical or graphical summaries
to investigate how unusual it is to get so few heads if the coin is indeed a fair coin.

Sims <- do (1000) * rflip(20)
histogram( ~ heads, data = Sims, width = 1, groups = heads <= 6)
tally ( ~ (heads <= 6), data = Sims)

## (heads <= 6)
## TRUE FALSE
## 54 946
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Readers familiar with lattice will notice that the mosaic package adds some additional arguments
to the histogram() function. Among these are width and center which can be used to control the
width and position of the bins and are much easier for new users to master than the breaks argument
supplied by lattice.

The sample(), resample(), and shuffle() functions

To facilitate randomization and bootstrapping, mosaic extends sample() to operate on data frames.
The shuffle() function is an alternative name for sample(), and resample() is sample() with replace
= TRUE. With these in hand, all of the tests and confidence intervals seen in a traditional first course in
statistics can be performed using a common outline:

1. Do it to your data
2. Do it to a randomized version of your data
3. Do it to lots of randomized versions of your data.

For example, we can use randomization in place of the two-sample t test to obtain an empirical
p-value.

D <- diffmean(age ~ smoker, data = Whickham); D
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## diffmean
## -4.02

do(1) * diffmean(age ~ shuffle(smoker), data = Whickham)

## diffmean
## 1 -1.69

Null.dist <- do(5000) * diffmean(age ~ shuffle(smoker), data = Whickham)
histogram( ~ diffmean, data = Null.dist, v = D, xlim = c(-5,5))
prop( ~ (diffmean < D), data = Null.dist)

## TRUE
## 0
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None of the 5000 replications led to a difference in means as large as the one in the original data.

It should be noted that although this is typically not done in simulation-based introductory statis-
tics texts, one might prefer to calculate p-values by including the observed data in the randomization
distribution. This avoids an empirical p-value of 0 and guarantees that the actual type I error rate
will not exceed the nominal type I error rate. This amounts to adding one to the numerator and
denominator. The prop1() function automates this for us.

prop1( ~ (diffmean < D), data = Null.dist)

## TRUE
## 2e-04

1/5001

## [1] 2e-04

For more precise estimation of small p-values, additional replications should be used.

The example above introduces three additional mosaic functions. The prop() and prop1() func-
tions compute the proportion of logical vector that is (by default) TRUE or of a factor that is (by default)
in the first level; diffmean() is similar to diff(mean()), but labels the result differently (diffprop()
works similarly for differences in proportions).

If we are interested in a confidence interval for the difference in group means, we can use
resample() and do() to generate a bootstrap distribution in one of two ways.

Boot1 <- do(1000) * diffmean(age ~ smoker, data = resample(Whickham))
Boot2 <- do(1000) * diffmean(age ~ smoker, data = resample(Whickham, groups = smoker))

In the second example, the resampling happens within the smoker groups so that the marginal counts
for each group remain fixed. This can be especially important if one of the groups is small, because
otherwise some resamples might not include any observations of that group.

favstats(age ~ smoker, data = Whickham)

## smoker min Q1 median Q3 max mean sd n missing
## 1 No 18 32 48 65 84 48.7 18.8 732 0
## 2 Yes 18 32 45 57 84 44.7 15.3 582 0

favstats(age ~ smoker, data = resample(Whickham))

## smoker min Q1 median Q3 max mean sd n missing
## 1 No 18 32 48 65 84 48.6 18.8 752 0
## 2 Yes 18 32 45 56 83 44.8 15.0 562 0
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favstats(age ~ smoker, data = resample(Whickham, groups = smoker)) # fix margins

## smoker min Q1 median Q3 max mean sd n missing
## 1 No 18 33 49.0 66 84 49.3 18.9 732 0
## 2 Yes 18 31 44.5 56 82 44.3 15.4 582 0

Using either bootstrap distribution, two simple confidence intervals can be computed. We typically
introduce percentile confidence intervals first (but note that these can have poor performance for small
sample sizes). A percentile confidence interval is calculated by determining the range of a central
portion of the bootstrap distribution, which can be automated using cdata(). Visually inspecting the
bootstrap distribution for skew and bias is an important step to make sure the percentile interval is
not being applied in a situation where it may perform poorly.

histogram( ~ diffmean, data = Boot2, v = D)
qqmath( ~ diffmean, data = Boot2)
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cdata( ~ diffmean, p = 0.95, data = Boot2)

## low hi central.p
## -5.93 -2.30 0.95

Alternatively, we can compute a confidence interval based on a bootstrap estimate of the standard
error.

SE <- sd( ~ diffmean, data = Boot2); SE

## [1] 0.941

D + c(-1,1) * 2 * SE

## [1] -5.90 -2.14

The primary pedagogical value of the bootstrap standard error approach is its close connection to
the standard formula-based confidence interval methods. How to replace the constant 2 with an
appropriate value to create more accurate intervals or to allow for different confidence levels is a matter
of some subtlety (Hesterberg, 2015). The simplest method is to use quantiles of a normal distribution,
but the resulting intervals will typically undercover. Replacing the normal distribution with an
appropriate t-distribution will widen intervals and can improve coverage, but the t-distribution is only
correct in a few cases – such as when estimating the mean of a normal population – and can perform
badly when the population is skewed.

Calculating simple confidence intervals can be further automated using an extension to confint().

confint(Boot2, method = c("percentile", "stderr"))

## name lower upper level method estimate margin.of.error df
## 1 diffmean -5.93 -2.3 0.95 percentile -4.02 NA NA
## 2 diffmean -5.89 -2.2 0.95 stderr -4.02 1.85 1313

Additional examples

One of the package vignettes (Pruim et al., 2016a) contains a list of mosaic-related resources. Included
in the list are links to companion volumes for several textbooks, including two simulation-based texts
(Lock et al., 2013; Tintle et al., 2016) and several traditional textbooks (De Veaux et al., 2015; Moore
et al., 2014; De Veaux et al., 2014; Ramsey and Schafer, 2013). Each of these companion volumes
demonstrates how to use R and the mosaic package to recreate the analyses for the examples in the
text.
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Vignettes

The mosaic package includes several vignettes that provide additional material on using the package
and on the “less volume, more creativity” approach.

A particularly useful vignette is a one-page list of commands that are more than sufficient for a
first course, originally presented as part of a roundtable discussion at the Joint Statistics Meetings.
(Pruim, 2011)

RMarkdown

“Thinking with data” goes hand-in-hand with communicating those thoughts. The R Markdown
system provides valuable facilities for reliable and reproducible reporting of computational ideas and
results. See Baumer et al. (2014) for a discussion of how R Markdown can be used in statistics courses.

The mosaic package contains three templates for creating R Markdown documents in RStudio.
Each ensures that the mosaic package is attached, sets the default theme for lattice graphics to
theme.mosaic(), chooses a somewhat smaller default size for graphics, and includes a comment
reminding users to attach any packages they intend to use. The “fancy” template demonstrates several
features of R Markdown, and the “plain” templates allow users to start with a clean slate.

Workarounds for unfortunate name collisions

The mosaic package depends on lattice and ggplot2 so that plots can be made using either system
whenever the mosaic package is attached. It also depends on dplyr (Wickham and Francois, 2015), but
for a different reason. The functions in dplyr implement a “less volume, more creativity” approach
to data transformation and we encourage its use alongside mosaic. Unfortunately, there are several
function names – most notably do() and tally() – that exist in both packages. After the release of
dplyr we modified the functions in mosaic so that the two packages can coexist amicably as long as
mosaic comes before dplyr in the search path.

Discussion

Advantages of the mosaic approach

One of the keys to successfully empowering students to think with data is providing them both a
conceptual framework that allows them to know what to look for and how to interpret what they find,
and a computational toolbox that allows them to do the looking. The approach made possible with
the mosaic package simplifies the transition from thinking to computing by reducing the number of
computational templates students learn so that cognitive effort can be spent elsewhere, and by having
those templates reflect, support, and deepen the underlying thinking (Grolemund and Wickham,
2014).

Because of the connection between conceptual understanding and these computational tools, the
use of R can also help reveal misunderstandings that might otherwise go unnoticed. For example, if a
student attempts to use t.test() or to create a histogram using a categorical variable, the student will
receive error or warning messages that are an indication that either the student does not understand
the current data set or still has confusion regarding what it means for a variable to be categorical or
continuous and which operations are suited for each kind of variable. We encourage students to make
sure they can answer two important questions before attempting to issue a command in R:

1. What do I want the computer to do for me?

2. What does it need to know in order to do that?

If these two questions can be answered clearly and correctly, then the student’s primary issue is
one of creating the correct R code. If they cannot, then the problem lies elsewhere. In our experience,
students who can consistently answer these two questions have relatively little trouble translating the
answers into R code using the commands we teach.

R has the capability to support the increasing complexity of the data and analyses students
encounter in subsequent courses and research projects. Eventually, students will need to learn more
about the structure of R as a language, the types of objects it supports, and alternative ways of
approaching the same task. But early on, it is more important that students can successfully and
independently exercise computational and statistical creativity.
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Challenges of using R in introductory courses

Using R is not without some challenges. The first challenge is to get all of the students up and running.
The use of an RStudio server allows an institution or instructor to install and configure R and its
packages and students to work within a web browser, essentially eliminating the start-up costs for the
students. Otherwise, instructors must assist students as they navigate installation of R and whichever
additional packages are required.

Once students have access to R, the mosaic package reduces, but does not eliminate, the amount of
syntax students need to learn. It is important to emphasize the similarity among commands within a
template, to remind students that R is case sensitive, to show them how to take advantage of shortcuts
like tab completion and code history navigation, and to explicitly teach students how to interpret
some of the most common R error messages. This goes a long way toward smoothing the transition to
a command line interface that is not as forgiving as Google search (which may be many students’ only
other experience with computerized response to things they type).

In our experience, the most commonly occurring struggles for students using mosaic are

1. General anxiety over typing commands.
Although students are very familiar with using computers and computerized devices like smart
phones, many of them have little experience typing commands that require following syntax
rules. The “less volume, more creativity" approach helps with this, by reducing the cognitive
burden. But it remains important to highlight repeatedly the similarities among commands.
Students should also be taught how to interpret the most common error messages R produces
so that they can quickly, easily, and comfortably recover from inevitable typing errors. Even if a
class does not typically meet in a computer laboratory or take advantage of student laptops, it
can be useful to arrange some sessions early in the course where students are using RStudio
while someone is there to quickly help them when they get stuck. Avoiding frustration in
students’ early experience with R goes a long way in overcoming anxiety.
As a bonus instructional method, the authors make frequent typing mistakes in front of the class.
While we could not avoid this if we tried, it does serve to demonstrate both how to recover from
errors and that nothing drastic has happened when an error message is displayed.
One big advantage of the command line interface is that it is much easier to help students by
email or in a discussion forum. Encourage students to copy both their commands and the error
messages or output that were produced. Even better, have them share their work in the form of
an R Markdown file. We find students are much more capable of doing this than they are of
correctly describing the chain of events they initiated in a menu-driven system. (It is also much
easier to give detailed instructions and examples.)

2. Confusion over the tilde (~).
The tilde is a small symbol, easily overlooked on the screen or on paper (or mistaken for -),
so students will sometimes omit it, or put it where it doesn’t belong. As a visual aid, we
recommend surrounding the ~ with a space on either side, even in 1-sided formulas.
A similar thing occurs with explicitly naming the data argument, which is not required for the
lattice functions, but is for several other functions. Teaching the forms that work in all contexts
is easier than teaching which contexts allow which forms.

3. Difficulty in setting up the R environment
This is all but eliminated when using an RStudio server, but in situations where instructors
prefer a local R installation for each student, there are often a few issues involved in getting all
students up and running. Installation of R and RStudio is straightforward, but one should make
sure that students all have the latest version of each. To use the mosaic package, a number of
additional packages must be installed. We recommend beginning with

update.packages()

or the equivalent operation from the RStudio “Packages” tab to make sure all packages currently on
the system are up to date. In most cases,

install.packages("mosaic")

(again, this can also be done via the “Packages” tab in RStudio) will take care of the rest. But
occasionally some package will not install correctly on a particular student’s computer. Installing that
package directly rather than as part of the dependencies of mosaic often solves this problem or at least
provides a useful diagnostic regarding what the problem might be.
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Impact

In 2016, the available CRAN logs indicate that mosaic was downloaded to approximately 96,000
unique IP addresses. Strong peaks over January and September suggest that much of this demand
comes from university courses.

Efficiency Issues

For applications where speed is of utmost importance, the mosaic wrappers may not be the optimal
approach. For the numerical summary functions, the mosaic versions cannot be faster than their
counterparts in base or stats (because eventually they call the underlying functions) and may be
noticeably slower in contexts where they are called many times. In particular, using the formula
interface requires parsing the formula and creating a new object to contain the data described by
the formula. On the other hand, for aggregated numerical summaries, the loss in performance may
represent a small price to pay for the simplified syntax.

Similarly, using do() comes at a price, although here the increased computation time has more to
do with the extra work involved in culling the objects and reformatting the results. The looping itself
is as fast as using replicate() – indeed the underlying code is very similar – and can be faster when
the parallel package is attached; even on a laptop with a single quad-core processor, the speed-up is
noticeable.

Lattice vs. ggplot2

Early on, we chose to adopt lattice graphics because of its compatibility with the formula template.
This provides a simple, consistent means of creating the plots our students need. One weakness of
the lattice system is the difficulty of creating complex plots by overlaying mutliple simpler layers.
Beginners are not in a position to create the panel (and pre-panel) functions that lattice requires for
this. Recently, we have begun work on a new package (ggformula, currently avilable via github) that
provides a formula interface for creating ggplot2 plots. This package could replace lattice for users
who desire some of the features of ggplot2 but want to keep a consistent formula interface. Initial
use with our students suggests that this works at least as well as lattice and much better if plots with
multiple layers and data sources are required.

Be selective

Over the years we have been developing the mosaic package, it has grown to the point that it now
contains much more than a minimally sufficient set of commands for an introductory course. While we
have attempted to give some sense of the scope of the package in this article, we advise instructors to
use things selectively, keeping in mind their students and the goals for the course. What may represent
just the right tool in one setting may be too much in another. Of course, the same advice holds for
using functions from other packages as well. The instructor’s temptation is often to do too much,
forgetting the cognitive burden this can place on students. Less volume and more creativity will at
times pull in opposite directions, and a skilled instructor must determine the appropriate balance for
each setting.
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Appendix: Additional features of the mosaic package

Table 2 lists some additional functions in the mosaic package not highlighted above.

Handling missing data

When there are missing values, the numerical summary functions in base and stats return results that
may surprise new users.
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Function Uses

CIsim() Demonstrate coverage rates of confidence intervals.
statTally() Investigate test statistics and their empirical distributions.
panel.lmbands() Add confidence and prediction bands to scatter plots.
ladd() Simplified layering in lattice plots.
xchisq.test() An extension to chisq.test() that prints a table including observed and expected

counts, contribution to the chi-squared statistic and residuals.
zscore() Convert a numeric vector into z-scores by subtracting the mean and dividing by

the standard deviation.
col.mosaic() A lattice theme with colors that work better in project images than the lattice

defaults.
dot(), project(), vlength() Functions from linear algebra.
ediff() Like diff(), but the returned vector is padded with NAs so that the length is the

same as the input vector.
SAD(), MAD() all pairs sum and mean of absolute differences
rgeo() randomly sample latitude, longitude pairs uniformly over the globe
googleMap() show google maps in a browser. Together with rgeo(), this can be used to view

maps of randomly selected points on the globe. See Stoudt et al. (2014) for an
example of how this can be used for a classroom activity.

Table 2: Some additional functions in the mosaic package.

mean( ~ dayslink, data = HELPmiss)

## [1] NA

While there are workarounds using options to functions to drop values that are missing before
performing the computation, these may be intimidating to new users.

mean( ~ dayslink, data = HELPmiss, na.rm = TRUE)

## [1] 257

We offer two other solutions to this situation. Our favorite is the favstats() function which
computes a set of useful numerical summaries on the non-missing values and also reports the number
of missing values.

favstats( ~ dayslink, data = HELPmiss)

## min Q1 median Q3 max mean sd n missing
## 2 75 363 365 456 257 151 447 23

The second solution is to change the default behavior of na.rm using options(). This will, of
course, only affect the mosaic versions of these functions.

options(na.rm = TRUE)
mean( ~ dayslink, data = HELPmiss)

## [1] 257

with(HELPmiss, base::mean(dayslink))

## [1] NA

Users also have the option of changing the default for na.rm back if they like.

options(na.rm = NULL)
mean( ~ dayslink, data = HELPmiss)

## [1] NA

Inspecting a data frame

Summaries of all variables in a data frame can be obtained using inspect(). For quantitative variables,
the results of favstats() are displayed. Other summaries are provided for categorical and time
variables.
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inspect(Births78)

##
## categorical variables:
## name class levels n missing distribution
## 1 wday ordered 7 365 0 Sun (14.5%), Mon (14.2%), Tues (14.2%) ...
##
## quantitative variables:
## name class min Q1 median Q3 max mean sd n missing
## 1 births integer 7135 8554 9218 9705 10711 9132 818 365 0
## 2 dayofyear integer 1 92 183 274 365 183 106 365 0
##
## time variables:
## name class first last min_diff max_diff n missing
## 1 date POSIXct 1978-01-01 1978-12-31 1 1 365 0

Additional high-level lattice plots

The mosaic package provides several new high-level lattice plots, including bargraph(), dotPlot(),
freqpolygon(), ashplot(), xqqmath(), and plotPoints().

bargraph( ~ smoker, data = Whickham, main = "bargraph()")
dotPlot( ~ age, data = Whickham, width = 1, main = "dotPlot()")
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freqpolygon( ~ age, data = Whickham, width = 5, main = "freqpolygon()")
ashplot( ~ age, data = Whickham, width = 5, main = "ashplot()")
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xqqmath( ~ age, data = Whickham, main = "xqqmath()")
plotPoints(length ~ width, data = KidsFeet, main = "plotPoints()")
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The bargraph() function eliminates the need to first summarize the data before constructing a
plot with barplot() and makes creating these plots from raw data simpler. The dot plots produced
by dotPlot() are quite different from the Cleveland-style dot plots produced by dotplot(). The
former are essentially histograms made of stacked dots and can be seen in many introductory statistics
texts. They are also useful for producing plots from which students can quickly estimate p-values by
counting dots in the tail of a randomization distribution. Frequency polygons and ASH plots (average
shifted histograms) are less common, but share many features in common with density plots and are
easier to explain to students. The main motivation for plotPoints() is the ability to use it to create
additional layers on an existing plot with the option add = TRUE, otherwise xyplot() would suffice.

Visualizing distributions of random variables

A number of functions make it simple to visualize random variables. The plotDist() function creates
displays for any distribution for which standard d-, p-, and q- functions exist.

plotDist("norm", mean = 100, sd = 10)
plotDist("binom", size = 100, prob = 0.3)

0.01

0.02

0.03

0.04

0.05

0.06

80 90 100 110 120

0.02

0.04

0.06

0.08

0.10

0.12

20 25 30 35 40

Tail probabilities can be highlighted using the groups argument in a way that is analogous to the lattice
plots above.

plotDist("chisq", df = 4, groups = x > 9, type = "h")

0.05

0.10

0.15

0.20

0.25

5 10 15

Using the kind argument, we can obtain other kinds of plots, including cdfs and probability histograms.

plotDist("norm", mean = 100, sd = 10, kind = "cdf")
plotDist("binom", size = 100, prob = 0.3, kind = "histogram")
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Any of these plots can be overlaid onto another plot using add = TRUE

favstats( ~ age, data = Whickham)
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## min Q1 median Q3 max mean sd n missing
## 18 32 46 61 84 46.9 17.4 1314 0

histogram( ~ age, data = Whickham, main = 'histogram() with added plotDist()')
plotDist("norm", params = list(mean = 46.9, sd = 17.4), add = TRUE)

histogram() with added plotDist()
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or by using additional features of the histogram() function provided in the mosaic package:

histogram( ~ age, data = Whickham, fit = "normal",
main = 'histogram() with fit = "normal"')

histogram() with fit = "normal"
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Several other families of distributions can be added to a histogram in a similar way. The fitdistr()
function from the MASS (Venables and Ripley, 2002) is used to estimate the parameters of the
distribution.

For several distributions, we provide augmented versions of the distribution and quantile functions
that assist students in understanding what values are returned by functions like pnorm() and qnorm().

xpnorm(-2:2, main = "standard normal")

##
## If X ~ N(0, 1), then
##
## P(X <= -2) = P(Z <= -2) = 0.02275
## P(X <= -1) = P(Z <= -1) = 0.15866
## P(X <= 0) = P(Z <= 0) = 0.50000
## P(X <= 1) = P(Z <= 1) = 0.84134
## P(X <= 2) = P(Z <= 2) = 0.97725
## P(X > -2) = P(Z > -2) = 0.97725
## P(X > -1) = P(Z > -1) = 0.84134
## P(X > 0) = P(Z > 0) = 0.50000
## P(X > 1) = P(Z > 1) = 0.15866
## P(X > 2) = P(Z > 2) = 0.02275

## [1] 0.0228 0.1587 0.5000 0.8413 0.9772

xqt(0.975, df = 20, main = "t-distribution with df = 20")

## 95%
## 0.000 0.597

## [1] 2.09
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Basic choropleth maps

The mUSMap() and mWorldMap() functions provide simple ways to construct choropleth maps of states
in the US or countries in the world, and makeMap() allows users to provide their own map data.

USArrests <- USArrests %>% mutate(state = row.names(USArrests))
mUSMap(USArrests, key = "state", fill = "UrbanPop")
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The do() function vs. the replicate() function

The usual alternative to do() is replicate(). For simple situations, replicate() can also be easy to
use. Each of these stores its results in a vector rather than in a data frame but is otherwise very similar
to the corresponding results using do(), although the first stores less information.

replicate(3, rflip(20))

## [1] 9 13 11

replicate(3, diffmean(age ~ smoker, data = resample(Whickham)))

## diffmean diffmean diffmean
## -2.04 -4.56 -5.33

Where do() really shines is for simulations based on models. The results returned by do() are
stored in a data frame and include the components of the model most likely to be of interest.

do(3) * lm(shuffle(height) ~ sex + mother, data = Galton)

## Intercept sexM mother sigma r.squared F numdf dendf .row .index
## 1 64.1 0.0356 0.04086 3.59 0.000708 0.3168 2 895 1 1
## 2 66.4 0.0869 0.00543 3.59 0.000156 0.0699 2 895 1 2
## 3 62.2 0.0175 0.07175 3.58 0.002132 0.9562 2 895 1 3

Resampling from a linear model performs residual resampling:

Galton.mod <- lm(height ~ sex + mother, data = Galton)
do(3) * lm(height ~ sex + mother, data = resample(Galton.mod))

## Intercept sexM mother sigma r.squared F numdf dendf .row .index
## 1 41.2 5.01 0.358 2.44 0.534 513 2 895 1 1
## 2 41.1 5.26 0.357 2.40 0.563 577 2 895 1 2
## 3 41.7 5.07 0.351 2.37 0.553 554 2 895 1 3
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In contrast, replicate() returns an object that is inscrutable and unusable for most beginners.

replicate(3, lm(shuffle(height) ~ sex + mother, data = Galton))

## [,1] [,2] [,3]
## coefficients Numeric,3 Numeric,3 Numeric,3
## residuals Numeric,898 Numeric,898 Numeric,898
## effects Numeric,898 Numeric,898 Numeric,898
## rank 3 3 3
## fitted.values Numeric,898 Numeric,898 Numeric,898
## assign Integer,3 Integer,3 Integer,3
## qr List,5 List,5 List,5
## df.residual 895 895 895
## contrasts List,1 List,1 List,1
## xlevels List,1 List,1 List,1
## call Expression Expression Expression
## terms Expression Expression Expression
## model List,3 List,3 List,3

With some additional work, this can be improved somewhat, although less information is being
recorded and the matrix should probably be transposed (and perhaps converted to a data frame).

replicate(3, coef(lm(shuffle(height) ~ sex + mother, data = Galton)))

## [,1] [,2] [,3]
## (Intercept) 67.774 70.4448 70.2286
## sexM -0.226 0.0372 -0.0206
## mother -0.014 -0.0578 -0.0539
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smoof: Single- and Multi-Objective
Optimization Test Functions
by Jakob Bossek

Abstract Benchmarking algorithms for optimization problems usually is carried out by running the
algorithms under consideration on a diverse set of benchmark or test functions. A vast variety of
test functions was proposed by researchers and is being used for investigations in the literature. The
smoof package implements a large set of test functions and test function generators for both the single-
and multi-objective case in continuous optimization and provides functions to easily create own test
functions. Moreover, the package offers some additional helper methods, which can be used in the
context of optimization.

Introduction

The task of global optimization is to find the best solution x = (x1, . . . , xn)
T ∈ X according to a set

of objective functions F = { f1, . . . , fm}. If input vectors as well as output values of the objective
functions are real-valued, i. e., fi : Rn → R the optimization problem is called continuous . Otherwise,
i.e., if there is at least one non-continuous parameter, the problem is termed mixed. For m = 1, the
optimization problem is termed single-objective and the goal is to minimize a single objective f , i. e.,

x∗ = arg minx∈X f (x) .

Clearly, talking about minimization problems is no restriction: we can maximize f by minimizing
− f . Based on the structure of the search space, there may be multiple or even infinitely many global
optima, i. e., x∗ ∈ X∗ ⊆ X. We are faced with a multi-objective optimization problem if there are at
least two objective functions. In this case as a rule no global optimum exists since the objectives are
usually conflicting and there is just a partial order on the search space; for sure (1, 4)T ≤ (3, 7)T makes
sense, but (1, 4)T and (3, 2)T are not comparable. In the field of multi-objective optimization we are
thus interested in a set

PS = {x ∈ X | @ x̃ ∈ X : f (x̃) � f (x)} ⊆ X

of optimal trade-off solutions termed the Pareto-optimal set , where � defines the dominance relation .
A point x ∈ X dominates another point x̃ ∈ X, i. e., x � x̃ if

∀ i ∈ {1, . . . , m} : fi(x) ≤ fi(x̃)

and ∃ i ∈ {1, . . . , m} : fi(x) < fi(x̃).

Hence, all trade-off solutions x∗ ∈ PS are non-dominated . The image of the Pareto-set PF = f (PS) =
( f1 (PS) , . . . , fm (PS)) is the Pareto-front in the objective space. See Coello et al. (2006) for a thorough
introduction to multi-objective optimization.

There exists a plethora of optimization algorithms for single-objective continuous optimization in
R (see the CRAN Task View on Optimization and Mathematical Programming (Theussl and Borchers) for a
growing list of available implementations and packages). Mullen (2014) gives a comprehensive review
of continuous single-objective global optimization in R. In contrast there are just a few packages,
e. g., emoa (Mersmann, 2012), mco (Mersmann, 2014), ecr (Bossek, 2017a), with methods suited to
tackle continuous multi-objective optimization problems. These packages focus on evolutionary
multi-objective algorithms (EMOA), which are very successful in approximating the Pareto-optimal
set.

Benchmarking optimization algorithms

In order to investigate the performance of optimization algorithms or for comparing of different
algorithmic optimization methods in both the single- and multi-objective case a commonly accepted
approach is to test on a large set of artificial test or benchmark functions. Artificial test functions exhibit
different characteristics that pose various difficulties for optimization algorithms, e. g., multimodal
functions with more than one local optimum aim to test the algorithms’ ability to escape from local
optima. Scalable functions can be used to access the performance of an algorithm while increasing
the dimensionality of the decision space. In the context of multi-objective problems the geometry of
the Pareto-optimal front (convex, concave, . . . ) as well as the degree of multimodality are important

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/view=Optimization
https://CRAN.R-project.org/package=emoa
https://CRAN.R-project.org/package=mco
https://CRAN.R-project.org/package=ecr


CONTRIBUTED RESEARCH ARTICLES 104

characteristics for potential benchmarking problems. An overview of single-objective test function
characteristics can be found in Jamil and Yang (2013). A thorough discussion of multi-objective
problem characteristics is given by Huband et al. (2006). Kerschke and Dagefoerde (2015) recently
published an R package with methods suited to quantify/estimate characteristics of unknown opti-
mization functions at hand. Since the optimization community mainly focuses on purely continuous
optimization, benchmarking test sets lack functions with discrete or mixed parameter spaces.

Related work

Several packages make benchmark functions available in R. The packages cec2005benchmark (Gonzalez-
Fernandez and Soto, 2015) and cec2013 (Zambrano-Bigiarini and Gonzalez-Fernandez, 2015) are simple
wrappers for the C implementations of the benchmark functions for the corresponding CEC 2005/2013
Special Session on Real-Parameter Optimization and thus very limited. The globalOptTests (Mullen,
2014) package interfaces 50 continuous single-objective functions. Finally the soobench (Mersmann
and Bischl, 2012) package contains some single-objective benchmark functions and in addition several
useful methods for visualization and logging.

Contribution

The package smoof (Bossek, 2017b) contains generators for a large and diverse set of both single-
objective and multi-objective optimization test functions. Single-objective functions are taken from the
comprehensive survey by Jamil and Yang (2013) and black-box optimization competitions (Hansen
et al., 2009; Gonzalez-Fernandez and Soto, 2015). Moreover, a flexible function generator introduced
by Wessing (2015) is interfaced. Multi-objective test functions are taken from Deb et al. (2002); Zitzler
et al. (2000) and Zhang et al. (2009). In the current version – version 1.4 in the moment of writing –
there are 99 continuous test function generators available (72 single-objective, 24 multi-objective, and 3
function family generators). Discontinuous functions (2) and functions with mixed parameters spaces
(1) are underrepresented at the moment. This is due to the optimization community mainly focusing
on continuous functions with numeric-only parameter spaces as stated above. However, we plan to
extend this category in upcoming releases.

Both single- and multi-objective smoof functions share a common and extentable interface, which
allows to easily add new test functions. Finally, the package contains additional helper methods which
facilitate logging in the context of optimization.

Installation

The smoof package is available on CRAN, the Comprehensive R Archive Network, in version 1.4. To
download, install and load the current release, just type the code below in your current R session.

> install.packages("smoof")
> library(smoof)

If you are interested in toying around with new features take a look at the public repository at GitHub
(https://github.com/jakobbossek/smoof). This is also the place to complain about problems and
missing features / test functions; just drop some lines to the issue tracker.

Diving into the smoof package

In this section we first explain the internal structure of a test function in the smoof package. Later we
take a look on how to create objective functions, the predefined function generators and visualization.
Finally, we present additional helper methods which may facilitate optimization in R.

Anatomy of smoof functions

The functions makeSingleObjectiveFunction and makeMultiObjectiveFunction respectively can be
used to create objective functions. Both functions return a regular R function with its characteristic
properties appended in terms of attributes. The properties are listed and described in detail below.

name The function name. Mainly used for plots and console output.

id Optional short name. May be useful to index lists of functions.

description Optional description of the function. Default is the empty string.
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fn The actual implementation of the function. This must be a function of a single argument x.

has.simple.signature Logical value indicating whether the function fn expects a simple vector of
values or a named list. This parameter defaults to TRUE and should be set to FALSE, if the function
depends on a mixed parameter space, i. e., there are both numeric and factor parameters.

par.set The set of function parameters of fn. smoof makes use of the ParamHelpers (Bischl et al.,
2016) package to define parameters.

noisy Is the function noisy? Default is FALSE.

minimize Logical value(s) indicating which objectives are to be minimized (TRUE) or maximized
(FALSE) respectively. For single objective functions a single logical value is expected. For
multi-objective test functions a logical vector with n.objectives components must be provided.
Default is to minimize all objectives.

vectorized Does the function accept a matrix of parameter values? Default is FALSE.

constraint.fn Optional function which returns a logical vector indicating which non-box-constraints
are violated.

tags A character vector of tags. A tag is a kind of label describing a property of the test function, e.g.,
multimodel or separable. Call the getAvailableTags function for a list of possible tags and see
(Jamil and Yang, 2013) for a description of these. By default, there are no tags associated with
the test function.

global.opt.params If the global optimum is known, it can be passed here as a vector, matrix, list or
data.frame.

global.opt.value The function value of the global.opt.params argument.

n.objectives The number of objectives.

Since there exists no global optimum in multi-objective optimization, the arguments global.opt.params
and global.opt.value are exclusive to the single-objective function generator. Moreover, tagging is
possible for the single-objective case only until now. In contrast, the property n.objectives is set to 1
internally for single-objective functions and is thus no parameter of makeSingleObjectiveFunction.

Creating smoof functions

The best way to describe how to create an objective function in smoof is via example. Assume we
want to add the the two-dimensional Sphere function

f : R2 → R, x 7→ x2
1 + x2

2 with x1, x2 ∈ [−10, 10]

to our set of test functions. The unique global optimum is located at x∗ = (0, 0)T with a function value
of f (x∗) = 0. The code below is sufficient to create the Sphere function with smoof.

> fn <- makeSingleObjectiveFunction(
> name = "2D-Sphere",
> fn = function(x) x[1]^2 + x[2]^2,
> par.set = makeNumericParamSet(
> len = 2L, id = "x",
> lower = c(-10, -10), upper = c(10, 10),
> vector = TRUE
> ),
> tags = "unimodal",
> global.opt.param = c(0, 0),
> global.opt.value = 0
> )
> print(fn)
Single-objective function
Name: 2D-Sphere
Description: no description
Tags:
Noisy: FALSE
Minimize: TRUE
Constraints: TRUE
Number of parameters: 2

Type len Def Constr Req Tunable Trafo
x numericvector 2 - -10,-10 to 10,10 - TRUE -
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Global optimum objective value of 0.0000 at
x1 x2

1 0 0

Here we pass the mandatory arguments name, the actual function definition fn and a parameter
set par.set. We state, that the function expects a single numeric vector parameter of length two
where each component should satisfy the box constraints (x1, x2 ∈ [−10, 10]). Moreover we let the
function know its own optimal parameters and the corresponding value via the optional arguments
global.opt.param and global.opt.value. The remaining arguments fall back to their default values
described above.

As another example we construct a mixed parameter space function with one numeric and one
discrete parameter, where the latter can take the three values a, b and c respectively. The function is
basically a shifted single-objective Sphere function, where the shift in the objective space depends on
the discrete value. Since the function is not purely continuous, we need to pass the calling entity a
named list to the function and thus has.simple.signature is set to FALSE.

> fn2 <- makeSingleObjectiveFunction(
> name = "Shifted-Sphere",
> fn = function(x) {
> shift = which(x$disc == letters[1:3]) * 2
> return(x$num^2 + shift)
> },
> par.set = makeParamSet(
> makeNumericParam("num", lower = -5, upper = 5),
> makeDiscreteParam("disc", values = letters[1:3])
> ),
> has.simple.signature = FALSE
> )
> print(fn2)
Single-objective function
Name: Shifted-Sphere
Description: no description
Tags:
Noisy: FALSE
Minimize: TRUE
Constraints: TRUE
Number of parameters: 2

Type len Def Constr Req Tunable Trafo
num numeric - - -5 to 5 - TRUE -
disc discrete - - a,b,c - TRUE -

> fn2(list(num = 3, disc = "c"))
[1] 15

Visualization

There are multiple methods for the visualization of 1D or 2D smoof functions. The generic plot
method draws a contour plot or level plot or a combination of both. The following code produces the
graphics depicted in Figure 1 (left).

> plot(fn, render.contours = TRUE, render.levels = TRUE)

Here the argument render.levels achieves the heatmap effect, whereas render.contours activates
the contour lines. Moreover, numeric 2D functions can be visualized as a 3D graphics by means of the
plot3D function (see Fig. 1 (right)).

> plot3D(fn, contour = TRUE)

If you prefer the visually appealing graphics of ggplot2 (Wickham, 2009) you can make use of
autoplot, which returns a ggplot2 object. The returned ggplot object can be easily modified with
additional geometric objects, statistical transformations and layers. For instance, let us visualize the
mixed parameter function fn2 which was introduced in the previous subsection. Here we activate
ggplot2 facetting via use.facets = TRUE, flip the default facet direction and adapt the limits of the
objective axis by hand. Figure 2 shows the resulting plot.
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Figure 1: Contour plot (left) and 3D plot (right) of the two-dimensional Sphere function.

library(ggplot2)
pl <- autoplot(fn2, use.facets = TRUE) # basic call
pl + ylim(c(0, 35)) + facet_grid(. ~ disc) # (one column per discrete value)
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Figure 2: Plot of the mixed decisions space shifted Sphere function.

In particular, due to the possibility to subsequently modify the ggplot objects returned by the
autoplot function it can be used effectively in other packages to, e. g., visualize an optimization
process. For instance the ecr package makes extensive use of smoof functions and the ggplot2 plots.

Getter methods

Accessing the describing attributes of a smoof function is essential and can be simply realized by
attr("attrName",fn) or alternatively via a set of helper functions. The latter approach is highly
recommended. By way of example the following listing shows just a few of the available helpers.

> getGlobalOptimum(fn)$param
x1 x2

1 0 0
> getGlobalOptimum(fn)$value
[1] 0
> getGlobalOptimum(fn)$is.minimum
[1] TRUE
> getNumberOfParameters(fn)
[1] 2
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> getNumberOfObjectives(fn)
[1] 1
> getLowerBoxConstraints(fn)
x1 x2

-10 -10

Predefined test function generators

Extending smoof with custom objective functions is nice to have, but the main benefit in using this
package is the large set of preimplemented functions typically used in the optimization literature. At
the moment of writing there are in total 72 single objective functions and 24 multi-objective function
generators available. Moreover there are interfaces to some more specialized benchmark sets and
problem generators which will be mentioned in the next section.

Generators for single-objective test functions

To apply some optimization routines to say the Sphere function you do not need to define it by hand.
Instead you can just call the corresponding generator function, which has the form makeFUNFunction
where FUN may be replaced with one of the function names. Hence, the Sphere function can be
generated by calling makeSphereFunction(dimensions = 2L), where the integer dimensions argument
defines the dimension of the search space for scalable objective functions, i. e., functions which are
defined for arbitrary parameter space dimensions n ≥ 2. All 72 single-objective functions with their
associated tags are listed in Table 1. The tags are based on the test function survey in (Jamil and Yang,
2013). Six functions with very different landscapes are visualized in Figure 3.
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Figure 3: Two-dimensional test functions Matyas (top left), Rastrigin (top middle), Himmelblau (top
right), Zettl (bottom left), Three Hump Camel (bottom middle) and Generalized Drop Wave (bottom right).

Beside these functions there exist two additional single-objective generators, which interface
special test function sets or function generators.

BBOB The 24 Black-Box Optimization Benchmark (BBOB) 2009 (Hansen et al., 2009) functions can be
created with the makeBBOBFunction(fid,iid,dimension) generator, where fid ∈ {1, . . . , 24} is
the function identifier, iid is the instance identifier and dimension the familiar argument for
specifying the parameter space dimension.

MPM2 The problem generator multiple peaks model 2 (Wessing, 2015) is accessible via the function
makeMPM2Function. This problem generator produces multimodal problem instances by com-
bining several randomly distributed peaks (Wessing, 2015). The number of peaks can be set
via the n.peaks argument. Further arguments are the problem dimension, an initial seed for
the random numbers generator and the topology, which accepts the values ‘random’ or ‘funnel’
respectively. For details see the technical report of the multiple peaks model 2 Wessing (2015).
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Function Tags

Ackley continuous, multimodal, differentiable, non-separable, scalable
Adjiman continuous, differentiable, non-separable, non-scalable, multimodal
Alpine N. 1 continuous, non-differentiable, separable, scalable, multimodal
Alpine N. 2 continuous, differentiable, separable, scalable, multimodal
Aluffi-Pentini continuous, differentiable, non-separable, non-scalable, unimodal
Bartels Conn continuous, non-differentiable, non-separable, non-scalable, multimodal
Beale continuous, differentiable, non-separable, non-scalable, unimodal
Bent-Cigar continuous, differentiable, non-separable, scalable, unimodal
Bird continuous, differentiable, non-separable, non-scalable, multimodal
BiSphere multi-objective
Bohachevsky N. 1 continuous, differentiable, separable, scalable, multimodal
Booth continuous, differentiable, non-separable, non-scalable, unimodal
BraninRCOS continuous, differentiable, non-separable, non-scalable, multimodal
Brent continuous, differentiable, non-separable, non-scalable, unimodal
Brown continuous, differentiable, non-separable, scalable, unimodal
Bukin N. 2 continuous, differentiable, non-separable, non-scalable, multimodal
Bukin N. 4 continuous, non-differentiable, separable, non-scalable, multimodal
Bukin N. 6 continuous, non-differentiable, non-separable, non-scalable, multimodal
Carrom Table continuous, differentiable, non-separable, non-scalable, multimodal
Chichinadze continuous, differentiable, separable, non-scalable, multimodal
Chung Reynolds unimodal, continuous, differentiable, scalable
Complex continuous, differentiable, non-separable, non-scalable, multimodal
Cosine Mixture discontinuous, non-differentiable, separable, scalable, multimodal
Cross-In-Tray continuous, non-separable, non-scalable, multimodal
Cube continuous, differentiable, non-separable, non-scalable, unimodal
Deckkers-Aarts continuous, differentiable, non-separable, non-scalable, multimodal
Deflected Corrugated Spring continuous, differentiable, non-separable, scalable, multimodal
Dixon-Price continuous, differentiable, non-separable, scalable, unimodal
Double-Sum convex, unimodal, differentiable, separable, scalable, continuous
Eason continuous, differentiable, separable, non-scalable, multimodal
Egg Crate continuous, separable, non-scalable
Egg Holder continuous, differentiable, non-separable, multimodal
El-Attar-Vidyasagar-Dutta continuous, differentiable, non-separable, non-scalable, unimodal
Engvall continuous, differentiable, non-separable, non-scalable, unimodal
Exponential continuous, differentiable, non-separable, scalable
Freudenstein Roth continuous, differentiable, non-separable, non-scalable, multimodal
Generelized Drop-Wave multimodal, non-separable, continuous, differentiable, scalable
Giunta continuous, differentiable, separable, multimodal
Goldstein-Price continuous, differentiable, non-separable, non-scalable, multimodal
Griewank continuous, differentiable, non-separable, scalable, multimodal
Hansen continuous, differentiable, separable, non-scalable, multimodal
Himmelblau continuous, differentiable, non-separable, non-scalable, multimodal
Holder Table N. 1 continuous, differentiable, separable, non-scalable, multimodal
Holder Table N. 2 continuous, differentiable, separable, non-scalable, multimodal
Hosaki continuous, differentiable, non-separable, non-scalable, multimodal
Hyper-Ellipsoid unimodal, convex, continuous, scalable
Jennrich-Sampson continuous, differentiable, non-separable, non-scalable, unimodal
Judge continuous, differentiable, non-separable, non-scalable, multimodal
Keane continuous, differentiable, non-separable, non-scalable, multimodal
Kearfott continuous, differentiable, non-separable, non-scalable, multimodal
Leon continuous, differentiable, non-separable, non-scalable, unimodal
Matyas continuous, differentiable, non-separable, non-scalable, unimodal
McCormick continuous, differentiable, non-separable, non-scalable, multimodal
Michalewicz continuous, multimodal, scalable
Periodic continuous, differentiable, non-separable, non-scalable, multimodal
Double-Sum continuous, differentiable, separable, scalable, unimodal
Price N. 1 continuous, non-differentiable, separable, non-scalable, multimodal
Price N. 2 continuous, differentiable, non-separable, non-scalable, multimodal
Price N. 4 continuous, differentiable, non-separable, non-scalable, multimodal
Rastrigin multimodal, continuous, separable, scalable
Rosenbrock continuous, differentiable, non-separable, scalable, multimodal
Schaffer N. 2 continuous, differentiable, non-separable, non-scalable, unimodal
Schaffer N. 4 continuous, differentiable, non-separable, non-scalable, unimodal
Schwefel continuous, multimodal, scalable
Shubert continuous, differentiable, non-scalable, multimodal
Six-Hump Camel Back continuous, differentiable, non-separable, non-scalable, multimodal
Sphere unimodal, separable, convex, continuous, differentiable, scalable
Styblinkski-Tang continuous, differentiable, non-separable, non-scalable, multimodal
Sum of Different Squares unimodal, continuous, scalable
Swiler2014 discontinuous, mixed, multimodal
Three-Hump Camel continuous, differentiable, non-separable, non-scalable, multimodal
Trecanni continuous, differentiable, separable, non-scalable, unimodal
Zettl continuous, differentiable, non-separable, non-scalable, unimodal

Table 1: All single objective functions currently available in smoof with their corresponding tags.
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Generators for multi-objective test functions

Evolutionary algorithms play a crucial role in solving multi-objective optimization tasks. The relative
performance of mutli-objective evolutionary algorithms (MOEAs) is, as in the single-objective case, mainly
studied experimentally by systematic comparison of performance indicators on test instances. In
the past decades several test sets for multi-objective optimization were proposed mainly by the
evolutionary computation community. The smoof package offers generators for the DTLZ function
family by Deb et al. (Deb et al., 2002), the ZDT function family by Zitzler et al. (Zitzler et al., 2000)
and the multi-objective optimization test instances UF1, . . . , UF10 of the CEC 2009 special session and
competition (Zhang et al., 2009).

The DTLZ generators are named makeDTLZXFunction with X = 1, . . . , 7. All DTLZ generators need
the search space dimension n (argument dimensions) and the objective space dimension p (argument
n.objectives) with n ≥ p to be passed. DTLZ4 may be passed an additional argument alpha with
default value 100, which is recommended by Deb et al. (2002). The following lines of code generate
the DTLZ2 function and visualize its Pareto-front by running the NSGA-II EMOA implemented in the
mco package with a population size of 100 for 100 generations (see Figure 4).

> fn = makeDTLZ2Function(dimensions = 2L, n.objectives = 2L)
> visualizeParetoOptimalFront(fn, show.only.front = TRUE)

ZDT and UF functions can be generated in a similar manner by utilizing makeZDTXFunction with
X = 1, . . . , 5 or makeUFFunction.
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Figure 4: Visualization of the approximated Pareto-front for the DTLZ2 function with two-dimensional
search and objective space.

Optimization helpers

In this section we present some additional helper methods which are available in smoof.

Filtering and building of test sets

In a benchmark study we most often need not just a single test function, but a set of test functions
with certain properties. Say we want to benchmark an algorithm on all multimodal smoof functions.
Instead of scouring the smoof documentation for suitable test functions we can make use of the
filterFunctionsByTags helper function. This function has only a single mandatory argument, namely
a character vector of tags. Hence, to get an overview of all multimodal functions we can write the
following:

> fn.names <- filterFunctionsByTags(tags = "multimodal")
> head(fn.names)
[1] "Ackley" "Adjiman" "Alpine N. 1" "Alpine N. 2" "Bartels Conn"
[6] "Bird"
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> print(length(fn.names))
[1] 46

The above shows there are 46 multimodal functions. The next step is to generate the actual smoof
functions. We could do this by hand, but this would be tedious work. Instead we utilize the
makeFunctionsByName helper function which comes in useful in combination with filtering. It can be
passed a vector of generator names (like the ones returned by filterFunctionsByTags) and additional
arguments which are passed down to the generators itself. E. g., to initialize all two-dimensional
multimodal functions, we can apply the following function call.

> fns <- makeFunctionsByName(fn.names, dimensions = 2)
> all(sapply(fns, isSmoofFunction))
[1] TRUE
> print(length(fns))
[1] 46
> print(fns[[1L]])
Single-objective function
Name: 2-d Ackley Function
Description: no description
Tags: single-objective, continuous, multimodal, differentiable, non-separable, scalable
Noisy: FALSE
Minimize: TRUE
Constraints: TRUE
Number of parameters: 2

Type len Def Constr Req Tunable Trafo
x numericvector 2 - -32.8,-32.8 to 32.8,32.8 - TRUE -
Global optimum objective value of 0.0000 at
x1 x2

1 0 0

Wrapping functions

The smoof package ships with some handy wrappers. These are functions which expect a smoof
function and possibly some further arguments and return a wrapped smoof function, which behaves
as the original and does some secret logging additionally. We can wrap a smoof function within a
counting wrapper (function addCountingWrapper) to count the number of function evaluations. This is
of particular interest, if we compare stochastic optimization algorithms and the implementations under
consideration do not return the number of function evaluations carried out during the optimization
process. Moreover, we might want to log each function value along the optimization process. This
can be achieved by means of a logging wrapper. The corresponding function is addLoggingWrapper. By
default it logs just the test function values (argument logg.y is TRUE by default). Optionally the logging
of the decision space might be activated by setting the logg.x argument to TRUE. The following listing
illustrates both wrappers by examplary optimizing the Branin RCOS function with the Nelder-Mead
Simplex algorithm.

> set.seed(123)
> fn <- makeBraninFunction()
> fn <- addCountingWrapper(fn)
> fn <- addLoggingWrapper(fn, logg.x = TRUE, logg.y = TRUE)
> par.set <- getParamSet(fn)
> lower <- getLower(par.set); upper = getUpper(par.set)
> res <- optim(c(0, 0), fn = fn, method = "Nelder-Mead")
> res$counts[1L] == getNumberOfEvaluations(fn)
[1] TRUE
> head(getLoggedValues(fn, compact = TRUE))

x1 x2 y1
1 0.00 0.00 55.60
2 0.10 0.00 53.68
3 0.00 0.10 54.41
4 0.10 0.10 52.53
5 0.15 0.15 51.01
6 0.25 0.05 50.22
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Conclusion and future work

Benchmarking optimization algorithms on a set of artificial test functions with well-known character-
istics is an established means of evaluating performance in the optimization community. This article
introduces the R package smoof, which contains a large collection of continuous test functions for
the single-objective as well as the multi-objective case. Besides a set of helper functions is introduced
which allows users to log in detail the progress of the optimization algorithm(s) studied. Future work
will lay focus on implementing more continuous test functions, introducing test functions with mixed
parameter spaces and provide reference Pareto-sets and Pareto-Fronts for the multi-objective functions.
Furthermore the reduction of evaluation time by rewriting existing functions in C(++) is planned.
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PhD Student
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University of Münster
Germany
bossek@wi.uni-muenster.de

Bibliography

B. Bischl, M. Lang, J. Bossek, D. Horn, J. Richter, and P. Kerschke. ParamHelpers: Helpers for Parameters in
Black-Box Optimization, Tuning and Machine Learning, 2016. URL https://github.com/berndbischl/
ParamHelpers. R package version 1.9. [p105]

J. Bossek. ecr: Evolutionary Computation in R, 2017a. URL https://github.com/jakobbossek/ecr2. R
package version 2.0.0. [p103]

J. Bossek. smoof: Single and Multi-Objective Optimization Test Functions, 2017b. URL https://github.
com/jakobbossek/smoof. R package version 1.5. [p104]

C. A. C. Coello, G. B. Lamont, and D. A. Van Veldhuizen. Evolutionary Algorithms for Solving Multi-
Objective Problems (Genetic and Evolutionary Computation). Springer-Verlag, Secaucus, NJ, USA, 2006.
doi: 10.1007/978-0-387-36797-2. URL https://doi.org/10.1007/978-0-387-36797-2. [p103]

K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable multi-objective optimization test problems. In
Evolutionary Computation, 2002. CEC ’02. Proceedings of the 2002 Congress on, volume 1, pages 825–830,
2002. doi: 10.1109/cec.2002.1007032. URL https://doi.org/10.1109/cec.2002.1007032. [p104,
110]

Y. Gonzalez-Fernandez and M. Soto. cec2005benchmark: Benchmark for the CEC 2005 Special Session on
Real-Parameter Optimization, 2015. URL http://CRAN.R-project.org/package=cec2005benchmark.
R package version 1.0.4. [p104]

N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking
2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009. [p104, 108]

S. Huband, P. Hingston, L. Barone, and R. L. While. A review of multiobjective test problems and
a scalable test problem toolkit. IEEE Trans. Evolutionary Computation, 10(5):477–506, 2006. doi:
10.1109/TEVC.2005.861417. URL https://doi.org/10.1109/TEVC.2005.861417. [p104]

M. Jamil and X. Yang. A literature survey of benchmark functions for global optimisation problems.
IJMNO, 4(2):150–194, 2013. doi: 10.1504/ijmmno.2013.055204. URL https://doi.org/10.1504/
ijmmno.2013.055204. [p104, 105, 108]

P. Kerschke and J. Dagefoerde. flacco: Feature-Based Landscape Analysis of Continuous and Constraint
Optimization Problems, 2015. URL http://CRAN.R-project.org/package=flacco. R package version
1.1. [p104]

O. Mersmann. emoa: Evolutionary Multiobjective Optimization Algorithms, 2012. URL http://CRAN.R-
project.org/package=emoa. R package version 0.5-0. [p103]

O. Mersmann. mco: Multiple Criteria Optimization Algorithms and Related Functions, 2014. URL http:
//CRAN.R-project.org/package=mco. R package version 1.0-15.1. [p103]

O. Mersmann and B. Bischl. soobench: Single Objective Optimization Benchmark Functions, 2012. URL
http://CRAN.R-project.org/package=soobench. R package version 1.0-73. [p104]

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

mailto:bossek@wi.uni-muenster.de
https://github.com/berndbischl/ParamHelpers
https://github.com/berndbischl/ParamHelpers
https://github.com/jakobbossek/ecr2
https://github.com/jakobbossek/smoof
https://github.com/jakobbossek/smoof
https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1109/cec.2002.1007032
http://CRAN.R-project.org/package=cec2005benchmark
https://doi.org/10.1109/TEVC.2005.861417
https://doi.org/10.1504/ijmmno.2013.055204
https://doi.org/10.1504/ijmmno.2013.055204
http://CRAN.R-project.org/package=flacco
http://CRAN.R-project.org/package=emoa
http://CRAN.R-project.org/package=emoa
http://CRAN.R-project.org/package=mco
http://CRAN.R-project.org/package=mco
http://CRAN.R-project.org/package=soobench


CONTRIBUTED RESEARCH ARTICLES 113

K. M. Mullen. Continuous global optimization in R. JOURNAL of Statistical Software, 60(6):1–45, 2014.
doi: 10.18637/jss.v060.i06. URL https://doi.org/10.18637/jss.v060.i06. [p103, 104]

S. Theussl and H. W. Borchers. Cran task view: Optimization and mathematical programming. version
2015-11-17. https://cran.r-project.org/web/views/Optimization.html. [p103]

S. Wessing. The multiple peaks model 2. Technical Report TR15-2-001, TU Dortmund, 2015. [p104,
108]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, 2009. ISBN 978-0-387-98140-6.
doi: 10.1007/978-0-387-98141-3. URL https://doi.org/10.1007/978-0-387-98141-3. [p106]

M. Zambrano-Bigiarini and Y. Gonzalez-Fernandez. cec2013: Benchmark Functions for the Special
Session and Competition on Real-Parameter Single Objective Optimization at CEC-2013, 2015. URL
http://CRAN.R-project.org/package=cec2013. R package version 0.1-5. [p104]

Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, and W. Liu. Multiobjective optimization test instances
for the cec 2009 special session and competition. Technical Report CES-487, School of Computer
Science and Electronic Engieering, University of Essex, Colchester, 2009. [p104, 110]

E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary algorithms: Empirical
results. Evolutionary Computation, 8:173–195, 2000. doi: 10.1162/106365600568202. URL https:
//doi.org/10.1162/106365600568202. [p104, 110]

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://doi.org/10.18637/jss.v060.i06
https://cran.r-project.org/web/views/Optimization.html
https://doi.org/10.1007/978-0-387-98141-3
http://CRAN.R-project.org/package=cec2013
https://doi.org/10.1162/106365600568202
https://doi.org/10.1162/106365600568202


CONTRIBUTED RESEARCH ARTICLES 114

minval: An R package for MINimal
VALidation of Stoichiometric Reactions
by Daniel Osorio, Janneth González and Andrés Pinzón

Abstract A genome-scale metabolic reconstruction is a compilation of all stoichiometric reactions that
can describe the entire cellular metabolism of an organism, and they have become an indispensable
tool for our understanding of biological phenomena, covering fields that range from systems biology
to bioengineering. Interrogation of metabolic reconstructions are generally carried through Flux
Balance Analysis, an optimization method in which the biological sense of the optimal solution is
highly sensitive to thermodynamic unbalance caused by the presence of stoichiometric reactions
whose compounds are not produced or consumed in any other reaction (orphan metabolites) and
by mass unbalance. The minval package was designed as a tool to identify orphan metabolites and
evaluate the mass and charge balance of stoichiometric reactions. The package also includes functions
to characterize and write models in TSV and SBML formats, extract all reactants, products, metabolite
names and compartments from a metabolic reconstruction.

Introduction

A chemical reaction is a process where a set of chemical compounds called reactants are transformed
into others called products (Chen et al., 2013). The accepted way to represent a chemical reaction
is called a stoichiometric reaction, where reactants are placed on the left and the products on the
right separated by an arrow which indicates the direction of the reaction, as shown in equation 1
(Hendrickson, 1997). In biochemistry, a set of chemical reactions that transform a substrate into a
product, after several chemical transformations is called a metabolic pathway (Lambert et al., 2011).
The compilation of all stoichiometric reactions included in all metabolic pathways that can describe
the entire cellular metabolism encoded in the genome of a particular organism is known as a genome-
scale metabolic reconstruction (Park et al., 2009) and has become an indispensable tool for studying
metabolism of biological entities at the systems level (Thiele and Palsson, 2010).

reactants︷ ︸︸ ︷
1︸︷︷︸

coe f f icient

cis− aconitic acid︸ ︷︷ ︸
metabolite name

[c]︸︷︷︸
compartment

+ 1 water[c] ⇒︸︷︷︸
directionallity

products︷ ︸︸ ︷
1 isocitric acid[c] (1)

Reconstruction of genome-scale metabolic models starts with a compilation of all known stoichio-
metric reactions for a given organism, according to the presence of enzyme-coding genes in its genome.
The stoichiometric reactions catalyzed by these enzymes are usually downloaded from specialized
databases such as KEGG (Kanehisa, 2000), BioCyc (Caspi et al., 2014), Reactome (Croft et al., 2014),
BRENDA (Chang et al., 2015) or SMPDB (Jewison et al., 2014). However, the downloaded stoichio-
metric reactions are not always mass-charge balanced and don’t represent complete pathways as to
construct a high-quality metabolic reconstruction (Thiele and Palsson, 2010; Gevorgyan et al., 2008).
Therefore the identification and curation of these type of reactions is a time-consuming process which
the researcher have to complete manually using available literature or experimental data (Lakshmanan
et al., 2014).

Genome-scale metabolic reconstructions are usually interrogated through Flux Balance Analysis
(FBA), an optimization method that allows us to understand the metabolic status of the cell, to improve
the production capability of a desired product or make a rapid evaluation of cellular physiology at
genomic-scale (Kim et al., 2008; Park et al., 2009). Nevertheless, FBA method is high sensitive to
thermodynamic unbalance, so in order to increase the validity of a biological extrapolation (i.e. an
optimal solution) from a FBA analysis it is mandatory to avoid this type of unbalancing in mass
conservation through all model reactions (Reznik et al., 2013). Another drawback when determining
the validity of a metabolic reconstruction is the presence of reactions with compounds that are not
produced or consumed in any other reaction (dead ends), generally known as orphan metabolites
(Park et al., 2009; Thiele and Palsson, 2010). The presence of this type of metabolites can be problematic
since they lead to an artificial cellular accumulation of metabolism products which generates a bias in
the biological conclusions. Tracking these metabolites is also a time-consuming process, which most
of the time has to be performed manually or partially automatized by in-house scripting. Given that
typical genome-scale metabolic reconstructions account for hundreds or thousands of biochemical
reactions, the manual curation of these models is a task that can lead to both, the introduction of new
errors and to overlook some others.
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Two of the most popular implementations of FBA analysis are COBRA (Becker et al., 2007) and
RAVEN (Agren et al., 2013) which operate as tools under the commercial MATLABr environment. On
the R environment side sybil (Gelius-Dietrich et al., 2013) and abcdeFBA (Gangadharan and Rohatgi,
2012) are the most common ones. COBRA and RAVEN include some functions for mass and charge
balance (checkMassChargeBalance and getElementalBalance respectively). These functions identify
mass unbalanced reactions, based in the chemical formula or the IUPAC International Chemical
Identifier (InChI) supplied manually by the user for each metabolite included in the genome-scale
metabolic reconstruction.

With the aim of minimizing the manual introduction of thousands of chemical formulas in a
genome-scale reconstruction as well as to avoid the sometimes limiting use of licensed software,
we have developed the minval package. The minval package includes twelve functions designed
to characterize, check and depurate metabolic reconstructions before its interrogation through Flux
Balance Analysis (FBA).

To show the potential use of the functions included into the minval package, a human-readable
model composed by a set of 19 stoichiometric reactions that represent the glycolysis process was
included. Glycolysis is the metabolic pathway that converts a molecule of glucose (C6H12O6), into two
molecules of pyruvate (CH3COCOO− + H+) through a sequence of ten enzyme-catalyzed reactions.
Glycolysis occurs in most organisms in the cytosol of the cell and can be summarized as follows: 1
alpha-D-Glucose[c] + 2 NAD+[c] + 2 ADP[c] + 2 Orthophosphate[c] => 2 Pyruvate[c] + 2
NADH[c] + 2 H+[c] + 2 ATP[c] + 2 H2O[c]

Installation and functions

The minval package includes twelve functions and is available for download and installation from
CRAN, the Comprehensive R Archive Network. To install and load it, just type:

> install.packages("minval")
> library(minval)

The minval package requires an R version 2.10 or higher. Development releases of the package are
available in the GitHub repository http://github.com/gibbslab/minval.

Inputs and syntaxis

The functions included in minval package take as input a set of stoichiometric reactions where the
metabolites should be separated by a plus symbol (+) between two blank spaces and may have just
one stoichiometric coefficient before the name. The reactants should be separated from products by an
arrow using the following symbol => for irreversible reactions and <=> for reversible reactions. The
data can be loaded from traditional human-readable spreadsheets through other CRAN-available
packages such as gdata, readxl or xlsx. To load the included glycolysis model just type:

> glycolysisFile <- system.file("extdata", "glycolysisModel.csv", package = "minval")
> glycolysisModel <- read.csv(file = glycolysisFile,
+ sep = '\t',
+ stringsAsFactors = FALSE)

Syntax validation

The first step for a metabolic reconstruction validation is to check the syntax of their stoichiometric
reactions. The validateSyntax function validate the syntax (Equation 1) of all reactions in a metabolic
reconstruction for several FBA implementations (i.e. COBRA and RAVEN) and returns a boolean
value 'TRUE' if the syntax is correct. Syntax validation is a critical step due valid stoichiometric
reactions are required to write models in TSV or SBML formats.

> validateSyntax(reactionList = glycolysisModel$REACTION)
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[16] TRUE TRUE TRUE TRUE

Metabolic models

Metabolic models include additional to the stoichiometric reactions also another information that
allows model and interrogates them through FBA, the generally associated information is:
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> colnames(glycolysisModel)
[1] "ID" "DESCRIPTION" "REACTION" "GPR" "LOWER.BOUND"
[6] "UPPER.BOUND" "OBJECTIVE"

Label Description Default Value
ID A list of single character strings containing the reaction abbrevia-

tions, Entries in the field abbreviation are used as reaction ids, so
they must be unique.

Mandatory

DESCRIPTION A reaction description Optional (the
column can be
empty)

REACTION A set of stoichiometric reactions with the previously described
characteristics.

Mandatory

GPR A set of genes joined by boolean operators as AND or OR, rules may
be nested by parenthesis. GPR rules represent the relationship
between genes to syntetize the required enzyme or enzymes to
catalyze the stoichiometric reaction.

Optional (the
column can be
empty)

LOWER.BOUND A list of numeric values containing the lower bounds of the reac-
tion rates. If not set, zero is used for an irreversible reaction and
-1000 for a reversible reaction.

-1000 or 0

UPPER.BOUND A list of numeric values containing the upper bounds of the reac-
tion rates. If not set, 1000 is used by default.

1000

OBJECTIVE A list of numeric values containing objective values (0 or 1) for
each reaction

0 or 1

SBML files

The standard format to share and store biological processes such as metabolic models is the Systems
Biology Markup Language (SBML) format. The minval package includes the writeSBMLmod function
which is able to write models in SBML format as follows:

> writeSBMLmod(modelData = glycolysisModel,
+ modelID = "Glycolysis",
+ outputFile = "glycolysis.xml")

Metabolic models in SBML format can be readed through the readSBMLmod function of the sybilSBML
R package:

> glycoModel <- sybilSBML::readSBMLmod("glycolysis.xml")
> glycoModel
model name: Glycolysis
number of compartments 2

c
b

number of reactions: 19
number of metabolites: 18
number of unique genes: 22
objective function: +1 R00200

After load the metabolic model, it can be interrogated through FBA using the optimizeProb function
of the sybil R package. In this case, the reaction 'R00200' was set as the objective function. The
'R00200' reaction describes the production of pyruvate from phosphoenolpyruvate, an alpha-D-
Glucose derivate.

> sybil::optimizeProb(glycoModel)
solver: glpkAPI
method: simplex
algorithm: fba
number of variables: 19
number of constraints: 18
return value of solver: solution process was successful
solution status: solution is optimal
value of objective function (fba): 6.000000
value of objective function (model): 6.000000
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The interrogated glycolysis model estimates a production of six molecules of pyruvate by each alpha-
D-Glucose molecule, probably due a mass unbalance in their stoichiometric reactions. FBA methods
are sensitive to thermodynamic (mass-charge) unbalance, so in order to achieve a valid biological
extrapolation is mandatory to avoid this type of unbalancing in all model reactions.

Mass-Charge balance validation

The second step for a metabolic reconstruction validation is to check the stoichiometric reactions
mass-charge balance. In a balanced stoichiometric reaction according to the Lomonosov-Lavoisier law,
the mass comprising the reactants should be the same mass present in the products. This process
requires the use of a reference with chemical formulas, molecular weights and/or net charges for each
metabolite included in the metabolic model.

Reference values for each metabolite can be manually provided or downloaded through the
downloadChEBI function included into the minval package from the Chemical Entities of Biological
Interest (ChEBI) database, a freely available dictionary of molecular entities focused on ’small’ chemical
compounds involved in biochemical reactions. To download the latest version of the ChEBI database
just type:

> ChEBI <- downloadChEBI(release = "latest",
+ woAssociations = TRUE)

The checkBalance function included into the minval package can test mass-charge balance using a
user-given reference of formulas, masses or charges. The checkBalance function returns a boolean
value 'TRUE' if stoichiometric reaction is balanced. For this example an user provided reference was
used.

> # Loading reference
> chemicalData <- read.csv2(file = system.file("extdata", "chemData.csv",
+ package = "minval"))
> head(chemicalData, n= 5)

NAME FORMULA MASS CHARGE
1 H2O H2O 18.0106 0
2 H+ H 1.0078 1
3 ATP C10H16N5O13P3 506.9957 0
4 NAD+ C21H28N7O14P2 664.1169 1
5 3-Phospho-D-glyceroyl phosphate C3H8O10P2 265.9593 0
> # Mass-Balance evaluation
> checkBalance(reactionList = glycolysisModel$REACTION,
+ referenceData = chemicalData,
+ ids = "NAME",
+ mFormula = "FORMULA")
[1] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[13] TRUE TRUE TRUE TRUE TRUE TRUE TRUE

As is shown above, the third stoichiometric reaction is mass-unbalanced. It can be corrected replacing
manually the unbalanced reaction by a balanced one as follows:

> glycolysisModel$REACTION[3] <- "D-Glyceraldehyde 3-phosphate[c] + Orthophosphate[c] +
+ NAD+[c] <=> 3-Phospho-D-glyceroyl phosphate[c] + NADH[c] + H+[c]"

And mass-balance can be tested again, in this case using the molecular mass of each metabolite as
reference:

> checkBalance(reactionList = glycolysisModel$REACTION,
+ referenceData = chemicalData,
+ ids = "NAME",
+ mWeight = "MASS")
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[16] TRUE TRUE TRUE TRUE

When all stoichiometric reactions are mass-balanced, then the model can be exported and loaded to be
interrogated again:

> writeSBMLmod(modelData = glycolysisModel,
+ modelID = "GlycolysisBalanced",
+ outputFile = "glycolysisBalanced.xml")
> sybil::optimizeProb(sybilSBML::readSBMLmod("glycolysisBalanced.xml"))

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 118

solver: glpkAPI
method: simplex
algorithm: fba
number of variables: 19
number of constraints: 18
return value of solver: solution process was successful
solution status: solution is optimal
value of objective function (fba): 2.000000
value of objective function (model): 2.000000

As shown above, the correct mass-charge balance allows predicting in an accurate way the net yield of
pyruvate from an alpha-D-glucose molecule through the glycolytic pathway using FBA analysis.

Characterize model

A metabolic reconstruction generally includes three types of reactions compartmentalized, transport
and exchange reactions. The compartmentalized reactions are those in where all involved metabolites
(all reactants and products) are assigned to the same compartment. e.g. h[m] + nadph[m] + o2[m] +
25hvitd2[m] => h2o[m] + nadp[m] + 1a25dhvitd2[m]. The transport reactions are those in where the
involved metabolites are assigned to two or more compartments. e.g. 2 hco3[e] + na1[e] <=> 2
hco3[c] + na1[c], and finally, the exchange reactions are those used to import or release metabolites to
the boundary. e.g. acetone[e] <=>. Characterize the stoichiometric reactions of a metabolic model
is a required and time-consuming work. The minval package includes the characterizeReactions
function to characterize the stoichiometric reactions and metabolites by type and compartment.
This function counts the number of reactions, computes the relative frequency of each reaction
type (transport, exchange and compartmentalized), computes the relative frequency of reactions
by compartment, counts the number of unique metabolites and computes the relative frequency of
metabolites by compartment. The characterizeReactions function returns all these information as a
labeled list. To show it potential use, the RECON 2.04 Human Metabolic Reconstruction (Thiele et al.,
2013) was included in a human-readable format. To load and characterize it just type:

> # Loading the Human Metabolic Reconstruction RECON 2.04
> RECON <- read.csv(system.file("extdata", "rRECON2.csv",
+ package = "minval"))
> # Characterizing the stoichiometric reactions
> charRECON <- characterizeReactions(reactionList = RECON$REACTION)
> charRECON
$nReactions
[1] 7441

$rType

Compartmentalized reaction Exchange reaction
55.825830 9.420777

Transport reaction
34.753393

$cReaction

c e g l m n r x
24.593469 1.760516 3.628545 2.983470 9.958339 1.666443 6.208843 5.026206

$nMetabolites
[1] 5063

$cMetabolites

c e g l m n r x
37.092633 12.680229 6.261110 5.964843 14.892356 3.258937 11.258147 8.591744

Computed values can be easy plotted as follows:

> # Combining two plots into one overall graph
> par(mfrow=c(1,2))
> # Plotting reactions by Type
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> pie(x = charRECON$rType,
+ main = "Reactions by Type")
> # Plotting reactions by Compartment
> pie(x = charRECON$cReaction,
+ main = "Reactions by Compartment",
+ labels = compartmentNames)

Compartmentalized reaction

Exchange reaction

Transport reaction

Reactions by Type

Cytosol

Extracellular

Golgi apparatus

Lysosome

Mitochondria Nucleus
Endoplasmic reticulum

Peroxisome

Reactions by Compartment

Figure 1: Distribution by type (left) and by compartments (right) of the reactions included into the
RECON 2.04 Human Metabolic Reconstruction (Thiele et al., 2013).

Stoichiometric matrix

A metabolic reconstruction is often represented in a more compact form called the stoichiometry
matrix (S). If a metabolic reconstruction has n reactions and m participating metabolites, then the
stoichiometry matrix will have correspondingly m rows and n columns. Values in the stoichiometric
matrix represent the metabolite coefficients in each reaction. To generate the stoichiometric matrix of a
metabolic reconstruction just type:

> stoichiometricMatrix(reactionList = glycolysisModel$REACTION)
reactions

metabolites R01 R02 R03 R04 R05 R06 R07 R08 R09 R10
2-Phospho-D-glycerate[c] -1 0 0 0 0 -1 0 0 0 0
Phosphoenolpyruvate[c] 1 0 0 0 0 0 0 0 0 -1
H2O[c] 1 0 0 0 0 0 0 0 0 0
D-Glyceraldehyde 3-phosphate[c] 0 -1 -1 1 0 0 0 0 0 0
Glycerone phosphate[c] 0 1 0 1 0 0 0 0 0 0
Orthophosphate[c] 0 0 -1 0 0 0 0 0 0 0
NAD+[c] 0 0 -1 0 0 0 0 0 0 0
3-Phospho-D-glyceroyl phosphate[c] 0 0 1 0 1 0 0 0 0 0
NADH[c] 0 0 1 0 0 0 0 0 0 0
H+[c] 0 0 1 0 0 0 0 0 0 0
beta-D-Fructose 1,6-bisphosphate[c] 0 0 0 -1 0 0 0 0 1 0
ATP[c] 0 0 0 0 -1 0 -1 0 -1 1
3-Phospho-D-glycerate[c] 0 0 0 0 -1 1 0 0 0 0
ADP[c] 0 0 0 0 1 0 1 0 1 -1
alpha-D-Glucose[c] 0 0 0 0 0 0 -1 0 0 0
alpha-D-Glucose 6-phosphate[c] 0 0 0 0 0 0 1 -1 0 0
beta-D-Fructose 6-phosphate[c] 0 0 0 0 0 0 0 1 -1 0
Pyruvate[c] 0 0 0 0 0 0 0 0 0 1

reactions
metabolites R11 R12 R13 R14 R15 R16 R17 R18 R19
2-Phospho-D-glycerate[c] 0 0 0 0 0 0 0 0 0
Phosphoenolpyruvate[c] 0 0 0 0 0 0 0 0 0
H2O[c] -1 0 0 0 0 0 0 0 0
D-Glyceraldehyde 3-phosphate[c] 0 0 0 0 0 0 0 0 0
Glycerone phosphate[c] 0 0 0 0 0 0 0 0 0
Orthophosphate[c] 0 0 0 -1 0 0 0 0 0
NAD+[c] 0 -1 0 0 0 0 0 0 0
3-Phospho-D-glyceroyl phosphate[c] 0 0 0 0 0 0 0 0 0
NADH[c] 0 0 -1 0 0 0 0 0 0
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H+[c] 0 0 0 0 -1 0 0 0 0
beta-D-Fructose 1,6-bisphosphate[c] 0 0 0 0 0 0 0 0 0
ATP[c] 0 0 0 0 0 -1 0 0 0
3-Phospho-D-glycerate[c] 0 0 0 0 0 0 0 0 0
ADP[c] 0 0 0 0 0 0 0 0 -1
alpha-D-Glucose[c] 0 0 0 0 0 0 -1 0 0
alpha-D-Glucose 6-phosphate[c] 0 0 0 0 0 0 0 0 0
beta-D-Fructose 6-phosphate[c] 0 0 0 0 0 0 0 0 0
Pyruvate[c] 0 0 0 0 0 0 0 -1 0

Reactants and products

As described before, stoichiometric reactions represent the transformation of reactants into products in
a chemical reaction. The reactants and products functions extract and return all reactants or products
respectively in a stoichiometric reaction as a vector. If reaction is irreversible ('=>') then reactants and
products are separated and returned afterward as follows:

> reactants(reactionList = "ADP[c] + Phosphoenolpyruvate[c] => ATP[c] + Pyruvate[c]")
[1] "ADP[c]" "Phosphoenolpyruvate[c]"
> products(reactionList = "ADP[c] + Phosphoenolpyruvate[c] => ATP[c] + Pyruvate[c]")
[1] "ATP[c]" "Pyruvate[c]"

In reversible cases ('<=>') all reactants at some point can act as products and vice versa, for that reason
both functions return all reaction metabolites:

> reactants(reactionList = "H2O[c] + Urea-1-Carboxylate[c] <=> 2 CO2[c] + 2 NH3[c]")
[1] "H2O[c]" "Urea-1-Carboxylate[c]" "CO2[c]"
[4] "NH3[c]"
> products(reactionList = "H2O[c] + Urea-1-Carboxylate[c] <=> 2 CO2[c] + 2 NH3[c]")
[1] "H2O[c]" "Urea-1-Carboxylate[c]" "CO2[c]"
[4] "NH3[c]"

Metabolites

The metabolites function automatically identifies and lists all metabolites (with or without compart-
ments) for a specific or a set of stoichiometric reactions. This list is usually required for programs that
perform FBA analysis as an independent input spreadsheet. In this example we show how to extract
all metabolites (reactants and products) included in a metabolic reconstruction with and without
compartments.

> metabolites(reactionList = glycolysisModel$REACTION)
[1] "2-Phospho-D-glycerate[c]" "Phosphoenolpyruvate[c]"
[3] "H2O[c]" "D-Glyceraldehyde 3-phosphate[c]"
[5] "Glycerone phosphate[c]" "Orthophosphate[c]"
[7] "NAD+[c]" "3-Phospho-D-glyceroyl phosphate[c]"
[9] "NADH[c]" "H+[c]"
[11] "beta-D-Fructose 1,6-bisphosphate[c]" "ATP[c]"
[13] "3-Phospho-D-glycerate[c]" "ADP[c]"
[15] "alpha-D-Glucose[c]" "alpha-D-Glucose 6-phosphate[c]"
[17] "beta-D-Fructose 6-phosphate[c]" "Pyruvate[c]"
> metabolites(reactionList = glycolysisModel$REACTION, woCompartment = TRUE)
[1] "2-Phospho-D-glycerate" "Phosphoenolpyruvate"
[3] "H2O" "D-Glyceraldehyde 3-phosphate"
[5] "Glycerone phosphate" "Orthophosphate"
[7] "NAD+" "3-Phospho-D-glyceroyl phosphate"
[9] "NADH" "H+"
[11] "beta-D-Fructose 1,6-bisphosphate" "ATP"
[13] "3-Phospho-D-glycerate" "ADP"
[15] "alpha-D-Glucose" "alpha-D-Glucose 6-phosphate"
[17] "beta-D-Fructose 6-phosphate" "Pyruvate"

Orphan metabolites

Those compounds that are not produced or consumed in any other reaction are generally called orphan
metabolites, they represent one of the main causes of mass unbalances in metabolic reconstructions
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generating dead-ends without flux. The orphanMetabolites function extracts all orphan compounds
included into a metabolic reconstruction.

> orphanMetabolites(reactionList = glycolysisModel$REACTION[noExchange])
[1] "alpha-D-Glucose[c]" "Pyruvate[c]" "H+[c]"
[4] "H2O[c]" "NAD+[c]" "NADH[c]"
[7] "Orthophosphate[c]"

Due not all orphans are not consumed and not produced, the orphanReactants function, identifies
compounds that are not produced internally by any other reaction and should be added to the
reconstruction, for instance, as an input exchange reaction following the protocol proposed by Thiele
and Palsson (2010).

> orphanReactants(reactionList = glycolysisModel$REACTION[noExchange])
[1] "alpha-D-Glucose[c]" "H+[c]" "H2O[c]"
[4] "NAD+[c]" "NADH[c]" "Orthophosphate[c]"

By another side, the orphanProducts function, identifies compounds that are not consumed internally
by any other reaction and should be added to the reconstruction, for instance, as an output exchange
(sink) reaction.

> orphanProducts(reactionList = glycolysisModel$REACTION[noExchange])
[1] "Pyruvate[c]" "H+[c]" "H2O[c]"
[4] "NAD+[c]" "NADH[c]" "Orthophosphate[c]"

Compartments

As well as in eukaryotic cells, in which not all reactions occur in all compartments, stoichiometric reac-
tions in a metabolic reconstruction can be labeled to be restricted to a single compartment during FBA,
by the assignment of a compartment label after each metabolite name. Some FBA implementations
require the reporting of all compartments included in the metabolic reconstruction as an independent
section of the human-readable input file. In this example, we show how to extract all compartments
for all reactions included in the RECON 2.04 Human Metabolic Reconstruction (Thiele et al., 2013).

> compartments(reactionList = RECON$REACTION)
[1] "c" "l" "m" "r" "e" "x" "n" "g"

TSV files

Additional to the SBML format, the TSV format is the default input of metabolic models for the sybil
R package. The TSV format is composed of three text files, following a character-separated (tab by
default) value format where each line contains one entry (stoichiometric reaction and associated info).
The writeTSVmod function can write a metabolic model in a TSV format as follows:

> writeTSVmod(modelData = glycolysisModel,
+ modelID = "Glycolysis",
+ outputFile = "glycolysis")

Metabolic models in TSV format can be readed through the readTSVmod function included in the sybil
package:

> sybil::readTSVmod(prefix = "glycolysis",quoteChar = "\"")
model name: Glycolysis
number of compartments 1

[c]
number of reactions: 19
number of metabolites: 18
number of unique genes: 22
objective function: +1 R00200

Summary

We introduced the minval package to check the syntax validity, evaluate the mass-charge balance and
extract all orphan metabolites of a set of stoichiometric reactions. Together, this steps represent the
minimal validation that should be performed in a genome-scale metabolic reconstruction. Functions
to characterize and export metabolic models in SBML and TSV formats as well as to extract all
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reactants, products, metabolite names and compartments for a set of stoichiometric reactions were also
introduced. Moreover, we also show in a step by step fashion, how this minimal evaluation process of
mass balance can avoid an overestimation of the the net yield of pyruvate from an alpha-D-glucose
molecule when using an unbalanced model of the glycolysis pathway.
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Working with Daily Climate Model
Output Data in R and the
futureheatwaves Package
by G. Brooke Anderson, Colin Eason, and Elizabeth A. Barnes

Abstract Research on climate change impacts can require extensive processing of climate model output,
especially when using ensemble techniques to incorporate output from multiple climate models and
multiple simulations of each model. This processing can be particularly extensive when identifying
and characterizing multi-day extreme events like heat waves and frost day spells, as these must be
processed from model output with daily time steps. Further, climate model output is in a format and
follows standards that may be unfamiliar to most R users. Here, we provide an overview of working
with daily climate model output data in R. We then present the futureheatwaves package, which we
developed to ease the process of identifying, characterizing, and exploring multi-day extreme events
in climate model output. This package can input a directory of climate model output files, identify all
extreme events using customizable event definitions, and summarize the output using user-specified
functions.

Introduction

Research on climate change impacts can require extensive processing of climate model output data.
This is not only because output files for a single climate model can be large, but also because of
the rising popularity of ensemble techniques (Cubasch et al., 2013) in which, to better characterize
uncertainty in projections, impacts are assessed for multiple climate models, multiple simulations of
each climate model, and multiple climate experiments. Such ensemble techniques help characterize
uncertainty in projections of regional climate change over the next century due to three distinct sources:
(1) internal climate variability, i.e., climate noise, (2) climate model uncertainty, i.e. the same forcing
can produce a different response in different models and (3) scenario uncertainty, i.e., uncertainty in
future climate forcings (e.g. Hawkins and Sutton (2009)).

A key source of data for ensemble techniques is the Coupled Model Intercomparison Project, Phase
5 (CMIP5; Taylor et al. (2012)). This project brought together major climate modeling groups around
the world to simulate the same future radiative forcing scenarios, but with their own models. This
created an ensemble of state-of-the-art climate model projections that allows researchers to study
projections and their uncertainties. Most of these modeling groups additionally performed more than
one simulation for each scenario and model (i.e. multiple ensemble members), perturbing the initial
conditions by a very tiny amount to quantify uncertainties due to internal climate variability.

We begin this article with an overview of CMIP5 climate model output data for R users, focusing
on output with a daily time step. We outline where data from CMIP5 can be obtained as well as how
to work with the file format (netCDF) from R. We overview some R packages that can be useful when
working with this data, as well as aspects of the data (e.g., non-standard calendars) of which users
should be aware when working with daily climate model output in R.

After this overview, we present the futureheatwaves package, which we created to aid in iden-
tifying and characterizing any type of multi-day extreme event from daily climate model output
(Table 1). The impacts of multi-day extreme events must be assessed using output in daily time step,
unlike other climate impacts that can be assessed using climate model output at monthly, seasonal, or
yearly time steps. Further, extreme events are identified based on conditions that are rare for a certain
location (e.g., 98th percentile of local temperature distribution for identifying heat waves) (Cubasch
et al., 2013). In this case, the event definition must be determined at each study location from climate
model output before events can be identified. Finally, it is often of interest to create summaries of
multiple characteristics of these extreme events. For example, one may be interested in determining
whether the frequency or characteristics (e.g., length, intensity) of heat waves or warm spells will
change under certain climate change scenarios (Cubasch et al., 2013).

The futureheatwaves package handles these challenges and can be used to identify and character-
ize a variety of multi-day extreme events across different ensemble members of one or more climate
models. It also provides some functionality specifically useful in identifying and characterizing heat
waves. Quantification of the impacts of heat waves on human health suffers from additional sources
of uncertainty beyond those inherent in projections of regional changes in surface temperature. These
include: (1) uncertainty in the definition of a heat wave itself and (2) uncertainty in the ability of
communities to adapt to changing temperatures (the adaptation scenario). This package therefore
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Design goals of the futureheatwaves package

1 Make processing of large ensembles of climate simulations more
practical for researchers exploring the potential impacts of heat waves
and other multi-day extreme events.

2 Speed up processing time by incorporating C++ in event identification.
3 Keep track of the names of climate models and number of ensemble

members processed for each.
4 Not only identify, but also characterize, all extreme events within each

climate simulation, to allow the exploration of patterns in these
characteristics across different simulations and also to allow the use of
more complex impacts models, including models that incorporate
event characteristics (e.g., event length, event intensity). For example,
this package allows the user to apply a health-effects model where risk
of mortality is not the same for every heat wave, but rather is modified
by heat wave length, intensity, or other measured characteristics.

5 Give users extensive power in customizing the process, including
allowing custom extreme event definitions.

6 Allow users to easily explore the extreme events identified within all
climate simulations.

7 Create output that is in a “tidy" data format, allowing it to work well
with ggplot2 for visualization.

Table 1: Design goals for the futureheatwaves package.

allows the user to create and use a custom extreme event definition to identify events in the climate
model output, as well as providing options to explore different scenarios of adaptation to heat.

An overview of climate model output for R users

CMIP5 climate model output data

For climate impact studies, a main source of data is the Coupled Model Intercomparison Project,
which is currently in its fifth phase (CMIP5). Over 20 climate modeling groups created one or more
climate models which, for this project, were run using standardized scenarios (Taylor et al., 2012).
The resulting output is uniform across modeling groups and has a consistent structure, which allows
comparison of simulations from different models (Flato et al., 2013). CMIP5 climate model output
is archived at a number of different time steps (e.g., daily, monthly, seasonal, yearly) (Taylor and
Doutriaux, 2010), and some variables are reported at multiple levels in the ocean or atmosphere (e.g.,
ocean temperature is reported at different ocean depths). Here, we will focus on data with a daily time
step for variables reported at a single level (e.g., near-surface air temperature).

Each modeling group ran simulations for CMIP5 under several experiments, with experiments
varying in terms of radiative forcing scenarios through the use of different scenarios of time-varying
model inputs (greenhouse gas emissions or concentrations, land use changes, etc.) (Taylor et al.,
2012; Flato et al., 2013). Experiments include historical experiments (run using radiative forcing
consistent with observed and reconstructed data for 1850–2005), pre-industrial control experiments,
and experiments of future scenarios of radiative forcing over the 21st century or longer (e.g., RCP4.5,
RCP8.5) (Taylor et al., 2012). Some modeling groups created ensembles of output for a specific model
and experiment, in which they ran the experiment multiple times with very small changes to the initial
conditions.

The CMIP5 climate model output data are distributed across data nodes at different climate
modeling centers (Taylor et al., 2012), but can be accessed centrally at the World Climate Research
Programme CMIP5 data portal at https://pcmdi.llnl.gov/search/cmip5/. Users must register
before downloading data, and some data are restricted to non-commercial use. There is a separate
file for each combination of climate model, experiment, modeling realm (e.g., atmosphere, ocean),
variable, time step, and ensemble member (Taylor et al., 2012; Taylor and Doutriaux, 2010). For finer
time scales, the output is further split across multiple files for specific year ranges (e.g., 5 years of
output for each file) (Taylor and Doutriaux, 2010). Each file’s name includes the output variable,
climate model, experiment, and ensemble member for the simulation (Taylor and Doutriaux, 2010).
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Figure 1: Example structure of a netCDF climate model output file for a variable reported at a
single level, like near-surface air temperature. Data are stored in a three-dimensional array, with
measurements at each time step and climate grid location. These data are typically indexed in the
netCDF file by longitude, latitude, and time, in that order. For example, if the near-surface air
temperature in the example netCDF shown here is read into an R object called tas, you can access the
value for the first day at the fourth longitude and third latitude with tas[4, 3, 1]. In addition to
the output variable (temperature in this example), vectors with the ordered values of each dimension
(longitude, latitude, and time) can also be read in from the netCDF file, as well as attribute data (e.g.,
units for variables, the calendar used for time).

CMIP5 files can be searched and downloaded through a point-and-click web interface. They
can also be downloaded in bulk to computers with Unix or Mac operating systems using the wget
file downloading utility. Appropriate wget scripts can be created either through the World Climate
Research Programme CMIP5 data portal or through the Earth System Grid Federation’s Search RESTful
API. Tips on efficiently searching and downloading the data, including through the use of wget scripts
and the search API, are available as user tutorials through the website of the University of Colorado
Boulder’s Earth System CoG (e.g., https://www.earthsystemcog.org/projects/cog/doc/wget for a
tutorial on downloading files using wget).

CMIP5 files are saved in Network Common Data Format (netCDF), a binary file format that allows
storage of data representing a regular array. For climate model output at a single level (e.g., near-
surface air temperature), the data is a 3-dimensional array, with dimensions representing time and
two coordinates of location (e.g., latitude and longitude). Figure 1 provides a sketch of the structure of
netCDF files for single-level climate model output.

Each data point in the netCDF array gives the modeled value of the variable (e.g., surface tempera-
ture) for a single time point and location. Global climate models generate output at regularly-spaced
time steps, typically at regularly-spaced grid points around the world. The latitude and longitude
spacing of grid points vary by climate model, but are typically 1–2 degrees for atmospheric variables
in CMIP5 models (Flato et al., 2013). For CMIP5 climate model output, the location units are in degrees
east and degrees north for longitude and latitude, respectively. For daily output files, the time unit is
in days since a specified origin date-time (e.g., days since 1850-01-01 00:00:00) (Taylor and Doutriaux,
2010).

All CMIP5 output files are required to include certain metadata (or “attributes”) (Taylor and
Doutriaux, 2010), including the experiment, forcing agents input to the model to create the simulation,
time step, institution and institutional contact information, climate model, and modeling realm (Taylor
and Doutriaux, 2010). The metadata also must include units for all of the dimension variables (e.g.,
longitude, latitude, time). The netCDF format allows one to access metadata and variables describing
the dimensions of the data without reading the full file into memory.

To find out more about the CMIP climate model output data, Taylor et al. (2012) and Meehl et al.
(2007) are excellent resources.

Working with climate model output in R

When working with daily climate model output data, challenges to R users include: (1) the file format,
(2) use of non-Gregorian calendars, and (3) large file sizes. This section explains these challenges and
offers some strategies for dealing with them.

CMIP5 data are available in the netCDF file format. Free specialty software exists to work with
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GFDL−ESM2G model, RCP8.5 experiment, r1i1p1 ensemble member

Modeled temperature on a day in July 2075

Figure 2: Example of mapping near-surface air temperature data worldwide for a single day of climate
model output data. This map uses data from the Geophysical Fluid Dynamics Laboratory’s Earth
System Model 2G, r1i1p1 ensemble member, on a single day in the summer of 2075. Full code for
recreating the map is available in the "starting_from_netcdf" vignette of the futureheatwaves package.

climate model output files in this format, including a collection of command line tools developed
by the Max Planck Institute called Climate Model Operators (CDO) (Schulzweida, 2017) and an
interpreted language developed by the National Center for Atmospheric Research (NCAR) called
the NCAR Command Language (NCL) (UCAR/NCAR Computational and Information Systems
Laboratory, 2017). Although such software can be used to quickly process netCDF climate model
output files, they require learning a new language syntax, and so for R users may not be worth the
computational speed gain compared to alternative solutions that can be scripted in the R language.
While base R import functions do not exist for netCDF files, there are a few R package extensions
that allow R users to work with the netCDF file format used for CMIP5 files directly from R. Older
packages include ncdf and ncvar, but these do not work with the newer netCDF version 4 released
in 2008 and are no longer available through CRAN. More recent packages, including ncdf4 (Pierce,
2015) and RNetCDF (Michna and Woods, 2013, 2016), work with both version 4 and netCDF’s older
version 3. While climate model output data for CMIP5 are required to conform with the earlier version
(version 3) (Taylor and Doutriaux, 2010), it is safer to write code using functions that can be used with
either version, in case future phases of CMIP do not require files to conform with netCDF version 3.

You can do a number of things with netCDF files in R using these packages. For example, ncdf4’s
nc_open function can be used to open a connection to a netCDF file; the object returned by the function
includes the file’s attribute data. Once a file connection is open, variables can be read in using the
ncvar_get function. For example, the variables defining the dimensions of the sketched netCDF file in
Figure 1 could be read into R with ncvar_get with the varid parameter set to “lat”, “lon”, or “time”.

The climate output variable (e.g., near-surface air temperature) can similarly be read in using
ncvar_get. In this case, the varid parameter should be set using the appropriate CMIP5 variable
name (e.g., “tas” for near-surface air temperature); these variable names can be found in the CMIP
requested output tables (Taylor and Doutriaux, 2010). If only a subset of the full file is needed, the
dimensional time and location data can be used to identify the location of the needed data in the
netCDF array and this information can then be used to read a portion of data into memory (e.g., with
the nc.get.var.subset.by.axes function in ncdf4.helpers). Once the user is done reading in data
from the file, the connection to the netCDF should be closed (e.g., with the nc_close function from
ncdf4).

A second challenge when working with climate model output data in R is that some climate
models output to non-Gregorian calendars. Since the late 1500s, Western dates have been set using
the Gregorian calendar, which has 365.2425-day years. Some climate models, however, are run using
different calendars, including the Julian calendar (365.25-day years), a calendar where there are no
leap years (365-day years), a calendar where every year is a leap year (366-day years), and a calendar
of twelve 30-day months (360-day years) (Eaton et al., 2011). With these non-Gregorian calendars, R’s
base functions for converting a vector to a Date class based on the number of days since an origin date
(as.Date, as.POSIXct) do not return the desired values.
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Figure 3: Example of plotting a time series of temperature simulations between 2071 and 2075 from
CMIP5 daily climate model output data for the model grid cell point closest to Beijing, China. This
plot uses data from the Geophysical Fluid Dynamics Laboratory’s Earth System Model 2G, r1i1p1
ensemble member. Full code for recreating the map is available in the "starting_from_netcdf" vignette
of the futureheatwaves package.

Two R packages provide help with non-Gregorian calendars: PCICt (Bronaugh and Drepper,
2013) and ncdf4.helpers (Bronaugh, 2014). The nc.get.time.series function in ncdf4.helpers pulls
and uses metadata on the calendar stored in the CMIP5 netCDF file’s attributes to convert the
“time” variable in the file to an object of the PCICt class. This class is defined in the PCICt package
and provides date-like functionality for 360- and 365-day calendars (Bronaugh and Drepper, 2013).
However, while these functions will help with handling most CMIP5 files, the CMIP5 standards allows
use of other calendars which may not be successfully handled by these functions, so it is important
to assess whether the time variable range in the PCICt object correctly matches the expected date
ranges for a file when processing CMIP5 data in R. While most CMIP5 climate models use the same
calendar for all experiments, a few do not; a full table of the calendars used for each climate model
and experiment, pulled from netCDF metadata, is available at https://www.earthsystemcog.org/
projects/cog/faq_data.

Finally, the size of CMIP5 files can make them difficult to work with in R. CMIP5 climate model
output files can be as large as several gigabytes. The size of the files can therefore be large enough that
it may make more sense to work with smaller chunks of the data in R, rather than reading all data into
memory and working with the data all at once (Todd-Brown and Bond-Lamberty, 2016). This problem
aggregates when working with multiple climate models and more than one ensemble member for
each of those climate models.

In addition to these general packages for working with netCDF files, there are several R packages
specifically for working with climate model output data, including RCMIP5 (Todd-Brown and Bond-
Lamberty, 2016) and wux (Mendlik et al., 2016). However, these packages are more useful for working
with data output at time steps of a month or higher and have limited utility with the daily climate
model output data required for studies of multi-day extreme events.

The RCMIP5 package includes functions to read in CMIP5 data from netCDF files, scan a directory
of CMIP5 files and determine models with continuous available data, create objects of a special
cmip5data class to work with CMIP5 data within R, and parse the file names for all files in a directory
to extract information within the file name. For this package, most functions only work with monthly
or less frequent data (Todd-Brown and Bond-Lamberty, 2016). While the loadCMIP5 function does
successfully load daily data as a cmip5data object, most of the methods for this object type do not
do anything meaningful for daily data. The package’s getFileInfo function, however, will work
with CMIP5 files of any time step; this function identifies all CMIP5 files in a directory and creates a
data frame with information parsed from the file name. The get.split.filename.cmip5 function in
the ncdf4.helper package similarly can be used to parse information contained in CMIP5 file names
(Bronaugh, 2014).

The wux package (Mendlik et al., 2016) includes functions that allow the user to download CMIP5
output at a monthly time step directly from R with the CMIP5fromESGF function. The package then
uses the models2wux function to read climate model output netCDF files and convert it to “WUX”
data frames, which can be used by other functions in the package. While this function can input
climate model output with daily time steps (the “what.timesteps” element of the modelinput list input
must be set to “daily”), the function aggregates this data to a monthly or less frequent (e.g., seasonal)

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=PCICt
https://CRAN.R-project.org/package=ncdf4.helpers
https://www.earthsystemcog.org/projects/cog/faq_data
https://www.earthsystemcog.org/projects/cog/faq_data
https://CRAN.R-project.org/package=RCMIP5
https://CRAN.R-project.org/package=wux


CONTRIBUTED RESEARCH ARTICLES 129

Climate projections

1

1 2

2

1

3

1

4

1 2

climate models

ensemble members

Extreme event data sets

1

1 2

2

1

3

1

4

1 2

Summary data frame

gen hw set apply all models

Figure 4: Overview of the functionality of the futureheatwaves package. The package takes a directory
with climate projection files (left), for one or more climate models, with one or more ensemble members
for each climate model (this example figure shows four climate models with one or two ensemble
members each). The gen_hw_set function processes these files to create a data frame for each ensemble
member, identifying and characterizing all multi-day extreme events (e.g., heat waves) in the time
series projection for that ensemble member. The apply_all_models function allows users to explore
these extreme events by applying user-created functions across all the extreme event data frames,
creating a summary data frame with results.

aggregation when creating the WUX data frame. Therefore, while this package provides very useful
functionality for working with averaged output of daily climate model output data or with output
data at a larger time step, it cannot easily be used to identify and characterize multi-day extreme
events like heat waves.

The functions and packages described in this section can be used with CMIP5 netCDF files to do
things in R like map near-surface air temperatures from a single climate model on a specific day (Figure
2) or pull a time series of daily near-surface air temperature simulations at a specific climate model
grid point (Figure 3). The futureheatwaves’ “Starting from netCDF files” vignette (https://cran.
r-project.org/web/packages/futureheatwaves/vignettes/starting_from_netcdf.html) provides
all code required to create these figures, as well as more details and code examples on working with
CMIP5 netCDF files in R.

The futureheatwaves package

Motivation

We created the futureheatwaves package to aid in identifying, characterizing, and exploring multi-
day extreme events in daily climate model output data. While most of the discrete tasks involved in
identifying and characterizing multi-day extreme events are fairly straightforward, the full process
can be code-intensive, especially for multi-city studies, studies that test sensitivity to how an event
is defined, or studies that incorporate different scenarios of adaptation in the case of events defined
using a threshold relative to community climate. Our aim in developing this package was therefore to
make the full process of identifying and characterizing these extreme events much more convenient
and so facilitate the use of multi-model, multi-ensemble member analyses in climate impact studies
conducted by non-climate scientists.

How the package works

Figure 4 gives an overview of the two primary functions of the futureheatwaves package. First, the
gen_hw_set function processes a directory of climate projection files that are stored locally on the
user’s computer (Figure 4, “Climate projections”), to generate a list of all extreme events in each
projection, as well as over a dozen characteristics of each identified extreme event (Table 2). This
package start from files rather than R objects to avoid loading data from all climate model ensembles
at once; instead, the function loads, processes, and saves output for a single climate model ensemble
member at a time. The extreme events are identified and characterized at one or more study locations
(e.g., cities), which the user specifies in an input file. The extreme events identified for each ensemble
member are output as separate files in a directory specified by the user (Figure 4, “Extreme events
datasets“).

Once the user creates these data frames of location-specific extreme events, the apply_all_models
function can be used to apply custom functions across all the extreme event data frames. This
functionality allows users to create summaries of extreme events across all climate models and
ensemble members (Figure 4, right). The function can be used to generate summary statistics (e.g.,
determine average heat wave length or total frost days) or to apply more complex functions (e.g.,
apply epidemiologic effect estimates across the heat waves to generate health impact estimates).
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When using this package, CMIP5 climate model output data require some pre-processing. Data
will need to be saved in a specific format, with files stored in a specific directory structure. Full
details of the required file and directory structure are provided in the package’s main vignette (https:
//cran.r-project.org/web/packages/futureheatwaves/vignettes/futureheatwaves.html), while
tips and an R script for conducting this processing starting from CMIP5 netCDF files are given in the
“Starting from netCDF files” vignette.

This package can be used for study locations worldwide. The “Starting from netCDF files” package
vignette provides an example of using this package to identify and explore future heat waves in several
Chinese cities.

Example data

We have included data files in the package to serve as example files so that users can try this package
before applying it to their own directory of climate projection files. These example data come from
two climate models that are a part of CMIP5: (1) the model of the Beijing Climate Center, China
Meteorological Administration (BCC) (Xin et al., 2013) and (2) the National Center for Atmospheric
Research’s (NCAR’s) Community Climate System Model, version 4 (CCSM4) (Gent et al., 2011). We
include one ensemble member from BCC (r1i1p1) and two from CCSM (r1i1p1 and r2i1p1). Once the
futureheatwaves package is installed and loaded, the user can find the location of these files on his or
her computer using R’s system.file function.

To ensure that the size of this example data is reasonably small, we have only included projection
data for grid points from these climate models that are near five U.S. east coast cities: New York,
NY; Philadelphia, PA; Newark, NJ; Baltimore, MD; and Providence, RI. Further, to keep the file
sizes reasonably small, the historical projections range over the years 1990 to 1999, while the future
projections are limited to 2060 to 2079. Users’ applications of this package will likely use directories
with many more climate model ensemble members and more locations; however, the operation of the
package is the same for this smaller example application, as it would be for a much larger application.

Basic example of using futureheatwaves

Once climate model output files are set up, as specified in the “futureheatwaves” package vignette,
the package can process them to identify and characterize heat waves in each ensemble member’s
projection for each location using the gen_hw_set function. For example, to process the example
climate model output data included with the package, the user can run:

library(futureheatwaves)
projection_dir_location <- system.file("extdata/cmip5",

package = "futureheatwaves")
city_file_location <- system.file("extdata/cities.csv",

package = "futureheatwaves")

gen_hw_set(out = "example_results",
dataFolder = projection_dir_location ,
dataDirectories = list("historical" = c(1990, 1999),

"rcp85" = c(2060, 2079)),
citycsv = city_file_location,
coordinateFilenames = "latitude_longitude_NorthAmerica_12mo.csv",
tasFilenames = "tas_NorthAmerica_12mo.csv",
timeFilenames = "time_NorthAmerica_12mo.csv")

This code first identifies and saves as objects the path names on the user’s computer of the
example climate projections directory (projection_dir_location) and the file of study locations
(city_file_location). The gen_hw_set function processes the example input and creates a new
directory, ‘example_results’, with files of identified and characterized heat waves, in the user’s current
working directory. In this example code, the processing is done using default values for the event
definition, adaptation scenario, etc. How and why to customize these choices are explained later in
the text. Function arguments (e.g., dataDirectories, tasFilenames) are used to specify the format of
the data and the directory structure.

Once the function has completed running, results will be written locally to the directory specified
by the out argument of gen_hw_set. This directory will include files with some basic information
about the climate models and the closest grid points of each climate model to each location, as well as
a directory with files of identified and classified extreme events for each ensemble member, including
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Column name Description of characteristic

mean.var Average daily value of the variable across all days in the extreme
event, in the units in which the variable is expressed in input files (e.g.,
average daily mean temperature during the heat wave in degrees
Kelvin)

max.var Highest daily value of the variable across all days in the extreme event,
in the units in which the variable is expressed in input files

min.var Lowest daily value of the variable across all days in the extreme event,
in the units in which the variable is expressed in input files

length Number of days in the event
start.date Date of the first day of the event
end.date Date of the last day of the event
start.doy Day of the year of the first day of the event (1 = Jan. 1, etc.)
start.month Month in which the event started (1 = January)
days.above.abs.thresh.1 Number of days in the event above a specified absolute threshold

(default is the number of days in the event above 80oF / 26.7oC, but
this and the following three absolute thresholds can be changed with
the absolute_thresholds argument in gen_hw_set)

days.above.abs.thresh.2 Number of days in the event above a specified absolute threshold
(default is the number of days in the event above 85oF / 29.4oC)

days.above.abs.thresh.3 Number of days in the event above a specified absolute threshold
(default is the number of days in the event above 90oF / 32.3oC)

days.above.abs.thresh.4 Number of days in the event above a specified absolute threshold
(default is the number of days in the event above 95oF / 35.0oC)

days.above.99th Number of days in the event above the 99th percentile of the variable
for the location, using the period specified with the
referenceBoundaries argument in gen_hw_set as a reference for
determining these percentiles

days.above.99.5th Number of days in the event above the 99.5th percentile of the variable
for the location, using the period specified with the
referenceBoundaries argument in gen_hw_set as a reference for
determining these percentiles

first.in.year Whether the event was the first to occur in its calendar year in the
location

mean.var.quantile The percentile of the average variable value during the event
compared to the location’s year-round distribution of the variable,
based on the variable distribution for the location during the period
specified by the referenceBoundaries argument in gen_hw_set

max.var.quantile The percentile of the maximum variable value during the event
compared to the location’s year-round distribution of the variable,
based on the variable distribution for the location during the period
specified by the referenceBoundaries argument in gen_hw_set

min.var.quantile The percentile of the minimum variable value during the event
compared to the location’s year-round distribution of the variable,
based on the variable distribution for the location during the period
specified by the referenceBoundaries argument in gen_hw_set

mean.seasonal.var The location’s average seasonal value of the variable (by default,
season is set to May–September, but this can be changed with the
seasonal_months argument in gen_hw_set), based on the variable
values for the location during the years specified by the
referenceBoundaries argument in gen_hw_set

mean.yearround.var The location’s average year-round value of the variable, based on the
variable values for the location during the years specified by the
referenceBoundaries argument in gen_hw_set

Table 2: Extreme event characteristics measured by the gen_hw_set function in the futureheatwaves
package. The left column gives the name of each variable’s column in the extreme event data frames
created by the gen_hw_set function. When characterizing extreme events below a threshold, like
cold spells, appropriate alternatives are given for some columns (e.g., days.below.abs.thresh.1,
days.below.1st).
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all characteristics in Table 2. See the package’s vignettes for more details on the content and structure
of this output.

Once uses have created a directory of characterized event files for each ensemble member (“Ex-
treme event data sets”, Figure 4), they can explore the results using the apply_all_models function.
This function allows the user to apply custom R functions across all extreme event data frames created
by the gen_hw_sets call. The user can apply any R function that follows certain standards in accepting
input and returning output. Full details on these standards are given in the main package vignette.

As an example, if the user wanted to calculate the average temperature of the heat waves identified
for each ensemble member in the output generated by the code above, he or she could write a simple
function:

average_mean_temp <- function(hw_datafr){
out <- mean(hw_datafr$mean.var)
return(out)

}

This function can then be applied across all extreme event data sets output by gen_hw_set using the
apply_all_models function. For example, to apply this function to all the example output results that
come with the package, the user could run:

out <- system.file("extdata/example_results", package = "futureheatwaves")
apply_all_models(out = out, FUN = average_mean_temp)

#> model ensemble value
#> 1 bcc1 1 302.3745
#> 2 ccsm 1 302.4458
#> 3 ccsm 2 302.3428

This output gives the results (value column) of running the custom function for each ensemble
member of each climate model. Note that the location of the directory with the heat wave data frames
must be specified using the out argument when calling apply_all_models. Typically, this will be the
directory path for the directory specified with the out argument in gen_hw_set.

Location-specific results can be generated using the city_specific argument in apply_all_models:

apply_all_models(out = out, FUN = average_mean_temp, city_specific = TRUE)

#> model ensemble city value
#> 1 bcc1 1 balt 305.1816
#> 2 bcc1 1 nwk 300.3367
#> 3 bcc1 1 ny 300.3367
#> 4 bcc1 1 phil 305.1816
#> 5 bcc1 1 prov 298.0402
#> 6 ccsm 1 balt 303.1277
#> 7 ccsm 1 nwk 302.4053
#> 8 ccsm 1 ny 302.4053
#> 9 ccsm 1 phil 302.3425
#> 10 ccsm 1 prov 301.8895
#> 11 ccsm 2 balt 302.9373
#> 12 ccsm 2 nwk 302.2748
#> 13 ccsm 2 ny 302.2748
#> 14 ccsm 2 phil 302.2858
#> 15 ccsm 2 prov 301.9520

The same process can be used to create a number of other summaries of the identified extreme
events. For example, it could be used to determine average length of extreme events or estimate how
much earlier in the year events are expected to start across an ensemble of climate model simulations.
The functionality can also be used for more complex analysis of extreme event files. For example, it can
be used to apply epidemiological models of heat wave to estimate excess heat-related mortality under
different future scenarios; an example of this application is provided in the main futureheatwaves
vignette. The output from apply_all_models is structured as “tidy" data (Wickham, 2014), allowing
it to be used easily with the graphing package ggplot2 (Wickham, 2009) and other packages in the
tidyverse.
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Customizing the extreme event definition

By default, the package identifies extreme events in climate model output data using a specific
definition for heat waves that has been used in some epidemiological and climate impact research
(e.g., Anderson and Bell (2009)):

A heat wave is two or more days at or above a city-specific threshold temperature, with
the threshold determined as the 98th percentile of year-round temperature in the city
during some reference period (by default, 1990–1999).

However, this is not the only accepted heat wave definition in the scientific literature. A variety of
different heat wave definitions have been used to identify heat waves in a time series of temperature
data (Smith et al., 2013; Kent et al., 2014; Chen et al., 2015; Anderson and Bell, 2009), and the choice of
heat wave definitions can influence both projected heat wave trends (Smith et al., 2013) and estimates
of health risks during events (Chen et al., 2015; Kent et al., 2014; Anderson and Bell, 2009). Further,
other types of extreme events will be defined differently than heat waves (for example, frost day spells
may be defined as one or more days with temperature at or below 32oF / 0oC).

Therefore, this package allows the user to extensively customize the definition used to identify
extreme events. Users can write a custom R function with either a different heat wave definition (see
Smith et al. (2013) and Kent et al. (2014) for listings of some of the definitions used in scientific studies)
or with a definition appropriate for a different type of extreme event (e.g., one or more days at or
below 32oF / 0oC for frost day spells). For heat wave identification, researchers might want to use a
different event definition because, for example, it matches the definition used by local health officials
to declare heat wave warnings or, in the case of health impact assessments, to match with a definition
used in an epidemiological study. For studies of other extreme events, a heat wave definition likely
will not be applicable and so a customized definition is necessary.

Three components of the extreme event definition can be easily customized in the gen_hw_set
function call, without creating a new R function to use to identify heat waves. First, many extreme
event definitions are based on conditions that are rare in the study location (Cubasch et al., 2013), but
definitions may vary in how rare conditions must be. For example, some of the different definitions
used to identify heat waves vary only in the percentile temperature used for a threshold (e.g., one
definition is ≥ 2 days at or above the 98th percentile temperature at a location while another is ≥ 2
days at or above the 99th percentile temperature; Kent et al. (2014); Smith et al. (2013)). Therefore, the
futureheatwaves package allows users to change the percentile of the variable of interest required for
an extreme event using the probThreshold option in gen_hw_set. Other heat wave definitions vary
only in the number of consecutive days that must be over the threshold for a period to quality as an
extreme event (e.g., one definition is ≥ 2 days at or above the 98th percentile temperature at a location
while another is ≥ 4 days at or above the 98th percentile temperature; Anderson and Bell (2009)).
Therefore, the package allows the user to change the number of days used in the heat wave definition
using the numDays argument in the gen_hw_set function. Combined, these two customization choices
allow the user to identify heat waves using many of the heat wave definitions used in previous climate
and health research– for example, 9 of 16 heat wave definitions outlined in Kent et al. (2014) could be
fit using different combinations of these two options for specifying threshold percentile and number of
days. Third, some extreme events like cold waves and frost day spells are defined as a certain number
of days below, rather than above, a threshold. While the default is to identify events by searching for
days above a threshold, this behavior can be changed with the above_threshold = FALSE argument
in the gen_hw_set function.

Beyond these simpler options, the customization of the event definition is even more extensive
as one has the option of writing and using a custom R function to identify extreme events. This
functionality allows the user to use definitions that either require a number of days above or below
an absolute threshold (e.g., maximum temperature of ≥ 95oF for ≥ 1 day Kent et al. (2014); Tan et al.
(2007); minimum temperature ≤ 0oC for ≥ 1 day for frost day spells) or that require a combination
of thresholds to be met (e.g., maximum daily temperature above a lower threshold every day of the
heat wave and above a higher threshold for a certain number of days within the heat wave; Kent et al.
(2014); Peng et al. (2011)). To use a customized event definition, the user must write and load an R
function that implements the definition. This custom function is passed to the gen_hw_set function
using the IDheatwavesFunction argument. To work correctly, this custom function must allow only
specific inputs and generate only specific outputs; details about the required structure are provided in
the main futureheatwaves package vignette. To increase processing speed when identifying extreme
events, we coded parts of the default event definition function in C++ and synced it with R using the
Rcpp package (Eddelbuettel and Francois, 2011). Users should consider a similar strategy for custom
heat wave definitions, especially when processing a large number of climate projection files.
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Exploring sensitivity of results to adaptation

Extreme events tend to be identified based on conditions that are rare for a specific location using
location-specific relative thresholds. These thresholds are often defined for climate impact studies
based on a variable’s distribution at that location in present-day or historical data. However, for
some extreme events, impacts are associated with how rare the conditions during the event are
compared to current norms in the location (Anderson and Bell, 2009), which suggests some capacity
for adaptation to heat and raises the question of whether extreme events should be defined using
a percentile threshold based on present-day variable distributions or based on distributions in the
time period being projected. Therefore, it can be interesting to explore trends in extreme events
under climate change if extreme events are identified based on variable distributions during the
projection period or another future period. The futureheatwaves package allows users to specify the
time period to use when determining a location-specific relative threshold for an event definition using
the thresholdBoundaries argument in the function gen_hw_set. This feature allows users to explore
how sensitive projections of impacts are to this choice of the time period to use when determining
relative variable measures, including thresholds used for percentile-based event definitions.

Similarly, some of the event characteristics (e.g., mean.temp.quantile, Table 2) are also calculated
by the package based on relative temperature, providing measures of how the value of the variable of
interest during an extreme event compares to the typical distribution of that variable at that location
(e.g., the “mean.var.quantile”, “min.var.quantile”, and “max.var.quantile” characteristics, Table 2) or
how long conditions of a certain rarity persisted during the event (e.g., the “days.above.99th” and
“days.above.99.5th” characteristics, Table 2). These characteristics are measured for each of the extreme
events identified by the gen_hw_set function by taking the absolute value of the variable during
the event (e.g., average temperature during the heat wave is 90oF, 32.2oC) and comparing it to the
location’s typical variable distribution. This process generates relative measures of how intense the
event is compared to what is normal in that location (e.g., 90oF, 32.2oC is in the 99th percentile of
year-round temperatures in the location).

These relative event characteristics will vary depending on whether you calculate them based on
a location’s present-day variable distribution or on the location’s variable distribution in the future,
since the distributions of many relevant variables (e.g., temperature, precipitation) are expected to
change in many locations with climate change. The package therefore allows the user to specify date
ranges of the temperature distributions to be used in calculating these relative temperature metrics in
each location, which can be done using the referenceBoundaries option of gen_hw_set.

Mapping grid points

Finally, it can be useful to explore the location of the climate model grid point used to pull climate
model output for each study location with a given climate model. Therefore, the package has a
function called map_grid_leaflet that plots the locations of grid points used for each location from
each climate model. This function is built using the htmlWidget leaflet package (Cheng and Xie, 2016).
The following code illustrates the use of this function with the example data to create Figure 5, which
plots the grid points used in the example data from the BCC climate model in the example data:

out <- system.file("extdata/example_results", package = "futureheatwaves")
map_grid_leaflet(plot_model = "bcc1", out = out)

This interactive map can be panned and zoomed to explore the locations of climate model grid points
used to represent each study location. This mapping function works for study locations worldwide.

Extensions

While this package was created to be used for research on extreme events in climate change projections,
it can be used more broadly. For example, there are other episodes like wildfires and air pollution
where it may be interesting to identify extended periods of high exposures in projection time series.
The futureheatwaves package is not exclusive to CMIP5 model output data, and so could be applied
to gridded air pollution model output to explore these exposures.

Future directions for working with climate model output in R

Research that assesses the potential impacts of climate change is critical in informing current policy
choices, and R is an important tool for many researchers performing such assessments. While the
futureheatwaves package described here takes steps to facilitate the assessment of impacts related to
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Figure 5: Snapshot of an interactive map created using the map_grid_leaflet showing the locations
of study cities and their matching climate model grid points for the BCC climate model example data
included with futureheatwaves. The lines on the map connect each climate model grid point to the
study location(s) for which that grid point was used. The interactive maps include pop-ups with city
identifiers; one is shown open in this snapshot as an example. From this map, you can see that the
climate model grid point closest to New York City for this climate model is over the Atlantic Ocean.

sustained, multi-day events, a number of challenges remain in working with climate model output
data in R, and future R software development offers the potential to further address the challenges of
working with this data.

One important step in future development of R software to work with climate model output could
be the development of R wrappers for some of the existing command line tools available through the
Climate Data Operators (CDO) software (Schulzweida, 2017). Libraries already exist for Python and
Ruby that allow the functionality of CDO tools to be used within these scripting languages (available
from the Max Planck Institute at https://code.zmaw.de/projects/cdo/wiki/Cdo%7Brbpy%7D). While
one R package (ncdf4.helpers; Bronaugh (2014)) already provides R wrappers for a few CDO operators,
such functionality could be extended through future R software to capture more of the full functionality
of the CDO toolkit.

Another important path for development could be through approaches that allow researchers
to take advantage of the statistical tools offered by R while maintaining large climate model output
files in a netCDF format. For example, Goncalves and coauthors recently described a “round table"
approach of connecting as-needed data access from netCDF climate data files through to functionality
available in R and CDO through the intermediary of a MonetDB database system (Goncalves et al.,
2015). In other topical areas, R programmers are also improving the efficiency of working with
data in large netCDF files through approaches that avoid loading all data in-memory. For example,
the Bioconductor package ncdfFlow enables R users to conduct analyses of hundreds of large flow
cytometry output files through the creation and use of an ncdfFlowSet class that stores the data in an
HDF5 format rather than in-memory (Jiang et al., 2017; Finak et al., 2014). Such an approach could be
promising for future R software development for working with large climate model files.
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alineR: an R Package for Optimizing
Feature-Weighted Alignments and
Linguistic Distances
by Sean S. Downey, Guowei Sun and Peter Norquest

Abstract Linguistic distance measurements are commonly used in anthropology and biology when
quantitative and statistical comparisons between words are needed. This is common, for example,
when analyzing linguistic and genetic data. Such comparisons can provide insight into historical
population patterns and evolutionary processes. However, the most commonly used linguistic
distances are derived from edit distances, which do not weight phonetic features that may, for
example, represent smaller-scale patterns in linguistic evolution. Thus, computational methods for
calculating feature-weighted linguistic distances are needed for linguistic, biological, and evolutionary
applications; additionally, the linguistic distances presented here are generic and may have broader
applications in fields such as text mining and search, as well as applications in psycholinguistics
and morphology. To facilitate this research, we are making available an open-source R software
package that performs feature-weighted linguistic distance calculations. The package also includes a
supervised learning methodology that uses a genetic algorithm and manually determined alignments
to estimate 13 linguistic parameters including feature weights and a skip penalty. Here we present the
package and use it to demonstrate the supervised learning methodology by estimating the optimal
linguistic parameters for both simulated data and for a sample of Austronesian languages. Our results
show that the methodology can estimate these parameters for both simulated and real language
data, that optimizing feature weights improves alignment accuracy by approximately 29%, and that
optimization significantly affects the resulting distance measurements. Availability: alineR is available
on CRAN.

Introduction

Human speech patterns change through time in response to both cultural and demographic processes
of speech communities such as migration and social contact. Analyzing differences among languages
can provide insight into historical patterns and general processes of biological and cultural evolution
(Pagel, 2012). Linguistic distances based on the comparison of two words are often used when
quantitative analyses are required. For example, numerous studies make language/gene comparisons
on continental and regional scales (Sokal, 1988; Barbujani and Sokal, 1990; Cavalli-Sforza et al., 1992;
Smouse and Long, 1992; Chen et al., 1995; Cavalli-Sforza, 1991; Cox, 2003; Hunley and Long, 2005;
Diamond and Bellwood, 2003; Nettle and Harriss, 2003), and also at smaller geographical scales
(Lansing et al., 2007; Downey et al., 2008; Tumonggor et al., 2014; Cox and Lahr, 2006). In addition,
edit distances are used in text mining, for example in the extraction of news content (Qiujun, 2010),
and in biological applications such as extracting mutation data from the literature (Horn et al., 2004).

The use of evolutionary linguistics in anthropology suggests that further development of quan-
titative methods are necessary in order to identify new patterns in language families, to identify
controversial or undiscovered language families, and to address outstanding problems in human
prehistory (Croft, 2008). Research in computational phonology has developed several quantitative
metrics for measuring linguistic distances between pairs of words. Algorithms for quantifying the
distance between cognate pairs (words with a shared meaning) include measuring phonetic sequence
distance based on types of segments (Covington, 1998), or the feature scores of phonemes (Somers,
1998). However, the most common approach is the Levenshtein distance – also called the ’edit distance’
– which is defined as the minimum total number of additions, deletions, and substitutions of symbols
necessary to transform one word to the other (Levenshtein, 1966). Various mathematical refinements
to the Levenshtein distance have been proposed (Wichmann et al., 2010; Petroni and Serva, 2010),
including an approach that uses empirically determined log-odds (Fine and Jaeger, 2013). The Lev-
enshtein distance is parsimonious and robust and it has been found to correlate with perceptions of
dialectical distances (Gooskens and Heeringa, 2004); however, feature-based alignment approaches
have been found to be a complementary approach to calculating linguistic distances (Kondrak, 2000).

The ALINE algorithm

ALINE is an automatic phonetic sequence alignment algorithm that determines the similarity of
two words (Kondrak, 2000). It uses dynamic programming to calculate the optimal similarity score
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of candidate alignments. In addition to binary character comparisons, insertions, and deletions,
the algorithm uses phonetic information to determine the resulting optimal score. A set of feature
weighting parameters and a skip penalty are used to determine individual similarity scores for each
phonetic feature in the words being measured; thus, the optimal phonetic sequence alignment depends
on the values of the feature weight parameters, and the resulting similarity scores are sensitive to the
selection of these values.

Similarity scores can range from [0, ∞] and are strongly influenced by word length. To facilitate
integration with biological and evolutionary research we previously defined the ALINE Distance as,

ALINEDist = 1− 2s
s1 + s2

(1)

where s is the similarity score and s1,2 are similarity scores for each word’s self-comparison (Downey
et al., 2008). This equation results in a finite value [0, 1] that can be easily compared, for example,
to common population differentiation statistics such as the fixation index (Fst). For this reason, our
package by default returns ALINEDist, but can optionally return the similarity score. Because similarity
scores and ALINE distances are expected to be sensitive to feature weights, the package parameterizes
the values used by the ALINE algorithm so they can be easily modified within the R environment.

We provide alineR as an open-source package for the R statistical computing language that
facilitates calculation of linguistic distances using the ALINE algorithm. The original ALINE algorithm
is provided as an executable (http://webdocs.cs.ualberta.ca/~kondrak/) so the default parameters
cannot be modified. An open-source python version called PyAline (Huff, 2010) (http://pyaline.
sourceforge.net) allows these values to be modified; however, parameter estimation was not a focus.
And while the R base command adist() and several packages can calculate Levenshtein distances
(see stringdist() in stringdist (van der Loo, 2014), levenshteinDist() in RecordLinkage (Borg and
Sariyar, 2016), and stringDist() in Biostrings (Pagès et al., 2017)), to the best of our knowledge, this
is the first time ALINE distances can be calculated directly from an R function.

An important new feature of alineR is to provide a way to estimate the feature-weight parameters
and skip penalty. Below we analyze how changing these values affects the resulting alignments and
distance measurements. We present a supervised learning methodology that uses manual alignment
determinations and a genetic algorithm (GA) to estimate the optimal feature weights for any paired
word data. First, we use a simulation analysis and determine that the GA can correctly estimate known
feature weights for simulated data. Second, we show that a supervised learning methodology can
successfully estimate optimal (unknown) linguistic parameters for a data set consisting of Austronesian
word lists from Sumba in Eastern Indonesia. Third, we show that optimizing feature weights improves
alignment accuracy using manual determinations as a baseline. Finally, we show how estimating
feature-weights and skip penalties affects the resulting distance calculations.

Parameterizing the ALINE algorithm

The ALINE algorithm is a phonetic sequence alignment algorithm based on multivalued features.
The program runs quickly because it uses dynamic programming and it is written in C++. Twelve
(12) features are considered in calculating the phonetic similarity score: syllabic, voice, lateral, high,
manner, long, place, nasal, aspirated, back, retroflex, and round. In addition, there is a skip penalty.
Weighting values for each of these parameters are used to choose the optimal string alignments as
well as the resulting similarity score. However, in the publicly available version of ALINE the default
values were compiled into the original program so they could not be modified. Our alineR package
includes a modified version of the original ALINE code that interfaces directly with R.

Overview of article

In the next section we provide a how-to guide for calculating ALINE distances and similarity scores
with alineR. We present simple instructions for basic alignment operations and for users who want
to calculate linguistic distances using this alternative to the Levenshtein distance, the instructions
in this section may be sufficient. We then describe the genetic algorithm and illustrate with simple
examples how to use it with supervised-learning to optimize ALINE’s feature-weight parameters.
Next, we show the results from a simulation experiment that validates that the GA can recover a set
of ’unknown’ feature weighting parameters. We then present a proof-of-concept case study in which
we use the GA to determine the optimal feature-weighting values for a sample of languages from
Eastern Indonesia. This includes a description of the training dataset and the work flow necessary
to reproduce the analysis. We perform a statistical analysis of the effect the supervised learning and
GA optimization process has on the resulting linguistic distance measurements. Finally, we perform a
bootstrap analysis to determine whether the results are stable. We close by briefly discussing some
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possible applications of alineR in psycholinguistics and morphology.

Basic alignment and distance calculations with alineR

Calculating ALINE distances minimally requires two scalar words using UTF-8 file encoding. Word
lists should be encoded in the International Phonetic Alphabet to maximize the use of phonetic feature
information (Association, 1999). If IPA is not available, the ASCII subset can also be used.

First, load the alineR package in the standard way.

library('alineR')

Consider the following example for calculating the phonetic distance between two related words
meaning ’to float’ from Borneo: [ k@rampu ] and [ l@m@ntUN] . The most basic use of alineR entails
passing the two words as the first and second parameters to the aline() function. The standardized
ALINEDist is returned.

aline("k@rampu", "l@m@ntUN")
[1] 0.4864198

More typically, word lists will be passed as two vectors that will be analyzed such that ALINEDist
will be calculated for matching elements of each vector. For example, here we pass two vectors
representing two cognate pairs (“stone” and “to float”) for two related languages. Note that the
phonetic difference between u and U does not yield a quantitative difference in the resulting ALINE
score.

aline(c("batu", "k@rampuU"), c("batU", "l@m@ntUN") )
[1] 0.0000000 0.4864198

The aline() function has several parameters that provide additional functionality.

aline( w1, w2, sim = FALSE, m1 = NULL, m2 = NULL, mark = FALSE, alignment = FALSE, ...)

The first and second elements, w1 and w2, are required and they are used for passing the two
word vectors to be compared as shown above. All additional parameters are optional and provide
additional functionality, which will be illustrated in more detail below. These include the following:
sim = TRUE returns the similarity score rather than the ALINE Distance; m1 and m2 allow user-defined
feature mappings; setting mark = TRUE will mark invalid characters with an @ character to assist in
data checking; setting alignment = TRUE will return the IPA word pairs vertically arranged so that the
aligned characters can be delimited with vertical bars (|). Additionally, feature weighting parameters
can also be passed to the internal raw.alignment() function using .... In the next sections we explain
some more advanced uses of alineR which require using these optional parameters.

A typical use in historical linguistics is to calculate a matrix of language-distance comparisons
among multiple lanaguges. Given the numerous ways that language data can be stored, the need for
data consistency, and the difficulty of providing comprehensive error-handling, we do not provide
a built-in function for multiple-language comparisons in alineR. However, data processing in R is
relatively straight-forward. Here we illustrate one possible approach that can be used as a starting
point for more complicated analyses. This example processes three word lists that each include three
glosses. The results are combined into a distance matrix composed of average ALINE Distance scores.

# multiple language comparisons
word.lists <- rbind(c("baqa", NA, "anax"), c("haqa", "dodo", "anar"),

c("abut", "suli", "oan"))
glosses <- colnames(word.lists) <- c("akar", "alir_me", "anak")
languages <- rownames(word.lists) <- c("language.1", "language.2", "language.3")
word.lists

akar alir_me anak
language.1 "baqa" NA "anax"
language.2 "haqa" "dodo" "anar"
language.3 "abut" "suli" "oan"

# dim empty matrices: a (ALINE scores), and n (a counter)
n <- matrix(0, nrow = length(languages), ncol = length(languages),

dimnames = list(languages, languages))
a <- n
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# nested loops for calculating the mean ALINE Distances for multiple languages and glosses
for(i in 1:length(glosses)){ # loop glosses

for(j in 1:length(languages)){ # outer language loop
for(k in 1:length(languages)){ # inner language loop

if(j >= k){
x <- word.lists[j, i] # first word to compare
y <- word.lists[k, i] # second word to compare
if( !is.na(x) & !is.na(y) ) { # skip if missing data

a[j, k] <- a[j, k] + aline(x, y) # ALINE Distance
n[j, k] <- n[j, k] + 1 # increment counter

}
}

}
}

}

as.dist(a / n) # distance matrix composed of mean ALINE Distances

language.1 language.2
language.2 0.3500000
language.3 0.3869697 0.5479798

alineR uses a custom ASCII encoding scheme to identify features. Valid encodings include
lowercase letters from a to z, and the uppercase modifiers shown in Table 1 are used to indicate
features.

Feature Code

dental D
palato-alveolar V
retroflex X
palatal P
spirant S
nasal N
aspirated A
long H
front F
central C

Table 1: ALINE features

The full list of IPA::feature mappings, including ASCII values, is stored in a data frame included in
the package. It can be seen using the show.map() function. For example, row 2 indicates that Latin
Capital B with the Unicode value of 66 will be encoded as a spirant “b”, “bS”, with the two ASCII
values, 98 and 83.

show.map()
IPA Aline U.Val A.Val

1 32
2 B bS 66 98 83
3 O oF 79 111 70
4 a a 97 97
5 b b 98 98
...
102 N 8319 78

The encode.ALINE() function can be used to see the ASCII character encoding of an IPA character
string or vector.

encode.ALINE("diŋŋira", "dinnira")

diŋŋira dinnira
"digNgNira" "dinnira"
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It is not required for basic usage to to manually encode words because this function is called
internally. However, if an unknown IPA character is used in an alignment, under the default behavior
a warning is issued, the character is dropped, and the remaining characters are aligned as usual. When
this occurs, the encode.ALINE() command may be used with mark = TRUE to substitute all unknown
characters with the @ symbol. In the following example, È is an unknown feature type.

encode.ALINE(c("ũmlatT", "ÈmlatT"), mark = TRUE)
Invalid character: Èin ÈmlatT

ũmlatT ÈmlatT
"uNmlattS" "@mlattS"

In such cases, it is possible to eliminate the system warnings by providing these characters with
feature mappings. In addition, it is possible to over-ride existing mappings given by show.map(). Both
can be done using the m1 and m2 parameters of aline(). For example, the following substitutes all
instances of “È" with "o".

aline(w1 = c("ũmlatT", "dinnira"), w2 = c("ÈmlatT", "diŋŋira"), m1 = "È", m2 = "o")
[1] 0.07647059 0.10810811

By default, aline() returns a vector of ALINE distances indexed by the position in the input
vectors. However, additional information about the alignments can also be returned, including the
optimal alignment and the similarity score, as shown here.

aline("watu", "dat", alignment = TRUE, sim = TRUE)
pair1

w1 watu
w2 dat
scores 50
a1 | - w a t | u
a2 | d - a t | -

In this example, setting the optional parameter alignment = TRUE will change the output format
to a data frame in which each column represents a word-pair comparison. In this example, only one
pair of words is compared. Rows 1 and 2 in this data frame contain word 1 ("w1"), and word 2 ("w2").
The third element will contain either the ALINE distance (if sim = FALSE) or the similarity score (if
sim = TRUE). Rows 4-5 contain the optimal alignment of word 1 and word 2. If three pairs of words
are compared, the data frame would consist of three columns and five rows. We adopted this output
format as a convenience so that the alignments in rows 4 and 5 could be easily examined directly in
the R command output window.

In determining the optimal alignment, the ALINE algorithm associates feature values, or weights,
with particular phonemes based on phonologically similar features. Note that each element of the
resulting optimally aligned vector maps corresponding elements within the vertical bars. So when
aligning watu and dat, the phonetic similarity of at yielded the highest similarity score, 50. In making
these calculations, the algorithm calculates weighted feature values for each pair of features, including
skips, to determine the optimal similarity score. A vector of the individual similarity scores for the
phoneme pairs can be extracted using the ALINE.segments() function:

aline("watu", "dat", sim = TRUE) # returns similarity score for comparison
[1] 50
align <- raw.alignment(c("watu", "dat"))
cat(align[[3]], align[[4]], sep = "\n")
| - w a t | u
| d - a t | -
s <- ALINE.segments(align)
s
[1] 0 0 15 35
sum(s)
[1] 50
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One of the key features of alineR is the ability to easily change the default feature weight values used
to determine the optimal alignment and resulting ALINE distances. Here for example, reducing the
weight given to Place from the default of 40 to 10 reduces the values of non-zero distances.

aline(c("batu", "k@rampuU"), c("batU", "l@m@ntUN"))
[1] 0.0000000 0.4864198

aline(c("batu", "k@rampuU"), c("batU", "l@m@ntUN"), Place = 10)
[1] 0.0000000 0.4567901

In examples introduced below, it will be more convenient to store the feature weights in a vector.
In these instances, the vector can be passed as an argument to aline() by constructing a named list
and using do.call():

opts <- c(61, 92, 51, 26, 54, 38, 20, 40, 31, 38, 66, 72, 60) # feature weights
names(opts) <- names(formals(raw.alignment)[-1]) # add feature names

args <- c(list(w1 = c("batu", "k@rampuU"), w2 = c("batu", "l@m@ntUN")), opts)
do.call("aline", args)
[1] 0.0000000 0.5604938

Optimal parameter estimation using a genetic algorithm for alineR

The 13 parameters used by ALINE creates a high-dimensional search space, and a grid search would
therefore be computationally inefficient. Instead, we employ a genetic algorithm (Back et al., 1997)
to determine the optimal feature weights for a given word list. The general approach is to mimic
biological evolution and natural selection by using a performance function that iteratively evaluates
alignments generated with candidate parameters. We define the performance function as the total
number of “correct” alignments, where correctness is determined manually by a linguist trained in
phonetic analysis.

An overview of the algorithm is provided in Figure 1. At startup, the total population size (N) and
number of iterations are defined for each run of the genetic algorithm. (1) N vectors are initialized
by sampling uniformly between [0, 100] for each of the linguistic parameters. (2) The performance of
each vector in the current (initial or iterated) population is evaluated using the performance function.
(3) Each parameter vector in the population is ranked according to performance and the top .25N
are retained. (4) A new 0.25N vectors are initialized into the current generation. (5) Crossover 1 –
the retained vectors (from step 3) are recombined using a crossover procedure to create .25N in the
current generation. (6) Crossover 2 – the retained vectors (from step 3) are recombined with the new
random vectors (from step 4) using a crossover procedure to create .25N new vectors. (7) The four
subpopulations from steps 3-6 are combined. (8) Check if the maximum number of iterations has been
reached. If not, the algorithm returns to step 2, but otherwise continues to step 9. (9) Aggregate all
parameter vectors and estimate medians and variances from the top ranked .25N. Both crossover
procedures involve selecting pairs of vectors, selecting a sequence of adjacent elements within each
vector, and exchanging them between vectors. Crossover 1 samples .25N individuals from ns (with
replacement) and pairs them for the crossover procedure. Crossover 2 samples .125N individuals
from ns and pairs them with an equal number from nr. Each GA run generates a vector of optimized
values for each linguistic feature, and when convergence is achieved the median of each distribution
is used to parameterize the ALINE algorithm for the training data. Convergence is determined using
visual diagnostic plots. To account for the possibility that a single GA run incompletely explores
the parameter space, we run multiple iterations and consolidate the results of all runs. In practice,
we minimize the computation time by parallelizing this process, as we will demonstrate below. We
note, however, that the GA we provide is only one approach to solving this high-dimensional search
problem. There are any number of supervised and unsupervised optimization routines that could
potentially be used to estimate the linguistic features available in alineR.

Supervised learning procedure using the genetic algorithm

We developed a supervised learning procedure for estimating the optimal feature weights using the
GA. It is based on expert alignment determinations that are selected from a list of possible alignments
for a given set of word lists. Commands in alineR are provided to implement this procedure. First,
to create a training dataset we require a set of cognates and we use simulation to sample linguistic
parameters from a uniform distribution to determine a list of possible alignments for each cognate
pair. The simulation excludes the skip penalty (which creates numerous alternative alignments),
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Figure 1: A flowchart showing how the linguistic parameters for ALINE are estimated using a genetic
algorithm

and it eliminates cognate pairs with only a single alignment. We then quantify the number of
possible alignments for each cognate pair. First, to prepare the cognate lists for the manual alignment
determinations we will create some example data.

training_wordlists <- rbind(c("hamate", "kanabu", "delu"), c("pameti", "penaPo", "telu"))
training_wordlists

[,1] [,2] [,3]
[1,] "hamate" "kanabu" "delu"
[2,] "pameti" "penaPo" "telu"

The next step is to perform the simulation process described above to generate a list of unique
alignments. In the following series of commands, generate_training() will return an R object that
will be used internally during the optimization process. However, specifying the optional table =
TRUE parameter will export a file named ‘candidate_alignments.csv’ to the working directory that can be
used to create a spreadsheet for manually identifying the best alignments.

training_set <- generate.training(raw.data = training_wordlists, search.size = 10,
table = TRUE)

Typically, each cognate pair can generate 3-6 unique alignments. But long words contain more
phonemes and therefore comparisons between long words will result in a greater number of possible
alignments, and in rare cases some cognate pairs can generate 17 or more. When this procedure is
used, the list of possible alignments is then provided as a spreadsheet to a trained linguist for manual
evaluation (Table 2). Minimally, this requires identifying the “best” of the provided alignments based
on the rules of phonology and knowledge of the languages. The linguist’s decisions are then provided
to the GA as a vector indicating the numeric index of the “best” alignment. These are subsequently
used in the optimization process. The following configuration initializes 200 populations and instructs
the GA to run 50 iterations and return a list of feature weights. These parameters are designed to
run quickly for demonstration purposes, and therefore the following optimization examples do not
converge. More realistic parameters may run slowly.

linguist_determinations <- c(2, 1, 2)
optimal_set <- optimize.features(set = training_set, ranking = linguist_determinations,

num = 200, step = 50, replication = 3)
optimal_set
[1] 69 41 47 12 40 65 71 43 48 20 54 76 51
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Alignment No. Cognate pair 1 Cognate pair 2 Cognate pair 3

hamate kanabu delu
pameti penaPo telu

1 | - h a m - a t - | e | - - k a n a - b u | - | - d e l u |
| p - a m e - t i | - | p e - - n a P - - | o | t - e l u |

2 | - h a m - a t e | | k - a n a - b u | - | d e l u |
| p - a m e - t i | | p e - n a P - - | o | t e l u |

3 | h a m - a t - | e | k - a n a - b u |
| p a m e - t i | - | p e - n a P - o |

4 | h a m - a t e | | k - a n a b - | u
| p a m e - t i | | p e - n a P o | -

Linguist’s Choices 2 1 2

Table 2: Manual alignment determination worksheet

By default, optimize.features() returns a vector containing the optimized feature weights, but
when list = TRUE the returned object can be used with the features.plot() function to generate a
multi-panel plot showing the results of the optimization process (see Figure 3).

optimal_set <- optimize.features(set = training_set, ranking = linguist_determinations,
num = 200, step = 50, replication = 3, list = TRUE)

features.plot(optimal_set) # not shown, but see Figure 3.

As noted above, the GA can be computationally intensive and may require replicates. Therefore
it may be necessary to perform multiple runs. The following code illustrates this using a single
processing core.

reps <- 4
MultiOptResult <- matrix(NA, nrow = reps, ncol = 13)
for (i in 1:reps){

MultiOptResult[i,] <- optimize.features(set = training_set,
ranking = linguist_determinations, num = 200, step = 50, replication = 3)

}
round(apply(MultiOptResult, 2, FUN = median)) # optimized feature weights
[1] 53 20 32 22 63 70 52 68 47 71 42 47 70

Here we show how to parallelize feature optimization using the doMC package (Revolution
Analytics and Steve Weston, 2015).

# ...replicate using parallelization (OSX/linux)
library(doMC)
registerDoMC(cores = 4)
reps <- 4
MultiOptResult <- foreach(i = 1:reps, .combine = rbind) %dopar% {

optimize.features(set = training_set, ranking = linguist_determinations, num = 200,
step = 50, replication = 3)

}
opts <- round(apply(MultiOptResult, 2, FUN = median)) # optimized feature weights
names(opts) <- names(formals(raw.alignment)[-1])
opts
[1] 61 92 51 26 54 38 20 40 31 38 66 72 60

Finally, we illustrate how to pass the results from the optimization process in opts to aline(), and
the effects on the resulting ALINE distances.

list1 <- c("batu", "k@rampuU")
list2 <- c("batu", "l@m@ntUN")

aline(list1, list2)
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[1] 0.0000000 0.4864198 # with default feature weights

args <- c(list(w1 = list1, w2 = list2), opts) # construct nested list for do.call()
do.call("aline", args)
[1] 0.0000000 0.5506173 # optimized Aline distances

Results

The alineR package redistributes a modified version of the original C++ ALINE code, and we main-
tained the original feature weight values originally used by Kondrak as defaults. Therefore, when the
aline() function is used without providing optional feature weight parameters, the default perfor-
mance should be equivalent with Kondrak’s original algorithm. In this section we present the results
of analyses we conducted to validate and test our GA optimization process. We do this by making an
explicit comparison of the default performance of the ALINE algorithm provided in alineR (which is
equivalent to the original C++ version of ALINE) to its performance using optimized parameters.

Genetic algorithm validation

First, we use a simulation experiment to validate that our algorithm converges under ideal condi-
tions. We randomly simulate linguistic parameters and generate alignments for our data set that
we designated as “correct” and then used the GA to estimate these values. The results are shown
in Figure 2A. Under these conditions, the GA quickly converges and returns linguistic parameter
values that correctly align all the cognate pairs in the training set. Figure 2B also shows results from a
proof-of-concept trial of the supervised learning methodology, which we described in the next section.

Figure 2: Genetic algorithm convergence plots showing (A) GA convergence using 100 simulated
feature parameter sets. In all cases, the GA discovers parameters that could replicate the optimal
alignments determined by the simulated parameter values; (B) GA performance estimating unknown
parameter values using alignments determined manually by a trained linguist; (C) the alignment
performance of the default parameter values when compared to manual determinations. In all cases
the GA was run with a population of 100 and for 100 iterations to ensure convergence; only time steps
1-50 are plotted here.

Supervised learning with Indonesian languages

The overall goal of the optimization methodology is to determine whether our procedure can effectively
estimate linguistic alignment parameters using real word lists with meaningful phonetic patterns.
The reason this is important is because the frequency of linguistic features is expected to vary among
languages or groups of languages so the optimal weighting parameters may also vary (Kondrak,
2003). As a proof-of-concept, we analyze word lists that were collected on the island of Sumba in
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Eastern Indonesia (Lansing et al., 2007). The data set includes 11,515 unique words organized in a
matrix consisting of 56 word lists and 439 cognates. Even though this sample includes a relatively
small number of languages, there are approximately 12,000 unique pairwise cognate comparisons.
To generate a training data set, we used a stratified framework to sample 203 cognate pairs from the
database that are broadly representative of local phonemic complexity and submitted this data set
to the linguist for manual alignment determinations. Strata were defined using the proportion of
cognate pairs with each number of alignments (1-5) throughout the complete database. A historical
linguist (Norquest) determined the “best” alignment for a sample of cognate pairs by manually
examining each word pair and choosing from the list of candidate alignments. These determinations
were made qualitatively, based on detailed knowledge from our previous study of the historical
relationships among these languages, including sound changes, drift, and inheritance. We then
analyzed the performance of the default ALINE parameters for identifying the best possible alignment
and compared it to the performance of optimized parameters determined by the genetic algorithm
and the supervised learning methodology outlined above. The results of the supervised learning
procedure are shown in Figure 3.

Figure 3: Distribution of optimized feature weights

Alignment accuracy using optimized and default weights

We analyze the ability of the GA to estimate unknown parameters using the alignments manually
selected by the linguist. Figure 2 shows that GA performance converges at a lower level when
analyzing these alignments. However, suboptimal performance is expected because the manual
coding process necessitates trade-offs between optimal features for aligning any given cognate pair
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and the optimal values for the entire training set. Nevertheless, we find that the optimized parameters
performed better than the default parameters. Since the ALINE algorithm encodes linguistic rules, it is
expected to achieve a certain number of correct alignments regardless of parameter weights. We find
that this is the case: the median number of correct alignments using simulated random parameters
is 19, while the default parameters achieve 118 correct alignments, and the optimized parameters
achieve 158. Thus, our results show that in comparison to randomly selected feature weights, the
optimal feature weights are approximately 29% more accurate than the defaults.

Statistical analysis of optimized and default weights

Next, we test whether the difference between the parameter estimates from the GA and the default
values are statistically significant. The population of optimized candidate parameter values from the
GA is used to determine empirical distributions for each linguistic parameter and to calculate the
probability for each. The default values, median estimated values, and probabilities are reported in
Table 3. We find 9/13 features differed from the default values. We include α ≤ .10 because of the size
of the training sample – a larger data set is expected to return even more significant results. Regardless
of sampling, it is expected that not all features would be significant in a given language family because
certain features are more important than others for classification tasks (Kondrak, 2003). In two cases
(aspirated, long), the estimated parameters differ significantly from the defaults based on the empirical
distributions, but in these cases the algorithm is not sensitive to these parameters, most likely because
those features are not prominently represented in the training data set.

Parameter Default Optimized Pr(X<>x)

Syllabic 5 3 *** 0.0022
Place 40 38 ** 0.0108
Stop 50 26 *** < 1.0−16

Voice 10 18 * 0.0506
Nasal 10 8 * 0.0626
Retroflex 10 9 0.6972
Lateral 10 14 0.4710
Aspirated 5 52 * 0.0946
Long 1 52 ** 0.0194
High 5 9 *** 0.0004
Back 5 0 0.1580
Round 5 9 0.1762
Skip 10 0 *** < 1.0−16

Sig. levels: α ≤ .01 (***); α ≤ .05 (**); α ≤ .1 (*)

Table 3: Summary statistics for a population of optimized parameters

Cross-validation

To determine whether the resulting optimized parameters can correctly align reserved data, we use
leave-one-out cross-validation. We iteratively optimize parameters using 202/203 of the cognate pairs
from the training data such that each cognate pair is reserved once. After each iteration, the optimized
parameters are used to align the reserved pair and a success is recorded when the automated alignment
matches the linguist-determined alignment. In this binary classification routine the default parameters
successfully predicted 118/203 (58%) of the manual determinations and the optimized parameters
predicted 151/203 (75%).

Statistical analysis of distances generated with optimized and default weights

Finally, to determine whether optimizing parameters affects the linguistic distance measurements, we
analyze the distribution of the pairwise differences between the distances calculated by the optimized
and default parameters. A Wilcoxon signed rank test for paired samples finds that the median
optimized distance is 0.0096 greater than the default median and that this difference is statistically
significant (Mo = 0.1896, Md = 0.1800, V = 9247, p < 2.612× 10−07). We also note that there are
instances when the difference between the default and optimized distances is less than 0. This suggests
that optimizing linguistic parameters may have nonlinear effects on the resulting distances.
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Future research: potential synchronic uses for alineR

Although our work has been used primarily for diachronic applications (the generation of phylogenetic
trees), it has potential synchronic applications as well.1 One potential use involves the computation of
what are known as phonological neighbors – words which are similar to a target word but differ from
that target by a single phoneme. The total number of words fitting this definition can be described as a
phonological neighborhood. A word’s neighborhood size can affect the way we understand and use
it. When we hear a word, everything that sounds like that word becomes slightly more accessible in
memory. It therefore takes listeners longer to determine what a word is when that word has several
neighbors (Luce and Pisoni, 1998). Take, for example, the phonological neighborhood of cat, where
each word in the neighborhood differs from cat by a single phoneme (either consonant or vowel):

cat cab, cad, can, cam, cap, cart, cash, catch, caught, coat, cot, court, cut, bat, chat, fat, hat, kit, kite,
mat, pat, rat, sat, that

With a large neighborhood such as the one above, it is more difficult to eliminate the words that
were not said; cot or cap for example, rather than cat. A word like green, which has fewer neighbors
than cat, is less confusable, and thus requires less work to identify:

green grain, gran, greed, grief, grease, Greece, Greek, greet, grin, grown, groan

While phonological neighbors can be viewed in terms of differing segments, a finer-grained
analysis may also break these segments down into phonological features. For example, cad differs
from cat by one feature: voicing in the third segment. On the other hand, cab differs from cat in both
voicing and place of articulation of the final segment. Likewise, grain differs from green by one feature
in the vowel (height), but groan differs from green by three features (height, backness, and rounding).

As a feature-driven algorithm, ALINE could allow the members of a phonological neighborhood
to be mapped in a quantitative way based on phonological distance. The resulting neighborhood maps
can then be used in psycholinguistic experiments, testing the hypothesis that phonological distance
between neighbors at the feature level correlates with both access times and production values.

Another way in which ALINE could be used synchronically involves certain kinds of speech
errors and neologisms. Strictly phonological errors include metathesis, sound-exchange errors, and
spoonerisms. These are all instances in which the linear order of a pair of phonemes is reversed, as in
the examples below:

Metathesis pus pocket > pos pucket

Sound-exchange error night life > knife light

Spoonerism light a fire > fight a liar

Other forms of phonological errors include additions and deletions:

Addition optimal > moptimal

Deletion unanimity > unamity

Still other forms include anticipation and perseveration, where a phoneme (or sequence of
phonemes) in one word influences the articulation of another word in the same phrase:

Anticipation reading list > leading list

Perseveration black boxes > black bloxes

With ALINE’s feature-driven alignment capabilities, and given an adequate corpus of errors,
generalizations could be quickly drawn about both the position of errors within the word as well as
the frequency with which various phonemes participate in unitary instances as well as in pairs.

A final example, which occurs in both speech errors and intentional neologisms, is what are known
as blends:

channel x tunnel > chunnel
breakfast x lunch > brunch
The ALINE algorithm could foster some unique insights in these cases. In unmarked blends such

as chunnel and brunch, the initial part of the first donor word (the onset of the initial syllable in these
cases) replaces the same in the second donor word. On the other hand, in the unintentional blend
perple, an entire syllable is copied from the first donor word:

1We would like to thank an anonymous reviewer for suggesting the inclusion of this section.
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person x people > perple
At first it is not clear why this example differs from the ones given above. However, one fact which

stands out is that the initial consonant [p] is common to both of the input forms as well as the output
form (a fact which would be reflected in the output score of an ALINE comparison). Since both donor
words have the same initial consonant, if the same rule was applied here which operated in the chunnel
and brunch examples, the hypothetical blend would be indistinguishable from the second donor word:

person x people > people
A more ambiguous case is that of motel, where the blend contains two phonemes (a vowel and a

consonant) which are shared between the donor words:

motor x hotel > motel
An ALINE analysis would indicate this ambiguity via the output score which correlates with the

shared material overlapping between the two donor words.

ALINE could therefore be used to quickly analyze and categorize different kinds of blends
(particularly in the case of a large corpus), with an eye toward answering questions such as what
determines the size of the constituents of a blend (how many segments or syllables are copied from the
donor words to the blend), what determines the type of constituents in a blend (i.e. are they syllable
onsets, full syllables, and so on), and what role segmental overlap plays in blend formation. While an
analysis of these phenomena lies outside the scope of this paper, given the appropriate type and size
of corpi, we consider the examples above to be fruitful prospects for future research in phonology and
psycholinguistics.

Conclusion

In conclusion, alineR is a new R package for calculating and optimizing feature-weighted linguistic
distances. It is now available on CRAN. Supplemental materials accompanying this paper include
an R script (‘downey.R’) for the commands and analyses included above. The linguistic data from
Sumba used for training the GA is in the train object in ‘downey.Rdata’. We suggest that optimized
feature-weighted linguistic distances are an important complement to other linguistic distances such
as the edit or Levenshtein distance. In addition to calculating the ALINE distance and returning
relevant alignment information and similarity scores, the package provides a genetic algorithm that
can be used to estimate linguistic parameters using supervised learning. It may be particularly useful
for bioinformatic applications in anthropology and historical linguistics or in comparisons with well-
resolved quantitative distance measurements (e.g., Fst). As such, it has the potential to help advance
our understanding of the evolutionary relationships between languages and genetics. Not only can
this help uncover historical demographic patterns, but coevolutionary analyses using the ALINE
Distance may provide insight into general processes of biological and cultural evolution.
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Implementing a Metapopulation Bass
Diffusion Model using the R Package
deSolve
by Jim Duggan

Abstract Diffusion is a fundamental process in physical, biological, social and economic settings.
Consumer products often go viral, with sales driven by the word of mouth effect, as their adoption
spreads through a population. The classic diffusion model used for product adoption is the Bass
diffusion model, and this divides a population into two groups of people: potential adopters who
are likely to adopt a product, and adopters who have purchased the product, and influence others
to adopt. The Bass diffusion model is normally captured in an aggregate form, where no significant
consumer differences are modeled. This paper extends the Bass model to capture a spatial perspective,
using metapopulation equations from the field of infectious disease modeling. The paper’s focus is on
simulation of deterministic models by solving ordinary differential equations, and does not encompass
parameter estimation. The metapopulation model in implemented in R using the deSolve package,
and shows the potential of using the R framework to implement large-scale integral equation models,
with applications in the field of marketing and consumer behaviour.

Introduction

Diffusion is a fundamental process in physical, biological, social and economic settings (Rahmandad
and Sterman, 2008). In the business arena, consumer products frequently go viral by the word of
mouth effect between consumers. In this scenario, products experience rapid sales growth, which
eventually slows as the number of potential adopters decline. A classic dynamic model to capture
these growth processes is the Bass model (Bass, 1969), which is based on the assumption that the timing
of purchases is related to the number of previous buyers. This model provided good predictions of
the sales peak, and the timing of the peak when compared to historical data. Providing model-based
estimates of peak timing can assist with production capacity planning and sales distribution strategies,
for example, to ensure that enough product items are available in time to match future demand.
A representation of the Bass model is shown in Figure 1, and this captures the scenario whereby
newer technologies are not immediately adopted by all potential buyers, and a diffusion process is
set into motion (Norton and Bass, 1987). This version of the Bass model is informed by standard
epidemiological diffusion models(Vynnycky and White, 2010), and so the term force of persuasion is
analogous to the epidemiological term force of infection.

Figure 1: Market diffusion model, aggregate version. AR represents the adoption rate (derivative),
and + and - refer to positive and negative association respectively. The symbol B represents a negative
feedback loop (balancing), while R indicates a positive feedback loop (reinforcing).
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The modeling methodology used in this paper is system dynamics (Sterman, 2000; Duggan, 2016),
a method for modeling social systems, which focuses on how feedback structures (i.e. causal loops)
impact overall system behavior. Feedback is a defining element of system dynamics (Lane, 2006),
where a feedback loop is a chain of circular causal links represented in a model. There are two types of
feedback which impact a variable: negative feedback which opposes the direction of change in a loop
variable (for example, a theromstat controller that regulates heat in a room), whereas positive feedback
amplifies a variable’s value, as in the case of the contagion effect in infectious disease spread. At a
technical level, system dynamics models are solved using integration, where integrals are referred
to as stocks, and derivatives are modeled as flows. System dynamics diagrams are intuitive, as they
present a dynamic system in terms of the stocks (containers), and flows (valves), which control the
rate at which stocks fill and drain over time.

Bass diffusion model

The Bass diffusion model has two integrals: Potential Adopters (1), which model individuals in the
population that have yet to acquire a product, and Adopters (2), which represent people who have
purchased a product, and are in a position to influence others to initiate a purchase. For this paper, the
initial values of these stocks are 99, 999 and 1 respectively, giving a total population size of 100, 000.
These initial values will also be maintained across the metapopulation model, which provides a useful
basis for comparing the outputs of both models.

PotentialAdopters =
∫ t

0
−AR dt (1)

Adopters =
∫ t

0
AR dt (2)

The flow equation AR (8) captures a number of concepts. First, there is the idea of the effective per
capita contact rate, known by the parameter β (3), which is based on:

• The contact rate (4) between members of the population, which is an estimate of how often
people interact.

• The infectivity (5) of these interactions, which is a way of modeling how likely it is for an
individual to be convinced to purchase, based on an interaction with an adopter.

• The total population (6), which is the denominator of the equation.

β =
ContactRate× In f ectivity

Population
(3)

ContactRate = 3 (4)

In f ectivity = 0.15 (5)

Population = 100, 000 (6)

Given the value for β, it is then possible to calculate the force of persuasion ρ, which defines the
proportion of potential adopters that will convert at each time period. This equation (7) is similar to
the epidemiological term known as the attack rate, which determines how many susceptible people
become infected per time period in classic infectious disease models (Anderson et al., 1991).

ρ = β× Adopters (7)

With the value for ρ evaluated, the adoption rate is simply the product of this value with the
number of potential adopters in the population, as shown in (8).

AR = ρ× PotentialAdopters (8)

These equations have three properties that add to the robustness of the model, These are:

• if there are no contacts in the population, β will equal 0, and no adoption will occur;

• if infectivity is zero, β will also equal 0, which will stop any adoption;

• if there are no adopters, then the force of persuasion will be zero, and no adoptions will occur.
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Equations (1)-(8) can be implemented using the deSolve package (Soetaert et al., 2010, 2016),
which solves initial value problems written as ordinary differential equations (ODE), differential
algebraic equations (DAE), and partial differential equations (PDE). For modeling diffusion processes,
the R package EpiDynamics (Baquero and Marques, 2015) was also considered, however it does not
currently provide functionality to solve two-compartment SI models, which forms the basis of the Bass
model. The R package EpiModel (Jenness et al., 2016) also contains an API that is flexible to formulate
a number deterministic compartmental models. For our scenario, the ODE solver in deSolve is used,
where the differential equations are encapsulated in a function.

The initial segment of code1 loads the packages, sets the simulation start time, finish time, and
time step, and constructs the appropriate time vector that is needed by deSolve. Following that, the
two integrals (stocks) are created, along with their initial values, and auxiliary parameters initialised
within a vector. In naming variables, Hungarian Notation (Li and Prasad, 2005) is used, to distinguish
between stocks (s), flows (f) and exogenous parameters (a), known in system dynamics as auxiliaries.

library(deSolve)

START <- 0; FINISH <- 50; STEP <- 0.01;
simtime <- seq(START, FINISH, by=STEP)

stocks <- c(sPotentialAdopters=99999,sAdopters=1)
auxs <- c(aTotalPopulation=100000, aContact.Rate=3, aInfectivity=0.15)

Next the function containing the model equations is constructed. This is called by the deSolve
framework for every solution step of the ODE, and the parameters passed in include:

• The current simulation time,

• A vector containing all integrals (stocks) and their values,

• A vector containing the parameters used in the stock and flow model.

The R code for the function is shown below, and the corresponding model equations are also
referred to.

model <- function(time, stocks, auxs){
with(as.list(c(stocks, auxs)),{
aBeta <- aContact.Rate * aInfectivity/ aTotalPopulation # Eqn (3)
aRho <- aBeta * sAdopters # Eqn (7)
fAR <- sPotentialAdopters * aRho # Eqn (8)
dPA_dt <- -fAR # Eqn (1)
dA_dt <- fAR # Eqn (2)

return (list(c(dPA_dt, dA_dt),
AR=fAR, Rho=aRho))

})
}

To run the simulation, the function ode() is called with five parameters, including the vector of
stocks, the simulation time vector, the callback model function, any exogenous parameters (none
in this case), and the numerical integration algorithm to use (Euler’s method is deployed, as this is
commonly used as an integration method for social systems (Sterman, 2000)). The results from ode()
are then wrapped in a data frame, in order to make use of ggplot().

o<-data.frame(ode(y=stocks, times=simtime, func = model,
parms=auxs, method="euler"))

Figure 2 shows the classic behavior of the Bass model, as the dynamics of the adopter exhibit
s-shaped growth as the customer base saturates to its maximum possible value over time.

In summary, the aggregate model is useful to capture the overall dynamics of the diffusion process.
However, for spatial diffusion models a revised equation structure is needed, and one such model
based on the dynamics of infectious disease transmission - is now described.

1See supplemental material included with the paper

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=deSolve
https://CRAN.R-project.org/package=EpiModel


CONTRIBUTED RESEARCH ARTICLES 156

Figure 2: Simulation of the Bass model

Metapopulation diffusion model

Metapopulation structures are a powerful feature in dynamic modeling, as they facilitate the investi-
gation of finer-grained behaviours and dynamics than can be achieved through an aggregate model.
The metapopulation concept is to subdivide the entire population into distinct subpopulations, each
with independent dynamics, and combine this with limited interaction between each subpopulation
(Keeling and Rohani, 2008). The approach is appropriate if there are significant variations in model
parameters across the population. For example, in disease dynamics, empirical studies show non-
random mixing in populations, including data on the transmission of tuberculosis (Borgdorff et al.,
1999), and contact patterns across Europe show highly assortative mixing patterns with age (Mossong
et al., 2008). A similar argument can be made for product adoption models, and for this scenario, a
regional spatial structure is proposed as the main mechanism for subdividing the model. Figure 3
shows a hypothetical regional structure, where the population centers (colours reflect population
density) are in the middle of the region, and models an unbalanced regional development which is a
feature of many countries.

Figure 3: Spatial structure for metapopulation diffusion model

Out of an overall population of 100,000, the proportions in each region are captured in Table 1.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

10% 1% 21% 8% 17% 4% 5% 25% 3% 6%

Table 1: Population proportions by region
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At a structural level, the diffusion model has 20 stocks, based on the stock and flow structure in
Figure 1. The integral equations (1) and (2) are replicated for each region, and each region has its own
adoption rate (8). This adoption rate is formulated as the product of each region’s force of persuasion
and the number of adopters, as specified in (9).

ARi = ρi × PotentialAdoptersi (9)

The force of persuasion ρi reflects the spatial properties of the model, and is a weighted sum of the
per capita effective contact rates from region j to region i, multiplied by the number of adopters (Aj)
in region j (10). This structure is based on standard epidemiological transmission equations between
cohorts, where the jth cohort is infectious (an adopter), and the ith cohort is susceptible (a potential
adopter).

ρi =
N

∑
j=1

βij.Aj (10)

Equation (10) can also be conveniently expressed in matrix form, as shown in (11).
ρ1
ρ2
...

ρN

 =


β11 β12 . . . β1N
β21 β22 . . . β2N

...
...

. . .
...

βN1 βN2 . . . βNN




A1
A2
...

AN

 (11)

The β component, originally introduced in (3), is the effective contact rate per capita, and therefore
the square matrix component of (11) can be further factored into (12) which shows the transmission
calculations between each region. The denominator is the same for each matrix row, and is the
population of each region containing the potential adopters.

βij = eij/Ni (12)

The effective contact values (e) are based on the contact rates between the different sectors. The
contact rates are calculated from the normal contact rate for a region (n), multiplied by a distancing
weighting measure using a power law function (Brockmann et al., 2006), useful for individual-based
models (Mungovan et al., 2011; Liu et al., 2012), given that these structures have also been successfully
implemented in models of infectious disease (Meyer et al., 2014). This equation is shown in (13), and
the distance is the Euclidean distance function that uses the grid coordinates as a reference (14), given
the points (x1,y1) and (x2,y2 ).

cij = nj · (dij + 1)−α (13)

dij =
√
(x2 − x1)2 + (y2 − y1)2 (14)

To provide flexibility for experimentation, the parameter α (15) provides scope to moderate the
contact rates between the different regions. With α =0, the contact rates do not change from the original
region to other regions, whereas higher values will cause contact rates to decrease as the distance
between regions increases.

α ≥ 0 (15)

The effective contact rates (e), which model the word of mouth effect from region to region is
shown in (16), which is the product of the contact rates (c) and infectivity ( f ), which models the
probability of transmission. This equation provides the necessary information to process the matrix
specified in (11).

eij = cij. f j (16)

Tables 2-5 show sample parameter values for the model. In Table 2, sample normal contact rates per
area are shown, with R5 and R8 having the highest values, given that these have the highest population
proportions. Table 3 summarises arbitrary infectivity values, which do not vary significantly from
region to region, as an individual’s ability to persuade others is not assumed to be dependent on the
overall population density. Table 4 shows the distance values calculated between each region, where
the coordinates are based on the row/column location of a region, shown earlier in Figure 3. Table 5
then shows the final contact rates, using (13), with α = 1.0, which shows that the contact rate falls as
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R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

4.58 0.56 10.12 4.61 10.00 1.64 2.53 14.46 1.53 2.95

Table 2: Sample normal contact rates (n) per area, weighted by population density

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

0.05 0.03 0.04 0.03 0.01 0.05 0.02 0.01 0.02 0.05

Table 3: Sample infectivity probabilities ( f ), by region (uniform random numbers)

the distance between regions increases, according to the power law function.

The metapopulation Bass diffusion model in R

The R implementation for the metapopulation Bass model is now presented. First, the relevant libraries
are attached, and these include utilities to support plotting (ggplot2 and scales), preparation of data
(reshape2 and dplyr), and for performing numerical integration (deSolve).

library(deSolve)
library(ggplot2)
library(scales)
library(reshape2)
library(dplyr)

Initially, a data frame is used to specify the model topology, although spatial data stored in GIS
files could also be used as part of the implementation (Bivand et al., 2013, pp. 1–16).

TotalPopulation<-100000
name.reg<-c("R1","R2","R3","R4","R5",

"R6","R7","R8","R9","R10")
row.reg<-c(1,1,1,1,1,2,2,2,2,2)
col.reg<-c(1,2,3,4,5,1,2,3,4,5)
pop.reg<-c(0.10,0.01,0.21,0.08,0.17,

0.04,0.05,0.25,0.03,0.06)

sp<-data.frame(Regions=name.reg,
Row=row.reg,
Col=col.reg,
Pop=pop.reg*TotalPopulation)

Before running the simulation, the NxN matrix from equation (11) needs be be calculated, based
on equations (12), (13), (14), (15) and (16). The normal contact rate is drawn from a random uniform

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

R1 0.00 1.00 2.00 3.00 4.00 1.00 1.41 2.24 3.16 4.12
R2 1.00 0.00 1.00 2.00 3.00 1.41 1.00 1.41 2.24 3.16
R3 2.00 1.00 0.00 1.00 2.00 2.24 1.41 1.00 1.41 2.24
R4 3.00 2.00 1.00 0.00 1.00 3.16 2.24 1.41 1.00 1.41
R5 4.00 3.00 2.00 1.00 0.00 4.12 3.16 2.24 1.41 1.00
R6 1.00 1.41 2.24 3.16 4.12 0.00 1.00 2.00 3.00 4.00
R7 1.41 1.00 1.41 2.24 3.16 1.00 0.00 1.00 2.00 3.00
R8 2.24 1.41 1.00 1.41 2.24 2.00 1.00 0.00 1.00 2.00
R9 3.16 2.24 1.41 1.00 1.41 3.00 2.00 1.00 0.00 1.00

R10 4.12 3.16 2.24 1.41 1.00 4.00 3.00 2.00 1.00 0.00

Table 4: Regional distance matrix based on Euclidean distance
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R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

R1 4.58 0.28 3.37 1.15 2.00 0.82 1.05 4.47 0.37 0.58
R2 2.29 0.56 5.06 1.54 2.50 0.68 1.26 5.99 0.47 0.71
R3 1.53 0.28 10.12 2.31 3.33 0.51 1.05 7.23 0.63 0.91
R4 1.14 0.19 5.06 4.61 5.00 0.39 0.78 5.99 0.77 1.22
R5 0.92 0.14 3.37 2.31 10.00 0.32 0.61 4.47 0.63 1.47
R6 2.29 0.23 3.13 1.11 1.95 1.64 1.26 4.82 0.38 0.59
R7 1.90 0.28 4.19 1.43 2.40 0.82 2.53 7.23 0.51 0.74
R8 1.41 0.23 5.06 1.91 3.09 0.55 1.26 14.46 0.77 0.98
R9 1.10 0.17 4.19 2.31 4.14 0.41 0.84 7.23 1.53 1.47

R10 0.89 0.13 3.13 1.91 5.00 0.33 0.63 4.82 0.77 2.95

Table 5: Final contact rates (c) from region to region, with α = 1.00

distribution based on the population proportion in each sector, where areas of higher density will
have great interaction rates. The values for infectivity (a measure of the persuasiveness of an adopter)
are also drawn from a uniform distribution, and the distance matrix is developed by calling the R
function dist(). The value for α is arbitrarily chosen at 1.00.

normal.contacts<-runif(10,pop.reg*40,pop.reg*60)
infectivity<-runif(10,0.01,0.025)
names(infectivity)<-c("R1","R2","R3","R4","R5","R6","R7","R8","R9","R10")
ALPHA<-1.00
dm <- as.matrix(dist(sp[c("Col","Row")]))

In order to create the β matrix, a modified contact rate is calculated based on equation (16), and
this is then transformed to an effective contact matrix by multiplying by the infectivity vector. The β
matrix is then evaluated by simply dividing the effective contacts by the population of each sector, as
specified earlier in equation (12).

cr <- t(normal.contacts*(dm+1)^-ALPHA)
ec <- t(t(cr)*infectivity)

beta <- ec/sp$Pop

With the contact information defined, the simulation model logic can then be implemented as
part of the deSolve package. The key advantage here is that deSolve supports vectorization, and
therefore the simulation model is scalable, as it uses matrix algebra to implement (11). Before defining
the callback model function, the important simulation parameters are specified, including the start
time, finish time, integration time step, the number of regions and the number of integrals (stocks) per
region. The simulation time vector is defined, as well as a vector of integrals (20 in all), along with
their initial values. For the initial conditions, the initial customer zero adopter is seeded in region eight
(an arbitrary choice).

START<-0; FINISH<-50; STEP<-0.01;
NUM_REGIONS<-10; NUM_STOCKS_PER_REGION <-2

simtime <- seq(START, FINISH, by=STEP)

stocks <- c(PA_R1=sp$Pop[1], PA_R2=sp$Pop[2], PA_R3=sp$Pop[3],
PA_R4=sp$Pop[4], PA_R5=sp$Pop[5], PA_R6=sp$Pop[6],
PA_R7=sp$Pop[7], PA_R8=sp$Pop[8]-1, PA_R9=sp$Pop[9],
PA_R10=sp$Pop[10], AD_R1=0, AD_R2=0,
AD_R3=0, AD_R4=0, AD_R5=0,
AD_R6=0, AD_R7=0, AD_R8=1,
AD_R9=0, AD_R10=0

In the model function, the stocks vector is converted into a 10x2 matrix, where all the potential
adopter stocks are in the first column, and the adopter stocks reside in the second column. Matrix
algebra is used to calculate the force of persuasion (12), and from this the adoption rates for each sector
are calculated (9), followed by the derivatives. Additional information such as the individual adoption
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rates, the total population, the total potential adopters and the total adopters are also returned from
the function. A powerful feature of this function is that it is eminently scalable, and would work
(assuming availability of sufficient computer memory) on much larger matrices and models.

model <- function(time, stocks, auxs){
with(as.list(stocks),{
states<-matrix(stocks,

nrow=NUM_REGIONS,
ncol=NUM_STOCKS_PER_REGION)

PotentialAdopters <- states[,1]
Adopters <- states[,2]

Rho <- beta %*% Adopters # Eqn (11)
AR <- Rho * PotentialAdopters # Eqn (9)

dPA_dt <- -AR # Based on Eqn(1)
dAD_dt <- AR # Based on Eqn(2)

TotalPopulation <- sum(stocks)
TotalPotentialAdopters <- sum(PotentialAdopters)
TotalAdopters <- sum(Adopters)

return (list(c(dPA_dt, dAD_dt),AR_R=AR,
TP=TotalPopulation,
TPA=TotalPotentialAdopters,
TAD=TotalAdopters))

})
}

Once the model function has been specified, the deSolve package is called via the ode() function
call, as descibed earlier. To prepare the data for visualization, it is filtered to focus on only the
simulation data from discrete time steps (0, 1, 2, ..., 50), and this is melted into a three column data
frame. The grepl() function is inside the filter() function to extract variables, and these are printed
using the function ggplot().

o<-data.frame(ode(y=stocks, times=simtime, func = model,
parms=NULL, method="euler"))

o1<-o[seq(from=1, to=length(simtime),by=1/STEP),]

tidy<-melt(o1,id.vars = "time")
names(tidy)<-c("Time","Variable","Value")

ar<-filter(tidy,grepl("AR_",Variable))
ad<-filter(tidy,grepl("AD_",Variable))

p1<-ggplot(ar,aes(x=Time,y=Value,color=Variable)) +
geom_line() + geom_point()+
ylab("Adoption Rate") + xlab("Time (Weeks)")

p2<-ggplot(ad,aes(x=Time,y=Value,color=Variable,group=Variable)) +
geom_line() +
geom_point()+
ylab("Adopters") +
xlab("Time (Weeks)")

The simulation output is displayed in Figures 4 and 5. The first of these figures shows the adoption
rate (AR) values, which follow the classic bell-shaped contagion-like curve, as word of mouth spreads
through the population with a correponding increase in the "attack rate" or force of persuasion. As
the number of potential adopters decline, so to does the adoption rate. The differences in peak times,
although relatively small, are still clear on the diagram, which demonstrates the value of being able
to model across spatial regions, and observe how the "epidemic", which is captured in the model
equations, spreads across the different regions. The second plot captures the market saturation for
each region, as potential adopters convert to adopters via the word of mouth diffusion process.
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Figure 4: Simulation output: adoption rates by sector

Figure 5: Simulation output: Adopter stocks behavior over time
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While the model is based on hypothetical data, including the regional structure, the contact rates
and infectivity, its underlying structure is robust and can be adapted for many spatial interaction
processes. The simulation engine of the model is concise and can be used across a number of contexts,
and real-world data can be conveniently used within the model, once it is prepared and respresented
in matrix format.

Discussion

This paper shows how R can be used to model metapopulation integral models of product diffusion.
For this class of problems, there are a number of advantages in considering R as a solution:

• R provides matrix support, and matrix equations such as the force of persuasion can be easily
implemented.

• The package deSolve fully supports vectorisation, which means that the equation writing
process is simplified, and the equation structures developed are scalable without having to alter
the underlying model structure.

• R also provides excellent statistical analysis support, and model analysis techniques such as
statistical screening (Ford and Flynn, 2005) can be conveniently scripted using R Duggan (2016,
chapter 7).

Further extensions to the work would be to apply optimization techniques in order to fit product
diffusion models to product sales data across regions, and therefore obtain more realistic simulations
of the peak time (Vynnycky and Edmunds, 2008). These model extensions could also accomodate age
cohort dynamics for market-based models, for example, those captured in epidemiological models
such as influenza transmission (Keeling and Rohani, 2008; Vynnycky and White, 2010).
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MDplot: Visualise Molecular Dynamics
by Christian Margreitter and Chris Oostenbrink

Abstract The MDplot package provides plotting functions to allow for automated visualisation of
molecular dynamics simulation output. It is especially useful in cases where the plot generation is
rather tedious due to complex file formats or when a large number of plots are generated. The graphs
that are supported range from those which are standard, such as RMSD/RMSF (root-mean-square
deviation and root-mean-square fluctuation, respectively) to less standard, such as thermodynamic
integration analysis and hydrogen bond monitoring over time. All told, they address many com-
monly used analyses. In this article, we set out the MDplot package’s functions, give examples of the
function calls, and show the associated plots. Plotting and data parsing is separated in all cases, i.e.
the respective functions can be used independently. Thus, data manipulation and the integration of
additional file formats is fairly easy. Currently, the loading functions support GROMOS, GROMACS,
and AMBER file formats. Moreover, we also provide a Bash interface that allows simple embedding of
MDplot into Bash scripts as the final analysis step.

Availability: The package can be obtained in the latest major version from CRAN (https://cran.r-
project.org/package=MDplot) or in the most recent version from the project’s GitHub page at
https://github.com/MDplot/MDplot, where feedback is also most welcome. MDplot is published
under the GPL-3 license.

Introduction

The amount of data produced by molecular dynamics (MD) engines (such as GROMOS (Schmid et al.,
2012; Eichenberger et al., 2011), GROMACS (Pronk et al., 2013), NAMD (Phillips et al., 2005), AMBER
(Cornell et al., 1995), and CHARMM (Brooks et al., 2009)) has been constantly increasing over recent
years. This is mainly due to more powerful and cheaper hardware. As a result of this, both the lengths
and sheer number of MD simulations (i.e. trajectories) have increased enormously. Even large sets
of simulations (e.g., in the context of drug design) are attainable nowadays; thus suggesting that the
processing of the resulting information is undertaken automatically.

In this respect, automated yet flexible visualisation of molecular dynamics data would be highly
advantageous: both in order to avoid repetitive tasks for the user and to yield the ultimately desired
result instantly (see Figure 1). Moreover, generating some of the graphs can be cumbersome. An
example would be the plotting of a time series of a clustering program or hydrogen bonds. Therefore,
these cases are predestined to be handled by a plotting library. There have been attempts made in
that direction, for example the package bio3d (Grant et al., 2006; Skjærven et al., 2014) (which allows
the trajectories to be processed in terms of principle component analysis (PCA), RMSD and RMSF
calculations), MDtraj (McGibbon et al., 2015), or Rknots (Comoglio and Rinaldi, 2012). However, to
the best of our knowledge, there is currently no R package available that offers the wide range of
plotting functions and engine-support that is provided by MDplot. R is the natural choice for this
undertaking because of both its power in data handling and its vast plotting abilities.

Figure 1: Shows the overall workflow typically applied in molecular dynamics simulations beginning
with a single PDB (Berman et al., 2000) structure as the input for the simulation and ending with the
graphical representation of the data obtained. For large amounts of data, generating figures might
become a tedious, highly repetitive task.

In the following sections we outline all of the plotting functions that are currently supported. For
each function, examples of the function calls based on the test data included in the package, the
resulting plots, the return values, and a table of arguments are detailed. The respective code samples
use the loading functions (reported below) to parse the input files located in folder ‘extdata’, which
allows immediate testing and provides format information to users. Currently, the package supports
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GROMOS, GROMACS, and AMBER file formats as input.1 However, extensions in both format
support and plotting functionalities are planned.

Plotting functions

The package currently offers 14 distinct plotting functions (Table ??), which cover many of the graphs
that are commonly required. Although the focus of the package relies on the visualisation of data,
in addition to this values are calculated to characterise the underlying data when appropriate. For
example, TIcurve() calculates the thermodynamic integration free-energy values including error
estimates and the hysteresis between the integration curves. In many cases, the plotting functions
return useful information on the data used, e.g., range, mean and standard deviation of curves.

To provide simple access to these functions, they may be called from within a Bash script. Examples
are provided at the end of the manuscript.

Plot function Description

clusters() Summary of clustering over trajectories (RMSD based).
clusters_ts() Time series of cluster populations (RMSD based).
dssp() Secondary structure annotation plot (DSSP based).
dssp_ts() Time series of secondary structure elements (DSSP based).
hbond() Hydrogen bonds summary plot.
hbond_ts() Time series of hydrogen bonds.
noe() Nuclear-Overhauser-effect violation plot.
ramachandran() Dihedral angle plot.
rmsd() Root-mean-square deviation plot.
rmsd_average() Average root-mean-square deviation plot.
rmsf() Root-mean-square fluctuation plot.
TIcurve() Thermodynamic integration curves.
timeseries() General time series plot.
xrmsd() Cross-RMSD plot (heat-map of RMSD values).

Table 1: Lists all of the currently available plotting functions that have been implemented in MDplot.
Most functions accept a boolean parameter (barePlot), that indicates printing of the plotting area only,
i.e. stripped from any additional features such as axis labels.

The clusters() function

Molecular dynamics simulation trajectories can be considered to be a set of atom configurations along
the time axis. Clustering is a method, that can be applied in order to extract common structural features
from these. The configurations are classified and grouped together based on the root-mean-square
deviation (RMSD). These subsets of configurations around the cluster’s central member structure and
their relative occurrences allow for comparisons between different and within individual simulations.
clusters() allows to plot a summary of all of the (selected) clusters over a set of trajectories (Figure
2).

clusters(load_clusters("inst/extdata/clusters_example.txt.gz",
names=c("wild-type","mut1","mut2",

"mut3","mut4","mut5")),
clustersNumber=9,main="MDplot::clusters()",ylab="# configurations")

Return value: Returns an n×m-matrix with n being the number of input trajectories and m the number
of different clusters. Each element in the matrix holds the number of snapshots, in which the respective
cluster occurred in the respective trajectory.

1In this manuscript, the code samples use GROMOS input (since the default value of the loading functions’
parameter mdEngine is "GROMOS"). For information on how to load GROMACS or AMBER files, please have a look
at the manual pages of the respective loading functions.
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Figure 2: The clusters are plotted along the x-axis and the number of configurations for each trajectory
for every cluster on the y-axis. The number of clusters is limited in this example to nine with the
clustersNumber argument, which can be useful to omit scarcely populated clusters.

Argument name Default value Description

clusters none Matrix with clusters: trajectories are given in row-
wise, clusters in column-wise fashion as provided
by load_clusters(), the associated loading func-
tion.

clustersNumber NA When specified, only these first clusters are
shown.

legendTitle "trajectories" The title of the legend.
barePlot FALSE A Boolean indicating whether the plot is to be

made without any additional information or not.
... none Additional arguments.

Table 2: Arguments of the clusters() function.

The clusters_ts() function

In structural clustering, it is often instructive to have a look at the development over time rather
than the overall summary. This functionality is provided by clusters_ts(). In the top sub-plot the
overall distribution is given, while the time series is shown at the bottom. The clusters are sorted
beginning with the most populated one, in descending order. Selections can be made and clusters that
are not selected do also not appear in the time series plot (white areas). The time axis may be shown in
nanoseconds (see Figure 3 for an example).

clusters_ts(load_clusters_ts("inst/extdata/clusters_ts_example.txt.gz",
lengths=c(4000,4000,4000,4000,4000,4000),
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names=c("wild-type","mut1","mut2",
"mut3","mut4","mut5")),

clustersNumber=7,main="MDplot::clusters_ts() example",
timeUnit="ns",snapshotsPerTimeInt=100)

Return value: Returns a summary (n + 1)×m-matrix with n being the number of input trajectories
and m the number of different clusters (which have been plotted). Each element in the matrix holds the
number of snapshots, in which the respective cluster occurred in the respective trajectory. In addition,
the first line is the overall summary counted over all trajectories.

MDplot::clusters_ts() example
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Figure 3: The plot shows a selection of the seven most populated clusters of six trajectories. Regions
that do not belong to one of the first seven clusters are shown in white.
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Argument name Default value Description

clustersDataTS none List of cluster information as provided by
load_clusters_ts(), the associated loading
function.

clustersNumber NA An integer specifying the number of clusters
that is to be plotted.

selectTraj NA Vector of indices of trajectories that are plotted
(as given in the input file).

selectTime NA Range of time in snapshots.
timeUnit NA Abbreviation of time unit.
snapshotsPerTimeInt 1000 Number of snapshots per time unit.
... none Additional arguments.

Table 3: Arguments of the clusters_ts() function.

The dssp() function

In terms of proteins the secondary structure can be annotated by the widely used program DSSP
(Definition of Secondary Structure of Proteins) (Kabsch and Sander, 1983). This algorithm uses the
backbone hydrogen bond pattern in order to assign secondary structure elements such as α-helices, β-
strands, and turns to protein sequences. The plotting function dssp() has three different visualisation
methods and plots the overall result over the trajectory and over the residues. The user can specify
selections of residues and which elements should be taken into consideration (Figure 4).

layout(matrix(1:3, nrow=1), widths=c(0.33,0.33,0.33))
dssp(load_dssp("inst/extdata/dssp_example.txt.gz"),

main="plotType=dots",showResidues=c(1,35))
dssp(load_dssp("inst/extdata/dssp_example.txt.gz"),

main="plotType=curves",plotType="curves",showResidues=c(1,35))
dssp(load_dssp("inst/extdata/dssp_example.txt.gz"),

main="plotType=bars",plotType="bars",showResidues=c(1,35))

Return value: Returns a matrix, where the first column is the residue-number and the remaining
ones denote secondary structure classes. Residues are given row-wise and values range from 0 to 100
percent.
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Figure 4: Example of dssp() with plotType set to "dots" (default), "curves" or "bars". Note that
the fractions do not necessarily sum up to a hundred percent, because some residues might not be
in defined secondary structure elements all the time. In this figure, there is no legend plotted due to
space limitations (see Figure 5 for a colour-code explanation).
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Argument name Default value Description

dsspData none Table containing information on the secondary
structure elements. Can be generated by function
load_dssp().

printLegend FALSE If TRUE, a legend is printed on the right hand side
of the plot.

useOwnLegend FALSE If FALSE, the names of the secondary structure ele-
ments are considered to be in default order.

elementNames NA Vector of names for the secondary structure ele-
ments.

colours NA A vector of colours that can be specified to replace
the default ones.

showValues NA A vector of boundaries for the values.
showResidues NA A vector of boundaries for the residues.
plotType "dots" Either "dots", "curves", or "bars".
selectedElements NA A vector of names of the elements selected.
barePlot FALSE Boolean, indicating whether the plot is to be made

without any additional information.
... none Additional arguments.

Table 4: Arguments of the dssp() function.

The dssp_ts() function

The secondary structure information as described for the function dssp() can also be visualised along
the time axis using function dssp_ts() (Figure 5). The time can be annotated in snapshots or time
units (e.g., nanoseconds).

dssp_ts(load_dssp_ts("inst/extdata/dssp_ts_example"),printLegend=TRUE,
main="MDplot::dssp_ts()",timeUnit="ns",
snapshotsPerTime=1000)

Argument name Default value Description

tsData none List of lists, which are composed of a name
(string) and a values table (x ... snap-
shots, y ... residues). Can be generated by
load_dssp_ts().

printLegend TRUE If TRUE, a legend is printed on the right hand
side of the plot.

timeBoundaries NA A vector of boundaries for the time in snap-
shots.

residueBoundaries NA A vector of boundaries for the residues.
timeUnit NA If set, the snapshots are transformed into

the respective time (depending on parameter
snapshotsPerTime).

snapshotsPerTimeInt 1000 Number of snapshots per respective timeUnit.
barePlot FALSE A Boolean indicating whether the plot is to be

made without any additional information.
... none Additional arguments.

Table 5: Arguments of the dssp_ts() function.

The hbond() function

In the context of biomolecules, hydrogen bonds are of particular importance. These bonds take place
between a donor, a hydrogen, and an acceptor atom. This function plots the summary output of
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Figure 5: Example showing all of the defined secondary structure elements per residue over time.
Note, that for this example plot a sparse data set was used to reduce the size of the data file (hence the
large white areas in the middle).

hydrogen bond calculations and allows selection of donor and acceptor residues. Occurrence over the
whole trajectory is indicated by a colour scale. Note, that in case multiple hydrogen bond interactions
between two particular residues take place (conveyed by different sets of atoms), the interaction with
prevalence will be used for colour-coding (and by default, this interaction is marked with a black
circle, see below). An example is given in Figure 6.

hbond(load_hbond("inst/extdata/hbond_example.txt.gz"),
main="MDplot::hbond()",donorRange=c(0,65))

Return value: Returns a table containing the information used for plotting in columns as follows:

• resDonor Residue number (donor).

• resAcceptor Residue number (acceptor).

• percentage Percentage, that has been used for colour-coding.

• numberInteractions Number of hydrogen bond interactions taking place between the specified
donor and acceptor residues.
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Figure 6: The acceptor residues are plotted on the x-axis whilst the donors are shown on the y-axis.
The different colours indicate the occurrences throughout the whole trajectory.

Argument name Default value Description

hbonds none Table containing the hydrogen bond
information in columns "hbondID",
"resDonor", "resDonorName", "resAc-
ceptor", "resAcceptorName", "atom-
Donor", "atomDonorName", "atomH",
"atomAcceptor", "atomAcceptor-
Name", "percentage" (automatically
generated by function load_hbond()).

plotMethod "residue-wise" Allows to set the detail of hydrogen
bond information displayed. Options
are: "residue-wise".

acceptorRange NA A vector specifying the range of accep-
tor residues.

donorRange NA A vector specifying the range of donor
residues.

printLegend TRUE A Boolean enabling the legend.
showMultipleInteractions TRUE If TRUE, this option causes multiple in-

teractions between the same residues
as being represented by a black circle
around the coloured dot.

barePlot FALSE A Boolean indicating whether the plot
is to be made without any additional
information.

... none Additional arguments.

Table 6: Arguments of the hbond() function.
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The hbond_ts() function

The time series of hydrogen bond occurrences can be visualised using the function hbond_ts(), which
plots them either according to their identifiers or in a human readable form in three- or one-letter
code (the participating atoms can be shown as well) on the y-axis and the time on the x-axis. If the
GROMOS input format is used, this function requires two different files: the summary of the hbond
program and the time series file. The occurrence of a hydrogen bond is represented by a black bar and
the occurrence summary can be added on the right hand side as a sub-plot (Figure 7). In addition to
the time series file, depending on the MD engine format used, an additional summary file might also
be necessary (see the documentation of the function load_hbond_ts() for further information).

hbond_ts(timeseries=load_hbond_ts("inst/extdata/hbond_ts_example.txt.gz"),
summary=load_hbond("inst/extdata/hbond_example.txt.gz"),
main="MDplot::hbond_ts()",acceptorRange=c(22,75),
hbondIndices=list(c(0,24)),plotOccurences=TRUE,timeUnit="ns",
snapshotsPerTimeInt=100,printNames=TRUE,namesToSingle=TRUE,
printAtoms=TRUE)

Return value: Returns an n× 2-matrix, with the first column being the list of hydrogen bond identifiers
plotted and the second one the occurrence (in percent) over the selected time range.

MDplot::hbond_ts()

time [ns]
0 20 40 60 80

R50:N −> Y46:O

R50:N −> K47:O

R50:NE −> Y46:O

R50:NH1 −> E70:OE1

R50:NH1 −> E70:OE2

R50:NH1 −> A67:O

R50:NH1 −> E70:OE2

R50:NH1 −> E70:O

R50:NH2 −> E70:OE1

R50:NH2 −> Y46:O

R50:NH2 −> K47:N

D51:N −> D51:OD1

D51:N −> D51:OD2

D51:N −> K47:O

D51:N −> A48:O

D51:N −> L49:O

L52:N −> R50:O

L52:N −> D51:N

L52:N −> A48:O

L52:N −> L49:O

K53:N −> D51:O

K53:NZ −> D51:O

0 20 40 60 80 100
occurence [%]

Figure 7: Example figure generated by hbond_ts() for both an identifier and acceptor residues’
selection. The labels for the hydrogen bonds may be printed as identifiers or with names composed of
residue names (in single- or three-letter code) and those of the participating atoms.
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Argument name Default value Description

timeseries none Table containing the time series information
(e.g., produced by load_hbond_ts()).

summary none Table containing the summary information
(e.g., produced by load_hbond()).

acceptorRange NA A vector of acceptor residues.
donorRange NA A vector of donor residues.
plotOccurences FALSE Specifies whether the overall summary should

be plotted on the right hand side.
scalingFactorPlot NA Used to manually set the scaling factor (if nec-

essary).
printNames FALSE Enables human readable names rather than the

hydrogen bond identifiers.
namesToSingle FALSE If printNames is TRUE, this flag instructs one-

letter codes instead of three-letter ones.
printAtoms FALSE Enables atom names in hydrogen bond identi-

fication on the y-axis.
timeUnit NA Specifies the time unit on the x-axis.
snapshotsPerTimeInt 1000 Specifies how many snapshots make up one

time unit (see above).
timeRange NA A vector specifying a certain time range.
hbondIndices NA A list containing vectors to select hydrogen

bonds by their identifiers.
barePlot FALSE A Boolean indicating whether the plot is to be

made without any additional information.
... none Additional arguments.

Table 7: Arguments of the hbond_ts() function.

The noe() function

The nuclear-Overhauser-effect is one of the most important measures of structure validity in the
context of molecular dynamics simulations. These interactions are transmitted through space and arise
from spin-spin coupling, which can be measured by nuclear magnetic resonance (NMR) spectroscopy.
These measurements provide pivotal distance restrains which should be matched on average during
molecular dynamics simulations of the same system and can hence be used for parameter validation.
The plotting function noe() allows to visualise the number of distance restrain violations and their
respective spatial deviation. As shown in Figure 8, multiple replicates or different protein systems are
supported simultaneously. Note that negative violations are not considered.

noe(load_noe(files=c("inst/extdata/noe_example_1.txt.gz",
"inst/extdata/noe_example_2.txt.gz")),

main="MDplot::noe()")

Return value: Returns a matrix, in which the first column holds the bin boundaries used and the
following columns represent either the percentage or absolute numbers of the violations per bin,
depending on the specification.
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Figure 8: Example plot showing two different replicates of a protein simulation (they share the same
molecule, but have different initial velocities). Note, that the maximum value (x-axis) over all replicates
is used for the plot. The sum over all violations from left to right is shown by an additional curve on
top. The number of violations may be given as fractions (in %), as shown above, or absolute numbers
(flag printPercentages either TRUE or FALSE).

Argument name Default value Description

noeData none Input matrix. Generated by function load_noe().
printPercentages TRUE If TRUE, the violations will be reported in a relative

manner (percent) rather than absolute numbers.
colours NA Vector of colours to be used for the bars.
lineTypes NA If plotSumCurves is TRUE, this vector might be used

to specify the types of curves plotted.
names NA Vector to name the input columns (legend).
plotSumCurves TRUE If TRUE, the violations are summed up from left to

right to show the overall behaviour.
maxYAxis NA Can be used to manually set the y-axis of the plot.
printLegend FALSE A Boolean indicating if legend is to be plotted.
... none Additional arguments.

Table 8: Arguments of the noe() function.

The ramachandran() function

This graph type (Ramachandran et al., 1963) is often used to show the sampling of the φ/ψ protein
backbone dihedral angles in order to assign propensities of secondary structure elements to the protein
of interest (so-called Ramachandran plots). These plots can provide crucial insight into energy barriers
arising as required, for example, in the context of parameter validation (Margreitter and Oostenbrink,
2016). The function ramachandran() offers a 2D (Figure 9) and 3D (Figure 10) variant with the former
offering the possibility to print user-defined secondary structure regions as well. The number of bins
for the two axes and the colours used for the legend can be specified by the user.

ramachandran(load_ramachandran("inst/extdata/ramachandran_example.txt.gz"),
heatFun="log",plotType="sparse",xBins=90,yBins=90,
main="ramachandran() (plotType=sparse)",
plotContour=TRUE)

ramachandran(load_ramachandran("inst/extdata/ramachandran_example.txt.gz"),
heatFun="norm",plotType="fancy",xBins=90,yBins=90,
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main="ramachandran() (plotType=fancy)",
printLegend=TRUE)

Return value: Returns a list of binned dihedral angle occurrences.

ramachandran() (plotType=sparse)

−135 −90 −45 0 45 90 135

−
13

5
−

90
−

45
0

45
90

13
5

φ [°]

ψ
 [°

]

Figure 9: Two-dimensional plot version "sparse" of the ramachandran() function with enabled
contour plotting. The number of bins can be specified for both dimensions independently.

Figure 10: Three-dimensional example of the ramachandran() function. In addition to the colour, the
height (z-axis) also represents the number of dihedrals per bin.
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Argument name Default value Description

dihedrals none Matrix with angles (two columns). Generated by
function load_ramachandran().

xBins 150 Number of bins used to plot (x-axis).
yBins 150 Number of bins used to plot (y-axis).
heatFun "norm" Function selector for calculation of the colour. The

possibilities are either: "norm" for linear calculation
or "log" for logarithmic calculation.

structureAreas c() List of areas, which are plotted as black lines.
plotType "sparse" Type of plot to be used, either "sparse" (default, us-

ing function hist2d()), "comic" (own binning, sup-
ports very few datapoints), or "fancy" (3D, using
function persp()).

printLegend FALSE A Boolean specifying whether a heat legend is to be
plotted or not.

plotContour FALSE A Boolean specifying whether a contour should be
added or not.

barePlot FALSE A Boolean indicating whether the plot is to be made
without any additional information.

... none Additional arguments.

Table 9: Arguments of the ramachandran() function.

The rmsd() function

The atom-positional root-mean-square deviation (RMSD) is one of the most commonly used plot types
in the field of biophysical simulations. In the context of atom configurations, it is a measure for the
positional divergence of one or multiple atoms. The input requires a list of alternating vectors of time
indices and RMSD values. Multiple data sets can be plotted, given in separate input files. Figure 11
shows an example for two trajectories.

rmsd(load_rmsd(c("inst/extdata/rmsd_example_1.txt.gz",
"inst/extdata/rmsd_example_2.txt.gz")),

printLegend=TRUE,names=c("WT","mut"),main="MDplot::rmsd()")

Return value: Returns a list of lists, where each sub-list represents a RMSD curve and contains the
components:

• minValue The minimum value over the whole time range.

• maxValue The maximum value over the whole time range.

• meanValue The mean value calculated over the whole time range.

• sd The standard deviation calculated over the whole time range.
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Figure 11: This plot shows the RMSD curves for two different trajectories. The time is given in
nanoseconds, which requires a properly set factor parameter.

Argument name Default value Description

rmsdData none List of (alternating) indices and RMSD value vec-
tors, as produced by load_rmsd().

printLegend TRUE A Boolean which triggers the plotting of the legend.
factor 1000 A number specifying how many snapshots are

within one timeUnit.
timeUnit "ns" Specifies the time unit.
rmsdUnit "nm" Specifies the RMSD unit.
colours NA A vector of colours used for plotting.
names NA A vector holding the names of the trajectories.
legendPosition "bottomright" Indicates the position of the legend: either

"bottomright", "bottomleft", "topleft", or
"topright".

barePlot FALSE A Boolean indicating whether the plot is to be made
without any additional information.

... none Additional arguments.

Table 10: Arguments of the rmsd() function.

The rmsd_average() function

Nowadays, for many molecular systems multiple replicates of simulations are performed in order
to enhance the sampling of the phase space. However, since the amount of analysis data grows
accordingly, a joint representation of the results may be desirable. For the case of backbone-atom and
other RMSD plots, the MDplot package supports average plotting. Instead of plotting every curve
individually, the mean and the minimum and maximum values of all trajectories at a given time point
is plotted. Thus, the spread of multiple simulations is represented as a ’corridor’ over time.
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rmsd_average(rmsdInput=list(load_rmsd("inst/extdata/rmsd_example_1.txt.gz" ),
load_rmsd("inst/extdata/rmsd_example_2.txt.gz")),

maxYAxis=0.375,main="MDplot::rmsd_average()")

Return value: Returns an n × 4-matrix, with the rows representing different snapshots and the
columns the respective values as follows:

• snapshot Index of the snapshot.

• minimum The minimum RMSD value over all input sources at a given time.

• mean The mean RMSD value over all input sources at a given time.

• maximum The maximum RMSD value over all input sources at a given time.
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Figure 12: In black, the mean RMSD value at a given timepoint and in grey the respective minimum
and maximum values are given. In this example, two rather similar curves have been used.

Argument name Default value Description

rmsdInput none List of snapshot and RMSD value pairs, as,
for example, provided by loading function
load_rmsd().

levelFactor NA If there are many datapoints, this parameter
may be used to use only the levelFactorth
datapoints to obtain a clean graph.

snapshotsPerTimeInt 1000 Number, specifying how many snapshots are
comprising one timeUnit.

timeUnit "ns" Specifies the time unit.
rmsdUnit "nm" Specifies the RMSD unit.
maxYAxis NA Can be used to manually set the y-axis of the

plot.
barePlot FALSE A Boolean indicating whether the plot is to be

made without any additional information.
... none Additional arguments.

Table 11: Arguments of the rmsd_average() function.
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The rmsf() function

The atom-positional root-mean-square fluctuation (RMSF) represents the degree of positional variation
of a given atom over time. The input requires one column with all residues or atoms and a second one
holding RMSF values. Figure 13 shows, as an example, the RMSF of the first 75 atoms, calculated for
two independent simulations.

rmsf(load_rmsf(c("inst/extdata/rmsf_example_1.txt.gz",
"inst/extdata/rmsf_example_2.txt.gz")),

printLegend=TRUE,names=c("WT","mut"),range=c(1,75),
main="MDplot::rmsf()")

Return value: A list of vectors, alternately holding atom indices and their respective values.

Figure 13: Plot showing two different RMSF curves.
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Argument name Default value Description

rmsfData none List of (alternating) atom numbers and RMSF val-
ues, as, for example, produced by load_rmsf().

printLegend TRUE A Boolean controlling the plotting of the legend.
rmsfUnit "nm" Specifies the RMSF unit.
colours NA A vector of colours used for plot.
residuewise FALSE A Boolean specifying whether atoms or residues are

plotted on the x-axis.
atomsPerResidue NA If residuewise is TRUE, this parameter can be used

to specify the number of atoms per residue for plot-
ting.

names NA A vector of the names of the trajectories.
range NA Range of atoms.
legendPosition "topright" Indicates position of legend: either "bottomright",

"bottomleft", "topleft", or "topright".
barePlot FALSE A Boolean indicating whether the plot is to be made

without any additional information.
... none Additional arguments.

Table 12: Arguments of the rmsf() function.

The TIcurve() function

For calculations of the free energy difference occurring when transforming one chemical compound
into another (alchemical changes) or for estimates of free energy changes upon binding, thermody-
namic integration (Kirkwood, 1935) is one of the most trusted and applied approaches. The derivative
of the Hamiltonian, as a function of a coupling parameter λ, is calculated over a series of λ state points
(typically around 15). The integral of this curve is equivalent to the change in free energy (Figure 14).
The function TIcurve() performs the integration and, if the data for both the forward and backward
processes are provided, the hysteresis between them.

TIcurve(load_TIcurve(c("inst/extdata/TIcurve_fb_forward_example.txt.gz",
"inst/extdata/TIcurve_fb_backward_example.txt.gz")),

invertedBackwards=TRUE, main="MDplot::TIcurve()")

Return value: Returns a list with the following components:

• lambdapoints A list containing a (at least) n× 3-matrix for every data input series.

• integrationresults A matrix containing one row of "deltaG" and "error" columns from the
integration for every data input series.

• hysteresis If two (i.e. forward and backward) data input series are provided, the resulting
hysteresis is reported (and set to be NA otherwise).
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Figure 14: A forward and backward thermodynamic integration curve with the resulting hysteresis
between them (precision as permitted by the error).

Argument name Default value Description

lambdas none List of matrices (automatically generated by
load_TIcurve()) holding the thermodynamic in-
tegration information.

invertedBackwards FALSE If a forward and backward TI are provided and
the lambda points are enumerated reversely (i.e.
0.3 of one TI is equivalent to 0.7 of the other), this
flag can be set to be TRUE in order to automatically
mirror the values appropriately.

energyUnit "kJ/mol" Defines the energy unit used for the plot.
printValues TRUE If TRUE, the free energy values are printed.
printErrors TRUE A Boolean indicating whether error bars are to be

plotted.
errorBarThreshold 0 If the error at a given lambda point is below this

threshold, it is not plotted.
barePlot FALSE A Boolean indicating whether the plot is to be

made without any additional information.
... none Additional arguments.

Table 13: Arguments of the TIcurve() function.

The timeseries() function

This function provides a general interface for any time series given as a time-value pair (Figure 15).

timeseries(load_timeseries(c("inst/extdata/timeseries_example_1.txt.gz",
"inst/extdata/timeseries_example_2.txt.gz")),
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main="MDplot::timeseries()",
names=c("fluc1","fluc2"),
snapshotsPerTimeInt=100)

Return value: Returns a list of lists, each of the latter holding for every data input series:

• minValue The minimum value over the whole set.

• maxValue The maximum value over the whole set.

• meanValue The mean value over the whole set.

• sd The standard deviation over the whole set.
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Figure 15: Shows time series with parameter snapshotsPerTimeInt set in a way such, that the proper
time in nanoseconds is plotted. In addition, the legend has been moved to the bottom-right position.

Argument name Default value Description

tsData none List of (alternating) indices and response val-
ues, as produced by load_timeseries().

printLegend TRUE Parameter enabling the plotting of the legend.
snapshotsPerTimeInt 1000 Number specifying how many snapshots

make up one timeUnit.
timeUnit "ns" Specifies the time unit.
valueName NA Name of response variable.
valueUnit NA Specifies the response variable’s unit.
colours NA A vector of colours used for plotting.
names NA A vector of names of the trajectories.
legendPosition "bottomright" Indicates position of legend: either

"bottomright", "bottomleft", "topleft", or
"topright".

barePlot FALSE A Boolean indicating whether the plot is to be
made without any additional information.

... none Additional arguments.

Table 14: Arguments of the timeseries() function.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 183

The xrmsd() function

This function generates a plot which shows a heat-map of the atom positional root-mean-square
differences between snapshots (figure 16). The structures are listed on the x- and y-axes. The heat-map
shows the difference between one structure and another using a coloured bin. The legend is adapted
in accordance to the size of the values.

xrmsd(load_xrmsd("inst/extdata/xrmsd_example.txt.gz"),
printLegend=TRUE,main="MDplot::xrmsd()")
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Figure 16: An example xrmsd() plot showing only the upper half because of the mirroring of the
values.

Argument name Default value Description

xrmsdValues none Input matrix (three rows: x-values, y-values,
RMSD-values). Can be generated by function
load_xrmsd().

printLegend TRUE If TRUE, a legend is printed on the right hand side.
xaxisRange NA A vector of boundaries for the x-snapshots.
yaxisRange NA A vector of boundaries for the y-snapshots.
colours NA User-specified vector of colours to be used for plot-

ting.
rmsdUnit "nm" Specifies in which unit the RMSD values are given.
barPlot FALSE A Boolean indicating whether the plot is to be made

without any additional information.
... none Additional arguments.

Table 15: Arguments of the xrmsd() function.
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Additional functions and the Bash interface

Given that the plotting functions expect input to be stored in a defined data structure, the step of
loading and parsing data from the text input files has been implemented in separate loading functions.
Currently, they support GROMOS, GROMACS, and AMBER file formats and further developments
are planned to cover additional ones as well.

In order to allow for direct calls from Bash scripts, users might use the Rscript interface located
in the folder ‘bash’ which serves as a wrapper shell. Pictures in the file formats PNG, TIFF, or PDF
can be used provided that the users’ R installation supports them. If help=TRUE is set, all the other
options are ignored and a full list of options for every command is printed. In general, the names of
the arguments of the functions are the same for calls by script. The syntax for these calls is Rscript
MDplot_bash.R {function name} [argument1=...] [argument2=...], which can be combined with
Bash variables (see below). The file path can be given in an absolute manner or relative to the Rscript
folder path. The package holds a file called ‘bash/test.sh’ which contains several examples.

#!/bin/bash
# clusters
Rscript MDplot_bash.R clusters files=../extdata/clusters_example.txt.gz \

title="Cluster analysis" size=900,900 \
outformat=tiff outfile=clusters.tiff \
clustersNumber=7 \
names=WT,varA,varB,varC2,varD3,varE4

# xrmsd
Rscript MDplot_bash.R xrmsd files=../extdata/xrmsd_example.txt.gz title="XRMSD" \

size=1100,900 outformat=pdf outfile=XRMSD.pdf \
xaxisRange=75,145

# ramachandran
Rscript MDplot_bash.R ramachandran files=../extdata/ramachandran_example.txt.gz \

title="Ramachandran plot" size=1400,1400 resolution=175 \
outformat=tiff outfile=ramachandran.tiff angleColumns=1,2 \
bins=75,75 heatFun=norm printLegend=TRUE plotType=fancy

The loading functions

In order to ease data preparation, loading functions have been devised which are currently able to load
the output of standard GROMOS, GROMACS, and AMBER analysis tools and store these data such,
that they can be interpreted by the MDplot plotting functions.2 Loading functions are named after
their associated plotting function with 'load_' as prefix. For other molecular dynamics engines than
the aforementioned ones, the user has to specify how their output should be read. However, in case
other file formats are requested we appreciate suggestions, requests, and contributions (to be made on
our GitHub page). For detailed descriptions of the data structures used, we refer to the manual pages
of the loading functions and the respective examples. For storage reasons the example input files have
been compressed using gzip with R being able to load both compressed and uncompressed files.

Conclusions

In this paper we have presented the package MDplot and described its application in the context
of molecular dynamics simulation analysis. Automated figure generation is likely to aid in the
understanding of results at the first glance and may be used in presentations and publications.
Planned extensions include both the integration of new functionalities such as a DISICL (secondary
structure classification (Nagy and Oostenbrink, 2014a,b)) as well as the provision of loading interfaces
for additional molecular dynamics engines. Further developments will be published on the projects’
GitHub page and on CRAN.

2Functions load_timeseries() and load_TIcurve() do not require engine-specific loading and function noe()
is only available for GROMOS because no input files for the other engines could be retrieved.
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On Some Extensions to GA Package:
Hybrid Optimisation, Parallelisation and
Islands Evolution
by Luca Scrucca

Abstract Genetic algorithms are stochastic iterative algorithms in which a population of individuals
evolve by emulating the process of biological evolution and natural selection. The R package GA
provides a collection of general purpose functions for optimisation using genetic algorithms. This
paper describes some enhancements recently introduced in version 3 of the package. In particular,
hybrid GAs have been implemented by including the option to perform local searches during the
evolution. This allows to combine the power of genetic algorithms with the speed of a local optimiser.
Another major improvement is the provision of facilities for parallel computing. Parallelisation has
been implemented using both the master-slave approach and the islands evolution model. Several
examples of usage are presented, with both real-world data examples and benchmark functions,
showing that often high-quality solutions can be obtained more efficiently.

Introduction

Optimisation problems of both practical and theoretical importance deal with the search of an optimal
configuration for a set of variables to achieve some specified goals. Potential solutions may be encoded
with real-valued, discrete, binary or permutation decision variables depending on the problem to
be solved. Direct search or derivative-free methods, gradient-based and Newton-type methods, all
encompass traditional local optimisation algorithms for real-valued functions (Chong and Zak, 2013;
Givens and Hoeting, 2013, Chap. 2). In contrast, discrete and combinatorial optimisation problems
involve decision variables expressed using integers or binary values and consist in searching for the
best solution from a set of discrete elements (Papadimitriou and Steiglitz, 1998; Givens and Hoeting,
2013, Chap. 3).

A large number of heuristics and metaheuristics algorithms have been proposed for solving
complex optimisation tasks. Specific (ad-hoc) heuristic techniques are able to identify solutions in a
reasonably short amount of time, but the solutions obtained are generally not guaranteed to be optimal
or accurate. On the contrary, metaheuristics offer a tradeoff between exact and heuristics methods,
in the sense that they are generic techniques that offer good solutions, often the global optimum
value sought, in a moderate execution time by efficiently and effectively exploring the search space
(Luke, 2013). This class of algorithms typically implements some form of stochastic optimisation and
includes: Evolutionary Algorithm (EA; Back et al., 2000a,b), Iterated Local Search (ILS; Lourenço et al.,
2003), Simulated Annealing (SA; Kirkpatrick et al., 1983), Differential Evolution (DE; Storn and Price,
1997), Particle Swarm Optimisation (PSO; Kennedy and Eberhart, 1995), Tabu Search (TS; Glover and
Laguna, 2013), Ant Colony Optimisation (ACO; Dorigo and Stützle, 2004), and Covariance Matrix
Adaptation Evolution Strategy (CMA-ES; Hansen, 2006).

EAs are stochastic iterative algorithms in which a population of individuals evolve by emulating
natural selection (Eiben and Smith, 2003; De Jong, 2006; Simon, 2013). Each individual of the population
represents a tentative solution to the problem. The quality of the proposed solution is expressed by
the value of a fitness function assigned to each individual. This value is then used by EAs to guide
the search and improve the fitness of the population. Compared to other metaheuristics algorithms,
EAs are able to balance between exploration of new areas of the search space and exploitation of good
solutions. The trade-off between exploration and exploitation is controlled by some tuning parameters,
such as the population size, the genetics operators (i.e. selection, crossover, and mutation), and the
probability of applying them. Genetic Algorithms (GAs) are search and optimisation procedures that
are motivated by the principles of natural genetics and natural selection. GAs are the "earliest, most
well-known, and most widely-used EAs" (Simon, 2013, p. 35).

R offers several tools for solving optimisation problems. A comprehensive listing of available
packages is contained in the CRAN task view on “Optimization and Mathematical Programming”
(Theussl and Borchers, 2015). An extensive treatment of optimisation techniques applied to problems
that arise in statistics and how to solve them using R is provided by Nash (2014). A gentle introduction
to metaheuristics optimisation methods in R is contained in Cortez (2014). Some R packages imple-
menting evolutionary optimisation algorithms are: rgenoud, Rmalschains, DEoptim, GenSA, pso,
cmaes, tabuSearch.

The R package GA is a flexible general-purpose set of tools for optimisation using genetic algo-
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rithms and it is fully described in Scrucca (2013). Real-valued, integer, binary and permutation GAs
are implemented, whether constrained or not. Discrete or combinatorial optimisation problems, where
the search space is made of a finite or countably infinite set of potential solutions, can be easily treated
by adopting a binary or permutation representation. Several genetic operators for selection, crossover,
and mutation are available, and more can be defined by experienced R users.

This paper describes some recent additions to the GA package. The first improvement involves the
option to use hybrid GAs. Although for many objective functions GAs are able to work in an efficient
way and find the area of the global optimum, they are not especially fast at finding the optimum
when in a locally quadratic region. Hybrid GAs combine the power of GAs with the speed of a local
optimiser, allowing researchers to find a global solution more efficiently than with the conventional
evolutionary algorithms. Because GAs can be easily and conveniently executed in parallel machines,
the second area of improvement is that associated with parallel computing. Two approaches, the
master-slave and islands models, have been implemented and are fully described. Several examples,
using both real-world data examples and benchmark functions, are presented and discussed.

GA package

In the following we assume that the reader has already installed the latest version (≥ 3.0) of the
package from CRAN with

> install.packages("GA")

and the package is loaded into an R session using the usual command

> library(GA)

Hybrid genetic algorithms

EAs are very good at identifying near-optimal regions of the search space (exploration), but they can
take a relatively long time to locate the exact local optimum in the region of interest (exploitation).
Traditionally, exploitation is done through selection, whilst exploration is performed by search oper-
ators, such as mutation and crossover (Eiben and Schippers, 1998). However, exploitation can also
be pursued by controlling crossover and mutation, e.g. by reducing the mutation probability as the
search progresses. Balancing between exploration and exploitation is vital for successful application
of EAs (Črepinšek et al., 2013).

A further possibility for improving exploitation is to try to incorporate efficient local search
algorithms into EAs. There are different ways in which local searches or problem-specific information
can be integrated in EAs (see Eiben and Smith, 2003, Chap. 10). For instance, a local search may
be started from the best solution found by a GA after a certain number of iterations, so that, once
a promising region is identified, the convergence to the global optimum can be sped up. These
evolutionary methods have been named in various ways, such as hybrid GAs, memetic GAs, and genetic
local search algorithms. Some have argued that the inclusion of a local search in GAs implies the use
of a form of Lamarckian evolution. This fact has been criticised from a biological point of view, but
"despite the theoretical objections, hybrid genetic algorithms typically do well at optimization tasks”
(Whitley, 1994, p. 82).

In case of real-valued optimisation problems, the GA package provides a simple to use implemen-
tation of hybrid GAs by setting the argument optim = TRUE in a ga() function call. This allows to
perform local searches using the base R function optim(), which makes available general-purpose
optimisation methods, such as Nelder–Mead, quasi-Newton with and without box constraints, and
conjugate-gradient algorithms.

Having set optim = TRUE, the local search method to be used and other parameters can be
controlled with the optional argument optimArgs. This must be a list with the following structure and
defaults:

optimArgs = list(method = "L-BFGS-B",
poptim = 0.05,
pressel = 0.5,
control = list(fnscale = -1, maxit = 100))

where
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method The method to be used among those available in optim function. By default,
the BFGS algorithm with box constraints is used, where the bounds are
those provided in the ga() function call. Further methods are available as
described in the Details section in help(optim).

poptim A value in the range (0, 1) which gives the the probability of applying the
local search at each iteration.

pressel A value in the range (0, 1) which specifies the pressure selection.
control A list of parameters for fine tuning the optim algorithm. See help(optim) for

details.

In the implementation available in GA, the local search is applied stochastically during the
GA iterations with probability poptim ∈ [0, 1]; by default, once every 1/0.05 = 20 iterations on
average. The local search algorithm is started from a random selected solution drawn with probability
proportional to fitness and with the selection process controlled by the parameter pressel ∈ [0, 1]. Let
fi be the fitness value associated with the ith solution for i = 1, . . . , n, where n is the popSize, and
let ri be the corresponding rank in non increasing order. Then, for a given pressel the probability of
selection is computed as pi = pressel× (1− pressel)ri−1, and then normalised as pi = pi/ ∑n

i=1 pi.
Figure 1 shows the probability of selection as a function of the fitness value for different levels of
selection pressure. The values on the y-axis are computed using the function optimProbsel(), which
is used in the GA package for computing the probability of selection for each individual of the genetic
population. When the pressure is set at 0, the same probability of selection is assigned to all solutions.
Larger probabilities are assigned to larger fi values as the pressure value increases. In the extreme
case of pressure selection equal to 1, only the largest fi receives a probability of selection equal to 1,
whereas the others have no chance of being selected. Thus, smaller values of pressel tend to assign
equal probabilities to all the solutions, and larger values tend to assign larger values to those solutions
having better fitness.

● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

2.5 5.0 7.5 10.0

Fitness function

P
ro

ba
bi

lit
y 

of
 s

el
ec

tio
n

pressel
● 0

0.2

0.5

0.9

1

Figure 1: Graph of the probability of selecting a solutions for starting a local search in HGA as a
function of the fitness and for different levels of selection pressure.

Note that when a ga() function call is issued with optim = TRUE, a local search is always applied
at the end of GA evolution, i.e. after the last iteration and even in case of poptim = 0, but starting
from the solution with the highest fitness value. The rationale for this is to allow for local optimisation
as a final improvement step.

Portfolio selection

In portfolio selection the goal is to find the optimal portfolio, i.e. the portfolio that provides the highest
return and lowest risk. This is achieved by choosing the optimal set of proportions of various financial
assets (Ruppert and Matteson, 2015, Chap. 16). In this section an example of mean–variance efficient
portfolio selection (Gilli et al., 2011, Chap. 13) is illustrated.

Suppose we have selected 10 stocks from which to build a portfolio. We want to determine how
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much of each stock to include in our portfolio. The expected return rate of our portfolio is

E(R) =
10

∑
i=1

wiE(Ri),

where E(Ri) is the expected return rate on asset i, and wi is the fraction of the portfolio value due to
asset i. Note that the portfolio weights wi must satisfy the constraints wi ≥ 0, and ∑10

i=1 wi = 1. At the
same time, we want to minimise the variance of portfolio returns given by

σ2
p = w′Σw,

where Σ is the covariance matrix of stocks returns, and w′ = (w1, . . . , w10), under the constraint
that the portfolio must have a minimum expected return of 1%, i.e E(R) ≥ 0.01. Provided that only
linear constraints are included, the problem of mean-variance portfolio selection is typically solved by
quadratic programming. However, GAs provide a general approach to portfolio selection that can be
used for problems with both linear and nonlinear constraints (Gilli and Schumann, 2012).

Consider the following stocks with monthly return rates obtained by Yahoo finance using the
quantmod package:

> library(quantmod)
> myStocks <- c("AAPL", "XOM", "GOOGL", "MSFT", "GE", "JNJ", "WMT", "CVX", "PG", "WFC")
> getSymbols(myStocks, src = "yahoo")
> returns <- lapply(myStocks, function(s)

monthlyReturn(eval(parse(text = s)),
subset = "2013::2014"))

> returns <- do.call(cbind,returns)
> colnames(returns) <- myStocks

The monthly return rates for the portfolio stocks are shown in Figure 2 and obtained with the code:

> library(timeSeries)
> plot(as.timeSeries(returns), at = "chic", minor.ticks="month",

mar.multi = c(0.2, 5.1, 0.2, 1.1), oma.multi = c(4, 0, 4, 0),
col = .colorwheelPalette(10), cex.lab = 0.8, cex.axis = 0.8)

> title("Portfolio Returns")

Summary statistics for the portfolio stocks are computed as:

> nStocks <- ncol(returns) # number of portfolio assets
> R <- colMeans(returns) # average monthly returns
> S <- cov(returns) # covariance matrix of monthly returns
> s <- sqrt(diag(S)) # volatility of monthly returns
> plot(s, R, type = "n", panel.first = grid(),

xlab = "Std. dev. monthly returns", ylab = "Average monthly returns")
> text(s, R, names(R), col = .colorwheelPalette(10), font = 2)

The last two commands draw a graph of the average vs standard deviation for the monthly returns
(see Figure 3a). From this graph we can see that there exists a high degree of heterogenity among
stocks, with AAPL having the largest standard deviation and negative average return, whereas some
stocks have small volatility and high returns, such as WFC and MSFT. Clearly, the latter are good
candidate for inclusion in the portfolio. The exact amount of each stock also depends on the correlation
among stocks through the variance of portfolio returns σ2

p , and so we need to formalise our objective
function under the given constraints.

In order to compute the GA fitness function, we define the following functions:

> weights <- function(w) # normalised weights
{ drop(w/sum(w)) }

> ExpReturn <- function(w) # expected return
{ sum(weights(w)*R) }

> VarPortfolio <- function(w) # objective function
{
w <- weights(w)
drop(w %*% S %*% w)

}

We may define the fitness function to be maximised as the (negative) variance of the portfolio
penalised by an amount which is function of the distance between the expected return of the portfolio
and the target value:
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Figure 2: Monthly return rates for a portfolio of selected stocks.
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Figure 3: (a) Plot of average monthly returns vs the standard deviation for the selected stocks. (b)
Portfolio stocks composition estimated by HGA. (c) Trace of HGA iterations.
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> fitness <- function(w) # fitness function
{
ER <- ExpReturn(w)-0.01
penalty <- if(ER < 0) 100*ER^2 else 0
-(VarPortfolio(w) + penalty)

}

A hybrid GA with local search can be obtained with the following call:

> GA <- ga(type = "real-valued", fitness = fitness,
min = rep(0, nStocks), max = rep(1, nStocks), names = myStocks,
maxiter = 1000, run = 200, optim = TRUE)

> summary(GA)
+-----------------------------------+
| Genetic Algorithm |
+-----------------------------------+

GA settings:
Type = real-valued
Population size = 50
Number of generations = 1000
Elitism = 2
Crossover probability = 0.8
Mutation probability = 0.1
Search domain =

AAPL XOM GOOGL MSFT GE JNJ WMT CVX PG WFC
Min 0 0 0 0 0 0 0 0 0 0
Max 1 1 1 1 1 1 1 1 1 1

GA results:
Iterations = 216
Fitness function value = -0.00049345
Solution =

AAPL XOM GOOGL MSFT GE JNJ WMT CVX PG WFC
[1,] 0.030918 0.11534 0.034683 0.52062 0 0 0.17201 0.26144 0.18096 0.98719
> plot(GA)

The last command produces the graph on Figure 3c, which shows the trace of best, mean, and median
values during the HGA iterations. We also added some vertical dashes at the top of the graph to
indicate when the local search occurred. It is interesting to note that the inclusion of a local search
greatly speeds up the termination of the GA search, which converges after 216 iterations. Without
including the local optimisation step, a fitness function value within a 1% from the maximum value
found above is attained after 1, 633 iterations, whereas the same maximum fitness value cannot be
achieved even after 100, 000 iterations.

The estimated portfolio weights and the corresponding expected return and variance are computed
as:

> (w <- weights(GA@solution))
AAPL XOM GOOGL MSFT GE JNJ WMT CVX

0.013424 0.050081 0.015059 0.226047 0.000000 0.000000 0.074685 0.113512
PG WFC

0.078572 0.428621
> ExpReturn(w)
[1] 0.016178
> VarPortfolio(w)
[1] 0.00049345
> barplot(w, xlab = "Stocks", ylab = "Portfolio weights",

cex.names = 0.7, col = .colorwheelPalette(10))

The last command draws a barchart of the optimal portfolio selected, and it is shown in Figure 3b.

Poisson change-point model

In the study of stochastic processes a common problem is to determine whether or not the functioning
of a process has been modified over time. Change-point models assume that such a change is occurring
at some point in time in a relatively abrupt manner (Lindsey, 2004).
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In a single change-point model the distribution of a response variable Yt at time t is altered at the
unknown point in time τ, so we can write

Yt ∼
{

f (yt; θ1) t < τ

f (yt; θ2) t ≥ τ
(1)

where f (·) is some given parametric distribution depending on θk for k = {1, 2}, and τ is an unknown
parameter giving the change-point time. Some or all of the elements of the vector of parameters θk in
model (1) may change over time. In more complex settings, the distribution function itself may be
different before and after the change point.

Given a sample {yt; t = 1, . . . , T} of observations over time, the log-likelihood function of the
change-point problem is

`(θ1, θ2, τ; y1, . . . , yT) = ∑
t<τ

log f (yt; θ1) + ∑
t≥τ

log f (yt; θ2) (2)

Further, for a Poisson change-point model we assume that f (yt; θk) is the Poisson distribution with
mean parameter θk. Maximisation of (2) can also be seen as a discrete optimisation problem.

Consider the British coal-mining disasters dataset which provides the annual counts of disasters
(having at least 10 deaths) from 1851 to 1962 (Jarrett, 1979; Raftery and Akman, 1986). The data from
Table 1 of Carlin et al. (1992) are the following:

> data <- data.frame(
y = c(4, 5, 4, 1, 0, 4, 3, 4, 0, 6, 3, 3, 4, 0, 2, 6, 3, 3, 5, 4, 5, 3, 1,

4, 4, 1, 5, 5, 3, 4, 2, 5, 2, 2, 3, 4, 2, 1, 3, 2, 2, 1, 1, 1, 1, 3,
0, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 3, 2, 2, 0, 1, 1, 1, 0, 1, 0, 1, 0,
0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 2, 3, 3, 1, 1, 2, 1, 1, 1, 1, 2, 4, 2,
0, 0, 0, 1, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1),

year = 1851:1962,
t = 1:112)

Graphs of annual counts and cumulative sums over time are shown in Figure 4. These can be
obtained using the following code:

> plot(y ~ year, data = data, ylab = "Number of mine accidents/yr")
> plot(cumsum(y) ~ year, data = data, type = "s",

ylab = "Cumsum number of mine accidents/yr")

Both graphs seem to suggest a two-regime behaviour for the number of coal-mining disasters.
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Figure 4: Plots of the number of yearly coal-mining accidents (a) and cumulative sum of mine accidents
(b) from 1851 to 1962 in Great Britain.

We start the analysis by fitting a no change-point model, i.e. assuming a homogeneous Poisson
process with constant mean. Clearly, in this simple case the MLE of the Poisson parameter is the
sample mean of counts. However, for illustrative purposes we write down the log-likelihood and we
maximise it with a hybrid GA.
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> loglik1 <- function(th, data)
{

mu <- exp(th) # Poisson mean
sum(dpois(data$y, mu, log = TRUE))

}
> GA1 <- ga(type = "real-valued",

fitness = loglik1, data = data,
min = log(1e-5), max = log(6), names = "th",
maxiter = 200, run = 50,
optim = TRUE)

> exp(GA1@solution[1,])
1.7054
> mean(data$y)
[1] 1.7054

For the change-point model in (1), the mean function can be expressed as

µt = exp {θ1 + (θ2 − θ1)I(t ≥ τ)} ,

where τ is the time of change-point, θ1 is the mean of the first regime, i.e. when t < τ, θ2 is the mean
of the second regime, i.e. when t ≥ τ, and I(·) denotes the indicator function (which is equal to 1 if its
argument is true and 0 otherwise). In R the above mean function and the log-likelihood from (2) can
be written as

> meanFun <- function(th, t)
{
tau <- th[3] # change-point parameter
th <- th[1:2] # mean-related parameters
X <- cbind(1, t >= tau) # design matrix
exp(drop(X %*% th))

}
> loglik2 <- function(th, data)
{
mu <- meanFun(th, data$t) # vector of Poisson means
sum(dpois(data$y, mu, log = TRUE))

}

The vector th contains the three parameters that have to be estimated from the sample dataset data.
Note that, for convenience, it is defined as (θ1, θ∗2 , τ)′, where θ∗2 = (θ2 − θ1) is the differential mean
effect of second regime.

Direct maximisation of the log-likelihood in loglik2() by iterative derivative-based methods is
not viable due to lack of differentiability with respect to τ. However, hybrid GAs can be efficiently
used in this case as follows:

> GA2 <- ga(type = "real-valued",
fitness = loglik2, data = data,
min = c(log(1e-5), log(1e-5), min(data$t)),
max = c(log(6), log(6), max(data$t)+1),
names = c("th1", "th2", "tau"),
maxiter = 1000, run = 200,
optim = TRUE)

> summary(GA2)
+-----------------------------------+
| Genetic Algorithm |
+-----------------------------------+

GA settings:
Type = real-valued
Population size = 50
Number of generations = 1000
Elitism = 2
Crossover probability = 0.8
Mutation probability = 0.1
Search domain =

th1 th2 tau
Min -11.5129 -11.5129 1
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Max 1.7918 1.7918 113

GA results:
Iterations = 318
Fitness function value = -168.86
Solution =

th1 th2 tau
[1,] 1.1306 -1.2344 41.446
> (mean <- exp(cumsum(GA2@solution[1,1:2]))) # mean function parameters

th1 th2
3.09756 0.90141
> (tau <- GA2@solution[1,3]) # change-point

tau
41.446

Note that both the estimated change-point and the means are quite close to those reported by Raftery
and Akman (1986), and Carlin et al. (1992), using Bayesian methodology.

The two estimated models can be compared using a model selection criterion, such as the Bayesian
information criterion (BIC; Schwartz, 1978), defined as

BIC = 2`(θ̂; y)− ν log(n)

where `(θ̂; y) is the log-likelihood evaluated at the MLE θ̂, n is the number of observations, and ν is
the number of estimated parameters. Using this definition, larger values of BIC are preferable.

> (tab <- data.frame(
loglik = c(GA1@fitnessValue, GA2@fitnessValue),
df = c(ncol(GA1@solution), ncol(GA2@solution)),
BIC = c(2*GA1@fitnessValue - log(nrow(data))*ncol(GA1@solution),

2*GA2@fitnessValue - log(nrow(data))*ncol(GA2@solution))))

loglik df BIC
1 -203.86 1 -412.43
2 -168.86 3 -351.88

A comparison of BIC values clearly indicates a preference for the change-point model. We may
summarise the estimated model by drawing a graph of observed counts over time with the estimated
means before and after the change-point:

> mu <- meanFun(GA2@solution, data$t)
> col <- c("red3", "dodgerblue2")
> with(data,
{ plot(t, y)
abline(v = tau, lty = 2)
lines(t[t < tau], mu[t < tau], col = col[1], lwd = 2)
lines(t[t >= tau], mu[t >= tau], col = col[2], lwd = 2)
par(new=TRUE)
plot(year, cumsum(y), type = "n", axes = FALSE, xlab = NA, ylab = NA)
axis(side = 3); mtext("Year", side = 3, line = 2.5)

})

and a graph of observed cumulative counts and the estimated cumulative mean counts:

> with(data,
{ plot(t, cumsum(y), type = "s", ylab = "Cumsum number of mine accidents/yr")
abline(v = tau, lty = 2)
lines(t[t < tau], cumsum(mu)[t < tau], col = col[1], lwd = 2)
lines(t[t >= tau], cumsum(mu)[t >= tau], col = col[2], lwd = 2)
par(new=TRUE)
plot(year, cumsum(y), type = "n", axes = FALSE, xlab = NA, ylab = NA)
axis(side = 3); mtext("Year", side = 3, line = 2.5)

})

Both graphs are reported in Figure 5. The latter plot is particularly illuminating of the good fit achieved
by the selected model.
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Figure 5: Summary plots for the change-point model fitted to the British coal-mining accidents dataset:
(a) plot of observed counts over time with the estimated means before and after the estimated change-
point (vertical dashed line); (b) plot of observed cumulative counts (step function) and the cumulative
estimated mean counts.

Parallel genetic algorithms

Parallel computing in its essence involves the simultaneous use of multiple computing resources to
solve a computational problem. This is viable when a task can be divided into several parts that can
be solved simultaneously and independently, either on a single multi-core processors machine or on a
cluster of multiple computers.

Support for parallel computing in R is available since 2011 (version 2.14.0) through the base
package parallel. This provides parallel facilities previously contained in packages multicore and
snow. Several approaches to parallel computing are available in R (McCallum and Weston, 2011), and
an extensive and updated list of R packages is reported in the CRAN Task View on High-Performance
and Parallel Computing with R (Eddelbuettel, 2016, HighPerformanceComputing).

GAs are regarded as “embarrassingly parallel” problems, meaning that they require a large number
of independent calculations with negligible synchronisation and communication costs. Thus, GAs
are particularly suitable for parallel computing, and it is not surprising that such idea has been often
exploited to speed up computations (see for instance Whitley (1994) in the statistical literature).

Luque and Alba (2011) identify several types of parallel GAs. In the master-slaves approach
there is a single population, as in sequential GAs, but the evaluation of fitness is distributed among
several processors (slaves). The master process is responsible for the distribution of the fitness function
evaluation tasks performed by the slaves, and for applying genetic operators such as selection,
crossover, and mutation (see Figure 6). Since the latter operations involve the entire population, it is
also known as global parallel GAs (GPGA). This approach is generally efficient when the computational
time involving the evaluation of the fitness function is more expensive than the communication
overhead between processors.

Another approach is the case of distributed multiple-population GAs, where the population
is partitioned into several subpopulations and assigned to separated islands. Independent GAs
are executed in each island, and only occasionally sparse exchanges of individuals are performed
among these islands (see Figure 7). This process, called migration, introduces some diversity into the
subpopulations, thus preventing the search from getting stuck in local optima. In principle islands can
evolve sequentially, but increased computational efficiency is obtained by running GAs in each island
in parallel. This approach is known as coarse-grained GAs or island parallel GAs (ISLPGA).

By default, searches performed with the GA package occur sequentially. In some cases, particularly
when the evaluation of the fitness function is time consuming, parallelisation of the search algorithm
may be able to speed up computing time. Starting with version 2.0, the GA package provides
facilities for using parallel computing in genetic algorithms following the GPGA approach. Recently,
with version 3.0, the ISLPGA model has also been implemented in the GA package. The following
subsections describes usage of both approaches.

Parallel computing in the GA package requires the following packages to be installed: parallel
(available in base R), doParallel, foreach, and iterators. Moreover, doRNG is needed for reproducibil-
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Slave 1 Slave 2 Slave p. . .

Master

Figure 6: Master-slaves or global parallel GA
scheme (GPGA). The master process stores the
population, executes genetic operations, and
distributes individuals to the slaves, which
only evaluate the fitness of individuals.

Figure 7: Islands parallel GA scheme
(ISLPGA). In a multiple-population parallel
GA each process is a simple GA which evolves
independently. Individuals occasionally mi-
grate between one island and its neighbours.

ity of results.

Global parallel implementation

The GPGA approach to parallel computing in GA can be easily obtained by manipulating the optional
argument parallel in the ga() function call. This argument accepts several different values. A logical
value may be used to specify if parallel computing should be used (TRUE) or not (FALSE, default) for
evaluating the fitness function. A numeric value can also be supplied, in which case it gives the number
of cores/processors to employ; by default, all the available cores, as provided by detectCores(), are
used.

Two types of parallel functionalities are available depending on system OS: on Windows only
snow type functionality is present, whereas on POSIX operating systems, such as Unix, GNU/Linux,
and Mac OSX, both snow and multicore (default) functionalities are available. In the latter case, a string
can be used as the argument to parallel to set out which parallelisation tool should be used.

A final option is available if a researcher plans to use a cluster of multiple machines. In this case,
ga() can be executed in parallel using all, or a subset of, the cores available to each machine assigned
to the cluster. However, this option requires more work from the user, who needs to set up and register
a parallel back end. The resulting cluster object should then be passed as input for the parallel
argument.

Islands parallel implementation

The ISLPGA approach to parallel computing in GA has been implemented in the gaisl() function.
This function accepts the same input arguments as the ga() function (see Scrucca, 2013, Section 3),
with the following additional arguments:

numIslands An integer value which specifies the number of islands to use in the genetic
evolution (by default is set to 4).

migrationRate A value in the range (0, 1) which gives the proportion of individuals that
undergo migration between islands in every exchange (by default equal to
0.10).

migrationInterval An integer value specifying the number of iterations at which exchange of
individuals takes place. This interval between migrations is called an epoch,
and it is set at 10 by default.

The implemented ISLPGA uses a simple ring topology, in which each island is connected unidi-
rectionally with another island, hence forming a single continuous pathway (see Figure 7). Thus, at
each exchange step the top individuals, selected according to the specified migrationRate, substitute
random individuals (with the exception of the elitist ones) in the connected island.

By default, the function gaisl() uses parallel = TRUE, i.e. the islands algorithm is run in parallel,
but other values can also be provided as described in the previous subsection. Note that it is possible
to specify a number of islands larger than the number of available cores. In such a case, the parallel
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algorithm will be run using blocks of islands, with the block size depending on the maximal number
of cores available or the number of processors as specified by the user.

It has been noted that using parallel islands GAs often leads to, not only faster algorithms, but
also superior numerical performance even when the algorithms run on a single processor. This
because each island can search in very different regions of the whole search space, thus enhancing the
exploratory attitude of evolutionary algorithms.

Simulation study

In this Section results from a simulation study are presented and discussed. The main goal is to
compare the performance of sequential GAs with the two forms of parallel algorithms implemented
in the GA package, namely GPGA and ISLPGA, for varying number of cores and different fitness
computing times. A fictitious fitness function is used to allow for controlling the computing time
required at each evaluation. This is achieved by including the argument pause which suspend the
execution for a specified time interval (in seconds):

> fitness <- function(x, pause = 0.1)
{
Sys.sleep(pause)
x*runif(1)

}

The simulation design parameters used are the following:

> ncores <- c(1, 2, 4, 8, 16) # number of cores/processors
> pause <- c(0.01, 0.1, 1, 2) # pause during fitness evaluation
> nrep <- 10 # number of simulation replications

Thus, ncores specifies that up to 16 cores or CPU processors are used in the parallel GAs solutions for
increasing time spent on fitness evaluation as specified by pause (in seconds). Each combination of
design parameters is replicated nrep = 10 times and results are then averaged.

GAs are run under the GPGA approach using popSize = 50 and maxiter = 100. For ISLPGA runs
the numIslands argument is set at the specified number of cores, with popSize = 160 and maxiter =
100. The increased population size allows to work with at least 10 individuals on each island when
numIslands is set at the maximum number of cores. In both cases, the remaining arguments in ga() or
gaisl() function are set at their defaults. Note that run times cannot be compared between the two
approaches because they use different population sizes.

The study was performed on a 16 cores Intel® Xeon® CPU E5-2630 running at 2.40GHz and
with 128GB of RAM. The R code used in the simulation study is provided in the accompanying
supplemental material.

Graphs in the left panel of Figures 8 and 9 show the average execution times needed for varying
number of cores and different fitness computing times. As expected, increasing the number of cores
allows to run GAs faster, but the improvement is not linear, in particular for the GPGA approach.

By using a machine with P cores/processors, we would like to obtain an increase in calculation
speed of P times. However, this is typically not the case because in the implementation of a parallel
algorithm there are some inherent non-parallelisable parts and communication costs between tasks
(Nakano, 2012). The speedup achieved using P processors is computed as sP = t1/tP, where ti is the
execution time spent using i cores. Graphs in the right panel of Figures 8 and 9 show the speedup
obtained in our simulation study. For the GPGA approach the speedup is quite good but it is always
sub-linear, in particular for the less demanding fitness evaluation time and when the number of cores
increases. On the other hand, the ISLPGA implementation shows a very good speedup (nearly linear).

Amdahl’s law (Amdahl, 1967) is often used in parallel computing to predict the theoretical
maximum speedup when using multiple processors. According to this, if f is the fraction of non-
parallelisable task, i.e. the part of the algorithm that is strictly serial, and P is the number of processors
in use, then the speedup obtained on a parallel computing platform follows the equation

SP =
1

f + (1− f )/P
. (3)

In the limit, the above ratio converges to Smax = 1/ f , which represents the maximum speedup
attainable in theory, i.e. by a machine with an infinite number of processors. Figures 10 and 11 show
the observed speedup factors SP and the estimated Amdahl’s law curves fitted by nonlinear least
squares. In all the cases, Amdahl’s law appears to well approximate the observed behaviour. The
horizontal dashed lines are drawn at the maximum speedup Smax, which is computed based on the
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Figure 8: Empirical GPGA performance for varying number of cores/processors and different fitness
computing times. Graph on the left panel shows the average running times, whereas graph on the
right panel shows the speedup factor compared to the sequential run (i.e. when only 1 core is used).
In the latter plot, the dashed line represents the “ideal” linear speedup.
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Figure 9: Empirical ISLPGA performance for varying number of cores/processors and different fitness
computing times. Graph on the left panel shows the average running times, whereas graph on the
right panel shows the speedup factor compared to the sequential run (i.e. when only 1 core is used).
In the latter plot, the dashed line represents the “ideal” linear speedup.

estimated fraction of non-parallelisable task f (see also Table 2). As the time required for evaluating
the fitness function increases, the maximum speedup attainable also increases. As noted earlier, the
ISLPGA approach shows an improved efficiency compared to the simple GPGA.
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Table 2: Fraction of non-parallelisable task ( f ) estimated by nonlinear least squares using the Amdahl’s
law (3), and corresponding theoretical speedup (Smax) for the GPGA and ISLPGA approaches.

GPGA ISLPGA
0.01 0.1 1 2 0.01 0.1 1 2

f 0.0695 0.0209 0.0122 0.0114 0.0069 0.0036 0.0031 0.0025
Smax 14.38 47.76 81.88 87.88 145.29 278.57 327.12 408.58
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Figure 10: Amdahl’s law curves for the GPGA approach. Points refer to the speedup factors observed
using different number of cores/processors, whereas the curves are estimated using nonlinear least
squares. Horizontal dashed lines refer to the maximum speedup theoretically attainable. Each panel
corresponds to a different fitness computing time (in seconds), and vertical axes are on log scale.
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Figure 11: Amdahl’s law curves for the ISLPGA approach. Points refer to the speedup factors observed
using different number of cores/processors, whereas the curves are estimated using nonlinear least
squares. Horizontal dashed lines refer to the maximum speedup theoretically attainable. Each panel
corresponds to a different fitness computing time (in seconds), and vertical axes are on log scale.

ARIMA order selection

Autoregressive moving average (ARMA) models are a broad class of parametric models for stationary
time series popularised by Box and Jenkins (1976). They provide a parsimonious description of a
stationary stochastic process in terms of two polynomials, one for the auto-regression and the second
for the moving average. Nonstationay time series can be modelled by including an initial differencing
step (“integrated” part of the model). This leads to autoregressive integrated moving average (ARIMA)
models, a popular modelling approach in real-world processes.

ARIMA models can be fitted by MLE after identifying the order (p, d, q) for the autoregressive,
integrated, and moving average components, respectively. This is typically achieved by preliminary
inspection of the autocovariance function (ACF) and partial autocovariance function (PACF). Model
selection criteria, such as the Akaike information criterion (AIC), the corrected AIC (AICc), and the
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Bayesian information criterion (BIC), are also used for order selection.

The function auto.arima() in package forecast (Hyndman, 2016; Hyndman and Khandakar, 2008)
provides an automatic algorithm which combines unit root tests, minimisation of the AICc in a
stepwise greedy search, and MLE, to select the order of an ARIMA model. Here, an island parallel
GAs approach is used for order selection.

Consider the quarterly U.S. GNP from 1947(1) to 2002(3) expressed in billions of chained 1996
dollars and seasonally adjusted. The data are available on package astsa and described in Shumway
and Stoffer (2013).

> data(gnp, package="astsa")
> plot(gnp)

The plot of the time series obtained with the last command is shown in Figure 12a.
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Figure 12: (a) Plot of quarterly U.S. GNP from 1947(1) to 2002(3). (b) Trace of island parallel GAs
search for ARIMA order selection.

The selection of the “optimal” ARIMA(p, d, q) model can be pursued by using binary GAs to
maximise the BIC. The decision variables to be optimised are expressed in binary digits using the
following function:

> decode <- function(string, bitOrders)
{
string <- split(string, rep.int(seq.int(bitOrders), times = bitOrders))
orders <- sapply(string, function(x) { binary2decimal(gray2binary(x)) })
return(unname(orders))

}

For example, using 3 bits for encoding p and q, and 2 bits for d, an ARIMA(3,1,1) model can be
expressed with the binary string (0, 1, 0, 0, 1, 0, 0, 1):

> decode(c(0,1,0, 0,1, 0,0,1), bitOrders = c(3,2,3))
[1] 3 1 1

Note that the decode() function assumes that the input binary string is expressed using Gray encoding,
which ensures that consecutive values have the same Hamming distance (Hamming, 1950).

The fitness function to be used in the GA search is defined as follows:

> fitness <- function(string, data, bitOrders)
{
orders <- decode(string, bitOrders)
mod <- try(Arima(data, order = orders, include.constant = TRUE, method = "ML"),

silent = TRUE)
if(inherits(mod, "try-error")) NA else -mod$bic

}

Note that the objective function is defined as (minus) the BIC for the specified ARIMA model, with
the latter fitted using the Arima() function available in the R package forecast. If a different criterion
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for model selection is preferred, for instance the Akaike information criterion (AIC), only the last line
of the above fitness() function needs to be modified.

An island binary parallel GA is then used to search for the best ARIMA model, using a migration
interval of 20 generations, and the default migration rate of 0.1:

> GA <- gaisl(type = "binary", nBits = 8,
fitness = fitness, data = gnp, bitOrders = c(3,2,3),
maxiter = 1000, run = 100, popSize = 50,
numIslands = 4, migrationInterval = 20)

> plot(GA)
> summary(GA)
+-----------------------------------+
| Genetic Algorithm |
| Islands Model |
+-----------------------------------+

GA settings:
Type = binary
Number of islands = 4
Islands pop. size = 12
Migration rate = 0.1
Migration interval = 20
Elitism = 1
Crossover probability = 0.8
Mutation probability = 0.1

GA results:
Iterations = 280
Epochs = 14
Fitness function values = -2259.615 -2259.615 -2259.615 -2259.615
Solutions =

x1 x2 x3 x4 x5 x6 x7 x8
[1,] 0 1 1 1 1 0 0 1
[2,] 0 1 1 1 1 0 0 1
[3,] 0 1 1 1 1 0 0 1
[4,] 0 1 1 1 1 0 0 1

Figure 12b shows the trace of the ISLPGA search for each of the four islands used. All the islands
converge to the same final solution, as also shown by the summary output above. The selected model
is an ARIMA(2,2,1), which can be fitted using:

> (orders <- decode(GA@solution[1,], c(3,2,3)))
[1] 2 2 1
> mod <- Arima(gnp, order = orders, include.constant = TRUE, method = "ML")
> mod
Series: gnp
ARIMA(2,2,1)

Coefficients:
ar1 ar2 ma1

0.2799 0.1592 -0.9735
s.e. 0.0682 0.0682 0.0143

sigma^2 estimated as 1451: log likelihood=-1119.01
AIC=2246.02 AICc=2246.21 BIC=2259.62

It is interesting to compare the above solution with that obtained with the automatic procedure
implemented in auto.arima() using the same criterion:

> mod1 <- auto.arima(gnp, ic = "bic")
> print(mod1)
Series: gnp
ARIMA(1,2,1)

Coefficients:
ar1 ma1
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0.3243 -0.9671
s.e. 0.0665 0.0162

sigma^2 estimated as 1486: log likelihood=-1121.71
AIC=2249.43 AICc=2249.54 BIC=2259.62
> mod1$bic
[1] 2259.622
> mod$bic
[1] 2259.615

The model returned by auto.arima() is an ARIMA(1,2,1), so a simpler model where an AR(1) compo-
nent is chosen instead of an AR(2). The BIC values are almost equivalent, with a slightly smaller value
for the ARIMA(2,2,1) model identified by ISLPGA. However, by looking at some diagnostic plots it
seems that a second-order AR component is really needed to account for autocorrelation at several
lags as indicated by the Ljung-Box test of autocorrelation (see Figure 13; the code used to produce the
plots is available in the supplementary material).
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Figure 13: ACF of residuals and p-values for the Ljung-Box test of autocorrelation for the ARIMA(1,2,1)
model (top graphs) and the ARIMA(2,2,1) model (bottom graphs) fitted to the quarterly U.S. GNP
data from 1947(1) to 2002(3).

Benchmark function optimisation

Mullen (2014) compared several optimisation algorithms using 48 benchmark functions available in
the globalOptTests package. GA was one of the several R packages investigated in such a comparison.
However, with the settings used in this study, its overall performance was not particularly brilliant,
ranking 14th out of 18 methods, thus leaving plenty of room for improvements. For instance, the
Griewank function was one of the most problematic cases, and it is defined as

f (x1, . . . , xd) = 1 +
1

4000

d

∑
i=1

x2
i −

d

∏
i=1

cos(xi/
√

i).

This a multimodal, non-separable function, with several local optima within the search region. For
any dimensionality d, it has one global minimum of zero located at the point (0, . . . , 0).
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We replicated the simulation study in Mullen (2014) using the standard sequential GA (GA), the
parallel island GA with 4 islands (GAISL), the hybrid GA with local search (HGA), and the island GA
with local search (HGAISL). Results for the Griewank function based on 100 replications are shown
in Figure 14. The use of hybrid GAs, particularly in combination with the islands evolution, clearly
yields more accurate solutions and with less dispersion. The same behavior has been observed in
many other benchmark functions available in the globalOptTests package.
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Figure 14: Results from 100 replications of Griewank function optimisation using standard GAs (GA),
island GAs (GAISL), hybrid GAs with local search (HGA), and island GAs with local search (HGAISL).
The table at the bottom reports the average (and standard deviation) computing times in seconds used
by each algorithm.

Summary

GA is a flexible R package for solving optimisation problems with genetic algorithms. This paper
presents some improvements recenquadrtly added to the package. We have discussed the implementa-
tion of hybrid GAs, which employ local searches during the evolution of a GA to improve accuracy and
efficiency. Further speedup can also be achieved by parallel computing. This has been implemented
following two different approaches. In the first one, the so-called master-slave approach, the fitness
function is evaluated in parallel, either on a single multi-core machine or on a cluster of multiple
computers. In the second approach, called islands model, the evolution takes place independently on
several sub-populations assigned to different islands, with occasional migration of solutions between
islands. Both enhancements often lead to high-quality solutions more efficiently.

Future plans include the possibility to improve the overall performance by rewriting some key
functions in C++ using the Rcpp package. In particular, coding of genetic operators in C++ should pro-
vide sensible benefits in terms of computational speedup. Another interesting option to perform local
search is the inclusion of Hooke-Jeeves direct search algorithm as described in Satman (2015). Finally,
the package memoise enables to store the results of an expensive fitness function call and returns
the cached result when the same input arguments occur again. This strategy could be conveniently
employed in the case of binary and permutation GAs.
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imputeTS: Time Series Missing Value
Imputation in R
by Steffen Moritz and Thomas Bartz-Beielstein

Abstract The imputeTS package specializes on univariate time series imputation. It offers multiple
state-of-the-art imputation algorithm implementations along with plotting functions for time series
missing data statistics. While imputation in general is a well-known problem and widely covered by R
packages, finding packages able to fill missing values in univariate time series is more complicated. The
reason for this lies in the fact, that most imputation algorithms rely on inter-attribute correlations, while
univariate time series imputation instead needs to employ time dependencies. This paper provides an
introduction to the imputeTS package and its provided algorithms and tools. Furthermore, it gives a
short overview about univariate time series imputation in R.

Introduction

In almost every domain from industry (Billinton et al., 1996) to biology (Bar-Joseph et al., 2003), finance
(Taylor, 2007) up to social science (Gottman, 1981) different time series data are measured. While the
recorded datasets itself may be different, one common problem are missing values. Many analysis
methods require missing values to be replaced with reasonable values up-front. In statistics this
process of replacing missing values is called imputation.

Time series imputation thereby is a special sub-field in the imputation research area. Most popular
techniques like Multiple Imputation (Rubin, 1987), Expectation-Maximization (Dempster et al., 1977),
Nearest Neighbor (Vacek and Ashikaga, 1980) and Hot Deck (Ford, 1983) rely on inter-attribute
correlations to estimate values for the missing data. Since univariate time series do not possess
more than one attribute, these algorithms cannot be applied directly. Effective univariate time series
imputation algorithms instead need to employ the inter-time correlations.

On CRAN there are several packages solving the problem of imputation of multivariate data. Most
popular and mature (among others) are AMELIA (Honaker et al., 2011), mice (van Buuren and
Groothuis-Oudshoorn, 2011), VIM (Kowarik and Templ, 2016) and missMDA (Josse and Husson,
2016). However, since these packages are designed for multivariate data imputation only they do not
work for univariate time series.

At the moment imputeTS (Moritz, 2017a) is the only package on CRAN that is solely dedicated to
univariate time series imputation and includes multiple algorithms. Nevertheless, there are some
other packages that include imputation functions as addition to their core package functionality. Most
noteworthy being zoo (Zeileis and Grothendieck, 2005) and forecast (Hyndman, 2017). Both packages
offer also some advanced time series imputation functions. The packages spacetime (Pebesma, 2012),
timeSeries (Rmetrics Core Team et al., 2015) and xts (Ryan and Ulrich, 2014) should also be mentioned,
since they contain some very simple but quick time series imputation methods. For a broader overview
about available time series imputation packages in R see also (Moritz et al., 2015). In this technical
report we evaluate the performance of several univariate imputation functions in R on different time
series.

This paper is structured as follows: Section Overview imputeTS package gives an overview, about all
features and functions included in the imputeTS package. This is followed by Usage examples of the
different provided functions. The paper ends with a Conclusions section.

Overview imputeTS package

The imputeTS package can be found on CRAN and is an easy to use package that offers several
utilities for ’univariate, equi-spaced, numeric time series’ .

Univariate means there is just one attribute that is observed over time. Which leads to a sequence
of single observations o1, o2, o3, ... on at successive points t1, t2, t3, ... tn in time. Equi-spaced means,
that time increments between successive data points are equal |t1 − t2| = |t2 − t3| = ... = |tn−1 − tn|.
Numeric means that the observations are measurable quantities that can be described as a number.

In the first part of this section, a general overview about all available functions and datasets is given.
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This is followed by more detailed overviews about the three areas covered by the package: ’Plots &
Statistics’, ’Imputation’ and ’Datasets’. Information about how to apply these functions and tools can
be found later in the Usage examples section.

General overview

As can be seen in Table 1, beyond several imputation algorithm implementations the package also
includes plotting functions and datasets. The imputation algorithms can be divided into rather simple
but fast approaches like mean imputation and more advanced algorithms that need more computation
time like kalman smoothing on a structural model.

Simple Imputation Imputation Plots & Statistics Datasets

na.locf na.interpolation plotNA.distribution tsAirgap
na.mean na.kalman plotNA.distributionBar tsAirgapComplete
na.random na.ma plotNA.gapsize tsHeating
na.replace na.seadec plotNA.imputations tsHeatingComplete
na.remove na.seasplit statsNA tsNH4

tsNH4Complete

Table 1: General Overview imputeTS package

As a whole, the package aims to support the user in the complete process of replacing missing values
in time series. This process starts with analyzing the distribution of the missing values using the
statsNA function and the plots of plotNA.distribution, plotNA.distributionBar, plotNA.gapsize.
In the next step the actual imputation can take place with one of the several algorithm options. Finally,
the imputation results can be visualized with the plotNA.imputations function. Additionally, the
package contains three datasets, each in a version with and without missing values, that can be used
to test imputation algorithms.

Plots & statistics functions

An overview about the available plots and statistics functions can be found in Table 2. To get a good
impression what the plots look like section Usage examples is recommended.

Function Description

plotNA.distribution Visualize Distribution of Missing Values
plotNA.distributionBar Visualize Distribution of Missing Values (Barplot)
plotNA.gapsize Visualize Distribution of NA gap sizes
plotNA.imputations Visualize Imputed Values
statsNA Print Statistics about the Missing Data

Table 2: Overview Plots & Statistics

The statsNA function calculates several missing data statistics of the input data. This includes overall
percentage of missing values, absolute amount of missing values, amount of missing value in different
sections of the data, longest series of consecutive NAs and occurrence of consecutive NAs. The
plotNA.distribution function visualizes the distribution of NAs in a time series. This is done using a
standard time series plot, in which areas with missing data are colored red. This enables the user to see
at first sight where in the series most of the missing values are located. The plotNA.distributionBar
function provides the same insights to users, but is designed for very large time series. This is necessary
for time series with 1000 and more observations, where it is not possible to plot each observation as a
single point. The plotNA.gapsize function provides information about consecutive NAs by showing
the most common NA gap sizes in the time series. The plotNA.imputations function is designated for
visual inspection of the results after applying an imputation algorithm. Therefore, newly imputed
observations are shown in a different color than the rest of the series.
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Imputation functions

An overview about all available imputation algorithms can be found in Table 3. Even if these functions
are really easy applicable, some examples can be found later in section Usage examples. More detailed
information about the theoretical background of the algorithms can be found in the imputeTS manual
(Moritz, 2017b).

Function Option Description

na.interpolation
linear Imputation by Linear Interpolation
spline Imputation by Spline Interpolation
stine Imputation by Stineman Interpolation

na.kalman
StructTS Imputation by Structural Model & Kalman Smoothing
auto.arima Imputation by ARIMA State Space Representation & Kalman Sm.

na.locf
locf Imputation by Last Observation Carried Forward
nocb Imputation by Next Observation Carried Backward

na.ma
simple Missing Value Imputation by Simple Moving Average
linear Missing Value Imputation by Linear Weighted Moving Average
exponential Missing Value Imputation by Exponential Weighted Moving Average

na.mean
mean MissingValue Imputation by Mean Value
median Missing Value Imputation by Median Value
mode Missing Value Imputation by Mode Value

na.random Missing Value Imputation by Random Sample
na.replace Replace Missing Values by a Defined Value

na.seadec Seasonally Decomposed Missing Value Imputation
na.seasplit Seasonally Splitted Missing Value Imputation

na.remove Remove Missing Values

Table 3: Overview Imputation Algorithms

For convenience similar algorithms are available under one function name as parameter option. For
example linear, spline and stineman interpolation are all included in the na.interpolation function.
The na.mean, na.locf, na.replace, na.random functions are all simple and fast. In comparison,
na.interpolation, na.kalman, na.ma, na.seasplit, na.seadec are more advanced algorithms that
need more computation time. The na.remove function is a special case, since it only deletes all missing
values. Thus, it is not really an imputation function. It should be handled with care since removing
observations may corrupt the time information of the series. The na.seasplit and na.seadec functions
are as well exceptions. These perform seasonal split / decomposition operations as a preprocessing
step. For the imputation itself, one out of the other imputation algorithms can be used (which one can
be set as option). Looking at all available imputation methods, no single overall best method can be
pointed out. Imputation performance is always very dependent on the characteristics of the input time
series. Even imputation with mean values can sometimes be an appropriate method. For time series
with a strong seasonality usually na.kalman and na.seadec / na.seasplit perform best. In general,
for most time series one algorithm out of na.kalman, na.interpolation and na.seadec will yield the
best results. Meanwhile, na.random, na.mean, na.locf will be at the lower end accuracy wise for the
majority of input time series.

Datasets

As can be seen in Table 4, all three datasets are available in a version with missing data and in a
complete version. The provided time series are designated as benchmark datasets for univariate time
series imputation. They shall enable users to quickly compare and test imputation algorithms. Without
these datasets the process of testing time series imputation algorithms would require to manually
delete certain observations. The benchmark data simplifies this: imputation algorithms can directly
be applied to the dataset versions with missing values, which then can be compared to the complete
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dataset versions afterwards. Since the time series are specified, researchers can use these to compare
their algorithms against each other.

Reached RMSE or MAPE values on these datasets are easily understandable results to quote and
compare against. Nevertheless, comparing algorithms using these fixed datasets can only be a first
indicator of how well algorithms perform in general. Especially for the very short tsAirgap series
(with just 13 NA values) random lucky guesses can considerably influence the results. A complete
benchmark would include: ’Different missing data percentages’, ’Different datasets’, ’Different random
seeds for missing data simulation’.

Overall there is a relatively small time series provided in tsAirgap, a medium one in tsNH4 and a large
time series in tsHeating. The tsHeating and tsNH4 are both sensor data, while tsAirgap is count data.

Dataset Description

tsAirgap Time series of monthly airline passengers (with NAs)
tsAirgapComplete Time series of monthly airline passengers (complete)
tsHeating Time series of a heating systems’ supply temperature (with NAs)
tsHeatingComplete Time series of a heating systems’ supply temperature (complete)
tsNH4 Time series of NH4 concentration in a waste-water system (with NAs)
tsNH4Complete Time series of NH4 concentration in a waste-water system (complete)

Table 4: Overview Datasets

tsAirgap
The tsAirgap time series has 144 rows and the incomplete version includes 14 NA values. It represents
the monthly totals of international airline passengers from 1949 to 1960. The time series originates from
Box et al. (2015) and is a commonly used example in time series analysis literature. Originally known
as ’AirPassengers’ or ’airpass’ this version is renamed to ’tsAirgap’ in order improve differentiation
from the complete series (gap signifies that NAs were introduced). The characteristics (strong trend,
strong seasonal behavior) make the tsAirgap series a great example for time series imputation.

As already mentioned in order to use this series for comparing imputation algorithm results, there
are two time series provided. One series without missing values (tsAirgapComplete), which can
be used as ground truth. Another series with NAs, on which the imputation algorithms can be
applied (tsAirgap). While the missing data for tsNH4 and tsHeating were each introduced according
to patterns observed in very similar time series from the same source, the missing observations in
tsAirgap were created based on general missing data patterns.

tsNH4
The tsNH4 time series has 4552 rows and the incomplete version includes 883 NA values. It represents
the NH4 concentration in a waste-water system measured from 30.11.2010 - 16:10 to 01.01.2011 -
6:40 in 10 minute steps. The time series is derived from the dataset of the Genetic and Evolutionary
Computation Conference (GECCO) Industrial Challenge 2014 1.

As already mentioned in order to use this series for comparing imputation algorithm results, there are
two time series provided. One series without missing values (tsNH4Complete), which can be used as
ground truth. Another series with NAs (tsNH4), on which the imputation algorithms can be applied.
The pattern for the NA occurrence was derived from the same series / sensors, but from an earlier
time interval. Thus, it is a very realistic missing data pattern. Beware, since the time series has a lot of
observations, some of the more complex algorithms like na.kalman will need some time till they are
finished.

tsHeating
The tsHeating time series has 606837 rows and the incomplete version includes 57391 NA values. It
represents a heating systems’ supply temperature measured from 18.11.2013 - 05:12:00 to 13.01.2015 -
15:08:00 in 1 minute steps. The time series originates from the GECCO Industrial Challenge 2015 2.
This was a challenge about ’Recovering missing information in heating system operating data’. Goal
was to impute missing values in heating system sensor data as accurate as possible.

As already mentioned in order to use this series for comparing imputation algorithm results, there are
two time series provided. One series without missing values (tsHeatingComplete), which can be used

1http://www.spotseven.de/gecco-challenge/gecco-challenge-2014/
2http://www.spotseven.de/gecco-challenge/gecco-challenge-2015/
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as ground truth. Another series with NAs (tsHeating), on which the imputation algorithms can be
applied. The NAs thereby were inserted according to patterns found in similar time series. According
to patterns found / occurring in other heating systems. Beware, since it is a very large time series,
some of the more complex algorithms like na.kalman may need up to several days to complete on
standard hardware.

Usage examples

To start working with the imputeTS package, install either the stable version from CRAN or the de-
velopment version from GitHub (https://github.com/SteffenMoritz/imputeTS). The stable version
from CRAN is hereby recommended.

Imputation algorithms

All imputation algorithms are used the same way. Input has to be either a numeric time series or a
numeric vector. As output, a version of the input data with all missing values replaced by imputed
values is returned. Here is a small example, to show how to use the imputation algorithms. (all
imputation functions start with na.’algorithm name’)

For this we first need to create an example input series with missing data.

# Create a short example time series with missing values
x <- ts(c(1, 2, 3, 4, 5, 6, 7, 8, NA, NA, 11, 12))

On this time series we can apply different imputation algorithms. We start with using na.mean, which
substitutes the NAs with mean values.

# Impute the missing values with na.mean
na.mean(x)

[1] 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 5.9 5.9 11.0 12.0

Most of the functions also have additional options that provide further algorithms (of the same
algorithm category). In the example below it can be seen that na.mean can also be called with
option="median", which substitutes the NAs with median values.

# Impute the missing values with na.mean using option median
na.mean(x, option="median")

[1] 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 5.5 5.5 11.0 12.0

While na.interpolation and all other imputation functions are used the same way, the results
produced may be different. As can be seen below, for this series linear interpolation gives more
reasonable results.

# Impute the missing values with na.interpolation
na.interpolation(x)

[1] 1 2 3 4 5 6 7 8 9 10 11 12

For longer and more complex time series (with trend and seasonality) than in this example it is always
a good idea to try na.kalman and na.seadec, since these functions very often produce the best results.
These functions are called the same easy way as all other imputation functions.

Here is a usage example for the na.kalman function applied on the tsAirgap (described in 28.2.4)
time series. As can be seen in Figure 1, na.kalman provides really good results for this series, which
contains a strong seasonality and a strong trend.

# Impute the missing values with na.kalman
# (tsAirgap is an example time series provided by the imputeTS package)
imp <- na.kalman(tsAirgap)

#Code for visualization
plotNA.imputations(tsAirgap, x.imp, tsAirgapComplete)
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Visualization Imputed Values
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Figure 1: Results of imputation with na.kalman compared to real values

plotNA.distribution

This function visualizes the distribution of missing values within a time series. Therefore, the time
series is plotted and whenever a value is NA the background is colored differently. This gives a nice
overview, where in the time series most of the missing values occur. An example usage of the function
can be seen below (for the plot see Figure 2).

# Example Code 'plotNA.distribution'
# (tsAirgap is an example time series provided by the imputeTS package)

# Visualize the missing values in this time series
plotNA.distribution(tsAirgap)
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Figure 2: Example for plotNA.distribution

As can be seen in Figure 2, in areas with missing data the background is colored red. The whole plot is
pretty much self-explanatory. The plotting function itself needs no further configuration parameters,
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nevertheless it allows passing through of plot parameters (via ...).

plotNA.distributionBar

This function also visualizes the distribution of missing values within a time series. This is done as
a barplot, which is especially useful if the time series would otherwise be too large to be plotted.
Multiple observations for time intervals are grouped together and represented as bars. For these
intervals, information about the amount of missing values are shown. An example usage of the
function can be seen below (for the plot see Figure 3).

# Example Code 'plotNA.distributionBar'
# (tsHeating is an example time series provided by the imputeTS package)

# Visualize the missing values in this time series
plotNA.distributionBar(tsHeating, breaks = 20)
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Figure 3: Example for plotNA.distributionBar

As can be seen in the x-axis of Figure 3, the tsHeating series is with over 600.000 observations a very
large time series. While the missing values in the tsAirgap series (144 observations) can be visualized
with plotNA.distribution like in Figure 2, this would for sure not work out for tsHeating. There
just isn’t enough space for 600.000 single consecutive observations/points in the plotting area. The
plotNA.distributionBar function solves this problem. Multiple observations are grouped together in
intervals. The ’breaks’ parameter in the example defines that there should be 20 intervals used. This
means every interval in Figure 3 represents approximately 30.000 observations. The first five intervals
are completely green, which means there are no missing values present. This means from observation
1 up to observation 150.000 there are no missing values in the data. In the middle and at the end of
the series there are several intervals each having around 40% of missing data. This means in these
intervals 12.000 out of 30.000 observation are NA. All in all, the plot is able to give a nice but rough
overview about the NA distribution in very large time series.

plotNA.gapsize

This plotting function can be used to visualize how often different NA gaps (NAs in a row) occur
in a time series. The function shows this information as a ranking. This ranking can be ordered by
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total NAs gap sizes account for (number occurrence gap size * gap length) or just by the number of
occurrences of gap sizes. In the end the results can be read like this: In time series x, 3 NAs in a row
occur most often with 20 occurrences, 6 NAs in a row occur 2nd most with 5 occurrences, 2 NAs in a
row occur 3rd most with 3 occurrences. An example usage of the function can be seen below(for the
plot see Figure 4).

# Example Code 'plotNA.gapsize'
# (tsNH4 is an example time series provided by the imputeTS package)

# Visualize the top gap sizes / NAs in a row
plotNA.gapsize(tsNH4)

27 NAs 32 NAs 4 NAs 5 NAs 3 NAs 2 NAs 1 NAs 42 NAs 91 NAs 157 NAs

Occurance of  gapsizes (NAs in a row)

Ranking of the different gapsizes
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● ●Num occurence gapsize Total NAs for gapsize

Figure 4: Example for printNA.gapsize

The example plot (Figure 4) reads the following: In the time series tsNH4 gap size 157 occurs just 1
time, but makes up for most NAs of all gap sizes (157 NAs). A gap size of 91 (91 NAs in a row) also
occurs just once, but makes up for 2nd most NAs (91 NAs). A gap size of 42 occurs two times in
the time series, which leads to 3rd most overall (84 NAs). A gap size of one (no other NAs before or
behind the NA) occurs 68 times, which makes this 4th in overall NAs (68 NAs).

plotNA.imputations

This plot can be used, to visualize the imputed values for a time series. Therefore, the imputed values
(filled NA gaps) are shown in a different color than the other values. The function is used as below
and Figure 5 shows the output.

# Example Code 'plotNA.imputations'
# (tsAirgap is an example time series provided by the imputeTS package)

# Step 1: Perform imputation for x using na.mean
tsAirgap.imp <- na.mean(tsAirgap)

# Step 2: Visualize the imputed values in the time series
plotNA.imputations(tsAirgap, tsAirgap.imp)
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The visual inspection of Figure 5 indicates, that the imputed values (red) do not fit very well in the
tsAirgap series. This is caused by na.mean being used for imputation of a series with a strong trend.
The plotting function enables users to quickly detect such problems in the imputation results. If the
ground truth is known for the imputed values, this information can also be added to the plot. The
plotting function itself needs no further configuration parameters. Nevertheless, it allows passing
through of plot parameters (via ...).

Visualization Imputed Values
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Figure 5: Example for printNA.imputations

statsNA

The statsNA function prints summary stats about the distribution of missing values in univariate time
series. Here is a short explanation about the information it gives:

• Length of time series
Number of observations in the time series (including NAs)

• Number of Missing Values
Number of missing values in the time series

• Percentage of Missing Values Percentage of missing values in the time series
• Stats for Bins

Number/percentage of missing values for the split into bins
• Longest NA gap

Longest series of consecutive missing values (NAs in a row) in the time series
• Most frequent gap size

Most frequent occurring series of missing values in the time series
• Gap size accounting for most NAs

he series of consecutive missing values that accounts for most missing values overall in the time
series

• Overview NA series
Overview about how often each series of consecutive missing values occurs. Series occurring 0
times are skipped

The function is used as below and Figure 6 shows the output.

# Example Code 'statsNA'
# (tsNH4 is an example time series provided by the imputeTS package)

# Print stats about the missing data
statsNA(tsNH4)
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Figure 6: Excerpt of statsNA output

Datasets

Using the datasets is self-explanatory, after the package is loaded they are directly available and usable
under their name. No call of data() is needed. For every dataset there is always a complete version
(without NAs) and an incomplete version (containing NAs) available.

# Example Code to use tsAirgap dataset
library("imputeTS")
tsAirgap

Figure 7: Example tsAirgap time series

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 217

Conclusions

Missing data is a very common problem for all kinds of data. However, in case of univariate time
series most standard algorithms and existing functions within R packages cannot be applied.
This paper presented the imputeTS package that provides a collection of algorithms and tools espe-
cially tailored to this task. Using example time series, we illustrated the ease of use and the advantages
of the provided functions. Simple algorithms as well as more complicated ones can be applied in the
same simple and user-friendly manner.

The functionality provided makes the imputeTS package a good choice for preprocessing of time
series ahead of further analysis steps that require complete absence of missing values.

Future research and development plans for forthcoming versions of the package include adding
additional time series algorithm options to choose from.
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The NoiseFiltersR Package: Label Noise
Preprocessing in R
by Pablo Morales, Julián Luengo, Luís P.F. Garcia, Ana C. Lorena, André C.P.L.F. de Carvalho and
Francisco Herrera

Abstract In Data Mining, the value of extracted knowledge is directly related to the quality of the
used data. This makes data preprocessing one of the most important steps in the knowledge discovery
process. A common problem affecting data quality is the presence of noise. A training set with label
noise can reduce the predictive performance of classification learning techniques and increase the
overfitting of classification models. In this work we present the NoiseFiltersR package. It contains the
first extensive R implementation of classical and state-of-the-art label noise filters, which are the most
common techniques for preprocessing label noise. The algorithms used for the implementation of the
label noise filters are appropriately documented and referenced. They can be called in a R-user-friendly
manner, and their results are unified by means of the "filter" class, which also benefits from adapted
print and summary methods.

Introduction

In the last years, the large quantity of data of many different kinds and from different sources has
created numerous challenges in the Data Mining area. Not only their size, but their imperfections
and varied formats are providing the researchers with plenty of new scenarios to be addressed.
Consequently, Data Preprocessing (García et al., 2015) has become an important part of the KDD
(Knowledge Discovery from Databases) process, and related software development is also essential to
provide practitioners with the adequate tools.

Data Preprocessing intends to process the collected data appropriately so that subsequent learning
algorithms can not only extract meaningful and relevant knowledge from the data, but also induce
models with high predictive or descriptive performance. Data preprocessing is known as one of
the most time-consuming steps in the whole KDD process. There exist several aspects involved in
data preprocessing, like feature selection, dealing with missing values and detecting noisy data. Feature
selection aims at extracting the most relevant attributes for the learning step, thus reducing the
complexity of models and the computing time taken for their induction. The treatment of missing
values is also essential to keep as much information as possible in the preprocessed dataset. Finally,
noisy data refers to values that are either incorrect or clearly far from the general underlying data
distribution.

All these tasks have associated software available. For instance, the KEEL tool (Alcalá et al., 2010)
contains a broad collection of data preprocessing algorithms, which covers all the aforementioned
topics. There exist many other general-purpose Data Mining software with data preprocessing
functionalities, like WEKA (Witten and Frank, 2005), KNIME (Berthold et al., 2009), RapidMiner
(Hofmann and Klinkenberg, 2013) or R.

Regarding the R statistical software, there are plenty of packages available in the Comprehensive R
Archive Network (CRAN) repository to address preprocessing tasks. For example, MICE (van Buuren
and Groothuis-Oudshoorn, 2011) and Amelia (Honaker et al., 2011) are very popular packages for
handling missing values, whereas caret (Kuhn, 2008) or FSelector (Romanski and Kotthoff, 2014)
provide a wide range of techniques for feature selection. There are also general-purpose packages for
decting outliers and anomalies, like mvoutlier (Filzmoser and Gschwandtner, 2015). If we examine
software in CRAN developed to tackle label noise, there already exist non-preprocessing packages
that provide label noise robust classifiers. For instance, robustDA implements a robust mixture
discriminant analysis Bouveyron and Girard (2009), while probFDA package provides a probabilistic
Fisher discriminant analysis related to the seminal work in Lawrence and Schölkopf (2001).

However, to the best of our knowledge, CRAN lacks an extensive collection of label noise prepro-
cessing algorithms for classification (Sáez et al., 2016; Garcia et al., 2015), some of which are among
the most influential preprocessing techniques (García et al., 2016). This is the gap we intend to fill
with the release of the NoiseFiltersR package, whose taxonomy is inspired on the recent survey on
label noise by B. Frénay and M. Verleysen (Frénay and Verleysen, 2014). Yet, it should be noted that
there are other packages that include some isolated implementations of label noise filters, since they
are sometimes needed as auxiliary functions. This is the case of the unbalanced (Pozzolo et al., 2015)
package, which deals with imbalanced classification. It contains basic versions of classical filters, such
as Tomek-Links (Tomek, 1976) or ENN (Wilson, 1972), which are tipically applied after oversampling an
imbalanced dataset (which is the main purpose of the unbalanced package).
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In the following section we briefly introduce the problem of classification with label noise, as
well as the most popular techniques to overcome this problem. Then, we show how to use the
NoiseFiltersR package to apply these techniques in a unified and R-user-friendly manner. Finally, we
present a general overview of this work and potential extensions.

Label noise preprocessing

Data collection and preparation processes are usually subject to errors in Data Mining applications
(Wu and Zhu, 2008). Consequently, real-world datasets are commonly affected by imperfections or
noise. In a classification problem, several effects of this noise can be observed by analyzing its spatial
characteristics: noise may create small clusters of instances of a particular class in the instance space
corresponding to another class, displace or remove instances located in key areas within a concrete
class, or disrupt the boundaries of the classes resulting in an increased boundaries overlap. All these
imperfections may harm interpretation of data, the design, size, building time, interpretability and
accuracy of models, as well as the making of decisions (Zhong et al., 2004; Zhu and Wu, 2004).

In order to alleviate the effects of noise, we need first to identify and quantify the components of
the data that can be affected. As described by Wang et al. (1995), from the large number of components
that comprise a dataset, class labels and attribute values are two essential elements in classification
datasets (Wu, 1996). Thus, two types of noise are commonly differentiated in the literature (Zhu and
Wu, 2004; Wu, 1996):

• Label noise, also known as class noise, is when an example is wrongly labeled. Several causes
may induce label noise, including subjectivity during the labeling process, data entry errors, or
inadequacy of the information used to label each instance. Label noise includes contradictory
examples (Hernández and Stolfo, 1998) (examples with identical input attribute values having
different class labels) and misclassifications (examples which are incorrectly labeled Zhu and
Wu, 2004). Since detecting contradictory examples is easier than identifying misclassifications
(Zhu and Wu, 2004), most of the literature is focused on the study of misclassifications, and the
term label noise usually refers to this type of noise (Teng, 1999; Sáez et al., 2014).

• Attribute noise refers to corruptions in the values of the input attributes. It includes erroneous
attribute values, missing values and incomplete attributes or “do not care” values. Missing
values are usually considered independently in the literature, so attribute noise is mainly used
for erroneous values (Zhu and Wu, 2004).

The NoiseFiltersR package (and the rest of this manuscript) focuses on label noise, which is known
to be the most disruptive one, since label quality is essential for the classifier training (Zhu and
Wu, 2004). In Frénay and Verleysen (2014) the mechanisms that generate label noise are examined,
relating them to the appropriate treatment procedures that can be safely applied. In the specialized
literature there exist two main approaches to deal with label noise, and both are surveyed in Frénay
and Verleysen (2014):

• On the one hand, algorithm level approaches attempt to create robust classification algorithms
that are little influenced by the presence of noise. This includes approaches where existing
algorithms are modified to cope with label noise by either modeling it in the classifier construc-
tion (Lawrence and Schölkopf, 2001; Li et al., 2007), by applying pruning strategies to avoid
overfiting as in Quinlan (1993) or by diminishing the importance of noisy instances with respect
to clean ones (Miao et al., 2016). There exist recent proposals that combine these two approaches,
which model the noise and give less relevance to potentially noisy instances in the classifier
building process (Bouveyron and Girard, 2009).

• On the other hand, data level approaches (also called filters) try to develop strategies to cleanse
the dataset as a previous step to the fitting of the classifier, by either creating ensembles of
classifiers (Brodley and Friedl, 1999), iteratively filtering noisy instances (Khoshgoftaar and
Rebours, 2007), computing metrics on the data or even hybrid approaches that combine several
of these strategies.

The NoiseFiltersR package follows the data level approaches, since this allows the data preprocess-
ing to be carried out just once, and apply any classifier thereafter, whereas algorithm level approaches
are specific for each classification algorithm1. Regarding data-level handling of label noise, we take
the aforementioned survey by Frénay and Verleysen (2014) as the basis for our NoiseFiltersR package.

1Of course, in R there exist implementations of very popular label noise robust classifiers (the aforementioned
algorithm-level approach), such as C4.5 and RIPPER, which are called J48 and JRip respectively in the RWeka
package (Hornik et al., 2009), which is a R interface to WEKA software (Witten and Frank, 2005), or the method
described in Bouveyron and Girard (2009) in its own package.
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That work provides an overview and references for the most popular classical and state-of-the-art
filters, which are organized and classified taking into account several aspects:

• Considering how noisy instances are identified, ensemble based, similarity based and data complex-
ity based algorithms are distinguished. The first type makes use of predictions from ensembles
of classifiers built over different partitions or resamples of training data. The second is based on
label distribution from the nearest neighbors of each instance. And the third attempts to reduce
complexity metrics which are related to the presence of noise. As we will explain in the next
section (see Table 1), the NoiseFiltersR package contains implementations of all these types of
algorithms, and the explicit distinction is indicated in the documentation page of each function.

• Regarding how to deal with the identified noise, noise removal and noise reparation strategies are
considered. The first option removes the noisy instances, whereas the second relabels these
instances with the most likely label on the basis of the available information. There also exist
hybrid approaches, which only carry out relabelling when they have enough confidence on the
new label. Otherwise, they remove the noisy instance. The discussion between noise removal,
noise reparation and their possible sinergies is an active and open field of research (Frénay
and Verleysen, 2014, Section VI.H): most works agree on the potential damages of incorrect
relabeling (Miranda et al., 2009), although other studies also point out the dangers of removing
too many instances and advocate hybrid approaches (Teng, 2005). As we will see in the next
section, the NoiseFiltersR package includes filters which implement all these possibilities, and
the specific behaviour is explicitly indicated in the documentation page of the corresponding
function.

The NoiseFiltersR package

The released package implements, documents, explains and provides references for a broad collection
of label noise filters surveyed in (Frénay and Verleysen, 2014). To the best of our knowledge, it is the
first comprehensive review and implementation of this topic for R, which has become an essential tool
in Data Mining in the last years.

Namely, the NoiseFiltersR package includes a total of 30 filters, which were published in 24
research papers. Each one of these papers is referenced in the corresponding filter documentation
page, as shown in the next Documentation section (and particularly in Figure 1). Regarding the noise
detection strategy, 13 of them are ensemble based filters, 14 can be cataloged as similarity based, and
the other 3 are based on data complexity measures. Taking into account the noise handling approach,
4 of them integrate the possibility of relabelling, whereas the other 26 only allow for removing (which
clearly evidences a general preference for data removal in the literature). The full list of implemented
filters and its distribution according to the two aforementioned criterions is displayed in Table 1, which
provides a general overview of the package.
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Table 1: Names and taxonomy of available filters in the NoiseFiltersR package. Every filter is
appropriately referenced in its documentation page, where the original paper is provided.

The rest of this section is organized as follows. First, a few lines are devoted to the installation
process. Then, we present the documentation page for the filters, where further specific details can be
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looked up. After that, we focus on the two implemented methods to call the filters (default and formula).
Finally, the "filter" class, which unifies the return value of the filters in NoiseFiltersR package, is
presented.

Installation

The NoiseFiltersR package is available at CRAN servers, so it can be downloaded and installed
directly from the R command line by typing:

> install.packages("NoiseFiltersR")

In order to easily access all the package’s functions, it must be attached in the usual way:

> library(NoiseFiltersR)

Documentation

Whereas this paper provides the user with an overview of the NoiseFiltersR package, it is also
important to have access to specific information for each available filter. This information can be
looked up in the corresponding documentation page, that in all cases includes the following essential
items (see Figure 1 for an example):

• A description section, which indicates the type of filter according to the taxonomy explained in
Table 1.

• A details section, which provides the user with a general explanation of the filter’s behaviour
and any other usage particularity or warning.

• A references section that points to the original contribution where the filter was proposed, where
further details, motivations or contextualization can be found.

Figure 1: Extract from GE filter’s documentation page, showing the highlighted above aspects.

As usually in R, the function documentation pages can be either checked in the CRAN website for
the package or loaded from the command line with the orders ? or help:

> ?GE
> help(GE)

Calling the filters

When one wants to use a label noise filter in Data Mining applications, all we need to know is the
dataset to be filtered and its class variable (i.e. the one that contains the label for each available instance).
The NoiseFiltersR package provides two standard ways for tagging the class variable when calling
the implemented filters (see also Figure 2 and the example below):
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• The default method receives the dataset to be filtered in the x argument, and the number for the
class column through the classColumn argument. If the latter is not provided, the last column
of the dataset is assumed to contain the labels.

• The formula method is intended for regular R users, who are used to this approach when fitting
regression or classification models. It allows for indicating the class variable (along with the
attributes to be used) by means of an expression like Class~Attr1+...+AttrN (recall that Class~.
makes use of all attributes).

Next, we provide an example on how to use these two methods for filtering out the iris dataset with
edgeBoostFilter (we did not change the default parameters of the filter):

# Checking the structure of the dataset (last variable is the class one)
> data(iris)
> str(iris)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 ...

# Using the default method:
> out_Def <- edgeBoostFilter(iris, classColumn = 5)
# Using the formula method:
> out_For <- edgeBoostFilter(Species~., iris)
# Checking that the filtered datasets are identical:
> identical(out_Def$cleanData, out_For$cleanData)
[1] TRUE

Figure 2: Extract from edgeBoostFilter’s documentation page, which shows the two methods for
calling filters in NoiseFiltersR package. In both cases, the parameters of the filter can be tunned
through additional arguments.

Notice that, in the last command of the example, we used the $ operator to access the objects
returned from the filter. In next section we explore the structure and contents of these objects.

The "filter" class

The S3 class "filter" is designed to unify the return value of the filters inside the NoiseFiltersR
package. It is a list that encapsulates seven elements with the most relevant information of the process:
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• cleanData is a data.frame containing the filtered dataset.

• remIdx is a vector of integers indicating the indexes of removed instances (i.e. their row number
with respect to the original data.frame).

• repIdx is a vector of integers indicating the indexes of repaired/relabelled instances (i.e. their
row number with respect to the original data.frame).

• repLab is a factor containing the new labels for repaired instances.

• parameters is a list that includes the adopted parameters for the filter.

• call is an expression that contains the original call to the filter.

• extraInf is a character vector including additional information not covered by previous items.

As an example, we can check the structure of the above out_For object, which was the return value of
egdeBoostFilter function:

> str(out_For)
List of 7
$ cleanData :'data.frame': 142 obs. of 5 variables:
..$ Sepal.Length: num [1:142] 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
..$ Sepal.Width : num [1:142] 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
..$ Petal.Length: num [1:142] 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
..$ Petal.Width : num [1:142] 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
..$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 ...
$ remIdx : int [1:8] 58 78 84 107 120 130 134 139
$ repIdx : NULL
$ repLab : NULL
$ parameters:List of 3
..$ m : num 15
..$ percent : num 0.05
..$ threshold: num 0
$ call : language edgeBoostFilter(formula = Species ~ ., data = iris)
$ extraInf : chr "Highest edge value kept: 0.0669358381115568"
- attr(*, "class")= chr "filter"

In order to cleanly display this "filter" class in the R console, two specific print and summary
methods were implemented. The appearance of the first one is as follows

> print(out_For)

Call:
edgeBoostFilter(formula = Species ~ ., data = iris)

Parameters:
m: 15
percent: 0.05
threshold: 0

Results:
Number of removed instances: 8 (5.333333 %)
Number of repaired instances: 0 (0 %)

and contains three main blocks:

• The original call to the filter.

• The parameters used for the filter.

• An overview of the results, with the absolute number (and percentage of the total) of removed
and repaired instances.

The summary method displays some extra blocks:

• It always adds a title that summarizes the filter and dataset used.

• If there exists additional information in the extraInf component of the object, it is displayed
under a homonymous block.

• If the argument explicit is set to TRUE (it defaults to FALSE), the explicit results (i.e. the indexes
for removed and repaired instances and the new labels for the latters) are displayed.
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In the case of the previous out_For object, the summary command gets the following format:

> summary(out_For, explicit = TRUE)

Filter edgeBoostFilter applied to dataset iris

Call:
edgeBoostFilter(formula = Species ~ ., data = iris)

Parameters:
m: 15
percent: 0.05
threshold: 0

Results:
Number of removed instances: 8 (5.333333 %)
Number of repaired instances: 0 (0 %)

Additional information:
Highest edge value kept: 0.0669358381115568

Explicit indexes for removed instances:
58 78 84 107 120 130 134 139

Summary

In this paper, we introduced the NoiseFiltersR package, which is the first R extensive implementation
of classification-oriented label-noise filters. To set a context and motivation for this work, we presented
the problem of label noise and the main approaches to deal with it inside data preprocessing, as well
as the related software. As previously explained, the released package unifies the return value of
the filters by means of the "filter" class, which benefits from specific print and summary methods.
Moreover, it provides a R-user-friendly way to call the implemented filters, whose documentation is
worth reading and points to the original reference where they were first published.

Regarding the potential extensions of this package, there exist several aspects which can be
adressed in future releases. For instance, there exist some other label noise filters reviewed in the
main reference (Frénay and Verleysen, 2014) whose noise identification strategy does not belong to the
ones covered here: ensemble based, similarity based and data complexity based (as shown in Table 1).
Other relevant extension would be the inclusion of some datasets with different levels of artificially
introduced label noise, in order to ease the experimentation workflow2.
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coxphMIC: An R Package for Sparse
Estimation of Cox Proportional Hazards
Models via Approximated Information
Criteria
by Razieh Nabi and Xiaogang Su

Abstract In this paper, we describe an R package named coxphMIC, which implements the sparse
estimation method for Cox proportional hazards models via approximated information criterion (Su
et al., 2016). The developed methodology is named MIC which stands for “Minimizing approximated
Information Criteria". A reparameterization step is introduced to enforce sparsity while at the same
time keeping the objective function smooth. As a result, MIC is computationally fast with a superior
performance in sparse estimation. Furthermore, the reparameterization tactic yields an additional
advantage in terms of circumventing post-selection inference (Leeb and Pötscher, 2005). The MIC
method and its R implementation are introduced and illustrated with the PBC data.

Introduction

Time to event (survival time) is often a primary outcome of interest in many research areas, especially
in medical research such as time that takes to respond to a particular therapy, time to death, remission,
or relapse. Survival times are typically right skewed and subject to censoring due to study termination,
loss of follow ups, or withdrawals. Moreover, covariates may vary by time.

Cox Proportional Hazards (PH) model (Cox, 1972) is commonly used to model survival data.
Given a typical survival data set that consists of {(Ti, δi, zi) : i = 1, . . . , n}, where Ti is the observed
event time, δi is the 0-1 binary censoring indicator, and zi ∈ Rp is the covariate vector associated with
the i-th subject, the Cox PH model formulates the hazard function h(t|zi) for the ith subject as

h(t|zi) = h0(t) exp(βT zi),

where zi ∈ Rp denotes the p-dimensional covariate vector associated with subject i, β = (β j) ∈ Rp is
the unknown regression parameter vector, and h0(t) is the unspecified baseline hazard function. The
vector of β can be estimated by maximizing the partial log-likelihood (Cox, 1975), which is given by

l(β) =
n

∑
i=1

δi

[
zi

T β− log
n

∑
i′=1

{
I(Ti′ ≥ Ti) exp(zi′

T β)
}]

.

Let β̂ denote the resultant maximum partial likelihood estimator (MPLE).

Since the true β is often sparse, we need to look for methods that identify the zero components in
β and at the same time estimate the nonzero ones. Best subset selection (BSS) and regularization are
among two major algorithms used in survival analyses for variable selection. Both are derived from a
penalized partial likelihood. Let pen(β) and λ denote the penalty function and penalty parameter,
respectively. The general objective function in both of the techniques is as follows:

min
β
− 2l(β) + λ · pen(β).

In BSS, the penalty function is set to pen(β) = ∑
p
j=1 I{β j 6= 0} (number of nonzero coefficients),

and the penalty parameter is fixed as λ = 2 for AIC (Akaike, 1974) or λ = ln(n0), where n0 is the
total number of uncensored failures, with a slight modification of BIC (Vollinsk and Raftery, 2000).
In regularization, the penalty function is set to pen(β) = ∑

p
j=1 |β j|, and the penalty parameter is not

fixed and is appropriately chosen. The sparse estimation is reformulated into a continuous convex
optimization problem. The optimization of the two techniques is a two-step process. In BSS, one
needs to fit every model with the maximum partial likelihood method and then compare the fitted
models according to an information criterion such as AIC (Akaike, 1974) or BIC (Schwarz, 1978). This
makes the BSS infeasible for moderately large p. In regularization, one need to solve the objective
function for every fixed positive value of λ to obtain a regularization path {β̃(λ) : λ > 0}, and then
select the best λ according to an information criterion such as AIC or BIC along the path. Since such
a search is only along the regularization path (a one-dimensional curve in Rp), the search space is
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much reduced and hence, it may not perform as well as the estimator obtained with BSS, if AIC or
BIC is used as the yardstick. Beside the computational burden, both methods face the post-selection
inference challenge. A new technique is developed by Su et al. (2016) on the basis of Su (2015) for
conducting sparse estimation of Cox PH models to help address the aforementioned deficiencies.

The MIC method

A new method, named MIC for “Minimizing approximated Information Criteria", is developed to
conduct sparse estimation of Cox PH models. MIC borrows strength from both BSS and regularization.
The main issue with BSS is the indicator function, I(β 6= 0), involved in the `0 penalty function,
leading to a discrete optimization problem. To overcome this difficulty, MIC proposes to approximate
the indicator function by a continuous or smooth unit dent function. One reasonable approximation is
the hyperbolic tangent function given by

w(β) = tanh(aβ2) =
exp

(
aβ2)− exp

(
−aβ2)

exp (aβ2) + exp (−aβ2)
,

where a is a nonnegative scale parameter that controls the sharpness of the approximation.
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Figure 1: MIC penalty and the reparameterization step: (a) the hyperbolic tangent penalty tanh(aβ2)
versus β; (b) β = γ tanh(aγ2) versus γ; (c) tanh(aγ2) as a penalty function of β. Three values of
a ∈ {1, 10, 100} are illustrated.

As shown in Figure 1(a), w(β) provides a smooth approximation to the discrete function I{β 6=
0}. However, the curve does not have zero as a singular point. If we estimate β by minimizing
−2 l(β) + ln(n0) ∑

p
j=1 w(β j), we will not obtain sparse estimates. To enforce sparsity, MIC devises

a reparameterization step. The reparameterization is based on the decomposition β = β I{β 6= 0}.
Set γ = β and approximate I{β 6= 0} with w(γ) = tanh(aγ2). This leads to a reparameterization of

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 231

β = γw(γ). The objective function in MIC is given by

Qn(β) = − 2 l(Wγ) + λ0 tr(W), (1)

where the penalty parameter λ0 is fixed as ln(n0) for BIC (Vollinsk and Raftery, 2000) and matrix W
is p× p diagonal with diagonal elements wj = w(γj) and hence trace tr(W) = ∑

p
j=1 tanh(aγ2

j ). With
this notation, it follows that β = Wγ.

The above reparameterization offers several important conveniences:

1. Sparsity now becomes achievable in estimating β. The penalty w(γ) as a function of β =
γw(γ) = γ tanh(γ) is a unit dent function that is smooth everywhere except at β = 0, as shown
in Figure 1(c). This is a necessary condition to ensure sparsity as indicated by Fan and Li (2002).
On this basis, the oracle properties of the MIC estimator β̃ obtained by minimizing Qn(β) in (1)

β̃ = arg min
β

Qn(β) = arg min
β
−2 l(β) + ln(n0)

p

∑
j=1

w(γj)

can be established under regularity conditions. The asymptotic results entails an = O(n). For
this reason, we fix an = n0, the number of non-censored failures. In practice, the empirical
performance of MIC is large stable with respect to the choice of a, as demonstrated in Su (2015).
Thus simply fixing a at a reasonably large value (say, a ≥ 10) could do as well practically.

2. In terms of practical optimization, it is preferable to consider γ as the decision vector. Namely,
we minimize Qn(γ) with respect to γ by treating it as a function of γ. Let γ̃ be the resultant
MIC estimator of γ

γ̃ = arg min
γ

Qn(γ) = arg min
γ
−2 l(Wγ) + ln(n0)

p

∑
j=1

w(γj). (2)

One immediate advantage of doing so is that Qn(γ) is smooth in γ and hence many optimization
routines can be applied directly. Since no selection of tuning parameters is involved, MIC is
computationally efficient.

3. One consequence of post-selection inference is that no standard error formula is available for
zero estimates of β j. As depicted in Figure 1(b), β j and γj have a one-to-one correspondence
with β = 0 iff γ = 0. This motivates us to test H0 : β j = 0 by equivalently testing H0 : γj = 0.
The MIC estimator γ̃ can be viewed as an M-estimator with smooth objective function Qn(γ)
and hence standard arguments can be used to make inference.

Implementation in R

The R package coxphMIC implements MIC on the basis of R package survival (Therneau and
Grambsch, 2000) and is hosted at CRAN. Type the following command in R console in order to install
the package:

> install.packages("coxphMIC")

To summarize, MIC can be simply formulated as the following optimization problem

min
γ
− 2l(Wγ) + ln(n0)

p

∑
j=1

tanh(n0γ2
j ). (3)

Owing to the non-convex nature, a global optimization method is helpful in solving (3). While other R
routines (Mullen, 2014) are available, we have found using the SANN method combined with the BFGS
method in R function optim() is fast and quite effective. The simulated annealing (SA) implemented
by SANN helps locate a nearly minimum point globally. Then the quasi-Newton BFGS method makes
sure that the algorithm stops at a critical point.

There are two functions included in the coxphMIC package: an internal function LoglikPen()
that computes the partial log-likelihood and a wrapper function coxphMIC() that does the MIC sparse
estimation. The function coxphMIC() has the following usage:

coxphMIC(formula = Surv(time, status) ~ ., data, method.beta0 = "MPLE",
beta0 = NULL, theta0 = 1, method = "BIC", lambda0 = NULL, a0 = NULL,
scale.x = TRUE, maxit.global = 300, maxit.local = 100,
rounding.digits = 4, zero = sqrt(.Machine$double.eps),
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Censoring Method
n p Rate Full Stepwise MIC LASSO ALASSO SCAD

200 10 25% 0.007 0.307 0.067 0.157 0.163 5.923
40% 0.000 0.320 0.060 0.150 0.170 4.900

50 25% 0.027 18.957 0.063 0.397 0.417 5.587
40% 0.027 18.107 0.057 0.453 0.480 5.480

100 25% 0.060 189.040 0.057 1.450 1.387 —
40% 0.067 181.147 0.057 2.053 1.897 —

2000 10 25% 0.020 0.907 0.243 0.903 0.837 415.097
40% 0.017 0.880 0.240 0.893 0.823 328.150

50 25% 0.110 81.380 0.243 1.590 1.153 —
40% 0.093 72.887 0.237 1.613 1.163 —

100 25% 0.333 894.607 0.223 2.383 2.103 —
40% 0.240 673.503 0.187 2.073 1.357 —

Table 1: Comparison of computation time: CPU time (in seconds) averaged over three runs.

compute.se.gamma = TRUE, compute.se.beta = TRUE,
CI.gamma = TRUE, conf.level = 0.95,
details = FALSE)

We briefly explain some of the important options. The formula argument is a formula object similar
to that in survival, with the response on the left of the ~ operator being a survival object as returned
by the Surv function, and the terms on the right being predictors. The arguments method.beta0, beta0,
and theta0 pertains to the initial starting values. By default, the maximum partial likelihood estimator
with the option MPLE is used. Otherwise, one can use the ridge estimator with option ridge. The theta0
corresponds to the tuning parameter in ridge estimation. User defined starting values can also be
used such as β = γ = 0 by specifying beta0. By default, the approximated BIC (Vollinsk and Raftery,
2000) is recommended. However, one can use AIC (Akaike, 1974). Alternatively, user-specified penalty
is allowed by specifying lambda0. The default value for a is n0. The option maxit.global allows for
specification of the maximal iteration steps in SANN while maxit.local specifies the maximal iteration
steps for BFGS. MIC computes the standard errors (SE) for both β̃ and γ̃. For β̃, the SE computation is
only applicable for its nonzero components. The option maxit.global asks whether the user wants to
output the confidence intervals for γj at the confidence level specified by conf.level (with 95% as
default).

The output of Function coxphMIC() is an object of S3 class coxphMIC, which is essentially a list of
detailed objects that can be used for other purposes. In particular, the item result presents the most
important results, where one can see the selected model and inference based on testing γ. Two generic
functions, print and plot, are made available for exploring a coxphMIC object.

Other R packages for variable selection in Cox PH models

Several other R packages are available for variable selection of Cox PH models. The best subset
selection (BSS) is available in the R Package glmulti (Calcagno and de Mazancourt, 2010) with AIC
only, but it is very slow owing to the intensive computation involved. For large p, a stepwise selection
procedure could be used as a surrogate. LASSO (Tibshirani, 1997) can be computed via R Package
glmnet (Friedman et al., 2010). Zhang and Lu (2007) have made their R codes for implementing
ALASSO for Cox models available at http://www4.stat.ncsu.edu/~hzhang/paper/cox_new.tar. But
the program was written without resorting well to available R routines and it takes an unnecessarily
long running time. One alternative way to compute ALASSO is first transform the design matrix
Z := Z diag(|β̂|) so that LASSO could be applied and then transform the resultant estimates back.
SCAD for Cox PH models (Fan and Li, 2002; Fan et al., 2010) can be computed with an earlier version
of the R package SIS (Saldana and Feng, 2016), but it is no longer available in its current version. One
is referred to Table 1, which is presented as Table B1 in Su et al. (2016), for a comparison study of these
above-mentioned methods. MIC clearly stands out as the top or among-the-top performer in both
sparse estimation and computing time.
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Examples

We illustrate the usage of coxphMIC via an analysis of the PBC (primary biliary cirrhosis) data, available
from the survival package (Therneau and Grambsch, 2000).

Data preparation

To proceed, some minor data preparation is needed. First of all, we want to make sure that the
censoring indicator is 0-1 binary.

> library(survival); data(pbc);
> dat <- pbc; dim(dat);
[1] 418 20
> dat$status <- ifelse(pbc$status == 2, 1, 0)

Next, we explicitly created dummy variable for categorical variables. The factor() function could be
used instead. Also, grouped sparsity could be used to handle these dummy variables so that they are
either all selected or all excluded. We plan to explore this possibility in future research.

> dat$sex <- ifelse(pbc$sex == "f", 1, 0)

Another necessary step is to handle missing values. This current version does not automatically treat
missings. Here, the listwise deletion is used so that only the 276 subjects with complete records are
used for further analysis.

> dat <- na.omit(dat);
> dim(dat);
[1] 276 20
> head(dat)
id time status trt age sex ascites hepato spiders edema bili chol

1 1 400 1 1 58.76523 1 1 1 1 1.0 14.5 261
2 2 4500 0 1 56.44627 1 0 1 1 0.0 1.1 302
3 3 1012 1 1 70.07255 0 0 0 0 0.5 1.4 176
4 4 1925 1 1 54.74059 1 0 1 1 0.5 1.8 244
5 5 1504 0 2 38.10541 1 0 1 1 0.0 3.4 279
7 7 1832 0 2 55.53457 1 0 1 0 0.0 1.0 322
albumin copper alk.phos ast trig platelet protime stage

1 2.60 156 1718.0 137.95 172 190 12.2 4
2 4.14 54 7394.8 113.52 88 221 10.6 3
3 3.48 210 516.0 96.10 55 151 12.0 4
4 2.54 64 6121.8 60.63 92 183 10.3 4
5 3.53 143 671.0 113.15 72 136 10.9 3
7 4.09 52 824.0 60.45 213 204 9.7 3

The data set now contains 20 variables. Except id, time, and status, there are a total of 17 predictors.

MIC starting with MPLE

To apply coxphMIC, one simply proceeds in the usual way of using coxph formula. By default, all
predictors are standardized; the approximated BIC (λ0 = ln(n0) is used with a = n0; and the MPLE is
used as the starting point.

> fit.mic <- coxphMIC(formula = Surv(time, status)~.-id, data = dat, CI.gamma = FALSE)
> names(fit.mic)
[1] "opt.global" "opt.local" "min.Q" "gamma" "beta" "VCOV.gamma"
[7] "se.gamma" "se.beta" "BIC" "result" "call"

The output of coxphMIC contains the minimized Qn value, the final estimates of γ and β, the variance-
covariance matrix and SE for γ̃, SE for nonzero β̃, BIC value for the final model, and a summary
table result. In order for the user to be able to inspect the convergence and other detailed info of the
optimization algorithms, we also output two objects opt.global and opt.local, which result from
the global (SANN by default) and local optimization (BFGS by default) algorithms.

The output fit.mic is a S3 object of coxphMIC class. Two generic functions, print and plot, are
available. The print function provides a summary table as below:
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> print(fit.mic)
beta0 gamma se.gamma z.stat p.value beta.MIC se.beta.MIC

trt -0.0622 0.0000 0.1071 0.0000 1.0000 0.0000 NA
age 0.3041 0.3309 0.1219 2.7138 0.0067 0.3309 0.1074
sex -0.1204 0.0000 0.1086 -0.0002 0.9998 0.0000 NA
ascites 0.0224 0.0000 0.0991 0.0000 1.0000 0.0000 NA
hepato 0.0128 0.0000 0.1259 0.0000 1.0000 0.0000 NA
spiders 0.0460 0.0000 0.1118 -0.0001 1.0000 0.0000 NA
edema 0.2733 0.2224 0.1066 2.0861 0.0370 0.2224 0.0939
bili 0.3681 0.3909 0.1142 3.4237 0.0006 0.3909 0.0890
chol 0.1155 0.0000 0.1181 0.0002 0.9999 0.0000 NA
albumin -0.2999 -0.2901 0.1248 -2.3239 0.0201 -0.2901 0.1103
copper 0.2198 0.2518 0.1050 2.3986 0.0165 0.2518 0.0868
alk.phos 0.0022 0.0000 0.0837 0.0000 1.0000 0.0000 NA
ast 0.2308 0.2484 0.1128 2.2023 0.0276 0.2484 0.1025
trig -0.0637 0.0000 0.0858 0.0000 1.0000 0.0000 NA
platelet 0.0840 0.0000 0.1129 0.0000 1.0000 0.0000 NA
protime 0.2344 0.2293 0.1046 2.1917 0.0284 0.2293 0.1022
stage 0.3881 0.3692 0.1476 2.5007 0.0124 0.3692 0.1243

The above results are presented as Table 4 in Su et al. (2016). In this example, MIC started with MPLE
given by the first column named beta0. Columns 2–5 present estimation of γ and the hypothesis
testing results on H0 : γj = 0. The estimates of β are given in the last two columns. It can be seen
that eight variables are selected in the final model, which are age, edema, bili, albumin, copper, ast,
protime, and stage.

The plot function provides error bar plots based on the MIC estimator of both β and the reparam-
eterized γ :

> plot(fit.mic, conf.level = 0.95)

as shown in Figure 2. Essentially, the 95% confidence intervals (CI) are plotted. One can modify the
confidence level with the conf.level option. To compare two plots conveniently, they are made with
the same range on the vertical y-axis. Note that CI is not available for any zero β j estimate in Panel (b),
which corresponds to an unselected variable. Those selected variables are highlighted in green color
in Panel.
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Figure 2: Error bar plots for MIC estimates of γ in (a) and β in (b). The 95% confidence intervals (CI)
are plotted. The selected variables are highlighted in green in Panel (b).
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Multiple starting points

Trying out multiple starting point is a common strategy in facing global optimization problems. We
may consider starting with the 0 vector, which corresponds to the null model. Having beta0 = 0 is
actually the default option if method.beta0 is neither ‘MPLE’ nor ‘ridge’ and a specific value for beta0
is not given, i.e., setting beta0 = NULL.

> fit0.mic <- coxphMIC(formula = Surv(time, status)~.-id, data = dat,
+ method = "BIC", scale.x = TRUE, method.beta0 = "zero")

> c(fit.mic$min.Q, fit0.mic$min.Q)
[1] 974.3340 978.1232

We can compare the minimized objective function min.Q to decide which fitting result is preferable
(i.e., the smaller one). The above result suggests that the fit with MPLE as starting point remains
preferable.

Concerning sparse estimation, the vectors with 0/+1/-1 values obtained by applying a threshold
to the MPLE |β̂| could be reasonable choices for the starting point too, i.e.,

β0j := sgn(β̂ j) I
{
|β̂ j| > c0

}
,

where c0 > 0 is a threshold close to 0. For example, setting c = 0.06 yields

> beta.MPLE <- fit.mic$result[, 1]
> beta0 <- sign(beta.MPLE)*sign(abs(beta.MPLE) > .06);
> cbind(beta.MPLE, beta0)

beta.MPLE beta0
[1,] -0.0622 -1
[2,] 0.3041 1
[3,] -0.1204 -1
[4,] 0.0224 0
[5,] 0.0128 0
[6,] 0.0460 0
[7,] 0.2733 1
[8,] 0.3681 1
[9,] 0.1155 1
[10,] -0.2999 -1
[11,] 0.2198 1
[12,] 0.0022 0
[13,] 0.2308 1
[14,] -0.0637 -1
[15,] 0.0840 1
[16,] 0.2344 1
[17,] 0.3881 1

In the above example, we applied a threshold of 0.06 to the MPLE to obtain a 0/+1/-1 valued vector.
To start with this user-supplied starting point, one proceeds as follows.

> fit1.mic <- coxphMIC(formula = Surv(time, status)~.-id, data = dat,
+ method = "BIC", scale.x = TRUE, method.beta0 = "user-supplied", beta0 = beta0)
> c(fit.mic$min.Q, fit0.mic$min.Q, fit1.mic$min.Q)
[1] 974.3340 978.1232 979.6826

Again, the fitting starting at MPLE seems the best in this example, by giving the smallest minimized
value.

Different a values

We may consider obtaining the regularization path with respect to a. According to asymptotic results,
a = O(n) is desirable and the recommended value is a = n0 the number of uncensored deaths, which
is n0 = 111 in the PBC data under study.

We try out a spread of a values that range from 10 to 200, as prescribed by the R object A0.

> set.seed(818)
> n <- NROW(dat); n0 <- sum(dat$status == 1)
> A0 <- 10:200
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> p <- NCOL(dat)-3
> BETA <- matrix(0, nrow = length(A0), ncol = p) # USE ARRAY
> for (j in 1:length(A0)){

su.fit <- coxphMIC(formula = Surv(time, status)~.-id, data = dat, a0 = A0[j],
method = "BIC", scale.x = TRUE)

BETA[j, ] <- su.fit$beta
}

> BETA <- as.data.frame(BETA)
> colnames(BETA) <- colnames(dat)[-(1:3)]
> row.names(BETA) <- A0
> head(BETA, n = 5)

trt age sex ascites hepato spiders edema bili chol albumin copper alk.phos
10 0 0.2983 0 0 0 0 0.2024 0.4135 0 -0.2799 0.2495 0
11 0 0.2987 0 0 0 0 0.2015 0.4159 0 -0.2799 0.2491 0
12 0 0.2992 0 0 0 0 0.2006 0.4181 0 -0.2799 0.2487 0
13 0 0.3000 0 0 0 0 0.1998 0.4200 0 -0.2801 0.2482 0
14 0 0.3009 0 0 0 0 0.1992 0.4216 0 -0.2804 0.2478 0

ast trig platelet protime stage
10 0.1937 0 0 0.1912 0.3583
11 0.1924 0 0 0.1895 0.3612
12 0.1914 0 0 0.1878 0.3642
13 0.1906 0 0 0.1862 0.3672
14 0.1901 0 0 0.1847 0.3701

A plot of the regularization path with respect to a, as shown in Figure 3, can be obtained as follows:

> par(mar = rep(5,4), mfrow = c(1,1))
> x.min <- min(A0); x.max <- max(A0)
> plot(x = c(x.min, x.max), y = c(min(BETA), max(BETA)), type = "n",
+ xlab = "a", cex.lab = 1.2, las = 1, ylab = expression(tilde(beta)))
> for (j in 1:ncol(BETA)){
+ lines(x = A0, y = BETA[,j], col = "red", lty = 1, lwd = 1)
+ points(x = A0, y = BETA[,j], col = "red", pch = j, cex = .3)
+ vname <- colnames(BETA)[j]
+ if (abs(BETA[nrow(BETA),j]) > .00001) {

# text(x.max+5, BETA[nrow(BETA),j], labels = vname, cex = 1, col = "blue")
+ mtext(text = vname, side = 4, line = 0.5, at = BETA[nrow(BETA),j], las = 1,
+ cex = 1, col = "blue", font = 1)
+ }
+ }
> abline(h = 0, col = "gray25", lwd = 2)
> abline(v = n0, col = "gray45", lwd = 1.5)
> text(n0+5, -0.2, expression(paste("a = ", n[0], " = ", 111, sep = "")), cex = 1.2,
+ col = "gray35")

From Figure 3, it can be seen that the regularization path is essentially flat with respect to a, especially
for relatively large a values. This indicates that treating a as a tuning parameter is unnecessary.

Summary

The paper presents the coxphMIC package to implement the MIC method for Cox proportional hazards
models. Compared to several other competitive methods, MIC has three main advantages by offering
a superior empirical performance for it aims to minimize BIC (albeit approximated) without reducing
the search space, great computational efficiency since it does not involve selection of any tuning
parameter, and a leeway to perform significance testing that is free of the post-selection inference.
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Update of the nlme Package to Allow a
Fixed Standard Deviation of the Residual
Error
by Simon H. Heisterkamp, Engelbertus van Willigen, Paul-Matthias Diderichsen, John Maringwa

Abstract The use of linear and non-linear mixed models in the life sciences and pharmacometrics
is common practice. Estimation of the parameters of models not involving a system of differential
equations is often done by the R or S-Plus software with the nonlinear mixed effects nlme package.
The estimated residual error may be used for diagnosis of the fitted model, but not whether the
model correctly describes the relation between response and included variables including the true
covariance structure. The latter is only true if the residual error is known in advance. Therefore, it
may be necessary or more appropriate to fix the residual error a priori instead of estimate its value.
This can be the case if one wants to include evidence from past studies or a theoretical derivation;
e.g., when using a binomial model. S-Plus has an option to fix this residual error to a constant, in
contrast to R. For convenience, the nlme package was customized to offer this option as well. In this
paper, we derived the log-likelihoods for the mixed models using a fixed residual error. By using some
well-known examples from mixed models, we demonstrated the equivalence of R and S-Plus with
respect to the estimates. The updated package has been accepted by the Comprehensive R Archive
Network (CRAN) team and will be available at the CRAN website.

Introduction

Life science and pharmacometric studies almost always involve an application of linear (Laird and
Ware, 1982) and non-linear (Davidian and Giltinan, 1995) mixed models. In pharmacometrics, the use
of nonlinear mixed effects modelling (NONMEM) software (Beal and Sheiner, 1988) for models with
systems of differential equations is predominant. Simpler pharmacokinetic (PK) or pharmadynamic
(PD) models may be based on curve fitting, for which software such as S-Plus and R are preferred.
Both programs use a similar mixed model package, respectively, nlme and nlme library, both of which
were originally developed by the authors Pinheiro and Bates (Pinheiro and Bates, 2001). In most cases,
the estimates of the parameters are the same at least to the third significant digit, although the same
model and data might occasionally lead to convergence problems (e.g., in R and not in S-Plus, and
vice versa), although larger differences may occur e.g., when performing an analysis of variance with
the function anova, as shown in 34.6. Typically, the estimated fixed and random coefficients have a
practical interpretation. The fixed coefficients usually refer to the parameters of interest for the study;
i.e. treatment, gender differences, half-life of the drug substance etc., while the random parameters are
interpreted as variation in the population represented by the study. The residual error of the fitted
model is an important indicator for the goodness of fit. Whether the goodness of fit is assessed by the
log-likelihood ratio, the Akaike information criterion (AIC) (Akaike, 1980) or the Bayesian information
criterion (BIC) (Schwartz, 1978) criteria, all criteria implicitly or explicitly use the residual error of the
fit.

For some applications, it is not appropriate to estimate the residual error, especially when it is
known in advance based on evidence from past studies, or a theoretically derived scaling parameter.
An example of the former are meta-analyses where the standard deviation of individual patient
outcomes in each study is reported. An example of the latter is a data transformation, implying
a fixed scaling parameter; e.g., the square root arcsine or logit transformation may be used as an
approximation of the binomial distribution.

As pointed out by an anonymous reviewer, other applications may be considered as well (Littel
et al., 2006). For example simulation of new observations from the fitted model while keeping sigma
constant or performing power calculations where commonly the expected error is assumed to be
known and kept constant. In both cases one must bear in mind that the simulated data will not cover
the whole range of possible outcomes, and in case of power calculation the actual power may be well
below the nominal power one aimed at.

The fitting functions from the nlme library in S-Plus allow the residual standard error to be fixed
and kept constant during the fitting process. This feature was not described in Pinheiro and Bates
(Pinheiro and Bates, 2001) but has been added as an argument to the respective control functions.
This feature was not available in the R package nlme but is included from version 3.1.123 (released
2016-01-17) onward.

We present this feature of the control functions used in linear mixed effects lme, non-linear mixed
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effects nlme, generalized linear least squares gls and generalized non-linear least squares gnls. Utilities
as summary, anova, print and intervals have been adapted as well.

From a coding point of view these changes were significant, as they required, among others, a
change of the likelihood functions in both the R and C source codes. This paper discusses the statistical
background in Section 2. In Section 3 the similarities and differences of the output of S-Plus version 8.2
are given for selected examples from Pinheiro and Bates (Pinheiro and Bates, 2001) as well as a case
study describing a model-based meta-analysis of outcomes in rheumatoid arthritis. In the last Section
proposals for change in nlme are put forward to address some of these similarities and differences.

The general linear and linear mixed model

The mixed model is an extension of the general linear model. The extension to a mixed model allows
other parameters of the general linear model to have a statistical normal distribution (Laird and Ware,
1982). These models are also known as multilevel models in different fields of application, as they
describe a hierarchy of levels in the data. For example, in a clinical trial, the first level might be the
trial centre, the second might be the patients within the trial centre, and the third might be the time
points at which the observations are acquired for an individual patient.

The reason for such a break-down of the random variation is that, within a centre, the variation
between subjects may be different than between centres; e.g., differences in environment, skills of the
operators, measurement devices, or the mixture of ethnicity of the patients. Variation within patients
is likely to be different and correlation of longitudinal observations within a patient may be present.

The expected outcome may be linear in the design parameters, including linear combinations
of polynomials and general additive models (Wood, 2006). Similarly parameters of the non-linear
models are allowed to be linear combinations (Davidian and Giltinan, 1995). General linear and mixed
linear models are fitted with gls and lme respectively. The corresponding non-linear models (e.g. a
Michaelis-Menten model curve) are fitted with gnls and nlme.

Mixed models have two sets of parameters. The fixed parameters are often of primary interest of
the study. For example, differences in treatment or gender, the half-life of a drug or factors for which
one wants to control like co-medication. The random parameters are used to describe variation within
respective levels of the study and are generally not controllable. For example, variation between and
within a population of patients. The random parameters might be dependent on some or all of the fixed
parameters or perhaps a function of the fitted values. Common statistical analysis seeks to estimate all
fixed and random parameters simultaneously using the same data without prior knowledge.

In the next subsections, we describe the mathematical model extending from the general linear to
the linear mixed and non-linear mixed model with knowledge of the residual error. The notation and
the terminology with regard to the number of hierarchical levels follows closely to that in Pinheiro and
Bates (Pinheiro and Bates, 2001). Throughout the paper we will use Greek characters to indicate the
true but unknown values of the model parameters, while the corresponding character superscripted
by ˆ denotes its estimate.

General linear model

The general linear model with only the basic random level of the residuals is presented here. A
comparison is made between the likelihood for the usual model with an estimated residual error and
the one with a fixed value of the latter. For further details of the derivation see (Pinheiro and Bates,
2001). If there were M groups (e.g. subjects) with ni possibly correlated observations each, the total

number of observations is: N =
M
∑
i

ni.The model is expressed for each group by the following formula:

yi = Xiβ + εi εi ∼ N
(

0, σ2Λi

)
(1)

Here, X is the ni × p design matrix and β is a column vector of length p. The matrix Λi, the covariance
matrix of each of the subjects, is a ni × ni positive-definite matrix is multiplied by σ2. Note that in
this model, we do not assume any between-groups variance; σ2 is the same for each of the M groups.
Assuming that the M groups are all statistically independent; e.g., subjects in a trial the total N × N
covariance matrix Λ is block-diagonal and each block represents the matrix Λi. If all observations
within a group were statistically independent as well Λi reduced to identity matrices I of the same
dimensions, and the model becomes an ordinary (multiple) regression model with covariance matrix I
multiplied by σ2 and can be solved by standard multiple regression software.

To solve model (1), one may reduce the model to an ordinary least squares model by transforming
both sides of the equation such that the covariance matrices are again diagonal and equal to σ2I. For
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details, see Appendix .1, where it is shown that formula (1) is equivalent to the least squares model
following expression:

y∗
i
= X∗

i
β + ε∗

i
ε∗

i
∼ N

(
0, σ2I

)
(2)

The superscript ∗ indicates the corresponding transformed vectors and matrices. This model appears
to be an ordinary least squares model, however, its solution depends on unknown parameters in Λi,
not explicitly in the equation. Thus, conditionally on the values of Λi, the fixed coefficients β of the
model—indicated by β̂—with the usual least squares equations are estimated, yielding:

β̂ =
[
(X∗)TX∗

]−1
(X∗)Ty∗

The matrices Λi usually depend on a set of only a few parameters with unknown values, which
we denote as λ. This means that the estimate β̂ depends on the unknown λ as well, but to simplify
the notation we write β̂ (λ), instead of β̂

(
λ̂
)
. Estimation of β̂ (λ), implies estimation of λ as well. The

method employed in the package nlme maximizes the profiled (minus) log-likelihood which includes
λ and β̂ (not β) (Pinheiro and Bates, 2001). The maximization is done for both β and λ in a stepwise
manner and at each step the residual variance is estimated as:

σ̂2 =

∥∥y∗ − X∗ β̂ (λ)
∥∥2

Np

The number Np is the degrees of freedom left for this residual variance. It equals N for the
maximum likelihood method of estimation and N − p for the restricted maximum likelihood and the
least squares method. The number p is the sum of the numbers of fixed parameters and the numbers
of parameters used in the function of the covariance matrix Λ. The estimate σ̂2 is plugged into all
other expressions; e.g., the standard errors of the estimates and the student tests to compare the fixed
parameters and the goodness of fit criteria.

The estimation of λ, β and σ is iterative because λ̂, β̂ and σ̂2 are interdependent. The (minus)
profiled log-likelihood of the general linear model equals :

llik
(
λ
∣∣y, σ̂, β̂

)
=

Np

2

[
log
(

Np
)
− log (2π)− 1− log

(∥∥y∗ − X∗ β̂ (λ)
∥∥2
)]

(3)

+ 1
2

M

∑
i=1

log |Λi|

However, if the residual variance is fixed, the profiled likelihood will be different. To see this, one
has to derive the original log likelihood function without substitution of σ̂2. This profiled likelihood
now depends on σ2 instead of σ̂2, as the former is a fixed scalar which does not enter the equations.

llik
(
λ
∣∣y, σ, β̂

)
=

Np

2

[
− log (2π)− log

(
σ2
)]
−
∥∥y∗ − X∗ β̂ (λ)

∥∥2

2σ2 (4)

+ 1
2

M

∑
i=1

log |Λi|

Note that if σ̂2 is substituted in (4), the expression is exactly the same as (3). The striking difference
between both profiled likelihoods is that, for known σ, the function (4) is linear in the residual sum of
squares, while for unknown σ, (3) is linear in the log of the residual sum of squares. The estimated
parameters λ̂ and β̂ will change accordingly. If the fixed scalar σ and the estimated σ̂ are close to each
other, the differences between the estimates will be quite small. Least squares estimation uses (4) with
the appropriate Np. Neither λ̂ or β̂ changes compared to maximum likelihood, although N rather
than Np is used in (4), as the first term in (4) is constant relative to λ. In contrast, when using the

restricted maximum likelihood, the profiled likelihood is modified by adding − 1
2

M
∑

i=1
log
∥∥∥(X∗)TX∗

∥∥∥ to

(4), which will change the dependency from λ and the parameters λ̂ and β̂ as well. For general and
mixed linear models, the nlme package uses, by default, the restricted maximum likelihood method.

If the co-variance matrix only depends on the variance σ2 because Λ is a constant matrix, the
equations (3) and (4) will attain their maximum at the same values of β. Thus, the estimates of the
fixed parameters β will be identical regardless of whether σ is kept fixed or estimated and only the
standard errors of the fixed coefficients will change.
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The linear mixed model

The extension of the general linear model to a mixed linear model complicates the likelihood and
subsequently, the estimation of its parameters. The model is known as the Laird-Ware model (Laird
and Ware, 1982), but the original proposal for solving the equations is credited to Harville (Harville,
1977). If M independent groups and Q hierarchical levels are above the basic null level, a general
mixed model complicates the presentation of its expression. As an illustration, a linear mixed model
with one hierarchical random level only is presented here:

yi = Xiβ + Zibi + εi bi ∼ N (0, Ψ) εi ∼ N
(

0, σ2Λi

)
(5)

The matrices Xi and Zi are the design matrices for p fixed parameters and q1 random effects, respec-
tively. The fixed parameters and random effects are vectors of length p and q1 respectively, while y
is a column vector of length ni. A model with Q random levels would have [qj, j = 1, . . . , Q random
effects in total. It is assumed that bi and εi are independently normally distributed with a mean of zero.
The covariance matrix between each of the separate observations - sometimes called the basic random
level - is similar to the one in (1), allowing different dependencies within this basic random level;
e.g., correlations over time of observations grouped by subjects. The covariance matrix Ψ is the same
for all groups. The latter may depend on a small number of parameters θ similar to the covariance
matrices Λi, which depend on parameters λ. The parameters θ are called random coefficients. In (5)
the expectation of bi is assumed to be zero. The latter presents no restriction, as the expectations can be
part of the fixed model parameters βi. The expression (5) is redundant in the sense that the matrices Ψ
and Λi could have been combined, but the previous formulation is mathematically more convenient.
Likewise, in equation (2), an appropriate transformation of both sides of the expression will change
the model into a standard linear mixed model with independent errors conditionally on the unknown
parameters λ and θ.

A particularity of model (5) is that the vectors bi are neither observed nor are parameters of the
model itself. In analogy to Bayesian modelling, the effects bi are integrated out of the formula (5).
The resulting likelihood depends only on β, σ2, θ, and λ. The mathematical difficulty is that the
random parameters θ are unknown and moreover the integration is multidimensional. Once the
random parameters including σ2 are estimated, these are plugged into the model to estimate the fixed
parameters, similar to the general linear model. This approach is also known as empirical Bayesian
estimation of a mixed model. In contrast to other approaches used in PROC MIXED and PROC
GLIMMIX from SAS, the algorithm in nlme does not perform the integration numerically. In contrast,
Pinheiro uses an analytical approach and integrates ’manually’, which results in a solution exclusively
in terms of ordinary matrix algebra, as in the general linear model (Pinheiro and Bates, 2001). In theory,
this algorithm should be faster and more stable than that of PROC MIXED or PROC GLIMMIX from
statistical analysis software (SAS). Stability in the sense of convergence depends on the model itself
and is changeable. The drawback of the algorithm used by Pinheiro is that its derivation depends
completely on the use of normal distributions, while the SAS algorithm can more easily be adapted for
other distributions (such as binomial or Poisson). Both of the SAS procedures allow a full Bayesian
solution by Monte Carlo Markov Chain (MCMC). Although bi are not formally part of the model,
these may be estimated and are called the random residuals of the model for grouped observations
(e.g., subjects) and might be used to detect outlying groups.

In the following example, the (minus) log-likelihood of the standard mixed model for one hierar-
chical level (Q = 1) is compared to its equivalent of the model with known σ. For clarity of notation,
the superscript ∗ is excluded from all design matrices, but one must bear in mind that the latter
matrices now depend on the random parameters θ̂ as well as λ̂. Thus changing the estimates of the
latter parameters will change all the others as well. Similar to the general linear model, the use of the
normal or restricted maximum likelihood will change the parameters as well, but for mixed models
also the fixed parameters. As noted in Pinheiro and Bates (Pinheiro and Bates, 2001), the profiled
(minus) log-likelihood is formulated as:

llik (λ, θ |y, σ ) =
Np
2

[
log
(

Np
)
− log (2π)− 1−

M
∑

i=1
log
(∥∥∥ci

−1

∥∥∥2
)]

+
M
∑

i=1
log
∣∣∣ ∆

Ri

∣∣∣
The vectors ci

−1
and the matrices Ri are the result of a so-called QR decomposition of the design

matrices Xi. See Appendix .2 for details of the properties of QR decomposition. The matrices ∆ are
relative precision factors, which may actually be a vector of scalars. In Pinheiro and Bates (Pinheiro
and Bates, 2001) the precision factors are defined as any matrix ∆ that satisfies

σ2 Ψ−1 = ∆T∆ (6)
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Analogous to (4) the profiled (minus) log-likelihood can be expressed as:

llik (λ, θ |y, σ ) =
Np

2

[
− log (2π)− log

(
σ2
)]
−

M
∑

i=1

∥∥∥ci
−1

∥∥∥2

2σ2 +
M

∑
i=1

log
∣∣∣∣ ∆
Ri

∣∣∣∣ (7)

The profiled log-likelihood with fixed σ depends linearly on a term that is similar to the residual
sum of squares, while the equation of the usual mixed model depends on the log of the latter
quantity. Again, Np with the maximum likelihood of estimation equals N, while for restricted
maximum likelihood (REML), Np = N − p. In case of REML-estimation equation (7) is augmented

by: log (|R00 |) = 0.5 log
(∣∣∣∣ M

∑
i=1

XT
i Σ−1

i Xi

∣∣∣∣) where the matrix R00 is part of the QR decomposition.

Maximizing the augmented equation causes different estimates of the random parameters especially
as compared to those from the maximum likelihood method (ML). The method of estimation by lme is,
by default, the restricted maximum likelihood.

The non-linear mixed model

The non-linear mixed model is not only more complicated, its model structure is also different. In
a linear model, the expectation of response is directly modelled as a linear combination of the row
vectors of the design matrix X. The fixed coefficients of the model define these linear combinations,
while the random coefficients weight the latter for each group of the hierarchical level. By contrast,
in the non-linear models, the expectation of the response is a non-linear function and each of its
arguments is given by a mixed model. The non-linear model is described in detail by Davidian and
Giltinan (Davidian and Giltinan, 1995) and its algorithms in Bates and Chambers (Bates and Chambers,
1988), (Bates and Watts, 1992), (Lindstrom and Bates, 1990) and Pinheiro and Bates (Pinheiro and
Bates, 2001). The inclusion of the random parameters considerably complicates maximizing the
log likelihood. In this section, the model and the profiled likelihood are outlined. For details and
alternative algorithms for the same model, see Pinheiro and Bates (Pinheiro and Bates, 2001). As a
point of departure, a single hierarchical level, repeated measures, non-linear model is explained next.
For each of i = 1, . . . , M groups and j = 1, . . . , nij observations within a group, we have:

yij = f
(

φij, vij

)
+ εij εij ∼ N

(
0, σ2I

)
φij = Aijβ + Bijbi bi ∼ N (0, Ψ)

Again, the vector β are fixed parameters and the vectors bi are the random effects. The matrices Aij and
Bij play a similar role as Xi and Zi, respectively, in (5). The symbol f stands for a continuous non-linear
differentiable function of one dimension, and vij is a vector of covariates. The model assumes that for
each group (e.g., subjects), the arguments of the function may be different but its form is the same for
all groups. The model can be straightforwardly extended for more levels of the hierarchy, or even by
omitting the random terms as in gnls.

The nlme algorithm consists of alternating between a penalized non-linear least squares step
(PNLS) and the linear mixed model step (NLM), which is similar and explained in the linear mixed
model section. Therefore, only the consequences of fixing σ in the PNLS step have to be considered.
The PNLS step minimizes:

M

∑
i=1

[
‖yi − fi (β, bi)‖2 + ‖∆ bi‖2

]
(8)

The minimum is found by keeping in each step the precision factor (6) and the random coefficients bi
fixed. A convenient technique is to transform (8) into an ordinary least squares problem by augmenting
the response for each group with a vector of 0’s and the vector of function values by the column vector
∆ bi. The sum of squares (8) is then identical to

M
∑

i=1

[∥∥ỹi − f̃i (β, bi)
∥∥2
]

with ỹi and f̃i are the augmented vectors. Thus in the PNLS step, the sum of

squares is conditional on the value of σ and either estimation in the mixed model step or substitution
with a prior known value will yield the same solution. Only the likelihood function in the NLM step is
affected by the choice of substitution of a known σ or one that is estimated. For the non-linear mixed
model algorithm within each PNLS step, the same correction can be used as in the linear mixed model.
A strong point of the algorithm devised by Pinheiro for the (non) linear mixed model is the strategy of
getting solutions, not only by the classical root finding of the derivatives of the likelihood, but also by
means of the expectation-maximization (EM)-algorithm. The latter does not require any derivatives.
The EM algorithm is powerful because starting values of the parameters may be far from optimal
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Model type nlme Function Data set Model name Model function Reference

Generalized linear gls Orthodont fm1Orth.gls p. 251

Non-linear gnls Dialyzer fm1Dial.gnls SSasympOff p. 402

Mixed linear lme Orthodont fm1Orth.lme p. 147
lme Orthodont fm3Orth.lme p. 177
lme Wafer fm1Wafer.lme p. 172

Mixed non-linear nlme Theophylline fm1Theo.nlme SSfol p. 363, 516
nlme Theophylline fm2Theo.nlme SSfol p. 364, 516
nlme Theophylline fm3Theo.nlme SSfol p. 365, 516
nlme Orange fm1Oran.nlme SSlogis p. 358, 519

Table 1: Examples used for comparison of R and S-Plus output with and without fixed σ. References
are to Pinheiro and Bates (2001).

values. As on the other hand convergence slows when actually approaching the optimal values, the
root finding takes over. Again, this property makes the algorithm quite robust in theory, though
in practice, different starting values may cause differences in estimated values. Another difference
between the algorithm of R and SAS is that in the former, the likelihood is re-parameterized using
log (σ) rather than in σ, thus preventing the algorithm to crash if σ̂ is close to zero. This problem is
encountered frequently for over-parameterized models when using SAS. The nlme package contains
a function gnls for the general non-linear model analogous to the general linear model function gls .
It uses basically the same algorithm as nlme by stripping the random component.

Implementation and examples

From the viewpoint of the user, the only change in a function call of gls, is an extra argument in the
control functions glsControl, gnlsControl, lmeControl and nlmeControl respectively. The option is
implemented exactly as the corresponding control functions in S-Plus; for example, using a simple
model and data from the S-Plus and R libraries. The output object of the functions lme, nlme, gls, and
gnls contained a logical flag as component to signal whether σ is either fixed or estimated. The flag is
used in the utility functions print, summary, anova, and intervals. Table 1 gives an overview of the
examples used to test the new feature. The former are taken from Pinheiro and Bates (Pinheiro and
Bates, 2001). All examples ran both in R and S-Plus.

In the next subsections the output from package nlme of R and library nlme of S-Plus are compared.
Striking differences are given in the discussion. All scripts, output and difference files- in HTML
format- are made available to the editors of the journal. Not all models converged. They were either in
both R and S-Plus or in R or S-Plus only. The package nlme has a choice for two different optimizing
algorithms but only the default has been used as this is the only one available in S-Plus. Thus, non-
convergence in R might be caused by the use of the default algorithm. However, this has not been
tested systematically. The same starting values have been used in both R and S-Plus, except in the
examples with the self-starting functions in nlme. For the latter, starting values had to be supplied.
The same examples for estimated σ have been run both for the original nlme version and the updated
version. As the output was completely the same, eventual differences between S-Plus and R in case
of estimated σ cannot be attributed to the update of the package. We have chosen to compare the
R-output and the actual output of S-Plus 8.2 rather than the published one (Pinheiro and Bates, 2001),
as in some cases, differences in the case of estimated σ were found between the latter and the actual
version of S-Plus 8.2. At the time of its publication, fixed σ was not yet implemented.

General linear and general non-linear models

As an example, the code for the general linear and general non-linear model are given below for fixed
σ.

fm1Orth.gls <- gls( distance ~ Sex * I( age - 11), Orthodont)

While the same model with a fixed σ = 2 is declared as:

fm1Orth_fix.gls <- gls( distance ~ Sex * I( age - 11), Orthodont,
control = glsControl(sigma = 2)).

The default estimates σ and the argument sigma to glsControl or gnlsControl (below) can be omitted
or set to 0 or NULL. For both estimated and fixed σ, the results from the R and S-Plus estimates of the
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coefficients were identical to the third decimal using either the estimation method of the maximum
likelihood (ML) or the restricted maximum likelihood method (REML). However, for both the default
of estimated σ and fixed σ, the equivalence of the correlation structure and the confidence limits of the
coefficients might be limited only to the second decimal. An example of the general non-linear model
is scripted as:

fm1Dial.gnls <- gnls( rate ~ SSasympOff( pressure, Asym, lrc, c0), Dialyzer,
params = list( Asym + lrc ~ QB, c0 ~ 1),
start = c(53.6, 8.6, 0.51, -0.26, 0.225),
control = gnlsControl(sigma = NULL))

For fixed σ the argument sigma to the gnlsControl function should be changed to 1. The function
gnls can only produce a least squares solution and rarely uses the C-library. Note that although the
function SSasympOff is a self-starting function, starting values had to be supplied in R, but not in
S-Plus.

Mixed linear models

The gls example from above was also fitted as a mixed model with the appropriate changes in the
script:

fm1Orth.lme <- lme( distance ~ I(age-11), Orthodont)

and

fm1Orth_fix.lme <- lme( distance ~ I(age-11), Orthodont,
control = lmeControl(sigma = 1))

Similar results as for the gls model were found for the ML method. However, both in R and S-Plus
the REML estimation method for both estimated and fixed σ stopped due to a convergence error. The
latter is remarkable as the estimates for the REML method are given in Pinheiro and Bates (Pinheiro
and Bates, 2001)). The third example uses a covariance structure and is given as:

fm3Orth.lme <- lme( distance ~ Sex * I( age - 11), Orthodont,
weights = varIdent(form = ~ 1 | Sex))

While the same model with a fixed σ = 2 is declared as:

fm3Orth_fix.lme <- lme( distance ~ Sex * I( age - 11), Orthodont,
weights = varIdent(form = ~ 1 | Sex),
control = list(sigma = 2)).

The ML method of estimation for both estimated and fixed σ were equal in the third digit, with the
exception of the random effects and the interval estimates, in both cases of estimated and fixed σ.
Differences were sometimes found to the second decimal. The same applies to the method of REML
estimation. Finally, the corresponding R code for the linear mixed model example:

fm1Wafer.lme <- lme( current ~ voltage + I( voltage^2 ), Wafer,
random = list( Wafer = pdDiag( ~ voltage + I( voltage^2 )),
Site = pdDiag( ~ voltage + I( voltage^2 )) ),
control = lmeControl( sigma = NULL))

For fixed σ, one has to substitute NULL by 1 in the argument sigma of lmeControl. Similar results are
found in the two previous examples. But notable differences in the confidence limits of the random
effects were seen when using the REML method with fixed σ, although the point estimates of the
coefficients themselves were the same. For the interpretation of the correlation between the random
effects, this might have consequences, as in R the latter did not contain 0 in the interval as opposed to
the result from S-Plus 8.2. The latter could be caused by the difference in the degrees of freedom of the
t-distribution, as our implementation of these might have changed if σ is kept fixed.

Non-linear mixed models

The nlme function for solving a non-linear problem defaults to the ML method as opposed to lme.
During testing it was discovered that the option of the restricted maximum produced exactly the same
estimates as for ML, with and without estimation of σ. In our opinion, this is not correct, but as far as
we know, has never been reported. The example codes as:
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fm1Theo.nlme<-nlme(conc ~ SSfol(Dose, Time, lKe, lKa, lCl),
Theoph, fixed = lKe + lKa + lCl ~ 1,
start=c( -2.4, 0.45, -3.2),
control = nlmeControl( sigma = NULL))

Fitting σ requires the same change as in the above examples. The ML estimates using estimated σ
were the same for R and S-Plus to the third digit. However, for fixed σ the example in S-Plus did not
converge, and no comparison can be made. For the REML method, neither of the estimations (free or
fixed) converged. R required starting values, even if SSfol was supposed to be self-starting. The next
example from Table 1 is an extension of the above and the code is:

fm2Theo.nlme<-nlme(conc ~ SSfol(Dose, Time, lKe, lKa, lCl),
Theoph, fixed = lKe + lKa + lCl ~ 1,
start=c( -2.4, 0.45, -3.2),
control = nlmeControl( sigma = NULL),
random = pdDiag( lKe + lKa + lCl ~ 1))

The estimates of the fixed coefficients are equal to the second or third place in all cases. In contrast
differences between the random parameters for ML, REML, and estimated and fixed σ are larger. Also,
the approximate variance-covariance matrix of the random effects is nearly singular, which causes the
95% lower and upper limits for lKe to be near infinity. In S-Plus, the covariance matrix of the REML
random estimates was not estimated at all due to singularity of the Hessian matrix. This may indicate
that the parametrization of model is not correct, probably for parameter lKe. The next example uses
the same data set but omits lKe from the random parameter list:

fm2Theo.nlme<-nlme(conc ~ SSfol(Dose, Time, lKe, lKa, lCl),
Theoph, fixed = lKe + lKa + lCl ~ 1,
start=c( -2.4, 0.45, -3.2),
control = nlmeControl( sigma = NULL),
random = pdDiag( lKa + lCl ~ 1))

Now the outcomes of all the models are in better agreement, and the covariance of the random effects
is available for S-Plus. There are still differences from the third digit onwards for the random effects
confidence limits, especially for the REML method.

Note that for all of the above models we have changed the degrees of freedom of the log likelihood
in case σ is held fixed, which coincides with the output of S-Plus. This may cause differences in the
confidence limits especially when the degrees of freedom of the t-distribution is small.

A case study illustrating the application of a non-linear mixed model with
a binomial response

A summary clinical outcome dataset including clinical outcome data from 14 randomized controlled
trials of 4 drugs was extracted from the Quantify RA clinical database developed by Quantitative
Solutions (drug and trial names blinded). Three endpoints were included describing the proportion
of patients with ACR20, ACR50, and ACR70 responses. These endpoints are based on the American
College of Rheumatology (ACR) criteria used to assess improvement in tender or swollen joint counts
and improvement in three of the following five parameters: acute phase reactant (such as sedimentation
rate), patient and physician assessment, pain scale, and a disability/functional questionnaire. For
ACR20 response, a 20 percent improvement in tender or swollen joint counts as well as 20 percent
improvement in three of the other five criteria is required. Similarly, for ACR50 and ACR70, a 50
and 70 percent improvement is required, respectively. Outcomes were available up to 6 months (24
weeks) after the start of treatment with one of the drugs, up to 12 weeks with the two other drugs,
while the last drug was only observed in a 4-week trial. The analysis dataset was analyzed using
two non-linear regression models and a mixed effects model with random effects on the level of trial
assuming binomial distributed data. The probability of ACR20/50/70 response is confined to the
interval between zero and one. In this example, the logit transformation was used as a link function
between the probability of response p and a hidden model variable X:

p =
eX

1 + eX
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Parameter Estimate (%RSE) Estimate (%RSE)
Estimated σ Fixed σ = 1

E0 -1.06 (10%) -1.11 (4%)
αACR50 -1.05 (5%) -1.07 (3%)
αACR70 -1.97 (3%) -2.00 (2%)
EMAX 2.02 (10%) 2.06 (4%)

log ED50,drug1 2.22 (63%) 2.14 (31%)
log ED50,drug2 1.75 (20%) 1.68 (9%)
log ED50,drug3 4.11 (16%) 4.04 (8%)
log ED50,drug4 1.22 (36%) 1.22 (15%)

Res. error 1.924 1 (fixed)

Table 2: Parameter estimates with uncertainty based on a gnls model with constant placebo.
Results for estimated and fixed σ in left and right column respectively.

A convenient property of the logit transformation is that the log odds ratio (OR) of two probabilities
translates into the difference between the corresponding hidden model variables:

log OR = log

( p1
1−p1

p2
1−p2

)
= X1 − X2

If X is described by a linear model, correction for any predictor can be done by subtraction. Specifically,
if the probability of response is modelled as the inverse logit of the sum of a placebo(E0) and a drug
effect(g), the log OR of the treated versus the untreated response is simply given by function g; (see
11). The logit transformed observed proportion of ACR20/50/70 responders was described as the
sum of an unstructured placebo response (E0,it) and drug-dependent drug effects described by EMAX
models with common EMAX and drug-specific ED50 estimates.

Nresponse,kijt ∼ binomial
(

P(response)kijt, Nkijt

)
(9)

P(response)kijt = logit−1
(

E0,it + gk

(
Drugij, Doseij

)
+ αk

)
(10)

gk

(
Drugij, Doseij

)
=

EMAX · Doseij

ED50,Drugij
+ Doseij

(11)

Where Nresponse,kijt is the number of subjects in treatment arm j of trial i with ACRk response at the tth
visit out of Nkijt subjects. The coefficient αk estimated for ACR50 and ACR70 describes the constant
log OR of these endpoints relative to ACR20. Three variations of the model described in (11) were
investigated using fixed and estimated residual standard error. Model 1 was a gnls model including a
constant placebo model across trials and visits; i.e. E0,it = E0. Model 2 was a gnls model including
an unstructured placebo model estimating a non-parametric placebo response at each visit in each
trial; E0,it as shown in (11). Model 3 was a non-linear mixed effects model including an unstructured
placebo model with uncorrelated random effects on EMAX and αk on the level of trial. All three models
included a compound symmetry model correlating outcomes from different endpoints and visits
within a trial. An overview of the parameter estimates for the three models are in Tables 2 , 3, and 4
respectively.

It is interesting to note that comparison with anova showed significant differences between free
estimated and fixed σ for models GNLS models 1 and 2, whereas the same comparison for the nlme
model 3, did not show a significant difference. The (lack of) differences appeared for the criteria AIC
and BIC, as well for the likelihood ratio test. For the former criteria the usual difference of 2 was
used as a threshold. See Tables 5, 6 and 7. Comparison between models 1, 2 and 3 are not shown but
from the tables it is clear that these models have an increasingly lower AIC and BIC, and better log
likelihood ratio’s either for free or fixed σ.

Conclusions and discussion

The estimates of the fixed coefficients of S-Plus and R are often identical to three significant digits,
except in the case of over-parameterized models, which may cause non-convergence and inaccurate
estimation of the covariance matrix of the random parameters. Differences might occur even for the
default model with estimation of σ. For the non-linear mixed models differences between R and
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Parameter Estimate (%RSE) Estimate (%RSE)
Estimated σ Fixed σ = 1

Mean∗ E0 -1.16 -1.22
αACR50 -1.08 (3%) -1.09 (3%)
αACR70 -2.05 (2%) -2.06 (2%)
EMAX 2.24 (8%) 2.26 (5%)

log ED50,drug1 2.87 (69%) 2.80 (50%)
log ED50,drug2 1.94 (13%) 1.92 (9%)
log ED50,drug3 4.47 (21%) 4.42 (15%)
log ED50,drug4 1.66 (28%) 1.44 (22%)

Res. error 1.313 1 (fixed)
E0
∗ : Mean of 34 unstructured placebo parameters

Table 3: Parameter estimates with uncertainty based on a gnls model with unstructured placebo.
Results for estimated and fixed σ in left and right column respectively.

Parameter Estimate (%RSE) Estimate (%RSE)
Estimated σ Fixed σ = 1

Mean∗ E0 -1.28 -1.26
αACR50 -1.08 (8%) -1.08 (8%)
αACR70 -2.08 (5%) -2.08 (5%)
EMAX 2.34 (11%) 2.33 (11%)

log ED50,drug1 2.97 (50%) 2.99 (54%)
log ED50,drug2 1.78 (10%) 1.76 (11%)
log ED50,drug3 4.66 (16%) 4.67 (17%)
log ED50,drug4 1.59 (33%) 1.71 (32%)

sd(αACR50) 0.260 0.257
sd(αACR70) 0.351 0.344
sd(EMAX) 0.761 0.745

Res. error 0.938 1 (fixed)
E0
∗ : Mean of 34 unstructured placebo parameters

Table 4: Parameter estimates with uncertainty based on a nlme model with unstructured placebo.
Results for estimated and fixed σ in left and right column respectively.

Model df AIC BIC logLik L.Ratio p-value

model 1 free σ 10 -740.2 -700.1 380.1
model 1 fix σ 9 -271.1 -235.0 144.5 471.2 <.0001

Table 5: Analysis of variance table for comparison of gnls model 1 between free and fixed σ

Model df AIC BIC logLik L.Ratio p-value

model 2 free σ 43 -1100.5 -928.0 593.3
model 2 fix σ 42 -1076.8 -908.4 580.4 25.7 <.0001

Table 6: Analysis of variance table for comparison of gnls model 2 between free and fixed σ

Model df AIC BIC logLik L.Ratio p-value

model 3 free σ 46 -1215.8 -1031.3 653.9
model 3 fix σ 45 -1215.8 -1035.3 652.9 2.0 0.16

Table 7: Analysis of variance table for comparison of nlme model 3 between free and fixed σ
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S-Plus were more likely to occur when using REML estimation. Sometimes REML estimation was not
possible in either R or S-Plus due to lack of degrees of freedom.

There are some differences between R and S-Plus in the code of the functions. As the code of the
C-functions in S-Plus is not public, differences in the code itself could not be checked. The R functions,
in particular the interaction between the R-code and the C-functions were fragile in the sense that
input was often changed within a function and then used as output. Thus, a small change in code in
one part could have unexpected results in other parts of the output.

The code of the nlme package is far from modular; e.g., parts of both user-accessible and hidden
functions of lme were used in nlme or gls causing lack of transparency. For example, within the
function print.summary.gls, at some point the function print.summary.lme was used, which caused
difficulties with passing the right degrees of freedom of the likelihood. Different definitions of the
likelihood functions coded in C were used in the R-code of the same parent functions, amongst others
in lme. Another critical point is that utilities as print, summary or print.summary functions tend to
recalculate again some statistics such as the likelihood, AIC or BIC. For these reasons, debugging has
been time consuming and given the complexity of the nlme package the number of tests provided by
CRAN is simply too small. Thus, the warning ’the use of free software comes with no guarantee’ in
the code of each of the functions must be taken in earnest.

A general drawback of the algorithm used in nlme is that it is completely geared to the use of
the normal distribution. The latter makes it difficult - though not impossible - to adapt the algorithm
for other distributions such as binomial or Poisson. The CRAN-library already contains the package
nlme4 allowing non-normal distributions, but at this time lacks the feature of the use of correlated
observations. Perhaps a future update will be available that contains on option for fixing the scale
parameter σ.

In the nlme library of S-Plus the degrees of freedom for residual error and consequently, the t-tests,
are not properly adapted for fixed σ. However, in the function anova, the degrees of freedom has been
changed in S-Plus to allow comparison between models with and without fixed σ. This correction
affects both AIC an BIC. For example, AIC will always decrease by 2 while BIC will decrease by
2× log (N). Apart from that, the value of the profiled log likelihood for the REML estimation should
change, because the degrees of freedom is part of the latter function. For reasons of compatibility with
S-Plus, the changes in the degrees of freedom in the t-tests have not be implemented in nlme of R.

When comparing the output of nlme between R and S-Plus, a flaw became apparent in the output
of anova if used with a single object. The F-tests for the (grouped) parameters differed between both
programs. The F-values from R can be made equivalent to those from S-Plus by multiplying the
F-values by N

N−p . The same applies to the standard errors of the fixed estimates. There the factor

should be
√

N
N−p . We believe that the output from S-Plus is correct considering that a t-test with one

degree of freedom is equivalent to an F-test with one degree in the numerator in which case, the latter
is equivalent to the square of the former. The finding that, in the function nlme in R, that there is no
difference between ML and REML estimation is remarkable and may be due to an error in the code or
to a compelling reason by the maintainer of the package.

From a statistical point of view, a warning should be issued on the use of the likelihood ratio test
when comparing two models; one with a fixed and one with an estimated σ. In fact, the usual F-test is
not appropriate. The reason is that the log of both numerator and denominator have an approximate
Chi-square distribution up to the log of the true value of σ, which is unknown if σ is estimated. The
difference in the log-ratio between the known and estimated value of σ does not go away, which
causes a bias and invalidates the F-distribution of the log ratio. A safe way to test whether the a priori
value is right, is to use AIC or BIC using the recommendations by Raftery (Raftery, 1980). As Raftery
states, difference between AICs of 2 or less is ’hardly worth mentioning’. As previously mentioned,
an increase of one degree of freedom of the model already causes a decrease of 2 in the AIC, even if
the likelihood does not change. One could than be tempted to prefer the model with more degrees of
freedom although Raftery seems not to recommend this. The influence on the BIC is even stronger, as
its decrease will be at least 2× log (σ). With the developed patches, we have successfully back-ported
the ability to fix the residual standard error in the nlme package from S-Plus to R. Following review,
the patches have been accepted into the official version nlme (available through CRAN). This will
allow users to correctly estimate models where the residual standard error is known, using standard
and publicly available open-source tools.
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De-correlation of the normal model

Starting from a normal model with correlated errors, it is shown below that this model can be converted
into a model with independent errors and equal variance. Let Λ be a positive-definitive matrix, then

a non-singular square root of that matrix exists, Λ =
(

Λ1/2
)T

Λ1/2 . Similarly, for the inverse of the
matrix. The original response vector y and the errors ε are now both multiplied by the inverse of

the square root matrix, and are y∗ =
(

Λ−1/2
)T

y and ε∗ =
(

Λ−1/2
)T

ε respectively. The transformed

design matrix is X∗ =
(

Λ−1/2
)T

X. The covariance matrix of the transformed observations is then

V (ε∗) = σ2
(

Λ−1/2
)T

ΛΛ−1/2 = σ2I, and the fixed coefficients β of the model can now be solved with
the usual least squares method.

QR decomposition

A N × p matrix X of rank p may be decomposed in an orthogonal matrix Q of dimension n× n and a
p× p upper triangular matrix R. More specifically

X = Q
[

R
0

]
= QtR

The matrix Qt is the truncated matrix Q consisting of the first p columns of the latter matrix. An
orthogonal matrix is defined as (Qt)

TQt = I.The decomposition is performed in the model (5) for all
matrices to simplify the actual numerical computations as well as the representation of the estimation
equations. The reason is that multiplication of a vector y augmented with p 0’s conserves the Euclidian

norm of that vector. So
∥∥∥(Qt)

Ty
∥∥∥2

= ‖y‖2. Similarly, the vector of residuals of a regression model

‖y− βX‖2 is conserved and equals ‖c1 −R β‖2 + ‖c2‖2. The vector cT = (c1, c2) with length p and
n − p and equals (Qt)

Ty. Maximizing the corresponding log likelihood yields the least squares
estimator β̂ = R−1c1 and the residual sum of squares equals ‖c2‖2.
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EMSaov: An R Package for the Analysis
of Variance with the Expected Mean
Squares and its Shiny Application
by Hye-Min Choe, Mijeong Kim, and Eun-Kyung Lee

Abstract EMSaov is a new R package that we developed to provide users with an analysis of variance
table including the expected mean squares (EMS) for various types of experimental design. It is not
easy to find the appropriate test, particularly the denominator for the F statistic that depends on the
EMS, when some variables exhibit random effects or when we use a special experimental design such
as nested design, repeated measures design, or split-plot design. With EMSaov, a user can easily
find the F statistic denominator and can determine how to analyze the data when using a special
experimental design. We also develop a web application with a GUI interface using the shiny package
in R . We expect that our application can contribute to the efficient and easy analysis of experimental
data.

Introduction

The analysis of variance (ANOVA) is a well-known method that can be used to analyze data obtained
with different experimental designs. Its use mainly depends on the primary design of the experiment,
and the main testing method for the analysis of variance is the F test. If all factors are fixed effects
and there is no specific design of the experiment, that is, the experimental design is a factorial design,
then the usual way to calculate the F statistic is to use the mean squares of the corresponding source
of variation as the numerator and the mean squares of errors as the denominator. However, if some
variables exhibit random effects or some variables are nested in the other variables, it is not easy to find
the appropriate F statistic. This depends on the expected mean square (EMS), and the denominator of
the F statistic is determined by the EMS of the corresponding source of variation. Therefore, we first
have to calculate the expected mean squares for the ANOVA and then find the exact F statistic for the
test using the EMS, especially when data comes from a special experimental design. Even though the
EMS is very important to finding the exact F statistic in the ANOVA, few tools show this EMS and
most of the tools that have been developed provide only the result of the ANOVA without any further
explanation. Therefore, users cannot figure out how to calculate the test statistics and only know the
final result.

Several packages can be used to handle models with various experimental designs. The lm function
in R can handle factorial design with fixed effects without taking the special experimental design or
the random effects into account. The lme function in the nlme (Pinheiro et al., 2016) package handles
the mixed effect model, and in this function, the user can specify the factors with a random effect.
However this function mainly focuses on the grouped data and on estimating the variance components
instead of testing the corresponding factor. Also, it does not provide the EMS of each source in the
ANOVA table.

Another R package that can be used in the analysis of factorial experiments is afex (Singmann
et al., 2016). This package provides the function ems to calculate EMS for the factorial designs. They
adapted the Cornfield-Tukey algorithm (Cornfield and Tukey, 1956) to derive the expected values of
the mean squares. The afex package also provides the mixed function to calculate p-values for various
ANOVA tables considering the corresponding EMS to find the exact F statistic. However, the ems
function provides the general information on the factorial design, and the result for ems only shows
the coefficients of variances. It is provided in a p× p table form instead of the EMS formula for each
source in the ANOVA table, where p is the number of sources, and the elements of this table represent
the coefficient of variance in the formula of the EMS. It is not easy to find the corresponding F statistic
with this result, and this EMS does not match the analysis of variance for real data due to the use of
the number of levels in each factor with characters instead of the real number of levels, so users need
to match this character with their own number of levels.

In this paper, we provide a tool to show how to calculate test statistics as well as the final result.
We focus on the classical analysis of variance method, based on the F test using EMS, exclusively
for balanced designs. We develop a new R package EMSaov to provide users with the analysis of
variance table with EMS for various types of experimental design. With the ANOVA table combined
with EMS, users can easily understand how to calculate the F statistics, especially the denominator of
the F statistic, and then figure out the result of the analysis. We also provide an application for novice
users based on Shiny (shiny). First, we explain the general concepts of the analysis of variance and the
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Fixed model Random model Mixed model
Source Df (A,B:fixed) (A,B:random) (A:fixed, B:random)

A a− 1 σ2
ε + nbφA σ2

ε + nσ2
AB + nbσ2

A σ2
ε + nσ2

AB + nbφA
B b− 1 σ2

ε + naφB σ2
ε + nσ2

AB + naσ2
B σ2

ε + naσ2
B

AB (a− 1)(b− 1) σ2
ε + nφAB σ2

ε + nσ2
AB σ2

ε + nσ2
AB

Residuals ab(n− 1) σ2
ε σ2

ε σ2
ε

Table 1: Expected mean squares for the three different types of models

special types of experimental designs. Then we introduce EMSaov, our newly developed R package,
with its implementation, and explain the usage of functions in EMSaov in detail. We also introduce
the web interface of EMSaov, followed by the conclusion.

Analysis of variance

Fixed, random, and mixed models

There are two ways to select the levels of factors for various factorial experimental designs. One is to
select the appropriate levels as fixed values, and the other is to choose at random from many possible
levels. Bennett et al. (1954) discuss a case in which the chosen levels are obtained from a finite set of
possible levels. When all levels are fixed, the statistical model for the experiment is referred to as a
fixed model, and when all levels are chosen as random levels, the model is referred to as a random
model. When two or more factors are involved and some factors are chosen as fixed levels and the
others are chosen as random levels, the model is referred to as a mixed model. There is no difference
between the fixed model and the random model during data analysis for a single-factor experiment.
However, the EMS for each factor should be different from that of a fixed model if there is more than
one factor, some factors exhibit random effects, and the other factors are fixed effects. We thus have to
be careful when generating an F statistic to test the significance of each factor.

Consider the two-factor factorial experiment with factors A and B. The corresponding experimental
model with a completely randomized design is

Yijk = µ + Ai + Bj + ABij + εijk (1)

where µ is a common effect, Ai represents the effect of the ith level of factor A, and Bj represents the
effect of the jth level of factor B, ABij is the interaction effect of factors A and B, and εijk represents the
random error in the kth observation on the ith level of A and jth level of B, i = 1, · · · , a, j = 1, · · · , b,
and k = 1, · · · , n.

In this model, we assume that µ is a fixed constant, and εijk is a random variable that follows
N(0, σ2

ε ). We can assume three cases: the fixed model, the random model, and the mixed model. In a
mixed model, we treat factor A as a fixed effect and factor B as a random effect. The main test method
for the analysis of variance is an F test. The usual way to calculate the F statistic is to use the mean
squares of the corresponding source as the numerator and the mean square error as the denominator.
However, if some variables exhibit random effects, it is not easy to find the appropriate denominator
for the F statistic. In fact, this depends on the expected mean square (EMS), so we have to calculate the
expected mean square for the analysis of variance of the data.

The expected mean squares are different among the three models, and they are represented in
Table 1. For all three models, the mean squares error (MSE) is used as the denominator to test the
interaction effect between A and B. For factor A, MSE is used in the fixed model but MSAB is used in

Fixed model Random model Mixed model
Source Mean Sq (A,B:fixed) (A,B:random) (A:fixed, B:random)

A MSA MSA/MSE MSA/MSAB MSA/MSAB
B MSB MSB/MSE MSB/MSAB MSB/MSE

AB MSAB MSAB/MSE MSAB/MSE MSAB/MSE
Residuals MSE

Table 2: F statistics in ANOVA table for the three different models
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Source Df Sum Sq Mean Sq EMS F statistic

A a− 1 SSA MSA σ2
ε + bσ2

B(A) + abσ2
A MSA/MSB(A)

B(A) a(b− 1) SSB(A) MSB(A) σ2
ε + bσ2

B(A) MSB(A)/MSE

Residuals ab(n− 1) SSE MSE σ2
ε

Table 3: ANOVA table for the nested design

the other two models. For factor B, MSAB is used in the random model, but MSE is used in the other
two models. The appropriate test statistics for each factor are summarized in Table 2.

EMS rule

As we can see in the review on generating the F statistics for the three different models, the expected
mean squares are very important. The previous examples consist of very simple factorial models
with only two factors. For complex experimental designs, particularly when using models involving
random or mixed effects with nested factors, it is frequently helpful to have a formal procedure to
generate the expected mean squares, that is the EMS rules (Montgomery, 2008). The EMS rules are
simple and convenient procedures that determine the expected mean squares, and these are also
appropriate for manually calculating the expected mean squares for any nested, repeated-measures,
or split-plot design. We follow the EMS rules in Montgomery (2008) to generate the expected mean
squares in the ANOVA table with various experimental designs.

Nested and nested-factorial design

In the case of experiments with two or more factors without any restriction in the randomization,
most experimental designs can be categorized in one of three ways: crossed design, nested design, or
nested-factorial design. In this EMSaov package, we didn’t consider the unbalanced design and the
fractional factorial design. The crossed design considers every possible combination of the levels of
factors in the model. However, when the levels of one factor are not identical but similar to different
levels of another factor, it is referred to as a nested design.

In the nested design, when the levels of factor B are nested under the levels of factor A, the levels
of factor B belonging to the first level of factor A are not the same as the levels of factor B in the second
level of factor A, as shown in Figure 1. One of the features of this model is the lack of interaction effect
between the two factors that are nested, so when the analysis of variance is carried out, the interaction
term AB should be pooled to the nested factor B(A). The ANOVA table for this design is shown in
Table 3. Thus, the nested design can be extended to a more complex nested design, for example, to a
model with another nested factor C under the existing nested factor B. It can also be combined with
factorial design - a model with another factor C that is nested in both A and B, while factors A and B
are crossed.

Split-plot design

The split-plot design is used when it may not be possible to completely randomize the order of
experimentation. In this case, we assume for one factor to be a block. Since a factor treated as a block
is restricted during randomization, the effects of the corresponding factor are confounded with the
blocks, and it is thus difficult to determine the pure significance of this effect. On the other hand, there
is no loss of information for the other factors that are not treated as a block because it is completely
randomized under these factors. In this design, two levels of randomization are applied to assign
the experimental units to the treatment. The first level of randomization is applied to the whole plot

Figure 1: A two-stage nested design
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and is used to assign the experimental units to the levels of treatment factor A. The whole plot is split
into a split-plot, and the second level of randomization is used to assign the experimental units of the
subplot to levels of the treatment factor B. Since the split-plot design has two levels of experimental
units, the whole plot and the subplot portions have separate experimental errors. Therefore, the F tests
must be run only within the whole plot or within the split plot, and the mean squares in the whole
plot should not be compared with the mean squares in the split plot, regardless of the EMS value. We
handle this split-plot design as a hierarchical design with respect to the levels of model. The first level
of model is the whole plot, and the second level of model is the split plot. These levels of model can
then be extended to 3, 4, or more levels.

Approximate F test

In factorial experiments with three or more factors involving a random or mixed model, sometimes
there is no exact test statistic for certain effects in the model. We have to calculate a new F statistic
if there is no denominator that differs from the expected value of the numerator only by the specific
component being tested. Therefore, Satterthwaite (1946) proposed a test procedure that uses linear
combinations of the original mean squares to form the F statistic, for example,

MSnum = MSnum,1 + · · ·+ MSnum,rn (2)

MSden = MSden,1 + · · ·+ MSden,rd

where MSnum,1, · · · , MSnum,rn and MSden,1, · · · , MSden,rd
are selected from MS values in ANOVA

table such that E (MSnum)− E (MSden) is equal to the effect considered in the null hypothesis.

Then,

ApproxF =
MSnum

MSden
∼ Fd fnum ,d fden

(3)

where

d fnum =
(MSnum,1 + · · ·+ MSnum,rn )

2

(MSnum,1)2/d fnum,1 + · · ·+ (MSnum,rn )
2/d fnum,rn

(4)

d fden =

(
MSden,1 + · · ·+ MSden,rd

)2

(MSden,1)2/d fden,1 + · · ·+ (MSden,rd
)2/d fden,rd

(5)

In d fnum and d fden, d fnum,i and d fden,j are the degrees of freedom associated with the mean square
MSnum,i and MSden,j, respectively, where i = 1, · · · , rn and j = 1, · · · , rd

Implementation of EMSaov package

The EMSaov package includes EMSanova, PooledANOVA, and ApproxF as main functions and EMSaovApp
as a function for the Shiny application. EMSanova generates the analysis of variance (ANOVA) table
with the expected mean squares (EMS) and the corrected F tests considered with the EMS. Several
arguments are needed for this function (Table 4). We use the formula argument to specify the response
variable and factors in the ANOVA table with data, nested factors (nested), and types of factors
(type). Sometimes, we cannot find the appropriate denominator for the F statistic, and we have to
use the approximate F test. The function ApproxF is developed to approximate the results of the F
test. The ApproxF function takes SS.table and approx.name as arguments. SS.table is the result
from EMS.anova, and approx.name designates the source of variation in SS.table to calculate the
approximate F values for the test. To show how to use these functions in the EMSaov package, we use
the three sets of example data in Hicks (1982).

Example 1: Mixed effect model with approximate F test

film data in EMSaov corresponds to the mixed effect model (Example 10.3 in Hicks (1982)). There are
three factors: Gate, Operator, and Day. The experiment consists of measuring the dry-film thickness of
varnish in millimeters for three different gate setting (1, 2, and 3) twice with operators A, B, and C, for
two days.

In film, "thickness" is the dependent variable, and "Gate", "Operator", and "Day" are the factors
that we want to consider. We use thickness ∼ Gate + Operator + Day as a formula. In the EMSanova
function, we use the formula format just for specifying the factors in the model. To specify the types
of factors and whether the factors are nested or not, we need to use the other arguments. If the user
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argument

formula model formula
data data frame for ANOVA
type the list of factor types.

It designates whether each factor is random or not.
use "F" for the fixed effect, "R" for the random effect

nested the list of the nested effects
level the list of the model level

n.table numbers of levels in each factor
approximate calculate approximate F test when it is TRUE

Table 4: Arguments of EMSanova function

specifies formula = thickness ∼ Gate + Operator + Day, type, nested, level , and n.table should
follow the order of "Gate", "Operator" and "Day". In this example, "Gate" is treated as a fixed effect
and "Operator" and "Day" are treated as random effects. Therefore, type = c("F","R","R").

> data(film)
> anova.result <- EMSanova(thickness ~ Gate + Operator + Day, data = film,
+ type = c("F", "R", "R"))
> anova.result

Df SS MS Fvalue Pvalue Sig
Gate 2 1.573172222 0.786586111
Operator 2 0.112072222 0.056036111 18.7656 0.0506 .
Gate:Operator 4 0.042844444 0.010711111 4.3229 0.0926 .
Day 1 0.001002778 0.001002778 0.3358 0.6208
Gate:Day 2 0.011338889 0.005669444 2.2881 0.2175
Operator:Day 2 0.005972222 0.002986111 9.188 0.0018 **
Gate:Operator:Day 4 0.009911111 0.002477778 7.6239 9e-04 ***
Residuals 18 0.005850000 0.000325000

EMS
Gate Error+2Gate:Operator:Day+6Gate:Day+4Gate:Operator+12Gate
Operator Error+6Operator:Day+12Operator
Gate:Operator Error+2Gate:Operator:Day+4Gate:Operator
Day Error+6Operator:Day+18Day
Gate:Day Error+2Gate:Operator:Day+6Gate:Day
Operator:Day Error+6Operator:Day
Gate:Operator:Day Error+2Gate:Operator:Day
Residuals Error

For the factor "Gate", the EMS of the denominator should be "Error + 2Gate:Operator:Day +
6Gate:Day + 4Gate:Operator", but it is not so in this table. Therefore, we cannot find the exact
denominator for the F test and need to use the approximate F test. The factor "Gate" is in the first row
in the result of EMSanova and approx.name should be "Gate" for the ApproxF function.

> ApproxF(SS.table = anova.result, approx.name = "Gate")
$Appr.F
[1] 48.17076

$df1
[1] 2.01261

$df2
[1] 5.995597

$Appr.Pvalue
[1] 0.0002010433

The approximate F value for the test of the factor "Gate" is 48.17076 with p-value 0.0002. Therefore,
we can conclude that there are significant differences among the levels of the factor "Gate" at the
significance level 0.05.

If we want to combine "Gate:Day" and "Residuals", and treat them as a combined residual for
the further analysis, we can define del.ID as c("Gate:Day","Residuals") and use the PooledANOVA
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function. The first argument for PooledANOVA is the output from EMSanova.

> del.ID <- c("Gate:Day", "Residuals")
> PooledANOVA(anova.result, del.ID)

Df SS MS Fvalue Pvalue Sig
Gate 2 1.5732 0.7866 73.4365 7e-04 ***
Operator 2 0.1121 0.0560 18.7656 0.0506 .
Gate:Operator 4 0.0428 0.0107 4.3229 0.0926 .
Day 1 0.0010 0.0010 0.3358 0.6208
Operator:Day 2 0.0060 0.0030 3.4745 0.0507 .
Gate:Operator:Day 4 0.0099 0.0025 2.883 0.0491 *
Residuals 20 0.0172 0.0009

EMS
Gate Error+2Gate:Operator:Day+4Gate:Operator+12Gate
Operator Error+6Operator:Day+12Operator
Gate:Operator Error+2Gate:Operator:Day+4Gate:Operator
Day Error+6Operator:Day+18Day
Operator:Day Error+6Operator:Day
Gate:Operator:Day Error+2Gate:Operator:Day
Residuals Error

Example 2: Nested-factorial model

For the nested model, we need to specify nested, which indicates the parent factor of the nested factor.
We use the baseball data (Example 11.4 in Hicks (1982)) to illustrate the use of the EMSanova function
with the nested-factorial model. It has three factors where the subjects are nested within groups.

In this example, formula = velocity ∼ Group + Subject + test. The factors "Group" and "test"
are treated as fixed effects, and the factor "Subject" is treated as a random effect with the argument
for fixed and random effects being type = c("F","R","F"). We use nested = c(NA,"Group",NA) to
indicate the factor "Subject", nested in the factor "Group". The fixed effect "test" is measured twice with
"Pre" and "Post" in each subject, which means that there are two levels in this model. The first level
consists of "Group" and "Subject" and the second level consists of "test". This model level can thus be
represented with level=c(1,1,2).

> data(baseball)
> anova.result <- EMSanova(velocity ~ Group + Subject + test,
+ data = baseball,
+ type = c("F", "R", "F"),
+ nested = c(NA, "Group", NA),
+ level = c(1, 1, 2))
> anova.result

Df SS MS Fvalue Pvalue Sig Model.Level
Group 2 28.139200 14.0696000 1.0426 0.3729 1
Subject(Group) 18 242.905914 13.4947730 115.517 <0.0001 *** 1
test 1 21.257486 21.2574857 181.9669 <0.0001 *** 2
Group:test 2 12.381943 6.1909714 52.9955 <0.0001 *** 2
Residuals 18 2.102771 0.1168206 2

EMS
Group Error+2Subject(Group)+14Group
Subject(Group) Error+2Subject(Group)
test Error+21test
Group:test Error+7Group:test
Residuals Error

Example 3: Split-split plot design

The example rubber is the split-split plot design with 4 replicates (Example 13.3 in Hicks (1982)). Three
different laboratories (Lap), three different temperatures (Temp), and three types of rubber mix (Mix)
were involved in each replicate (Rep). "Rep" and "Lap" consist of the whole plot, "Temp" is added in
the split-plot, and "Mix" is added in the split-split plot.

This design can be treated as a three-level model with "Rep" and "Lap" in the first level, "Temp" in
the second level, and "Mix" in the third level. For the EMSanova, we set formula = Y ∼ Rep + Mix +
Lap + Temp), type = c("R","F","F","F") and level = c(1,3,1,2).
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> data(rubber)
> anova.result <- EMSanova(cure ~ Rep + Mix + Lap + Temp,
+ data = rubber,
+ type = c("R", "F", "F", "F"),
+ level = c(1, 3, 1, 2))
> anova.result

Df SS MS Fvalue Pvalue Sig Model.Level
Rep 3 5.581019 1.8603395 2.2311 0.1105 1
Lap 2 51.496852 25.7484259 4.9395 0.0539 . 1
Rep:Lap 6 31.276481 5.2127469 6.2517 5e-04 *** 1
Temp 2 2978.564630 1489.2823148 2167.7859 <0.0001 *** 2
Rep:Temp 6 4.122037 0.6870062 0.8239 0.5626 2
Lap:Temp 4 5.603148 1.4007870 0.5948 0.6732 2
Rep:Lap:Temp 12 28.261296 2.3551080 2.8245 0.0146 * 2
Mix 2 149.217963 74.6089815 53.0128 2e-04 *** 3
Rep:Mix 6 8.444259 1.4073765 1.6879 0.1672 3
Lap:Mix 4 4.894815 1.2237037 1.4772 0.2697 3
Rep:Lap:Mix 12 9.940741 0.8283951 0.9935 0.4828 3
Temp:Mix 4 47.853704 11.9634259 15.6467 1e-04 *** 3
Rep:Temp:Mix 12 9.175185 0.7645988 0.917 0.5454 3
Lap:Temp:Mix 8 10.688519 1.3360648 1.6024 0.1765 3
Residuals 24 20.011481 0.8338117 3

EMS
Rep Error+27Rep
Lap Error+9Rep:Lap+36Lap
Rep:Lap Error+9Rep:Lap
Temp Error+9Rep:Temp+36Temp
Rep:Temp Error+9Rep:Temp
Lap:Temp Error+3Rep:Lap:Temp+12Lap:Temp
Rep:Lap:Temp Error+3Rep:Lap:Temp
Mix Error+9Rep:Mix+36Mix
Rep:Mix Error+9Rep:Mix
Lap:Mix Error+3Rep:Lap:Mix+12Lap:Mix
Rep:Lap:Mix Error+3Rep:Lap:Mix
Temp:Mix Error+3Rep:Temp:Mix+12Temp:Mix
Rep:Temp:Mix Error+3Rep:Temp:Mix
Lap:Temp:Mix Error+4Lap:Temp:Mix
Residuals Error

EMSaovApp: Web interface for ANOVA with EMS

Even though we provide three functions to produce the appropriate analysis of variance for many
different types of experimental designs, this is not so easy for a novice user of R. For convenience, we
provide a Shiny-based application with a graphical user interface (GUI) to obtain the ANOVA of data
from various experimental designs. Figure 2 shows the main GUI for EMSaovApp with Example 2. The
first part of the GUI can be used to read data in the csv format. The middle part has various input
windows to select the dependent variable, the factors in the ANOVA table, the number of categories
in each factor, the specification of the nested factor, and the level of the model. In this example, "Y"
is selected as the dependent variable (Y variable) and the "Group", "Subject", and "Test" factors are
selected. Among the selected factors, "Subject" is treated as the random effect and the others are treated
as fixed effects. Therefore "Subject" is checked in the "Random Effect" part. The "Subject" factor is
nested in "Group", and the "test" factor is in the second level of the model. This information should
thus be specified in this part. The number of categories for each factor is automatically calculated from
the original data, but the user can change them in this GUI.

The bottom part has five tabs, including "EDA-main effect", "EDA-interaction", "ANOVA table",
"ANOVA table with Approx.F", and "Pooled ANOVA". The "EDA-main effect" tab shows parallel
box plots for each factor (Figure 2). "Subject" and "Test" show significant differences among the levels
in each factor, and the "EDA-interaction" tab shows the interaction plots to help see whether the
interaction effect between the two factors is significant or not. EMSaovApp automatically generates
interaction plots for all pairs of selected factors. In Figure 3, the interaction effect between "Group"
and "Test" is highly significant. Even though the interaction effect between "Group" and "Subject" and
the interaction effect between "Subject" and "Test" are provided, "Subject" is nested in "Group" and
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Figure 2: Main feature of EMSaovApp

Figure 3: Exploratory data analysis of the interaction effect between two factors
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Figure 4: Analysis of variance table with approximate F test result

Figure 5: Pooled analysis of variance table - pooling three way interaction effect "Gate:Operator:Day"
to "Residuals"
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these interaction effects are not of interest. Figure 4 show the result of the tab "ANOVA table with
Approx. F" with data from Example 1. In this example, we can combine the three-way interaction to
the residuals by checking the corresponding items in the "Pooled ANOVA" tab (Figure 5).

Discussion

We have introduced EMSaov, an R package for ANOVA with various types of experimental design.
We should have information on the EMS to determine the denominator of the F statistics in ANOVA.
EMSaov is one of few packages for ANOVA with EMS that can handle fixed or random effects, nested
factors, or model with multi-level design. Future updates to EMSaov include the permutation tests
for each source of variation to cover the situation where data does not follow the normal assumption.
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GsymPoint: An R Package to Estimate the
Generalized Symmetry Point, an Optimal
Cut-off Point for Binary Classification in
Continuous Diagnostic Tests
by Mónica López-Ratón, Elisa M. Molanes-López, Emilio Letón, and Carmen Cadarso-Suárez

Abstract In clinical practice, it is very useful to select an optimal cutpoint in the scale of a continuous
biomarker or diagnostic test for classifying individuals as healthy or diseased. Several methods for
choosing optimal cutpoints have been presented in the literature, depending on the ultimate goal. One
of these methods, the generalized symmetry point, recently introduced, generalizes the symmetry
point by incorporating the misclassification costs. Two statistical approaches have been proposed in the
literature for estimating this optimal cutpoint and its associated sensitivity and specificity measures,
a parametric method based on the generalized pivotal quantity and a nonparametric method based
on empirical likelihood. In this paper, we introduce GsymPoint, an R package that implements these
methods in a user-friendly environment, allowing the end-user to calculate the generalized symmetry
point depending on the levels of certain categorical covariates. The practical use of this package is
illustrated using three real biomedical datasets.

Introduction

The classification of cases and controls is a common task in several fields. For example, it is con-
ducted in the atmospheric sciences (rainy/non rainy day), finance (good/not good payer), sociology
(good/not good citizen), industry (product of good/poor quality), computing science (spam/non-
spam) or health sciences (healthy/diseased), among others. However, in this paper we will focus
on the latter example, where we will be interested on the classification of individuals as healthy
or diseased using a continuous biomarker or diagnostic test that will be based on a cutoff point or
discrimination value c. If we suppose, without loss of generality, that high test values are associated
with the disease under study, individuals with a diagnostic test value equal to or higher than c are
classified as diseased (positive test) and individuals with a value lower than c are classified as healthy
(negative test). The test can classify a diseased patient incorrectly, that is, a false negative decision, or
detect a patient as diseased when his (or her) true status is healthy (a false positive misclassification).
So, for each cutoff point c, it is necessary to quantify these errors to check the validity of the diagnostic
test in clinical practice. In a similar way, the test can correctly classify a diseased patient (a true positive
decision) or a healthy patient (a true negative decision). For each cutpoint c, the sensitivity and
specificity measures of the accuracy of the diagnostic test can be defined from these correct decisions.
The sensitivity (Se) is the probability of a true positive decision, that is, the probability of correctly
classifying a diseased patient (true positive rate) and the specificity (Sp) is the probability of a true
negative decision (true negative rate), that is, the probability of correctly classifying a healthy individ-
ual. Similarly, the probabilities of the incorrect classifications are defined as 1− Se (false negative rate)
and 1− Sp (false positive rate).

Considering Se versus 1− Sp for all possible values of c, a curve is obtained. This curve is called
the Receiver Operating Characteristic (ROC) curve (Metz, 1978; Swets and Swets, 1979; Swets and
Pickett, 1982) and it is a graphical global measure of the diagnostic accuracy of a continuous diagnostic
test, independent of the cutpoint and the disease prevalence. In addition, it serves as a guide when
selecting optimal cutoffs and as a measure of the overlapping of the test values between healthy and
diseased populations. Numerical indexes defined from ROC curves are often used to summarize the
accuracy of a diagnostic test. For instance, the area under the curve (AUC) (Bamber, 1975; Swets,
1979) is the most commonly used and it takes values between 0.5 (the AUC value of an uninformative
test, the same as a random prediction) and 1 (the AUC value of a perfect test that classifies correctly
all individuals, either healthy or diseased). The AUC is equal to the Mann-Whitney U statistic for
comparing two distributions. Both of them can be interpreted as the probability that the diagnostic
value of a randomly chosen diseased individual will be higher than the diagnostic value of a randomly
chosen healthy one (Hanley and McNeil, 1982).

A key question in clinical practice is to find a cutpoint that “best” discriminates between patients
with and without the disease. However, one cannot talk in absolute terms of a “best choice”. This is
the reason why several criteria for selecting optimal cutpoints have been proposed in the literature
depending on the ultimate goal of such selection (see Youden, 1950; Feinstein, 1975; Metz, 1978; Schäfer,
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1989; Vermont et al., 1991; Greiner, 1995; Pepe, 2003, for example). One of the best-known methods is
based on selecting the cutpoint that provides the same value for the sensitivity and specificity. This
point is known as the equivalence or symmetry point (Greiner, 1995; Defreitas et al., 2004; Adlhoch
et al., 2011). Graphically, it corresponds with the operating point on the ROC curve that intersects
the perpendicular to the positive diagonal line, that is, y = 1− x, where x is the false positive rate.
The symmetry point can also be seen as the point that maximizes simultaneously both types of
correct classifications (Riddle and Stratford, 1999; Gallop et al., 2003), that is, it corresponds to the
probability of correctly classifying any subject, whether it is healthy or diseased (Jiménez-Valverde,
2012, 2014). Additionally, the incorporation of costs for the misclassification rates in the estimation
of optimal cutpoints is crucial for evaluating not only the test accuracy but also its clinical efficacy,
although this aspect is not taken into account most of the times. So, an interesting generalization of
the equivalence or symmetry point, cS, that takes into account the costs associated to the false positive
and false negative misclassifications, CFP and CFN , respectively, is the generalized equivalence point
or generalized symmetry point, cGS, that satisfies the following equation:

ρ(1− Sp(cGS)) = (1− Se(cGS)), (1)

where ρ = CFP
CFN

is the relative loss (cost) of a false-positive decision as compared with a false-negative
decision (see López-Ratón et al., 2016, for more details). Similarly to the symmetry point, this cost-
based generalization is obtained by intersecting the ROC curve and the line y = 1− ρx, where x is the
false positive rate. Obviously, when ρ = 1 in Equation 1, the generalized symmetry point yields the
traditional symmetry point. The reader can see some medical examples, that have taken into account
the misclassification costs in their ROC analysis, in the review conducted by Cantor et al. (1999) where
the Cost/Benefit (C/B) ratio is discussed (C/B= 1

ρ ). Additionally, Subtil and Rabilloud (2015) include
some common values for the C/B ratio (C/B = 2, 5, 10, 100). High values of C/B ratio mean that it is
considered more harmful not to treat a diseased individual than to treat a healthy one.

Two statistical approaches have been recently introduced in the literature (López-Ratón et al.,
2016) to obtain point estimates and confidence intervals for the generalized symmetry point and its
associated sensitivity and specificity measures, a parametric method based on the Generalized Pivotal
Quantity (GPQ) under the assumption of normality (Weerahandi, 1993, 1995; Lai et al., 2012), and a
nonparametric method based on the Empirical Likelihood (EL) methodology without any parametric
assumptions (Thomas and Grunkemeier, 1975; Molanes-López and Letón, 2011).

The availability of software for estimating optimal cutpoints in a user-friendly environment
is very important and necessary for facilitating, mainly to the biomedical staff, the selection of
optimal cutpoints in clinical practice. There are several packages in R to carry out this task, such
as PresenceAbsence (Freeman and Moisen, 2008), DiagnosisMed (Brasil, 2010), pROC (Robin et al.,
2011) and OptimalCutpoints (López-Ratón and Rodríguez-Álvarez, 2014; López-Ratón et al., 2014).
However, these packages only consider the classical non-parametric empirical method for estimating
optimal cutpoints and accuracy measures, that is, none of them take into account recent methodology
introduced in ROC analysis such as the GPQ and EL approaches above-mentioned (Molanes-López
and Letón, 2011; Lai et al., 2012).

In this paper we present GsymPoint, a package written in R for estimating the generalized sym-
metry point (López-Ratón et al., 2017), which is freely available from the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org/package=GsymPoint. Specifically, this package en-
ables end-users to obtain point estimates and 100(1− α)% confidence intervals (with α the signification
level) for the cost-based generalization of the symmetry point, cGS, and its associated sensitivity and
specificity measures, Se(cGS) and Sp(cGS), by means of the two statistical approaches pointed out
above, the GPQ and EL approaches, that turn out to be more efficient than the empirical one. Therefore,
we take into account in the estimation process when normality can be assumed, and we consider one
of the most widely used criteria for selecting optimal cutpoints in clinical practice, the criterion that
generalizes the method where the sensitivity and specificity indexes are the same, taking into account
the misclassification costs, a very important issue when selecting the optimal cutpoint in a specific
clinical setting. In addition, since the test accuracy can be influenced by specific characteristics such as
the patient’s age or gender, or the disease severity (Pepe, 2003), the GsymPoint package allows the
computation of the generalized symmetry point for each level of a given categorical covariate. On one
hand, the numerical output of GsymPoint includes the generalized symmetry point and its associated
sensitivity and specificity indexes with their corresponding 100(1− α)% confidence intervals. On the
other hand, based on the graphical interpretation of the generalized symmetry point, the graphical
output shows the empirical ROC curve and the line y = 1− ρx.

The rest of paper is organized as follows. In Section D.2, we briefly review the two methods
included in our GsymPoint package for obtaining point estimates and confidence intervals for the
generalized symmetry point and its sensitivity and specificity measures. In Section D.3, we describe
the general use of this package, describing the most important functions. In Section D.4, we illustrate
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the practical application of the package using three real biomedical datasets on melanoma, prostate
cancer, and coronary artery disease. Finally, in Section D.5 we conclude with a discussion and some
interesting future extensions.

Generalized symmetry point estimating methods

In this section we briefly explain the two methods included in the GsymPoint package for estimating
and constructing confidence intervals for the generalized symmetry point cGS and its associated
accuracy measures Sp(cGS) and Se(cGS). To make inference on these parameters of interest, we
consider two independent samples of i.i.d. (independently and identically distributed) observations,{

Y0k0

}n0
k0=1 and

{
Y1k1

}n1
k1=1, taken from the healthy and diseased populations, Y0 and Y1, respectively,

with sample sizes n0 and n1.

Generalized pivotal quantity method

Generalized confidence intervals refer to a parametric methodology based on the normality assump-
tion, first introduced by Weerahandi (1993, 1995) and recently applied in the context of diagnostic
studies to the Youden index by Lai et al. (2012) and Zhou and Qin (2013), and to the generalized
symmetry point by López-Ratón et al. (2016).

Assuming that the diagnostic test in healthy and diseased populations Yi follows a normal dis-
tribution with mean µi and standard deviation σi, for i = 0, 1, it follows that the ROC curve has an
explicit expression:

ROC(x) = Φ(a + bΦ−1(x)), (2)

where a =
µ1−µ0

σ1
, b = σ0

σ1
, x = 1− Sp(cS) and Φ denotes the standard normal cumulative distribution

function (cdf).

Therefore, under the normality assumption, using if necessary a monotone transformation of
Box-Cox type to achieve normality, it follows from Equations 1–2 that the generalized symmetry point
cGS can be estimated from the following equation:

Φ(a + bΦ−1(x)) = 1− ρx ⇔ Φ

(
Φ−1(1− ρx)− a

b

)
− x = 0, (3)

replacing a and b by their sample versions ã = m1−m0
s1

and b̃ = s0
s1

, respectively, where mi and si denote
the sample mean and sample standard deviation of each population, for i = 0, 1. Once the root of
Equation 3 is obtained, x̃, then the parametric point estimates of cGS, Sp(cGS) and Se(cGS) are given
by c̃GS = m0 + s0Φ−1(1− x̃), S̃p(cGS) = 1− x̃ and S̃e(cGS) = 1− ρx̃, respectively.

For computing the GPQ-based confidence intervals of cGS, Sp(cGS) and Se(cGS), López-Ratón
et al. (2016) follow the same reasoning as in Lai et al. (2012), based on considering their corresponding
generalized pivotal quantities, that is, substituting a and b into Equation 3 with their generalized
pivotal values. For instance, if RcGS denotes the generalized pivotal quantity for estimating cGS,
and RcGS ,α denotes the αth quantile of the distribution of RcGS , then the corresponding 100(1− α)%
confidence interval for cGS based on its generalized pivotal quantity is given by the percentile method,
that is, by (RcGS ,α/2, RcGS ,1−α/2).

Empirical likelihood method

The empirical likelihood method was firstly introduced by Thomas and Grunkemeier (1975) that
proposed the construction of EL-based confidence intervals for the Kaplan-Meier estimator. Nowadays,
this methodology is an active area of research in several fields due to the good properties presented
by EL-based confidence intervals and regions (see, for example, Molanes-López et al., 2009, among
others). Moreover, this methodology has the advantages of easy implementation and not requiring any
particular parametric assumption. In the recent literature, Molanes-López and Letón (2011) proposed
a bootstrap-based EL approach to make inference on the Youden index and its associated optimal
cutpoint, and López-Ratón et al. (2016) applied these same bootstrap-based EL ideas for estimating and
constructing confidence intervals for the generalized symmetry point and its corresponding specificity
and sensitivity measures. The key point in both works is that the optimal cutpoint of int erest can be
seen as specific quantiles of the two populations involved.

As López-Ratón et al. (2016) mention, cGS can be seen as the Sp(cGS)-th quantile of the healthy
population and the ρ(1− Sp(cGS))-th quantile of the diseased population. Considering that the value
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of Sp(cGS) is known in advance, they derive the following log-likelihood function to make inference
on the generalized symmetry point:

`(c) = −2 log(L(c))

= 2n0 F̂0,g0 (c) log

(
F̂0,g0 (c)
Sp(cGS)

)
+ 2n0(1− F̂0,g0 (c)) log

(
1− F̂0,g0 (c)
1− Sp(cGS)

)

+ 2n1 F̂1,g1 (c) log

(
F̂1,g1 (c)

ρ(1− Sp(cGS))

)
+ 2n1(1− F̂1,g1 (c)) log

(
1− F̂1,g1 (c)

1− ρ(1− Sp(cGS))

)
,

where, for i = 0, 1, F̂i,gi is a kernel-type estimate of the cdf Fi given by

F̂i,gi (y) =
1
ni

ni

∑
ki=1

K

(
y−Yiki

gi

)
,

with K(x) =
∫ y
−∞ K(z)dz, K a kernel function and gi the corresponding smoothing parameter, for

i = 0, 1. Therefore, assuming that Sp(cGS) is known in advance, a nonparametric point estimate of
cGS could be found by minimizing `(c) over c, and a confidence interval for it could be obtained based
on the usual χ2 limiting distribution of `(c). However, taking into account the fact that Sp(cGS) is
unknown, López-Ratón et al. (2016) propose to estimate this parameter first by means of a kernel-
based method and then obtain a non-parametric point estimate of cGS by minimizing the previous
log-likelihood function, `(c), but where now the unknown parameter Sp(cGS) is replaced by its
estimate. Besides, they introduce a bootstrap-based EL approach that reproduces this procedure for
each pair of resamples taken independently from the two original samples and construct percentile
based confidence intervals from all the EL-based estimates previously calculated for those bootstrap
resamples.

The GsymPoint package

In this section we present GsymPoint, a package written in R for estimating the generalized symmetry
point (López-Ratón et al., 2017), which is freely available from the Comprehensive R Archive Network
(CRAN) at http://CRAN.R-project.org/package=GsymPoint. This package enables end-users to ob-
tain point estimates and 100(1− α)% confidence intervals using two recent methodologies introduced
in ROC analysis (Molanes-López and Letón, 2011; Lai et al., 2012) for the generalized symmetry point
and its corresponding sensitivity and specificity indexes. Specifically, the two estimating methods
presented in the previous section, the generalized pivotal quantity method (Weerahandi, 1993, 1995;
Lai et al., 2012; Zhou and Qin, 2013) and the empirical likelihood method (Thomas and Grunkemeier,
1975; Molanes-López and Letón, 2011) have been incorporated in a clear and user-friendly way for
the end-user. The GsymPoint package only requires a data-entry file where each column indicates
a variable and each row indicates an individual or patient. This dataset must, at least, contain the
variable with the diagnostic test values, the variable that indicates the true disease status (diseased
or healthy) and the variable with the levels of a categorical covariate of interest in case the optimal
cutpoint has to be computed for each level of that covariate. The numerical output of GsymPoint
package includes the generalized symmetry point and its corresponding sensitivity and specificity
indexes with their associated 100(1− α)% confidence intervals. In basis on the graphical interpretation
of the generalized symmetry point, the graphical output shows the intersection point between the
empirical ROC curve and the line y = 1− ρx, that is, an empirical estimate of the operating point
corresponding to the generalized symmetry point. Table 1 provides a summary of the most important
functions include d in the package.

The gsym.point() function

The main function of the package is the gsym.point() function, which uses the selected method(s)
(GPQ, EL or auto, where this last option automatically selects the most appropriate method based
on the normality assumption) to obtain (parametric and/or nonparametric) confidence intervals and
point estimates for cGS, Sp(cGS) and Se(cGS), and creates an object of class "gsym.point". The code to
use the gsym.point() function is as follows:

gsym.point(methods, data, marker, status, tag.healthy,
categorical.cov = NULL, control = control.gsym.point(),
CFN = 1, CFP = 1, confidence.level = 0.95,
trace = FALSE, seed = FALSE, value.seed = 3, verbose = TRUE)
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Function Description

gsym.point() Main function that computes the generalized sym-
metry point and its sensitivity and specificity mea-
sures with their corresponding confidence inter-
vals.

control.gsym.point() Used to set several parameters that control the esti-
mation process of the optimal cutpoint.

print() Print method for "gsym.point" class objects.

summary() Summary method for "gsym.point" class objects.

plot() Plot method for "gsym.point" class objects that
shows in the same graph the empirical ROC curve
and the line y = 1 − ρx. The intersection point
between them is an empirical estimate of the oper-
ating point associated to the optimal cutpoint given
by the generalized symmetry point.

Table 1: Most important functions included in the GsymPoint package.

The methods argument is a character vector to select the estimation method(s) to be used. The
possible options are: "GPQ","EL", c("GPQ","EL"), c("EL","GPQ") or "auto".

The data argument is the data frame containing all the needed variables: the diagnostic marker, the
true disease status and, when necessary, the categorical covariate; the marker and status arguments
are character strings with the names of the diagnostic test and the variable that distinguishes healthy
from diseased individuals, respectively. The value codifying healthy individuals in this last variable
status is indicated in the tag.healthy argument.

The categorical.cov argument is a character string with the name of the categorical covariate
according to which cGS is automatically computed for each of its levels. By default it is NULL, that is,
no categorical covariate is considered in the analysis.

The control argument indicates the output of the control.gsym.point() function, which controls
the whole calculation process. This function will be explained in detail in the following subsection.

The CFN and CFP arguments are the misclassification costs of false negative and false positive
classifications, respectively. The default value is 1 for both, that is, no misclassification costs are taking
into account by default.

The confidence.level argument is the numerical value of the confidence level 1− α considered
for the construction of confidence intervals. By default it is equal to 0.95.

The trace argument is a logical value that shows information on the calculation progress if TRUE.
By default it is FALSE.

The seed argument is a logical value, such that if TRUE, a seed is fixed for generating the trials
when computing the confidence intervals, allowing the reproducibility of the results at any other time.
The default value is FALSE.

The value.seed argument is the numerical value for the fixed seed if seed is TRUE. By default it is
equal to 3.

The verbose argument is a logical value that allows to show extra information on progress of
running. By default it is TRUE.

Some of these arguments, methods, data, marker, status and tag.healthy, are essential and must
be specified in the call to the gsym.point() function because, otherwise, an error is produced. The
other arguments, categorical.cov, control, confidence.level, trace, seed and value.seed, are
optional and, if they are not specified explicitly in the call, the values by default are taken.

The control.gsym.point() function

It should be noted that there are some extra arguments, specific to each estimation method. We
considered to include all of them in the control argument, which is a list of control values specified by
calling to the control.gsym.point() function, designed to replace the default values yielded by the
control.gsym.point() function. The arguments of the control.gsym.point() function are presented
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in Table 2.

Argument Description

B The number of simulations in the empirical likelihood
("EL") method. The default value is 499 based on Carpenter
and Bithell (2000).

c_sampling The constant needed for resampling in the empirical likeli-
hood ("EL") method. The default value is 0.25.

c_F The constant needed for estimating the distribution in the
empirical likelihood ("EL") method. The default value is
0.25.

c_ELq The constant needed for estimating the empirical likelihood
function in the empirical likelihood ("EL") method. The
default value is 0.25.

c_R The constant needed for estimating the ROC curve in the
empirical likelihood ("EL") method. The default value is
0.25.

I The number of replicates in the generalized pivotal quantity
("GPQ") method. The default value is 2500.

Table 2: Arguments of the control.gsym.point() function.

The summary.gsym.point() function

Numerical results are printed on the screen, and the output yielded by the summary.gsym.point()
function or the summary() method always includes:

• The matched call to the main function gsym.point().

• The estimated value of the area under the ROC curve (AUC) based on the Mann-Whitney U
statistic.

• Information related to the generalized symmetry point:

– The method(s) (EL and/or GPQ) used for estimating cGS, Sp(cGS) and Se(cGS).

– The point estimates and confidence intervals for cGS, Sp(cGS) and Se(cGS).

Apart from the matched call, that it is presented only once at the beginning, all the other information
will be shown for each level of the categorical covariate if this is specified in the call, that is, if the
categorical.cov argument in the gsym.point() function is not NULL.

The call to this function is as follows:

summary(object, ...)

where the object argument is a "gsym.point" class object as produced by the gsym.point() function
and the ellipsis ... indicate further arguments passed to or from other methods. None are used in
this method.

The plot.gsym.point() function

The graphical output of the GsymPoint package is yielded by the plot.gsym.point() function or by
the plot() method. This function plots the empirical ROC curve and the line y = 1− ρx. The call to
this function is as follows:

plot(x, legend = TRUE, ...)

where the x argument is a "gsym.point" class object as produced by the gsym.point() function, the
argument legend is a logical value for including the AUC value in the legend when it is TRUE (value
by default) and the ellipsis ... indicate further arguments passed to the plot.default() method.
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Practical application of GsymPoint package

This section illustrates the use of the R-based GsymPoint package by means of three real biomedical
datasets on melanoma, prostate cancer, and coronary artery disease.

Melanoma dataset

Dermatologists use a clinical scoring scheme without dermoscope (CSS) or a dermoscopic scoring
scheme (DSS) to clinically evaluate lesions on the skin on the basis of several visible features such as
asymmetry, border irregularity, colouration and size. We have considered a dataset on 72 patients
with suspicious lesions of being a melanoma (Venkatraman and Begg, 1996). Taking into account
that 21 melanomas were detected through biopsies, our objective here is to evaluate the capacity of
the CSS as a potential non-invasive diagnostic marker for discriminating between melanomas and
non-melanomas using the generalized symmetry point as the binary classification threshold. In the
following, we illustrate the use of the GsymPoint package for estimating that optimal threshold value.
The first step consists on attaching the GsymPoint package and the melanoma dataset as follows:

> library("GsymPoint")
> data("melanoma")

With the following instruction, we can get some basic summary statistics of the variables included
in the melanoma dataset:

> summary(melanoma)
X group

Min. :-5.88100 Min. :0.0000
1st Qu.:-3.22100 1st Qu.:0.0000
Median :-1.69550 Median :0.0000
Mean :-1.55642 Mean :0.2917
3rd Qu.: 0.00675 3rd Qu.:1.0000
Max. : 3.03200 Max. :1.0000

To estimate the generalized symmetry point of the CSS marker, we need to call the gsym.point()
function. For instance, as specified below.

> melanoma.cutpoint1 <- gsym.point(methods = "GPQ", data = melanoma,
+ marker = "X", status = "group", tag.healthy = 0,
+ categorical.cov = NULL, CFN = 2, CFP = 1,
+ control = control.gsym.point(), confidence.level = 0.95,
+ trace = FALSE, seed = TRUE, value.seed = 3, verbose = TRUE)

In this call, we have considered that a false negative decision is 2 times more serious than a false
positive decision, and so we have set CFN = 2 and CFP = 1 for the misclassification costs. Besides,
we have considered the GPQ method of estimation (methods = "GPQ") because, according to the
Shapiro-Wilk normality test, the CSS values can be assumed normally distributed in both melanoma
and non-melanoma groups, and under this assumption the GPQ method is more adequate than the
EL method in this case.

The melanoma.cutpoint1 object produced by this call is a list that consists of the following compo-
nents: "GPQ", "methods", "call", and "data", as can be checked below with the names command:

> names(melanoma.cutpoint1)
[1] "GPQ" "methods" "call" "data"

The last three components, "methods", "call" and "data" are, respectively, a character vector with
the value of the argument methods used in the call, the matched call, and the data frame used in the
analysis. The first component, "GPQ", contains the results provided by the GPQ method regarding the
estimation of the generalized symmetry point. Below, we detail these results:

> names(melanoma.cutpoint1$GPQ)
[1] "Global"

> names(melanoma.cutpoint1$GPQ$Global)
[1] "optimal.result" "AUC" "rho"
[4] "pvalue.healthy" "pvalue.diseased"
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> melanoma.cutpoint1$GPQ

$Global
$Global$optimal.result
$Global$optimal.result$cutoff

Value ll ul
1 -1.213237 -1.792908 -0.6283236

$Global$optimal.result$Specificity
Value ll ul

1 0.75465 0.6249716 0.8485824

$Global$optimal.result$Sensitivity
Value ll ul

1 0.877325 0.8124858 0.9242912

$Global$AUC
[1] 0.9056956

$Global$rho
[1] 0.5

$Global$pvalue.healthy
[1] 0.4719117

$Global$pvalue.diseased
[1] 0.9084176

The "optimal.result" component is a list with the point estimates and 100(1− α)% confidence
intervals of the generalized symmetry point and its associated sensitivity and specificity accuracy
measures, "AUC" is the numerical value of the area under the ROC curve, "rho" is the numerical value
of the costs ratio ρ = CFP

CFN
, "pvalue.healthy" is the p-value of the Shapiro-Wilk normality test used to

check the normality assumption of the marker in the healthy population, and "pvalue.diseased" is
the p-value of the Shapiro-Wilk normality test used to check the normality assumption in the diseased
population.

The end-user can directly access each of these components. For example, the following instruction
only yields the value of the AUC:

> melanoma.cutpoint1$GPQ$Global$AUC
[1] 0.9056956

A numerical summary of the results can be obtained by means of the print.gsym.point() or
summary.gsym.point() functions, which can be abbreviated by the print() and summary() methods,
respectively, as can be seen below:

> summary(melanoma.cutpoint1)

*************************************************
OPTIMAL CUTOFF: GENERALIZED SYMMETRY POINT
*************************************************

Call:
gsym.point(methods = "GPQ", data = melanoma, marker = "X", status = "group",

tag.healthy = 0, categorical.cov = NULL, CFN = 2, CFP = 1,
control = control.gsym.point(), confidence.level = 0.95,
trace = FALSE, seed = TRUE, value.seed = 3, verbose = TRUE)

According to the Shapiro-Wilk normality test, the marker can be
considered normally distributed in both groups.

Shapiro-Wilk test p-values

Group 0 Group 1
Original marker 0.4719 0.9084
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Area under the ROC curve (AUC): 0.906

METHOD: GPQ

Estimate 95% CI lower limit 95% CI upper limit
cutoff -1.213237 -1.7929079 -0.6283236
Specificity 0.754650 0.6249716 0.8485824
Sensitivity 0.877325 0.8124858 0.9242912

As seed = TRUE in the previous call, the user can replicate the output by simply running again the
same call.

In this case, as can be seen above, the output provided by the summary.gsym.point() function
shows:

1. An informative message indicating that the marker can be considered normally distributed in
both groups, according to the Shapiro-Wilk normality test.

2. The Shapiro-Wilk test p-values indicating normality in both groups.

3. The AUC value and information related to the generalized symmetry point, that is, the point
estimates and the GPQ based 100(1− α)% confidence intervals for the generalized symmetry
point and its corresponding sensitivity and specificity indexes. By default, confidence intervals
are computed with a default confidence level, 1− α, equal to 95%, although a different value
can be set in the confidence.level argument of the main gsym.point() function.

So far, we have considered the GPQ method that, under normality assumptions, turns out to be
more appropriate than the EL method. As you can see below, if we now replace the GPQ method
by the EL method in the call, the program shows in the first place an informative message on the
normality assumption and the better appropriateness of the GPQ method.

> melanoma.cutpoint2 <- gsym.point(methods = "EL", data = melanoma,
+ marker = "X", status = "group", tag.healthy = 0,
+ categorical.cov = NULL, CFN = 2, CFP = 1,
+ control = control.gsym.point(), confidence.level = 0.95,
+ trace = FALSE, seed = TRUE, value.seed = 3, verbose = TRUE)

According to the Shapiro-Wilk normality test, the marker can be
considered normally distributed in both groups.
Therefore the GPQ method would be more suitable for this dataset.

Shapiro-Wilk test p-values

Group 0 Group 1
Original marker 0.4719 0.9084

By means of the summary() function, we show below the results obtained with the EL method. In
this case, after reproducing the call used to create the melanoma.cutpoint2 object, the same informative
message is shown regarding the better appropriateness of the GPQ method to this dataset.

> summary(melanoma.cutpoint2)

*************************************************
OPTIMAL CUTOFF: GENERALIZED SYMMETRY POINT
*************************************************

Call:
gsym.point(methods = "EL", data = melanoma, marker = "X", status = "group",

tag.healthy = 0, categorical.cov = NULL, CFN = 2, CFP = 1,
control = control.gsym.point(), confidence.level = 0.95,
trace = FALSE, seed = TRUE, value.seed = 3, verbose = TRUE)

According to the Shapiro-Wilk normality test, the marker can be
considered normally distributed in both groups.
Therefore the GPQ method would be more suitable for this dataset.

Shapiro-Wilk test p-values
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Group 0 Group 1
Original marker 0.4719 0.9084

Area under the ROC curve (AUC): 0.906

METHOD: EL

Estimate 95% CI lower limit 95% CI upper limit
cutoff -1.2382325 -1.8403497 -0.4565671
Specificity 0.7901833 0.6326184 0.8973174
Sensitivity 0.8950916 0.8163092 0.9486587

Since both estimating methods are adequate for this dataset, we could specify them simultaneously
in the call to the gsym.point() function as follows.

> melanoma.cutpoint3 <- gsym.point(methods = c("EL","GPQ"),
+ data = melanoma, marker = "X", status = "group",
+ tag.healthy = 0, categorical.cov = NULL, CFN = 2, CFP = 1,
+ control = control.gsym.point(), confidence.level = 0.95,
+ trace = FALSE, seed = TRUE, value.seed = 3, verbose = TRUE)

According to the Shapiro-Wilk normality test, the marker can be
considered normally distributed in both groups.
Therefore, although the results of both methods will be shown,
the GPQ method would be more suitable for this dataset.

Shapiro-Wilk test p-values

Group 0 Group 1
Original marker 0.4719 0.9084

With the option methods = "auto" the program selects in this case the GPQ method based on the
normality assumption satisfied for this dataset.

The graphical output of any of the three objects previously created, can be obtained by means of
the plot.gsym.point() function, which can be abbreviated by the plot() method.
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Figure 1: Graphical output for the melanoma dataset.

For instance, the call below

> plot(melanoma.cutpoint1)
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shows the plot of the empirical Receiver Operating Characteristic (ROC) curve, the line y = 1− ρx, and
the intersection point between them, that is, an empirical estimate of the operating point associated
to the generalized symmetry point of the CSS marker for discriminating between patients with and
without melanoma. Although this is the default output (see Figure 1), the end-user can add specific
graphic parameters, such as color, legend, etc.

Prostate cancer dataset

We have considered here the dataset on prostate cancer analyzed by Le (2006). In order to design an
appropriate treatment strategy for a patient with prostate cancer, it is important to know first whether
cancer has spread or not to the neighboring lymph nodes. Although a laparoscopic surgery could
confirm the true status of the patient, it is interesting to find a non-invasive diagnostic method to
predict whether nodal involvement is present or not. In this dataset, 20 patients (of the total of 55
patients) had nodal involvement, and the level of acid phosphatase in blood serum (APBS) (×100)
was considered as the diagnostic marker for predicting nodal involvement. We illustrate below how
to apply the GsymPoint package for estimating the generalized symmetry point of the APBS marker
that will be used for discriminating between individuals with and without nodal involvement.

As shown below, after loading the Gsympoint package and the prostate cancer dataset, we use
the gsym.point() function to estimate the generalized symmetry point of the APBS marker and its
associated specificity and sensitivity indexes.

> library("GsymPoint")
> data("prostate")
> prostate.cutpoint1 <- gsym.point(methods = "GPQ", data = prostate,
+ marker = "marker", status = "status", tag.healthy = 0,
+ categorical.cov = NULL, CFN = 10, CFP = 1,
+ control = control.gsym.point(I = 1500), confidence.level = 0.95,
+ trace = FALSE, seed = TRUE, value.seed = 3, verbose = TRUE)

Since cancer is a very serious disease which can cause death, a FN result in this biomedical ex-
ample is much more harmful than a FP result. Specifically, we have considered that a false negative
classification is exactly 10 times more serious than a false positive classification (CFN = 10, CFP =
1). Since the Shapiro-Wilk normality test indicated that both groups could be assumed normally
distributed (after a Box-Cox transformation of the data), the GPQ method is more adequate than the
EL method in this case. For the sake of illustration, we have changed the default value of the number
of replicates associated to the GPQ method by setting control = control.gsym.point(I = 1500) in
the call to the gsym.point() function. The default value for this parameter is I = 2500.

Below we show the numerical results obtained by means of the summary.gsym.point() function,
which can be abbreviated by the summary() method:

> summary(prostate.cutpoint1)

*************************************************
OPTIMAL CUTOFF: GENERALIZED SYMMETRY POINT
*************************************************

Call:
gsym.point(methods = "GPQ", data = prostate, marker = "marker",

status = "status", tag.healthy = 0, categorical.cov = NULL,
CFN = 10, CFP = 1, control = control.gsym.point(I = 1500),
confidence.level = 0.95, trace = FALSE, seed = TRUE, value.seed = 3,
verbose = TRUE)

According to the Shapiro-Wilk normality test, the marker can not
be considered normally distributed in both groups.
However, after transforming the marker using the Box-Cox
transformation estimate, the Shapiro-Wilk normality test
indicates that the transformed marker can be considered
normally distributed in both groups.

Box-Cox lambda estimate = -1.2494

Shapiro-Wilk test p-values
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Group 0 Group 1
Original marker 0.0000 0.0232
Box-Cox transformed marker 0.3641 0.2118

Area under the ROC curve (AUC): 0.725

METHOD: GPQ

Estimate 95% CI lower limit 95% CI upper limit
cutoff 51.9522523 46.8013315 57.3009307
Specificity 0.3233012 0.1420636 0.5191686
Sensitivity 0.9323301 0.9142064 0.9519169

In this case, the numerical output obtained with the summary.gsym.point() function shows:

1. An informative message indicating that the original data can not be assumed normally dis-
tributed in both groups, but the Box-Cox transformed data can be considered normally dis-
tributed in both groups, according to the Shapiro-Wilk normality test.

2. The estimated value of the Box-Cox power lambda.

3. The estimated value of the area under the ROC curve (AUC).

4. Information corresponding to the generalized symmetry point: the point estimates and the
GPQ based 100(1− α)% confidence intervals (where α is the signification level) of the gener-
alized symmetry point in the scale of the APBS marker and its corresponding sensitivity and
specificity measures. By default, confidence intervals are computed for a confidence level 1− α
of 0.95. However, this value can be changed in the confidence.level argument of the main
gsym.point() function.

As can be checked with the command below, the prostate.cutpoint1 object yields a list with the
following components: "GPQ", "methods", "call", and "data".

> names(prostate.cutpoint1)
[1] "GPQ" "methods" "call" "data"

The first component, "GPQ", contains the results associated with the GPQ method.

> names(prostate.cutpoint1$GPQ)
[1] "Global"

> names(prostate.cutpoint1$GPQ$Global)
[1] "optimal.result" "AUC"
[3] "rho" "lambda"
[5] "normality.transformed" "pvalue.healthy"
[7] "pvalue.diseased" "pvalue.healthy.transformed"
[9] "pvalue.diseased.transformed"

The "methods" component is a character vector with the value of the argument methods used in
the call, "call" is the matched call, and "data" is the data frame used in the analysis:

> prostate.cutpoint1$methods
[1] "GPQ"

> prostate.cutpoint1$call
gsym.point(methods = "GPQ", data = prostate, marker = "marker",

status = "status", tag.healthy = 0, categorical.cov = NULL,
CFN = 10, CFP = 1, control = control.gsym.point(I = 1500),
confidence.level = 0.95, trace = FALSE,

seed = TRUE, value.seed = 3, verbose = TRUE)

> prostate.cutpoint1$data
marker status

1 40 0
2 40 0
3 46 0

[...]
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51 99 1
52 126 1
53 136 1

We list below the elements of the first component, "GPQ", of the prostate.cutpoint1 object and
show the corresponding R-based commands that allow end-users to directly access these elements:

1. "optimal.result" is a list with the generalized symmetry point and its sensitivity and specificity
accuracy measures with the corresponding 100(1− α)% confidence intervals.

> prostate.cutpoint1$GPQ$Global$optimal.result
$cutoff

Value ll ul
1 51.95225 46.80133 57.30093

$Specificity
Value ll ul

1 0.3233012 0.1420636 0.5191686

$Sensitivity
Value ll ul

1 0.9323301 0.9142064 0.9519169

2. "AUC" is the numerical value of the area under the ROC curve.

> prostate.cutpoint1$GPQ$Global$AUC
[1] 0.725

3. "rho" is the numerical value of ρ = CFP/CFN (in this case ρ = 0.1).

> prostate.cutpoint1$GPQ$Global$rho
[1] 0.1

4. "lambda" is the numerical value of the power used in the Box-cox transformation of the GPQ
method.

> prostate.cutpoint1$GPQ$Global$lambda
[1] -1.249428

5. "normality.transformed" is a character string indicating if the transformed marker values by
the Box-Cox transformation are normally distributed ("yes") or not ("no").

> prostate.cutpoint1$GPQ$Global$normality.transformed
[1] "yes"

6. "pvalue.healthy" is the numerical value of the p-value obtained by the Shapiro-Wilk normality
test for checking the normality assumption of the marker in the healthy population.

> prostate.cutpoint1$GPQ$Global$pvalue.healthy
[1] 3.276498e-07

7. "pvalue.diseased" is the numerical value of the p-value obtained by the Shapiro-Wilk normal-
ity test for checking the normality assumption of the marker in the diseased population.

> prostate.cutpoint1$GPQ$Global$pvalue.diseased
[1] 0.02323895

8. "pvalue.healthy.transformed" is the numerical value of the p-value obtained by the Shapiro-
Wilk normality test for checking the normality assumption of the Box-Cox transformed marker
in the healthy population.

> prostate.cutpoint1$GPQ$Global$pvalue.healthy.transformed
[1] 0.3640662

9. "pvalue.diseased.transformed" is the numerical value of the p-value obtained by the Shapiro-
Wilk normality test for checking the normality assumption of the Box-Cox transformed marker
in the diseased population.

> prostate.cutpoint1$GPQ$Global$pvalue.diseased.transformed
[1] 0.2118137
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Similarly to the previous example, if we now consider the EL method instead of the GPQ method
for estimating the generalized symmetry point and its accuracy measures, an informative message is
shown by the package, advising the user that the GPQ method is more suitable for this dataset due to
the fact that the Box-Cox transformed marker can be assumed normally distributed in both groups.

> prostate.cutpoint2 <- gsym.point(methods = "EL", data = prostate,
+ marker = "marker", status = "status", tag.healthy = 0,
+ categorical.cov = NULL, CFN = 10, CFP = 1,
+ control = control.gsym.point(B = 999), confidence.level = 0.95,
+ trace = FALSE, seed = TRUE, value.seed = 3, verbose = TRUE)

According to the Shapiro-Wilk normality test, the marker can not
be considered normally distributed in both groups.
However, after transforming the marker using the Box-Cox
transformation estimate, the Shapiro-Wilk normality test
indicates that the transformed marker can be considered
normally distributed in both groups.
Therefore the GPQ method would be more suitable for this dataset.

Box-Cox lambda estimate = -1.2494

Shapiro-Wilk test p-values
Group 0 Group 1

Original marker 0.0000 0.0232
Box-Cox transformed marker 0.3641 0.2118

For the sake of illustration, we have set control = control.gsym.point(B = 999) in the previous
call to change the default value of the number of bootstrap replicates B required in the empirical
likelihood method. This parameter is B = 499 by default.

The results obtained with the EL method are the following.

> summary(prostate.cutpoint2)

*************************************************
OPTIMAL CUTOFF: GENERALIZED SYMMETRY POINT
*************************************************

Call:
gsym.point(methods = "EL", data = prostate, marker = "marker",

status = "status", tag.healthy = 0, categorical.cov = NULL,
CFN = 10, CFP = 1, control = control.gsym.point(B = 999),
confidence.level = 0.95, trace = FALSE, seed = TRUE, value.seed = 3,
verbose = TRUE)

According to the Shapiro-Wilk normality test, the marker can not
be considered normally distributed in both groups.
However, after transforming the marker using the Box-Cox
transformation estimate, the Shapiro-Wilk normality test
indicates that the transformed marker can be considered
normally distributed in both groups.
Therefore the GPQ method would be more suitable for this dataset.

Box-Cox lambda estimate = -1.2494

Shapiro-Wilk test p-values
Group 0 Group 1

Original marker 0.0000 0.0232
Box-Cox transformed marker 0.3641 0.2118

Area under the ROC curve (AUC): 0.725

METHOD: EL

Estimate 95% CI lower limit 95% CI upper limit
cutoff 49.2249839 45.39058266 58.7032623
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Specificity 0.2451690 0.09891113 0.5269153
Sensitivity 0.9245169 0.90989111 0.9526915

Figure 2 shows the graphical output corresponding to any of the two "gsym.point" class objects
previously created, prostate.cutpoint1 and prostate.cutpoint2, as generated by means of the
plot() method. For instance, the code below produces Figure 2.

> plot(prostate.cutpoint1)
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Figure 2: Graphical output for the prostate cancer dataset.

Coronary artery disease dataset

We now consider a study conducted on 141 patients (96 with coronary lesions and 45 with non-stenotic
coronaries) admitted to the cardiology department of a teaching hospital in Galicia (Northwest Spain)
for evaluating chest pain or cardiovascular disease, where the leukocyte elastase determination was
investigated as a potential clinical marker for the diagnosis of coronary artery disease (Amaro et al.,
1995). Since in this biomedical example there is available information regarding the gender of the
patient (female or male), we will illustrate the practical application of the GsymPoint package to
these data taking into account the covariate gender, that is, the generalized symmetry point will be
computed for each gender in the scale of the elastase concentration to diagnose coronary artery disease
(CAD). From here on, we will refer to this dataset as elastase.

First of all, we need to load the GsymPoint package and the corresponding elastase dataset:

> library("GsymPoint")
> data("elastase")

Now, for computing the generalized symmetry point in the elastase scale taking into account
the categorical covariate gender, we simply have to include categorical.cov = "gender" in the call
below.

> elastase.gender.cutpoint1 <- gsym.point(methods = "GPQ",
+ data = elastase, marker = "elas", status = "status",
+ tag.healthy = 0, categorical.cov = "gender", CFN = 10, CFP = 1,
+ control = control.gsym.point(), confidence.level = 0.95,
+ trace = FALSE, seed = TRUE, value.seed = 3, verbose = TRUE)

In this case we are interested in having a high sensitivity, that is, a low number of false negatives.
Therefore, the same values as in the previous prostate cancer dataset were considered for the misclas-
sification costs, CFN = 10 and CFP = 1, that is, a false negative result is regarded as 10 times more
serious than a false positive one. Since the elastase concentration in females and males follow the
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Box-Cox family in both CAD and non-CAD groups according to the Shapiro-Wilk normality test, the
GPQ method of estimation is more adequate than the EL method in this case.

The elastase.gender.cutpoint1 object produced by the previous call is a list with the following
components:

> names(elastase.gender.cutpoint1)
[1] "GPQ" "methods" "levels.cat" "call"
[5] "data"

Similarly to the previous datasets, the "methods" component is a character vector with the value of
the argument methods used in the call, "call" is the matched call and "data" is the data frame used in
the analysis. However, now there is an extra component, "levels.cat", a character vector indicating
the levels of the categorical covariate ("Female" and "Male" in this case). Besides, the first component,
"GPQ", that includes the results associated with the GPQ method is itself a two-component list with
"Female" and "Male" as can be seen below.

> names(elastase.gender.cutpoint1$GPQ)
[1] "Female" "Male"

For each level of the categorical covariate, you get a list with nine components. For instance, for
the subgroup of males, elastase.gender.cutpoint1$GPQ$Male contains the following components:

> names(elastase.gender.cutpoint1$GPQ$Male)
[1] "optimal.result" "AUC"
[3] "rho" "lambda"
[5] "normality.transformed" "pvalue.healthy"
[7] "pvalue.diseased" "pvalue.healthy.transformed"
[9] "pvalue.diseased.transformed"

The "optimal.result" component of elastase.gender.cutpoint1$GPQ$Male is a list with the
point estimates and 100(1− α)% confidence intervals of the generalized symmetry point in the scale
of the elastase concentration and its associated sensitivity and specificity accuracy measures in the
ROC space corresponding to the subgroup of individuals that are males.

> elastase.gender.cutpoint1$GPQ$Male$optimal.result
$cutoff

Value ll ul
1 20.72776 18.08961 23.49228

$Specificity
Value ll ul

1 0.2739826 0.1345484 0.4326794

$Sensitivity
Value ll ul

1 0.9273983 0.9134548 0.9432679

The "AUC" component of elastase.gender.cutpoint1$GPQ$Male is the numerical value of the area
under the ROC curve for the subgroup of individuals that are males.

> elastase.gender.cutpoint1$GPQ$Male$AUC
[1] 0.7216855

The "rho" component of elastase.gender.cutpoint1$GPQ$Male is the numerical value of the
ratio ρ = CFP

CFN
, which is the same for females and males.

> elastase.gender.cutpoint1$GPQ$Male$rho
[1] 0.1

The "lambda" component of elastase.gender.cutpoint1$GPQ$Male is the estimated numerical
value of the power in the Box-Cox transformation obtained when considering only the subgroup of
individuals that are males.

> elastase.gender.cutpoint1$GPQ$Male$lambda
[1] -0.04277911

The "normality.transformed" component of elastase.gender.cutpoint1$GPQ$Male is a charac-
ter string indicating if the Box-Cox transformed marker values in the subgroup of males are normally
distributed ("yes") or not ("no").
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> elastase.gender.cutpoint1$GPQ$Male$normality.transformed
[1] "yes"

The "pvalue.healthy" component of elastase.gender.cutpoint1$GPQ$Male is the p-value of the
Shapiro-Wilk normality test used to check the normality assumption of the marker in the healthy
population of males.

> elastase.gender.cutpoint1$GPQ$Male$pvalue.healthy
[1] 0.5866506

The "pvalue.diseased" component of elastase.gender.cutpoint1$GPQ$Male is the p-value of
the Shapiro-Wilk normality test used to check the normality assumption of the marker in the diseased
population of males.

> elastase.gender.cutpoint1$GPQ$Male$pvalue.diseased
[1] 5.44323e-09

Similarly, the "pvalue.healthy.transformed" and "pvalue.diseased.transformed" components
are the p-values of the Shapiro-Wilk normality test used to check the normality assumption of the
Box-Cox transformed marker in, respectively, the healthy and diseased populations of males.

> elastase.gender.cutpoint1$GPQ$Male$pvalue.healthy.transformed
[1] 0.06656483
> elastase.gender.cutpoint1$GPQ$Male$pvalue.diseased.transformed
[1] 0.2147409

A summary of the numerical results is shown bellow. In this case, the results obtained are shown
for each level of the categorical covariate gender, that is, for females and males. However, similarly
to previous examples, the output shows first the AUC value and then information related to the
generalized symmetry point (point estimates and 100(1 − α)% confidence intervals obtained for
each method of estimation specified in the main gsym.point() function). By default, confidence
intervals are computed for a confidence level 1-α of 0.95, but this value can be changed directly in the
confidence.level argument of the gsym.point() function.

> summary(elastase.gender.cutpoint1)

*************************************************
OPTIMAL CUTOFF: GENERALIZED SYMMETRY POINT
*************************************************

Call:
gsym.point(methods = "GPQ", data = elastase, marker = "elas",

status = "status", tag.healthy = 0, categorical.cov = "gender",
CFN = 10, CFP = 1, control = control.gsym.point(), confidence.level = 0.95,
trace = FALSE, seed = TRUE, value.seed = 3, verbose = TRUE)

*************************************************
Female
*************************************************
According to the Shapiro-Wilk normality test, the marker can be
considered normally distributed in both groups.

Shapiro-Wilk test p-values

Group 0 Group 1
Original marker 0.0837 0.9077

Area under the ROC curve (AUC): 0.818

METHOD: GPQ

Estimate 95% CI lower limit 95% CI upper limit
cutoff 25.0929510 12.3370641 34.0526540
Specificity 0.4246091 0.1460251 0.6618634
Sensitivity 0.9424609 0.9146025 0.9661863
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*************************************************
Male
*************************************************
According to the Shapiro-Wilk normality test, the marker can not
be considered normally distributed in both groups.
However, after transforming the marker using the Box-Cox
transformation estimate, the Shapiro-Wilk normality test
indicates that the transformed marker can be considered
normally distributed in both groups.

Box-Cox lambda estimate = -0.0428

Shapiro-Wilk test p-values
Group 0 Group 1

Original marker 0.5867 0.0000
Box-Cox transformed marker 0.0666 0.2147

Area under the ROC curve (AUC): 0.722

METHOD: GPQ

Estimate 95% CI lower limit 95% CI upper limit
cutoff 20.7277556 18.0896126 23.4922813
Specificity 0.2739826 0.1345484 0.4326794
Sensitivity 0.9273983 0.9134548 0.9432679

If we consider now the EL method in the call to the main gsym.point() function, the GsymPoint
package will show an informative message indicating that the GPQ method would be more adequate
in this case because for the two levels of the categorical covariate gender, either the original marker or
the Box-Cox transformed marker in both diseased and healthy populations can be assumed normally
distributed according to the Shapiro-Wilk normality test:

> elastase.gender.cutpoint2 <- gsym.point (methods = "EL", data = elastase,
+ marker = "elas", status = "status", tag.healthy = 0,
+ categorical.cov = "gender", CFN = 10, CFP = 1,
+ control = control.gsym.point(), confidence.level = 0.95,
+ trace = FALSE, seed = TRUE, value.seed = 3, verbose = TRUE)

Female :
According to the Shapiro-Wilk normality test, the marker can be
considered normally distributed in both groups.
Therefore the GPQ method would be more suitable for this dataset.

Shapiro-Wilk test p-values

Group 0 Group 1
Original marker 0.0837 0.9077

Male :
According to the Shapiro-Wilk normality test, the marker can not
be considered normally distributed in both groups.
However, after transforming the marker using the Box-Cox
transformation estimate, the Shapiro-Wilk normality test
indicates that the transformed marker can be considered
normally distributed in both groups.
Therefore the GPQ method would be more suitable for this dataset.

Box-Cox lambda estimate = -0.0428

Shapiro-Wilk test p-values
Group 0 Group 1

Original marker 0.5867 0.0000
Box-Cox transformed marker 0.0666 0.2147
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Figure 3: Graphical output for the coronary artery disease dataset, distinguishing by gender.

The graphical results can be obtained by means of the plot.gsym.point() function or merely the
plot() method. For instance, the following command

> plot(elastase.gender.cutpoint1)

yields the graphical output shown in Figure 3, where the empirical ROC curve of the elastase con-
centration is represented separately for females and males, together with the line y = 1− ρx and
the intersection point associated to the generalized symmetry point for detecting CAD. This is the
output that appears by default for females and males, respectively. However, as usual, the end-user
can change several graphical parameters, such as legends, colors, etc.

Discussion

The selection of optimal cutpoints in the scale of a quantitative diagnostic test or biomarker that can
help in the diagnosis of a disease is an important issue in the clinical sciences. Depending on the
main objective of such selection, several criteria of optimality have been proposed in the literature to
carry out this task. One of the most popular in clinical practice is based on selecting the cutoff that
provides the same sensitivity and specificity, known in the literature as the equivalence or symmetry
point (Greiner, 1995; Defreitas et al., 2004; Adlhoch et al., 2011). However, this cutpoint is not valid
in scenarios where the severity of misclassifying a diseased patient is not the same as the severity
of misclassifying a healthy patient, which is normally the case in practice. For instance, in cancer
disease, a false negative decision is in general more serious than a false positive decision. Hence,
when selecting an optimal cutpoint it is very important to take into account the costs of the different
incorrect diagnostic decisions. For this reason, the generalized symmetry point, a generalization of the
symmetry point that incorporates the costs of the misclassifications is very adequate and useful in
practice (López-Ratón et al., 2016). Although there are several R packages that implement different
criteria for selecting the optimal cutoff point such as PresenceAbsence (Freeman and Moisen, 2008),
DiagnosisMed (Brasil, 2010), pROC (Robin et al., 2011) and OptimalCutpoints (López-Ratón and
Rodríguez-Álvarez, 2014; López-Ratón et al., 2014), up to our knowledge, none of them includes the
criterion based on the generalized symmetry point nor recent estimation approaches such as the GPQ
and EL methods that provide more efficient estimates than the empirical ones (Molanes-López and
Letón, 2011; Lai et al., 2012). In order to avoid that the use of the generalized symmetry point is limited
in the clinical practice by the lack of software that implements all necessary computations to estimate
it, we have developed the Gsympoint package, a user-friendly R package that fills this gap. As it
has been illustrated in this paper, the GsymPoint package allows the possibility that the generalized
symmetry point is straightforwardly estimated for each level of a certain categorical covariate that
represents an individual characteristic such as gender, age or disease severity, and that may influence
the discrimination capacity of the diagnostic test (Pepe, 2003). Possible interesting extensions of the
GsymPoint package could be taken into account. For instance, the implementation of this same
methodology to estimate other accuracy measures such as predictive values or diagnostic likelihood
ratios, the incorporation of more efficient methods for estimating the generalized symmetry point
and its accuracy measures, and the extension of this methodology to other more complex scenarios
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where, for instance, the diagnostic test is subject to the measurement of error, there is presence of
partial disease verification (see Alonzo, 2014, and references therein), the disease status evolves over
time and the disease onset time is subject to censoring (Rota et al., 2015) or there are continuous
covariates available that may affect the diagnostic capacity of the biomarker and that should be taken
into consideration.
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autoimage: Multiple Heat Maps for
Projected Coordinates
by Joshua P. French

Abstract Heat maps are commonly used to display the spatial distribution of a response observed
on a two-dimensional grid. The autoimage package provides convenient functions for constructing
multiple heat maps in unified, seamless way, particularly when working with projected coordinates.
The autoimage package natively supports: 1. automatic inclusion of a color scale with the plotted
image, 2. construction of heat maps for responses observed on regular or irregular grids, as well as
non-gridded data, 3. construction of a matrix of heat maps with a common color scale, 4. construction
of a matrix of heat maps with individual color scales, 5. projecting coordinates before plotting, 6.
easily adding geographic borders, points, and other features to the heat maps. After comparing the
autoimage package’s capabilities for constructing heat maps to those of existing tools, a carefully
selected set of examples is used to highlight the capabilities of the autoimage package.

Introduction

A heat map is a graphic commonly used to visualize the spatial distribution of a response observed on
a two-dimensional grid. For example, a climate scientist may want to visualize the spatial distribution
of an aerosol across a grid of locations covering the study area. In general, a heat map can be used
to display response variation as a function of two covariates varying in a grid-like pattern, such as
the tensile strength of a substance as a function of heat and pressure. Each grid point in a heat map is
associated with a polygon, and each polygon is colored using a color scheme related to the level of
the response at each grid point. The plot of colored polygons is an image or heat map. A color scale
relating the colors to their associated levels often accompanies the image. For clarity, we use the term
image to refer to the plot of colored polygons alone and the term heat map to refer to the combination of
image(s) and color scale.

The autoimage package (French, 2017) makes it easy to plot a sequence of heat maps with straight-
forward, native options for projection of geographical coordinates. The package makes it simple to
add lines, points, and other features to the images, even when the coordinates are projected. The
package allows for seamless creation of heat maps for data on regular or irregular grids, as well as
data that is not on a grid.

As a quick introduction to some of the autoimage package’s capabilities, we utilize the narccap
data included in the autoimage package. The narccap data set comes from the North American
Regional Climate Change Assessment Program (Mearns et al., 2009, 2012; Mearns and others, 2007,
updated 2014), which is a program designed to model climate scenarios in North America (the United
States, Canada, and northern Mexico) by coupling regional and global climate models. Specifically, the
narccap data are the maximum daily surface air temperature (abbreviated tasmax) in degrees Kelvin
(K) for the five consecutive days between May 15, 2041 and May 19, 2041. The data were simulated
using the Canadian Regional Climate Model (Caya and Laprise, 1999) forced by the Community
Climate System Model atmosphere-ocean general circular model (Collins et al., 2006). The data
set contains lon, a 140 × 115 matrix of longitude coordinates, lat, a 140 × 115 matrix of latitude
coordinates, and tasmax, a 140 × 115 × 5 array, where each element of the third dimension of the
array corresponds to the tasmax measurements of the respective day. We create the heat map shown
in Figure 1 for the first four days of the narccap data by executing the command

autoimage(lon, lat, tasmax[,,1:4])

The outline of the United States and Mexico are somewhat noticeable in the images of Figure 1, but
this would be easier to see if the relevant national borders of the countries were included. This is
accomplished in Figure 2, which is created by specifying a map in the previous command:

autoimage(lon, lat, tasmax[,,1:4], map = "world")

Images and heat maps can be created in R using functions from several different R packages. We
discuss six functions in more detail. They are

1. the image function in the graphics package,

2. the filled.contour function in the graphics package,

3. the image.plot function in the fields package (Douglas Nychka et al., 2015),

4. the levelplot function in the lattice package (Sarkar, 2008),
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Figure 1: A heat map for the first four days of the narccap data.
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Figure 2: A heat map for the first four days of the narccap data, along with the relevant national
borders.
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5. the spplot function in the sp package (Pebesma and Bivand, 2005; Bivand et al., 2015),

6. and the geom_tile function in the ggplot2 package (Wickham, 2009).

In the next section, we compare the native capabilities of these tools with those of the autoimage
package. We define the native capabilities of a function or package to be the capabilities of the function or
package without loading additional packages or requiring additional user code. This will be followed
by a section demonstrating the main capabilities of the autoimage package. We will conclude with a
brief summary of conclusions in the final section.

Tools for creating heat maps in R

We now compare the capabilities of existing tools for creating heat maps in R.

We begin by discussing the image function included in the graphics package. This function is
included in a standard R installation. The image function produces an image without a color scale.
While one can discern spatial patterns from the plotted image, one cannot determine the magnitude of
the response values without knowing more about the coloring scheme. Naturally, members of the
R community have provided solutions to add this functionality. For example, the spatstat package
(Baddeley and Turner, 2005) extends the image function using S3 methods to automatically include
a color scale with the image when an im class object is plotted. The image function requires the
responses to be on a regular grid. Specifically, if x and y are each an increasing sequence of values,
then the coordinates of a regular grid are obtained by considering all combinations of the elements
in x and y. Regular grids frequently become irregular when rotated or transformed to a different
coordinate system. This is common for longitude/latitude coordinates that are transformed using
a projection. When a matrix of images is desired, the user can modify the mfrow argument of the
par function in the graphics package and then plot a sequence of images. However, the matrix of
images will not include individual color scales or a common color scale. The image function has no
capabilities related to coordinate projection. Existing images can be added to using standard graphics
functions such as lines and points. It is worth noting that the standard R installation also includes
a heatmap function in the stats package, but this displays a different result than the image function.
The heatmap function documentation indicates that the heatmap function produces, “... a false color
image ... with a dendrogram added to the left side and to the top. Typically, reordering of the rows
and columns according to some set of values (row or column means) within the restrictions imposed
by the dendrogram is carried out.” Consequently, a heat map is sometimes called an image plot by
researchers whose data analysis is primarily done in R. We will continue to use the more general
terminology “heat map” to describe this type of graphic in what follows.

The filled.contour function in the graphics package produces an image with a vertical color
scale on the right side of the image. The algorithm used to color the polygons in the filled.contour
function differs slightly from the image function, but produces similar results. The filled.contour
function requires the responses to be on a regular grid. The filled.contour function cannot natively
produce a sequence of heat maps with a common color scale or individual color scales because the
function internally calls the layout function. Coordinate projection is not natively supported by the
filled.contour function. An existing image can be added to using graphics functions such as lines,
points, or text.

Another popular tool for creating heat maps in R is the image.plot function in the fields package.
The image.plot function retains the strengths of the image function while providing additional
functionality. The image.plot function automatically includes a color scale with the plotted image.
More uniquely, the image.plot function can natively produce heat maps for data observed on an
“irregular grid”. Let x be an r× c matrix of x coordinates and y be an r× c matrix of y coordinates.
Then x and y define an irregular grid if x[i,j]≤x[i+1,j], y[i,j]≤y[i+1,j], x[i,j]≤ x[i,j+1], and
y[i,j]≤ y[i,j+1] for all valid choices of i and j. The image.plot function can be used to construct a
matrix of heat maps with individual color scales by specifying the mfrow argument of the par function
and calling image.plot the desired number of times. The image.plot function cannot natively create a
matrix of images with a common color scale. Though the image.plot function includes functionality to
create images for geographically-referenced irregular grids, it does not include any native functionality
for projecting coordinates. Features can be added to existing images using the lines, points, and
related functions.

The lattice package provided the first well-known alternative to the base graphics system in R. The
lattice package produces heat maps using the levelplot function. Images produced by the levelplot
function automatically include a color scale. The levelplot function can only produce heat maps
for responses observed on a regular grid. The levelplot function can natively create a matrix of
heat maps sharing a common color scale. To obtain a matrix of heat maps with individual color
scales, one must combine a sequence of levelplot function calls with the grid.arrange function in
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the gridExtra package (Auguie, 2016). The levelplot function includes no functionality related to
coordinate projection. Adding lines, points, or other features is usually accomplished by defining an
appropriate panel function.

The sp package provides powerful classes for representing geographically-referenced data. The
sp package can produce heat maps automatically for SpatialGriddedDataFrame class objects using
the spplot function. The spplot function produces heat maps by extending the levelplot function
in the lattice package, and the two functions have similar feature sets. One major difference be-
tween the two functions is that the sp package includes coordinate projection information within
the SpatialGriddedDataFrame, so the spTransform function in the sp package can be used to easily
project coordinates to a different system. However, if the projected set of coordinates is not regular, the
spplot function will no longer produce a heat map for the transformed data, but will instead produce
a scatterplot of colored points with a related color scale.

The grammar of graphics plotting system implemented in the ggplot2 package continues to grow
in popularity. A heat map can be constructed using ggplot2 by combining the geom_tile geometry
(or the geom_rect or geom_raster geometries) with a ggplot object. The heat map automatically
includes a color scale with the image. Similar to the image, levelplot, and spplot functions, the
ggplot2 package requires locations to be on a regular grid. A matrix of images sharing a common
color scale can be created directly in ggplot2 using facet_wrap or facet_grid. A matrix of heat maps
with individual color scales can be created by supplementing ggplot2 with additionality functionality
provided by the gridExtra or cowplot (Wilke, 2016) packages. The coord_map function can be used to
natively project geographic coordinates on a regular grid to an irregular grid. Additional features can
be added to the images by specifying the appropriate geometry calls when creating the heat maps.
These additional features are automatically projected if the coord_map function is utilized.

The autoimage package was created to easily produce a sequence of heat maps while natively
working with projected coordinates, even when the data are not on a regular grid. The autoimage pack-
age utilizes the base R graphics system (like the image, filled.contour, and image.plot functions)
to quickly and straightforwardly create heat maps. The autoimage function is the most important
function in the autoimage package. The autoimage function automatically supplies a color scale with
the constructed image(s). The autoimage function can automatically create heat maps for responses
on an irregular grid, similar to the image.plot function. In fact, the autoimage function relies on the
poly.image function from the fields package to create heat maps for this type of data, which is the
function used by the image.plot function for the same purpose. Additionally, the autoimage package
can natively create heat maps for non-gridded data by automatically interpolating the surface onto a
regular grid before plotting using the akima package1 (Akima and Gebhardt, 2016). The autoimage
function can create a matrix of heat maps with either individual or shared color scales automatically,
without the use of additional user code or R packages. Additionally, functionality for coordinate
projection is available automatically in the autoimage function using the mapproject function in the
mapproj package (McIlroy, 2015). Additional features can be added to the plotted images (even
for projected coordinates) using the plines, ppoints, ptext, and related functions available in the
autoimage package.

We now summarize the similarities and differences between the native functionality of the autoim-
age package and the previous tools discussed. Most of the tools automatically include a color scale
with the plotted image, similar to the autoimage function. The lattice, sp, and ggplot2 packages can
create a sequence of heat maps with a common color scale. The image.plot function can be used in
combination with the par function to create a matrix of heat maps with individual color scales. The
lattice, sp, and ggplot2 packages can be used in combination with the gridExtra package to produce
a matrix of heat maps with individual color scales. The autoimage function has native functionality
for creating a matrix of heat maps with either a common or individual color scales. In contrast, only
the autoimage and image.plot functions can natively create heat maps for data on an irregular grid.
Additionally, only the autoimage package can natively create heat maps for non-gridded data (by
automatically interpolating the responses onto a regular grid before plotting). The sp, ggplot2, and
autoimage packages support coordinate projection of longitude/latitude coordinates, though only
the ggplot2 and autoimage packages can produce heat maps if the projected coordinates result in an
irregular grid. Table 1 summarizes the features of the heat map-generating tools mentioned above. If a
feature is not natively available, but becomes available by using a relevant package or function, then
the appropriate tool is listed.

The feature set for creating heat maps using the ggplot2 package largely overlaps with the autoim-
age package, especially if additional packages are used to extend the functionality of ggplot2. A user
may wonder whether the the autoimge package has any other advantages that would support its use
over the more well-known and broadly capable ggplot2 package. As previously mentioned, ggplot2

1The akima package has a restrictive license and must be installed manually. We plan to replace akima with a
package offering similar functionality, but a with more permissive license, in a future autoimage release.
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Package or
function name

Color
scale

Irregular
grid

Non-
gridded

data

Shared
color
scale

Individual
color
scales

Coordinate
projection

image
filled.contour x

fields x x par
lattice x x gridExtra

sp x x gridExtra x
ggplot2 x x gridExtra x

autoimage x x x x x x

Table 1: Feature comparison for several functions and packages used for creating heat maps. “x”
indicates the tool natively includes that feature. A function or package name indicates that the
functionality is easily obtainable using that function or package.

requires that the original (unprojected) data be observed on a regular grid, while the autoimage pack-
age supports heat map creation for data on regular and irregular grids, as well as non-gridded data.
Another advantage of the autoimage package is that it renders a sequence of heat maps for projected
coordinates faster than the ggplot2 package. In order to compare the speed of heat map generation
using the autoimage and ggplot2 packages when natively projecting the coordinates before plotting,
we constructed a matrix of 36 heat maps (with a common color scale) using coordinates observed
on a regular 116×50 grid and projected the coordinates using the Lambert projection. Creating the
heat maps on a mid-2012 MacBook Pro with a 2.6 GhZ Intel Core i7 processor and 16 GB of RAM
took roughly 4 seconds using the autoimage package, but over 12 minutes using the ggplot2 package.
This is by no means an exhaustive timing comparison, but the result suggests that when coordinate
projections are utilized in creating a matrix of heat maps, the autoimage package can render the plot
more quickly than the ggplot2 package.

autoimage examples

We now examine the capabilities of the autoimage package in more detail. The most important
functions in autoimage are the pimage and autoimage functions. We illustrate the basic usage of these
functions using two data sets: the first is the irregularly-gridded narccap data previously discussed,
while the second is a set of non-gridded geochemical measurements for 960 locations in the state of
Colorado. The Colorado geochemical measurements were obtained by the United States Geological
Survey (USGS) as a baseline for the natural variation in soil geochemistry in Colorado (Smith and
Ellefsen, 2010) . The data are stored as a data frame with 960 rows and 31 columns. easting, northing,
latitude, and longitude variables are provided in the data frame, as well as Aluminum (Al), Calcium
(Ca), Iron (Fe), and many more chemical measurements. The Colorado data are available in the co data
set in the gear package (French, 2015).

The autoimage function is a generalization of the pimage function, so we discuss the pimage
function first.

Basic usage of the pimage function

The most important arguments of the pimage function are x, y, and z. x and y are the coordinate
locations and z is the responses associated with the coordinates. x, y, and z can have differing formats
depending on the type of data to be plotted. If the data are observed on a regular grid, then z will be a
matrix with dimensions matching the dimensions of the grid and x and y will be vectors of increasing
values that define the grid lines. If the data are observed on an irregular grid, then z will be a matrix
with dimensions matching the dimensions of the grid, and x and y will be matrices whose coordinates
specify the x and y coordinates of each value in z. If the data are not on a grid, then x and y will be
vectors specifying the coordinate locations, and z will be the vector of responses at each coordinate. If
the data are not on a grid, then the data are automatically interpolated onto a grid before plotting. The
command

pimage(x = lon, y = lat, z = tasmax[,,1])

is used to create a heat map of the tasmax measurements for the first day of the narccap data. This
heat map is shown in Figure 3. Recall that the narccap data are observed on an irregular grid. A
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Figure 3: A heat map of the tasmax measurements for the first day of the narccap data.

heat map of the Aluminum measurements for the non-gridded co data set is created by executing the
commands

data(co, package = 'gear')
pimage(co$longitude, co$latitude, co$Al)

with the resulting heat map shown in Figure 4.

We now discuss other basic arguments used by the pimage function.

The first two arguments we discuss are the col and legend arguments. The color scheme used for
coloring a heat map is of great importance. The default color scheme used in the autoimage package
is the viridis color scheme from the viridisLite package. This color scheme is, “. . . designed in such a
way that [it] will analytically be perfectly perceptually-uniform, both in regular form and also when
converted to black-and-white. [It is] also designed to be perceived by readers with the most common
form of color blindness.” (Garnier, 2016) The color scale can be modified by passing a vector of colors
to the col argument through the ellipses argument (...), as in the image function in the graphics
package. The orientation of the color scale can be changed using the legend argument. The default
value is legend = 'horizontal', which produces a color scale horizontally underneath the image.
The color scale can be removed by specifying legend = 'none' or can be placed vertically along the
right side of the image by specifying legend = 'vertical'. A heat map of the first day of narccap
tasmax measurements with a vertical color scale using 6 colors from the magma color palette in the
viridisLite package is created by executing the command

pimage(lon, lat, tasmax[,,1], col = viridisLite::magma(6), legend = 'vertical')

The resulting heat map is shown in Figure 5.

We now discuss arguments related to coordinate projection and adding geographic maps to an
image. Longitude and latitude coordinates can be projected before plotting by specifying the proj,
parameters, and orientation arguments. When specified, the coordinates are projected using the
mapproject function in the mapproj package. proj specifies the name of the projection to utilize (the
default is 'none', i.e. no projection). The parameters argument specifies the parameter values of the
chosen projection, and orientation can be used to change the orientation of the projection. See the
mapproject function in the mapproj function for more details regarding these arguments. Several
geographic maps can be automatically added to the image by specifying the map argument. The
available geographic maps come from the maps package (Brownrigg et al., 2016), and include the
world, usa, state, county, france, nz (New Zealand), italy, lakes, and world2 maps. Interested users
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Figure 4: A heat map of the Aluminum measurements for the co data set.
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Figure 5: A heat map of the tasmax measurements for the first day of the narccap data using a custom
color scheme and vertical color scale.
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can find more details about these maps in the maps package. We now create a heat map with projected
coordinates for the first day of narccap tasmax measurements. We utilize the Bonne projection using
45 degrees as the standard parallel. We also add a geographic map of the continental United States
(U.S.). Note that a grid is automatically added to the image because latitude and longitude parallels
are not straight for most projections. The command

pimage(lon, lat, tasmax[,,1], proj = 'bonne', parameters = 45, map = 'usa')

produces the heat map in Figure 6.
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Figure 6: A heat map of the tasmax measurements for the first day of the narccap data using projected
coordinates with an added geographic map of the continental U.S.

The last major argument to the pimage function is the lratio argument. This argument controls
the relative height or width of the color scale in comparison with the main plotting area. Increasing
lratio increases the thickness of the color scale, while decreasing lratio decreases the thickness of
the color scale.

Additional customizations to heat maps produced by the pimage function can be made via the
ellipses (...) argument. This includes adding custom geographic maps and points to the image,
customizing the grid lines created when the coordinates are projected, further customizing the appear-
ance of the color scale, and customizing the axis labels. These customizations are discussed in detail in
the vignette included in the autoimage package, which can be accessed by executing the command
vignette('autoimage').

Basic usage of the autoimage function

We next discuss the autoimage function, which generalizes the pimage function to create a heat map
with a sequence of images. The arguments for the autoimage and pimage functions are mostly the
same, and we replicate their discussion only when necessary.

The structure of the z argument for the autoimage function may vary slightly from the pimage func-
tion. Specifically, if multiple gridded images are to be constructed, then z will be a three-dimensional
array instead of a matrix. Each element of the third dimension of z corresponds to the matrix of
gridded values for each image. If images for multiple non-gridded variables are to be constructed,
then z will be a matrix where each column corresponds to a different variable. The autoimage function
automatically constructs a sequence of images with a common color scale. If individual color scales
are desired for each image, then the common.legend argument can be set to FALSE. The size argument
can be used to specify the layout of the sequence of images, similar to the mfrow argument of the
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par function in the graphics package. If this is not specified, the autosize function in the autoimage
package is used to automatically choose the layout, with a tendency to produce a layout closer to
square dimensions. We produce a 1×3 matrix of images with a common color scale for the narccap
data using the command

autoimage(lon, lat, tasmax[,,1:3], size = c(1, 3))

as shown in Figure 7. Similarly, we create a 2×2 layout of images for the Colorado geochemical
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Figure 7: A heat map of the narccap data set tasmax measurements in a 1×3 layout.

measurements by passing 4 columns of the co data frame to the autoimage function. The values of
each variable have substantially different ranges, so we use individual color scales for each image.
Titles are added to each image using the main argument by providing a character vector whose length
matches the number of plotted images. Executing the command

autoimage(co$lon, co$lati, co[,c('Al', 'Ca', 'Fe', 'K')], common.legend = FALSE,
main = c('(a) Aluminum %', '(b) Calcium %', '(c) Iron %', '(d) Potassium %'))

produces Figure 8.

It is natural to add a common title to a heat map with multiple images. This can be accomplished
by passing the desired title to the outer.title argument. The title will be added in the outer margin
of the resulting heat map. The size of the outer margins should be specified using the oma argument of
the par function of the graphics package before adding the common title. However, a sensible choice
for the size of the outer margins is automatically made by the autoimage package if this is not specified
by the user. We create the heat map of narccap tasmax measurements shown in Figure 9 by executing
the command

autoimage(lon, lat, tasmax, outer.title = 'tasmax for 5 days')

Additional customizations to heat maps produced by the autoimage function can be made via the
ellipses (...) argument. In addition to the customizations mentioned in the context of the pimage
function, this includes the ability to change the appearance of the common title. These customizations
are discussed in detail in the vignette included in the autoimage package, which can be accessed by
executing the command vignette('autoimage').

Richer plots using the autolayout and autolegend functions

Suppose we want to add custom features to a sequences of images, with each image receiving different
features. One can create a richer sequence of images using the autolayout and autolegend functions.

The autolayout function partitions the graphic device into the sections needed to create a sequence
of images. The most important function arguments include size, legend, common.legend, and lratio,
which correspond to the same arguments in the pimage and autoimage functions. The outer argument
specifies whether a common title will be utilized in the plot. The default is outer = FALSE, indicating
that no common title will be added to the plot. When autolayout is called, numbers identify the
plotting order of the sections, though these can be hidden by setting show = FALSE. As an initial
example, we create a 2×3 matrix of images with a common vertical color scale. The command

autolayout(c(2, 3), legend = 'v')
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Figure 8: A heat map of various geochemical measurements taken in Colorado.
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Figure 9: A heat map of the NARCCAP tasmax measurements with a common title.
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Figure 10: A 2×3 matrix of plotting regions with a common vertical legend created by the autolayout
function.

produces the plot in Figure 10.

After creating the layout of a complicated heat map using the autolayout function, the images
should be created using the pimage function while specifying legend = 'none'. After the desired
image or set of images is created, one can automatically add the appropriate legend by calling
autolegend. The autolegend function recovers relevant color scale parameters from the most recent
pimage call. Consequently, if a common legend is desired, it is important to specify a common zlim
argument among all relevant pimage calls.

Various features can be added to the images using the ppoints, plines, ptext, psegments, parrows,
and ppolygon functions. These are analogues of the points, lines, text, segments, arrows, and
polygon functions in the graphics package, to be used with images containing projected coordinates.

We provide an (unrealistic, but informative) example of the kinds of plots these functions can be
used to create. Suppose we wish to create a heat map for both the narccap and Colorado geochemical
data sets. We desire to add a geographic map for each state in the U.S. for the narccap data while using
the Mercator projection to transform the coordinates before plotting. We desire to plot the Aluminum
measurements for the Colorado data. We want a custom color scale similar to the jet color scheme
in Matlab. We desire to project the coordinates before plotting using the Bonne projection with a
reference latitude of 39 degrees. We also desire to add geographic maps of the relevant U.S. counties
to the map, along with labels for select Colorado cities. Lastly, we will add a large, purple title to the
two heat maps.

We begin by obtaining some of the relevant information for these plots. The borders for the
continental U.S. states is available in the state map in the maps package. However, we must extract
the borders of Alaska and Hawaii from the world map in the maps package. Executing the commands

data(worldMapEnv, package = 'maps')
hiak <- maps::map('world', c('USA:Hawaii', 'USA:Alaska'), plot = FALSE)

loads and extracts the borders for Hawaii and Alaska. The results are stored in a list named hiak with
named vectors x and y containing the coordinates of the borders. Each state border is separated by an
NA value. The commands

data(us.cities, package = 'maps')
codf <- us.cities[us.cities$country.etc == 'CO', ]
codf <- codf[c(3, 5, 7:10, 18), ]

loads the us.cities data set from the maps package, extracts the Colorado cities from this data set,
then stores a small sample of these Colorado cities in the codf data frame. Information related to the
name, longitude, and latitude of each city is included in the data frame.

Having obtained the relevant information, we setup a 1×2 matrix of images with individual
horizontal color scales and an area for a common title using the command:

autolayout(c(1, 2), legend = "h", common.legend = FALSE, outer = TRUE)
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We now create a heat map for the first day of NARCCAP tasmax measurements using the command

pimage(lon, lat, tasmax[,,1], legend = 'none', proj = 'mercator',
map = 'state', lines.args = list(col = 'grey'))

Note that legend = 'none' since this will be added afterward using the autolegend function. The
Mercator projection was chosen via the proj argument, and the state geographic map was added.
The color of the geographic map was changed by passing the lines.args argument to pimage. The
lines.args argument is a named list with components matching the arguments of the lines function
in the graphics package, and changes the appearance of any geographic maps plotted using the pimage
function. We next add the state borders for Hawaii and Alaska using the plines function, title the
heat map, and add the color scale to the image by executing the following commands:

plines(hiak, proj = 'mercator', col = 'grey')
title('tasmax for North America')
autolegend()

Note the specification of the projection and line color in the plines function call.

Next, we construct the image for the Colorado Aluminum measurements using the commands

pimage(co$lon, co$lat, co$Al, map = 'county', legend = 'none',
proj = 'bonne', parameters = 39, paxes.args = list(grid = FALSE),
col = fields::tim.colors(64), lines.args = list(col = 'grey'))

Note the custom color scheme specified by the col argument. Also, the paxes.args argument is passed
to the pimage function to suppress the grid lines that would normally be plotted when a projection is
used. The locations and names of the Colorado cities are added to the image using the commands

ppoints(codf$lon, codf$lat, pch = 16, proj = 'bonne')
ptext(codf$lon, codf$lat, labels = codf$name, proj = 'bonne', pos = 4)

A title and color scale are added to the image using the commands

title('Colorado Aluminum levels (%)')
autolegend()

Lastly, we specify a large common title for the heat maps using the mtext function in the graphics
package. Specifically, we execute the command:

mtext('Two complicated maps', col = 'purple', outer = TRUE, cex = 2)

The plot resulting from the commands listed in this section is shown in Figure 11.
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Figure 11: A complicated set of heat maps created using the autolayout and autolegend functions.
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Summary

We have introduced the autoimage package for constructing heat maps. The autoimage package
natively supports: 1. automatic inclusion of a color scale with the plotted image, 2. construction
of heat maps for responses observed on regular or irregular grids, as well as non-gridded data, 3.
construction of a matrix of heat maps with a common color scale, 4. construction of a matrix of
heat maps with individual color scales, 5. projecting coordinates before plotting, 6. easily adding
geographic borders, points, and other features to the heat maps. We believe that the breadth of native
features, simplicity, and speed of the autoimage package make it a unique contribution to the R user
community in comparison with other R tools that can be used for creating heat maps. We note however
that the autoimage package is a specialized tool and is limited to the construction of heat maps. This is
in contrast to other plotting packages mentioned earlier, such as the lattice, sp, and ggplot2 packages,
which have many plotting capabilities unrelated to heat maps.

A number of additional features and heat map customizations are available in the autoimage
package, but were not discussed in order to shorten the length of this article. Additional dis-
cussion and examples may be found in the documentation of the autoimage package. A more
detailed introduction to the capabilities of the autoimage package can be accessed by executing
the command vignette('autoimage'). Additionally, a vignette comparing some of the heat map
capabilities of the autoimage and ggplot2 packages can be accessed be executing the command
vignette('ggplot2-comparison').

The source code for the autoimage package is publicly hosted at https://github.com/jpfrench81/
autoimage. Bugs and other issues may be reported there. Additionally, interested parties are encour-
aged to submit improvements for the autoimage package at the GitHub repository listed above.
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Market Area Analysis for Retail and
Service Locations with MCI
by Thomas Wieland

Abstract In retail location analysis, marketing research and spatial planning, the market areas of
stores and/or locations are a frequent subject. Market area analyses consist of empirical observations
and modeling via theoretical and/or econometric models such as the Huff Model or the Multiplicative
Competitive Interaction Model. The authors’ package MCI implements the steps of market area
analysis into R with a focus on fitting the models and data preparation and processing.

Introduction

A market area (also called trading area , service area or catchment area) is a part of the earth’s surface
where the actual or potential customers of a supply location come from. This supply location can be
any kind of location which provides goods and/or services and generates a geographically segmented
market. In retailing, a supply location can be a single store, a retail agglomeration (planned or
unplanned shopping centre) or even an entire city (Berman and Evans, 2013; Löffler, 1998).

The market area of a store/location can be regarded as the spatial equivalent to its sum of all
customers and/or sales. The total customers/sales of a supply location can be determined by summing
the customer flows/expenditures from each geographic region in its market area (Huff and McCallum,
2008; Rodrigue et al., 2006). For practical reasons, a market area can also be divided by zones of market
penetration and/or distance/travel time (Berman and Evans, 2013).

Market areas of retail locations result from the consumer spatial shopping behaviour, more
precisely, their store choice . Thus, a market area is influenced by many factors such as the transport
costs (e.g. distance, travel time) between customers and locations and, of course, the characteristics of
the competitors (e.g. perceived "attraction", pricing, image or the opportunity for multi-purpose and
comparison shopping). Mostly, the market areas of competing supply locations overlap, which means
that they are in spatial competition (Rodrigue et al., 2006; Wieland, 2015a).

Traditionally, market area analysis includes the delineation and segmentation of market areas and
can be divided into inductive-empirical and deductive-theoretical approaches. The first type consists
of constructing market areas based on empirical observations such as point-of-sale (POS) surveys
(customer spotting), while in the latter approach this work is done by using mathematical market area
models (Löffler, 1998). Modern market area analyses are mostly a combination of both, especially
when using econometric market area models which are fitted by empirical data (Wieland, 2015a).

Market area models can be used in retail location analysis to find new locations, to evaluate
the existing outlets or to assess the impact of changes in the competitive landscape (Berman and
Evans, 2013; Huff and McCallum, 2008). Market area analyses are also subject of governmental spatial
planning in Germany (Wolf, 2012). The econometric models can also be utilized to identify variables
influencing consumer decisions and market areas and to check hypotheses about these relations, which
means to find out what affects store choice (Wieland, 2015a). The usage of market area models can
also be transferred to other service locations, such as health services (Jia et al., 2015).

This paper presents two market area models, the Huff Model and the Multiplicative Competitive
Interaction (MCI) Model, and their implementation into R by the authors’ package MCI (Wieland, 2016).
Yet, only the basic Huff Model formula is integrated in R by the packages SpatialPosition (Giraud and
Commenges, 2016), which can be used especially for graphical visualization, and huff-tools (Pavlis
et al., 2014), which combines the basic formulation with GIS functions. In contrast, the emphases of
the MCI package lie on 1) fitting the MCI Model and the Huff Model via OLS (ordinary least squares)
regression and nonlinear techniques, respectively, and 2) the steps of processing and transforming
empirical data to be usable in the models (especially working with interaction matrices).

Market area models: theory and application

Almost all market area models have in common that they are based on an attraction/utility function
including transport costs and further characteristics of the supply locations which are subjects of a
trade-off by the consumers. The dependent variable of these models is the store choice and/or the
choice probability and/or the market shares of the stores/locations (Wieland, 2015a).

The first retail market area models (Reilly, 1929; Converse, 1949) were deterministic , which means
that each customer origin is assigned completely to one supply location while overlapping market
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areas are not envisaged. Furthermore only two supply locations can be processed and the explaining
variables of the models are not founded theoretically. These gaps were filled by Huff (1962, 1963,
1964) by introducing his probabilistic market area model. An important content enhancement and, at
the same time, an econometric transformation of the Huff Model was introduced in the form of the
Multiplicative Competitive Interaction Model by Nakanishi and Cooper (1974, 1982).

The Huff Model

Theoretical background and formulation

The basis of the Huff Model is the following multiplicative utility function with two explanatory
variables representing two determinants of store choice (Huff and Batsell, 1975):

Uij = Aγ
j d−λ

ij , (1)

where Uij is the utility of the supply location j for the customers at origin i, Aj reflects the attraction
of supply location j and dij contains the transport costs customers from i have to take to reach j. The
exponents γ and λ are weighting parameters.

The attraction is translated as the size of the location due to the increasing probability for a
"successful" shopping trip on condition of consumer uncertainty (the greater the locations’ offer, the
more likely is to get the desired goods). The size is operationalized by the sales area of the locations.
But, as the consumers’ decision costs normally rise with an increasing number of offered goods, the
marginal utility of the locations’ offer decreases which is reflected by a degressive weighting of size
(0 < γ < 1). The indicator for the transport costs is the travel time from i to j, reflecting the time
consumed by a shopping trip. To integrate the opportunity costs and the perceived disutility of
traveling, the travel time is weighted negatively and progressively (|λ| > 1) (Huff, 1962).

The parameter λ also reflects the range of the offered goods dependent on the shopping frequency:
the more high-order the good/less frequently purchased, the less is the disutility of transport costs
(Güssefeldt, 2002). But this distance decay function of the power type can also be replaced by an
exponential or a logistic function (Kanhäußer, 2007). As suggested by Huff (1962), also the attraction
function can be logistic to better reflect the effect of decreasing marginal utility of size.

Derived from the behavioral scientific Luce choice axiom (Luce, 1959), the consumer decision in
the Huff Model is regarded as probabilistic. The probability to choose the alternative j from a set of
alternatives (j = 1, ..., n) is the quotient of its utility Uij and the sum of the utilities of all alternatives
(Huff, 1962):

pij =
Uij

∑n
j=1 Uij

=
Aγ

j d−λ
ij

∑n
j=1 Aγ

j d−λ
ij

, (2)

where pij is the probability that the customers from origin i travel to location j, what can be called
interaction probability , where: ∑n

j=1 pij = 1 and 0 < pij < 1. These probabilites can be interpreted as
market shares of location j in origin i, what can be called local market shares . These shares implicitly
represent a final state of consumer preference patterns in a spatial equilibrium (Huff and Batsell, 1975).
Thus, in the Huff Model, the revenues of a retail store/location j depend on its own attraction, the
attraction of all competitors and the transport costs between all locations and the customer origins.

The expected customer/expenditure flows from i to j are estimated by multiplying the local market
shares with the local market potential (Huff, 1962):

Eij = pijCi, (3)

where Eij is the number of expected customer/purchasing power flows from origin i to location j and
Ci is the total market potential (number of potential customers or purchasing power) in i.

The complete market area of location j is the sum of all regional customer or purchasing power
flows, while the former represents the total number of customers and the latter equals the total sales
of the location, e.g. within a year (Huff, 1964):

Tj =
m

∑
i=1

Eij, (4)

where Tj is the market area of j containing m submarkets, normally measured in persons or money.
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i j dij Aj Uij ∑ Uij pij Ci Eij

i1 j1 di1 j1 Aj1 Ui1 j1 ∑ Ui1 pi1 j1 Ci1 Ei1 j1

i1 j2 di1 j2 Aj2 Ui1 j2 ∑ Ui1 pi1 j2 Ci1 Ei1 j2

i1 j3 di1 j3 Aj3 Ui1 j3 ∑ Ui1 pi1 j3 Ci1 Ei1 j3

i2 j1 di2 j1 Aj1 Ui2 j1 ∑ Ui2 pi2 j1 Ci2 Ei2 j1

i2 j2 di2 j2 Aj2 Ui2 j2 ∑ Ui2 pi2 j2 Ci2 Ei2 j2

... ... ... ... ... ... ... ... ...

im jn dim jn Ajn Uim jn ∑ Uim pim jn Cim Eim jn

Table 1: Huff interaction matrix (schematic).

Empirical usage

While working with the Huff Model, the first step is to delineate the study area itself and to record the
focused origins and locations. The explanatory variables must be observed empirically by mapping
the regarded stores/locations (Aj) and calculating travel times (dij), respectively (Huff, 1962).

All data is stored into a special kind of linear table that is called interaction matrix and is the
basis for all further calculation steps (see Table 1). The interaction matrix contains one row for each
(potential) spatial interaction between the origins, i (where i = 1, ..., m), and the locations, j (where
j = 1, ..., n), so the number of rows sums up to m ∗ n. For every row, the utilities and probabilities are
calculated using the formulas mentioned above (Wieland, 2015a).

Many approaches were developed to estimate the weighting coefficients by nonlinear iterative
techniques. Huff (1962) showed a way to estimate λ with a fitting algorithm comparing expected and
observed market shares by correlation coefficients while keeping γ constantly equal to one. But, if
pij, the dependent variable in the Huff Model, was observed, probably the best way to estimate the
parameters is the econometric transformation of the model which was achieved by the Multiplicative
Competitive Interaction Model by Nakanishi and Cooper (1974) (see the next section).

In many cases, no empirical market shares are available but only observed total sales of stores or
locations, Tj. Thus, many studies focus the model fitting by nonlinear optimization algorithms based
on empirical total values (Baecker-Neuchl and Wagenseil, 2015; De Beule et al., 2014; Güssefeldt, 2002;
Marinov and Czamanski, 2012; Orpana and Lampinen, 2003; Klein, 1988; Yingru and Lin, 2012). In the
following, a new optimization algorithm of this type is introduced which is based on the idea of the
local optimization of attraction approach by Güssefeldt (2002) (which is the only one with an explicit
theoretical fundament) and features of other mentioned procedures.

A new optimization algorithm for the Huff Model

Consider a location system with j supply locations (where j = 1, ..., n), where Tjobs
defines the real

(observed) annual sales of j. Güssefeldt (2002) argues that every store or location has its own unknown
revenue function and the sales (=revenues) depend on its own attraction (=input) and each competitors’
behaviour. The attraction variable in the Huff Model, Aj, is a proxy variable for size (e.g. sales area)
reflecting the extent of offers which is the input in the unknown revenue function. But this non-
adjusted attraction measure does not reflect the "real" attraction because every competitor modifies
the input in his revenue function (e.g. via marketing efforts) without any change in the size variable.

Thus, the expected sales using non-adjusted attractions in the Huff Model, Tjexp , do not correspond
to the observed sales what can be measured on the local level (which means a single store/location)
by the absolute percentage error :

APEj =
|Tjexp − Tjobs

|
Tjobs

, (5)

where Tjexp is the expected total sales of supply location j (Huff Model result), Tjobs
is the observed total

sales and APEj is the absolute percentage error for supply location j.
Since the algorithm by Güssefeldt (2002) addresses the local level, there is no fit measure for the

global level (which means the model fit for the complete location system). The global model fit can be
evaluated in different ways, where three fit measures were already used in the context of optimizing
the Huff Model: the mean absolute percentage error (MAPE) and a PseudoR2 measure, both used by
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De Beule et al. (2014), and the global error (GE) used by Klein (1988):

MAPE =
1
N

N

∑
n=1

|Tjexp − Tjobs
|

Tjobs

, (6)

where Tjexp is the expected total sales of location j (Huff Model result), Tjobs
is the observed total sales

and N is the number of objects.

PseudoR2 =
var

(
Tjobs

)
− var

(
ε j

)
var

(
Tjobs

) , (7)

where Tjobs
is the observed total sales and ε j is the residuum, Tjobs

− Tjexp .

GE =
∑ |ε j|
∑ Tjobs

, (8)

where Tjobs
is the observed total sales and ε j is the residuum, Tjobs

− Tjexp .

Since the real sales are known and on condition that the location attraction and the sales are related
to each other, the attraction Aj can be described as a function of the sales (Güssefeldt, 2002):

Aj = a + bTj, (9)

where Aj is the predicted attraction of location j, Tj is the total sales of j, a is the intercept and b is
the slope of the attraction function. As every supply location has its own revenue function (each
competitor has an individual factor use), the attraction function is also different for each store/location.

On condition that an interval is known, this function can be parametrized by calculating the slope
using the difference quotient and the intercept, thereafter (Güssefeldt, 2002). Unlike in the mentioned
approach, this function must pass the origin because in the Huff Model with its multiplicative utility
function (Formula 1), an attraction equal to zero (Aj = 0) must result in an utility equal to zero
(Uij = 0) which results in local market shares equal to zero (pij = 0, Formula 2). Thus, the total
sales (Formulae 3 and 4) must be equal to zero (Tj = 0), too. This is a logical consequence from the
theoretical basement of the Huff Model but is also part of the principle of logical consistency of market
shares in marketing research (Cooper and Nakanishi, 2010).

Thus, formula 9 has no intercept (a = 0) which means a directly proportional relation between
sales and attraction. But, as the revenue function differs by each supply location, the attraction function
must also be parametrized for each store/location. The slope in the attraction function of location j
can be calculated via:

bj =
Aj − Aj0

Tjexp − Tj0
=

Aj

Tjexp

, (10)

where bj is the slope of the attraction function for j, Aj is the non-adjusted attraction of location j (such
as sales area), Tjexp is the total expected sales of j predicted by the Huff Model, Aj0 is the attraction
when the sales are equal to zero and Tj0 represents the sales when the attraction is equal to zero, both
equal to zero (Aj = 0⇔ Tj = 0). The adjusted attraction of supply location j can be calculated via:

Ajadj
= bjTjobs

, (11)

where Ajadj
is the adjusted attraction of j, bj is the slope of the attraction function for j and Tjobs

represents the real (observed) sales of j.
The relations mentioned above can be brought together in an optimization algorithm for the Huff

Model with respect to a location system with j locations (j = 1, ..., n) containing the following 8 steps:

1. Set a tolerance value, tolAPE, to define which difference between the real and the expected sales
of location j is accepted, e.g. tolAPE = 5, which means an accepted deviation of +/- 5 percent.
Define a transport costs weighting function (power, exponential or logistic) and the weighting
parameter(s) λ for formula 2.

2. Calculate the market areas for the location system and the total sales of the n locations using
formulae 2 to 4 with γ = 1 and the transport costs weighting as defined in step 1.

3. Calculate the absolute percentage error between the expected and the observed total sales of
location j (APEj) by formula 5. If the error APEj is smaller than the tolerance tolAPE, no further
local optimization for location j is needed, so you can repeat step 3 with location j + 1. If
APEj > tolAPE, go to step 4.

4. Calculate the slope of the attraction function by formula 10. Calculate the adjusted attraction
via formula 11.
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5. Save the adjusted attraction of location j, Ajadj
, in the actual Huff interaction matrix and repeat

the procedure beginning at step 2 with the next location, j + 1.

6. Repeat steps 2 to 5 for all locations (j = 1, ..., n).

7. After the last location j = n was processed, calculate the global fit measures for the complete
location system by formulae 6 to 8.

8. Repeat steps 2 to 7 for the complete location system until the local optima and/or the global
optimum is sufficiently approximated. The former can be evaluated by the tolerance value (step
3) for every j location, while the latter can be controlled by the global fit measures (step 7).

The Multiplicative Competitive Interaction (MCI) Model

Theoretical background and formulation

The Multiplicative Competitive Interaction Model (in short: MCI Model ) is based on the Huff Model
but also belongs to the model family of market share models which were developed in marketing
science. Thus, it can be regarded as a crossover of these two model families (Cliquet, 2013). The
fundamental theorem behind market share models is the following simple relationship between the
competitors’ characteristics and their market shares (Cooper and Nakanishi, 2010):

MSj =
Aj

∑n
j=1 Aj

, (12)

where MSj is the market share of competitor j and Aj is the attraction of j. This leads to two
characteristics of market shares which are summarized as logical-consistency requirements for market
shares: 0 < MSj < 1, and ∑n

j=1 MSj = 1, respectively (Cooper and Nakanishi, 2010). This market
share logic is obviously related to the probabilistic concept of the Huff Model when the term "market
shares" is replaced by "choice probabilities", "interaction probabilities" or "local market shares" and the
construct "attraction" is replaced by the construct "utility" (Wieland, 2015a).

Derived from the Huff Model, the MCI Model is explicitly formulated to regard a market which
is segmented into i submarkets (i = 1, ..., m) and which is served by j suppliers (j = 1, ..., n). The
attraction function is multiplicative and consists of h (h = 1, ..., H) explanatory variables which are
weighted exponentially to reflect their sensitivity (Nakanishi and Cooper, 1974):

pij =
∏H

h=1 Aγh
hj

∑n
j=1 ∏H

h=1 Aγh
hj

, (13)

where pij is the probability that the customers from submarket i choose supplier j, Ahj
is the value of

the h-th variable describing the object j, γh is the weighting parameter for the sensitivity of pij with
respect to the variable h. The next steps (customer or expenditure flows, total market area) can be
taken analogously to the Huff Model (Formulae 3 and 4).

The market can be subdivided in any kind of submarkets (e.g. customer groups, time periods,
geographic areas). When the market is segmented geographically, it is a matter of a Spatial MCI
Model , especially when integrating transport costs as an explanatory variable (Cliquet, 2013; Huff and
McCallum, 2008). The MCI Model can also be regarded as a generalization of the Huff Model, while
the Huff Model can be considered as a special case of multiplicative competitive interaction model.

The log-centering transformation

The models mentioned above are deterministic (no random variation) and nonlinear models which
cannot be estimated directly by common econometric techniques but by iterative algorithms (see the
former section) which do not allow statements about the statistical significance of the explanatory
variables and other inference statistics. The main breakthrough of the MCI Model is the transformation
of the nonlinear structure into a linear stochastic model which can be estimated via OLS (Ordinary
Least Squares) regression (Huff and McCallum, 2008).

This requires a re-arrangement of the model to be linear in parameters which is achieved by a
multi-step transformation of the variables using geometric means and logarithms for standardization
and linearization called the log-centering transformation (Nakanishi and Cooper, 1974):

log
( pij

p̃i

)
=

H

∑
h=1

γh log

(
Ahj

Ãhj

)
+ log

(
εij

ε̃i

)
, (14)
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where p̃i and Ãhj
are the geometric means of pij and Ahj

, respectively, and ε̃i is the geometric mean
of the disturbance term (residuum) εij which is added to the original model to be stochastic. The
geometric means of pij and any submarket-related explanatory variable (such as travel time, dij) are
calculated on the submarket level. As in the original model, the transformation does not include an
intercept (regression through the origin) to match the logical-consistency requirements for market
shares (Nakanishi and Cooper, 1982).

Once the variables are transformed, the model function is linear in its parameters and can be
processed as a multiple linear regression model to be estimated by OLS regression (Rawlings et al.,
1998). Thus, the model allows to test hypotheses about the influence of store/location characteristics
(such as sales area, pricing) and transport costs (such as travel time, distance) on the local market shares
in the submarkets (customer origins) by interpreting the regression coefficients and their inference
statistics (Nakanishi and Cooper, 1974, 1982; Huff and McCallum, 2008).

After an estimation of the parameters, they can be included as exponents in the original nonlinear
model (Formula 13) to be utilized for market share/market area predictions (Nakanishi and Cooper,
1982; Huff and McCallum, 2008). It is also possible to integrate dummy variables reflecting qualitative
information (such as brands or store chains) or an intercept (if necessary). Since the former causes
problems in the multiplicative attraction/utility function (multiplication by zero) and the latter is
contrary to the logical consistency requirement, a different retransformation of the model called the
inverse log-centering transformation is required (Nakanishi and Cooper, 1982):

ŷij =
H

∑
h=1

γ̂h log

(
Ahj

Ãhj

)
, (15)

p̂ij =
eŷij

∑n
j=1 eŷij

, (16)

where ŷij is the transformed attraction/utility function and p̂ij is the expected response variable, the
interaction probabilities/market shares of the supplier j in the submarket i. Thus, in that cases, the
variables are processed as they were transformed in formula 14.

Empirical usage

In the first step, a MCI Model analysis requires the formulation of hypotheses and/or research
questions addressing the influence of the H explanatory variables on the market shares based on
theoretical considerations. The Huff Model can be regarded as a theoretical base since Huff (1962)
assumes size and transport costs as explanatory variables which can be tested by the MCI Model
(Kubis and Hartmann, 2007; Suárez-Vega et al., 2015). But the number of additional influences tested
is nearly unlimited and ranges from further store/location attributes like age or price level (Huff
and McCallum, 2008; Tihi and Oruc, 2012) to the surrounding coupling and competition potential
(Wieland, 2015a) to consumer-related subjective variables (Cliquet, 2013; González-Benito et al., 2000).

Since the delineation of the study area and the identification of the relevant competing locations
have an enormous impact on the results, these definitions should be made corresponding to the LIFO
(little in from outside) and LOFI (little out from inside) principles (Huff and McCallum, 2008). This
means that the majority of shopping interactions should take place within the study area.

The supplier characteristics can be obtained by mapping the relevant stores/locations and addi-
tional research. The market shares, pij, cannot be observed directly but have to be calculated based on
empirically observed shopping interactions (shopping trips and/or expenditures) which are collected
on the individual or household level. In a representative household survey (or, if not possible, a
point-of-sale survey), every respondent is asked for the destination(s) of the last shopping trip(s) at
the j location(s) and/or the associated expenditures (Huff and McCallum, 2008; Wieland, 2015a).

To calculate the local market shares of shopping trips and/or expenditures, the individual data
must be aggregated on the submarket level:

pij =
Oij

∑n
j=1 Oij

, (17)

where pij is the empirical market share of supplier j in submarket i and Oij equals the observed
frequencies/expenditures of the customers in i with respect to supplier j. ∑n

j=1 Oij is the empirical
equivalent to the total customer/purchasing power potential in i, Ci, in the Huff Model (formula
3). As in the Huff Model, the empirical market shares, pij, and the observed explanatory variables
(A1, ..., AH , dij) are stored in an interaction matrix (see Table 2).

Mostly, the observed variables cannot be processed directly: the log-centering transformation
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i j pij A1j A2j A3j ... AHj dij

i1 j1 pi1 j1 A11 A21 A31 ... AH1 di1 j1

i1 j2 pi1 j2 A12 A22 A32 ... AH2 di1 j2

i1 j3 pi1 j3 A13 A23 A33 ... AH3 di1 j3

i2 j1 pi2 j1 A11 A21 A31 ... AH1 di2 j1

i2 j2 pi2 j2 A12 A22 A32 ... AH2 di2 j2

... ... ... ... ... ... ... ... ...

im jn pim jn A1n A2n A3n ... AHn dim jn

Table 2: MCI interaction matrix (schematic).

requires every variable to be ratio-scaled, non-negative and greater than zero. Thus, also market
shares equal to zero, pij = 0, what may occur, are invalid. A simple way to correct the raw data
accepting a small bias is to increase the variable by a small constant (Kubis and Hartmann, 2007;
Wieland, 2015a) and/or to aggregate the submarkets (Perales, 2002; Tihi and Oruc, 2012). Anyway,
the raw data should be adjusted by removing singular instances and outliers to fulfil the LIFO/LOFI
requirements mentioned above (Huff and McCallum, 2008; Wieland, 2015a).

Interval scaled variables (e.g. consumer judgements in rating scales) which may contain negative
values can be transformed by the zeta-squared transformation (Cooper and Nakanishi, 1983):

zhij
=

Xhij
− Xhi

ρhi

, (18)

ζ2
hij

=

{ (
1 + z2

hij

)
if zhij

≥ 0(
1

1+z2
hij

)
if zhij

≤ 0
, (19)

where zhij
is the z-standardized score of Xhij

and ζ2
hij

is the zeta-squared value resulting from zhij
.

Nominal scaled variables (e.g. store chains, brands) cannot be processed directly in the MCI Model
but can be transformed into dummy variables which are ignored in the log-centering transformation.

All in all, an econometric market share/market area analysis using the MCI Model on condition of
existing research questions and hypotheses contains the following 8 steps:

1. Define the study area and divide it into i submarkets (here: customer origins).

2. Obtain the relevant variables: shopping trips and/or expenditures on the individual/household
level (Oij), H characteristics of the j regarded suppliers and the transport costs, dij.

3. If necessary, correct or transform the variables to match the requirements of the log-centering
transformation: if some Oij or other variables are equal to zero, add a constant, aggregate the
submarkets in the study area and remove outliers, respectively. If there are interval scaled
variables, transform them by formulae 18 and 19. If there are nominal variables, transform them
to dummy variables.

4. Calculate the market shares, pij, by formula 17.

5. Store the submarkets, suppliers, local market shares and the H explanatory variables in an
interaction matrix (see Table 2).

6. Apply the log-centering transformation (formula 14) to the previously created interaction matrix.

7. Apply the OLS regression to the log-centering transformed interaction matrix with log( pij
p̃i
)

as dependent variable treating the model like any other multiple linear regression model:
determine the estimators, compute fit measures and inference statistics for the hypothesis tests.

8. Interpret the model results. For market share predictions, insert the estimated parameters in the
nonlinear model using formula 13 or formulae 15 and 16.

R implementation

As outlined in the former section, market area analysis for retail and service locations requires a
mixture of descriptive and inference statistics, iterative optimization and, of course, a lot of processing
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and preparation of empirical data which may be even more complex (or, at least, more time-consuming)
than the models themselves. Except the Huff Model basis formulation which is implemented in R
by the packages SpatialPosition and huff-tools none of the mentioned models were integrated in R
yet. The former mentioned package is focused on graphical visualization and other spatial interaction
models while the latter combines the basic Huff formula with GIS-related functions. The Multiplicative
Competitive Interaction Model and the related procedures of data handling are just as little integrated
in R as the OLS and nonlinear fitting procedures for the Huff Model and the MCI Model, respectively.
The motivation of the presented package MCI is to fill this gap.

The MCI package

The Huff Model and the Multiplicative Competitive Interaction (MCI) Model are implemented in the
MCI package which is focused on:

1. Fitting the mentioned models by empirically observed data using the MCI linearization (log-
centering transformation) combined with OLS regression (functions mci.fit(), mci.transmat()
and mci.transvar()) and the Huff Model optimization algorithm described above (functions
huff.attrac() and huff.fit()).

2. The steps of data preparation and processing to make empirical data usable in these models,
especially the creation and processing of interaction matrices used in MCI analyses which is
subject of the function ijmatrix.create().

The MCI package also provides tools that can be used for descriptive analyses of empirical or
estimated market areas, such as zoning (see the function shares.segm()) and, of course, the basic
Huff and MCI formulations (see the functions mci.shares() and huff.shares(), respectively). The
correction of variables to match the MCI requirements can be done by the functions var.correct()
and var.asdummy().

The input of the most functions is required to be a "data.frame" where the first function argument
is the dataset name, followed by a set of variable names (columns) each one in double quotation marks
and further function arguments. Also, the output of nearly every function is a "data.frame", except
the mci.fit() function which returns an object of type "lm" and model.fit() which returns a "list".
Three functions (huff.decay(), model.fit() and shares.total()) also provide an optional graphical
output.

The package does not import any other packages (except some already implemented functions
from stats and graphics, of course) and does not contain any non-R scripts.

The data used in the following examples is distributed over several datasets to demonstrate the
several data sources and the components of a market area analysis, respectively. In fact, there is no
need to split the working data like this, but, of course, it is recommended since the voluminous data
may lead to confusion.

Examples

Analyzing market areas of single locations

The first example deals with a more descriptive analysis of empirical market areas obtained by a POS
survey (customer spotting technique). The package-included example dataset shopping1 is a survey
conducted at two supply locations in the east of Karlsruhe, Germany, in May 2016.

The dataset contains 434 surveyed individuals at both locations, including 410 cases from the main
survey and 24 cases from the pretest. Amongst other things, the respondents were asked about their
place of residence, their shopping preferences in general (last shopping trip with respect to different
goods) and their on-site shopping behaviour (duration of stay, expenditures). The customers’ origin is
stored in the column resid_code. The variable POS indicates the location: "POS1" is a town centre and
thus, an evolved retail agglomeration, while "POS2" is an out-of-town planned shopping centre.

It should be noted that a POS survey mostly does not fulfill the requirements of statistical represen-
tativity: besides that shopping behaviour differs by weekdays, time periods and, of course, weather,
independent from the size and heterogeneity of the sample, the statistical population is unknown.

library(MCI)
data(shopping1)
# The survey dataset
data(shopping2)
# Dataset with distances and travel times
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The first step is to filter the dataset since only the interviews are needed which were conducted at
both supply locations simultaneously. We subset the relevant data and store it into a new working
data frame (shopping1_adj) which we use to create an interaction matrix of type "data.frame" called
ijmatrix using the function ijmatrix.create():

shopping1_adj <- shopping1[(shopping1$weekday != 3) & (shopping1$holiday != 1)
& (shopping1$survey != "pretest"),]
# Removing every case from tuesday, holidays and the ones belonging to the pretest

ijmatrix <- ijmatrix.create(shopping1_adj, "resid_code", "POS", "POS_expen")
# Creates an interaction matrix based on the observed frequencies (automatically)
# and the POS expenditures (Variable "POS_expen" separately stated)

ijmatrix
interaction resid_code POS freq_ij_abs freq_i_total p_ij_obs

1 resid1-POS1 resid1 POS1 91 113 0.8053097
2 resid1-POS2 resid1 POS2 22 113 0.1946903
3 resid10-POS1 resid10 POS1 3 7 0.4285714
...

freq_ij_abs_POS_expen freq_i_total_POS_expen p_ij_obs_POS_expen
1 2318.25 3245.25 0.71435174
2 927.00 3245.25 0.28564826
3 30.00 328.00 0.09146341
...

The resulting data frame (rows 1-3 are displayed) contains the interaction (from each origin to
each destination) in the first column (interaction) and each origin and destination in the columns
resid_code and POS, respectively, both adopted from the column names in the input dataset. The
absolute number of respondents and the total value of expenditures from the origins, i, at the des-
tinations, j, is stored in freq_ij_abs and freq_ij_abs_POS_expen, respectively. The freq_i_total*
columns contain the total number/sum of observed customers/expenditures from each origin, while
the p_ij_obs* are the local market shares of customers and expenditures, pij, respectively. The names
are set automatically based on the original variable names (e.g. POS_expen).

The next step is the zoning of the empirical market areas by driving time using the function
shares.segm() and the travel time stored in the shopping2 dataset. The routes were calculated in R
using the package ggmap (Kahle and Wickham, 2013). We want to know how much of the customers
and expenditures come from origins with a maximal travel time of 10, 20, 30 and more than 30 minutes:

ijmatrix_dist <- merge(ijmatrix, shopping2, by.x = "interaction", by.y = "route",
all.x = TRUE)

# Adding the distances and travel times

visit <- shares.segm(ijmatrix_dist, "resid_code", "POS", "d_time", "freq_ij_abs",
0, 10, 20, 30)

# Segmentation by travel time using the number of customers/visitors
# Parameters: interaction matrix (data frame), columns with origins and destinations,
# variable to divide in classes, absolute frequencies/expenditures, class segments

expen <- shares.segm(ijmatrix_dist, "resid_code", "POS", "d_time",
"freq_ij_abs_POS_expen", 0, 10, 20, 30)

# Segmentation by travel time using the POS expenditures

visit
d_time_class POS1_abs POS1_rel POS2_abs POS2_rel

1 0-10 108 72.483221 58 40.277778
2 10-20 24 16.107383 62 43.055556
3 20-30 10 6.711409 12 8.333333
4 Other 7 4.697987 12 8.333333

expen
d_time_class POS1_abs POS1_rel POS2_abs POS2_rel

1 0-10 2858.25 76.418689 2900.0 34.354491
2 10-20 541.00 14.464274 4052.4 48.006255
3 20-30 283.00 7.566339 478.0 5.662568
4 Other 58.00 1.550698 1011.0 11.976686

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=ggmap


CONTRIBUTED RESEARCH ARTICLES 307

The "data.frame" output of the used function contains the segment classes, named based on the
input variable name (d_time_class), e.g. d_time_class="0-10" represents the zone up to 10 minutes
of travel time. The further columns contain the sums and the percentage shares for each location,
respectively, both named based on the original values (e.g. POS1_abs, POS1_rel).

We see that, at "POS1" (town centre) 108 surveyed customers come from an origin up to 10 minutes
of driving time what corresponds to 72.48% of all customers. At POS2 (out-of-town planned shopping
centre), only 40.28% of the visitors are generated from places of residence where to drive less or equal
to 10 minutes. The difference is more clear when looking at the expenditures: at the town centre,
76.42% of the observed expenditures are spent by customers from origins of the first driving time class,
while the share in the corresponding class at the shopping centre is 34.35%.

Since the survey was only conducted at these two supply locations but not at other possible com-
petitive locations, it would not make any sense to use these empirical market areas in an econometric
market area model. But, of course, it is possible to analyze the distance decay on the level of single
locations.

Before fitting and plotting distance decay functions, some corrections of the data have to be
made and, since we don’t have local market shares, the dependent variable reflecting the intensity of
interaction (surveyed visitors per 1,000 inhabitants) has to be calculated:

ijmatrix_dist$freq_ij_abs_cor <- var.correct(ijmatrix_dist$freq_ij_abs,
corr.mode = "inc", incby = 0.1)

# Correcting the absolute values (frequencies) by increasing by 0.1

data(shopping3)
ijmatrix_alldata <- merge(ijmatrix_dist, shopping3)
# Adding the information about the origins (places of residence) stored in shopping3

ijmatrix_alldata$visitper1000 <- (ijmatrix_alldata$freq_ij_abs_cor /
ijmatrix_alldata$resid_pop2015) * 1000

# Calculating the dependent variable
# visitper1000: surveyed customers per 1,000 inhabitants of the origin

ijmatrix_alldata <- ijmatrix_alldata[(!is.na(ijmatrix_alldata$visitper1000))
& (!is.na(ijmatrix_alldata$d_time)),]
# Removing NAs (data for some outlier origins and routes not available)

POS1 <- ijmatrix_alldata[ijmatrix_alldata$POS == "POS1",]
# Dataset for POS1 (town centre)
POS2 <- ijmatrix_alldata[ijmatrix_alldata$POS == "POS2",]
# Dataset for POS2 (out-of-town shopping centre)

A fit of distance decay functions can be done with the package function huff.decay() which
compares four types of possible distance decay functions (linear, power, exponential, logistic). For
both locations, "POS1" and "POS2", we test the influence of distance in km (d_km) and travel time in
minutes (d_time) on the dependent variable (visitper1000):

huff.decay(POS1, "d_km", "visitper1000")
Model type Intercept p Intercept Slope p Slope R-Squared Adj. R-squared

1 Linear 0.7354 2e-04 -0.0455 0.0038 0.216 0.1936
2 Power 1.9121 0.4434 -1.5267 2e-04 0.333 0.3139
3 Exponential 0.2788 0.0222 -0.1353 0.0044 0.2092 0.1866
4 Logistic 1.6999 0.0164 0.1823 0.0026 0.2311 0.2092

huff.decay(POS1, "d_time", "visitper1000")
Model type Intercept p Intercept Slope p Slope R-Squared Adj. R-squared

1 Linear 1.2112 0 -0.0585 1e-04 0.3516 0.3331
2 Power 34.6019 0.0289 -2.2968 3e-04 0.3211 0.3017
3 Exponential 0.691 0.6322 -0.1432 0.0027 0.23 0.208
4 Logistic 0.2659 0.7795 0.2058 6e-04 0.2893 0.2689

huff.decay(POS2, "d_km", "visitper1000")
Model type Intercept p Intercept Slope p Slope R-Squared Adj. R-squared

1 Linear 0.6734 0 -0.0316 7e-04 0.2812 0.2606
2 Power 5.7372 0.0348 -1.5978 0 0.3863 0.3688
3 Exponential 0.9161 0.8318 -0.1605 0 0.4086 0.3917
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4 Logistic -0.4868 0.4212 0.2043 1e-04 0.3444 0.3256

huff.decay(POS2, "d_time", "visitper1000")
Model type Intercept p Intercept Slope p Slope R-Squared Adj. R-squared

1 Linear 0.9353 0 -0.0411 1e-04 0.3706 0.3526
2 Power 213.9932 7e-04 -2.7363 0 0.4213 0.4048
3 Exponential 2.3946 0.14 -0.184 0 0.4191 0.4025
4 Logistic -1.8572 0.031 0.2441 0 0.3835 0.3659

The huff.decay() function returns a "data.frame" containing a summary of the regression results
and a plot of the four estimated functions and the observed values (see Figure 1). The output shows
the model estimators (Intercept and Slope), their p-values (p Intercept, p Slope) and the goodness
of fit measures (R-Squared, Adj. R-Squared) for every model type.

Figure 1: Distance decay functions for POS1 (top) and POS2 (bottom).

Note that the nonlinear models are not fitted via nonlinear regression but by linearization and
retransformation, thereafter, since the usually used distance decay functions mentioned above are
intrinsically linear (Rawlings et al., 1998). Internally, the linearized models are fitted via lm(). It is
important to say that the usage of logarithmic transformations has, apart from many advantages of lin-
earization, also serious drawbacks: with respect to gravity models, Silva and Tenreyro (2006) point out
that OLS fitting of log-transformed data produces significant biases depending on heteroscedasticity.
The same issue is also addressed by Manning and Mullahy (2001).

Huff (1962) assumed that a power function fits best to describe the distance decay. Since other types
of distance decay functions are possible, Kanhäußer (2007) uses the explained variance as a criterion
for choosing the best function type. Note that, strictly speaking, the R2 values of the models can not
be compared directly since they rest on different dependent variables. In the practical application, the
choice for the preferred function type should be based on examining the model results and the plot as
a case-by-case decision. With respect to R2 the best distance decay functions for the two locations are:

ÎijPOS1 = 1.91 d_km−1.53
ij , (20)
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ÎijPOS1 = 1.21− 0.06 d_timeij, (21)

ÎijPOS2 = 0.92 e−0.16 d_kmij , (22)

ÎijPOS2 = 213.99 d_time−2.74
ij , (23)

where ÎijPOS1 and ÎijPOS2 is the expected value of interaction intensity from i to j (visitors per 1,000
inhabitants) for the supply locations POS1 and POS2, respectively, d_kmij is the distance from i to j in
km, d_timeij is the travel time from i to j and e is Euler’s number ≈ 2.71828.

As expected, the distance/travel time influences the interaction intensity significantly and, as Huff
(1962) states, mostly exponentially. In the second case, the regression regarding POS1 with the travel
time, surprisingly, the best fit can be achieved by a linear function. But, all in all, the model fits can be
regarded as rather poor, since the highest R2 is equal to 0.42 in the fourth function (POS2 with travel
time). Of course, that is because the distance/travel time is just one important determinant of store
choice, while the attraction and other attributes of the retail locations are not considered here.

Econometric market area analysis using the MCI Model

Since, in the Huff Model, the store choices are explained by sales area and travel time, we want to test
these hypotheses empirically with respect to grocery shopping trips. First, we have to calculate the
dependent variable (market shares) and to link it to the explanatory variables in an interaction matrix,
then we need to apply the log-centering transformation and, finally, we have to fit the MCI Model.

As in the former example, we use the shopping1 dataset which also contains questions about the
general shopping behaviour. The respondents were asked about the destination of their last grocery
shopping trip (gro_purchase_code) and the related expenditures (gro_purchase_expen).

We have to clean our working dataset from respondents living outside our study area, since we
want to analyze the shopping patterns of the grocery shoppers in the eastern districts of Karlsruhe:

data(shopping1)
# Survey dataset
data(shopping3)
# Dataset containing information about the city districts
data(shopping4)
# Dataset containing the grocery stores
shopping1_KAeast <- shopping1[shopping1$resid_code %in%

shopping3$resid_code[shopping3$KA_east == 1],]
# Extracting only inhabitants of the eastern districts of Karlsruhe

From the adjusted dataset, we create an interaction matrix using the function ijmatrix.create()
with default values (no further adjusting except ignoring NA values). The calculation includes the
shopping trip frequency that is counted automatically and the expenditures that must be specified
separately by stating the variable containing the individual trip expenditures, gro_purchase_expen.
The interaction matrix is stored in a new "data.frame", ijmatrix.

ijmatrix <- ijmatrix.create(shopping1_KAeast, "resid_code", "gro_purchase_code",
"gro_purchase_expen")

ijmatrix
interaction resid_code gro_purchase_code freq_ij_abs freq_i_total p_ij_obs

1 resid1-ALDI1 resid1 ALDI1 10 186 0.053763441
2 resid1-ALDI11 resid1 ALDI11 0 186 0.000000000
3 resid1-ALDI2 resid1 ALDI2 0 186 0.000000000
...

freq_ij_abs_gro_purchase_expen freq_i_total_gro_purchase_expen
1 420.0 5270.0
2 0.0 5270.0
3 0.0 5270.0
...

p_ij_obs_gro_purchase_expen
1 0.0796963947
2 0.0000000000
3 0.0000000000
...
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The interaction matrix (rows 1-3 are displayed) shows the interaction (origin-destination) in
the first column interaction and the origins and destinations in the columns resid_code and
gro_purchase_code, respectively, adopted from the column names in the input dataset shopping1_KAeast.
The absolute number of respondents and the total value of expenditures from the origins, i, at the
destinations, j, is stored in freq_ij_abs and freq_ij_abs_POS_expen, respectively. The names are set
automatically based on the original variable names (e.g. POS_expen). The freq_i_total* columns con-
tain the total number/sum of observed customers/expenditures from each origin, while the p_ij_obs*
are the local market shares of customers and expenditures, pij, respectively.

Next, we calculate the total customers and expenditures and the corresponding over-all market
shares, respectively, using the function shares.total():

shares.total(ijmatrix, "resid_code", "gro_purchase_code", "p_ij_obs",
"freq_i_total")

# Total values for the shopping trips

suppliers_single sum_E_j share_j
1 ALDI1 11 0.039426523
2 ALDI11 1 0.003584229
3 ALDI2 3 0.010752688
4 ALDI4 1 0.003584229
...

shares.total(ijmatrix, "resid_code", "gro_purchase_code",
"p_ij_obs_gro_purchase_expen", "freq_i_total_gro_purchase_expen")

# Total values for the shopping expenditures

suppliers_single sum_E_j share_j
1 ALDI1 470.0 0.0492378608
2 ALDI11 60.0 0.0062856844
3 ALDI2 87.0 0.0091142423
4 ALDI4 80.0 0.0083809125
...

The resulting tables (rows 1-4 are displayed) contain 42 suppliers: in the first row, the store "ALDI1"
has a share of about 3.94% of the obtained shopping trips and about 4.92% of the related expenditures.
Obviously, the survey contains several singular instances and outliers: as can be seen in the second
and third row of the interaction matrix, there are observed market shares equal to zero. The table with
the total market areas show several stores only observed once (e.g. "ALDI11").

Thus, this interaction matrix cannot be processed in the MCI Model since it would not pass the
log-centering transformation. Consequently, the data has to be “cleaned” distinctly by creating a
corrected and simplified interaction matrix. Only stores obtained more than twice are incorporated
and the absolute values are increased by a small constant of 0.1 before calculating the shares.

ijmatrix_adj <- ijmatrix.create(shopping1_KAeast, "resid_code",
"gro_purchase_code", "gro_purchase_expen",
remSing = TRUE, remSing.val = 1,
remSingSupp.val = 2, correctVar = TRUE,
correctVar.val = 0.1)

# Removing singular instances/outliers (remSing = TRUE) incorporating
# only suppliers which are at least obtained three times (remSingSupp.val = 2)
# Correcting the values (correctVar = TRUE)
# by adding 0.1 to the absolute values (correctVar.val = 0.1)

There are still some observations that have to be excluded because, in the survey, any kind of
grocery shopping trip was inquired, including non-relevant stores and shopping channels (such as
bakeries, health food shops and even the local weekly market). There has been some incomplete
answers as well (gro_purchase_code="X_INCOMPLETE_STORE".) Thus, the interaction matrix has to be
adjusted again:

ijmatrix_adj <- ijmatrix_adj[(ijmatrix_adj$gro_purchase_code != "REFORMHAUSBOESER") &
(ijmatrix_adj$gro_purchase_code != "WMARKT_DURLACH") &
(ijmatrix_adj$gro_purchase_code != "X_INCOMPLETE_STORE"),]

# Remove non-regarded observations

Now, the interaction matrix (rows 1-3 are displayed) consists of 11 customer origins and 11
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suppliers (121 rows). Structured as mentioned above, there are no zero values anymore and the
absolute values (freq_ij_abs and freq_ij_abs_POS_expen) are increased by 0.1:

ijmatrix_adj
interaction resid_code gro_purchase_code freq_ij_abs freq_i_total

1 resid1-ALDI1 resid1 ALDI1 10.1 172.4
2 resid1-ALDI2 resid1 ALDI2 0.1 172.4
3 resid1-CAP1 resid1 CAP1 18.1 172.4
...

p_ij_obs freq_ij_abs_gro_purchase_expen freq_i_total_gro_purchase_expen
1 0.0585846868 420.1 4745.4
2 0.0005800464 0.1 4745.4
3 0.1049883991 224.1 4745.4
...

p_ij_obs_gro_purchase_expen
1 8.852784e-02
2 2.107304e-05
3 4.722468e-02
...

In the next step, we have to add the travel times stored in the dataset shopping2 (the route
calculation was made in R using the ggmap package) and the grocery store characteristics (sales area
in sqm and store chain, collected in June 2016 subsequent to the survey) from the shopping4 dataset:

ijmatrix_dist <- merge (ijmatrix_adj, shopping2, by.x="interaction", by.y="route")
# Include the distances and travel times (shopping2)

ijmatrix_alldata <- merge (ijmatrix_dist, shopping4, by.x = "gro_purchase_code",
by.y = "location_code")

# Adding the store information (shopping4)

The next step is to apply the necessary log-centering transformation to the interaction matrix. The
function mci.transmat() processes this transformation with a given number of MCI variables. The
functions output is a "data.frame" containing the transformed variables (ready for OLS regression):

ijmatrix_transf <- mci.transmat(ijmatrix_alldata, "resid_code", "gro_purchase_code",
"p_ij_obs", "d_time", "salesarea_qm")

ijmatrix_transf
resid_code gro_purchase_code p_ij_obs_t d_time_t salesarea_qm_t

1 resid1 ALDI1 0.5586409 0.060847455 -0.193400118
14 resid1 ALDI2 -1.4456805 -0.008788473 -0.193400118
23 resid1 CAP1 0.8119981 -0.091762709 -0.545582636
...
109 resid29 REWE1 -0.1893441 -0.060611802 -0.001514591
119 resid29 TREFF1 -0.1893441 -0.027694956 -0.169919022
6 resid3 ALDI1 -0.2768831 0.058442499 -0.193400118
...

In the transformed interaction matrix (2 x 3 rows are displayed), the column names of the origins
(resid_code) and destinations (gro_purchase_code) are adopted from the columns in the input dataset.
The metric MCI variables are marked with a "_t" to indicate that they were transformed (e.g. d_time_t
is the log-centering transformation of d_time which contains the travel time, dij). The transformed
interaction matrix is in alphabetical order with respect to the origins (first) and the locations (second).
If stated, the function recognizes dummy variables which are, of course, not transformed.

To combine transformation and fitting in one step, we use the function mci.fit() whose parame-
ters are equal to those in mci.transmat() except that the column containing the market shares must
be stated as the first variable. The default is a no-intercept model (to be set by the logical argument
origin with default TRUE). The function returns an object of type "lm" which can be accessed via
summary():

mci_trips <- mci.fit(ijmatrix_alldata, "resid_code", "gro_purchase_code", "p_ij_obs",
"d_time", "salesarea_qm")

# shares: "p_ij_obs", explanatory variables: "d_time", "salesarea_qm"

summary(mci_trips)
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Call:
lm(formula = mci_formula, data = mciworkfile)

Residuals:
Min 1Q Median 3Q Max

-1.27457 -0.28725 -0.02391 0.32163 1.29351

Coefficients:
Estimate Std. Error t value Pr(>|t|)

d_time_t -1.2443 0.2319 -5.367 4.02e-07 ***
salesarea_qm_t 0.9413 0.1158 8.132 4.59e-13 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4458 on 119 degrees of freedom
Multiple R-squared: 0.4603, Adjusted R-squared: 0.4512
F-statistic: 50.74 on 2 and 119 DF, p-value: < 2.2e-16

The output can be interpreted like any other linear model fitted by lm(). The results show a strong
significant influence of the explanatory variables (travel time and sales area) on the observed local
market shares (both p < 0.001). As the estimators are exponents in the original nonlinear model,
the impact of travel time can be regarded as negative superlinear (λ = −1.2443) while the effect of
the sales area is positive sublinear (γ = 0.9413). Thus, the model fit corresponds to the theoretical
underpinning of the utility function in the Huff Model (Huff, 1962).

For the interpretation of the explained variance it is noteworthy that the common formulation of
R2 is only designed for models that include an intercept. For no-intercept models, in R, the function
summary() returns a modified R2 which reflects the explained variance of the no-intercept model but
can not be compared to the related fit measure in a model including an intercept. Apart from this, the
model fit seems to be in need of improvement (R2 = 0.4458 and Adj.R2 = 0.4512, respectively).

But the market shares with respect to customer flows are not to be confused with market shares of
expenditures: especially in grocery shopping, there are different kinds of shopping trips, such as less
frequent major trips with high efforts and expenditures and more frequent and fast fill-in trips with
low expenditures (Reutterer and Teller, 2009). Thus, the MCI analysis is repeated with the shares of
expenditures (p_ij_obs_gro_purchase_expen) as dependent variable:

mci_expen <- mci.fit(ijmatrix_alldata, "resid_code", "gro_purchase_code",
"p_ij_obs_gro_purchase_expen", "d_time", "salesarea_qm")

summary(mci_expen)

Call:
lm(formula = mci_formula, data = mciworkfile)

Residuals:
Min 1Q Median 3Q Max

-2.07495 -0.61794 -0.07452 0.70263 2.60085

Coefficients:
Estimate Std. Error t value Pr(>|t|)

d_time_t -2.3788 0.4517 -5.267 6.26e-07 ***
salesarea_qm_t 2.0409 0.2255 9.051 3.30e-15 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8683 on 119 degrees of freedom
Multiple R-squared: 0.4954, Adjusted R-squared: 0.487
F-statistic: 58.43 on 2 and 119 DF, p-value: < 2.2e-16

As in the first model, both predictors are highly significant, but, in contrast, the impact of size
(sales area) is also superlinear. The model fit is a little better than in the first model, what may also
be explained by a smaller bias based on the variable correction above: due to their dimensions, the
increase of the absolute values by 0.1 has a smaller impact on the expenditures than on the shopping
trips.
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The utility/attraction function (or, more precisely, its deterministic component) with respect to the
shopping trips (first model) can be written as:

Uijtrips = salesarea_qm0.9413
j d_time−1.2443

ij , (24)

where Uijtrips is the utility/attraction of grocery store j for the customers in submarket/origin i, derived
from the shares of empirically obtained shopping trips, salesarea_qmj is the sales area of store j and
d_timeij is the travel time from i to j.

In consequence, the utility function is included in the Huff/MCI probability function. Thus, the
local market shares of shopping trips can be estimated by:

p̂ijtrips =
salesarea_qm0.9413

j d_time−1.2443
ij

∑n
j=1 salesarea_qm0.9413

j d_time−1.2443
ij

, (25)

where p̂ijtrips is the expected market share of shopping trips of the grocery store j in the submarket i.
Analogously, the utility/attraction function and the market share/probability function of the

expenditures (second model) are:

Uijexpen = salesarea_qm2.0409
j d_time−2.3788

ij , (26)

p̂ijexpen =
salesarea_qm2.0409

j d_time−2.3788
ij

∑n
j=1 salesarea_qm2.0409

j d_time−2.3788
ij

, (27)

where p̂ijexpen is the expected market share of expenditures of the grocery store j in the submarket i.
A market share prediction can be done using the functions mci.shares() and huff.shares().

These functions can be used similarly but differ in the formulation of the utility/attraction function:
according to the Huff Model, huff.shares() allows only two explanatory variables (attraction/size
and transport costs) but three types of weighting function for each variable (power, exponential,
logistic). The function mci.shares() is able to process any number of variables but only using the
power function from the MCI Model either retransformed or transformed (inverse log-centering
transformation).

We predict market shares using the function mci.shares() and the estimations from the sec-
ond model (expenditures). The variables and their weightings are function arguments which have
to be stated one after another (variable1,weighting1,variable2,weighting2, ...). The estimated
interaction matrix containing the predicted shares is stored in a new dataset, expen:

expen <- mci.shares(ijmatrix_alldata, "resid_code", "gro_purchase_code",
"salesarea_qm", 2.0409, "d_time", -2.3788)

# MCI market share prediction with two variables
# salesarea_qm (weighting power function with exponent equal to 2.0409)
# d_time (weighting power function with exponent equal to -2.3788)

expen
gro_purchase_code interaction resid_code

1 ALDI1 resid1-ALDI1 resid1
14 ALDI2 resid1-ALDI2 resid1
23 CAP1 resid1-CAP1 resid1
...

d_time salesarea_qm storetype_dc store_chain
1 5.4 900 1 Aldi
14 4.6 900 1 Aldi
23 3.8 400 0 Edeka
...

U_ij sum_U_ij p_ij
1 1.936847e+04 9682538 2.000350e-03
14 2.836255e+04 9682538 2.929247e-03
23 8.537978e+03 9682538 8.817913e-04
...

The interaction matrix (rows 1-3 are displayed) contains the submarkets (resid_code), the suppliers
(gro_purchase_code), the interaction between them (interaction), the explanatory variables (d_time,
salesarea_qm) and the steps of calculation, named according to the Huff Model (U_ij, sum_U_ij) and
resulting in the local market shares stored in the last column (p_ij). The sum of p_ij is equal to the
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sum of submarkets, since, on the submarket level, the local market shares sum up to one.

Before using the MCI Model for further market share predictions, the validity of the model
should be improved since store choices are, of course, not only influenced by size and transport costs.
Especially in grocery retailing, there is a great heterogeneity between the store formats (supermarket,
discounter etc.) and the store chains, such as concerning the image or price level of a chain. These
more qualitative differences should be reflected in a grocery store market area model. According to
Wieland (2015a), the model above is extended with dummy variables reflecting the grocery store chain.

The chains are already stored in the interaction matrix (column store_chain, adopted from
shopping4). As they are nominal scaled variables in character format, they have to be converted to
dummy variables using the function var.asdummy() which returns a new "data.frame" containing
corresponding dummy variables (0, 1) named automatically based on the original characteristics and
marked with "_DUMMY". Since they are in the same order, they can be directly attached:

chain <- var.asdummy(ijmatrix_alldata$store_chain)
# Converting the character vector (column store_chain) to dummy variables
# and storing in a new data frame

chain
Aldi_DUMMY Edeka_DUMMY Lidl_DUMMY Netto_DUMMY Real_DUMMY Rewe_DUMMY Treff 3000_DUMMY

1 1 0 0 0 0 0 0
2 1 0 0 0 0 0 0
...
66 0 1 0 0 0 0 0
67 0 0 1 0 0 0 0
...

ijmatrix_alldata <- cbind(ijmatrix_alldata, chain)
# Add dummy dataset to interaction matrix

In the next step, we repeat the fitting of the second MCI Model (expenditures) including the new
dummy variables. Since one dummy is explained by the content of all the others, the last dummy is
not used:

mci_expen2 <- mci.fit(ijmatrix_alldata, "resid_code", "gro_purchase_code",
"p_ij_obs_gro_purchase_expen", "d_time", "salesarea_qm",
"Aldi_DUMMY", "Edeka_DUMMY", "Lidl_DUMMY", "Netto_DUMMY",
"Real_DUMMY", "Rewe_DUMMY")

# Same model as above with additional dummy variables

summary(mci_expen2)
Call:
lm(formula = mci_formula, data = mciworkfile)

Residuals:
Min 1Q Median 3Q Max

-2.1601 -0.4338 -0.1041 0.2561 2.5342

Coefficients:
Estimate Std. Error t value Pr(>|t|)

d_time_t -2.56243 0.41753 -6.137 1.28e-08 ***
salesarea_qm_t 1.31622 0.30754 4.280 3.94e-05 ***
Aldi_DUMMY -0.05658 0.17995 -0.314 0.753763
Edeka_DUMMY 0.11873 0.12051 0.985 0.326637
Lidl_DUMMY -0.59177 0.24441 -2.421 0.017060 *
Netto_DUMMY -0.19785 0.25719 -0.769 0.443330
Real_DUMMY 1.32882 0.33093 4.015 0.000107 ***
Rewe_DUMMY -0.38429 0.24012 -1.600 0.112299
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7955 on 113 degrees of freedom
Multiple R-squared: 0.5978, Adjusted R-squared: 0.5694
F-statistic: 21 on 8 and 113 DF, p-value: < 2.2e-16

The independent variables d_time_t and salesarea_qm_t are still statistically significant (both
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p < 0.001) but especially the latter estimator has strikingly decreased. Two dummy variables are also
significant: Lidl_DUMMY (p < 0.05) and Real_DUMMY (p < 0.001). Regarding R2 and Adj.R2, the model
validity could be improved compared to the former model.

As this new model includes dummies, it would not make any sense to insert the estimated
parameters in the multiplicative MCI function: if one dummy variable is equal to zero, the complete
term is equal to zero. Thus, in this case, it is necessary to use the inverse log-centering transformation
which leads to the following transformed utility/attraction function:

ŷijexpen = −2.56243 log

(
d_time_tij

˜d_time_ti

)
+ 1.31622 log

 salesarea_qm_tj

˜salesarea_qm_tj


−0.59177Lidl_DUMMYj + 1.32882Real_DUMMYj,

(28)

where ŷijexpen is the log-centering transformed utility/attraction of store j for the customers in i,
˜d_time_ti and ˜salesarea_qm_tj are the geometric means of d_time_tij and salesarea_qm_tj, respectively,

and Lidl_DUMMYj and Real_DUMMYj are dummy variables reflecting if the store chain of j is Lidl
or Real, respectively. Now, the local market shares are defined by:

p̂ijexpen =
eŷijexpen

∑n
j=1 eŷijexpen

, (29)

where p̂ijexpen is the expected market share of store j in i and e is Euler’s number ≈ 2.71828.

We repeat the market shares prediction including the dummies and their weights. The inverse
log-centering transformation, which is required here, can be used in the function mci.shares()
by stating the function parameter mcitrans to "ilc" (default: "lc"). In the next step, the total
expenditures for each grocery store and the corresponding over-all shares are computed by the
function shares.total():

expen2 <- mci.shares(ijmatrix_alldata, "resid_code", "gro_purchase_code",
"salesarea_qm", 1.31622, "d_time", -2.56243, "Lidl_DUMMY", -0.59177,
"Real_DUMMY", 1.32882, mcitrans = "ilc")

# MCI market share prediction with four variables
# (ratio-scaled variables are log-centering transformed)
# salesarea_qm (multiplicative weighting with factor equal to 1.31622)
# d_time (multiplicative weighting with factor equal to -2.56243)
# Lidl_DUMMY (multiplicative weighting with factor equal to -0.59177)
# Real_DUMMY (multiplicative weighting with factor equal to 1.32882)

shares.total(expen2, "resid_code", "gro_purchase_code", "p_ij",
"freq_ij_abs_gro_purchase_expen")

# Expected total sales and shares based on the observed local
# market potential (sum of all obtained expenditures for each origin)

suppliers_single sum_E_j share_j
1 ALDI1 16.029089 0.008058517
2 ALDI2 2.157771 0.001084805
3 CAP1 7.101650 0.003570307
4 EDEKA1 790.385662 0.397361072
5 EDEKA2 34.432270 0.017310592
6 EDEKA3 25.098495 0.012618099
7 LIDL1 40.925354 0.020574946
8 NETTO1 2.063759 0.001037541
9 REAL1 1019.935563 0.512765741
10 REWE1 35.451053 0.017822778
11 TREFF1 15.506130 0.007795602

The result of shares.total is a "data.frame" containing the suppliers (suppliers_single), the
total values (sum_E_j) and the corresponding over-all market shares share_j, where the sum of all
share_j is equal to one. Here, the stores with the biggest shares of customer expenditures are "REAL1"
(51.28%) and "EDEKA1" (39.74%).

Now, we analyze the impact of a change in the competitive environment: the biggest grocery
store in the study area is Real (gro_purchase_code = "REAL1"). On condition that the sales area of
this store is increased by 10 % (because of an increase of offered goods), how will, ceteris paribus, the

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 316

purchasing power flows with respect to this supplier and to all other stores change? First, we update
the regarded variable in the existing interaction matrix:

ijmatrix_alldata[ijmatrix_alldata$gro_purchase_code == "REAL1",]$salesarea_qm <- 8525
# Replacing the sales area of REAL1 with a new value: 8525 sqm (increase of 10 %)

Now, we only have to repeat the MCI market share prediction above:

expen2_new <- mci.shares(ijmatrix_alldata, "resid_code",
"gro_purchase_code", "salesarea_qm", 1.31622,
"d_time", -2.56243,
"Lidl_DUMMY", -0.59177, "Real_DUMMY", 1.32882,
mcitrans = "ilc")

shares.total(expen2_new, "resid_code", "gro_purchase_code", "p_ij",
"freq_ij_abs_gro_purchase_expen")

suppliers_single sum_E_j share_j
1 ALDI1 15.787692 0.007886640
2 ALDI2 2.097968 0.001048026
3 CAP1 6.995287 0.003494451
4 EDEKA1 778.019361 0.388654556
5 EDEKA2 33.873811 0.016921444
6 EDEKA3 24.365708 0.012171732
7 LIDL1 40.262537 0.020112891
8 NETTO1 2.032720 0.001015432
9 REAL1 1048.206517 0.523624808
10 REWE1 34.910285 0.017439208
11 TREFF1 15.275568 0.007630811

The results in the total sales/shares table show an impact of the trading-up in the regarded
hypermarket: the over-all share of Real increases from 51.28% to 52.36%. The other stores are affected
differently: the over-all share of EDEKA1 decreases from 39.74% to 38.87%. Since this model does
not consider any kind of agglomeration economies, the market shares of the competitors decrease
dependent on their proximity to the hypermarket and the spatial distribution of customers.

It should be noticed that the survey in the shopping1 dataset is not statistically representative, since
it is a POS survey not regarding customers shopping at other supply locations. Thus, the analyses
and results shown here should not be overinterpreted but regarded as an example how to use the
MCI-related functions in the MCI package.

Huff Model optimization

The final example deals with the problem of fitting the Huff Model on condition that no empirically
observed store choices, market shares and market areas, respectively, are available. The aim of the
analysis is to estimate the market areas of the grocery stores in Freiburg, Germany, based on their total
annual sales and their "attraction" (size).

The dataset Freiburg1 contains the preliminary stage of a Huff interaction matrix, containing
the origins (statistical districts of Freiburg, column district), codes representing the grocery stores
(store), the sales area of these stores in sqm (salesarea) and the street distances between the origins
and the stores (distance). The grocery stores and their characteristics were obtained in spring 2015
(Wieland, 2015b), while the street distances were calculated via network analysis in GRASS (GRASS
Development Team, 2015) using OpenStreetMap vector data.

data(Freiburg1)
# Distance matrix and sales area

First, we try to approximate the market areas using a conventional Huff Model calculation using
the function huff.shares(). This function is similar to the mci.shares() function and allows two
explanatory variables (size, transport costs) which can be weighted by given parameters in a power,
exponential or logistic function. The function type (power) and the exponents are set corresponding to
the default parameters of the Huff Model: γ = 1 and λ = −2 (Güssefeldt, 2002):

huff_mat <- huff.shares (Freiburg1, "district", "store", "salesarea", "distance")
# Market area estimation using the Huff Model with standard parameters
# (gamma = 1, lambda = -2)
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In the next step, the total annual sales of the grocery stores are computed based on the estimated
interaction probabilities/local market shares and the grocery purchasing power potential on the district
level in EUR (calculated based on the local population size and the national average expenditures for
groceries), stored in the dataset Freiburg2:

data(Freiburg2)
# Grocery purchasing power on the city district level

huff_mat_pp <- merge (huff_mat, Freiburg2)
# Adding the purchasing power data for the city districts

huff_total <- shares.total (huff_mat_pp, "district", "store", "p_ij", "ppower")
# Total expected sales and shares

huff_total
suppliers_single sum_E_j share_j

1 1 4057591 0.010759819
2 10 5809861 0.015406444
3 11 1289847 0.003420383
4 12 7103210 0.018836115
5 13 3476313 0.009218400
...

The new dataset huff_total contains the expected total annual sales in EUR (sum_E_j) and the
corresponding over-all market shares (share_j). Since the “real” annual sales are known (calculated
by chain-based average retail space productivity, stored in the dataset Freiburg3), we compare the
expected values to the observed values using the help function model.fit():

data(Freiburg3)
# Annual sales of the grocery stores

huff_total_control <- merge(huff_total, Freiburg3, by.x = "suppliers_single",
by.y = "store")

model.fit(huff_total_control$annualsales, huff_total_control$sum_E_j, plotVal = TRUE)
$resids_sq_sum
[1] 2.125162e+15

$pseudorsq
[1] 0.5128422

$globerr
[1] 0.5210329

$mape
[1] 0.6383766

The function model.fit() returns a "list" with four entries containing the following goodness-
of-fit measures: the sum of the squared residuals (resids_sq_sum), a Pseudo-R2 measure (pseudorsq),
the global error (globerr) and the MAPE (mape), as described in the Huff Model section. Note that
these fit measures are closely related to each other. Optionally, the function returns a plot to compare
the observed and expected values graphically (see the plot in Figure 2, top left).

Obviously, the fit in this Huff Model market area estimation using the default values is quite poor
as can be seen from the fit measures and, of course, from the plot. E.g. the sales of the most high-selling
grocery store is extremely underestimated. From this, one can conclude that also the estimated market
shares/market areas will not reflect the reality to some extent.

Thus, we have to use the optimization algorithm as discussed in the Huff Model section. The
function huff.attrac() provides one iteration of this algorithm, requiring the interaction matrix, the
local market potential and the total values (e.g. sales) of the suppliers. The tolerance value to accept
a difference of individual total sales or not is set equal to 5, while the function output contains the
estimated total values (Internally, huff.attrac() uses the function shares.total()). We apply the
function to the three datasets (Freiburg1, Freiburg2 and Freiburg3):

huff_total_opt1 <- huff.attrac(Freiburg1, "district", "store", "salesarea", "distance",
lambda = -2, dtype= "pow", lambda2 = NULL,
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Freiburg2, "district", "ppower",
Freiburg3, "store", "annualsales",
tolerance = 5, output = "total")

# One-time optimization (one iteration) with an accepted difference of +/- 5 %
# Output of total sales/shares

Note that this calculation includes a great many calculation steps while working with 63 stores
and 42 statistical districts. In a test environment (computer with CPU: Intel Core i3-2100, RAM: 4.00
GB, OS: Windows 7 64bit), the command above takes about 43 seconds.

huff_total_opt1
suppliers_single sum_E_j share_j total_obs diff attrac_new_opt

1 1 7097226 0.018820246 7210720 113494.39 1329.26622
2 10 5043058 0.013373057 5600000 556941.50 1400.00000
3 11 1136322 0.003013270 1000000 -136321.73 193.82148
4 12 2849360 0.007555862 2776000 -73360.04 271.22161
...

Since the option output was set to "total", the huff.attrac() function returns a "data.frame"
(rows 1-4 are displayed) that contains a comparison between the observed (total_obs) and the
expected total values (sum_E_j) as well as the corresponding difference (diff) and the estimated new
attractions (attrac_new_opt). If output is set to "matrix", the function returns an interaction matrix
equal to the output of mci.shares() or huff.shares().

Next, the validity analysis of the new model using model.fit() is repeated as described above:

model.fit(huff_total_opt1$total_obs, huff_total_opt1$sum_E_j, plotVal = TRUE)
# total_obs = observed total values, originally from dataset Freiburg3
# sum_E_j = expected total values

$resids_sq_sum
[1] 2.901841e+14

$pseudorsq
[1] 0.9334801

$globerr
[1] 0.1564878

$mape
[1] 0.1620126

The goodness-of-fit measures and the plot (see the plot in Figure 2, top right) reveal a much better
fit: the Pseudo-R2 increases from 0.51 to 0.93 while the error measures decrease accordingly.

To extend this optimization algorithm to a given number of iterations, the MCI package provides
the function huff.fit(). First, we run two iterations decreasing the tolerance value equal to one
which means a more strict check. Since this optimization takes some time, we enable the printing of
status messages. The output of the function huff.fit() is equal to the output of huff.attrac() and
can be processed in the same way. As above, the estimated total sales are compared to the observed
sales using model.fit():

huff_total_opt2 <- huff.fit(Freiburg1, "district", "store", "salesarea", "distance",
lambda = -2, dtype= "pow", lambda2 = NULL,
Freiburg2, "district", "ppower",
Freiburg3, "store", "annualsales",
tolerance = 1, iterations = 2, output = "total",
show_proc = TRUE)

# 2 iterations of the optimization algorithm with an accepted difference of +/- 1 %
# Output of total sales/shares, stored in dataset huff_total_opt2

# printing of status messages:
Iteration 1 of 2 ...
Processing location 1 ...
...

model.fit(huff_total_opt2$total_obs, huff_total_opt2$sum_E_j, plotVal = TRUE)
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# total_obs = observed total values, originally from dataset Freiburg3
# sum_E_j = expected total values

$resids_sq_sum
[1] 4.806282e+13

$pseudorsq
[1] 0.9889824

$globerr
[1] 0.05946104

$mape
[1] 0.0618133

To run the algorithm twice with a smaller tolerance leads to a much better fit: while Pseudo-R2

increases from 0.93 to 0.98, the global error and the MAPE reduce from about 15 and 16% to about 6%,
respectively. This improvement is also obvious when looking at the plot (Figure 2, bottom left).

In the test environment mentioned above, this huff.fit operation takes about one and a half
minute (89 seconds). Consequently, to extend the procedure to more iterations means also an increase
of calculating time. We repeat the algorithm with 10 iterations and compare the results once more:

huff_total_opt10 <- huff.fit(Freiburg1, "district", "store", "salesarea", "distance",
lambda = -2, dtype= "pow", lambda2 = NULL,
Freiburg2, "district", "ppower",
Freiburg3, "store", "annualsales",
tolerance = 1, iterations = 10, output = "total",
show_proc = TRUE)

# 10 iterations of the optimization algorithm with an accepted difference of +/- 1 %
# Output of total sales/shares, stored in dataset huff_total_opt10
# with printing of status messages

model.fit(huff_total_opt10$total_obs, huff_total_opt10$sum_E_j, plotVal = TRUE)

$resids_sq_sum
[1] 185646134781

$pseudorsq
[1] 0.9999574

$globerr
[1] 0.004508996

$mape
[1] 0.004405252

This operation is, of course, very time-consuming: in the test environment mentioned above,
ten iterations of the algorithm took about five minutes (308 seconds), while the time of an iteration
decreases since the local fits (for each store/locations) also gets better with each iteration. The final
result is a nearly perfect fit with a MAPE of about 0.4% and a global error of about 0.5% while the
Pseudo-R2 approaches the maximum (0.99). The expected annual sales are highly accurate as can be
seen in the corresponding plot (Figure 2, bottom right).

The function huff.fit() allows an evaluation of the iterations by returning the corresponding
global fit measures for each step (Internally, huff.fit() uses the model.fit() function). We set the
function parameter output = "diag" to make the function return a "data.frame" containing the
iteration statistics:

huff.fit(Freiburg1, "district", "store", "salesarea", "distance", lambda = -2,
dtype= "pow", lambda2 = NULL,
Freiburg2, "district", "ppower",
Freiburg3, "store", "annualsales",
tolerance = 1, iterations = 10, output = "diag", show_proc = TRUE)

iterations_count resids_sq_sum pseudorsq globerr mape
1 1 2.886177e+14 0.9338392 0.155826392 0.162228371
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2 2 4.806282e+13 0.9889824 0.059461039 0.061813302
3 3 9.936652e+12 0.9977222 0.031229899 0.032170472
4 4 2.318130e+12 0.9994686 0.018162793 0.019737125
5 5 6.378060e+11 0.9998538 0.010563610 0.011844831
6 6 5.567110e+11 0.9998724 0.007654992 0.007507305
7 7 1.776295e+11 0.9999593 0.005357527 0.005444095
8 8 1.778885e+11 0.9999592 0.004689937 0.004669445
9 9 1.828774e+11 0.9999581 0.004587815 0.004541543
10 10 1.856461e+11 0.9999574 0.004508996 0.004405252

Obviously, all goodness-of-fit measures show an improvement of the model fit with each iteration.
But there is no noticeable improvement after the eighth iteration. All in all, the accuracy of the results
are determined by the error tolerance (parameter tolerance) and the number of iterations (parameter
iterations) which are stated by the user who has to trade off accuracy against computing time.

Figure 2: Huff Model fit algorithm.

Conclusions and limitations

Model-based market area analysis for retail and service locations includes 1) theoretical considerations,
2) collection of empirical data regarding the locations and the customers, 3) data processing and, in
some cases, data transformation, 4) fitting of the used models and 5) the market area prediction itself.
While the first two aspects can not be offered by a statistical software, the presented package MCI
provides several functions to process the other mentioned steps by implementing the Huff Model and
the Multiplicative Competitive Interaction (MCI) Model into R.

The focus of the package is 1) on model fitting via OLS regression (MCI Model) or iterative
optimization (Huff Model) and 2) on data preparation, while both aspects are closely related (especially
in the MCI Model). As a consequence, some other related substeps are not considered.

Though the package is designed to allow a data exchange with a GIS (e.g. ijmatrix.crosstab() to
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prepare an interaction matrix for a map visualization), it does not provide any GIS functions. Thus, the
GIS-related steps of market area analysis have to be borrowed from other packages: especially distance
or travel time calculations are needed what can be done using GIS-orientated packages like ggmap
which utilizes the Google API for routing (and was used in the example dataset shopping2), osmar
(Eugster and Schlesinger, 2013) and osrm (Giraud, 2016) providing similar functions with respect to
OpenStreetMap, or the huff-tools package mentioned above.

In econometric market area analyses using the MCI Model, also further diagnostics of the model
are recommended, especially with respect to the possible violations of the OLS-related assumptions,
such as heteroscedasticity or multicollinearity. A discussion of specific problems and opportunities
regarding logarithmic transformations can be found in Silva and Tenreyro (2006) and Manning and
Mullahy (2001). The violation of OLS assumptions and possible solutions have beed addressed in
MCI studies several times (Nakanishi and Cooper, 1974; Kubis and Hartmann, 2007; Tihi and Oruc,
2012; Wieland, 2015a), but there are no corresponding extensions implemented in MCI yet. Other
packages may be helpful for this analyses: since the implemented functions return "data.frame"
(mci.transmat()) and "lm" objects (mci.fit()), respectively, this data can be processed e.g. in car (Fox
and Weisberg, 2011) for further diagnostics.

Another remaining step not yet provided by the presented package is the combination of the MCI
Model with the Geographically Weighted Regression (GWR) which has been already used to identify
spatial nonstationarity in the estimated parameters (Suárez-Vega et al., 2015; Wieland, 2015a). The
GWR is implemented in R by the package spgwr (Bivand and Yu, 2015).
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PSF: Introduction to R Package for Pattern
Sequence Based Forecasting Algorithm
by Neeraj Bokde, Gualberto Asencio-Cortés, Francisco Martínez-Álvarez and Kishore Kulat

Abstract This paper introduces the R package that implements the Pattern Sequence based Forecasting
(PSF) algorithm, which was developed for univariate time series forecasting. This algorithm has been
successfully applied to many different fields. The PSF algorithm consists of two major parts: clustering
and prediction. The clustering part includes selection of the optimum number of clusters. It labels
time series data with reference to such clusters. The prediction part includes functions like optimum
window size selection for specific patterns and prediction of future values with reference to past
pattern sequences. The PSF package consists of various functions to implement the PSF algorithm. It
also contains a function which automates all other functions to obtain optimized prediction results.
The aim of this package is to promote the PSF algorithm and to ease its usage with minimum efforts.
This paper describes all the functions in the PSF package with their syntax. It also provides a simple
example. Finally, the usefulness of this package is discussed by comparing it to auto.arima and ets,
well-known time series forecasting functions available on CRAN repository.

Introduction

PSF stands for Pattern Sequence Forecasting algorithm. PSF is a successful forecasting technique
based on the assumption that there exist pattern sequences in the target time series data. For the first
time, it was proposed in Martínez-Álvarez et al. (2008), and an improved version was discussed in
Martínez-Álvarez et al. (2011a).

Martínez-Álvarez et al. (2011a) improved the label based forecasting (LBF) algorithm proposed
in Martínez-Álvarez et al. (2008) to forecast the electricity price and compared it to other available
forecasting algorithms such as ANN (Catalão et al., 2007), ARIMA (Conejo et al., 2005), mixed models
(García-Martos et al., 2007) and WNN (Troncoso et al., 2007). These comparisons concluded that
the PSF algorithm is able to outperform all these forecasting algorithms, at least in the electricity
price/demand context.

Many authors have proposed improvements for PSF. In particular, Jin et al. (2014) highlighted
the PSF algorithm limitations and suggested minute modification to minimize the computation delay.
They suggested that, instead of using multiple indexes, a single index could make computation simpler
and they used the Davies Bouldin index to obtain the optimum number of clusters.

Majidpour et al. (2014) compared PSF to kNN and ARIMA, and observed that PSF can be used
for electric vehicle charging energy consumption. It also proposed three modifications in the existing
PSF algorithm. First, instead of taking average of all the matched template, it only uses the most
recent matched template. Second, if no match was found in the training data (which is possible),
MPSF outputs the cluster center of the largest cluster as output. Third, instead of finding the optimum
number of clusters starting at two, it starts k from 10% of the total number of samples to avoid
degenerate clusters.

Shen et al. (2013) proposed an ensemble of PSF and five variants of the same algorithm, showing
better joint performance when applied to electricity-related time series data.

Koprinska et al. (2013) attempted to propose a new algorithm for electricity demand forecast,
which is a combination of PSF and Neural networks (NN) algorithms. The results concluded that
PSF-NN is performing better than original PSF algorithm.

Fujimoto and Hayashi (2012) modified the clustering method in PSF algorithm. It used a cluster
method based on non-negative tensor factorization instead of k-means technique and forecasted
energy demand using photovoltaic energy records.

Martínez-Álvarez et al. (2011b) also modified the original PSF algorithm to be used for outlier
occurrence forecasting in time series. The metaheuristic searches for motifs or pattern sequences
preceding certain data, marked as anomalous in the training set. Then, outlying and regular data
are separately processed. Once again, this version was shown to be useful in electricity prices and
demand.

The analysis of these works highlights the fact that the PSF algorithm can be applied to many
different fields for time series forecasting, outperforming many existing methods. Since the PSF
algorithm consists of many dependent functions and the authors did not originally publish their code,
the package here described aims at making PSF handy and with minimum efforts for coding.

The rest of the paper is structured as follows. Section 2 provides an overview of the PSF algorithm.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 325

Section 3 explains how the package in R has been developed. Illustrative examples are described in
Section 4. Finally, the conclusions drawn from this work are summarized in Section 5.

Brief description of PSF

The PSF algorithm consists of many processes, which can be divided, broadly, in two steps. The first
step is clustering of data and the second step is forecasting based on clustered data in earlier step. The
block diagram of PSF algorithm shown in Figure 1 was proposed by Martínez-Álvarez et al. (2008).
The PSF algorithm is a closed loop process, hence it adds an advantage since it can attempt to predict
the future values up to long duration by appending earlier forecasted value to existing original time
series data. The block diagram for PSF algorithm shows the close loop feedback characteristics of the
algorithm. Although there are various strategies for multiple-step ahead forecasting as described by
Bontempi et al. (2013), this strategy turned out to be particularly suitable for electricity prices and
demand forecasting, as the original work discussed.

Another interesting feature lies in its ability to simultaneously forecast multiple values, that is,
it deals with arbitrary lengths for the horizon of prediction. However, it must be noted that this
algorithm is particularly developed to forecast time series exhibiting some patterns in the historical
data, such as weather, electricity load or solar radiation, just to mention few examples of usage in
reviewed literature. The application of PSF to time series without such kind of inherent patterns might
lead to the generation of not particularly competitive results.

Figure 1: Block diagram of PSF algorithm methodology.

The clustering part consists of various tasks, including data normalization, optimum number of
clusters selection and application of k-means clustering itself. The ultimate goal of this step is to
discover clusters of time series data and label them accordingly.

Normalization is one of the essential processes in any time series data processing technique.
Normalization is used to scale data. The algorithm (Martínez-Álvarez et al., 2011a) used the following
transformation to normalize the data.

Xj =
Xj

1
N ∑N

i=1 Xi
(1)

where Xj is the input time series data and N is the total length of the time series.

However, the original PSF original algorithm used N = 24 hours instead of N as the total length of
the time series. This presents the problem of knowing all hours for each day to assess the mean. For
such reason, the original formula has been replaced in this implementation by the standard feature
scaling formula (also called unity-based normalization), which bring all values into the range [0, 1]
Dodge (2003):

X′j =
Xj −min(Xi)

max(Xi)−min(Xi)
(2)

where X′j denotes the normalized value for Xj, and i = 1, . . . , N.

The reference articles (Martínez-Álvarez et al., 2008) and (Martínez-Álvarez et al., 2011a) used the
k-means clustering technique to assign labels to sets of consecutive values. In the original manuscript,
since daily energy was analyzed, clustering was applied to every 24 consecutive values, that is, to
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every day. The advantage of k-means is its simplicity, but it requires the number of clusters as input.
In Martínez-Álvarez et al. (2008), the Silhouette index was used to decide the optimum numbers of
clusters, whereas in the improved version (Martínez-Álvarez et al., 2011a), three different indexes were
used, which include the Silhouette index (Kaufman and Rousseeuw, 2008), the Dunn index (Dunn,
1974) and the Davies Bouldin index (Davies and Bouldin, 1979). However, the number of groups
suggested by each of these indexes in not necessarily the same. Hence, it was suggested to select the
optimum number of clusters by combining more than one index, thus proposing a majority voting
system.

As output of the clustering process, the original time series data is converted into a series of labels,
which is used as input in the prediction block of the second phase of the PSF algorithm. The prediction
technique consists of window size selection, searching for pattern sequences and estimation processes.

Let x(t) be the vector of time series data such that x(t) = [x1(t), x2(t), . . . , xN(t)]. After clustering
and labeling, the vector converted to y(t) = [L1, L2, . . . , LN ], where Li are labels identifying the cluster
centers to which data in vector x(t) belongs to. Note that every xi(t) can be of arbitrary length and
must be adjusted to the pattern sequence existing in every time series. For instance, in the original
work, x(i) was composed of 24 values, representing daily patterns.

Then the searching process includes the last W labels from y(t) and it searches for these labels in
y(t). If this sequence of last W labels is not found in y(t), then the search process is repeated for last
(W-1) labels. In PSF, the length of this label sequence is named as window size. Therefore, the window
size can vary from W to 1, although it is not usual that this event occurs. The selection of the optimum
window size is very critical and important to make accurate predictions. The optimum window size
selection is done in such a way that the forecasting error is minimized during the training process.
Mathematically, the error function to be minimized is:

∑
tεTS

∥∥X(t)− X(t)
∥∥ (3)

where X(t) are predicted values and X(t) are original values of time series data. In practice,
the window size selection is done with cross validation. All possible window sizes are tested on
sample data and corresponding prediction errors are compared. The window size with minimum
error considered as the optimum window size for prediction.

Once the optimum window size is obtained, the pattern sequence available in the window is
searched for in y(t) and the label present just after each discovered sequence is noted in a new vector,
called ES. Finally, the future time series value is predicted by averaging the values in vector ES as given
below:

X(t) =
1

size(ES)
×

size(ES)

∑
j=1

ES(j) (4)

where, size(ES) is the length of vector ES. The procedure of prediction in the PSF algorithm is
described in Figure 2. Note that the average is calculated with real values and not with labels.

Figure 2: Prediction with PSF algorithm.

The algorithm can predict the future value for next interval of the time series. But, to make it
applicable for long term prediction, the predicted short term values will get linked with original data
and the whole procedure will be carried out till the desired length of time series prediction is obtained.

PSF package description

This section introduces the PSF package in R language (Bokde et al., 2017). With reference to depen-
dencies, this package imports package cluster (Maechler et al., 2017) and suggests packages knitr and
rmarkdown. The package also needs the data.table package to improve data wrangling. PSF package
consists of various functions. These functions are designed such that these can replace the block
diagrams of methodology used in PSF. The block diagram in Figure 3 represents the methodology
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mentioned in Figure 1 with the replacement of equivalent functions used in the proposed package.

The various tasks including the optimum cluster size, window size selection, pattern searching
and prediction processes are performed in the package with different functions including psf(),
predict.psf(), plot.psf(), optimum_k(), optimum_w(), psf_predict() and convert_datatype().
All functions in the PSF package version 0.4 onwards are made private except for psf(), predict.psf()
and plot.psf() functions, so that users could not use it directly. Moreover, if users need to change
or modify clustering techniques or procedures in private functions, the code is available at GitHub
(https://github.com/neerajdhanraj/PSF).

Figure 3: Block diagram with PSF package functions replacement for PSF algorithm.

This section discusses each of these functions and their functionalities along with simple examples.
All functions in the PSF package are loaded with:

library(PSF)

Optimum cluster size selection

As aforementioned, clustering of data is one of the initial phases in PSF. The reference articles (Martínez-
Álvarez et al., 2008) and (Martínez-Álvarez et al., 2011a) chose the k-means clustering technique for
generating data clusters according to the time series data properties. The limitation of k-means
clustering technique is that the adequate number of clusters must be provided by users. Hence,
to avoid such situations, the proposed package contains a function optimum_k() which calculates
the optimum value for the number of clusters, (k), according to the Silhouette index. This function
generates the optimum cluster size as output. In Martínez-Álvarez et al. (2011a), multiple indexes
(Silhouette index, Dunn index and the Davies–Bouldin index) were considered to determine the
optimum number of clusters. For the sake of simplicity and to save the calculation time, only the
Silhouette index is considered in this package, as suggested in Martínez-Álvarez et al. (2008).

This optimum_k() is a private function which is not directly accessible by users. This function takes
data as input time series, in any format be it matrix, data frame, list, time series or vector. Note that
the input data type must be strictly numeric. This function returns the optimum value of number of
clusters (k) in numeric format.

Optimum window size selection

Once data clustering is performed, the optimum window size needs to be determined. This is an
important but tedious and time consuming process, if it is manually done. In Martínez-Álvarez et al.
(2008) and Martínez-Álvarez et al. (2011a), the selection of optimum window size is done through
cross–validation, in which data is partitioned into two subsets. One subset is used for analysis and the
other one for validating the analysis. Since the window size will always be dependent on the pattern
of the experimental data, it is necessary to determine the optimum window size for every time series
data.

In the PSF package, the optimum window size selection is done with the function optimum_w(),
which takes as input the time series data, the previous estimated k value, a set candidate w values to
search in and the cycle of the input time series. This function estimates the optimum value for the
window size such that the error between predicted and actual values is minimum. Internally, this
function divides the input time series data into two sub-parts. One of them is the last cycle data
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values which will be taken as reference to compare to the predicted values and to calculate RMSE
values. The other sub-part is the remaining data set which is used as training part of the data set.
The predicted values for the window size with minimum RMSE value is then taken as optimum
window size. If more than one window size values are obtained with the same RMSE values, the
maximum window size is preferred by the function optimum_w(). Like the optimum_k() function, the
optimum_w() function is also a private function and users cannot directly access it.

Prediction with PSF

The PSF package exposes three functions to the user. The first one, psf(), can build a PSF model from
an univariate time series. The value returned by such function is a S3 object of class 'psf', which
contains both original and normalized input time series along with other internal model adjustements.
Once the PSF model is trained and returned, the user can invoke the S3 method predict() over the
the 'psf' object specifying the desired number of forecasted values via the n.ahead parameter. This
method returns a numeric vector. Finally, the third function exposed is the S3 method plot(), that
produces a plot including both actual and predicted values from a PSF model and a numeric vector of
predictions.

Internally, the prediction procedure is composed of data processing, optimum window size and
cluster size selection. The prediction is done with the private function psf_predict(), which takes
time series data, window size (w), cluster size (k) and an integer n.ahead. The value of n.ahead
indicates the count up to what extend the forecasting is to be done by function psf_predict(). The
time series data taken as input can be in any format supported by R language, be it time series,
vector, matrix, list or data frame. The PSF package automatically converts it in suitable format using
the private function convert_datatype() and proceeds further. All other input parameters w, k and
n.ahead must be in integer format.

The function psf_predict() initiates the process of data normalization. Then, it selects the last w
labels from the input time series data and searches for that number sequence in the entire data set.
Additionally, it captures the very next integer value after each sequence and calculates the average of
these values. The obtained averaged value along with denormalization is considered as raw predicted
value. If the input parameter n.ahead is greater than unity, then the predicted value is appended to
the original input data, and the procedure is repeated n.ahead times. Finally, the processed data is
denormalized and returns a time series which replaces labels by the predicted values.

The psf_predict() function is also one of the private functions which takes input the dataset in
data.table format, as well as another integer inputs including number of clusters (k), window size (w),
horizon of prediction (n.ahead), and the cycle parameter, which discovers the cycle pattern followed
by dataset. This function considers all input parameters and searches for the desired pattern in training
data. While performing the searching process, if the desired pattern is obtained once or more times,
it calculates the average of very next values for each repeated desired patterns in the whole dataset.
Finally, this averaged value is considered as next predicted value and is appended to input time series
data.

The psf() function uses optimum_k() and optimum_w() functions. The latter, in turn, uses the
described psf_predict(). The function psf() returns the PSF trained model (S3 object of class 'psf')
whose contents are described later in this section. The syntax for psf() function is shown below:

psf(data, k = seq(2, 10), w = seq(1, 10), cycle = 24)

Within the indicated syntax, the parameter data is an univariate time series in any format, e.g.
time series, vector, matrix, list or data frame. Also, data must be strictly provided in numeric format.
The parameter k is the number of clusters, whereas parameter w is the window size. Finally, the cycle
parameter is the number of values that confirms a cycle in the time series. Usual values for the cycle
parameter can be 24 hours per day, 12 months per year or so on and it is used only when input data is
not in the time series format. If input data is given in time series format, the cycle is automatically
determined by its internal frequency attribute.

If the user provides a single value for either k or w, then this value is used in the PSF algorithm
and the search for their optimum is skipped. Furthermore, if the user provides a vector of values for
either parameter k or w, then the search for optimum is limited to these values.

This psf() function returns a S3 object of class 'psf' which includes the 7 elements described
below:

original_series Original time series stored to be used internally to build further plots.

train_data Adapted and normalized internal time series used to train the PSF model.

k The number of clusters optimized and used to train the model.
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w The window size optimized and used to train the model.

cycle Determined cycle for the input time series.

dmin Minimum value of the input time series (used to denormalize internally in further predictions).

dmax Maximum value of the input time series (used to denormalize internally in further predictions).

The psf() function initiates the conversion of any type of data format into data.table which is an in-
ternal format for this function (this conversion is carried out by the private function convert_datatype).
Secondly, it is checked whether the input dataset is multiple of cycle parameter or not. If not, it
generates a warning to state that the dataset pattern is not suitable for further study. But if the dataset is
multiple of the cycle value, the normalization of the dataset is carried out and subsequently reshaped
according to the cycle of time series.

This reshaped dataset is then provided to psf_predict() function with other parameters including
cluster size (k), window size (w), n.ahead and cycle, as mentioned before. In reply to this, the
psf_predict() function returns a vector of future predicted values. Since the input dataset had been
previously normalized, it is required to denormalize the predicted values. This is carried out by the
S3 method predict.psf(). This function returns a numeric vector with the denormalized predicted
values.

Plot function for PSF

The plot.psf() function allows users to plot both the actual values of a series and predicted values
obtained by a PSF model. This function takes the trained PSF model, denoted by the first parameter
named x, which includes internally the original time series, obtained by psf(), along with the predicted
values obtained through predict.psf(), and optionally other plot describing variables, like plot title,
legends, etc. This function generates the plot showing original time series data and predicted data
with significant color changes. The plot obtained by plot.psf() possesses dynamic margin size such
that it can include the input data set and all predicted values as per requirements. The syntax of
plot.psf() function is as shown below. The usage of plot.psf() function is further discussed in the
next section.

plot.psf(x, predictions, cycle = 24, ...)

Example

This section presents the examples to introduce the use of the PSF package and to compare it with
auto.arima() and ets() functions, which are well accepted functions in the R community working
over time series forecasting techniques. The data used in this example are nottem and sunspots which
are standard time series datasets available in R. The nottem dataset is the average air temperatures at
Nottingham Castle in degrees Fahrenheit, collected for 20 years, on monthly basis. Similarly, sunspots
dataset is mean relative sunspot numbers from 1749 to 1983, measured on monthly basis.

For both datasets, all the recorded values except for the final year are considered as training data,
and the last year is used for testing purposes. The predicted values for final year for both datasets are
discussed in this section.

In the following examples, model training, forecasting and plotting were shown for the dataset
nottem, but the procedure is the same for the dataset sunspots. In first place, the model must be
trained using the PSF package. as is shown below.

library(PSF)
nottem_model <- psf(nottem)
nottem_model

## $original_series
## Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
## 1920 40.6 40.8 44.4 46.7 54.1 58.5 57.7 56.4 54.3 50.5 42.9 39.8
## 1921 44.2 39.8 45.1 47.0 54.1 58.7 66.3 59.9 57.0 54.2 39.7 42.8
## ...
##
## $train_data
## V1 V2 V3 V4 V5 V6 V7
## 1: 0.26420455 0.2698864 0.3721591 0.4375000 0.6477273 0.7727273 0.7500000
## 2: 0.36647727 0.2414773 0.3920455 0.4460227 0.6477273 0.7784091 0.9943182
## ...
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##
## $k
## [1] 2
##
## $w
## [1] 1
##
## $cycle
## [1] 12
##
## $dmin
## [1] 31.3
##
## $dmax
## [1] 66.5
##
## attr(,"class")
## [1] "psf"

Once the model is trained, forecasted values for the time series can be obtained using the S3
method predict() function, as is shown below.

nottem_preds <- predict(nottem_model, n.ahead = 12)
nottem_preds

## [1] 38.97692 38.71538 42.49231 46.32308 52.91538 57.97692 61.87692
## [8] 60.19231 57.03846 49.42308 43.23846 40.21538

To represent the prediction performance in plot format, the S3 method plot() can be used, as
shown in the following code.

plot(nottem_model, nottem_preds)

Figure 4: Plot showing forecasted results with function plot.psf() for nottem dataset.

Figures 4 and 5 show the prediction with the PSF algorithm for nottem and sunspots datasets,
respectively. Such results are compared to those of auto.arima() and ets() functions from forecast
R package (Hyndman et al., 2017). auto.arima() function compares either AIC, AICc or BIC value
and suggests best ARIMA or SARIMA models for a given time series data. Analogously, the ets()
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Figure 5: Plot showing forecasted results with function plot.psf() for sunspots dataset.

Functions psf() auto.arima() ets()

RMSE 2.077547 2.340092 32.78256

Table 1: Comparison of time series prediction methods with respect to RMSE values for nottem
dataset.

function considers the best exponential smoothing state space model automatically and predicts future
values.

Tables 1 and 2 show comparisons for psf(), auto.arima() and ets() functions when using the
Root Mean Square Error (RMSE) parameter as metric, for nottem and sunspots datasets, respectively.
In order to avail more accurate and robust comparison results, error values are calculated for 10 times
and the mean value of error values for methods under comparison are shown in Tables 1 and 2. These
tables clearly state that psf() function is able to outperform the comparative time series prediction
methods.

Additionally, the reader might want to refer to the results published in the original work Martínez-
Álvarez et al. (2011a), in which it was shown that PSF outperformed many different methods when
applied to electricity prices and demand forecasting.

Conclusions

This article is a thorough description of the PSF R package. This package is introduced to promote the
algorithm Pattern Sequence based Forecasting (PSF) which was proposed by Martínez-Álvarez et al.
(2008) and then modified and improved by Martínez-Álvarez et al. (2011a). The functions involved in
the PSF package can be tested with time series data in any format like vector, time series, list, matrix
or data frame. The aim of the PSF package is to simplify the calculations and to automate the steps
involved in prediction while using PSF algorithm. Illustrative examples and comparisons to other
methods are also provided.

Functions psf() auto.arima() ets()

RMSE 22.11279 41.14366 52.29985

Table 2: Comparison of time series prediction methods with respect to RMSE values for sunspots
dataset.
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flan: An R Package for Inference on
Mutation Models.
by Adrien Mazoyer, Rémy Drouilhet, Stéphane Despréaux, and Bernard Ycart

Abstract This paper describes flan, a package providing tools for fluctuation analysis of mutant cell
counts. It includes functions dedicated to the distribution of final numbers of mutant cells. Parametric
estimation and hypothesis testing are also implemented, enabling inference on different sorts of data
with several possible methods. An overview of the subject is proposed. The general form of mutation
models is described, including the classical models as particular cases. Estimating from a model,
when the data have been generated by another, induces different possible biases, which are identified
and discussed. The three estimation methods available in the package are described, and their mean
squared errors are compared. Finally, implementation is discussed, and a few examples of usage on
real data sets are given.

Introduction

Mutation models are probabilistic descriptions of the growth of a population of cells, where mutations
occur randomly during the process. Data are samples of integers, interpreted as final numbers of
mutant cells. These numbers may be coupled with final numbers of cells (mutant and non mutant).
The frequent appearance in the data of very large mutant counts, usually called “jackpots”, evidences
heavy-tailed probability distributions. The parameter of interest is the mutation probability for a
mutant cell to appear upon any given cell division, denoted by π. In practice, π is typically of order
10−9–10−11. Computing robust estimates for π is of crucial importance in medical applications, like
cancer tumor relapse or multidrug resistance of Mycobacterium Tuberculosis for instance.

Any mutation model can be interpreted as the result of the three following ingredients:

• a random number of mutations occurring with small probability among a large number of cell
divisions. Due to the law of small numbers, the number of mutations approximately follows a
Poisson distribution. The expectation of that distribution, denoted by α, is the product of the
mutation probability π with the total number of divisions;

• from each mutation, a clone of mutant cells growing for a random time. Due to exponential
growth, most mutations occur close to the end of the experiment, and the developing time of a
random clone has exponential distribution. The rate of that distribution, denoted by ρ, is the
relative fitness, i.e. the ratio of the growth rate of normal cells to that of mutants;

• the number of mutant cells that any clone developing for a given time will produce. The
distribution of this number depends on the distribution of division times of mutants.

Using the theory of continuous time branching processes (Bellman and Harris, 1952; Athreya and Ney,
1972), and under specific modeling assumptions, it can be proved that the asymptotic distribution of
the final number of mutants has an explicit form. A first mutation model with explicit distribution
is the well known Luria-Delbrück model (Luria and Delbrück, 1943). Other mathematical models
were introduced by Lea and Coulson (1949), followed by Armitage (1952) and Bartlett (1978). In these
models, division times of mutant cells were supposed to be exponentially distributed. Thus a clone
develops according to a Yule process, and its size at a given time follows a geometric distribution. The
distribution of final mutant counts is also explicit when division times are supposed to be constant. This
latter model is called Haldane model by Sarkar (1991); an explicit form of the asymptotic distribution
is given in Ycart (2013). General division times have been studied by Ycart (2013), but no explicit
distribution is available apart from the exponential and constant division times.

The first estimation method was given by Luria and Delbrück (1943). It is based on the simple
relation between the probability of null counts in the sample, and the mutation probability, and it is
called P0 method. Of course, if the sample does not contain null counts, the method cannot be applied.
Apart from the P0 method, all other methods couple the estimation of π or α, with the estimation of
ρ. When the distribution of final numbers has an explicit form, the Maximum Likelihood (ML) is an
obvious optimal choice (Ma et al., 1992; Zheng, 2005). However, because of the jackpots, likelihood
computation can be numerically unstable. There are several ways to reduce tail effects (Wilcox, 2012,
Sec. 2.2), among which “Winsorization” consists in truncating the sample beyond some maximal
value. Another estimation method (GF) uses the probability generating function (PGF) (Rémillard and
Theodorescu, 2000; Hamon and Ycart, 2012). The estimators of α and ρ obtained with the GF method
proved to be close to optimal efficiency, with a broad range of calculability, a good numerical stability,
and a negligible computing time. For the three methods, P0, ML, and GF, the estimators of α and
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ρ are asymptotically normal. Thus confidence intervals and p-values for hypothesis testing can be
computed, for one sample and two sample tests.

The problem with classical mutation models, is that they are based on quite unrealistic assumptions:
constant final number of cells (Angerer, 2001a; Komarova et al., 2007; Ycart and Veziris, 2014), no
cell deaths (Angerer (2001a, Sec. 3.1); Dewanji et al. (2005); Komarova et al. (2007); Ycart (2014)),
fully efficient plating (Stewart et al., 1990; Stewart, 1991; Angerer, 2001b), or, as mentioned above,
exponential distribution of division times. Using a model for estimation, when the data have been
generated by another one, necessarily induces a bias on estimates. For instance, if cell deaths are
neglected, mutation probability will be underestimated.

Several informatic tools have already been developed for fluctuation analysis (Zheng, 2002; Hall
et al., 2009; Gillet-Markowska et al., 2015). These tools are quite user-friendly. However, they do not
take into account all the possible model assumptions mentioned above. The flan package described
here, is dedicated to mutation models, and parameter estimation with the three methods P0, ML, and
GF. It includes a set of functions for the distribution of mutant cell counts (dflan, pflan, qflan, rflan)
and a graphic function (draw.clone). They treat general models, with fluctuating final numbers, cell
deaths, and other division time distributions than exponential and constant. The general estimation
function is mutestim. It returns estimates for the parameters α, π and ρ, with the three estimation
methods, constant or exponential division times, and cell deaths. As a wrapper, a hypothesis testing
function (flan.test) is provided. In order to make the package user-friendly, the functions have been
designed to resemble classical R functions, like t.test or rnorm.

The paper is organized as follows. Section L.2 is devoted to the probabilistic setting: the hypotheses
of the different models are described, and the asymptotic results are explained. In Section L.3, the
three estimation methods are exposed, and the biases described above are discussed. A comparison
of the three methods in terms of mean squared errors is provided. The user interface and the Rcpp
(Eddelbuettel, 2013) implementation is treated in Section L.4; examples of execution are shown in
Section L.5.

Mutation models

In this section, probabilistic mutation models are described. The basic modeling hypotheses are the
following:

• at time 0 a homogeneous culture of n0 normal cells is given;

• the lifetime of any normal cell is a random variable with distribution function F;

• upon completion of the generation time of a normal cell:

– with probability π one normal and one mutant cell are produced;

– with probability 1− π two normal cells are produced;

• the lifetime of any mutant cell is a random variable with distribution function G;

• upon completion of the lifetime of a mutant cell:

– with probability δ the cell dies out;

– with probability 1− δ two mutant cells are produced;

• all random variables and events (division times, mutations, and deaths) are mutually indepen-
dent.

Consider that the initial number n0 tends to infinity, the mutation probability π = πn0 tends to 0,
and the time t = tn0 at which mutants are counted tends to infinity. The scale of time is supposed to
be adjusted so that the exponential growth rate of mutants is 1; thus the exponential growth rate of
normal cells is ρ. See Athreya and Ney (1972, Chap. IV Sec. 4) or Hamon and Ycart (2012) for the
definition of the growth rate (also called “Malthusian parameter”). The expected number of mutations
before tn0 is proportional to n0πn0 eρtn0 , and the asymptotics are assumed to be such that this number
converges as n0 tends to infinity to α, positive and finite.

Under the above hypotheses, as n0 tends to +∞, the final number of mutants converges in law to
the distribution with PGF:

g(z) = exp (−α(1− h(z))) , (1)

with
h(z) =

∫ ∞

0
ψ(z, t)ρe−ρtdt , (2)

where ψ(z, t) is the PGF of the number of cells at time t in a mutant clone, starting from a single cell
at time 0. Observe that it depends on the lifetime distribution of normal cells F only through ρ. The
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above result is deduced from the theory of continous time branching processes (Hamon and Ycart,
2012)). The expressions (1) and (2) translate the three ingredients described in the introduction:

1. the Poisson distribution with intensity α models the total number of mutations which occur
during the process;

2. the exponential distribution with rate ρ is that of the time during which a random clone develops;

3. the distribution with PGF ψ(·, t) is that of the number of cells in a random clone developing
during a time interval of length t. The PGF ψ is the solution of a Bellman-Harris equation
(Bellman and Harris, 1952) in terms of δ and G.

Hence the expressions of h as an exponential mixture, and of g as a Poisson compound. In practice, the
plating process can be less than 100% efficient. In that case, a random number of mutants will not be
counted: if only a proportion ζ of the final population is plated, then each cell will be observed with
probability ζ. Denote by Mtot and M the total and the observed numbers of mutants. Given Mtot = m,
M follows the binomial distribution with parameters m and ζ. Thus, the PGF g of M is given by:

g(z) = E
[
E
[
zM |Mtot

]]
= exp (−α (1− h(1− ζ + ζz))) . (3)

The PGF (3) defines a parametrized family of distributions, denoted hereafter by MM(α, ρ, δ, ζ, G)
(Mutation Model). This is a family of heavy-tailed distributions, with tail exponent ρ: the higher the
fitness, the heavier the tail. This directly influences the number and the amount of jackpots.

At this point, the PGF ψ can be given as an explicit expression only for two particular lifetime
distributions of mutants: exponential, and Dirac (constant lifetimes). The corresponding mutation
models will be denoted respectively by LD(α, ρ, δ, ζ) (Luria-Delbrück), and H(α, ρ, δ, ζ) (Haldane).
The functions dflan, pflan, and qflan compute densities, probabilities, quantiles of LD and H
distributions (with ζ = 1).

Assuming that a consistent estimator of α has been defined, the problem in practice is to compute
reliable estimates of the mutation probability, π. The simplest approach assumes that the final number
of cells, denoted by N, is constant. An estimate of π is then obtained by dividing the estimate of α by
N. However, even under close experimental monitoring, assuming that the final number of cells is a
constant is quite unrealistic. Thus, N must be viewed as a random variable with a certain probability
distribution function K on [0,+∞). By analogy with (1), the conditional PGF of the number of mutants
given N = n, can be given by the following expression:

g (z |N = n) = exp (−πn(1− h(z))) .

Or else, the conditional distribution of the number of mutants given N = n is the distribution
MM(πn, ρ, δ, ζ, G). The distribution function K is supposed to be known and its Laplace transform is
denoted by L:

L(z) = E
[

e−zN
]
=
∫ ∞

0
e−zndK(n) ,

Thus the PGF of the final number of mutants is given by:

g(z) =
∫ ∞

0
g (z |N = n)dK(n)

= L (π(1− h(z))) . (4)

Remark that if N is constant, (4) reduces to (1) with α = πN. In general, the PGF (4) defines a new
parametrized family of mutation distributions, denoted herafter by MMFN(π, ρ, δ, ζ, G, K) (Mutation
Models with Fluctuating Numbers of cells).

The two particular cases for the distribution GX previously mentioned above (exponential and
Dirac) will be denoted by LDFN(α, ρ, δ, ζ, K) (Luria-Delbrück with Fluctuating Number of cells) and
HFN(α, ρ, δ, ζ, K) (Haldane with Fluctuating Number of cells). As will be shown in Section L.3,
estimating π by the ratio of an estimate of α by the expectation of N induces a negative bias.

The function rflan outputs samples of pairs (mutant counts–final counts) following MMFN
distributions where G is an exponential, Dirac, log-normal or gamma distribution, and K is a log-
normal or Dirac distribution.
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Statistical inference

Here the three estimation methods P0, ML and GF are described. The main features and the limitations
of each method are discussed. The three methods compute estimates of α and ρ, under the LD and H
models. When couples (mutant counts–final numbers) are given, estimates of π and ρ are calculated
under the LDFN or HFN models.

Even if the probabilities and their derivatives with respect to δ for LD and H distributions can be
computed, the variations of the whole distribution as a function of δ are too small to enable estimation
in practice (see Ycart (2014) for more details). Thus, the parameter δ is supposed to be known for the
three methods.

In the rest of this section, the three estimators are described, their performances compared in terms
of MSE, and the possible sources of biases discussed.

Estimators

P0 estimator: The first method was introduced by Luria and Delbrück (1943) when δ = 0. In that
case, the probability of null counts in the sample is e−α. Hence α can be estimated taking the negative
logarithm of the relative frequency of zeros among mutant counts. Hence the method cannot be
applied if the sample does not contain null counts.

If δ > 0, the probability of null counts in the sample depends also on δ. Assuming δ < 1/2, a
fixed point of the PGF ψ(·, t) is the extinction probability of a mutant clone (Athreya and Ney, 1972,
Theorem 1, Chap.I):

δ∗ =
δ

1− δ
.

By definition, δ∗ is also a fixed point of the PGF (2). Then the probability of null counts in the sample
is e−α(1−δ∗). A consistent and asymptotically normal estimator of α is given by:

α̂0 =
− log (ĝ(δ∗))

1− δ∗
, (5)

where ĝ denotes the empirical PGF of the final number of mutants.

Consider now that ζ < 1. Ignoring the inefficient plating will induce a negative bias. A cor-
rection has been proposed by Stewart et al. (1990, eq. (41)). However, it can be used only under
model LD(m, 1, 0). Indeed, the general expression of the probability of null counts is e−α(1−h(1−ζ)),
which depends on the fitness ρ. It is still possible to extend the estimator (5) to the case where ζ < 1:

α̂0 =
− log

(
ĝ
(

δ
(ζ)
∗
))

1− δ∗
, (6)

with

δ
(ζ)
∗ =

δ∗ − (1− ζ)

ζ
.

We remark that (6) makes sense only if |δ(ζ)∗ | 6 1. In particular, if δ = 0, the plating efficiency ζ has to
be greater than 0.5. Therefore, the

Notice that the P0 method does not directly yield an estimator of ρ. If an estimate is desired, the
ML method can be used for ρ only, setting α = α̂0.

ML estimators: Since algorithms (Embrechts and Hawkes, 1982; Zheng, 2005; Hamon and Ycart,
2012; Ycart and Veziris, 2014) enable the computation of the probabilities of the LD and H models, the
ML method seems to be an obvious choice. It can be used on two kinds of samples:

1. sample of mutant counts: In that case, the likelihood is computed with the probabilities of the
model LD or H. The parameter of interest is α.

2. sample of pairs of (mutant counts–final numbers): In that case, the likelihood is computed with
the probabilities of the model LDFN or HFN. The parameter of interest is π.

In both cases, ρ can also be estimated.

However, when the sample maximum is large, sums of products of small terms must be computed
(Hamon and Ycart, 2012). The procedure can be very long and numerically unstable. Thus, the
ML estimators can fail for large α and small ρ. In practice, this instability problem is avoided using
Winsorization (Wilcox, 2012, Sec. 2.2), which consists in replacing any value of the sample that exceeds
a certain bound by the bound itself. The bound is 1024 by default, and it could be necessary to increase
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it. All information above the bound is lost, and in an extreme case where the sample minimum is
greater than the bound, irrelevant results will be returned.

In theory, it is also possible to be explicit about the probabilities of the LD model when ζ < 1.
However, these computations have not been done for the H model. Thus the plating process is
assumed to be fully efficient when the ML method is used.

GF estimators: The GF method uses the PGF to estimate the parameter of a compound Poisson
distribution (Rémillard and Theodorescu, 2000; Hamon and Ycart, 2012). Let 0 < z1 < z2 < 1 and z3
in (0 ; 1). The estimators of α and ρ are the following:

α̂GF(z3) =
log (ĝ(z3))

hρ̂GF(z1,z2)(z3)− 1
and ρ̂GF(z1, z2) = f−1

z1,z2
(ŷ) ,

where ĝ denotes the empirical PGF of the final number of mutants, hx is the PGF (2) with ρ = x, and:

fz1,z2 (x) =
hx(z1)− 1
hx(z2)− 1

and ŷ =
log (ĝ(z1))

log (ĝ(z2))
. (7)

From Rémillard and Theodorescu (2000), it can be proved that the couple of estimators (α̂GF, ρ̂GF) is
strongly consistent and asymptotically normal, with explicit asymptotic variance (Hamon and Ycart,
2012).

The GF estimators depend on the three arbitrary values of z1, z2, z3. Those tuning parameters are
set to z1 = 0.1, z2 = 0.9, and z3 = 0.8. For more details about the choice of those values, see Hamon
and Ycart (2012).

In practice, the GF estimators are quite comparable in precision to ML estimators, with a much
broader range of calculability, a better numerical stability, and a negligible computing time, even in
the case where the ML method fails. For that reason, we have chosen to initialize the ML optimization
by GF estimates, to improve both numerical stability and computing time.

The only practical limitation of this method is the following. A zero of the monotone function
fz1,z2 (ρ)− ŷ must be computed. An upper bound for the domain of research must be given, which can
be a problem if the sample does not contain jackpots. However in that case, a mutation model is not
adapted.

According to (3), the GF estimators or α and ρ can be extended to the case where ζ 6 1 as follows:

α̂GF(z3) =
log (ĝ(z3))

hρ̂GF(z1,z2)(1− ζ + ζz3)− 1
and ρ̂GF(z1, z2) = f−1

1−ζ+ζz1,1−ζ+ζz2
(ŷ) ,

where fz1,z2 and ŷ are still given by (7). By the same reasoning as Hamon and Ycart (2012), strong
consistency and asymptotic normality of the couple (α̂GF, ρ̂GF) can be proved.

The function mutestim computes estimates and their respective standard deviations for α, π and ρ
according to the type of input. Moreover, the estimators mentioned here are asymptotically normal.
Thus, one and two sample tests can be performed, using the function flan.test. The null hypothesis
will be either fixed theoretical values of α, π, ρ in the one sample case, or a difference of the same in
the two sample case.

Comparison of the three estimators

The Figures 1 and 2 (drawn using ggplot2) show “maps of usage” of the estimation methods under
the LD and H models. The methods are compared in terms of the relative MSE of (α̂, ρ̂) defined as:√(

1− α̂

α

)2
+

(
1− ρ̂

ρ

)2
. (8)

The RGB code is used: red for GF, green for P0, blue for ML. Twenty values of α between 0.5 and 10,
and as many values of ρ from 0.2 to 5, were chosen. Thus 400 couples were considered. For each of
them, the following procedure was applied:

1. draw 104 samples of size 100 of the LD(α, ρ, 0, 1);

2. for each sample, compute ML, GF and P0 estimates of (α, ρ) under LD model;

3. from the 104 estimates, compute the relative MSEs of each method;

4. assign a RGB color according to the MSEs. For each method:

• if the MSE is less than 0.05, assign 1 to the corresponding RGB component;
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Figure 1: Map of usage of the estimation methods under LD model. The map compares the three
methods according to their relative MSE (8). For each of 400 couples of parameters α = 0.5 . . . 10
(x-axis) and ρ = 0.2 . . . 5 (y-axis, log5-scale), 104 samples of size 100 of the LD(α, ρ, 0, 1) distribution
were simulated. The estimates of (α, ρ) were calculated with the three methods. Each method is
represented by a color: red for GF, green for P0, blue for ML.

• if the MSE is greater than 1, assign 0 to the corresponding RGB component;

• else, assign 1 minus the MSE to the corresponding RGB component.

The above experience is also performed considering H model instead of LD. The maps have been
drawn with a log5-scale for ρ (y-axis). The map can be roughly divided into four distinct parts:

• For (α, ρ) ∈ (0.5 ; 3)× (0.2 ; 2.5), the color is essentially grey: the three methods are more or less
equivalent.

• For (α, ρ) ∈ (3 ; 10)× (0.2 ; 3.5), the color is magenta: the ML and GF methods are equivalent.
The P0 method provides estimates with large MSEs or cannot be used because of the absence of
null counts.

• For small values of ρ, the color is mainly red: The GF method is the only method with an
acceptable MSE. Small values of ρ induce large jackpots. Moreover, the number of jackpots
increases with α. Because of the Winsorization, the ML and P0 method (which uses ML to
estimate ρ) provide estimates with very large MSEs.

• For ρ large, the color is darker and tends to black: the three methods provide estimates with
large MSEs, specially for ρ ∈ (3.5 ; 5), where jackpots are very small or absent. In those
cases, estimating ρ with the GF method is not possible in practice (see previous sub-section).
Consequently, the GF method will provide a biased estimate for α. The ML method, which
uses the GF estimates to initialize the optimization of the log-likelihood, also provides biased
estimates. The P0 method can provide good estimates of α whatever the value of ρ, which
explains the presence of green areas at the top of the map. In a case where no jackpots are present
in the sample it should be considered that a (heavy tailed) mutation model is not adapted.

Figure 2 is quite similar to Figure 1. There are still two remarkable differences:

• For ρ small and m 6 2, the three methods seem to be more equivalent under H model than
under LD model.

• For ρ large, GF method seems to provide better estimates under H model than under LD model.

The three methods should also be compared in terms of computational time. An illustration on real
data will be given in section L.5. The slowest method is ML, for the reasons discussed in the previous
section. It is even slower when the estimates are calculated under Haldane models H or HFN, when δ
is positive, or if the initialization of ρ with the GF method fails. The GF method computes estimates of
α and ρ (when possible) in negligible time. The P0 method outputs estimates of α in negligible time,
but estimates of ρ are as slow as with ML.
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Figure 2: Map of usage of the estimation methods under H model. The map compares the three
methods according to their relative MSE (8). For each of 400 couples of parameters α = 0.5 . . . 10
(x-axis) and ρ = 0.2 . . . 5 (y-axis, log5-scale), 104 samples of size 100 of the H(α, ρ, 0, 1) distribution
were simulated. The estimates of (α, ρ) were calculated with the three methods. Each method is
represented by a color: red for GF, green for P0, blue for ML.

Bias evidence

If the model used for the estimation does not correspond to the theoretical model, the estimates can be
biased. Four different sources of bias are considered:

1. the final counts are random in the data, constant for the estimation model;

2. cell deaths occur in the data, not in the estimation model;

3. the lifetime distribution is different in the data and the estimation model;

4. the plating process is less than 100% efficient.

In each case, simulation experiments have been made along the following lines:

1. draw 104 samples of size 100, under one model;

2. for each sample, compute estimates using another model and the true one if available;

3. compare the empirical distributions of θ̂/θ, where θ̂ is estimator and θ the true value.

For each figure, red lines mark unit, blue lines mark relative biases of 0.9 and 1.1. According to
Figures 1 and 2, the GF method is at least equivalent in terms of the relative MSE (8) to the ML and P0
methods. Moreover, it is also the best in terms of computational time. Therefore, the bias evidences
will be mainly illustrated with GF method.

Fluctuation of final counts: When N is constant, the estimate of π is derived by dividing the estimate
of α by N. As mentioned in previous section, if N is a random variable, the relation between α and
π can be explicit if the distribution K is known. However, this is not the case in practice. Usually,
estimates of the expectation and variance of N are available at best. Assume that only the first two
moments µ and σ2 of N are known. Then a first order approximation of the Laplace transform L can
be used to reduce the bias. This method is explained in Ycart and Veziris (2014) for the P0 method. It
has been adapted to ML and GF estimates. Figure 3 shows the influence of the coefficient of variation
C = σ/µ on the ML estimate of π. The estimates were calculated with three different approaches:

• divide ML estimates of α by the empirical mean of N and ignore fluctuations of N (left boxplots);

• directly compute ML with the sample of pairs (mutant counts–final counts) (center boxplots);

• derive from ML estimates of α, taking into account of the empirical fluctuations of N (right
boxplots).
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Figure 3: ML estimates of π ignoring fluctuations of final numbers or not. Red horizontal lines
mark unit. Blue horizontal lines mark relative bias of 0.9 and 1.1. For each of the 12 sets of parameters
π = (0.5/µ, 2/µ, 4/µ, 8/µ) (columns), and C = (0.2, 0.4, 0.6) (rows), 104 samples of size 100 of the
LDFN(π, ρ, 0, 1, K) distribution were simulated, with ρ = 1 and K being the log-normal distribution
adjusted to mean µ = 109 and coefficient of variation C. The ML estimates of π and ρ were calculated
under model LD or LDFN. Each boxplot represents the distribution of the 104 ratio π̂/π obtained
with LD model with C = 0 (left), LD model with bias reduction (center), LDFN model (right).

According to the visual observations, the bias reduction seems to be working well when either the
product πµ or C are small: most of the estimates have a relative bias smaller than 10%. However, the
efficiency of the correction decreases as product πµ and C increase. In particular, for larger values of
πµ, the bias seems to be smaller without correction. It could be improved with a better approximation
of L, that implies knowing or estimating higher moments of N. Another solution is to improve the
estimation of C. Here C was estimated by the ratio of the empirical standard deviation of the empirical
mean, which is known to be a bad method in terms of MSE (Breunig, 2001).

Cell deaths: The PGFs (1), (4) and (2) depend on δ. Ignoring cell deaths involves a negative bias
on the estimate of α. Assuming the exact value is known, this bias is removed. Figure 4 shows the
influence of the death parameter δ on the GF estimate of α. The estimates are calculated with two
different approaches:

1. computing GF estimates of α with δ = 0 (left boxplots);

2. computing GF estimates of α with a theoretical value of δ (right boxplots).

The visual results show that the negative bias induced by ignoring cell deaths increases with the
value of δ: the relative bias can easily exceed 10% for large values of δ. From the theory of branching
processes, the growth process of a mutant clone is supercritical and δ has to be smaller than 0.5. In
practice δ is smaller than 0.3. According to the boxplots, the relative bias induced by ignoring cell
deaths can reach 0.80. These experiments also illustrate the difficulty in estimating δ. For example,
the boxplots at the top right of the figure seems to show that the value of the likelihood for α = 4 and
δ = 0 is very close to its value for α = 4 and δ = 0.05.
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Figure 4: GF estimates of α ignoring cell deaths or not. Red horizontal lines mark unit. Blue
horizontal lines mark relative bias of 0.9 and 1.1. For each of the 12 sets of parameters α = (0.5, 2, 4, 8)
(columns), and δ = (0.05, 0.1, 0.2) (rows), 104 samples of size 100 of the LD(α, ρ, δ, 1) distribution were
simulated, with ρ = 1. The GF estimates of α and ρ were calculated under LD model. Each boxplot
represents the distribution of the 104 ratio α̂/α of the estimates obtained without taking account of
cells death (left) and with the theoretical value of δ (right).

Lifetime distribution: As mentioned earlier, the PGF h is explicit only for the LD and H distributions,
i.e. when lifetimes are either exponential or constant. This is not the case in practice. If another lifetime
distribution is used to simulate the data, and either LD or H are used to estimate the parameters, a
bias will be induced on α and ρ. Figure 5 illustrates these observations. It shows the influence of the
lifetime distribution on the GF estimates of α and ρ. The samples are drawn assuming the lifetimes
are log-normally distributed. The estimates of α and ρ are calculated under LD (left boxplots) and H
models (right boxplots).

From the visual observations, the LD and H models can be seen as extreme values for the lifetime
distribution:

• both models correctly estimate α;

• the LD model overestimates ρ and has a rather large dispersion of estimated values. The bias
seems to increase as α increases;

• the H model correctly estimates ρ.

Plating efficiency: Ignoring the plating efficiency induces a negative bias on α and a positive bias
on ρ. In practice, the exact value is known. Figure 6 shows the influence of ζ on the GF estimates of α.
The estimates are calculated with two different approaches:

1. computing GF estimates with ζ = 1 (left boxplots) ;

2. applying the correction of Stewart et al. (1990, eq. (41)) to GF estimates (center boxplots);

3. computing GF estimates with known value of ζ (right boxplots).

The visual results illustrate first the fact that the correction of Stewart et al. (1990) should not be used
when ρ 6= 1: the induced bias on α is negative when ρ > 1, positive when ρ < 1. However, the variance
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Figure 5: GF estimates of α and ρ under LD and H models on data drawn with MM model. Red
horizontal lines mark unit. Blue horizontal lines mark relative bias of 0.9 and 1.1. For each of the 12
sets of parameters α = (0.5, 2, 4, 8) (rows), and ρ = (0.8, 1, 1.2) (columns), 104 samples of size 100 of
the MM(α, ρ, 0, 1, G) distribution were simulated, G being the log-normal distribution adjusted on
Kelly and Rahn’s data (Kelly and Rahn, 1932). The GF estimates of α and ρ were calculated with the
two distributions LD(α, ρ, 0, 1) and H(α, ρ, 0, 1). For each couple (α, ρ), the two first boxplots represent
the distribution of the 104 ratio α̂/α obtained by the LD model (left) and the H model (right); the two
last boxplots represent the distribution of the 104 ratio ρ̂/ρ obtained by the LD model (left) and the H
model (right)

of the estimates obtained with these rectification is smaller than that of the estimates calculated with
GF method.

Implementation details

The available functions are described here; more details are given in the manual. The behavior of
inference functions for inputs which are out of practical limitations is described. Some details about
the Rcpp implementation are also provided.

User interface

The flan package can be split into two distinct parts: the distribution of the final number of mutants
and statistical inference. The functions dflan, pflan, qflan compute densities, probabilities and
quantiles of LD and H distributions. The function rflan outputs samples of pairs (mutant counts–final
counts) following LDFN, HFN, or MMFN where G has a log-normal or gamma distribution and K
has a log-normal or Dirac distribution. K is adjusted to the mean and coefficient of variation provided
by the user. Those functions have been designed on the principle of the classical distribution functions
of R. A graphic function draw.clone is also provided. Using a binary tree, it represents the growth of
a clone starting from a single normal cell with mutation occurrences until a finite time. The function
mutestim computes estimates of α or π and ρ, using LD or H models. The three estimation methods are
available. Fluctuations of final numbers and cells death are included. The function returns estimate(s)
of the parameter(s) of interest and the standard deviations. The function flan.test uses asymptotic
normality to perform one or two-sample hypothesis testing. It has been designed on the principle of
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Figure 6: GF estimates of α ignoring plating efficiency or not. Red horizontal lines mark unit. Blue
horizontal lines mark relative bias of 0.9 and 1.1. For each of the 12 sets of parameters α = (0.5, 2, 4, 8)
(rows), and ρ = (0.8, 1, 1.2) (columns), 104 samples of size 100 of the LD(α, ρ, 0, ζ) distribution were
simulated, with ζ = 0.2 and ζ = 0.05. The GF estimates of α and ρ were calculated under LD model.
Each boxplot represents the distribution of the 104 ratio α̂/α obtained with ζ = 1 (left), using the
Stewart et al. (1990) correction (center), and with the true value of ζ (right).

the classical hypothesis testing functions of R, such as t.test. As mentioned in Section L.3, there are
practical limitations for each estimation method. If the inputs of the mutestim function do not respect
those limitations, it will output errors or warning messages:

• If δ = 0, the P0 method can not be used if the sample does not contain any null counts. In that
case, the mutestim function will throw an error with a message.

• For now, an inefficient plating (i.e. ζ < 1) can be taken into account only with the GF method. If
another method is specified, the mutestim function will return a warning message and set ζ at 1.

• Issues of the Winzorization parameter w (default is 1024) of ML method:

1. If the minimum of the sample is larger than w, then the sample of mutant counts will be
constant.

2. If w is too large, then the optimization process can be very long.

• The GF method does not have limitations of usage, even for extreme cases where the ML
estimators fail, i.e. samples with theoretical large α and small ρ. However, estimating ρ requires
solving the zero equation discussed in Section L.3, which is theoretically solvable on R+. In
practice the interval of research is bounded. Thus, if the sample does not contain any jackpot,
which means that ρ is very large, the zero equation may not have any solution on the interval.
In that case, the function will return a warning message, and set the estimate of ρ at 1, and the
estimate of the standard deviation at 0. In the mutestim function, the domain of research is
[0.01 ; 100].

• Moreover, the initialization of the ML method is done with GF method. Then the domain of
optimization is [0.1× θ̂GF ; 10× θ̂GF], where θ̂GF is the GF estimate(s) of the parameter(s) of
interest. Then, if the GF method does not succeed to estimate ρ, there is no chance to estimate it
with ML. A warning message is returned if the initialization of the estimate of ρ with GF fails.

The function flan.test is a wrapper function of mutestim. It will ouput the same errors or warning
messages if its inputs do not respect the practical limitations.
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Implementation

Since most functions involve loops that are more expensive in R than in C, flan has been implemented
with Rcpp modules. This paradigm provides an easy way to expose C++ functions and classes to R.
There are four main classes in the C++ implementation:

• FLAN_Sim: random generation for MM and MMFN distributions. One of its members is a
variable of the following type;

• FLAN_SimClone: random generation for clone size distribution according to the lifetimes distri-
bution;

• FLAN_MutationModel: computation of the descriptive functions (probabilities, PGF,...) for LD
and H distributions. One of its members is a variable of the following type;

• FLAN_Clone: computation of the descriptive functions for clone size distribution according to
the lifetimes distribution.

The Rcpp interface enables also to import into the C++ code any R function. In particular, it is
interesting to import the R functions which are already implemented in C. Thus no external C/C++
library is required. The installation remains basic, and the size of the installed package is reduced.
For example, the computations of LD distributions involve numeric integrations. The C libraries
integration and alglib compute integrals with an accuracy close to machine precision. We could use
those libraries but the R function integrate is actually implemented in C. The R function can then be
directly called into the C++ code. However, such imports increase the computational time and memory
consumption. This is thus unsatisfactory. Another solution uses the package RcppGSL (Eddelbuettel,
2013, chap. 11), which creates an interface between Rcpp and the C library gsl. Several integration
methods are thus available. Since it only requires that gsl is correctly installed, this solution is a good
compromise between easy setup and computational cost.

Computing the probabilities for the H distribution with δ > 0 involves squaring high degree poly-
nomials. Such polynomials are easily treated by the package polynom. However its implementation
raises memory issues, because of the degree of the polynomials involved. A more efficient way is to
use the Fast Fourier Transform. It is provided by the C library fftw3, which can raise some installation
issues. The R function fft could be directly called into the C++ code. For the same reasons as for
the integrate function, it is more adequate to use the package RcppArmadillo (Eddelbuettel (2013,
chap.10) ; Eddelbuettel and Sanderson (2014)). This package links Rcpp to the C++ library armadillo,
which is dedicated to linear algebra. In particular, it includes a performant Fast Fourier Transform.

Finally, likelihood optimizations in the ML and P0 methods are done with a bounded BFGS
optimizer. The package lbfgsb3 provides the eponymous function which is implemented in Fortran.
It is much faster than the basic R function optim.

Examples of usage

Some examples on the real data included in flan are provided.

Practical limitations, influence of bias sources and comparison of the estimation methods in terms
of computational time are illustrated. Consider first the eleventh sample of mutant counts of the
werhoff data (Werngren and Hoffner, 2003):

werhoff$samples$W11$mc
## [1] 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 4 4 4 4 5 5

This sample does not contain any jackpot, then the theoretical fitness in a mutation model, should be
very large. If the GF method is used, it will output a warning message and set the fitness at ρ = 1, as
customarily done in the litterature (Foster, 2006):

W <- werhoff$samples$W11$mc

# Compute GF estimates of mutations number and fitness}
mutestim(mc = W, method = "GF")

## Warning in mutestim(mc = W, method = "GF"): Impossible to estimate
## 'fitness' with 'GF'-method: 'fitness' is set to default value 1 and
## only mutations number is estimated.

## $mutations
## [1] 0.8792917
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##
## $sd.mutations
## [1] 0.260549
##
## $fitness
## [1] 1
##
## $sd.fitness
## [1] 0

Notice that Table 1 of Werngren and Hoffner (2003) shows mutants counts and mean final numbers of
cells for 1 mL of solution. However, the total volume of the culture is 5 mL. In other words, a plating
efficiency of 20% has been applied. The fact is the fitness parameter can not be estimated, even taking
into account the plating efficiency:

# Volume of each sample: 1 mL
# Total volume of each culture: 5 mL
# i.e. plating efficiency of 0.2
pef <- 0.2

# Compute GF estimates of mutation probability and fitness
# taking into account the plating efficiency
mutestim(mc = W, plateff = pef, method = "GF")

## Warning in mutestim(mc = W, plateff = pef, method = "GF"): Impossible to estimate 'fitness' with
## 'GF'-method: 'fitness' is set to default value 1 and only mutations number is estimated.

## $mutations
## [1] 2.804244
##
## $sd.mutations
## [1] 0.74011
##
## $fitness
## [1] 1
##
## $sd.fitness
## [1] 0

Using the P0 method is a way to realize that setting ρ = 1 by default can be misleading. Since this
method does not depend on the lifetime distribution, the estimate of α will not depend on the value of
ρ.

# Compute P0 estimate of mutations number
mutestim(mc = W, fitness = 1, method = "P0")

## $mutations
## [1] 2.525729
##
## $sd.mutations
## [1] 0.678233

The P0 estimate of α is very different from the GF estimate (when ζ = 1). Consider now the sample of
David (1970, Tab. 2), which includes rifampin-resistant bacteria counts.

david$D11

## $mc
## [1] 4 0 1 0 1 0 0 0 0 0
##
## $fn
## [1] 1.3e+09 9.2e+08 1.3e+09 2.5e+09 1.3e+09 1.6e+09 1.3e+09 2.5e+09
## [9] 2.5e+09 2.0e+09

Since the 4 value can be seen as a jackpot, the GF method can be used to estimate α and ρ. Now let
us compute the ML estimates of π and ρ taking into account or not of the final counts, under the LD
model.
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D <- david$D11
Dmfn <- mean(D$fn)

# Compute ML estimates and confidence intervals of mutation probability and
# fitness with empirical mean and null coefficient of variation
ft <- flan.test(mc = D$mc, mfn = Dmfn)
ft$estimate

## mutation probability fitness
## 2.067641e-10 2.214676e+00

ft$conf.int

## mutation probability fitness
## bInf 0.000000e+00 0.000000
## bSup 4.423916e-10 8.109577
## attr(,"conf.level")
## [1] 0.95

# Compute ML estimates and confidence intervals of mutation probability and
# fitness with empirical mean and empirical coefficient of variation
ft <- flan.test(mc = D$mc, mfn = Dmfn, cvfn = sd(D$fn)/Dmfn)
ft$estimate

## mutation probability fitness
## 2.092720e-10 2.214676e+00

ft$conf.int

## mutation probability fitness
## bInf 0.000000e+00 0.000000
## bSup 4.506155e-10 8.109577
## attr(,"conf.level")
## [1] 0.95

# Compute ML estimates and confidence intervals of mutation probability and
# fitness with couples (mc,fn)
ft <- flan.test(mc = D$mc, fn = D$fn)
ft$estimate

## mutation probability fitness
## 1.977135e-10 2.048984e+00

ft$conf.int

## mutation probability fitness
## bInf 0.000000e+00 0.000000
## bSup 4.078591e-10 7.127426
## attr(,"conf.level")
## [1] 0.95

The sample of final counts is denoted by D(FN)
11 . The empirical mean of the final counts is denoted

by µ, the empirical coefficient of variation by C. Table 1 displays the ML estimates of π and ρ, in
the same way as for Figure 3. Their 95% confidence intervals are provided. Comparing the second
row to the fourth, one can see that neglecting final number fluctuations induces a bias of order 5%
on π, 10% on ρ. From the third row, it turns out that the correction taking into account C, has not
improved the estimate of π. Notice also that due to the small size sample, the confidence intervals
are quite large. Consider finally the data from Boe et al. (1994, Tab. 4). The author studied mutations
of Escherichia coli from sensitivity to nalidixic acid resistance. 23 samples of resistant bacteria counts
are provided. As in the original paper, the 23 samples are concatenated as one. The three estimation
methods are compared in terms of computational time on the resulting sample of size 1104. The
package microbenchmark is used, evaluating 104 times each method on the sample. The methods are
compared when only α is estimated (ρ = 1), and when the couple (α,ρ) is estimated. In both cases the
estimates are computed under the model LD with δ = 0 and ζ = 1.
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Estimates of π Confidence
intervals (95%) of π

Estimates of ρ Confidence
intervals (95%) of ρ

ML using

µ = µ, C = 0
2.07× 10−10 [

0 ; 4.22× 10−10] 2.21 [0 ; 8.11]

ML using

µ = µ, C = C
2.09× 10−10 [

0 ; 4.51× 10−10] 2.21 [0 ; 8.11]

ML using

D(FN)
11

1.98× 10−10 [
0 ; 4.08× 10−10] 2.05 [0 ; 7.13]

Table 1: ML estimates of π and ρ of data set from (David, 1970, Tab. 2) ignoring fluctuations of
final numbers or not. Each row shows the ML estimates of π and ρ and their 95% confidence intervals,
deducing from LD model with C = 0 (first row), C = C (second row), and directly with LDFN model
(third row).

B <- unlist(boeal) # Concatenation of the 23 samples
require(microbenchmark)

# Comparing the methods in terms of computational performance
# (mutations number only)
microbenchmark(P0 = mutestim(mc = B, fitness = 1, method = "P0"),

GF = mutestim(mc = B, fitness = 1, method = "GF"),
ML = mutestim(mc = B, fitness = 1, method = "ML"),
unit = "ms", times = 1e4)

## Unit: milliseconds
## expr min lq mean median uq max neval
## P0 0.063696 0.0800720 0.09701435 0.0899955 0.0986275 2.149537 10000
## GF 0.327989 0.3694555 0.41309310 0.3850380 0.4035050 26.774004 10000
## ML 8.381844 10.5333670 12.23137063 10.9118690 11.3860045 43.592177 10000

# Comparing the methods in terms of computational performance}
microbenchmark(P0 = mutestim(mc = B, method = "P0"),

GF = mutestim(mc = B, method = "GF"),
ML = mutestim(mc = B, method = "ML"),
unit = "ms", times = 1e4)

## Unit: milliseconds
## expr min lq mean median uq max neval
## P0 8.451605 11.004419 12.832827 11.848562 13.082066 43.00397 10000
## GF 2.274944 2.419663 2.688851 2.481529 2.549597 33.19333 10000
## ML 73.704656 79.581238 83.841150 81.802464 84.323398 120.65768 10000

The results are shown on Figure 7, as boxplots of timing distributions. Times are in milliseconds and
plotted on log-scale. As mentioned earlier, the ML method is the slowest. The GF method seems
to be quite faster than the P0 method. However, the estimates of ρ of the P0 method is calculated
maximizing the likelihood. This step is more costly in term of computational time. If only α has to be
estimated, the P0 method is faster than the GF method.

Bibliography

W. P. Angerer. An explicit representation of the Luria-Delbrück distribution. J. Math. Biol., 42(2):
145–174, 2001a. URL https://doi.org/10.1007/s002850000053. [p335]

W. P. Angerer. A note on the evaluation of fluctuation experiments. Mutation Research, 479:207–224,
2001b. URL https://doi.org/10.1016/S0027-5107(01)00203-2. [p335]

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://doi.org/10.1007/s002850000053
https://doi.org/10.1016/S0027-5107(01)00203-2


CONTRIBUTED RESEARCH ARTICLES 349

Estimates of α setting ρ = 1 Estimates of the couple (α,ρ)

P0 GF ML

5
0

2
0

0
5

0
0

2
0

0
0

1
0

0
0

0
5

0
0

0
0

Method

lo
g
(t

im
e
)[

m
s
]

P0 GF ML

2
5

1
0

2
0

5
0

1
0

0

Method

lo
g
(t

im
e
)[

m
s
]

Figure 7: Computational time of the three methods on data from Boe et al. (1994, Tab. 4). Data
consist in the 23 samples of boeal concatenated as one. For each method, the estimates of α setting
ρ = 1 (left boxplots) or of α and ρ (right boxplots) have been computed under model LD. The
timings have been returned with microbenchmark, evaluating 104 times each method. Times are in
milliseconds and plotted on log-scale.

P. Armitage. The statistical theory of bacterial populations subject to mutation. J. R. Statist. Soc. B, 14:
1–40, 1952. URL http://www.jstor.org/stable/2984083. [p334]

K. B. Athreya and P. E. Ney. Branching Processes. Springer-Verlag, Berlin Heidelberg, 1972. URL
https://doi.org/10.1007/978-3-642-65371-1. [p334, 335, 337]

M. S. Bartlett. An Introduction to Stochastic Processes, with Special Reference to Methods and Applications.
Cambridge University Press, 3rd edition, 1978. [p334]

R. Bellman and T. Harris. On age-dependent binary branching processes. Ann. Math., 55(2):280–295,
1952. URL https://www.jstor.org/stable/1969779. [p334, 336]

L. Boe, T. Tolker-Nielsen, K. M. Eegholm, H. Spliid, and A. Vrang. Fluctuation analysis of mutations
to nalidixic acid resistance in Escherichia Coli. J. Bacteriol., 176(10):2781–2787, 1994. URL https:
//doi.org/10.1128/jb.176.10.2781-2787. [p347, 349]

R. Breunig. An almost unbiased estimator of the coefficient of variation. Econ. Lett., 70(1):15–19, 2001.
URL https://doi.org/10.1016/S0165-1765(00)00351-7. [p341]

H. L. David. Probability distribution of drug-resistant mutants in unselected populations of Mycobac-
terium Tuberculosis. Appl. Microbiol., 20(5):810–814, 1970. URL https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC377053/. [p346, 348]

A. Dewanji, E. G. Luebeck, and S. H. Moolgavkar. A generalized Luria-Delbrück model. Math. Biosci.,
197(2):140–152, 2005. URL https://doi.org/10.1016/j.mbs.2005.07.003. [p335]

D. Eddelbuettel. Seamless R and C++ Integration with Rcpp. Springer-Verlag, New York, 2013. URL
https://doi.org/10.1007/978-1-4614-6868-4. [p335, 345]

D. Eddelbuettel and C. Sanderson. Rcpparmadillo: Accelerating R with high-performance C++ linear
algebra. Comput. Stat. Data An., 70:1054–1063, 2014. URL https://doi.org/10.1016/j.csda.2013.
02.005. [p345]

P. Embrechts and J. Hawkes. A limit theorem for the tails of discrete infinitely divisible laws with
applications to fluctuation theory. J. Austral. Math. Soc. Series A, 32:412–422, 1982. URL https:
//doi.org/10.1017/S1446788700024976. [p337]

P. L. Foster. Methods for determining spontaneous mutation rates. Method. Enzymol., 409:195–213,
2006. URL https://doi.org/10.1016/S0076-6879(05)09012-9. [p345]

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

http://www.jstor.org/stable/2984083
https://doi.org/10.1007/978-3-642-65371-1
https://www.jstor.org/stable/1969779
https://doi.org/10.1128/jb.176.10.2781-2787
https://doi.org/10.1128/jb.176.10.2781-2787
https://doi.org/10.1016/S0165-1765(00)00351-7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC377053/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC377053/
https://doi.org/10.1016/j.mbs.2005.07.003
https://doi.org/10.1007/978-1-4614-6868-4
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1017/S1446788700024976
https://doi.org/10.1017/S1446788700024976
https://doi.org/10.1016/S0076-6879(05)09012-9


CONTRIBUTED RESEARCH ARTICLES 350

A. Gillet-Markowska, G. Louvel, and G. Fisher. Bz-rates: a web-tool to estimate mutation rates from
fluctuation analysis. G3, 5(11):2323–2327, 2015. URL https://doi.org/10.1534/g3.115.019836.
[p335]

B. M. Hall, C. X. Ma, P. Liang, and K. K. Singh. Fluctuation AnaLysis CalculatOR: a web tool for the
determination of mutation rate using Luria–Delbrück fluctuation analysis. Bioinformatics, 25(12):
1564–1565, 2009. URL https://doi.org/10.1093/bioinformatics/btp253. [p335]

A. Hamon and B. Ycart. Statistics for the Luria-Delbrück distribution. Elect. J. Statist., 6:1251–1272,
2012. URL https://doi.org/10.1214/12-EJS711. [p334, 335, 336, 337, 338]

C. D. Kelly and O. Rahn. The growth rate of individual bacterial cells. J. Bacteriol., 23(2):147–153, 1932.
URL http://europepmc.org/articles/PMC533308. [p343]

N. L. Komarova, L. Wu, and P. Baldi. The fixed-size Luria-Delbrück model with a nonzero death rate.
Math. Biosci., 210(1):253–290, 2007. URL https://doi.org/10.1016/j.mbs.2007.04.007. [p335]

D. E. Lea and C. A. Coulson. The distribution of the number of mutants in bacterial populations.
Journal of Genetics, 49(3):264–285, 1949. URL https://doi.org/10.1007/BF02986080. [p334]

S. E. Luria and M. Delbrück. Mutations of bacteria from virus sensitivity to virus resistance. Genetics,
28(6):491–511, 1943. URL https://www.genetics.org/content/28/6/491. [p334, 337]

W. T. Ma, G. v. H. Sandri, and S. Sarkar. Analysis of the Luria-Delbrück distribution using dis-
crete convolution powers. J. Appl. Probab., 29(2):255–267, 1992. URL https://doi.org/10.1017/
S0021900200043023. [p334]

B. Rémillard and R. Theodorescu. Inference based on the empirical probability generating function for
mixtures of Poisson distributions. Statist. Decisions, 18:349–366, 2000. URL https://doi.org/10.
1524/strm.2000.18.4.349. [p334, 338]

S. Sarkar. Haldane’s solution of the Luria-Delbrück distribution. Genetics, 127:257–261, 1991. [p334]

F. M. Stewart. Fluctuation analysis: The effect of plating efficiency. Genetica, 84(1):51–55, 1991. URL
https://doi.org/10.1007/BF00123984. [p335]

F. M. Stewart, D. M. Gordon, and B. R. Levin. Fluctuation analysis: The probability distribution of
the number of mutants under different conditions. Genetics, 124(1):175–185, 1990. URL https:
//www.genetics.org/content/124/1/175. [p335, 337, 342, 344]

J. Werngren and S. E. Hoffner. Drug susceptible Mycobacterium Tuberculosis Beijing genotype does
not develop motation-conferred resistance to Rifampin at an elevated rate. J. Clin. Microbiol., 41(4):
1520–1524, 2003. URL https://doi.org/10.1128/jcm.41.4.1520-1524.2003. [p345, 346]

R. Wilcox. Introduction to Robust Estimation and Hypothesis Testing. Elsevier, Amsterdam, 3rd edition,
2012. URL https://doi.org/10.1016/C2010-0-67044-1. [p334, 337]

B. Ycart. Fluctuation analysis: Can estimates be trusted? PLoS One, 8(12):1–12, 2013. URL https:
//doi.org/10.1371/journal.pone.0080958. [p334]

B. Ycart. Fluctuation analysis with cell deaths. J. Appl. Probab. Statist, 9(1):13–29, 2014. URL https:
//arxiv.org/abs/1207.4375. [p335, 337]

B. Ycart and N. Veziris. Unbiased estimates of mutation rates under fluctuating final counts. PLoS One,
9(7):1–10, 2014. URL https://doi.org/10.1371/journal.pone.0101434. [p335, 337, 340]

Q. Zheng. Statistical and algorithmic methods for fluctuation analysis with SALVADOR as an
implementation. Math. Biosci., 176(2):237–252, 2002. URL https://doi.org/10.1016/S0025-
5564(02)00087-1. [p335]

Q. Zheng. New algorithms for Luria-Delbrück fluctuation analysis. Math. Biosci., 196(2):198–214, 2005.
URL https://doi.org/10.1016/j.mbs.2005.03.011. [p334, 337]

Adrien Mazoyer
Statistique pour les sciences du Vivant et de l’Homme, Laboratoire Jean Kuntzmann
Université Grenoble Alpes
Bâtiment IMAG, 700 Avenue Centrale
38400 SAINT MARTIN D’HÈRES

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://doi.org/10.1534/g3.115.019836
https://doi.org/10.1093/bioinformatics/btp253
https://doi.org/10.1214/12-EJS711
http://europepmc.org/articles/PMC533308
https://doi.org/10.1016/j.mbs.2007.04.007
https://doi.org/10.1007/BF02986080
https://www.genetics.org/content/28/6/491
https://doi.org/10.1017/S0021900200043023
https://doi.org/10.1017/S0021900200043023
https://doi.org/10.1524/strm.2000.18.4.349
https://doi.org/10.1524/strm.2000.18.4.349
https://doi.org/10.1007/BF00123984
https://www.genetics.org/content/124/1/175
https://www.genetics.org/content/124/1/175
https://doi.org/10.1128/jcm.41.4.1520-1524.2003
https://doi.org/10.1016/C2010-0-67044-1
https://doi.org/10.1371/journal.pone.0080958
https://doi.org/10.1371/journal.pone.0080958
https://arxiv.org/abs/1207.4375
https://arxiv.org/abs/1207.4375
https://doi.org/10.1371/journal.pone.0101434
https://doi.org/10.1016/S0025-5564(02)00087-1
https://doi.org/10.1016/S0025-5564(02)00087-1
https://doi.org/10.1016/j.mbs.2005.03.011


CONTRIBUTED RESEARCH ARTICLES 351

FRANCE
adrien.mazoyer@univ-grenoble-alpes.fr

Rémy Drouilhet
Fiabilité et Géométrique Aléatoire, Laboratoire Jean Kuntzmann
Université Grenoble Alpes
Bâtiment IMAG, 700 Avenue Centrale
38400 SAINT MARTIN D’HÈRES
FRANCE
remy.drouilhet@univ-grenoble-alpes.fr

Stéphane Despréaux
Laboratoire Jean Kuntzmann
Université Grenoble Alpes
Bâtiment IMAG, 700 Avenue Centrale
38400 SAINT MARTIN D’HÈRES
FRANCE
stephane.despreaux@univ-grenoble-alpes.fr

Bernard Ycart
Statistique pour les sciences du Vivant et de l’Homme, Laboratoire Jean Kuntzmann
Université Grenoble Alpes
700 Avenue Centrale, 38400 SAINT MARTIN D’HÈRES
FRANCE
bernard.ycart@univ-grenoble-alpes.fr

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

mailto:adrien.mazoyer@univ-grenoble-alpes.fr
mailto:remy.drouilhet@univ-grenoble-alpes.fr
mailto:stephane.despreaux@univ-grenoble-alpes.fr
mailto:bernard.ycart@univ-grenoble-alpes.fr


CONTRIBUTED RESEARCH ARTICLES 352

Multilabel Classification with R Package
mlr
by Philipp Probst, Quay Au, Giuseppe Casalicchio, Clemens Stachl and Bernd Bischl

Abstract We implemented several multilabel classification algorithms in the machine learning package
mlr. The implemented methods are binary relevance, classifier chains, nested stacking, dependent
binary relevance and stacking, which can be used with any base learner that is accessible in mlr.
Moreover, there is access to the multilabel classification versions of randomForestSRC and rFerns.
All these methods can be easily compared by different implemented multilabel performance measures
and resampling methods in the standardized mlr framework. In a benchmark experiment with several
multilabel datasets, the performance of the different methods is evaluated.

Introduction

Multilabel classification is a classification problem where multiple target labels can be assigned to each
observation instead of only one, like in multiclass classification. It can be regarded as a special case of
multivariate classification or multi-target prediction problems, for which the scale of each response
variable can be of any kind, for example nominal, ordinal or interval.

Originally, multilabel classification was used for text classification (McCallum, 1999; Schapire and
Singer, 2000) and is now used in several applications in different research fields. For example, in
image classification, a photo can belong to the classes mountain and sunset simultaneously. Zhang
and Zhou (2008) and others (Boutell et al., 2004) used multilabel algorithms to classify scenes on
images of natural environments. Furthermore, gene functional classifications is a popular application
of multilabel learning in the field of biostatistics (Elisseeff and Weston, 2002; Zhang and Zhou, 2008).
Additionally, multilabel classification is useful to categorize audio files. Music genres (Sanden and
Zhang, 2011), instruments (Kursa and Wieczorkowska, 2014), bird sounds (Briggs et al., 2013) or even
emotions evoked by a song (Trohidis et al., 2008) can be labeled with several categories. A song could,
for example, be classified both as a rock song and a ballad.

An overview of multilabel classification was given by Tsoumakas and Katakis (2007). Two different
approaches exist for multilabel classification. On the one hand, there are algorithm adaptation methods
that try to adapt multiclass algorithms so they can be applied directly to the problem. On the other
hand, there are problem transformation methods, which try to transform the multilabel classification
into binary or multiclass classification problems.

Regarding multilabel classification software, there is the mldr (Charte and Charte, 2015) R package
that contains some functions to get basic characteristics of specific multilabel datasets. The package
is also useful for transforming multilabel datasets that are typically saved as ARFF-files (Attribute-
Relation File Format) to data frames and vice versa. This is especially helpful because until now
only the software packages MEKA (Read and Reutemann, 2012) and Mulan (Tsoumakas et al., 2011)
were available for multilabel classification and both require multilabel datasets saved as ARFF-files
to be executed. Additionally, the mldr package provides a function that applies the binary relevance
or label powerset transformation method which transforms a multilabel dataset into several binary
datasets (one for each label) or into a multiclass dataset using the set of labels for each observation as a
single target label, respectively. However, there is no R package that provides a standardized interface
for executing different multilabel classification algorithms. With the extension of the mlr package
described in this paper, it will be possible to execute several multilabel classification algorithms in R
with many different base learners.

In the following section of this paper, we will describe the implemented multilabel classification
methods and then give a practical instruction of how to execute these algorithms in mlr. Finally, we
present a benchmark experiment that compares the performance of all implemented methods on
several datasets.

Multilabel classification methods implemented in mlr

In this section, we present multilabel classification algorithms that are implemented in the mlr package
(Bischl et al., 2016), which is a powerful and modularized toolbox for machine learning in R. The
package offers a unified interface to more than a hundred learners from the areas classification,
regression, cluster analysis and survival analysis. Furthermore, the package provides functions and
tools that facilitate complex workflows such as hyperparameter tuning (see, e.g., Lang et al., 2015) and

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=mldr


CONTRIBUTED RESEARCH ARTICLES 353

feature selection that can now also be applied to the multilabel classification methods presented in
this paper. In the following, we list the algorithm adaptation methods and problem transformation
methods that are currently available in mlr.

Algorithm adaptation methods

The rFerns (Kursa and Wieczorkowska, 2014) package contains an extension of the random ferns algo-
rithm for multilabel classification. In the randomForestSRC (Ishwaran and Kogalur, 2016) package,
multivariate classification and regression random forests can be created. In the classification case, the
difference to standard random forests is that a composite normalized Gini index splitting rule is used.
Multilabel classification can be achieved by using binary encoding for the labels.

Problem transformation methods

Problem transformation methods try to transform the multilabel classification problem so that a simple
binary classification algorithm, the so-called base learner, can be applied.

Let n be the number of observations, let p be the number of predictor variables and let Z =
{z1, . . . , zm} be the set of all labels. Observations follow an unknown probability distribution P on
X × Y , where X is a p−dimensional input space of arbitrary measurement scales and Y = {0, 1}m

is the target space. In our notation, x(i) =
(

x(i)1 , . . . , x(i)p

)>
∈ X refers to the i-th observation and

xj =
(

x(1)j , . . . , x(n)j

)>
refers to the j-th predictor variable, for all i = 1, . . . , n and j = 1, . . . , p. The

observations x(i) are associated with their multilabel outcomes y(i) =
(

y(i)1 , . . . , y(i)m

)>
∈ Y , for all

i = 1, . . . , n. For all k = 1, . . . , m, setting y(i)k = 1 indicates the relevance, i.e., the occurrence, of label

zk for observation x(i) and setting y(i)k = 0 indicates the irrelevance of label zk for observation x(i).

The set of all instances thus becomes D =
{(

x(1), y(1)
)

,
(

x(2), y(2)
)

, . . . ,
(

x(n), y(n)
)}

. Furthermore,

yk =
(

y(1)k , . . . , y(n)k

)>
refers to the k-th target vector, for all k = 1, . . . , m. Throughout this paper, we

visualize multilabel classification problems in the form of tables (n = 6, p = 3, m = 3):

D =̂

x1 x2 x3 y1 y2 y3
0 0 1
1 0 1
1 1 0
1 1 1
1 1 0
1 1 0

(1)

The entries of x1, x2, x3 can be of any (valid) kind, like continuous, binary, or categorical. The
table in (1) visualizes this as an empty gray background. The target variables are indicated by a red
background and can only take the binary values 0 or 1.

Binary relevance

The binary relevance method (BR) is the simplest problem transformation method. BR learns a binary
classifier for each label. Each classifier C1, . . . , Cm is responsible for predicting the relevance of their
corresponding label by a 0/1 prediction:

Ck : X −→ {0, 1}, k = 1, . . . , m

These binary prediction are then combined to a multilabel target. An unlabeled observation x(l) is

assigned the prediction
(

C1

(
x(l)
)

, C2

(
x(l)
)

, . . . , Cm

(
x(l)
))>

. Hence, labels are predicted indepen-
dently of each other and label dependencies are not taken into account. BR has linear computational
complexity with respect to the number of labels and can easily be parallelized.

Modeling label dependence

In the problem transformation setting, the arguably simplest way (Montañés et al., 2014) to model
label dependence is to condition classifier models not only on X , but also on other label information.
The idea is to augment the input space X with information of the output space Y , which is available
in the training step. There are different ways to realize this idea of augmenting the input space. In
essence, they can be distinguished in the following way:
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• Should the true label information be used? (True vs. predicted label information)

• For predicting one label zk, should all other labels augment the input space, or only a subset of
labels? (Full vs. partial conditioning)

True vs. predicted label information

During the training of a classifier Ck for the label zk, the label information of other labels are available
in the training data. Consequently, these true labels can directly be used as predictors to train the
classifier. Alternatively, the predictions that are produced by some classifier can be used instead of the
true labels.

A classifier, which is trained on additional labels as predictors, needs those additional labels as
input variables. Since these labels are not available at prediction time, they need to be predicted first.
When the true label information is used to augment the feature space in the training of a classifier,
the assumption that the training data and the test data should be identically distributed is violated
(Senge et al., 2013). If the true label information is used in the training data and the predicted label
information is used in the test data, the training data is not representative for the test data. However,
experiments (Montañés et al., 2014; Senge et al., 2013) show that none of these methods should be
dismissed immediately. Note that we use the superscript “true” or “pred” to emphasize that a classifier
Ctrue

k or Cpred
k used true labels or predicted labels as additional predictors during training, respectively.

Suppose there are n = 6 observations with p = 3 predictors and m = 3 labels. The true label y3
shall be used to augment the feature space of a binary classifier Ctrue

1 for label y1. Ctrue
1 is thus trained

on all predictors and the true label y3. The binary classification task for label y1 is therefore:

Train Ctrue
1 on

x1 x2 x3 y3 y1
0 0
1 1
0 1
1 1
0 1
0 1

to predict y1 (2)

For an unlabeled observation x(l), only the three predictor variables x(l)1 , . . . , x(l)3 are available at

prediction time. However, the classifier Ctrue
1 needs a 4-dimensional observation

(
x(l), y(l)3

)
as input.

The input y(l)3 therefore needs to be predicted first. A new level-1 classifier Clvl1
3 , which is trained on

the set D′ = ∪6
i=1

{(
x(i), y(i)3

)}
, will make those predictions for y(l)3 . The training task is:

Train C1vl1
3 on D′ =̂

x1 x2 x3 y3
1
1
0
1
0
0

to predict y3 (3)

Therefore, for a new observation x(l), the predicted label ŷ(l)3 is obtained by using Clvl1
3 on x(l). The

final prediction for y(l)1 is then obtained by using Ctrue
1 on

(
x(l), ŷ(l)3

)
.

The alternative to (2) would be to use predicted labels ŷ3 instead of true labels y3. These labels
should be produced by means of an out-of-sample prediction procedure (Senge et al., 2013). This can be
done by an internal leave-one-out cross-validation procedure, which can of course be computationally
intensive. Because of this, coarser resampling strategies can be used. As an example, an internal 2-fold

cross-validation will be shown here. Again, let D′ = ∪6
i=1

{(
x(i), y(i)3

)}
be the set of all predictor

variables with y3 as target variable. Using 2-fold cross-validation, the dataset D′ is split into two parts

D′1 = ∪3
i=1

{(
x(i), y(i)3

)}
and D′2 = ∪6

i=4

{(
x(i), y(i)3

)}
:

x1 x2 x3 y3
1

D′1 1
0
1

D′2 0
0

(4)

Two classifiers CD′1
and CD′2 are then trained on D′1 and D′2, respectively, for the prediction of y3:

Train CD′1
on

x1 x2 x3 y3
1

D′1 1
0

to predict y3, Train CD′2 on
x1 x2 x3 y3

1
D′2 0

0

to predict y3
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Following the cross-validation paradigm, D′1 is used as test set for the classifier CD′2 , and D′2 is
used as a test set for CD′1

:

CD′2 :
x1 x2 x3

D′1
7→

ŷ3
1
0
0

, CD′1
:

x1 x2 x3

D′2
7→

ŷ3
0
0
1

These predictions are merged for the final predicted label ŷ3, which is used to augment the feature
space. The classifier Cpred

1 is then trained on that augmented feature space:

Train Cpred
1 on

x1 x2 x3 ŷ3 y1
1 0
0 1
0 1
0 1
0 1
1 1

to predict y1 (5)

The prediction phase is completely analogous to (3). It is worthwhile to mention that the level-1
classifier Clvl1

3 , which will be used to obtain predictions ŷ3 at prediction time, is trained on the whole
set D′ = D′1 ∪ D′2, following Simon (2007).

Full vs. partial conditioning

Recall the set of all labels Z = {z1, . . . , zm}. The prediction of a label zk can either be conditioned on
all remaining labels {z1, . . . , zk−1, zk+1, . . . , zm} (full conditioning) or just on a subset of labels (partial
conditioning). The only method for partial conditioning, which is examined in this paper, is the chaining
method. Here, labels zk are conditioned on all previous labels {z1, . . . , zk−1} for all k = 1, . . . , m. This
sequential structure is motivated by the product rule of probability (Montañés et al., 2014):

P
(

y(i)
∣∣∣x(i)) =

m

∏
k=1

P
(

y(i)k

∣∣∣x(i), y(i)1 , . . . , y(i)k−1

)
(6)

Methods that make use of this chaining structure are e.g., classifier chains or nested stacking (these
methods will be discussed further below).

To sum up the discussions above: there are four ways in modeling label dependencies through
conditioning labels zk on other labels z`, k 6= `. They can be distinguished by the subset of labels,
which are used for conditioning, and by the use of predicted or real labels in the training step. In
Table 1 we show the four methods, which implement these ideas and describe them consequently.

True labels Pred. labels

Partial cond. Classifier chains Nested stacking
Full cond. Dependent binary relevance Stacking

Table 1: Distinctions in modeling label dependence and models

Classifier chains

The classifier chains (CC) method implements the idea of using partial conditioning together with the
true label information. It was first introduced by Read et al. (2011). CC selects an order on the set of
labels {z1, . . . , zm}, which can be formally written as a bijective function (permutation):

τ : {1, . . . , m} −→ {1, . . . , m} (7)

Labels will be chained along this order τ:

zτ(1) → zτ(2) → . . .→ zτ(m) (8)

However, for this paper the permutation shall be τ = id (only for simplicity reasons). The labels
therefore follow the order z1 → z2 → . . . → zm. In a similar fashion to the binary relevance (BR)
method, CC trains m binary classifiers Ck, which are responsible for predicting their corresponding
label zk, k = 1, . . . , m. The classifiers Ck are of the form

Ck : X × {0, 1}k−1 −→ {0, 1}, (9)
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where {0, 1}0 := ∅. For a classifier Ck the feature space is augmented by the true label information
of all previous labels z1, z2, . . . , zk−1. Hence, the training data of Ck consists of all observations((

x(i), y(i)1 , y(i)2 , . . . , y(i)k−1

)
, y(i)k

)
, i = 1, . . . , n, with the target y(i)k . In the example from above, this

would look like:

Train C1 on

x1 x2 x3 y1
0
1
1
1
1
1

Train C2 on

x1 x2 x3 y1 y2
0 0
1 0
1 1
1 1
1 1
1 1

Train C3 on

x1 x2 x3 y1 y2 y3
0 0 1
1 0 1
1 1 0
1 1 1
1 1 0
1 1 0

(10)

At prediction time, when an unlabeled observation x(l) is labeled, a prediction
(

ŷ(l)1 , . . . , ŷ(l)m

)
is

obtained by successively predicting the labels along the chaining order:

ŷ(l)1 = C1

(
x(l)
)

ŷ(l)2 = C2

(
x(l), ŷ(l)1

)
...

ŷ(l)m = Cm

(
x(l), ŷ(l)1 , ŷ(l)2 , . . . , ŷ(l)m−1

)
(11)

The authors of Senge et al. (2013) summarize several factors, which have an impact on the
performance of CC:

• The length of the chain. A high number (k− 1) of preceding classifiers in the chain comes with a
high potential level of feature noise for the classifier Ck. One may assume that the probability of
a mistake will increase with the level of feature noise in the input space. Then the probability of
a mistake will be reinforced along the chain, due to the recursive structure of CC.

• The order of the chain. Some labels may be more difficult to predict than others. The order of a
chain can therefore be important for the performance. It can be advantageous to put simple to
predict labels in the beginning and harder to predict labels more towards the end of the chain.
Some heuristics for finding an optimal chain ordering have been proposed in da Silva et al.
(2014); Read et al. (2013). Alternatively Read et al. (2011) developed an ensemble of classifier
chains, which builds many randomly ordered CC-classifiers and put them on a voting scheme
for a prediction. However, these methods are not subject of this article.

• The dependency among labels. For an improvement of performance through chaining, there should
be a dependence among labels, CC cannot gain in case of label independence. However, CC is
also only likely to lose if the binary classifiers Ck cannot ignore the added features y1, . . . , yk−1.

Nested stacking

The nested stacking method (NST), first proposed in Senge et al. (2013), implements the idea of using
partial conditioning together with predicted label information. NST mimicks the chaining structure of
CC, but does not use real label information during training. Like in CC the chaining order shall be
τ = id , again for simplicity reasons. CC uses real label information yk during training and predicted
labels ŷk at prediction time. However, unless the binary classifiers are perfect, it is likely that yk and
ŷk do not follow the same distribution. Hence, the key assumption of supervised learning, namely
that the training data should be representative for the test data, is violated by CC. Nested stacking
tries to overcome this issue by using predicted labels ŷk instead of true labels yk.

NST trains m binary classifiers Ck on Dk := ∪n
i=1

{((
x(i), ŷ(i)1 , . . . , ŷ(i)k−1

)
, y(i)k

)}
, for all k =

1, . . . , m. The predicted labels should be obtained by an internal out-of-sample method (Senge et al.,
2013). How these predictions are obtained was already explained in the True vs. Predicted Label
Information chapter. The prediction phase is completely analogous to (11).

The training procedure is visualized in the following with 2-fold cross-validation as an internal
out-of-sample method:

Train C1 on

x1 x2 x3 y1
0
1
1
1
1
1

Use 2-fold CV on

x1 x2 x3 y1
0
1
1
1
1
1

to obtain

ŷ1
1
1
1
1
0
1

(12)
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Train C2 on

x1 x2 x3 ŷ1 y2
1 0
1 0
1 1
1 1
0 1
1 1

Use 2-fold CV on

x1 x2 x3 ŷ1 y2
1 0
1 0
1 1
1 1
0 1
1 1

to obtain

ŷ2
1
1
1
0
1
0

(13)

Train C3 on

x1 x2 x3 ŷ1 ŷ2 y3
1 1 1
1 1 1
1 1 0
1 0 1
0 1 0
1 0 0

(14)

The factors which impact the performance of CC (i.e., length and order of the chain, and the
dependency among labels), also impact NST, since NST mimicks the chaining method of CC.

Dependent binary relevance

The dependent binary relevance method (DBR) implements the idea of using full conditioning together
with the true label information. DBR is built on two main hypotheses (Montañés et al., 2014):

(i) Taking conditional label dependencies into account is important for performing well in multil-
abel classification tasks.

(ii) Modeling and learning these label dependencies in an overcomplete way (take all other labels
for modeling) may further improve model performance.

The first assumption is the main prerequisite for research in multilabel classification. It has been shown
theoretically that simple binary relevance classifiers cannot achieve optimal performance for specific
multilabel loss functions (Montañés et al., 2014). The second assumption, however, is harder to justify
theoretically. Nonetheless, the practical usefulness of learning in an overcomplete way has been shown
in many branches of (classical) single-label classification (e.g., ensemble methods (Dietterich, 2000)).

Formally, DBR trains m binary classifiers C1, . . . , Cm (as many classifiers as labels) on the corre-
sponding training data

Dk = ∪n
i=1

{((
x(i), y(i)1 , . . . , y(i)k−1, y(i)k+1, . . . , y(i)m

)
, y(i)k

)}
, (15)

k = 1, . . . , m. Thus, each classifier Ck is of the form

Ck : X × {0, 1}m−1 −→ {0, 1}.

Hence, for each classifier Ck the true label information of all labels except yk is used as augmented
features. Again, here is a visualization with the example from above:

Train C1 on

x1 x2 x3 y2 y3 y1
0 1 0
0 1 1
1 0 1
1 1 1
1 0 1
1 0 1

Train C2 on

x1 x2 x3 y1 y3 y2
0 1 0
1 1 0
1 0 1
1 1 1
1 0 1
1 0 1

Train C3 on

x1 x2 x3 y1 y2 y3
0 0 1
1 0 1
1 1 0
1 1 1
1 1 0
1 1 0

(16)

To make these classifiers applicable, when an unlabeled instance x(l) needs to be labeled, the help

of other multilabel classifiers is needed to produce predicted labels ŷ(l)1 , . . . ., ŷ(l)m as additional features.
The classifiers, which produce predicted labels as additional features, are called base learners (Montañés
et al., 2014). Theoretically any multilabel classifier can be used as base learner. However, in this paper,
the analysis is focused on BR as base learner only. The prediction of an unlabeled instance x(l) formally
works as follows:

(i) First level: Produce predicted labels by using the BR base learner:

CBR

(
x(l)
)
=
(

ŷ(l)1 , . . . , ŷ(l)m

)
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(ii) Second level, which is also called meta level (Montañés et al., 2014): Produce final prediction
ˆ̂yk =

(
ˆ̂y(l)1 , . . . , ˆ̂y(l)m

)
by applying DBR classifiers C1, . . . , Cm:

C1

(
x(l), ŷ(l)2 , . . . , ŷ(l)m

)
= ˆ̂y(l)1

C2

(
x(l), ŷ(l)1 , ŷ(l)3 , . . . , ŷ(l)m

)
= ˆ̂y(l)2

...

Cm

(
x(l), ŷ(l)1 , . . . , ŷ(l)m−1

)
= ˆ̂y(l)m

Stacking

Stacking (STA) implements the last variant of Table 1, namely the use of full conditioning together
with predicted label information. Stacking is short for stacked generalization (Wolpert, 1992) and was
first proposed in the multilabel context by Godbole and Sarawagi (2004). Like in classical stacking, for
each label it takes predictions of several other learners that were trained in a first step to get a new
learner to make predictions for the corresponding label. Both hypotheses on which DBR is built on
also apply to STA, of course.

STA trains m classifiers C1, . . . , Cm on the corresponding training data

Dk = ∪n
i=1

{((
x(i), ŷ(i)1 , . . . , ŷ(i)m

)
, y(i)k

)}
, k = 1, . . . , m. (17)

The classifiers Ck, k = 1, . . . , m, are therefore of the following form:

Ck : X × {0, 1}m −→ {0, 1}

Like in NST, the predicted labels should be obtained by an internal out-of-sample method (Sill et al.,
2009). STA can be seen as the alternative to DBR using predicted labels (like NST is for CC). However,
the classifiers Ck, k = 1, . . . , m, are trained on all predicted labels ŷ1, . . . , ŷm for the STA approach (in
DBR the label yk is left out of the augmented training set).

The training procedure is outlined in the following:

For i=1,2,3 use 2-fold CV on

x1 x2 x3 yk

y(1)k
y(2)k
y(3)k
y(4)k
y(5)k
y(6)k

to obtain

ŷk

ŷ(1)k
ŷ(2)k
ŷ(3)k
ŷ(4)k
ŷ(5)k
ŷ(6)k

(18)

For i=1,2,3 train Ck on

x1 x2 x3 ŷ1 ŷ2 ŷ3 yk

ŷ(1)1 ŷ(1)2 ŷ(1)3 y(1)k
ŷ(2)1 ŷ(2)2 ŷ(2)3 y(2)k
ŷ(3)1 ŷ(3)2 ŷ(3)3 y(3)k
ŷ(4)1 ŷ(4)2 ŷ(4)3 y(4)k
ŷ(5)1 ŷ(5)2 ŷ(5)3 y(5)k
ŷ(6)1 ŷ(6)2 ŷ(6)3 y(6)k

(19)

Like in DBR, STA depends on a BR base learner, to produce predicted labels as additional features.
Again, the use of BR as a base learner is not mandatory, but it is the proposed method in Godbole and
Sarawagi (2004).

The prediction of an unlabeled instance x(l) works almost identically to the DBR case and is
illustrated here:

(i) First level. Produce predicted labels by using the BR base learner:

CBR

(
x(l)
)
=
(

ŷ(l)1 , . . . , ŷ(l)m

)
(ii) Meta level. Apply STA classifiers C1, . . . , Cm:

C1

(
x(l), ŷ(l)1 , . . . , ŷ(l)m

)
= ˆ̂y(l)1

...

Cm

(
x(l), ŷ(l)1 , . . . , ŷ(l)m

)
= ˆ̂y(l)m
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Multilabel performance measures

Analogously to multiclass classification there exist multilabel classification performance measures. Six
multilabel performance measures can be evaluated in mlr. These are: Subset 0/1 loss, hamming loss,
accuracy, precision, recall and F1-index. Multilabel performance measures are defined on a per instance
basis. The performance on a test set is the average over all instances.

Let Dtest =
{(

x(1), y(1)
)

, . . . ,
(

x(n), y(n)
)}

be a test set with y(i) =
(

y(i)1 , . . . , y(i)m

)
∈ {0, 1}m for

all i = 1, . . . , n. Performance measures quantify how good a classifier C predicts the labels z1, . . . , zn.

(i) The subset 0/1 loss is used to see if the predicted labels C(x(i)) =
(

ŷ(i)1 , . . . , ŷ(i)m

)
are equal to

the actual labels
(

y(i)1 , . . . , y(i)m

)
:

subset0/1

(
C,
(

x(i), y(i)
))

= 1(y(i) 6=C(x(i))) :=

1 if y(i) 6= C
(

x(i)
)

0 if y(i) = C
(

x(i)
)

The subset 0/1 loss of a classifier C on a test set Dtest thus becomes:

subset0/1 (C, Dtest) =
1
n

n

∑
i=1

1y(i) 6=C(x(i))

The subset 0/1 loss can be interpreted as the analogon of the mean misclassification error in
multiclass classifications. In the multilabel case it is a rather drastic measure because it treats a
mistake on a single label as a complete failure (Senge et al., 2013).

(ii) The hamming loss also takes into account observations where only some labels have been
predicted correctly. It corresponds to the proportion of labels whose relevance is incorrectly

predicted. For an instance
(

x(i), y(i)
)

=
(

x(i),
(

y(i)1 , . . . , y(i)m

))
and a classifier C

(
x(i)
)

=(
ŷ(i)1 , . . . , ŷ(i)m

)
this is defined as:

HammingLoss
(

C,
(

x(i), y(i)
))

=
1
m

m

∑
k=1

1(
y(i)k 6=ŷ(i)k

)
If one label is predicted incorrectly, this accounts for an error of 1

m . For a test set Dtest the
hamming loss becomes:

HammingLoss(C, Dtest) =
1
n

n

∑
i=1

1
m

m

∑
k=1

1(
y(i)k 6=ŷ(i)k

)
The following measures are scores instead of loss function like the two previous ones.

(iii) The accuracy, also called Jaccard-Index, for a test set Dtest is defined as:

accuracy(C, Dtest) =
1
n

n

∑
i=1

∑m
k=1 1

(
y(i)k =1 and ŷ(i)k =1

)
∑m

k=1 1
(

y(i)k =1 or ŷ(i)k =1
)

(iv) The precision for a test set Dtest is defined as:

precision(C, Dtest) =
1
n

n

∑
i=1

∑m
k=1 1

(
y(i)k =1 and ŷ(i)k =1

)
∑m

k=1 1
(

ŷ(i)k =1
)

(v) The recall for a test set Dtest is defined as:

recall(C, Dtest) =
1
n

n

∑
i=1

∑m
k=1 1

(
y(i)k =1 and ŷ(i)k =1

)
∑m

k=1 1
(

y(i)k =1
)

(vi) For a test set Dtest the F1-index is defined as follows:

F1(C, Dtest) =
1
n

n

∑
i=1

2 ∑m
k=1 1

(
y(i)k =1 and ŷ(i)k =1

)
∑m

k=1

(
1(

y(i)k =1
) + 1(

ŷ(i)k =1
))
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The F1-index is the harmonic mean of recall and precision on a per instance basis.

All these measures lie between 0 and 1. In the case of the subset 0/1 loss and the hamming loss
the values should be low, in all other cases the scores should be high. Demonstrative definitions with
sets instead of vectors can be seen in Charte and Charte (2015).

Implementation

In this section, we briefly describe how to perform multilabel classifications in mlr. We provide
small code examples for better illustration. A short tutorial is also available at http://mlr-org.
github.io/mlr-tutorial/release/html/multilabel/index.html. The first step is to transform the
multilabel dataset into a ‘data.frame’ in R. The columns must consist of vectors of features and one
logical vector for each label that indicates if the label is present for the observation or not. To fit a
multilabel classification algorithm in mlr, a multilabel task has to be created, where a vector of targets
corresponding to the column names of the labels has to be specified. This task is an S3 object that
contains the data, the target labels and further descriptive information. In the following example, the
yeast data frame is extracted from the yeast.task, which is provided by the mlr package. Then the 14
label names of the targets are extracted and the multilabel task is created.

yeast = getTaskData(yeast.task)
labels = colnames(yeast)[1:14]
yeast.task = makeMultilabelTask(id = "multi", data = yeast, target = labels)

Problem transformation methods

To generate a problem transformation method learner, a binary classification base learner has to
be created with ‘makeLearner’. A list of available learners for classifications in mlr can be seen
at http://mlr-org.github.io/mlr-tutorial/release/html/integrated_learners/. Specific hyper-
parameter settings of the base learner can be set in this step through the ‘par.vals’ argument in
‘makeLearner’. Afterwards, a learner for any problem transformation method can be created by ap-
plying the function ‘makeMultilabel[. . .]Wrapper’, where [. . .] has to be substituted by the desired
problem transformation method. In the following example, two multilabel variants with rpart as base
learner are created. The base learner is configured to output probabilities instead of discrete labels
during prediction.

lrn = makeLearner("classif.rpart", predict.type = "prob")
multilabel.lrn1 = makeMultilabelBinaryRelevanceWrapper(lrn)
multilabel.lrn2 = makeMultilabelNestedStackingWrapper(lrn)

Algorithm adaptation methods

Algorithm adaptation method learners can be created directly with ‘makeLearner’. The names of
the specific learner can be looked up at http://mlr-org.github.io/mlr-tutorial/release/html/
integrated_learners/ in the multilabel section.

multilabel.lrn3 = makeLearner("multilabel.rFerns")
multilabel.lrn4 = makeLearner("multilabel.randomForestSRC")

Train, predict and evaluate

Training and predicting on data can be done as usual in mlr with the functions ‘train’ and ‘predict’.
Learner and task have to be specified in ‘train’; trained model and task or new data have to be
specified in ‘predict’.

mod = train(multilabel.lrn1, yeast.task, subset = 1:1500)
pred = predict(mod, task = yeast.task, subset = 1501:1600)

The performance of the prediction can be assessed via the function ‘performance’. Measures are
represented as S3 objects and multiple objects can be passed in as a list. The default measure for
multilabel classification is the hamming loss (multilabel.hamloss). All available measures for multilabel
classification can be shown by ‘listMeasures’ or looked up in the appendix of the tutorial page1

(http://mlr-org.github.io/mlr-tutorial/release/html/measures/index.html).

1In the mlr package precision is named positive predictive value and recall is named true positive rate.
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performance(pred, measures = list(multilabel.hamloss, timepredict))
multilabel.hamloss timepredict
0.230 0.174
listMeasures("multilabel")
# [1] "multilabel.ppv" "timepredict" "multilabel.hamloss" "multilabel.f1"
# [5] "featperc" "multilabel.subset01" "timeboth" "timetrain"
# [9] "multilabel.tpr" "multilabel.acc"

Resampling

To properly evaluate the model, a resampling strategy, for example k-fold cross-validation, should be
applied. This can be done in mlr by using the function ‘resample’. First, a description of the subsequent
resampling strategy, in this case three-fold cross-validation, is defined with ‘makeResampleDesc’. The
resample is executed by a call to the ‘resample’ function. The hamming loss is calculated for the binary
relevance method.

rdesc = makeResampleDesc(method = "CV", stratify = FALSE, iters = 3)
r = resample(learner = multilabel.lrn1, task = yeast.task, resampling = rdesc,
measures = list(multilabel.hamloss), show.info = FALSE)
r
# Resample Result
# Task: multi
# Learner: multilabel.classif.rpart
# multilabel.hamloss.aggr: 0.23
# multilabel.hamloss.mean: 0.23
# multilabel.hamloss.sd: 0.00
# Runtime: 6.36688

Binary performance

To calculate a binary performance measure like, e.g., the accuracy, the mean misclassification error
(mmce) or the AUC for each individual label, the function ‘getMultilabelBinaryPerformances’ can
be used. This function can be applied to a single multilabel test set prediction and also on a resampled
multilabel prediction. To calculate the AUC, predicted probabilities are needed. These can be obtained
by setting the argument ‘predict.type = "prob"’ in the ‘makeLearner’ function.

head(getMultilabelBinaryPerformances(r$pred, measures = list(acc, mmce, auc)))
# acc.test.mean mmce.test.mean auc.test.mean
# label1 0.7389326 0.2610674 0.6801810
# label2 0.5908151 0.4091849 0.5935160
# label3 0.6512205 0.3487795 0.6631469
# label4 0.6921804 0.3078196 0.6965552
# label5 0.7517584 0.2482416 0.6748458
# label6 0.7343815 0.2656185 0.6054968

Parallelization

In the case of a high number of labels and larger datasets, parallelization in the training and pre-
diction process of the multilabel methods can reduce computation time. This can be achieved by
using the package parallelMap in mlr (see also the tutorial section of parallelization: http://mlr-
org.github.io/mlr-tutorial/release/html/multilabel/index.html). Currently, only the binary
relevance method is parallelizable, the classifier for each label is trained in parallel, as they are inde-
pendent of each other. The other problem transformation methods will also be parallelizable (as far as
possible) soon.

library(parallelMap)
parallelStartSocket(2)
lrn = makeMultilabelBinaryRelevanceWrapper("classif.rpart")
mod = train(lrn, yeast.task)
pred = predict(mod, yeast.task)
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Benchmark experiment

In a similar fashion to Wang et al. (2014), we performed a benchmark experiment on several datasets
in order to compare the performances of the different multilabel algorithms.

Datasets: In Table 2 we provide an overview of the used datasets. We retrieved most datasets
from the Mulan Java library for multilabel learning2 as well as from other benchmark experiments of
multilabel classification methods. See Table 2 for article references. We uploaded all datasets to the
open data platform OpenML (Casalicchio et al., 2017; Vanschoren et al., 2013), so they now can be
downloaded directly from there. In some of the used datasets, sparse labels had to be removed in order
to avoid problems during cross-validation. Several binary classification methods have difficulties
when labels are sparse, i.e., a strongly imbalanced binary target class can lead to constant predictions
for that target. That can sometimes lead to direct problems in the base learners (when training on
constant class labels is simply not allowed) or, e.g., in classifier chains, when the base learner cannot
handle constant features. Furthermore, one can reasonably argue that not much is to be learned for
such a label. Hence, labels that appeared in less than 2% of the observations were removed. We
computed cardinality scores (based on the remaining labels) indicating the mean number of labels
assigned to each case in the respective dataset. The following description of the datasets refers to the
final versions after removal of sparse labels.

• The first dataset (birds) consists of 645 audio recordings of 15 different vocalizing bird species
(Briggs et al., 2013). Each sound can be assigned to various bird species.

• Another audio dataset (emotions) consists of 593 musical files with 6 clustered emotional labels
(Trohidis et al., 2008) and 72 predictors. Each song can be labeled with one or more of the labels
{amazed-surprised, happy-pleased, relaxing-calm, quiet-still, sad-lonely, angry-fearful}.

• The genbase dataset contains protein sequences that can be assigned to several classes of protein
families (Diplaris et al., 2005). The entire dataset contains 1186 binary predictors.

• The langLog3 dataset includes 998 textual predictors and was originally compiled in the doctorial
thesis of Read (2010). It consists of 1460 text samples that can be assigned to one or more topics
such as language, politics, errors, humor and computational linguistics.

• The UC Berkeley enron4 dataset represents a subset of the original enron5 dataset and consists of
1702 cases of emails with 24 labels and 1001 predictor variables (Klimt and Yang, 2004).

• A subset of the reuters6 dataset includes 2000 observations for text classification (Zhang and
Zhou, 2008).

• The image7 benchmark dataset consists of 2000 natural scene images. Zhou and ling Zhang
(2007) extracted 135 features for each image and made it publicly available as processed image
dataset. Each observation can be associated with different label sets, where all possible labels
are {desert, mountains, sea, sunset, trees}. About 22% of the images belong to more than one class.
However, images belonging to three classes or more are very rare.

• The scene dataset is an image classification task where labels like Beach, Mountain, Field, Urban
are assigned to each image (Boutell et al., 2004).

• The yeast dataset (Elisseeff and Weston, 2002) consists of micro-array expression data, as well as
phylogenetic profiles of yeast, and includes 2417 genes and 103 predictors. In total, 14 different
labels can be assigned to a gene, but only 13 labels were used due to label sparsity.

• Another dataset for text-classification is the slashdot8 dataset (Read et al., 2011). It consists of
article titles and partial blurbs. Blurbs can be assigned to several categories (e.g., Science, News,
Games) based on word predictors.

Algorithms: We used all multilabel classification methods currently implemented in mlr: binary
relevance (BR), classifier chains (CC), nested stacking (NST), dependent binary relevance (DBR) and
stacking (STA) as well as algorithm adaption methods of the rFerns (RFERN) and randomForestSRC
(RFSRC) packages. For DBR and STA the first level and meta level classifiers were equal. For CC and
NST we chose random chain orders for each resample iteration.

2http://mulan.sourceforge.net/datasets-mlc.html
3http://languagelog.ldc.upenn.edu/nll/
4http://bailando.sims.berkeley.edu/enron_email.html
5http://www.cs.cmu.edu/~enron/
6http://lamda.nju.edu.cn/data_MIMLtext.ashx
7http://lamda.nju.edu.cn/data_MIMLimage.ashx
8http://slashdot.org

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=randomForestSRC
http://mulan.sourceforge.net/datasets-mlc.html
http://languagelog.ldc.upenn.edu/nll/
http://bailando.sims.berkeley.edu/enron_email.html
http://www.cs.cmu.edu/~enron/
http://lamda.nju.edu.cn/data_MIMLtext.ashx
http://lamda.nju.edu.cn/data_MIMLimage.ashx
http://slashdot.org


CONTRIBUTED RESEARCH ARTICLES 363

Dataset Reference # Inst. # Pred. # Labels Cardinality

birds* Briggs et al. (2013) 645 260 15 0.96
emotions Trohidis et al. (2008) 593 72 6 1.87
genbase* Diplaris et al. (2005) 662 112 16 1.20
langLog* Read (2010) 1460 998 18 0.85
enron* Klimt and Yang (2004) 1702 1001 24 3.12
reuters Zhang and Zhou (2008) 2000 243 7 1.15
image Zhou and ling Zhang (2007) 2000 135 5 1.24
scene Boutell et al. (2004) 2407 294 6 1.07
yeast* Elisseeff and Weston (2002) 2417 103 13 4.22
slashdot* Read et al. (2011) 3782 1079 14 1.13

Table 2: Used benchmark datasets including number of instances, number of predictor, number of
label and label cardinality. Datasets with an asterisk differ from the original dataset as sparse labels
have been removed. The genbase dataset contained many constant factor variables, which were
automatically removed by mlr.

Base Learners: We employed two different binary classification base learner for each problem
transformation algorithm: random forest (rf) of the randomForest package (Liaw and Wiener, 2002)
with ntree = 100 and adaboost (ad) from the ada package (Culp et al., 2012), each with standard
hyperparameter settings.

Performance Measures: We used the six previously proposed performance measures. Further-
more, we calculated the reported values by means of a 10-fold cross-validation.

Code: For reproducibility, the complete code and results can be downloaded from Probst (2017).
The R package batchtools (Bischl et al., 2015) was used for parallelization.

The results for hamming loss and F1-index are illustrated in Figure 1. Tables 3 and 4 contain
performance values with the best performing algorithms highlighted in blue. For all remaining
measures one may refer to the Appendix. We did not perform any threshold tuning that would
potentially improve some of the performance of the methods.

The results of the problem transformation methods in this benchmark experiment concur with the
general conclusions and results in Montañés et al. (2014). The authors ran a similar benchmark study
with penalized logistic regression as base learner. They concluded that, on average, DBR performs
well in F1 and accuracy. Also, CC outperform the other methods regarding the subset 0/1 loss most of
the time. For the hamming loss measure they got mixed results, with no clear winner concordant to
our benchmark results. As base learner, on average, adaboost performs better than random forest in
our benchmark study.

Considering the measure F1, the problem transformation methods DBR, CC, STA and NST out-
perform RFERN and RFSRC on most of the datasets and also almost always perform better than BR,
which does not consider dependencies among the labels. RFSRC and RFERN only perform well on
either precision or recall, but in order to be considered as good classifiers they should perform well on
both. The generally poor performances of RFERN can be explained by the working mechanism of the
algorithm which randomly chooses variables and split points at each split of a fern. Hence, it cannot
deal with too many features that are useless for the prediction of the target labels.

Summary

In this paper, we describe the implementation of multilabel classification algorithms in the R package
mlr. The problem transformation methods binary relevance, classifier chains, nested stacking, depen-
dent binary relevance and stacking are implemented and can be used with any base learner that is ac-
cessible in mlr. Moreover, there is access to the multilabel classification versions of randomForestSRC
and RFerns. We compare all of these methods in a benchmark experiment with several datasets and
different implemented multilabel performance measures. The dependent binary relevance method
performs well regarding the measures F1 and accuracy. Classifier chains outperform the other methods
in terms of the subset 0/1 loss most of the time. Parallelization is available for the binary relevance
method and will be available soon for the other problem transformation methods. Algorithm adapta-
tion methods and problem transformation methods that are currently not available can be incorporated
in the current mlr framework easily. In our benchmark experiment we had to remove labels which
occured too sparsely, because some algorithms crashed due to one class problems, which appeared
during cross-validation. A solution to this problem and an implementation into the mlr framework is
of great interest.
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Figure 1: Results for hamming loss and F1-index. The best performing algorithms are highlighted on
the plot.

BR(rf) CC(rf) NST(rf) DBR(rf) STA(rf) BR(ad) CC(ad) NST(ad) DBR(ad) STA(ad) RFERN RFSRC BR(fl)
birds* 0.0477 0.0479 0.0475 0.0472 0.0468 0.0442 0.0441 0.0436 0.0431 0.0429 0.4148 0.0510 0.0641

emotions 0.1779 0.1832 0.1818 0.1801 0.1753 0.181 0.1916 0.1849 0.1981 0.1863 0.2492 0.1832 0.3114
genbase* 0.0021 0.0023 0.0025 0.0027 0.0023 0.0003 0.0003 0.0003 0.0004 0.0003 0.0240 0.0006 0.0748
langLog* 0.0464 0.0465 0.0467 0.0464 0.0466 0.0451 0.0442 0.0446 0.0447 0.0448 0.6673 0.0466 0.0473

enron* 0.0903 0.0904 0.0902 0.0909 0.0891 0.0874 0.0913 0.0881 0.1045 0.0877 0.4440 0.0919 0.1279
reuters 0.0663 0.0654 0.0661 0.0629 0.065 0.0666 0.0814 0.0664 0.1926 0.0664 0.2648 0.0668 0.1649
image 0.1774 0.1791 0.1737 0.1761 0.1754 0.1714 0.1939 0.1721 0.2935 0.1717 0.2983 0.1802 0.2472
scene 0.0836 0.0809 0.0832 0.0796 0.0799 0.0791 0.0821 0.0796 0.0945 0.076 0.1827 0.0884 0.1790

yeast* 0.2038 0.2044 0.2023 0.2123 0.2008 0.2048 0.2105 0.2038 0.2221 0.2046 0.4178 0.2040 0.2486
slashdot* 0.0558 0.0560 0.0559 0.0559 0.0554 0.059 0.0635 0.0586 0.1382 0.0582 0.4925 0.0562 0.0811

Table 3: Hamming loss

BR(rf) CC(rf) NST(rf) DBR(rf) STA(rf) BR(ad) CC(ad) NST(ad) DBR(ad) STA(ad) RFERN RFSRC BR(fl)
birds* 0.6369 0.6342 0.6433 0.64 0.6459 0.6835 0.683 0.6867 0.6846 0.6895 0.1533 0.5929 0.4774

emotions 0.6199 0.6380 0.6192 0.6625 0.6337 0.6274 0.6449 0.6206 0.6598 0.615 0.6603 0.6046 0.0000
genbase* 0.9885 0.9861 0.9855 0.9835 0.9861 0.9977 0.9977 0.9977 0.9962 0.9977 0.9214 0.9962 0.0000
langLog* 0.3192 0.3194 0.3148 0.3199 0.3167 0.3578 0.3772 0.3686 0.3653 0.3643 0.2401 0.3167 0.2979

enron* 0.5781 0.5822 0.5791 0.5866 0.5826 0.592 0.6009 0.5906 0.6017 0.5917 0.2996 0.5446 0.3293
reuters 0.6708 0.6944 0.6769 0.7303 0.6846 0.6997 0.7537 0.7012 0.7556 0.7082 0.6296 0.6541 0.0000
image 0.4308 0.4835 0.4362 0.5561 0.4456 0.47 0.5814 0.4709 0.6085 0.4824 0.5525 0.3757 0.0000
scene 0.6161 0.6420 0.6161 0.6563 0.6326 0.6585 0.73 0.661 0.765 0.685 0.6647 0.5729 0.0000

yeast* 0.6148 0.6294 0.6180 0.6195 0.6244 0.6238 0.63 0.6257 0.616 0.6266 0.4900 0.5991 0.4572
slashdot* 0.4415 0.4562 0.4422 0.4716 0.4535 0.4009 0.4654 0.4052 0.5216 0.411 0.2551 0.4320 0.0325

Table 4: F1-index

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 365

Bibliography

B. Bischl, M. Lang, O. Mersmann, J. Rahnenführer, and C. Weihs. BatchJobs and BatchExperiments:
Abstraction mechanisms for using R in batch environments. Journal of Statistical Software, 64(11):
1–25, 2015. URL https://doi.org/10.18637/jss.v064.i11. [p363]

B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter, E. Studerus, G. Casalicchio, and Z. M. Jones. Mlr:
Machine learning in R. Journal of Machine Learning Research, 17(170):1–5, 2016. [p352]

M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learning multi-label scene classification. Pattern
Recognition, 37(9):1757–1771, 2004. URL https://doi.org/10.1016/j.patcog.2004.03.009. [p352,
362, 363]

F. Briggs, H. Yonghong, R. Raich, and others. New methods for acoustic classification of multiple
simultaneous bird species in a noisy environment. In IEEE International Workshop on Machine Learning
for Signal Processing, pages 1–8, 2013. URL https://doi.org/10.1109/mlsp.2013.6661934. [p352,
362, 363]

G. Casalicchio, J. Bossek, M. Lang, D. Kirchhoff, P. Kerschke, B. Hofner, H. Seibold, J. Vanschoren, and
B. Bischl. OpenML: An R package to connect to the networked machine learning platform OpenML.
ArXiv e-prints, 2017. [p362]

F. Charte and D. Charte. Working with multilabel datasets in R: The mldr package. The R Journal, 7(2):
149–162, 2015. [p352, 360]

M. Culp, K. Johnson, and G. Michailidis. ada: An R Package for Stochastic Boosting, 2012. URL
https://cran.r-project.org/package=ada. [p363]

P. N. da Silva, E. C. Gonçalves, A. Plastino, and A. A. Freitas. Distinct chains for different instances:
An effective strategy for multi-label classifier chains. In European Conference, ECML PKDD 2014,
pages 453–468, 2014. URL https://doi.org/10.1007/978-3-662-44851-9_29. [p356]

T. G. Dietterich. Ensemble methods in machine learning. Lecture Notes in Computer Science, 1857:1–15,
2000. URL https://doi.org/10.1007/3-540-45014-9_1. [p357]

S. Diplaris, G. Tsoumakas, P. A. Mitkas, and I. Vlahavas. Protein classification with multiple algorithms.
In Advances in Informatics, pages 448–456. Springer-Verlag, 2005. URL https://doi.org/10.1007/
11573036_42. [p362, 363]

A. Elisseeff and J. Weston. A kernel method for multi-labelled classification. In T. G. Dietterich,
S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages
681–687. MIT Press, 2002. [p352, 362, 363]

S. Godbole and S. Sarawagi. Discriminative methods for multi-labeled classification. In Advances in
Knowledge Discovery and Data, volume LNCS3056, pages 22–30, 2004. URL https://doi.org/10.
1007/978-3-540-24775-3_5. [p358]

H. Ishwaran and U. B. Kogalur. Random Forests for Survival, Regression and Classification (RF-SRC), 2016.
URL http://cran.r-project.org/package=randomForestSRC. [p353]

B. Klimt and Y. Yang. The enron corpus: A new dataset for email classification research. Machine
Learning: ECML 2004, pages 217–226, 2004. URL https://doi.org/10.1007/978-3-540-30115-
8_22. [p362, 363]

M. B. Kursa and A. A. Wieczorkowska. Multi-label ferns for efficient recognition of musical instruments
in recordings. In International Symposium on Methodologies for Intelligent Systems, pages 214–223.
Springer, 2014. URL https://doi.org/10.1007/978-3-319-08326-1_22. [p352, 353]

M. Lang, H. Kotthaus, P. Marwedel, C. Weihs, J. Rahnenführer, and B. Bischl. Automatic model
selection for high-dimensional survival analysis. Journal of Statistical Computation and Simulation, 85
(1):62–76, 2015. URL https://doi.org/10.1080/00949655.2014.929131. [p352]

A. Liaw and M. Wiener. Classification and regression by randomForest. R News: The Newsletter of the R
Project, 2(3):18–22, 2002. [p363]

A. McCallum. Multi-label text classification with a mixture model trained by EM. AAAI’99 Workshop
on Text Learning, pages 1–7, 1999. [p352]

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://doi.org/10.18637/jss.v064.i11
https://doi.org/10.1016/j.patcog.2004.03.009
https://doi.org/10.1109/mlsp.2013.6661934
https://cran.r-project.org/package=ada
https://doi.org/10.1007/978-3-662-44851-9_29
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1007/11573036_42
https://doi.org/10.1007/11573036_42
https://doi.org/10.1007/978-3-540-24775-3_5
https://doi.org/10.1007/978-3-540-24775-3_5
http://cran.r-project.org/package=randomForestSRC
https://doi.org/10.1007/978-3-540-30115-8_22
https://doi.org/10.1007/978-3-540-30115-8_22
https://doi.org/10.1007/978-3-319-08326-1_22
https://doi.org/10.1080/00949655.2014.929131


CONTRIBUTED RESEARCH ARTICLES 366

E. Montañés, R. Senge, J. Barranquero, J. R. Quevedo, J. J. del Coz, and E. Hüllermeier. Dependent
binary relevance models for multi-label classification. Pattern Recognition, 47(3):1494–1508, 2014.
URL https://doi.org/10.1016/j.patcog.2013.09.029. [p353, 354, 355, 357, 358, 363]

P. Probst. Multilabel classification with R package mlr. figshare. Code may be downloaded here, 2017.
URL https://doi.org/10.6084/m9.figshare.3384802.v5. [p363]

J. Read. Scalable multi-label classification. Hamilton, New Zealand: University of Waikato, 2010. [p362,
363]

J. Read and P. Reutemann. Meka: A multi-label extension to WEKA, 2012. URL http://meka.
sourceforge.net/. [p352]

J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classifier chains for multi-label classification. Machine
Learning, 85:333–359, 2011. URL https://doi.org/10.1007/s10994-011-5256-5. [p355, 356, 362,
363]

J. Read, L. Martino, and D. Luengo. Efficient Monte Carlo methods for multi-dimensional learning
with classifier chains. Pattern Recognition, (Mdc):1–36, 2013. URL https://doi.org/10.1016/j.
patcog.2013.10.006. [p356]

C. Sanden and J. Z. Zhang. Enhancing multi-label music genre classification through ensemble
techniques. In Proceedings of the 34th International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 705–714, 2011. URL https://doi.org/10.1145/2009916.2010011.
[p352]

R. E. Schapire and Y. Singer. BoosTexter: A boosting-based system for text categorization. Machine
Learning, 39:135–168, 2000. [p352]

R. Senge, J. J. del Coz Velasco, and E. Hüllermeier. Rectifying classifier chains for multi-label classifica-
tion. Space, 2 (8), 2013. [p354, 356, 359]

J. Sill, G. Takacs, L. Mackey, and D. Lin. Feature-Weighted Linear Stacking. ArXiv e-prints, 2009. [p358]

R. Simon. Resampling strategies for model assessment and selection. In W. Dubitzky, M. Granzow,
and D. Berrar, editors, Fundamentals of Data Mining in Genomics and Proteomics SE - 8, pages 173–186.
Springer-Verlag, 2007. URL https://doi.org/10.1007/978-0-387-47509-7_8. [p355]

K. Trohidis, G. Tsoumakas, G. Kalliris, and I. P. Vlahavas. Multi-label classification of music into
emotions. ISMIR, 8:325–330, 2008. URL https://doi.org/10.1186/1687-4722-2011-426793. [p352,
362, 363]

G. Tsoumakas and I. Katakis. Multi label classification: An overview. International Journal of Data
Warehousing and Mining, 3(3):1–13, 2007. URL https://doi.org/10.4018/jdwm.2007070101. [p352]

G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I. P. Vlahavas. Mulan: A java library for multi-label
learning. Journal of Machine Learning Research, 12:2411–2414, 2011. [p352]

J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. OpenML: Networked science in machine learning.
SIGKDD Explorations, 15(2):49–60, 2013. URL https://doi.org/10.1145/2641190.2641198. [p362]

H. Wang, X. Liu, B. Lv, F. Yang, and Y. Hong. Reliable multi-label learning via conformal predictor and
random forest for syndrome differentiation of chronic fatigue in traditional chinese medicine. PLoS
ONE, 9(6), 2014. URL https://doi.org/10.1371/journal.pone.0099565. [p362]

D. H. Wolpert. Stacked generalization. Neural Networks, 5(2):241–259, 1992. URL https://doi.org/10.
1016/s0893-6080(05)80023-1. [p358]

M. L. Zhang and Z. H. Zhou. M3MIML: A maximum margin method for multi-instance multi-label
learning. In Proceedings - IEEE International Conference on Data Mining, ICDM, pages 688–697, 2008.
URL https://doi.org/10.1109/icdm.2008.27. [p352, 362, 363]

Z.-H. Zhou and M. ling Zhang. Multi-instance multilabel learning with application to scene classifica-
tion. Neural Information Processing Systems, 40(7):2038–2048, 2007. [p362, 363]

Philipp Probst
Department of Medical Informatics, Biometry and Epidemiology
LMU Munich
81377 Munich

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://doi.org/10.1016/j.patcog.2013.09.029
https://doi.org/10.6084/m9.figshare.3384802.v5
http://meka.sourceforge.net/
http://meka.sourceforge.net/
https://doi.org/10.1007/s10994-011-5256-5
https://doi.org/10.1016/j.patcog.2013.10.006
https://doi.org/10.1016/j.patcog.2013.10.006
https://doi.org/10.1145/2009916.2010011
https://doi.org/10.1007/978-0-387-47509-7_8
https://doi.org/10.1186/1687-4722-2011-426793
https://doi.org/10.4018/jdwm.2007070101
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1371/journal.pone.0099565
https://doi.org/10.1016/s0893-6080(05)80023-1
https://doi.org/10.1016/s0893-6080(05)80023-1
https://doi.org/10.1109/icdm.2008.27


CONTRIBUTED RESEARCH ARTICLES 367

Germany
probst@ibe.med.uni-muenchen.de

Quay Au
Department of Statistics
LMU Munich
80539 Munich
Germany
quay.au@stat.uni-muenchen.de

Giuseppe Casalicchio
Department of Statistics
LMU Munich
80539 Munich
Germany
giuseppe.casalicchio@stat.uni-muenchen.de

Clemens Stachl
Department of Psychology
LMU Munich
80802 Munich
Germany
clemens.stachl@psy.lmu.de

Bernd Bischl
Department of Statistics
LMU Munich
80539 Munich
Germany
bernd.bischl@stat.uni-muenchen.de

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

mailto:probst@ibe.med.uni-muenchen.de
mailto:quay.au@stat.uni-muenchen.de
mailto:giuseppe.casalicchio@stat.uni-muenchen.de
mailto:clemens.stachl@psy.lmu.de
mailto:bernd.bischl@stat.uni-muenchen.de


CONTRIBUTED RESEARCH ARTICLES 368

Appendices

BR(rf) CC(rf) NST(rf) DBR(rf) STA(rf) BR(ad) CC(ad) NST(ad) DBR(ad) STA(ad) RFERN RFSRC BR(fl)
birds* 0.4481 0.4481 0.4466 0.4497 0.4451 0.4156 0.4218 0.4171 0.4233 0.4202 0.9830 0.4777 0.5226

emotions 0.6846 0.6575 0.6728 0.6457 0.6626 0.6777 0.6643 0.7031 0.6845 0.6828 0.7992 0.6829 1.0000
genbase* 0.0333 0.0363 0.0393 0.0423 0.0363 0.0045 0.0045 0.0045 0.0060 0.0045 0.2115 0.0091 1.0000
langLog* 0.6836 0.6829 0.6884 0.6842 0.6856 0.6521 0.6349 0.6418 0.6438 0.6466 0.8589 0.6856 0.7021

enron* 0.8531 0.8413 0.8560 0.8408 0.8484 0.8496 0.819 0.8484 0.8320 0.8408 1.0000 0.8619 0.9982
reuters 0.3620 0.3405 0.3575 0.311 0.3515 0.349 0.2945 0.338 0.3495 0.3385 0.5830 0.3695 1.0000
image 0.6635 0.6150 0.6505 0.575 0.6445 0.63 0.539 0.6275 0.6225 0.619 0.8365 0.6955 1.0000
scene 0.4225 0.3926 0.4217 0.3835 0.4046 0.3913 0.3095 0.3805 0.3610 0.3648 0.7540 0.4570 1.0000

yeast* 0.8316 0.7600 0.8201 0.8167 0.8155 0.8304 0.7563 0.8134 0.8217 0.806 0.9338 0.8337 0.9855
slashdot* 0.6140 0.5994 0.6116 0.5859 0.6052 0.6489 0.5923 0.6449 0.6658 0.6396 0.9966 0.6142 0.9675

Table 5: Subset 0/1 loss

BR(rf) CC(rf) NST(rf) DBR(rf) STA(rf) BR(ad) CC(ad) NST(ad) DBR(ad) STA(ad) RFERN RFSRC BR(fl)
birds* 0.6153 0.6126 0.6197 0.6169 0.6232 0.6589 0.657 0.6604 0.6581 0.6621 0.0999 0.5753 0.4774

emotions 0.5453 0.5649 0.5464 0.5849 0.5609 0.5519 0.5676 0.5408 0.5727 0.5427 0.5503 0.5332 0.0000
genbase* 0.9834 0.9806 0.9796 0.9773 0.9806 0.9972 0.9972 0.9972 0.9957 0.9972 0.8884 0.9950 0.0000
langLog* 0.3185 0.3188 0.3140 0.3188 0.3161 0.3553 0.3741 0.366 0.363 0.3615 0.1953 0.3161 0.2979

enron* 0.4693 0.4757 0.4694 0.4804 0.4742 0.483 0.4987 0.4824 0.4919 0.4847 0.1859 0.4394 0.2241
reuters 0.6625 0.6856 0.6682 0.7199 0.6754 0.6873 0.7414 0.6912 0.7197 0.6964 0.5620 0.6482 0.0000
image 0.4068 0.4585 0.4142 0.5225 0.4228 0.4446 0.5508 0.4458 0.5366 0.4564 0.4467 0.3578 0.0000
scene 0.6064 0.6333 0.6067 0.6463 0.6233 0.646 0.7201 0.6505 0.7313 0.6725 0.5513 0.5654 0.0000

yeast* 0.5091 0.5320 0.5138 0.514 0.5205 0.5182 0.5345 0.522 0.5068 0.5239 0.3674 0.4945 0.3361
slashdot* 0.4274 0.4421 0.4285 0.4569 0.4385 0.3883 0.4507 0.3925 0.4613 0.3982 0.1651 0.4202 0.0325

Table 6: Accuracy

BR(rf) CC(rf) NST(rf) DBR(rf) STA(rf) BR(ad) CC(ad) NST(ad) DBR(ad) STA(ad) RFERN RFSRC BR(fl)
birds* 0.2763 0.2752 0.2897 0.2859 0.2936 0.3755 0.3865 0.3772 0.3687 0.3784 0.8352 0.1949 0.0000

emotions 0.6197 0.6474 0.6187 0.6847 0.6358 0.6335 0.6708 0.6293 0.7189 0.6237 0.8276 0.6001 0.0000
genbase* 0.9846 0.9819 0.9809 0.9786 0.9819 0.9977 0.9977 0.9977 0.9962 0.9977 0.9962 0.9955 0.0000
langLog* 0.0334 0.0330 0.0270 0.0331 0.0308 0.0971 0.1191 0.1056 0.0995 0.102 0.9264 0.0301 0.0000

enron* 0.5426 0.5487 0.5421 0.5580 0.5466 0.5611 0.5902 0.5619 0.6314 0.5633 0.771 0.4959 0.2613
reuters 0.6733 0.6959 0.6801 0.7338 0.6875 0.7038 0.754 0.7046 0.9032 0.7123 0.8598 0.6559 0.0000
image 0.4192 0.4696 0.4228 0.5562 0.4335 0.4581 0.5691 0.4603 0.7787 0.4724 0.7374 0.3598 0.0000
scene 0.6148 0.6373 0.6134 0.6555 0.6306 0.6614 0.7243 0.6613 0.8174 0.6879 0.9173 0.5662 0.0000

yeast* 0.5722 0.6097 0.5788 0.6035 0.5874 0.5951 0.6229 0.5978 0.6104 0.6013 0.6296 0.5442 0.3365
slashdot* 0.4267 0.4412 0.4270 0.4574 0.4391 0.3834 0.4526 0.3868 0.6984 0.3931 0.8065 0.4094 0.0000

Table 7: Recall

BR(rf) CC(rf) NST(rf) DBR(rf) STA(rf) BR(ad) CC(ad) NST(ad) DBR(ad) STA(ad) RFERN RFSRC BR(fl)
birds* 0.8812 0.8889 0.8764 0.9056 0.8874 0.8461 0.8349 0.8401 0.8648 0.8605 0.0859 0.8996

emotions 0.7627 0.7242 0.7499 0.7265 0.7644 0.7537 0.7014 0.739 0.6783 0.7347 0.5869 0.7577
genbase* 0.9987 0.9987 0.9987 0.9987 0.9987 0.9995 0.9995 0.9995 0.9995 0.9995 0.8917 0.9995
langLog* 0.7267 0.7356 0.7058 0.7207 0.6882 0.6874 0.7228 0.7133 0.7014 0.6965 0.0632 0.7233

enron* 0.7283 0.7188 0.7305 0.7092 0.7331 0.7235 0.6807 0.7198 0.6371 0.7233 0.1973 0.7448 0.5135
reuters 0.9411 0.9168 0.9346 0.8995 0.9298 0.9014 0.7689 0.8983 0.7465 0.8931 0.5715 0.9562
image 0.7899 0.7333 0.8029 0.7086 0.7865 0.7841 0.6281 0.7814 0.6036 0.7737 0.4813 0.83
scene 0.9071 0.8956 0.9112 0.8917 0.9143 0.8936 0.81 0.8856 0.7879 0.8872 0.5662 0.9233

yeast* 0.7372 0.7218 0.7351 0.7055 0.7389 0.7225 0.6947 0.7233 0.6827 0.7159 0.4361 0.7508 0.7478
slashdot* 0.8365 0.8127 0.8298 0.7927 0.8277 0.8119 0.6804 0.8161 0.5025 0.8196 0.1679 0.8366

Table 8: Precision (For the featureless learner we have no precision results for several datasets. The reason is that
the featureless learner does not predict any value in all observations in these datasets. Hence, the denominator in
the precision formula is always zero. mlr predicts NA in this case.)
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Figure 2: Results for the remaining measures.
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Counterfactual: An R Package for
Counterfactual Analysis
by Mingli Chen, Victor Chernozhukov, Iván Fernández-Val and Blaise Melly

Abstract The Counterfactual package implements the estimation and inference methods of Cher-
nozhukov et al. (2013) for counterfactual analysis. The counterfactual distributions considered are
the result of changing either the marginal distribution of covariates related to the outcome variable of
interest, or the conditional distribution of the outcome given the covariates. They can be applied to
estimate quantile treatment effects and wage decompositions. This paper serves as an introduction to
the package and displays basic functionality of the commands contained within.

Introduction

Using econometric terminology, we can often think of a counterfactual distribution as the result of
a change in either the distribution of a set of covariates X that determine the outcome variable of
interest Y, or the relationship of the covariates with the outcomes, that is, a change in the conditional
distribution of Y given X. Counterfactual analysis consists of evaluating the effects of such changes.
The Counterfactual package implements the methods of (Chernozhukov et al., 2013) for counterfactual
analysis. It contains commands to estimate and make inference on quantile effects constructed from
counterfactual distributions. The counterfactual distributions are estimated using regression methods
such as classical, duration, quantile and distribution regressions. The inference on the quantile effect
function can be pointwise at a specific quantile index or uniform over a range of specified quantile
indexes.

We start by giving a simple example of counterfactual analysis. Suppose we would like to
analyze the wage differences between men and women. Let 0 denote the population of men and let 1
denote the population of women. The variable Yj denotes wages and Xj denotes job market-relevant
characteristics that affect wages for populations j = 0 and j = 1. The conditional distribution functions
FY0|X0

(y|x) and FY1|X1
(y|x) describe the stochastic assignment of wages to workers with characteristics

x, for men and women, respectively. Let FY〈0|0〉 and FY〈1|1〉 represent the observed distribution function
of wages for men and women, and let FY〈0|1〉 represent the distribution function of wages that would
have prevailed for women had they faced the men’s wage schedule FY0|X0

:

FY〈0|1〉(y) :=
∫
X1

FY0|X0
(y|x)dFX1 (x).

The latter distribution is called counterfactual, since it does not arise as a distribution from any observ-
able population. Rather, this distribution is constructed by integrating the conditional distribution
of wages for men with respect to the distribution of characteristics for women. This quantity is well
defined if X0, the support of men’s characteristics, includes X1, the support of women’s characteristics,
namely X1 ⊂ X0.

Let F← denote the quantile or left-inverse function of the distribution function F. The difference in
the observed wage quantile function between men and women can be decomposed in the spirit of
(Oaxaca, 1973) and (Blinder, 1973) as

F←Y〈1|1〉 − F←Y〈0|0〉 = [F←Y〈1|1〉 − F←Y〈0|1〉] + [F←Y〈0|1〉 − F←Y〈0|0〉], (1)

where the first term in brackets is due to differences in the wage structure and the second term is a
composition effect due to differences in characteristics. These counterfactual effects are well defined
econometric parameters and are widely used in empirical analysis, for example, the first term of the
decomposition is a measure of gender wage discrimination. In Section P.3.2 we consider an empirical
example where 0 denotes the population of nonunion workers and 1 denotes the population of union
workers. In this case the the wage structure effect corresponds to the treatment effect of union or union
premium. It is important to note that these effects do not necessarily have a causal interpretation
without additional conditions that are spelled out in (Chernozhukov et al., 2013).
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The Counterfactual package

Getting started

To get started using the package Counterfactual for the first time, issue the command

> install.packages("Counterfactual")

into your R browser to install the package in your computer. Once the package has been installed, you
can use the package Counterfactual during any R session by simply issuing the command

> library(Counterfactual)

Now you are ready to use the function counterfactual and data sets contained in Counterfactual. For
general questions about the package you may type

> help(package = "Counterfactual")

to view the package help file, or for more questions about a specific function you can type ‘help(function-name)’.
For example, try:

> help(counterfactual)

or simply type

> ?counterfactual

The command counterfactual has the general syntax:

> counterfactual(formula, data, weights, na.action = na.exclude,
+ group, treatment = FALSE, decomposition = FALSE,
+ transformation = FALSE, counterfactual_var,
+ quantiles, method = "qr",
+ trimming = 0.005, nreg = 100, scale_variable,
+ counterfactual_scale_variable,
+ censoring = 0, right = FALSE, nsteps = 3,
+ firstc = 0.1, secondc = 0.05, noboot = FALSE,
+ weightedboot = FALSE, seed = 8, robust = FALSE,
+ reps = 100, alpha = 0.05, first = 0.1,
+ last = 0.9, cons_test = 0, printdeco = TRUE,
+ sepcore = FALSE, ncore=1)

To describe the different options of the command we need to provide some background on methods
for counterfactual analysis.

Setting for counterfactual analysis

Consider a general setting with two populations labeled by k ∈ K = {0, 1}. For each population k
there is the dx-vector Xk of covariates and the scalar outcome Yk. The covariate vector is observable
in all populations, but the outcome is only observable in populations j ∈ J ⊆ K. Let FXk denote the
covariate distribution in population k ∈ K, and FYj |Xj

and QYj |Xj
denote the conditional distribution

and quantile functions in population j ∈ J . We denote the support of Xk by Xk ⊆ Rdx , and the region
of interest for Yj by Yj ⊆ R. The refer to j as the reference population(s) and to k as the counterfactual
population(s).

The reference and counterfactual populations in the wage examples correspond to different groups
such as men and women or nonunion and union workers. We can also generate counterfactual
populations by artificially transforming a reference population. Formally, we can think of Xk as being
created through a known transformation of Xj:

Xk = gk(Xj), where gk : Xj → Xk. (2)

This case covers adding one unit to the first covariate, X1,k = X1,j + 1, holding the rest of the covariates
constant. The resulting quantile effect becomes the unconditional quantile regression, which measures
the effect of a unit change in a given covariate component on the unconditional quantiles of Y.
For example, this type of counterfactual is useful for estimating the treatment effect of smoking
during pregnancy on infant birth weights. Another possible transformation is a mean preserving
redistribution of the first covariate implemented as X1,k = (1− α)E[X1,j] + αX1,j. These and more
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general types of transformation defined in (2) are useful for estimating the effect of a change in taxation
on the marginal distribution of food expenditure or the effect of cleaning up a local hazardous waste
site on the marginal distribution of housing prices ((Stock, 1991)). We give an example of this type of
transformation in Section P.3.1.

The reference and counterfactual populations can be specified to counterfactual in two ways that
accommodate the previous two cases:

1. If the option group has been specified, then j is the population defined by group and k is the
population defined by group=1. This means that both X and Y are observed in group=0, but
only X needs to be observed in group=1. When both X and Y are observed in group=1, the
option treatment=TRUE specifies that the structure or treatment effect should be computed,
whereas the default option treatment=FALSE specifies that the composition effect should be
computed; see the definition of the structure and composition effects in the decomposition (1).
If in addition to treatment=TRUE the option decomposition=TRUE is selected, then the entire
decomposition (1) is reported including the composition, structure and total effects. Note that
we can reverse the roles of the populations defined by an indicator variable vargroup by setting
either group=vargroup or group=1-vargroup.

2. Alternatively, the option counterfactual_var can be used to specify the covariates in the counter-
factual population. In this case, the names on the right handside of formula contain the variables
in Xj and counterfactual_var contains the variables in Xk. The option transformation=TRUE should
be used when Xk is generated as a transformation of Xj, e.g., equation (2). The list passed to
counterfactual_var must contain exactly the same number of variables as the list of independent
variables in formula and the order of the variables in the list matters.

Counterfactual distribution and quantile functions are formed by combining the conditional
distribution in the population j with the covariate distribution in the population k, namely:

FY〈j|k〉(y) :=
∫
Xk

FYj |Xj
(y|x)dFXk (x), y ∈ Yj,

QY〈j|k〉(τ) := F←Y〈j|k〉(τ), τ ∈ (0, 1),

where (j, k) ∈ JK, and F←Y〈j|k〉(τ) = inf{y ∈ Yj : FY〈j|k〉(y) ≥ τ} is the left-inverse function of
FY〈j|k〉. The main interest lies in the quantile effect (QE) function, defined as the difference of two
counterfactual quantile functions over a set of quantile indexes T ⊂ (0, 1):

∆(τ) = QY〈j|k〉(τ)−QY〈j|j〉(τ), τ ∈ T ,

where j ∈ J and k ∈ K. In the example of Section P.1, we obtain the composition effect with j = 0
and k = 1. When Yk is observed, then we can construct the structure effect or treatment effect on the
treated

∆(τ) = QY〈k|k〉(τ)−QY〈j|k〉(τ), τ ∈ T ,

by specifying the option group and setting treatment=TRUE. In the example of Section P.1, we obtain
the wage structure effect with j = 0 and k = 1, i.e. setting group=1 and treatment=TRUE. If in addition
we select the option decomposition=TRUE, then we obtain the entire decomposition (1) including the
composition, structure and total effects. The total effect is

∆(τ) = QY〈k|k〉(τ)−QY〈j|j〉(τ), τ ∈ T .

The set T is specified with the option quantiles, which enumerates the quantile indexes of interested
and should be a vector containing numbers between 0 and 1.

To estimate the QE function we need to model and estimate the conditional distribution FYj |Xj
and

covariate distribution FXk . We estimate the covariate distribution using the empirical distribution,
and consider several regression based methods for the conditional distribution including classical,
quantile, duration, and distribution regression. Given the estimators of the conditional and covariate
distributions F̂Yj |Xj

and F̂Xk , the estimator of each counterfactual distribution is obtained by the plug-in
rule, namely

F̂Y〈j|k〉(y) =
∫
Xk

F̂Yj |Xj
(y|x)dF̂Xk (x), y ∈ Yj.

Then, the estimator of the QE function is also obtained by the plug-in rule as

∆̂(τ) = F̂←Y〈j|k〉(τ)− F̂←Y〈j|j〉(τ), τ ∈ T ,

or
∆̂(τ) = F̂←Y〈k|k〉(τ)− F̂←Y〈j|k〉(τ), τ ∈ T ,
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if we define the counterfactual population with group and set treatment=TRUE. If in addition to
treatment=TRUE, we select decomposition=TRUE, then the plug-in estimator of the total effect is

∆̂(τ) = F̂←Y〈k|k〉(τ)− F̂←Y〈j|j〉(τ), τ ∈ T .

Estimation of conditional distribution

In this section we assume that we have samples {(Yji, Xji) : i = 1, . . . , nj} composed of independent
and identically distributed copies of (Yj, Xj) for all populations j ∈ J . The conditional distribution
FYj |Xj

can be modeled and estimated directly, or throught the conditional quantile function, QYj |Xj
,

using the relation

FYj |Xj
(y|x) ≡

∫
(0,1)

1{QYj |Xj
(u|x) ≤ y}du. (3)

The option formula specifies the outcome Y as the left hand side variable and the covariates X as the
right hand side variable(s). The option method allows to select the method to estimate the conditional
distribution. The following methods are implemented:

1. method = "qr", which is the default, implements the quantile regresion estimator of the condi-
tional distribution

F̂Yj |Xj
(y|x) = ε +

∫
(ε,1−ε)

1{x′ β̂ j(u) ≤ y}du, (4)

where ε is a small constant that avoids estimation of tail quantiles, and β̂(u) is the (Koenker and
Bassett, 1978) quantile regression estimator

β̂ j(u) = arg min
b∈Rdx

nj

∑
i=1

[u− 1{Yji ≤ X′jib}][Yji − X′jib].

The quantile regression estimator calls the R package quantreg (Koenker, 2016). The option
trimming specifies the value of the trimming parameter ε, with default value ε = 0.005. The
option nreg sets the number of quantile regressions used to approximate the integral in (4), with a
default value of 100 such that (ε, 1− ε) is approximated by the grid {ε, ε + (1− 2ε)/99, ε + 2(1−
2ε)/99, . . . , 1− ε}. This method should be used only with continuous dependent variables.

2. method = "loc" implements the estimator of the conditional distribution

F̂Yj |Xj
(y|x) = 1

nj

nj

∑
i=1

1{Yji − X′ji β̂ j ≤ y− x′ β̂ j}, (5)

where β̂ j is the least square estimator

β̂ j = arg min
b∈Rdx

nj

∑
i=1

(Yji − X′jib)
2. (6)

The estimator (5) is based on a restrictive location shift model that imposes that the covariates X
only affect the location of the outcome Y.

3. method = "locsca" implements the estimator of the conditional distribution

F̂Yj |Xj
(y|x) = 1

nj

nj

∑
i=1

1

{
Yji − X′ji β̂ j

exp(X′2jiγ̂j/2)
≤

y− x′ β̂ j

exp(x′2jγ̂j/2)

}
, (7)

where β̂ j is the least square estimator (6), X2j ⊆ Xj with dim X2j = dx2 , and

γ̂j = arg min
g∈R

dx2

nj

∑
i=1

(log(Yji − X′ji β̂ j)
2 − X′2jig)

2.

The option scale_variable specifies the covariates X2j that affect the scale of the conditional
distribution. The option counterfactual_scale_variable selects the counterfactual scale variables
when the counterfactual population is specified using counterfactual_var. By default, R would
use all the covariates as scale_variable and counterfactual_scale_variable = counterfactual_var. The
estimator (7) is based on a restrictive location scale shift model that imposes that the covariates
X only affect the location and scale of the outcome Y.

4. method = "cqr" implements the censored quantile regression estimator of the conditional dis-
tribution, which is the same as (4) with β̂(u) replaced by the (Chernozhukov and Hong, 2002)
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censored quantile regression estimator. The options trimming and nreg apply to this method
with the same functionality as for the qr method. Moreover, a variable containing a censoring
indicator Cj must be specified with censoring. The censored quantile regression estimator has
three-steps by default. The number of steps can be increased by the option nsteps. In the first
step, the censoring probabilities are estimated by a logit regression of the censoring indicator
Cj on all the covariates Xj. Then, for each quantile index u, the observations with sufficiently
low censoring probabilities relative to u are selected. We allow for misspecification of the logit
by excluding the observations that could theoretically be used but have censoring probabilities
in the highest firstc quantiles, with a default of 0.1, i.e. 10% of the observations. In the second
step, standard linear quantile regressions are estimated on the samples defined in step one.
Using the estimated quantile regressions, we define a new sample of observations that can be
used. This sample consists of all observations for which the estimated conditional quantile is
above the censoring point. Again, we throw away observations in the lowest secondc quantiles
of the distribution of the residuals, with a default of 0.05, i.e. 5% of the observations. Step three
consists in a new linear quantile regression using the sample defined in step two. Step three
is repeated if nsteps is above 3. This method should be used only with censored dependent
variables.

5. method = "cox" implements the duration regression estimator of the conditional distribution
function

F̂Yj |Xj
(y|x) = 1− exp(− exp(t̂(y)− x′ β̂)), (8)

where β̂ is the Cox estimator of the regression coefficients and t̂(y) is the Cox estimator of the
baseline integrated hazard function (Cox, 1972). The Cox estimator calls the R package survival
(Therneau, 2015). The estimator (8) is based on a restrictive transformation location shift model
that imposes that the covariates X only affect the location of a monotone transformation of the
outcome t(Y), i.e.

t(Yj) = X′j β j + Vj,

where Vj has an extreme value distribution and is independent of Xj. This method should be
used only with nonnegative dependent variables.

6. method = "logit" implements the distribution regression estimator of the conditional distribution
with logistic link function

F̂Yj |Xj
(y|x) = Λ(x′ β̂(y)), (9)

where Λ is the standard logistic distribution function, and β̂(y) is the distribution regression
estimator

β̂(y) = arg max
b∈Rdx

nj

∑
i=1

[
1{Yji ≤ y} log Λ(X′ijb) + 1{Yij > y} log Λ(−X′jib)

]
. (10)

The estimator (9) is based on a flexible model where each covariate can have a heterogenous
effect at different parts of the distribution. This method can be used with continuous dependent
variables and censored dependent variables with fixed censoring point.

7. method = "probit" implements the distribution regression estimator of the conditional distribution
with normal link function, i.e. where Λ is the standard normal distribution function in (9) and
(10).

8. method = "lpm" implements the linear probability model estimator of the conditional distribution

F̂Yj |Xj
(y|x) = x′ β̂(y),

where β̂(y) is the least squares estimator

β̂(y) = arg min
b∈Rdx

nj

∑
i=1

(1{Yji ≤ y} − X′ijb)
2.

This method might produce estimates of the conditional distribution outside the interval [0, 1].

For the methods (2)–(8), the option nreg sets the number of values of y to evaluate the estimator
of the conditional distribution function. These values are uniformly distributed among the observed
values of Yj. If nreg is greater than the number of observed values of Yj, then all the observed values
are used.
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Inference

The command counterfactual reports pointwise and uniform confidence intervals for the QEs over
a prespecified set of quantile indexes. The construction of the intervals rely on functional central
limit theorems and bootstrap functional central limit theorems for the empirical QEs derived in
(Chernozhukov et al., 2013). In particular, the pointwise intervals are based on the normal distribution,
whereas the uniform intervals are based on two resampling schemes: empirical and weighted bootstrap.
Thus, the (1− α) confidence interval for ∆(τ) on T has the form

{∆̂(τ)± c1−αΣ̂(τ) : τ ∈ T },

where Σ̂(τ) is the standard error of ∆̂(τ) and c1−α is a critical value. There are two options to obtain
Σ̂(τ). The default option robust=FALSE computes the bootstrap standard deviation of ∆̂(τ); whereas
the option robust=TRUE computes the bootstrap interquartile range rescaled with the normal distribu-
tion, Σ̂(τ) = (q0.75(τ)− q0.25(τ))/(z0.75− z0.25) where qp(τ) is the pth quantile of the bootstrap draws
of ∆̂(τ) and zp is the pth quantile of the standard normal. The pointwise critical value is c1−α = z1−α,
and the uniform critical value is c1−α = t̂1−α, where t̂1−α is a bootstrap estimator of the (1− α)th
quantile of the Kolmogorov-Smirnov maximal t-statistic

t = sup
τ∈T
|∆̂(τ)− ∆(τ)|/Σ̂(τ).

In addition to the intervals, counterfactual reports the p-values for several functional tests based on
two test-statistic: Kolmogorov-Smirnov and the Cramer-von-Misses-Smirnov. The null-hypotheses
considered are

1. Correct parametric specification of the model for the conditional distribution. This test compares
the empirical distribution of the outcome Yj with the estimate of the counterfactual distribution
in the reference population

F̂Y〈j|j〉(y) :=
∫
Xj

F̂Yj |Xj
(y|x)dF̂Xj (x).

The power of this specification test might be low because it only uses the implications of
the conditional distribution on the counterfactual distribution. For example, the test is not
informative for the linear probability and logit models where the counterfactual distribution in
the reference population is identical to the empirical distribution by construction. If group is
specified and treatment=TRUE is selected, then the test is performed in the population defined
by group=1. If in addition the option decomposition=TRUE is selected, then the test is performed
in the populations defined by group=0 and group=1, and in the combined population including
both group=0 and group=1.

2. Zero QE at all the quantile indexes of interest: ∆(τ) = 0 for all τ ∈ T . This is stronger than a
zero average effect. Other null hypotheses of constant quantile effect (but at a different level
than 0) can be added with the option cons_test.

3. Constant QE at all quantile indexes of interest: ∆(τ) = ∆(0.5) for all τ ∈ T .

4. First-order stochastic dominance: ∆(τ) ≥ 0 for all τ ∈ T .

5. Negative first-order stochastic dominance: ∆(τ) ≤ 0 for all τ ∈ T .

The options of counterfactual related to inference are:

1. noboot = TRUE suppresses the bootstrap. The bootstrap can be very demanding in terms of
computation time. Therefore, it is recommended to switch it off for the exploratory analysis of
the data.

2. weightedboot = TRUE selects weighted bootstrap with standard exponential weights. The default
weightedboot = FALSE selects empirical bootstrap with multinomial weights. We recommend
weighted bootstrap when the covariates include categorical variables with small cell sizes to
avoid singular designs in the bootstrap draws.

3. reps specifies the number of bootstrap replications. This number will matter only if the bootstrap
has not be suppressed. The default is 100.

4. alpha specifies the significance level of the tests and confidence intervals. Note that the confidence
level of the confidence interval is 1 - alpha. Thus, the default value of 0.05 produces 95%
confidence intervals.
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5. first and last select the subset of quantile indexes of interest for inference. The tails of the
distribution should not be used because standard asymptotic does not apply to these parts.
The needed amount of tail trimming depends on the sample size and on the distribution of the
dependent variable. first sets the lowest quantile index used and last sets the highest quantile
index used. The default values are 0.1 and 0.9 so that T = [0.1, 0.9].

6. cons_test add tests of the null hypothesis that ∆(τ) = const_test for all τ between first and last.
The null hypothesis that ∆(τ) = 0 for all τ between first and last is tested by default. The null
hypothesis that the quantile effects are constant is also tested by default.

Parallel computing

The command counterfactual provides functionality for parallel computing, which is specially useful to
speed up the execution of the bootstrap. There are two options related to parallel computing:

1. setcore specifies whether multiple cores should be used. The default value setcore = FALSE turns
off the parallel computing.

2. ncore selects the number of cores to use for parallel computing. The information of this option is
only used when parallel computing is switched on with setcore = TRUE.

Empirical examples

We consider two empirical examples to illustrate the functionality of the command counterfactual.
The first example is an estimation of Engel curves that includes a counterfactual analysis where
the counterfactual population is an artificial transformation of a reference population. The second
example is wage decomposition with respect to union status where the reference and counterfactual
populations correspond to two different groups.

Engel curves

We use the classical Engel 1857 dataset to estimate the relationship between food expenditure (foodexp)
and annual household income (income), and then report the estimates of the QE of a change in the
distribution of the annual household income that might be induced for example by a variation in
income taxation.1 We estimate the conditional distribution with the quantile regression method, i.e.,
method ="qr".

First, we generate the variable counterfactual_income with the counterfactual values of income
and plot the reference and counterfactual income distributions. The counterfactual distribution
corresponds to a mean preserving spread of the distribution in the reference population that reduces
standard deviation by 25%.

> library(quantreg)
> data(engel)
> attach(engel)
> counter_income <- mean(income)+0.75*(income-mean(income))
> cdfx <- c(1:length(income))/length(income)
> plot(c(0,4000),range(c(0,1)), xlim =c(0, 4000), type="n", xlab = "Income",
+ ylab="Probability")
> lines(sort(income), cdfx)
> lines(sort(counter_income), cdfx, lwd = 2, col = 'grey70')
> legend(1500, .2, c("Original", "Counterfactual"), lwd=c(1,2),bty="n",
+ col=c(1,'grey70'))

To estimate the QEs of this counterfactual change we turn on the option transformation of counter-
factual by setting transformation = TRUE, and specify that the counterfactual values of the covariate
income are in the generated variable counter_income by setting counterfactual_var = counter_income. This
yields:

> qrres <- counterfactual(foodexp~income, counterfactual_var
+ = counter_income, transformation = TRUE)

1This is the same data set as in the quantile regression package quantreg, see (Koenker, 2016).
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Figure 1: Observed and counterfactual distributions of income

Conditional Model: linear quantile regression
Number of regressions estimated: 100

The variance has been estimated by bootstraping the results 100 times.

No. of obs. in the reference group: 235
No. of obs. in the counterfactual group: 235

Quantile Effects -- Composition
----------------------------------------------------------------------

Pointwise Pointwise Functional
Quantile Est. Std.Err 95% Conf.Interval 95% Conf.Interval

0.1 68.049 4.214 59.789 76.308 55.939 80.159
0.2 57.897 4.332 49.406 66.388 45.448 70.346
0.3 43.851 5.246 33.568 54.133 28.774 58.927
0.4 29.248 5.091 19.270 39.227 14.618 43.878
0.5 16.716 4.602 7.696 25.735 3.491 29.940
0.6 5.744 4.308 -2.698 14.187 -6.634 18.123
0.7 -8.866 7.132 -22.845 5.113 -29.361 11.630
0.8 -40.099 8.191 -56.153 -24.045 -63.637 -16.561
0.9 -88.56 13.83 -115.67 -61.44 -128.31 -48.80

Bootstrap inference on the counterfactual quantile process
----------------------------------------------------------------------

P-values
======================

NULL-Hypthoesis KS-statistic CMS-statistic
======================================================================
Correct specification of the parametric model 0 0
No effect: QE(tau)=0 for all taus 0 0
Constant effect: QE(tau)=QE(0.5) for all taus 0 0
Stochastic dominance: QE(tau)>0 for all taus 0 0
Stochastic dominance: QE(tau)<0 for all taus 0 0
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We reject the simultaneous hypotheses of zero, constant, positive and negative effect of the income
redistribution at all the deciles. The QR model for the conditional distribution cannot be rejected at
conventional significance levels.

Finally, we reestimate the QE function on the larger set of quantiles {0.01, 0.02, . . . , 0.99}, and plot
a uniform confidence band over the subset {0.10, 0.11, . . . , 0.90} constructed by empirical bootstrap
with 100 replications. In Figure 2 we can visually reject the functional hypotheses of zero, constant,
positive and negative effect at the percentiles considered. We use the option printdeco = FALSE to
suppress the display of the table of results.

> taus <- c(1:99)/100
> first <- sum(as.double(taus <= .10))
> last <- sum(as.double(taus <= .90))
> rang <- c(first:last)
> rqres <- counterfactual(foodexp~income, counterfactual_var=counter_income,
+ nreg=100, quantiles=taus, transformation = TRUE,
+ printdeco = FALSE, sepcore = TRUE,ncore=2)

cores used= 2

> duqf <- (rqres$resCE)[,1]
> l.duqf <- (rqres$resCE)[,3]
> u.duqf <- (rqres$resCE)[,4]

> plot(c(0,1), range(c(min(l.duqf[rang]), max(u.duqf[rang]))), xlim = c(0,1),
+ type = "n", xlab = expression(tau), ylab = "Difference in Food Expenditure",
+ cex.lab=0.75)
> polygon(c(taus[rang], rev(taus[rang])), c(u.duqf[rang], rev(l.duqf[rang])),
+ density = -100, border = F, col = "grey70", lty = 1, lwd = 1)
> lines(taus[rang], duqf[rang])
> abline(h = 0, lty = 2)
> legend(0, -90, "QE", cex = 0.75, lwd = 4, bty = "n", col = "grey70")
> legend(0, -90, "QE", cex = 0.75, lty = 1, bty = "n", lwd = 1)
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Figure 2: Quantile effects of income redistribution on food consumption

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 379

Union premium

We use an extract of the U.S. National Longitudinal Survey of Young Women (NLSW) for employed
women in 1988 to estimate a wage decomposition with respect to union status.2 The outcome variable
Y is the log hourly wage (lwage), the covariates X include job tenure in years (tenure), years of
schooling (grade), and total experience (ttl_exp), and the union indicator union defines the reference
and counterfactual populations. We estimate the conditional distributions by distribution regression
with logistic link and duration regression, i.e., method ="logit" and method ="cox". We use weighted
bootstrap for the construction of uniform confidence intervals and hypothesis tests and run parallel
computing with 2 nodes.

We start by estimating the wage decomposition by logistic distribution regression, where the
counterfactual population is specified with group=union with the options treatment=TRUE and decom-
position=TRUE to estimate the composition, structure and total effects. The structure effect in this
case correspond to the treatment effect of union on the treated or union premium. The tables show
that the union workers earn higher wages than the nonumion workers throuoghout the distribution
although the union wage gap is decreasing in the quantile index. This gap can be mostly explained by
differences in tenure, education and experience between union and nonunion workers in the upper
tail of the distribution and by the union premium in the rest of the distribution.

> data(nlsw88)
> attach(nlsw88)
> lwage <- log(wage)
> logitres <- counterfactual(lwage~tenure+ttl_exp+grade,
+ group = union, treatment=TRUE,
+ decomposition=TRUE, method = "logit",
+ weightedboot = TRUE, sepcore = TRUE, ncore=2)
cores used= 2

Conditional Model: logit
Number of regressions estimated: 96

The variance has been estimated by bootstraping the results 100 times.

No. of obs. in the reference group: 1407
No. of obs. in the counterfactual group: 459

Quantile Effects -- Structure
----------------------------------------------------------------------

Pointwise Pointwise Functional
Quantile Est. Std.Err 95% Conf.Interval 95% Conf.Interval

0.1 0.24047 0.06005 0.12278 0.35817 0.07757 0.40338
0.2 0.21903 0.05630 0.10869 0.32937 0.06631 0.37176
0.3 0.23437 0.04628 0.14366 0.32508 0.10881 0.35992
0.4 0.18524 0.04252 0.10190 0.26857 0.06989 0.30059
0.5 0.16041 0.04404 0.07410 0.24671 0.04095 0.27987
0.6 0.13897 0.04618 0.04845 0.22949 0.01369 0.26425
0.7 0.05701 0.04407 -0.02937 0.14339 -0.06255 0.17657
0.8 0.01945 0.04179 -0.06245 0.10135 -0.09391 0.13281
0.9 0.006434 0.078547 -0.147514 0.160382 -0.206650 0.219518

Bootstrap inference on the counterfactual quantile process
----------------------------------------------------------------------

P-values
======================

NULL-Hypthoesis KS-statistic CMS-statistic
======================================================================
Correct specification of the parametric model 1 1
No effect: QE(tau)=0 for all taus 0 0
Constant effect: QE(tau)=QE(0.5) for all taus 0 0.02
Stochastic dominance: QE(tau)>0 for all taus 0.95 0.95

2This dataset is available from the Stata’s sample datasets at http://www.stata-press.com/data/r9/nlsw88.dta.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 380

Stochastic dominance: QE(tau)<0 for all taus 0 0

Quantile Effects -- Composition
----------------------------------------------------------------------

Pointwise Pointwise Functional
Quantile Est. Std.Err 95% Conf.Interval 95% Conf.Interval

0.1 0.06062 0.04131 -0.02035 0.14160 -0.05752 0.17877
0.2 0.04879 0.03717 -0.02406 0.12164 -0.05750 0.15508
0.3 0.05313 0.03721 -0.01981 0.12607 -0.05329 0.15956
0.4 0.09245 0.03772 0.01851 0.16638 -0.01543 0.20033
0.5 0.08952 0.03945 0.01220 0.16683 -0.02329 0.20233
0.6 0.12259 0.03862 0.04690 0.19828 0.01215 0.23303
0.7 0.12975 0.03781 0.05564 0.20385 0.02162 0.23787
0.8 0.090722 0.030184 0.031563 0.149881 0.004404 0.177041
0.9 0.05503 0.05744 -0.05755 0.16760 -0.10924 0.21929

Bootstrap inference on the counterfactual quantile process
----------------------------------------------------------------------

P-values
======================

NULL-Hypthoesis KS-statistic CMS-statistic
======================================================================
Correct specification of the parametric model 1 1
No effect: QE(tau)=0 for all taus 0.01 0.01
Constant effect: QE(tau)=QE(0.5) for all taus 0.77 0.58
Stochastic dominance: QE(tau)>0 for all taus 0.81 0.81
Stochastic dominance: QE(tau)<0 for all taus 0.01 0.01

Quantile Effects -- Total
----------------------------------------------------------------------

Pointwise Pointwise Functional
Quantile Est. Std.Err 95% Conf.Interval 95% Conf.Interval

0.1 0.30110 0.05703 0.18933 0.41287 0.13655 0.46565
0.2 0.26782 0.06383 0.14271 0.39293 0.08363 0.45202
0.3 0.28750 0.05459 0.18051 0.39449 0.12998 0.44502
0.4 0.27768 0.05211 0.17556 0.37981 0.12733 0.42804
0.5 0.24992 0.05111 0.14975 0.35010 0.10244 0.39741
0.6 0.26156 0.04999 0.16358 0.35953 0.11731 0.40580
0.7 0.18675 0.04529 0.09800 0.27551 0.05608 0.31743
0.8 0.11017 0.04624 0.01954 0.20081 -0.02327 0.24361
0.9 0.06146 0.06287 -0.06176 0.18468 -0.11996 0.24287

Bootstrap inference on the counterfactual quantile process
----------------------------------------------------------------------

P-values
======================

NULL-Hypthoesis KS-statistic CMS-statistic
======================================================================
Correct specification of the parametric model 1 1
No effect: QE(tau)=0 for all taus 0 0
Constant effect: QE(tau)=QE(0.5) for all taus 0.06 0.13
Stochastic dominance: QE(tau)>0 for all taus 0.93 0.93
Stochastic dominance: QE(tau)<0 for all taus 0 0

Next, we reestimate the QE function on the larger set of quantiles {0.01, 0.02, ..., 0.99}, and plot a
uniform confidence band over the subset {0.10, 0.11, ..., 0.90}) constructed by weighted bootstrap with
100 replications. Figure 3 shows that the structure effect is heterogeneous across the quantile indexes
and explains most of the union wage gap below the third quartile. The composition effect is constant
across quantile indexes and explains most of the wage gap above the third quartile.

> taus <- c(1:99)/100
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> first <- sum(as.double(taus <= .10))
> last <- sum(as.double(taus <= .90))
> rang <- c(first:last)
> logitres <- counterfactual(lwage~tenure+ttl_exp+grade,
+ group = union, treatment=TRUE, quantiles=taus,
+ method="logit", nreg=100, weightedboot = TRUE,
+ printdeco=FALSE, decomposition = TRUE,
+ sepcore = TRUE,ncore=2)
cores used= 2
> duqf_SE <- (logitres$resSE)[,1]
> l.duqf_SE <- (logitres$resSE)[,3]
> u.duqf_SE <- (logitres$resSE)[,4]
> duqf_CE <- (logitres$resCE)[,1]
> l.duqf_CE <- (logitres$resCE)[,3]
> u.duqf_CE <- (logitres$resCE)[,4]
> duqf_TE <- (logitres$resTE)[,1]
> l.duqf_TE <- (logitres$resTE)[,3]
> u.duqf_TE <- (logitres$resTE)[,4]
> range_x <- min(c(min(l.duqf_SE[rang]), min(l.duqf_CE[rang]),
+ min(l.duqf_TE[rang])))
> range_y <- max(c(max(u.duqf_SE[rang]), max(u.duqf_CE[rang]),
+ max(u.duqf_TE[rang])))

> par(mfrow=c(1,3))
> plot(c(0,1), range(c(range_x, range_y)), xlim = c(0,1), type = "n",
+ xlab = expression(tau), ylab = "Difference in Wages", cex.lab=0.75,
+ main = "Total")
> polygon(c(taus[rang],rev(taus[rang])),
+ c(u.duqf_TE[rang], rev(l.duqf_TE[rang])), density = -100, border = F,
+ col = "grey70", lty = 1, lwd = 1)
> lines(taus[rang], duqf_TE[rang])
> abline(h = 0, lty = 2)
> plot(c(0,1), range(c(range_x, range_y)), xlim = c(0,1), type = "n",
+ xlab = expression(tau), ylab = "", cex.lab=0.75, main = "Structure")
> polygon(c(taus[rang],rev(taus[rang])),
+ c(u.duqf_SE[rang], rev(l.duqf_SE[rang])), density = -100, border = F,
+ col = "grey70", lty = 1, lwd = 1)
> lines(taus[rang], duqf_SE[rang])
> abline(h = 0, lty = 2)
> plot(c(0,1), range(c(range_x, range_y)), xlim = c(0,1), type = "n",
+ xlab = expression(tau), ylab = "", cex.lab=0.75, main = "Composition")
> polygon(c(taus[rang],rev(taus[rang])),
+ c(u.duqf_CE[rang], rev(l.duqf_CE[rang])), density = -100, border = F,
+ col = "grey70", lty = 1, lwd = 1)
> lines(taus[rang], duqf_CE[rang])
> abline(h = 0, lty = 2)

Finally, we repeat the point and interval estimation using the duration regression method with the
option method = "cox". Despite of relying on a more restrictive model for the conditional distribution,
the duration regression estimates in Figure 4 are similar to the logit regression estimates in Figure 3.

> coxres <- counterfactual(lwage~tenure+ttl_exp+grade,
+ group = union, treatment=TRUE, quantiles=taus,
+ method="cox", nreg=100, weightedboot = TRUE,
+ printdeco = FALSE, decomposition = TRUE, sepcore = TRUE,ncore=2)
cores used= 2
> duqf_SE <- (coxres$resSE)[,1]
> l.duqf_SE <- (coxres$resSE)[,3]
> u.duqf_SE <- (coxres$resSE)[,4]
> duqf_CE <- (coxres$resCE)[,1]
> l.duqf_CE <- (coxres$resCE)[,3]
> u.duqf_CE <- (coxres$resCE)[,4]
> duqf_TE <- (coxres$resTE)[,1]
> l.duqf_TE <- (coxres$resTE)[,3]
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Figure 3: Wage decomposition with respect to union: logit regression estimates

> u.duqf_TE <- (coxres$resTE)[,4]
> range_x = min(c(min(l.duqf_SE[rang]), min(l.duqf_CE[rang]),
+ min(l.duqf_TE[rang])))
> range_y = max(c(max(u.duqf_SE[rang]), max(u.duqf_CE[rang]),
+ max(u.duqf_TE[rang])))

> par(mfrow=c(1,3))
> plot(c(0,1), range(c(range_x, range_y)), xlim = c(0,1), type = "n",
+ xlab = expression(tau), ylab = "Difference in Wages", cex.lab=0.75,
+ main = "Total")
> polygon(c(taus[rang],rev(taus[rang])),
+ c(u.duqf_TE[rang], rev(l.duqf_TE[rang])), density = -100, border = F,
+ col = "grey70", lty = 1, lwd = 1)
> lines(taus[rang], duqf_TE[rang])
> abline(h = 0, lty = 2)
> plot(c(0,1), range(c(range_x, range_y)), xlim = c(0,1), type = "n",
+ xlab = expression(tau), ylab = " ", cex.lab=0.75, main = "Structure")
> polygon(c(taus[rang],rev(taus[rang])),
+ c(u.duqf_SE[rang], rev(l.duqf_SE[rang])), density = -100, border = F,
+ col = "grey70", lty = 1, lwd = 1)
> lines(taus[rang], duqf_SE[rang])
> abline(h = 0, lty = 2)
> plot(c(0,1), range(c(range_x, range_y)), xlim = c(0,1), type = "n",
+ xlab = expression(tau), ylab = "", cex.lab=0.75, main = "Composition")
> polygon(c(taus[rang],rev(taus[rang])),
+ c(u.duqf_CE[rang], rev(l.duqf_CE[rang])), density = -100, border = F,
+ col = "grey70", lty = 1, lwd = 1)
> lines(taus[rang], duqf_CE[rang])
> abline(h = 0, lty = 2)
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Retrieval and Analysis of Eurostat Open
Data with the eurostat Package
by Leo Lahti, Janne Huovari, Markus Kainu, and Przemysław Biecek

Abstract The increasing availability of open statistical data resources is providing novel opportunities
for research and citizen science. Efficient algorithmic tools are needed to realize the full potential of the
new information resources. We introduce the eurostat R package that provides a collection of custom
tools for the Eurostat open data service, including functions to query, download, manipulate, and
visualize these data sets in a smooth, automated and reproducible manner. The online documentation
provides detailed examples on the analysis of these spatio-temporal data collections. This work
provides substantial improvements over the previously available tools, and has been extensively
tested by an active user community. The eurostat R package contributes to the growing open source
ecosystem dedicated to reproducible research in computational social science and digital humanities.

Introduction

Eurostat, the statistical office of the European Union, provides a rich collection of data through its
open data service1, including thousands of data sets on European demography, economics, health,
infrastructure, traffic and other topics. The statistics are often available with fine geographical
resolution and include time series spanning over several years or decades.

Availability of algorithmic tools to access and analyse open data collections can greatly benefit re-
producible research (Gandrud, 2013; Boettiger et al., 2015), as complete analytical workflows spanning
from raw data to final publications can be made fully replicable and transparent. Dedicated software
packages help to simplify, standardize, and automate analysis workflows, greatly facilitating repro-
ducibility, code sharing, and efficient data analytics. The code for data retrieval need to be customized
to specific data sources to accommodate variations in raw data formats, access details, and typical
use cases so that the end users can avoid repetitive programming tasks and save time. A number of
packages for governmental and other sources have been designed to meet these demands, including
packages for the Food and Agricultural Organization (FAO) of the United Nations (FAOSTAT; Kao
et al. 2015), World Bank (WDI; Arel-Bundock 2013), national statistics authorities (pxweb; Magnusson
et al. 2014), Open Street Map (osmar; Eugster and Schlesinger 2012) and many other sources.

A dedicated R package for the Eurostat open data has been missing. The eurostat package fills
this gap. It expands the capabilities of our earlier statfi (Lahti et al., 2013a) and smarterpoland (Biecek,
2015) packages. Since its first CRAN release in 2014, the eurostat package has been developed by
several active contributors based on frequent feedback from the user community. We are now reporting
mature version that has been improved and tested by multiple users, and applied in several case
studies by us and others (Kenett and Shmueli, 2016). The Eurostat database has three services for
programmatic data access: a bulk download, json/unicode, and SDMX web service; we provide
targeted methods for the first two in the eurostat package; generic tools for the SDMX format are
available via the rsdmx package (Blondel, 2017). The bulk download provides single files, which is
convenient and fast for retrieving major parts of data. More light-weight json methods allow data
subsetting before download and may be preferred in more specific retrieval tasks but the query size
is limited to 50 categories. Finally, the package can be used to download custom administrative
boundaries by EuroGeographics© that allow seamless visualization of the data on the European map.

Specific versions of the Eurostat data can be accessed with the datamart (Weinert, 2014), quandl
(McTaggart et al., 2015), pdfetch (Reinhart, 2015), and rsdmx packages. Unlike these generic database
packages, eurostat is particularly tailored for the Eurostat open data service. It depends on further
R packages including classInt (Bivand, 2015), httr (Wickham, 2016), jsonlite (Ooms, 2014), readr
(Wickham and Francois, 2015), sp (Bivand et al., 2013), and stringi (Gagolewski and Tartanus, 2015).
The following CRAN task views are particularly relevant ReproducibleResearch, SocialSciences, Spatial,
SpatioTemporal, TimeSeries, WebTechnologies. The package is part of rOpenGov (Lahti et al., 2013b)
reproducible research initiative for computational social science and digital humanities.

In summary, the eurostat package provides custom tools for Eurostat open data. Key features
such as cache, date formatting, tidy data principles (Wickham, 2014), and tibble (Wickham et al., 2016)
data format support seamless integration with other tools for data manipulation and analysis. This
article provides an overview of the core functionality in the current CRAN release version (3.1.1). A
comprehensive documentation and source code are available via the package homepage in Github2.

1http://ec.europa.eu/eurostat/data/database
2http://ropengov.github.io/eurostat
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Search and download commands

To install and load the CRAN release version, just type the standard installation command in R.

install.packages("eurostat")
library("eurostat")

The database table of contents is available on-line3, or can be downloaded in R with get_eurostat_toc().
A more focused search is provided by the search_eurostat() function.

query <- search_eurostat("road accidents", type = "table")

This seeks data on road accidents. The type argument limits the search on a selected data set
type, one of three hierarchical levels including "table" , which resides in "dataset" , which is in turn
stored in a "folder" . Values in the code column of the search_eurostat() function output provide
data identifiers for subsequent download commands. Alternatively, these identifiers can be browsed
at the Eurostat open data service; check the codes in the Data Navigation Tree listed after each dataset
in parentheses. Let us look at the data identifier and title for the first entry of the query data.

query$code[[1]]
[1] "tsdtr420"

query$title[[1]]
[1] "People killed in road accidents"

Let us next retrieve the data set with this identifier.

dat <- get_eurostat(id = "tsdtr420", time_format = "num")

Here we used the numeric time format as it is more convient for annual time series than the default
date format. The transport statistics returned by this function call (Table 1) could be filtered before
download with the filters argument, where the list names and values refer to Eurostat variable and
observation codes, respectively. To retrieve transport statistics for specific countries, for instance, use
the get_eurostat function.

countries <- c("UK", "SK", "FR", "PL", "ES", "PT")
t1 <- get_eurostat("tsdtr420", filters = list(geo = countries))

unit sex geo time values

1 NR T AT 1999.00 1079.00
2 NR T BE 1999.00 1397.00
3 NR T CZ 1999.00 1455.00
4 NR T DE 1999.00 7772.00
5 NR T DK 1999.00 514.00
6 NR T EL 1999.00 2116.00

Table 1: First entries of the road accident data set retrieved with get_eurostat(id = "tsdtr420",
time_format = "num").

unit sex geo time values

1 Number Total Austria 1999.00 1079.00
2 Number Total Belgium 1999.00 1397.00
3 Number Total Czech Republic 1999.00 1455.00
4 Number Total Germany (until 1990 former territory of the FRG) 1999.00 7772.00
5 Number Total Denmark 1999.00 514.00
6 Number Total Greece 1999.00 2116.00

Table 2: The get_eurostat() output (Table 1) converted into human-readable labels with
label_eurostat().

A subsequent visualization reveals a decreasing trend of road accidents over time in Figure 1.

3http://ec.europa.eu/eurostat/data/database
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ggplot(t1, aes(x = time, y = values, color = geo, group = geo, shape = geo)) +
geom_point(size = 4) + geom_line() + theme_bw() +
ggtitle("Road accidents") + xlab("Year") + ylab("Victims (n)") +
theme(legend.position = "none") +
ggrepel::geom_label_repel(data = t1 %>% group_by(geo) %>% na.omit() %>%
filter(time %in% c(min(time), max(time))), aes(fill = geo, label = geo), color = "white")
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Figure 1: Timeline indicating the number of people killed in road accidents in various countries based
on Eurostat open data retrieved with the eurostat R package.

Utilities

Many entries in Table 1 are not readily interpretable, but a simple call label_eurostat(dat) can be
used to convert the original identifier codes into human-readable labels (Table 2) based on translations
in the Eurostat database. Labels are available in English, French and German languages.

The Eurostat database includes a variety of demographic and health indicators. We see, for
instance, that overweight varies remarkably across different age groups (Figure 2A). Sometimes the
data sets require more complicated pre-processing. Let’s consider, for instance, the distribution of
renewable energy sources in different European countries. In order to summarise such data one needs
to first aggregate a multitude of possible energy sources into a smaller number of coherent groups.
Then one can use standard R tools to process the data, chop country names, filter countries depending
on production levels, normalize the within country production. After a series of transformations (see
Appendix for the source code) we can finally plot the data to discover that countries vary a lot in terms
of renewable energy sources (Figure 2B). Three-dimensional data sets such as this can be conveniently
visualized as triangular maps by using the plotrix (Lemon, 2006) package.

The data sets are stored in cache by default to avoid repeated downloads of identical data and
to speed up the analysis. Storing an exact copy of the retrieved raw data on the hard disk will also
support reproducibility when the source database is constantly updated.

Geospatial information

Map visualizations

The indicators in the Eurostat open data service are typically available as annual time series grouped
by country, and sometimes at more refined temporal or geographic levels. Eurostat provides comple-
mentary geospatial data on the corresponding administrative statistical units to support visualizations
at the appropriate geographic resolution. The geospatial data sets are available as standard shapefiles4.
Let us look at disposable income of private households (data identifier tgs000265). This is provided at
the geographic NUTS2 regions, the intermediate territorial units in the Eurostat regional classifications,
roughly corresponding to provinces or states in each country6 (Figure 3). The map can be generated
with the following code chunk.

4http://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-
statistical-units

5http://ec.europa.eu/eurostat/en/web/products-datasets/-/TGS00026
6http://ec.europa.eu/eurostat/web/nuts/overview
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Figure 2: A The body-mass index (BMI) in different age groups in Poland (Eurostat table
hlth_ehis_de1). B Production of renewable energy in various countries in 2013 (Eurostat table
ten00081). See the Appendix for the source code.

# Load the required libraries
library(eurostat)
library(dplyr)
library(ggplot2)

# Download and manipulate tabular data
get_eurostat("tgs00026", time_format = "raw") %>%
# Subset to year 2005 and NUTS-3 level
dplyr::filter(time == 2005, nchar(as.character(geo)) == 4) %>%

# Classify the values the variable
dplyr::mutate(cat = cut_to_classes(values)) %>%

# Merge Eurostat data with geodata from Cisco
merge_eurostat_geodata(data = ., geocolumn = "geo", resolution = "60",

output_class = "df", all_regions = TRUE) %>%

# Plot the map
ggplot(data = ., aes(long, lat, group = group)) +

geom_polygon(aes(fill = cat), colour = alpha("white", 1/2), size = .2) +
scale_fill_manual(values = RColorBrewer::brewer.pal(n = 5, name = "Oranges")) +
labs(title = "Disposable household income") +
coord_map(project = "orthographic", xlim = c(-22, 34), ylim = c(35, 70)) +
theme_minimal() +
guides(fill = guide_legend(title = "EUR per Year",

title.position = "top", title.hjust = 0))

This demonstrates how the Eurostat statistics and geospatial data, retrieved with the eurostat
package, can be combined with other utilities, in this case the maptools (Bivand and Lewin-Koh, 2015),
rgdal (Bivand et al., 2015), rgeos (Bivand and Rundel, 2015), scales (Wickham, 2015a), and stringr
(Wickham, 2015b) R packages.

Standard country groupings

To facilitate the analysis and visualization of standard European country groups, the eurostat package
includes ready-made country code lists. The list of EFTA countries (Table 3), for instance, is retrieved
with the data command.

data(efta_countries)
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Figure 3: Disposable income of private households across NUTS2-level national regions in European
countries. The household income statistics provided by Eurostat and the administrative boundaries
by EuroGeographics© were obtained via the Eurostat open data service with the eurostat R package.

code name

1 IS Iceland
2 LI Liechtenstein
3 NO Norway
4 CH Switzerland

Table 3: The EFTA country listing from the eurostat R package.

Similar lists are available for Euro area (ea_countries), EU (eu_countries) and the EU candidate
countries (eu_candidate_countries). These auxiliary data sets facilitate smooth selection of specific
country groups for a closer analysis. The full name and a two-letter identifier are provided for each
country according to the Eurostat database. The country codes follow the ISO 3166-1 alpha-2 standard,
except that GB and GR are replaced by UK (United Kingdom) and EL (Greece) in the Eurostat database,
respectively. Linking these country codes with external data sets can be facilitated by conversions
between different country coding standards with the countrycode package (Arel-Bundock, 2014).

Discussion

By combining programmatic access to data with custom analysis and visualization tools it is possible
to facilitate a seamless automation of the complete analytical workflow from raw data to statistical
summaries and final publication. The package supports automated and transparent data retrieval
from institutional data repositories, featuring options such as search, subsetting and cache. Moreover,
it provides several custom functions to facilitate the Eurostat data analysis and visualization. These
tools can be used by researchers and statisticians in academia, government, and industry, and their
applicability has been demonstrated in recent, independent publications (Kenett and Shmueli, 2016).

The eurostat R package provides a convenient set of tools to access open data from Eurostat,
together with a comprehensive documentation and open source code via the package homepage. The
documentation includes simple examples for individual functions, a generic package tutorial, and
more advanced case studies on data processing and visualization. The package follows best practices
in open source software development, taking advantage of version control, automated unit tests,
continuous integration, and collaborative development (Perez-Riverol et al., 2016).

The source code can be freely used, modified and distributed under a modified BSD-2-clause
license7. We value feedback from the user community, and the package has already benefited greatly
from the user bug reports and feature requests, which can be systematically provided through the

7https://opensource.org/licenses/BSD-2-Clause
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Github issue tracker8; advanced users can also implement and contribute new features by making pull
requests. Indeed, these collaborative features have been actively used during the package development.
We are committed to active maintenance and development of the package, and hope that this will
encourage further feedback and contributions from the user community.
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Appendix

The full source code for this manuscript is available at the package homepage10. Source code for the
obesity example (Figure 2A) is as follows.

library(dplyr)
tmp1 <- get_eurostat("hlth_ehis_de1", time_format = "raw")
tmp1 %>%
dplyr::filter(isced97 == "TOTAL" ,

sex != "T", age != "TOTAL", geo == "PL") %>%
mutate(BMI = factor(bmi,

levels=c("LT18P5","18P5-25","25-30","GE30"),
labels=c("<18.5", "18.5-25", "25-30",">30"))) %>%

arrange(BMI) %>%

ggplot(aes(y = values, x = age, fill = BMI)) + geom_bar(stat = "identity") +
facet_wrap(~sex) + coord_flip() +
theme(legend.position = "top") +
ggtitle("Body mass index (BMI) by sex and age") +
xlab("% of population") + scale_fill_brewer(type = "div")

Source code for the renewable energy example (Figure 2B).

# All sources of renewable energy are to be grouped into three sets
dict <- c("Solid biofuels (excluding charcoal)" = "Biofuels",

"Biogasoline" = "Biofuels",
"Other liquid biofuels" = "Biofuels",
"Biodiesels" = "Biofuels",
"Biogas" = "Biofuels",
"Hydro power" = "Hydro power",
"Tide, Wave and Ocean" = "Hydro power",
"Solar thermal" = "Wind, solar, waste and Other",
"Geothermal Energy" = "Wind, solar, waste and Other",
"Solar photovoltaic" = "Wind, solar, waste and Other",
"Municipal waste (renewable)" = "Wind, solar, waste and Other",
"Wind power" = "Wind, solar, waste and Other",
"Bio jet kerosene" = "Wind, solar, waste and Other")

# Some cleaning of the data is required
energy3 <- get_eurostat("ten00081") %>%
label_eurostat(dat) %>%
filter(time == "2013-01-01",

product != "Renewable energies") %>%
mutate(nproduct = dict[as.character(product)], # just three categories

geo = gsub(geo, pattern=" \\(.*", replacement="")) %>%
select(nproduct, geo, values) %>%
group_by(nproduct, geo) %>%
summarise(svalue = sum(values)) %>%
group_by(geo) %>%
mutate(tvalue = sum(svalue), svalue = svalue/sum(svalue)) %>%
filter(tvalue > 1000) %>%
spread(nproduct, svalue)

# Triangle plot
positions <- plotrix::triax.plot(as.matrix(energy3[, c(3,5,4)]),
show.grid = TRUE, label.points = FALSE, point.labels = energy3$geo,
col.axis = "gray50", col.grid = "gray90",
pch = 19, cex.axis = 1.1, cex.ticks = 0.7, col = "grey50")

ind <- which(energy3$geo %in% c("Norway", "Iceland","Denmark","Estonia", "Turkey", "Italy", "Finland"))
df <- data.frame(positions$xypos, geo = energy3$geo)
points(df$x[ind], df$y[ind], cex = 2, col = "red", pch = 19)
text(df$x[ind], df$y[ind], df$geo[ind], adj = c(0.5,-1), cex = 1.5)

10http://ropengov.github.io/eurostat
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PGEE: An R Package for Analysis of
Longitudinal Data with
High-Dimensional Covariates
by Gul Inan and Lan Wang

Abstract We introduce an R package PGEE that implements the penalized generalized estimating
equations (GEE) procedure proposed by Wang et al. (2012) to analyze longitudinal data with a large
number of covariates. The PGEE package includes three main functions: CVfit, PGEE, and MGEE. The
CVfit function computes the cross-validated tuning parameter for penalized generalized estimating
equations. The function PGEE performs simultaneous estimation and variable selection for longitudinal
data with high-dimensional covariates; whereas the function MGEE fits unpenalized GEE to the data for
comparison. The R package PGEE is illustrated using a yeast cell-cycle gene expression data set.

Introduction

Longitudinal data arises from repeated measurements on the same subjects over time. A popular
approach to analyzing longitudinal data is generalized estimating equations (GEE), which were
proposed by Liang and Zeger (1986) and Zeger and Liang (1986). The GEE approach fits a marginal
regression model to the longitudinal data. Instead of specifying the full joint likelihood, it only
requires to specify the first two marginal moments. This is particularly attractive when the responses
are discrete as specifying a joint distribution for multivariate discrete distribution is known to be
challenging. Furthermore, although the GEE procedure relies on a working correlation model, it
produces a consistent and asymptotically normal estimator even if the working correlation structure is
misspecified. If the specified working correlation structure is close to the true correlation structure,
further efficiency gain can be expected. Some commonly used working correlation structures include
the exchangeable (Exch), first-order autoregressive (Ar(1)), stationary-1-dependent (MV_1) and so on.
The generalized estimating equations are now implemented in two nice R packages: the gee package
(Carey, 2015) and the geepack package (Halekoh et al., 2006).

With the advent of technology in data-collection, longitudinal data with a large number of co-
variates, in other words, high-dimensional longitudinal data, have now been commonly observed in
fields such as health and genomic studies, economics and behavioral sciences. Including redundant
covariates in model results in loss of accuracy in both estimation and inference. In the modern “large
n, diverging p” framework, Wang (2011) studied the consistency and asymptotic normality of GEE
regression estimators and verified the validity of the sandwich variance formula of GEE estimators
and the large-sample Wald test under regularity conditions. Wang et al. (2012) further proposed
penalized GEE for simultaneous variable selection and estimation for the cases where the number
of covariates in the model is large. Similarly as GEE, the penalized GEE procedure only requires to
specify the first two marginal moments and a working correlation matrix and assumes that missing
data is valid only under missing completely at random, which means that missingness is independent
of both observed and unobserved data. It leads to consistent variable selection performance even if
the working correlation structure is misspecified, that is, with probably approaching one, the true
model is selected if it is one of the candidate models. Recently, there has been growing interest in
high-dimensional longitudinal data analysis, see for example Lian et al. (2014) and Wang et al. (2014).

In this paper, we present the R package PGEE (Inan et al., 2017) which implements the penalized
generalized estimating equations procedure in Wang et al. (2012) to analyze the longitudinal data
with high-dimensional covariates. The package PGEE is available on CRAN at https://cran.r-
project.org/web/packages/PGEE. The rest of the paper is organized as follows. Section T.2 provides
a brief overview for both GEE and PGEE. Section T.3 describes the main features of the functions in
the PGEE package. Section T.4 illustrates the use of PGEE via a yeast cell-cycle gene expression data
set. Section T.5 concludes the paper.

An overview for penalized generalized estimating equations

Data structure

Consider a longitudinal study where for the ith (i = 1, 2, . . . , N) subject at time t (t = 1, 2, . . . , ni)
we observe a response variable Yit and a p× 1 vector of covariates Xit. Let Yi =

(
Yi1, . . . , Yini

)T and
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Xi =
(
Xi1, . . . , . . . , Xini

)T denote ni × 1 vector of responses and ni × p matrix of covariates for the ith
subject, respectively. The observations obtained from the same subject are correlated whereas those
obtained from different subjects are assumed to be independent.

Background on generalized estimating equations

Liang and Zeger (1986) assume that the first two marginal moments of Yij are µit(β) := IE(Yit|Xit) =

µ(θit) and σ2
it(β) := Var(Yit|Xit) = µ̇(θit), where θit = XT

it β, and β = (β1, . . . , βp)T is p× 1 vector of
unknown regression coefficients of interest, i = 1, 2, . . . , N, t = 1, 2, . . . , ni. These moment assumptions
would follow when the marginal response variable has a canonical exponential family distribution
with scaling parameter one.

Let Vi = Var(Yi|Xit) be the ni × ni covariance matrix of the ith subject, i = 1, . . . , N. In practice,
Liang and Zeger (1986) suggest to estimate Vi via a working correlation structure. Specifically, let

Vi = A1/2
i Rni (α)A

1/2
i , (1)

where Ai is an ni × ni diagonal matrix with the marginal variance of responses on the diagonals,
and Rni (α) represents an ni × ni working correlation matrix indexed by a vector of parameters α.
From now on, we will use R(α) rather than Rni (α) for simplicity. The popular choices for R(α)
may be independence (Indep), exchangeable (Exch), first-order autoregressive (Ar(1)), stationary-
m-dependent (MV_m), and non-stationary-m-dependent (NMV_m) (m denotes the lag order), and
unstructured (UN) working correlation structure. A good review of the commonly used working
correlation matrices is given in Horton and Lipsitz (1999).

Let Ai(β) = diag(σ2
i1(β), . . . , σ2

ni
(β)) and µi(β) = (µi1(β), . . . , µni (β))T . Liang and Zeger (1986)

proposed to estimate the regression parameters β by solving the following set of estimating equations

S(β) =
N

∑
i=1

XT
i A1/2

i R̂−1(α)A−1/2
i (Yi − µi) = 0, (2)

where R̂−1(α) denotes the estimated working correlation matrix. The estimating equations can be
solved using a modified Fisher scoring algorithm. Within the iterative Fisher scoring algorithm, the
parameter α in R(α) can be estimated by residual-based moment method, see Hardin and Hilbe (2003).
Liang and Zeger (1986) showed that the resulted estimator is consistent even if R is misspecified.

Penalized generalized estimating equations for longitudinal data with high-dimensional
covariates

With high-dimensional covariates, it is often reasonable to assume that many of these covariates are
not relevant for modeling the marginal mean of the response variable, in other words, the regression
coefficients vector β can be assumed to be sparse in the sense that most of its components are
exactly zero. Wang et al. (2012) introduced penalized generalized estimating equations (PGEE) for
simultaneous estimation and variable selection in this setting. More specifically, they propose to
estimate β by β̂, which solves the following set of penalized estimating equations

U(β) = S(β)− qλ(|β|) ◦ sign(β) (3)

where qλ(|β|) = (qλ(|β1|), . . . , qλ(|βp|))T , sign(β) = (sign(β1), . . . , sign(βp))T , and qλ(|β|) ◦
sign(β) denotes the Hadamard product (element-wise product) of these two vectors. The penalty
function qλ(|β j|), the jth component of qλ(|β|), takes a zero value for a large value of |β j| and takes a
large value for a small value of |β j|. Consequently, the generalized estimating equation S(β j), the jth
component of S(β), is not penalized if |β j| is large in magnitude, whereas S(β j) is penalized if |β j| is
smaller than a cut-off value (greater than zero). Hence, the role of the penalty function qλ(|β j|) is to
shrink the estimates of small coefficients toward zero. The coefficients whose estimates are shrunken
to zero are excluded from the final model. The cut-off value is chosen as 10−3 as in Cho and Qu (2013),
Wang et al. (2012), and Wang et al. (2007). The penalty has a tuning parameter λ that controls the
model complexity. Wang et al. (2012) studied the SCAD penalty function (Fan and Li, 2001) which is
defined on [0,+∞] as

qλ(t) = λ
{

I(t < λ) +
(aλ− t)+
(a− 1)λ

I(t ≥ λ)
}

, (4)
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where λ ≥ 0, a > 2 and b+ = bI(b > 0) for a real number b. Following the recommendation
of Fan and Li (2001), we use a = 3.7 and find it usually works well. The nonconvex SCAD penalty
function alleviates the main drawback of L1 penalty function in that it avoids over-penalizing large
coefficients and hence leads to consistent variable selection under more relaxed conditions. Under
regularity conditions, the estimated coefficients for redundant covariates are shrunken to exactly zero.

Motivated by Johnson et al. (2008), Wang et al. (2012) proposed to solve the penalized estimated
equations in Equation (3) by combining the minorization-maximization (MM) algorithm with a
Newton-Raphson (NR) algorithm. At the jth iteration,

β̂
j
= β̂

j−1
+
[
H(β̂

j−1
) + NE(β̂

j−1
)
]−1[S(β̂

j−1
)− NE(β̂

j−1
)β̂

j−1]
, (5)

where

H(β̂
j−1

) =
N

∑
i=1

XT
i A1/2

i (β̂
j−1

)R̂−1(α)A1/2
i (β̂

j−1
)Xi

E(β̂
j−1

) = diag
{ qλ(|β̂1|+)

ε + |β̂1|
, . . . ,

qλ(|β̂p|+)

ε + |β̂p|

}
,

(6)

where ε is a small value (e.g., 10−6). Wang et al. (2012) derived the asymptotic theory of PGEE
in a high-dimensional framework where the number of covariates p increases as N increases, and p
can reach the same order as N. An important feature of PGEE is that even if the working correlation
structure is misspecified, the consistency of model selection holds, that is, with probability approaching
one, it correctly identifies the zero coefficients to be zero and the nonzero coefficients to be nonzero.
They also suggested a sandwich formula to estimate the asymptotic covariance matrix of the penalized
GEE estimator as follows:

Cov(β̂) ≈
[
H(β̂) + NE(β̂)

]−1M(β̂)
[
H(β̂) + NE(β̂)

]−1, (7)

where

M(β̂) =
N

∑
i=1

XT
i A1/2

i (β̂)R̂−1εiε
T
i R̂−1A1/2

i (β̂)Xi, (8)

where εi = A−1/2
i (β̂)(Yi − µi).

The tuning parameter λ in Equation (4) can be selected using K-fold cross-validation, where K is
a positive integer. The data is divided into non-overlapping K sub-samples of equal sizes. The kth
sub-sample being left out as the testing data set, and the remaining data are used as the training data
set, k = 1, . . . , K. We use the set N−k to denote the indice set of the subjects in the training data set and
use |N−k| to denote the cardinality of N−k. We fit the PGEE under working independence assumption
using the training data and then evaluate the prediction error using the test data by PE−k(λ), which is
defined as

PE−k(λ) =
1
|N−k| ∑

i∈N−k

1
ni

ni

∑
t=1

(
Yit − g(XT

it β̂)
)2,

We repeat the above computation for each of the K subsamples, and the overall cross-validated
prediction error is given by

CV(λ) =
1
K

K

∑
k=1

PE−k(λ) (9)

Given a set of λ values over a grid, we choose the value of λ that yields the smallest CV(λ).

PGEE estimation algorithm

The algorithm for solving penalized generalized estimating equations is summarized as follows:

1. Determine a reasonable grid of values for λ.
2. Given a value of λ:

• Assign an initial value for β.
• Compute U(β̃), H(β̃), and E(β̃) for current value of β̃.
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• Update the current estimate of β through formula in Equation (5).

• Stop the iteration sequence if a convergence criterion is satisfied such as when the L1 norm
of the difference of estimated β between iterations is below a threshold (e.g., 10−3) and
denote the estimated value at convergence as β̂.

• Compute the cross-validation value of λ via Equation (9).

3. Repeat step 2 for each value of λ over the grid and find the value of λ that gives the smallest
cross-validation prediction error.

4. Find the estimated parameter β̂ corresponding to the selected λ, and compute the sandwich
covariance matrix by Equation (7).

The PGEE package

The R package PGEE consists of three core functions: CVfit, PGEE, and MGEE, respectively. The main
function PGEE fits PGEEs to the longitudinal data with high-dimensional covariates. Prior to model
fitting with PGEE, the cross-validated tuning parameter should be computed via the function CVfit.
The package also includes the function MGEE which fits the unpenalized GEEs to the data. The PGEE and
MGEE functions are written by the authors. The R package PGEE depends on the R packages MASS
(Ripley, 2015) and mvtnorm (Genz et al., 2015) only.

In this section, we introduce the input arguments of the functions CVfit and PGEE, whereas the
function MGEE shares the same arguments with the function PGEE except the arguments lambda, pindex,
and eps.

The usage and input arguments of CVfit function are summarized as follows:

CVfit(formula, id, data, family, scale.fix = TRUE, scale.value = 1, fold, lambda.vec,
pindex, eps, maxiter, tol)

The function CVfit applies the step 3 in the estimation algorithm in Section T.2.4 via Equation
(9). It uses the function PGEE inside such that both functions share common input arguments. The
input argument formula is a formula expression in the form of response predictors as in lm and glm
functions. The argument id is a vector for identifying subjects/clusters and the argument data is a
data frame which stores the response and covariates in formula with id variable as in gee function
in R package gee. Please note that the function PGEE requires the covariates to be numeric variables
and does not work with factor covariates. The argument family is a list of functions and expressions
for defining link and variance functions. While families supported in the R package PGEE are
binomial, gaussian, gamma, and poisson, link functions supported are identity, log, logit, inverse,
probit, and cloglog. The argument scale.fix is a logical variable. The default value is TRUE. On the
other hand, if scale.fix = TRUE, scale.value assigns a numeric value to which the scale parameter
should be fixed at. Otherwise, the default value is 1. The arguments fold, pindex, and eps are
the main buildings of the function CVfit for cross-validation. The argument fold is the number of
folds used in cross-validation. The argument lambda.vec is a vector of tuning parameters used in
cross-validation. The argument pindex is an index vector showing the parameters which are not
subject to penalization. The default value is NULL. However, in case of a model with intercept, the
intercept parameter should be never penalized. The argument eps is a numerical value for the ε used
in Equation (6). The default value is 10−6. The argument maxiter is the number of iterations that is
used in the estimation algorithm. The default value is 30. The argument tol is the tolerance level that
is used in the estimation algorithm to evaluate algorithm convergence. The default value is 10−3. The
function CVfit returns an object class of CVfit. Applying the function print to the object returned by
function CVfit provides detailed information related to cross-validation and gives the value of λ that
minimizes the cross-validated value of prediction error.

PGEEs (Wang et al., 2012) and, in turn, the function CVfit in R package PGEE accommodate
the SCAD penalty. Fan and Li (2001) demonstrated that the SCAD penalty function is a popular
nonconvex penalty function that satisfies three desirable properties of variable selection (e.g., sparsity,
unbiasedness, and continuity) simultaneously. Recently, a number of R packages have been developed
for estimation and variable selection problems in linear regression models, logistic regression models,
quantile regression models, and Cox proportional hazards models for cross-sectional data with high-
dimensional covariates; see the R package ncvreg (Breheny and Huang, 2011) for linear and logistic
regression models with SCAD and MCP penalization functions, the R package penalized (Goeman,
2010) for generalized linear regression models and Cox proportional hazards models with L1 and
L2 penalty functions, the R package glmnet (Friedman et al., 2010) for generalized linear regression
models and Cox proportional hazards models with LASSO and elastic-net penalty functions, and the R
package rqPen (Sherwood and Maidman, 2016) for quantile regression penalized quantile regression
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with LASSO, SCAD, and MCP functions. However, these packages do not apply to the clustered data
setting which we consider in this paper.

The usage and input arguments of PGEE function are summarized as follows:

PGEE(formula, id, data, na.action = NULL, family = gaussian(link = "identity"),
corstr = "independence", Mv = NULL, beta_int = NULL, R = NULL, scale.fix = TRUE,
scale.value = 1, lambda, pindex = NULL, eps = 10^-6, maxiter = 30, tol = 10^-3,
silent = TRUE)

The input arguments formula, data, id, and family are the same as those in the CVfit function.
Here, the default value for family is gaussian. The argument na.action is a function to remove
missing values from the data, where only na.omit is allowed. The argument corstr is a character
string, which specifies the type of correlation structure within the repeated measurements of a subject.
The correlation structures supported in the R package PGEE are "AR-1","exchangeable", "fixed",
"independence", "stat_M_dep", "non_stat_M_dep", and "unstructured". The default corstr type is
"independence". If either "stat_M_dep" or "non_stat_M_dep" is specified in corstr, then the argu-
ment Mv assigns a numeric value for Mv, which is one minus less than the largest number of repeated
measurements of a subject has in the data. Otherwise, the default value is NULL. When the longitudinal
data is unbalanced, the use of "non_stat_M_dep" and "unstructured" is not allowed in the argument
corstr. If corstr = "fixed" is specified, then the argument R is a user specified square correlation
matrix of dimension maximum of the number of repeated measurements of a subject has in the data.
Otherwise, the default value is NULL. The argument beta_int is a user specified vector of initial values
for regression parameters including the intercept. The default value is NULL which gets initial values
through fitting a glm to the whole longitudinal data. The argument lambda is a numerical value
returned by CVfit function. The input arguments scale.fix, scale.value, pindex, eps, maxiter, and
tol are the same as those in the CVfit function. The argument silent is a logical variable; if false, the
regression parameter estimates at each iteration are printed. The default value is TRUE.

The function PGEE returns an object class of PGEE. Applying the functions print and summary to
an object returned by function PGEE provides detailed information related to the model fitting and
summarizes the results as illustrated in the next section.

The function MGEE closely follows the syntax of the function gee in the R package gee except that
the argument subset for data sub-setting and the argument contrasts for coding factor variables in
terms of dummy variables are not used in the function MGEE. Furthermore, while any lag order can
be assumed in the argument corstr = "AR-M" of the function gee, only first-order lag is allowed in
the function MGEE (e.g., corstr = "AR-1"). On the other hand, there is much discrepancy between
the arguments of the function MGEE and the function geeglm in the R package geepack since the
latter inherits its arguments mostly from the function glm. As the result, arguments in geepack such
as weights, subset, etastart, mustart, offset, and waves are not available in our function MGEE.
Its corstr menu consists of "AR-1","exchangeable", "fixed", "independence", and "unstructured"
structures, which is less comprehensive compared to the corstr menu of the function MGEE. Lastly, in
addition to the sandwich variance estimator, the function geeglm offers jackknife variance estimator
for data sets with small number of clusters via the argument std.err.

Example

In this section, we demonstrate the use of the R package PGEE using a yeast cell-cycle gene expression
data set collected in the CDC15 experiment of Spellman et al. (1998). The experiment measured
genome-wide mRNA levels of 6178 yeast open reading frames (ORFs) (translates DNA sequences
into its corresponding amino acid sequences which will appear in the final protein). This experiment
covered two cell-cycle periods, where measurements were taken at 7-minute intervals over a 119-
minutes period yielding a total of 18 time points.

As discussed in Wang et al. (2012) and Wang et al. (2007), the cell-cycle process is a regulated life
process where the cell grows, replicates its DNA and prepares itself for cell-division. This process is
generally divided into M/G1-G1-S-G2-M stages, where M refers to “mitosis”, G1 refers “GAP 1”, S
refers to DNA “synthesis”, and G2 refers to “GAP 2”, respectively. Spellman et al. (1998) identified
a total of 800 genes that showed periodic variation during the cell-cycle process. However, to better
understand the phenomenon underlying cell-cycle process, it is important to identify transcription
factors (TFs) that regulate the gene expression levels of cell cycle-regulated genes. Specifically, TFs are
proteins that control gene regulation by determining the rate of transcription of genetic information
from DNA to mRNA.

As Wang et al. (2012) and Wang et al. (2007), we used a subset of 297 cell-cycled-regularized genes
and the binding probabilities of a total of 96 TFs obtained from a mixture model approach of Wang
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et al. (2007) based on the ChIP data of Lee et al. (2002). We applied PGEE to identify the TFs that are
significantly associated with gene expression level at M/G1, G1, S, G2, and M stages (each stage has
different number of time points from the cycle). We fitted the following PGEE to each stage with three
different working correlation matrices (independence, exchangeable, and Ar(1)):

Yit = γ0 + γ1timeit +
96

∑
p=1

βpxip, (10)

where timeit is the time variable and xip’s are standardized transcription factor values (p =
1, 2, . . . , 96). When fitting PGEE, only βp’s were subject to penalization. Table 1 summarizes the
number of TFs which are identified as statistically significant for each stage under three different
working correlation structures.

Correlation M/G1 G1 S G2 M

Independence 16 12 14 8 9
Exchangeable 15 13 12 8 7
Ar(1) 15 13 13 8 8

Table 1: Number of TFs selected at each stage in the yeast cell-cycle process with PGEE

For illustration, we used the yeast data from “G1” stage. Specifically, like the R package gee,
the package PGEE requires the response and covariate columns to be ordered by id column and
within id column according to time column. In our example, the yeast data was saved under the
name of yeastG1 object. The first column was id column, which identifies the genes. Then, while the
continuous responses were placed under the column y, the time variable and the standardized values
of 96 TFs were placed subsequently. Due to space limitation, we illustrated a portion of the yeastG1
data as follows:

> # load data
> data(yeastG1)
> data = yeastG1
> # get the column names
> colnames(data)[1:9]
[1] "id" "y" "time" "ABF1" "ACE2" "ADR1" "ARG80" "ARG81" "ARO80"
> # see some portion of yeast G1 data
> head(data,5)[1:9]
id y time ABF1 ACE2 ADR1 ARG80 ARG81 ARO80

1 1 0.88 3 -0.09702788 8.3839614 -0.1435702 -0.1482691 -0.09690053 -0.1073776
2 1 0.32 4 -0.09702788 8.3839614 -0.1435702 -0.1482691 -0.09690053 -0.1073776
3 1 1.09 12 -0.09702788 8.3839614 -0.1435702 -0.1482691 -0.09690053 -0.1073776
4 1 0.73 13 -0.09702788 8.3839614 -0.1435702 -0.1482691 -0.09690053 -0.1073776
5 2 0.66 3 -0.34618104 -0.1418099 -0.1397801 -0.1476834 -0.08486203 -0.1073536

Prior to model fitting with the function PGEE, we needed to compute the cross-validated value of
tuning paremeter over a grid via the function CVfit. This process requires a trial-error period, where
one can start with a wide grid interval and then narrow it down. As described in Section T.3, we
determined the main input arguments of the function CVfit as follows:

> library(PGEE)
> # define the input arguments
> formula <- "y ~.-id"
> family <- gaussian(link = "identity")
> lambda.vec <- seq(0.01,0.2,0.01)
> # find the optimum lambda
> cv <- CVfit(formula = formula, id = id, data = data, family = family, scale.fix = TRUE,
+ scale.value = 1, fold = 4, lambda.vec = lambda.vec, pindex = c(1,2), eps = 10^-6,
+ maxiter = 30, tol = 10^-6)
> # print the results
> print(cv)
Call:
CVfit(formula = formula, id = id, data = data, family = family,

scale.fix = TRUE, scale.value = 1, fold = 4, lambda.vec = lambda.vec,
pindex = c(1, 2), eps = 10^-6, maxiter = 30, tol = 10^-6)
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4-fold CV results:
lambda Cv

[1,] 0.01 720.6857
[2,] 0.02 482.1046
[3,] 0.03 382.6932
[4,] 0.04 358.1970
[5,] 0.05 344.1034
[6,] 0.06 338.4713
[7,] 0.07 335.7137
[8,] 0.08 333.5432
[9,] 0.09 330.7405
[10,] 0.10 327.8395
[11,] 0.11 326.3243
[12,] 0.12 325.3068
[13,] 0.13 324.6835
[14,] 0.14 324.5388
[15,] 0.15 324.8667
[16,] 0.16 325.7849
[17,] 0.17 327.1245
[18,] 0.18 328.4365
[19,] 0.19 329.5468
[20,] 0.20 330.6265

Optimal tuning parameter:
Best lambda

0.14
> # see the returned values by CVfit
> names(cv)
[1] "fold" "lam.vect" "cv.vect" "lam.opt" "cv.min" "call"
> # get the optimum lambda
> cv$lam.opt
[1] 0.14

After selecting the tuning parameter λ via the function CVfit, we apply the PGEE function with the
working correlation matrix type corstr = "independence" as follows:

> # fit the PGEE model
> myfit1 <- PGEE(formula = formula, id = id, data = data, na.action = NULL,
+ family = family, corstr = "independence", Mv = NULL,
+ beta_int = c(rep(0,dim(data)[2]-1)), R = NULL, scale.fix = TRUE,
+ scale.value = 1, lambda = cv$lam.opt, pindex = c(1,2), eps = 10^-6,
+ maxiter = 30, tol = 10^-6, silent = TRUE)

For comparison, we also fit the same model with corstr = "exchangeable" and corstr =
"AR-1" (see Table 1). Here, we use 0 initial values for the regression coefficients for γ0, γ1, and βp’s
(p = 1, 2, . . . , 96) by assigning 0’s for beta_int. Alternatively, the initial estimates could be obtained
via fitting a glm while setting beta_int = NULL. We specify the vector of index for unpenalized
parameters as pindex = c(1,2) since the first two regression coefficients γ0 and γ1 in Equation (10)
are not subject to penalization. Furthermore, the returned values of myfit1 object (in a similar way
summary(myfit1) object) can be found out by the names function:

> # get the values returned by myfit object
> names(myfit1)
[1] "title" "version" "model"
[4] "call" "terms" "nobs"
[7] "iterations" "coefficients" "nas"
[10] "linear.predictors" "fitted.values" "residuals"
[13] "family" "y" "id"
[16] "max.id" "working.correlation" "scale"
[19] "epsilon" "lambda.value" "robust.variance"
[22] "naive.variance" "xnames" "error"

The returned objects by PGEE function are in similar format as those returned by gee function in R
package. For example, while we could obtain whole model fitting results by summary(myfit1) object,
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we could also obtain the summary of the model fitting results, i.e., estimate of regression coefficients,
their corresponding naive and robust standard errors as well as z-values through coefficients
method for summary(myfit1) object as follows:

> # see a portion of the results returned by coef(summary(myfit1))
> head(coef(summary(myfit1)),7)

Estimate Naive S.E. Naive z Robust S.E. Robust z
(Intercept) 9.835775e-02 0.0603431824 1.629972904 4.334557e-02 2.2691533
time 9.774627e-03 0.0065644728 1.489019375 3.274155e-03 2.9853891
ABF1 -4.032513e-03 0.0095653833 -0.421573608 2.054339e-03 -1.9629245
ACE2 1.824265e-06 0.0002669801 0.006832963 1.634333e-06 1.1162135
ADR1 1.911308e-07 0.0001733864 0.001102340 7.611678e-07 0.2511020
ARG80 2.017436e-07 0.0001741572 0.001158399 8.684975e-07 0.2322903
ARG81 2.374483e-05 0.0007900111 0.030056320 2.296590e-05 1.0339165

Any regression estimate less than 10−3 in magnitude can be considered as equal to 0 (and thus not
selected) in PGEE. In this sense, we obtained the variables whose regression estimates greater than
10−3 and their summary statistics as follows:

> # see the variables which have non-zero coefficients
> index1 <- which(abs(coef(summary(myfit1))[,"Estimate"]) > 10^-3)
> names(abs(coef(summary(myfit1))[index1,"Estimate"]))
[1] "(Intercept)" "time" "ABF1" "FKH1" "FKH2" "GAT3"
[7] "GCR2" "MBP1" "MSN4" "NDD1" "PHD1" "RGM1"
[13] "RLM1" "SMP1" "SRD1" "STB1" "SWI4" "SWI6"

> # see the PGEE summary statistics of these non-zero variables
> coef(summary(myfit1))[index1,]

Estimate Naive S.E. Naive z Robust S.E. Robust z
(Intercept) 0.098357752 0.060343182 1.6299729 0.043345573 2.269153
time 0.009774627 0.006564473 1.4890194 0.003274155 2.985389
ABF1 -0.004032513 0.009565383 -0.4215736 0.002054339 -1.962925
FKH1 -0.009152898 0.013746477 -0.6658359 0.004173178 -2.193268
FKH2 -0.091503036 0.029629441 -3.0882471 0.017178993 -5.326449
GAT3 0.009780852 0.014721289 0.6644019 0.002192983 4.460067
GCR2 -0.005837966 0.011396288 -0.5122690 0.003227041 -1.809077
MBP1 0.102623543 0.028474614 3.6040363 0.017389748 5.901382
MSN4 0.011652400 0.015301265 0.7615318 0.004533629 2.570215
NDD1 -0.068098866 0.027962789 -2.4353389 0.017078278 -3.987455
PHD1 0.018224333 0.017586392 1.0362747 0.006676215 2.729740
RGM1 0.031474714 0.022152842 1.4207980 0.006025010 5.224010
RLM1 0.004245315 0.009823147 0.4321746 0.003155203 1.345497
SMP1 0.018181353 0.017691495 1.0276889 0.007614400 2.387759
SRD1 -0.009422532 0.013882871 -0.6787164 0.005117179 -1.841353
STB1 0.038198667 0.022075228 1.7303860 0.017485954 2.184534
SWI4 0.007370389 0.012622711 0.5838990 0.004184668 1.761284
SWI6 0.033957904 0.022673644 1.4976818 0.013225660 2.567577

For comparison, we fitted the unpenalized GEEs via MGEE function under the same settings defined
above as follows:

> # fit the GEE model
> myfit2 <- MGEE(formula = formula, id = id, data = data, na.action = NULL,
+ family = family, corstr = "independence", Mv = NULL,
+ beta_int = c(rep(0,dim(data)[2]-1)), R = NULL, scale.fix = TRUE,
+ scale.value = 1, maxiter = 30, tol = 10^-6, silent = TRUE)

Finally, we obtain the TFs which were significantly associated with the gene expression levels at
G1 stage via PGEE and GEE analyses, respectively.

> # see the significantly associated TFs in PGEE analysis
> names(which(abs(coef(summary(myfit1))[index1,"Robust z"]) > 1.96))
[1] "(Intercept)" "time" "ABF1" "FKH1" "FKH2" "GAT3"
[7] "MBP1" "MSN4" "NDD1" "PHD1" "RGM1" "SMP1"
[13] "STB1" "SWI6"
> # see the significantly associated TFs in GEE analysis
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> names(which(abs(coef(summary(myfit2))[,"Robust z"]) > 1.96))
[1] "(Intercept)" "time" "ABF1" "ARG81" "ASH1" "CAD1"
[7] "GAT3" "GCN4" "GCR1" "GRF10.Pho2." "MBP1" "MET31"
[13] "MET4" "MTH1" "NDD1" "PDR1" "ROX1" "STB1"
[19] "STP1" "YAP5" "ZAP1"

When the results of PGEE and GEE analysis are compared, it is observed that while TFs such that
FKH1, FKH2, MSN4, PHD1, RGM1, and SMP1 are determined as significantly associated by PGEE
analysis, these TFs are not detected by GEE analysis. The direct use of classical unpenalized GEE in
high-dimensional longitudinal data analysis may lead to misleading results as the efficiency of PGEE
over GEE has been showed in the simulation studies presented in Wang et al. (2012).

We repeat the steps above for each M/G1, G1, S, G2, and M stages under three different working
correlation matrices (independence, exchangeable, and Ar(1)) and identify the number of TFs selected
at each stage where the results are presented in Table 1. The results in Table 1 suggest that PGEE is
robust to working correlation matrix specification and the selected TFs do not change significantly
across working correlation matrix types within a stage. Furthermore, the analysis also reveals that
different TFs may play different roles on gene expression levels in each cell-cycle process and there
may be a small overlap in the selected TFs at different stages (e.g., only FKH1, FKH2, and SMP1 are
related to all stages of the yeast cell-cycle process).

Conclusion

In this paper, we present the R package PGEE which implements the PGEEs approach in Wang et al.
(2012). The PGEE procedure performs simultaneous estimation and variable selection for longitudinal
data analysis with high-dimensional covariates. We believe that this package is useful to practitioners
in diverse fields where high-dimensional longitudinal data commonly arises such as genetics and
large-scale health studies.
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BayesBinMix: an R Package for Model
Based Clustering of Multivariate Binary
Data
by Panagiotis Papastamoulis and Magnus Rattray

Abstract The BayesBinMix package offers a Bayesian framework for clustering binary data with or
without missing values by fitting mixtures of multivariate Bernoulli distributions with an unknown
number of components. It allows the joint estimation of the number of clusters and model parameters
using Markov chain Monte Carlo sampling. Heated chains are run in parallel and accelerate the
convergence to the target posterior distribution. Identifiability issues are addressed by implementing
label switching algorithms. The package is demonstrated and benchmarked against the Expectation-
Maximization algorithm using a simulation study as well as a real dataset.

Introduction

Clustering data is a fundamental task in a wide range of applications and finite mixture models are
widely used for this purpose (McLachlan and Peel, 2000; Marin et al., 2005; Frühwirth-Schnatter,
2006). In this paper our attention is focused on clustering binary datasets. A variety of studies
aims at identifying patterns in binary data including, but not limited to, voting data (Ilin, 2012), text
classification (Juan and Vidal, 2002), handwritten digit recognition (Al-Ohali et al., 2003), medical
research (Sun et al., 2007), animal classification Li (2005) and genetics (Abel et al., 1993).

Throughout this paper the term cluster is used as a synonym of mixture component . Finite mixture
models can be estimated under a frequentist approach using the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977). However, the likelihood surface of a mixture model can exhibit many
local maxima and it is well known that the EM algorithm may fail to converge to the main mode if it is
initialized from a point close to a minor mode. Moreover, under a frequentist approach, the selection
of the number of clusters is not straightforward: a mixture model for each possible value of number of
clusters is fitted and then the optimal one is selected according to penalized likelihood criteria such
as the Bayesian information criterion (Schwarz, 1978) or the integrated complete likelihood criterion
(Biernacki et al., 2000). The reader is also referred to Lindsay (1995); Böhning (2000) for non-parametric
likelihood estimation of a mixture model.

On the other hand, the Bayesian framework allows to put a prior distribution on both the number
of clusters as well as the model parameters and then (approximately) sample from the joint posterior
distribution using Markov chain Monte Carlo (MCMC) algorithms (Richardson and Green, 1997;
Stephens, 2000a; Nobile and Fearnside, 2007; White et al., 2016). However this does not mean that
the Bayesian approach is not problematic. In general, vanilla MCMC algorithms may require a very
large number of iterations to discover the high posterior density areas and/or sufficiently explore the
posterior surface due to the existence of minor modes. Second, identifiability issues arise due to the
label switching phenomenon (Redner and Walker, 1984) which complicate the inference procedure.

The BayesBinMix package explicitly takes care of the previously mentioned problems for the
problem of clustering multivariate binary data:

1. Allows missing values in the observed data,

2. Performs MCMC sampling for estimating the posterior distribution of the number of clusters
and model parameters,

3. Produces a rapidly mixing MCMC sample by running parallel heated chains which can switch
states,

4. Post-processes the generated MCMC sample and produces meaningful posterior mean estimates
using state of the art algorithms to deal with label switching.

The rest of the paper is organised as follows. The mixture model is presented in Section V.2. Its
prior assumptions and the corresponding hierarchical model is introduced in Section V.3. The basic
MCMC scheme is detailed in Section V.4.1. Section V.4.2 deals with post-processing the generated
MCMC sample in order to overcome identifiability issues due to the label switching problem. Finally,
the basic sampler is embedded in a Metropolis-coupled MCMC algorithm as described in Section V.4.3.
The main function of the package is described in Section V.5. Simulated and real datasets are analyzed
in Sections V.6.1 and V.6.2, respectively.
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Model

Let x = (x1, . . . , xn) denote a random sample of multivariate binary data, where xi = (xi1, . . . , xid);
d > 1, for i = 1, . . . , n. Assume that the observed data has been generated from a mixture of
independent Bernoulli distributions, that is,

xi ∼
K

∑
k=1

pk

d

∏
j=1

f
(

xij; θkj

)

=
K

∑
k=1

pk

d

∏
j=1

θ
xij

kj

(
1− θkj

)1−xij
I{0,1}(xij), (1)

independently for i = 1, . . . , n, where θkj ∈ Θ = (0, 1) denotes the probability of success for the
k-th cluster and j-th response for k = 1, . . . , K; j = 1, . . . , d, p = (p1, . . . , pK) ∈ PK−1 = {pk; k =

1, . . . , K− 1 : 0 6 pk 6 1; 0 6 pK = 1−∑K−1
k=1 pk} corresponds to the vector of mixture weights and

IA(·) denotes the indicator function of a (measurable) subset A.

It is straightforward to prove that the variance-covariance matrix of a mixture of independent
Bernoulli distributions is not diagonal (see e.g. Bishop (2006)), which is the case for a collection of
independent Bernoulli distributions. Therefore, the mixture model exhibits richer covariance structure
thus it can prove useful to discover correlations in heterogeneous multivariate binary data.

The observed likelihood of the model is written as

LK(p, θ; x) =
n

∏
i=1

K

∑
k=1

pk

d

∏
j=1

θ
xij

kj

(
1− θkj

)1−xij
, (p, θ) ∈ PK−1 ×ΘKd (2)

where x ∈ X n = {0, 1}nd. For any fixed value of K, Equation (2) can be further decomposed by
considering that observation i has been generated from the zi-th mixture component, that is,

xi|zi = k ∼
d

∏
j=1

f
(

xij; θkj

)
, independent for i = 1, . . . , n. (3)

Note that the allocation variables zi ∈ ZK = {1, . . . , K}; i = 1, . . . , n are unobserved, so they are
treated as missing data. Assume that

P (zi = k|p, K) = pk, k = 1, . . . , K (4)

and furthermore that (xi, zi) are independent for i = 1, . . . , n. Data augmentation (Tanner and Wong,
1987) considers jointly the complete data {(xi, zi); i = 1, . . . , n} and it is a standard technique exploited
both by the Expectation-Maximization algorithm (Dempster et al., 1977) as well as the Gibbs sampler
(Gelfand and Smith, 1990). The complete likelihood is defined as

Lc
K (p, θ; x, z) =

n

∏
i=1

pzi

d

∏
j=1

θ
xij

zi j

(
1− θzi j

)1−xij

=
K

∏
k=1

pnk
k

d

∏
j=1

θ
skj

kj

(
1− θkj

)nk−skj
, (p, θ) ∈ PK−1 ×ΘKd (5)

where nk = ∑n
i=1 I(zi = k) and skj = ∑n

i=1 I(zi = k)xij, k = 1, . . . , K; j = 1, . . . , d, for a given
(x, z) ∈ X n ×Zn

K .

Prior assumptions

Note that the quantities p, θ, z are defined conditionally on K. For convenience we will assume that
K ∈ K = {1, . . . , Kmax}, where Kmax denotes an upper bound on the number of clusters. Hence,
under a model-based clustering point of view, the vector

(K, p, θ, z) ∈ A := K×PK−1 ×ΘKd ×Zn
K

summarizes all unknown parameters that we wish to infer.
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Figure 1: Representation of the hierarchical model (9) as a directed acyclic graph. Squares and circles
denote observed/fixed and unknown variables, respectively.

The following prior assumptions are imposed

K ∼ Discrete{1, . . . , Kmax} (6)

p|K ∼ Dirichlet(γ1, . . . , γK) (7)

θkj|K ∼ Beta(α, β), (8)

independent for k = 1, . . . , K; j = 1, . . . , d. The discrete distribution in Equation (6) can be either a
Uniform or a Poisson distribution with mean λ = 1 truncated on the set {1, . . . , Kmax}. Equations
(7) and (8) correspond to typical prior distributions for the mixture weights and success probabilities,
that furthermore enjoy conjugacy properties. Typically, we set γ1 = . . . = γK = γ > 0 so that the
prior assumptions do not impose any particular information that separates the mixture components
between them, which is also a recommended practice in mixture modelling.

According to Equations (4), (5), (6), (7) and (8), the joint probability density function of the model
is

f (x, K, z, p, θ) = f (x|K, z, θ) f (z|K, p) f (p|K) f (θ|K) f (K) , (9)

and its graphical representation is shown in Figure 1.

Inference

Allocation sampler

Let CK = Γ(∑K
k=1 γk)

∏K
k=1 Γ(γk)

{
Γ(α+β)

Γ(α)Γ(β)

}Kd
. From Equation (9) the joint posterior distribution of (K, p, θ, z) can

be expressed as:

f (θ, z, p, K|x) ∝ CK f (K)
K

∏
k=1

pnk+γk−1
k

d

∏
j=1

θ
α+skj−1
kj (1− θkj)

β+nk−skj−1

 IA(K, p, θ, z). (10)

From the last expression it is straightforward to derive the full conditional distributions of the compo-
nent specific parameters and latent allocation variables as follows:

p|K, z ∼ Dirichlet (γ1 + n1, . . . , γK + nK) (11)

θkj|K, z, x ∼ Beta
(

α + skj, β + nk − skj

)
(12)

P (zi = k|K, xi, p, θ) ∝ pk

d

∏
j=1

θ
xij

kj

(
1− θkj

)1−xij
, k = 1, . . . , K,

independent for i = 1, . . . , n; k = 1, . . . , K; j = 1, . . . , d.

A general framework for updating the number of mixture components (K) is given by trans-
dimensional MCMC approaches, such as the reversible jump MCMC (Green, 1995; Richardson and
Green, 1997; Papastamoulis and Iliopoulos, 2009) or the Birth-Death MCMC (Stephens, 2000a) method-
ologies. However, the conjugate prior assumptions used for the component specific parameters (p, θ)
allow us to use simpler techniques by integrating those parameters out from the model and perform
collapsed sampling (Liu, 1994) on the space of (K, z). We use the allocation sampler (Nobile and
Fearnside, 2007) which introduced this sampling scheme for parametric families such that conjugate
prior distributions exist and also applied it in the specific context of mixtures of normal distributions.
This approach was recently followed by White et al. (2016) which also allowed for variable selection.
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Let A0 = ΘKd ×PK−1 and A1 = K× {1, . . . , K}n. Integrating out (θ, p) from (10) we obtain

f (K, z|x) =
∫
A0

f (z, θ, p, K|x)dθdp

∝ CK f (K)IA1 (K, z)
∫
A0

K

∏
k=1

pnk+γk−1
k

d

∏
j=1

θ
α+skj−1
kj

(
1− θkj

)β+nk−skj−1
dθdp

∝ CK f (K)
∏K

k=1 Γ (nk + γk)

Γ
(

n + ∑K
k=1 γk

) K

∏
k=1

d

∏
j=1

Γ
(

α + skj

)
Γ
(

β + nk − skj

)
Γ (α + β + nk)

IA1 (K, z). (13)

Let now z[−i] = {z1, . . . , zi−1, zi+1, . . . , zn} and also define the following quantities, for i = 1, . . . , n:

n[i]
k = ∑

h 6=i
I(zh = k), k = 1, . . . , K

s[i]kj = ∑
h 6=i

I(zh = k)xhj, k = 1, . . . , K; j = 1, . . . , d

A[i]
1 = {j = 1, . . . , d : xij = 1}

A[i]
0 = {j = 1, . . . , d : xij = 0}.

From Equation (13), the (collapsed) conditional posterior distribution of zi is

P
(

zi = k|z[−i], K, x
)

∝
n[i]

k + γk(
α + β + n[i]

k

)d ∏
j∈A[i]

1

(
α + s[i]kj

)
∏

j∈A[i]
0

(
β + nk − s[i]kj

)
, (14)

k = 1, . . . , K; i = 1, . . . , n.

It is well known that draws from the conditional distributions in Equation (14) exhibit strong
serial correlation, slowing down the convergence of the MCMC sampler. The mixing can be improved
by proposing simultaneous updates of blocks of z|K, by incorporating proper Metropolis-Hastings
moves on z|K. Following Nobile and Fearnside (2007), we also propose jumps to configurations that
massively update the allocation vector as follows:

1. Move 1: select two mixture components and propose a random reallocation of the assigned
observations.

2. Move 2: select two mixture components and propose to move a randomly selected subset of
observations from the 1st to the 2nd one.

3. Move 3: select two mixture components and propose a reallocation of the assigned observations
according to the full conditional probabilities given the already processed ones.

Each move is accepted according to the corresponding Metropolis-Hastings acceptance probability,
see Nobile and Fearnside (2007) for details.

The final step of the allocation sampler is to update the number of clusters (K). According to
Nobile and Fearnside (2007), this is achieved by performing a Metropolis-Hastings type move, namely
a pair of absorption/ejection moves which decrease/increase K, respectively. Assume that the current
state of chain is {K, z}. The following pseudocode describes the Absorption/Ejection step:

1. Attemp ejection with probability pe
K , where pe

K = 1/2, K = 2, . . . , Kmax − 1, pe
1 = 1 and

pe
Kmax

= 0. Otherwise, an absorption move is attempted.

2. Suppose that an ejection is attempted. The candidate state is {K′, z′} with K′ = K + 1.

(a) Propose reallocation of observations assigned to the ejecting component between itself
and the ejected component according to the Beta(α̃, α̃) distribution.

(b) Accept the candidate state with probability min{1, R} where

R = R(α̃) =
f (K′, z′|x)
f (K, z|x)

P({K′, z′} → {K, z})
P ({K, z} → {K′, z′}) (15)

3. If an absorption is attempted:

(a) all observations allocated to the absorbed component are reallocated to the absorbing
component.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 407

(b) the candidate state is accepted with probability min{1, 1/R(α̃)}.

The parameter α̃ is chosen in a way that ensures that the probability of ejecting an empty component
is sufficiently large. For full details the reader is referred to Nobile and Fearnside (2007).

The allocation sampler for mixtures of multivariate Bernoulli distributions is summarized in the
following algorithm.

Algorithm 1 (Allocation sampler for Bernoulli mixtures) Given an initial state {K(0), z(0)} ∈ A1 iter-
ate the following steps for t = 1, 2, . . .

1. For i = 1, . . . , n

(a) Compute n[i]
k = ∑h 6=i I(zh = k), s[i]kj = ∑h 6=i I(zh = k)xhj, k = 1, . . . , K(t); j = 1, . . . , d.

(b) Update z(t)i |z[−i], · · · according to Equation (14).

2. Propose Metropolis-Hastings moves M1, M2 and M3 to update z(t).

3. Propose an Absorption/Ejection move to update {K(t), z(t)}.

Note in step 1.(a):

zh =

{
z(t)h , h < i

z(t−1)
h , h > i.

Finally, we mention that after the last step of Algorithm 1 we can also simulate the component-
specific parameters p and θ from their full conditional posterior distributions given in (11) and (12),
respectively. Although this is not demanded in case that the user is only interested in inferring K, z|x,
it will produce an (approximate) MCMC sample from the full posterior distribution of K, p, θ, z|x.
If the observed data contains missing entries an extra step is implemented in order to simulate
the corresponding values. For this purpose we use the full conditional distribution derived from
Equation (3), taking only into account the subset of {1, . . . , d} that contains missing values for a given
i = 1, . . . , n.

Label switching issue and identifiability

Label switching (Redner and Walker, 1984) is a well known identifiability problem occurring in MCMC
outputs of mixture models, arising from the symmetry of the likelihood with respect to permutations
of components’ labels. A set of sufficient conditions under a general framework of missing data
models that lead to label switching and its consequences is given in Papastamoulis and Iliopoulos
(2013). If an MCMC sample exhibits label switching, the standard practice of estimating the posterior
means and other parametric functions by ergodic averages becomes meaningless. In order to deal
with this identifiability problem we have considered two versions of ECR algorithm (Papastamoulis
and Iliopoulos, 2010; Papastamoulis, 2014; Rodríguez and Walker, 2014) as well as the KL algorithm
(Stephens, 2000b). These algorithms are quite efficient and in most cases exhibit almost identical results,
but ECR is significantly faster and computationally lightweight compared to KL. The implementation
was performed in the R package label.switching (Papastamoulis, 2016).

Note here that in the case that d = 1, Equation (1) collapses to a single Bernoulli distribution.
Hence, there are two types of identifiability issues in mixture models: the first one is related to the fact
that the model is identifiable only up to a permutation of the parameters (label switching). The second
one is strict non-identifiability which relates to the fact that for a mixture of discrete distributions
(such as the multivariate Bernoulli) totally different parameter values can correspond to the same
distribution. We are not dealing with this second source of identifiability problems since it has been
empirically demonstrated that estimation can still produce meaningful results in practice (Carreira-
Perpiñán and Renals, 2000). In addition, Allman et al. (2009) showed that finite mixtures of Bernoulli
products are in fact generically identifiable despite their lack of strict identifiability.

Metropolis-coupled MCMC sampler

There are various strategies for improving MCMC sampling, see e.g. chapter 6 in Gilks et al. (1996). In
this study, the Metropolis-coupled MCMC (MC3) (Geyer, 1991; Geyer and Thompson, 1995; Altekar
et al., 2004) strategy is adopted. An MC3 sampler runs m chains with different posterior distributions
fi(ξ); i = 1, . . . , m. The target posterior distribution corresponds to i = 1, that is, f1(ξ) = f (ξ), while
the rest of them are chosen in a way that the mixing is improved. This is typically achieved by
considering heated versions of the original target, that is, fi(ξ) = f (ξ)hi where h1 = 1 and 0 < hi < 1
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Figure 2: Trace of sampled values of the number of clusters (K) for 10 different runs, using one of the
synthetic datasets of Section V.6.1 with Ktrue = 10. Each run was initialized from K = 1 and every
10th iteration is displayed (labeled as MCMC cycle on the x axis) until most chains start to explore
K = 10. Left: standard allocation sampler , right: MC3 sampler (using 4 heated chains).

for i = 2, . . . , m represents the heat value of the chain. Note that when raising the posterior distribution
to a power 0 < hi < 1 makes the modified posterior surface flatter, thus, easier to explore compared
to f (ξ). Only the chain that corresponds to the target posterior distribution is used for the posterior
inference, however, after each iteration a proposal attempts to swap the states of two randomly chosen
chains. This improves the mixing of the chain since it is possible that an accepted swap between the
cold and a heated chain will make the former move to another mode.

Let ξ
(t)
i denote the state of chain i at iteration t and that a swap between chains i and j is proposed.

Note that in our setup ξ = (K, z) and f is given in (13) (up to a normalizing constant). The proposed
move is accepted with probability

min

1,
fi

(
ξ
(t)
j

)
f j

(
ξ
(t)
i

)
fi

(
ξ
(t)
i

)
f j

(
ξ
(t)
j

)
 = min

1,
f
(

ξ
(t)
j

)hi
f
(

ξ
(t)
i

)hj

f
(

ξ
(t)
i

)hi
f
(

ξ
(t)
j

)hj

 .

Figure 2 sketches the difference in convergence speed between the standard allocation sampler and
an MC3 sampler which are used to infer the same posterior distribution of the number of clusters.
Although a single MCMC cycle of MC3 is more expensive than a cycle of the allocation sampler, it is
evident that the MC3 sampler can recover the true number of clusters (Ktrue = 10) in a remarkably
smaller number of iterations than the standard allocation sampler. In addition, the standard allocation
sampler rarely switches between the symmetric modes of the posterior distribution, a fact which
typically indicates poor mixing of MCMC samplers in mixture models (Marin et al., 2005). On the
contrary, the MC3 sampler produces a chain where label switching occurs in a rate proportional to the
swap acceptance rate.

In order to take full advantage of computing power in modern-day computers, our MC3 sampler
utilizes parallel computing in multiple cores. This is achieved by running each chain in parallel using
the R packages foreach (Revolution Analytics and Weston, 2014) and doParallel (Revolution Analytics
and Weston, 2015). Every 10-th iteration a swap is proposed between a pair of chains.

Using package BayesBinMix

The main function of the BayesBinMix package is coupledMetropolis, with its arguments shown in
Table 1. This function takes as input a binary data array (possibly containing missing values) and runs
the allocation sampler for a series of heated chains which run in parallel while swaps between pairs of
chains are proposed. In the case that the most probable number of mixture components is larger than
1, the label switching algorithms are applied.

As the function runs it prints some basic information on the screen such as the progress of the
sampler as well as the acceptance rate of proposed swaps between chains. The output which is returned
to the user mainly consists of "mcmc" objects, a class imported from the coda package (Plummer et al.,
2006). More specifically, the coupledMetropolis() function returns the objects detailed in Table 2. We
note that this is just a subset of the full output of the sampler which consists of several additional
quantities, such as the raw MCMC values corresponding to the whole set of generated values of K.
Usually this information is not necessary to the average user, thus, it is saved to a separate set of files
in the folder specified by outPrefix.
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Argument Description

Kmax Maximum number of clusters (integer, at least equal to two).
nChains Number of parallel (heated) chains.
heats nChains-dimensional vector specifying the temperature of each chain: the 1st

entry should always be equal to 1 and the rest of them lie on the set:(0, 1].
binaryData The observed binary data (array). Missing values are allowed as long as the

corresponding entries are denoted as NA.
outPrefix The name of the produced output folder. An error is thrown if the directory

exists.
ClusterPrior Character string specifying the prior distribution of the number of clusters.

Available options: poisson or uniform. It defaults to the (truncated) Poisson
distribution.

m The number of MCMC cycles. At the end of each cycle a swap between a pair of
heated chains is attempted. Each cycle consists of 10 iterations.

alpha First shape parameter of the Beta prior distribution (strictly positive). Defaults
to 1.

beta Second shape parameter of the Beta prior distribution (strictly positive). Defaults
to 1.

gamma Kmax-dimensional vector (positive) corresponding to the parameters of the Dirich-
let prior of the mixture weights. Default value: rep(1,Kmax).

z.true An optional vector of cluster assignments considered as the ground-truth clus-
tering of the observations. It is only used to obtain a final permutation of the
labels (after the label switching algorithms) in order to maximise the similarity
between the resulting estimates and the real cluster assignments. Useful for
simulations.

ejectionAlpha Probability of ejecting an empty component. Defaults to 0.2.
burn Optional integer denoting the number of MCMC cycles that will be discarded as

burn-in period.

Table 1: Arguments of the coupledMetropolis() function.

Examples

In this section the usage of BayesBinMix package is described and various benchmarks are presented.
At first we demonstrate a typical implementation on a single simulated dataset and inspect the
simulated parameter values and estimates. Then we perform an extensive study on the number of
estimated clusters and compare our findings to the FlexMix package (Leisch, 2004; Grün and Leisch,
2007, 2008). An application to a real dataset is provided next.

Simulation study

At first, a single simulated dataset is used in order to give a brief overview of the implementation.
We simulated n = 200 observations from the multivariate Bernoulli mixture model (1). The true
number of clusters is set to K = 6 and the dimensionality of the multivariate distribution is equal to
d = 100. The mixture weights are drawn from a Dirichlet D(1, 1, 1, 1, 1, 1) distribution resulting in
(50, 46, 30, 36, 12, 26) generated observations from each cluster. For each cluster, true values for the
probability of success were generated from a Uniform distribution, that is, θkj ∼ U (0, 1), independently
for k = 1, . . . , K; j = 1, . . . , d. Furthermore, we introduce some missing values to the generated data:
each row is allowed to contain missing values with probability 0.2: for such a row the total number of
missing entries is drawn from the binomial distribution B(100, 0.3). Finally, the observed data is saved
to the 200× 100 array x which contains a total of 1038 missing values corresponding to 34 rows.

We will run 4 parallel chains with the following temperatures: (1, 0.8, 0.6, 0.4). Observe that the
first chain should correspond to the actual posterior distribution, so its temperature equals to 1. Now
apply the coupledMetropolis() function as follows.

> library('BayesBinMix')
> nChains <- 4
> heats <- seq(1, 0.4, length = nChains)

# using the truncated Poisson prior distribution on the number of clusters
> cm1 < - coupledMetropolis(Kmax = 20, nChains = nChains, heats = heats,

binaryData = x, outPrefix = "bbm-poisson", ClusterPrior = "poisson",
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Object Description

K.mcmc Object of class "mcmc" (see coda package) containing the simulated
values (after burn-in) of the number of clusters for the cold chain.

parameters.ecr.mcmc Object of class "mcmc" containing the simulated values (after burn-
in) of θkj (probability of success per cluster k and feature j) and
πk (weight of cluster k) for k = 1, . . . , Kmap; j = 1, . . . , d, where
Kmap denotes the most probable number of clusters. The output
is reordered according to ECR algorithm.

allocations.ecr.mcmc Object of class "mcmc" containing the simulated values (after burn-
in) of zi (allocation variables) for i = 1, . . . , n, given K = Kmap.
The output is reordered according to ECR algorithm.

classificationProbabilities.ecr Data frame of the reordered classification probabilities per obser-
vation after reordering the most probable number of clusters with
the ECR algorithm.

clusterMembershipPerMethod Data frame of the most probable allocation of each observation
after reordering the MCMC sample which corresponds to the
most probable number of clusters according to ECR, STEPHENS
and ECR-ITERATIVE-1 methods.

K.allChains m×nChains matrix containing the simulated values of the number
of clusters (K) per chain.

chainInfo Number of parallel chains, cycles, burn-in period and acceptance
rate of swap moves.

Table 2: Output returned to the user of the coupledMetropolis() function.

m = 1100, z.true = z.true, burn = 100)

# using the uniform prior distribution on the number of clusters
> cm2 <- coupledMetropolis(Kmax = 20, nChains = nChains, heats = heats,

binaryData = x, outPrefix = "bbm-uniform", ClusterPrior = "uniform",
m = 1100, z.true = z.true, burn = 100)

Note that we have called the function twice using either the truncated Poisson or the Uniform prior
on the set {1, . . . , 20}. The total number of MCMC cycles corresponds to m = 1100 and the first 100
cycles will be discarded as burn-in period. Recall that each cycle contains 10 usual MCMC iterations,
so this is equivalent to keeping every 10th iteration of a chain with 11,000 iterations. Since we are
interested to compare against the true values used to generate the data, we also supply z.true which
contains the true allocation of each observation. It is only used for making the inferred clusters agree
to the labelling of the true values and it has no impact on the MCMC or label switching algorithms.

Printing, summarizing and plotting the output

In this section we illustrate summaries of the basic output returned to the user, using only the run
which corresponds to the Poisson prior distribution (cm1). The print() method of the package returns
a basic summary of the fitted model:

> print(cm1)

* Run information:
Number of parallel heated chains: 4
Swap acceptance rate: 63.5%
Total number of iterations: 11000
Burn-in period: 1000
Thinning: 10.

* Estimated posterior distribution of the number of clusters:

6 7 8
0.971 0.026 0.003

* Most probable model: K = 6 with P(K = 6|data) = 0.971
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* Estimated number of observations per cluster conditionally on K = 6 (3 label switching
algorithms):
STEPHENS ECR ECR.ITERATIVE.1

1 50 50 50
2 46 46 46
3 30 30 30
4 36 36 36
5 12 12 12
6 26 26 26

* Posterior mean of probability of success per feature and cluster (ECR algorithm):
cluster_1 cluster_2 cluster_3 cluster_4 cluster_5 cluster_6

theta_1 0.33364058 0.8465393 0.7023264 0.3340989 0.08364937 0.8933767
theta_2 0.71919239 0.6653526 0.3227822 0.3982836 0.22369486 0.5936094
theta_3 0.49869339 0.2285653 0.3605507 0.3570447 0.07206039 0.1883581
theta_4 0.22360156 0.9148123 0.3359406 0.7889224 0.15476900 0.5924109
theta_5 0.01867034 0.8296381 0.8107050 0.1121773 0.78051586 0.1442368

<+ 95 more rows>

Next we present summaries of the marginal posterior distributions of the (reordered) MCMC
sample of parameters conditionally on the selected number of clusters. The reordered MCMC sample
of θkj and pk (after burn-in) is returned to the "mcmc" object parameters.ecr.mcmc. Hence we can use
the summary() method of the coda package, which prints empirical means, standard deviations, as
well the quantiles for each variable. This is done with the following command.

> summary(cm1$parameters.ecr.mcmc)

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
theta.1.1 0.33364 0.06504 0.0020874 0.0020874
... ... ... ... ...
theta.6.1 0.89338 0.05552 0.0017816 0.0017816

<+ 99 blocks of 6 rows>
p.1 0.24663 0.02869 0.0009208 0.0009208
... ... ... ... ...
p.6 0.13270 0.02276 0.0007304 0.0007304

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
theta.1.1 0.2115064 0.289971 0.32896 0.37502 0.46542
... ... ... ... ... ...
theta.6.1 0.7676282 0.859599 0.90175 0.93405 0.97556

<+ 99 blocks of 6 rows>
p.1 0.1950401 0.225938 0.24436 0.26611 0.31012
... ... ... ... ... ...
p.6 0.0905194 0.117203 0.13206 0.14795 0.17993

The user can also visualize the output with a trace of the sampled values and a density estimate for
each variable in the chain using the plot() method of the coda package. For illustration, the following
example plots the trace and histogram for θkj and pk for cluster k = 2 and feature j = 1. The produced
plot is shown in Figure 3.

mat <- matrix(c(1:4), byrow = TRUE, ncol = 2)
layout(mat, widths = rep(c(2, 1), 2), heights = rep(1, 4))
mcmcSubset <- cm1$parameters.ecr.mcmc[ , c("theta.2.1", "p.2")]
plot(mcmcSubset, auto.layout = FALSE, ask = FALSE, col = "gray40")

The reader is also referred to the coda package which provides various other functions for calculating
and plotting MCMC diagnostics.
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Figure 3: MCMC trace and density estimate for the reordered values of θkj and pk for cluster k = 2
and feature j = 1, conditionally on the selected number of clusters (K = 6).

Further inspection of the output

Figures 4.(a) and 4.(b) illustrate the sampled values of K per chain according to the Poisson and
uniform prior distribution, respectively. This information is returned to the user as an m×nChains
array named K.allChains. The actual posterior distribution corresponds to the blue line. Note that as
the temperature increases the posterior distribution of K has larger variability. In both cases, the most
probable state corresponds to K = 6 clusters, that is, the true value.

Next we inspect the MCMC output conditionally on the event that the number of clusters equals 6
and compare to the true parameter values. At first, we can inspect the raw MCMC output, which is
not identifiable due to the label switching problem. Thus, this information is not directly returned
to the user, however it is saved to the file ‘rawMCMC.mapK.6.txt’ in the output directory specified
by the output argument. For illustration we plot the raw values of mixture weights. As shown in
Figures 4.(c) and 4.(d), the sample is mixing very well to the symmetric posterior areas, since in every
iteration labels are changing. The corresponding reordered values (according to the ECR algorithm)
are returned to the user as an "mcmc" object named parameters.ecr.mcmc, shown in Figures 4.(e) and
4.(f). Note that the high posterior density areas are quite close to the true values of relative frequencies
of generated observations per cluster (indicated by horizontal lines). Finally, Figures 4.(g) and 4.(h)
display the posterior mean estimates (arising from the reordered MCMC sample) versus the true
values of θkj, k = 1, . . . , 6; j = 1, . . . , 100.

Model selection study

Next we are dealing with model selection issues, that is, selecting the appropriate number of clus-
ters. For this reason we compare BayesBinMix with the EM-algorithm implementation provided
in FlexMix. Under a frequentist framework, the selection of the number of mixture components is
feasible using penalized likelihood criteria, such as the BIC (Schwarz, 1978) or ICL (Biernacki et al.,
2000), after fitting a mixture model for each possible value of K. We used the ICL criterion since it
has been shown to be more robust than BIC, see e.g. Papastamoulis et al. (2016). We considered that
the true number of clusters ranges in the set {1, 2, . . . , 10} and for each case we simulated 10 datasets
using the same data generation procedure as previously but without introducing any missing values
due to the fact that FlexMix does not handle missing data. The number of observations varies in the
set n ∈ {200, 300, 400, 500}. For each simulated data the general call is the following.

> library("BayesBinMix")
> library("flexmix")
> nChains <- 8
> heats <- seq(1,0.4,length = nChains)
> cm <- coupledMetropolis(Kmax = 20, nChains = nChains, heats = heats, binaryData = x,

outPrefix = "sampler", ClusterPrior = "poisson", m = 330, burn = 30)
# now run flexmix for binary data clustering

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859
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Figure 4: Results for simulated data with Ktrue = 6 using the Poisson (left) or uniform (right) prior
distribution on the number of clusters (K). (a) and (b): generated values of K per heated chain. (c) and
(d): raw output of p1, . . . , pK conditionally on K = 6. (e) and (f): reordered sample according to ECR
algorithm. Horizontal lines indicate true values of relative number of observations per cluster. (g) and
(h): posterior mean estimates of Bernoulli parameters per cluster versus true values.
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Figure 5: Model selection comparison between BayesBinMix and FlexMix. The x axis corresponds
to the true number of clusters and the y axis to the estimated value. Each boxplot corresponds to 10
simulated datasets from a mixture of Bernoulli distributions.

> ex <- initFlexmix(x ~ 1, k = 1:20, model = FLXMCmvbinary(),
control = list(minprior = 0), nrep = 10)

Note that for both algorithms the number of clusters varies in the set {1, . . . , 20}. Eight heated
chains are considered for the MCMC scheme, while each run of the EM algorithm is initialised using
nrep = 10 different starting points in FlexMix. Here we used a total of only m = 330 MCMC cycles
in order to show that reliable estimates can be obtained using small number of iterations. Figure
5 displays the most probable number of mixture components estimated by BayesBinMix and the
selected number of clusters using FlexMix, for each possible value of the true number of clusters used
to simulate the data. Observe that when the number of clusters is less than 5 both methods are able
to estimate the true number of mixture components. However, FlexMix tends to underestimate the
number of clusters when K > 5, while BayesBinMix is able to recover the true value in most cases.

Real data

We consider the zoo database available at the UC Irvine Machine Learning Repository (Lichman, 2013).
The database contains 101 animals, each of which has 15 boolean attributes and 1 discrete attribute
(legs). The partition of animals into a total of 7 classes (mammal, bird, reptile, fish, amphibian, insect
and invertebrate) can be considered as the ground-truth clustering of the data, provided in the vector
z.ground_truth. Following Li (2005), the discrete variable legs is transformed into six binary features,
which correspond to 0, 2, 4, 5, 6 and 8 legs, respectively. Also we eliminate one of the two entries
corresponding to frog, as suggested by Li (2005). In total we consider an 100× 21 binary array x as
the input data.

Recall that the Bernoulli mixture in Equation (1) assumes that each cluster consists of a product
of independent Bernoulli distributions. Here this assumption is not valid due to the fact that the six
new binary variables arising from legs are not independent: they should sum to 1. Nevertheless, it is
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Figure 6: Zoo dataset: Estimated posterior distribution of the number of clusters when using different
parameters (α, β) on the beta prior of θkj. Both choices of the prior on the number of clusters are
considered: truncated Poisson (red) and uniform (green).

interesting to see how our method performs in cases that the data is not generated by the assumed
model.

We test our method considering both prior assumptions on the number of clusters, as well as
different hyper-parameters on the prior distribution of θkj in Equation (8): we consider α = β = 1
(default values) as well as α = β = 0.5. Note that the second choice corresponds to the Jeffreys
prior (Jeffreys, 1946) for a Bernoulli trial. Figure 6 displays the estimated posterior distribution of the
number of clusters K when K ∈ {1, . . . , 20}. This is done with the following commands.

# read data
> xOriginal <- read.table("zoo.data", sep = ",")
> x <- xOriginal[ , -c(1, 14, 18)]
> x <- x[-27, ] # delete 2nd frog
# now transform v14 into six binary variables
> v14 <- xOriginal[-27, 14]
> newV14 <- array(data = 0, dim = c(100, 6))
> for(i in 1:100){
+ if( v14[i] == 0 ){ newV14[i,1] = 1 }
+ if( v14[i] == 2 ){ newV14[i,2] = 1 }
+ if( v14[i] == 4 ){ newV14[i,3] = 1 }
+ if( v14[i] == 5 ){ newV14[i,4] = 1 }
+ if( v14[i] == 6 ){ newV14[i,5] = 1 }
+ if( v14[i] == 8 ){ newV14[i,6] = 1 }
+ }
> x <- as.matrix(cbind(x, newV14))

# apply BayesBinMix using 8 heated chains
> library("BayesBinMix")
> nChains <- 8
> heats <- seq(1, 0.6, length = nChains)

# K ~ P{1,...,20}, theta_{kj} ~ Beta(1, 1)
> c1 <- coupledMetropolis(Kmax = 20, nChains = nChains, heats =

heats, binaryData = x,
+ outPrefix = "poisson-uniform", ClusterPrior = "poisson",
+ m = 4400, burn = 400, z.true = z.ground_truth)

# K ~ U{1,...,20}, theta_{kj} ~ Beta(1, 1)
> c2 <- coupledMetropolis(Kmax = 20, nChains = nChains, heats = heats, binaryData = x,
+ outPrefix = "uniform-uniform", ClusterPrior = "uniform",
+ m = 4400, burn = 400, z.true = z.ground_truth)

# K ~ P{1,...,20}, theta_{kj} ~ Beta(0.5, 0.5)
> c3 <- coupledMetropolis(Kmax = 20, nChains = nChains, heats = heats, binaryData = x,
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Figure 7: Zoo dataset clustering conditionally on the most probable number of clusters K = 6 when
using the truncated Poisson prior on K and the Jeffreys prior on θkj. The ground-truth classification of
the animals to seven classes is illustrated using different colour for each class.

+ outPrefix = "poisson-jeffreys", ClusterPrior = "poisson",
+ m = 4400, burn = 400, z.true = z.ground_truth)

# K ~ U{1,...,20}, theta_{kj} ~ Beta(0.5, 0.5)
> c4 <- coupledMetropolis(Kmax = 20, nChains = nChains, heats = heats, binaryData = x,
+ outPrefix = "uniform-jeffreys", ClusterPrior = "uniform",
+ m = 4400, burn = 400, z.true = z.ground_truth)

Next, we compare the estimated clusters (for the most probable value of K) with the classification
of the data into 7 classes (given in the vector z.ground_truth). For this reason we provide the rand
index (adjusted or not) based on the confusion matrix between the estimated and ground-truth clusters,
using the package flexclust (Leisch, 2006).

> library("flexclust")
> z <- array(data = NA, dim = c(100, 4))
> z[ , 1] <- c1$clusterMembershipPerMethod$ECR
> z[ , 2] <- c2$clusterMembershipPerMethod$ECR
> z[ , 3] <- c3$clusterMembershipPerMethod$ECR
> z[ , 4] <- c4$clusterMembershipPerMethod$ECR
> rand.index <- array(data = NA, dim = c(4, 3))
> rownames(rand.index) <- c("poisson-uniform", "uniform-uniform",

"poisson-jeffreys", "uniform-jeffreys")
> colnames(rand.index) <- c("K_map", "rand_index", "adjusted_rand_index")
> findMode <- function(x){ as.numeric( names(sort(-table(x$K.mcmc)))[1] ) }
> rand.index[ , 1] <- c( findMode(c1), findMode(c2), findMode(c3), findMode(c4) )
> for(i in 1:4){
+ rand.index[i, 2] <- randIndex(table(z[ , i], z.ground_truth), correct = FALSE)
+ rand.index[i, 3] <- randIndex(table(z[ , i], z.ground_truth))
+ }
> rand.index

K_map rand_index adjusted_rand_index
poisson-uniform 4 0.9230303 0.7959666
uniform-uniform 5 0.9408081 0.8389208
poisson-jeffreys 6 0.9505051 0.8621216
uniform-jeffreys 7 0.9490909 0.8525556

Note that both rand indices (raw and adjusted) are larger for z[,3], that is, the six-component
mixture model that corresponds to the Poisson prior on K and the Jeffreys prior on θkj. A detailed view
on the estimated clusters for this particular model is shown in Figure 7. We conclude that the estimated
groups are characterized by animals belonging to the same taxonomy with very small deviations from
the true clusters. Interestingly, in the case that an animal is wrongly assigned to a cluster, notice that
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Figure 8: Wall clock time of the coupledMetropolis() function when running nChains = 4 heated
chains on the same number of parallel threads for m = 1100 cycles, with each cycle consisting of 10
MCMC iterations. At most Kmax = 20 clusters are allowed. For all sample sizes (n), the dimension of
the multivariate data equals to d = 100.

the estimated grouping might still make sense: e.g. the sea mammals dolphin, porpoise and seal are
assigned to the fourth cluster which is mainly occupied by the group “fish”.

Summary and remarks

The BayesBinMix package for fitting mixtures of Bernoulli distributions with an unknown number of
components has been presented. The pipeline consists of a fully Bayesian treatment for the clustering of
multivariate binary data: it allows the joint estimation of the number of clusters and model parameters,
deals with identifiability issues as well as produces a rapidly mixing chain. Using a simulation study
we concluded that the method outperforms the EM algorithm in terms of estimating the number of
clusters and at the same time produces accurate estimates of the underlying model parameters. In the
real dataset we explored the flexibility provided by using different prior assumptions and concluded
that the estimated clusters are strongly relevant to the natural grouping of the data.

For the prior distribution on the number of clusters our experience suggests that the truncated
Poisson distribution performs better than the uniform (see also Nobile and Fearnside (2007)). Re-
garding the prior distribution on the Bernoulli parameters we recommend to try both the uniform
distribution (default choice) as well as the Jeffreys prior, especially when the sample size is small. An
important parameter is the number of heated chains which run in parallel, as well as the tempera-
ture of each chain. We suggest to run at least nChains = 4 heated chains. The heat parameter for
each presented example achieved an acceptance ratio of proposed swaps between pairs of chains
between 10% and 70%. The default choice for the temperature vector is heats = seq(1,0.3,length
= nChains), however we advise to try different values in case that the swap acceptance ratio is too
small (e.g. < 2%) or too large (e.g. > 90%). Finally, we recommend running the algorithm using at
least m = 1100 and burn = 100 for total number of MCMC cycles and burn-in period, respectively.
For these particular values of nChains and m, Figure 8 displays the wall clock time demanded by the
coupledMetropolis() function.
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pdp: An R Package for Constructing
Partial Dependence Plots
by Brandon M. Greenwell

Abstract Complex nonparametric models—like neural networks, random forests, and support vector
machines—are more common than ever in predictive analytics, especially when dealing with large
observational databases that don’t adhere to the strict assumptions imposed by traditional statistical
techniques (e.g., multiple linear regression which assumes linearity, homoscedasticity, and normality).
Unfortunately, it can be challenging to understand the results of such models and explain them to
management. Partial dependence plots offer a simple solution. Partial dependence plots are low-
dimensional graphical renderings of the prediction function so that the relationship between the
outcome and predictors of interest can be more easily understood. These plots are especially useful in
explaining the output from black box models. In this paper, we introduce pdp, a general R package
for constructing partial dependence plots.

Introduction

Harrison and Rubinfeld (1978) were among the first to analyze the well-known Boston housing data.
One of their goals was to find a housing value equation using data on median home values from
n = 506 census tracts in the suburbs of Boston from the 1970 census; see Harrison and Rubinfeld (1978,
Table IV) for a description of each variable. The data violate many classical assumptions like linearity,
normality, and constant variance. Nonetheless, Harrison and Rubinfeld—using a combination of
transformations, significance testing, and grid searches—were able to find a reasonable fitting model
(R2 = 0.81). Part of the payoff for there time and efforts was an interpretable prediction equation
which is reproduced in Equation (1).

̂log (MV) = 9.76 + 0.0063RM2 + 8.98× 10−5 AGE− 0.19 log (DIS) + 0.096 log (RAD)

− 4.20× 10−4TAX− 0.031PTRATIO + 0.36 (B− 0.63)2 − 0.37 log (LSTAT)

− 0.012CRIM + 8.03× 10−5ZN + 2.41× 10−4 INDUS + 0.088CHAS

− 0.0064NOX2.

(1)

Nowadays, many supervised learning algorithms can fit the data automatically in seconds—
typically with higher accuracy. (We will revisit the Boston housing data in Section X.2.) The downfall,
however, is some loss of interpretation since these algorithms typically do not produce simple predic-
tion formulas like Equation (1). These models can still provide insight into the data, but it is not in the
form of simple equations. For example, quantifying predictor importance has become an essential task
in the analysis of "big data", and many supervised learning algorithms, like tree-based methods, can
naturally assign variable importance scores to all of the predictors in the training data.

While determining predictor importance is a crucial task in any supervised learning problem,
ranking variables is only part of the story and once a subset of "important" features is identified
it is often necessary to assess the relationship between them (or subset thereof) and the response.
This can be done in many ways, but in machine learning it is often accomplished by constructing
partial dependence plots (PDPs); see Friedman (2001) for details. PDPs help visualize the relationship
between a subset of the features (typically 1-3) and the response while accounting for the average
effect of the other predictors in the model. They are particularly effective with black box models like
random forests and support vector machines.

Let x =
{

x1, x2, . . . , xp
}

represent the predictors in a model whose prediction function is f̂ (x). If
we partition x into an interest set, zs, and its compliment, zc = x \ zs, then the "partial dependence" of
the response on zs is defined as

fs (zs) = Ezc

[
f̂ (zs, zc)

]
=
∫

f̂ (zs, zc) pc (zc) dzc, (2)

where pc (zc) is the marginal probability density of zc: pc (zc) =
∫

p (x) dzs. Equation (2) can be
estimated from a set of training data by

f̄s (zs) =
1
n

n

∑
i=1

f̂
(
zs, zi,c

)
, (3)

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 422

where zi,c (i = 1, 2, . . . , n) are the values of zc that occur in the training sample; that is, we average out
the effects of all the other predictors in the model.

Constructing a PDP (3) in practice is rather straightforward. To simplify, let zs = x1 be the predictor
variable of interest with unique values {x11, x12, . . . , x1k}. The partial dependence of the response on
x1 can be constructed as follows:

Algorithm 1 A simple algorithm for constructing the partial dependence of the response on
a single predictor x1.

1. For i ∈ {1, 2, . . . , k}:

(a) Copy the training data and replace the original values of x1 with the constant x1i.

(b) Compute the vector of predicted values from the modified copy of the training
data.

(c) Compute the average prediction to obtain f̄1 (x1i).

2. Plot the pairs
{

x1i, f̄1 (x1i)
}

for i = 1, 2, . . . , k.

Algorithm 1 can be quite computationally intensive since it involves k passes over the training
records. Fortunately, the algorithm can be parallelized quite easily (more on this in Section X.2.4). It
can also be easily extended to larger subsets of two or more features as well.

Limited implementations of Friedman’s PDPs are available in packages randomForest (Liaw and
Wiener, 2002) and gbm (Ridgeway, 2017), among others; these are limited in the sense that they
only apply to the models fit using the respective package. For example, the partialPlot function
in randomForest only applies to objects of class "randomForest" and the plot function in gbm only
applies to "gbm" objects. While the randomForest implementation will only allow for a single predictor,
the gbm implementation can deal with any subset of the predictor space. Partial dependence functions
are not restricted to tree-based models; they can be applied to any supervised learning algorithm
(e.g., generalized additive models and neural networks). However, to our knowledge, there is no
general package for constructing PDPs in R. For example, PDPs for a conditional random forest as
implemented by the cforest function in the party and partykit packages; see Hothorn et al. (2017)
and Hothorn and Zeileis (2016), respectively. The pdp (Greenwell, 2017) package tries to close this gap
by offering a general framework for constructing PDPs that can be applied to several classes of fitted
models.

The plotmo package (Milborrow, 2017b) is one alternative to pdp. According to Milborrow, plotmo
constructs "a poor man’s partial dependence plot." In particular, it plots a model’s response when
varying one or two predictors while holding the other predictors in the model constant (continuous
features are fixed at their median value, while factors are held at their first level). These plots allow for
up to two variables at a time. They are also less accurate than PDPs, but are faster to construct. For
additive models (i.e., models with no interactions), these plots are identical in shape to PDPs. As of
plotmo version 3.3.0, there is now support for constructing PDPs, but it is not the default. The main
difference is that plotmo, rather than applying step 1. (a)-(c) in Algorithm 1, accumulates all the data
at once thereby reducing the number of internal calls to predict. The trade-off is a slight increase in
speed at the expense of using more memory. So, why use the pdp package? As will be discussed in
the upcoming sections, pdp:

• contains only a few functions with relatively few arguments;

• does not produce a plot by default;

• can be used more efficiently with "gbm" objects (see Section X.2.4);

• produces graphics based on lattice (Sarkar, 2008), which are more flexible than base R graphics;

• defaults to using false color level plots for multivariate displays (see Section X.2.2);

• contains options to mitigate the risks associated with extrapolation (see Section X.2.4);

• has the option to display progress bars (see Section X.2.4);

• has the option to construct PDPs in parallel (see Section X.2.4);

• is extremely flexible in the types of PDPs that can be produced (see Section X.2.6),

PDPs can be misleading in the presence of substantial interactions (Goldstein et al., 2015). To
overcome this issue Goldstein, Kapelner, Bleich, and Pitkin developed the concept of individual
conditional expectation (ICE) plots—available in the ICEbox package. ICE plots display the estimated
relationship between the response and a predictor of interest for each observation. Consequently, the
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PDP for a predictor of interest can be obtained by averaging the corresponding ICE curves across
all observations. In Section X.2.6, it is shown how to obtain ICE curves using the pdp package. It is
also possible to display the PDP for a single predictor with ICEbox; see ?ICEbox::plot.ice for an
example. ICEbox only allows for one variable at a time (i.e., no multivariate displays), though color
can be used effectively to display information about an additional predictor. The ability to construct
centered ICE (c-ICE) plots and derivative ICE (d-ICE) plots is also available in ICEbox; c-ICE plots
help visualize heterogeneity in the modeled relationship between observations, and d-ICE plots help
to explore interaction effects.

Many other techniques exist for visualizing relationships between the predictors and the response
based on a fitted model. For example, the car package (Fox and Weisberg, 2011) contains many
functions for constructing partial-residual and marginal-model plots. Effect displays , available in the
effects package (Fox, 2003), provide tabular and graphical displays for the terms in parametric models
while holding all other predictors at some constant value—similar in spirit to plotmo’s marginal
model plots. However, these methods were designed for simpler parametric models (e.g., linear and
generalized linear models), whereas plotmo, ICEbox, and pdp are more useful for black box models
(although, they can be used for simple parametric models as well).

Constructing PDPs in R

The pdp package is useful for constructing PDPs for many classes of fitted models in R. PDPs are
especially useful for visualizing the relationships discovered by complex machine learning algorithms
such as a random forest. The latest stable release is available from CRAN. The development ver-
sion is located on GitHub: https://github.com/bgreenwell/pdp. Bug reports and suggestions are
appreciated and should be submitted to https://github.com/bgreenwell/pdp/issues. The two most
important functions exported by pdp are:

• partial

• plotPartial

The partial function evaluates the partial dependence (3) from a fitted model over a grid of pre-
dictor values; the fitted model and predictors are specified using the object and pred.var arguments,
respectively—these are the only required arguments. If plot = FALSE (the default), partial returns
an object of class "partial" which inherits from the class "data.frame"; put another way, by default,
partial returns a data frame with an additional class that is recognized by the plotPartial function.
The columns of the data frame are labeled in the same order as the features supplied to pred.var, and
the last column is labeled yhat1 and contains the values of the partial dependence function f̄s (zs). If
plot = TRUE, then partial makes an internal call to plotPartial (with fewer plotting options) and
returns the PDP in the form of a lattice plot (i.e., a "trellis" object). Note: it is recommended to call
partial with plot = FALSE and store the results; this allows for more flexible plotting, and the user
will not have to waste time calling partial again if the default plot is not sufficient.

The plotPartial function can be used for displaying more advanced PDPs; it operates on objects
of class "partial" and has many useful plotting options. For example, plotPartial makes it straight
forward to add a LOESS smooth, or produce a 3-D surface instead of a false color level plot (the
default). Of course, since the default output produced by partial is still a data frame, the user can
easily use any plotting package he/she desires to visualize the results—ggplot2 (Wickham, 2009), for
instance (see Section X.2.5 and Section X.2.6 for examples).

Note: as mentioned above, pdp relies on lattice for its graphics. lattice itself is built on top of grid
(R Core Team, 2017). grid graphics behave a little differently than traditional R graphics, and two
points are worth making (see ?lattice for more details):

1. lattice functions return a "trellis" object, but do not display it; the print method produces the
actual display. However, due to R’s automatic printing rule, the result is automatically printed
when using these functions in the command line. If plotPartial is called inside of source or
inside a loop (e.g., for or while), an explicit print statement is required to display the resulting
graph; hence, the same is true when using partial with plot = TRUE.

2. Setting graphical parameters via par typically has no effect on lattice plots. Instead, lattice
provides its own trellis.par.set function for modifying graphical parameters.

A consequence of the second point is that the par function cannot be used to control the layout of
multiple lattice (and hence pdp) plots. Simple solutions are available in packages latticeExtra (Sarkar
and Andrews, 2016) and gridExtra (Auguie, 2016). For convenience, pdp imports the grid.arrange

1There is one exception to this. When a function supplied via the pred.fun argument returns multiple predic-
tions, the second to last and last columns will be labeled yhat and yhat.id, respectively (see Section X.2.6).
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function from gridExtra which makes it easy to display multiple grid-based graphical objects on
a single plot (these include graphics produced using lattice (hence, pdp) and ggplot2). This is
demonstrated in multiple examples throughout this paper.

Currently supported models are described in Table 1. In these cases, the user does not need to
supply a prediction function (more on this in Section X.2.6) or a value for the type argument (i.e.,
"regression" or "classification"). In other situations, the user may need to specify one or both of
these arguments. This allows partial to be flexible enough to handle many of the model types not
listed in Table 1; for example, neural networks from the nnet package (Venables and Ripley, 2002).

Type of model R package Object class

Decision tree C50 (Kuhn et al., 2015) "C5.0"
party "BinaryTree"
partykit "party"
rpart (Therneau et al., 2017) "rpart"

Bagged decision trees adabag (Alfaro et al., 2013) "bagging"
ipred (Peters and Hothorn, 2017) "classbagg",

"regbagg"
Boosted decision trees adabag (Alfaro et al., 2013) "boosting"

gbm "gbm"
xgboost "xgb.Booster"

Cubist Cubist (Kuhn et al., 2016) "cubist"
Discriminant analysis MASS (Venables and Ripley, 2002) "lda", "qda"
Generalized linear model stats "glm", "lm"
Linear model stats "lm"
Nonlinear least squares stats "nls"
Multivariate adaptive re-
gression splines (MARS)

earth (Milborrow, 2017a) "earth"

mda (Leisch et al., 2016) "mars"
Projection pursuit regres-
sion

stats "ppr"

Random forest randomForest "randomForest"
party "RandomForest"
partykit "cforest"
ranger (Wright, 2017) "ranger"

Support vector machine e1071 (Meyer et al., 2017) "svm"
kernlab (Karatzoglou et al., 2004) "ksvm"

Table 1: Models specifically supported by the pdp package. Note: for some of these cases, the user
may still need to supply additional arguments in the call to partial.

The partial function also supports objects of class "train" produced using the train function
from the well-known caret package (Kuhn, 2017). This means that partial can be used with any classi-
fication or regression model that has been fit using caret’s train function; see http://topepo.github.
io/caret/available-models.html for a current list of models supported by caret. An example is
given in Section X.2.7.

Another important argument to partial is train. If train = NULL (the default), partial tries
to extract the original training data from the fitted model object. For objects that typically store a
copy of the training data (e.g., objects of class "BinaryTree", "RandomForest", and "train"), this is
straightforward. Otherwise, partial will attempt to extract the call stored in object (if available) and
use that to evaluate the training data in the same environment from which partial was called. This
can cause problems when, for example, the training data have been changed after fitting the model,
but before calling partial. Hence, it is good practice to always supply the training data via the train
argument in the call to partial2. If train = NULL and the training data can not be extracted from
the fitted model, the user will be prompted with an informative error message (this will occur, for
example, when using partial with "ksvm" and "xgb.Booster" objects):

Error: The training data could not be extracted from object. Please supply
the raw training data using the `train` argument in the call to `partial`.

2For brevity, we ignore this option in most of the examples in this paper.
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For illustration, we will use a corrected version of the Boston housing data analyzed in Harrison
and Rubinfeld (1978); the data are available in the pdp package (see ?pdp::boston for details). We
begin by loading the data and fitting a random forest with default tuning parameters and 500 trees:

data(boston, package = "pdp") # load the (corrected) Boston housing data
library(randomForest) # for randomForest, partialPlot, and varImpPlot functions
set.seed(101) # for reproducibility
boston.rf <- randomForest(cmedv ~ ., data = boston, importance = TRUE)
varImpPlot(boston.rf) # Figure 1

The model fit is reasonable, with an out-of-bag (pseudo) R2 of 0.89. The variable importance scores are
displayed in Figure 1. Both plots indicate that the percentage of lower status of the population (lstat)
and the average number of rooms per dwelling (rm) are highly associated with the median value of
owner-occupied homes (cmedv). The question then arises, "What is the nature of these associations?"
To help answer this, we can look at the partial dependence of cmedv on lstat and rm, both individually
and together.
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Figure 1: Dotchart of variable importance scores for the Boston housing data based on a random forest
with 500 trees.

Single predictor PDPs

As previously mentioned, the randomForest package has its own partialPlot function for visualizing
the partial dependence of the response on a single predictor—the keywords here are "single predictor".
For example, the following snippet of code plots the partial dependence of cmedv on lstat:

partialPlot(boston.rf, pred.data = boston, x.var = "lstat")

The same plot can be achieved using the partial function and setting plot = TRUE (see the left side of
Figure 2):

library(pdp) # for partial, plotPartial, and grid.arrange functions
partial(boston.rf, pred.var = "lstat", plot = TRUE) # Figure 2 (left)

The only difference is that pdp uses the lattice graphics package to produce all of its displays.

For a more customizable plot, we can set plot = FALSE in the call to partial and then use the
plotPartial function on the resulting data frame. This is illustrated in the example below which
increases the line width, adds a LOESS smooth, and customizes the y-axis label. The result is displayed
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in the right side of Figure 2. Note: to encourage writing more readable code, the pipe operator %>%
provided by the magrittr package (Bache and Wickham, 2014) is exported whenever pdp is loaded.

# Figure 2 (right)
boston.rf %>% # the %>% operator is read as "and then"
partial(pred.var = "lstat") %>%
plotPartial(smooth = TRUE, lwd = 2, ylab = expression(f(lstat)))
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Figure 2: Partial dependence of cmedv on lstat based on a random forest. Left: Default plot. Right:
Customized plot obtained using the plotPartial function.

Multi-predictor PDPs

The benefit of using partial is threefold: (1) it is a flexible, generic function that can be used to obtain
different kinds of PDPs for various types of fitted models (not just random forests), (2) it will allow
for any number of predictors to be used (e.g., multivariate displays), and (3) it can utilize any of the
parallel backends supported by the foreach package (Revolution Analytics and Weston, 2015c); we
discuss parallel execution in a later section. For example, the following code chunk uses the random
forest model to assess the joint effect of lstat and rm on cmedv. The grid.arrange function is used to
display three PDPs, which make use of various plotPartial options3, on the same graph. The results
are displayed in Figure 3.

# Compute partial dependence data for lstat and rm
pd <- partial(boston.rf, pred.var = c("lstat", "rm"))

# Default PDP
pdp1 <- plotPartial(pd)

# Add contour lines and use a different color palette
rwb <- colorRampPalette(c("red", "white", "blue"))
pdp2 <- plotPartial(pd, contour = TRUE, col.regions = rwb)

# 3-D surface
pdp3 <- plotPartial(pd, levelplot = FALSE, zlab = "cmedv", drape = TRUE,

colorkey = TRUE, screen = list(z = -20, x = -60))

# Figure 3
grid.arrange(pdp1, pdp2, pdp3, ncol = 3)

Note: the default color map for level plots is the color blind-friendly matplotlib (Hunter, 2007) ’viridis’
color map provided by the viridis package (Garnier, 2017).

3See Section X.2.4 for an example of how to add a label to the colorkey in these types of graphs.
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Figure 3: Partial dependence of cmedv on lstat and rm based on a random forest. Left: Default plot.
Middle: With contour lines and a different color palette. Right: Using a 3-D surface.

Avoiding extrapolation

It is not wise to draw conclusions from PDPs in regions outside the area of the training data. Here
we describe two ways to mitigate the risk of extrapolation in PDPs: rug displays and convex hulls.
Rug displays are one-dimensional plots added to the axes. Both partial and plotPartial have a rug
option that, when set to TRUE, will display the deciles of the distribution (as well as the minimum and
maximum values) for the predictors on the horizontal and vertical axes. The following snippet of code
produces the left display in Figure 4.

# Figure 4 (left)
partial(boston.rf, pred.var = "lstat", plot = TRUE, rug = TRUE)

In two or more dimensions, plotting the convex hull is more informative; it outlines the region of
the predictor space that the model was trained on. When chull = TRUE, the convex hull of the first
two dimensions of zs (i.e., the first two variables supplied to pred.var) is computed; for example, if
you set chull = TRUE in the call to partial only the region within the convex hull of the first two
variables is plotted. Over interpreting the PDP outside of this region is considered extrapolation and
is ill-advised. The right display in Figure 4 was produced using:

# Figure 4 (right)
partial(boston.rf, pred.var = c("lstat", "rm"), plot = TRUE, chull = TRUE)
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Figure 4: Examples of PDPs with the addition of a rug display (left) and a convex hull (right).
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Addressing computational concerns

Constructing PDPs can be quite computationally expensive4 Several strategies are available to ease
the computational burden in larger problems. For example, there is no need to compute partial
dependence of cmedv using each unique value of rm in the training data (which would require k = 446
passes over the data!). We could get very reasonable results using a reduced number of points. Current
options are to use a grid of equally spaced values in the range of the variable of interest; the number
of points can be controlled using the grid.resolution option in the call to partial. Alternatively, a
user-specified grid of values (e.g., containing specific quantiles of interest) can be supplied through the
pred.grid argument. To demonstrate, the following snippet of code computes the partial dependence
of cmedv on rm using each option; grid.arrange is used to display all three PDPs on the same graph,
side by side. The results are displayed in Figure 5.

# Figure 5
grid.arrange(
partial(boston.rf, "rm", plot = TRUE),
partial(boston.rf, "rm", grid.resolution = 30, plot = TRUE),
partial(boston.rf, "rm", pred.grid = data.frame(rm = 3:9), plot = TRUE),
ncol = 3

)
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Figure 5: Partial dependence of cmedv on rm. Left: Default plot. Middle: Using a reduced grid size.
Right: Using a user-specified grid.

The partial function relies on the plyr package (Wickham, 2011), rather than R’s built-in for
loops. This makes it easy to request progress bars (e.g., progress = "text") or run partial in parallel.
In fact, partial can use any of the parallel backends supported by the foreach package. To use this
functionality, we must first load and register a supported parallel backend [e.g., doMC (Revolution
Analytics and Weston, 2015a) or doParallel (Revolution Analytics and Weston, 2015b)].

To illustrate, we will use the Los Angeles ozone pollution data described in Breiman and Fried-
man (1985). The data contain daily measurements of ozone concentration (ozone) along with eight
meteorological quantities for 330 days in the Los Angeles basin in 1976.5 The following code chunk
loads the data into R:

ozone <- read.csv(paste0("http://statweb.stanford.edu/~tibs/ElemStatLearn/",
"datasets/LAozone.data"), header = TRUE)

Next, we use the multivariate adaptive regression splines (MARS) algorithm introduced in Fried-
man (1991) to model ozone concentration as a nonlinear function of the eight meteorological variables
plus day of the year; we allow for up to three-way interactions.

library(earth) # for earth function (i.e., MARS algorithm)
ozone.mars <- earth(ozone ~ ., data = ozone, degree = 3)
summary(ozone.mars)

The MARS model produced a generalized R2 of 0.79, similar to what was reported in Breiman and
Friedman (1985). A single three-way interaction was found involving the predictors

4The exception is regression trees based on single-variable splits which can make use of the efficient weighted
tree traversal method described in Friedman (2001), however, only the gbm package seems to make use of this
approach; consequently, pdp can also exploit this strategy when used with gbm models (see ?partial for details).

5The data are available from http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/LAozone.data.
Details, including variable information, are available from http://statweb.stanford.edu/~tibs/ElemStatLearn/
datasets/LAozone.info.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=plyr
https://CRAN.R-project.org/package=doMC
https://CRAN.R-project.org/package=doParallel
http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/LAozone.data
http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/LAozone.info
http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/LAozone.info


CONTRIBUTED RESEARCH ARTICLES 429

• wind: wind speed (mph) at Los Angeles International Airport (LAX)

• temp: temperature (oF) at Sandburg Air Force Base

• dpg: the pressure gradient (mm Hg) from LAX to Dagget, CA

To understand this interaction, we can use a PDP. However, since the partial dependence between
three continuous variables can be computationally expensive, we will run partial in parallel.

Setting up a parallel backend is rather straightforward. To demonstrate, the following snippet of
code sets up the partial function to run in parallel on both Windows and Unix-like systems using the
doParallel package.

library(doParallel) # load the parallel backend
cl <- makeCluster(4) # use 4 workers
registerDoParallel(cl) # register the parallel backend

Now, to run partial in parallel, all we have to do is invoke the parallel = TRUE and paropts options
and the rest is taken care of by the internal call to plyr and the parallel backend we loaded6. This
is illustrated in the code chunk below which obtains the partial dependence of ozone on wind, temp,
and dpg in parallel. The last three lines of code add a label to the colorkey. The result is displayed in
Figure 6. Note: it is considered good practice to shut down the workers by calling stopCluster when
finished.

partial(ozone.mars, pred.var = c("wind", "temp", "dpg"), plot = TRUE,
chull = TRUE, parallel = TRUE, paropts = list(.packages = "earth")) # Figure 6

stopCluster(cl) # good practice

# Add a label to the colorkey
lattice::trellis.focus("legend", side = "right", clipp.off = TRUE, highlight = FALSE)
grid::grid.text("ozone", x = 0.2, y = 1.05, hjust = 0.5, vjust = 1)
lattice::trellis.unfocus()
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Figure 6: Partial dependence of ozone on wind, temp, and dpg. Since dpg is continuous, it is first
converted to a shingle; in this case, four groups with 10% overlap.

It is important to note that when using more than two predictor variables, plotPartial produces
a trellis display. The first two variables given to pred.var are used for the horizontal and vertical axes,
and additional variables define the panels. If the panel variables are continuous, then shingles7 are
produced first using the equal count algorithm (see, for example, ?lattice::equal.count). Hence, it
will be more effective to use categorical variables to define the panels in higher dimensional displays
when possible.

6Notice we have to pass the names of external packages that the tasks depend on via the paropts argument; in
this case, "earth". See ?plyr::adply for details.

7A shingle is a special Trellis data structure that consists of a numeric vector along with intervals that define the
"levels" of the shingle. The intervals may be allowed to overlap.
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Classification problems

Traditionally, for classification problems, partial dependence functions are on a scale similar to the
logit; see, for example, Hastie et al. (2009, pp. 369—370). Suppose the response is categorical with K
levels, then for each class we compute

fk(x) = log [pk(x)]− 1
K

K

∑
k=1

log [pk(x)] , k = 1, 2, . . . , K, (4)

where pk(x) is the predicted probability for the k-th class. Plotting fk(x) helps us understand how the
log-odds for the k-th class depends on different subsets of the predictor variables.

To illustrate, we consider Edgar Anderson’s iris data from the datasets package. The iris data
frame contains the sepal length, sepal width, petal length, and petal width (in centimeters) for 50
flowers from each of three species of iris: setosa, versicolor, and virginica. We fit a support vector
machine with a Gaussian radial basis function kernel to the data using the svm function in the e1071
package (the tuning parameters were determined using 5-fold cross-validation).

library(e1071) # for svm function
iris.svm <- svm(Species ~ ., data = iris, kernel = "radial", gamma = 0.75,

cost = 0.25, probability = TRUE)

Note: the partial function has to be able to extract the predicted probabilities for each class, so it is
necessary to set probability = TRUE in the call to svm.

Next, we plot the partial dependence of Species on both Petal.Width and Petal.Length for each
of the three classes. The result is displayed in Figure 7.

pd <- NULL
for (i in 1:3) {
tmp <- partial(iris.svm, pred.var = c("Petal.Width", "Petal.Length"),

which.class = i, grid.resolution = 101, progress = "text")
pd <- rbind(pd, cbind(tmp, Species = levels(iris$Species)[i]))

}

# Figure 7
library(ggplot2)
ggplot(pd, aes(x = Petal.Width, y = Petal.Length, z = yhat, fill = yhat)) +
geom_tile() +
geom_contour(color = "white", alpha = 0.5) +
scale_fill_distiller(name = "Centered\nlogit", palette = "Spectral") +
theme_bw() +
facet_grid(~ Species)
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Figure 7: Partial dependence of Species on Petal.Width and Petal.Length for the iris data.

User-defined prediction functions

PDPs are essentially just averaged predictions; this is apparent from step 1. (c) in Algorithm 1.
Consequently, as pointed out by Goldstein et al. (2015), strong heterogeneity can conceal the complexity
of the modeled relationship between the response and predictors of interest. This was part of the
motivation behind Goldstein, Kapelner, Bleich, and Pitkin’s ICE plot procedure.
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With partial it is possible to replace the mean in step 1. (c) of Algorithm 1 with any other function
(e.g., the median or trimmed mean), or obtain PDPs for classification problems on the probability
scale. It is even possible to obtain ICE curves. This flexibility is due to the new pred.fun argument in
partial (starting with pdp version 0.4.0). This argument accepts an optional prediction function that
requires two arguments: object and newdata. The supplied prediction function must return either a
single prediction or a vector of predictions. Returning the mean of all the predictions will result in the
traditional PDP. Returning a vector of predictions (i.e., one for each observation) will result in a set of
ICE curves. The examples below illustrate.

Using the pred.fun argument, it is possible to obtain PDPs for classification problems on the
probability scale. We just need to write a function that computes the predicted class probability of
interest averaged across all observations. The function below can be used with the fitted SVM from
the iris example of Section X.2.5 to extract the average predicted probability of belonging to the Setosa
class.

pred.prob <- function(object, newdata) { # see ?predict.svm
pred <- predict(object, newdata, probability = TRUE)
prob.setosa <- attr(pred, which = "probabilities")[, "setosa"]
mean(prob.setosa)

}

Next, we simply pass this function via the pred.fun argument in the call to partial. The following
chunk of code uses pred.prob to obtain PDPs for Petal.Width and Petal.Length on the probability
scale. The results are displayed in Figure 8.

# PDPs for Petal.Width and Petal.Length on the probability scale
pdp.pw <- partial(iris.svm, pred.var = "Petal.Width", pred.fun = pred.prob,

plot = TRUE)
pdp.pl <- partial(iris.svm, pred.var = "Petal.Length", pred.fun = pred.prob,

plot = TRUE)
pdp.pw.pl <- partial(iris.svm, pred.var = c("Petal.Width", "Petal.Length"),

pred.fun = pred.prob, plot = TRUE)

# Figure 8
grid.arrange(pdp.pw, pdp.pl, pdp.pw.pl, ncol = 3)
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Figure 8: Partial dependence of Species on Petal.Width and Petal.Length plotted on the probability
scale; in this case, the probability of belonging to the setosa species.

For regression problems, the default prediction function is essentially

pred.fun <- function(object, newdata) {
mean(predict(object, newdata), na.rm = TRUE)

}

This corresponds to step step 1. (c) in Algorithm 1. Suppose we would like ICE curves instead. To
accomplish this we need to pass a prediction function that returns a vector of predictions, one for
each observation in newdata (i.e., just remove the call to mean in pred.fun). The code snippet below
illustrates this for the Boston housing example using the predictor rm. The result is displayed in
Figure 9. Note: when the function supplied to pred.fun returns multiple predictions, the data frame
returned by partial includes an additional column, yhat.id, that indicates which curve a point
belongs to; in the following code chunk, there will be one curve for each observation in boston.

# Use partial to obtain ICE curves
pred.ice <- function(object, newdata) predict(object, newdata)
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rm.ice <- partial(boston.rf, pred.var = "rm", pred.fun = pred.ice)

# Figure 9
plotPartial(rm.ice, rug = TRUE, train = boston, alpha = 0.3)
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Figure 9: ICE curves depicting the relationship between cmedv and rm for the Boston housing example.
Each curve corresponds to a different observation.

The curves in Figure 9 indicate some heterogeneity in the fitted model (i.e., some of the curves
depict the opposite relationship). Such heterogeneity can be easier to spot using c-ICE curves; see
Equation (4) on page 49 of Goldstein et al. (2015). Using dplyr (Wickham and Francois, 2016), it is
rather straightforward to post-process the output from partial to obtain c-ICE curves (similar to the
construction of raw change scores (Fitzmaurice et al., 2011, pg. 130) for longitudinal data). This is
shown below.

# Post-process rm.ice to obtain c-ICE curves
library(dplyr) # for group_by and mutate functions
rm.ice <- rm.ice %>%
group_by(yhat.id) %>% # perform next operation within each yhat.id
mutate(yhat.centered = yhat - first(yhat)) # so each curve starts at yhat = 0

Since the PDP is just the average of the corresponding ICE curves, it is quite simple to display
both on the same plot. This is easily accomplished using the stat_summary function from the ggplot2
package to average the ICE curves together. The code snippet below plots the ICE curves and c-ICE
curves, along with their averages, for the predictor rm in the Boston housing example. The results are
displayed in Figure 10.

# ICE curves with their average
p1 <- ggplot(rm.ice, aes(rm, yhat)) +
geom_line(aes(group = yhat.id), alpha = 0.2) +
stat_summary(fun.y = mean, geom = "line", col = "red", size = 1)

# c-ICE curves with their average
p2 <- ggplot(rm.ice, aes(rm, yhat.centered)) +
geom_line(aes(group = yhat.id), alpha = 0.2) +
stat_summary(fun.y = mean, geom = "line", col = "red", size = 1)

# Figure 10
grid.arrange(p1, p2, ncol = 2)
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Figure 10: ICE curves (black curves) and their average (red curve) depicting the relationship between
cmedv and rm for the Boston housing example. Left: Uncentered (here the red curve is just the traditional
PDP). Right: Centered.

Using partial with the XGBoost library

To round out our discussion, we provide one last example using a recently popular (and successful!)
machine learning tool. XGBoost, short for eXtreme Gradient Boosting, is a popular library providing
optimized distributed gradient boosting that is specifically designed to be highly efficient, flexible and
portable. The associated R package xgboost has been used to win a number of Kaggle competitions. It
has been shown to be many times faster than the well-known gbm package. However, unlike gbm,
xgboost does not have built-in functions for constructing PDPs. Fortunately, the pdp package can be
used to fill this gap.

For illustration, we return to the Boston housing example. The code chunk below uses caret to tune
an xgboost model using 10-fold cross-validation. (After loading caret, use getModelInfo("xgbTree")
for information on tuning xgboost models.) Warning: The following code chunk may take a few
minutes to run.

# Tune an XGBoost model using 10-fold cross-validation
library(caret) # functions related to classification and regression training
set.seed(202) # for reproducibility
boston.xgb <- train(x = data.matrix(subset(boston, select = -cmedv)),

y = boston$cmedv, method = "xgbTree", metric = "Rsquared",
trControl = trainControl(method = "cv", number = 10),
tuneLength = 10)

The optimal model had a cross-validated R2 of 0.902 (use print(boston.xgb$bestTune) to view the
optimum tuning parameters). The next snippet of code computes the partial dependence of cmedv on
both rm and lstat, individually and together. The results are displayed in Figure 11.

# PDPs for lstat and rm
pdp.lstat <- partial(boston.xgb, pred.var = "lstat", plot = TRUE, rug = TRUE)
pdp.rm <- partial(boston.xgb, pred.var = "rm", plot = TRUE, rug = TRUE)
pdp.lstat.rm <- partial(boston.xgb, pred.var = c("lstat", "rm"),

plot = TRUE, chull = TRUE)

# Figure 11
grid.arrange(pdp.lstat, pdp.rm, pdp.lstat.rm, ncol = 3)

The train function creates objects of class "train", whereas the xgboost function creates objects of
class "xgb.Booster". Since train defaults to storing a copy of the training data as part of the "train"
object, there is no need to supply it in the call to partial in this example. However, this is not the
case when using the xgboost package directly. To illustrate, we fit the same model using the xgboost
function with the optimum tuning parameters found previously using caret.

library(xgboost) # for xgboost function
set.seed(203) # for reproducibility
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Figure 11: PDPs for the top two most important variables in the Boston housing data using xgboost.
Compare this to the random forest results displayed in Figures 4-5.

boston.xgb <- xgboost(data = data.matrix(subset(boston, select = -cmedv)),
label = boston$cmedv, objective = "reg:linear",
nrounds = 100, max_depth = 5, eta = 0.3, gamma = 0,
colsample_bytree = 0.8, min_child_weight = 1,
subsample = 0.9444444)

To use partial with "xgb.Booster" objects, we need to supply the original training data (minus the
response) in the call to partial. The following snippet of code computes the partial dependence of
cmedv on rm (plot not shown). (Make sure you are using version 0.6-0 or later of xgboost: https://
github.com/dmlc/xgboost/tree/master/R-package.) Note: while xgboost requires the training data
to be an object of class "matrix", "dgCMatrix", or "xgb.DMatrix", partial requires a "data.frame"
that does not contain the response column.

partial(boston.xgb, pred.var = "rm", plot = TRUE, rug = TRUE,
train = subset(boston, select = -cmedv))

Summary

PDPs can be used to graphically examine the dependence of the response on low cardinality subsets
of the features, accounting for the average effect of the other predictors. In this paper, we showed how
to construct PDPs for various types of black box models in R using the pdp package. We also briefly
discussed related approaches available in other R packages. Suggestions to avoid extrapolation and
high execution times were discussed and demonstrated via examples.

This paper is based on pdp version 0.4.0. For updates that have occurred since then, see the
package’s NEWS file. In terms of future development, pdp can be expanded in a number of ways. For
example, it would be useful to have the ability to construct PDPs for black box survival models—like
conditional random forests with censored response. It would also be worthwhile to implement the
partial dependence-based H-statistic (Friedman and Popescu, 2008) for assessing the strength of
interaction between predictors.
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checkmate: Fast Argument Checks for
Defensive R Programming
by Michel Lang

Abstract Dynamically typed programming languages like R allow programmers to write generic,
flexible and concise code and to interact with the language using an interactive Read-eval-print-loop
(REPL). However, this flexibility has its price: As the R interpreter has no information about the
expected variable type, many base functions automatically convert the input instead of raising an
exception. Unfortunately, this frequently leads to runtime errors deeper down the call stack which
obfuscates the original problem and renders debugging challenging. Even worse, unwanted conver-
sions can remain undetected and skew or invalidate the results of a statistical analysis. As a resort,
assertions can be employed to detect unexpected input during runtime and to signal understandable
and traceable errors. The package checkmate provides a plethora of functions to check the type and
related properties of the most frequently used R objects and variable types. The package is mostly
written in C to avoid any unnecessary performance overhead. Thus, the programmer can conveniently
write concise, well-tested assertions which outperforms custom R code for many applications. Fur-
thermore, checkmate simplifies writing unit tests using the framework testthat (Wickham, 2011) by
extending it with plenty of additional expectation functions, and registered C routines are available
for package developers to perform assertions on arbitrary SEXPs (internal data structure for R objects
implemented as struct in C) in compiled code.

Defensive programming in R

Most dynamic languages utilize a weak type system where the type of variable must not be declared,
and R is no exception in this regard. On the one hand, a weak type system generally reduces the code
base and encourages rapid prototyping of functions. On the other hand, in comparison to strongly
typed languages like C/C++, errors in the program flow are much harder to detect. Without the type
information, the R interpreter just relies on the called functions to handle their input in a meaningful
way. Unfortunately, many of R’s base functions are implemented with the REPL in mind. Thus, instead
of raising an exception, many functions silently try to auto-convert the input. E.g., instead of assuming
that the input NULL does not make sense for the function mean(), the value NA of type numeric is
returned and additionally a warning message is signaled. While this behaviour is acceptable for
interactive REPL usage where the user can directly react to the warning, it is highly unfavorable in
packages or non-interactively executed scripts. As the generated missing value is passed to other
functions deeper down the call stack, it will eventually raise an error. However, the error will be
reported in a different context and associated with different functions and variable names. The link to
origin of the problem is missing and debugging becomes much more challenging. Furthermore, the
investigation of the call stack with tools like traceback() or browser() can result in an overwhelming
number of steps and functions. As the auto-conversions cascade nearly unpredictably (as illustrated
in Table 1), this may lead to undetected errors and thus to misinterpretation of the reported results.

Return value of
Input mean(x) median(x) sin(x) min(x)

numeric(0) NaN NA numeric(0) Inf (w)
character(0) NA_real_ (w) NA_character_ [exception] NA_character_ (w)
NA NA_real_ NA NA_real_ NA_integer_
NA_character_ NA_real_ (w) NA_character_ [exception] NA_character_
NaN NaN NA NaN NaN
NULL NA (w) NULL (w) [exception] Inf (w)

Table 1: Input and output for some simple mathematical functions from the base package (R-3.4.0).
Outputs marked with “(w)” have issued a warning message.

As a final motivating example, consider the following function which uses the base functions
diff() and range() to calculate the range r = xmax − xmin of a numerical input vector x:

myrange <- function(x) {
diff(range(x))

}
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This function is expected to return a single numerical value, e.g. myrange(1:10) returns 9. However,
the calls myrange(NULL) and myrange(integer(0)) also return such an unsuspicious, single numeric
value: -Inf. Both calls signal warnings, but warnings can rather easily be overlooked and are hard to
track down. It would arguably be much better to directly get an error message informing the user that
something unintended is happening. In the worst case the warnings do not surface and – if this piece
of code is embedded in a larger analysis – wrong conclusions are drawn.

The described problems lead to a concept called “defensive programming” where the programmer
is responsible for manually checking function arguments. Reacting to unexpected input as soon
as possible by signaling errors instantaneously with a helpful error message is the key aspect of
this programming paradigm. A similar concept is called “design by contract” which demands the
definition of formal, precise and verifiable input and in return guarantees a sane program flow if all
preconditions hold. For myrange(), it would be necessary to insist that x is a numeric vector with
at least one element to ensure a meaningful result. Additionally, missing values must be dealt with,
either by completely prohibit them or by ensuring a meaningful return value. The package checkmate
assists the programmer in writing such assertions in a concise way for the most important R variable
types and objects. For myrange(), adding the line

assertNumeric(x, min.len = 1, any.missing = FALSE)

would be sufficient to ensure a sane program flow.

Related work

Many packages contain custom code to perform argument checks. These either rely on (a) the base
function stopifnot() or (b) hand-written cascades of if-else blocks containing calls to stop().
Option (a) can be considered a quick hack because the raised error messages lack helpful details or
instructions for the user. Option (b) is the natural way of doing argument checks in R but quickly
becomes tedious. For this reason many packages have their own functions included, but there are also
some packages on CRAN whose sole purpose are argument checks.

The package assertthat (Wickham, 2017) provides the “drop-in replacement” assert_that() for
R’s stopifnot() while generating more informative help messages. This is achieved by evaluating the
expression passed to the function assert_that() in an environment where functions and operators
from the base package (e.g. as.numeric() or `==`) are overloaded by more verbose counterparts. E.g.,
to check a variable to be suitable to pass to the log() function, one would require a numeric vector
with all positive elements and no missing values:

assert_that(is.numeric(x), length(x) > 0, all(!is.na(x)), all(x >= 0))

For example, the output of the above statement for the input c(1,NA,3) reads "Error: Elements 2
of !is.na(x) are not true". Additionally, assertthat offers some additional convenience functions
like is.flag() to check for single logical values or has_name() to check for presence of specific names.
These functions also prove useful if used with see_if() instead of assert_that() which turns the
passed expression into a predicate function returning a logical value.

The package assertive (Cotton, 2016) is another popular package for argument checks. Its func-
tionality is split over 16 packages containing over 400 functions, each specialized for a specific class of
assertions: For instance, assertive.numbers specializes on checks of numbers and assertive.sets offers
functions to work with sets. The functions are grouped into functions starting with is_ for predicate
functions and functions starting with assert_ to perform stopifnot()-equivalent operations. The
author provides a “checklist of checks” as package vignette to assist the user in picking the right
functions for common situations like checks for numeric vectors or for working with files. Picking up
the log() example again, the input check with assertive translates to:

assert_is_numeric(x)
assert_is_non_empty(x)
assert_all_are_not_na(x)
assert_all_are_greater_than_or_equal_to(x, 0)

The error message thrown by the first failing assertion for the input c(1,NA,3) reads "is_not_na
: The values of x are sometimes NA.". Additionally, a data.frame is printed giving detailed
information about “bad values”:

There was 1 failure:
Position Value Cause

1 2 NA missing
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Moreover, the package assertr (Fischetti, 2016) focuses on assertions for magrittr (Bache and
Wickham, 2014) pipelines and data frame operations in dplyr (Wickham and Francois, 2016), but is
not intended for generic runtime assertions.

The checkmate package

Design goals

The package has been implemented with the following goals in mind:

Runtime To minimize any concern about the extra computation time required for assertions, most
functions directly jump into compiled code to perform the assertions directly on the SEXPs. The
functions also have been extensively optimized to first perform inexpensive checks in order to
be able to skip the more expensive ones.

Memory In many domains the user input can be rather large, e.g. long vectors and high dimensional
matrices are common in text mining and bioinformatics. Basic checks, e.g. for missingness, are
already quite time consuming, but if intermediate objects of the same dimension have to be
created, runtimes easily get out of hand. For example, any(x < 0) with x being a large numeric
matrix internally first allocates a logical matrix tmp with the same dimensions as x. The matrix
tmp is then passed in a second step to any() which aggregates the logical matrix to a single
logical value and tmp is marked to be garbage collected. Besides a possible shortage of available
memory, which may cause the machine to swap or the R interpreter to terminate, runtime is
wasted with unnecessary memory management. checkmate solves this problem by looping
directly over the elements and thereby avoiding any intermediate objects.

Code completion The package aims to provide a single function for all frequently used R objects
and their respective characteristics and attributes. This way, the built-in code completion of
advanced R editors assist in finding the suitable further restrictions. For example, after typing
the function name and providing the object to check ("assertNumeric(x,"), many editors look
up the function and suggest additional function arguments via code completion. In this example,
checks to restrict the length, control the missingness or setting lower and upper bounds are
suggested. These suggestions are restrictions on x specific for the respective base type (numeric).
Such context-sensitive assistance helps writing more concise assertions.

The focus on runtime and memory comes at the price of error messages being less informative
in comparison to assertthat or assertive. Picking up the previous example with input c(1,NA,3),
checkmate’s assertNumeric(x,any.missing = FALSE,lower = 0) immediately raises an exception
as soon as the NA is discovered at position 2. The package refrains from reporting an incomplete
list of positions of missing values, instead the error message just reads "Assertion on 'x' failed:
Contains missing values.". Thus, the implementations in assertive or assertr are better suited to
find bad values in data and especially in data frames. checkmate is designed to amend functions with
quick assertions in order to ensure a sane program flow. Nevertheless, the provided information is
sufficient to quickly locate the error and start investigations with the debugging tools provided by R.

Naming scheme

The core functions of the package follow a specific naming scheme: The first part (prefix) of a function
name determines the action to perform w.r.t. the outcome of the respective check while the second
part of a function name (suffix) determines the base type of the object to check. The first argument of
all functions is always the object x to check and further arguments specify additional restrictions on x.

Prefixes

There are currently four families of functions, grouped by their prefix, implemented in checkmate:

assert* Functions prefixed with “assert” throw an exception if the corresponding check fails and the
checked object is returned invisibly on success. This family of functions is suitable for many
different tasks. Besides argument checks of user input, this family of functions can also be used
as a drop-in replacement for stopifnot() in unit tests using the internal test mechanism of R as
described in Writing R Extensions (R Core Team, 2016), Subsection 1.1.5. Furthermore, as the
object to check is returned invisibly, the functions can also be used inside magrittr pipelines.

test* Functions prefixed with “test” are predicate functions which return TRUE if the respective check
is successful and FALSE otherwise. This family of functions is best utilized if different checks
must be combined in a non-trivial manner or custom error messages are required.
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expect* Functions prefixed with “expect” are intended to be used together with testthat (Wickham,
2011): the check is translated to an expectation which is then forwarded to the active testthat
reporter. This way, checkmate extends the facilities of testthat with dozens of powerful helper
functions to write efficient and comprehensive unit tests. Note that testthat is an optional
dependency and the expect-functions only work if testthat is installed. Thus, to use checkmate
as an testthat extension, checkmate must be listed in Suggests or Imports of a package.

check* Functions prefixed with “check” return the error message as a string if the respective check
fails, and TRUE otherwise. Functions with this prefix are the workhorses called by the “assert”,
“test” and “expect” families of functions and prove especially useful to implement custom
assertions. They can also be used to collect error messages in order to generate reports of
multiple check violations at once.

The prefix and the suffix can be combined in both “camelBack” and “underscore_case” fash-
ion. In other words, checkmate offers all functions with the “assert”, “test” and “check” prefix in
both programming style flavors: assert_numeric() is a synonym for assertNumeric() the same way
testDataFrame() can be used instead of test_data_frame(). By supporting the two most predom-
inant coding styles for R, most programmers can stick to their favorite style while implementing
runtime assertions in their packages.

Suffixes

While the prefix determines the action to perform on a successful or failed check, the second part of
each function name defines the base type of the first argument x, e.g. integer, character or matrix.
Additional function arguments restrict the object to fulfill further properties or attributes.

Atomics and Vectors The most important built-in atomics are supported via the suffixes *Logical,
*Numeric, *Integer, *Complex, *Character, *Factor, and *List (strictly speaking, “numeric” is not an
atomic type but a naming convention for objects of type integer or double). Although most operations
that work on real values also are applicable to natural numbers, the contrary is often not true. Therefore
numeric values frequently need to be converted to integer, and *Integerish ensures a conversion
without surprises by checking double values to be “nearby” an integer w.r.t. a machine-dependent
tolerance. Furthermore, the object can be checked to be a vector, an atomic or an atomic vector (a
vector, but not NULL).

All functions can optionally test for missing values (any or all missing), length (exact, minimum
and maximum length) as well as names being (a) not present, (b) present and not NA/empty, (c) present,
not NA/empty and unique, or (d) present, not NA/empty, unique and additionally complying to R’s
variable naming scheme. There are more type-specific checks, e.g. bound checks for numerics or
regular expression matching for characters. These are documented in full detail in the manual.

Scalars Atomics of length one are called scalars. Although R does not differentiate between scalars
and vectors internally, scalars deserve particular attention in assertions as arguably most function
arguments are expected to be scalar. Although scalars can also be checked with the functions that work
on atomic vectors and additionally restricting to length 1 via argument len, checkmate provides some
useful abbreviations: *Flag for logical scalars, *Int for an integerish value, *Count for a non-negative
integerish values, *Number for numeric scalars and *String for scalar character vectors. Missing values
are prohibited for all scalar values by default as scalars are usually not meant to hold data where
missingness occurs naturally (but can be allowed explicitly via argument na.ok). Again, additional
type-specific checks are available which are described in the manual.

Compound types The most important compound types are matrices/arrays (vectors of type logical,
numeric or character with attribute dim) and data frames (lists with attribute row.names and class
data.frame storing atomic vectors of same length). The package also includes checks for the popular
data.frame alternatives data.table (Dowle et al., 2017) and tibble (Wickham et al., 2017). Some
checkable characteristics conclude the internal type(s), missingness, dimensions or dimension names.

Miscellaneous On top of the already described checks, there are functions to work with sets
(*Subset, *Choice and *SetEqual), environments (*Environment) and objects of class “Date” (*Date).
The *Function family checks R functions and its arguments and *OS allows to check if R is running on
a specific operating system. The functions *File and *Directory test for existence and access rights of
files and directories, respectively. The function *PathForOutput allows to check whether a directory
can be used to store files in it. Furthermore, checkmate provides functions to check the class or names
of arbitrary R objects with *Class and *Names.
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Custom checks Extensions are possible by writing a check* function which returns TRUE on success
and an informative error message otherwise. The exported functionals makeAssertionFunction(),
makeTestFunction() and makeExpectationFunction() can wrap this custom check function to create
the required counterparts in such a way that they seamlessly fit into the package. The vignette
demonstrates this with a check function for square matrices.

DSL for argument checks

Most basic checks can alternatively be performed using an implemented Domain Specific Language
(DSL) via the functions qassert(), qtest() or qexpect(). All three functions have two arguments:
The arbitrary object x to check and a “rule” which determines the checks to perform provided as a
single string. Each rules consist of up to three parts:

1. The first character determines the expected class of x, e.g. “n” for numeric, “b” for boolean, “f”
for a factor or “s” for a string (more can be looked up in the manual). By using a lowercase letter,
missing values are permitted while an uppercase letter disallows missingness.

2. The second part is the length definition. Supported are “?” for length 0 or length 1, “+” for
length ≥ 1 as well as arbitrary length specifications like “1”/“==1” for exact length 1 or “<10”
for length < 10.

3. The third part triggers a range check, if applicable, in interval notation (e.g., “[0, 1)” for values
0 ≤ x < 1). If the boundary value on an open side of the interval is missing, all values of x will
be checked for being > −∞ or < ∞, respectively.

Although this syntax requires some time to familiarize with, it allows to write extensive argument
checks with very few keystrokes. For example, the previous check for the input of log() translates to
the rule "N+[0,]". More examples can be found in Table 2

Base R DSL

Single string
is.character(x) && length(x) == 1 "s1"

Factor with minimum length 1, no missing values
is.factor(x) && length(x) >= 1 && all(!is.na(x)) "F+"

List with no missing elements (NULL interpreted as missing for lists)
is.list(x) && !any(sapply(x,is.null)) "L"

Integer of length 3 with positive elements
is.integer(x) && length(x) == 3 && all(x >= 0) "i3[0]"

Single number representing a proportion (x ∈ [0, 1])
is.numeric(x) && length(x) == 1 && !is.na(x) && x >= 0 && x <= 1 "N1[0,1]"

Numeric vector with non-missing, positive, finite elements
is.numeric(x) && all(!is.na(x) & x >= 0 & is.finite(x)) "N[0,)"

NULL or a single string with at least one character
is.null(x) || (is.character(x) && length(x) == 1 && nzchar(x)) "0", "s1[1]"

Table 2: Exemplary checks using base R and the abbreviations implemented in the DSL.

As the function signature is really simplistic, it is perfectly suited to be used from compiled code
written in C/C++ to check arbitrary SEXPs. For this reason checkmate provides header files which
third-party packages can link against. Instructions can be found in the package vignette.

Benchmarks

This small benchmark study picks up the log() example once again: testing a vector to be numeric
with only positive, non-missing values.

Implementations

Now we compare checkmate’s assertNumeric() and qassert() (as briefly described in the previ-
ous Section DSL for argument checks) with counterparts written with R’s stopifnot(), assertthat’s
assert_that() and a series of assertive’s assert_*() functions:
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checkmate <- function(x) { assertNumeric(x, any.missing = FALSE, lower = 0) }
qcheckmate <- function(x) { qassert(x, "N[0,]") }
R <- function(x) { stopifnot(is.numeric(x), all(!is.na(x)), all(x >= 0)) }
assertthat <- function(x) { assert_that(is.numeric(x), all(!is.na(x)), all(x >= 0)) }
assertive <- function(x) { assert_is_numeric(x); assert_all_are_not_na(x);
assert_all_are_greater_than_or_equal_to(x, 0) }

To allow measurement of failed assertions, the wrappers are additionally wrapped into a try()
statement. Note that all functions perform the checks in the same order: First they check for type
numeric, then for missing values and finally for all elements being non-negative. The source code for
this benchmark study is hosted on checkmate’s project page in the directory inst/benchmarks.

Setup

The benchmark was performed on an Intel i5-6600 with 16 GB running R-3.4.0 on a 64bit Arch Linux
installation using a 4.10.11 kernel. The package versions are 1.8.2 for checkmate, 0.2 for assertthat
and 0.3.5 for assertive. R, the linked OpenBLAS and all packages have been compiled with the
GNU Compiler Collection (GCC) in version 6.3.1 and tuned with march=native on optimization level
-O2. To compare runtime differences, microbenchmark (Mersmann, 2015) is set to do 100 replica-
tions. The implemented wrappers have also been compared to their byte-compiled version (using
compiler::cmpfun) with no notable difference in performance. The just-in-time compiler which is
enabled per default as of R-3.4.0 causes a small but non-crucial decrease in performance for all imple-
mentations. The presented results are extracted from the uncompiled versions of these wrappers, with
the JIT enabled on the default level 3.

Memory consumption is measured with the benchexec (Beyer et al., 2015) framework, version 1.10.
Unlike R’s gc() which only keeps track of allocations of SEXPs, benchexec measures all allocations
(e.g., using C’s malloc) and also works well with threads and child processes. Note that setting an
upper memory limit is mandatory to ensure comparable measurements for memory consumption.
Here, all processes are started with an upper limit of 2 GB.

Results

The benchmark is performed on four different inputs and the resulting timings are presented in Figure 1.
Note that the runtimes on the x-axis are on log10-scale and use different units of measurement.
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Figure 1: Violin plots of the runtimes on log10-scale of the assertion “x must be a numeric vector with
all elements positive and no missing values” on different input x.

top left Input x is a scalar character value, i.e. of wrong type. This benchmark serves as a measurement
of overhead: the first performed (and cheapest) assertion on the type of x directly fails. In fact, all
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assertion frameworks only require microseconds to terminate. R directly jumps into compiled
code via a Primitive and therefore has the least overhead. checkmate on the other hand
has to jump into the compiled code via the .Call interface which is comparably slower. The
implementation in assertthat is faster than checkmate (as it also primarily calls primitives) but
slightly slower than stopifnot(). The implementation in assertive is the slowest. However, in
case of assertions (in comparison to tests returning logical values), the runtimes for a successful
check are arguably more important than for a failed check because the latter raises an exception
which usually is a rare event in the program flow and thus not time-critical. Therefore, the next
benchmark might be more relevant for many applications.

top right Here, the input x is a valid numeric value. The implementations now additionally check for
both missingness and negative values without raising an exception. The DSL variant qassert()
is the fastest implementation, followed by checkmate’s assertNumeric(). Although qassert()
and assertNumeric() basically call the same code internally, qassert() has less overhead due
to its minimalist interface. R’s stopifnot() is a tad slower (comparing the median runtimes)
but still faster than assertthat (5x slowdown in comparison to qassert()). assertive is >70x
slower than qassert().

bottom left Input x is now a long vector with 106 numeric elements. This vector is generated us-
ing runif() and thus all values are valid (no negative or missing values). checkmate has
the fastest versions with a speedup of approximately 3.5x compared to R’s stopifnot() and
assert_that(). In comparison to its alternatives, checkmate avoids intermediate objects as
described in Design goals: Instead of allocating a logical(1e6) vector first to aggregate it in
a second step, checkmate directly operates on the numeric input. That is also the reason why
stopifnot() and assertthat() have high variance in their runtimes: The garbage collector
occasionally gets triggered to free memory which requires a substantial amount of time.
assertive is orders of magnitude slower for this input (>1200x) because it follows a completely
different philosophy: Instead of focusing on speed, assertive gathers detailed information while
performing the assertion. This yields report-like error messages (e.g., the index and reason why
an assertion failed, for each element of the vector) but is comparably slow.

bottom right Input x is again a large vector, but the first element is a missing value. Here, all
implementations first successfully check the type of x and then throw an error about the missing
value at position 1. Again, checkmate avoids allocating intermediate objects which in this
case yields an even bigger speedup: While the other packages first check 106 elements for
missingness to create a logical(1e6) vector which is then passed to any(), checkmate directly
stops after analyzing the first element of x. This obvious optimization yields a speedup of 25x
in comparison to R and assertthat and a 7000x speedup in comparison to assertive.
Note that this is the best case scenario for early stopping to demonstrate the possible effect
memory allocation can have on the runtime. Triggering the assertion on the last element of the
vector results in runtimes roughly equivalent to the previous benchmark displayed at bottom
left. A randomly placed bad value yields runtimes in the range of these two extremes.

Memory has been measured using x = runif(1e7) as input (similar to the setup of the benchmark
shown in the bottom left of Figure 1). Measurements are repeated 100 times in independent calls of
Rscript via the command line tool runexec and summarized by the mean and standard deviation.
A no-operation (startup of R, creating the vector x and terminating) requires 105.0± 0.4 MB. The
same script which additionally loads the checkmate package and performs the assertion with the
above defined wrapper checkmate() does not increase the memory footprint (105.1± 0.2 MB) notably.
Same for the previously defined wrapper qcheckmate() (105.0± 0.1 MB).The equivalent assertion
using base R requires 185.1± 0.1 MB, about the same as the implementation in assertthat (185.1± 0.1
MB).Using assertive, 1601.8± 0.6 MB are required to run the script.

Summed up, checkmate is the fastest option to perform expensive checks and only causes a small
decrease in performance for trivial, inexpensive checks which fail quickly (top left). Although the
runtime differences seem insignificant for small input (top right), the saved microseconds can easily
sum up to minutes or hours if the respective assertion is located in a hot spot of the program and
therefore is called millions of times. By avoiding intermediate objects, assertions have virtually no
memory overhead. This saves runtime in the garbage collection, and even becomes much more
important as data grows bigger.

Conclusion

Runtime assertions are a necessity in R to ensure a sane program flow, but R itself offers very limited
capabilities to perform these kind of checks. checkmate allows programmers and package developers
to write assertions in a concise way without unnecessarily sacrificing runtime performance nor
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increasing the memory footprint. Compared to the presented alternatives, assertions with checkmate
are faster, tailored for bigger data and (with the help of code completion) more convenient to write.
They generate helpful error messages, are extensively tested for correctness and suitable for large and
extensive software projects (mlr (Bischl et al., 2016), BatchJobs (Bischl et al., 2015) and batchtools (Lang
et al., 2017) already make heavy use of checkmate). Furthermore, checkmate offers capabilities to
perform assertions on SEXPs in compiled code via a domain specific language and extends the popular
unit testing framework testthat with many helpful expectation functions.
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milr: Multiple-Instance Logistic
Regression with Lasso Penalty
by Ping-Yang Chen, Ching-Chuan Chen, Chun-Hao Yang, Sheng-Mao Chang, Kuo-Jung Lee

Abstract The purpose of the milr package is to analyze multiple-instance data. Ordinary multiple-
instance data consists of many independent bags, and each bag is composed of several instances.
The statuses of bags and instances are binary. Moreover, the statuses of instances are not observed,
whereas the statuses of bags are observed. The functions in this package are applicable for analyzing
multiple-instance data, simulating data via logistic regression, and selecting important covariates in
the regression model. To this end, maximum likelihood estimation with an expectation-maximization
algorithm is implemented for model estimation, and a lasso penalty added to the likelihood function is
applied for variable selection. Additionally, an "milr" object is applicable to generic functions fitted,
predict and summary. Simulated data and a real example are given to demonstrate the features of this
package.

Introduction

Multiple-instance learning (MIL) is used to model the class labels which are associated with bags of
observations instead of the individual observations. This technique has been widely used in solving
many different real-world problems. In the early stage of the MIL application, Dietterich et al. (1997)
studied the drug-activity prediction problem. A molecule is classified as a good drug if it is able
to bind strongly to a binding site on the target molecule. The problem is: one molecule can adopt
multiple shapes called the conformations and only one or a few conformations can bind the target
molecule well. They described a molecule by a bag of its many possible conformations whose binding
strength remains unknown. An important application of MIL is the image and text categorization,
such as in Maron and Ratan (1998); Andrews et al. (2003); Zhang et al. (2007); Zhou et al. (2009); Li et al.
(2011); Kotzias et al. (2015), to name a few. An image (bag) possessing at least one particular pattern
(instance) is categorized into one class; otherwise, it is categorized into another class. For example,
Maron and Ratan (1998) treated the natural scene images as bags, and, each bag is categorized as the
scene of waterfall if at least one of its subimages is the waterfall. Whereas, Zhou et al. (2009) studied
the categorization of collections (bags) of posts (instances) from different newsgroups corpus. A
collection is a positive bag if it contains 3% posts from a target corpus category and the remaining 97%
posts, as well as all posts in the negative bags, belong to the other corpus categories. MIL is also used
in medical researches. The UCSB breast cancer study (Kandemir et al., 2014) is such a case. Patients
(bags) were diagnosed as having or not having cancer by doctors; however, the computer, initially,
had no knowledge of which patterns (instances) were associated with the disease. Furthermore, in
manufacturing processes (Chen et al., 2016), a product (bag) is defective as long as one or more of its
components (instances) are defective. In practice, at the initial stage, we only know that a product is
defective, and we have no idea which component is responsible for the defect.

Several approaches have been offered to analyze datasets with multiple instances, e.g., Maron
(1998); Ray and Craven (2005); Xu and Frank (2004); Zhang and Goldman (2002). From our point of
view, the statuses of these components are missing variables, and thus, the Expectation-Maximization
(EM) algorithm (Dempster et al., 1977) can play a role in multiple-instance learning. By now the
toolboxes or libraries available for implementing MIL methods are developed by other computer
softwares. For example, Yang (2008) and Tax and Cheplygina (2016) are implemented in MATLAB
software, but neither of them carries the methods based on logistic regression model. Settles et al. (2008)
provided the Java codes including the method introduced in Ray and Craven (2005). Thus, for R users,
we are first to develop a MIL-related package based on logistic regression modelling which is called
multiple-instance logistic regression (MILR). In this package, we first apply the logistic regression
defined in Ray and Craven (2005) and Xu and Frank (2004), and then, we use the EM algorithm to
obtain maximum likelihood estimates of the regression coefficients. In addition, the popular lasso
penalty (Tibshirani, 1996) is applied to the likelihood function so that parameter estimation and
variable selection can be performed simultaneously. This feature is especially desirable when the
number of covariates is relatively large.

To fix ideas, we firstly define the notations and introduce the construction of the likelihood function.
Suppose that the dataset consists of n bags and that there are mi instances in the ith bag for i = 1, . . . , n.
Let Zi denote the status of the ith bag, and let Yij be the status of the jth instance in the ith bag along
with xij ∈ <p as the corresponding covariates. We assume that the Yij follow independent Bernoulli

distributions with defect rates of pij, where pij = g
(

β0 + xT
ij β
)

and g(x) = 1/
(
1 + e−x). We also
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assume that the Zi follow independent Bernoulli distributions with defect rates of πi. Therefore, the
bag-level likelihood function is

L (β0, β) =
n

∏
i=1

πzi
i (1− πi)

1−zi . (1)

To associate the bag-level defect rate πi with the instance-level defect rates pij, several methods

have been proposed. The bag-level status is defined as Zi = I
(

∑mi
j=1 Yij > 0

)
. If the independence

assumption among the Yij holds, the bag-level defect rate is πi = 1−∏mi
j=1(1− pij). On the other

hand, if the independence assumption might not be held, Xu and Frank (2004) and Ray and Craven
(2005) proposed the softmax function to associate πi to pij, as follows:

si (α) =
mi

∑
j=1

pij exp
{

αpij

}/ mi

∑
j=1

exp
{

αpij

}
, (2)

where α is a pre-specified nonnegative value. Xu and Frank (2004) used α = 0, therein modeling
πi by taking the average of pij, j = 1, . . . , mi, whereas Ray and Craven (2005) suggested α = 3. We
observe that the likelihood (1) applying neither the πi function nor the si(α) function results in effective
estimators.

Below, we begin by establishing the E-steps and M-steps required for the EM algorithm and
then attach the lasso penalty for the estimation and feature selection. Several computation strategies
applied are the same as those addressed in Friedman et al. (2010). Finally, we demonstrate the functions
provided in the milr package via simulations and on a real dataset.

The multiple-instance logistic regression

EM algorithm

If the instance-level statuses, yij, are observable, the complete data likelihood is

n

∏
i=1

mi

∏
j=1

p
yij

ij q
1−yij

ij ,

where qij = 1− pij. An ordinary approach, such as the Newton method, can be used to solve this
maximal likelihood estimate (MLE). However, considering multiple-instance data, we can only observe

the statuses of the bags, Zi = I
(

∑
mj

j=1 Yij > 0
)

, and not the statuses of the instances Yij. As a result,
we apply the EM algorithm to obtain the MLEs of the parameters by treating the instance-level labels
as the missing data.

In the E-step, two conditional distributions of the missing data given the bag-level statuses Zi are

Pr
(
Yi1 = 0, . . . , Yimi = 0 | Zi = 0

)
= 1

and

Pr
(

Yij = yij, j = 1, . . . , mi | Zi = 1
)
=

∏mi
j=1 p

yij

ij q
1−yij

ij × I
(

∑mi
j=1 yij > 0

)
1−∏mi

l=1 qil
.

Thus, the conditional expectations are

E
(

Yij | Zi = 0
)
= 0 and E

(
Yij | Zi = 1

)
=

pij

1−∏mi
l=1 qil

≡ γij.

The Q function at step t is Q
(

β0, β | βt
0, βt) = ∑n

i=1 Qi
(

β0, β | βt
0, βt), where Qi is the conditional

expectation of the complete log-likelihood for the ith bag given Zi, which is defined as

Qi
(

β0, β | βt
0, βt) = E

 mi

∑
j=1

yij log
(

pij

)
+
(

1− yij

)
log
(

qij

) ∣∣∣∣∣ Zi = zi, βt
0, βt


=

mi

∑
j=1

ziγ
t
ij

(
β0 + xT

ij β
)
− log

(
1 + eβ0+xT

ij β
)

.
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Note that all the pij, qij, and γij are functions of β0 and β, and thus, we define these functions by
substituting β0 and β by their current estimates βt

0 and βt to obtain pt
ij, qt

ij, and γt
ij, respectively.

In the M-step, we maximize this Q function with respect to (β0, β). Since the maximization of the
nonlinear Q function is computationally expensive, following Friedman et al. (2010), the quadratic
approximation to Q is applied. Taking the second-order Taylor expansion about βt

0 and βt, we have
Q
(

β0, β | βt
0, βt) = QQ

(
β0, β | βt

0, βt)+ C + R2
(

β0, β | βt
0, βt), where C is a constant in terms of β0

and β, R2
(

β0, β | βt
0, βt) is the remainder term of the expansion and

QQ
(

β0, β | βt
0, βt) = −1

2

n

∑
i=1

mi

∑
j=1

wt
ij

[
ut

ij − β0 − xT
ij β
]2

,

where ut
ij = β0 + xT

ij β
t +

(
ziγ

t
ij − pt

ij

)/(
pt

ijq
t
ij

)
and wt

ij = pt
ijq

t
ij. In the milr package, instead of

maximizing Q
(

β0, β | βt
0, βt), we maximize its quadratic approximation, QQ

(
β0, β | βt

0, βt). Since the
objective function is quadratic, the roots of ∂QQ/∂β0 and ∂QQ/∂β have closed-form representations.

Variable selection with lasso penalty

We adopt the lasso method (Tibshirani, 1996) to identify active features in this MILR framework. The
key is to add the L1 penalty into the objective function in the M-step so that the EM algorithm is
capable of performing estimation and variable selection simultaneously. To this end, we rewrite the
objective function as

min
β0,β

{
−QQ

(
β0, β | βt

0, βt)+ λ
p

∑
k=1
|βk|

}
. (3)

Note that the intercept term β0 is always kept in the model; thus, we do not place a penalty on β0.
In addition, λ is the tuning parameter, and we will introduce how to determine this parameter later.
We applied the shooting algorithm (Fu, 1998; Chen et al., 2016) to update

(
βt

0, βt).
Implementation

The milr package contains a data generator, DGP, which is used to generate the multiple-instance data
for the simulation studies, and two estimation approaches, milr and softmax, which are the main
tools for modeling the multiple-instance data. In this section, we introduce the usage and default
setups of these functions.

Data generator

The function DGP is the generator for the multiple-instance-type data under the MILR framework.

To use the DGP function, the user needs to specify an integer n as the number of bags, a vector m of
length n as the number of instances in each bag, and a vector beta of length p, with the desired number
of covariates, and the regression coefficients, β, as in DGP(n,m,beta). Note that one can set m as an
integer for generating the data with an equal instance size m for each bag. Thus, the total number of
observations is N = ∑n

i=1 mi. The DGP simulates the labels of bags through the following steps:

1. Generate p mutually independent covariates of length N from the standard normal distribution
as an N × p matrix, X.

2. Generate the binary response, Yij, for the jth instance of the ith bag from the Bernoulli distribu-
tion with

pij = 1
/ (

1 + exp
{
−xT

ij β
})

where xij is the p-component vector in the row of X representing the jth instance of the ith bag.

3. Calculate the observed response for the ith bag by Zi = I
(

∑mi
j=1 Yij > 0

)
.

4. Return the indices of the bags, the covariate matrix X and the bag-level statuses Z.

The milr and softmax apporaches

In the milr package, we provide two approaches to model the multiple-instance data: the proposed
milr (Chen et al., 2016) and the softmax approach (Xu and Frank, 2004). To implement these two
approaches, we assume that the number of observations and covariates are N and p, respectively. The
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input data for both milr and softmax are separated into three parts: the bag-level statuses, y, as a
vector of length N; the N × p design matrix, x; and bag, the vector of indices of length N, representing
the indices of the bag to which each instance belongs.

milr(y, x, bag, lambda, numLambda, lambdaCriterion, nfold, maxit)
softmax(y, x, bag, alpha, ...)

For the milr function, specifying lambda in different ways controls whether and how the lasso
penalty participates in parameter estimation. The default value of lambda is 0. With this value, the
ordinary MLE is applied, i.e., no penalty term is considered. This is the suggested choice when the
number of covariates p is small. When p is large or when variable selection is desired, users can
specify a λ vector of length κ; otherwise, by letting lambda = -1, the program automatically provides
a λ vector of length κ = numLambda as the tuning set. Following Friedman et al. (2010), the theoretical
maximal value of λ in (3) is

λmax =

[
n

∏
i=1

(mi − 1)

] 1
2
[

n

∏
i=1

m1−2zi
i

] 1
2

.

The automatically specified sequence of λ values ranges from λmin = λmax/1000 to λmax in ascending
order.

The default setting for choosing the optimal λ among these λ values is the Bayesian information
criterion (BIC), −2 log (likelihood) + p∗ × log (n), where p∗ is the number of nonzero regression
coefficients. Alternatively, the user can use the options lambdaCriterion = "deviance" and nfold =
K with an integer K to obtain the best λ that minimizes the predictive deviance through “bag-wise”
K-fold cross validation. The last option, maxit, indicates the maximal number of iterations of the EM
algorithm; its default value is 500.

For the softmax function, the option alpha is a nonnegative real number for the α value in (2). The
maximum likelihood estimators of the regression coefficients are obtained by the generic function
optim. Note that no variable selection approach is implemented for this method.

Two generic accessory functions, coef and fitted, can be used to extract the regression coefficients
and the fitted bag-level labels returned by milr and softmax. We also provide the significance test
based on Wald’s test for the milr estimations without the lasso penalty through the summary function.
In addition, to predict the bag-level statuses for the new data set, the predict function can be used by
assigning three items: object is the fitted model obtained by milr or softmax, newdata is the covariate
matrix, and bag_newdata is the bag indices of the new dataset. Finally, the MIL model can be used to
predict the bag-level labels and the instances-level labels. The option type in fitted and predicted
functions controls the type of output labels. The default option is type = "bag" which results the
bag-level prediction. Otherwise, by setting type = "instance", the instances-level labels will be
presented.

fitted(object, type)
predict(object, newdata, bag_newdata, type)

Examples

We illustrate the usage of the milr package via simulated and real examples.

Estimation and variable selection

We demonstrate how to apply the milr function for model estimation and variable selection. We
simulate data with n = 50 bags, each containing m = 3 instances and regression coefficients β =
(−2,−1, 1, 2, 0.5, 0, 0, 0, 0, 0). Specifically, the first four covariates are important.

library(magrittr)
library(milr)
set.seed(99)
# set the size of dataset
numOfBag <- 50
numOfInstsInBag <- 3
# set true coefficients: beta_0, beta_1, beta_2, beta_3
trueCoefs <- c(-2, -2, -1, 1, 2, 0.5, 0, 0, 0, 0, 0)
trainData <- DGP(numOfBag, numOfInstsInBag, trueCoefs)
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trainData$X %<>% set_colnames(paste0("X", 1:ncol(.)))
tapply(trainData$Z, trainData$ID, function(x) sum(x) > 0) %>% as.numeric

## [1] 1 1 1 1 1 1 0 0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0
## [36] 1 1 0 0 0 1 1 0 0 0 1 1 0 1 1

Since the number of covariates is small, we then use the milr function to estimate the model
parameters with lambda = 0. One can apply summary to produce results including estimates of the
regression coefficients and their corresponding standard error, testing statistics and the P-values under
Wald’s test. The regression coefficients are returned by the function coef.

# fit milr model
milrFit_EST <- milr(trainData$Z, trainData$X, trainData$ID, lambda = 0)
# call the Wald's test result
summary(milrFit_EST)

## Log-Likelihood: -14.005.

## Estimates:

## Estimate Std.Err Z value Pr(>z)
## intercept -3.28671 1.16695 -2.8165 0.004855 **
## X1 -2.45529 0.92227 -2.6622 0.007762 **
## X2 -1.26351 0.67621 -1.8685 0.061689 .
## X3 0.94016 0.75173 1.2507 0.211054
## X4 3.84173 1.47862 2.5982 0.009372 **
## X5 0.22000 0.66579 0.3304 0.741073
## X6 -1.00740 0.73288 -1.3746 0.169262
## X7 -0.53063 0.59871 -0.8863 0.375463
## X8 0.25334 0.71596 0.3538 0.723451
## X9 -1.92753 0.92437 -2.0852 0.037047 *
## X10 0.12249 0.63054 0.1943 0.845972
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# call the regression coefficients
coef(milrFit_EST)

## intercept X1 X2 X3 X4 X5
## -3.2867082 -2.4552903 -1.2635149 0.9401636 3.8417318 0.2199982
## X6 X7 X8 X9 X10
## -1.0074012 -0.5306309 0.2533409 -1.9275338 0.1224893

The generic function table builds a contingency table of the counts for comparing the true bag-
level statuses and the fitted bag-level statuses (obtained by the option type = "bag") and the predict
function is used to predict the labels of each bag with corresponding covariate X. On the other hand,
The fitted and predicted instance-level statuses can also be found by setting type = "instance" in the
fitted and predict functions.

fitted(milrFit_EST, type = "bag")

## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
## 1 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 0
## 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
## 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 0 1 0 1 1

%#fitted(milrFit_EST, type = "instance") # instance-level fitted labels
table(DATA = tapply(trainData$Z, trainData$ID, function(x) sum(x) > 0) %>% as.numeric,

FITTED = fitted(milrFit_EST, type = "bag"))

## FITTED
## DATA 0 1
## 0 18 4
## 1 3 25

# predict for testing data
testData <- DGP(numOfBag, numOfInstsInBag, trueCoefs)
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testData$X %<>% set_colnames(paste0("X", 1:ncol(.)))
pred_EST <- predict(milrFit_EST, testData$X, testData$ID, type = "bag")
#predict(milrFit_EST, testData$X, testData$ID,
# type = "instance") # instance-level prediction
table(DATA = tapply(testData$Z, testData$ID, function(x) sum(x) > 0) %>% as.numeric,

PRED = pred_EST)

## PRED
## DATA 0 1
## 0 13 6
## 1 8 23

Next, the n < p cases are considered. We generate a data set with n = 50 bags, each with 3
instances and p = 100 covariates. Among these covariates, only the first five of them, X1, . . . , X5, are
active and their nonzero coefficients are the same as the previous example. First, we manually specify
50 λ values manually from 0.01 to 50. The milr function chooses the best tuning parameter which
results in the smallest BIC. For this dataset, the chosen model is a constant model.

set.seed(99)
# Set the new coefficient vector (large p)
trueCoefs_Lp <- c(-2, -2, -1, 1, 2, 0.5, rep(0, 95))
# Generate the new training data with large p
trainData_Lp <- DGP(numOfBag, numOfInstsInBag, trueCoefs_Lp)
trainData_Lp$X %<>% set_colnames(paste0("X", 1:ncol(.)))
# variable selection by user-defined tuning set
lambdaSet <- exp(seq(log(0.01), log(50), length = 50))
milrFit_VS <- milr(trainData_Lp$Z, trainData_Lp$X, trainData_Lp$ID,

lambda = lambdaSet)
# grep the active factors and their corresponding coefficients
coef(milrFit_VS) %>% .[abs(.) > 0]

## intercept
## -0.9020893

Second, we try the auto-tuning feature implemented in milr by assigning lambda = -1. The total
number of tuning λ values is indicated by setting nlambda. The following example shows the result of
the best model chosen among 50 λ values. The slice $lambda shows the auto-tuned λ candidates and
the slice $BIC returns the corresponding value of BIC for every candidate λ value. Again, the chosen
model is a constant model.

# variable selection using auto-tuning
milrFit_auto_VS <- milr(trainData_Lp$Z, trainData_Lp$X, trainData_Lp$ID,

lambda = -1, numLambda = 50)
# the auto-selected lambda values
milrFit_auto_VS$lambda

## [1] 0.08041559 0.09259014 0.10660786 0.12274780 0.14133125
## [6] 0.16272815 0.18736444 0.21573056 0.24839117 0.28599645
## [11] 0.32929500 0.37914875 0.43655012 0.50264180 0.57873946
## [16] 0.66635795 0.76724148 0.88339831 1.01714075 1.17113118
## [21] 1.34843505 1.55258192 1.78763568 2.05827549 2.36988893
## [26] 2.72867921 3.14178869 3.61744105 4.16510498 4.79568271
## [31] 5.52172701 6.35769107 7.32021625 8.42846331 9.70449388
## [36] 11.17370961 12.86535784 14.81311383 17.05575111 19.63791336
## [41] 22.61100310 26.03420494 29.97566379 34.51384138 39.73907818
## [46] 45.75539179 52.68254760 60.65844293 69.84185212 80.41558721

# the values of BIC under each lambda value
milrFit_auto_VS$BIC

## [1] 196.54069 184.90606 161.51628 157.75005 118.76827 118.95214 115.27610
## [8] 115.55212 115.87195 112.32892 112.75439 113.24620 113.81466 114.48027
## [15] 119.19304 116.18877 121.15644 114.54700 112.02964 110.31200 103.92031
## [22] 101.90760 88.78977 83.57070 82.69910 82.13240 78.00261 74.25620
## [29] 74.19599 78.98716 77.39963 75.33387 78.16814 69.25384 69.25384
## [36] 69.25384 69.25384 69.25384 69.25384 69.25384 69.25384 69.25384
## [43] 69.25384 69.25384 69.25384 69.25384 69.25384 69.25384 69.25384
## [50] 69.25384
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# grep the active factors and their corresponding coefficients
coef(milrFit_auto_VS) %>% .[abs(.) > 0]

## intercept
## -0.9020893

Instead of using BIC, a better way to choose the proper lambda is using the cross validation
by setting lambdaCriterion = "deviance". The following example shows the best model chosen
by minimizing the predictive deviance via “bag-wise” 10-fold cross validation. The results of the
predictive deviance for every candidate λ can be found in the slice $cv. Twenty-nine covariates were
identified including the first four true active covariates, X1, . . . , X4.

# variable selection using auto-tuning with cross validation
milrFit_auto_CV <- milr(trainData_Lp$Z, trainData_Lp$X, trainData_Lp$ID,

lambda = -1, numLambda = 50,
lambdaCriterion = "deviance", nfold = 10)

# the values of predictive deviance under each lambda value
milrFit_auto_CV$cv

## [1] 10.013948 3.754961 3.132322 2.933881 2.433803 2.346058 2.752407
## [8] 3.248528 3.858600 4.392568 4.781208 5.249175 5.727995 6.030227
## [15] 6.393522 6.432488 6.379543 6.339838 6.317661 6.329531 5.551296
## [22] 5.222904 5.113070 5.006837 5.078377 5.106067 5.242165 5.579102
## [29] 5.786248 6.178347 6.414204 6.648448 6.659413 6.573462 6.547737
## [36] 6.547737 6.547737 6.547737 6.547737 6.547737 6.547737 6.547737
## [43] 6.547737 6.547737 6.547737 6.547737 6.547737 6.547737 6.547737
## [50] 6.547737

# grep the active factors and their corresponding coefficients
coef(milrFit_auto_CV) %>% .[abs(.) > 0]

## intercept X1 X2 X3 X4
## -2.446119887 -0.362833108 -1.479388087 0.541861054 0.535400264
## X7 X11 X14 X15 X17
## 1.448461978 0.334921736 0.004238594 -0.755908930 0.017708059
## X18 X25 X26 X30 X32
## -0.586349577 -0.244962971 0.343205919 1.315468844 -0.845118964
## X33 X37 X48 X58 X61
## 0.370261921 -0.493144745 -0.523001848 -0.044975426 0.208521105
## X62 X71 X72 X74 X76
## 0.409946699 1.369814722 0.484713157 0.683531448 1.542186462
## X77 X79 X85 X95 X100
## -0.656669320 -1.685794976 -0.369189815 -0.912145167 -0.135461219

According to another simulation study which is not shown in this paper, in contrast to cross-
validation, BIC does not perform well for variable selection in terms of multiple-instance logistic
regressions. However, it can be an alternative when performing cross-validation is too time consuming.

Real case study

Hereafter, we denote the proposed method with the lasso penalty by MILR-LASSO for brevity. In the
following, we demonstrate the usage of MILR-LASSO and the softmax approach on a real dataset,
called MUSK1. The MUSK1 data set consists of 92 molecules (bags) of which 47 are classified as having
a musky smell and 45 are classified to be non-musks. The molecules are musky if at least one of their
conformers (instances) were responsible for the musky smell. However, knowledge about which
conformers are responsible for the musky smell is unknown. There are 166 features that describe the
shape, or conformation, of the molecules. The goal is to predict whether a new molecules is musk or
non-musk. This dataset is one of the popular benchmark datasets in the field of multiple-instance
learning research and one can download the dataset from the following weblink.

dataName <- "MIL-Data-2002-Musk-Corel-Trec9.tgz"
dataUrl <- "http://www.cs.columbia.edu/~andrews/mil/data/"

We use the untar function to decompress the downloaded .tgz file and extract the MUSK1 dataset.
Then, with the following data preprocessing, we reassemble the MUSK1 dataset in a "data.frame"
format. The first 2 columns of the MUSK1 dataset are the bag indices and the bag-level labels of each
observation. Starting with the third column, there are p = 166 covariates involved in the MUSK1 dataset.
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filePath <- file.path(getwd(), dataName)
# Download MIL data sets from the url
download.file(paste0(dataUrl, dataName), filePath)
# Extract MUSK1 data file
untar(filePath, files = "MilData/Musk/musk1norm.svm")
# Read and Preprocess MUSK1
library(reshape2)
tmp <- read.table(file.path(getwd(), "MilData/Musk/musk1norm.svm"),

sep = " ", colClasses = "character")
MUSK1 <- colsplit(tmp[,1], ":", names = c("obs", "bag", "label"))[,2:3]
MUSK1 <- cbind(MUSK1, Reduce(cbind,

lapply(2:ncol(tmp),
function(i) colsplit(tmp[,i], ":", names = paste0(c("num", "x"), i-1))[,2]

)))
MUSK1$bag <- MUSK1$bag + 1
MUSK1$label <- (MUSK1$label + 1)/2
MUSK1[,3:ncol(MUSK1)] <- scale(MUSK1[,3:ncol(MUSK1)])
Y <- tapply(MUSK1$label, MUSK1$bag, function(x) sum(x) > 0) %>% as.numeric
nc <- ncol(MUSK1)

To fit an MIL model without variable selection, the milr package provides two functions. The first
is the milr function with lambda = 0. The second approach is the softmax function with a specific
value of alpha. Here, we apply the approaches that have been introduced in Xu and Frank (2004)
and Ray and Craven (2005), called the s(0) (alpha=0) and s(3) (alpha=3) methods, respectively. The
optimization method in softmax is chosen as the default settings of the generic function optim, that is,
the Nelder-Mead method.

As suggested by one reviewer, it is relevant to compare the computational efficiencies and con-
vergence rates of the milr and softmax functions implemented in this package. Note that, the milr
approach is written in C++ and so is the objective function in softmax, and, we only consider their
performance affected by their common tuning parameter, maxit, the total number of iterations. For
each approach, the total number of iterations are set from 5,000 to 25,000, and, the computation task
was performed by a laptop with Intel Core M-5Y71 CPU 1.4 GHz and 8GB RAM. Moreover, the
performance in model fitting is assessed based on the classification accuracy. We use the generic
function table to produce the contingency tables and calculate the classification accuracy values
accordingly.

The left panel of Figure 1 shows the computational cost of each approach along with the increment
of the total number of iterations. As expected, the computational cost increases with the number of
iterations linearly for both functions. However, the slope for the milr function is much flatter than the
slope for the softmax function. A further result of MILR not shown here suggests that, for this dataset,
the coefficient estimate of the MILR approach converges between 15,000 and 16,000 iterations. The
resulting accuracy of each model is shown in the right panel of Figure 1 which indicates that the MILR
approach requires fewer iterations to achieve the best fit.

# set the iterations from 5000 to 25000
itSet <- seq(5000, 25000, 2000)
runtime <- matrix(0, length(itSet), 3)
runacc <- matrix(0, length(itSet), 3)
for (it in 1:length(itSet)) {

# record the computation time
runtime[it,1] <- system.time(

softmaxFit_0 <- softmax(MUSK1$label, MUSK1[,3:nc], MUSK1$bag, alpha = 0,
control = list(maxit = itSet[it]))

)[3]
runtime[it,2] <- system.time(

softmaxFit_3 <- softmax(MUSK1$label, MUSK1[,3:nc], MUSK1$bag, alpha = 3,
control = list(maxit = itSet[it]))

)[3]
runtime[it,3] <- system.time(
# use a very small lambda so that milr can do the estimation
# without evaluating the Hessian matrix
milrFit <- milr(MUSK1$label, MUSK1[,3:nc], MUSK1$bag, lambda = 1e-7,

maxit = itSet[it])
)[3]
# calculate the accuracy
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Figure 1: Computational efficiency of softmax methods and milr approach.

tmp <- table(DATA = Y, FIT_s0 = fitted(softmaxFit_0, type = "bag"))
runacc[it,1] <- sum(diag(tmp))/sum(tmp)
tmp <- table(DATA = Y, FIT_s3 = fitted(softmaxFit_3, type = "bag"))
runacc[it,2] <- sum(diag(tmp))/sum(tmp)
tmp <- table(DATA = Y, FIT_MILR = fitted(milrFit, type = "bag"))
runacc[it,3] <- sum(diag(tmp))/sum(tmp)

}

For variable selection, we apply the MILR-LASSO approach. First, the tuning parameter set is
chosen automatically by setting λ = −1, and the best λ value is obtained by minimizing the predictive
deviance with 10-fold cross validation among nlambda = 100 candidates. In total it costs about 130
seconds to choose the optimal λ value and there are 19 active covariates detected by the MILR-LASSO
approach. Using these active covariates, the reduced MILR model performs 89.13% classification
accuracy.

# MILR-LASSO
milrSV <- milr(MUSK1$label, MUSK1[,3:nc], MUSK1$bag,

lambda = -1, numLambda = 100,
lambdaCriterion = "deviance", maxit = 16000)

sv_ind <- which(coef(milrSV)[-1] != 0) + 2
# show the detected active covariates
names(MUSK1)[sv_ind]

## [1] "V31" "V36" "V37" "V76" "V83" "V105" "V106" "V108" "V109" "V116"
## [11] "V118" "V124" "V126" "V129" "V132" "V136" "V147" "V162" "V163"

# use a very small lambda so that milr can do the estimation
# without evaluating the Hessian matrix
milrREFit <- milr(MUSK1$label, MUSK1[,sv_ind], MUSK1$bag,

lambda = 1e-7, maxit = 16000)
table(DATA = Y, FIT_MILR = fitted(milrREFit, type = "bag"))

## FIT_MILR
## DATA 0 1
## 0 39 6
## 1 4 43
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Following the discussion above, we use 10-fold cross validation and compare the prediction
accuracy among four MIL models which are s(0), s(3), the MILR model with all covariates, and, the
MILR model fitted by the selected covariates via MILR-LASSO. The resulting prediction accuracies are
83.70%, 77.17%, 75.00% and 81.52%, respectively.

predY <- matrix(0, length(Y), 4); colnames(predY) <- c("s0", "s3", "milr", "milr_sv")
set.seed(99)
folds <- 10; foldSize <- floor(length(Y)/folds)
foldBag <- c(rep(1:folds, foldSize), sample(1:folds, length(Y) - folds*foldSize))
foldBag <- sample(foldBag, length(foldBag))
foldIns <- rep(foldBag, table(MUSK1$bag))
for (i in 1:folds) {
# prepare training and testing sets
ind <- which(foldIns == i)
training <- MUSK1[-ind,]; testing <- MUSK1[ind,]
# train models
fit_s0 <- softmax(training$label, training[,3:nc], training$bag,

alpha = 0, control = list(maxit = 25000))
fit_s3 <- softmax(training$label, training[,3:nc], training$bag,

alpha = 3, control = list(maxit = 25000))
# milr, use a very small lambda so that milr do the estimation
# without evaluating the Hessian matrix
fit_milr <- milr(training$label, training[,3:nc], training$bag,

lambda = 1e-7, maxit = 16000)
fit_milr_sv <- milr(training$label, training[,sv_ind], training$bag,

lambda = 1e-7, maxit = 16000)
# store the predicted labels
ind2 <- which(foldBag == i)
# predict function returns bag response in default
predY[ind2,1] <- predict(fit_s0, as.matrix(testing[,3:nc]), testing$bag)
predY[ind2,2] <- predict(fit_s3, as.matrix(testing[,3:nc]), testing$bag)
predY[ind2,3] <- predict(fit_milr, as.matrix(testing[,3:nc]), testing$bag)
predY[ind2,4] <- predict(fit_milr_sv, as.matrix(testing[,sv_ind]), testing$bag)

}

table(DATA = Y, PRED_s0 = predY[,1])

## PRED_s0
## DATA 0 1
## 0 36 9
## 1 6 41

table(DATA = Y, PRED_s3 = predY[,2])

## PRED_s3
## DATA 0 1
## 0 28 17
## 1 4 43

table(DATA = Y, PRED_MILR = predY[,3])

## PRED_MILR
## DATA 0 1
## 0 32 13
## 1 10 37

table(DATA = Y, PRED_MILR_SV = predY[,4])

## PRED_MILR_SV
## DATA 0 1
## 0 35 10
## 1 7 40

Summary

This article introduces the usage of the R package milr for analyzing multiple-instance data under the
framework of logistic regression. In particular, the package contains two approaches: summarizing

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 456

the mean responses within each bag using the softmax function (Xu and Frank, 2004; Ray and Craven,
2005) and treating the instance-level statuses as hidden information as well as applying the EM
algorithm for estimation (Chen et al., 2016). In addition, to estimate the MILR model, a lasso-type
variable selection technique is incorporated into the latter approach. The limitations of the developed
approaches are as follows. First, we ignore the potential dependency among instance statuses within
one bag. Random effects can be incorporated into the proposed logistic regression to represent the
dependency. Second, according to our preliminary simulation study, not shown in this paper, the
maximum likelihood estimator might be biased when the number of instances in a bag is large, say,
mi = 100 or more. Bias reduction methods, such as Firth (1993) and Quenouille (1956), can be applied
to alleviate this bias. These attempts are deferred to our future work.
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spcadjust: An R Package for Adjusting for
Estimation Error in Control Charts
by Axel Gandy and Jan Terje Kvaløy

Abstract In practical applications of control charts the in-control state and the corresponding chart
parameters are usually estimated based on some past in-control data. The estimation error then
needs to be accounted for. In this paper we present an R package, spcadjust, which implements a
bootstrap based method for adjusting monitoring schemes to take into account the estimation error.
By bootstrapping the past data this method guarantees, with a certain probability, a conditional
performance of the chart. In spcadjust the method is implement for various types of Shewhart,
CUSUM and EWMA charts, various performance criteria, and both parametric and non-parametric
bootstrap schemes. In addition to the basic charts, charts based on linear and logistic regression
models for risk adjusted monitoring are included, and it is easy for the user to add further charts. Use
of the package is demonstrated by examples.

Introduction

Control charts for statistical process monitoring are commonly used in a variety of different areas like
industrial process control, medicine, finance, insurance, environmental science etc. See for instance
Stoumbos et al. (2000), Woodall (2006), Frisén (2008), Schmid (2007a), and Schmid (2007b) for an
overview.

A challenge in most practical applications of control charts is that the in-control state of the process
to be monitored needs to be estimated. This introduces estimation error which needs to be accounted
for. A common convention in many applications has been to assume the in-control distribution to be
known and ignore the estimation error (e.g. Grigg and Farewell, 2004; Bottle and Aylin, 2008; Biswas
and Kalbfleisch, 2008; Fouladirad et al., 2008; Gandy et al., 2010). However, there is an increasing
awareness that the estimation error might have a detrimental effect on the performance of control
charts and many authors have addressed this for various specific charts (e.g. Jones, 2002; Jones et al.,
2004; Albers and Kallenberg, 2004, 2005; Albers et al., 2005; Jensen et al., 2006; Champ and Jones-
Farmer, 2007; Chatterjee and Qiu, 2009; Capizzi and Masarotto, 2009; Zhang et al., 2011; Saleh et al.,
2015; Zhang et al., 2016).

Gandy and Kvaløy (2013) presented a bootstrap based method for adjusting for estimation error
which applies to a wide variety of control charts and different performance measures. The method can
in particular be used to give a guaranteed conditional in-control performance of the chart. A typical
application is to calculate an adjusted signal limit of a chart to guarantee with high probability that the
in-control average run length or hitting probability is not below/above a specified value. Theoretical
properties and conditions needed for the method to apply are worked out in Gandy and Kvaløy (2013).
A similar bootstrap approach was also briefly mentioned in Jones and Steiner (2012) in a study of
risk-adjusted CUSUM charts.

We have developed an R package called spcadjust (Gandy and Kvaløy, 2016) which implements
the bootstrap method for a number of different charts, with different performance measures and both
parametric and non-parametric bootstrapping procedures. The package covers the most common
set-ups for Shewhart, CUSUM and EWMA charts, including risk-adjusted charts. Moreover, it is easy
for the user to add further charts, data models and estimation procedures.

There exist several other R packages for control charts. The surveillance package (Salmon et al.,
2016) provides a variety of methods for monitoring, simulation and visualization of temporal and
spatio-temporal data. The packages spc (Knot, 2016), qcc (Scrucca, 2004), IQCC (Scrucca, 2014) and qcr
(Flores, 2016) provide functions for calculating various performance measures, signal limits, graphical
displays etc. for a selection of classical control charts. The edcc package (Zhu and Park, 2013) has
functions for economic design of control charts, while the MSQC package (Santos-Fernández, 2013)
provides a tool kit for multivariate process monitoring. However, none of these packages include
methods for taking into account the impact of estimation error on the performance of the charts, which
is the main novelty of the spcadjust package.

In the next section, we give a brief introduction to the problem and describe the bootstrap approach
for adjusting for estimation error. In the two sections thereafter we first illustrate basic use of the
spcadjust package, then we describe details of the package and illustrate more advanced use. In the
last section, a real data example is provided.

Stable versions of the package spcadjust are available on CRAN. Development versions are
available in an open git repository (https://bitbucket.org/agandy/spcadjust/). We welcome con-
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tributions to the functionality of the package.

Adjusting for estimation error in control charts

Control charts are a set of statistical techniques for monitoring a stream of data over time. A typical
application is to monitor whether a stream of measurements follows a certain distribution, often
called the in-control distribution, over time. If the distribution of the measurements deviates from the
in-control distribution in a certain way the control chart should quickly detect this. In more advanced
situations, regression adjustments are needed, and the monitoring is based on detecting deviations
from the regression model.

In most common control charts like Shewhart, CUSUM and EWMA charts, a function of the
observations is plotted for each new observation and a signal is given if this function crosses a certain
threshold. Both the parameters of the function and the threshold are in most cases calculated according
to estimates of the in-control distribution. This implies that estimation error will affect the performance
of the control charts. For instance, measurement errors might lead to control charts that give false
alarms far too often.

We first give a motivating example, and then our bootstrap method for handling estimation error
is described.

Motivating example

We consider an example with a CUSUM chart for monitoring changes in the mean of a stream
of normally distributed data. Assume first that we know that the stream consists of independent
observations X1, X2, . . . following a N(µ, σ) distribution in the in-control situation, and that we want
to quickly detect if there is a change in the mean to the out-of-control situation µ + ∆. A standard
CUSUM chart for this would be to plot St versus t where

St = max
(

0, St−1 +
Xt − µ− ∆/2

σ

)
, S0 = 0, (1)

where the chart signals once St > c. The threshold c is calculated to give a certain performance of the
chart if no change occurs. Often, c is chosen to give a pre-specified in-control mean number of steps
until a false alarm (often called average run length, ARL). Thus the CUSUM chart and the threshold c
should be calculated using the true N(µ, σ) in-control distribution.

However, in practice, the true in-control distribution N(µ, σ) is usually unknown, but estimated
based on n past in-control observations X−n, . . . , X−1. For example, we can estimate the in-control
mean by µ̂ = 1

n ∑−1
i=−n Xi and the in-control variance by σ̂2 = 1

n−1 ∑−1
i=−n(Xi − µ̂)2. The CUSUM chart

is then given by

St = max
(

0, St−1 +
Xt − µ̂− ∆/2

σ̂

)
, S0 = 0,

which signals when St > ĉ where ĉ is calculated using the estimated in-control distribution N(µ̂, σ̂).

Since the future in-control data come from the true in-control distribution N(µ, σ) rather than the
estimated distribution N(µ̂, σ̂), the performance of the chart might be substantially wrong, leading to
more (or less) false alarms than expected.

A typical application of our bootstrap method described in the next subsections will be to calculate
an adjustment to the naive threshold estimate ĉ such that a certain in control behavior of the chart can
be guaranteed with high probability.

As an illustration we generated n = 100 past data from a N(0, 1) distribution giving estimates
µ̂ = −0.028, σ̂ = 0.921. We want to monitor for an increase in the mean of the distribution by ∆ = 1
and achieve an in-control ARL of 500.

Assuming (incorrectly) that the estimated parameters are the true parameters this would lead to a
threshold of ĉ = 4.1. Our bootstrap method leads to an adjusted threshold of 5.5, calculated such that
the ARL of 500 is achieved with a probability of 90%.

The result of running the CUSUM chart with these estimated parameters on a stream of N(0, 1)
in-control data is illustrated in the top row of Figure 1. There is a false alarm with the unadjusted
threshold, but not with the adjusted threshold.

In the bottom row of Figure 1 the same CUSUM chart is run on data which are out of control
from observation 81 and onwards. There is only a slight delay in the detection of the out-of-control
situation with the adjusted threshold. Also, there are two false alarms in the first 80 observations with
the unadjusted threshold.
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Figure 1: CUSUM charts for the motivating example. Top row: in-control data. Bottom row: data
which switch to out-of-control from observation 81. The left figures show the observed data streams,
the right the resulting CUSUM charts which were run with the estimated parameters. Adjusted and
unadjusted thresholds are indicated.

Homogeneous observations

In this section we describe our bootstrap procedure for situations with homogeneous observations.
Assume that in-control we have a stream of independent observations X1, X2, . . . , following a distribu-
tion P. A control chart is used to detect when observations are no longer coming from P, also called an
out of control situation, for instance a shift in mean or variance.

To run such a chart, certain parameters, ξ, calculated from P are usually needed. However, in
most applications the exact distribution P is unknown, we only have an estimate of the distribution,
and thus have to run the chart with estimated parameters. In the example in the previous section,
the parameters needed to run the chart are ξ = (µ, σ) and the unknown in-control distribution P is
N(µ, σ).

Common performance measures for control charts are the ARL and the hitting probability of
the chart within a certain number of steps. These depend both on the unknown P as well as on the
parameters ξ. Indeed, let τ denote the time (observation number) at which a chart gives a signal, e.g.
the first time a CUSUM chart has a value above c. The distribution of this stopping time τ depends
on P and ξ. We can express the ARL as ARL(P; ξ) = IE(τ(ξ)), where the expectation is with respect
to P. The probability of signaling within m time steps (for some finite m > 0) can be expressed as
hit(P; ξ) = P(τ(ξ) ≤ m).

The signal limit c is chosen to achieve a certain in-control performance of the chart. For charts
which signal when a threshold c is crossed we can express this as follows.

• cARL(P; ξ) = inf{c > 0 : ARL(P; ξ) ≥ γ} for some γ > 0, i.e. the threshold needed to give an
in-control ARL of γ.

• chit(P; ξ) = inf{c > 0 : hit(P; ξ) ≤ β} for some 0 < β < 1, which is the threshold needed to
give a false alarm probability of β.

Again, both cARL and chit depend on P and ξ.

Let P̂ and ξ̂ = ξ(P̂) denote the estimated distribution and estimated parameters, estimated from
past in-control data X−n, . . . , X−1. Since we have to run the chart with ξ̂ while future in-control data
follow P ideally we should use the threshold cARL(P; ξ̂) or chit(P; ξ̂). These are unknown since P is
unknown. Instead in practice cARL(P̂; ξ̂) or chit(P̂; ξ̂) is often used, but this may lead to performance
substantially off from the nominal performance.

The suggestion in Gandy and Kvaløy (2013) is to calculate, by bootstrapping, an adjusted threshold
which with high probability will guarantee that the in-control performance is not worse than the
nominal value. For instance to calculate an adjustment to cARL(P̂; ξ̂) which with a probability 1− α
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guarantees that the true in-control ARL is at least as large as the nominal value.

To make a unified presentation of the bootstrap we let q be a common notation for quantities of
interest like cARL and chit, or simple transformations such as log(cARL) and log(chit). Further let pα be
a constant such that

P
(
q(P̂; ξ̂)− q(P; ξ̂) > pα

)
= 1− α,

which implies the following bound on the quantity of interest

P
(
q(P; ξ̂) < q(P̂; ξ̂)− pα

)
= 1− α.

Since P is unknown we cannot calculate pα, but an approximation can be obtain by bootstrapping. Let
P̂∗ denote a parametric or non-parametric bootstrap replicate of the estimated in-control distribution
P̂, based on the same sample size n as P̂, and let ξ̂∗ = ξ(P̂∗). Then we can approximate pα by p∗α where

P
(
q(P̂∗; ξ̂∗)− q(P̂; ξ̂∗) > p∗α|P̂

)
= 1− α.

Then an approximate upper bound which guarantees a certain performance with an approximate
probability of 1− α is q(P̂; ξ̂)− p∗α. We can also think of(

−∞, q(P̂; ξ̂)− p∗α
)

as a sort of one-sided (approximate) confidence interval for q(P; ξ̂). The bootstrap distribution has
to be approximated by simulations, easily performed by generating B bootstrap samples from P̂ and
calculating q(P̂∗; ξ̂∗)− q(P̂; ξ̂∗) for each bootstrap sample. For further details, including theoretical
properties, we refer to Gandy and Kvaløy (2013).

If we return to the example in the previous section and consider the threshold needed to get
a certain in-control ARL value γ, we adapt the above procedure with either q = cARL or q =
log(cARL). The latter is recommended as the log-transform usually improves the precision (Gandy
and Kvaløy, 2013). Then B bootstrap samples of size n are generated from P̂ and from these we
calculate P̂∗1 , . . . , P̂∗B and ξ̂∗1 , . . . , ξ̂∗B. With q = log(cARL) we then calculate p∗α as the 1 − α empir-
ical quantile of log cARL(P̂∗b ; ξ̂∗b ) − log cARL(P̂; ξ̂∗b ), b = 1, . . . , B, and obtain the adjusted threshold
exp(log cARL(P̂; ξ̂)− p∗α) = cARL(P̂; ξ̂) exp(−p∗α). With this adjusted threshold there is an approximate
1− α probability that the actual ARL of the charts is at least γ.

Risk-adjusted charts

In many applications of control charts the units being monitored are heterogeneous, for instance when
monitoring data from human beings. To make reasonable monitoring systems in such situations the
explainable part of the difference between units should be accounted for by regression models. Charts
based on regression models are often called risk-adjusted, an overview of some such charts is found in
Grigg and Farewell (2004).

For risk-adjusted charts the regression model has to be estimated based on past data, and the
impact of estimation error thus has to be taken into account. The bootstrap procedure outlined in the
previous section also applies to risk adjusted charts. Let the stream of observations now be denoted
(Y1, X1), (Y2, X2), . . ., where Yi is a response variable and Xi a corresponding vector of covariates.
Further let P denote the joint distribution of (Yi, Xi). For regression models we recommend to use
a non-parametric bootstrap. Let P̂ be the empirical distribution which puts weight 1/n on each of
the n past observations (Y−n, X−n), . . . , (Y−1, X−1). Then by resampling from this P̂ the bootstrap
procedure also applies to a wide variety of risk adjusted charts (Gandy and Kvaløy, 2013).

As an example consider a CUSUM chart for a linear regression model. Suppose that in-control
IE(Yi|Xi) = Xiβ (where the first component of Xi is 1) and we want to detect a change in the mean
response to IE(Yi|Xi) = ∆ + Xiβ for some ∆ > 0. For linear regression models it is natural to base the
monitoring on the residuals of the model (Horváth et al., 2004). A CUSUM to monitor changes in the
mean can for instance be defined by

St = max (0, St−1 + Yt − Xtβ− ∆/2) , S0 = 0,

which signals when St ≥ c. In practice since β and the distribution of the residuals, Pε, are estimated
the CUSUM is run with β̂ and a threshold calculated e.g. as cARL(P̂ε; β̂). This might lead to an ARL far
off from the nominal (Gandy and Kvaløy, 2013).

To account for the estimation error we can use the bootstrap procedure from the previous section
with e.g. q = log(cARL) and non-parametric bootstrapping as outlined above to calculate the adjusted
threshold exp(log cARL(P̂ε; β̂) − p∗α) = cARL(P̂ε; β̂) exp(−p∗α). Using this adjusted threshold there
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class name data model

"SPCModelNormal" normally distributed updates of the form (Xt − µ− ∆/2)/σ
(Sections CUSUM chart with estimated in-control state and
Shewhart chart with estimated in-control state)

"SPCModelNonparCenterScale" updates (Xt − µ− ∆/2)/σ, no distributional assumptions
(Section CUSUM chart with estimated in-control state)

"SPCModelNonpar" user defined updates, no distributional assumptions
"SPCModellm" linear regression model with updates Yt − Xtβ− ∆/2

(Sections CUSUM chart with linear regression model and
EWMA chart with linear regression model)

"SPCModellogregLikRatio" logistic regression model, likelihood ratio updates
(Section Application to cardiac surgery data)

"SPCModellogregOE" logistic regression model, observed minus expected
updates

Table 1: Overview of pre-implemented data models.

is an approximate 1− α probability that the actual ARL of the charts is at least as large as desired.
Further risk-adjusted charts are discussed in Section EWMA chart with linear regression model and
Section Application to cardiac surgery data.

Other adjustments

So far we have focused on how to adjust the signal limit of the control chart to achieve a certain
performance with a high probability. In practice that will be a typical application, but it is easy to
change focus to other quantities. For instance, instead of adjusting the threshold to obtain a certain
ARL we could instead fix the threshold and calculate which ARL we with high probability at least
will achieve. For instance with Shewhart charts it is very common to use c = 3 standard deviations as
signal limit, and if we with estimated parameters still choose to stick with this limit we can use the
bootstrap approach to calculate a lower limit of the achieved ARL. In practice this is done by defining
the appropriate q-function and then run the general bootstrap procedure as before. For the Shewhart
example with fixed c and focus on ARL the q would simply be the ARL or log(ARL). See Gandy and
Kvaløy (2013) for details and Section Shewhart chart with estimated in-control state for an example.

Another variant which we consider further in Section Implementing a new type of chart is Shewhart
charts with non-symmetric signal limits for skew distributions. For such charts the signal limit can
be defined in terms of the quantiles corresponding to a certain tail probability α. Then we can via
the bootstrap find the appropriate adjustment of this α to achieve a certain performance with high
probability.

Basic usage of the package

In this section we discuss how the package can be used for pre-implemented chart types and data
models. The framework provided in the package can also easily be extended to work with other charts,
data models and/or estimation procedures as will be explained in Section Details of the package and
advanced usage.

An important basic structure of the package is that chart types and data models are implemented
in separate objects and in such a way that they can be flexibly combined. The implemented chart
types are the Shewhart chart (SPCShew), the CUSUM chart (SPCCUSUM) and the EWMA chart (SPCEWMA).
Table 1 lists the implemented data models.

Calculation of charts and chart properties like thresholds, ARLs and hitting probabilities are
defined with the chart type object. Estimation of chart parameters, the form and cdf of updates and
the bootstrap procedure are defined in the data model object. With updates we mean the quantity
added to the chart in each step. Parametric bootstraping is used in the normal model, nonparametric
bootstraping in all the other pre-implemented models.

The parameter ∆ in the updates in some of the data models listed in Table 1 specifies the out-of-
control situation for CUSUM charts, but should be set to the default value Delta = 0 for Shewhart
and EWMA charts.

The main steps for basic usage of the package is to define a chart object with the new() function
and to calculate the properties of interest with the SPCproperty() function. A generic description of
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these functions is given below.

To define a chart object we need to specify the combination of chart type and data model as follows:

chartgeneric <- new("Charttype", model = Datamodel(Delta = x),...)

Here "Charttype" should be one of "SPCShew", "SPCCUSUM" or "SPCEWMA" and "Datamodel" should be
one of the class names listed in Table 1. Finally x should be 0 for Shewhart and EWMA chart and set to
the desired value for CUSUM charts.

The following function invokes the bootstrap procedure and calculate the property of interest for
the chart:

SPCproperty(data, nrep, property = "specifyproperty",chart = chartgeneric,
params = list(specifyparameters), covprob=0.9, parallel=1,...)

Here data are the past observations (usually a vector) and nrep is the number of bootstrap replications.
Further, specifyproperty specifies the property of interest, with choices calARL, calhitprob, ARL
and hitprob. The two first choices calculate a calibrated threshold to achieve, with high probability,
a desired ARL or a desired hitting probability . Based on a specified choice of threshold, the two
last choices calculate the smallest ARL or the largest hitting probability that is attained with high
probability. Necessary parameters are given in specifyparameters (depending on the property this
includes the desired ARL, the desired hitting probability or the threshold). Finally, covprob, gives the
desired coverage probability 1− α with a default of 90%. The bootstrap can be sped up by parallel
processing by specifying the number of cores to be used via the ‘parallel’ option.

Further functions and details are explained in the examples below. In the two first subsections
below we consider situations with homogeneous observations, in the next subsections, we consider
situations with risk-adjusted charts.

CUSUM chart with estimated in-control state

We now return to the motivating example in Section Motivating example. Recall that we want to run a
CUSUM chart of the form (1) to monitor for a change in the mean in a stream of normally distributed
data. We first define the chart object by specifying chart type and data model.

> library(spcadjust)
> chart <- new("SPCCUSUM", model = SPCModelNormal(Delta = 1))

Here "SPCCUSUM" specifies that it should be a CUSUM chart, and SPCModelNormal(Delta = 1) specifies
that it is a model with normally distributed updates of the form (Xt − µ− ∆/2)/σ with ∆ = 1.

Next we generate n = 100 past observations and use the function xiofdata to calculate the
estimated chart parameters ξ̂.

> X <- rnorm(100)
> xihat <- xiofdata(chart, X)
> str(xihat)

List of 3
$ mu: num -0.0284
$ sd: num 0.921
$ m : int 100

Now we can use the function SPCproperty() to calculate the naive and adjusted threshold:

> cal <- SPCproperty(data = X, nrep = 50, property = "calARL",
+ chart = chart, params = list(target = 500), covprob = 0.9,quiet = TRUE)
> cal
90 % CI: A threshold of 5.513 gives an in-control ARL of at least 500.
Unadjusted result: 4.101
Based on 50 bootstrap repetitions.

Here property = "calARL" specifies that the chart should be calibrated to achieve a certain ARL, this
ARL is specified to be 500 (target = 500) and the probability of attaining at least this ARL specified to
be 90% (covprob = 0.9). The adjusted threshold of 5.5 is calculated using parametric bootstrapping
with nrep replications assuming normality of the observations. For real applications nrep should of
course be more than 50. If nonparametric bootstrapping is preferred the model specification in the
definition of the chart should be replaced by SPCModelNonparCenterScale().

If we rather would like to calibrate the chart according to a certain hitting probability, for instance
a hitting probability of 0.05 within 100 steps, this is achieved by specifying property = "calhitprob"
and params = list(target = 0.05,nsteps = 100):
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> SPCproperty(data = X, nrep = 50, property = "calhitprob",
+ chart = chart, params = list(target = 0.05, nsteps=100), covprob = 0.9,
+ quiet = TRUE)
90 % CI: A threshold of 7.137 gives an in-control false alarm probability
of at most 0.05 within 100 steps.

Unadjusted result: 5.285
Based on 50 bootstrap repetitions.

The function runchart is used to run the chart on future data, and the option xi specifies which
parameters to use when running the chart:

> newX <- rnorm(100)
> S <- runchart(chart, newdata = newX, xi = xihat)

The following code produces the plots in the first row of Figure 1, using the ARL calibrated threshold
calculated above:

> par(mfrow = c(1, 2), mar = c(4, 5, 0, 0))
> plot(newX, xlab = "t")
> plot(S, ylab = expression(S[t]), xlab = "t", type = "b",
+ ylim = range(S, cal@res+2, cal@raw))
> lines(c(0,100), rep(cal@res, 2), col = "red")
> lines(c(0,100), rep(cal@raw, 2), col = "blue", lty = 2)
> legend("topleft", c("Adjusted threshold","Unadjusted threshold"),
+ col = c("red", "blue"), lty = 1:2)

Shewhart chart with estimated in-control state

Next we consider a two-sided Shewhart chart, assuming that all observations are normally dis-
tributed. The in-control mean and standard deviation are estimated from n past in-control observations
X−n, . . . , X−1. For new observations X1, X2, . . . a two-sided Shewhart chart is defined by

St =
Xt − µ̂

σ̂
,

which signals when |St| > c for some threshold c. A common choice for Shewhart charts is to set c = 3,
corresponding to three standard deviations if the chart is run with the correct in-control mean and
standard deviation.

We first define the chart by

> chartShew <- new("SPCShew", model = SPCModelNormal(), twosided = TRUE)

and then generate n = 250 past observations and estimate the chart parameters:

> X <- rnorm(250)
> xihat <- xiofdata(chartShew, X)
> str(xihat)
List of 3
$ mu: num 0.0251
$ sd: num 1.05
$ m : int 250

If the Shewhart chart is run with the standard threshold c = 3, we can use the bootstrap method to
calculate a lower limit for the actual ARL of the chart by specifying property = "ARL" and params =
list(threshold = 3):

> SPCproperty(data = X, nrep = 50, property = "ARL", chart = chartShew,
+ params = list(threshold = 3), quiet = TRUE)
90 % CI: A threshold of 3 gives an in-control ARL of at least 213.1.
Unadjusted result: 370.4
Based on 50 bootstrap repetitions.

A two-sided Shewhart chart for normally distributed data with true parameters and a threshold of
c = 3 will correspond to an ARL of roughly 370. We can thus compute an adjusted threshold that with
roughly 90% probability results in an average run length of at least 370 in control:

> cal <- SPCproperty(data = X, nrep = 50, property = "calARL", chart = chartShew,
+ params = list(target = 370), quiet = TRUE)
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Figure 2: Shewhart charts with estimated parameters run on data which are in-control until observation
100 and with a shift in the mean from observation 101 an onwards.

> cal
90 % CI: A threshold of 3.209 gives an in-control ARL of at least 370.
Unadjusted result: 3
Based on 50 bootstrap repetitions.

Finally we run the chart with new observations. The simulated new observations are in-control for
the first 100 observations, and then there is a shift in the mean from observations 101 an onwards. The
corresponding plot is given in Figure 2.

> newX <- rnorm(150, mean = c(rep(0, 100), rep(2, 50)))
> S <- runchart(chartShew, newdata = newX, xi = xihat)

CUSUM chart with linear regression model

The set up is as described in Section Risk-adjusted charts, and with estimated regression coefficients β̂
the CUSUM is

St = max
(
0, St−1 + Yt − Xt β̂− ∆/2

)
, S0 = 0.

The following generates a data set of past observations from the model IE(Y) = 2 + x1 + x2 + x3
with standard normal noise and distribution of the covariate values as specified below.

> n <- 500
> Xlinreg <- data.frame(x1 = rbinom(n, 1, 0.4), x2 = runif(n, 0, 1), x3 = rnorm(n))
> Xlinreg$y <- 2 + Xlinreg$x1 + Xlinreg$x2 + Xlinreg$x3 + rnorm(n)

Next, we initialize the chart

> chartlinregCUSUM <-
+ new("SPCCUSUM", model = SPCModellm(Delta = 1, formula = "y~x1+x2+x3"))

where SPCModellm() uses non-parametric bootstrapping as explained in Section Risk-adjusted charts.
The estimated parameters for running the chart, β̂, are:

> xihat <- xiofdata(chartlinregCUSUM, Xlinreg)
> xihat
Call:
lm(formula = formula, data = P)

Coefficients:
(Intercept) x1 x2 x3

2.0222 1.0360 1.0350 0.9711

Next we find the threshold that with roughly 90% probability results in an average run length of
at least 100 in control.

> cal <- SPCproperty(data = Xlinreg, nrep = 50, property = "calARL",
+ chart = chartlinregCUSUM, params = list(target = 100), quiet = TRUE)
> cal
90 % CI: A threshold of 3.138 gives an in-control ARL of at least 100.
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Figure 3: CUSUM chart for a linear regression model with estimated parameters. The data shift from
in-control to out-of-control from observation 101 an onwards.

Unadjusted result: 2.745
Based on 50 bootstrap repetitions.

Finally, we run the chart with new observations that are in-control for the first 100 observations
and then switches to out-of-control. A plot of the resulting CUSUM is given in Figure 3.

> n <- 120
> newXlinreg <- data.frame(x1 = rbinom(n, 1, 0.4), x2 = runif(n, 0, 1),
+ x3 = rnorm(n))
> outind <- c(rep(0, 100), rep(1, n-100))
> newXlinreg$y <-
+ 2 + newXlinreg$x1 + newXlinreg$x2 + newXlinreg$x3 + rnorm(n) + outind
> S <- runchart(chartlinregCUSUM, newdata = newXlinreg, xi = xihat)

EWMA chart with linear regression model

An EWMA chart based on the residuals of a linear regression model can be defined by

Mt = λ(Yt − Xtβ) + (1− λ)Mt−1, M0 = 0,

where λ is a smoothing parameter determining how to weight the most recent observation versus the
past data. We can now set up the chart, calculate adjusted thresholds and run the chart on the new
data with estimated parameters in the same manner as for the CUSUM chart. The only differences are
that we have to specify "SPCEWMA", Delta = 0 and a value of λ when the chart is initialized.

> chartlinregEWMA <- new("SPCEWMA", model = SPCModellm(Delta = 0,
+ formula = "y~x1+x2+x3"), lambda = 0.1)
> calEWMA <- SPCproperty(data = Xlinreg, nrep = 50, property = "calARL",
+ chart = chartlinregEWMA, params = list(target = 100), quiet = TRUE)
> calEWMA
90 % CI: A threshold of +/- 0.5337 gives an in-control ARL of at least 100.
Unadjusted result: 0.496
Based on 50 bootstrap repetitions.
> xihat <- xiofdata(chartlinregEWMA, Xlinreg)
> M <- runchart(chartlinregEWMA, newdata = newXlinreg, xi = xihat)

A plot of the resulting EWMA chart is given in Figure 4.

Further usage of risk-adjusted charts will be demonstrated in Section Application to cardiac surgery
data where a CUSUM for logistic regression will be explained and used.

Details of the package and advanced usage

A basic structure of the package is, as explained in the introduction of Section Basic usage of the package,
a definition of two types of objects. We will now look further into the details of these two objects and
how they can be used to add new charts, new data models and other estimation procedures.
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Figure 4: EWMA chart for a linear regression model with estimated parameters. The data shift from
in-control to out-of-control from observation 101 an onwards.

One object is an S3 class of type "SPCDataModel" that implements how observed data are used to
fit the model and how updates for the chart are being computed. The second object is an S4 class of
type "SPCchart" which implements how these updates are converted into charts and how the charts
are being calibrated. The main advantage of this separation into two different objects is that it reduces
the amount of redundancy in the code.

The package was originally developed with S4 classes only, to take advantage of the more flexible
method dispatch. However, to improve performance, the data model classes, whose methods are
called very frequently, were switched to S3 classes.

Bespoke data model

We first focus on how to generate a bespoke data model. For this one needs to implement a class of type
"SPCDataModel". Every element of the class has to consist of a list of the following functions: updates,
getcdfupdates, Pofdata, resample, xiofP, which have to be of a specific form. The arguments gen-
erally have the following meaning: xi denotes the parameter vector needed to create updates for
running the chart from observed data, data is observed data, P is a data model.

• updates(xi,data): Returns updates for the chart using the parameter xi and the observed data
data.

• Pofdata(data): Estimates a probability model from the data.

• xiofP(P): Computes the parameter xi needed to compute updates from an (estimated) proba-
bility model P.

• resample(P): Generates a new data set from the probability model P.

• getcdfupdates(P,xi): Returns the cumulative distribution function (CDF) of updates with
data generated from the probability model P and updates computed using the parameter xi.

In the following we give some examples.

Robust estimation

Consider again the example discussed in Sections Motivating example and CUSUM chart with estimated
in-control state of a CUSUM chart which assumes a normal distribution of the observations with
unknown mean and standard deviation. We now demonstrate how to change the estimators to use
the median the mean absolute deviation (MAD) instead of using the mean and the sample standard
deviation. Using these robust estimators could be desirable if there could be outliers present in the
past in-control data.

For this we only need to override one function of the existing data model "SPCModelNormal",
the method Pofdata that estimates the parameters. The format of the input and output for the new
Pofdata function needs to be unchanged. The following code first list the old function and then
overrides it with the new.

> model <- SPCModelNormal(Delta = 1)
> model$Pofdata
function (data)
{
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list(mu = mean(data), sd = sd(data), m = length(data))
}
> model$Pofdata <- function(data){
+ list(mu = median(data), sd = mad(data), m = length(data))
+ }

Properties of this chart can then be computed as before:

> X <- rnorm(100)
> chartrobust <- new("SPCCUSUM", model = model)
> SPCproperty(data = X, nrep = 50, property = "calARL",
+ chart = chartrobust, params = list(target = 100), quiet = TRUE)
90 % CI: A threshold of 4.162 gives an in-control ARL of at least 100.
Unadjusted result: 2.987
Based on 50 bootstrap repetitions.

Parametric exponential CUSUM chart

In this example we illustrate how to construct a CUSUM chart that assumes that the observations
are coming from an exponential distribution with unknown rate λ in control. Again, only the data
model needs to be defined, but now all functions are needed from scratch. I.e. we need to define all
the functions updates, Pofdata, xiofP, resample and getcdfupdates. The basic CUSUM chart class
“SPCCUSUM” will be used without changes.

The updates for a CUSUM chart can in general situations be based on the log likelihood ratio
between an out-of-control model and the in-control model (Hawkins and Olwell, 1998). I.e. the
CUSUM can be written

St = max (0, St−1 + Rt) , S0 = 0,

where the update Rt is the log likelihood ratio for observation t. Suppose that we want to detect a
change of the rate to λ∆ for some given ∆ > 0, ∆ 6= 1. To define the updates, we need to compute the
log likelihood ratio between the out-of-control and the in-control model for an observation Xt, which
gives

Rt = log
(

λ∆ exp(−λ∆Xt)

λ exp(−λXt)

)
= log(∆)− λ(∆− 1)Xt,

defining the function updates.

To define the data model the CDF of these updates must also be computed. This can be done in
closed form, but requires distinguishing the case ∆ > 1 and ∆ < 1 and taking into account that the
rate parameter used in the updates typically differs from the true rate parameter. Let λ̂ be the rate
parameter used in the updates (typically an estimated parameter) and λ be the true parameter. Then
the cdf (conditional on the value of λ̂) is

P(log(∆)− λ̂(∆− 1)Xi ≤ x) =
{

1− exp(−λ(x− log(∆))/(λ̂(1− ∆)) for ∆ < 1
exp(−λ(log(∆)− x)/(λ̂(∆− 1)) for ∆ > 1,

which needs to be implemented in getcdfupdates. We decide to use parametric resampling of the data
(resample) and we decide to estimate the parameter λ based on the past observations X−n, . . . , X−1
using the maximum likelihood estimator λ̂ = n/ ∑n

i=1 X−i.

The following code implements this.

> SPCModelExponential = function(Delta = 1.25){
+ structure(list(
+ Pofdata = function(data){
+ list(lambda = 1/mean(data), n = length(data))
+ },
+ xiofP = function(P) P,
+ resample = function(P) rexp(P$n, rate = P$lambda),
+ getcdfupdates = function(P, xi) {
+ if (Delta<1)
+ function(x)
+ pmax(0, 1-exp(-P$lambda*(x-log(Delta))/(xi$lambda*(1-Delta))))
+ else
+ function(x)
+ pmin(1, exp(-P$lambda*(log(Delta)-x)/(xi$lambda*(Delta-1))))
+ },
+ updates = function(xi, data) log(Delta)-xi$lambda*(Delta-1)*data
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+ ), class = "SPCDataModel")
+ }

Next, we put this into practice. First we initiate the chart.

> ExpCUSUMchart <- new("SPCCUSUM", model = SPCModelExponential(Delta = 1.25))

The following creates some past observations and compute the threshold needed to achieve an
ARL of 1000.

> X <- rexp(500)
> cal <- SPCproperty(data = X, nrep = 50, property = "calARL", chart = ExpCUSUMchart,
+ params = list(target = 1000), covprob = 0.9, quiet = TRUE)
> cal
90 % CI: A threshold of 4.054 gives an in-control ARL of at least 1000.
Unadjusted result: 3.165
Based on 50 bootstrap repetitions.

Finally, we generate some new data and make a CUSUM plot with thresholds which is displayed
in Figure 5.
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Figure 5: CUSUM chart for the rate of an exponential distribution with estimated parameters. The
data are in control.

Implementing a new type of chart

We now discuss the chart model and how to implement new charts. Every chart is an S4 class derived
from the class "SPCchart". It has one slot, model, which contains the data model to be used with the
chart. The main method that needs to be implemented is the method getq, which computes desired
properties of a given control chart. It receives two arguments: which property to report (a string,
e.g. ARL, hitprob, calARL, calhitprob) and additional parameters for this property, e.g. a threshold
when computing the ARL (property ARL), a threshold and a number of steps when computing hitting
probabilities (property hitprob), a desired ARL when calibrating the threshold (property calARL).

We now give one example of how to implement a new chart. Suppose the in-control distribution is
assumed to have a distribution with continuous cdf F, which does not need to be symmetric. Then we
can define a Shewhart type chart which signals if an observation X is in the upper α/2 or lower α/2
quantile for a given threshold α > 0, i.e. if

X ≤ F−1(α/2) = fα/2 or X ≥ F−1(1− α/2) = f1−α/2.

This can be termed a Shewhart chart with asymetric control limits (Chen and Kuo, 2010).

The main work in implementing a chart is implementing functions that compute properties of
the chart (e.g. ARL in control, threshold needed to give a certain ARL or hitting probabilities within
certain steps). These properties need to be computed given the parameter that is used for running the
chart (xi) and given the distribution of the observations (P).

In this example we implement two methods: one for computing the ARL (ARL) and one for
computing the α needed to give a certain ARL (calARL). The ARL for the Shewhart chart with
asymetric control limits run with estimated parameters will be

1
P(X ≤ f̂α/2) + P(X ≥ f̂1−α/2)

=
1

F( f̂α/2) + 1− F( f̂1−α/2)
,
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and in the implementation below we make a log transform of this to increase the accuracy of the
bootstrap. To implement the property calARL, the α needed to achieve a certain ARL is found by a
numerical search using the above expression (we have implemented this with ad hoc choices for the
boundaries of the numeric search). A logit transform is here used in the implementation to improve
the bootstrap.

> setClass("SPCShewAsym", contains = c("SPCchart"))
> setMethod("getq", signature = "SPCShewAsym", function(chart, property, params){
+ if (property == "calARL"){
+ list(
+ q = function(P, xi){
+ pobs <- function(alpha)(
+ getcdfupdates(chart, xi = xi, P = P)(xi$quant(alpha/2))
+ +(1-getcdfupdates(chart, xi = xi, P = P)(xi$quant(1-alpha/2))))
+ res <- uniroot(function(x) params$target-(1/pobs(x)),
+ lower = 1e-7,upper = 0.4)$root
+ as.double(log(res/(1-res)))
+ },
+ trafo = function(x) exp(x)/(1+exp(x)),
+ lowerconf = FALSE,
+ format = function(res)
+ paste("A threshold of alpha=", format(res, digits = 4),
+ " gives an in-control ARL of at least ",
+ params$target, ".", sep = "", collapse = "")
+ )
+ }else if (property == "ARL"){
+ list(
+ q = function(P, xi){
+ -log(getcdfupdates(chart, xi = xi, P = P)(xi$quant(params$alpha/2))
+ +(1-getcdfupdates(chart, xi = xi, P = P)(xi$quant(1-params$alpha/2)))
+ )},
+ trafo = function(x) exp(x),
+ lowerconf = FALSE,
+ format = function(res)
+ paste("A threshold defined by alpha=", params$alpha,
+ " gives an in-control ARL of at least ",
+ format(res, digits = 4), ".", sep = "",collapse = "")
+ )
+ }else stop("property ", property, " not implemented.")
+ })
[1] "getq"

Now we want to use this chart for the example of a gamma distribution. For this we need to
implement a basic data model, which uses the observations directly as updates. We estimate the
parameter of the gamma distribution via the method of moments (Pofdata). To run the chart we need
the quantile function to calculate the estimates of the quantiles fα/2 and f1−α/2 (this appears in xiofP).
Resampling is again parametric resampling under the assumed Gamma distribution (resample).

> X <- rgamma(100, scale = 3, shape = 2)
> modGammaBasic = structure(
+ list(
+ Pofdata = function(data){
+ list(scale = var(data)/mean(data),
+ shape = mean(data)^2/var(data),
+ n = length(data))
+ },
+ xiofP = function(P){
+ res <- P;
+ res$quant <- function(alpha)
+ qgamma(alpha, shape = P$shape, scale = P$scale);
+ res
+ },
+ resample = function(P) {
+ rgamma(P$n, shape = P$shape, scale = P$scale)
+ },
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+ getcdfupdates = function(P, xi) {
+ function(x) pgamma(x, shape = P$shape, scale = P$scale)
+ },
+ updates = function(xi, data) data
+ ),
+ class = "SPCDataModel")
> chartAsym <- new("SPCShewAsym", model = modGammaBasic)
> SPCproperty(data = X, nrep = 50, chart = chartAsym,
+ property = "ARL", params = list(alpha = 0.01), quiet = TRUE)
90 % CI: A threshold defined by alpha=0.01 gives an in-control ARL of at
least 34.54.

Unadjusted result: 100
Based on 50 bootstrap repetitions.
> SPCproperty(data = X, nrep = 50,
+ property = "calARL", chart = chartAsym,
+ params = list(target = 100), quiet = TRUE)
90 % CI: A threshold of alpha=0.002869 gives an in-control ARL of at least
100.

Unadjusted result: 0.009998
Based on 50 bootstrap repetitions.

To show the advantage of the modular setup we now modify the data model to assume that
the data is coming from an exponential distribution, in other words that the shape parameter of the
gamma distribution is 1. We just need to redefine the function PofData to accomplish this.

> modExp = modGammaBasic
> modExp$Pofdata <- function(data){
+ list(scale = mean(data),
+ shape = 1,
+ n = length(data))
+ }
> chartAsymExp <- new("SPCShewAsym", model = modExp)
> X <- rexp(100)
> SPCproperty(data = X, nrep = 50, chart = chartAsymExp,
+ property = "ARL", params = list(alpha = 0.01), quiet = TRUE)
90 % CI: A threshold defined by alpha=0.01 gives an in-control ARL of at
least 84.08.

Unadjusted result: 100
Based on 50 bootstrap repetitions.
> SPCproperty(data = X, nrep = 50,
+ property = "calARL", chart = chartAsymExp,
+ params = list(target = 100), quiet = TRUE)
90 % CI: A threshold of alpha=0.007553 gives an in-control ARL of at least
100.

Unadjusted result: 0.009998
Based on 50 bootstrap repetitions.

Application to cardiac surgery data

In this section we illustrate use of the package with an application to a data set on the outcome of
cardiac surgery from a UK centre for cardiac surgery over the period 1992-1998. These data were first
analysed by Steiner et al. (2000) and have later been used for illustration by several authors (e.g. Sego
and Woodall, 2009; Jones and Steiner, 2012; Zhang et al., 2016). A random subset of these data with
some random noise added is available in the data frame cardiacsurgery in spcadjust. In this data
frame the date of surgery, a surgeon number, the time until death if the patient died during the follow
up time and the Parsonnet score of the patient is given. The Parsonnet score is a well established
scoring system in cardiac surgery which combines a number of risk factors into a risk score for the
patient. The data frame contains 5595 cases.

> data(cardiacsurgery)

Like Steiner et al. (2000) we will focus on the 30-day post-operative mortality rate and use a logistic
regression model with Parsonnet score as covariate for taking into account the differences in risk
between patients, and use a CUSUM for monitoring.
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CUSUM for logistic regression models

We first describe the general set up for CUSUM monitoring with logistic regression models and then re-
turn to the cardiac surgery example. Assume we have n past in-control data (Y−n, X−n), . . . , (Y−1, X−1),
where Yi is a binary response variable and Xi is a corresponding vector of covariates. Suppose that in
control logit(P(Yi = 1|Xi)) = Xiβ. A maximum likelihood estimate β̂ is obtained based on the past
data.

For detecting a change to logit(P(Yi = 1|Xi)) = ∆ + Xiβ, a CUSUM chart based on the cumulative
sum of log likelihood ratios of the out-of-control versus in-control model can be defined by (Steiner
et al., 2000)

St = max (0, St−1 + Rt) , S0 = 0,

where

exp(Rt) =
exp(∆ + Xtβ)Yt /(1 + exp(∆ + Xtβ))

exp(Xtβ)Yt /(1 + exp(Xtβ))
= exp(Yt∆)

1 + exp(Xtβ)

1 + exp(∆ + Xtβ)
.

Like in the linear regression case we apply non-parametric bootstrap as described in Section Risk-
adjusted charts.

Cardiac surgery data

The two first years of data, containing 1769 cases, are used for estimating the parameters of the logistic
regression model. The effect of the Parsonnet score turns out to be non-linear on the logit scale,
applying a square root transform of the score sorts out this. We thus set up data for estimating the
chart parameters (phase I sample) and for running the chart (phase II sample) as follows:

> #Use dead within 30 days as response
> dead30 <- as.numeric(cardiacsurgery$time <= 30)
> #Use the two first years of data as phase I sample
> phaseone <- cardiacsurgery$date <= 730
> estdata <-data.frame(y = dead30[phaseone],
+ x = sqrt(cardiacsurgery$Parsonnet[phaseone]))
> #Use the five last years of data as phase II sample
> phasetwo <- !phaseone
> rundata <- data.frame(y = dead30[phasetwo],
+ x = sqrt(cardiacsurgery$Parsonnet[phasetwo]),
+ z = cardiacsurgery$surgeon[phasetwo],
+ year = (cardiacsurgery$date[phasetwo]-730)/365)

Next we set up charts for monitoring against roughly a doubling and a halving of the mortality
rate, respectively. With a baseline rate of 6.1% this corresponds to ∆ = 0.75 and ∆ = −0.75.

> chartlogregd <-
+ new("SPCCUSUM", model = SPCModellogregLikRatio(Delta = 0.75, formula = "y~x"))
> chartlogregh <-
+ new("SPCCUSUM", model = SPCModellogregLikRatio(Delta = -0.75, formula = "y~x"))

For calculating the thresholds we specify an in control ARL of 10 000, i.e. a false alarm should on
average only occur once per 10 000 procedures.

> cald <- SPCproperty(data = estdata, chart = chartlogregd, property = "calARL",
+ nrep = 50, params = list(target = 10000, gridpoints = 250),
+ parallel = Inf)
> cald
90 % CI: A threshold of 6.157 gives an in-control ARL of at least 10000.
Unadjusted result: 5.065
Based on 50 bootstrap repetitions.
> calh <- SPCproperty(data = estdata, chart = chartlogregh, property = "calARL",
+ nrep = 50, params = list(target = 10000, gridpoints = 250),
+ parallel = Inf)
> calh
90 % CI: A threshold of 6.271 gives an in-control ARL of at least 10000.
Unadjusted result: 4.469
Based on 50 bootstrap repetitions.

The option parallel = Inf speeds up the bootstrap, but this option must be skipped if the code is
run in an environment which does not support parallel processing.
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Figure 6: CUSUM charts based on logistic regression model with estimated parameters monitoring
against increased mortality. Individual charts for four surgeons.
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Figure 7: CUSUM charts based on logistic regression model with estimated parameters monitoring
against decreased mortality. Individual charts for four surgeons.
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Assuming that the distribution of Parsonnet scores is roughly the same for the patients each
surgeon receives, and that the distribution remains approximately the same in the remainder of the
period as in the first two years, the thresholds calculated above can be used for running individual
charts for each of the surgeons. Notice that in such a setting where several charts are run with the same
estimated parameters a threshold adjustment which achieves a guaranteed conditional performance is
particularly relevant (Gandy and Kvaløy, 2013).

The resulting CUSUM plots for four of the surgeons are shown in Figures 6 and 7. In Figures 6 the
CUSUM for the second surgeon starts to increase after a while and passes both the unadjusted and the
adjusted threshold. This could e.g. be due to this surgeon starting to receive more difficult cases, not
sufficiently accounted for by the adjustment for Parsonnet score.

For the monitoring against decreased mortality in Figures 7 there is a signal for one of the surgeons,
indicating better survival than explained by the adjustment for Parsonnet score. The CUSUM for the
third surgeon crosses the unadjusted threshold, but not the adjusted and is thus not regarded as a true
signal.
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Weighted Effect Coding for Observational
Data with wec
by Rense Nieuwenhuis, Manfred te Grotenhuis, Ben Pelzer

Abstract Weighted effect coding refers to a specific coding matrix to include factor variables in
generalised linear regression models. With weighted effect coding, the effect for each category
represents the deviation of that category from the weighted mean (which corresponds to the sample
mean). This technique has particularly attractive properties when analysing observational data, that
commonly are unbalanced. The wec package is introduced, that provides functions to apply weighted
effect coding to factor variables, and to interactions between (a.) a factor variable and a continuous
variable and between (b.) two factor variables.

Introduction

Weighted effect coding is a type of dummy coding to facilitate the inclusion of categorical variables in
generalised linear models (GLM). The resulting estimates for each category represent the deviation
from the weighted mean. The weighted mean equals the arithmetic mean or sample mean, that is the
sum of all scores divided by the number of observations As we will show, weighted effect coding has
important advantages over traditional effect coding if unbalanced data are used (i.e. with categories
holding different numbers of obwervations), which is common in the analysis of observational data.
We describe weighted effect coding for categorical variables and their interactions with other variables.
Basic weighted effect coding was first described in 1972 (Sweeney and Ulveling, 1972) and recently
updated to include weighted effect interactions between categorical variables (Grotenhuis et al.,
2017b,a). In this paper we develop the interaction between weighted effect coded categorical variables
and continuous variables. All software is available in the wec package.

Treatment, effect, and weighted effect coding

Weighted effect coding is one of various ways to include categorical (i.e., nominal and ordinal) variables
in generalised linear models. As this type of variables is not continuous, so-called dummy variables
have to be created first which represent the categories of the categorical variable. In R, categorical
variables are handled by factors, to which different contrasts can be assigned. For unordered factors,
the default is dummy or treatment coding. With treatment coding, each category in the factor variable
is tested against a preselected reference category. This coding can be specified with contr.treatment.
Several alternatives are available, including orthogonal polynomials (default for ordered factors
and set with contr.poly), helmert coding to compare each category to the mean of all subsequent
categories (contr.helmert), and effect coding (contr.sum).

In effect coding (also known as deviation contrast or ANOVA coding), parameters represent the
deviation of each category from the grand mean across all categories (i.e., the sum of arithmetic means
in all categories divided by the number of categories). To achieve this, the sum of all parameters is
constrained to 0. This implies that the possibly different numbers of observations in categories is not
taken into account. In weighted effect coding, the parameters represent the deviation of each category
from the sample mean, corresponding to a constraint in which the weighted sum of all parameters is
equal to zero. The weights are equal to the number of observations per category.

The differences between treatment coding, effect coding, and weighted effect coding are illustrated
in Figure 1, showing the mean wage score for 4 race categories in the USA. The grey circles represent
the numbers of observations per category, with whites being the largest category. In treatment coding,
the parameters for the Black, Hispanic and Asian populations reflect the mean wage differences
from the mean wage in the white population that serves here as the reference category. The dotted
double-headed arrow in Figure 1 represents the effect for Blacks based on treatment coding, with
whites as the reference category. In effect coding, the reference is none of the four racial categories,
but the grand mean. This mean is the sum of all four (arithmetic) mean wages divided by 4, and
amounts to 49,762 and is shown as the dashed horizontal line in Figure 1. The effect for Blacks then is
the difference between their mean wage score (37,664) and the grand mean, represented by the dashed
double-headed arrow and amounts to (37,664 - 49,762 =) -12,096. Weighted effect coding accounts
for the number of observations per category, and thus weighs the mean wages of all categories first
by the different number of observations per category. Because whites outnumber all other other
categories the weighted (sample) mean (= 52,320) is much larger than the unweighted (grand) mean,
and is represented by the horizontal continuous line in Figure 1. As a consequence, the effect for
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Figure 1: Illustration of treatment coding, effect coding, and weighted effect coding

Blacks now is much stronger (37, 664− 52, 320 = −14, 654) as represented by the (vertical) continuous
double-headed arrow.

If the data are balanced, meaning that all categories have the same number of observations, the
results for effect coding and weighted effect coding are identical. With unbalanced data, such as
typically is the case in observational studies, weighted effect coding offers a number of interesting
features that are quite different from those obtained by unweighted effect coding. First of all, in
observational data the sample mean provides a natural point of reference. Secondly, the results of
weighted effect coding are not sensitive to decisions on how observations were assigned to categories:
when categories are split or combined, the grand mean is likely to shift as it depends on the means
within categories. In weighted effect coding the sample mean of course remains unchanged. Therefore,
combining or splitting other categories does not the change the effects of categories that were not
combined or split. Finally, weighted effect coding allows for an interpretation that is complementary to
treatment coding, and seems particularly relevant when comparing datasets from different populations
(e.g., from different countries, or time-periods): the effects represent how deviant a specific category
is from the sample mean, while accounting for differences in the composition between populations.
Looking at Figure 1, this would allow for the finding that the Black population would have become
more deviant over time in a situation where the whites grew in numbers (thus shifting the weighted
mean upwards) while the wage gap between Blacks and whites remained constant (the dotted line, as
would be estimated with treatment coding).

The coding matrix for weighted effect coding is shown in Table 1. In effect coding, the columns of
the coding matrix would all have summed to 0. This can be seen in the first example of the next section.
The coding matrix for weighted effect coding is based on the restriction that the columns multiplied by
the proportions of the respective categories sum to 0. In other words, if the values in each cell of the

Hispanic Black Asian

Hispanic 1 0 0
Black 0 1 0
Asian 0 0 1
White −(nhispanic/nwhite) −(nblack/nwhite) −(nasian/nwhite)

Table 1: Coding Matrix Weighted Effect Coding
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coding matrix in Table 1 are weighted by the relative number (or proportion) in each category, each
column sums to 0.

Examples

This article introduces the wec package and provides functions to obtain coding matrices based on
weighted effect coding. The examples in this article are based on the PUMS data.frame, which has data
on wages, education, and race in the United States in 2013. It is a subset of 10,000 randomly sampled
observations, all aged 25 or over and with a wage larger than zero, originating from the PUMS 2013
dataset (Census, 2013). Because the calculation of weighted effect coded variables involves numbers
of observations, it is important to first remove any relevant missing values (i.e., list-wise deletion),
before defining the weighted effect coded variables.

> library(wec)
> data(PUMS)

We first demonstrate the use of standard effect coding, which is built into base R, to estimate the
effects of race on wages. To ensure that the original race variable remains unaltered, we create a new
variable ‘race.effect’. This is a factor variable with 4 categories (‘Hispanic’, ‘Black’, ‘Asian’, and
‘White’). Effect coding is applied using the contr.sum() function. ’White’ is selected as the omitted
category by default. Then, we use this new variable in a simple, OLS regression model. This is shown
below:

> PUMS$race.effect <- factor(PUMS$race)
> contrasts(PUMS$race.effect) <- contr.sum(4)
> contrasts(PUMS$race.effect)

[,1] [,2] [,3]
Hispanic 1 0 0
Black 0 1 0
Asian 0 0 1
White -1 -1 -1

> m.effect <- lm(wage ~ race.effect, data=PUMS)
> summary(m.effect)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 49762 954 52.2 0.0e+00
race.effect1 -8724 1649 -5.3 1.3e-07
race.effect2 -12096 1702 -7.1 1.3e-12
race.effect3 16135 2042 7.9 3.0e-15

The results of regressing wages on the effect coded race variable (only the fixed effects are shown
above) indicate that the grand mean of wages is 49,762. In Figure 1 this grand mean was shown as the
horizontal, dashed line. This is the grand (unweighted) mean of the average (arithmetic) wages among
Hispanics, Blacks, Asians, and white Americans. The mean wage among Blacks (‘race.effect2’, refer
to the coding matrix to see which category received which label) is, on average, 12,096 dollar lower
than this grand mean. This was shown as the dashed double-headed arrow in Figure 1. The wages of
Asians (‘race.effect3’), on the other hand, are on average 16,135 dollar higher than the grand mean.

We already saw in Figure 1 that not only the average wages vary across races, but also that the
number of Hispanics, Blacks, Asians, and whites are substantially different. As these observational
data are so unbalanced, the grand mean is not necessarily the most appropriate point of reference.
Instead, the sample (arithmetic) mean may be preferred as a point of reference. To compare and test
the deviations of all four mean wages from the sample mean, weighted effect coding has to be used:

> PUMS$race.wec <- factor(PUMS$race)
> contrasts(PUMS$race.wec) <- contr.wec(PUMS$race.wec, "White")
> contrasts(PUMS$race.wec)

Hispanic Black Asian
Hispanic 1.00 0.00 0.000
Black 0.00 1.00 0.000
Asian 0.00 0.00 1.000
White -0.12 -0.11 -0.069

> m.wec <- lm(wage ~ race.wec, data=PUMS)
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> summary(m.wec)$coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 52320 587 89.1 0.0e+00
race.wecHispanic -11282 1810 -6.2 4.8e-10
race.wecBlack -14654 1905 -7.7 1.6e-14
race.wecAsian 13577 2484 5.5 4.7e-08

The example above again creates a new variable (‘race.wec’) and uses the new contr.wec()
function to assign a weighted effect coding matrix. Unlike many other functions for contrasts in R,
contr.wec() requires that not only the omitted category is specified, but also the specification of the
factor variable for which the coding matrix is computed. The reason for this is that, as seen in Table 1,
to calculate a weighted effect coded matrix, information on the number of observations within each
category is required. The coding matrix now shows a (negative) weight (which is the ratio between
the number of observations in category x and the omitted category ‘Whites’) for the omitted category,
which was -1 in the case of effect coding.

In the regression analysis, the intercept now represents the sample mean and all other effects
represent deviations from that sample mean. This corresponds to the continuous double-headed arrow
and line in Figure 1. For instance, Blacks earn on average 14,654 dollars less compared to the sample
mean. To be able to test how much whites’ mean wage differs from the sample mean, the omitted
category must be changed and subsequently a new variable is to be used in an updated regression
analysis:

> PUMS$race.wec.b <- PUMS$race.wec
> contrasts(PUMS$race.wec.b) <- contr.wec(PUMS$race.wec, "Black")
> m.wec.b <- lm(wage ~ race.wec.b, data=PUMS)
> summary(m.wec.b)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 52320 587 89.1 0.0e+00
race.wec.bHispanic -11282 1810 -6.2 4.8e-10
race.wec.bAsian 13577 2484 5.5 4.7e-08
race.wec.bWhite 2128 325 6.5 6.5e-11

Here, the omitted category was changed to Blacks. Note that the intercept as well as the estimates
for Hispanics and for Asians did not change. This is unlike treatment coding, where each estimate
represents the deviation from the omitted category (in treatment coding: the reference category). The
new estimate shows that whites earn 2,128 dollar more than the mean wage in the sample. In the
remainder of this article we use ’White’ as the omitted category by default, but in all analyses the
omitted category can be changed.

Next, we control the results for respondents’ level of education using a continuous variable (which
is mean centred to keep the intercept at 52,320).

> m.wec2 <- lm(wage ~ race.wec + education.int, data=PUMS)
> summary(m.wec2)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 52320 560 93.4 0.0e+00
race.wecHispanic -4955 1738 -2.9 4.4e-03
race.wecBlack -11276 1820 -6.2 6.0e-10
race.wecAsian 5151 2385 2.2 3.1e-02
education.int 9048 287 31.5 7.9e-208

The results show that one additional point of education is associated with an increase in wages of
9,048. This represents the average increase of wages due to education in the sample while controlling
for race. The estimates for the categories of race again represent the deviation from the sample mean
controlled for education. When more control variables are added, the weighted effect coded estimates
still represent the deviation from the sample mean, but now controlled for all other variables as well.
Comparing these estimates to those from the model without the control for education suggests that
educational differences partially account for racial wage differences. In the next section, we discuss
how weighted effect coded factor variables can be combined with interactions, to test whether the
wage returns of educational attainment vary across race.

Interactions

Weighted effect coding can also be used in generalised linear models with interaction effects. The
weighted effect coded interactions represent the additional effects over and above the main effects
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obtained from the model without these interactions. This was recently shown for an interaction
between two weighted effect coded categorical variables (Grotenhuis et al., 2017a). In this paper we
address the novel interaction between weighted effect coded categorical variables and a continuous
variable. In the previous section a positive effect (9,048) of education on wage was found. The question
is whether this effect is equally strong for all four racial categories.

With treatment coding, an interaction would represent how much the effect of (for instance)
education for one category differs from the educational effect in another category that was chosen
as reference. With effect coding, the interaction terms represent how much the effect of (for instance)
education for a specific category differs from the unweighted main effect (which here happens to be
8,405). Because the data are unbalanced, weighted effect coding is considered here an appropriate
parameterisation. In weighted effect coded interactions the point of reference is the main effect in he
same model but without the interactions.

In our case this educational main effect on wage is 9,048 (see Figure 2), which we calculated in
the example above. Let’s assume we already know, as will be confirmed in later examples, that the
estimates for the effect of education on wages among whites is 9,461, among Hispanics 5,782, among
Asians 12,623, and finally among Blacks the effect is 5,755. The weighted effect coded interactions
then are, respectively, 9, 461− 9, 048 = 413; 5, 782− 9, 048 = −3, 266; 12, 623− 9, 048 = 3, 575; and
5, 755− 9, 048 = −3, 293. These estimates represent how much the education effect for each group
differs from the main effect of education in the sample.

With weighted effect coded interactions, one can obtain these estimates simultaneously with the
mean effect of education. To do so, a coding matrix has to be calculated. This coding matrix is based
on the restriction that if the above-mentioned effects are multiplied by the sum of squares of education
within each category, the sum of these multiplications is zero. This is the weighted effect coded
restriction for interactions.

The sum of squares (SS) of the continuous variable x (education) for level j of the categorical
variable (race) is calculated as:

SSj =
I

∑
i=1

(
xij − xj

)2
(1)

where, for the example, xij denotes the education of a person i in race j, I denotes the total number of
people in race j and xj denotes the mean of education for people in race j.

To impose this restriction we replaced the weights in Table 1 by the ratio between two sums of
squares to obtain a new coding matrix (see Table 2) (Lammers, 1991). The denominator of this ratio
is the sum of squares of education among the omitted category. If we multiply this coding matrix
with the mean centred education variable, then we get three interaction variables, and the estimates
for these variables reflect the correct deviations from the main education effect together with the
correct statistical tests. To have the intercept unchanged, we finally mean centred the new interaction
variables within each category of race.

In previous approaches to interactions with weighted effect coding (West et al., 1996; Aguinis,
2004), it was not possible to have the effects of the first order model unchanged. This is because a
restriction to the coding matrix was used based on the number of observations rather than on the sum
of squares used here.

An attractive interpretation of interaction terms is provided: as the (multiplicative) interaction
terms are orthogonal to the main effects of each category, these main effects remain unchanged upon
adding the interaction terms to the model. The interaction terms represent, and test the significance of,
the additional effect to the main effects.

The logic of interactions between weighted effect coded dummies and a continuous variable is
demonstrated in Figure 2. The dashed blue and red lines represent the effects of education for Blacks
and whites, respectively (Hispanics and Asians not shown here). The dashed black line represents
the effect of education that is the average of the effects among the four racial categories. This is the
effect of education one would estimate if effect coding was used to estimate the interaction, and
the differences in slopes between this reference and each racial categories would be the interaction
parameters. However, the observations of whites influence the height of the average effect of education
in the sample to a larger extent than the Blacks, due to their larger sum of squares. Therefore, the
weighted effect of education, shown as the continuous line, is a more useful reference. The sum of
squares are represented in Figure 2 by grey squares, and are distinct from the grey circles representing
frequencies in Figure 1. The sum of squares pertain to the complete regression slope, and therefore the
position of the grey squares was chosen arbitrarily at the center of the x-axis.

Finally, we briefly address the interaction between two weighted effect coded categorical variables.
Unlike dummy coding and effect coding, the interaction variables are not simply the multiplication
of the two weighted effect coded variables. Instead, partial weights are assigned to the interaction
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Figure 2: Illustration of interacting weighted effect coding and continuous variable.
Note: Grey squares represent sum of squares (position on x-axis was chosen arbitrarily).

Hispanic Black Asian

Hispanic 1 0 0
Black 0 1 0
Asian 0 0 1
White −(SShispanic/SSwhite) −(SSblack/SSwhite) −(SSasian/SSwhite)

Table 2: Coding Matrix for interaction Factor with Weighted Effect Coding and Continuous variable

Main Effects Interaction Effects
Degree Hispanic Black Asian Degree × Hispanic Degree × Black Degree × Asian

HS & H −(nd/nhs) 1 0 0 −(nd,h/nhs,h) 0 0
HS & B −(nd/nhs) 0 1 0 0 −(nd,b/nhs,b) 0
HS & A −(nd/nhs) 0 0 1 0 0 −(nd,a/nhs,a)
HS & W −(nd/nhs) −(nh/nw) −(nb/nw) −(na/nw) (nd,h/nhs,w) (nd,b/nhs,w) (nd,a/nhs,w)
D & H 1 1 0 0 1 0 0
D & B 1 0 1 0 0 1 0
D & A 1 0 0 1 0 0 1
D & W 1 −(nh/nw) −(nb/nw) −(na/nw) −(nd,h/nd,w) −(nd,b/nd,w) −(nd,a/nd,w)

Table 3: Coding Matrix for interaction two factor variables with Weighted Effect Coding

variables to obtain main effects that equal the effects from the model without these interactions (see
Table 3 for the weights, for in-depth matrix information about how to create these partial weights
please visit http://ru.nl/sociology/mt/wec/downloads/). The orthogonal interaction effects in our
example denote the extra wage over and above the mean wages found in the model without these
interactions, no matter whether the data are unbalanced or not. In case the data are completely
balanced, the estimates from weighted effect coding are equal to those from effect coding, but they can
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be quite different in effect size and associated t-values when the data are unbalanced.

Examples of interactions

To demonstrate interactions that include weighted effect coded factor variables, we continue our
previous example. For these interactions, the functions in the wec package deviate a little from
standard R conventions. This is a direct result of how weighted effect coding works. With many forms
of dummy coding, interaction variables can be created by simply multiplying the values of the two
variables that make up the interaction. This is not true for weighted effect coding, as the coding matrix
for the interaction is a function of the numbers of observations of the two variables that interact. So,
instead of multiplying two variables in the specification of the regression model in typical R-fashion, a
new, third, variable is created prior to specifying the regression model and then added. Here, we refer
to these additional variables as the ‘interaction’ variable.

Interaction variables for interacting weighted effect coded factor variables are produced by the
wec.interact() function. The first variable entered (‘x1’) must be a weighted effect coded factor
variable. The second (‘x2’) can either be a continuous variable or another weighted effect coded factor
variable. By default, this function returns an object containing one column for each of the interaction
variables required. However, by specifying output.contrasts = TRUE, the coding matrix (see Table 2)
is returned:

> wec.interact(PUMS$race.wec, PUMS$education.int, output.contrasts = TRUE)

[,1] [,2] [,3]
1 1.0 0.000 0.000
2 0.0 1.000 0.000
3 0.0 0.000 1.000
4 -0.1 -0.098 -0.066

The example above shows the coding matrix for interacting the (weighted effect coded) race
variable with the continuous education variable. The omitted category is, again, ’Whites’ (category 4),
and the coding matrix shows the ratio of sum of squares as was defined in Table 2. To include this in
the regression analysis, a new factor variable is created:

> PUMS$race.educint <- wec.interact(PUMS$race.wec, PUMS$education.int)
> m.wec.educ <- lm(wage ~ race.wec + education.int + race.educint, data=PUMS)
> summary(m.wec.educ)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 52320 559 93.5 0.0e+00
race.wecHispanic -4955 1736 -2.9 4.3e-03
race.wecBlack -11276 1817 -6.2 5.7e-10
race.wecAsian 5151 2381 2.2 3.1e-02
education.int 9048 287 31.6 2.3e-208
race.educintinteractHispanic -3266 977 -3.3 8.3e-04
race.educintinteractBlack -3293 990 -3.3 8.8e-04
race.educintinteractAsian 3575 1217 2.9 3.3e-03

The wec.interact function is now called without the output.contrasts = TRUE option. The first
specification is the factor variable and the second term is the continuous variable. The results are
stored in a new variable. This new interaction variable is entered into the regression model in addition
to the variables with the main effects for race and education.

The results show that the returns to education, in terms of wages, for Hispanics and Blacks are
lower than the average returns to education in the sample, and the returns to education are higher
among Asians than it is in the sample as a whole. Note that without additional control variables,
all effects for race and for education, as well as the estimate for the intercept, remained unchanged
compared to previous examples after including the (weighted effect coded) interaction variable.

Note that if one wants to estimate the effects and standard errors for the omitted category, in this
case ’Whites’, not only the contrasts for the categorical variable need to be changed (as demonstrated
above), but also the interaction variable needs to be updated.

Below, we specify the interaction between the race variable with a factor variable differentiating
respondents who have a high school diploma and those who have a higher degree. Of course, both
are weighted effect coded:

> PUMS$education.wec <- PUMS$education.cat
> contrasts(PUMS$education.wec) <- contr.wec(PUMS$education.cat, "High school")
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> PUMS$race.educat <- wec.interact(PUMS$race.wec, PUMS$education.wec)

> m.wec.educwec <- lm(wage ~ race.wec + education.wec + race.educat, data=PUMS)
> summary(m.wec.educwec)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 52320 569 92.0 0.0e+00
race.wecHispanic -6645 1764 -3.8 1.7e-04
race.wecBlack -11738 1849 -6.3 2.3e-10
race.wecAsian 7528 2419 3.1 1.9e-03
education.wecDegree 14343 572 25.1 1.6e-134
race.educatx1Hispanic:x2Degree -7674 2441 -3.1 1.7e-03
race.educatx1Black:x2Degree -6682 2252 -3.0 3.0e-03
race.educatx1Asian:x2Degree 4022 1536 2.6 8.8e-03

We created a new categorical variable ‘education.wec’ and assigned a coding matrix based on
weighted effect coding, with ‘High school’ as the omitted category. The results show that respondents
with a degree on average earn 14,343 dollar more than the sample average (52,320). Hispanics benefit
7,674 dollar less from having a degree compared to the average benefit of a degree, while Asians
benefit 4,022 dollar more. All in all, the results are very similar to those in the previous model with
the continuous variable for education. It should be noted that in the model with interactions between
weighted effect coded factor variables, the intercept again shows the same value, representing the
average wage in the sample. Just like with the previous examples, the omitted estimates and standard
errors (for instance the income effect of Hispanics without a degree) can be obtained by changing the
omitted categories in the weighted effect coded factor variables, and by re-calculating the interaction
variable(s).

Conclusion

This article discussed benefits and applications of weighted effect coding. It covered weighted effect
coding as such, interactions between two weighted effect coded variables, and interactions with a
weighted effect coded variable and an continuous variable. The wec package to apply these techniques
in R was introduced. The examples shown in this article were based on OLS regression, but weighted
effect coding (also) applies to all generalised linear models.

The benefits of using weighted effect coding are apparent when analysing observational data that,
unlike experimental data, typically do not have an equal number of observations across groups or
categories. When this is the case, the grand mean is not necessarily the appropriate point of reference.
Consequently estimates of effects and standard errors based on weighted effect coding are not sensitive
to how other observations are categorised.

With weighted effect coding, compared to treatment coding, no arbitrary reference category has to
be selected. Instead, the sample mean serves as a point of reference. With treatment coding, selecting as
a reference a category with a small number of observations and a deviant score can lead to significant
results while this reference category has little contribution to the overall sample mean.

When weighted effect coded variables are used in interactions, the main effects remain unchanged
after the introduction of the interaction terms. In previous, related, approaches this was not possible
(West et al., 1996; Aguinis, 2004). This allows for the straightforward interpretation that the interaction
terms represent how much the effect is weaker / stronger in each category. That is, when interacting
with treatment coded categorical variables, the so-called ‘main’ effect refers to the reference category,
whereas with weighted effect coding the unconditional main (/mean) effect is shown. As such, it can
be used to test the assumption that estimated effects do not vary across groups.

It should be noted that the R-square of regression models does not depend on which type of
dummy coding is selected. This means that the predicted values based on models using treatment
coding, effect coding, or weighted effect coding, will be exactly the same. Yet, as each type of dummy
coding selects a different point of reference, the interpretation of the estimates differs and a different
statistical test is performed.

To conclude, the wec package contributes functionality to apply weighted effect coding to factor
variables and interactions between (a.) a factor variable and a continuous variable and between (b.)
two factor variables. These techniques are particularly relevant with unbalanced data, as is often the
case when analysing observational data.
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Hosting Data Packages via drat: A Case
Study with Hurricane Exposure Data
by G. Brooke Anderson and Dirk Eddelbuettel

Abstract Data-only packages offer a way to provide extended functionality for other R users. However,
such packages can be large enough to exceed the package size limit (5 megabytes) for the Comprehen-
sive R Archive Network (CRAN). As an alternative, large data packages can be posted to additional
repostiories beyond CRAN itself in a way that allows smaller code packages on CRAN to access and
use the data. The drat package facilitates creation and use of such alternative repositories and makes
it particularly simple to host them via GitHub. CRAN packages can draw on packages posted to drat
repositories through the use of the ‘Additonal_repositories’ field in the DESCRIPTION file. This paper
describes how R users can create a suite of coordinated packages, in which larger data packages are
hosted in an alternative repository created with drat, while a smaller code package that interacts with
this data is created that can be submitted to CRAN.

Motivation

“Big data”, apart from being a buzzword, also accurately describes the current scale of many scientific
data sets. While the R language and environment (R Core Team, 2017a) enables the creation, use,
and sharing of data packages to support methodology or application packages, the size of these
data packages can be very large. The Bioconductor project has addressed the potentially large size
requirements of data packages through the use of Git Large File Storage, with the package contributor
covering costs for extremely large data packages (over 1 gigabyte) (Bioconductor Core Team, 2017).
The Bioconductor repository, though, is restricted to topic-specific packages related to bioinformatics.
The Comprehensive R Archive Network (CRAN), which archives R packages on any topic, has
a recommended size limit (reasonable for a widely-mirrored repository) of 5 megabytes (MB) for
package data and documentation (R Core Team, 2017b). A twofold need therefore arises for package
maintainers seeking to share large R data packages that are outside the scope of the Bioconductor
project. First, there is a need to create and share such a data package for integration into and extensions
of a given methodology or application package, and, second, there is a need to integrate use of such
a package in a way that makes it seamlessly integrated with smaller CRAN packages that use the
data package. Here, we outline one possible approach to satisfy these needs by creating a suite of
coordinated packages, in which larger data packages are hosted outside of CRAN but can still be
accessed by smaller code packages that are submitted to CRAN.

The problem of creating CRAN packages that interface with large datasets is not new, and various
approaches have been taken in the past to allow for such an interface. For example, the NMMAPSlite
package (currently available only from the CRAN archive) was built to allow users to interact with
daily data on weather, air pollution, and mortality outcomes for over 100 US communities over 14 years
(Peng and Dominici, 2008). To enable interaction with this large dataset through a CRAN package, the
package maintainer posted the data on a server and included functions in the NMMAPSlite package
to create an empty database on the user’s computer that would be filled with community-specific
datasets as the user queried different communities. This data interaction was enabled with the stashR
package by the same maintainer (Eckel and Peng, 2012).

More recent packages similarly allow interaction between a web-hosted database and R, in some
cases for a database maintained by an outside entity. For example, the rnoaa package allows access to
weather data posted by the National Oceanic and Atmospheric Administration (NOAA) (Chamberlain
et al., 2016), while the tigris package allows access to spatial data from the United States Census
Bureau (Walker and Rudis, 2016). Both packages are posted on CRAN and allow R users to work with
a large collection of available online data by creating and sending HTTP requests from R using the
conventions defined in the respective online databases’ application program interfaces (APIs). This
approach is a good one for data that is already available through an online database, especially if the
database is outside the control of the R package maintainer or if the potential set of data is extremely
large and it is unlikely that an R user would want to download all of it, since an API allows an R user
to selectively download parts of the data. However, if the data is not already available through an
online database, this approach would require the R package maintainer to create and maintain an
online database, including covering the costs and managing the security of that database.

Another approach is to create a suite of packages, in which smaller (‘code’) packages are submit-
ted to CRAN while larger (‘data’) packages are posted elsewhere. With this approach, the R user
downloads all the data in the data package when he or she installs the data package, effectively
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caching this data locally so that data can be used in different R sessions without reloading or when the
computer is offline. This can be a good approach in cases where the data is not otherwise available
through an online database and when R users are likely to want to download the full set of data. In
this case, this second approach offers several advantages, including: (1) the data can be documented
through package helpfiles that are easily accessible from the R console; (2) if a user would like to
delete all downloaded data from their computer, he or she can easily do so by removing the entire
data package with remove.packages (as compared to other caching solutions, in which case the user
might need to do some work to determine where a package cached data on his or her computer); (3)
versioning can be used for the data package, which can improve reproducibility of research using
the data (Gentleman et al., 2004); and (4) the data package can include the R scripts used to clean
the original data (for example, in a ‘data-raw’ directory, with the directory’s name excluded from
the R package build through a listing in the ‘.Rbuildignore’ file), which will make the package more
reproducible for the package author and, if the full package directory is posted publicly (e.g., through
a public GitHub repository), for other users.

The UScensus2000 suite of packages (currently available from the CRAN archive) used this
approach to allow access to U.S. Census Bureau data from the 2000 Decennial Census (Almquist, 2010).
This suite of packages included data at a more aggregated spatial level (e.g., state- and county-level
data) through data packages submitted to CRAN, but included the largest dataset (block-level data) in
an R package that was instead posted to the research lab’s website (Almquist, 2010). A convenience
function was included in one of the CRAN packages in the suite to facilitate installing this data
package from the lab’s website (Almquist, 2010).

This approach can be facilitated by posting the data package through an online package repository
rather than a non-repository website. While support for repositories outside of CRAN, Bioconductor,
and OmegaHat has existed within R for years, few users appear to have deployed this mechanism
to host additional repositories. The drat package facilitates the creation and use of a user-controlled
package repository. Once a package maintainer has created a repository, he or she can use it to host
larger packages like a data package (and of course also any number of code packages). Use of a
drat repository allows R users to install and update the data package using traditional R functions
for managing packages (e.g., install.packages, update.packages) after the user has added the drat
repository through a call to addRepo (Eddelbuettel et al., 2016). A drat repository can be published
online through GitHub Pages, and GitHub repositories have a recommended maximum size of 1
GB, much larger than the size limit for a CRAN package, with a cap of 100 MB on any single file
(https://help.github.com/articles/what-is-my-disk-quota/). Even for data packages below the
CRAN size limit, this approach to hosting data packages can help remove some of the burden of
hosting and archiving large data packages from CRAN. Although the drat package is relatively
new, some package maintainers are already taking this approach—for example, the grattan package
facilitates research in R on Australian tax policy, with relevant data available through the large taxstats
data package, posted in a drat repository.

When taking the approach of creating a suite of packages in which the smaller code package
or packages are submitted to CRAN while larger data packages are hosted in drat repositories, it is
necessary to add some infrastructure to the smaller code packages. CRAN policies do not allow the
submission of a package with mandatory dependencies on packages hosted outside of a mainstream
repository, which means that the smaller package could not be submitted to CRAN if the data package
is included in the smaller package through ‘Imports:’ or ‘Depends:’. The R package ecosystem offers a
solution: a package maintainer can create a weaker relationship between code and data packages via
a ‘Suggests:’, which makes the data package optional, rather than mandatory, as either ‘Imports:’ or
‘Depends:’ would. Being optional, one then has to condition any code in the code package that accesses
data in the data package on whether that package is present on the user’s system. This approach offers
the possibility of posting a data package that is too large for CRAN on a non-mainstream respository,
like a drat repository, while submitting a package that interacts with the data to CRAN.

This paper outlines in sufficient detail the steps one has to take to use drat to host a large data
package for R and how to properly integrate conditional access to such an optional data package into
a smaller code package. The packaging standard aimed for is the CRAN Repository Policy and the
passing of ‘R CMD check --as-cran’. Broadly, these steps are:

1. Create a drat repository;
2. Create the data package(s), build it, and post it in the drat repository; and
3. Create / alter the code package(s) to use the data package(s) in a way that complies with CRAN

checks.

As a case study, we discuss and illustrate the interaction between the packages hurricaneex-
posure (Anderson et al., 2017b) and hurricaneexposuredata (Anderson et al., 2017a). The latter
package contains data for eastern U.S. counties on rain, wind, and other hurricane exposures, cov-
ering all historical Atlantic-basin tropical storms over a few decades. The total size of the pack-
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age’s source code is approximately 25 MB, easily exceeding CRAN’s package size limit. This
package includes only data, but the companion package, hurricaneexposure, provides functions
to map and interact with this data. The hurricaneexposure package is of standard size and avail-
able from CRAN since the initial version 0.0.1, but to fully utilize all its capabilities requires access
to the data in package hurricaneexposuredata. Here, we highlight specific elements of code in
these packages that allow coordination between the two. The full code for both packages is avail-
able through GitHub repositories (https://github.com/geanders/hurricaneexposure and https:
//github.com/geanders/hurricaneexposuredata); this article references code in version 0.0.2 of both
packages.

Posting a data package to a drat repository

Creating a drat repository

A package maintainer must first create a drat repository if he or she wishes to host packages through
one. Essentially, this repository is a way to store R packages such that it is easy for R users to download
and update the packages; the repository can be shared, among other ways, through a GitHub-hosted
website. Because a drat repository is controlled by the package maintainer, it allows increased flexibility
to package maintainers compared to repositories like CRAN. A single drat repository can host multiple
packages, so a maintainer likely only needs a single drat repository, regardless of how many packages
he or she wishes to host on it.

A drat repository is essentially a network-accessible directory structure. The drat repository’s di-
rectory must include index files (e.g., ‘PACKAGES’ and ‘PACKAGES.gz’; Figure 1), which have metadata
describing the packages available in the repository. The directory structure should also store files with
the source code of one or more packages (e.g., ‘hurricaneexposuredata_0.0.2.tar.gz’) and can also include
operating system-specific package code (e.g., ‘hurricaneexposuredata_0.0.2.zip’). Multiple versions of a
package can be included (e.g., ‘hurricaneexposuredata_0.0.1.tar.gz’ and ‘hurricaneexposuredata_0.0.2.tar.gz’
in Figure 1), allowing for archiving of old packages.

A user can create a drat directory with the required structure either by hand, via functions in the
drat package, or by copying an existing drat repository (e.g., forking one on GitHub, like the original
drat repository available at https://github.com/eddelbuettel/drat). While this directory can have
any name, we suggest the user name the directory ‘drat’, as this allows the easy use of default variable
names (which can of course be overridden as needed) for functions in the drat package, as shown in
later code examples.

Second, for other users to be able to install packages from a drat repository, the repository must
be available online. This can be easily achieved via the https protocol using GitHub’s GitHub Pages,
which allows GitHub users to create project webpages by posting content to an ‘gh-pages’ branch
of the project’s repository. (While there are now ways to publish content from a directory ‘docs/’ in
the ‘master’ branch, functions in the drat package currently only support use of the older ‘gh-pages’
publishing option). Once this ‘gh-pages’ branch is pushed, the content in that branch will be available
as part of the GitHub user’s GitHub Pages website. For example, if the project is in the GitHub
repository https://github.com/username/projectname, the content from the ‘gh-pages’ branch of
that repository will be published at https://username.github.io/projectname.

Once this drat repository is created and published online through GitHub Pages, any source code
or binaries for R packages within the repository can be installed and updated by R users through
functions in the drat package. An R user can install a package from a drat repository by first adding
the drat respository using the addRepo function from drat, with the appropriate GitHub username, and
then using install.packages, as one would for a package on CRAN. The drat package documentation,
including several vignettes, as well as supplementary webpages, have more detail on this process; see
Eddelbuettel et al. (2016).

Creating and building a data package

The next step is to create an R data package that contains the large dataset; this data package will be
posted in the drat repository to be accessible to other R users. In the case study example, this package
is called hurricaneexposuredata and includes data on rain, wind, flood, and tornado exposures for
all eastern US counties for Atlantic-basin tropical storms between 1988 and 2015. For full details on
creating R packages, including data-only packages, see the canonical reference by R Core Team (2017b);
another popular reference is Wickham (2015).

If a package is hosted in a drat repository rather than posted to CRAN, it does not have to pass all
tests executed by ‘R CMD check’. However, it is good practice to resolve as many ERRORS, WARNINGS,
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“gh-pages” branch of “drat” directory

index.html

src

contrib

PACKAGES

PACKAGES.gz

hurricaneexposuredata 0.0.1.tar.gz

hurricaneexposuredata 0.0.2.tar.gz

bin

windows

contrib

3.3

PACKAGES

PACKAGES.gz

hurricaneexposuredata 0.0.1.zip

hurricaneexposuredata 0.0.2.zip

Figure 1: Example of the structure of the directory for a drat repository for a repository with two
versions (0.0.1 and 0.0.2) of hurricaneexposuredata. Directories and files shown in black are required
while those in blue are optional. This example drat depository has source code available for the
hurricaneexposuredata, as well as the binaries for Windows (the binaries for Mac OS X could also be
included but are not shown in this example), through the optional ‘bin’ subdirectory. The top-level
‘index.html’ file can be used to customize the appearance of the webpage a user would see at https:
//username.github.io/drat. Functions from the drat package automate the insertion of compressed
package files (‘.tar.gz’ for source code files, ‘.tgz’ for Mac OS X binaries, and ‘.zip’ for Windows binaries)
within this directory structure. The ‘PACKAGES’ and ‘PACKAGES.gz’ files serve as index files, with
metadata about packages available in the repository, and are created by drat::insertPackage via a
call to the R function tools::write_PACKAGES.
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and NOTES from CRAN checks as possible for any R package that will be shared with other users,
regardless of how it is shared. Several possibilities exist to build and check a package so these ERRORS,
WARNINGS, and NOTES can be identified and resolved. The standard approach is to execute ‘R CMD
build’ from one directory above the source directory (as discussed below), followed by ‘R CMD check’
with the resulting tar archive (e.g., hurricaneexposuredata.tar.gz) as first argument. The optional
switch ‘--as-cran’ is recommended in order to run a wider variety of tests. Other alternatives for
checking the package are to use the check function from the devtools package (Wickham et al., 2016),
the rcmdcheck function of the eponymous rcmdcheck package (Csárdi, 2016), the ‘Check’ button in
the Build pane of the RStudio GUI, or the RStudio keyboard shortcut Ctrl-Shift-E. For a large data
package, it is desirable to resolve all issues except the NOTE on the package size being large.

Once the code in the data package is finalized, the package can be posted in a drat repository to be
shared with others. Packages are inserted into a drat repository as source code tarballs (e.g., ‘.tar.gz’
files); if desired, package binaries for specific operating systems can also be inserted (e.g., ‘.zip’ or ‘.tgz’
files), but this is not required for the application described here. To build a package into a ‘.tar.gz’ file,
there are again several possible approaches. The most convenient one may be to build the package in
a temporary directory created with the tempdir function, as this directory will be cleaned up when the
current R session is closed. If the current working directory is the package directory, the package can
be built to a temporary directory with the build function from the devtools package:

tmp <- tempdir()
devtools::build(path = tmp)

While this function call assumes that the user is currently using the directory of the data package
as the working directory, the pkg option of the build function can be used to run this call successfully
from a different directory. If the build is successful, a ‘.tar.gz’ file will be created containing the
package’s source code in the directory specified by the path option; this can be checked from R with
the call list.files(tmp).

Adding the data package to your drat repository

Once the source code of the package has been built, the data package can be inserted into the drat
repository using the insertPackage function from the drat package. This function identifies the
package file type (e.g., ‘.tar.gz’, ‘.zip’, or ‘.tgz’), adds the package to the appropriate spot in the drat
directory structure (Figure 1), and adds metadata on the package to the ‘PACKAGES’ and ‘PACKAGES.gz’
index files (created by the R function tools::write_PACKAGES) in the appropriate subdirectory. Once
this updated version of the drat repository is pushed to GitHub, the package will be available for other
users to install from the repository.

For example, the following code can be used to add version 0.0.2 of hurricaneexposuredata to the
drat repository. This code assumes that the ‘.tar.gz’ file for the package was built into a temporary
directory with a path given by the R object tmp, as would be the case if the user built the package
tarball using the code suggested in the previous subsection, and that the user is in the same R session
as when the package was built (as any temporary directories created with tempdir are deleted when
an R session is closed). Further, this code assumes that the user has the git2r package installed and has
stored their drat directory within the parent directory ~/git; if this is not the case, the correct path to
the drat directory should be specified in the repodir argument of insertPackage.

pkg_path <- file.path(tmp, "hurricaneexposuredata_0.0.2.tar.gz", sep = "/")
drat::insertPackage(pkg_path, commit = TRUE)

As mentioned before, only material in the ‘gh-pages’ branch of the GitHub repository is published
through GitHub Pages, so it is important that the package be inserted in that branch of the user’s drat
repository. The insertPackage function checks out that branch of the repository and so ensures that
the package file is inserted in the correct branch. However, it is important that the user be sure to push
that specific branch to GitHub to update the online repository. If unsure, the commit option can be left
at its default value of FALSE, permitting an inspection of the repository followed by a possible manual
commit.

For users who prefer working from the command line, an alternative pipeline for building the
data package and inserting it into the drat repository is to run, from the command line:

R CMD build sourcedir/
dratInsert.r pkg_1.2.3.tar.gz

Note that this pipeline requires having the littler (Eddelbuettel and Horner, 2016) package installed,
as well as the ‘dratInsert.r’ helper script for that package.
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If desired, operating system-specific binaries of the data package can be built with tools like
win-builder (http://win-builder.r-project.org/) and rhub (https://builder.r-hub.io) and then
inserted into the drat repository. However, this step is not necessary, as ‘R CMD check --as-cran’ will
be satisfied for the code package as long as a source package is available for any suggested packages
stored in repositories listed in ‘Additional_repositories’ (R Core Team, 2017b).

Setting up a smaller code package to use the data package

So far, the process described is the same one would use to create and add any R package to a drat
repository. However, if a package maintainer would like to coordinate a code package that will be
submitted to CRAN with a data package posted in a drat repository, it is necessary to add some
infrastructure to the code package (in our example, hurricaneexposure, which has functions for
exploring and mapping the data in hurricaneexposuredata). These additions ensure that the code
package will pass CRAN checks and also appropriately load and access the data in the data package
posted in the drat repository.

Add infrastructure to the DESCRIPTION file

First, two additions are needed and a third is suggested in the DESCRIPTION file (Figure 2) of the
code package that will be submitted to CRAN:

1. We suggest the ‘Description’ field of the code package’s ‘DESCRIPTION’ file be modified to let
users know how to install the data package and how large it is (this tip is inspired by the grattan
package; Parsonage et al. (2017)). Figure 2 (#1) shows an example of this added information for
the hurricaneexposure ‘DESCRIPTION’ file. For a CRAN package, this ‘Description’ field will
be posted on the package’s CRAN webpage, so this field offers an opportunity to inform users
about the data package before they install the CRAN package. This addition is not required, but
is particularly helpful in cases where the data package is very large, in which case it would take
up a lot of room on a user’s computer and take a long time to install and load.

2. The ‘Suggests’ field for the code package must specify the suggested dependency on the data
package (Figure 2, #2). Because the data package is in a non-mainstream repository, this
dependency much be specified in the ‘Suggests’ field rather than the ‘Depends’ or ‘Imports’ field
if the code package is to be submitted to CRAN. The ‘Suggests’ field allows version requirements,
so if the code package requires either a minimum version or an exact version of the data package
in the drat repository, this requirement can be included in this field.

3. The ‘Additional_repositories’ field of the code package must give the address of the drat
repository that stores the data package (Figure 2, #3). This field is necessary if a package
depends on a package in a non-mainstream repository. Repositories listed here are checked by
CRAN to confirm their availability (R Core Team, 2017b), but packages from these repositories
are not installed prior to CRAN checks. This repository address should be listed using https:
rather than http:.

Customize behavior when the package is loaded

When a package is installed, any packages listed as ‘Imports’ or ‘Depends’ in the package ‘DESCRIPTION’
file are guaranteed to be previously installed (R Core Team, 2017b); the same is not true for packages
in ‘Suggests’. It is therefore important that the maintainer of any package that suggests a data package
from a drat repository take steps to ensure that the package does not fail if it is installed without
the data package being previously installed. Such steps includes adding code that will be run when
the package is loaded (described in this subsection), as well as ensuring that code in all functions,
examples, vignettes, and tests be conditional on whether the data package installed if the code requires
data from the data package (described in later subsections).

First, the code package should have code to check whether the data package is installed when the
code package is loaded. This can be achieved through load hooks (.onLoad and .onAttach), saved
to a file named, for example, ‘zzz.R’ in the ‘R’ directory of the code package (the name ‘zzz.R’ dates
back to a time when R required this; now any file name can be chosen). For a concrete example, such a
‘zzz.R’ file in the code package might look like (numbers in comments of this code are used within
specific comments later in this section): 2
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Figure 2: Example of the elements that should be added to the DESCRIPTION file of the code
package planned to be submitted to CRAN to coordinate it with a data package posted to a drat
repository, showing the DESCRIPTION file for hurricaneexposure. Elements are: (1) added details
on installing the data package in the ’Description’ field (suggested but not required); (2) suggested
dependency on the data package in the ’Suggests’ field; and (3) reference to the drat repository in the
’Additional_repositories’ field.
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.pkgenv <- new.env(parent=emptyenv()) #1

.onLoad <- function(libname, pkgname) { #2
has_data <- requireNamespace("hurricaneexposuredata", quietly = TRUE) #3
.pkgenv[["has_data"]] <- has_data #4

}

.onAttach <- function(libname, pkgname) { #5
if (!.pkgenv$has_data) { #6

msg <- paste("To use this package, you must install the",
"hurricaneexposuredata package. To install that ",
"package, run `install.packages('hurricaneexposuredata',",
"repos='https://geanders.github.io/drat/', type='source')`.",
"See the `hurricaneexposure` vignette for more details.")

msg <- paste(strwrap(msg), collapse="\n")
packageStartupMessage(msg)

}
}

hasData <- function(has_data = .pkgenv$has_data) { #7
if (!has_data) {

msg <- paste("To use this function, you must have the",
"`hurricaneexposuredata` package installed. See the",
"`hurricaneexposure` package vignette for more details.")

msg <- paste(strwrap(msg), collapse="\n")
stop(msg)

}
}

First, this ‘zzz.R’ file creates an environment called .pkgenv (#1 in example code). This environment
will be used to pass a Boolean variable indicating whether the data package is available (#4) to other
code in the package.

Next, this ‘zzz.R’ file defines two functions called .onLoad and .onAttach. Both functions have
arguments libname and pkgname (#2, #5). The .onLoad() function, triggered when code from the
package is first accessed, should use requireNamespace to test if the user has the data package
available (#3). This value is stored in the package environment (#4). When the package is loaded and
attached to the search path, the .onAttach function is called (#5). This function references the stored
Boolean value and uses this to print a start-up message (using the packageStartupMessage function,
whose output can be suppressed via suppressPackageStartupMessages) for users who lack the data
package (#6).

Finally, any functions in the package that use data from the drat data package should check that
the data package is available before running the rest of the code in the function. If the data package
is not available, the function should stop with a useful error message. One way to achieve this is to
define a function in an R script file in the package, like the hasData function defined in the example
code above, that checks for availability of the data package and errors with a helpful message if that
package is not installed (#7). This function should then be added within all of the package’s functions
that require data from the data package.

Condition code in the code package on availability of the data package

Next, it is important to ensure that code in the vignettes, examples, and tests of the package will
run without error on CRAN, even without the data package installed. When a package is submitted
to CRAN, the user first creates a tarball of the package source on his or her own computer. In this
local build, the vignette is rendered and the resulting PDF or HTML file is stored within the ‘inst/doc’
directory of the source code (R Core Team, 2017b). This is the version of the rendered vignette that is
available to users when they install the package, and so the vignette is rendered using the packages and
other resources available on the package maintainer’s computer during the package build. However,
CRAN runs initial checks on a package submission, and continues to run regular checks on posted
packages, that include testing any executable code within the package vignette or any examples or
tests in the source code that are not explicitly marked to not run on CRAN (e.g., with \donttest{}
within example code). CRAN does not install suggested packages from non-mainstream repositories
before doing these checks. Therefore, code that requires data from a data package in a drat repository
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would cause errors in these tests unless it is conditioned to only run when the data package is available,
as is recommended for any example or test code that uses suggested packages (R Core Team, 2017b).

Therefore, if the code package contains a vignette, the vignette must be coded so that its code
will run without an error on systems that do not have the data package installed. This can be done
by adding a code chunk to the start of the vignette. This code chunk will check if the data package
is installed on the system. If it is, the vignette will be rendered as usual, and so it will be rendered
correctly on the package maintainer’s computer when the package is built for CRAN submission.
However, if the optional data package is not installed, a message about installing the data package
from the drat repository will be printed in the vignette, and all the following code chunks will be set
to not be evaluated using the opts_chunk function from knitr (Xie, 2016).

The following code is an example of the code chunk that was added to the beginning of the vignette
in the hurricaneexposure package, for which all code examples require the hurricaneexposuredata
package:

```{r echo = FALSE, message = FALSE}
hasData <- requireNamespace("hurricaneexposuredata", quietly = TRUE) #1
if (!hasData) { #2

knitr::opts_chunk$set(eval = FALSE) #3
msg <- paste("Note: Examples in this vignette require that the",

"`hurricaneexposuredata` package be installed. The system",
"currently running this vignette does not have that package",
"installed, so code examples will not be evaluated.")

msg <- paste(strwrap(msg), collapse="\n")
message(msg) #4

}
```

In this code, the function requireNamespace is used to check if hurricaneexposuredata is installed
on the system (#1). It is necessary to run this function in the vignette with the quietly = TRUE option;
otherwise, this call will cause an error if hurricaneexposuredata is unavailable. If hurricaneexposure-
data is not available, the result of this call is FALSE, in which case (#2) the chunk option eval is set to
FALSE for all following chunks in the vignette (#3) and a message is printed in the vignette explaining
why code chunks are not evaluated (#4).

Similarly, the code for examples in help files of the CRAN package should be adjusted so they only
run if the data package is available. It may also be helpful to users to include a commented message
on why the example is wrapped in a conditional statement. For example, for a function that requires
the data package the \examples{} field (or @examples tag if roxygen2 is used) might look like:

\examples{
# Ensure that data package is available before running the example.
# If it is not, see the `hurricaneexposure` package vignette for details
# on installing the required data package.
if (requireNamespace("hurricaneexposuredata", quietly = TRUE)) {

map_counties("Beryl-1988", metric = "wind")
}

}

As alternatives, the code in the example could also either check the .pkgenv[["has_data"]] object
created by code in the ‘zzz.R’ file in the conditional statement, or the package maintainer could create
a helper function to in the ‘zzz.R’ file to use for conditional running of examples in the example code.
However, the use of the requireNamespace call, as shown in the above code example, may be the
most transparent for package users to understand when working through package examples. Code in
package tests can similarly be conditioned to run if and only if the data package is available.

Maintaining a suite of drat and CRAN R packages

Once a suite of coordinated CRAN and drat packages have been created, there are a few considerations
a package maintainer should keep in mind for maintaining the packages.

First, unlike a single package that combines data and code, a suite of packages will require
thoughtful coordination between versions of packages in the suite, especially as the packages are
updated. The ‘Suggests’ field allows the package maintainer to specify an exact version of the data
package required by a code package (e.g., using ‘(== 0.0.1)’ with the data package name in the
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Suggests field) or a minimum version of the data package (e.g., ‘(>= 0.0.1)’). If the data package is
expected to only change infrequently, the maintainer may want to use an exact version dependency in
‘Suggests’ and plan to submit an updated version of the code package to CRAN any time the data
package is updated. However, CRAN policy recommends that package versions not be submitted
more than once every one to two months. Therefore, if the data package will be updated more
frequently, it may make more sense to use a minimum version dependency. However, the maintainer
should be aware that, in this case, packages users may find that any changes in the structure of the
data in the data package that breaks functions in older versions of the code package may cause errors,
without notifying the user that the error can be resolved by updating the code package.

Second, while the maximum size of a GitHub repository is much larger than the recommended
maximum size of an R package, there are still limits on GitHub repository size. If a package maintainer
uses a drat repository to store multiple large data packages, with multiple versions of each, there may
be some cases where the repository approaches or exceeds the maximum allowable GitHub repository
size. In this case, the package maintainer may want to consider, when inserting new versions of the
data package into the drat repository, changing the action option in the insertPackage function to
free repository space by removing older versions of the package or packages. This, however, reduces
reproducibility of research using the data package, as older versions would no longer be available
through an archive.

Further, while the CRAN maintainers regularly run code from examples and vignettes within
packages posted to CRAN, they do not install any suggested packages from non-mainstream reposi-
tories before doing this. Since much of the code in the examples and vignette are not run if the data
package is not available under the approach we suggest, regular CRAN checks will provide less code
coverage than is typical for a CRAN package. Package maintainers should keep this in mind, and they
may want to consider alternatives for ensuring regular testing of all examples in the code package.
One option may be through use of a regularly scheduled cron job through Travis CI to check the latest
stable version of the code package.

It is important to note that, under the suggested approach, proper versioning of any data packages
hosted in a drat repository is entirely the responsibility of the owner of that repository. By contrast, R
users who install packages from CRAN can be confident that a version number of a package is tied
to a unique version of the source code. While versioning of R data packages can improve research
reproducibility (Gentleman et al., 2004), if the owner of the drat repository is not vigilant about
changing the version number for every change in the source code of packages posted in the repository,
the advantages of packaging the data in terms of facilitating reproducible research are lost. Similarly,
the repository owner is solely responsible for archiving older versions of the package, unlike a CRAN
package, for which archiving is typically ensured by CRAN. In particular, for very large packages that
are updated often, the size limitations of a GitHub repository may force a repository owner to remove
older versions from the archive.

Conclusion

R packages offer the chance to distribute large datasets while also providing functions for exploring
and working with that data. However, data packages often exceed the suggested size of CRAN
packages, which is a challenge for package maintainers who would like to share their code through
this central and popular repository. Here, we suggest an approach in which the maintainer creates
a smaller code package with the code to interact with the data, which can be submitted to CRAN,
and a separate data package, which can be hosted by the package maintainer through a personal drat
repository. Although drat repositories are not mainstream, and so cannot be listed with an ‘Imports’
or ‘Depends’ dependency for a package submitted to CRAN, we suggest a way of including the data
package as a suggested package and incorporating conditional code in the executable code within
vignettes, examples, and tests, as well as conditioning functions in the code package to check for
the availability of the data package. This approach may prove useful for a number of R package
maintainers, especially with the growing trend to the sharing and use of open data in many of the
fields in which R is popular.
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R Foundation News
by Torsten Hothorn

Donations and members

Membership fees and donations received between 2017-03-15 and 2017-06-15.

Donations

Emilio Ciccone (Italy)
Guillaume Coqueret (France)
Yves Deville (France)
Ken Ikeda (Japan)
Kuniaki Kawahara (Japan)
Kem Phillips (United States)
Joshua Rosenstein (United States)
Stefan Wyder (Switzerland)

Supporting benefactors

Brigham Young University, Provo (United States)
Displayr, Glebe (Australia)

Supporting institutions

BC Cancer Agency, Vancouver (Canada)
EMBL, Heidelberg (Germany)
Institute of Mathematical Statistics, Beachwood (United States)

Supporting members

Abdulrahman Al-Qasem (Saudi Arabia)
Philippe Baril Lecavalier (Canada)
Marcel Baumgartner (Switzerland)
Morten Braüner (Denmark)
Andrew Brown (United States)
Ian Cook (United States)
Robin Crockett (United Kingdom)
Gábor Csárdi (United Kingdom)
Gergely Daróczi (Hungary)
James Davis (United States)
Ajit de Silva (United States)
Dubravko Dolic (Germany)
Sandrine Dudoit (United States)
Joran Elias (United States)
Daniel Emaasit (United States)
Soo-Heang Eo (South Korea)
Arturo Erdely (Mexico)
Hubert Eser (Austria)
John Fox (Canada)
Carl Ganz (United States)
Jan Marvin Garbuszus (Germany)
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J. Antonio García (Mexico)
Matthieu Gousseff (France)
Arthur W. Green (United States)
Philippe Grosjean (Belgium)
Hlynur Hallgrímsson (Iceland)
Bela Hausmann (Austria)
Kieran Healy (United States)
Jim Hester (United States)
Hans Hlynsson (United Kingdom)
Rick Hubbard (United States)
Michael Johansson (Puerto Rico)
Stephen Kaluzny (United States)
Christian Keller (Switzerland)
Sebastian Koehler (Germany)
Katarzyna Kopczewska (Poland)
Alexander Kowarik (Austria)
Diego Kuonen (Switzerland)
Caleb Lareau (United States)
Andy Liaw (United States)
Ian Lyttle (United States)
Ben Marwick (United States)
Shigeru Mase (Japan)
Dieter Menne (Germany)
David Monterde (Spain)
Guido Möser (Germany)
Bob Muenchen (United States)
Hannes Mühleisen (Netherlands)
Joris Muller (France)
Michihiro Nakamura (Japan)
Anthony OFarrell (United States)
Ludvig Renbo Olsen (Denmark)
George Ostrouchov (United States)
Matthew Pancia (United States)
Marc Pelath (United States)
John Pellman (United States)
Lauf Peter (Germany)
Erik Petrovski (Denmark)
Thomas Petzoldt (Germany)
Jonas Ranstam (Sweden)
Paulo Justiniano Ribeiro Jr (Brazil)
Marty Rose (United States)
Peter Ruckdeschel (Germany)
Bob Rudis (United States)
Manel Salamero (Spain)
Kenneth Spriggs (United States)
Julian Stander (United Kingdom)
Berthold Stegemann (Germany)
Nicholas Tierney (Australia)
Caoimhin Ua Buachalla (Ireland)
Shinya Uryu (Japan)
Mauricio Vargas (United States)
Steven Vasquez-Grinnell (United States)
Boris Veytsman (United States)
Vincent Vinh-Hung (Martinique)
Daehler Werner (Switzerland)
Jordan White (United States)

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859



NEWS AND NOTES 500

Andy Wills (United Kingdom)
Nan Xiao (United States)
Hiroaki Yutani (Japan)
Tomas Zelinsky (Slovakia)

Torsten Hothorn
Universität Zürich, Switzerland
Torsten.Hothorn@R-project.org
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Conference Report: European R Users
Meeting 2016
by Maciej Beręsewicz, Adolfo Alvarez, Przemysław Biecek, Marcin K. Dyderski, Marcin Kosinski,
Jakub Nowosad, Kamil Rotter, Alicja Szabelska-Beręsewicz, Marcin Szymkowiak, Łukasz Wawrowski,
Joanna Zyprych-Walczak

Introduction

The European R Users Meeting (eRum) 2016 was an international conference aimed at
integrating users of the R language. eRum 2016 was held between October 12 and 14,
2016, in Poznań, Poland at Poznań University of Economics and Business (http://erum.ue.
poznan.pl/).

The main purpose of eRum was to integrate R users from Europe and provide a platform
for sharing experiences between academics and practitioners. We wanted to give the
participants the possibility to present various applications of R, get to know different R
packages and get involved in a broader collaboration. In addition, we wanted to create
an opportunity for R users who were not able to participate in UseR 2016 that was held in
Stanford, CA, USA.

The conference was organized by the Students Scientific Association ’Estymator’, the
Department of Statistics of Poznań University of Economics and Business and the Depart-
ment of Mathematical and Statistical Methods of Poznań University of Life Sciences. The
supporting organizers were two local groups of R enthusiasts - PAZUR - Poznań R Users
Group and SER - Warsaw R Users Group. eRum hosted 82 speakers from over 20 countries.
Over 250 participants took part in 12 parallel sessions devoted to methodology, business, R
packages, data workflow, bioR, lightning talks, and education learning. Beside the parallel
sessions the conference featured 10 invited talks.

We are looking forward to the next European R Users Meeting in 2018 and we encourage
anyone interested in organizing an eRum event in their country to get in touch with us.

The Organizing Committee

To ensure the Organizing Committee was as diverse as possible, its chair, Maciej Beręsewicz
from Poznań University of Economics and Business and Statistical Office in Poznań had
invited people from different fields of science and business:

• Adolfo Alvarez, Analyx,

• Przemysław Biecek, MIM University of Warsaw, MiNI Warsaw University of Technol-
ogy,

• Marcin Dyderski, Institute of Dendrology of the Polish Academy of Sciences, Poznań
University of Life Sciences,

• Marcin Kosiński, Warsaw R Enthusiasts,

• Jakub Nowosad, Adam Mickiewicz University in Poznań, University of Cincinnati,

• Kamil Rotter, Poznań University of Economics and Business,

• Alicja Szabelska-Beręsewicz, Poznań University of Life Sciences,

• Marcin Szymkowiak, Poznań University of Economics and Business,

• Łukasz Wawrowski, Poznań University of Economics and Business,

• Joanna Zyprych-Walczak, Poznań University of Life Sciences.
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Pre-conference workshops

Ten workshops were held at Poznań University of Life Sciences and in the Statistical Office
in Poznań during the first day of eRum 2016 (October 12th 2016). They were divided into
two sessions.
Morning session:

• An introduction to R (in Polish) held by Adam Dąbrowski

• Predictive modeling with R held by Artur Suchwałko

• Data Visualization using R held by Matthias Templ

• Time series forecasting with R held by Adam Zagdański

• R for expression profiling by Next Generation Sequencing held by Paweł Łabaj

Afternoon session:

• Introduction to Bayesian Statistics with R and Stan held by Rasmus Bååth

• Small Area Estimation with R held by Virgilio Gómez-Rubio

• R for industry and business: Statistical tools for quality control and improvement held
by Emilio L. Cano

• An introduction to changepoint models using R held by Rebecca Killick

• Visualising spatial data with R: from ’base’ to ’shiny’ held by Robin Lovelace

Altogether the workshops were attended by 150 people. The workshops dedicated to
Bayesian Statistics with R and Stan and Predictive modeling with R turned out to be the
most popular ones - each attracted as many as 40 attendees.

Invited speakers

There were five plenary sessions, each featuring two invited speakers. The speaker roster
was balanced in terms of nationality (5 from Poland, 5 from abroad), gender (6 males, 4
females), institution (7 from academia, 3 from business) and topic (5 methodology, 5 tools or
misc).

We were honored to host the following invited speakers: Rasmus Bååth (Lund Univer-
sity), Przemysław Biecek (University of Warsaw), Romain Francois (Consulting Datactive),
Marek Gagolewski (Polish Academy of Sciences), Jakub Glinka (GfK Data Lab), Ulrike
Grömping (Beuth University of Applied Sciences), Katarzyna Kopczewska (University of
Warsaw), Katarzyna Stapor (Silesian University of Technology), Matthias Templ (Vienna
University of Technology), Heather Turner (University of Warwick).

All invited talks were recorded and are available as a youtube playlist at http://
www.youtube.com/playlist?list=PLCsJUtCRSFbejqCqAURNVOFFpoDCMeuO5. The book of ab-
stracts, presentations from all sessions, posters and other documents associated with eRum
2016 are available at https://github.com/eRum2016/.

Trivia

The conference speakers cited 179 R packages. The most popular included: ggplot2, shiny,
dplyr, caret, leaflet, sp, cluster, e1071, knitr, magrittr, randomForest, Rcpp, rgdal, rgeos,
rmarkdown, rstan, SparkR.

Thanks to our platinum sponsor McKinsey it was possible to organize a social event
which included a conference dinner at Poznań’s Municipal Stadium together with a tour of
the Stadium.
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Group photos taken on the first day of the conference can be found here https://www.
goo.gl/X0QfZ5.

After the conference some of the participants took part in a sightseeing tour of Poznań,
which was organized on 15th of October.
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Changes on CRAN
2017-02-01 to 2017-05-31

by Kurt Hornik, Uwe Ligges and Achim Zeileis

In the past 4 months, 794 new packages were added to the CRAN package repository. 16
packages were unarchived, 98 archived and 1 removed. The following shows the growth of
the number of active packages in the CRAN package repository:

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
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●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
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On 2017-05-31, the number of active packages was around 10727.

Changes in the CRAN checks

In addition to the results for the regular check runs and the valgrind, ASAN and UBSAN
tests of memory access errors provided by Brian Ripley, the package check pages now
also show additional issues found by tests without long double (also provided by Brian
Ripley) and checks of native code (C/C++) based on static code analysis, currently reporting
potential errors in the use of PROTECT (provided by Tomáš Kalibera).

Changes in the CRAN submission pipeline

In the light of the many submissions of new and updated packages received every day,
CRAN is in transition to a more and more automated submission system. Package main-
tainers may experience that their packages are auto-accepted in case a well established
package without other packages depending on it passes the checks without problems. Some
packages will undergo a manual inspection as before, but it may also happen a package is
auto-rejected in case problems occur. In case you strongly believe the auto-rejection is a false
positive, the procedure of contacting the CRAN team is explained in the rejection message.

Changes in the CRAN Repository Policy

The following items were added to the Policy:

• CRAN versions of packages should work with the current CRAN and Bioconductor
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releases of dependent packages and not anticipate nor recommend development
versions of such packages on other repositories.

• Downloads of additional software or data as part of package installation or startup
should only use secure download mechanisms (e.g., ‘https’ or ‘ftps’).

CRAN mirror security

Currently, there are 97 official CRAN mirrors, 51 of which provide both secure downloads
via ‘https’ and use secure mirroring from the CRAN master (via rsync through ssh tunnels).
Since the R 3.4.0 release, chooseCRANmirror() offers these mirrors in preference to the others
which are not fully secured (yet).

CRAN tools

Since R 3.4.0, package tools exports function CRAN_package_db() for obtaining information
about current packages in the CRAN package repository, and several functions for obtaining
the check status of these packages. See ?tools::CRAN_package_db for more information.

Hyperlinks in package DESCRIPTION files on CRAN

The CRAN package web page shows important information about the package and gives
the package’s Description. Package maintainers are now encouraged to insert web links and
links to relevant publications they want to cite in order to explain the package’s content by
using the following formats (all enclosed in <...>) that will cause automatical insertions of
the corresponding links:

Classical web hyperlinks should be given as the URL enclosed in <...>, e.g., write
<https://www.R-project.org>.

Digital Object Identifier System (DOI) entries to link to a publication should be given in
the form <DOI:10.xxxx...>.

arXiv.org e-prints without a DOI (yet) should be referred to using their arXiv identifier
enclosed in <...>, e.g., <arXiv:1501.00001> or <arXiv:0706.0001v2>.

New CRAN task views

FunctionalData Topic: Functional Data Analysis. Maintainer: Fabian Scheipl. Packages:
FDboost∗, Funclustering, GPFDA, MFPCA, RFgroove, classiFunc, dbstats, fda∗,
fda.usc∗, fdaPDE, fdakma, fdapace∗, fdasrvf∗, fdatest, fdcov, fds, flars, fpca, fre-
qdom, ftsa∗, funData, funFEM, funHDDC, funcy∗, geofd, growfunctions, pcdpca,
rainbow, refund∗, refund.shiny, refund.wave, roahd, sparseFLMM, switchnpreg,
warpMix.

(* = core package)

New packages in CRAN task views

Bayesian BayesVarSel, NetworkChange, bridgesampling, deBInfer, gRain, revdbayes.

Cluster idendr0, prcr.

Distributions Renext, kernelboot, revdbayes.

Econometrics REndo, margins, pco, rdlocrand.

ExtremeValue Renext, revdbayes.
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Finance BCC1997, BLModel, PortfolioOptim, RcppQuantuccia, Sim.DiffProc, rpatrec,
rpgm.

MachineLearning LTRCtrees, MXM, RLT, RcppDL, darch, deepnet, gradDescent, opus-
miner, wsrf, xgboost.

MetaAnalysis CPBayes, metafuse, metavcov, metaviz, surrosurv.

OfficialStatistics haven, micEconIndex, missForest.

Pharmacokinetics NonCompart, PKNCA, PKgraph, PKreport, cpk, dfpk, mrgsolve,
ncappc, ncar, nmw, pkr, scaRabee.

Phylogenetics idendr0, nLTT, phylocanvas.

Psychometrics AnalyzeFMRI, BTLLasso, ThreeWay, eegkit, ica, multiway, munfold.

Spatial FRK, sperrorest, spind, spmoran, starma.

TimeSeries dataseries, mafs, prophet, robustarima.

WebTechnologies RMixpanel.

gR DiagrammeR.

(* = core package)

Kurt Hornik
WU Wirtschaftsuniversität Wien, Austria
Kurt.Hornik@R-project.org

Uwe Ligges
TU Dortmund, Germany
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News from the Bioconductor Project
by Bioconductor Core Team

The Bioconductor project provides tools for the analysis and comprehension of high-
throughput genomic data. Bioconductor 3.5 was released on 25 April, 2017. It is compatible
with R 3.4 and consists of 1383 software packages, 316 experiment data packages, and 911
up-to-date annotation packages. The release announcement includes descriptions of 88 new
packages, and updated NEWS files for many additional packages. Start using Bioconductor
by installing the most recent version of R and evaluating the commands

source("https://bioconductor.org/biocLite.R")
biocLite()

Install additional packages and dependencies, e.g., AnnotationHub, with

BiocInstaller::biocLite("AnnotationHub")

Docker and Amazon images provides a very effective on-ramp for power users to rapidly
obtain access to standardized and scalable computing environments. Key resources include:

• bioconductor.org to install, learn, use, and develop Bioconductor packages.

• A listing of available software, linked to pages describing each package.

• A question-and-answer style user support site and developer-oriented mailing list.

• The F1000Research Bioconductor channel for peer-reviewed Bioconductor work flows.

• Our package submission repository for open technical review of new packages.

Our annual conference, BioC 2017: Where Software and Biology Connect, will be on June 26
(‘developer day’), 27 and 28, in Boston, MA.

Bioconductor Core Team
Biostatistics and Bioinformatics
Roswell Park Cancer Institute, Buffalo, NY
USA maintainer@bioconductor.org
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Changes in R
From version 3.3.3 to version 3.4.1

by R Core Team

CHANGES IN R 3.4.1

INSTALLATION on a UNIX-ALIKE

• The deprecated support for PCRE versions older than 8.20 has been removed.

BUG FIXES

• getParseData() gave incorrect column information when code contained multi-byte
characters. (PR#17254)

• Asking for help using expressions like ?stats::cor() did not work. (PR#17250)

• readRDS(url(....)) now works.

• R CMD Sweave again returns ‘status = 0’ on successful completion.

• Vignettes listed in ‘.Rbuildignore’ were not being ignored properly. (PR#17246)

• file.mtime() no longer returns NA on Windows when the file or directory is being
used by another process. This affected installed.packages(), which is now protected
against this.

• R CMD INSTALL Windows .zip file obeys --lock and --pkglock flags.

• (Windows only) The choose.files() function could return incorrect results when
called with multi = FALSE. (PR#17270)

• aggregate(<data.frame>,drop = FALSE) now also works in case of near-equal num-
bers in by. (PR#16918)

• fourfoldplot() could encounter integer overflow when calculating the odds ratio.
(PR#17286)

• parse() no longer gives spurious warnings when extracting srcrefs from a file not
encoded in the current locale.

This was seen from R CMD check with ‘inst/doc/*.R’ files, and check has some additional
protection for such files.

• print.noquote(x) now always returns its argument x (invisibly).

• Non-UTF-8 multibyte character sets were not handled properly in source references.
(PR#16732)

CHANGES IN R 3.4.0

SIGNIFICANT USER-VISIBLE CHANGES

• (Unix-alike) The default methods for download.file() and url() now choose
"libcurl" except for ‘file://’ URLs. There will be small changes in the format
and wording of messages, including in rare cases if an issue is a warning or an error.
For example, when HTTP re-direction occurs, some messages refer to the final URL
rather than the specified one.
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Those who use proxies should check that their settings are compatible (see
?download.file: the most commonly used forms work for both "internal" and
"libcurl").

• table() has been amended to be more internally consistent and become back compati-
ble to R ≤ 2.7.2 again. Consequently, table(1:2,exclude = NULL) no longer contains
a zero count for <NA>, but useNA = "always" continues to do so.

• summary.default() no longer rounds, but its print method does resulting in less
extraneous rounding, notably of numbers in the ten thousands.

• factor(x,exclude = L) behaves more rationally when x or L are character vectors.
Further, exclude = <factor> now behaves as documented for long.

• Arithmetic, logic (&, |) and comparison (aka ‘relational’, e.g., <, ==) operations with
arrays now behave consistently, notably for arrays of length zero.

Arithmetic between length-1 arrays and longer non-arrays had silently dropped the
array attributes and recycled. This now gives a warning and will signal an error in
the future, as it has always for logic and comparison operations in these cases (e.g.,
compare matrix(1,1) + 2:3 and matrix(1,1) <2:3).

• The JIT (‘Just In Time’) byte-code compiler is now enabled by default at its level 3.
This means functions will be compiled on first or second use and top-level loops will
be compiled and then run. (Thanks to Tomas Kalibera for extensive work to make this
possible.)

For now, the compiler will not compile code containing explicit calls to browser():
this is to support single stepping from the browser() call.

JIT compilation can be disabled for the rest of the session using
compiler::enableJIT(0) or by setting environment variable R_ENABLE_JIT to
0.

• xtabs() works more consistently with NAs, also in its result no longer setting them
to 0. Further, a new logical option addNA allows to count NAs where appropriate.
Additionally, for the case sparse = TRUE, the result’s dimnames are identical to the
default case’s.

• Matrix products now consistently bypass BLAS when the inputs have NaN/Inf values.
Performance of the check of inputs has been improved. Performance when BLAS is
used is improved for matrix/vector and vector/matrix multiplication (DGEMV is now
used instead of DGEMM).

One can now choose from alternative matrix product implementations via
options(matprod = ). The "internal" implementation is not optimized for speed
but consistent in precision with other summations in R (using long double accumu-
lators where available). "blas" calls BLAS directly for best speed, but usually with
undefined behavior for inputs with NaN/Inf.

NEW FEATURES

• User errors such as integrate(f,0:1,2) are now caught.

• Add signature argument to debug(), debugonce(), undebug() and isdebugged() for
more conveniently debugging S3 and S4 methods. (Based on a patch by Gabe Becker.)

• Add utils::debugcall() and utils::undebugcall() for debugging the function
that would be called by evaluating the given expression. When the call is to an
S4 generic or standard S3 generic, debugcall() debugs the method that would be
dispatched. A number of internal utilities were added to support this, most notably
utils::isS3stdGeneric(). (Based on a patch by Gabe Becker.)
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• Add utils::strcapture(). Given a character vector and a regular expression contain-
ing capture expressions, strcapture() will extract the captured tokens into a tabular
data structure, typically a data.frame.

• str() and strOptions() get a new option drop.deparse.attr with improved but
changed default behaviour for expressions. For expression objects x, str(x) now may
remove extraneous white space and truncate long lines.

• str(<looooooooong_string>) is no longer very slow; inspired by Mikko Korpela’s
proposal in PR#16527.

• str(x)’s default method is more “accurate” and hence somewhat more generous
in displaying character vectors; this will occasionally change R outputs (and need
changes to some ‘*.Rout(.save)’ files).
For a classed integer vector such as x <-xtabs(~ c(1,9,9,9)), str(x) now shows
both the class and "int", instead of only the latter.

• isSymmetric(m) is much faster for large asymmetric matrices m via pre-tests and a new
option tol1 (with which strict back compatibility is possible but not the default).

• The result of eigen() now is of class "eigen" in the default case when eigenvectors
are computed.

• Zero-length date and date-time objects (of classes "POSIX[cl]?t") now print() “rec-
ognizably”.

• xy.coords() and xyz.coords() get a new setLab option.

• The method argument of sort.list(), order() and sort.int() gains an "auto" option
(the default) which should behave the same as before when method was not supplied.

• stopifnot(E,..) now reports differences when E is a call to all.equal() and that is
not true.

• boxplot(<formula>,*) gain optional arguments drop, sep, and lex.order to pass to
split.default() which itself gains an argument lex.order to pass to interaction()
for more flexibility.

• The plot() method for ppr() has enhanced default labels (xmin and main).

• sample.int() gains an explicit useHash option (with a back compatible default).

• identical() gains an ignore.srcref option which drops "srcref" and similar at-
tributes when true (as by default).

• diag(x,nrow = n) now preserves typeof(x), also for logical, integer and raw x (and
as previously for complex and numeric).

• smooth.spline() now allows direct specification of lambda, gets a hatvalues()
method and keeps tol in the result, and optionally parts of the internal matrix compu-
tations.

• addNA() is faster now, e.g. when applied twice. (Part of PR#16895.)

• New option rstandard(<lm>,type = "predicted") provides the “PRESS”–related
leave-one-out cross-validation errors for linear models.

• After seven years of deprecation, duplicated factor levels now produce a warning
when printed and an error in levels<- instead of a warning.

• Invalid factors, e.g., with duplicated levels (invalid but constructable) now give a
warning when printed, via new function .valid.factor().
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• sessionInfo() has been updated for Apple’s change in OS naming as from ‘10.12’
(‘macOS Sierra’ vs ‘OS X El Capitan’).

Its toLatex() method now includes the running component.

• options(interrupt=) can be used to specify a default action for user interrupts. For
now, if this option is not set and the error option is set, then an unhandled user
interrupt invokes the error option. (This may be dropped in the future as interrupt
conditions are not error conditions.)

• In most cases user interrupt handlers will be called with a "resume" restart available.
Handlers can invoke this restart to resume computation. At the browser prompt the
r command will invoke a "resume" restart if one is available. Some read operations
cannot be resumed properly when interrupted and do not provide a "resume" restart.

• Radix sort is now chosen by method = "auto" for sort.int() for double vectors (and
hence used for sort() for unclassed double vectors), excluding ‘long’ vectors.

sort.int(method = "radix") no longer rounds double vectors.

• The default and data.frame methods for stack() preserve the names of empty ele-
ments in the levels of the ind column of the return value. Set the new drop argument
to TRUE for the previous behavior.

• Speedup in simplify2array() and hence sapply() and mapply() (for the case of
names and common length > 1), thanks to Suharto Anggono’s PR#17118.

• table(x,exclude = NULL) now sets useNA = "ifany" (instead of "always"). Together
with the bug fixes for this case, this recovers more consistent behaviour compatible to
older versions of R. As a consequence, summary() for a logical vector no longer reports
(zero) counts for NA when there are no NAs.

• dump.frames() gets a new option include.GlobalEnv which allows to also dump the
global environment, thanks to Andreas Kersting’s proposal in PR#17116.

• system.time() now uses message() instead of cat() when terminated early, such that
suppressMessages() has an effect; suggested by Ben Bolker.

• citation() supports ‘inst/CITATION’ files from package source trees, with lib.loc
pointing to the directory containing the package.

• try() gains a new argument outFile with a default that can be modified via
options(try.outFile = .), useful notably for Sweave.

• The unexported low-level functions in package parallel for passing serialized R objects
to and from forked children now support long vectors on 64-bit platforms. This
removes some limits on higher-level functions such as mclapply() (but returning
gigabyte results from forked processes via serialization should be avoided if at all
possible).

• Connections now print() without error even if invalid, e.g. after having been de-
stroyed.

• apropos() and find(simple.words = FALSE) no longer match object names starting
with ‘.’ which are known to be internal objects (such as .__S3MethodsTable__.).

• Convenience function hasName() has been added; it is intended to replace the common
idiom !is.null(x$name) without the usually unintended partial name matching.

• strcapture() no longer fixes column names nor coerces strings to factors (suggested
by Bill Dunlap).

• strcapture() returns NA for non-matching values in x (suggested by Bill Dunlap).
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• source() gets new optional arguments, notably exprs; this is made use of in the new
utility function withAutoprint().

• sys.source() gets a new toplevel.env argument. This argument is useful for frame-
works running package tests; contributed by Tomas Kalibera.

• Sys.setFileTime() and file.copy(copy.date = TRUE) will set timestamps with
fractions of seconds on platforms/filesystems which support this.

• (Windows only.) file.info() now returns file timestamps including fractions of
seconds; it has done so on other platforms since R 2.14.0. (NB: some filesystems do not
record modification and access timestamps to sub-second resolution.)

• The license check enabled by options(checkPackageLicense = TRUE) is now done
when the package’s namespace is first loaded.

• ppr() and supsmu() get an optional trace argument, and ppr(..,sm.method =
..spline) is no longer limited to sample size n ≤ 2500.

• The POSIXct method for print() gets optional tz and usetz arguments, thanks to a
report from Jennifer S. Lyon.

• New function check_packages_in_dir_details() in package tools for analyzing
package-check log files to obtain check details.

• Package tools now exports function CRAN_package_db() for obtaining information
about current packages in the CRAN package repository, and several functions for
obtaining the check status of these packages.

• The (default) Stangle driver Rtangle allows annotate to be a function and gets a new
drop.evalFALSE option.

• The default method for quantile(x,prob) should now be monotone in prob, even in
border cases, see PR#16672.

• bug.report() now tries to extract an email address from a ‘BugReports’ field, and if
there is none, from a ‘Contacts’ field.

• The format() and print() methods for object.size() results get new options
standard and digits; notably, standard = "IEC" and standard = "SI" allow more
standard (but less common) abbreviations than the default ones, e.g. for kilobytes.
(From contributions by Henrik Bengtsson.)

• If a reference class has a validity method, validObject will be called automatically
from the default initialization method for reference classes.

• tapply() gets new option default = NA allowing to change the previously hardcoded
value.

• read.dcf() now consistently interprets any ‘whitespace’ to be stripped to include
newlines.

• The maximum number of DLLs that can be loaded into R e.g. via dyn.load() can now
be increased by setting the environment variable R_MAX_NUM_DLLS before starting R.

• Assigning to an element of a vector beyond the current length now over-allocates
by a small fraction. The new vector is marked internally as growable, and the true
length of the new vector is stored in the truelength field. This makes building up a
vector result by assigning to the next element beyond the current length more efficient,
though pre-allocating is still preferred. The implementation is subject to change and
not intended to be used in packages at this time.
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• Loading the parallel package namespace no longer sets or changes the .Random.seed,
even if R_PARALLEL_PORT is unset.

NB: This can break reproducibility of output, and did for a CRAN package.

• Methods "wget" and "curl" for download.file() now give an R error rather than a
non-zero return value when the external command has a non-zero status.

• Encoding name "utf8" is mapped to "UTF-8". Many implementations of iconv accept
"utf8", but not GNU libiconv (including the late 2016 version 1.15).

• sessionInfo() shows the full paths to the library or executable files providing the
BLAS/LAPACK implementations currently in use (not available on Windows).

• The binning algorithm used by bandwidth selectors bw.ucv(), bw.bcv() and bw.SJ()
switches to a version linear in the input size n for n >nb/2. (The calculations are the
same, but for larger n/nb it is worth doing the binning in advance.)

• There is a new option PCRE_study which controls when grep(perl = TRUE) and
friends ‘study’ the compiled pattern. Previously this was done for 11 or more input
strings: it now defaults to 10 or more (but most examples need many more for the
difference from studying to be noticeable).

• grep(perl = TRUE) and friends can now make use of PCRE’s Just-In-Time mechanism,
for PCRE ≥ 8.20 on platforms where JIT is supported. It is used by default whenever
the pattern is studied (see the previous item). (Based on a patch from Mikko Korpela.)

This is controlled by a new option PCRE_use_JIT.

Note that in general this makes little difference to the speed, and may take a little
longer: its benefits are most evident on strings of thousands of characters. As a side
effect it reduces the chances of C stack overflow in the PCRE library on very long
strings (millions of characters, but see next item).

Warning: segfaults were seen using PCRE with JIT enabled on 64-bit Sparc builds.

• There is a new option PCRE_limit_recursion for grep(perl = TRUE) and friends to
set a recursion limit taking into account R’s estimate of the remaining C stack space (or
10000 if that is not available). This reduces the chance of C stack overflow, but because
it is conservative may report a non-match (with a warning) in examples that matched
before. By default it is enabled if any input string has 1000 or more bytes. (PR#16757)

• getGraphicsEvent() now works on X11(type = "cairo") devices. Thanks to Freder-
ick Eaton (for reviving an earlier patch).

• There is a new argument onIdle for getGraphicsEvent(), which allows an R function
to be run whenever there are no pending graphics events. This is currently only
supported on X11 devices. Thanks to Frederick Eaton.

• The deriv() and similar functions now can compute derivatives of log1p(), sinpi()
and similar one-argument functions, thanks to a contribution by Jerry Lewis.

• median() gains a formal ... argument, so methods with extra arguments can be
provided.

• strwrap() reduces indent if it is more than half width rather than giving an error.
(Suggested by Bill Dunlap.)

• When the condition code in if(.) or while(.) is not of length one, an error instead of
a warning may be triggered by setting an environment variable, see the help page.

• Formatting and printing of bibliography entries (bibentry) is more flexible and better
documented. Apart from setting options(citation.bibtex.max = 99) you can also
use print(<citation>,bibtex=TRUE) (or format(..)) to get the BibTeX entries in the
case of more than one entry. This also affects citation(). Contributions to enable
style = "html+bibtex" are welcome.
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C-LEVEL FACILITIES

• Entry points R_MakeExternalPtrFn and R_ExternalPtrFn are now declared in header
‘Rinternals.h’ to facilitate creating and retrieving an R external pointer from a C function
pointer without ISO C warnings about the conversion of function pointers.

• There was an exception for the native Solaris C++ compiler to the dropping (in R
3.3.0) of legacy C++ headers from headers such as ‘R.h’ and ‘Rmath.h’ — this has now
been removed. That compiler has strict C++98 compliance hence does not include
extensions in its (non-legacy) C++ headers: some packages will need to request C++11
or replace non-C++98 calls such as lgamma: see §1.6.4 of ‘Writing R Extensions’.

Because it is needed by about 70 CRAN packages, headers ‘R.h’ and ‘Rmath.h’ still
declare

use namespace std;

when included on Solaris.

• When included from C++, the R headers now use forms such as std::FILE directly
rather than including the line

using std::FILE;

C++ code including these headers might be relying on the latter.

• Headers ‘R_ext/BLAS.h’ and ‘R_ext/Lapack.h’ have many improved declarations includ-
ing const for double-precision complex routines. Inter alia this avoids warnings when
passing ‘string literal’ arguments from C++11 code.

• Headers for Unix-only facilities ‘R_ext/GetX11Image.h’, ‘R_ext/QuartzDevice.h’ and
‘R_ext/eventloop.h’ are no longer installed on Windows.

• No-longer-installed headers ‘GraphicsBase.h’, ‘RGraphics.h’, ‘Rmodules/RX11.h’ and
‘Rmodules/Rlapack.h’ which had a LGPL license no longer do so.

• HAVE_UINTPTR_T is now defined where appropriate by Rconfig.h so that it can be
included before Rinterface.h when CSTACK_DEFNS is defined and a C compiler (not
C++) is in use. Rinterface.h now includes C header ‘stdint.h’ or C++11 header ‘cstdint’
where needed.

• Package tools has a new function package_native_routine_registration_skeleton()
to assist adding native-symbol registration to a package. See its help and §5.4.1 of
‘Writing R Extensions’ for how to use it. (At the time it was added it successfully
automated adding registration to over 90% of CRAN packages which lacked it. Many
of the failures were newly-detected bugs in the packages, e.g. 50 packages called entry
points with varying numbers of arguments and 65 packages called entry points not in
the package.)

INSTALLATION on a UNIX-ALIKE

• readline headers (and not just the library) are required unless configuring with
‘--with-readline=no’.

• configure now adds a compiler switch for C++11 code, even if the compiler supports
C++11 by default. (This ensures that g++ 6.x uses C++11 mode and not its default
mode of C++14 with ‘GNU extensions’.)

The tests for C++11 compliance are now much more comprehensive. For gcc < 4.8,
the tests from R 3.3.0 are used in order to maintain the same behaviour on Linux
distributions with long-term support.
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• An alternative compiler for C++11 is now specified with ‘CXX11’, not ‘CXX1X’. Likewise
C++11 flags are specified with ‘CXX11FLAGS’ and the standard (e.g., ‘-std=gnu++11’ is
specified with ‘CXX11STD’.

• configure now tests for a C++14-compliant compiler by testing some basic features.
This by default tries flags for the compiler specified by ‘CXX11’, but an alternative
compiler, options and standard can be specified by variables ‘CXX14’, ‘CXX14FLAGS’ and
‘CXX14STD’ (e.g., ‘-std=gnu++14’).

• There is a new macro CXXSTD to help specify the standard for C++ code,
e.g. ‘-std=c++98’. This makes it easier to work with compilers which default to a
later standard: for example, with CXX=g++6 CXXSTD=-std=c++98 configure will se-
lect commands for g++ 6.x which conform to C++11 and C++14 where specified but
otherwise use C++98.

• Support for the defunct IRIX and OSF/1 OSes and Alpha CPU has been removed.

• configure checks that the compiler specified by ‘$CXX $CXXFLAGS’ is able to compile
C++ code.

• configure checks for the required header ‘sys/select.h’ (or ‘sys/time.h’ on legacy sys-
tems) and system call select and aborts if they are not found.

• If available, the POSIX 2008 system call utimensat will be used by Sys.setFileTime()
and file.copy(copy.date = TRUE). This may result in slightly more accurate file
times. (It is available on Linux and FreeBSD but not macOS.)

• The minimum version requirement for libcurl has been reduced to 7.22.0, although
at least 7.28.0 is preferred and earlier versions are little tested. (This is to support
Debian 7 ‘Wheezy’ LTS and Ubuntu ‘Precise’ 12.04 LTS, although the latter is close to
end-of-life.)

• configure tests for a C++17-compliant compiler. The tests are experimental and
subject to change in the future.

INCLUDED SOFTWARE

• (Windows only) Tcl/Tk version 8.6.4 is now included in the binary builds. The
‘tcltk*.chm’ help file is no longer included; please consult the online help at http:
//www.tcl.tk/man/ instead.

• The version of LAPACK included in the sources has been updated to 3.7.0: no new
routines have been added to R.

PACKAGE INSTALLATION

• There is support for compiling C++14 or C++17 code in packages on suitable platforms:
see ‘Writing R Extensions’ for how to request this.

• The order of flags when ‘LinkingTo’ other packages has been changed so their include
directories come earlier, before those specified in CPPFLAGS. This will only have an
effect if non-system include directories are included with ‘-I’ flags in CPPFLAGS (and so
not the default -I/usr/local/include which is treated as a system include directory
on most platforms).

• Packages which register native routines for .C or .Fortran need to be re-installed for
this version (unless installed with R-devel SVN revision r72375 or later).

• Make variables with names containing CXX1X are deprecated in favour of those using
CXX11, but for the time being are still made available via file ‘etc/Makeconf’. Packages
using them should be converted to the new forms and made dependent on ‘R (>=
3.4.0)’.
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UTILITIES

• Running R CMD check --as-cran with _R_CHECK_CRAN_INCOMING_REMOTE_ false now
skips tests that require remote access. The remaining (local) tests typically run quickly
compared to the remote tests.

• R CMD build will now give priority to vignettes produced from files in the ‘vignettes’
directory over those in the ‘inst/doc’ directory, with a warning that the latter are being
ignored.

• R CMD config gains a ‘--all’ option for printing names and values of all basic
configure variables.

It now knows about all the variables used for the C++98, C++11 and C++14 standards.

• R CMD check now checks that output files in ‘inst/doc’ are newer than the source files
in ‘vignettes’.

• For consistency with other package subdirectories, files named ‘*.r’ in the ‘tests’ direc-
tory are now recognized as tests by R CMD check. (Wish of PR#17143.)

• R CMD build and R CMD check now use the union of R_LIBS and .libPaths(). They
may not be equivalent, e.g., when the latter is determined by R_PROFILE.

• R CMD build now preserves dates when it copies files in preparing the tarball. (Previ-
ously on Windows it changed the dates on all files; on Unix, it changed some dates
when installing vignettes.)

• The new option R CMD check --no-stop-on-test-error allows running the remain-
ing tests (under ‘tests/’) even if one gave an error.

• Check customization via environment variables to detect side effects of .Call() and
.External() calls which alter their arguments is described in §8 of the ‘R Internals’
manual.

• R CMD check now checks any ‘BugReports’ field to be non-empty and a suitable single
URL.

• R CMD check --as-cran now NOTEs if the package does not register its native
routines or does not declare its intentions on (native) symbol search. (This will become
a WARNING in due course.)

DEPRECATED AND DEFUNCT

• (Windows only) Function setInternet2() is defunct.

• Installation support for readline emulations based on editline (aka libedit) is
deprecated.

• Use of the C/C++ macro ‘NO_C_HEADERS’ is defunct and silently ignored.

• unix.time(), a traditional synonym for system.time(), has been deprecated.

• structure(NULL,..) is now deprecated as you cannot set attributes on NULL.

• Header ‘Rconfig.h’ no longer defines ‘SUPPORT_OPENMP’; instead use ‘_OPENMP’ (as docu-
mented for a long time).

• (C-level Native routine registration.) The deprecated styles member of the
R_CMethodDef and R_FortranMethodDef structures has been removed. Packages using
these will need to be re-installed for R 3.4.0.

• The deprecated support for PCRE versions older than 8.20 will be removed in R 3.4.1.
(Versions 8.20–8.31 will still be accepted but remain deprecated.)
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BUG FIXES

• Getting or setting body() or formals() on non-functions for now signals a warning
and may become an error for setting.

• match(x,t), duplicated(x) and unique(x) work as documented for complex num-
bers with NAs or NaNs, where all those containing NA do match, whereas in the case of
NaN’s both real and imaginary parts must match, compatibly with how print() and
format() work for complex numbers.

• deparse(<complex>,options = "digits17") prints more nicely now, mostly thanks
to a suggestion by Richie Cotton.

• Rotated symbols in plotmath expressions are now positioned correctly on x11(type =
"Xlib"). (PR#16948)

• as<-() avoids an infinite loop when a virtual class is interposed between a subclass
and an actual superclass.

• Fix level propagation in unlist() when the list contains zero-length lists or factors.

• Fix S3 dispatch on S4 objects when the methods package is not attached.

• Internal S4 dispatch sets .Generic in the method frame for consistency with
standardGeneric(). (PR#16929)

• Fix order(x,decreasing = TRUE) when x is an integer vector containing MAX_INT.
Ported from a fix Matt Dowle made to data.table.

• Fix caching by callNextMethod(), resolves PR#16973 and PR#16974.

• grouping() puts NAs last, to be consistent with the default behavior of order().

• Point mass limit cases: qpois(-2,0) now gives NaN with a warning and qgeom(1,1) is
0. (PR#16972)

• table() no longer drops an "NaN" factor level, and better obeys exclude = <chr>,
thanks to Suharto Anggono’s patch for PR#16936. Also, in the case of exclude = NULL
and NAs, these are tabulated correctly (again).

Further, table(1:2,exclude = 1,useNA = "ifany") no longer erroneously reports
<NA> counts.

Additionally, all cases of empty exclude are equivalent, and useNA is not overwritten
when specified (as it was by exclude = NULL).

• wilcox.test(x,conf.int=TRUE) no longer errors out in cases where the confidence
interval is not available, such as for x = 0:2.

• droplevels(f) now keeps <NA> levels when present.

• In integer arithmetic, NULL is now treated as integer(0) whereas it was previously
treated as double(0).

• The radix sort considers NA_real_ and NaN to be equivalent in rank (like the other sort
algorithms).

• When index.return=TRUE is passed to sort.int(), the radix sort treats NAs like
sort.list() does (like the other sort algorithms).

• When in tabulate(bin,nbin) length(bin) is larger than the maximal integer, the
result is now of type double and hence no longer silently overflows to wrong values.
(PR#17140)
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• as.character.factor() respects S4 inheritance when checking the type of its argu-
ment. (PR#17141)

• The factor method for print() no longer sets the class of the factor to NULL, which
would violate a basic constraint of an S4 object.

• formatC(x,flag = f) allows two new flags, and signals an error for invalid flags also
in the case of character formatting.

• Reading from file("stdin") now also closes the connection and hence no longer leaks
memory when reading from a full pipe, thanks to Gábor Csárdi, see thread starting at
https://stat.ethz.ch/pipermail/r-devel/2016-November/073360.html.

• Failure to create file in tempdir() for compressed pdf() graphics device no longer
errors (then later segfaults). There is now a warning instead of error and compression
is turned off for the device. Thanks to Alec Wysoker (PR#17191).

• Asking for methods() on "|" returns only S3 methods. See https://stat.ethz.ch/
pipermail/r-devel/2016-December/073476.html.

• dev.capture() using Quartz Cocoa device (macOS) returned invalid components if
the back-end chose to use ARGB instead of RGBA image format. (Reported by Noam
Ross.)

• seq("2","5") now works too, equivalently to "2":"5" and seq.int().

• seq.int(to = 1,by = 1) is now correct, other cases are integer (instead of double)
when seq() is integer too, and the "non-finite" error messages are consistent between
seq.default() and seq.int(), no longer mentioning NaN etc.

• rep(x,times) and rep.int(x,times) now work when times is larger than the largest
value representable in an integer vector. (PR#16932)

• download.file(method = "libcurl") does not check for URL existence before at-
tempting downloads; this is more robust to servers that do not support HEAD or
range-based retrieval, but may create empty or incomplete files for aborted download
requests.

• Bandwidth selectors bw.ucv(), bw.bcv() and bw.SJ() now avoid integer overflow for
large sample sizes.

• str() no longer shows "list output truncated", in cases that list was not shown at
all. Thanks to Neal Fultz (PR#17219)

• Fix for cairo_pdf() (and svg() and cairo_ps()) when replaying a saved display list
that contains a mix of grid and graphics output. (Report by Yihui Xie.)

• The str() and as.hclust() methods for "dendrogram" now also work for deeply
nested dendrograms thanks to non-recursive implementations by Bradley Broom.

• sample() now uses two uniforms for added precision when the uniform generator is
Knuth-TAOCP, Knuth-TAOCP-2002, or a user-defined generator and the population size
is 225 or greater.

• If a vignette in the ‘vignettes’ directory is listed in ‘.Rbuildignore’, R CMD build would
not include it in the tarball, but would include it in the vignette database, leading to a
check warning. (PR#17246)

• tools::latexToUtf8() infinite looped on certain inputs. (PR#17138)

• terms.formula() ignored argument names when determining whether two terms
were identical. (PR#17235)
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• callNextMethod() was broken when called from a method that augments the formal
arguments of a primitive generic.

• Coercion of an S4 object to a vector during sub-assignment into a vector failed to
dispatch through the as.vector() generic (often leading to a segfault).

• Fix problems in command completion: Crash (PR#17222) and junk display in Windows,
handling special characters in filenames on all systems.

CHANGES IN R 3.3.3

NEW FEATURES

• Changes when redirection of a ‘http://’ URL to a ‘https://’ URL is encountered:

– The internal methods of download.file() and url() now report that they cannot
follow this (rather than failing silently).

– (Unix-alike) download.file(method = "auto") (the default) re-tries with method
= "libcurl".

– (Unix-alike) url(method = "default") with an explicit open argument re-tries
with method = "libcurl". This covers many of the usages, e.g. readLines()
with a URL argument.

INSTALLATION on a UNIX-ALIKE

• The configure check for the zlib version is now robust to versions longer than 5
characters, including 1.2.11.

UTILITIES

• Environmental variable _R_CHECK_TESTS_NLINES_ controls how R CMD check reports
failing tests (see §8 of the ‘R Internals’ manual).

DEPRECATED AND DEFUNCT

• (C-level Native routine registration.) The undocumented styles field of the compo-
nents of R_CMethodDef and R_FortranMethodDef is deprecated.

BUG FIXES

• vapply(x,*) now works with long vectors x. (PR#17174)

• isS3method("is.na.data.frame") and similar are correct now. (PR#17171)

• grepRaw(<long>,<short>,fixed = TRUE) now works, thanks to a patch by Mikko
Korpela. (PR#17132)

• Package installation into a library where the package exists via symbolic link now
should work wherever Sys.readlink() works, resolving PR#16725.

• "Cincinnati" was missing an "n" in the precip dataset.

• Fix buffer overflow vulnerability in pdf() when loading an encoding file. Reported by
Talos (TALOS-2016-0227).

• getDLLRegisteredRoutines() now produces its warning correctly when multiple
DLLs match, thanks to Matt Dowle’s PR#17184.
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• Sys.timezone() now returns non-NA also on platforms such as ‘Ubuntu 14.04.5 LTS’,
thanks to Mikko Korpela’s PR#17186.

• format(x) for an illegal "POSIXlt" object x no longer segfaults.

• methods(f) now also works for f "(" or "{".

• (Windows only) dir.create() did not check the length of the path to create, and so
could overflow a buffer and crash R. (PR#17206)

• On some systems, very small hexadecimal numbers in hex notation would underflow
to zero. (PR#17199)

• pmin() and pmax() now work again for ordered factors and 0-length S3 classed objects,
thanks to Suharto Anggono’s PR#17195 and PR#17200.

• bug.report() did not do any validity checking on a package’s ‘BugReports’ field. It
now ignores an empty field, removes leading whitespace and only attempts to open
‘http://’ and ‘https://’ URLs, falling back to emailing the maintainer.

• Bandwidth selectors bw.ucv() and bw.SJ() gave incorrect answers or incorrectly
reported an error (because of integer overflow) for inputs longer than 46341. Similarly
for bw.bcv() at length 5793.

Another possible integer overflow is checked and may result in an error report (rather
than an incorrect result) for much longer inputs (millions for a smooth distribution).

• findMethod() failed if the active signature had expanded beyond what a particular
package used. (Example with packages XR and XRJulia on CRAN.)

• qbeta() underflowed too early in some very asymmetric cases. (PR#17178)

• R CMD Rd2pdf had problems with packages with non-ASCII titles in ‘.Rd’ files (usually
the titles were omitted).
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