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Editorial
by Roger Bivand

In my editorial for the 2017–1 issue, I concentrated on tabulating the status of this jour-
nal with respect to its authors and reviewers (updated tables below). This time, I was
prompted by an interesting blog posting by Jan Wijffels of BNOSAC, describing the use
of the udpipe package to apply natural language processing (NLP) to the CRAN package
database available from tools::CRAN_package_db() since the release of R 3.4. The interac-
tive NLP searcher is a dashboard permitting exploration of annotated CRAN package title
and description NLP data.

It struck me that an analysis of abstracts of contributed research articles published in
the R Journal would now be possible since the introduction of article landing pages earlier
this year, because the website configuration file containing the abstracts can be read using
the yaml package. Jan Wijffels kindly and rapidly responded, providing an R Journal NLP
search tool analogous to the CRAN NLP search tool.

Figure 1: Wordcloud for abstracts of contributed research articles: left panel 53 articles 2012–2013,
centre panel: 69 articles 2014–2015, right panel: 115 articles 2016–2017.

Figure 1 shows total cumulative wordclouds for the last six years in two-year slices, and
indicates that we are, broadly, maintaining topical consistency with a sustained focus on
data. The search tool permits much more detailed exploration as well, such as term search
to supplement web searches on site:journal.r-project.org.

While we do not have on-site indexing or searching, a tab has been added for news and
notes contributions by issue. In this issue, two new columns are initiated, one for news and
notes from Forwards, starting with a report on the useR! 2016 survey (see also forwards).
The second new column covers teaching R and teaching with R, and kicks off with a note
on linking teaching and reproducible research (see also the revisit package). Progress in
answering Heather Turner’s appeal to help useRs navigate their way through the R world
(editorial, 2011–1) is at best incremental, but progress none the less. A year later, Martyn
Plummer pointed out (editorial, 2012–1) that “it is worth spending some time browsing
these sections in order to catch up on changes you may have missed.”

From the publication of this issue, fuller benefits from the introduction of landing pages
may be realised through the addition of citation page metadata tags, permitting search
engines to index contributed research articles more efficiently, thanks to a suggestion by
Carl Boettiger. We expect to begin providing DOI for published contributed research articles
during 2018 as a further step towards increasing the visibility of the valuable work published
here.

We have already added links for supplementary matter (typically reproduction code)
on article landing pages, for articles published in this issue. Since the beginning of 2017,
submissions were expected to provide scripts permitting reviewers to run code without
copying from the manuscript, but previously this was only exceptionally the case, so it may
not be practical to provide supplementary matter for articles published in earlier issues.
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The wisdom of the editors in choosing to consolidate, and become a listed journal (see
Peter Dalgaard’s editorial in 2010–1) is manifest in our current standing in Journal Citation
Reports, with a 2016 impact factor of 1.075, and a five-year score of 2.114. The steps being
taken by the editors and the R Foundation should enhance the discoverability and impact of
work published here. It is fair to repeat from the 2010–1 editorial that “we need to show that
we have a solid scientific standing with good editorial standards, giving submissions fair
treatment and being able to publish on time.”

2009 2010 2011 2012 2013 2014 2015 2016 2017

Published 26 26 26 22 31 36 51 74 24
Rejected 11 14 11 24 29 32 53 68 55
Under review 0 0 0 0 0 0 0 2 65

Total 37 40 37 46 60 68 104 144 144

Table 1: Submission outcomes 2009–2017, by year of submission.

2009 2010 2011 2012 2013 2014 2015 2016 2017

Page count 109 123 123 136 362 358 479 895 1023
Article count 18 18 20 18 35 33 36 62 68
Average length 6.1 6.8 6.2 7.6 10.3 10.8 13.3 14.4 15.0

Table 2: Published contributed articles 2009–2017, by year of publication.

2013 2014 2015 2016 2017

Median 347.0 225.5 212.5 212.0 244.0

Table 3: Median day count from acknowledgement to acceptance and online publication 2013–2017,
by year of publication.

Roger Bivand
Roger.Bivand@r-project.org
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anchoredDistr: a Package for the Bayesian
Inversion of Geostatistical Parameters
with Multi-type and Multi-scale Data
by Heather Savoy, Falk Heße, and Yoram Rubin

Abstract The Method of Anchored Distributions (MAD) is a method for Bayesian inversion designed
for inferring both local (e.g. point values) and global properties (e.g. mean and variogram parameters)
of spatially heterogenous fields using multi-type and multi-scale data. Software implementations
of MAD exist in C++ and C# to import data, execute an ensemble of forward model simulations,
and perform basic post-processing of calculating likelihood and posterior distributions for a given
application. This article describes the R package anchoredDistr that has been built to provide an R-
based environment for this method. In particular, anchoredDistr provides a range of post-processing
capabilities for MAD software by taking advantage of the statistical capabilities and wide use of the
R language. Two examples from stochastic hydrogeology are provided to highlight the features of
the package for MAD applications in inferring anchored distributions of local parameters (e.g. point
values of transmissivity) as well as global parameters (e.g. the mean of the spatial random function for
hydraulic conductivity).

Introduction

The field of geostatistics originated in the 1950s with the pioneering work of Krige (1951) and Matheron
(1962) who tried to estimate the characteristics of subsurface properties with the limited measurements
typically available in this field. This scarcity, caused by the high explorations costs, is exacerbated by
the strong heterogeneity that many such subsurface properties exhibit. Both these factors combined
make it impossible to describe any subsurface process with certainty, therefore necessitating the
application of statistical tools. Today, geostatistics is used in many fields of earth science such as
geology (Hohn, 1962), hydrogeology (Kitanidis, 2008), plus hydrology and soil science (Goovaerts,
1999). To meet this demand, many software packages have been developed that provide practitioners
and scientists alike with the much needed tools to apply geostatistics. In R, the best collection of
such tools is arguably found in the gstat package (Pebesma, 2004) developed and maintained by
Pebesma and colleagues. With gstat, it is possible to estimate (Kriging) and simulate (Gaussian process
generation) heterogenous fields in one, two or three dimensions, therefore providing necessary tools
for geostatistical analysis.

Any such statistical analysis should draw on all available data that are connected to the variable
of interest to infer, i.e. to learn about, its spatial distribution as much as possible. Examples for such
spatially distributed variables in earth sciences would be, e.g. the hydraulic conductivity of an aquifer,
evapotranspiration rates of different land surface areas, and soil moisture. In classical statistics, such
information may consist of measurements of the variable itself or so-called local variables. Here, local
means that a point-by-point relationship between both variables exists. However, many data are
non-local, which means they are connected to the variable of interest via a complicated forward model.
For instance, hydraulic conductivity may be connected by a solute transport model to break-through
curves of said solutes and soil moisture may be connected by a hydraulic catchment model to river
discharge. To learn about the input from the output of such forward models means to invert them,
hence the name inversion for such techniques.

The Method of Anchored Distributions (MAD) provides a Bayesian framework for the geostatistical
inversion of spatially heterogeneous variables. MAD solves the aforementioned problem by converting
non-local data into equivalent local data using the tools of Bayesian inference. The result of such a
conversion is the consistent representation of all data (local and non-local) as local data only, which
is then amendable to further geostatistical analysis (Rubin et al., 2010). So far, applications of MAD
have been focused on hydrogeology (Murakami et al., 2010; Chen et al., 2012; Heße et al., 2015)
as well as soil science (Over et al., 2015). However, given the explanations above, MAD is in no
way limited to these fields and can be employed wherever non-local data need to be incorporated
into a geostatistical framework. This generality also extends to the spatial model being inferred.
While there are R packages utilizing Bayesian inference for spatial models such as spBayes (Finley
et al., 2015), spTimer (Bakar and Sahu, 2015), and INLA (Lindgren and Rue, 2015, software available
from http://www.r-inla.org/), these packages have several constraints compared to anchoredDistr.
First, each method assumes a Gaussian process for the spatial variability. MAD has no inherent
distributional assumptions, which allows its application to a wide variety of scenarios where, for
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example, Gaussian fields are not justified. In addition, these packages are either geared toward large
data sets (spBayes and spTimer) or applied to only local data (spBayes, spTimer, and INLA) while
MAD focuses on addressing uncertainty due to sparse data sets by incorporating non-local data.
Finally, MAD employs a non-parameteric likelihood estimation, which allows for great flexibility,
in particular for non-linear forward models. The presented R package anchoredDistr provides an
interface to the C# implementation of MAD. It allows post-processing of calculating likelihood and
posterior distributions as well as visualization of the data.

The Method of Anchored Distributions

Equation 1 displays the general procedure of Bayesian inference where θ represents the parameters
of the variable being inferred (e.g. hydraulic conductivity) and z represents the data informing the
inference:

p (θ|z) ∝ p (θ) p (z|θ) . (1)

An important element of MAD is a strict classification of all data into local za and non-local data
zb, with the latter being the target of inversion. MAD employs Bayesian inference in the realm of
geostatistics by expanding the supported parameters into θ for global parameters (describing overall
trend and spatial correlation) and ϑ for local parameters. Since MAD is a Bayesian scheme, these θ and
ϑ both have probability distributions. As mentioned above, MAD turns non-local data into equivalent
local data ϑ by inverting the forward model that connects both. The non-local data therefore become
anchored in space, hence the name Method of Anchored Distributions. Equation 2 displays the general
form of MAD:

p (θ, ϑ|za, zb) ∝ p (θ) p (ϑ|θ, za) p (zb|θ, ϑ, za) . (2)

Open-source software implementations for applying the entirety of MAD are available both with a
graphical interface and a command-line interface to guide users through connecting their forward
models and random field generators and to execute the ensemble of forward simulations (a. Osorio-
Murillo et al., 2015). This software (available at http://mad.codeplex.com) was inspired by the claim
that inverse modeling will be widely applied in hydrogeology only if user-friendly software tools are
available (Carrera et al., 2005).

The package anchoredDistr described here focuses on extending the post-processing capabilities
of MAD software, particularly the calculation of the likelihood distribution p (zb|θ, ϑ, za) and the
posterior distribution p (θ, ϑ|, zb, za) after the ensemble of forward model simulations is already
complete. The MAD# software has basic post-processing capabilities, but does not offer the degree of
flexibility as R for the post-processing analysis. For example, when handling zb in the form of time
series, dimension reduction techniques are necessary for calculating the likelihood values. By having
the R package anchoredDistr, users have the support to attach whichever applicable technique for
their data.

General workflow

In the current version of anchoredDistr, which only handles the post-processing of a MAD application,
it is assumed that prior distributions of local and global parameters, p (ϑ|θ, za) and p (θ) respectively,
have already been defined and sampled and that forward model simulations based on those samples
have been executed either within the MAD# software or by other means of batch execution. If the
MAD# software is used, this data is stored by MAD# in databases (extensions .xresult for project
metadata and .xdata for each sample). The package anchoredDistr primarily consists of methods for
the S4 class "MADproject" that extract and analyze data from these databases, i.e. handling information
regarding the samples from the prior distributions and the resulting ensemble of simulated zb data.
If MAD# is not used, the information can be formatted into a "MADproject" manually. The usage of
anchoredDistr will generally follow the workflow below (also see Figure 1):

1. Create "MADproject" object with new() function (passing slot information if manually filling
data)

2. Read data from MAD# databases, if being used, into "MADproject" object with readMAD()

3. View the observations and realizations with plotMAD()

4. Apply any necessary dimension reduction techniques to zb with reduceData()

5. Test the convergence of the likelihood distribution with respect to the number of realizations with
testConvergence() (return to MAD software to run additional realizations if unsatisfactory)

6. Calculate likelihood and posterior distributions with calcLikelihood() and calcPosterior(),
respectively
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7. View the posterior distribution with plotMAD().

Figure 1: Schematic of utilizing anchoredDistr for MAD post-processing if the MAD# is used. Solid
arrow lines indicate the fundamental workflow while dashed arrow lines are optional.

To install the anchoredDistr package, the release version is available from CRAN:

install.packages("anchoredDistr")
library(anchoredDistr)

Alternatively, the development version can be obtained by using the devtools package (Wickham and
Chang, 2016) to download the necessary files from GitHub:

library(devtools)
install_github("hsavoy/anchoredDistr")
library(anchoredDistr)

Other packages used by anchoredDistr include RSQLite (Wickham et al., 2014) for reading from
MAD databases, np (Hayfield and Racine, 2008) for estimating non-parametric density distributions,
plyr (Wickham, 2011) and dplyr (Wickham and Francois, 2016) for efficient data manipulation, and
ggplot2 (Wickham, 2009) for plotting. The methods included in anchoredDistr are listed in Table 1
and two examples utilizing these methods are provided next.

Method Description

readMAD() Reads data from databases generated by MAD software
reduceData() Applies dimension reduction to zb time series
testConvergence() Tests for convergence of likelihood values for

increasing number of realizations
calcLikelihood() Calculates the likelihood values for the samples
calcPosterior() Calculates the posterior values for the samples
plotMAD() Plots the observations, realizations, reduced data,

and/or posteriors

Table 1: The methods for the "MADproject" S4 class provided by anchoredDistr.
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Example 1: aquifer characterization with steady-state hydraulic head from
multiple wells

Scenario setup

In this first example, we will use the tutorial example available from the MAD website http://
mad.codeplex.com. Within the anchoredDistr package, this tutorial example is available as MAD#
databases, as well as a "MADproject" object accessed by data(tutorial). The variable of interest is
transmissivity T, an aquifer property that represents how much water can be transmitted horizontally
through an aquifer. We will use the one-dimensional heterogenous field of the decimal log transform
of T (see Figure 2) as our baseline field from which we can generate virtual measurements and validate
our resulting posterior distributions. The field was generated as a Gaussian process by the gstat
package in R with a mean µlog10 T = −2 and an exponential covariance function with a variance
σ2

log10 T = 0.4 and length scale llog10 T = 3 m. Within the scope of this example, we assume these
global parameter values to be known. Furthermore, we assume that we have local data in the form of
measurements of T at three different locations. In addition, non-local data are available in the form of
head measurements (indication of water pressure) at the same locations. The forward model used to
solve the groundwater flow equation and relate T to head is the software MODFLOW-96 (Harbaugh
and Mcdonald, 1996), part of the open source MODFLOW series that is the industry standard for
groundwater modeling. To convert the non-local data into equivalent local data of T, we will place
four anchors at selected unmeasured locations. The number of anchors needs to be justified by the data
content of the measurements such that the complexity of the model does not become disproportionate
to the information available. The locations of these anchors reflect locations where there is no other
local data available but there is non-local data nearby for conversion (see Yang et al. (2012) for more
discussion on anchor placement). The locations of the measurements and anchors are depicted in
Figure 2. The prior distributions for these anchors are based on simple kriging with the local data za
for conditioning and the known Gaussian process for the covariance function:

p (ϑi|θ, za) = N
(

µ = Ẑ (yi) , σ2 = Var
(
Z (yi)− Ẑ (yi)

))
, (3)

where Z generally represents log10 T, yi is the y-coordinate of the ith anchor, Ẑ (yi) is the kriging
estimate at the ith anchor , and Var

(
Z (yi)− Ẑ (yi)

)
is the kriging variance at the ith anchor. The

goal of the example is to compare the posterior distributions of the four anchors resulting from the
inversion to their prior distributions which will indicate the information gain from the inclusion of the
non-local data zb.

Figure 2: The one-dimensional baseline field of log10 T used in Example 1 with locations of measure-
ments (co-located za and zb) marked along with the anchors to be inferred.

Reading and viewing data

In the first step, a "MADproject" object is created with the new() function. Three arguments must be
provided to read the MAD databases: madname (the name of the MAD project, e.g. the filename for the
.xmad database), resultname (the name of the result from MAD, e.g. the result folder name), and xpath
(the path to where the .xresult database and result folder are located). These three arguments ensure
the MAD databases can be read by the method readMAD(), which will read in the prior distribution
samples for the global and local parameters plus the observations and forward model predictions for
the zb. Note that anchoredDistr could be used independently of the MAD software, if desired, as long
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as the slots filled in by readMAD() (see Table 2) are provided manually (see next example). To create a
"MADproject" object for this tutorial example, the code below will read the MAD# databases stored in
the anchoredDistr package files.

tutorial <- new("MADproject", madname="Tutorial", resultname="example1",
xpath=paste0(system.file("extdata", package = "anchoredDistr"),"/"))

tutorial <- readMAD(tutorial, 1:3)

Slot Description Source

madname MAD project name user provided
resultname MAD result name user provided
xpath Path to .xresult database user provided
numLocations Number of zb locations readMAD()
numTimesteps Number of time steps measured at each zb locations readMAD()
numSamples Number of samples drawn from prior distributions readMAD()
numAnchors Number of local parameters / anchors placed in field readMAD()
numTheta Number of random global parameters to infer readMAD()
truevalues True values for the parameters to infer, if known readMAD()
observations Observed values of the zb locations and time steps readMAD()
realizations Simulated values of the zb locations and time steps readMAD()
priors Samples from the prior distributions of each parameter readMAD()
likelihoods Likelihood values for each sample calcLikelihoods()
posteriors Posterior values for each sample of each parameter calcPosteriors()

Table 2: The slots for the "MADproject" S4 class provided by anchoredDistr.

The prior distributions can be viewed by calling the plotMAD() function with the "MADproject"
object and the string "priors" (see below). Figure 3 shows the prior distributions for the four anchors
in Example 1. The distributions roughly follow a Gaussian distribution due to the baseline field being
a Gaussian field and the prior distributions based on the kriging mean and variance at these four
locations from the za data and the known spatial random function. The x-axis labels are pulled from
the "MADproject" object’s priors slot, which contains the random parameter names as provided in
the MAD software.

plotMAD(tutorial, "priors")

Figure 3: The relative frequency (gray bars) and estimated density (red line) of the prior distributions
for the four anchor locations based on samples supplied in Example 1.

Calculating likelihoods and posteriors

After the information contained in the MAD databases has been read into the "MADproject" object, the
likelihood and posterior distributions can be calculated by calcLikelihood() and calcPosterior(),
respectively. The method calcLikelihood() uses non-parametric kernel density estimation (from the
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package np) to estimate the probability density of measured inversion data from the probability density
function of inversion data simulated from the realizations per sample. The method calcPosterior()
multiplies the resulting likelihood distribution across the samples and the provided prior distribution
to calculate the posterior.

First, we can call the testConvergence() method to visually inspect if we have enough realizations
for the likelihood values of samples to converge (this method calls the calcLikelihood() internally
to perform this test). Figure 4 depicts this qualitative convergence test for Example 1 by plotting the
likelihood values of a sample with increasing number of realizations. In order to prevent cluttering, the
default number of samples to display is set to seven samples randomly selected from those available
in the project. Convergence is achieved when the likelihood stabilizes with increasing realizations.
For this example, it appears that the log likelihood of the samples have started to stabilize by 50
realizations, but more realizations may be warranted.

The posterior distributions for each random parameter can be seen by calling plotMAD() with the
"MADproject" object and the string "posteriors". Figure 5 shows the posteriors for Example 1 along
with the prior distribution and the true values for each of the four anchors. The posterior distributions
for Anchors 2 and 3, which were surrounded by zb measurements, show an increase in probability
near the true value, indicating a successful information transfer from the non-local zb into equivalent
local data.

testConvergence(tutorial)
tutorial <- calcLikelihood(tutorial)
tutorial <- calcPosterior(tutorial)
plotMAD(tutorial, "posteriors")

Figure 4: Convergence testing for Example 1 by plotting the decimal log of likelihood of a collection
of randomly selected samples wth increasing number of realizations.

Figure 5: The prior (red) and posterior (blue) distributions with the true value (black) for the four
anchor locations in Example 1.
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Example 2: aquifer characterization with one pumping drawdown curve

Scenario setup

The second example depicts a different aquifer characterization scenario for a two-dimensional field
where the natural log transform of hydraulic conductivity (K) is assumed to be an isotropic Gaussian
field with variance σ2

ln K = 1 and length scale lln K = 10m but unknown mean µln K (Figure 6). There are
no anchors placed in this example, leaving the mean as the only parameter to infer. Unlike Example
1, Example 2 is therefore a demonstration of how MAD can be employed as a regular Bayesian
inversion scheme, too. The prior distribution for global parameters ideally come from previous
knowledge of similar sites, e.g. the distribution of mean ln K observed at other aquifers with the
same geological setting. For this example, we will compare three equally spaced samples for ln K to
represent a uniform prior distribution for the mean. The data include four local data za (K) at four
different locations and one non-local data series zb (hydraulic head drawdown) at a single location
(see Figure 6). The zb location provides 100 time steps, i.e. data points, of drawdown measurements
(Figure 7). The forward model used to solve the groundwater flow equation and relate K to drawdown
is OpenGeoSys (Kolditz et al., 2012), an open source software that simulates a variety of subsurface
processes. This second example uses a different forward model than the first example to showcase
the MAD software’s modular design, which does not assume or rely on specific forward models. The
observation, realizations, and prior sample data for this example is provided within the package as
external data that can be created with new() as shown below, as well as a pre-made "MADproject"
object accessed with data(pumping).

load(system.file("extdata", "pumpingInput.RData", package = "anchoredDistr"))
pumping <- new("MADproject",

numLocations = 1,
numTimesteps = 100,
numSamples = 50,
numAnchors = 0,
numTheta = 1,
observations = obs,
realizations = realizations,
priors = priors)

Figure 6: The two-dimensional baseline field of ln K used in Example 2 with the location of measure-
ments marked.

When the pumping dataset is initially loaded, we can view the observation of zb, i.e. drawdown
time series (Figure 7), the prior distribution of the three samples (Figure 8), and the interquartile range
of the time series simulated by the forward model for the samples (Figure 9).

plotMAD(pumping, "observations")
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plotMAD(pumping, "priors")
plotMAD(pumping, "realizations")

Figure 7: The observed time series of hydraulic head drawdown to be used as non-local data zb in
Example 2.

Figure 8: The histogram (gray bars) and estimated density (red line) of the prior distributions for the
mean ln K Example 2.

Applying dimension reduction to time series

Even though we have the time series of drawdown, we cannot use these 100 individual values to
calculate the likelihood because they are correlated and the multivariate likelihood distribution would
be 100-dimensional. Such dimensionality would require an unrealistic number of realizations to
resolve, known as "the curse of dimensionality." To overcome this obstacle, dimension reduction is
needed and the method to use depends on the type of non-local data zb. For this example, we will
simply use the min() function to collect the minimum head value in the time series since the observed
head reduces and converges to a stable head value with time (Figure 7). The anchoredDistr package
can handle any non-parameterized function, such as min(), or a parameterized function if initial
values for each parameter are given and the nls() function (R Core Team, 2016) can perform the
fitting (see the package vignette for an example). The reduceData() function is used to perform the
dimension reduction on the time series:

pumping.min <- reduceData(pumping, min)
plotMAD(pumping.min, "realizations")

The reduceData() function returns a "MADproject" object with a realizations slot with reduced
dimensions. The reduced data can be viewed by calling plotMAD() with the string "realizations". The
plot shows the distributions of each parameter for each sample. In this case, Figure 10 shows the
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Figure 9: The observed time series of drawdown at the zb location along with the inter-quartile range
of simulated values for each time step for the three samples.

Figure 10: The reduced zb data (minimum of drawdown curve) for Example 2. Distributions are
estimated from the realizations’ reduced data per sample.

Figure 11: The prior (red) and posterior (blue) distributions with the true value (black) for the mean
ln K locations in Example 2.
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minimum head value distribution for the three samples, which will be used to calculate the three
likelihood samples.

With this new "MADproject" object, calcLikelihoods() and calcPosteriors() can be called. In
Figure 11, the posterior distributions are shown for the three samples along with the true value of −10.
The posterior distribution assigns greater probability toward the true value.

pumping.min <- calcLikelihood(pumping.min)
pumping.min <- calcPosterior(pumping.min)
plotMAD(pumping.min, "posteriors")

Summary

The examples given above show how the anchoredDistr package allows flexible post-processing of
results by virtue of the MAD software such that users can apply their own post-processing analyses,
such as dimension-reduction techniques. The first example shown here is available as external and
internal datasets in the anchoredDistr package. The second example is also included in anchoredDistr
and is further detailed in the package vignette. The release version of the anchoredDistr package
is hosted on CRAN and the development version is hosted on GitHub, which can be accessed
by calling devtools::install_github("hsavoy/anchoredDistr") or by downloading from http://
hsavoy.github.io/anchoredDistr.
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dGAselID: An R Package for Selecting a
Variable Number of Features in High
Dimensional Data
by Nicolae Teodor Melita and Stefan Holban

Abstract The dGAselID package proposes an original approach to feature selection in high dimen-
sional data. The method is built upon a diploid genetic algorithm. The genotype to phenotype
mapping is modeled after the Incomplete Dominance Inheritance, overpassing the necessity to define
a dominance scheme. The fitness evaluation is done by user selectable supervised classifiers, from a
broad range of options. Cross validation options are also accessible. A new approach to crossover,
inspired from the random assortment of chromosomes during meiosis is included. Several mutation
operators, inspired from genetics, are also proposed. The package is fully compatible with the data
formats used in Bioconductor and MLInterfaces package, readily applicable to microarray studies,
but is flexible to other feature selection applications from high dimensional data. Several options for
the visualization of evolution and outcomes are implemented to facilitate the interpretation of results.
The package’s functionality is illustrated by examples.

Introduction

Recent advances in information technology provide tools for gathering an immense amount of data
on various scopes. Investigators have increasingly improved tools to collect data describing different
areas of research. The need to efficiently manage, analyze and extract the important features from
high dimensional data is also growing with the different exploration areas benefiting from these
technologies.

The DNA microarray technology is widely used for exploring the differential gene expression. The
method is very established and offers a very good opportunity to develop new methods for selecting
features in real high dimensional data. The vast amount of microarray data that is freely available
along with the results obtained by employing other exploratory techniques, belonging to statistics or
artificial intelligence, provide a unique opportunity to evaluate the performance of newly developed
techniques.

The Genetic Algorithms (GAs) were extensively used to select features in various high dimensional
data, for different research goals. The GA designs evolved and were adapted with particular explo-
ration interests since they were introduced (Holland, 1975). Different GA designs were specifically
adapted to address optimizations or diverse feature selection (Xue et al., 2016) assignments.

The literature on GAs is comprehensive and covers various aspects of interest. The fundamentals of
GAs, including the schema theorem, are covered in very instructive introductory books (Mitchell, 1998)
and (Goldberg, 1989). Other authors propose exhaustive investigations in the GAs’ behavior (Berard
and Bienvenue, 2003) and properties (Rudolph, 1994). The genetic operators and their impact on
evolution, with emphasis on mathematical details (Doerr and Doerr, 2015) were extensively examined.
The genetic algorithms model the naturally occurring evolution and are designed to solve particular
problems. In consequence, the theoretical foundations are yet to catch up with the practically applied
algorithms. Nevertheless, the theory of genetic algorithms is emerging (Droste et al., 2002).

The project R offers a great environment for developing methods for high dimensional data analysis.
The variety of techniques already implemented by numerous contributors and the availability of
the methods, source code, countless data, and results as well as the very forthcoming community
make it the environment of choice for implementing our method. Moreover, the Bioconductor project
(Huber et al., 2015) available in R, offers a wide range of methods and tools for analyzing microarray
data, as well as real data sets to experiment with and compare the results. Our package dGAselID
was developed to be cohesive with Bioconductor. The "ExpressionSet class" used in Bioconductor
was adopted as standard for our package; any data formatted accordingly can be analyzed with our
method.

Different GA implementations are available as contributors’ packages in R. Implementations of
GAs for both floating-point and binary chromosomes are included in the genalg (Willighagen and
Ballings, 2015) package. The GA (Scrucca, 2016), nsga2R (Tsou, 2015), and gaoptim (Tenorio, 2013)
packages are dedicated to optimizations using GAs. A GA designed for determining training popula-
tions (Akdemir et al., 2015) is offered in the STPGA package. The package kofnGA (Wolters, 2015)
aims to select a fixed-size set of integers. Variable selection applications of GAs are proposed in the
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mogavs (Pajala, 2016) and gaselect (Kepplinger, 2015) packages for regression and high-dimensional
data respectively.

Algorithm

Haploid GAs were previously employed to address feature selection in microarray studies (Melita
et al., 2008). In this type of data, the number of samples is significantly lower than the number
of features and the utilization of cross validation techniques is necessary for reliable results. The
diploid GAs offer better performance than the haploid implementations for selecting features in a
cross validation scenario in general, and for microarray data (Melita and Holban, 2016b) in particular.

The GA implementation in the dGAselID package uses a diploid representation. All the features
in the data form a genome, and each feature retains a specific locus in the genome, the position in the
original data. Every individual in the population will consist of two such genomes.

The fitness evaluation function is a supervised classifier. Any implementation of supervised classi-
fier available in MLInterfaces package (Carey et al., 2016) is a possible choice for fitness evaluation
function in dGAselID. The fitness value is the accuracy of the given classifier in discerning between
samples belonging to different classes.

Every feature in the data, inputted according to the format in the "ExpressionSet class", is
represented by a gene in the genome. Every gene has two alleles, represented as 0 and 1. The allele 1
codes for the corresponding feature to be present in the classifier. The allele 0 cyphers for discarding
the gene from the classifier. A genome with a limited number of alleles = 1, codes for the supervised
classifier working on a subset of features from the data. The number of desired features is user
selectable at the initialization of the algorithm.

Our implementation offers the possibility to divide the genomes into a variable number of chro-
mosomes. The number of chromosomes to split the genomes in is user selectable. The value 1 for
the number of chromosomes will result in the genome being treated as a single chromosome, like in
the classical GA implementation. The default value in the dGAselID is 22. In this case, the genome
is parted into 22 chromosomes, the total of human autosomes. The chromosomes will have variable
length, with different number of genes, following the dispersal found in the human autosomes, as
illustrated in the Table 1. The number of genes found on each chromosome will follow the spread
found in the human autosomes with different values for the number of chromosomes. We chose the
default value 22 to emphasize the foundation of our evolutionary approach. Different values will
serve diverse practical applications. This parameter is particularly important when variables belong to
several previously known categories, as with the custom microarray chips. When no such information
is known, an appropriate value can be empirically determined.

The initial population is randomly generated from a discrete uniform distribution. The user can
specify the number of genomes in the population, the number of activated genes in each genome and
the number of chromosomes to split the genomes in. The population will encompass individuals, with
each individual consisting of two sets of haploid chromosomes, randomly assigned.

In a diploid GA it is mandatory to determine how different alleles on heterozygous chromosomes
influence the phenotype. The dominance schemes typically used in genetic algorithms are built upon
the Complete Dominance model, described in biology by Gregor Mendel in 1865. In this model,
one of the alleles, called dominant, produces effects into phenotype and masks the existence of the
other allele in genotype. The alternative that does not affect the phenotype is called recessive allele.
The Complete Dominance model describes only a few of the interactions between alleles in nature.
Various models were later developed to describe different interactions between alleles. In Incomplete
Dominance model, the phenotype of an individual is considered to be in between the phenotypes
resulting from each of the inherited alleles. Both alleles influence the phenotype and the existence of
none is masked in genotype. The main difference between the two models is illustrated in Figure 1. We
can suppose that a gene that codes for the color of an organism has two alleles; one of them produces
a red individual and the alternative shapes a blue entity. With the Complete Dominance model, one of
the alleles is dominant and masks the presence of the other. In our example, the allele that codes for the
red color is dominant and is noted with capital letter (R). Every diploid organism that inherits at least
one allele R will be a red entity. Only if a diploid organism inherits two copies of the recessive allele
(b), the phenotype will be influenced by it, resulting in a blue individual. The interaction described by
the Incomplete Dominance model results in three different phenotypes. In this case, an individual can
be red, blue or purple. Both alleles affect the phenotype and are noted with capital letters (R and B).

The Incomplete Dominance inheritance is an alternative to genotype to phenotype dominance
schemes (Melita and Holban, 2016b) in genetic algorithms and is the approach adopted in our algo-
rithm. Moreover, this method does not require an explicit scheme for genotype-phenotype mapping.
The fitness of each individual is consequently evaluated as the mean accuracy of the two classifiers,
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Chromosome No. No. of features

1 9.17%
2 7.64%
3 5.81%
4 4.89%
5 5.19%
6 5.81%
7 5.50%
8 4.28%
9 4.28%
10 4.28%
11 6.11%
12 4.89%
13 2.44%
14 3.66%
15 3.66%
16 3.97%
17 4.89%
18 1.83%
19 5.19%
20 2.75%
21 1.22%
22 2.44%

Table 1: Default distribution of features on chromosomes.

Figure 1: Complete vs. Incomplete Dominance.
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each set of haploid chromosomes in the individual. With this approach it is possible to maintain a better
variability in the late generations, as features from the poorly performing genotypes will be present in
later generations when compared to the classical technique. Exploitation of the Incomplete Dominance
model is optional. The value "ID2" for the parameter ID enables the Incomplete Dominance model,
while the value "ID1" turns it off. In evaluating the fitness of an individual, any supervised classifier
available in MLInterfaces package can be selected. The package offers a unified way to call super-
vised classifiers on data formatted according to "ExpressionSet class" specifications with several
options (svmI, ldaI, rdaI, knnI, knn.cvI, randomForrestI, dldaI, nnetI, qdaI, naiveBayesI, etc). The
cross-validation techniques implemented in MLInterfaces are also available for fitness evaluation in
our package, and are accessible through the trainTest parameter. The default value "LOG" for the
trainTest parameter enables the leave-out-group cross-validation, while specifying "LOO", the user
can opt for the leave-one-out cross-validation. Moreover, is if possible to shape the data into training
and testing sets. A value of the form x:y for the trainTest parameter identifies the samples with
indexes from x to y as training examples while all the others are used as testing set.

In the next step, the individuals are ranked according to their fitness. Our implementation offers
the option of applying an elitist selection over the ranked individuals. The default value for elitism
is NA, but a user can decide on the desired value for elitism, keeping the chosen number of best
performing genotypes in the population.

Crossovers are applied next, between the two haploid sets of chromosomes in each individual.
Two-point crossovers were preferred to the single-point alternative which preferentially affects the
string ends. The two-point crossover follows the classical implementation. One two-point crossover is
applied between homologous chromosomes, in each individual. A parameter to explicitly specify the
chance for a crossover to occur is not implemented in our algorithm. The number of chromosomes
implicitly affects the number of crossovers.

Another approach to crossover, modeled after the Random Assortment of Chromosomes in meiosis
is also available. The Random Assortment of Chromosomes Crossover (Melita and Holban, 2016a)
takes advantage of splitting the genomes in a number of chromosomes with variable size. When
selected, two-point crossovers are performed between homologous chromosomes. After the crossovers
are applied, the chromosomes are randomly assorted and distributed to one of the chromosomes set in
each individual. This process, models the events that occur during meiosis I in eukaryotes. The user
can choose at the initialization of the algorithm if the chromosomes will be randomly assorted through
the randomAssortment parameter. The default value is TRUE. This operator is especially important
when selecting a small number of features from a very large poll. In this case, the two-point crossover
frequently recombines strings containing only zeros, with no effect on the very long genotypes. The
Random Assortment operator offers a significant advantage in these situations. The distinctions
between these approaches to recombination are highlighted in Figure 2, a part of the R output using
the code:

> library(dGAselID)
> set.seed(1357)
> c1<-rep(0, 10)
> c2<-rep(1, 10)
> individual<-rbind(c1, c2)
> individual

> chrConf01<-rep(1, 10)
> chrConf01

> #Two-point crossover on genotypes with 1 chromosome
> Crossover(individual [1, ], individual [2, ], chrConf01)

> chrConf03<-c(rep(1, 4), rep(2, 3), rep(3, 3))
> chrConf03

> #Two-point crossovers on genotypes with 3 chromosomes
> cr3<-Crossover(individual [1, ], individual [2, ], chrConf03)
> cr3

> #Random Assortment on the recombined genotypes with 3 chromosomes
> RandomAssortment(cr3, chrConf03)

Subsequently, the haploid sets of chromosomes with a higher fitness are kept and the others are
discarded from each individual and mutations are applied with a chance that is specified by the user
when initializing the algorithm. These haploid sets and the genotypes obtained thru crossovers are
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Figure 2: Recombination operators a) classical two-point crossover with 1 chromosome, b) two-point
crossover with 3 chromosomes, c) two-point crossover with 3 chromosomes and Random Assortment

then assembled and a new generation of randomly generated individuals is created. Six different
operators for mutation are available in the package. They can be used solitarily or in any combination,
to support exploration with the genetic algorithm. The classical point mutation is implemented.
However, when selecting a small number of features from a large poll with a genetic algorithm, the
point mutation has the tendency to progressively increase the number of activated genes in genotypes,
with every generation. To address this drawback, we implemented several mutation mechanisms
inspired from genetics. These operators take advantage of the genotypes being partitioned on different
chromosomes. The alternatives to point mutation available in the dGAselID package are:

1. Nonsense Mutation,

2. Frameshift Mutation,

3. Large Segment Deletion,

4. Whole Chromosome Deletion,

5. Transposons.

The Nonsense Mutation operator annuls all the genes on a chromosome following a randomly
selected locus (treated as a stop codon). The other chromosomes in the genotype are not influenced by
the nonsense mutation. The Frameshift Mutation operator randomly selects a locus on an arbitrarily
selected chromosome. The gene at the selected locus is deleted and all the following chain is shifted
with one position to the left. The last locus on the implicated chromosome is subsequently annulled to
conserve its length. Other chromosomes in the genotype are not altered by the mutation. The Large
Segment Deletion operator annuls all the genes in a randomly generated interval on an arbitrarily
selected chromosome. The Whole Chromosome Deletion operator acts in a similar fashion, but
on the whole chromosome rather than an interval. The Transposons operator randomly selects a
chromosome, a gene on that chromosome and a distance for relocation. The elected gene is then
transferred at a locus indicated by the generated distance. All the mutation operators occur with
chances specified by designated parameters. The mutated genotypes are verified to have at least 4
active genes and the invalid mutations are not inherited, to prevent errors during the subsequent
fitness evaluations. The following code demonstrates the mutation operators. The R output is partially
presented in Figure 3.

> library(ALL)
> data(ALL)
>
> demoALL<-ALL[1:12, 1:8]
>
> set.seed(1234)

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 23

> population<-InitialPopulation(demoALL, 4, 9)
> individuals<-Individuals(population)
> individuals
>
> set.seed(123)
> pointMutation(individuals, 4)
>
> chrConf<-splitChromosomes(demoALL, 2)
> chrConf
> individuals
>
> set.seed(123)
> nonSenseMutation(individuals, chrConf, 20)
>
> set.seed(123)
> frameShiftMutation(individuals, chrConf, 20)
>
> set.seed(123)
> largeSegmentDeletion(individuals, chrConf, 20)
>
> set.seed(123)
> wholeChromosomeDeletion(individuals, chrConf, 20)
>
> set.seed(123)
> transposon(individuals, chrConf, 20)

Figure 3: Partial R output illustrating the mutation operators

Iteration with the new generation follows. The number of generations is established at the
initialization of the algorithm.
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Argument Description

x The dataset in "ExpressionSet class" format
response The response variable
method Supervised classifier for fitness evaluation
trainTest Specifies the training set or the cross-validation method
startGenes Number of alleles=1 in the starting genomes
populationSize Initial populations size
iterations Number of generations
noChr The number of desired chromosomes
elitism Elitism in percentages
ID Dominance
pMutationChance Chance for a point mutation to occur
nSMutationChance Chance for a Nonsense Mutation to occur
fSMutationChance Chance for a Frameshift Mutation to occur
lSDeletionChance Chance for a Large Segment Deletion to occur
wChrDeletionChance Chance for a Whole Chromosome Deletion to occur
transposonChance Chance for a Transposon mutation to occur
randomAssortment Random Assortment of chromosomes for recombinations
embryonicSelection Remove chromosomes with fitness < specified value
EveryGeneInInitialPopulation Request for every gene to be present in the initial population
nnetSize For nnetI
nnetDecay For nnetI
rdaAlpha For rdaI
rdaDelta For rdaI

Table 2: Parameters accepted by the dGAselID() function.

Working with the dGAselID package

The dGAselID package is structured around the dGAselID() function. This function manages the
initial parameters for the algorithm and, depending on the user selected options, sets the stage for
the experiment. The dGAselID() function calls other functions for the different steps and options in
the algorithm. The arguments accepted by dGAselID() along with short descriptions are presented
in Table 2. The other functions, for different operators used during the genetic algorithm search, are
summarized in Table 3.

Graphical representations of the evolution are available with the built-in functions in real-time.
The maximum and average accuracy, accompanied by the most frequently selected genes can be
displayed after each generation, offering a very intuitive image of the evolution. Evidence about the
number of individuals in the current population, crossovers or the number of mutations are displayed
for each generation.

The algorithm retains various data about the evolution for further analysis. For each gene, the
frequency of selection across generations is recorded, along with other characteristics of the evolution.
The output data format with a hypothetical result is shown below, together with a description of the
recorded variables in the Table 4.

> ## Not run:
> names(result) #hypothetical result
[1] "DGenes" "dGenes" "MaximumAccuracy" "MeanAccuracy"
[5] "MinAccuracy" "BestIndividuals"
> ## End(Not run)

Example

We illustrate the functionality of the dGAselID package with the ALL dataset (Li, 2009), a very known
set of real DNA microarray data, available in Bioconductor. We are searching for the differentially
expressed genes that could characterize the patients suffering from acute lymphoblastic leukemia but
have different BCR/ABL classification, negative or positive. For this example, we use a subset of the
original ALL data, non-specifically and specifically filtered to 628 features and 79 samples, from the
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Function Description

dGAselID() Main function
AnalyzeResults() Ranks individuals according to their fitness and records

the results
Crossover() Operator for the two-point crossover
Elitism() Performs elitism for the desired threshold
EmbryonicSelection() Deletes individuals with a fitness below a specified

threshold
EvaluationFunction() Evaluates the individuals’ finesses

after each iteration
frameShiftMutation() Operator for the Frameshift Mutation
Individuals() Generates individuals from haploid chromosome sets
InitialPopulation() Generates the initial random haploid chromosome sets
largeSegmentDeletion() Operator for the Large Segment Deletion mutation
nonSenseMutation() Operator for the Nonsense Mutation
PlotGenAlg() Plots the evolution after each generation
pointMutation() Operator for the point mutation
RandomAssortment() Performs the Random Assortment of chromosomes
RandomizePop() Creates the random population for the next generation
splitChromosomes() Divides the genotypes in a set with the desired number

of chromosomes
transposon() Operator for the Transposon mutation
wholeChromosomeDeletion() Operator for the Whole Chromosome Deletion mutation

Table 3: Functions in the dGAselID package.

Variable Description

DGenes The occurrences in selected genotypes for every gene
dGenes The occurrences in discarded genotypes for every gene
MaximumAccuracy Maximum accuracy in every generation
MeanAccuracy Average accuracy in every generation
MinAccuracy Minimum accuracy in every generation
BestIndividuals Best individual in every generation

Table 4: dGAselID() output.
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12625 features and 128 patients in the complete data set. The data was filtered using the capabilities
offered in the genefilter package (Gentleman et al., 2016). The algorithm works as well on the original
data set, but the filtered data is searched faster. However, our experiments with real data show that
more reliable results are obtained with full featured data.

The code for constructing the dataset used in the following examples is presented below:

> library(genefilter)
> library(ALL)
> data(ALL)
> bALL = ALL[, substr(ALL$BT,1,1) == "B"]
> smallALL = bALL[, bALL$mol.biol %in% c("BCR/ABL", "NEG")]
> smallALL$mol.biol = factor(smallALL$mol.biol)
> smallALL$BT = factor(smallALL$BT)
> f1 <- pOverA(0.25, log2(100))
> f2 <- function(x) (IQR(x) > 0.5)
> f3 <- ttest(smallALL$mol.biol, p = 0.1)
> ff <- filterfun(f1, f2, f3)
> selectedsmallALL <- genefilter(exprs(smallALL), ff)
> smallALL = smallALL[selectedsmallALL, ]

An example of function call is:

> set.seed(149)
> resNoID<-dGAselID(smallALL, "mol.biol", trainTest = 1:79, startGenes = 12,
+ populationSize = 200, iterations = 300, noChr = 5, pMutationChance = 0.0075,
+ elitism = 4)

The choice for evaluation function was knn.cvI from the MLInterfaces package, with the param-
eters k=3 and l=2. This is the default method in the package. The evaluation function used in this
example, knn.cvI, is a kNN classifier with the leave-one-out cross validation embedded. For this
reason, the requirement for the trainTest parameter is special, addresses all the instances in the data,
1:79. For any other supervised classifier, the trainTest parameter shapes the training and testing
subsets in the same fashion as the trainInd parameter in MLInterfaces. When cross-validation is
required, the trainTest parameter specifies the desired method as "LOO" or "LOG", and is equivalent
to xvalSpec("LOO") or xvalSpec("LOG") respectively, in MLInterfaces package. An illustration of
the evolution is presented in Figure 4. The figure pictures a juncture during the search, including
the information provided by the verbose mode and graphical representations of the evolution, as
they appear in real-time on the computer screen. The evolutions of the Maximum Accuracy, Average
Accuracy and the most frequently selected genes are presented after each generation.

Figure 4: Screenshot of the algorithm execution after 18 generations.

After the desired number of generations, the evolution of the Maximum Accuracy and Average
Accuracy in every generation and the most frequently selected genes can be displayed with the
included functions. The Figure 5 represents the most frequently selected genes after the specified
number of generations, 300 in our example. Their characteristics can be acquired with methods already
implemented in Bioconductor. The 10 most selected genes are presented and could be obtained using
hgu95av2.db (Carlson, 2016) with the code below. The selected genes can be studied and evaluated
with all the methods available in Bioconductor. For reliable and interpretable results, an adequate
number of replications are mandatory in such an experiment, due to the stochastic makeup of the
genetic algorithms. The evolution of the maximum accuracy and the average accuracy can be plotted
as illustrated in the Figure 6 and Figure 7, respectively.
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Figure 5: The most frequently selected genes after 300 generations.

Figure 6: Evolution of the maximum accuracy after 300 generations.
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Figure 7: Evolution of the average accuracy after 300 generations.

> library(hgu95av2.db)
> DGenes<-resNoID$DGenes
> selectedD<-colnames(DGenes)[order(DGenes, decreasing = TRUE)]
> mget(selectedD, hgu95av2GENENAME, ifnotfound=NA)[1:10]
$`1635_at`
[1] "ABL proto-oncogene 1, non-receptor tyrosine kinase"

$`39730_at`
[1] "ABL proto-oncogene 1, non-receptor tyrosine kinase"

$`39070_at`
[1] "fascin actin-bundling protein 1"

$`34362_at`
[1] "solute carrier family 2 member 5"

$`39338_at`
[1] "S100 calcium binding protein A10"

$`40091_at`
[1] "B-cell CLL/lymphoma 6"

$`1135_at`
[1] "G protein-coupled receptor kinase 5"

$`38385_at`
[1] "destrin, actin depolymerizing factor"

$`40396_at`
[1] "purinergic receptor P2X 5"

$`38069_at`
[1] "chloride voltage-gated channel 7"
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Other graphical representation tools offered in R are readily available for further investigation. An
image of the evolution for the best individual in every generation can be depicted as in Figure 8. The
tendency to increment the number of active genes in the genotypes with the successive generations,
induced by the point mutation, becomes apparent. In contrast, the transposon mutation does not
convey this inconvenience, as illustrated in Figure 9. The graphical representations are accessible with
the code:

> bestsNoID<-resNoID$BestIndividuals
> dev.off()
> image(1:ncol(bestsNoID), 1:nrow(bestsNoID), t(bestsNoID),
+ xlim = c(0, ncol(bestsNoID)), ylim = c(0, nrow(bestsNoID)), col = c("white", "red"),
+ cex.axis = 0.7, cex.lab = 0.8, cex.main = 1.2, lty = 1, lwd = 2, las= 2, xaxs = "r",
+ yaxs = "r", pty = "m", ylab = "Generation no.", xlab = "Gene no.",
+ main = "Best Individuals with the Point Mutation")

> set.seed(149)
> restransp<-dGAselID(smallALL, "mol.biol", trainTest = 1:79, startGenes = 12,
+ populationSize = 200, iterations = 300, noChr = 5, pMutationChance = 0,
+ transposonChance = 2, elitism= 4)

> beststransp<-restransp$BestIndividuals
> dev.off()
> image(1:ncol(beststransp), 1:nrow(beststransp), t(beststransp),
+ xlim = c(0, ncol(beststransp)), ylim = c(0, nrow(beststransp)),
+ col = c("white", "red"), cex.axis = 0.7, cex.lab = 0.8, cex.main = 1.2, lty = 1,
+ lwd = 2, las = 2, xaxs = "r", yaxs = "r", pty = "m", ylab = "Generation no.",
+ xlab = "Gene no.", main = "Best Individuals with the Transposon Mutation")

Figure 8: Evolution of the best individual after 300 generations with Point Mutation.

Figure 9: Evolution of the best individual after 300 generations with Transposon Mutation.
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An illustrative comparison between the classical and the Incomplete Dominance implementations
is accessible with the subsequent code. The two approaches can be assessed in terms of evolutions of
the maximum and average fitness, as depicted in Figure 10 and Figure 11, respectively. The scales
package (Wickham, 2016) is very useful for the direct visual comparison. The most frequently selected
features are compared in Figure 12. It is noticeable that the Incomplete Dominance approach favors
exploration, while still evolving very solidly. This behavior is desirable when selecting features with a
genetic algorithm. The same tendency is perceptible when examining Figure 12, where the number
of significant features is higher with the Incomplete Dominance method. Multiple replications of an
experiment are mandatory to draw reliable conclusions. This example is presented for illustration
purpose only.

Figure 10: Comparative evolution of the maximum fitness over 300 generations.

> library(scales)
> set.seed(149)
> resID<-dGAselID(smallALL, "mol.biol", trainTest = 1:79, startGenes = 12,
+ populationSize = 200, iterations = 300, noChr = 5, pMutationChance = 0.0075,
+ elitism = 4, ID = "ID2")

> dev.off()
> par("xlog"=FALSE)
> plot(resNoID$MaximumAccuracy, type = "o", col = alpha("red", 0.5), pch = 1,
+ cex.axis = 1.2, cex.lab = 1.2, cex.main = 1.2, lty = 3, lwd = 0.5,
+ xlab = "Generation no.", ylab = "Maximum Accuracy", main = "Maximum Accuracy")
> points(resID$MaximumAccuracy, type = "o", col = alpha("darkblue", 0.5), pch = 1,
+ lty = 3, lwd = 0.5)
> legend(120, 0.92, c("Classical", "Incomplete Dominance"), cex = 1.2,
+ col = c("red", "darkblue"), merge = FALSE, bg = "gray90", lty = c(1, 1, 1))

> plot(resNoID$MeanAccuracy, type = "o", col = alpha("red", 0.5), pch = 1, lwd = 0.5,
+ cex.axis = 1.2, cex.lab = 1.2, cex.main = 1.2, xlab = "Generation no.",
+ ylab = "Mean Accuracy", main = "Mean Accuracy")
> points(resID$MeanAccuracy, type = "o", col = alpha("darkblue", 0.5), pch = 1,
+ lty = 3, lwd = 0.5)
> legend(120, 0.8, c("Classical", "Incomplete Dominance"), cex = 1.2,
+ col = c("red", "darkblue"), merge = FALSE, bg = "gray90", lty = c(1, 1, 1))
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Figure 11: Comparative evolution of the average fitness over 300 generations.

Figure 12: Comparatison of the most selected genes after 300 generations.
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> DGenes1<-resNoID$DGenes[sort(resNoID$DGenes, decreasing = TRUE,
+ index.return = TRUE)$ix]
> DGenes2<-resID$DGenes[sort(resID$DGenes, decreasing = TRUE, index.return = TRUE
+ )$ix]
> significant1<-DGenes1[sort(resNoID$DGenes, decreasing = TRUE, index.return = TRUE
+ )$ix] > floor(5*max(DGenes1)/100)
> significant2<-DGenes2[sort(resID$DGenes, decreasing = TRUE, index.return = TRUE
+ )$ix] > floor(5*max(DGenes2)/100)
> barplot(DGenes1[significant1], main = "Genes inheritance", xlab = "Gene",
+ ylab = "Occurrences", col = alpha("red", 0.5), beside = FALSE, add = FALSE)
> barplot(DGenes2[significant2], main = "Genes inheritance", xlab = "Gene",
+ ylab = "Occurrences", col = alpha("darkblue", 0.5), beside = FALSE, add = TRUE)
> legend(50, 900, c("Classical", "Incomplete Dominance"), cex = 1.2, col = c("red",
+ "darkblue"), merge = FALSE, bg = "gray90", lty = c(1, 1, 1))

Conclusions

The dGAselID package provides a creative approach to feature selection in high dimensional data.
The package utilizes the data format used in Bioconductor and is readily operational for microarray
data analysis. The algorithm is flexible for high dimensional data other than microarray, when data
is provided according to the "ExpressionSet class" specifications. In our experience, the diploid
implementation offers advantages over the haploid GA, especially when cross-validation techniques
are engaged. The Incomplete Dominance approach allows for a diploid framework, bypassing the
requirement to specify a dominance scheme. Also, the Incomplete Dominance inheritance models an
evolution process present in nature, tested by billions of years of evolution. Moreover, the diploid
structure is a foundation for crossover and mutation operators that model the natural processes
and provide improvements in performance over the classical versions. In our tests, the Random
Assortment of Chromosomes provides an important performance advantage, in many situations.

Future development

The main disadvantages of the algorithm presented in dGAselID package are the necessity to replicate
an experiment several times for reliable results, given the fortuity in generating the initial population,
and the tendency of the GA to converge in local optima. Following the conduit in evolutionary
computation, we will reconsider the principles of evolution and accurately model operators for
crossover and mutation to offer a better tension between exploration and exploitation.
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Allele Imputation and Haplotype
Determination from Databases
Composed of Nuclear Families
by Nathan Medina-Rodríguez and Ángelo Santana

Abstract The alleHap package is designed for imputing genetic missing data and reconstruct non-
recombinant haplotypes from pedigree databases in a deterministic way. When genotypes of related
individuals are available in a number of linked genetic markers, the program starts by identifying
haplotypes compatible with the observed genotypes in those markers without missing values. If
haplotypes are identified in parents or offspring, missing alleles can be imputed in subjects containing
missing values. Several scenarios are analyzed: family completely genotyped, children partially
genotyped and parents completely genotyped, children fully genotyped and parents containing
entirely or partially missing genotypes, and founders and their offspring both only partially genotyped.
The alleHap package also has a function to simulate pedigrees including all these scenarios. This
article describes in detail how our package works for the desired applications, including illustrated
explanations and easily reproducible examples.

Introduction

The knowledge about human genetic variation has been growing exponentially over the last decade.
Collaborative efforts of international projects such as HapMap (Consortium and others, 2005) and 1000
Genomes (Consortium and others, 2012) have contributed to improving the discovery about human
genetic diversity.

Genotype imputation and haplotype reconstruction have achieved an important role in Genome-
Wide Association Studies (GWAS) during recent years. Estimation methods are frequently used to infer
missing genotypes as well as haplotypes from databases containing related and/or unrelated subjects.
The majority of these analyses have been developed using several statistical methods (Browning and
Browning, 2011a) which are able to impute genotypes as well as perform haplotype phasing (also
known as haplotype estimation) of the corresponding genomic regions.

Most of the currently available computer programs such as IMPUTE2 (Howie and Marchini, 2010),
MINIMAC3 (Das, 2015), BEAGLE (Browning and Browning, 2011b), and others, or R packages such
as: haplo.ccs (French and Lumley, 2012), haplo.stats (JP and DJ, 2016), hsphase (Ferdosi et al., 2014),
linkim (Xu and Wu, 2014), rrBLUP (Endelman, 2011), and synbreed (Wimmer et al., 2012) carry
out genotype imputation or haplotype reconstruction using probabilistic methods to achieve their
objectives when deterministic methods are insufficient to get them without errors. These methods are
usually focused on population data and in the case of pedigree data, families normally are comprised
by duos (parent-child) or trios (parents-child) (Browning and Browning, 2009). Studies focused on
more than two offspring for each line of descent are uncommon. In these cases, the above programs
do not take full advantage of the information contained in the global family structure to improve the
process of imputation and construction of haplotypes. The program HAPLORE (Zhang et al., 2005),
developed in C++, takes a similar approach as alleHap for haplotype reconstruction in pedigrees, but
can not be easily integrated into an environment where R packages are extensively used.

On the other hand, certain genomic regions are very stable against recombination but at the same
time they may have a considerable amount of mutations. For this reason, in some well-studied regions,
such as the Human Leukocyte Antigen (HLA) loci (Mack et al., 2013), located in the extended Major
Histocompatibility Complex (MHC) (de Bakker et al., 2006), an alphanumeric nomenclature is needed
to facilitate later analysis. At this juncture, the available typing techniques usually are not able to
determine the allele phase and therefore the constitution of the appropriate haplotypes is not possible.

This paper presents new improvements and a detailed description for the R package alleHap
(Medina-Rodríguez et al., 2014). Our program is capable of imputing missing alleles and identifying
haplotypes from non-recombinant regions considering the mechanism of heredity and the genetic in-
formation present in parents and offspring. The algorithm is deterministic in the sense that haplotypes
are identified from the existing genotypes guaranteeing compatibility between parents and children.
When a haplotype can not be identified (due to genotyping errors, or recombination events in the
genetic region), the procedure does not infer more haplotypes in the corresponding family members.
The following sections will describe the implemented methods as well as some functional examples.
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Basics

The algorithms in alleHap are based on a preliminary analysis of all possible combinations that may
exist in the genotype of a marker, considering that each member of the family should unequivocally
have inherited two alleles, one from each parent. The analysis is based on the differentiation of seven
cases, as described in (Berger-Wolf et al., 2007). Each case is characterized by the number of different
alleles present in the family and the way these alleles are distributed among parents that determine
the set of possible genotypes in children.

Table 1 shows these cases when there are no missing genotypes. For example, in case 1 both
parents are a|a and so the only possible child is a|a; in case 2 if a parent is a|a and the other is b|b the
only possible child is a|b. Note that in both cases it is possible for a child to determine from which
parent comes each allele. The rest of the cases can be easily understood in the same way. Note that in
case 5 if a child is a|b it is not possible to know from whom comes each allele. The notation ‘|’ indicates
that the source of each allele can be assigned without error, and the notation ‘/’ implies that origin is
unknown.

To determine the haplotypes, alleHap creates an IDentified/Sorted (IDS) matrix from the geno-
types of each family. For example, in a child, the genotype a/b of a marker is phased if it can be
unequivocally determined that the first allele comes from the father and the second from the mother.
In this way, the sequence of first (second) alleles of phased markers is the haplotype inherited from the
father (or mother). So, when a marker in a child can be phased this way its IDS value is 1; in other case
its value is 0. In parents, genotypes can be phased if there exists at least one child with all its genotypes
phased reference child1. Then, for every marker, the alleles of a parent genotype are sorted in such a
way that first allele coincides with the corresponding allele inherited from that parent in the reference
child. When this sorting is achieved, the IDS value in the parent is 1; in other case its value is 0.

An example of the IDS matrix values (right) and the corresponding phased genotypes (left) is
shown in Table 1. Note that when the genotype a/b is phased we denote it by a|b; the first child in
each group is considered to be the reference child for phasing the parents. In this case the IDS values
of parents have been deduced considering as reference child1 the first one of the family.

Phased Data IDS Matrix

Marker 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Parents a|a a|a a|a a|a a|b a|b a|b 1 1 1 1 1 1 1
a|a b|b a|b b|c a|b a|c c|d 1 1 1 1 1 1 1

Offspring

a|a a|b a|a a|b a|a a|a a|c 1 1 1 1 1 1 1
a|b a|c b|b a|b a|d 1 1 1 1 1

a/b a|c b|c 0 1 1
b|c b|d 1 1

Table 1: Phased genotypes and IDS matrix.

Sometimes, missing values may occur. These can be located either in parents or children. An
example of this is depicted in Table 2, where missing values have been denoted as NA (Not Available).

Phased Data IDS Matrix

Marker 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Parents a|a a|a a|a a|a NA NA NA 1 1 1 1 0 0 0
NA NA NA b|c a|b a|b a|b 0 0 0 1 1 1 1

Offspring

a|a a|b a|a NA a|a a|a a|c 1 1 1 0 1 1 1
a|b a|c b|b a/b a|d 1 1 1 0 1

a/b a|c b|c 0 1 1
b|c b|d 1 1

Table 2: Phased genotypes and IDS matrix containing missing data.

An identification of the homozygous genotypes for each family is also necessary for the proper
operation of alleHap. This identification is done in the Homozygosity matrix (HMZ). This matrix has
as many rows as members in the family and as many columns as markers. The term HMZi,j is 0 if
the subject i is heterozygous in the marker j, and 1 if he/she is heterozygous. An example of some
unphased genotypes (left) and their corresponding HMZ values is shown in Table 3.

1Reference child has the highest number of phased marker’s alleles (maximum number of IDS values equal to 1).
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Unphased Data Homozygosity Info.

Marker 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Parents a/a a/a a/a a/a a/b a/b a/b 1 1 1 1 0 0 0
a/a b/b a/b b/c a/b a/c c/d 1 1 0 0 0 0 0

Offsring

a/a a/b a/a a/b a/a a/a a/c 1 0 1 1 1 0 0
a/b a/c b/b a/b a/d 0 1 1 0 0

a/b a/c b/c 0 0 0
b/c b/d 0 0

Table 3: Biallelic unphased genotypes and HMZ matrix.

Formats

The alleHap package only works with PED files, although it can be easily adapted to similar formats
(with similar structure) to later be loaded into the program.

PED files

A PED file (Purcell et al., 2007) is a white-space (space or tab) delimited file where the first six
columns are mandatory and the rest of columns are the genotype: ‘Family ID’ (identifier of each
family), ‘Individual ID’ (identifier of each member of the family), ‘Paternal ID’ (identifier of the
paternal ancestor), ‘Maternal ID’ (identifier of the maternal ancestor), ‘Sex’ (genre of each individual:
1=male, 2=female, other=unknown), ‘Phenotype’ (quantitative trait or affection status of each individual:
−9=missing, 1=unaffected, 2=affected), and the ‘genotype’ of each individual (in biallelic or coded
format).

The identifiers are alphanumeric: the combination of family and individual ID should uniquely
identify a person. PED files must have one and only one phenotype in the sixth column. The
phenotype can be either a quantitative trait or an affection status column. Genotypes (seventh column
onwards) should also be white-space delimited; they can be any character (e.g. 1, 2, 3, 4 or A, C,
G, T or anything else) except 0, −9, −99. All markers should be biallelic and must have two alleles
specified (Purcell et al., 2007). Note that alleHap does not use the phenotypic information that is
located in these columns.

NA values

The missing or NA values may be placed either in the first six columns or also in genotype columns. In
the last case, when some values are missing, both alleles should be 0, −9, −99 or NA. For example, a
family composed of five individuals typed along three markers can be represented in the following
way:

famID indID patID matID sex phenot Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2
FAM001 1 0 0 1 1 1 2 NA NA 1 2
FAM001 2 0 0 2 2 3 4 1 2 3 4
FAM001 3 1 2 1 2 1 3 1 2 1 3
FAM001 4 1 2 2 1 NA NA 1 1 2 4
FAM001 5 1 2 1 2 1 4 1 1 2 4

Workflow

The workflow of alleHap comprises three stages: data loading, data imputation, and data haplotyping.
Optionally if simulated data are to be used, a "pre-stage" data simulation must be done. The next
subsections will describe each of them.

Data simulation

This "pre-stage" is implemented by an R function called alleSimulator that simulates genotypic data
for parent-offspring pedigrees taking into account many different factors such as: number of families
to generate, number of markers (allele pairs), maximum number of different alleles per marker in the
population, type of alleles (numeric or character), number of unique haplotypes in the population,
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Figure 1: Graphical description of the package’s workflow.

probability of parent/offspring missing genotypes, proportion of missing genotypes (genotyping
errors) per individual, probability of being affected by disease, and recombination rate.

To perform the data simulation, this function goes through the following steps:

I. Internal functions: In this step all the necessary functions to simulate the data are loaded. These
functions are: labelMrk (which creates the ’A’, ’C’, ’G’, or ’T’ character labels), simHapSelection
(which selects h different haplotypes between the total number of possible haplotypes), simOffspring
(which generates n offspring by selecting randomly one haplotype from each parent), simOneFamily
(which simulates one family from a population containing the haplotypes 'popHaplos') and
simRecombHap (which simulates the recombination of haplotypes).
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II. Alleles per marker: The second step is the simulation of the number of different alleles per
marker for the entire population (if the user does not supply them). The user can specify
whether the alleles are letters (coded as A, C, G, or T) or if they are coded numerically. When the
alleles are letters, only two possible different values are assigned to each marker; otherwise,
between two and nine different values are randomly allotted.

III. Haplotypes in population: If there are many markers or alleles per marker, the number of
possible haplotypes can be very large. By default, the number of possible different haplotypes
generated by the function is limited to 1200, although the user can modify this value with the
argument nHaplos.

IV. Data concatenation: In this step, the non-genetic information of all families and previously
simulated data are concatenated.

V. Data Labeling: The fifth step is the labeling of the previous concatenated data (‘famID’, ‘indID’,
‘patID’, ‘matID’, ‘sex’, ‘phen’, ‘markers’, ‘recombNr’, ‘ParentalHap’, ‘MaternalHap’).

VI. Data conversion: This step performs the conversion of previously generated data into a more
suitable data type which will lead to a more efficient processing.

VII. Missing data generation: The seventh step is the insertion of missing values in the previous
generated dataset (only when users require it). The missing values may be generated taking
into account four different factors: missParProb (probability of parents’ missing genotype), mis-
sOffProb (probability of offspring’ missing genotype), ungenotPars (proportion of ungenotyped
parents) and ungenotOffs (proportion of ungenotyped offspring).

VIII. Function output: The last step is the creation of a list containing two different data frames, for
genotypes and haplotypes respectively. This may be useful to compare simulated haplotypes
with later reconstructed haplotypes.

The following examples show how alleSimulator works:

alleSimulator Example 1: Simulation of a family containing parental missing data.

> simulatedFam1 <- alleSimulator(1, 2, 3, missParProb=0.3)
> simulatedFam1[[1]] # Alleles (genotypes) of the 1st simulated family

famID indID patID matID sex phen Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2
1 FAM01 1 0 0 1 1 T T C C <NA> <NA>
2 FAM01 2 0 0 2 1 <NA> <NA> T C C G
3 FAM01 3 1 2 2 1 T T C T G C
4 FAM01 4 1 2 1 1 T T C T C C

> simulatedFam1[[2]] # 1st simulated family haplotypes (without missing values)

famID indID patID matID sex phen Paternal_Hap Maternal_Hap
1 FAM01 1 0 0 1 1 T-C-G T-C-C
2 FAM01 2 0 0 2 1 T-T-C T-C-G
3 FAM01 3 1 2 2 1 T-C-G T-T-C
4 FAM01 4 1 2 1 1 T-C-C T-T-C

alleSimulator Example 2: Simulation of a family containing offspring missing data.

> simulatedFam2 <- alleSimulator(1, 2, 3, missOffProb=0.3)
> simulatedFam2[[1]] # Alleles (genotypes) of the 2nd simulated family
famID indID patID matID sex phen Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2

1 FAM01 1 0 0 1 1 T T C T C C
2 FAM01 2 0 0 2 2 T C C C C T
3 FAM01 3 1 2 2 1 T T C T <NA> <NA>
4 FAM01 4 1 2 2 1 T T C C <NA> <NA>

> simulatedFam2[[2]] # 2nd simulated family haplotypes (without missing values)

famID indID patID matID sex phen Paternal_Hap Maternal_Hap
1 FAM01 1 0 0 1 1 T-C-C T-T-C
2 FAM01 2 0 0 2 2 T-C-C C-C-T
3 FAM01 3 1 2 2 1 T-C-C T-T-C
4 FAM01 4 1 2 2 1 T-C-C T-C-C
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Data loading

Before the data loading process, since alleHap can handle large amounts of missing data, users should
check what kind of missing values will be loaded. If those values are different from "−9" or "−99",
the parameter ‘"missingValues"’ of alleLoader has to be updated with the corresponding value. Per
example, if the file to be loaded has been codified with zeros as missing values, ‘missingValues = 0’
must be specified.

Data loading may be used with either simulated or actual genetic data. This stage has been
implemented in the alleLoader function for ‘.ped’ files, the default input format. This function tries to
read family data from an R data frame or from an external file, to later pass it into the alleImputer
and/or alleHaplotyper functions. For this purpose this function goes through these five steps:

I. Loading of the internal function recodeNA: This auxiliary function recodes pre-specified miss-
ing data as NA values.

II. Extention check and data read: In this step, the extension file is checked and if it has a ‘.ped’
extension the dataset is loaded into R as a data frame. Should this not occur, the message
"The file must have a .ped extension" is returned and the data will not be loaded. Then, if the file
extension is appropriate, data is loaded and missing values (by default ‘-9’ or ‘-99’) are recoded
as NAs (users may supply other codings values).

III. Data check: The third step counts the number of families, individuals, parents, children, males,
females and markers of the dataset, as well as, it checks the ranges of ‘Paternal IDs’, ‘Maternal
IDs’, ‘genotypes’ and ‘phenotype’ values.

IV. Missing data count: This step counts the missing/unknown data which may exist in either
genetic data or subjects’ identifiers.

V. Function output: In the final step, the dataset is returned as an R data frame, with the same
structure as a PED file, with the variables renamed and the missing values correctly identified
and coded. If ‘dataSummary = TRUE’ a summary of previous data counting, ranges, and missing
values is printed to the screen.

The intended datasets must conform to the specifications of a PED file: in each row the first six
variables correspond to ‘family ID’, ‘subject ID’, ‘paternal ID’, ‘maternal ID’, ‘sex’, and affection
status (‘phenotype’). The rest of the variables are the observed genotypes in each marker, where each
marker comprises two other variables.

The following examples depict how alleLoader should be used:

alleLoader Example 1: Loading of a dataset in PED format with alphabetical alleles (A, C, G, or T).

> example1 <- file.path(find.package("alleHap"), "examples", "example1.ped")
> example1Alls <- alleLoader(example1) # Loaded alleles of example 1

===========================================
===== alleHap package: version x.y.z ======
===========================================

Data have been successfully loaded from:
/home/nmr/R/x86_64-pc-linux-gnu-library/3.2/alleHap/examples/example1.ped

===== DATA COUNTING ======
Number of families: 50
Number of individuals: 227
Number of founders: 100
Number of children: 127
Number of males: 118
Number of females: 109
Number of markers: 12
===========================

======== DATA RANGES =========
Family IDs: [1,...,50]
Individual IDs: [1,...,8]
Paternal IDs: [0,1]
Maternal IDs: [0,2]
Sex values: [1,2]
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Phenotype values: [1,2]
==============================

========= MISSING DATA =========
Missing founders: 0
Missing ID numbers: 0
Missing paternal IDs: 0
Missing maternal IDs: 0
Missing sex: 0
Missing phenotypes: 0
Missing alleles: 0
Markers with missing values: 0
================================

> example1Alls[1:9, 1:12] # Alleles of the first 9 subjects

famID indID patID matID sex phen Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2
1 1 1 0 0 1 1 T T C T A A
2 1 2 0 0 2 1 A T C G C C
3 1 3 1 2 1 2 A T G T A C
4 1 4 1 2 2 1 A T C G A C
5 1 5 1 2 2 1 A T C G A C
6 2 1 0 0 1 1 A T A G A G
7 2 2 0 0 2 1 G T A C A G
8 2 3 1 2 2 1 G T A C A G
9 2 4 1 2 1 1 A G C G G G

alleLoader Example 2: Loading of a dataset in PED format with numerical alleles

> example2 <- file.path(find.package("alleHap"), "examples", "example2.ped")
> example2Alls <- alleLoader(example2, dataSummary=FALSE) # Example 2
> example2Alls[1:6,] # Alleles of the first 6 subjects

famID indID patID matID sex phen Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2
1 1036 1 0 0 1 1 101 1601 101 102 501 502
2 1036 2 0 0 2 1 301 401 301 501 201 301
3 1036 3 1 2 1 2 301 1601 102 501 201 502
4 1036 4 1 2 1 2 301 1601 102 501 201 502
5 1239 1 0 0 1 1 NA NA NA NA NA NA
6 1239 2 0 0 2 1 NA NA NA NA NA NA

Allele imputation marker by marker

At this stage, the imputation of missing alleles in previously loaded/simulated datasets is performed.
For this purpose, first a simple quality control of data is conducted and second a "marker by marker"
allele imputation is carried out in those cases where possible. Both procedures are implemented in the
alleImputer function where the corresponding operation can be reduced to the following steps:

1. Internal functions: In this step all the necessary functions to impute the data are loaded. The
most important ones are:

• mkrImputer, which performs the imputation in one marker. This function first receives as
input data the alleles of that marker in one family, and then applies the quality control
and makes imputation when possible, attending to the family structure as shown in
Table 1. In the most simple cases, missing alleles in children are imputed only if a parent
is homozygous. Missing alleles in a parent are imputed when a child is homozygous, or
when the other parent has no missing values and alleles not present in that parent are
found in some children.

• famImputer, which applies mkrImputer sequentially to impute all the markers in a family.

• famsImputer, which applies famImputer to all the families of the given data frame, return-
ing a dataset with the same format and dimensions as the input data (with imputed values
in those alleles where imputation has been possible).
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2. Data loading: The second step tries to read genotypic data and the families information into a
fully compatible format employing the alleLoader function. If this process is successful, data
are stored in an R data frame with the same structure as a PED file.

3. Imputation: This is the most important step of the alleImputer function. First, marker by
marker and then family by family, the imputation of the corresponding missing alleles is
performed by the mkrImputer function in two stages: children imputation first and then parent
imputation, as has been described.

4. Data summary: Once the imputation is done, a summary of the imputed data is collected. This
summary contains information about the imputation process, i.e., number of imputed alleles,
detected incidences (number of canceled markers due to problems detected in the quality control
process), imputation rate (quotient of the imputed alleles to the number of originally missing
alleles) and time consumed in the process.

5. Data storing: In this step, the imputed data are stored in the same path where the PED file was
located. The generated new file will have the same name and extension as the original, ending
as ‘imputed.ped’.

6. Function output: In this final step, if ‘dataSummary = TRUE’ the imputation summary is printed
out. Imputed data is directly returned as an R data frame (with the same structure and dimen-
sions as the input dataset). Incidence messages are shown if they are detected at the ‘quality
control’ phase.

The following examples show how alleImputer works:

alleImputer Example 1: Deterministic imputation for familial data containing parental missing values.

## Simulation of a family containing parental missing data
> simulatedFam1 <- alleSimulator(1, 2, 3, missParProb=0.6)
> simulatedFam1[[1]] # Simulated alleles

famID indID patID matID sex phen Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2
1 FAM01 1 0 0 1 1 A G <NA> <NA> A G
2 FAM01 2 0 0 2 1 <NA> <NA> <NA> <NA> <NA> <NA>
3 FAM01 3 1 2 1 1 G G G G G G
4 FAM01 4 1 2 2 2 A A T T A A

## Genotype imputation of previous simulated data
> imputedFam1 <- alleImputer(simulatedFam1[[1]], dataSummary=FALSE)
> imputedFam1['imputedMkrs'] # Imputed alleles (markers)

famID indID patID matID sex phen Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2
1 FAM01 1 0 0 1 1 A G G T A G
2 FAM01 2 0 0 2 1 G A G T G A
3 FAM01 3 1 2 1 1 G G G G G G
4 FAM01 4 1 2 2 2 A A T T A A

alleImputer Example 2: Deterministic imputation for familial data containing offspring missing values.

## Simulation of two families containing offspring missing data
> simulatedFam2 <- alleSimulator(2, 2, 3, missOffProb=0.6)
> simulatedFam2[[1]] # Simulated alleles

famID indID patID matID sex phen Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2
1 FAM01 1 0 0 1 1 A A C T C C
2 FAM01 2 0 0 2 1 A G T T C C
3 FAM01 3 1 2 2 1 A G <NA> <NA> <NA> <NA>
4 FAM01 4 1 2 1 1 A G T T C C
5 FAM02 1 0 0 1 1 G G C T T T
6 FAM02 2 0 0 2 2 A G C C T T
7 FAM02 3 1 2 2 1 A G C C <NA> <NA>
8 FAM02 4 1 2 2 1 <NA> <NA> C T <NA> <NA>

## Genotype imputation of previous simulated data
> imputedFam2 <- alleImputer(simulatedFam2[[1]], dataSummary=FALSE)
> imputedFam2['imputedMkrs'] # Imputed alleles (markers)
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famID indID patID matID sex phen Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2
1 FAM01 1 0 0 1 1 A A C T C C
2 FAM01 2 0 0 2 1 A G T T C C
3 FAM01 3 1 2 2 1 A G <NA> T C C
4 FAM01 4 1 2 1 1 A G T T C C
5 FAM02 1 0 0 1 1 G G C T T T
6 FAM02 2 0 0 2 2 A G C C T T
7 FAM02 3 1 2 2 1 A G C C T T
8 FAM02 4 1 2 2 1 G <NA> C T T T

It must be taken into account that the alleImputer function makes the imputation for each marker
without "looking" at the rest of the markers in the subject/family. Imputation results obtained with
alleImputer improve when the rest of the markers come into consideration assuming that there is no
recombination. This task is addressed by the function alleHaplotyper.

Data haplotyping

At this stage, the corresponding haplotypes of the pedigree database are generated. To accomplish this,
based on the user’s knowledge of the genomic region to be analysed, it is necessary to slice the data
into non-recombinant chunks in order to perform the haplotype reconstruction in each one of them.

Depending on the existence of missing alleles in parents or/and children, we have considered
four haplotyping scenarios. In the first one, there are no completely missing markers in parents, and
children may be complete without missing alleles or may have full or partially missing data. In the
second one, all of the parental markers may be entirely missing, and there are at least three children in
the family without missing alleles. The third scenario is a mixture of the previous two: some markers
have completely missing alleles in parents but are complete (without missing alleles) in at least three
children; some markers have non-missing alleles in parents, with some missing values in children;
and some markers may have no missing values in parents nor children. In the fourth scenario, parents
have completely missing markers, and non-missing markers are available in only two children; in this
scenario, deterministic reconstruction of the haplotypes is possible only in a small number of cases
under some specific conditions.

Several algorithms have been developed in alleHap for the reconstruction of haplotypes and the
imputation of missing alleles in each one of these scenarios.

The function alleHaplotyper identifies the adequate scenario in each case and applies the corre-
sponding algorithm for imputing and haplotyping. The user does not have to worry about deciding
what scenario corresponds to each family in the database, since the function takes care of it.

Users may choose among several icons in order to specify the non-identified and missing values
in the haplotypes. It is also possible to define the character that will be used as a separator between
the alleles for the corresponding haplotypes. By default, the non-identified/missing allele symbol is
’?’, and haplotypes will be joined without any separator symbol between their correspondig alleles.

The alleHaplotyper function constructs the haplotypes "family by family" taking into account
the initially known genotypes as well as the genotypes already imputed by the function alleImputer,
along with the matrix IDS. In order to generate the haplotypes, this function performs six successive
steps:

I. Loading of internal functions: In this step, several functions are loaded, the most important
ones being:

• famHaplotyper, which carries out the haplotype reconstruction for each family data as
follows:

1) Receives as input data the matrix of imputed data returned by alleImputer for one
family.

2) Applies the adequate algorithm depending on the specific scenario of each family
(according to the amount of genotypic information available).

3) Returns: a) a matrix equal to the input matrix, but with the new imputed alleles, b)
a matrix with the same dimensions as the previous one filled with 0’s an 1’s. The
value 0 indicates a non-phased allele, and the value 1 represents a phased allele, and
c) another matrix with two columns corresponding to the haplotypes found in each
member of the family.

• famsHaplotyper, which applies famHaplotyper sequentially to all the families in the
dataset.

• summarizeData, which generates a summary of the haplotyping process.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 44

II. Allele imputation marker by marker in each family: This step calls the alleImputer function
which performs the imputation marker by marker and then, family by family.

III. Haplotyping: This part is the most important of the alleHaplotyper function since it tries to
solve the haplotypes when possible. The process is the following: once each family genotype
has been imputed marker by marker, those markers containing two unique heterozygous alleles
(both in parents and offspring) are excluded from the process. Then, a set of IDentified/Sorted
(IDS) matrices is generated per family (one per subject), organized in an R array. Later, the
internal function famHaplotyper tries to solve the haplotypes of each family, comparing the
information between parents and children in an iterative and reciprocal way. When there are not
genetic data in both parents, and there are two or more "unique" offspring (not twins or triplets),
the internal functions makeHapsFromThreeChildren and makeHapsFromTwoChildren try to solve
the remaining data. Finally, the HoMoZygosity (HMZ) matrix is updated, and the excluded
markers are again included. Even if both parental alleles are missing in each marker, it is possible in
some cases to reconstruct all the family haplotypes, identifying the corresponding children’s haplotypes,
although in certain cases their parental provenance will be unknown.

IV. Data summary: Once the data haplotyping is done, a data summary is collected, containing a
re-imputation2 rate (after the haplotyping process), the proportions of phased and non-phased al-
leles, the proportion of full, partial and empty reconstructed haplotypes, and the time employed
in the process.

V. Data storing: In this step, the re-imputed data are stored in the same path where the PED file was
located, when data have been read from an external file. Two new files will be generated with
the same name and extension as the original, but ending as ‘re-imputed.ped’ and ‘haplotypes.txt’,
for the re-imputed genotypes and the reconstructed haplotypes, respectively.

VI. Function output: In this final step, a summary of the generated data may be printed out, if
‘dataSummary=TRUE’. All the results can be directly returned, whether ‘invisibleOutput=FALSE’.
The list of results contains: imputedMkrs (with the preliminary imputed marker alleles), IDS
(including the resulting IDentified/Sorted matrix), reImputedAlls (including the re-imputed
alleles) and haplotypes (storing the reconstructed haplotypes), and haplotypingSummary (show-
ing a summary of the haplotyping process). Incidence messages can also be shown if they are
detected. These may be caused by haplotype recombination (detected on children), genotyping
errors, or inheritance from non-declared parents.

The following example depicts how alleHaplotyper works:

alleHaplotyper Example 1: Haplotype reconstruction of a simulated family with parental missing data.

## Simulation of a family containing parental missing data
> simulatedFam1 <- alleSimulator(1, 9, 8, missParProb=0.9, missOffProb=0.3)

## Haplotype reconstruction of previous simulated data
> fam1List <- alleHaplotyper(simulatedFam1[[1]], dataSummary=FALSE)
> simulatedFam1[[1]] # Original data

famID indID patID matID sex phen Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2
1 FAM01 1 0 0 1 2 <NA> <NA> <NA> <NA> <NA> <NA>
2 FAM01 2 0 0 2 1 <NA> <NA> <NA> <NA> <NA> <NA>
3 FAM01 3 1 2 1 1 A G C C <NA> <NA>
4 FAM01 4 1 2 2 1 <NA> <NA> <NA> <NA> A G
5 FAM01 5 1 2 2 1 G G C T A G
6 FAM01 6 1 2 1 2 G G <NA> <NA> A G
7 FAM01 7 1 2 2 1 <NA> <NA> <NA> <NA> G G
8 FAM01 8 1 2 1 1 <NA> <NA> C C G G
9 FAM01 9 1 2 1 1 <NA> <NA> C C G G
10 FAM01 10 1 2 2 1 <NA> <NA> C C G G
11 FAM01 11 1 2 1 1 A G C C <NA> <NA>

Mk4_1 Mk4_2 Mk5_1 Mk5_2 Mk6_1 Mk6_2 Mk7_1 Mk7_2 Mk8_1 Mk8_2
1 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
2 <NA> <NA> <NA> <NA> <NA> <NA> T T <NA> <NA>
3 C T <NA> <NA> T T <NA> <NA> C T

2We have called "re-imputation" to the second imputation process (performed by the alleHaplotyper function)
in which new alleles (that have not been previously imputed by the alleImputer function) can be imputed.
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4 <NA> <NA> C G C C <NA> <NA> C T
5 C T C G C C C T C T
6 C T <NA> <NA> C C C T C T
7 C C G G C T T T T T
8 <NA> <NA> C G T T T T <NA> <NA>
9 C T C G T T T T C T
10 C T <NA> <NA> <NA> <NA> <NA> <NA> C T
11 <NA> <NA> G G <NA> <NA> T T <NA> <NA>

> fam1List['reImputedAlls'] # Re-imputed alleles

famID indID patID matID sex phen Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2
1 FAM01 1 0 0 1 2 A G C T G A
2 FAM01 2 0 0 2 1 G G C C G G
3 FAM01 3 1 2 1 1 A G C C G G
4 FAM01 4 1 2 2 1 G G T C A G
5 FAM01 5 1 2 2 1 G G T C A G
6 FAM01 6 1 2 1 2 G G T C A G
7 FAM01 7 1 2 2 1 A G C C G G
8 FAM01 8 1 2 1 1 A G C C G G
9 FAM01 9 1 2 1 1 A G C C G G
10 FAM01 10 1 2 2 1 A G C C G G
11 FAM01 11 1 2 1 1 A G C C G G

Mk4_1 Mk4_2 Mk5_1 Mk5_2 Mk6_1 Mk6_2 Mk7_1 Mk7_2 Mk8_1 Mk8_2
1 C T G C T C T C T C
2 T C C G T C T T C T
3 C T G C T T T T T C
4 T C C G C C C T C T
5 T C C G C C C T C T
6 T C C G C C C T C T
7 C C G G T C T T T T
8 C T G C T T T T T C
9 C T G C T T T T T C
10 C T G C T T T T T C
11 C C G G T C T T T T

> fam1List['haplotypes'] # Reconstructed haplotypes

famID indID patID matID sex phen hap1 hap2
1 FAM01 1 0 0 1 2 ACGCGTTT GTATCCCC
2 FAM01 2 0 0 2 1 GCGTCTTC GCGCGCTT
3 FAM01 3 1 2 1 1 ACGCGTTT GCGTCTTC
4 FAM01 4 1 2 2 1 GTATCCCC GCGCGCTT
5 FAM01 5 1 2 2 1 GTATCCCC GCGCGCTT
6 FAM01 6 1 2 1 2 GTATCCCC GCGCGCTT
7 FAM01 7 1 2 2 1 ACGCGTTT GCGCGCTT
8 FAM01 8 1 2 1 1 ACGCGTTT GCGTCTTC
9 FAM01 9 1 2 1 1 ACGCGTTT GCGTCTTC
10 FAM01 10 1 2 2 1 ACGCGTTT GCGTCTTC
11 FAM01 11 1 2 1 1 ACGCGTTT GCGCGCTT

> fam1List['haplotypingSummary'] # Haplotyping Summary

nAlls pPhasAlls pNonPhasAlls nHaps pFullHaps pEmptyHaps
1 176 1 0 22 1 0
pPartialHaps newImputedAlleles reImputationRate haplotypingTime

1 0 55 1 0.357

alleHaplotyper Example 2: Haplotype reconstruction of a family containing parental and offspring missing
data from a PED file.

## PED file path
> family2path <- file.path(find.package("alleHap"), "examples", "example3.ped")
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## Loading of the ped file placed in previous path
> family2Alls <- alleLoader(family2path, dataSummary=FALSE)

## Haplotype reconstruction of previous loaded data
> family2List <- alleHaplotyper(family2Alls, dataSummary=FALSE)
> family2Alls # Original data

famID indID patID matID sex phen Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2
1 1 1 0 0 2 1 C T <NA> <NA> <NA> <NA>
2 1 2 0 0 2 1 <NA> <NA> <NA> <NA> <NA> <NA>
3 1 3 1 2 1 2 C C A G A T
4 1 4 1 2 1 2 C T A C <NA> <NA>
5 1 5 1 2 1 2 C T A G C T
6 1 6 1 2 1 2 C T A G C T
7 1 7 1 2 2 1 <NA> <NA> <NA> <NA> C G

Mk4_1 Mk4_2 Mk5_1 Mk5_2 Mk6_1 Mk6_2 Mk7_1 Mk7_2 Mk8_1 Mk8_2
1 <NA> <NA> <NA> <NA> A C <NA> <NA> <NA> <NA>
2 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
3 A A G T A C A C A G
4 A T C G C C C T C G
5 <NA> <NA> G T A C A C A A
6 A A G T A C A C A A
7 A T C G <NA> <NA> C T <NA> <NA>

> family2List['reImputedAlls'] # Re-imputed alleles

famID indID patID matID sex phen Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2
1 1 1 0 0 2 1 C T G C T G
2 1 2 0 0 2 1 C T A A A C
3 1 3 1 2 1 2 C C G A T A
4 1 4 1 2 1 2 T C C A G A
5 1 5 1 2 1 2 C T G A T C
6 1 6 1 2 1 2 C T G A T C
7 1 7 1 2 2 1 T T C A G C

Mk4_1 Mk4_2 Mk5_1 Mk5_2 Mk6_1 Mk6_2 Mk7_1 Mk7_2 Mk8_1 Mk8_2
1 A T T C A C A T A C
2 A A G G C C C C G A
3 A A T G A C A C A G
4 T A C G C C T C C G
5 A A T G A C A C A A
6 A A T G A C A C A A
7 T A C G C C T C C A

> family2List['haplotypes'] # Reconstructed haplotypes

famID indID patID matID sex phen hap1 hap2
1 1 1 0 0 2 1 CGTATAAA TCGTCCTC
2 1 2 0 0 2 1 CAAAGCCG TACAGCCA
3 1 3 1 2 1 2 CGTATAAA CAAAGCCG
4 1 4 1 2 1 2 TCGTCCTC CAAAGCCG
5 1 5 1 2 1 2 CGTATAAA TACAGCCA
6 1 6 1 2 1 2 CGTATAAA TACAGCCA
7 1 7 1 2 2 1 TCGTCCTC TACAGCCA

> fam1List['haplotypingSummary'] # Haplotyping Summary

nAlls pPhasAlls pNonPhasAlls nHaps pFullHaps pEmptyHaps
1 112 1 0 14 1 0
pPartialHaps newImputedAlleles reImputationRate haplotypingTime

1 0 34 1 0.098
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Accuracy

Initial considerations

The alleHap package was originally thought to determine haplotypes from nuclear families, i.e. both
parents and their offspring (several children). The program can reconstruct haplotypes even when the
genotypes of both parents (or only one) are completely missing. However, it does not fit well with the
typical situation of cattle breeding in which a single progenitor (male) has had offspring with many
females; or vice versa when there is a female that has had offspring of several males.

Although in future versions of alleHap this functionality will be included, the following simula-
tions have been developed using the standard context of nuclear families containing the same parents
and a variable number of descendants.

We established the foregoing to compare the accuracy and performance of alleHap versus other
software we have selected AlphaImpute (Hickey et al., 2012) and FImpute (Sargolzaei et al., 2014)
programs, since both programs have similar characteristics to alleHap, namely both consider pedigree
information for inferring haplotypes and imputing missing data. As such, the following comparisons
have been performed regarding the proportion of genotyping errors, missing values, and phasing
(haplotyping) errors for the three programs.

Simulation parameters

Data for nuclear families ranging from one to 15 children and 50 alleles per haplotype have been
simulated. In each case, haplotypes have been generated for missing values in the children’s alleles,
0.10 (10% of the children’s alleles are missing) and 0.25 (25% of genotypes in children are missing ).
Likewise, families with missing rates for parental alleles from 0% (fully genotyped) to 100% (completely
ungenotyped) were simulated. In order not to slow down the simulations, only 100 families were
simulated for each case.

Incorrectly identified alleles per haplotype

Figure 2 shows the proportion of incorrectly identified alleles in each haplotype. As it can be ap-
preciated, when using alleHap the ratio is always zero. In those cases when an allele can not be
unequivocally identified it is left as a missing value. However, both AlphaImpute and FImpute have
algorithms that use HMM and the information of the rest of the families to impute probabilistically.

When using AlphaImpute, it can be seen that when there is a low proportion of children and
parents with missing genotypes, the rate of imputation errors is low (practically null when the parents
are completely genotyped). However, as the rate of alleles of lost parents increases, the proportion of
alleles wrongly accused also increases. This effect is greater the higher the number of children per
family, which indicates that with more data AlphaImpute tends to impute more, but returning higher
number of imputation errors.

With FImpute, it is observed that even when there are not missing alleles in parents or children,
the program tends to erroneously impute a proportion of alleles (it does so in cases of heterozygous
SNPs in which it is not possible to deterministically decide which haplotype belongs to each allele).
The imputation error rate decreases as there are available larger families. In any case, the imputation
error rates reach between 20% and 25% when parents have all alleles missing.

Missing alleles per haplotype

In Figure 3 it can be seen that the proportion of non-imputed alleles that remain after the application
of the algorithm tends to be lower in alleHap than in AlphaImpute for all conditions. In addition, the
greater the number of children available and the lower the rate of missing alleles in both parents and
children, the lower the proportion of alleles remaining unallocated.

For FImpute, if the rate of missing alleles in parents is less than 75%, in the cases we have explored
(missing allele rate in children up to 25%), there are practically no alleles left unallocated, that is almost
all the alleles are imputed. However, as mentioned previously, FImpute has a high imputation error
rate, which increases precisely with the rate of missing alleles in parents/children, and decreases with
the number of families.

So, regarding the rate of missing alleles per haplotype, it could be said that alleHap is advantageous
with respect to AlphaImpute, since it produces a smaller proportion of alleles that are finally left
not imputed, and does not generate imputation errors. On the other hand, FImpute has an allele
imputation rate higher than alleHap, but at the cost of making many more imputation errors.
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Figure 2: Proportiton of incorrectly identified alleles per haplotype.

Figure 3: Proportion of missing alleles per haplotype.

Completely reconstructed haplotypes after imputation and haplotyping

In Figure 4 it is shown the proportion of haplotypes that were completely and correctly created with
each method. It can be seen that for a large number of families with a low rate of missing alleles (under
10%), alleHap is able to completely and correctly reconstruct more than 90% of haplotypes.

Obviously, as the rate of missing alleles in parents and offspring increases, alleHap’s haplotyping
rate decreases (if 50% of the parental alleles are missing, alleHap is able to completely and correctly
reconstruct 25% of haplotypes, provided that large families are available).
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When the allele missing rate in parents or children exceeds 10%, complete haplotype reconstruction
rates are (in comparison to alleHap) generally lower with AlphaImpute and somewhat higher with
FImpute. However, it should be noted that the completely reconstructed haplotypes by alleHap do
not have any incorrectly allocated alleles.

In the case of FImpute, for an entirely reconstructed haplotype, we can not know whether recon-
struction has been good (no errors), or if there have been misidentified alleles (could have a high
proportion of misidentified alleles).

Figure 4: Proportion of fully reconstructed haplotypes after imputation and haplotyping.

Performance

Initial considerations

Since our package was mainly created for primase accuracy, i.e., the univocal treatment of family-based
allelic databases, and not for processing large genomic data, it does not make much sense to perform
a comparison on equal terms with programs that were implemented and compiled in other, faster
languages.

In any case, we have carried out a benchmarking where the alleHap computing times were
measured, evaluating the performance of the simulation, imputation, and haplotyping processes
depending on two main factors: number of individuals and number of markers.

Computing times regarding the number of individuals

The simulations depending on the number of individuals had the following parameters: from 1 to
8000 individuals (two children per family), 3 markers (three allele pairs), two different alleles per
marker, non-numerical alleles (A, C, G, or T), 25% of parental missing genotypes, 25% of children’s
missing genotypes, and 1200 different haplotypes in the population.

In Figure 5, it can be seen how haplotyping and imputation times grow linearly as the number
of individuals increases while simulation times hardly grow. Therefore, it can be said that alleHap
consumes very little time when using a small number of markers, even for a considerabe number of
individuals.
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Figure 5: Computing times for simulation, imputation, and haplo-
typing, depending on the number of individuals.

Computing times regarding the number of markers

The simulations depending on the number of markers were developed using the following factors:
from 1 to 5000 markers (from one allele pair to five thousand), one family (four individuals), two
different alleles per marker, non-numerical alleles (A,C,G or T), 25% of parental missing genotypes,
25% of children’s missing genotypes, and 1200 different haplotypes in the population.

Figure 6: Computing times for simulation, imputation, and haplo-
typing, depending on the number of markers.
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Figure 5 shows how simulation times grow in a non-linear way as the number of markers increase,
while imputation and reconstruction times remain linear (even considering a large number of markers).
Note that for this analysis only, it has been taken into account a family (containing four individuals),
although it is presumable that for a larger number of indivuals this growth will also continue in linear
manner.

Summary

We have developed an improved version of the R package alleHap for the imputation of alleles and
the reconstruction of haplotypes in non-recombinant genomic regions using pedigree databases. The
procedure is entirely deterministic and uses the information contained in the family structure to guide
the process of imputation and reconstruction of haplotypes, without resorting to a reference panel.
The package has two main functions alleImputer and alleHaplotyper.

The first one, alleImputer, makes allele imputation marker by marker, taking into account the
alleles present in parents and siblings and considering that each individual (due to meiosis) should
unequivocally have two alleles per marker, one inherited from each parent.

The function alleHaplotyper first calls alleImputer for an initial imputation of missing alleles
and then, considering that there is no recombination (by comparing parental genotypes with children)
determines the compatible haplotypes with the family structure. When an inconsistency is detected,
alleHaplotyper reports an error message specifying if such inconsistency can be due to a possible
recombination or to a genotyping error. Besides, the procedure of construction of haplotypes allows
the imputation of those alleles that were not previously imputed by alleImputer. The function
alleHaplotyper has been entirely rewritten with respect to previous versions of the package. Also the
function alleImputer has been modified to include a new quality control procedure and to improve
the presentation of a summary of results.

Genotypic information can be read from an R data frame or from a PED file by the function
alleLoader designed specifically with this aim.

The package also includes the function alleSimulator for the simulation of pedigrees. This
function handles many arguments, such as number of families, markers, alleles per marker, probability
and proportion of missing genotypes, recombination rate, etc., and it generates an R data frame with
two lists, one with the structure of a .ped file, and other with the haplotypes generated for each
member of the simulated families. We have used alleSimulator for testing the performance of the
other functions, with satisfactory results regarding imputation rate, haplotyping rate, and time of
execution, even when handling large amounts of genetic data.

Future improvements of the package include the possibility of considering extended pedigrees
(including grandparents, grandchildren, and other relatives) and to make inferences on haplotypes
and missing alleles when these can not be deterministically derived.
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Appendix

Genotype combinations

An example of the genotype combinations that may exist in a nuclear family (considering that each
member should unequivocally have inherited two alleles) is depicted in Figure 7.

Figure 7: Graphical description of inherited genetic information. (a) Description of null
and frequently recombination regions and their corresponding alleles/haplotypes located
in a homologous chromosome. (b) Illustration of a parent-offspring pedigree containing 6
members: 2 parents and 4 children.

Genetic information can be arranged so that an allele may correspond to a single nucleotide (A, C,
G, T) or a genomic nucleotide sequence. It has to be taken into account that the allele nomenclature in
both cases would comprise different alphanumeric values chosen for a given purpose.

Used notation

As it has been described in the Basics section, our theoretical analysis is based on the differentiation of
seven configurations, each one grouped considering the number of unique (or different) alleles per
family. Thus, in order to clarify the genotype identification and to simplify posterior computations,
when K markers are observed, the following notation has been used for describing the alleles in the ith
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subject of a family (being i = 1 for the father, i = 2 for the mother and i > 2 for the offspring):

Ai =

[
A11i A12i . . . A1Ki
A21i A22i . . . A2Ki

]
(1)

Each column k of this matrix represents a marker, being (A1ki, A2ki) the pair of alleles identified in
that marker. Either allele (or both) may be missing, and would then be denoted as Not Available (NA).

Associated to the previous matrix, we can define inheritance identifiers, which we have renamed
as IDentified/Sorted (IDS) for all subjects, being IDShki the corresponding identifier of marker k in the
individual i. The resulting matrix containing the IDShki values can be defined as:

IDSi =

[
IDS11i IDS12i . . . IDS1Ki
IDS21i IDS22i . . . IDS2Ki

]
(2)

If all terms in the matrix IDSi are 0, the phase of each allele is unknown. In turn, when all terms
are equal to 1, the alleles are phased and the rows of the matrix Ai can be read as the haplotypes of the
ith subject of the family. In this way, being h = 1, 2, we have:

IDShki =


0 if allele Ahki does not belong to

haplotype h, or is missing
1 if allele Ahki belongs to haplotype h

(3)

When familial genotypes are read, the matrices IDSi are initially equal to 0 for all members, as the
genotype phase is unknown.

At the data haplotyping stage, the main objective is to order the Ahki alleles in each marker of
every subject in such a way that the IDSi matrices may contain as values equal to 1 as possible. When
the h row in IDSi is completely (or partially) filled with ones, the corresponding hth row in the Ai
matrix can be deterministically phased.

In the same way as described above, a vector of Homozygosity (HMZ) identifiers per individual
was defined. Therefore, HMZik = 1 if individual i is homozygous in marker k (i.e. identical alleles),
and HMZik = 0 if the subject is heterozygous. Consequently, considering a given individual of family,
the HMZ vector is defined as:

HMZi =
[
HMZi1 HMZi2 . . . HMZik

]
(4)

Data imputation

As long as one child was genotyped, in certain cases it is possible for an unequivocal imputation of
missing genotypes both in parents and children. For this purpose, first is conducted a "marker by
marker" Quality Control (QC) of the genetic data and second, imputation is performed, in those cases
where possible. The QC rules which has been considered are the following:

1. There cannot be more than two different homozygous children in a family.

2. If there are two different homozygous children in the family, there cannot be a different allele in
any other family member.

3. Considering all the individuals in the family, there can be at most four different alleles in a
marker.

4. If a family has four different alleles in a marker, no child can be homozygous.

5. If there are three of more unique heterozygous children, they cannot share a common allele.

6. There cannot be more than four genotypically different children per marker and family.

7. If a child has the same alleles as one of his/her parent, there can only be at most three different
alleles in the family.

8. When parental alleles are not missing:

(a) Each child must have at least a common allele with each parent.

(b) A child can not have an allele not present in any of the parents.

In the above, when referring to families with more than one child, it has been considered that
children have different genotypes each other. This is because of two or more children share the same
genotype in all the markers. For the purposes of genotype identification, he/she will count as an only
child (since will not provide different or new information).

Throughout this procedure, a "marker by marker" allele imputation is performed as follows:
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1. Imputation of children’s genotypes: It is identified which allele has been inherited from the
father and which from the mother. If a parent has a homozygous genotype, the corresponding
allele is imputed in all children with missing alleles (which do not already have this allele).
Moreover, if both parents are homozygous, all children with missing alleles are readily imputed.

2. Imputation of parental genotypes: Given a reference child, it is determined which allele has
been transmitted to such child:

(a) If a child has a homozygous genotype, the allele is imputed in that parent that do not
already have this allele.

(b) If a parent has missing alleles and the other not, and there are heterozygous children, the
alleles present in those children (which are not located in the non-missing parent) are
imputed to the parent with missing alleles.

Assuming that genotypic markers are part of the same haplotype, i.e., there is no recombination
between markers, we have considered that when missing data occurs in a subject’s marker, missingness
affects both alleles (i.e. each marker is fully missing for the given subject); but if the subject is a child
and a parent is homozygous at the same marker (say G/G), only one allele will be imputed in such
a child by alleImputer function. Thus, the child’s genotype would be G/NA (where NA stands for
missing value). The same would occur if a fully missing marker is located in a parent and there is a
homozygous child in that marker.

Data haplotying

The haplotyping procedure begins by considering only the offspring, trying to identify/sort the alleles
in each marker in such a way that the allele in the first row of the matrix, Ai, be the one inherited
from the father (see Used notation section), and the allele in the second row be the inherited from
the mother. So, if all the markers are sorted this way, the first row of the matrix Ai would inherit the
first haplotype from the father and the second one from the mother. Once these haplotypes have been
found in children, they can be readily identified in parents. What complicates this idea and makes
difficult its direct application is the fact that in some cases both parents and a child can share the same
genotype (say G/T for the three subjects), and therefore it is not possible to know which allele has been
inherited from which parent. Thus, we considered these four scenarios for the haplotyping procedure:

• Scenario 1: There are no fully missing markers in parents.

• Scenario 2: There are missing markers in parents.

• Scenario 3: Mixture of the previous scenarios.

• Scenario 4: There are missing markers in parents and only two fully genotyped children.

In the first one there are no fully missing markers in parents, and children may be completely
without missing alleles or may have full or partially missing data. In the second one we have taken
into account that all of the parental markers are fully missing and there are at least three children in
the family without missing alleles. The third scenario is a mixture of the previous two: some markers
have parents with fully missing alleles and at least three complete children (without missing alleles).
Some markers have non-missing alleles in parents, with some missing values in children, and some
markers may have no missing values in parents nor in children. Finally, in the fourth scenario we
show the conditions in which alleles can be deterministically phased with only two children, when
parents have completely missing markers.

Furthermore there may be missing alleles in parents or children that prevent the determination the
provenance of some alleles in some markers. In particular, if both parents have all the alleles missing
in a marker it is impossible to determine the provenance of the alleles of that marker in the children, at
least if there are less than three children in the family. When Scenario 2 occurs the family has three
or more children, if there are no missing alleles in at least three children, deterministic phasing can
be carried out even when parents are fully missing. Also, in Scenario 4, for the particular case of
having only two children, if parental alleles are available in some markers and in the other markers are
fully missing, it is possible (under certain conditions) to determine the alleles’ phase in those missing
markers.
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Visualization of Regression Models
Using visreg
by Patrick Breheny and Woodrow Burchett

Abstract Regression models allow one to isolate the relationship between the outcome and an ex-
planatory variable while the other variables are held constant. Here, we introduce an R package,
visreg, for the convenient visualization of this relationship via short, simple function calls. In addition
to estimates of this relationship, the package also provides pointwise confidence bands and partial
residuals to allow assessment of variability as well as outliers and other deviations from modeling
assumptions. The package provides several options for visualizing models with interactions, including
lattice plots, contour plots, and both static and interactive perspective plots. The implementation of
the package is designed to be fully object-oriented and interface seamlessly with R’s rich collection of
model classes, allowing a consistent interface for visualizing not only linear models, but generalized
linear models, proportional hazards models, generalized additive models, robust regression models,
and many more.

Introduction

In simple linear regression, it is both straightforward and extremely useful to plot the regression line.
The plot tells you everything you need to know about the model and what it predicts. It is common to
superimpose this line over a scatter plot of the two variables. A further refinement is the addition of
a confidence band. Thus, in one plot, the analyst can immediately assess the empirical relationship
between x and y in addition to the relationship estimated by the model and the uncertainty in that
estimate, and also assess how well the two agree and whether assumptions may be violated.

Multiple regression models address a more complicated question: what is the relationship between
an explanatory variable and the outcome as the other explanatory variables are held constant? This
relationship is just as important to visualize as the relationship in simple linear regression, but doing
so is not nearly as common in statistical practice.

As models get more complicated, it becomes more difficult to construct these sorts of plots. With
multiple variables, we cannot simply plot the observed data, as this does not hold the other variables
constant. Interactions among variables, transformations, and non-linear relationships all add extra
barriers, making it time-consuming for the analyst to construct these plots. This is unfortunate,
however – as models grow more complex, there is an even greater need to represent them with clear
illustrations.

In this paper, we aim to eliminate the hurdle of implementation through the development of a
simple interface for visualizing regression models arising from a wide class of models: linear models,
generalized linear models, robust regression models, additive models, proportional hazards models,
and more. We implement this interface in R and provide it as the package visreg, publicly available
from the Comprehensive R Archive Network. The purpose of the package is to automate the work
involved in plotting regression functions, so that after fitting one of the above types of models, the
analyst can construct attractive and illustrative plots with simple, one-line function calls. In particular,
visreg offers several tools for the visualization of models containing interactions, which are among the
easiest to misinterpret and the hardest to explain.

It is worth noting that there are two distinct goals involved in plotting regression models: illustrat-
ing the fitted model visually and diagnosing violations of model assumptions through examination of
residuals. The approach taken by visreg is to construct a single plot that simultaneously addresses
both goals. This is not a new idea. Indeed, this project was inspired by the work of Trevor Hastie,
Robert Tibshirani, and Simon Wood, who have convincingly demonstrated the utility of these types of
plots in the context of generalized additive models (Hastie and Tibshirani, 1990; Wood, 2006).

In particular, visreg offers partial residuals, which can be defined for any regression model and are
easily superimposed on visualization plots. Partial residuals are widely useful in detecting many types
of problems, although several authors have pointed out that they are not without limitations (Mallows,
1986; Cook, 1993). Various extensions and modifications of partial residuals have been proposed,
and there is an extensive literature on regression diagnostics (Belsley et al., 1980; Cook and Weisberg,
1982); indeed, many diagnostics are specific to the type of model (e.g., Pregibon, 1981; Grambsch and
Therneau, 1994; Loy and Hofmann, 2013). Partial residuals are a useful, easily generalized idea that
can applied to virtually any type of model although it is certainly worth being aware of other types of
diagnostics that are specific to the modeling framework in question.

There are a number of R packages that offer functions for visualizing regression models, including
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rms (Harrell, 2015), rockchalk (Johnson, 2016), car (Fox and Weisberg, 2011), effects (Fox, 2003), and,
in base R, the termplot function. The primary advantage of visreg over these alternatives is that each
of them is specific to visualizing a certain class of model, usually lm or glm. visreg, by virtue of its
object-oriented approach, works with any model that provides a predict method – meaning that it
can be used with hundreds of different R packages as well as user-defined model classes. We also feel
that visreg offers a simpler interface and produces nicer-looking plots, but admit that beauty is in the
eye of the beholder. Nevertheless, there are situations in which each of these packages are very useful
and offer some features that others do not, such as greater flexibility for other types of residuals (car)
and better support for visualizing three-way interactions (effects).

Each type of model has different mathematical details. All models, however, describe how the
response is expected to vary as a function of the explanatory variables. In R, this is implemented for an
extensive catalog of models that provide an associated predict method. Although there are no explicit
rules forcing programmers to write predict methods for a given class in a consistent manner, there
is a widely agreed-upon convention to follow the general syntax of predict.lm. It is this abstraction
upon which visreg is based: the use of object-oriented programming to provide a single tool with a
consistent interface for the convenient visualization of a wide array of models.

There are thousands of R packages, many of which provide an implementation of some type of
model. It is impossible for any programmer or team of programmers to write an R package that is
familiar with the details of all of them. However, the encapsulation and abstraction offered by an
object-oriented programming language allow for an elegant solution to this problem. By passing a
fitted model object to visreg, we can call the predict method provided by that model class to obtain
appropriate predictions and standard errors without needing to know any of the details concerning
how those calculations work for that type of model; the same applies to construction of residuals
through the residual method.

The only other R package that we are aware of that provides this kind of object-oriented flexibility
is plotmo by Stephen Milborrow. The visreg and plotmo projects were each started independently
around the year 2011 and have developed into mature, widely used packages for model visualization.
The organization and syntax of the packages is quite different, but both are based on the idea of using
the generic predict and residuals methods provided by a model class to offer a single interface
capable of visualizing virtually any type of model. The primary difference between the two packages
is that plotmo separates the visualization of models and the plotting of residuals, constructed using
the plotmo() and plotres() functions, respectively, while as mentioned earlier, visreg combines the
two into a single plot (plotmo offers an option to superimpose the unadjusted response onto a plot,
but this is very different from plotting partial residuals). Furthermore, as one would expect, each
package offers a few options that the other does not. For example, plotmo offers the ability to construct
partial dependence plots (Hastie et al., 2009), while visreg offers options for contrast plots and what
we call “cross-sectional” plots (Figs. 6, 7, and 8). Broadly speaking, plotmo is somewhat more oriented
towards machine learning-type models, while visreg is more oriented towards regression models,
though both packages can be used for either purpose. In particular, plotmo supports the X,y syntax
used by packages like glmnet, which is more popular among machine learning packages, while visreg
focuses exclusively on models that use a formula-based interface.

The outline of the paper is as follows. In “Conditional and contrast plots”, we explicitly define
the relevant mathematical details for what appears in visreg’s plots. The remainder of the article is
devoted to illustrating the interface and results produced by the software in three extensions of simple
linear regression: multiple (additive) linear regression models, models that possess interactions, and
finally, other sorts of models, such as generalized linear models, proportional hazards models, random
effect models, random forests, etc.

Conditional and contrast plots

We begin by considering regression models, where all types of visreg plots are well-developed and
clearly defined. At the end of this section, we describe how these ideas can be extended generically to
any model capable of making predictions.

In a regression model, the relationship between the outcome and the explanatory variables is
expressed in terms of a linear predictor η:

η = Xβ = ∑
j

xjβ j, (1)

where xj is the jth column of the design matrix X. For the sake of clarity, we focus in this section on
linear regression, in which the expected value of the outcome E(Yi) equals ηi; extensions to other,
nonlinear models are discussed in “Other models”. In the absence of interactions (see “Linear models
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with interactions”), the relationship between Xj and Y is neatly summarized by β j, which expresses
the amount by which the expected value of Y changes given a one-unit change in Xj.

Partial residuals are a natural multiple regression analog to plotting the observed x and y in simple
linear regression. Partial residuals were developed by Ezekiel (1924), rediscovered by Larsen and
McCleary (1972), and have been discussed in numerous papers and textbooks ever since (Wood, 1973;
Atkinson, 1982; Kutner et al., 2004). Letting r denote the vector of residuals for a given model fit, the
partial residuals belonging to variable j are defined as

rj = y− X−j β̂−j (2)

= r + xj β̂ j, (3)

where the −j subscript refers to the portion of X or β that remains after the jth column/element is
removed.

The reason partial residuals are a natural extension to the multiple regression setting is that the
slope of the simple linear regression of rj on xj is equal to the value β̂ j that we obtain from the multiple
regression model (Larsen and McCleary, 1972).

Thus, it would seem straightforward to visualize the relationship between Xj and Y by plotting a
line with slope β j through the partial residuals. Clearly, however, we may add any constant to the line
and to rj and the above result would still hold. Nor is it obvious how the confidence bands should be
calculated.

We consider asking two subtly different questions about the relationship between Xj and Y:

(1) What is the relationship between E(Y) and Xj given x−j = x∗−j?

(2) How do changes in Xj relative to a reference value x∗j affect E(Y)?

The biggest difference between the two questions is that the first requires specification of some x∗−j,
whereas the second does not. The reward for specifying x∗−j is that specific values for the predicted
E(Y) may be plotted on the scale of the original variable Y; the latter type of plot can address only
relative changes. Here, we refer to the first type of plot as a conditional plot, and the second type as
a contrast plot. As we will see, the two questions produce regression lines with identical slopes, but
with different intercepts and confidence bands. It is worth noting that these are not the only possible
questions; other possibilities, such as “What is the marginal relationship between Xj and Y, integrating
over X−j?” exist, although we do not explore them here.

For a contrast plot, we consider the effect of changing Xj away from an arbitrary point x∗j ; the
choice of x∗j thereby determines the intercept, as the line by definition passes through (x∗j , 0). The

equation of this line is y = (x − x∗j )β̂ j. For a continuous Xj, we set x∗j equal to x̄j. The confidence
interval at the point xj = x is based on

V(x) = V
{

η̂(x)− η̂(x∗j )
}
= (x− x∗j )

2V(β̂ j).

When Xj is categorical, we plot differences between each level of the factor and the reference category
(see Figure 3 for an example); in this case, we are literally plotting contrasts in the classical ANOVA
sense of the term (hence the name). Our usage of the term “contrast” for continuous variables is
somewhat looser, but still logical in the sense that it estimates the contrast between a value of Xj and
the reference value.

For a conditional plot, on the other hand, all explanatory variables are fully specified by x and x∗−j.

Let λ(x)T denote the row of the design matrix that would be constructed from xj = x and x∗−j. Then

the equation of the line is y = λ(x)T β̂ and the confidence interval at x is based on

V(x) = V
{

λ(x)T β̂
}
= λ(x)TV(β̂)λ(x).

In both conditional and contrast plots, the confidence interval at x is then formed around the
estimate in the usual manner by adding and subtracting tn−p,1−α/2

√
V(x), where tn−p,1−α/2 is 1− α/2

quantile of the t distribution with n− p degrees of freedom. Examples of contrast plots and conditional
plots are given in Figures 2 and 3. Both plots depict the same relationship between wind and ozone
level as estimated by the same model (details given in the following section). Note the difference,
however, in the vertical scale and confidence bands. In particular, the confidence interval for the
contrast plot has zero width at x∗j ; all other things remaining the same, if we do not change Xj, we can
say with certainty that E(Y) will not change either. There is still uncertainty, however, regarding the
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actual value of E(Y), which is illustrated in the fact that the confidence interval of the conditional plot
has positive width everywhere.

This description of confidence intervals focuses on Wald-type confidence intervals of the form
of estimate ± multiple of the standard error, constructed on the scale of the linear predictor. This
is the most common type of interval provided by modeling packages in R, and the only one for
which a widely agreed-upon, object-oriented consensus has emerged in terms of what the predict
method returns. For this reason, this is usually the only type of interval available for plotting by
visreg. However, it should be noted that these intervals are common for their convenience, not due to
superiority; it is typically the case that more accurate confidence intervals exist (see, for example, Efron,
1987; Withers and Nadarajah, 2012). In principle, one could plot other types of intervals, but visreg
does not calculate intervals itself so much as plot the intervals that the modeling package returns.
Thus, unless the modeling package provides methods for calculating other types of intervals, visreg is
restricted to plotting Wald intervals.

Contrast plots can only be constructed for regression-based models, as they explicitly require an
additive decomposition in terms of a design matrix and coefficients. Conditional plots, however, can
be constructed for any model that produces predictions. Denote this prediction f (x), where x is a
vector of predictors for the model. Writing this as a one-dimensional function of predictor j with the
remaining predictors fixed at x∗−j, let us express this prediction as f (x|x∗−j). In a conditional plot, the
partial residuals for predictor j are

rj = r + xj β̂ j + x∗−j β̂−j

= r + f (x|x∗−j),

which offers a clear procedure for constructing the equivalent of partial residual for general prediction
models. Note that this construction requires the model class to implement a residuals method. If a
model class lacks a residuals method, visreg will still produce a plot, but must omit the partial residu-
als; see “Non-regression models” for additional details. Likewise, visreg requires the predict method
for the model class to return standard errors in order to plot confidence intervals; see “Hierarchical
and random effect models” for an example in which standard errors are not returned.

It is worth mentioning that visreg is only concerned with confidence bands for the conditional
mean E(Y|X), not “prediction intervals” that have a specified probability of containing a future
outcome Y observed for a certain value of X. Unlike standard errors for the mean, very few model
classes in R offer methods for calculating such intervals – indeed, such intervals are often not well-
defined outside of classical linear models.

Additive linear models

We are now ready to describe the basic framework and usage of visreg. In this section, we will
fit various models to a data set involving the relationship between air quality (in terms of ozone
concentration) and various aspects of weather in the standard R data set airquality.

Basic framework

The basic interface to the package is the function visreg, which requires only one argument: the fitted
model object. So, for example, the following code produces Figure 1:

fit <- lm(Ozone ~ Solar.R + Wind + Temp, data=airquality)
visreg(fit)

By default, visreg provides conditional plots for each of the explanatory variables in the model. For
the conditioning, the other variables in x∗−j are set to their median for numeric variables and to the most
common category for factors. All of these options can be modified by passing additional arguments
to visreg. For example, contrast plots can be obtained with the type argument; the following code
produces Figure 2.

visreg(fit, "Wind", type="contrast")
visreg(fit, "Wind", type="conditional")

The second argument specifies the explanatory variable to be visualized; note that the right plot in
Figure 2 is the same as the middle plot in Figure 1.

In addition to continuous explanatory variables, visreg also allows the easy visualization of
differences between the levels of categorical variables (factors). The following block of code creates a
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Figure 1: Basic output of visreg for an additive linear model: conditional plots for each explanatory
variable.

5 10 15 20

−50

0

50

100

Wind

∆O
zo

ne

●

●

●

●●

●

●

●
● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

5 10 15 20

0

50

100

150

Wind

O
zo

ne

●

●

●

●●

●

●

●
● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

Figure 2: The estimated relationship between wind and ozone concentration in the same model, as
illustrated by two different types of plots. Left: Contrast plot. Right: Conditional plot.

factor called Heat by discretizing Temp, and then visualizes its relationship with Ozone, producing the
plot in Figure 3.

airquality$Heat <- cut(airquality$Temp, 3, labels=c("Cool", "Mild", "Hot"))
fit.heat <- lm(Ozone ~ Solar.R + Wind + Heat, data=airquality)
visreg(fit.heat, "Heat", type="contrast")
visreg(fit.heat, "Heat", type="conditional")
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Figure 3: Visualization of a regression function involving a categorical explanatory variable. Left:
Contrast plot. Right: Conditional plot.

Again, note that the confidence interval for the contrast plot has zero width for the reference
category. There is no uncertainty about how the expected value of ozone will change if we remain at
the same level of Heat; it is zero by definition. On the other hand, the width of the confidence interval
for Mild heat is wider for the contrast plot than it is for the conditional plot. There is less uncertainty
about the expected value of ozone on a mild day than there is about the difference in expected values
between mild and cool days.
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Transformations

Often in modeling, we introduce transformations of explanatory variables, transformations of the
response variable, or both. The visreg package automatically handles these transformations when
visualizing the regression model.

Linear models assume a linear relationship between the explanatory variables and the outcome. A
common way of extending the linear model is to introduce transformations of the original explanatory
variables. For example, to allow the effect of wind on ozone to be nonlinear, we may introduce a
quadratic term for wind into the model:

fit1 <- lm(Ozone ~ Solar.R + Wind + I(Wind^2) + Temp, data=airquality)

Transformations of the response are also common. For example, ozone levels must be positive.
However, as Figure 1 illustrates, a standard linear model allows the estimated relationship and its
confidence band to fall below 0. One way of remedying this is to model the log of ozone concentrations
instead of the ozone concentrations directly:

fit2 <- lm(log(Ozone) ~ Solar.R + Wind + Temp, data=airquality)

And of course, these elements may be combined:

fit3 <- lm(log(Ozone) ~ Solar.R + Wind + I(Wind^2) + Temp, data=airquality)

Visualization is particularly important in these models, as it is difficult to determine the exact nature
of the relationship between explanatory variable and response simply by looking at the regression
coefficients when that relationship is nonlinear. The visreg package provides a convenient way to
view such relationships. Transformations involving explanatory variables are handled automatically,
while transformations involving the response require the user to provide the inverse transformation.
The following code produces Figure 4.

visreg(fit1, "Wind")
visreg(fit2, "Wind", trans=exp, ylab="Ozone", partial=TRUE)
visreg(fit3, "Wind", trans=exp, ylab="Ozone", partial=TRUE)

By default, visreg suppresses partial residuals when trans is specified, as this can provide a distorted
view of outliers (a mild outlier can become an extreme outlier once a transformation has been applied,
and vice versa), but we include them here by explicitly specifying partial=TRUE.

5 10 15 20

50

100

150

Wind

O
zo

ne

●

●

●

●●

●

●

●
● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

0

20

40

60

80

100

120

140

Wind

O
zo

ne ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

5 10 15 20

0

20

40

60

80

100

120

140

Wind

O
zo

ne

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●
● ●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

Figure 4: Plots of the modeled relationship between wind and ozone concentration, as estimated by
different models. Left: The model contains a transformation of wind. Middle: The model contains a
transformation of ozone concentration. Right: The model contains transformations of both wind and
ozone.

Conditioning

As noted in “Basic framework”, the default behavior of visreg when constructing a conditional plot is
to fill in x∗−j with the median for continuous variables and the most common category for categorical
variables. This behavior can be modified using the cond argument. Note that this has no bearing on
contrast plots in additive models, which do not require a full specification of x∗−j.

The cond argument must be provided as a named list. Each element of that list specifies the
value for an element of x∗−j; any elements left unspecified are filled in with the median/most common
category. We revisit our initial model from “Basic framework” with this code, which produces Figure 5.
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visreg(fit, "Wind", cond=list(Temp=50))
visreg(fit, "Wind")
visreg(fit, "Wind", cond=list(Temp=100))
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Figure 5: Estimated relationship between wind and ozone concentration, conditioning on different
values of temperature. Left: Temperature=50 ◦F. Middle: The median temperature, 79 ◦F (default).
Right: Temperature=100 ◦F.

We make several observations concerning Figure 5: i) The values on the vertical axis differ; as
we condition on higher temperatures, the expected ozone concentration goes up since the regression
coefficient for temperature is positive. ii) The slope of the line, the distance from the line to each
residual, and the range of the residuals is the same in all three plots; conditioning on different values
of temperature merely adds a constant to the regression line and the partial residuals. iii) The width of
the confidence band does change, however: the data set has few observations at very high and very
low temperatures, so the standard errors are much larger for the plots on the right and left than for
the plot in the middle. iv) The shape of the confidence band also changes. In the middle plot, the
confidence band is narrowest in the middle and wider at the ends. In the left plot (conditioning on
low temperature), however, the confidence band is narrowest for high wind levels. This arises because
there is a negative correlation between wind and temperature (ρ̂ = −0.46), and thus, more cold windy
days in the data set than cold calm days. The opposite phenomenon happens in the right plot, where
the relative absence of hot windy days causes the confidence band to be wider for high winds than for
low winds.

Recall that this model had three explanatory variables; in the above example, visreg calculated
the conditional response by filling in solar radiation with its median value, as it was not specified
otherwise in the cond argument.

Linear models with interactions

Visualization is also very important for models with interactions – as with polynomial terms, in
these models the relationship between an explanatory variable and the response depends on multiple
regression coefficients, and a model’s fit is more readily understood with a visual representation than
by looking at a table of regression coefficients.

For models with interactions, we must simultaneously visualize the effect of two explanatory
variables. The visreg package offers two methods for doing this: cross-sectional plots, which plot
one-dimensional relationships between the response and one predictor for several values of another
predictor, and surface plots, which attempt to provide a picture of the regression surface over both
dimensions simultaneously.

Cross-sectional plots

To begin, let’s fit a model that involves an interaction between a continuous term and a categorical
term, using our derived variable Heat from “Basic framework”:

fit <- lm(Ozone ~ Solar.R + Wind * Heat, data=airquality)

The visreg package creates cross-sectional plots using, by default, the lattice package (Sarkar,
2008). To request a cross-sectional plot, the user specifies a by variable, as in the following code which
produces Figure 6.

visreg(fit, "Wind", by="Heat")
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Figure 6: Cross-sectional plots depicting the fit of a model with an interaction between a continuous
term (Wind) and a categorical term (Heat), with the continuous term on the horizontal axis.

Alternatively, one can use ggplot2 (Wickham, 2009) as the plotting engine using the option gg=TRUE,
as in the following code which produces Figure 7.

visreg(fit, "Wind", by="Heat", gg=TRUE)
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Figure 7: Same as Figure 6, but using ggplot2 as the plotting engine.

The cross-sectional plots in either Figure 6 or 7 allow us to see that the relationship between
wind and ozone concentration appears to become more pronounced depending on how hot the day
is. On cool days, wind has no effect on ozone concentration. Wind has a moderate effect on ozone
concentrations on mild days, and an even larger effect on hot days.

Note that visreg handles the partial residuals properly – the partial residuals for observations
collected on cool days appear only in the left panel, and so on. As with the earlier plots, this ensures
that the least squares line drawn through the residuals on the plot will yield the same slope as that
estimated by the full model fit. Furthermore, this allows us to see potentially influential observations
like the one in the middle panel, which has very low wind and very high ozone concentration. Finally,
the proper handling of partial residuals also allows us to observe the lack of hot windy days and cool
days with no wind that we commented on in “Conditioning”. Note that the confidence intervals in
these regions are comparatively wide.

Alternatively, we may wish to overlay these cross-sections. This allows for a more direct com-
parison between the different regression lines, although it often becomes difficult to include partial
residuals and confidence bands without crowding the figure. The visreg package allows an overlay
option for creating these plots:

visreg(fit, "Wind", by="Heat", overlay=TRUE, partial=FALSE)

The above code produces Figure 8, where the plotting of partial residuals has been turned off
for the sake of clarity (similarly, band=FALSE can be specified to turn off the confidence bands). If
partial=TRUE, the partial residuals are colored according to the existing scheme.

The above examples featured a continuous variable along the horizontal axis and a categorical
variable as the by variable. However, visreg allows each of these variables to be either continuous or
categorical. For example, let us try plotting the same model, but reversing the roles of Heat and Wind
(Figure 9).
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Figure 8: Cross-sectional plot depicting the fit of a model with an interaction between a continuous
term (Wind) and a categorical term (Heat), where the regression lines for each category are overlaid.

visreg(fit, "Heat", by="Wind")

The model is the same, but the emphasis of the plot is now on heat instead of wind. Figure 9
illustrates that heat has a pronounced effect on ozone concentration when the day is not windy, but a
relatively insignificant effect on ozone for windy days.
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Figure 9: Cross-sectional plots depicting the fit of a model with an interaction between a continuous
term (Wind) and a categorical term (Heat), with the categorical term on the horizontal axis.

In contrast to Figure 6, where it was natural to construct a panel for each level of the categorical
variable, Figure 8 requires arbitrary decisions concerning how many cross-sections to take, and where
to place them. The default behavior of visreg is to take cross-sections at the 10th, 50th, and 90th
percentiles of the by variable, although both the number of points and their location can be modified
using the breaks option. Again, each residual appears only once, in the panel it is closest to. However,
the least squares estimates are no longer equivalent to drawing a line through the partial residuals
due to the continuous manner in which information is pooled across the panels.

We have been focusing here on conditional plots, but contrast plots can be made as well by
specifying type="contrast". It is worth noting that for a model containing an interaction, a basic
call to visreg (i.e., without a by argument) amounts to plotting a main effect in the presence of an
interaction. Because this has the potential to be misleading, visreg by default prints a message warning
the user of this and reminding him or her of the levels of the other variables at which the plot is
constructed. For example, since "Mild" is the most common level of Heat, visreg(fit,"Wind") will
produce the middle panel of Figure 6. The left and right panels, respectively, could be produced by
passing Heat="Cool" and Heat="Hot" to the cond argument.

Surface plots

Another approach to visualizing models with interactions is plotting the regression surface using
contour or perspective plots. Suppose we fit a complicated model involving a multiplicative interaction
between two-degree-of-freedom natural spline terms for wind and temperature (the function ns is
from the splines () package):
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fit <- lm(Ozone ~ Solar.R +ns(Wind, df=2)*ns(Temp, df=2), data=airquality)

Putting aside the question of whether or not this is a good model for analyzing these data, our
purpose here is to show that it is difficult to grasp the fit of the model by looking at the regression
coefficients directly, but easy to do so using visreg. In addition to the tools for creating cross-sectional
plots described in the “Cross-sectional plots”, the visreg package provides the function visreg2d,
which can be used to produce two-dimensional contour and perspective plots. The following code
produces Figure 10:

visreg2d(fit, "Wind", "Temp", plot.type="image")
visreg2d(fit, "Wind", "Temp", plot.type="persp")
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Figure 10: Representations of the regression surface as a function of wind and temperature. Left:
Filled contour plot. Right: Perspective plot.

The advantage of these kinds of plots compared with those in “Cross-sectional plots” are that
they allow us to visualize the effect of simultaneously varying two factors. The disadvantage is that
there is no convenient way of superimposing either residuals or confidence intervals. These plots
are most useful when both variables are continuous, as one is not forced to take cross-sections over a
continuous variable. The visreg2d function still functions correctly when one or both of its arguments
is a categorical variable, although in our opinion, the cross-section plots of “Cross-sectional plots” are
more useful in these settings.

In addition to the static perspective plot presented above, visreg2d can also create interactive
perspective plots using the rgl package (Adler and Murdoch, 2011), which allow the user to rotate, tilt,
and spin the regression surface. This makes it considerably easier to comprehend its three-dimensional
shape. Such plots can be constructed with the code:

visreg2d(fit, x="Wind", y="Temp", plot.type="rgl")

Visualization of higher-order interactions, such as three-way or four-way interactions, becomes
increasingly difficult. To some extent, visreg facilitates visualization of such models through the use
of the cond argument. For example, code such as the following could be used to visualize a three-way
interaction:

fit <- lm(Ozone ~ Solar.R * Wind * Temp, data=airquality)
visreg2d(fit, "Wind", "Temp", cond=list(Solar.R=100))
visreg2d(fit, "Wind", "Temp", cond=list(Solar.R=300))

Other models

As mentioned at the outset, the goal in creating the visreg package was to implement visualization in
an object-oriented manner, so that it works with as many classes of models from different functions
and packages as possible. All that it requires is functioning model.frame and predict methods for
the fitted model object (plotting of partial residuals requires a residuals method as well). Thus,
the visreg package and all its options work not only with linear model objects produced by lm, but
with generalized linear models produced by glm, proportional hazards models produced by coxph
(Therneau, 2012), robust linear models produced by rlm (from MASS: Venables and Ripley, 2002),
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negative binomial models produced by glm.nb (from MASS), generalized additive models produced
by gam (from mgcv: Wood, 2012), local regression models produced by loess and locfit (Loader, 2010),
and many more. Indeed, the type of object does not even need to be part of an R package; user-defined
model classes can also be visualized with visreg, provided that they are compatible with model.frame
and predict. In this section, we briefly illustrate the use of visreg with some of the above types of
models.

Generalized linear models

We begin with a logistic regression model applied to a study investigating risk factors associated with
low birth weight (Hosmer and Lemeshow, 2000). The following code produces Figure 11.

data("birthwt", package="MASS")
fit <- glm(low ~ age + race + smoke + lwt, data=birthwt, family="binomial")
visreg(fit, "lwt", xlab="Mother's weight", ylab="Log odds (low birthweight)")
visreg(fit, "lwt", scale="response", rug=2, xlab="Mother's weight",

ylab="P(low birthweight)")
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Figure 11: Visualization of a logistic regression model. Left: Log odds scale. Right: Probability scale.

On the left side of Figure 11, the model is plotted on the scale of the linear predictor (the default
scale in visreg), where the model is indeed linear. The confidence intervals in the figure are Wald
confidence intervals based on standard errors returned by predict.glm. The partial residuals are
calculated based on Equation 2, with r the deviance residuals (the default residuals returned by
residuals.glm). The plot on the right is simply a transformed version of the plot on the left, where an
inverse logistic transformation has been applied to the regression line and confidence bands (this is
handled automatically by the scale="response" option).

Note that for the plot on the right, we have opted to plot a rug as opposed to the partial residuals.
The visreg package provides two types of rug annotations. With rug=TRUE or rug=1, a standard
rug along the bottom of the plot is provided. With rug=2, separate rugs are drawn on the top for
observations with positive residuals and on the bottom for observations with negative residuals (for
logistic regression, this corresponds to Y = 1 and Y = 0, respectively).

In practice, we have found plots like those on the left useful for visualizing the model fit and
observing potential departures from model assumptions such as outliers and influential points, and
plots like those on the right very useful for communicating modeling results to non-statisticians.

Other regression models

Here, we provide a brief demonstration applying visreg to some other types of models (note that these
are models for which the effects package is incompatible): a proportional hazards model, a robust
regression model, and a local regression model. The left side of Figure 12 presents a visualization of
the following proportional hazards model:

require("survival")
fit <- coxph(Surv(futime, fustat) ~ age + rx, data=ovarian)
visreg(fit, "age", ylab="log(Hazard ratio)")

Note that in proportional hazards models, baseline hazard functions are not explicitly estimated,
and therefore the meaning behind a conditional plot is questionable. For this reason, contrast plots
are (arguably) more appropriate. A similar phenomenon occurs with logistic regression applied to
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Figure 12: Visualizations of proportional hazards (left), robust regression (middle), and loess (right)
models.

case-control studies, in which an intercept is estimated, but is the estimate is biased by the study
design.

The middle of Figure 12 presents a visualization of the following robust regression model (using
rlm from the MASS package):

fit <- rlm(Ozone ~ Solar.R + Wind * Heat, data=airquality)
visreg(fit, "Wind", ylab="Ozone")

Note that the design matrix for the robust regression model is the same as that from “Cross-
sectional plots”, and that the plot in the middle of Figure 12 is analogous to the middle panel from
Figure 6. Note, however, that the robust regression model produces a different fit, due in part to
the reduced impact of the potential outlier mentioned in “Cross-sectional plots”. Specifically, the fit
produced by the robust regression model is flatter and does not predict negative ozone concentrations
for high wind levels as the linear regression model does.

Finally, we apply visreg to a local regression model fit with loess, producing a much more useful
visualization of the model than the default plot method for loess. This plot appears on the right side
of Figure 12.

fit <- loess(Ozone ~ Wind, airquality)
visreg(fit, "Wind", ylab="Ozone")

All of the features and options we mentioned earlier; in particular cross-section and surface plots work
in the same way for nonlinear models as they do for linear models.

Computationally, the extension of visreg to nonlinear models is straightforward due to its object-
oriented implementation, but it is worth making some comments about partial residuals for nonlinear
models. In particular, it is no longer the case that the regression line through the partial residuals
produces a line with the same slope as that produced by the model. Viewing nonlinear models as
reweighted least squares models, the observations have different weights and these weights are not
reflected in the partial residuals plotted by visreg. This phenomenon has been commented on by
many authors, with a variety of proposals for alternative types of reweighted partial residuals that
may be better at detecting outliers and influential observations (Pregibon, 1981; Landwehr et al., 1984;
O’Hara Hines and Carter, 1993).

Non-regression models

Moving even further from linear models, visreg is also compatible with modeling frameworks that are
not even regression-based, such as random forests and support vector machines. Such methods are
often thought of as “black boxes”, but visreg offers a convenient way to visualize the resulting fit and
possibly gain some insight into the model. The following code fits each of the aforementioned models
to the airquality data using the randomForest (Breiman et al., 2015) and e1071 (Meyer et al., 2017)
packages, and plots the resulting estimated association between ozone and temperature (Figure 13).
Some of these packages do not automatically handle missing data, so we first create a complete-case
data set aq:

aq <- na.omit(airquality)
fit1 <- randomForest(Ozone ~ Solar.R + Wind + Temp, data=aq)
fit2 <- svm(Ozone ~ Solar.R + Wind + Temp, data=aq)
visreg(fit1, "Temp", ylab="Ozone", ylim=c(0, 150))
visreg(fit2, "Temp", ylab="Ozone", ylim=c(0, 150))
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Figure 13: Left: Random forest. Right: Support vector machine.

Both of the results in Figure 13 appear reasonable with the default settings employed, although
neither of these models is able to provide confidence bands for fitted values, so no shaded bands
appear. A useful feature of plotting the model’s predictions, however, is that it illustrates the effect of
changing those settings. For example, consider the application of gradient boosting machines to this
same data using the gbm package (Ridgeway, 2017). First, it is worth noting that the gbm package
does not offer a residuals method. This would normally cause visreg to omit plotting the partial
residuals. However, we can supply our own user-defined residuals method, which enables visreg to
produce the plots in Figure 14.

residuals.gbm <- function(fit) fit$data$y - fit$fit
fit3 <- gbm(Ozone ~ Solar.R + Wind + Temp, data=aq)
fit4 <- gbm(Ozone ~ Solar.R + Wind + Temp, data=aq, n.trees=5000)
visreg(fit3, "Temp", ylab="Ozone", ylim=c(0, 150))
visreg(fit4, "Temp", ylab="Ozone", ylim=c(0, 150))
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Figure 14: Visualizations of gradient boosting machine. Left: Default setting (100 trees) Right: 5,000
trees.

Note that the default settings for gbm do not produce a very good fit here. In particular, the
default number of trees (100) is too low to capture the relationship between temperature and ozone.
By increasing the number of trees (to 5,000), we obtain a much more reasonable fit.

Hierarchical and random effect models

The ability of visreg to visualizing mixed effect models is hindered by the fact that incorporating
uncertainty about random effects into predictions is difficult from a frequentist perspective and most
R packages for such models do not offer confidence intervals for such estimates. Nevertheless, visreg
is still useful for visualizing the effects of fixed effects in such models using contrast plots, as well as
plotting effects without confidence intervals.

As an illustration, we consider a study involving the protein content of cows’ milk in the weeks
following calving (Diggle et al., 2002). Consider the following random-intercept, random-slope model,
fit using the lme4 package (Bates et al., 2012), which also contains a fixed effect for the type of diet
each cow was fed.

data(Milk, package="nlme")
fit <- lmer(protein ~ Diet + Time + (Time|Cow), Milk)

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=gbm
https://CRAN.R-project.org/package=lme4


CONTRIBUTED RESEARCH ARTICLES 69

In the lme4 package, the predict method does not return standard errors. This means that any
conditional plots constructed by visreg will lack confidence intervals, like those in Figures 13 and
14. This is another example of a situation where a contrast plot is useful: by considering the effect
of changing diet while other terms remain constant, the random effects drop out of the model and
standard errors/confidence intervals are straightforward, as illustrated in Figure 15. The following
code also illustrates how to change graphical options, as there is considerable overplotting of the
partial residuals under the default settings.

visreg(fit, "Diet", type="contrast", ylab=expression(Delta*'Protein'),
points.par=list(col="#55555540", cex=0.25))
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Figure 15: Contrast plot illustrating the fixed effect of diet in the Milk example.

The visreg package can also be used to plot random effects, although as mentioned earlier, the
plots will not include intervals. Below, we provide code to plot the modeled relationship between
protein content and time. Two aspects of the code are worth pointing out. First, note that according to
the object-oriented design of visreg, the predict method supplied by lme4 will used. It has its own
option, re.form, to control how random effects are used in the prediction, and this must be passed
through visreg accordingly. Second, for the sake of space we subset the plot to ten cows rather than all
79. This can be accomplished by returning, then subsetting, the raw visreg object prior to plotting.
Returning the data frames, estimates, confidence intervals, and residuals used in the construction of
its plots like this allows users to write their own extensions and modifications of visreg plots.

v <- visreg(fit, "Time", by="Cow", re.form=~(Time|Cow), plot=FALSE)
subCow <- sample(Milk$Cow, 10)
vv <- subset(v, Cow %in% subCow)
plot(vv, ylab="Protein", layout=c(10,1))
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Figure 16: Subject-specific conditional plots for ten randomly chosen cows from the Milk example
illustrating the change in protein content over time.

Conclusion

Partial residuals and how useful they are in detecting influential observations and departures from
model assumptions depends on the model. Other types of plots, such as added variable plots
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(Atkinson, 1985), are also helpful for visualizing regression models and their fit. We feel that the
approach provided by visreg is reasonable and the best that can be expected from an object-oriented
tool that can be applied generically to a wide variety of models, although we certainly acknowledge
that other types of plots and visualizations may offer useful additional information for certain types of
models.

The visreg package provides a very useful set of tools for simultaneously visualizing the estimated
relationship between an explanatory variables and the outcome, the variability of that estimate, and
the observations from which the estimates derive. These tools have a simple interface and are readily
applied in an object-oriented manner to wide variety of models. We have found the development of
this package to provide a convenient and versatile tool to assist with regression modeling, both for
model exploration and for communicating modeling results.

More information about visreg, illustrating its various options with numerous examples can be
found at http://pbreheny.github.io/visreg.
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fourierin: An R package to compute
Fourier integrals
by Guillermo Basulto-Elias, Alicia Carriquiry, Kris De Brabanter and Daniel J. Nordman

Abstract We present the R package fourierin (Basulto-Elias, 2017) for evaluating functions defined as
Fourier-type integrals over a collection of argument values. The integrals are finitely supported with
integrands involving continuous functions of one or two variables. As an important application, such
Fourier integrals arise in so-called “inversion formulas”, where one seeks to evaluate a probability
density at a series of points from a given characteristic function (or vice versa) through Fourier
transforms. This paper intends to fill a gap in current R software, where tools for repeated evaluation
of functions as Fourier integrals are not directly available. We implement two approaches for such
computations with numerical integration. In particular, if the argument collection for evaluation
corresponds to a regular grid, then an algorithm from Inverarity (2002) may be employed based
on a fast Fourier transform, which creates significant improvements in the speed over a second
approach to numerical Fourier integration (where the latter also applies to cases where the points for
evaluation are not on a grid). We illustrate the package with the computation of probability densities
and characteristic functions through Fourier integrals/transforms, for both univariate and bivariate
examples.

Introduction

Continuous Fourier transforms commonly appear in several subject areas, such as physics and statis-
tics. In probability theory, for example, continuous Fourier transforms are related to the characteristic
function of a distribution and play an important role in evaluating probability densities from charac-
teristic functions (and vice versa) through inversion formulas (cf. Athreya and Lahiri (2006)). Similar
Fourier-type integrations are also commonly required in statistical methods for density estimation,
such as kernel deconvolution (cf. Meister (2009)).

At issue, the Fourier integrals of interest often cannot be solved in elementary terms and typically
require numerical approximations. As a compounding issue, the oscillating nature of the integrands
involved can cause numerical integration recipes to fail without careful consideration. However, Bailey
and Swarztrauber (1994) present a mid-point integration rule in terms of appropriate discrete Fourier
transforms, which can be efficiently computed using the Fast Fourier Transform (FFT). Inverarity
(2002) extended this characterization to the multivariate integral case. These works consequently offer
targeted approaches for numerically approximating types of Fourier integrals of interest (e.g., in the
context of characteristic or density functions).

Because R is one of the most popular programming languages among statisticians, it seems
worthwhile to have general tools available for computing such Fourier integrals in this software
platform. However, we have not found any R package that specifically performs this type of integral in
general, though this integration does intrinsically occur in some statistical procedures. See Stirnemann
et al. (2012) for an application in kernel deconvolution where univariate Fourier integrals are required.
Furthermore, beyond the integral form, the capacity to handle repeated calls for such integrals is
another important consideration. This need arises when computing a function, that is itself defined
by a Fourier integral, over a series of points. Note that this exact aspect occurs when determining a
density function from characteristic function (or vice versa), so that the ability to efficiently compute
Fourier integrals over a collection of arguments is crucial.

The intent of the package fourierin explained here is to help in computing such Fourier-type
integrals within R. The main function of the package serves to calculate Fourier integrals over a range of
potential arguments for evaluation and is also easily adaptable to several definitions of the continuous
Fourier transform and its inverse (cf. Inverarity (2002)). (That is, the definition of a continuous Fourier
transform may change slightly from one context to another, often up to normalizing constants, so
that it becomes reasonable to provide a function that can accommodate any given definition through
scaling adjustments.) If the points for evaluating Fourier integrals are specified on regular grid, then
the package allows use of the FFT for particularly fast numerical integration. However, the package
also allow the user to evaluate such integrals at arbitrary collections of points that need not constitute a
regular grid (though, in this case, the FFT cannot be used and computations naturally become slower).
The latter can be handy in some situations; for example, evaluations at zero can provide moments
of a random variable when computing derivatives of a characteristic function from the probability
density. The heavy computations in fourierin are performed in C++ via the RcppArmadillo package
(cf. Eddelbuettel and Sanderson (2014)).
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The rest of the paper has four sections. We first describe the Fourier integral for evaluation and its
numerical approximation in “Fourier Integrals and Fast Fourier Transform (FFT).” We then illustrate
how package fourierin may be used in univariate and bivariate cases of Fourier integration. In “Speed
Comparison,” we demonstrate the two approaches (FFT-based or not) for computing Fourier integrals,
both in one and two dimensions and at several grid sizes. We provide evidence that substantial
time savings occur when using the FFT-based method for evaluation at points on a grid. Finally, in
“Summary,” we present conclusions and upcoming extensions to the R package.

Fourier integrals and fast Fourier transform

For w = (w1, . . . , wn), t = (t1, . . . , tn) ∈ Rn, define the vector dot product 〈w, t〉 = w1t1 + · · ·+ wntn
and recall the complex exponential function exp{ıx} = cos(x) + ı sin(x), x ∈ R, where ı =

√
−1.

This package aims to compute Fourier integrals at several points simultaneously, which namely
involves computation of the integral[

|s|
(2π)1−r

]n/2 ∫ b1

a1

∫ b2

a2

· · ·
∫ bn

an

f (t) exp {ıs〈w, t〉}dt, (1)

at more than one potential argument w ∈ Rn, where f is a generic continuous n-variate function
that takes real or complex values, for n ∈ {1, 2}, and the above limits of integration are defined by
real values aj < bj for j = 1, . . . , n. Note that s and r in (1) denote real-valued constants, which are
separately included to permit some flexibility in the definition of continuous Fourier transforms to
be used (e.g., s = 1, r = 1). Hence, (1) represents a function of w ∈ Rn, defined by a Fourier integral,
where the intention is to evaluate (1) over a discrete collection of w-values, often defined by a grid
in Rn. For example, if [c1, d1)× · · · × [cn, dn) ⊂ Rn denotes a rectangular region specified by some
real constants cj < dj, j = 1, . . . , n, one may consider evaluating (1) at points w lying on a regular grid
of size m1 ×m2 × · · · ×mn within [c1, d1)× · · · × [cn, dn), say, at points w(j1,...,jn) = (wj1 , . . . , wjn ) for
wjk = ck + jk(dk − ck)/mk with jk ∈ {0, 1, . . . , mk − 1}, k = 1, . . . , n (where mk denotes the number of
grid points in each coordinate dimension). Argument points on a grid are especially effective for fast
approximations of integrals (as in 1), as we discuss in the following.

At given argument w ∈ Rn, we numerically approximate the integral (1) with a discrete sum
using the mid-point rule, whereby the approximation of the j-th slice of the multiple integral involves
lj partitioning rectangles (or equi-spaced subintervals) for j = 1, . . . , n and n ∈ {1, 2}; that is, for
l1, . . . , ln representing a selection of the numbers of approximating nodes to be used in the coordinates
of integration (i.e., a resolution size), the integral (1) is approximated as n

∏
j=1

bj − aj

lj

 · [ |s|
(2π)1−r

]n/2 l1−1

∑
i1=0

l2−1

∑
i2=0
· · ·

ln−1

∑
in=0

f (t(i1,...,in)) exp {ıs〈w, t(i1,...,in)〉}, (2)

with nodes t(i1,...,in) = (ti1 , . . . , tin ) defined by coordinate midpoints tik
= ak +(2ik + 1)/2 · (bk− ak)/lk

for ik ∈ {0, 1, . . . , lk − 1} and k = 1, . . . , n. Note that a large grid size l1 × · · · × ln results in higher
resolution for the integral approximation (2), but at a cost of increased computational effort. On the
other hand, observe that when a regular grid is used, the upper evaluation limits, d1, . . . , dn are not
included in such grid, however, the higher the resolution, the closer we get to these bounds.

To reiterate, the goal is then to evaluate the Fourier integral (1) over some set of argument points
w ∈ Rn by employing the midpoint approximation (2), where the latter involves a l1 × · · · × ln
resolution grid (of midpoint nodes) for n ∈ {1, 2}. It turns out that when the argument points w fall
on a m1 × · · · ×mn-sized regular grid and this grid size matches the size of the approximating node
grid from (2), namely lj = mj for each dimension j = 1, . . . , n, then the sum (2) may be written in
terms of certain discrete Fourier transforms and inverses of discrete Fourier transforms that can be
conveniently computed with a FFT operation. Details of this derivation can be found in Inverarity
(2002). It is well known that using FFT greatly reduces the computational complexity of discrete
Fourier transforms from O(m2) to O(m log m) in the univariate case, where m is the resolution or grid
size. The complexity of computing the multivariate discrete Fourier transform of an n-dimensional
array using the FFT is O(M log M), where M = m1 · · ·mn and mj is the grid/resolution size in the j-th
coordinate direction, j = 1, . . . , n.

The R package fourierin can take advantage of such FFT representations for the fast computation
of Fourier integrals evaluated on a regular grid. The package can also be used to evaluate Fourier
integrals at arbitrary discrete sets of points. The latter becomes important when one wishes to evaluate
the a continuous Fourier transform at only a few specific points (that may not necessarily constitute a
regular grid). We later compare evaluation time of Fourier integrals on a regular grid, both using the
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FFT and without using it in fourierin.

Examples

In this section we present examples to illustrate use of the fourierin package. We begin with a
univariate example which considers how to compute continuous Fourier transforms evaluated on
a regular grid (therefore using the FFT operation) as well as how the computations proceed at three
specified points not on a regular grid (where the FFT is not be used). The second example considers a
two dimensional, or bivariate, case of Fourier integration.

The code that follows shows how the package can be used in univariate cases. The example we
consider is to recover a χ2 density f with five degrees of freedom from its characteristic function φ,
where the underlying functions are given by

f (x) =
1

25/2Γ
(

5
2

) x
5
2−1e−

x
2 and φ(t) = (1− 2ıt)−5/2, (3)

for all x > 0 and t ∈ R. We also show how to use the package on non-regular grids. Specifically, we
generate sample of three points from a χ2 distribution with five degrees of freedom and evaluate the
density in Formula 3 at these three points where the density has been computed using the Fourier
inversion formula approximated at four different resolutions. Results are presented in Table 1.

For illustration, the limits of integration are set from −10 to 10 and we compare several resolutions
(64, 256 or 512) or grid node sizes for numerically performing integration (cf. (2)), recalling that the
higher the resolution, the better the integral approximation. To evaluate the integrals at argument
points on a regular grid, we choose [−3, 20] as an interval for specifying a collection of equi-spaced
points, where the number of such points equals the resolution specified (as needed when using FFT).

## -------------------------------------------------------------------
## Univariate example
## -------------------------------------------------------------------

## Load packages
library(fourierin)
library(dplyr)
library(purrr)
library(ggplot2)

## Set functions
df <- 5
cf <- function(t) (1 - 2i*t)^(-df/2)
dens <- function(x) dchisq(x, df)

## Set resolutions
resolutions <- 2^(6:8)

## Compute integral given the resoltion
recover_f <- function(resol){

## Get grid and density values
out <- fourierin(f = cf, lower_int = -10, upper_int = 10,

lower_eval = -3, upper_eval = 20,
const_adj = -1, freq_adj = -1,
resolution = resol)

## Return in dataframe format
out %>%

as_data_frame() %>%
transmute(

x = w,
values = Re(values),
resolution = resol)

}

## Density approximations
vals <- map_df(resolutions, recover_f)
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## True values
true <- data_frame(x = seq(min(vals$x), max(vals$x), length = 150),

values = dens(x))

univ_plot <-
vals %>%
mutate(resolution = as.character(resolution),

resolution = gsub("64", "064", resolution)) %>%
ggplot(aes(x, values)) +
geom_line(aes(color = resolution)) +
geom_line(data = true, aes(color = "true values"))

univ_plot

## Evaluate in a nonregular grid
set.seed(666)
new_grid <- rchisq(n = 3, df = df)
resolutions <- 2^(6:9)

fourierin(f = cf, lower_int = -10, upper_int = 10,
eval_grid = new_grid,

const_adj = -1, freq_adj = -1,
resolution = 128) %>%

c () %>% Re() %>%
data_frame(x = new_grid, fx = .)

## Function that evaluates the log-density on new_grid at different
## resolutions (i.e., number of points to approximate the integral in
## the Fourier inversion formula).
approximated_fx <- function (resol) {

fourierin(f = cf, lower_int = -10, upper_int = 12,
eval_grid = new_grid,
const_adj = -1, freq_adj = -1,
resolution = resol) %>%

c() %>% Re() %>%
{data_frame(x = new_grid,

fx = dens(new_grid),
diffs = abs(. - fx),
resolution = resol)}

}

## Generate table
tab <-

map_df(resolutions, approximated_fx) %>%
arrange(x) %>%
mutate(diffs = round(diffs, 7)) %>%
rename('f(x)' = fx,

'absolute difference' = diffs)

tab

Observe that the first call of the fourierin function above has the default argument use_fft =
TRUE. Therefore, this computation uses the the FFT representation described in Inverarity (2002) for
regular grids, which is substantially fast (Figure 5, as described later, provides timing comparisons
without the FFT for contrast). Also note that, when a regular evaluation grid is used, fourierin returns
a list with both the Fourier integral values and the evaluation grid. Figure 1 shows the resulting plot
generated. A low resolution (64) for numerical integration has been included in order to observe
differences between the true density and its recovered version using Fourier integrals.

At the bottom of the code above, we also show how fourierin() works when a non-regular
“evaluation grid” is provided. Observe that, in this case, one directly specifies separate points for
evaluation of the integral in addition to separately specifying a resolution level for integration. This
aspect is unlike the evaluation case on a regular grid. Consequently, only the Fourier integral values
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x f (x) absolute difference resolution

3.0585883 0.1541368 0.0002072 64
0.0000476 128
0.0000472 256
0.0000471 512

6.4144242 0.0874281 0.0000780 64
0.0000155 128
0.0000148 256
0.0000147 512

11.7262677 0.0151776 0.0000097 64
0.0000025 128
0.0000022 256
0.0000022 512

Table 1: Absolute differences of true density values at three random points and density values at these
same three points obtained using the Fourier inversion formula approximated at different resolutions.

0.00

0.05

0.10

0.15

0 5 10 15 20

x

va
lu

es

resolution

064

128

256

true values

Figure 1: Example of fourierin() function for univariate function at resolution 64. Recovering a χ2

density from its characteristic function. See Equation 3.

are returned, which is also unlike the regular grid case (where the evaluation grid is returned with
corresponding integrals in a list). Note that the function f from (1), when having a real-valued
argument, should be able to be evaluated at vectors in R.

In a second example, to illustrate how the fourierin() function works for bivariate functions, we
use a bivariate normal density f and find its characteristic function φ. In particular, we have these
underlying functions as

f (x) =
1√

2π|Σ|
exp

[
−1

2
(x− µ)′Σ−1(x− µ)

]
and φ(t) = exp

(
ıx′µ− 1

2
t′Σt

)
, (4)

for all t, x ∈ R2, with µ =

[
−1
1

]
and Σ =

[
3 −1
−1 3

]
.

Below is the code for this bivariate case using a regular evaluation grid, where the output is a
complex matrix whose components are Fourier integrals corresponding to the gridded set of bivariate
arguments. As illustration, the limits of integration are set from (−8,−6) to (6, 8) (a square) and we
consider a resolution 128, where the range [−4, 4]× [−4, 4] is also chosen to define a collection of
evaluation points on a grid, where the number of such points again equals the resolution specified
(i.e., for applying FFT).

## -------------------------------------------------------------------
## Bivariate example
## -------------------------------------------------------------------

## Load packages
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library(fourierin)
library(tidyr)
library(dplyr)
library(purrr)
library(lattice)
library(ggplot2)

## Set functions to be tested with their corresponding parameters.
mu <- c(-1, 1)
sig <- matrix(c(3, -1, -1, 2), 2, 2)

## Multivariate normal density, x is n x d
f <- function(x) {

## Auxiliar values
d <- ncol(x)
z <- sweep(x, 2, mu, "-")
## Get numerator and denominator of normal density
num <- exp(-0.5*rowSums(z * (z %*% solve(sig))))
denom <- sqrt((2*pi)^d*det(sig))
return(num/denom)

}

## Characteristic function, s is n x d
phi <- function (s) {

complex(modulus = exp(-0.5*rowSums(s*(s %*% sig))),
argument = s %*% mu)

}

## Evaluate characteristic function for a given resolution.
eval <- fourierin(f,

lower_int = c(-8, -6), upper_int = c(6, 8),
lower_eval = c(-4, -4), upper_eval = c(4, 4),
const_adj = 1, freq_adj = 1,
resolution = 2*c(64, 64),
use_fft = T)

## Evaluate true and approximated values of Fourier integral
dat <- eval %>%

with(crossing(y = w2, x = w1) %>%
mutate(approximated = c(values))) %>%

mutate(true = phi(matrix(c(x, y), ncol = 2)),
difference = approximated - true) %>%

gather(value, z, -x, -y) %>%
mutate(real = Re(z), imaginary = Im(z)) %>%
select(-z) %>%
gather(part, z, -x, -y, -value)

## Surface plot
wireframe(z ~ x*y | value*part, data = dat,

scales =
list(arrows=FALSE, cex= 0.45,

col = "black", font = 3, tck = 1),
screen = list(z = 90, x = -74),
colorkey = FALSE,
shade=TRUE,
light.source= c(0,10,10),
shade.colors = function(irr, ref,

height, w = 0.4)
grey(w*irr + (1 - w)*(1 - (1 - ref)^0.4)),

aspect = c(1, 0.65))

## Contours of values
biv_example1 <-
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dat %>%
filter(value != "difference") %>%
ggplot(aes(x, y, z = z)) +
geom_tile(aes(fill = z)) +
facet_grid(part ~ value) +
scale_fill_distiller(palette = "Reds")

biv_example1

## Contour of differences
biv_example2 <-

dat %>%
filter(value == "difference") %>%
ggplot(aes(x, y, z = z)) +
geom_tile(aes(fill = z)) +
facet_grid(part ~ value) +
scale_fill_distiller(palette = "Spectral")

biv_example2

The result of fourierin() was stored above in eval, which is a list with three elements: two
vectors with the corresponding evaluation grid values in each coordinate direction and a complex
matrix containing the Fourier integral values. If we do not wish to evaluate the Fourier integrals on a
regular grid and instead wish to evaluate these at, say l bivariate points, then we must pass a l × 2
matrix in the argument w and the function will return a vector of size l with the Fourier integrals,
rather than a list. In the bivariate situation here, the function f must be able to receive a two-column
matrix with m rows, where m is the number of points where the Fourier integral will be evaluated.

Corresponding to this bivariate example, we have generated three plots to compare the approx-
imation from Fourier integrals to the underlying truth (i.e., compare the approximated and true
characteristic functions of the bivariate normal distribution). In Figure 2, we present the surface plots
of the approximated and the true values, as well as their differences for both the real and imaginary
parts. One observes that differences are small, indicating the adequacy of the numerical integration.

For a different perspective of the resulting Fourier integration, Figure 3 presents a contour plot
showing the approximated and true values of the bivariate normal characteristic function, for both
real and imaginary parts. We show a tile plot of the differences in Figure 4. Observe that the range of
differences in Figure 4 is relatively much smaller than the values in Figure 3.

Speed comparison

Through a small numerical study, here we compare the differences in execution times using fourierin()
for integration at points on a regular grid, both with or without FFT steps, considering univariate
and bivariate Fourier integrals. Figure 5 shows timing results for a univariate example of the integral
in (1) evaluated on a grid, while Figure 6 presents timing results for a bivariate example. Note that
the reported time units differ between these figures, as the bivariate case naturally requires more
time. These figures provide evidence that, for evaluating integrals on a regular grid, the FFT option in
fourierin() creates large advantages in time.

The code that was used to generate Figure 5 and 6 is below.

## -------------------------------------------------------------------
## Univariate speed test
## -------------------------------------------------------------------

library(fourierin)
library(dplyr)
library(purrr)
library(ggplot2)
library(microbenchmark)

## Test speed at several resolutions
resolution <- 2^(3:8)

## Function to be tested
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Figure 2: Example of fourierin function for univariate function at resolution 128× 128: Obtaining
the characteristic function of a bivariate normal distribution from its density. See Equation 4. This
panel contains every combination of approximation-true-difference with real-imaginary parts.

myfnc <- function(t) exp(-t^2/2)

## Aux. function
compute_times <- function(resol){

out <-
microbenchmark(

fourierin_1d(f = myfnc, -5, 5, -3, 3, -1, -1, resol),
fourierin_1d(f = myfnc, -5, 5, -3, 3, -1, -1, resol,

use_fft = FALSE),
times = 5) %>%

as.data.frame()
## Rename levels
levels(out$expr) <- c("yes", "no")
## Obtain median of time.
out %>%

group_by(expr) %>%
summarize(time = median(time*1e-6),

resolution = resol) %>%
rename(FFT = expr)

}

speed1 <- resolution %>%
map_df(compute_times) %>%
mutate(resolution = as.factor(resolution)) %>%
ggplot(aes(resolution, log(time), color = FFT)) +
geom_point(size = 2, aes(shape = FFT)) +
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Figure 3: Example of fourierin function for univariate function at resolution 128× 128: Obtaining
the characteristic function of a bivariate normal distribution from its density. See Equation 4. Each
combination the approximated and true values are shown for both the real and imaginary parts.

geom_line(aes(linetype = FFT, group = FFT)) +
ylab("time (in log-milliseconds)")

speed1

## -------------------------------------------------------------------
## Bivariate test
## -------------------------------------------------------------------

## Load packages
library(fourierin)
library(dplyr)
library(purrr)
library(ggplot2)
library(microbenchmark)

## Test speed at several resolutions
resolution <- 2^(3:7)

## Bivariate function to be tested
myfnc <- function(x) dnorm(x[, 1])*dnorm(x[, 2])

## Aux. function
compute_times <- function(resol){

resol <- rep(resol, 2)
out <-

microbenchmark(
fourierin(myfnc,

lower_int = c(-8, -6), upper_int = c(6, 8),
lower_eval = c(-4, -4), upper_eval = c(4, 4),
const_adj = 1, freq_adj = 1,
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Figure 4: Example of fourierin function for univariate function at resolution 128× 128: Obtaining
the characteristic function of a bivariate normal distribution from its density. See Equation 4. This plot
show the difference between the approximated and true values for the real and imaginary parts.

resolution = resol),
fourierin(myfnc,

lower_int = c(-8, -6), upper_int = c(6, 8),
lower_eval = c(-4, -4), upper_eval = c(4, 4),
const_adj = 1, freq_adj = 1,
resolution = resol, use_fft = FALSE),

times = 3) %>%
as.data.frame()

## Rename levels
levels(out$expr) <- c("yes", "no")
## Obtain median of time.
out %>%

group_by(expr) %>%
summarize(time = median(time*1e-9),

resolution = resol[1]) %>%
rename(FFT = expr)

}

## Values
comparison <-

resolution %>%
map_df(compute_times)

fctr_order <-
unique(comparison$resolution) %>%
paste(., ., sep = "x")

## Plot
speed2 <- comparison %>%

mutate(resolution = paste(resolution, resolution, sep = "x"),
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Figure 5: Example of a univariate Fourier integral over grids of several (power of two) sizes. Specifi-
cally, the standard normal density is being recovered using the Fourier inversion formula. Time is in
log-milliseconds. The Fourier integral has been applied five times for every resolution and each dot
represents the mean for the corresponding grid size and method. Observe that both, x and y axis are
in logarithmic scale.

resolution = ordered(resolution, levels = fctr_order)) %>%
ggplot(aes(resolution, log(time), color = FFT)) +
geom_point(size = 2, aes(shape = FFT)) +
geom_line(aes(linetype = FFT, group = FFT)) +
ylab("time (in log-seconds)")

speed2

Summary

Continuous Fourier integrals/transforms are useful in statistics for computation of probability densi-
ties from characteristic functions, as well as the reverse, when describing probability structure; see
the “Examples” section for some demonstrations. The usefulness and potential application of Fourier
integrals, however, also extends to other contexts of physics and mathematics, as well as to statistical
inference (e.g., types of density estimation). For this reason, we have developed the fourierin package
as a tool for computing Fourier integrals over collections of evaluation points, where repeat evaluation
steps and often complicated numerical integrations are involved. When evaluation points fall on a
regular grid, fourierin allows use of a Fast Fourier Transform as a key ingredient for rapid numerical
approximation of Fourier-type integrals.

In “Speed Comparison,” we presented evidence of the gain in time when using this fast imple-
mentation of fourierin() on regular grids, while we also illustrated the versatility of fourierin in
“Examples” section. At present (version 0.2.1), the fourierin package performs univariate and bivariate
Fourier integration. An extension of the package to address higher dimensional integration will be
included in future versions.
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Discrete Time Markov Chains with R
by Giorgio Alfredo Spedicato

Abstract The markovchain package aims to provide S4 classes and methods to easily handle Discrete
Time Markov Chains (DTMCs), filling the gap with what is currently available in the CRAN repository.
In this work, I provide an exhaustive description of the main functions included in the package, as
well as hands-on examples.

Introduction

DTMCs are a notable class of stochastic processes. Although their basic theory is not overly complex,
they are extremely effective to model categorical data sequences (Ching et al., 2008). To illustrate, no-
table applications can be found in linguistic (see Markov’s original paper Markov (1907)), information
theory (Google original algorithm is based on Markov Chains theory, Lawrence Page et al. (1999)),
medicine (transition across HIV severity states, Craig and Sendi (2002)), economics and sociology
(Jones (1997) shows an application of Markov Chains to model social mobility).

The markovchain package (Spedicato, Giorgio Alfredo, 2016) provides an efficient tool to create,
manage and analyse Markov Chains (MCs). Some of the main features include the possibility to:
validate the input transition matrix, plot the transition matrix as a graph diagram, perform structural
analysis of DTMCs (e.g. classification of transition matrices and states, analysis of the stationary
distribution, etc . . . ), perform statistical inference (such as fitting transition matrices from various
input data, simulating stochastic processes trajectories from a given DTMC, etc..). The author believes
that no R package provides a unified infrastructure to easily manage DTMCs as markovchain does at
the time this paper is being drafted.

The package targets data scientists using DTMC, Academia members, supporting faculty instruc-
tors, as well as students of undergraduate courses on Stochastic Processes.

The paper will be organized as follows: Section 14.2 gives a brief overview on R packages and
alternative software that provide similar functionalities, Section 14.3 reviews DTMC basic theory, Sec-
tion 14.4 discusses the package design and structure, Section 14.5 shows how to create and manipulate
homogeneous DTMCs, Section 14.6 and Section 14.7 respectively present the functions created to
perform structural analysis, and statistical inference on DTMCs. A brief overview of the functionalities
written to deal with non - homogeneous discrete dime Markov chains (NHDTMCs) is provided in
Section 14.8. A discussion on numerical reliability and computational performance is provided in
Section 14.9. Finally, Section 14.10 draws final conclusions and briefly discusses future potential
developments of the package.

Analysis of existing DTMC-related software

As reviewed later in more details, a DTMC is defined by a stochastic matrix known as transition matrix
(TM), which is a square matrix satisfying Equation 1.{

Pij ∈ [0, 1] ∀i, j
∑i Pij = 1 (1)

Although defining a stochastic matrix is trivial in any mathematical or statistical software, a DTMC
dedicated infrastructure can provide object oriented programmed methods to verify the validity of the
input data (i.e. if the input matrix is a stochastic one) , as well as to perform structural analysis on
DTMC objects.

Various packages mention MCs - related models in the CRAN repository, whereby a few of them
will be now reviewed. The clickstream package (Scholz, 2016), on CRAN since 2014, aims to model
websites click stream using higher order Markov Chains. It provides a MarkovChain S4 class that is
similar to the markovchain class. Further, DTMCPack (Nicholson, William, 2013) and MTCM (Bessi,
Alessandro, 2015) also work with DTMCs but provide even more limited functions: the first one
focuses on creating simulations from a given DTMC, whilst the second contains only one function for
estimating the underlying transition matrix for a given categorical sequence. Moreover, none of them
appears to have been updated since 2015. The coverage of functionalities provided by markovchain
package for analysing DTMCs appears to be more complete than the above mentioned packages, since
none of them provides methods for importing or coercing transition matrices from other objects, such
as R matrices or data.frames. Furthermore, markovchain is the only package providing a quick
graph plotting facility for DTMC objects. The same applies when considering the functionalities used
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to perform structural analysis of transition matrices and to fit DTMCs from various kind of input data.
More interestingly, the FuzzyStatProb package (Pablo J. Villacorta and José L. Verdegay, 2016) gives
an alternative approach for estimating the parameters of DTMCs using "fuzzy logic".

This review voluntarily omits discussing packages that are not specifically focused on DTMC.
Nonetheless, the depmixS4 (Visser and Speekenbrink, 2010) and the HMM (Himmelmann, 2010)
packages deal with Hidden Markov Models (HMMs). In addition, the number of R packages focused
on the estimation of statistical models using the Markov Chain Monte Carlo simulation approach
is sensibly bigger. Finally, the msm (Jackson, 2011), heemod (Antoine Filipovi et al., 2017) and the
TPmsm packages (Artur Araújo et al., 2014) focus on health applications of multi - state analysis using
different kinds of models, including Markov-related ones among them.

Finally, among other well known software used in Mathematics and Statistics, only Mathematica
(Wolfram Research, Inc., 2013) provides routines specifically written to deal with Markov processes
at the author’s knowledge. Nevertheless, the analysis of DTMCs could be easily handled within the
Matlab programming language (MATLAB, 2017) due to its well known linear algebra capabilities.

Review of underlying theory

In this section a brief review of the theory of DTMCs is presented. Readers willing to dive deeper can
inspect Cassandras (1993) and Grinstead and Snell (2012).

A DTMC is a stochastic process whose domain is a discrete set of states, {s1, s2, . . . , sk}. The
chain starts in a generic state at time zero and moves from a state to another by steps. Let pij be the
probability that a chain currently in state si moves to state sj at the next step. The key characteristic
of DTMC processes is that pij does not depend upon the previous state in the chain. The probability
pij for a (finite) DTMC is defined by a transition matrix previously introduced (see Equation 1). It is
also possible to define the TM by column, under the constraint that the sum of the elements in each
column is 1.

To illustrate, a few toy - examples on transition matrices are now presented; the "Land of Oz"
weather Matrix, Kemeny et al. (1974). Equation 2 shows the transition probability between (R)ainy,
(N)ice and (S)now weathers. 

R N S
R 0.5 0.25 0.25
N 0.5 0 0.5
S 0.25 0.25 0.5

 (2)

Further, the Mathematica Matrix 3, taken from the Mathematica 9 Computer Algebra System
manual (Wolfram Research, Inc., 2013), that will be used when discussing the analysis the structural
proprieties of DTMCs, is as follows:

A B C D
A 0.5 0.5 0 0
B 0.5 0.5 0 0
C 0.25 0.25 0.25 0.25
D 0 0 0 1

 (3)

Simple operations on TMs allow to understand structural proprieties of DTMCs. For example, the
n− th power of P is a matrix whose entries represent the probabilities that a DTMC in state si at time t
will be in state sj at time t + n. In particular, if ut is the probability vector for time t (that is, a vector
whose j− th entries represent the probability that the chain will be in the j− th state at time t), then
the distribution of the chain at time t + n is given by un = u ∗ Pn. Main properties of Markov chains
are now presented.

A state si is reachable from state sj if ∃n→ pn
ij > 0. If the inverse is also true then si and sj are said

to communicate . For each MC, there always exists a unique decomposition of the state space into a
sequence of disjoint subsets in which all the states within each subset communicate. Each subset is
known as a communicating class of the MC. It is possible to link this decomposition to graph theory,
since the communicating classes represent the strongly connected components of the graph underlying
the transition matrix (Jarvis and Shier, 1999).

A state sj of a DTMC is said to be absorbing if it is impossible to leave it, meaning pjj = 1. An
absorbing Markov chain is a chain that contains at least one absorbing state which can be reached, not
necessarily in a single step. Non - absorbing states of an absorbing MC are defined as transient states .
In addition, states that can be visited more than once by the MC are known as recurrent states .

If a DTMC contains r ≥ 1 absorbing states, it is possible to re-arrange their order by separating
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transient and absorbing states such that the t transient states come before the r absorbing ones. Such
re-arranged matrix is said to be in canonical form (see Equation 4), where its composition can be
represented by sub - matrices. (

Qt,t Rt,r
0r,t Ir,r

)
(4)

Such matrices are: Q (a t-square sub - matrix containing the transition probabilities across transient
states), R (a nonzero t-by-r matrix containing transition probabilities from non-absorbing to absorbing
states), 0 ( an r-by-t zero matrix), and Ir (an r-by-r identity matrix). It is possible to use these matrices
to calculate various structural proprieties of the DTMC. Since limn→∞ Qn = 0, it can be shown that in
every absorbing matrix the probability to be eventually absorbed is 1, regardless of the state where the
MC is initiated.

Further, in Equation 5 the fundamental matrix is presented, where the generic nij entry expresses
the expected number of times the process will transit in state sj, given that it started in state si. Also,
the i-th entry of vector t = N ∗ 1̄, being 1̄ a t-sized vector of ones, expresses the expected number of
steps before an absorbing DTMC, started in state si, is absorbed. The bij entries of matrix B = N ∗ R
are the probabilities that a DTMC started in state si will eventually be absorbed in state sj. Finally, the
probability of visiting the transient state j when starting from the transient state i is the hij entry of the
matrix H = (N − It) ∗ N−1

dg , being dg the diagonal operator.

N = (I −Q)− 1 = I + ∑
i=0,1,...,∞

Qi (5)

A DTMC is said to be ergodic if there exist a number N such that it is possible to reach every state
in at most N steps. If Pn > 0 for some n, then P is a regular DTMC.

Fixed row vectors w̄, also known as steady state vectors , are vectors such that w̄P = w̄. Mathemat-
ically, they correspond to eigenvectors associated to unitary eigenvalues of the TM. It can be shown
that limn→∞ v ∗ Pn = w and that limn→∞ Pn = W, where v is a generic stochastic vector and w is a
matrix where all rows are w̄.

The mean first passage time mij is the expected the number of steps needed to reach state sj starting
from state si, where mii = 0 by convention. For ergodic MCs, ri is the mean recurrence time, that is the
expected number of steps to return to si from si. It is possible to prove that ri =

1
wi

, where wi is the i-th
entry of w̄. Further, let D be a diagonal matrix, in which the diagonal elements come from ri, and let C
be a matrix filled with ones. It is then possible to get the mean first passage matrix M from Equation 6.

(I − P) = C−M (6)

Let Z = (I − P + M)−1 be the fundamental matrix for an ergodic MC. It is possible to write mij as
a function of Z and w̄, as Equation 7 shows.

mij =
zjj − zij

wj
(7)

A further topic in structural analysis of irreducible DTMCs is periodicity. The period of a state si,
denoted as d (i), is the greatest common divisor of n for which pn

ii > 0. If the period is 1, the state is
aperiodic, while if the period is greater than 2, the state is periodic; all states in the same class share
the same period.

Given a generic DTMC, it is possible to simulate stochastic trajectories following the underlying
MC from the TM. Given an initial state s(t) = j, the s(t + 1) state is sampled from the multinomial
distribution whose probabilities are expressed by the j-th row. The sampled state indicates from which
row the probabilities to sample s(t + 2) are taken from. Also, given a sample sequence, it is possible to
estimate the TM of the underlying DTMC. Equation 8 shows the maximum likelihood estimator (MLE)

of the TM pij entry, being the nij elements the number of sequences
(

Xt = si, Xt+1 = sj

)
counted in

the sample, that is:

p̂MLE
ij =

nij
k
∑

u=1
niu

. (8)

Equation 10 shows asymptotic confidence intervals for pij. The bootstrap approach allows to
define non - parametric ones.
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LowerEndpointij = pij − 1.96 ∗ SEij (9)

UpperEndpointij = pij + 1.96 ∗ SEij (10)

The mode of the Xt+1 conditional distribution given Xt = sj represents the prediction from a given
DTMC and the current chain state Xt = sj.

In conclusion, the markovchain package allows to perform statistical analysis on NHDTMCs, in
the special case where they can be treated as sequential lists of DTMCs.

Implementation design and details

The markovchain package has been originally written in "native" R. Most functions have been therefore
ported in Rcpp (Eddelbuettel, Dirk, 2013) since 2015, yielding sensible improvements in computational
time. Other dependencies of markovchain are: igraph Csardi, Gabor and Nepusz, Tamas (2006),
matlab Roebuck (2014), Matrix Bates and Maechler (2016) and expm Goulet et al. (2015) ( for operation
on matrices ), and the method package for defining S4 classes.

Homogeneous DTMCs are defined by a dedicated S4 class, "markovchain". Such class is defined
by the following slots:

1. states: a character vector, listing the states for which transition probabilities are defined.

2. byrow: a logical variable, indicating whether transition probabilities are shown by row or by
column.

3. transitionMatrix: a matrix variable defining the TM.

4. name: an optional character variable to name the DTMC.

A "markovchain" S4 class has been designed based on Chambers, J.M. (2008) suggestions. For
example, a S4 setValidity method checks the coherence of any newly created markovchain object, by
verifying that either the rows or columns of the transition matrix sum to one, and that all elements are
bounded between 0 and 1.
Another S4 class,"markovchainList", has been created for handling non - homogeneous DTMCs.
Finally, the package provides functions and S4 to analyse continuous MCs, as well as higher order
MCs, although their discussion is beyond the scope of this paper.

Three vignettes documents the markovchain package. The first one broadly describes the func-
tionalities of the package and it also presents real - world applications of DTMCs using the package.
The second one, written using knit and rmarkdown, is a beamer presentation that quickly introduces
the key functionalities of the package. The third one presents experimental functions for higher order
and multivariate MCs. Finally, the www.github.com/spedygiorgio/markovchain GitHub page hosts
the package’s wiki as well as its development version.

Creating and manipulating markovchain objects

The package is loaded within R as follows:

library("markovchain")

Creating a markovchain object is easy, and can be done with provided code.

#using "long" approach for mcWeather

weatherStates <- c("rainy", "nice", "sunny")
weatherMatrix <- matrix(data = c(0.50, 0.25, 0.25,
0.5, 0.0, 0.5, 0.25, 0.25, 0.5), byrow = TRUE,
nrow = 3,dimnames = list(weatherStates, weatherStates))
mcWeather <- new("markovchain", states = weatherStates,
byrow = TRUE, transitionMatrix = weatherMatrix,
name = "Weather")

#using "quick" approach on Mathematica's DTMC

mathematicaMatr <- matrix(c(1/2, 1/2, 0, 0, 1/2, 1/2,

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=igraph
https://CRAN.R-project.org/package=matlab
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=expm
https://CRAN.R-project.org/package=method
www.github.com/spedygiorgio/markovchain


CONTRIBUTED RESEARCH ARTICLES 88

0, 0, 1/4, 1/4, 1/4, 1/4, 0, 0, 0, 1),byrow=TRUE, nrow=4)
mathematicaMc<-as(mathematicaMatr, "markovchain")

#both are markovchain objects
is(mcWeather,"markovchain")
[1] TRUE
is(mathematicaMc,"markovchain")
[1] TRUE

Commenting on the code snippet, the first part shows the “standard” approach to create a
markovchain, by calling the new S4 method, while the second part shows the “quick” method, by
coercing a matrix object into a markovchain one.

Specific methods allow to print and plot markovchain objects:

plot(mcWeather, main="Weather Markov Chain")

Weather Markov Chain

0.5

0.25

0.25

0.5

0.5

0.25

0.25

rainy

nice

sunny

Figure 1: Plotting a markovchain object.

In particular, the plot method makes use of igraph package to draw the TM by default. It is
possible to modify the plot either by passing further parameters via ... or by choosing another
plotting devices, as further specified in the package vignette.

Algebraic operations have been defined in "markovchain" classes, as of the following example:

initialState <- c(0, 1, 0)

#multiplication

after2Days <- initialState * (mcWeather * mcWeather)
after2Days
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rainy nice sunny
[1,] 0.375 0.25 0.375

in which multiplications by vectors and exponentiation are intuitively performed, making easy to
find the distribution of states at the n-th step.

A power operator also exists, ^, and it is based on the expm package (Goulet et al., 2015), providing
efficient matrix exponentiation.

#after two days (by square power)

mcWeather^2

Weather^2
A 3 - dimensional discrete MC defined by the following states:
rainy, nice, sunny
The transition matrix (by rows) is defined as follows:

rainy nice sunny
rainy 0.4375 0.1875 0.3750
nice 0.3750 0.2500 0.3750
sunny 0.3750 0.1875 0.437

Finally, logical operators have been defined as well.

#logical equality and inequality
mcWeather==mcWeather
[1] TRUE
mcWeather!=mathematicaMc
[1] TRUE

Both the algebraic and logical operators have been defined by overriding standard R operators,
providing a more concise and "natural" code, which can bring the advantage of being more appealing
to a novice user, by executing certain operations on TM in an efficient way. Such approach has been
stressed in both the class help file and the package vignette code to make the final user fully aware of
any potential drawbacks of such choice.

Various convenience S4 methods have been defined to easily manipulate and manage markovchain
objects. In the following examples, some of the implemented methods in the "markovchain" class are
presented, allowing to: get and set names, return the MC dimension, transpose the transition matrix,
and directly access the transition probabilities.

#some markovchain specific methods

#naming
name(mcWeather)
[1] "Weather"

name(mathematicaMc) <- "Mathematica Markov Chain"
#list of defined states
states(mcWeather)
[1] "rainy" "nice" "sunny"

#the dimension
dim(mcWeather)
[1] 3

#transpose operator
t(mcWeather)

Unnamed Markov chain
A 3 - dimensional discrete Markov Chain defined by the following states:
rainy, nice, sunny
The transition matrix (by cols) is defined as follows:

rainy nice sunny
rainy 0.50 0.5 0.25
nice 0.25 0.0 0.25
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sunny 0.25 0.5 0.50

#two ways to get transition probabilities
transitionProbability(mcWeather, "nice", "sunny")
[1] 0.5
mcWeather[2,3]
[1] 0.5

Finally, coerce methods allow to both import and export markovchain classes. Following, a brief
example on how to transform a markovchain object into a data.frame one.

#exporting to data.frame and matrix

as(mcWeather, "data.frame")
t0 t1 prob

1 rainy rainy 0.50
2 rainy nice 0.25
3 rainy sunny 0.25
4 nice rainy 0.50
5 nice nice 0.00
6 nice sunny 0.50
7 sunny rainy 0.25
8 sunny nice 0.25
9 sunny sunny 0.50

Structural properties of finite Markov chains

The markovchain package embeds functions to analyse the structural proprieties of DTMC. For exam-
ple, it is possible to find the stationary distribution, as well as classify the states. Feres, Renaldo (2007)
and Montgomery, James (2009) provide a full description of the algorithms underlying these functions,
whilst a more theoretical perspective can be found in Brémaud, Pierre (1999). The Mathematica MC
will be used to illustrate such features.

The summary method provides an overview of the structural properties of the DTMC process
underlying the markovchain object.

#plotting and summarizing
plot(mathematicaMc)

summary(mathematicaMc)
Mathematica Markov Chain Markov chain that is composed by:
Closed classes:
s1 s2
s4
Recurrent classes:
{s1,s2},{s4}
Transient classes:
{s3}
The Markov chain is not irreducible
The absorbing states are: s4

In the above example, closed and transient classes are identified, irreducibility checks are executed,
and a list of absorbing states is returned. Further, it is known that a finite MC has at least one
steady-state distribution, and the steadyStates method can be used to obtain it. To illustrate, for the
mcWeather matrix there exist a one - dimensional solution, since the underlying TM is irreducible. A
higher dimensional solution is given when the irreducibility property does not hold, as of the second
example.

#probability with DTMC: stationary distribution
## when the TM is irreducibile
steadyStates(mcWeather)

rainy nice sunny
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Figure 2: Plot of the Mathematica MC DTMC process.

[1,] 0.4 0.2 0.4
## when reducibility applies
steadyStates(mathematicaMc)

s1 s2 s3 s4
[1,] 0.5 0.5 0 0
[2,] 0.0 0.0 0 1

Specific methods and functions return transient and absorbing states, and check whether any state
is accessible from another. Recurrent and communicating classes can be easily identified as well.

#probability with DTMC: classifying states

transientStates(mathematicaMc)
[1] "s3"

absorbingStates(mathematicaMc)
[1] "s4"

is.accessible(mathematicaMc, from = "s1",to="s4")
[1] FALSE

#identifying recurrent and transient classes

recurrentClasses(mathematicaMc)
[[1]]
[1] "s1" "s2"

[[2]]
[1] "s4"

communicatingClasses(mathematicaMc)
[[1]]
[1] "s1" "s2"

[[2]]
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[1] "s3"

[[3]]
[1] "s4"

The communicating classes are the strongly connected components of the graph underlying the
DTMC. It is possible to convert a markovchain object into an igraph one, in order to use igraph’s
package clustering function to identify the strongly connected components as the following example
displays:

library(igraph)
#converting to igraph

mathematica.igraph<-as(mathematicaMc,"igraph")

#finding and formatting the clusters
SCC <- clusters(mathematica.igraph, mode="strong")
V(mathematica.igraph)$color <- rainbow(SCC$no)[SCC$membership]

#plotting
plot(mathematica.igraph, mark.groups = split(1:vcount(mathematica.igraph), SCC$membership),
main="Communicating classes - strongly connected components")

Communicating classes − strongly connected components

s1

s2

s3

s4

Figure 3: The communicating classes are the strongly connected components of the graph underlying
the DTMC.

The three distinct clusters identified with different colors by the igraph package match with
the partition of the transition matrix into communicating classes given by markovchain package’s
communicatingClasses function.

We now illustrate the Canonical Form and the Fundamental Matrix concepts using another
example taken from classical theory: The Flipping Coin problem. Specifically, consider repeatedly
flipping a fair coin until the sequence (heads, tails, heads) appears; it is possible to model such process
using a DTMC with four states: “E” empty initial sequence, “H” head, “HT” head followed by tail,
“HTH” head followed by tail and head.

# Flipping Coin Problem
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## defining the matrix

flippingMatr <- matrix(0, nrow=4, ncol=4)
flippingMatr[1,1:2] <- 0.5
flippingMatr[2,2:3] <- 0.5
flippingMatr[3,c(1,4)] <- 0.5
flippingMatr[4,4] <- 1
rownames(flippingMatr) <-
colnames(flippingMatr) <- c("E","H","HT","HTH")

## creating the corresponding DTMC
flippingMc <- as(flippingMatr,"markovchain")

The following function returns the Q, R, and I matrices by properly combining functions and
methods from the markovchain package.

#function to extract matrices

extractMatrices <- function(mcObj) {

require(matlab)
mcObj <- canonicForm(object = mcObj)

#get the indices of transient and absorbing

transIdx <- which(states(mcObj) %in% transientStates(mcObj))
absIdx <- which(states(mcObj) %in% absorbingStates(mcObj))

#get the Q, R and I matrices

Q <- as.matrix(mcObj@transitionMatrix[transIdx,transIdx])
R <- as.matrix(mcObj@transitionMatrix[transIdx,absIdx])
I <- as.matrix(mcObj@transitionMatrix[absIdx, absIdx])

#get the fundamental matrix

N <- solve(eye(size(Q)) - Q)

#computing final absorbion probabilities

NR <- N %*% R

#return
out <- list(
canonicalForm = mcObj,
Q = Q,
R = R,
I = I,
N=N,
NR=NR

)
return(out)

}

The expected number of visits to transient state j starting from state i can be found in the corre-
sponding entries of the fundamental matrix N = (It −Q)−1. Therefore, the fundamental matrix for
the above DTMC is:

#decompose the matrix

flipping.Dec <- extractMatrices(mcObj = flippingMc)
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flipping.Fund <- flipping.Dec$N

#showing the fundamental matrix

flipping.Fund

E H HT
E 4 4 2
H 2 4 2
HT 2 2 2

#expected number of steps before being absorbed

flipping.Fund%*%c(1,1,1)

[,1]
E 10
H 8
HT 6

#calculating B matrix
#the probability to being absorbed in HTH state as a function of the starting transient state

flipping.B <- flipping.Fund%*%flipping.Dec$R
flipping.B

[,1]
E 1
H 1
HT 1

#calculating H, probability of visiting transient state j starting in transient state i

flipping.H <- (flipping.Fund - matlab::eye(ncol(flipping.Fund))) * solve(diag(diag(flipping.Fund)))
flipping.H

E H HT
E 0.75 0.00 0.0
H 0.00 0.75 0.0
HT 0.00 0.00 0.5

The calculated fundamental matrix shows that the number of times the chain is in state HT, starting
from state H is two. Also, the N ∗ 1̄ vector indicates that if the chains starts in HT, the expected number
of steps before being absorbed is eight. Since there is only one absorbing state, HTH, the probability
to be absorbed in HTH is one, whichever the starting transient state is. Also, matrix H shows that the
probability that a chain in state H will eventually visit again state H is 0.75.

It is possible to compute the distribution of first passage time, as the code that follows shows:

#first passage time

fptMc <- new("markovchain", transitionMatrix=matrix(c(0, 1/2, 1/2,1/2,0, 1/2,
1/2, 1/2, 0), byrow = TRUE,ncol=3), name="FistPassageTimeExample", states=c("a" ,"b","c"))

firstPassage(fptMc,state = "a",5)
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a b c
1 0.0000 0.50000 0.50000
2 0.5000 0.25000 0.25000
3 0.2500 0.12500 0.12500
4 0.1250 0.06250 0.06250
5 0.0625 0.03125 0.03125

The output of firstPassage function shows that the probability that the first hit of state "b" occurs
at the second step is 0.25.

Periodicity analysis is shown in the following last example, in which the output shows that the
DTMC has a period of 2.

#defining a toy - model matrix for periodicity

periodicMc<-as(matrix(c(0,1,1,0),nrow=2),"markovchain")
periodicMc

Unnamed Markov chain
A 2 - dimensional discrete Markov Chain defined by the following states:
s1, s2
The transition matrix (by rows) is defined as follows:

s1 s2
s1 0 1
s2 1 0

#computing periodicity

period(periodicMc)

[1] 2

Statistical inference using markovchain package

Statistical analysis functions allow to estimate a DTMC from data and to simulate a DTMC, and can
be done through the rmarkovchain function:

weathersOfDays <- rmarkovchain(n = 30, object = mcWeather, t0 = "sunny")
weathersOfDays

[1] "sunny" "sunny" "rainy" "rainy" "rainy" "nice" "rainy" "rainy"
[9] "rainy" "rainy" "nice" "rainy" "rainy" "nice" "sunny" "nice"

[17] "rainy" "rainy" "sunny" "rainy" "rainy" "rainy" "sunny" "rainy"
[25] "sunny" "sunny" "sunny" "sunny" "sunny" "rainy"

The code shown above simulates 30 observations from the weather DTMC previously introduced.

Next, the function createSequenceMatrix is used to obtain the sequence matrix , that is the empiri-
cal transition matrix between the preceding and subsequent state, for a given sequence, whilst the
function markovchainFit fits DTMCs. We will exemplify the use of such functions on the rain data
set (recorded daily rainfall volume in Alofi island) bundled within the package.

#loading the Alofi's rain data set

data(rain)
rain$rain[1:10]

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 96

[1] "6+" "1-5" "1-5" "1-5" "1-5" "1-5" "1-5" "6+" "6+" "6+"

#obtaining the empirical transition matrix

createSequenceMatrix(stringchar = rain$rain)

0 1-5 6+
0 362 126 60
1-5 136 90 68
6+ 50 79 124

#fitting the DTMC by MLE

alofiMcFitMle <- markovchainFit(data = rain$rain, method = "mle", name = "Alofi")
alofiMcFitMle

$estimate
Alofi
A 3 - dimensional discrete Markov Chain defined by the following states:
0, 1-5, 6+
The transition matrix (by rows) is defined as follows:

0 1-5 6+
0 0.6605839 0.2299270 0.1094891
1-5 0.4625850 0.3061224 0.2312925
6+ 0.1976285 0.3122530 0.4901186

$standardError
0 1-5 6+

0 0.03471952 0.02048353 0.01413498
1-5 0.03966634 0.03226814 0.02804834
6+ 0.02794888 0.03513120 0.04401395

$confidenceInterval
$confidenceInterval$confidenceLevel
[1] 0.95

$confidenceInterval$lowerEndpointMatrix
0 1-5 6+

0 0.6034754 0.1962346 0.08623909
1-5 0.3973397 0.2530461 0.18515711
6+ 0.1516566 0.2544673 0.41772208

$confidenceInterval$upperEndpointMatrix
0 1-5 6+

0 0.7176925 0.2636194 0.1327390
1-5 0.5278304 0.3591988 0.2774279
6+ 0.2436003 0.3700387 0.5625151

$logLikelihood
[1] -1040.419

Clearly, the markovchainFit function returns not only the pointwise estimate of the transition
matrix, but also its standard error and confidence intervals. MLE estimates are provided by default,
but a bootstrap one Efron, B. (1979) can also be obtained as the following code shows.
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#estimating Alofi TM

alofiMcFitBoot <- markovchainFit(data = rain$rain, method = "bootstrap",
name = "Alofi",nboot=100)

#point estimate of the TM

alofiMcFitBoot$estimate

Alofi
A 3 - dimensional discrete Markov Chain defined by the following states:
0, 1-5, 6+
The transition matrix (by rows) is defined as follows:

0 1-5 6+
0 0.6605457 0.2314278 0.1080264
1-5 0.4646651 0.3071925 0.2281424
6+ 0.1976978 0.3115299 0.4907723

#95 CIs

alofiMcFitBoot$standardError

0 1-5 6+
0 0.001957644 0.001793261 0.001318923
1-5 0.002733252 0.002712275 0.002273845
6+ 0.002647255 0.002949244 0.003075143

Subsequently, the three-days forward predictions from alofiMcFitMle object are generated, as-
suming that the last two days were "1-5" and "6+" respectively. Clearly only the last state matters for a
MC stochastic process.

#obtain a prediction

predict(object = alofiMcFitMle$estimate, newdata = c("1-5", "6+"),n.ahead = 3)

[1] "6+" "6+" "6+"

#obtain a prediction changing t-2 state

predict(object = alofiMcFitMle$estimate, newdata = c("0", "6+"),n.ahead = 3)

[1] "6+" "6+" "6+"

Non homogeneous Markov chains

Non homogeneous DTMCs (NHDTMCs) can be handled using the "markovchainList" S4 class, which
consists in a list of markovchain objects.

#define three DTMC
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matr1<-matrix(c(0.2,.8,.4,.6),byrow=TRUE,ncol=2);mc1<-as(matr1, "markovchain")
matr2<-matrix(c(0.1,.9,.2,.8),byrow=TRUE,ncol=2);mc2<-as(matr2, "markovchain")
matr3<-matrix(c(0.5,.5,.2,.8),byrow=TRUE,ncol=2);mc3<-as(matr2, "markovchain")

#create the markovchainList to store NHDTMCs

mcList<-new("markovchainList", markovchains=list(mc1,mc2,mc3), name="My McList")
mcList

My McList list of Markov chain(s)
Markovchain 1
Unnamed Markov chain
A 2 - dimensional discrete Markov Chain defined by the following states:
s1, s2
The transition matrix (by rows) is defined as follows:

s1 s2
s1 0.2 0.8
s2 0.4 0.6

Markovchain 2
Unnamed Markov chain
A 2 - dimensional discrete Markov Chain defined by the following states:
s1, s2
The transition matrix (by rows) is defined as follows:

s1 s2
s1 0.1 0.9
s2 0.2 0.8

Markovchain 3
Unnamed Markov chain
A 2 - dimensional discrete Markov Chain defined by the following states:
s1, s2
The transition matrix (by rows) is defined as follows:

s1 s2
s1 0.1 0.9
s2 0.2 0.8

The example above shows that creating a markovchainList S4 object is very simple. Moreover, the
rmarkovchain function also works on objects from the "markovchainList" class.

#simulating a NHDTMC

mysim<-rmarkovchain(n=100, object=mcList,include.t0=TRUE,what="matrix")
head(mysim,n = 10)

[,1] [,2] [,3] [,4]
[1,] "s2" "s2" "s2" "s2"
[2,] "s2" "s1" "s2" "s2"
[3,] "s2" "s1" "s2" "s2"
[4,] "s2" "s1" "s2" "s2"
[5,] "s2" "s2" "s1" "s2"
[6,] "s1" "s2" "s2" "s1"
[7,] "s1" "s2" "s2" "s2"
[8,] "s1" "s2" "s2" "s2"
[9,] "s2" "s2" "s2" "s1"

[10,] "s1" "s1" "s2" "s2"

Finally, it is possible to infer a non - homogeneous sequence of DTMC, that is a markovchainList
object from a given matrix, where each row represents a single trajectory and each column stands for a
different period.
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#using holson data set

data(holson)
head(holson,n = 3)

id time1 time2 time3 time4 time5 time6 time7 time8 time9 time10 time11
1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 1 1 1 1 1 1 1 1 1 1 1
3 3 1 1 1 1 1 1 1 1 1 1 1

#fitting a NHDTMCs on holson data set

nhmcFit<-markovchainListFit(holson[,2:12])

#showing estimated DTMC for time 1 -> time 2 transitions

nhmcFit$estimate[[1]]

time1
A 3 - dimensional discrete Markov Chain defined by the following states:
1, 2, 3
The transition matrix (by rows) is defined as follows:

1 2 3
1 0.94609164 0.05390836 0.0000000
2 0.26356589 0.62790698 0.1085271
3 0.02325581 0.18604651 0.7906977

#showing estimated DTMC for time 2 -> time 3 transitions

nhmcFit$estimate[[2]]

time2
A 3 - dimensional discrete Markov Chain defined by the following states:
1, 2, 3
The transition matrix (by rows) is defined as follows:

1 2 3
1 0.9323410 0.0676590 0.0000000
2 0.2551724 0.5103448 0.2344828
3 0.0000000 0.0862069 0.9137931

Numerical reliability and computational performance

Numerical reliability

Finding the stationary distribution is a computational - intensive task that could raise numerical issues.
The markovchain package relies on the R linear algebra facilities (built on LAPACK routines) when
the eigen function is called to find the stationary distribution. An initial analysis of the numerical
stability of the markovchain matrix computation has been performed estimating the error rate when
calculating the stationary distribution on a large sample of simulated DTMC of a given size k (range
set between 2 and 32). Initially, dense matrices were simulated. The following algorithm was used for
a given k:

1. generate N random k-sized DTMCs, where each row r̄ has been independently sampled from a
Dirichlet distribution, r̄ ∼ Dir(ᾱ). The Dirichlet parameters’ vector, ᾱ is itself assumed to follow
an Uniform distribution (sampled independently for each row).

2. try to compute the steady - state distribution for the simulated DTMC.
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3. calculate the success rate as the relative frequency of previous step non - failures at size k .
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Figure 4: Steady state computation success rate.

The figure shown above displays the success rate observed by TM size. The success rate is higher
than 95% for matrices no greater than 10 unit, then it decreases markedly and becomes lower than 50%
for matrices bigger then 22. A deeper analysis allowed to identify that the failure reason was due to
inaccuracy in the Dirichlet sampling function (row sums numerically different from zero). The TM
simulation process was therefore revised normalizing the sum of each row to be numerically equal to
one. The experiment was repeated at 23, 24, . . . , 28 TM sizes (wider matrices were not tested due to
computational timing issues). The observed success rate was always 100% for the sampled TM sizes.

The first example deserves few more words, even if it does not demonstrate any shortcomings
in the computational part of the package. Instead, it shows how easy it is to analyze numerically -
incorrect TMs as the size of the problems dealt with increases. Various posts have been raised on this
topic on the package Github address since the package was published on CRAN.
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Figure 5: Steady state computation success rate, sparse matrices.

A final test has been performed using TMs with a sparsity factor of 75%. The observed success rate
is 100% for matrices wider than 25, inexplicably lower (around 90%) for smaller matrices matrices.

The previous examples are clearly far to exhaustively assess the numerical reliability of the
implemented algorithms that would require an much deeper analysis and beyond the scope of
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the paper. In fact, the numerical reliability is likely to be significantly affected by particular TM
structures. Nevertheless they can provide an initial insight about the dimension of the problems
that the markovchain R package can "safely" handle. The R code used to generate the numerical
reliability assessment herewith discussed is available in the "reliability.R" file within the demo folder
of markovchain R package.

Computational performance

The computation time needed to estimate the TM from input data sequence depends by the size of
input data, as the following example displays:

#using the rain data sequence
data(rain)
rainSequence<-rain$rain

#choosing different sample size
sizes<-c(10,50,100,250,500,1096)

#timing assessiment
microseconds<-numeric(length(sizes))

for(i in 1:length(sizes)) {

mydim<-sizes[i]
mysequence<-rainSequence[1:mydim]
out<-microbenchmark(
myFit<-markovchainFit(data=mysequence)

)
microseconds[i]<-mean(out$time)

}

plot(sizes, microseconds,type="o",col="steelblue",
xlab="character sequence size",ylab="microseconds",
main="Computational time vs size")
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Figure 6: Computation time by size of input data sequence.

The plot shows that the computation time increases linearly with the size of input data sequence,
as expected.
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The last numeric example presented in the section discussing NHDTMCs shows the computational
advantages of rewriting the kernel of core functions using Rcpp and RcppParallel snippets generated
by (Allaire et al., 2016). The rmarkovchain function allows the final user to choose whether to use the
C++ implementation and a parallel backend, by setting the boolean parameters useRcpp and parallel
respectively.

microbenchmark(
rmarkovchain(n=100,object=nhmcFit$estimate,what = "matrix",useRCpp = F),
rmarkovchain(n=100,object=nhmcFit$estimate,what = "matrix",useRCpp = T,parallel = F),
rmarkovchain(n=100,object=nhmcFit$estimate,what = "matrix",useRCpp = T,parallel = T)
)

The omitted output of the code snippet shown above demonstrates that the joint use of Rcpp and
RcppParallel fastens the simulations around 10x with respect to the pure R sequential implementation.

Conclusions, discussion and acknowledgements

The markovchain package has been designed in order to make common operations on DTMCs as
easy as possible for statisticians. The package allows to create, manipulate, import and export DTMCs.
Further, the author believes that the current version of the package fully satisfies standard needs such
as inference of underlying TM from empirical data, and states classification of a given DTMC.

The author believes that no other R package provides a set of classes, methods, and functions as
wide as the one provided in markovchain, as of May 2017.

The package’s main vignette gives a complete descriptions of its capabilities, including bayesian
estimation, statistical tests, classes and methods for continuous time MCs. Also, a separate vignette
describes the functions designed to deal with higher order and multivariate MCs, and should still be
considered experimental. In fact, such techniques are generally less used than standard DTMCs, and
consequently much less literature, applied examples, and coded algorithms are available.

Clearly, an expanded version of the package’s capabilities in that area is expected to be re-
leased in the future. Current development efforts target optimizing computation speed and reli-
ability, and increasing the analysis capabilities regarding statistical inference. Rewriting core func-
tions using Rcpp gave a major boost in terms of computing speed, as exemplified in previous sec-
tions. Moreover, the rewriting of the internal core parts of the code affected many functions, such
as markovchainFit and markovchainFitList. Feedbacks provided by the users of the package at
https://github.com/spedygiorgio/markovchain/issues have been extremely useful for improving
the package. To illustrate, bugs due to numerical issues have been found when analyzing relatively
big MCs and have led to revising the steadyStates function to be computationally more robust. A
known limitation of the package is the lack of a deep assessment of the performance of the package’s
routines for a relatively large TM. In fact, improving the numerical reliability of the package for large
DTMCs is an area on which efforts will be certainly allocated in the near future. At this regard, the
implementation of numerical methods methods shown in Stewart (1994) will be explored.

Finally, the package has been available on CRAN since Summer 2013. Notably, it has been granted
a funding slot in both 2015, 2016 and 2017 Google Summer of Code (GSOC) editions. In particular,
during 2015 GSOC a material part of R code has been ported in Rcpp coding, yielding considerable
fastening in computational time. The author is extremely grateful to Tae Seung Kang, Sai Bhargav
Yalamanchi and Deepak Yadav for their contribution in improving the package. A special thank
should be given to the RJournal referees for their constructive comments.

Giorgio Alfredo Spedicato
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spedicato_giorgio@yahoo.it
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CRTgeeDR: an R Package for Doubly
Robust Generalized Estimating Equations
Estimations in Cluster Randomized Trials
with Missing Data
by Melanie Prague, Rui Wang, and Victor De Gruttola

Abstract Semi-parametric approaches based on generalized estimating equations (GEE) are widely
used to analyze correlated outcomes in longitudinal settings. In this paper, we present a package
CRTgeeDR developed for cluster randomized trials with missing data (CRTs). For use of inverse
probability weighting to adjust for missing data in cluster randomized trials, we show that other
software lead to biased estimation for non-independence working correlation structure. CRTgeeDR
solves this problem. We also extend the ability of existing packages to allow augmented Doubly Robust
GEE estimation (DR). Simulation studies demonstrate the consistency of estimators implemented in
CRTgeeDR compared to packages such as geepack and the gains associated with the use of the DR
for analyzing a binary outcome using a logistic regression. Finally, we illustrate the method on data
from a sanitation CRT in developing countries.

Introduction

We describe the R package CRTgeeDR, for estimating coefficients of regression in a marginal mean
model. The method is designed to analyze data collected in cluster randomized trials (CRTs) where 1)
observations within a cluster may be correlated, 2) observations in separate clusters are independent,
3) a monotone transformation of expectation of the outcome is linearly related to the explanatory
variables, and 4) treatment is randomized at a cluster level. The estimation approach generalizes the
Generalized Estimating Equation (GEE) (Zeger and Liang, 1986) for fitting marginal generalized linear
models to clustered data with possibly informative missingness of the outcome. It combines existing
methods for accommodating missing data that use inverse probability weighting (IPW) (Robins et al.,
1995) and for increasing precision of estimation by appropriate use of baseline covariates (AUG)
(Stephens et al., 2012). We have developed a method for estimating the intervention effect in cluster
randomized trials that combines the IPW and the AUG and is doubly robust (DR), meaning that the
resulting estimator is consistent if either the model predicting the outcome or the model predicting
the missing data is correctly specified—that is, they reflect the true data generation processes (Prague
et al., 2016). Below we illustrate the use of the software on a real dataset and clarify its benefits.

The package CRTgeeDR not only implements the DR estimator but also the standard GEE, the
IPW and the AUG. Regarding IPW, our package differs from most of those currently available in that
it avoids the bias that can result from conventional implementation applied to CRTs. Lin et al. (2015)
pointed out that implementation of GEE for complete longitudinal data in the current version of SAS
(GENMOD procedure) requires use of an independence correlation structure if the observation of the
outcome at one time point depends on covariates obtained at another time point; this problem had been
corrected in the new GEE procedure in SAS/STAT 13.2 (SAS Institute Inc., 2015). Tchetgen Tchetgen
et al. (2012) made a similar comment regarding the analysis of incomplete longitudinal data in which
time-varying covariates and previous outcome values are needed to model the missingness process.
This article clarifies this issue for CRTs and proposes an implementation in R that allows for unbiased
IPW (and thus DR) estimation with non-independence working correlation structure.

GEE-based approaches for estimating the coefficients in marginal models, in particular the marginal
effect of an intervention, have been implemented in only a limited number of R packages and other
software for general use. Of note, most of the available software was initially developed to deal with
correlated longitudinal data rather than data from CRTs. There are three R packages on CRAN, which
will solve GEEs and produce standard errors: whereas gee (Carey et al., 2012) and geepack (Jun, 2002;
Halekoh et al., 2006; Højsgaard and Halekoh, 2016) are computationally demanding, the package
geeM allows a fast estimation through the use of sparse matrix representation (McDaniel et al., 2013).
When interest lies in adjusting for missing outcomes using the IPW, all the packages mentioned above
require specification of weights. These weights can be computed using packages such as ipw (van der
Wal and Geskus, 2011; Geskus and van der Wal, 2015) or directly assigned from a user-defined function.
These approaches require the missing data process to be known or correctly specified. Some packages,
such as drgee (Zetterqvist and Sjölander, 2015), implement doubly robust approaches for uncorrelated
data arising from observational studies. These packages provide estimates that are doubly robust in
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the sense that the consistency of the parameter estimator from the marginal models is guaranteed if the
model linking the outcome to covariates and treatment or the model linking the treatment assignment
to covariates correctly reflects the true data generation process. These methods have been extended to
deal with missing data with IPW approaches in CausalGAM (Glynn and Quinn, 2010a,b), but these
packages are intended for analysis of observational studies, not CRTs. Finally, the targeted maximum
likelihood estimation (tMLE) method allows estimation of the marginal additive effect of a treatment
(van der Laan, 2014a). It is implemented in the packages tmle (Gruber, 2014) and tmlenet (Sofrygin
and van der Laan, 2015) for longitudinal and correlated data. Except for Porter et al. (2011), there has
been little published discussion about the differences between GEE-based and tMLE estimation, and
we do not delve into a comparison of the two methods. The focus of this article is only on software
implementation of the doubly robust GEE for CRTs.

The paper is organized as follows. Section 16.2 introduces the theory of the doubly robust
estimator and Section 16.3 describes the features of the CRTgeeDR and the estimating function
denoted GeedrEstimation. Section 16.4 compares the performance of CRTgeeDR to geepack for the
IPW in CRTs and illustrates that the DR is consistent and more efficient than the IPW. Section 16.5
illustrates the analysis of a dataset on sanitation in developing countries (Guiteras et al., 2015a) and
illustrates the benefit of using the DR approach compared to standard GEE. Section 16.6 presents a
discussion.

IPW in CRTs and doubly robust estimation

Notation

Consider a CRT comprised of n clusters or communities, each with ni individuals. The cluster sample
sizes are assumed fixed and non-informative. Let Yi = [Yij]j=1,...,ni denote the outcome vector for
cluster i, some elements of which may be unobserved. Let Rij = 1 if Yij is observed and Rij = 0
otherwise. Let Xij = [Xr

ij]j=1,...,ni ;r=1,...,P denote the P baseline covariates for subject j in cluster i, which
is fully observed. Let Ai be the treatment assigned to cluster i; the indicator for treated condition is
Ai = 1, and Ai = 0 for control condition. We assume that the probability of treatment assignment
is known and fixed to pA = P(Ai = 1). The conditional mean of Yij is denoted µij = E(Yij|Xij, Ai),
and we let µi = [µij]j=1,...,ni denote the full vector of means in the ith cluster. We assume that the
mean structure of Yij depends on the covariate vector for subject j in cluster i (Robins et al., 1999), and
consider a model for the mean as follow:

g(µij) = XijβX + AiβA,

where g(.) is a monotone differentiable link function and β = (βA, βX) is a (P + 1)× 1 is a vector
of regression coefficients of interest. In this article, we focus on estimation of the marginal effect
of an intervention βA for a binary outcome using the logit link. We assume the variance is vij =
var(Yij|Xij, Ai) = φh(µij), where h(.) is the variance function and φ is the dispersion parameter. Thus
for our specific example, vij = φµij(1− µij) When data are missing at random (MAR), the observation
indicator Rij is a function of covariates, treatment condition, and observed outcomes. For CRTs, we
assume a restricted version of MAR (rMAR), which requires that Rij cannot be a function of observed
outcomes. Although all the theory would hold for classical MAR assumption, it is most of the time
difficult to specify the function linking the observation indicator and the observed outcomes of other
individuals in the same cluster because there is no ordering. Thus, the probability of being observed
πij for individual j in cluster i, called the propensity score (PS), is: πij(Xij, Ai, ηW) = P(Rij = 1|Xij, Ai).
The parameters ηW are nuisance parameters and must be estimated.

IPW in CRTs

In presence of rMAR outcome, as in Robins et al. (1995), we estimate β by using inverse probability
weighted generalized estimating equation (IPW). Therefore, we must include a weight matrix Wi to
the usual GEE, that is:

Wi(Xij, Ai, ηW) = diag
( Rij

πij(Xij, Ai, ηW)

)
j=1,...,ni

.

This matrix Wi(Xij, Ai, ηW), denoted simply as Wi in the following, adjusts the contribution of each
individual in a given cluster by upweighting the contribution of individuals who are less likely to
be observed according to their characteristics. Thus, if the propensity score is correctly specified, i.e.,
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correspond to the true missingness process, the IPW equation provides consistent estimates:

0 =
n

∑
i=1

D>i V−1
i Wi(Yi − µi), (1)

where Di = ∂µi/∂β is a derivative matrix and Vi is the working covariance matrix for the response
Yi. In particular, Vi = φF1/2

i C(α)F1/2
i , where F1/2

i = diag(h(µij))j=1,...,ni
and C(α) is the working

correlation structure with non-diagonal terms α. For example, for an independence correlation
structure α is zero; for exchangeable structure, all the elements of α are identical. Parameters α could
also depend on the treatment assignment C(α(Ai)) but we do not consider this possibility in our
implementation. In the package CRTgeeDR, we estimate the α and φ parameters using moment
estimators from the Pearson residuals and the Pearson Chi-Square statistic as in geeM (McDaniel and
Henderson, 2015) also described in McDaniel et al. (2013). In the absence of missing data, Wi = I is
set to identity, and the standard GEE is performed by CRTgeeDR.

In existing packages such as geepack, the Equation 1 is implemented as 0 = ∑n
i=1 DiV

−1
i (Yi − µi),

with V−1
i = φF1/2

i W1/2
i C(α)W1/2

i F1/2
i to ensure the fast invertibility of Vi. It is easy to verify that

when an independence correlation structure is used, C(α) = I, and the two implementations are
identical. Therefore, one can always use geepack with an independence working correlation structure.
In contrast, if a non-independence working correlation structure is used, the consistency of IPW
estimators do not hold. See the Web-Supplementary Material for a demonstration. Regarding other
packages such as geeM, although the implementation was the same as in geepack up to version 0.8.0,
it is now implemented as in Equation 1 in version 0.10.0. In the SAS GEE procedure, one can use the
option "type=obslevel" (in the missing statement) in order to use the same implementation as in
Equation 1. In general, it is necessary to check the formula used for implementation of the estimating
equation in any desired software to avoid confusion.

Augmentation and doubly robust estimation

Recent advances in methods for analysis of data from CRTs have used augmented GEE to improve
efficiency of inferences by incorporating baseline covariates (Stephens et al., 2012); we denote this
estimator the AUG. They have also been extended to accommodate missing data using an approach
based on the IPW which is doubly robust GEE (DR). The DR properties are described in Prague et al.
(2016) and the estimating equation is given by :

0 =
M

∑
i=1

[
D>i V−1

i Wi

(
Yi − Bi(Xij, Ai, ηB)

)

+ ∑
a=0,1

pa
A(1− pA)

1−aD>i V−1
i

(
Bi(Xij, Ai = a, ηB)− µi(β, Ai = a)

)]
(2)

= Φ(Yi, Ri, Ai, Xij, β, ηW , ηB).

Each element of the vector Bi(Xi, Ai = a, ηB) = [Bij(Xi, Ai = a, ηB)]j=1,...,ni is an arbitrary func-
tion linking Yij with Xij for each treatment arm, which we refer to as the outcome model (OM) The
ηB are nuisance parameters. The estimator in Equation 2 is most efficient if Bij(Xi, Ai = a, ηB) =
E(Yij|Xij, Ai = a) (Zhang et al., 2008), that is, the OM is correctly specified. If the OM is not correctly
specified, i.e., does not correspond to the true data generation process, the estimation remains consis-
tent provided that the PS model is correctly specified, but one may have a loss in efficiency. Without
missing data, Wi = I is set to identity, and the AUG is performed by CRTgeeDR.

Without missing data or with data missing completely at random, the use of augmentation may
allow a gain in efficiency by incorporating information on baseline covariates. The PS should not
be used because it will be misspecified and therefore may lead to an increase of the variance of the
estimates. In presence of rMAR data, IPW alone can be used but DR should be preferred in order to
increase the chances to have an unbiased estimator. Finally, as mentioned above, for data missing not
at random, none of the methods implemented in CRTgeeDR are adequate.

The R package CRTgeeDR

The main function for estimation in the package CRTgeeDR

The call function for performing estimation is geeDREstimation:
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R> geeDREstimation(formula, id, data = parent.frame(), family = gaussian,
+ corstr = "independence", Mv = 1, corr.mat = NULL, init.beta = NULL,
+ init.alpha = NULL, init.phi = 1, scale.fix = FALSE, maxit = 20,
+ tol=1e-05, print.log = FALSE, nameTRT = "TRT", nameMISS = "MISSING",
+ nameY = "OUTCOME", sandwich = TRUE, sandwich.nuisance = FALSE,
+ fay.adjustment = FALSE, fay.bound = 0.75, aug = NULL, pi.a = 1/2,
+ model.augmentation.trt = NULL, model.augmentation.ctrl = NULL,
+ stepwise.augmentation = FALSE, weights = NULL, typeweights = "VW",
+ model.weights = NULL, stepwise.weights = FALSE)

The marginal model, to be estimated on the R dataframe data, is given in formula. The link
function, g, depends on the nature of the outcome, which is specified in the argument family. The name
of the outcome nameY, the clustering variable id, the binary treatment nameTRT (with the convention 1
is treated and 0 is control), and the missing indicator nameMISS must be specified if they differ from
default values. The algorithm iterates between the estimation the working correlation structure and
regression parameters with a stopping rule based on stabilisation of estimates (tolerance can be set by
the user; default is tol= 10−5 or max.iter=20). Depending on the specification or not of the PS and
the OM, geeDREstimation allows the implementation of standard GEE, the IPW, the AUG and the DR
approaches. The algorithm is defined as follow:

1. Determine the PS: πij(Xij, Ai, ηW) = P(Rij|Xij, Ai), πij for short. Either the πij are known from
prior analysis or by design and the weights can be specified directly in the weights argument.
Alternatively one can compute the PS by fitting a logistic regression of Rij on (Xij, Ai). In this
case, the PS regression formula can be directly entered in model.weights. A glm with logit link
function is internally processed with or without variable selection, depending on the value
of the stepwise.weights argument. If all of the above are set to NULL or default, no IPW
adjustment will be made—GEE or AUG will be used. Finally, if despite our concern about the
implementation of weights, one wants to use the same implementation as in packages geepack
or proc GENMOD in SAS, then one can set typeweights="GENMOD".

2. Determine group-specific OM: Bij(Xij, Ai = a) = E
[
Yij|Ai = a, Xij

]
. When the Bi are known from

prior analysis, they can be directly entered in aug=c(ctrl=Bij(Xij, Ai = 0),trt=Bij(Xij, Ai = 1)).
Alternatively, we can regress Yij on Xij within each treatment group. In this case, the OM regres-
sion formulas can be directly entered in model.augmentation.trt and model.augmentation.ctrl.
A glm is then internally processed with or without variable selection depending on the value
of the argument stepwise.augmentation. If all of the above are set to NULL or default, no
augmentation adjustment will be made—GEE or IPW will be used. The probability of treatment
assignment, which is known in CRTs, must be specified in the argument pi.a. Of note for steps
1 and 2, when using the stepwise option to compute the OM or the PS, one runs the risk of
overfitting (van der Laan, 2014b). Avoiding this is possible by sparsely including only relevant
variables in the selection and also by running a bootstrap diagnostic using outputs (ps.model,
om.model.trt and om.model.ctrl). The underlying assumption is that the true OM or PS are
selected at the end of the stepwise selection and then held fixed in the estimating equation in
further steps.

3. Determine the working correlation structure. Available structures are independence, exchangeable,
M-dependent (using Mv), unstructured, or user-defined (using corr.mat). Using the scale.fix
argument, the dispersion parameter φ can be either estimated or held fixed to a specified value.

4. Obtain initial values. They are either specified by the user (init.beta, init.alpha, and init.phi)
or internally defined by fitting a glm under independence to obtain initial values for β̂(0) and
by setting φ(0) = 1 and α(0) = 0.

5. Enter/continue the iterative procedure :

(a) Use the fit from β̂(n) to compute Pearson residuals. Use Pearson residuals based formulas
to compute the scale parameter (φ(n+1), except if scale.fix=TRUE) and the parameters
in the working correlation matrix (α(n+1)).

(b) Construct the augmented equation given in Equation 2 and solve it numerically using
Newton-Raphson algorithm for β̂(n+1):

β̂(n+1) = β̂(n) −
[

∂Φ(Yi, Ri, Ai, Xij, β, ηW , ηB)

∂β

]−1

β̂(n)

Φ(Yi, Ri, Ai, Xij, β̂(n), ηW , ηB).

(c) If max
∣∣∣ β̂(n+1)−β̂(n)

β̂(n)+prec.machine

∣∣∣ > tol and n + 1 ≤ max.iter go back to 5 else go to 6, where

prec.machine ∼ 10−16.
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6. Compute the requested variances of β̂(n+1). If, sandwich and sandwich.nuisance are set to
TRUE, classical and nuisance-adjusted (for the estimation of parameters ηW in the PS and ηB
in the OM) sandwich estimators of the variance are provided, see Prague et al. (2016) for their
definition. The nuisance-adjusted version is computed using numerical derivatives of score
equations for PS, OM and estimating equations jointly, which are obtained by using the jacobian
function of the package numDeriv (Gilbert and Varadhan, 2015); this is recommended if the
AUG, the IPW or the DR estimator are considered. Finally, a small-sample-adjusted sandwich
estimator of the variance can also be computed using Fay’s adjustment (Fay and Graubard,
2001) setting the argument fay.adjustment to TRUE. Its implementation is derived from the
function gee.var.fg in the package geesmv (Wang, 2015).

Adequacy of the PS and the OM to data

Consistency and efficiency of the DR estimator depend on the correct specification of the PS and
the OM, see Prague et al. (2016) for theoretical demonstrations. The user may want to check the
adequacy of the selected OM model to the data by using the function getOMPlot, which provides
plots to check the glm model assumption. The ”Residuals vs. Fitted" and the "Scale-location" graphics
allow verification of the homogeneity of the variance and the adequacy of the link function. The
”Normal Q-Q" checks for the normal distribution of the residuals. The ”Residuals vs Leverage" plot
allows detection of points that have high leverage on the regression coefficients and that should
be investigated as outliers. In the same spirit, the ”Cook’s distance" and the ”Cook’s distance vs
leverage" provide measures of the effect of deleting a given observation. Of note, these graphs are only
interpretable for a continuous outcome. In addition, for the PS model the function getPSPlot provides
a histogram of the weights. If weights are too large then the IPW and DR approaches are likely to
be unstable. In this case, the user should compute weights externally using, for example, stabilized
weights with the associated package ipw (van der Wal and Geskus, 2011) or other approaches such
as described in Wang and Paik (2011). Finally, the user can access the glm objects created during the
PS and OM initial steps as objects named ps.model, om.model.trt, and om.model.ctrl from the main
function geeDREstimation.

Simulations

The properties of DR to accommodate complex correlation structure, rMAR outcomes, and the presence
of imbalance in baseline covariates have already been demonstrated in Prague et al. (2016). In this
article, we focus on the superiority of implementation of weights in the package CRTgeeDR compared
to package geepack. We focus on a simple example to illustrate that, even in very simple cases,
estimators implemented in broadly used R package geepack for IPW can be inconsistent when using an
exchangeable working correlation structure. This is the case when V−1

i = φF1/2
i W1/2

i C(α)W1/2
i F1/2

i
is used in the estimating equation. We simulate data from a CRT with 100 communities of 90,
100, or 110 individuals with probability 1/3 for each. The treatment A is randomly assigned with
probability pA = 1/2. One covariate is of interest: Xij ∼ N (2, 1). We simulate correlated outcome
with exchangeable structure, and correlation between individuals is set to 0.05. This is done by using a
cluster-level bridge distribution bi ∼ B(0.05). Data generation process is as follow:

logit[P(Yij = 1|Ai, Xij)] = −0.5 + 0.3Ai + 0.4Xij + 0.4Xij Ai + bi,
logit[P(Rij = 1|Ai, Xij)] = 4.0− 0.3Ai − 0.8Xij − 0.8Xij Ai.

(3)

We simulated R=10,000 replicates. The observed average proportion of missing observa-
tions is around 25% and the observed average intraclass correlation is 0.08. Missingness is
associated strongly with individual covariates and, therefore, the weights differ between
individuals in the same cluster. The true value of the odds-ratio for the marginal effect of
treatment is computed for each dataset k without missing data by obtaining the counterfac-
tual values with and without treatment under this model:

ORk =
E(Yij = 1|Ai = 1)/E(Yij = 0|Ai = 1)
E(Yij = 1|A = 0)/E(Yij = 0|Ai = 0)

.

The true OR is given by 1
R ∑R

k=1 ORk=2.56 with associated parameter for marginal interven-
tion effect in the marginal regression βA = 0.941. For each dataset, we first ran the analysis
on the dataset without missing data for the standard GEE and the AUG using CRTgeeDR.
Then we ran the analysis on the dataset with missing data for the IPW using geepack and
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for the standard GEE, the IPW, the AUG, and the DR using CRTgeeDR. Two types of DR
are presented here: DR1 is the estimator using the correct models for the OM and the PS,
and DR2 omits treatment-covariate interaction terms in the PS. The models for the PS and
OM for analysis are described in the Table 1. Table 1 shows the bias, empirical standard
error, sandwich standard error, and coverages for each analysis using independence (-I) and
exchangeable (-E) working correlation structure. The code to replicate this study is available
in Web-Supplementary Material.

Independence (-I) Exchangeable (-E)
Method Bias Emp. SE SE Cov. Bias Emp. SE SE Cov.

No missing data:
GEE CRTgeeDR 0.002 0.102 0.099 94.3 0.002 0.108 0.099 93.2
GEE geepack 0.003 0.102 0.101 94.6 0.003 0.102 0.101 94.6
AUG CRTgeeDR 0.002 0.101 0.099 94.3 0.002 0.109 0.114 95.8

With missing data:
GEE CRTgeeDR -0.257 0.103 0.177 82.0 -0.256 0.104 0.081 18.1
AUG CRTgeeDR 0.249 0.092 0.109 35.7 0.307 0.115 0.139 37.1

With missing data and adjustment for it:
IPW CRTgeeDR 0.003 0.108 0.106 95.0 0.003 0.118 0.110 93.7
IPW geepack 0.008 0.107 0.104 94.8 0.582 0.577 0.357 19.4
DR1 CRTgeeDR 0.003 0.107 0.104 94.5 0.004 0.120 0.125 96.1
DR2 CRTgeeDR 0.003 0.105 0.102 94.4 0.004 0.118 0.123 96.0

Marginal mean model:
logit(µij) = β0 + βA Ai.

PS used for IPW and DR (true):
logit(P(Rij = 1|Ai, Xij)) = γ0 + γA Ai + γXij + γI Xij Ai.

PS used for DR2 (omitting interactions in PS):
logit(P(Rij = 1|Ai, Xij)) = γ0 + γA Ai + γXij.

OM used for AUG, DR1 and DR2 (fitted for each group a):
logit(P(Yij = 1|Ai = a, Xij)) = ξ + ξA Ai + ξXij.

Table 1: Comparison of the standard GEE, the IPW, the AUG and the DR analysis with the packages
CRTgeeDR, geepack, and geeM using independence and exchangeable working correlation structure.
True value for the parameter βA is 0.91 (OR=2.56). The bias, the empirical and the estimated standard
errors (SE), and the coverages for parameter β̂A are computed over 10,000 replicates. The true data
generation process for outcome and missingness is provided in Equation 3. The PS and OM models
for analysis are correctly specified and given in the footnote of the table.

The results for standard GEE are unbiased in the absence of missing data (<0.003 for GEE-
I and GEE-E with all packages) and biased in presence of rMAR outcomes reflecting the fact
that the missingness is informative. Using the IPW-I corrects for this bias (0.008 for geepack).
All packages give a similar estimated standard error leading to acceptable coverage close to
their nominal value of 95%. When using an exchangeable correlation structure, the coverage
(93.7%) remains close to the nominal value for IPW-E using CRTgeeDR, but it drops to 19.4%
using geepack. This is mainly driven by an increase in the bias from 0.003 for CRTgeeDR
to 0.582 for geepack for IPW-E. Using the DR1 version of CRTgeeDR provides consistent
estimates (bias ≤0.004 for DR1-I and DR1-E). DR-1 yields coverage that is close to or greater
than 95% and gains, on average, in efficiency. For example, the empirical standard error
is 0.108 for IPW-I and 0.107 for DR-I. DR2, which omits the term Xij Ai in the PS, yields
consistent and efficient estimates even when the treatment-covariate interactions are not
explicitly specified in the PS. As demonstrated in Prague et al. (2016), DR1 and DR2 have
similar properties.

Illustration on the sanitation data

In this section, we present a step-by-step analysis of data from a CRT to investigate the
efficacy of alternatives policies on the investment in hygienic latrines in developing coun-
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tries. A total of 380 communities in rural Bangladesh were assigned to different marketing
interventions—community motivation, subsidies, supply side-market, a combination of
the three, and a control group. Results of this study were published in (Guiteras et al.,
2015a). All the code and data associated with this study are available on dataverse, see url
in Guiteras et al. (2015b).

Side-Market supply Control All

Cluster structure
M 36 (n = 1651) 66 (n = 3186) 100 (n = 4837)
Ni 49 (15) 48 (16) 48 (16)

Outcome Yij Mean Missing % Mean Missing % Mean Missing %

Hygienic Latrine Ownership 34.8% 4.2% 30.3% 3.1% 31.8% 3.5%

Individual-level XIND
ij Mean Missing % Mean Missing % Mean Missing %

Report diarrhea 4.3% 0% 4.8% 0% 4.6% 0%
Male 91.1% <0.01% 90.0% <0.01% 90.1% <0.01%
Education 49.2% 0% 45.8% 0% 46.9% 0%
Muslim 83.2% <0.01% 86.3% <0.01% 85.2% <0.01%
Bengali 85.6% <0.01% 88.5% <0.01% 87.6% <0.01%
Agricultor 75.0% <0.01% 70.2% <0.01% 71.9% <0.01%
Stoves 58.2% <0.01% 62.9% <0.01% 61.3% <0.01%
Water Pipes 89.9% <0.01% 91.3% <0.01% 90.8% <0.01%
Phone 64.1% <0.01% 57.2% <0.01% 59.5% <0.01%
Age 39 (13) <0.01% 39 (14) <0.01% 39 (14) <0.01%

Cluster-level XC
ij Mean Missing % Mean Missing % Mean Missing %

Village size 230 (120) 0% 270 (190) 0% 256 (170) 0%
Nb doctors 7 (7) 0% 9 (18) 0% 8 (15) 0%
% Landless 41.6 (12) 0% 34.4 (15) 0% 36.9 (15) 0%
% Almost Landless 19.3 (11) 0% 24.0 (8) 0% 22.4 (9) 0%
% Access electricity 59.9 (26) 0% 59.1 (20) 0% 59.4 (22) 0%

Table 2: Description of the Sanitation dataset from (Guiteras et al., 2015a) considering only the Side-
Market supply and the Control group. Percentages are given for qualitative covariates. Means and
standard deviations in parentheses are provided for continuous covariates.

We consider only the comparison of a supply side-market versus control. The published
analysis used a mixed effect model and showed that the supply side-market alone did not
increase the hygienic latrine ownership (+0.3 percentage points, p-value=0.90). We reanalyze
the dataset using the GEE approaches in order to get the marginal effect of intervention.
Description of the outcome and variables for adjustment are available in Table 2. Because
covariates were missing in less than 0.01% of the observations, we assume that covariates are
missing completely at random and exclude individuals with missing covariates. The final
dataset contains 4774 individuals and 380 clusters. We assume the outcomes are rMAR. As
there is some evidence of imbalance in baseline covariates across arms, i.e., the descriptive
distributions of covariates in Table 2 are different between treated and control groups, we
use the DR approach. We assume that the correlation between any pair of individuals in the
same cluster is the same and hence use an exchangeable working correlation structure. In
this example, the PS and OM are fitted using a logistic regression with a linear combination
of all the individual-level and cluster-level covariates described in Table 2. Variables for
these models are selected using a forward stepwise regression before solving the estimating
equation. Adequacy of the model has been verified. The code for analysis is available in the
Web-Supplementary Material. To illustrate the use of the package CRTgeeDR, we provide
instructions for the DR estimator:

R> DR <- geeDREstimation(OUTCOME ~ TRT, id = CLUSTER, data = Sanitation,
+ family = binomial("logit"), corstr = "exchangeable", typeweights = "VW",
+ model.weights = MISSING ~ TRT + DIARRHEA + ... + ELEC_ACCESS,
+ model.augmentation.trt = OUTCOME ~ DIARRHEA + ... + ELEC_ACCESS,
+ model.augmentation.ctrl = OUTCOME ~ DIARRHEA + ... + ELEC_ACCESS,
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+ stepwise.weights = TRUE, stepwise.augmentation = TRUE)
R> summary(DR)

The output displays statistics for estimated coefficients β, α and φ, the number of Newton-
Raphson iterations before convergence, and some description of the size of the clusters.

Estimates Model SE Robust SE wald p
(Intercept) -0.8106 0.09396 0.1088 -7.452 0.000000
TRT 0.4365 0.12890 0.1425 3.062 0.002198

Est. Correlation: 0.07306
Correlation Structure: exchangeable
Est. Scale Parameter: 0.9955

Number of GEE iterations: 2
Number of Clusters: 100 Maximum Cluster Size: 87
Number of observations with nonzero weight: 4612

Table 3 presents the PS and OM for analysis, the estimates, the nuisance-adjusted sand-
wich estimates of the variance, the confidence intervals for the odd-ratios, the p-values, and
the computation times for each of these analysis. For DR the computation time is 20 seconds,
most of which is required for the computation of the nuisance-adjusted sandwich estimator
of the variance (the estimation is < 3 seconds otherwise). Whereas GEE and IPW lead to
non-significant effect of supply side-market, the DR estimates are significantly different
from 0 at the 0.05 level (p=0.025). Using the DR, we conclude that there is 55% [8% - 121%]
greater chance of owning hygienic latrine after one year if there is a supply side-market.
This effect is significant (p<0.05) even using a nuisance-adjusted SE, which is generally
larger than the standard sandwich SE due to incorporation of additional variability from
estimation of the nuisance parameters in the PS and the OM (ηW and ηB). Information about
the PS and the OM can be obtained by using the following commands:

R> summary(DR$ps.model)
R> summary(DR$om.model.trt)
R> summary(DR$om.model.ctrl)
R> getPSPlot(DR)

Sandwich Nuis-adj. exp(βA) p-value time
βA SE SE OR ICmin ICmax Unadj. Nuis-adj. (sec.)

GEE 0.19 0.171 - 1.21 0.87 1.69 0.262 - 1
IPW 0.19 0.182 0.219 1.21 0.79 1.86 0.290 0.386 32
AUG 0.45 0.141 0.176 1.57 1.12 2.22 0.001 0.010 11
DR 0.44 0.143 0.183 1.55 1.08 2.21 0.002 0.016 20

Marginal mean model: logit(µij) = β0 + βA Ai.
PS: logit(P(Rij|Ai, XIND

ij , XC
ij ) = γ0 + γA Ai + ∑10

k=1 γIND
k XIND

ijk + ∑5
k=1 γC

k XC
ijk.

OM: logit(P(Yij|Ai = a, XIND
ij , XC

ij ) = ξ0 + ∑10
k=1 ξaIND

k XIND
ijk + ∑5

k=1 ξaC
k XC

ijk, for each group a.

Table 3: Effects of the supply side-market vs. control on the probability of hygienic latrine ownership
in the sanitation data analysis (Guiteras et al., 2015a) using the standard GEE, the IPW adjustment
(IPW and DR), and the augmentation for imbalance (AUG and DR) assuming outcomes are rMAR.

Description of models for OM, PS and histogram of weights are given in the Web-
Supplementary Material Table 1 and Figure 1. As noted in Table 3, the estimates for IPW are
close to those for GEE, reflecting the fact that only 3.5% of data are missing. We also note
that all of the non-null weights are close to 1 (1.035 [1.02; 1.04]) showing that no covariate of
the PS explains the missingness pattern. Thus, the increased significance of the intervention
in the DR analysis compared to GEE is mainly driven by the augmentation. In both groups,
households with higher education and economic status (as evidenced by stoves, water
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pipes, phones, and other factors) are more likely to have a hygienic latrine. For cluster-level
covariates the patterns differ by intervention group: a high number of doctors is positively
associated with the hygienic latrine ownership only in the intervention group indicating a
potential synergy between the number of doctors and the presence of side-supply markets.

Conclusion

We demonstrated that the IPW can be biased in CRTs if the weights are not implemented as
described in Robins et al. (1995) and a non-independence working correlation structure is
chosen. In particular, we discuss problems that arise in the package geepack implemented
in R. These concerns apply not only for outcome data in CRTs but also to longitudinal
outcome data, when the probability that an observations is missing at a given time depends
on time-varying covariates measured at other times. We recommend to always check the
implementation in the software that has been chosen for analysis. The CRTgeeDR package
protects against this bias and allows for adjustment in imbalance in baseline covariates
in CRTs. The package can accommodate a wide range of outcome types, link functions,
and working correlation structures. The CRTgeeDR package is easy to use and does not
require extensive programming. It therefore makes the augmented GEE (AUG) and the
Doubly robust (DR) methodology for CRTs more accessible to applied researchers. Of
note, although the CRTgeeDR package had been designed for CRTs, it can also be used
for analysis of correlated longitudinal data from a randomized trial. The use of version
2.0 of the CRTgeeDR package to analyze observational clustered data (in which treatment
attribution may be informative) is not straightforward, but updates with these capabilities
are under development.

Acknowledgement

We thank R. Guiteras for sharing the Sanitation study on the dataverse website. This work
was founded by NIH grants R37 AI 51164 and R01 MH100974. Portions of this research
were conducted on the Cluster at Harvard Medical (NIH grant NCRR 1S10RR028832-01).

Bibliography

V. J. Carey, T. Lumley, and B. Ripley. gee: Generalized Estimation Equation Solver, 2012. URL
http://CRAN.R-project.org/package=gee. R package version 4.13-19. [p105]

M. P. Fay and B. I. Graubard. Small-sample adjustments for Wald-type tests using sandwich
estimators. Biometrics, 57(4):1198–1206, 2001. [p109]

R. B. Geskus and W. M. van der Wal. ipw: Estimate Inverse Probability Weights, 2015. URL
http://CRAN.R-project.org/package=ipw. R package version 1.0-11. [p105]

P. Gilbert and R. Varadhan. numDeriv: Accurate Numerical Derivatives, 2015. URL http:
//CRAN.R-project.org/package=numDeriv. R package version 2014.2.1. [p109]

A. Glynn and K. Quinn. CausalGAM: Estimation of Causal Effects with Generalized Additive
Models, 2010a. URL http://CRAN.R-project.org/package=CausalGAM. R package version
0.1-3. [p106]

A. N. Glynn and K. M. Quinn. An introduction to the augmented inverse propensity
weighted estimator. Political Analysis, 18(1):36–56, 2010b. [p106]

S. Gruber. tmle: Targeted Maximum Likelihood Estimation, 2014. URL http://CRAN.R-project.
org/package=tmle. R package version 1.2.0-4. [p106]

R. Guiteras, J. Levinsohn, and A. M. Mobarak. Encouraging sanitation investment in the
developing world: a cluster-randomized trial. Science, 348(6237):903–906, 2015a. [p106,
111, 112]

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

http://CRAN.R-project.org/package=gee
http://CRAN.R-project.org/package=ipw
http://CRAN.R-project.org/package=numDeriv
http://CRAN.R-project.org/package=numDeriv
http://CRAN.R-project.org/package=CausalGAM
http://CRAN.R-project.org/package=tmle
http://CRAN.R-project.org/package=tmle


CONTRIBUTED RESEARCH ARTICLES 114

R. Guiteras, J. Levinsohn, and M. Mobarak. Encouraging sanitation investment in the
developing world: A cluster-randomized trial. Harvard Dataverse; online data, 2015b. doi:
doi/10.7910/DVN/GJDUTV. URL http://dx.doi.org/10.7910/DVN/GJDUTV. [p111]

U. Halekoh, S. Højsgaard, and J. Yan. The R package geepack for generalized estimating
equations. Journal of Statistical Software, 15(2):1–11, 2006. [p105]

S. Højsgaard and R. Halekoh. geepack: Generalized Estimating Equations Package, 2016. URL
http://CRAN.R-project.org/package=geepack. R package version 1.2-0.1. [p105]

Y. Jun. geepack: Yet another R package for generalized estimating equations. R-News, 2(3):
12–14, 2002. [p105]

G. Lin, R. Rodriguez, and I. I. SAS. Weighted methods for analyzing missing data with the
GEE Procedure. Proceedings of SAS Global Forum, Washington DC(2014 March 23th-26th):
paper 166, 2015. [p105]

L. S. McDaniel and N. Henderson. geeM: Solve Generalized Estimating Equations, 2015. URL
http://CRAN.R-project.org/package=geeM. R package version 0.7.4. [p107]

L. S. McDaniel, N. C. Henderson, and P. J. Rathouz. Fast pure R implementation of gee:
Application of the Matrix package. The R journal, 5(1):181, 2013. [p105, 107]

K. E. Porter, S. Gruber, M. J. van der Laan, and J. S. Sekhon. The relative performance of
targeted maximum likelihood estimators. The International Journal of Biostatistics, 7(1):1–34,
2011. [p106]

M. Prague, R. Wang, A. Stephens, E. Tchetgen Tchetgen, and V. De gruttola. Accounting
for interactions and complex inter-subject dependency for estimating treatment effect in
cluster randomized trials with missing at random outcomes. Biometrics, 72(4):1066–1077,
2016. [p105, 107, 109, 110]

J. M. Robins, A. Rotnitzky, and L. P. Zhao. Analysis of semiparametric regression models
for repeated outcomes in the presence of missing data. Journal of the American Statistical
Association, 90(429):106–121, 1995. [p105, 106, 113]

J. M. Robins, S. Greenland, and F.-C. Hu. Estimation of the causal effect of a time-varying
exposure on the marginal mean of a repeated binary outcome. Journal of the American
Statistical Association, 94(447):687–700, 1999. [p106]

SAS Institute Inc. SAS/STAT Software, Version 13.2. Cary, NC, 2015. URL http://www.sas.
com/. [p105]

O. Sofrygin and M. van der Laan. tmlenet: Targeted Maximum Likelihood Estimation for Network
Data, 2015. URL http://CRAN.R-project.org/package=tmlenet. R package version 0.1-0.
[p106]

A. J. Stephens, E. J. Tchetgen Tchetgen, and V. DeGruttola. Augmented generalized estimat-
ing equations for improving efficiency and validity of estimation in cluster randomized
trials by leveraging cluster-level and individual-level covariates. Statistics in medicine, 31
(10):915–930, 2012. [p105, 107]

E. J. Tchetgen Tchetgen, M. M. Glymour, J. Weuve, and J. Robins. A cautionary note on
specification of the correlation structure in inverse-probability-weighted estimation for
repeated measures. Epidemiology, 23(4):644–646, 2012. [p105]

M. van der Laan. Causal inference for a population of causally connected units. Journal
Causal Inference, 2(1):1374–1380, 2014a. [p106]

M. van der Laan. Targeted estimation of nuisance parameters to obtain valid statistical
inference. The International Journal of Biostatistics, 10(1):29–57, 2014b. [p108]

W. M. van der Wal and R. B. Geskus. ipw: an R package for inverse probability weighting.
Journal of Statistical Software, 43(13):1–23, 2011. [p105, 109]

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

http://dx.doi.org/10.7910/DVN/GJDUTV
http://CRAN.R-project.org/package=geepack
http://CRAN.R-project.org/package=geeM
http://www.sas.com/
http://www.sas.com/
http://CRAN.R-project.org/package= tmlenet


CONTRIBUTED RESEARCH ARTICLES 115

C. Wang and M. C. Paik. A weighting approach for gee analysis with missing data. Commu-
nications in Statistics-Theory and Methods, 40(13):2397–2411, 2011. [p109]

M. Wang. geesmv: Modified Variance Estimators for Generalized Estimating Equations, 2015. URL
http://CRAN.R-project.org/package=geesmv. R package version 1.3. [p109]

S. L. Zeger and K.-Y. Liang. Longitudinal data analysis for discrete and continuous outcomes.
Biometrics, 42(1):121–130, 1986. [p105]

J. Zetterqvist and A. Sjölander. drgee: Doubly Robust Generalized Estimating Equations, 2015.
URL http://CRAN.R-project.org/package=drgee. R package version 1.1.3. [p105]

M. Zhang, A. A. Tsiatis, and M. Davidian. Improving efficiency of inferences in randomized
clinical trials using auxiliary covariates. Biometrics, 64(3):707–715, 2008. [p107]

Melanie Prague
Department of Biostatistics
Harvard T.H. Chan School of Public Health
655 Huntington Ave
Boston, MA 02115
and
INRIA - INSERM U1219 - SISTM
164 rue Leo Saignat Room 23
33076 Bordeaux Cedex, France
(ORCiD:0000-0001-9809-7848)
melanie.prague@inria.fr

Rui Wang
Department of Biostatistics
Harvard T.H. Chan School of Public Health
655 Huntington Ave
Boston, MA 02115
(ORCiD:0000-0001-5007-193X)
rwang@hsph.harvard.edu

Victor De Gruttola
Department of Biostatistics
Harvard T.H. Chan School of Public Health
655 Huntington Ave
Boston, MA 02115
degrut@hsph.harvard.edu

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

http://CRAN.R-project.org/package=geesmv
http://CRAN.R-project.org/package=drgee
mailto:melanie.prague@inria.fr
mailto:rwang@hsph.harvard.edu
mailto:degrut@hsph.harvard.edu


CONTRIBUTED RESEARCH ARTICLES 116

queueing: A Package For Analysis Of
Queueing Networks and Models in R
by Pedro Cañadilla Jiménez, Yolanda Román Montoya

Abstract queueing is a package that solves and provides the main performance measures for both
basic Markovian queueing models and single and multiclass product-form queueing networks. It can
be used both in education and for professional purposes. It provides an intuitive, straightforward
way to build queueing models using S3 methods. The package solves Markovian models of the form
M/M/c/K/M/FCFS, open and closed single class Jackson networks, open and closed multiclass
networks and mixed networks. Markovian models are used when both the customer inter-arrival time
and the server processing time are exponentially distributed. Queueing network solvers are useful for
modelling situations in which more than one station must be visited.

Introduction

Queueing theory is a mathematical branch of operations research. A pioneering work in this field was
The Theory of Probabilities and Telephone Conversations by A. K. Erlang (Erlang, Agner K., 1909).

Queueing exists when the demand for a service exceeds the available supply (Donald Gross and
Carl M. Harris, 1974). Although the common image of queues is that of people waiting in line, for
example at the supermarket checkout (Terry Green, 2012), queueing models are also used to analyse
computer performance (I. Mitrani, 1987, 1998; E. Gelembe and I. Mitrani, 1980; Mor Harchol-Balter,
2013; Ramón Puigjaner et al., 1995; Edward D. Lazowska et al., 1984; Leonard Kleinrock, 1976), traffic
jams (Tom Vanderbilt, 2009) and in many other areas of activity.

Although there are computer programs that are applicable to queueing theory, to date the statistical
computing environment R has lacked specific packages for this purpose.

In 2015 and 2016 respectively, simmer (Iñaki Ucar and Bart Smeets, 2015) and queuecomputer
(Anthony Ebert, 2016) were included at CRAN. Both apply simulation techniques to queueing models.
Simulation techniques have the great advantage of flexibility, enabling a system to be represented at the
level of detail desired. The disadvantages are the greater costs incurred, because many parameters must
be defined, a large and complex program developed (and debugged) and significant computational
resources deployed in order to obtain narrow confidence intervals (Edward D. Lazowska et al., 1984).
queueing is a queueing model solver, which has the advantage of achieving a favourable balance
between accuracy and efficiency (Edward D. Lazowska et al., 1984).

queueing provides R users with the most widely-used models: Markovian models, queueing
networks and calculators. Although Markovian models or queueing network models may be viewed
as very simple models with strong assumptions, they have actually been used to accurately model
many real situations, because the accuracy of queueing models is robust with respect to deviations
from prior assumptions (Edward D. Lazowska et al., 1984).

Markovian models include the familiar queues observed in real life at supermarket and airport
checkouts, restaurant queues, etc. The performance of computer systems can be modelled in a similar
way by assuming that the customers are operating system processes, database transactions, etc.
With queueing networks, several classes of customers can be considered, and therefore sizing, capacity
planning and what-if scenarios can be addressed with robust assumptions (Edward D. Lazowska et al.,
1984). For example, queueing networks can be observed at airports, where various stages, such as
check-in, passport control and security checks must be completed in turn before passengers enter the
aeroplane.

Finally, calculators are utilities that are used to obtain probabilities, such as that of a supermarket
customer being obstructed, of a passenger being rejected after arrival, or of a caller being transferred
to hear the operator voice message stating that all phone lines are busy.

These features of the queueing package make it a very valuable tool for the applied study of
queuing theory, in diverse fields of application, including the following:

• In education, to facilitate the presentation of class content, for learning and practice;
• In research, to achieve a deeper understanding of the models and their principles, using this as

a basis for designing more advanced models.
• In health centres, to determine the appropriate size for waiting areas and the average time that

patients must wait.
• In database administration, to discover bottlenecks at database servers and to accomodate user

load.
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• In the design of inbound call-centres, to calculate the optimal number of agents required to
maintain a given level of service.

Queueing Package

Nomenclature

To take into account different forms of queue organisation (limited or unlimited space, limited or
unlimited population, etc.), a nomenclature of six positions describing the characteristics of the model
is usually used (D. G. Kendall, 1953). Its structure is A/B/C/K/M/Z, where:

• A describes the inter-arrival time probability distribution,
• B describes the service time probability distribution,
• C is the number of servers or channels,
• K is the space limit of the service facility in the sense that no more than K customers can be in

the system (C in service and K - C waiting in queue),
• M is the size of the customer population,
• Z is the queue discipline, i.e how the next customer is chosen from the queue when the server

completes a service.

When Z is FCFS, M = ∞, and K = ∞, the last three positions are omitted.

Thus, M/M/1/∞/∞/FCFS, abbreviated to M/M/1, describes a model in which the inter-arrival and
service times are both exponential (M is obtained from the Markovian property of the exponential
distribution); there is a single server in a facility that does not impose any restriction on the number of
customers; customers arrive from a population that is considered infinite in the sense that the arrival
of an individual does not modify the probability of the next arrival; and FCFS (First Come, First Served)
is the most frequent way in which the next customer to be served is chosen from the queue.

Package contents

The package built provides a solution for two families of models, and three commonly-used calculators:

• Markovian models: in which inter-arrival and service times are both distributed exponentially
(Pazos Arias et al., 2003; Sixto Ríos Insúa et al., 2004; Donald Gross and Carl M. Harris, 1974;
Leonard Kleinrock, 1975):

1. M/M/1
2. M/M/c
3. M/M/∞
4. M/M/1/K
5. M/M/c/K
6. M/M/c/c
7. M/M/1/K/K
8. M/M/c/K/K
9. M/M/c/K/m

10. M/M/∞/K/K

• Operational models (used mainly in modelling computer performance, see Edward D. La-
zowska et al. (1984)):

a. Multiple channel open Jackson networks
b. Multiple channel closed Jackson networks
c. Single channel multiple class open networks
d. Single channel multiple class closed networks
e. Single channel multiple class mixed networks

• Calculators:

i. B-Erlang
ii. C-Erlang

iii. Engset
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Structure of queueing package

The queueing package was developed taking into account the S3 special class of functions in R. With
this type of function, different queueuing models can be created in the same way, thus providing the
user with a uniform and easy way to create the models. The model is created using the following
steps:

1. Create the inputs for the model with the NewInput function;
2. Optionally check the inputs with the CheckInput function.
3. Create the model by calling QueueingModel
4. Print a summary of the model using print, or a specific model performance measure such as W.

Although step 2 is optional (as it is applied when the QueueingModel function is called), it is
recommended that the inputs should always be checked, as this makes it easier to understand the data
and, thus to correctly build the model.

The following code is an example of a model using queueing. It can be thought of as cars
arriving at a petrol station, following an exponential distribution at the rate λ = 2. The cars are served
exponentially distributed at the rate µ = 3.

This situation is modelled in queueing using a single node in which the customer inter-arrival
time and service time both follow an exponential distribution, at the rates λ = 2 and µ = 3 respectively,
as shown in Figure 1.

Figure 1: M/M/1 Infinite population, single server. Example applicable to service provided at a petrol
station

# Load the package
library(queueing)

# Create the inputs for the model.
i_mm1 <- NewInput.MM1(lambda=2, mu=3)

# Optionally check the inputs of the model
CheckInput(i_mm1)

# Create the model
o_mm1 <- QueueingModel(i_mm1)

# Print on the screen a summary of the model
print(summary(o_mm1), digits=2)

#> lambda mu c k m RO P0 Lq Wq X L W Wqq Lqq
#> 1 2 3 1 NA NA 0.67 0.33 1.3 0.67 2 2 1 1 3

The output of the model also includes components, as the functions FWq (t) and FW(t), which can
be used to view the cumulative probability distribution of the random variables wq (time waiting)
and w (time in the system: time in queue + time being served), assuming FIFO(Fist In, First Out)
or FCFS(Fist Come, First Served) as the queue discipline. Accordingly, FWq (t) is the probability of a
customer waiting for a time less than or equal to t for service (Donald Gross and Carl M. Harris, 1974).

As can be seen in Figure 2, the probability of a customer having to wait for at least 4 units of time
is 1, and this coincides with the probability of a customer having to spend 4 total units of time in the
system.
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gTitle <- "Distribution function of w and wq"
fw <- o_mm1$FW
fwq <- o_mm1$FWq
n <- 10
ty <- "l"
ylab <- "FW(t), FWq(t)"
xlab <- "t"
cols <- c("black", "red")
leg <- c("FW(t)", "FWq(t)")

curve(fw, from=0, to=n, type=ty, ylab=ylab, xlab=xlab, col=cols[1], main=gTitle)
curve(fwq, from=0, to=n, type=ty, col=cols[2], add=T)
legend("bottomright", leg, lty=c(1, 1), col=cols)
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Figure 2: Distribution of random variables w and wq. As can be seen, from t=4, both variables has
probability of 1

Performance metrics comparision

queueing provides functions returning the outputs of the model, and therefore additional R functions
can be developed to study the effect of changing model inputs. For example:

• Change the input parameter λ in the model M/M/1:

L_f_aux <- function(x){L (QueueingModel(NewInput.MM1(lambda=x, mu=1, n=-1)))}
Lq_f_aux <- function(x){Lq (QueueingModel(NewInput.MM1(lambda=x, mu=1, n=-1)))}
Lqq_f_aux <- function(x){Lqq(QueueingModel(NewInput.MM1(lambda=x, mu=1, n=-1)))}

L_f <- function(v){sapply(v, L_f_aux)}
Lq_f <- function(v){sapply(v, Lq_f_aux)}
Lqq_f <- function(v){sapply(v, Lqq_f_aux)}
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gt <- "L, Lq and Lqq"
ylab <- "L, Lq, Lqq"
xlab <- "rho"
n <- 100
to <- 0.99
ty <- "l"
lty <- c(1, 1, 1)
cols <- c("blue", "red", "green")
leg <- c("L", "Lq", "Lqq")

curve(L_f, from=0, to=to, n=n, ylab=ylab, xlab=xlab, col=cols[1], type=ty, main=gt)
curve(Lq_f, from=0, to=to, n=n, col=cols[2], add=T, type=ty)
curve(Lqq_f, from=0, to=to, n=n, col=cols[3], add=T, type=ty)
legend("topleft", leg, lty=c(1, 1, 1), col=cols)
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Figure 3: Evolution of the number of customers in system (L), in queue (Lq) and in queue knowing
that queue exists (Lqq). The three functions exhibit a dramatic increase in the number of customers as
rho tends to 1. Observe that in general, Lqq > L > Lq

As can be seen in Figure 3, the three functions exhibit a dramatic increase in the number of
customers, from ρ → 1. Observe that Lqq > L > Lq. L > Lq because the number of customers in the
system must include the customer currently receiving the service; the interesting insight here is that
Lqq > L, and so merely knowing that there exists a queue raises the number of customers in the system.

x <- seq(from=0, to=0.99, by=0.01)
Lqq_f(x) - L_f(x)

#> [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [71] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

• The arrival rate changes in line with the number of servers in a M/M/c model:

W_f_aux <- function(x){W (QueueingModel(NewInput.MMC(lambda=x, mu=1.01, c=x)))}
Wq_f_aux <- function(x){Wq (QueueingModel(NewInput.MMC(lambda=x, mu=1.01, c=x)))}
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W_f <- function(v){sapply(v, W_f_aux)}
Wq_f <- function(v){sapply(v, Wq_f_aux)}

gt <- "W and Wq"
ylab <- "W, Wq"
xlab <- "lambda, c"
n <- 14
ty <- "l"
leg <- c("W", "Wq")
lty <- c(1, 1, 1)
cols <- c("blue", "red")

curve(W_f, from=1, to=n, n=n, ylab=ylab, xlab=xlab , col=cols[1], type=ty, main=gt)
curve(Wq_f, from=1, to=n, n=n, col=cols[2], add=T, type=ty)
legend("topright", leg, lty=lty, col=cols)
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Figure 4: Evolution of the mean time in queue and in the system according to lambda and c increase
equally. Observe that the time tends to zero as the number of servers increase

Observe in Figure 4 that although λ and c increase at the same rate, the time tends to zero as the
number of servers increases, meaning that the capacity of the facility increases faster than the work
pending attention.

• Sometimes it is useful to compare different models, for example to measure the impact of
duplicating the number of servers or of restricting the queue area. queueing includes a use-
ful function to compare different queueing models, so that the tradeoff between performace
measures can be seen at a glance.

o_mm2 <- QueueingModel(NewInput.MMC(lambda=2, mu=3, c=2))
o_mm2k <- QueueingModel(NewInput.MM1K(lambda=2, mu=3, k=5))
CompareQueueingModels(o_mm1, o_mm2, o_mm2k)

#> lambda mu c k m RO P0 Lq Wq X
#> 1 2 3 1 NA NA 0.6666667 0.3333333 1.33333333 0.66666667 2.000000
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#> 2 2 3 2 NA NA 0.3333333 0.5000000 0.08333333 0.04166667 2.000000
#> 3 2 3 1 5 NA 0.6345865 0.3654135 0.78796992 0.41390205 1.903759
#> L W Wqq Lqq
#> 1 2.000000 1.0000000 1.0000000 3.000000
#> 2 0.750000 0.3750000 0.2500000 1.500000
#> 3 1.422556 0.7472354 0.6717949 2.015385

Queueing Network Models

In addition to the basic Markovian models, queueing also offers several routines with which to build
different queueing networks.

Although simple queueing models have been used to correctly model different situations (Allan
L. Scherr, 1967), a queueing network must be used when several stages or places need to be visited
in order to obtain full service. There are some “special” queueing networks in the simple models:
thus, M/M/c/K (J. Medhi, 2003; Hisashi Kobayashi, 1978) and M/M/c/K/m are two examples of closed
queueing models.

For models with more than two stations or with different classes of customers, queueing offers
single and multiple channel open and closed Jackson networks, single channel open and closed
multiple classes of customers and single channel mixed networks.

The steps taken to create a queueing network are the same as those for a single queueing model:
the first is to apply the corresponding NewInput function; then, optionally, the CheckInput function
is called, to help with the input parameters of the model, and finally the model is built with the
QueueingModel function.

The difference between this and the single node model is that there exist several different functions
with which to create the inputs of the network. For example, for a single-class closed Jackson network,
there are three ways to create the input, as long as the problem has a probability route or the problem
has been defined as operational (Peter J. Denning and Jeffrey P. Buzen, 1978).

For example, imagine the urgent-treatment box of a hospital. Patients arrive at the rate of 10
patients/hour. A doctor examines each patient and may provide treatment and then send the patient
home, or derive the patient to a specialist (orthopaedist, cardiologist, etc.), who in turn may request
tests (blood analysis, radiography, etc.), and then send the patient home or recommend hospitalisation.
In the latter case(assuming there are beds available), treatment will be provided, more checks and tests
may be required and, eventually, the patient will leave (not always to go home).

In this case, the model used is a single-class Open Jackson network, with five nodes: general doctor,
orthopaedist, cardiologist, checks and tests box (composed of 15 technicians) and hospitalised (with
space for any number of patients). Except for visiting the general physician, in no case is a patient
allowed to directly enter another node.

The probability route matrix is measured as:
0 0.3 0.2 0 0
0 0 0 0.7 0.1
0 0 0 0.8 0.15
0 0.3 0.7 0 0
0 0 0 0.6 0.3


The model is built as follows, noting gd as general physician, ort as orthopaedist, car as cardiologist,

tb as checks and tests box and hos as hospitalised:

data <- c(0, 0.3, 0.2, 0, 0, 0, 0, 0, 0.7, 0.1, 0, 0, 0, 0.8, 0.15, 0, 0.4, 0.3, 0, 0.3)
prob <- matrix(data=data, byrow = TRUE, nrow = 5, ncol=5)
gd <- NewInput.MM1(lambda=10, mu=25, n=0)
ort <- NewInput.MM1(lambda=0, mu=18, n=0)
car <- NewInput.MM1(lambda=0, mu=20, n=0)
tb <- NewInput.MMC(lambda=0, mu=12, c=15, n=0)
hos <- NewInput.MMInf(lambda=0, mu=0.012, n=0)
hospital <- NewInput.OJN(prob=prob, gd, ort, car, tb, hos)

The fact that no patient is allowed to visit any doctor other than the general physician is specified,
by setting lambda to zero at the node.

The parameters can be checked using CheckInput and the model is built using QueueingModel

CheckInput(hospital)
m_hospital <- QueueingModel(hospital)
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print(summary(m_hospital), digits = 2)

#> L W X Lk Wk Xk ROk
#> Net 465 47 10 NA NA NA NA
#> Nd1 NA NA NA 0.67 0.067 10.0 0.400
#> Nd2 NA NA NA 1.11 0.111 9.5 0.525
#> Nd3 NA NA NA 0.50 0.050 6.7 0.335
#> Nd4 NA NA NA 1.00 0.100 12.0 0.067
#> Nd5 NA NA NA 462.21 46.221 5.5 462.213

As can be seen from the output, results are calculated both for the complete network and for each
node.

queueing also allows multiple classes of patients to be created, although currently only in the
operational way (Peter J. Denning and Jeffrey P. Buzen, 1978).

At the hospital, the patients arriving at the urgent-treatment box are usually one of two types:
high priority or normal priority.

By appropriately adjusting the input parameters, the problem can now be modelled as follows:

classes <- 2
vLambda <- c(2, 10)
nodes <- 5
vType <- c("Q", "Q", "Q", "Q", "D")
vHigh <- c(2, 4, 2, 6, 2)
vNorm <- c(1, 2, 1, 3, 0.5)
vVisit <- matrix(data=c(vHigh, vNorm), nrow=2, ncol=5, byrow = TRUE)
sHigh <- c(1/100, 1/250, 1/300, 1/600, 1/5)
sNorm <- c(1/90, 1/150, 1/200, 1/300, 1/3)
vService <-matrix(data=c(sHigh, sNorm), nrow=2, ncol=5, byrow = TRUE)

cl_hosp <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

Some parameters have a different meaning in this model. Although the order of the classes and
nodes is chosen by the modeller, once it is decided, consistency must be maintained.

• classes: number of classes of patients;
• vLambda: arrival rate of each class, setting high priority first;
• nodes: number of nodes;
• vType: except nodes like hospital (no limit to number of beds available), which is “D”, the rest

are “Q”;
• vHigh: average number of visits by each high priority patient to nodes;
• vNorm: average number of visits by each normal priority patient to nodes;
• vVisit: recall that order consistency must be preserved;
• sHigh: average service time in each node for high priority patients;
• sNorm: average service time in each node for normal priority patients.

As before, the CheckInput function should be used before building the model with QueueingModel.

CheckInput(cl_hosp)
m_cl_hosp <- QueueingModel(cl_hosp)
print(summary(m_cl_hosp), digits = 2)

#> L W X Lc Wc Xc Lk Wk Xk ROk Lck Wck Xck ROck
#> Net 3 0.25 12 NA NA NA NA NA NA NA NA NA NA NA
#> Cl1 NA NA NA 0.92 0.46 2 NA NA NA NA NA NA NA NA
#> Cl2 NA NA NA 2.12 0.21 10 NA NA NA NA NA NA NA NA
#> Nd1 NA NA NA NA NA NA 0.178 0.0148 14 0.151 NA NA NA NA
#> Nd2 NA NA NA NA NA NA 0.198 0.0165 28 0.165 NA NA NA NA
#> Nd3 NA NA NA NA NA NA 0.068 0.0056 14 0.063 NA NA NA NA
#> Nd4 NA NA NA NA NA NA 0.136 0.0114 42 0.120 NA NA NA NA
#> Nd5 NA NA NA NA NA NA 2.467 0.2056 9 2.467 NA NA NA NA
#> CN11 NA NA NA NA NA NA NA NA NA NA 0.047 0.0236 4 0.040
#> CN12 NA NA NA NA NA NA NA NA NA NA 0.038 0.0192 8 0.032
#> CN13 NA NA NA NA NA NA NA NA NA NA 0.014 0.0071 4 0.013
#> CN14 NA NA NA NA NA NA NA NA NA NA 0.023 0.0114 12 0.020
#> CN15 NA NA NA NA NA NA NA NA NA NA 0.800 0.4000 4 0.800
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#> CN21 NA NA NA NA NA NA NA NA NA NA 0.131 0.0131 10 0.111
#> CN22 NA NA NA NA NA NA NA NA NA NA 0.160 0.0160 20 0.133
#> CN23 NA NA NA NA NA NA NA NA NA NA 0.053 0.0053 10 0.050
#> CN24 NA NA NA NA NA NA NA NA NA NA 0.114 0.0114 30 0.100
#> CN25 NA NA NA NA NA NA NA NA NA NA 1.667 0.1667 5 1.667

In this case, the output has more detailed information than in the previous model, as the class
performance measures are also included.

Queueing Calculators

The calculators included in queueing are frequently used for sizing call centres, telecomunications
systems, etc.

1. Erlang-B. This function is derived from a M/M/c/c model when the c+1 customer arrives when
there are c already in the system.

2. Erlang-C. This function is frequently used in call centres to correctly set the number of agents.
It denotes the probability of a customer having to queue because all the servers are busy in a
M/M/c.

3. Engset. When the population is finite, that is, when each new arrival changes the probability of
the next arrival, the Engset function gives the probability of an arrival having to return to the
source merely because there is no room availabl. This situation is modelled by M/M/c/c/N with c
< N.

The graphics normally shown in queueing theory books such as (Donald Gross and Carl M. Harris,
1974), page 111, can be easily obtained and improved with the calculators included:

servers <- 1:50
numServers <- length(servers)
rho <- c(1, 5, 10, 15, 20, 24, 30, 40, 50)
rho_size <- length(rho)
pRes <- array(data=0, dim=c(numServers, rho_size))

for (i in 1:numServers)
for (j in 1:rho_size)
pRes[i, j] <- B_erlang(i, rho[j])

colrs <- rainbow(n=rho_size)

xlim <- c(1, numServers)
ylim <- c(0, 1)
xlab <- "Number of servers"
ylab <- "Probability"
gt <- "B-Erlang prob. for different loads"
y <- pRes[, 1]
x <- servers
col <- colrs[1]

plot(x=x, y=y, xlim=xlim, ylim=ylim, type="l", col=col, xlab=xlab, ylab=ylab, main=gt)

for (j in 2:rho_size)
lines(x=1:numServers, y=pRes[, j], col=colrs[j])

leg <- as.character(rho)
tr <- "topright"
lty <- rep(1, rho_size)
lwd <- rep(0.01, rho_size)

legend(x=tr, legend=leg, lty=lty, lwd=lwd, col=colrs)

Conclusions

queueing is a useful tool for both academic and professional use. In education, the main models
learned in class are presented in detail, providing numerous performance measures within a versatile
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Figure 5: Probability of not finding an available server as the number of servers increase

tool, helpful to students and teachers alike. For professionals, the package can be used both to design
and size systems or workloads according to perfomance requirements, and to explain deviations in
systems as they are evolving.

queueing has been developed to make it easy to learn how the NewInput, CheckInputs and Queue-
ingModel models are built. Both basic Markovian models and queueing networks can be built using
the same process.

More queue disciplines, together with intermediate and advanced models, will be included
progressively in the package to make it even more versatile.
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ctmcd: An R Package for Estimating the
Parameters of a Continuous-Time Markov
Chain from Discrete-Time Data
by Marius Pfeuffer

Abstract This article introduces the R package ctmcd, which provides an implementation of methods
for the estimation of the parameters of a continuous-time Markov chain given that data are only
available on a discrete-time basis. This data consists of partial observations of the state of the chain,
which are made without error at discrete times, an issue also known as the embedding problem for
Markov chains. The functions provided comprise matrix logarithm based approximations as described
in Israel et al. (2001), as well as Kreinin and Sidelnikova (2001), an expectation-maximization algorithm
and a Gibbs sampling approach, both introduced by Bladt and Sørensen (2005). For the expectation-
maximization algorithm Wald confidence intervals based on the Fisher information estimation method
of Oakes (1999) are provided. For the Gibbs sampling approach, equal-tailed credibility intervals
can be obtained. In order to visualize the parameter estimates, a matrix plot function is provided.
The methods described are illustrated by Standard and Poor’s discrete-time corporate credit rating
transition data.

Introduction

The estimation of the parameters of a continuous-time Markov chain (see, e.g., Norris (1998) or
Ethier and Kurtz (2005); also referred to as Markov process) when only discrete time observations
are available is a widespread problem in the statistical literature. Dating back to Elfving (1937), this
issue is also known as the embedding problem for discrete-time Markov chains. The problem occurs
in the modeling of dynamical systems when due to various reasons such as a difficult measurement
procedure only discrete-time observations are available. This is the case in a wide range of applications,
e.g., in the analysis of gene sequence data (see, e.g., Hobolth and Stone (2009), Verbyla et al. (2013)
or Chen et al. (2014)), for causal inference in epidemiology (see, e.g., Zhang and Small (2012)), for
describing the dynamics of open quantum systems (see, e.g., Cubitt et al. (2012)), or in rating based
credit risk modeling (see, e.g., Dorfleitner and Priberny (2013), Yavin et al. (2014) or Hughes and
Werner (2016)) to name only a few.

In the following, an explicit statement of the missing data setting shall be given and the notation
used in this manuscript shall be introduced: Consider that realizations of a continuous-time Markov
chain, i.e., paths of states s ∈ {1, . . . , S}, which change at times τ1, . . . , τK are given. For a single path,
this is exemplarily illustrated in figure 1.

s(0) s(τ1) s(τ2) s(τK−1) s(τK) s(T)State(Time)

Figure 1: Discrete-Time / Continuous-Time Setting

In the missing data situation described in this paper, these paths are however not completely observed,
but only at points in time 0 and T. The available observations are thus the states s(0) and s(T) and
these states are assumed to be observed without error. The cumulative discrete-time data over all
paths can be summarized into conditional transition matrices with absolute transition frequencies
NT|0 or relative transition frequencies PT|0 (in the following, the abbreviate notations NT and PT will
be used). The continuous-time state changes s(τk), k ∈ {1, . . . , K} are latent variables.

A continuous-time Markov chain has the parameter set

Q = {qij}1≤i≤I,1≤j≤J,I=J=S : qii ≤ 0, qij,i 6=j ≥ 0,
J

∑
j=1

qij = 0,

which is called generator matrix, transition rate matrix or intensity matrix. The problem is now to
estimate the parameters Q from the partial observations at times 0 and T. This allows to derive a
matrix of conditional discrete-time state change predictions PTa for arbitrary time intervals [0, Ta] of
length Ta by employing the matrix exponential function

PTa = exp(QTa).
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Besides the R package msm, see Jackson et al. (2011), which only provides functions for direct
likelihood optimization, there is no other publicly accessible implementation available which allows
for estimating the parameters of a continuous-time Markov chain given that data have been only
observed on a discrete-time basis. Against this background, this paper introduces the R package
ctmcd, a continuously extended, improved and documented implementation based of what started as
supplementary R code to Pfeuffer (2016). The functions of the package are explained and illustrated by
Standard and Poor’s corporate rating transition data. The outline of the paper is as follows: first, three
matrix logarithm adjustment approaches are explained. Second, likelihood inference is illustrated for
an instance of the expectation-maximization algorithm. Third, the implementation of a Gibbs sampler
is presented to facilitate Bayesian inference. Numerical properties of the different approaches are
evaluated and examples for more complex applications of the methods are shown. Finally, the results
of the paper are summarized.

Matrix logarithm adjustment approaches

A basic approach to estimate generator matrices from discrete-time observations is to inversely use
the matrix exponential relationship between conditional discrete time transition matrices PT (the
cumulative discrete-time state change data) and the parameters Q, i.e., to employ a matrix logarithm
function, which leads to the estimate

Qc = log(PT) =
∞

∑
k=1

(−1)k+1

k
(PT − I)k.

Besides finite truncation of this Taylor series, the matrix logarithm can, e.g., also be calculated by an
eigendecomposition, which is the default setting in ctmcd.

However, the matrix logarithm approach has two shortcomings. First, the matrix logarithm is not
a bijective function. As, e.g., shown by Speakman (1967), a transition matrix can have more than one
valid generator. However, for a certain subset of discrete-time transition matrices, it can be shown that
there exists only a single unique generator, for details on criteria (for discrete-time transition matrices)
under which this is the case, see, e.g., Cuthbert (1972), Cuthbert (1973), Singer and Spilerman (1976) or
Israel et al. (2001). Second, the method requires that the derived matrix Qc actually meets the above
outlined parameter constraints for Markov generator matrices, concretely that off diagonal elements
are non-negative, which is not necessarily the case. Therefore, in the following we shall discuss
techniques for adjusting logarithms of the discrete time data matrices PT , so that proper generator
matrices can be derived.

Diagonal and weighted adjustment

In this context, Israel et al. (2001) introduce two approaches. On the one hand, diagonal adjustment
(DA) works by forcing negative off-diagonal elements of Qc to zero

qij,i 6=j = 0|qij,c < 0

and adjusting the diagonal elements

qii = −
J

∑
j=1

qij

to ensure that ∑J
j=1 qij = 0. In ctmcd such an estimate can be performed by passing method="DA"

to gm(), the generic generator matrix estimation function of the package. The method requires the
specification of a discrete time transition matrix tm, which in the case of matrix logarithm adjustment
approaches is a matrix of relative transition frequencies, which refers to the matrix PT introduced
above, as input data.

In order to illustrate the methods, we employ Standard and Poor’s (2000) global corporate credit
ratings data. The rating categories in this data set have the commonly known symbols AAA, AA,
A, BBB, BB, B, C and D. These abbreviations represent states of decreasing credit quality whereas
category D stands for the event of credit default, which means that if rated D the obligor cannot or
does not have the willingness to meet its financial obligations any more. The data is provided as
tm_abs a matrix of discrete-time absolute transition frequencies from the first to the last day of the
fiscal year 2000. We have to take into account that the default category D has to be considered as an
absorbing state, because once an obligor has defaulted it can not escape this state any more. Following
the intuitive ordering of decreasing credit quality described above, in this example the default state
will refer to row 8. Thus, in order to convert the data into the required format, we have to create
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a matrix of relative transition frequencies tm_rel by standardizing the row entries to sum to 1 and
adding a unit row vector as row 8 with the last entry of this row being 1. Subsequently, we can apply
the diagonal adjustment approach by specifying tm=tm_rel and the time horizon of this discrete-time
matrix as te=1, because tm_abs and tm_rel refer to credit rating changes for a single year time interval
(fiscal year 2000).

data(tm_abs)
tm_rel <- rbind((tm_abs / rowSums(tm_abs))[1:7,], c(rep(0, 7), 1))
gmda <- gm(tm=tm_rel, te=1, method="DA")

On the other hand, Israel et al. (2001) also describe the weighted adjustment (WA) of the non-
negative off-diagonal entries as an alternative, i.e., off diagonal elements are adjusted by

qij,i 6=j = qij,c +
|qij,c|

∑j 6=i |qij,c| ∑j 6=i
qij,c1(qij,c < 0)|qij,c ≥ 0,

where the cut off jump probability mass is redistributed among the remaining positive off diagonal
elements according to their absolute values. In analogy to diagonal adjustment, a weighted adjustment
estimate can be derived by using method="WA" as follows:

gmwa <- gm(tm=tm_rel, te=1, method="WA")

Quasi-optimization

The third matrix logarithm adjustment approach is the quasi-optimization (QO) procedure of Kreinin
and Sidelnikova (2001). This method finds a generator Q from the set of all possible generator matrices
Q′ by solving the minimization problem

Q = arg min
Q′

I

∑
i=1

J

∑
j=1

(q′ij − qij,c)
2,

which means that the algorithm chooses a generator matrix which is closest to the matrix logarithm in
terms of sum of squared deviations.

gmqo <- gm(tm=tm_rel, te=1, method="QO")

By specifying method="QO", we can then get a quasi-optimization approach result for our data.
Despite the possibility to just show the parameter estimates for the different methods in the console
using, e.g., print(gmDA) or simply calling gmDA(), ctmcd also provides a matrix plot function plotM()
that especially allows the visualization of generator matrix estimates and can be easily accessed by the
generic plot() function:

plot(gmda)
plot(gmwa)
plot(gmqo)

The results can be seen in figure 2.

Likelihood inference

Given that complete continuous-time data is available, the likelihood function for a generator matrix
is given by

L(Q) =
I

∏
i=1

∏
j 6=i

q
Nij(T)
ij exp(−qijRi(T)),

where Nij(T) denotes the number of transitions from i to j within time T and Ri(T) for the cumulative
sojourn times in state i before a state change occurs. A maximum likelihood estimate for a single
off-diagonal element of Q can then be derived by

qij,ML =
Nij(T)
Ri(T)

,

for more information see, e.g., Inamura (2006).

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 130

Diagonal Adjustment

To

F
ro

m
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B

BB

BBB

A

AA

AAA −0.11 0.105 0.005 0 0 0 0 0

0.006 −0.096 0.088 0.001 0 0 0 0

0 0.038 −0.139 0.093 0.002 0 0.005 0.002

0.001 0.003 0.044 −0.101 0.044 0.004 0.002 0.003

0 0.004 0 0.044 −0.143 0.086 0.008 0

0 0.006 0.003 0.006 0.059 −0.193 0.064 0.055

0 0 0 0 0.007 0.155 −0.363 0.201

0 0 0 0 0 0 0 0

Weighted Adjustment
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0 0.004 0 0.044 −0.142 0.086 0.008 0

0 0.006 0.003 0.006 0.059 −0.193 0.064 0.055
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Quasi Optimization
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0 0 0 0 0 0 0 0

Figure 2: Matrix Logarithm Adjustment Approaches

Expectation-maximization algorithm

The difficulty is now that when data is only observed at times 0 and T, the expressions Nij(T) and
Ri(T) are not known. In order to derive a maximum likelihood estimate given this partially accessible
observations setting, Bladt and Sørensen (2005) derive an instance of the expectation-maximization
(EM) algorithm. The missing data is then iteratively imputed by conditional expectations given the
current parameter set. This requires a complicated computation of the integrals in

E(Ri(T)|Ql , s(0), s(T)) =
ns(0)s(T)u

T
s(0)

(∫ T
0 exp(Ql t)uiuT

j exp(Ql(T − t))dt
)

us(T)

uT
s(0) exp(Ql T)us(T)

and E(Nij(T)|Ql , s(0), s(T)) =
ns(0)s(T)qij,luT

s(0)

(∫ T
0 exp(Ql t)uiuT

j exp(Ql(T − t))dt
)

us(T)

uT
s(0) exp(Ql T)us(T)

,

where n refers to an element of the discrete-time absolute transition frequency matrix NT , uk denotes
a unit vector with entry 1 at position k and l points to the current iteration step of the EM algorithm.
The computation of the integrals is carried out following the matrix exponential approach described
in van Loan (1978) and Inamura (2006). In order to perform an estimate based on the EM algorithm
an initial generator matrix guess has to be chosen, which has to be a proper generator matrix. In the
following example, this will be the matrix gm0, which is an arbitrarily chosen generator matrix where
all off diagonal entries are 1 and state 8 is determined as an absorbing state.

gm0 <- matrix(1, 8, 8)
diag(gm0) <- 0
diag(gm0) <- -rowSums(gm0)
gm0[8,] <- 0

The maximum likelihood estimate can then be obtained by using the gm() function, providing a
matrix of absolute numbers of state changes (in the credit rating example i.e., tm=tm_abs), specifying
the method argument by method="EM" and setting an initial guess (here: gmguess=gm0).

gmem <- gm(tm=tm_abs, te=1, method="EM", gmguess=gm0)
plot(gmem)
plot(gmem$ll, main="Expectation Maximization Algorithm\nLog Likelihood Path",

xlab="Iteration", ylab="Log-Likelihood")
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The result of this estimate can be seen in figure 3 together with a plot of the log-likelihood path of the
single EM algorithm iteration steps.

Direct likelihood optimization

The function being actually optimized by the EM algorithm is the marginal likelihood

L(Q|NT) =
I

∏
i=1

J

∏
j=1

(exp(Q · T))nT ;ij
ij .

Besides the EM algorithm, also other numerical optimization methods can be employed to perform the
maximization of this function. The R-package msm, which is actually built for estimating Markov mod-
els with covariates, so called multi-state models, contains simplex optimization (opt.method="optim"),
Newton optimization (opt.method="nlm"), a bounded optimization by a quadratic approximation
approach (opt.method="bobyqa") introduced by Powell (2009) and a Fisher scoring technique by
Kalbfleisch and Lawless (1985) (opt.method="fisher"). In order to benchmark the EM algorithm, the
different techniques shall be compared using the derived maxima and the time needed to perform the
estimation.

### Data transformation for msm function
mig <- NULL
id <- 0
for(i in 1:7) {
for(j in 1:8) {
if(tm_abs[i,j] > 0) {
for(n in 1:tm_abs[i,j]) {
id <- id + 1
mig <- rbind(mig, c(id, 0, i), c(id, 1, j))

}
}

}
}
mig_df <- data.frame(id=mig[,1], time=mig[,2], state=mig[,3])

### Comparing estimates
gmem <- gm(tm_abs, te=1, method="EM", eps=1e-7, gmguess=gm0)
ctmcdlogLik(gmem$par, tm_abs, 1)

q0 <- rbind(matrix(1, 7, 8), 0)
msm_est1 <- msm(state ~ time, id, data=mig_df, qmat=q0,

opt.method="optim", gen.inits=TRUE)
ctmcdlogLik(qmatrix.msm(msm_est)[[1]], tm_abs, 1)
msm_est2 <- msm(state ~ time, id, data=mig_df, qmat=q0,

opt.method="nlm", gen.inits=TRUE)
ctmcdlogLik(qmatrix.msm(msm_est)[[1]], tm_abs, 1)
msm_est3 <- msm(state ~ time, id, data=mig_df, qmat=q0,

opt.method="nlm", gen.inits=TRUE)
ctmcdlogLik(qmatrix.msm(msm_est)[[1]], tm_abs, 1)

msm_est4 <- msm(state ~ time, id, data=mig_df, qmat=q0,
opt.method="fisher", gen.inits=TRUE)

The marginal likelihood function for a given generator matrix, discrete-time interval T and
corresponding discrete-time transition frequencies NT can be computed by the function ctmcdlogLik().
Optimization with the previously employed remote initial value gm0 fails for all msm optimization
methods, with the closer built-in parameter initialization gen.inits=TRUE, we obtain the results
presented in table 1. Optimization also fails for the method of Kalbfleisch and Lawless (1985). However,
it is already mentioned in the helpfiles for the msm() function, that optimization using this approach
lacks stability. Thus, the advantages of the EM algorithm in this specific data setting where no
covariates are included in the calculation are its numerical performance and its stability.
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Method EM optim nlm bobyqa

Log-Likelihood -3194.255 -3194.255 -3194.255 -3194.259
Time Elapsed [s] 0.46 4.65 28.33 167.52

Table 1: Likelihood Optimization - Numerical Comparison

Confidence intervals

The package ctmcd also provides a function for deriving a confidence interval based on the asymptotic
normality of the maximum likelihood estimate. As however in a partially observed data setting
the maximum likelihood estimate is based on the likelihood function of the complete observations
{Nij(T), Ri(T)}1≤i≤I,1≤j≤J given that only part of them, NT are actually available, the Fisher informa-
tion matrix has to be adjusted for the missing information in order to derive proper standard error
estimates. Following Oakes (1999), a Fisher information matrix estimate for the observed data INT can
be obtained by

INT = I{Nij(T),Ri(T)}1≤i≤I,1≤j≤J
− I{Nij(T),Ri(T)}1≤i≤I,1≤j≤J |NT

.
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Figure 3: Maximum-Likelihood Estimation.

Bladt and Sørensen (2009) then concretize this expression for a generator matrix estimation
framework and derive

INT ,(i−1)I+j,(i−1)I+j =
1

q2
ij

E(Nij(T)|Ql , s(0), s(T))− 1
q2

ij

∂

∂qij
E(Nij(T)|Ql , s(0), s(T))

+
∂

∂qij
E(Ri(T)|Ql , s(0), s(T))

and INT ,(i−1)I+j,(i′−1)I+j′ =−
1

q2
ij

∂

∂qi′ j′
E(Nij(T)|Ql , s(0), s(T)) +

∂

∂qi′ j′
E(Ri(T)|Ql , s(0), s(T))

as diagonal and off-diagonal (i, j) 6= (i′, j′) elements of the observed Fisher information matrix INT .
The confidence interval then has the common form

qij ± z1− α
2
se(qij),

where z1− α
2

denotes the 1− α
2 quantile of the standard normal distribution. The method is implemented

as a function ciEM(), which can be easily accessed using the generic gmci() command, which takes as
arguments an EM algorithm estimate object and a significance level alpha.

ciem <- gmci(gmem, alpha=.05)
plot(ciem)

By default, the derivatives for the information matrix are calculated using the analytical expressions of
Smith and dos Reis (2017) (cimethod="SdR"), numerical derivatives as suggested in Bladt and Sørensen
(2009) can be accessed by cimethod="BS".
The matrix plot function can also be applied to "gmci" interval estimate objects, see, e.g., figure 4. One
can see in this example that interval estimates are not provided for all generator matrix entries. This
is due to the fact that the numerical evaluation of the above described expressions for deriving the
Fisher information matrix and inverting it becomes unstable when the parameter estimates are small.
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Thus a lower limit eps can or has to be specified so that for generator matrix elements smaller than
eps, no interval estimates are obtained. By default eps=1e-04.

95% Wald Confidence Interval (Oakes Standard Error)
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Figure 4: Confidence Interval

Bayesian inference

Gibbs sampler

Bladt and Sørensen (2005) show that the Gamma distribution Γ(φ, ψ) constitutes a conjugate prior for
the off diagonal elements of the generator matrix under the continuous-time Markov chain likelihood
function. The posterior distribution can then be derived as

f (Q|{s(0), s(T)}) ∝L(Q|{s(0), s(T)})
I

∏
i=1

∏
j 6=i

q
φij−1
ij exp(−qijψi)

∝
I

∏
i=1

∏
j 6=i

q
Nij(T)+φij−1
ij exp(−qij(Ri(T) + ψi)).

Based on these expressions, they describe a Gibbs sampling algorithm (GS) which in analogy to the
EM algorithm iteratively simulates the missing data Nij(T) and Ri(T) given the current parameter
estimate and subsequently draws new parameter estimates given the imputed data. In order to use
the method, the prior parameters have to be specified as a "list" object named prior. Thereby, the
first element of the list has to be an I × J matrix of the Gamma parameters φij and the second element
a vector of length I with the parameters ψi. Consider, e.g.,

pr <- list()
pr[[1]] <- matrix(1, 8, 8)
pr[[1]][8,] <- 0
pr[[2]] <- c(rep(5, 7), Inf)

as a simple example, where φij = 1, ψi = 5 and there is an absorbing state 8, which can be specified by
determining φ·,8 = 0 and ψ8 = ∞. As for the EM algorithm we need to provide a matrix of absolute,
rather than relative, transition frequencies as input data (in our example tm=tm_abs). Furthermore,
the length of the burn-in period must be chosen (here: burnin=1000). Convergence of the algorithm is
evaluated by the approach of Heidelberger and Welch (1981), which is implemented in the R package
coda, see Plummer et al. (2006). The advantage of this method is that it can be applied to single chains;
a shortcoming is that, as for similar methods, evaluation with multiple parameters is time consuming.
Thus, besides specifying a p-value for the convergence test by the argument conv_pvalue, one can also
set a frequency criterion conv_freq for how often with an equidistant number of trials convergence
shall be checked. By default, conv_pvalue=0.05 and conv_freq=10. One should notice that as the
method of Heidelberger and Welch (1981) is a two sample location test for comparing the stability
of the parameter estimates at the beginning and the end of the Markov chain, the hypotheses are set
so that an increasing p-value implies a stricter convergence criterion. Another stopping rule is the
maximum number of iterations niter, which by default is set as niter=1e04. If convergence according
to the method of Heidelberger and Welch (1981) is not given before the maximum number of iterations
is reached, a warning is displayed.

Setting the method argument to the value "GS" will then lead the generic generator matrix estima-
tion method to provide a posterior mean estimate
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gmgs <- gm(tm=tm_abs, te=1, method="GS", prior=pr, burnin=1000)
plot(gmgs)

The result can be seen in figure 5.
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0 0 0 0 0 0 0 0

Figure 5: Posterior Mean Estimate

Endpoint-conditioned path sampling

Central to the Gibbs sampling algorithm is the sampling of realizations from the missing data full
conditional distribution given the current parameters and the discrete time observations. This yields
the sample paths from a continuous-time Markov chain with generator matrix estimate Ql given
initial and end states s(0) and s(T). In the package, two methods for deriving these sampling paths
are provided, on the one hand the modified rejection sampling approach of Nielsen (2002) which can
be accessed by sampl_method="ModRej", on the other hand the uniformization sampling scheme of
Fearnhead and Sherlock (2006), which is set as default method and can be manually employed by
setting sampl_method="Unif". As the simulation of trajectories of the process is in practice often very
time consuming, the method is implemented in C++ based on the source code of Fintzi (2016) which
itself is built upon the supplementary R code of Hobolth (2008). Figure 6 shows the time (in seconds)
needed for sampling 10000 trajectories for each of the two methods and any combination of initial and
endstates.

speedmat_modrej <- matrix(0, 8, 8)
speedmat_unif <- matrix(0, 8, 8)
tpm <- expm(gmgs$par)
for(i in 1:7){
for(j in 1:8){
elem <- matrix(0, 8, 8)
elem[i,j] <- 1e5
t0 <- proc.time()
rNijTRiT_ModRej(elem, 1, gmgs$par)
speedmat_modrej[i,j] <- (proc.time() - t0)[3]
t0 <- proc.time()
rNijTRiT_Unif(elem, 1, gmgs$par,tpm)
speedmat_unif[i,j] <- (proc.time() - t0)[3]

}
}

plotM(speedmat_modrej,
main="Time for Simulation of 100,000 Paths\nModified Rejection Sampling",
xnames=rownames(tm_abs), ynames=colnames(tm_abs))

plotM(speedmat_unif,
main="Time for Simulation of 100,000 Paths\nUniformization Sampling",
xnames=rownames(tm_abs), ynames=colnames(tm_abs))

Although in this example, the uniformization sampling approach clearly outperforms modified
rejection sampling, it has to be mentioned that the computing time for deriving discrete time state
transitions in the uniformization approach (which is carried out by using the matrix exponential) is not
included, because it is only calculated once in each Gibbs sampling iteration step. Moreover, rejection
rates of the approach of Nielsen (2002) might be lower if trajectories are sampled for a whole row
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Time [sec] for Simulation of 100,000 Paths
 Modified Rejection Sampling
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Figure 6: Endpoint-Conditioned Trajectory Sampling

of a transition matrix and not single initial and end state combinations because then more than one
possible path ending can be accepted in a single draw. Therefore, to provide the option to combine
the individual strengths of both approaches, it is possible to set sampl_method="Comb" and provide a
matrix with entries of either "M" or "U" for the optional argument combmat, specifying which algorithm
shall be used for simulating trajectories for the specific start and endpoint combination. Moreover, it is
possible to include an own external sampling algorithm implementation by specifying method="Ext"
and an argument sampl_func with a sampling function of the format

sf <- function(tmabs, te, gmest) {
### Derive Expected Holding Times (RiT) and Number of State Transitions (NijT)
return(list(RiT=..., NijT=...))

}

Thereby, the matrix of absolute transition frequencies tmabs, the time interval for the discrete-time
transitions te and the current parameter estimate of the Gibbs sampler gmest are input variables to
this function and a vector of cumulative simulated holding times RiT and a matrix of continuous-time
state changes NijT needs to be returned.

Parallelization

As the numerical performance of the Gibbs sampling algorithm is severely dependent on the per-
formance of the endpoint conditioned path sampling algorithm, we would like to briefly point out
that the whole method can also be run in parallel. This can be achieved by setting up a number of
nco independent chains with N/nco iterations each, whereas N denotes the total number of iterations
and nco the number of parallel threads. As long as the initial states of the chain are forgotten, the
single generator matrix draws can be seen as independent realizations. Thus, a burnin period must be
considered in every thread and conv_pvalue has to be set to 1 in order to ensure that the predetermined
number of iterations is reached. Without loss of generality we use the packages foreach Microsoft and
Weston (2017) and doParallel Corporation and Weston (2017) to provide with a simple example.

library(foreach)
library(doParallel)
N <- 1e5
nco <- detectCores()
cl <- makeCluster(nco)
registerDoParallel(cl)
gspar=foreach(i=1:nco, .packages=c("ctmcd", "expm")) %dopar%
gm(tm=tm_abs, te=1, method="GS", burnin=1000, prior=pr,

conv_pvalue=1, niter=N / nco)
stopCluster(cl)

### Derive Estimate
parlist <- lapply(gspar, function(x) x$par)
parest <- Reduce('+', parlist) / nco

In this multiple chain setting, convergence can be analyzed by the potential scale reduction factor
diagnostic of Gelman and Rubin (1992). The potential scale reduction factor describes by what fraction
the variance of the draws in the chain can be reduced if the chain is extended to an infinite length.
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Convergence is assumed when the factor is close to 1. Rules of thumb on how close its value should
be are, e.g., 1.2, see Bolker (2008) or 1.1, see Gelman et al. (2011). With the absorbing default state and
diagonal elements being only a linear combination of the parameters in the single rows, chains for 49
parameters have to be evaluated. This can be conducted by employing the multivariate extension of
the originally univariate factor, which has been introduced by Brooks and Gelman (1998).

### Check Convergence
library(coda)
chainlist <- as.mcmc.list(lapply(gspar, function(x) {

as.mcmc(do.call(rbind, lapply(x$draws, as.vector)))
}))
parchainlist <- lapply(chainlist,

function(x) x[,as.vector(parest) > 0])
gelman.diag(parchainlist)

Employing the implementation of this diagnostic in the coda package, we derive a multivariate
potential scale reduction factor of 1.01 in this example. Thus, convergence may be assumed.

Credibility intervals

After having discussed various aspects of point estimation, an example for Bayesian interval estimation
shall be presented as well. Bladt and Sørensen (2009) show that equal-tailed credibility intervals can
be easily obtained from samples of the joint posterior distribution by empirical quantiles

[qij,dL α
2 e, qij,dL 1−α

2 e
].

Calling gmci(), the generic function for generator matrix interval estimates, and specifying that an
interval based on a Gibbs sampling object (here: gmgs) shall be derived will automatically call the
ciGS() subroutine and yield an equal-tailed credibility interval as outlined above. Setting a confidence
level alpha=0.05 will then yield the estimate which can be seen in figure 7.

cigs <- gmci(gm=gmgs, alpha=0.05)
plot(cigs)
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Figure 7: Credibility Interval

Comparison of Approaches

The approaches "DA", "WA", "EM" and "GS" are suitable for state spaces of size 2 or greater. However,
with a state space of size 2, the approaches diagonal adjustment and weighted adjustment will always
yield the same result as there is only one possible rearrangement of off-diagonal elements in this case.
Method "QO" requires a state space of at least size 3 as two off diagonal elements for each row of a
generator matrix are required to perform the implemented sorting scheme.

Figure 8 shows how the methods scale concerning numerical performance. The simulation study
shows examples for the average time in seconds to perform an estimate with each of the methods
outlined in this manuscript. Thereby, the EM algorithm and the Gibbs sampler are run for 100
iterations each and the data on which the estimates are performed is generated by distributing 1000
and respectively, 10000 discrete-time transitions over a single unit time horizon uniformly over
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matrices of dimension 2× 2 to 10× 10. The estimation procedures are repeated 1000 times and the
mean execution times are summarized in the graphics below. One can recognize that the matrix
logarithm adjustment approaches require by far less computation time than the EM algorithm and the
Gibbs sampler and that with increasing dimension of the state space, computing time is increasing as
well. Moreover, one can also identify that the matrix logarithm adjustment approaches and the EM
algorithm are - in contrast to the Gibbs sampler - almost only dependent on the size of the state space
and not the number of discrete-time transitions in the sample.
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Figure 8: Speed Comparison

Profiles of Discrete-Time Transitions into Absorbing States

Based on the derived parameter estimates, predictions about discrete-time transitions into absorbing
states of the Markov chain can be made and moreover, systemized as a function of the length of the
discrete time interval. In the credit rating example shown in this paper, such functions are discrete time
probabilities of default of a given initial rating category depending on the time horizon (in years) and
shall be called probability of default profiles in the following. Thereby, an advantage of the Bayesian
approach is that in contrast to the other methods outlined, interval estimates for such profiles can
be easily derived. This involves the computation of empirical quantiles pta ,ij, α

2
and pta ,ij,1− α

2
of all

elements of the discrete time transition matrix estimates

(Pta ,1, . . . , Pta ,L) = (exp(Q1ta), . . . , exp(QLta))

given the single Gibbs sampling generator matrix draws Q1, . . . , QL, see Bladt and Sørensen (2009).

For the seven possible initial states in the credit rating example, probability-of-default profiles can
then be obtained using the following code, the results are shown in figure 9.

tmax <- 20
for(cat in 1:7){
absStvec <- sapply(1:tmax, function(t) expm(gmgs$par * t)[cat,8])
quantMat <- matrix(0, 4, tmax + 1)
for(t in 1:tmax){
dtdraws <- lapply(gmgs$draws, function(x) expm(t * x))
drawvec <- sapply(1:length(gmgs$draws), function(x) dtdraws[[x]][cat,8])
quantMat[,t + 1] <- quantile(drawvec, c(.025, .05, .95, .975))

}
plot(0:tmax, c(0, absStvec), t="l", lwd=3, ylim=c(0, max(quantMat)),

main=paste0("Absorbing State Profiles\nInitial Rating Category ",
rownames(tm_abs)[cat]),

xlab="Time [Years]", ylab="Probability of Default")
for(i in 1:4)

lines(0:tmax, quantMat[i,], lty=c(3, 2, 2, 3)[i])
legend("topleft", lty=c(3, 2, 1), c("95%", "90%", "Median"))

}

Complementary to the solid line, which represents the posterior mean estimate based discrete-
time probability of default predictions, pointwise credibility intervals for α = 0.05 and α = 0.1 are
computed here. As expected, one can recognize that with increasing time horizon, the width of the
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Figure 9: Probability-of-Default Profiles
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intervals is increasing as well. Furthermore, the width of intervals increases with decreasing number
of observations in the specific category. This can be seen, e.g., for the profile with pointwise intervals
of initial rating category "AAA".

Summary

The problem of estimating the parameters of a continuous-time Markov chain from discrete-time
data occurs in a wide range of applications and especially plays an important role in gene sequence
data analysis and rating based credit risk modeling. This paper introduces and illustrates the ctmcd
package, which provides an implementation of different approaches to derive such estimates. It
supports matrix logarithm-based methods with diagonal and weighted adjustment as well as a quasi-
optimization procedure. Moreover, maximum likelihood estimation is implemented by an instance
of the EM algorithm and Bayesian estimates can be derived by a Gibbs sampling procedure. For the
latter two approaches also interval estimates can be obtained. The Bayesian approach can be used to
derive pointwise credibility intervals of discrete-time transition probabilities and systematic profiles
of discrete-time transition probabilities into absorbing states given the corresponding time horizon.
Above all, a matrix plot function is provided and can be used to visualize both point and interval
estimates.
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Furniture for Quantitative Scientists
by Tyson S. Barrett and Emily Brignone

Abstract A basic understanding of the distributions of study variables and the relationships among
them is essential to inform statistical modeling. This understanding is achieved through the com-
putation of summary statistics and exploratory data analysis. Unfortunately, this step tends to be
under-emphasized in the research process, in part because of the often tedious nature of thorough
exploratory data analysis. The table1() function in the furniture package streamlines much of the
exploratory data analysis process, making the computation and communication of summary statistics
simple and beautiful while offering significant time-savings to the researcher.

Introduction

A major, but often overlooked, aspect of the research process is the computation of summary statistics
and exploratory data analysis. Through exploratory data analysis, researchers can begin to understand
patterns and relationships in their data that are relevant for more complex modeling schemes. In
addition, this exploration can inform future directions in their research area and can inspire better
research questions. This is a valuable benefit of assessing summary statistics and exploring the data,
for, as John Tukey (1980) stated, "Finding the question is often more important than finding the
answer."

Generally, an important aspect of data exploration is the assessment of summary statistics. Yet, the
computation and reporting of summary statistics can be tedious and messy, with many researchers
computing and entering values into tables one variable at a time. This can be quite time-consuming
and leaves the researcher susceptible to data-entry errors. Additionally, in the event of changes to
the number of observations in the sample or to the nature of the stratifying variable, the whole table
must be manually updated. These issues may lead researchers to conduct only minimal exploratory
data analysis, potentially missing important relationships among study variables. Researchers may
also opt to delegate the computation of summary statistics to research assistants. This is not always
ideal, as assistants may lack the substantive expertise required to recognize important or theoretically
interesting patterns in the data.

The presentation of sample summary statistics in conjunction with higher-level data analysis is
also essential to the production of reproducible research.1 In many fields there is a struggle to produce
reproducible research (Open Science Collaboration, 2015; Chang and Li, 2015; Begley and Ioannidis,
2015). Thorough reporting of sample characteristics, including the distribution of sample characteristics
stratified by key study variables, allows other researchers the opportunity to more carefully evaluate
findings, replicate results, discover further research avenues, and critically compare findings across
multiple studies. In the furniture package, as will be demonstrated, obtaining descriptive statistics for
all study variables, either with or without a stratifying variable, is simple and can be done using just a
few lines of code.

It is worth noting that there are other well-designed packages that help produce descriptive
statistics. The package tableone is thoroughly developed and performs similar analyses to table1().
However, the syntax is more complex and lacks some of the flexibility that table1() offers. The
stargazer and psych packages also offer informative summaries of the data for each variable, but are
limited in their use for publication without manual entry, and offer few options for more involved
data manipulation.

Data for example analyses

In order to demonstrate the utility of table1(), we descriptively explored and analyzed data from
the National Health and Nutrition Examination Survey (NHANES) provided by the Centers for
Disease Control and Prevention (National Center for Health Statistics, 2016). The data are attached in
the package as "nhanes_2010" after having been cleaned using the furniture, tidyverse and foreign
R packages (Barrett and Brignone, 2016; Wickham, 2016; R Core Team, 2016). The data contain
information on general health, activity level, age, gender, drug use, and chronic conditions for 1,417
young adults (51.4% female) aged 18-30 (M = 23.3, SD = 3.96). Under the direction of the Centers for
Disease Control and Prevention, the data were collected via a complex sampling strategy across the
United States in 2013 and 2014.

1We use the definitions from Goodman et al. (2016): "methods reproducibility" refers to the ability to obtain
the same results with the same methods and data and "results reproducibility" means being able to obtain similar
results using the same methods with independent data.
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Table 1

The general form of table1()2 is below, with several of the most common arguments. Note that the
structure is similar to other "tidy" packages, with the data.frame as the first argument, unquoted
variables, and the ability to pipe.

library(furniture)
table1(df,

var1, var2, var3, etc.,
splitby = ~stratifying_variable,
test = TRUE,
type = "pvalues",
second = NULL,
output = "text",
FUN = NULL,
FUN2 = NULL)

where

• df is the data.frame or a tbl_df from the tidyverse of functions,

• var1, etc. are unquoted variable names (any number of variables),

• splitby is a one-sided formula with a variable name,

• test is logical (i.e. TRUE or FALSE) indicating whether bivariate tests of association should be
run,

• type allows the p-values and/or test statistics to be displayed, along with allowing a simplifica-
tion of the output of the table,

• second is an optional vector of quoted variable names that, instead of means and SDs, are
summarized by medians and the inter-quartile range (or other user-defined statistics),

• output allows several outputs for the table, including Latex and Markdown,

• FUN provides the user with the ability to apply user-defined functions to summarize numeric
variables (any function that works with tapply()), and

• FUN2, similarly to FUN, allows the user to define a function to apply to all variables listed in the
second argument above.

Notably, if no variables are listed, all variables in the data.frame will be summarized. Other options
exist that can be used to better format and adjust the table, some of which we highlight in subsequent
sections (e.g. format_number and var_names). However, in its simplest form, table1() only requires
the data frame.

table1(df)

Yet, the function is designed for much more.

The function is built on fast base functions and is appropriate for even very large data sets
(n > 1, 000, 000). It uses simple non-standard evaluation which allows the user to create and modify
variables from within the function itself. For example, we could summarize levels of a dichotomous
version of var1 as seen below:

table1(df,
ifelse(var1 > median(var1), 1, 0),
splitby = ~stratifying_variable,
test = TRUE)

Other simple modifications are also possible (e.g., factor(var1), var1*100).

Exploratory data analysis with Table 1

The table1() function below is used on the NHANES data to explore differences in demographic and
psychosocial factors between individuals who have and have not been informed by a doctor that he or
she is overweight. The following code uses the data.frame named d1, selects 12 variables, stratifies by
whether the individual was designated by a doctor as overweight (splitby = ~overweight), calls for
tests of bivariate associations (test = TRUE), and is printed in the "text2" format (output = "text2").

2The analyses for this paper used furniture 1.5.4 and R version 3.4.1.
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table1(d1,
gender, age, active, marijuana, illicit,
down, sleeping, low_energy, appetite, feel_bad,
dead, difficulty,
splitby = ~overweight,
test = TRUE,
output = "text2")

The preceding code produces the following table. Note that, for space, several rows were excluded
at the bottom of the table.

|======================================================|
overweight

Yes No P-Value
- --- -- -------
Observations 335 1082
gender 0.004

Male 139 (41.5%) 549 (50.7%)
Female 196 (58.5%) 533 (49.3%)

age 0.100
23.65 (3.99) 23.24 (3.95)

active 0.251
151.36 (94.21) 166.83 (106.12)

marijuana 0.333
Yes 181 (59.9%) 535 (56.6%)
No 121 (40.1%) 411 (43.4%)

... ... ... ...
|======================================================|

The table provides the n for each group, the means and standard deviations (SD) by group for each
numeric variable, and the counts and percentages by group for each factor variable. The table can also
provide bivariate statistical comparisons using the supplied stratifying variable as the independent
variable. For categorical variables, a χ2 test is performed. For numeric variables, either a t-test or an
analysis of variance is performed (potentially adjusting for heterogeneity of variance), depending on
the number of levels of the stratifying variable. Only the tests’ p-values are shown by default. The user
may also request the specific test statistics (type = "full") or simply stars representing significance
(type = "stars").

If means and SDs are insufficient for a numeric variable, for example in the case of a highly skewed
numeric variable, medians and the interquartile range (IQR) can be produced through the use of the
"second" argument. This argument accepts quoted names of numeric variables, and for those variables,
returns median and IQR in place of means and SDs by default.

table1(d1,
gender, age, active, marijuana,
splitby = ~overweight,
test = TRUE,
output = "text2",
second = c("age", "active"))

|====================================================|
overweight

Yes No P-Value
- --- -- -------
Observations 335 1082
gender 0.004

Male 139 (41.5%) 549 (50.7%)
Female 196 (58.5%) 533 (49.3%)

age 0.1
23.00 [7.0] 23.00 [7.0]

active 0.251
120.00 [90.0] 135.00 [142.5]

marijuana 0.333
Yes 181 (59.9%) 535 (56.6%)
No 121 (40.1%) 411 (43.4%)

|====================================================|
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The medians and IQRs are differentiated from the means and SDs by the square brackets that are
applied to the IQRs. This keeps the table clean but provides information on the types of statistics being
presented.

Beneficially, the user can define a function to use in place of the default means/SDs and median-
s/IQRs. for numeric variables. This is through the use of the FUN and FUN2 arguments. FUN applies
to any variable not listed in the second argument. It can be as simple as FUN = min—asking for the
minimum of each variable–or as complicated of a function as tapply will accept. For an example of a
multi-statistic function, see below.

table1(d1,
gender, age, active,
splitby = ~overweight,
test = TRUE,
output = "text2",
FUN = function(x) paste0(min(x, na.rm=TRUE), ", ", max(x, na.rm=TRUE)))

The preceding code allows the anonymous function [i.e. function(x) paste0(min(x,...))], to pro-
duce the minimum and maximum, be applied to each of the numeric variables (i.e. in this case, age
and active). This code produces the following table.

|===============================================|
overweight

Yes No P-Value
- --- -- -------
Observations 335 1082
gender 0.004

Male 139 (41.5%) 549 (50.7%)
Female 196 (58.5%) 533 (49.3%)

age 0.1
18, 30 18, 30

active 0.251
30, 505 20, 840

|===============================================|

In the same way, FUN2 allows the user to specify another function to be applied to the indicated
numeric variables within the same table. It also allows for simple formatting changes to these statistics
as well (e.g. can insert brackets, commas, or change the rounding of the numbers). In essence, this
makes table1() useful for a wide variety of situations.

We can also simplify and condense the table. As demonstrated below, type = "simple" pro-
duces only percentages for the categorical variables (instead of counts and percentages) and type
= "condense" displays the summary only for the reference category of dichotomous variables and
removes much of the white space. Together, they provide a much more succinct table.

table1(d1,
gender, age, active, marijuana, illicit, down,
splitby = ~overweight,
test = TRUE,
output = "text2",
type = c("simple", "condense"))

|======================================================|
overweight

Yes No P-Value
- --- -- -------
Observations 335 1082
gender: Female 58.5% 49.3% 0.004
age 23.65 (3.99) 23.24 (3.95) 0.1
active 151.36 (94.21) 166.83 (106.12) 0.251
marijuana: No 40.1% 43.4% 0.333
illicit: No 89.7% 88.4% 0.584
down <.001

No 69.7% 81.1%
Several Days 21.4% 14.8%
Majority 5.6% 2.8%
Everyday 3.3% 1.3%

|======================================================|
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Finally, with the rise of "piping" (Wickham, 2016), we have integrated functionality that allows the
table to be part of a bigger pipeline. When in a pipeline, the function auto-detects the pipe, prints the
table and invisibly returns the original data so that it can continue to be used in subsequent functions.
For example,

d1 %>%
filter(age > 20) %>%
table1(gender, age, active, marijuana, illicit, down,

splitby = ~overweight,
test = TRUE,
output = "text2",
type = c("simple", "condense")) %>%

lm(overweight ~ age + gender, data = .)

In the end, these simple tables provide several pieces of important information. Without needing
any advanced modeling, we already have an idea of several relationships among the study variables.
For example, several demographic and psychosocial factors are related to the designation by a doctor
as being overweight, including trouble sleeping and feeling down. These insights can inform model
building and follow-up visualizations. table1(), in conjunction with other summary techniques
(e.g. the base function summary in R), provides a quick and broad understanding of the patterns and
relationships in the data.

Easy communication of descriptive statistics

In addition to the power of exploratory data analysis in informing statistical modeling, table1() is
an important tool in scientific communication. For this reason, it was equipped with several output
formatting features.3 Five that are particularly useful are discussed below.

1. output allows for two regular console outputs (i.e., "text" and "text2") and all knitr::kable
options, including "latex", "markdown" and "html."

2. var_names allows the user to provide a list of names that will replace the variable names in the
table.

3. format_number provides formatting of numbers with commas (e.g., 22,000 instead of 22000)
when set to TRUE.

4. type, in addition to the "simple" and "condense" options discussed previously, provides three
options for the presentation of statistical tests: 1) "pvalues", which is default, and displays the
p-values for the tests of association, 2) "stars" which provides the common star notation for
p-values, and 3) "full" which provides the test statistics and the p-values.4

These, among other options, allow for the production of quality tables that can be easily published via
various mediums including peer-reviewed journals and online webpages.

The example below illustrates the simplicity of communicating the basic statistics of the NHANES
sample in Table 1.

table1(d1,
gender, age, active, marijuana, illicit,
down, sleeping, dead,
splitby = ~overweight,
var_names = c("Gender", "Age", "Activity (minutes)", "Marijuana",

"Other Illicit Drug", "Feeling Down",
"Trouble Sleeping", "Wish Were Dead"),

format_number = TRUE,
type = "simple",
test = TRUE,
output = "latex")

With only a few lines of code, simple yet important information about the sample, study variables,
and their bivariate relationships to a key variable are elegantly produced for easy dissemination. With
minor touching up, this table can be ready for professional and peer-reviewed publications.5

3For a list of all argument options, see Barrett and Brignone (2016).
4Only the "pvalues" option works when "simple" or "condense" are also included.
5The splitby variable name at the top of Table 1—"Overweight"—was added afterwards. This information does

not print automatically in the kable output.
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Table 1: Latex table produced from table1() with a number of formatting options.

Overweight
Yes No P-Value

Observations 335 1,082
Gender 0.004
– Male – 41.5% 50.7%
– Female – 58.5% 49.3%
Age 0.1

23.65 (3.99) 23.24 (3.95)
Activity (minutes) 0.251

151.36 (94.21) 166.83 (106.12)
Marijuana 0.333
– Yes – 59.9% 56.6%
– No – 40.1% 43.4%
Other Illicit Drug 0.584
– Yes – 10.3% 11.6%
– No – 89.7% 88.4%
Feeling Down <.001
– No – 69.7% 81.1%
– Several Days – 21.4% 14.8%
– Majority – 5.6% 2.8%
– Everyday – 3.3% 1.3%
Trouble Sleeping <.001
– No – 53% 64.7%
– Several Days – 29.6% 23.1%
– Majority – 7.6% 6.8%
– Everyday – 9.9% 5.4%
Wish Were Dead 0.02
– No – 94.4% 97.9%
– Several Days – 3.3% 1.3%
– Majority – 1.3% 0.5%
– Everyday – 1% 0.3%

For those using processors other than latex or markdown, the table can exported to a spreadsheet
program, such as Microsoft’s Excel, via the export argument. Here, all that needs to be provided is a
string that will be the outputted file name (e.g., "myfile"). This will export the table as a formatted CSV
to a new folder in the working directory called "Table1." From there, the table can be imported into
a word processor, such as Microsoft’s Word. Another, more manual option is simply copying-and-
pasting from the console output into a spreadsheet. Using the "text to columns" feature common in
spreadsheet programs, this table can become ready to import into a word processor. Regardless of the
approach, the common errors of manually inputting values into a table are greatly reduced.

Additional features

In addition to table1(), the furniture package contains a data cleaning function (i.e. washer()) and
an operator (i.e. %xt%). washer() is used to replace values in a vector with other values in a way that
avoids more complex ifelse statements. The %xt% operator can be used for simple cross-tabulations
among two categorical variables. These, although not discussed much here, are helpful in getting
the data ready for more in depth analysis in table1(). In fact, both were used to get the data in the
format found in the package. More information can be found in the package documentation and at
tysonstanley.github.io.

Summary

Ultimately, each function in the furniture package is designed to simplify important data exploration
with the long-term goal of increasing both methods and results reproducibility. With the table1()
function, the computation and communication of descriptive statistics is made simple and beautiful,
streamlining the exploratory data analysis process. We hope that the user-friendly syntax and polished
output enables researchers to efficiently perform more thorough exploration of their data and to more
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easily communicate their findings.
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BayesBD: An R Package for Bayesian
Inference on Image Boundaries
by Nicholas Syring and Meng Li

Abstract

We present the BayesBD package providing Bayesian inference for boundaries of noisy images.
The BayesBD package implements flexible Gaussian process priors indexed by the circle to recover
the boundary in a binary or Gaussian noised image. The boundary recovered by BayesBD has the
practical advantages of guaranteed geometric restrictions and convenient joint inferences under certain
assumptions, in addition to its desirable theoretical property of achieving (nearly) minimax optimal
rate in a way that is adaptive to the unknown smoothness. The core sampling tasks for our model have
linear complexity, and are implemented in C++ for computational efficiency using packages Rcpp and
RcppArmadillo. Users can access the full functionality of the package in both the command line and
the corresponding shiny application. Additionally, the package includes numerous utility functions
to aid users in data preparation and analysis of results. We compare BayesBD with selected existing
packages using both simulations and real data applications, demonstrating the excellent performance
and flexibility of BayesBD even when the observation contains complicated structural information
that may violate its assumptions.

Introduction

Boundary estimation is an important problem in image analysis with wide-ranging applications from
identifying tumors in medical images (Li et al., 2010), classifying the process of machine wear by
analyzing the boundary between normal and worn materials (Yuan et al., 2016), to identifying regions
of interest in satellite images, such as the boundary of Scotland’s Lake Menteith (Cucala and Marin,
2014; Marin and Robert, 2014). Furthermore, boundaries present in epidemiological or ecological data
may reflect the progression of a disease or an invasive species; see Waller and Gotway (2004), Lu and
Carlin (2005), and Fitzpatrick et al. (2010).

There is a rich literature on image segmentation for both noise-free and noisy observations; see the
surveys in Ziou and Tabbone (1998); Basu (2002); Maini and Aggarwal (2009); Bhardwaj and Mittal
(2012), and particularly the Bayesian approaches in Hurn et al. (2003) and Grenander and Miller
(2007). Recently, Li and Ghosal (2015) developed a flexible nonparametric Bayesian model to detect
image boundaries, which achieved four aims of guaranteed geometric restriction, (nearly) minimax
optimal rate adaptive to the smoothness level, convenience for joint inference, and computational
efficiency. However, despite the theoretical soundness, the practical implementation of Li and Ghosal’s
method is far from trivial, mostly in the approachability of the proposed nonparametric Bayesian
framework and further improvement in the speed of posterior sampling algorithms, which becomes
critical in attempts to popularize this approach in statistics and the broader scientific community. In
this paper, we present the R package BayesBD (Syring and Li, 2017) which aims to fill this gap. The
developed BayesBD package provides support for analyzing binary images and Gaussian-noised
images, which commonly arise in many applications. We implement various options for posterior
calculation including the Metropolis-Hastings sampler (Hastings, 1970) and slice sampler (Neal, 2003).
To further speed up the Markov Chain Monte Carlo (MCMC), we take advantage of the integration
via RcppArmadillo (Eddelbuettel, 2013; Eddelbuettel and Sanderson, 2014) of R and the compiled
C++ language. We further integrate the BayesBD package with shiny (RStudio, Inc, 2016) to facilitate
the usage of implemented boundary detection methods in real applications.

A far as we know, there are no other R packages for image boundary detection problems achieving
the four goals mentioned above. An earlier version of the BayesBD package (Li, 2015) provided first-
of-its-kind tools for analyzing images, but support for Gaussian-noised images, C++ implementations,
more choices of posterior samplers, and shiny integrations were not available until the current version.
For example, the nested loops required for MCMC sampling were inefficient in R programming. The
combination of new programming and faster sampling algorithms means that a typical simulation
example consisting of 5000 posterior samples from 10, 000 data points can now be completed in about
one minute.

The rest of the paper is organized as follows. We first introduce the problem of statistical inference
on boundaries of noisy images, the nonparametric Bayesian models in use, and posterior sampling
algorithms. We then demonstrate how to use the main functions of the package for data analysis
working with both the command line and shiny. We next conduct a comprehensive experiment on
the comparison of sampling methods and coding platforms, scalability of BayesBD, and comparisons
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with existing packages including mritc, bayesImageS, and bayess. We illustrate a pair of real data
analyses of medical and satellite images. The paper is concluded by a Summary section.

Statistical analysis of image boundaries

Image data

An image observed with noise may be represented by a set of data points or pixels (Yi, Xi)
n
i=1, where

the intensities Yi are observed at locations Xi ∈ X = [0, 1]2. Following Li and Ghosal (2015), we
assume that there is a closed region Γ ∈ X such that the intensities Yi are distributed as follows
conditionally on whether its location is inside Γ or in the background Γc:

Yi ∼
{

f (·; ξ) Xi ∈ Γ;
f (·; ρ) Xi ∈ Γc, (1)

where f is a given probability mass function or probability density function of a parametric family
up to unknown parameters (ξ, ρ). For example, Figure 1 shows two simulated images where the
parametric family is Bernoulli and Gaussian, respectively. These images can be reproduced using the
functions par2obs, parnormobs, and plotBD which will be demonstrated in detail later on.

Figure 1: Left: a binary image generated using an elliptical boundary and parameters π1 = 0.65 and
π2 = 0.35. Right: a Gaussian-noised image generated using a triangular boundary and parameters
µ1 = 1, µ2 = −1, and σ1 = σ2 = 1. Both images have the size 100× 100.

The parameter of interest is the boundary of the closed region γ := ∂Γ, which is assumed to be
closed and smooth, while (ξ, ρ) are nuisance parameters. We make the following assumptions about
the noisy image:

1. The pixel locations Xi are sampled either completely randomly, i.e., Xi
i.i.d.∼ Unif(X ) or jitteredly

randomly, i.e., X is first partitioned into blocks Xi using an equally-spaced grid and then
locations are sampled Xi ∼ Unif(Xi).

2. The closed region Γ is star-shaped with a known reference point O ∈ Γ, i.e., the line segment
joining O to any point in Γ is also in Γ.

3. The boundary γ is an α−Hölder smooth function, i.e., γ ∈ Cα(S) where

Cα(S) := { f : S→ R+, | f (α0)(x)− f (α0)(y)| ≤ L f ‖x− y‖α−α0 , ∀x, y ∈ S}

, where S is the unit circle, α0 is the largest integer strictly smaller than α, L f is some positive
constant, and ‖ · ‖ is the Euclidean distance.

Assumptions 2 and 3 imply that the region of interest is star-shaped with a smooth boundary.
While these assumptions are crucial to guarantee desirable asymptotic properties of the estimator
implemented in BayesBD and are reasonable in many applications, it is certainly of great interest
to investigate the performance of BayesBD when these assumptions are violated. In what follows,
we study numerous examples that are not uncommon in practice but violate these assumptions to
some extent, to demonstrate the flexibility of BayesBD and its capacity to handle practical images
that may be much more complicated than the two-region setting with assumptions above. These
examples include the triangular boundary in Figure 1 which has a piecewise smooth boundary. and
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thus violates Assumption 3, and three real data examples including the image of Lake Menteith 8
and two neuroimaging examples 6 where multiple regions are present and the region of interest has
non-smooth or even discontinuous boundary.

Letting Θ be the parameter space of the parametric family f , conditions to separate the inside and
outside parameters are needed. Examples of the parameter space Θ∗ for (ξ, ρ) include but are not
limited to:

4A. One-parameter family such as Bernoulli, Poisson, exponential distributions, and Θ∗ = Θ2 ∩
{(ξ, ρ) : ρ < ξ}, or Θ∗ = Θ2 ∩ {(ξ, ρ) : ρ > ξ}.

4B. Two-parameter family such as Gaussian distributions, and Θ∗ = Θ2 ∩ {((µ1, σ1), (µ2, σ2)) :
µ1 > µ2, σ1 = σ2}, or Θ∗ = Θ2 ∩ {((µ1, σ1), (µ2, σ2)) : µ1 > µ2, σ1 > σ2}, or Θ∗ = Θ2 ∩
{((µ1, σ1), (µ2, σ2)) : µ1 = µ2, σ1 > σ2}.

In practice, the order restriction in 4A or 4B is often naturally obtained depending on the concrete
problem. For instance, in brain oncology, a tumor often has higher intensity values than its surround-
ings in a positron emission tomography scan, while for astronomical applications objects of interest
emit light and will be brighter. A more general condition for any parametric family can be referred to
Condition (C) in Li and Ghosal (2015).

It is worth noticing that although model 1 follows a two-region framework, the method in Li and
Ghosal (2015) and our developed BayesBD have the flexibility to handle data with multiple regions
by running the two-region method iteratively, which is demonstrated in the neuroimaging application
below.

A nonparametric Bayesian model for image boundaries

Let Y = {Yi}n
i=1 and X = {Xi}n

i=1, then the likelihood of the image data described in (1) is

L(Y|X, θ) = ∏
i∈I1

f (Yi; ξ) ∏
i∈I2

f (Yi; ρ),

where I1 = {i : Xi ∈ Γ}, I2 = {i : Xi ∈ Γc}, and θ denotes the full parameter (ξ, ρ, γ).

We view γ as a curve mapping [0, 2π]→ R+ and model it using a randomly rescaled Gaussian
process prior on the circle S: γ(ω) ∼ GP(µ(ω), Ga(·, ·)/τ) where the covariance kernel

Ga(t1, t2) = exp(−a2{(cos 2πt1 − cos 2πt2)
2 + (sin 2πt1 − sin 2πt2)

2})
= exp{−4a2 sin2(πt1 − πt2)}

is the so-called squared exponential periodic kernel obtained by mapping the squared exponential kernel
on unit interval [0, 1] to the circle through Q : [0, 1] → S, ω → (cos 2πω, sin 2πω) as in MacKay
(1998). The parameters a and τ control the smoothness and scale of the kernel, respectively. As
shown in Li and Ghosal (2015), the covariance kernel has the following closed form decomposition:
Ga(t, t′) = ∑∞

k=1 vk(a)ψk(t)ψk(t′) where

v1(a) = e−2a2
I0(2a2); v2j(a) = v2j+1(a) = e−2a2

Ij(2a2), j ≥ 1;

and In(x) denotes the modified Bessel function of the first kind of order n and ψj(t) is the jth Fourier
basis function in {1, cos 2πt, sin 2πt, ...}. The above expansion allows us to write the boundary as a
sum of basis functions:

γ(ω) = µ(ω) +
∞

∑
k=1

zkψk(ω), (2)

where zk ∼ N(0, vk(a)/τ). In practice, we truncate this basis function expansion using the first L
functions, i.e., γ(ω) = µ(ω) + ∑L

k=1 zkψk(ω). In the BayesBD package, we use L = 2J + 1 with the
default J = 10, which seems adequate for accurate approximation of γ(w) as shown in Li and Ghosal
(2015), but users may specify a different value depending on the application.

We use a Gamma prior distribution Gamma(αa, βa) for the rescaling factor a. This random rescaling
scheme is critical to obtain rate adaptive estimates without assuming the smoothness level α in
Assumption 3 is known; see, for example, van der Vaart and van Zanten (2009) and Li and Ghosal
(2015). The default values of hyperparameters are αa = 2 and βa = 1.

We use a constant function as the prior mean function µ(·), with value determined by user input
or by an initial maximum likelihood estimation. The other hyperparameter and parameters follow
standard conjugate priors. Specifically, we use a Gamma distribution Gamma(ατ , βτ) prior for τ with
default values ατ = 500 and βτ = 1. Priors for the nuisance parameters ξ and ρ depend on the
parametric family f , which are:
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• For binary images: the parameters are the probabilities (π1, π2) ∼ OIB(α1, β1, α1, β1), where
OIB stands for ordered independent Beta distributions.

• For Gaussian noise: the parameters are the mean and standard deviation (µ1, σ1, µ2, σ2) with
prior distributions (µ1, µ2) ∼ OIN(µ0, σ2

0 , µ0, σ2
0 ) and (σ−2

1 , σ−2
2 ) ∼ OIG(α2, β2, α2, β2), where

OIN and OIG are ordered independent normal and Gamma distributions, respectively.

The orders in OIB, OIN and OIG are provided by users if such information is available; otherwise,
the ordered independent distributions revert to independent distributions. Our default specifications
are chosen to make the corresponding prior distributions spread out. For example, in the BayesBD
package, the default values are α1 = β1 = 0 for binary images, and µ0 = Ȳ, σ0 = 103 and α2 = β2 =
10−2 for Gaussian noise, where Ȳ is the same mean of all intensities. Under Assumptions 1–4, Li and
Ghosal (2015) proved that the nonparametric Bayes approach is (nearly) rate-optimal in the minimax
sense, adaptive to unknown smoothness level α.

Posterior sampling and estimation of the boundary

Let z = {zi}L
i=1 and Σa = diag(v1(a), . . . , vL(a)). We use Metropolis-Hastings (MH) with the Gibbs

sampler (Geman and Geman, 1984) to sample the joint distribution of the parameters (z, ξ, ρ, τ, a),
where the MH step is for the vector parameter z. We also allow a slice sampling with the Gibbs sampler
where slice sampling is used for z as in Li and Ghosal (2015). We give the detailed sampling algorithms
for binary image in Algorithm 1 and Gaussian-noised images in Algorithm 2. Comparisons between
MH and slice sampling, along with other numerical performances are referred to in the section on
Performance tests.

Initialize the parameters: z = 0, τ = 500, a = 1, and µ(·) is taken to be constant, i.e. a
circle. Then, initialize (ξ, ρ) = (π1, π2) by the maximum likelihood estimates given
µ(·).

1. At iteration t + 1, sample z(t+1)|(π(t)
1 , π

(t)
2 , τ(t), a(t), Y, X) one entry at a time, using

either MH sampling and slice sampling, using the following logarithm of the
conditional posterior density

N1 log
π
(t)
1 (1− π

(t)
2 )

π
(t)
2 (1− π

(t)
1 )

+ n1 log
1− π

(t)
1

1− π
(t)
2

− τ

2
(z(t))>Σ−1

a(t)
z(t),

where n1 = ∑n
i=1 1(ri < γ

(t)
i ) and N1 = ∑n

i=1 1(ri < γ
(t)
i )Yi; here (ri, ωi) are the polar

coordinates of pixel location Xi and γ
(t)
i = γ(t)(ωi) is the radius of the image

boundary at iteration t and the ith pixel.

2. Sample τ(t+1)|z(t+1), a(t) ∼ Gamma(α?, β?) where α? = ατ + L/2 and
β? = βτ + (z(t+1))>Σ−1

a(t)
z(t+1)/2.

3. Sample (π1, π2)|(z, Y) ∼ OIB(α1 + N1, β1 + n1 − N1, α1 + N2, β1 + n2 − N2), where
n2 = ∑n

i=1 1(ri ≥ γ
(t)
i ) and N2 = ∑n

i=1 1(ri ≥ γ
(t)
i )Yi.

4. Sample a(t+1)|(z(t+1), τ(t+1)) by slice sampling using the logarithm of the conditional
posterior density

−
L

∑
k=1

log vk(a(t))
2

−
L

∑
k=1

τ(t+1)z2
k

2vk(a(t))
+ (αa − 1) log a(t) − βa.

Algorithm 1: – Binary images.

Let {γt(ω)}T
t=1 be the posterior samples after burn-in where T is the number of posterior samples.

We use the posterior mean as the estimate and construct a variable-width uniform credible band.
Specifically, let (γ̂(ω), ŝ(ω)) be the posterior mean and standard deviation functions derived from
{γt(ω)}. For the tth MCMC run, we calculate the distance ut = ‖(γt − γ̂)/s‖∞ = supω{|γt(ω)−
γ̂(ω)|/ŝ(ω)} and obtain the 95th percentile of all the ut’s, denoted as L0. Then a 95% uniform credible
band is given by [γ̂(ω)− L0 ŝ(ω), γ̂(ω) + L0 ŝ(ω)].
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Initialize the parameters: z = 0, τ = 500, a = 1, and µ(·) is taken to be constant, i.e. a
circle. Then, initialize (ξ, ρ) = (π1, π2) by the maximum likelihood estimates given
µ(·).

1. At iteration t + 1, sample z(t+1)|(µ(t)
1 , σ

(t)
1 , µ

(t)
2 , σ

(t)
2 , τ(t), a(t), Y, X) one entry at a time,

using either slice sampling or MH sampling, using the following logarithm of the
conditional posterior density

−n1(log σ
(t)
1 − log σ

(t)
2 )− ∑

i∈I1

(Yi − µ
(t)
1 )2

2(σ2
1 )

(t)
− ∑

i∈I2

(Yi − µ
(t)
2 )2

2(σ2
2 )

(t)
−

τ(z(t))>Σ−1
a(t)

z(t)

2
.

2. Sample τ(t+1)|z(t+1), a(t) as in Algorithm 1.

3. Sample (µ1, σ1, µ2, σ2)|(z, Y) conjugately.

• Sample (σ−2
1 )(t+1) from a Gamma distribution with parameters

α = α2 +
n1

2
, β = β2 + ∑

i∈I1

(Yi − Ȳ(1))2

2
+

σ−2
0 n1

n1 + σ−2
0

(Ȳ(1) − µ0)
2

2
,

where Ȳ(1) is the sample mean of intensities in I1.

• sample µ
(t+1)
1 from a normal distribution with mean and standard deviation

σ−2
0 µ0

n1 + σ−2
0

+
n1ȳ1

n1 + σ−2
0

, (n1 + σ−2
0 )−1/2.

• Sample (σ−2
2 )(t+1) and µ

(t+1)
2 analogously.

• If ordering information is available, sort (µ(t+1)
1 , µ

(t+1)
2 ) and (σ

(t+1)
1 , σ

(t+1)
2 )

accordingly.

4. Sample a(t+1)|(z(t+1), τ(t+1)) as in Algorithm 1.

Algorithm 2: – Gaussian-noised images.

Analysis of image boundaries using BayesBD from the command line

There are three steps to our Bayesian image boundary analysis: load the image data into R in the
appropriate format, use the functions provided to sample from the joint posterior of the full parameter
θ = (ξ, ρ, γ), and summarize the posterior samples both numerically and graphically.

Generating image data

Two functions are included in BayesBD to facilitate data simulation for numerical experiments:
par2obs for binary images and parnormobs for Gaussian-noised images. Table 1 describes the function
arguments to par2obs, which returns sampled intensities and pixel locations in both Euclidean and
polar coordinates. The function parnormobs is similar, with the replacement of arguments pi.in
and pi.out by mu.in, mu.out, sd.in, and sd.out corresponding to parameters µ1, µ2, σ1, and σ2,
respectively.

As a demonstration, the following code generates a 100× 100 binary image of an ellipse using a
jitteredly-random design with a reference point of (0.5, 0.5):

> gamma.fun = ellipse(a = 0.35, b = 0.25)
> bin.obs = par2obs(m = 100, pi.in = 0.6, pi.out = 0.4, design = 'J',
+ gamma.fun, center = c(0.5, 0.5))

Similarly, the following code generates a 100× 100 Gaussian-noised image with a triangle boundary
using a random uniform design with a reference point of (0.5, 0.5):
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> gamma.fun = triangle2(0.5)
> norm.obs = parnormobs(m = 100, mu.in = 1, mu.out = -1, sd.in = 1,
+ sd.out = 1, design = 'U', gamma.fun, center = c(0.5, 0.5))

The output of either par2obs or parnormobs is a list containing the intensities Y in a vector named
intensity, the vectors theta.obs and r.obs containing the polar coordinates of the pixel locations
X, and the reference point contained in a vector named center. Image data to be analyzed using
BayesBD can be in a list of this form, or may be a .png or .jpg image file.

Argument Description

m Generate m×m observations over the unit square.
pi.in The success probability, P(Yi = 1), if Xi ∈ I1.
pi.out The success probability, P(Yi = 1), if Xi ∈ I2.
design Determines how locations Xi are determined: ’D’ for deterministic

(equally-spaced grid) design, ’U’ for completely uniformly random,
or ’J’ for jitteredly random design.

center Two-dimensional vector of Euclidean coordinates (x,y) of the reference
point in I1.

gamma.fun A function to generate boundaries, e.g. ellipse or triangle2.

Table 1: Arguments of the par2obs function.

Analysis and visualization

There are two functions to draw posterior samples following Algorithm 1 and 2 based on images either
simulated or provided by users: fitBinImage for binary images, and fitContImage for Gaussian-
noised images. These sampling functions take the same arguments, with the exception of the ordering
input which is duplicated in fitContImage to allow ordering of the two parameters, i.e., the mean
and standard deviation. The inputs for fitBinImage are summarized in Table 2. We have included a
function rectToPolar to facilitate formatting the image data for fitBinImage and fitContImage by
converting the rectangular coordinates of the pixels to polar coordinates. The initial boundary is a
circle with radius inimean and center center. The radius inimean may be specified by the user or left
blank, in which case it will be estimated using maximum likelihood.

image The noisy observation, either a list with elements:
intensity, a vector of intensities;
theta.obs a vector of pixel radian measure from center;
r.obs a vector of pixel radius measure from center;

or a string giving the path to a .png or .jpg file.
gamma.fun the true boundary, if known, used for plotting.
center the reference point in Euclidean coordinates.
inimean A constant specifying the initial boundary µ. Defaults to NULL,

in which case µ is estimated automatically using maximum likelihood.
nrun The number of MCMC runs to keep for estimation.
nburn The number of initial MCMC runs to discard.
J The number of eigenfunctions to use in estimation is 2J + 1.
ordering Indicates which Bernoulli distribution has higher success probability:

"I", the Bernoulli distribution inside the boundary;
"O", ther Bernoulli distribution outside the boundary;
"N", no ordering information is available.

mask Logical vector (same length as obs$intensity) to indicate region of interest.
Should this data point be included in the analysis? Defaults to NULL
and uses all data points.

slice Should slice sampling be used to sample Fourier basis function coefficients?
outputAll Should all posterior samples be returned?

Table 2: Arguments of the fitBinImage function.

If argument outputAll is FALSE, the functions fitBinImage and fitContImage produce output
vectors theta, estimate, upper, and lower giving a grid of 200 values on [0, 2π] on which the boundary
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γ is estimated, along with 95% uniform credible bands. If argument outputAll is TRUE, the functions
also return posterior samples of (ξ, ρ) and Fourier basis function coefficients z.

Following the examples of data simulation for binary and Gaussian-noised images in the previous
section, we can obtain posterior samples via

> bin.samples= fitBinImage(bin.obs, c(.5, .5), NULL, 4000, 1000, 10, "I", NULL, TRUE,
+ FALSE)

for a binary image and

> norm.samples = fitContImage(norm.obs, c(.5, .5), NULL, 4000, 1000, 10, "I", "N", NULL,
TRUE, FALSE)

for a Gaussian-noised image. For each sampling function, we have set the center of the image as
(0.5, 0.5), instructed the sampler to use a mean function of µ(·) = 0.4, keep 4000 samples, burn 1000
samples, use L = 2× 10 + 1 = 21 basis functions to model γ, use slice sampling for the basis function
coefficients, and return only the plotting results.

Using the function plotBD we can easily construct plots of our model results. There are two argu-
ments to plotBD: fitted.image is a list of results from fitBinImage or fitContImage, and plot.type
which indicates whether to plot the image data only, the posterior mean and credible bands, or
the posterior mean overlaid on the image data. Using the posterior samples we obtained from the
Gaussian-noised image above, we can plot our results with the following code

> par(mfrow = c(1, 2))
> plotBD(norm.samples, 1)
> plotBD(norm.samples, 2)

to produce Figure 2.
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●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
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Figure 2: Output from fitBinImage as plotted using plotBD. The plot on the left is the simulated
binary observation, and the plot on the right is the estimated boundary and 95% uniform credible
bands.

BayesBD shiny app

In order to reach a broad audience of users, including those who may not be familiar with R, we have
created a shiny app version of BayesBD to implement the boundary detection method. The app has
the full functionality to reproduce the simulations in Section 24.5 and conduct real data applications
using images uploaded by users. The app is accessible both from the package by running the code
BayesBDshiny() in an R session or externally by visiting https://syring.shinyapps.io/shiny/. With
the app users can analyze real data or produce a variety of simulations.

Once the app is open, users are presented with an array of inputs to set as illustrated in Figure 3.
In order to analyze real data, the user should select "user continuous image" or "user binary image"
from the second drop-down menu. Next, the user inputs the system path to the .png or .jpg file. A
plot of the image will appear and the user will be prompted to identify the image center with a mouse
click. The user has some control over the posterior sample size, but we recommend to first limit the
number of available samples in order to display results quickly. Finally, the user may enter ordering
information for the mean and variance of pixel intensities at the bottom of the display.

For simulations, we first select either an elliptical or triangular boundary, or upload an R script
with a custom boundary function. Next, the user instructs the app to either simulate a binary or
Gaussian-noised image, or to use binary or Gaussian data the user has uploaded. In addition to the
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boundary function, the user specifies the reference point. Sample sizes for simulations are kept at
100× 100 pixels. Finally, the last several inputs allow the user to customize the intensity parameters
(ξ, ρ) for binary and Gaussian simulations. Once the user has selected all settings, clicking the "Update"
button at the bottom of the window will run the posterior sampling algorithm, which should take
less than a minute on a typical computer for image data of 100× 100 pixels. The "Download" button
provides the user with a file indicating which pixels were contained inside the estimated boundary as
determined by the outer edge of the 95% uniform credible bands.

Figure 3: Screenshot of shiny app implementing BayesBD.

Performance tests

Comparison of sampling methods

The main aim of this section is to highlight the speed improvements we have made in the latest
version of BayesBD. Our flexibility in choosing between slice and Metropolis-Hastings (MH) sampling
algorithms gives users the potential to unlock efficiency gains. We highlight these gains below for both
binary and Gaussian-noised simulations, and note that the faster MH method suffers little in accuracy.

In our performance tests, we consider the following examples, which correspond to examples B2,
B3, and G1 from Li and Ghosal (2015).
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S1. Image is an ellipse centered at (0.1, 0.1) and rotated 60◦ counterclockwise. Intensities are binary
with π1 = 0.5 and π2 = 0.2.

S2. Image is an equilateral triangle centered at (0, 0) with height 0.5. Intensities are binary with
π1 = 0.5 and π2 = 0.2.

S3. Image is an ellipse centered at (0.1, 0.1) and rotated 60◦ counterclockwise. Intensities are
Gaussian with µ1 = 4, σ1 = 1.5, µ2 = 1, and σ2 = 1.

We simulated each case 100 times using n = 100× 100 observations per simulation. In each run,
we sampled 4000 times from the posterior after a 1000 sample burn in. The results of our performance
tests comparing slice with MH sampling are summarized in Table 3.

If Metropolis-Hastings sampling is used instead of slice sampling, we observe a speed up by about
a factor of two for binary images, seven for the Gaussian-noised image. Slice sampling is guaranteed
to produce unique posterior samples, and may give better results than Metropolis-Hastings samplers,
especially when Metropolis-Hastings mixes poorly and produces many repeated samples. However,
slice sampling may involve a very large number of proposed samples for each accepted sample,
requiring many likelihood evaluations. On the other hand, each Metropolis Hastings sample requires
only two evaluations of the likelihood.

To measure the accuracy of BayesBD we use three metrics: the Lebesgue error, which is simply
the area of the symmetric difference between the posterior mean boundary and the true boundary; the
Dice Similarity Coefficient(DSC), see Feng and Tierney (2015); and Hausdorff distance, see Thompson
(2014) and Thompson (2017). We have included the utility functions lebesgueError, dsmError, and
hausdorffError, which take as input the output of either fitBinImage or fitContImage and output
the corresponding error. In the binary image examples considered, the different sampling algorithms
did not affect the accuracy of the posterior mean boundary estimates when measured by Lebesgue
error, i.e., the area of the symmetric difference between the estimated boundary and the true boundary.
For the Gaussian-noised image, the slice sampling method produced Lebesgue errors approximately
an order of magnitude smaller than when using Metropolis-Hastings sampling, but the overall size of
the errors was still small in both cases and practically indistinguishable when plotting results. With
our built-in functions, it is easy to reproduce Example S2 in Table 3 with the following code:

> gamma.fun = triangle2(0.5)
> for(i in 1:100){
+ norm.obs = par2obs(m = 100, pi.in = 0.5, pi.out = 0.2, design = 'J',
+ center = c(0.5, 0.5), gamma.fun)
+ norm.samp.MH = fitBinImage(norm.obs, gamma.fun, NULL, NULL, 4000, 1000,
+ 10, "I", rep(1, 10000), FALSE, FALSE)
+ norm.samp.slice = fitBinImage(norm.obs, gamma.fun, NULL, NULL, 4000,
+ 1000, 10, "I", rep(1, 10000), TRUE, FALSE)
+ print(c(dsmError(norm.samp.MH), hausdorffError(norm.samp.MH),
+ lebesgueError(norm.samp.MH), dsmError(norm.samp.slice),
+ hausdorffError(norm.samp.slice), lebesgueError(norm.samp.slice)))
+ }

Example Sampling Method Runtime (s) Lebesgue Error DSC Hausdorff

S1 MH 58 0.01(0.01) 0.02(0.00) 0.02(0.00)
Slice 100 0.01(0.00) 0.02(0.00) 0.02(0.00)

S2 MH 45 0.02(0.00) 0.09(0.02) 0.09(0.01)
Slice 82 0.02(0.00) 0.09(0.01) 0.09(0.01)

S3 MH 66 0.01(0.01) 0.01(0.01) 0.01(0.01)
Slice 488 0.00(0.00) 0.01(0.01) 0.01(0.01)

Table 3: Average Runtimes (in seconds) and Lebesgue errors (with standard deviations) of posterior
mean boundary estimates using C++.

Comparison of coding platforms

Our use of C++ for posterior sampling has led to very significant efficiency gains over using R alone.
Implementation of C++ with R is streamlined using Rcpp and RcppArmadillo.

The first implementation of BayesBD (version 0.1 in Li (2015)) was entirely written in R. The
results in Table 4 labeled R code reflect this first version of the package, while those labeled C++ code

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 158

●

●

●

●

●

0 50000 100000 150000 200000 250000

0
10

0
20

0
30

0

Number of Pixels

E
la

ps
ed

 (
s)

● Observed Times
Linear Fit

●

●

●

●

●

0 50000 100000 150000 200000 250000

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

Number of Pixels

E
la

ps
ed

 (
s)

● Observed Times
Linear Fit

Figure 4: Left: Runtimes of fitBinImage. Right: Runtimes of fitContImage

are from the new version. The main takeaway is that the new code developed using C++ is at least
three times faster in the binary image examples and over six times faster for the Gaussian-noised
image example, both measured while using slice sampling.

Example Coding Method Runtime (s)

S1 C++ 100
R 375

S2 C++ 82
R 246

S3 C++ 488
R 3327

Table 4: Average run times (in seconds) using slice sampling.

Scalability of BayesBD

The Gaussian process is notorious for scaling poorly as n increases because it is usually necessary to
invert of a large covariance matrix. By utilizing the analytical decomposition of a GP kernel in (2),
we eliminates the step of inverting a n by n covariance matrix and the BayesBD package appears to
achieve a linear complexity. We investigate the scalability of BayesBD by plotting the system time
against sample size for fitBinImage and fitContImage in Figure 4 using a triangular boundary curve
and 5000 MCMC iterations. Both algorithms appear to scale approximately linearly in number of
pixels, which makes sense as the costliest computations in Steps 1 and 3 in Algorithms 1 and 2 only
involve sums over the n pixels.

Comparison with existing packages

Although no packages besides BayesBD provide boundary estimation, there are several existing pack-
ages that can provide image segmentation or filtering. Below we make some qualitative comparisons
between BayesBD and mritc, bayesImageS, and bayess; see Feng and Tierney (2015), Moores et al.
(2017), and Robert and Marin (2015) in a later section. Figure 5 compares these packages using two
simulated images with Bernoulli and Gaussian noise, respectively. BayesBD gives very reasonable es-
timates for the true boundaries; mritc package fails to deliver a recognizable smoothed image in either
example; and bayesImageS was able to produce a very clear segmentation for the Gaussian-noised
ellipse example, but not for the triangle image with Bernoulli noise.

Real data application

Medical imaging

Chen et al. (2006) studied the performance of two different tracers used in conjunction with positron
emission tomography (PET) scans in identifying brain tumors. Figure 6, reproduced from (Chen
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Figure 5: Left to right: the image, the BayesBD boundary estimate, the mritc filtered image, and the
bayesImageS filtered image.

et al., 2006), gives an example of the image data used in diagnosing tumors, and demonstrates their
conclusion that the F-FDOPA tracer provides a more informative PET scan than the F-FDA tracer. We
use the BayesBD package to analyze the F-FDOPA PET scan images in Figure 6. The tumor imaging
data along with sample code for reproducing the following analysis can be found in the documentation
to the BayesBD package.

Figure 6: MRI (left), F-FDG PET (middle), and F-FDOPA PET (right) of glioblastoma (A) and grade II
oligodendroglioma (B). Image taken from Chen et al. (2006).

We convert the two F-FDOPA PET images in Figure 6 into 111× 111-pixel images and normalize
the intensities to the interval [0,10]. The pixel coordinates are a grid on [0, 1]× [0, 1] and we choose
reference points (0.7, 0.5) and (0.4, 0.55) for each image, roughly corresponding to the center of the
darkest part of each image. We use the default mean function, choose J = 10 for 21 basis functions,
and sample 4000 times after a 1000 burn-in using MH sampling.

Figure 7 displays posterior mean boundary estimates for the F-FDOPA images in Figure 6. From the
analysis on glioblastoma (A) in the first two plots, it seems that that we accurately capture the regions
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A. Glioblastoma B. Grade II oligodendroglioma

Figure 7: F-FDOPA PET images from Chen et al. (2006) (left) fit twice, and (right) fit three times to
filter the background and find features at increasing granularity.

of interest in the F-FDOPA PET images. Furthermore, it is expected that the Gaussian assumption on
the real data may fail, and this shows that the method implemented in BayesBD is robust to model
misspecifications, thus practically useful.

Tumor heterogeneity, which is not unusual in many applications, may make the boundary detection
problem more challenging (Heppner, 1984; Ananda and Thomas, 2012). The BayesBD package allows
us to address tumor heterogeneity by a repeated implementation. We first apply fitContImage to the
entire image, which includes a white background not of interest, and produce the estimated boundary.
This step succeeds in separating the brain scan from the white background. A second run is performed
on the subset of the image inside the outer 95% uniform credible band, producing a nested boundary.
In general, this technique can be used in a multiple region setting where the data displays more
heterogeneity than the simple "image and background" setup in (1).

Satellite imaging

We compared the performance of BayesBD with the R packages mritc and bayess using an image
of Lake Menteith available in the bayess package. BayesBD gives a very reasonable estimate for the
boundary of the lake even though it is not smooth. The mritc package again does not provide useful
output in this example, but bayess produces a nicely-segmented image; see Figure 8.

Figure 8: Left to right: the image, the BayesBD boundary estimate, the mritc filtered image, and the
bayess segmented image.

Summary

BayesBD is a new computational platform for image boundary analysis with many advantages over
existing software. The underlying methods in functions fitBinImage and fitContImage are based
on theoretical results ensuring their dependability over a range of problems. Our use of Rcpp and
RcppArmadillo help make BayesBD much faster than base R code and further speed can be gained
by our flexible sampling algorithms. Finally, our integration with shiny provides users with an easy
way to utilize our package without having to write R code.

For the latest updates to BayesBD and requests, readers are recommended to check out the package
page at CRAN or refer to the Github page at https://github.com/nasyring/GSOC-BayesBD.
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arulesViz: Interactive Visualization of
Association Rules with R
by Michael Hahsler

Abstract Association rule mining is a popular data mining method to discover interesting relation-
ships between variables in large databases. An extensive toolbox is available in the R-extension
package arules. However, mining association rules often results in a vast number of found rules,
leaving the analyst with the task to go through a large set of rules to identify interesting ones. Sifting
manually through extensive sets of rules is time-consuming and strenuous. Visualization and espe-
cially interactive visualization has a long history of making large amounts of data better accessible.
The R-extension package arulesViz provides most popular visualization techniques for association
rules. In this paper, we discuss recently added interactive visualizations to explore association rules
and demonstrate how easily they can be used in arulesViz via a unified interface. With examples, we
help to guide the user in selecting appropriate visualizations and interpreting the results.

Introduction

Many organizations generate a significant amount of transaction data on a daily basis. For example, a
department store like “Macy’s” stores customer shopping information originating from point-of-sale
systems and online shopping on a large scale. Association rule mining (Agrawal et al., 1993; Tan
et al., 2006) is one of the major techniques to detect and extract useful information from large-scale
transaction data. Rules found in the data are of the form ‘if customers purchase in a transaction
products A and B then they are more likely also to purchase product C in the same transaction.’
This approach can be easily extended to non-retail settings by replacing products with web pages,
movies, different answers to a questionnaire, etc. A well-known practical problem with association
rule mining is that it tends to create a significant number of potentially interesting rules. Analysts are
often overwhelmed by the sheer number of rules and need tools to support exploring large sets of
rules efficiently.

Visualization has a long history of making large data sets better accessible and is successfully
used to communicate both abstract and concrete ideas in many areas like education, engineering, and
science (Prangsmal et al., 2009). According to Chen et al. (2008), the application of visualization falls
into two phases. First, the exploration phase where the analysts will use graphics that are mostly
incompatible for presentation purposes but make it easy to find interesting and important features
of the data. The amount of interaction needed during exploration is very high and includes filtering,
zooming, and rearranging data. After key findings are discovered in the data, these results must
be presented in a way suitable for presentation for a larger audience. In this second phase, it is
important that the analyst can manipulate the presentation to highlight the findings. Many researchers
applied visualization techniques like scatter plots, matrix visualizations, graphs, mosaic plots and
parallel coordinates plots to help analyze association rules (see Bruzzese and Davino (2008) for a recent
overview paper).

This paper introduces the recently added implementations of interactive versions of several
popular visualization techniques in the R-package arulesViz (Hahsler, 2017) and demonstrates how to
use the package’s simple unified interface. Choosing an appropriate visualization and interpreting
the results needs some experience. To give the user some guidance, this paper discusses three major
groups of interactive visualizations including scatter plots, matrix visualization and graph-based
visualization. With examples, the paper shows how the results of different visualizations can be
interpreted to gain more insight into the found set of association rules.

The rest of the paper is organized as follows. We start with definitions used in association rule
mining and a discussion of different visualization methods for association rules. Then, we introduce
the unified interface in package arulesViz. We demonstrate with small examples how to create and
interpret different interactive visualizations. We conclude the paper with a short discussion of how
the plots can be used to explore a set of association rules.

Association rules

Mining association rules was fist introduced by Agrawal et al. (1993) and, following the notation used
by Agrawal et al. (1993), Hahsler et al. (2005) and Tan et al. (2006), can formally be defined as:

Let D = {t1, t2, . . . , tm} be a set of transactions called the database, and let I = {i1, i2, . . . , in} be
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the set of all items considered in the database. Each transaction in D has a unique transaction ID and
contains a subset of the items in I. A rule is defined as an expression X ⇒ Y where X, Y ⊆ I and
X ∩Y = ∅. The sets of items (for short itemsets) X and Y are called antecedent (left-hand-side or LHS)
and consequent (right-hand-side or RHS) of the rule. Often rules are restricted to only a single item in
the consequent.

Association rules are rules which surpass a user-specified minimum support and minimum con-
fidence threshold. The support, supp(X), of an itemset X is a measure of importance defined as
the proportion of transactions in the data set which contain the itemset. The confidence of a rule is
defined as conf(X ⇒ Y) = supp(X ∪Y)/supp(X), measuring how likely it is to see Y in a transaction
containing X. An association rule X ⇒ Y needs to satisfy

supp(X ∪Y) ≥ σ and conf(X ⇒ Y) ≥ δ,

where σ and δ are the minimum support and minimum confidence thresholds, respectively.

Another popular measure for association rules used throughout this paper is lift (Brin et al., 1997).
The lift of a rule is defined as

lift(X ⇒ Y) = supp(X ∪Y)/ (supp(X) supp(Y))

and can be interpreted as the deviation of the support of the whole rule from the support expected
under independence given the supports of both sides of the rule. Greater lift values (� 1) indicate
stronger associations. Measures like support, confidence, and lift are called interest measures because
they help with focusing on potentially more interesting rules. For a more detailed treatment of
association rules and interest measures, we refer the reader to the introduction paper (Hahsler et al.,
2005) for package arules (Hahsler et al., 2017) and the literature referred to there.

Association rules are typically generated in a two-step process. First, minimum support is used to
produce the set of all frequent itemsets for the data set. Frequent itemsets are itemsets which satisfy
the minimum support constraint. Then, in a second step, each frequent itemset is used to generate all
possible candidate rules from it, and all rules which do not satisfy the minimum confidence constraint
are removed. Analyzing this process, we can see that in the worst case we will generate 2n − n− 1
frequent itemsets with more than two items from a database with n distinct items. Since each frequent
itemset will in the worst case generate at least two rules, we will end up with a set of rules in the
order of O(2n). Typically, increasing minimum support is used to keep the number of association
rules found at a manageable size. However, this also removes potentially interesting rules with less
support. Therefore, the need to deal with large sets of association rules is unavoidable when applying
association rule mining in a real setting. Here we discuss interactive visualization as a potential means
to analyze large sets of association rules.

Visualizing association rules

Many researchers applied existing visualization techniques to sets of association rules. Several
popular techniques are discussed in the overview by Bruzzese and Davino (2008) and implemented
in arulesViz (Hahsler, 2017). Here we focus on interactive visualizations falling into one of the
three most important groups scatter plots, matrix visualization, and graph-based visualization. The
main components of the three groups of visualization are shown in Figure 1. Scatter plots focus on
interest measures, and rules with similar values for these measures are placed close to each other.
Matrix visualizations focus on visualizing rules that have the same antecedent or consequent by
placing them in the same column or row, repectively. The graph-based visualization shows how rules
share individual items. The properties of interactive visualizations in these groups implemented in
arulesViz are summarized in Table 1. The table includes information on the maximum size of the rule
set that can be effectively visualized, the number of measures of interestingness that are visualized, the
primary focus of the visualization, and the interactive features that are currently available. Additional
static and interactive visualizations are available in package arulesViz and we refer the reader to the
package’s manual for these.

Visualization starts with a set of association rules formalized here as the set

R = {〈X1, Y1, θ1〉, . . . , 〈Xi, Yi, θi〉, . . . , 〈Xn, Yn, θn〉},
where Xi is the rule antecedent, Yi is the rule consequent and θi is a vector with available measures of
interestingness (e.g., support, confidence, lift) for the i-th rule, i = 1, . . . , n.

A straightforward visualization of association rules is to produce a scatter plot with two interest
measures on the axes (see Figure 1(a)). Such a presentation can be found already in an early paper
by Bayardo, Jr. and Agrawal (1999) when they discuss sc-optimal rules. Scatter plots focus solely on
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Figure 1: The main components of association rule visualization using (a) a scatter plot, (b) matrix
visualization, and (c) graph-based visualization. Rules are shown in color. Color shading can be used
to indicate the value of an additional interest measure of the rule (e.g., lift).

Technique Method (arulesViz) Set size Measures Focus Interactive features

Scatter plot “scatterplot” 1,000s 3 Interest measures hover, zoom, pan
Two-Key plot “two-key plot” 1,000s 2 + order Rule length hover, zoom, pan
Matrix-based “matrix” < 1, 000 1 RHS & LHS hover, zoom, pan
Grouped matrix “grouped matrix” 100,000s 2 RHS & LHS drill down, inspect
Graph-based “graph” 100s 2 Items hover, zoom, pan, brush
Graph-b. (external) “graph” 1,000s 2 Items tool dependent

Table 1: Interactive visualization methods based on scatter plots, matrix visualization and graphs
available in arulesViz.

the measures of interestingness θi by choosing two measures (often support and confidence) for the
x and y-axis, respectively. A third measure (often lift) can be added to the plot using color. Unwin
et al. (2001) introduced a special version of a scatter plot called the Two-key plot. Here support and
confidence are used for the x and y-axis and the color of the points is used to indicate “order,” which
is defined as the number of items contained in the rule. Scatter plots can be used for large sets of
association rules and give an impression of the distribution of rules concerning large and small values
for the chosen interest measures. However, it completely ignores the items in rules and the fact that
rules share items. This leads to the issue that two almost identical rules, differing only by a single item,
can be located in very different areas on the plot. Standard interactive features for scatter plots can be
used. This includes zooming into the plot, panning, and hovering over points to obtain information
about the rule it represents. The number of rules that can be effectively visualized and interactively
explored (with zooming in) is theoretically not limited, however, for practical purposes it depends
mainly on the capability of the display system to render the needed amount of points in an acceptable
amount of time. Also overplotting becomes a problem for large rule sets. This typically limits the rule
set size to no more than several 1,000 rules.

While the scatter plot focuses on the similarity of rules regarding measures of interestingness
like support and confidence, matrix-based visualization for association rules organizes rules in a
matrix using distinct antecedent and consequent itemsets as the columns and rows, respectively. The
matrix M is created by identifying the set of A unique antecedents and C unique consequents inR.
An A × C matrix M = (mac), a = 1, . . . , A and c = 1, . . . , C, is created with one column for each
unique antecedent and one row for each unique consequent. The matrix is populated by setting
mac = θi,m where i = 1, . . . , n is the rule index, m is a chosen interest measure (e.g., lift), and a and c
correspond to the position of Xi and Yi in the matrix. The matrix is displayed using matrix shading,
i.e., a color-shaded square at the intersection of the antecedent column and the consequent row of
a given rule (Ong et al., 2002). The basic layout is shown in Figure 1(b). If no rule is available for
an antecedent/consequent combination, which can easily happen because of the minimum support
constraint, then the value in the matrix is undefined and the intersection area in the plot is left blank.
Note that association rules in arules and most other tools restrict the consequent to a single item, but
the size of the antecedent itemset is not restricted. This means that the number of rows in M is typically
much smaller than the number of columns. The order of the rows and columns of the visualized
matrix can have a profound impact on the effectiveness of the visualization in guiding the analyst in
exploring the rule set. Ong et al. (2002) suggest to reorder antecedents by increasing support and the

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 166

consequents by increasing confidence. Two other options are to organize the itemsets by similarity by
placing antecedents with similar items close together, or by organizing them so more interesting rules
can be easily identified (e.g., placing the rules with highest lift in the top-left corner of the matrix by
simply ordering rows and columns by decreasing average lift). Matrix-based visualization is limited
in the number of rules it can visualize effectively since large sets of rules typically also have large
sets of unique antecedents resulting in a huge matrix which makes exploration more challenging
using repeated zooming in and out. This is somewhat mitigated by reordering the matrix, but we still
recommend to use less than 1,000 rules.

The grouped matrix-based visualization (Hahsler and Karpienko, 2016) enhances matrix-based
visualization by organizing the large set of different antecedents (columns) into a small set of groups
via clustering. For grouping, the set of antecedents is split into a set of k groups S = {S1, S2, . . . , Sk}
while minimizing the within-cluster sum of squares

argminS
k

∑
i=1

∑
mj∈Si

||mj − µi||2,

where mj, j = 1, . . . , A, is a column vector representing all rules with the same antecedent and µi is
the center (mean) of the vectors in Si. We use the k-means algorithm by Hartigan and Wong (1979)
and restart it ten times with randomly initialized centers to find a suitable solution. Before clustering,
the missing values for antecedent/confidence combinations that do not pass the minimum support, or
minimum confidence threshold are replaced by a neutral element (e.g., 1 for lift). The result is a smaller
matrix with groups of antecedents as columns. Similar to the regular matrix-based visualization. the
matrix is again sorted such that more interesting groups are moved to the top left corner and grouped
rules are presented using a balloon plot. For interactive exploration, drilling-down into a group can be
easily done by selecting only the rules in the group and applying the same clustering procedure again.
Note that the standard matrix visualization is a special case of the grouped visualization with k = A.

Graph-based techniques (Klemettinen et al., 1994; Rainsford and Roddick, 2000; Buono and
Costabile, 2005; Ertek and Demiriz, 2006) concentrate on the relationship between individual items
reflecting their membership in different association rules. Association rules are visualized using two
different types of vertices to represent the set of items I (or the subset that is used in the rule set) and
the set of rulesR, respectively. The edges indicate the relationship in rules. An example is shown in
Figure 1(c). Interest measures are typically added to the plot as labels, by color or width of the arrows
displaying the edges, or by the size and color of the vertices. For visualization, standard graph drawing
algorithms (e.g., force-directed layout algorithms) are used to create the layout. Standard interactive
features available for graph visualization (e.g., zooming and panning) can be used. Graph-based
visualization offers a very appealing representation of rules but they tend to become cluttered and
thus are only viable for small rule sets (typically 100 or less). External tools for network visualization
allow more advanced visualization, with tool-dependent interactive features like grouping nodes
which may make this visualization useful for even larger rule sets.

In the following, we will present how these visualizations and interactive features can be created
and used to analyze association rules with arulesViz.

Data preparation and unified interface of arulesViz

The package arulesViz (Hahsler, 2017) is part of the arules package ecosystem for handling and
mining association rules (Hahsler et al., 2011). Considerable effort has been put into providing a
straightforward and consistent interface, which allows the user to explore different visualization
options easily. Before we start with the visualization, we need to mine some association rules.
Throughout this paper, we use a small demo data set called “Groceries” which is included in arules.
We use this data set so the reader can easily reproduce the presented results. We first load the package
and the data set.

library("arulesViz")
data("Groceries")

Groceries contains sales data from a small grocery store with 9835 transactions and a moderate
number of 169 items (product groups). It is easy to mine association rules using the Apriori algorithm
implemented in arules. Since the data set is very sparse with each transaction only containing a small
fraction of the 169 product groups, we use a very low minimum support threshold of 0.1% of the
transactions. To create more rules, we also reduce the minimum confidence threshold from the default
value of 80% to 50%.

rules <- apriori(Groceries, parameter = list(support = 0.001, confidence = 0.5))
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(a)

(b)

Figure 2: Interactive data table for the mined rule set. Table (a) shows the rules sorted by lift. The top
three rules represent typical barbecue needs including hamburger meat, movie snacks, and baking
ingredients, respectively. Table (b) shows the rules filtered with only rules with beer in the consequent
(RHS). We see that other alcoholic beverages in the LHS produce high-lift rules.

rules

set of 5668 rules

The result is a set of 5668 association rules. Many real applications may include thousands
of items and rule sets with millions of rules, but even inspecting all 5668 rules in this example
manually is cumbersome. Common practice is to examine only the top rules according to a measure
of interestingness which can be done in arules using the functions sort() and inspect(). To make
inspection easier, arulesViz provides a interactive inspect method which creates a data table using
package DT (Xie, 2016).

inspectDT(rules)

Figure 2 shows the result of this interactive inspection method which allows the user to sort rules
given different interest measures, specify ranges for measures, and provides filters for items. In the
example in Figure 2(a) we sort the rules by lift. We can see that the result is a set of product groups we
would expect to be highly correlated. The first three rules represent typical barbecue needs including
hamburger meat, movie snacks, and baking ingredients, respectively. In Figure 2(b), we selected only
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the rules with ‘beer’ in the rules consequent (RHS). The rules show very strong relationship (a high lift
value) with liquor, soda, and wine, but a rather low support of only 0.2% and 0.1%, respectively.

While interactive inspection of rules using a table is very useful for experts who know what they
are looking for, visualization and especially interactive visualization can help to understand the found
rules better. Different visualization methods are quite distinct regarding presentation, but in arulesViz
much work has been spent on creating a single, simple and consistent interface that allows the user to
analyze a rule set quickly using different methods. The main interface is the plot() method is defined
as

plot(x, method = NULL, measure = "support", shading = "lift", engine = "default",
data = NULL, control = NULL, ...)

where

• x is the set of rules to be visualized,

• method is the visualization method (some are given in Table 1 and more can be found in the
manual page included in arulesViz),

• measure and shading contain the interest measures used by the plot,

• engine was introduced in a recent release to let the user choose between different rendering
engines (e.g., using R’s grid static graphics, grid-based interactive features or HTML widgets),

• data can contain the transaction data set used to mine the rules (only necessary for some
methods),

• control is a list with visualization-specific control arguments to customize the plot. Using the
the control argument verbose = TRUE will show all available arguments and the default values
for the chosen method and engine. For convenience additional arguments are appended to the
control list.

In the following sections, we will introduce the main interactive visualization methods imple-
mented in arulesViz with simple examples. Static and additional methods are described in the package
documentation.

Scatter plot

A scatter plot for association rules uses two interest measures, one on each of the axes. The default
plot for association rules in arulesViz is a scatter plot using support and confidence on the axes. The
measure defined by shading (default: lift) is visualized by the color of the points. A color key is
provided to the right of the plot.

plot(rules)

The resulting plot for the rules mined in the previous section is shown in Figure 3. We can see that
rules with high lift have typically a relatively low support. Bayardo, Jr. and Agrawal (1999) argue
that the most interesting rules (sc-optimal rules) reside on the support/confidence border. This can
be clearly seen by high-lift rules residing close to the bottom-left corner of the plot which represents
the minimum support cut-off. Since support and confidence are the results of counting, rules often
share the same support and confidence value, leading to considerable overplotting. The plot function
automatically adds some jitter in this case. Any measure stored in the quality slot of the set of rules
can be used for the axes (vector of length 2 for parameter measure) or for color shading (shading). The
following measures are available for our set of rules.

head(quality(rules))

support confidence lift
1 0.00112 0.733 2.87
2 0.00122 0.522 2.84
3 0.00132 0.591 2.31
4 0.00132 0.565 2.21
5 0.00132 0.520 2.04
6 0.00366 0.643 2.52

These are the default measures generated by the Apriori implementation used in arules. To add
other measures, we refer the reader to the function interestMeasure() included in arules.
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Figure 3: Default scatter plot showing support, confidence, and lift of rules. The plot mainly gives an
overview of the distribution of support and confidence in the rule set. There are a few high-confidence
rules in the top left corner, and high-lift rules are located close to the minimum support threshold (left
corner of the plot).

The default plot is a static visualization providing limited utility for exploration since the in-
dividual rules cannot be identified directly in the plot. arulesViz offers a JavaScript-based scatter
plot visualization using plotly (Sievert et al., 2017) which is capable of creating an interactive HTML
widget. This visualization can be selected by setting the engine parameter to "htmlwidget", and it
supports identifying rules by hovering over a point, zooming in and out, and panning.

plot(rules, engine = "htmlwidget")

Warning message:
plot: Too many rules supplied. Only plotting the best 1000 rules using measure
lift (change parameter max if needed)

Note that HTML widgets are rendered by the client which gets very slow with many points. This is
why the number of rules visualized is by default restricted to the 1,000 rules with the highest value for
the measure of interestingness specified in shading (default is lift). The call above creates a warning
message to notify the user that not all rules are included in the plot. The user can change the limit for
the restriction using the control parameter max. For example, max = Inf visualizes all rules. Figure 4
shows an example of the interactive use of the plot. In Figure 4(a), we zoom into a region of average
confidence that contains some high-lift rules (dark red). Figure 4(b) shows the zoomed-in view where
rules can be inspected by hovering over the corresponding point. The selected rule has high support
and contains the ingredients necessary to make ham and cheese sandwiches. The number in brackets
([327]) is the index in the rule set. Note that the tight groups of rules with low support and a confidence
around 0.63 represent rules with the same confidence and support. They are just spread out slightly
using jitter to reduce overplotting.

Matrix-based visualization

Matrix-based visualization creates a matrix with unique antecedent and consequent itemsets forming
the columns and rows, respectively. The matrix contains the values for a interest measure selected
by the analyst and is visualized using matrix shading. The order of rows and columns is arbitrary,
however, to improve the ability to analyze the data, we suggest in arulesViz to reorder the matrix
such that the row averages decrease from top to bottom and the column averages decrease from left to
right. This pushes the rules with higher values of interestingness to the top-left position in the plot.
Here we plot the rules using the method matrix and render it using an HTML widget.
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(a)

(b)

Figure 4: Interactive scatter plot producing a HTML widget. This plot only visualizes the 1000 rules
with the highest lift. Plot (a) shows how the area around high-lift rules is selected for zooming in. Plot
(b) showed the selected region and hovering over the high-lift rule reveals that it contains ingredients
to make sandwiches.
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(a)

(b)

Figure 5: Interactive matrix-based visualization where the matrix is ordered such that the rules with
the largest lift values are located close to the top-left corner. Only the 1000 rules with the highest
lift are visualized. Hovering over a rule close to the bottom in plot (a) shows that the row contains
many rules with the consequent “root vegetables.” Plot (b) is zoomed into the top-left corner. The
highlighted rule has the consequent “butter”. There are many entries in the row indicating that many
strong rules are resulting in butter.

plot(rules, method = "matrix", engine = "htmlwidget")

Warning message:
plot: Too many rules supplied. Only plotting the best 1000 rules using
lift (change parameter max if needed)

The warning message shows again that only the top 1,000 rules are included in the visualization
for performance reasons. The resulting plot is shown in Figure 5. Rows represent rules with the same
consequent. A rule from the row with the consequent “root vegetables” is highlighted in Figure 5(a).
There are many rules with this consequent and the lift is still relatively high, since only the 1,000 rules
with the highest lift are visualized. The plot guides the analyst to the rules with the highest lift by
placing them in the top-left corner. Figure 5(b) shows the plot zoomed into the top-left corner. A rule
is inspected and contains “butter”. The many other entries in the same row indicate that butter is part
of many strong rules. Other rows can easily be inspected by hovering over a rule in that row.

Matrix-based visualization is limited in the number of rules it can visualize effectively since large
sets of rules typically also have large sets of unique antecedents. This would require the analyst to
repeatedly zoom in and out. Grouped matrix-based visualization (Hahsler and Karpienko, 2016)
enhances matrix-based visualization by grouping antecedents of rules via clustering and sorting rules
by “interestingness” to handle a larger number of rules. Grouped rules are presented as an aggregate
in a matrix that is visualized as a balloon plot.

plot(rules, method = "grouped matrix", engine = "interactive")
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Figure 6: Grouped matrix-based visualization. The highest interest group (top-left hand corner) con-
sists of 3 rules which contain“Instant food product”, “soda” and an additional item in the antecedent
and all rules have the consequent “hamburger meat.”

This plot can easily visualize larger sets of rules. The resulting visualization of the set of 5668 rules
mined earlier is shown in Figure 6. The visualization is very similar to the regular matrix visualization,
but the columns represent groups of antecedents. The plot is again organized such that the most
interesting rules according to lift (the default measure of interestingness) are shown in the top-left
corner. The highest interest group consists of 3 rules which contain “Instant food products, ” and
“soda” and an additional item in the antecedent and the consequent is “hamburger meat.” The balloon
size represents support and the color indicates lift. We also see below all RHS items, that the plot
suppresses 15 consequent items representing rules with low lift values to create a less convoluted plot.
The number of items shown for the antecedent groups and how many consequent items, if any, are
suppressed can be specified by the user.

The interactive features of the grouped matrix visualization allow the user to identify the rules
making up groups and also to zoom into and out of groups. The visualization is currently only
implemented using interactive features of the grid graphics system (engine = "interactive"), and a
HTML widget version is planned for the future.

Graph-based visualization

Graph-based techniques concentrate on the relationship between individual items in the rule set.
arulesViz offers an interactive visualization based on package visNetwork (Almende B.V. et al., 2017).

plot(rules, method = "graph", engine = "htmlwidget")

Warning message:
plot: Too many rules supplied. Only plotting the best 100 rules using
lift (change control parameter max if needed)

Graph-based visualization tend to become cluttered and thus are only viable for very small sets
of rules. The warning message informs the user that only the top 100 rules are included in the
visualization. Figure 7(a) shows the initial view with the graph centered. The force-directed layout
used in the visualization moves items which are included in many rules and rules which share many
items towards the center of the plot. Items which are in very few rules are pushed to the periphery of
the plot. It is interesting to note that high-lift rules are also on the outside of the plot. This is due to the
fact that rules with high lift levels typically appear at the minimum support/confidence boundary
and low-support items are part of fewer rules and thus are pushed to the periphery of the graph. The
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(a) (b)

(c) (d)

Figure 7: Graph-based visualization with items and rules as vertices. Plot (a) shows the initial view
of the complete graph. Plot (b) uses zooming in to show the center of the graph, revealing the most
frequent items (including “other vegetables” and “milk”). Plot (c) shows how to use the pull-down
menu in the top-left corner to find the item “liquor” in the graph. Plot (d) inspects a single rule that is
connected to “liquor.”

visualization suppresses labels when they become too small to be readable. Figure 7(b) uses zooming
in to show the center of the graph. The items in the center (“other vegetables”, “whole milk” and
“yogurt”) are the most frequently bought items and are thus part of many rules. These items are often
not very interesting because domain experts typically are aware of how the most common items relate
to each other. Figure 7(c) shows how the pull-down menu in the top-left corner can be used to analyze
how a given item relates in the rule set with other items. In the example, the item “liquor” is selected
and the visualization highlights the two rules the item is part of. Figure 7(d) inspects one of the rules.
A useful strategy is to inspect all high-lift rules and the outside area of the graph to find interesting
rules. For some data sets, the rules also form two or more weakly or even unconnected components
indicating that the items in the groups have only little affect on each other.

A big restriction of graph-based visualization for association rules is that they are only useful for a
very small set of rules. To explore large sets of rules with graphs, the analyst needs to be supported by
advanced interactive features like filtering, grouping, and coloring nodes. Such features are available
in interactive visualization and exploration platforms for networks and graphs like Gephi (Bastian

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 174

et al., 2009). arulesViz can export graphs for sets of association rules in the GraphML format or as a
Graphviz dot-file to be explored in tools like Gephi. For example, the complete rule set can be exported
by

saveAsGraph(rules, file = "rules.graphml")

This file can be imported directly into most tools for analysis.

Conclusion

While each of the three basic groups of visualizations reveal similar information, they focus on different
properties of the analyzed rule set and some can visualize larger rule sets than others effectively. A
single visualization by itself is typically not sufficient to understand all aspects of a rule set, but
repeated use of different methods can lead the analyst to deeper insight into the data. Analysis
typically starts with creating a scatter plot to inspect the rules with extreme values for support,
confidence and lift. The advantage is that this visualization can deal with relatively large rule sets.
Alternatively, an interactive table can also be used for this task. A grouped matrix plot can then be
used to inspect the rules and group of rules. Finally, graph-based visualization can be employed
to get a deeper understanding of a smaller set of rules and items. This visualization is especially
useful to present found results because it is easy to understand for non-analysts. arulesViz makes
this process easier by providing a simple and unified plot method, where different visualizations
can be explored by just changing the method argument. Many methods also can create JavaScript-
based HTML widgets (Vaidyanathan et al., 2017) which can be saved as HTML files, included in
web-based applications using shiny (Chang et al., 2017), or used in interactive documents created with
R markdown (Allaire et al., 2017).
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ManlyMix: An R Package for Manly
Mixture Modeling
by Xuwen Zhu, Volodymyr Melnykov

Abstract Model-based clustering is a popular technique for grouping objects based on a finite mixture
model. It has countless applications in different fields of study. The R package ManlyMix implements
the Manly mixture model that allows modeling skewness within data groups and performs cluster
analysis. ManlyMix is a powerful diagnostics tool that is capable of conducting investigation con-
cerning the normality of variables upon fitting of a Manly forward or backward model. Theoretical
foundations as well as description of functions are provided. All features of the package are illus-
trated with examples in great detail. The analysis of real-life datasets demonstrates the flexibility and
usefulness of the package.

Introduction

Finite mixture models provide a powerful tool to model heterogeneous data. Their flexibility, close
connection to cluster analysis, and interpretability make them increasingly appealing to researchers
and practitioners these days. The applications of finite mixture modeling can be found in all fields,
including medicine (Schlattmann, 2009), transportation (Park and Lord, 2009), dendrochronology
(Michael and Melnykov, 2016), and environment science (Gillespie and Neale, 2006), just to name a
few.

The Bayes decision rule, applied to posterior probabilities obtained in the course of fitting a
mixture model, yields a clustering result. Such a procedure is called model-based clustering. It
assumes the existence of a one-to-one correspondence between each distribution in the mixture model
and underlying data group.

If all components in the model are Gaussian distributions, the mixture is called a Gaussian mixture
model. Gaussian mixtures are very popular among practitioners due to their interpretability and
simplicity. However, when there is severe skewness in data, Gaussian mixtures models do not provide
a good fit to the data. As a result, model-based clustering might produce unsatisfactory results. In such
cases, more flexible mixtures should be adopted. Some existing software packages that provide such
functionality are listed in Table 1. Here, mixsmsn, EMMIXskew, and EMMIXuskew packages are
based on skew-normal and skew-t distributions, which are popular choices for modeling skewed data.
On the other hand, flowClust is the only package that implements a transformation-based mixture
model. It relies on the celebrated Box-Cox transformation to near-normality applied to all dimensions
within the same mixture component. This leads to extra K parameters λk in the resulting mixture.
The package is shown to model flow cytometry data effectively. In many applications, however, it is
reasonable to assume that transformation parameters can vary not only from component to component
but also from variable to variable. In this paper, we introduce the R package ManlyMix (Zhu and
Melnykov, 2016b), which provides readers with an alternative approach to modeling and clustering
skewed data. Manly mixture models (Zhu and Melnykov, 2016a) are constructed based on the Manly
back-transformation applied to each variable in multivariate Gaussian components.

The ManlyMix package implements several functions associated with Manly mixture models
including the core function for running the EM algorithm, the forward and backward model selection
procedure for eliminating unnecessary transformation parameters, and the Manly K-means algorithm,
which serves as an extension of the traditional K-means. Other capabilities of the package include
computing a Manly mixture overlap, simulating datasets from a Manly mixture, constructing density
or contour plots for a fitted model, and assessing the variability of estimated parameters. The highlights
of ManlyMix include:

Package Mixture components
flowClust (Lo et al., 2009) t mixture with Box-Cox transformation
mixsmsn (Prates et al., 2013) scale skew-normal and skew-t
EMMIXskew (Wang et al., 2013) restricted skew-normal and skew-t
EMMIXuskew (Lee and McLachlan, 2014) unrestricted skew-t

Table 1: Existing R packages for mixture modeling of skewed data.
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• providing an alternative approach to modeling heterogeneous skewed data;

• calling core functions from C for speed;

• providing excellent model interpretability through output of skewness parameters;

• preventing overfitting of the data by implementing model selection algorithms;

• offering effective assessment of mixture characteristics through the overlap calculation and
variability assessment.

This paper is organized in the following way. A brief introduction to the Expectation-Maximization
(EM) algorithm for Manly mixture models as well as the classification Expectation-Maximization (CEM)
algorithm for Manly K-means is provided in the second section. In section "Package functionality and
illustrative examples", a comprehensive description of all functions in ManlyMix is given along with
the analysis of two real-life datasets. All features of the package are illustrated in great detail. Demo
examples are constructed in section four for users to conduct further investigation of ManlyMix. In
the last section, we provide a brief summary for the paper.

Methodological and algorithmic details

Manly mixture model

Consider a dataset X1, . . . , Xn of size n, where Xi’s are p-variate independent observations that are
identically distributed. The exponential (Manly) transformation to near normality is defined by

M(X; λ) =

(
eλ1X1 − 1

λ1
, . . . ,

eλp Xp − 1
λp

)T

,

where the distribution ofM(X; λk) can be effectively approximated by multivariate normal distribu-
tion for an appropriate choice of λ (Manly, 1976). M−1 represents the Manly back-transformation.
This leads to a so-called Manly mixture model given by

g(x; Ψ) =
K

∑
k=1

τkφ(M(x; λk); µk, Σk) exp{λT
k x}, (1)

where K is the number of components in the model, τk’s are mixing proportions such that ∑K
k=1 τk = 1,

and λk =
(

λk1, . . . , λkp

)T
is a p-dimensional skewness vector which controls the transformation of

the kth component. φ(·; µk, Σk) is the p-variate normal probability density function. µk and Σk are
the mean vector and variance-covariance matrix of the kth component after transformation. Ψ, as the
entire parameter vector, includes τk’s, µk’s and Σk’s.

To find the MLE of the parameter vector Ψ, the Expectation-Maximization (EM) algorithm (Demp-
ster et al., 1977; McLachlan and Krishnan, 2008) needs to be employed. Each iteration of the EM
algorithm consists of two steps, the E-step and M-step. Let s denote the iteration number. The E-step
computes the posterior probabilities

π
(s)
ik =

τ
(s−1)
k φ(M(xi; λ

(s−1)
k ); µ

(s−1)
k , Σ

(s−1)
k ) exp{(λ(s−1)

k )T xi}

∑K
k′=1 τ

(s−1)
k′ φ(M(xi; λ

(s−1)
k′ ); µ

(s−1)
k′ , Σ

(s−1)
k′ ) exp{(λ(s−1)

k′ )T xi}
(2)

based on the the parameter vector from the previous step, Ψ(s−1). The M-step updates the parameters

in each iteration. The closed-form expressions are available for the parameters τ
(s)
k , µ

(s)
k , Σ

(s)
k and are

given by

τ
(s)
k =

∑n
i=1 π

(s)
ik

n
, µ

(s)
k =

∑n
i=1 π

(s)
ik M(xi; λ

(s)
k )

∑n
i=1 π

(s)
ik

, and

Σ
(s)
k =

∑n
i=1 π

(s)
ik (M(xi; λ

(s)
k )− µ

(s)
k )(M(xi; λ

(s)
k )− µ

(s)
k )T

∑n
i=1 π

(s)
ik

.

(3)
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For λk, closed-form solution is not available and Nelder-Mead numerical optimization of the function

Qk(λk|Ψ(s))(λk) =
n

∑
i=1

π
(s)
ik

{
log φ

(
M(xi; λk);

n

∑
i=1

π
(s)
ik M(xi; λk)/

n

∑
i=1

π
(s)
ik ,

n

∑
i=1

π
(s)
ik

(
M(xi; λk)−

∑n
i=1 π

(s)
ik M(xi; λk)

∑n
i=1 π

(s)
ik

)(
M(xi; λk)−

∑n
i=1 π

(s)
ik M(xi; λk)

∑n
i=1 π

(s)
ik

)T
)

+ λk
T xi

}
+ const

(4)

gives us the estimated parameter vector.

The EM algorithm could be started with an initial partition of the data passed into the M-step.

Or the E-step is run first with initial parameters τ
(0)
k , µ

(0)
k , Σ

(0)
k , λ

(0)
k . The algorithm stops when the

convergence criterion is met. In the R package ManlyMix, we monitor the relative difference between
Q-function values from two consecutive steps. If it is smaller than a user specified tolerance level,
1e − 5 by default, the algorithm stops. This is a speedier choice due to the fact that Q-function
values are immediately available after numeric optimization of Equation 4. Such criterion is similar
to monitoring the relative difference between log-likelihood values. Upon convergence, the Bayes
decision rule assigns each observation to its cluster according to the maximized posterior probabilities
from the last E-step. The estimated label of the ith observation is given by

Ẑi = argmaxkπ̂ik. (5)

In ManlyMix, the function Manly.EM() runs the EM algorithm for a Manly mixture model and
returns estimated model parameters, posterior probabilities, as well as a classification vector. This
function is constructed in C for computational efficiency.

Pairwise overlap

Pairwise overlap, introduced by Maitra and Melnykov (2010), is a measure of the interaction between
two mixture components. If we denote ωk1,k2 as the pairwise overlap of components k1 and k2, it is
defined as the sum of two misclassification probabilities

ωk1,k2 = ωk1|k2
+ ωk2|k1

, (6)

where ωk1|k2
represents the probability that a random variable X is mistakenly classified to group k1

while it came from the component k2. For a Manly mixture, ωk1|k2
can be written as

ωk1|k2
=Pr

[
φ(M(X; λk1

); µk1
, Σk1

) exp{λT
k1

X}
φ(M(X; λk2 ); µk2 , Σk2 ) exp{λT

k2
X}

>
τk2

τk1

∣∣∣∣X ∼ φ(M(x; λk2 ); µk2 , Σk2 ) exp{λT
k2

x}
]

=Pr
[
− 1

2
(M(M−1(Y ; λk2 ); λk1

)− µk1
)TΣ−1

k1
(M(M−1(Y ; λk2 ); λk1

)− µk1
) + λT

k1
M−1(Y ; λk2 )

+
1
2
(Y − µk2 )

TΣ−1
k2

(Y − µk2 )− λT
k2
M−1(Y ; λk2 ) > log

(
τk2 |Σk1

|1/2

τk1
|Σk2 |1/2

)∣∣∣∣Y ∼ MVN(µk2 , Σk2 )

]
.

(7)

In ManlyMix, function Manly.overlap() estimates ωk1|k2
by sampling from corresponding distribu-

tions.

Variability assessment

The variability assessment of parameter estimates from Manly mixture model can be made by taking
the inverse of the empirical observed information matrix Ie(Ψ̂) (McLachlan and Basford, 1988) given
by

Ie(Ψ̂) =
n

∑
i=1
∇qi(Ψ̂)∇qT

i (Ψ̂), (8)
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where qi(Ψ) = ∑K
k=1 πik [log τk + log φ(M(xi; λk); µk, Σk) +λkxi] and ∇ stands for the gradient oper-

ator. We take partial derivatives in the gradient vector ∇qi(Ψ) and obtain

∂qi(Ψ)

∂τk
=

πik
τk
− πiK

τK
,

∂qi(Ψ)

∂µk
= πikΣ−1

k (M(xi; λk)− µk) ,

∂qi(Ψ)

∂vech{Σk}
= GTvec

{πik
2

Σ−1
k

(
(M(xi; λk)− µk)(M(xi; λk)− µk)

TΣ−1
k − Ip

)}
,

∂qi(Ψ)

∂λk
= −πikDkΣ−1

k (M(xi; λk)− µk) + πikxi,

where Ip is the identity matrix of size p, vech{·} operator extracts the unique elements out of a
symmetric p× p matrix and constructs a vector of length p(p + 1)/2. G is a matrix with zero’s and
one’s that enables the adoption of unique elements in a symmetric matrix (Melnykov, 2013). vec{·} is
an operator which lines up all columns of a matrix one by one to form a vector. Finally,

Dk = diag{(1 + (xi1λk1 − 1)eλk1xi1 )/λ2
k1, . . . , (1 + (xipλkp − 1)eλkp xip )/λ2

kp}.

The estimated covariance matrix can be found as I−1
e (Ψ̂), i.e., by inverting the information matrix.

Function Manly.var() in the package calculates the covariance matrix based on an estimated model
provided by function Manly.EM().

Forward and backward selection

In the Manly mixture model, there are K× p skewness parameters λkj corresponding to K components
and p variables. Such a mixture is called a full Manly mixture model. Oftentimes, some coordinates
are close to being normally distributed and the corresponding skewness parameters are unnecessary.
Forward and backward selection procedures are adopted to eliminate such parameters and improve the
model efficiency. These algorithms also prevent model-overfitting and conduct diagnostics with fitted
skewness parameters. If underlying data groups are normally distributed, the selection procedures
produce Gaussian mixture models.

The selection is based on the Bayesian information criterion (BIC) (Schwarz, 1978), which is the
most commonly used criterion in finite mixture modeling (McLachlan and Peel, 2000). The smaller BIC
is, the better fit provided by a mixture is. The forward selection procedure starts from the Gaussian
mixture model and adds one λkj at a time until no improvement in BIC value can be obtained.
The produced model is called Manly forward model (denoted as Manly F in this paper) with the
details of the method outlined in Algorithm 1. The backward model selection algorithm given in
Algorithm 2 works in the opposite direction. It starts with the full Manly mixture and drops one
skewness parameter λkj at a time until no lower BIC can be reached. The obtained model is called
the Manly backward model (Manly B). The selection algorithms are available in ManlyMix through

Data: X1, . . . , Xn
Result: estimated model parameters by Manly forward model
Initialization: Gaussian mixture model
while the current model Mcurrent has not reached the full Manly mixture model do

1. find all zero skewness parameters in the current model Mcurrent, λ1, . . . , λt;
2. construct new models Mnew,1, . . . , Mnew,t to compare with;
3. Mnew,j sets the previous nonzero K× p− t skewness parameters and λj to be
non-zero;

4. call function Manly.EM() to run the EM algorithm for each new model;
5. initialize with the parameters of model Mcurrent to speed the algorithm;
if at least one new model has lower BIC than the original model Mcurrent then

find the smallest BIC among the new models;
the corresponding new model Mnewis selected and let Mcurrent ← Mnew.

else
break;
the current model Mcurrent is the final solution reached by Manly forward
algorithm.

end
end

Algorithm 3: Manly forward selection algorithm.
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Data: X1, . . . , Xn
Result: estimated model parameters by Manly backward model
Initialization: full Manly mixture model M f ull with K× p non-zero skewness
parameters
while the current model Mcurrent has not reached Gaussian mixture model do

1. find all non-zero skewness parameters in the current model Mcurrent, λ1, . . . , λs;
2. construct new models Mnew,1, . . . , Mnew,s to compare with;
3. Mnew,j sets the previous K× p− s skewness parameters and λj to be zero;
4. call function Manly.EM() to run the EM algorithm for each new model;
5. initialize with the parameters of model Mcurrent to speed the algorithm;
if at least one new model has lower BIC than the original model Mcurrent then

find the smallest BIC among the new models; the corresponding new model
Mnew is selected and let Mcurrent ← Mnew.

else
break;
the current model Mcurrent is the final solution reached by Manly backward
algorithm.

end
end

Algorithm 4: Manly backward selection algorithm.

setting method = "forward" or method = "backward" in the Manly.select() function.

Manly K-means clustering

Manly K-means clustering is constructed based on the classification EM (CEM) algorithm (Celeux
and Govaert, 1992), which is a modification of the EM algorithm with an additional classification step.

This step involves the Bayesian decision rule (i.e., z(s)i = arg maxk π
(s)
ik ) introduced immediately after

the E-step.

It can be noticed that the traditional K-means algorithm is equivalent to the CEM algorithm based
on the mixture model provided by

g(x; Ψ) =
1
K

K

∑
k=1

φ(x; µk, σ2 I).

The model underlying the traditional K-means imposes very restrictive assumptions of the ho-
moscedasticity and spherical structure of components. We alleviate these assumptions by allowing
each component to have the covariance matrix σ2

k I and applying Manly transformation to the data.
These changes result in the model given by

g(x; Ψ) =
1
K

K

∑
k=1

φ(M(x; λk); µk, σ2
k I) exp{λT

k x}. (9)

Following the same procedure as the Manly mixture EM algorithm, each λk can be obtained separately
by straightforward numeric optimization of the function Q̃k written as

Q̃k(λk|Ψ(s−1)) =−
pn(s)

k
2

log


n

∑
i=1

ξ
(s)
ik

n(s)
k M(xi; λk)−

n

∑
j=1

ξ
(s)
jk M(xj; λk)

T

×

n(s)
k M(xi; λk)−

n

∑
j=1

ξ
(s)
jk M(xj; λk)

+ λT
k

n

∑
i=1

ξ
(s)
ik xi + const,

where fuzzy classifications π
(s)
ik are replaced by hard assignments in the form of indicators ξ

(s)
ik =

I(z(s)i = k). If z(s)i = k holds true, ξ
(s)
ik takes a value of 1; otherwise ξ

(s)
ik is equal to 0. The current size

of the kth cluster is n(s)
k = ∑n

i=1 ξ
(s)
ik .

In this way, each step of the Manly K-means algorithm updates the partition and parameter
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estimates. The partition update is given by

z(s)i = arg min
k

{
||M(xi; λ

(s−1)
k )− µ

(s−1)
k ||2/(2(σ2

k )
(s−1))− (λ

(s−1)
k )T xi +

p
2

log(σ2
k )

(s−1)
}

,

while the parameters are estimated through the following expressions:

λ
(s)
k = arg max

λk

Q̃(s)
k (λk), µ

(s)
k =

n

∑
i=1

ξ
(s)
ik M(xi; λ

(s)
k )/n(s)

k , and

(σ2
k )
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n

∑
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ξ
(s)
ik (M(xi; λ

(s)
k )− µ

(s)
k )T(M(xi; λ

(s)
k )− µ

(s)
k )/(pn(s)

k ).

(10)

The Manly K-means algorithm is incorporated in the R package ManlyMix through the function
Manly.Kmeans(). It can be used when the number of data points in each cluster is about the same and
the transformed clusters are close to being spherical. It shows faster performance as the inversion of
potentially large covariance matrices is not needed.

Package functionality and illustrative examples

All functions available in the package ManlyMix are listed with brief descriptions in Table 2. In this
section, we demonstrate the utility of each function through a synthetic dataset and the analysis of
two real-life datasets: Iris (Anderson, 1935; Fisher, 1936) and AIS (Cook and Weisberg, 1994).

Function Description
Manly.EM() Runs the EM algorithm for a Manly mixture model

Manly.select()
Runs forward and backward selection methods for a Manly mixture
model

Manly.Kmeans() Runs the Manly K-means clustering
Manly.overlap() Estimates the overlap values for a Manly mixture
Manly.sim() Simulates datasets from Manly mixture models

Manly.var()
Performs variability assessment of Manly mixture model parameter
estimates and returns confidence intervals

Manly.plot() Constructs a plot to display model-fitting and clustering
ClassAgree() Calculates the confusion matrix and number of misclassifications
Manly.model() Serves as a wrapper function for Manly mixture modeling

Table 2: Summary of functions implemented in ManlyMix.

Illustrative example 1

In this subsection, a Manly mixture is constructed with user-specified parameters. The overlap values
of this mixture is estimated through function Manly.overlap(). Then function Manly.sim() simulates
a dataset from the mixture along with a true membership vector.

Step a: Mixture specification

Now we demonstrate the procedure to construct a Manly mixture step by step. First, the user need
to specify the number of components (assigned to K) and variables (assigned to p). In this case, we
have a three-component bivariate mixture.

library(ManlyMix)
K <- 3
p <- 2
set.seed(123)

If the mixture probability density function of interest is written as

g(x) =0.25e0.2x1+0.25x2 φ

((
e0.2x1−1

0.2
e0.25x2−1

0.25

)
;
(

4.5
7

)
,
(

0.4 0
0 0.4

))

+0.3e0.5x1+0.35x2 φ

((
e0.5x1−1

0.5
e0.35x2−1

0.35

)
;
(

4
8

)
,
(

1 −0.2
−0.2 0.6

))

+0.45e0.3x1+0.4x2 φ

((
0.3ex1−1

0.3
e0.4x2−1

0.4

)
;
(

5
5.5

)
,
(

2 −1
−1 2

))
,

(11)
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we construct the mixture by assigning the model parameter values to la (matrix input of size K× p),
tau (vector input of length K), Mu (matrix input of size K × p) and S (array input of dimensionality
p× p× K), respectively.

tau <- c(0.25, 0.3, 0.45)
Mu <- matrix(c(4.5, 4, 5, 7, 8, 5.5),3)
la <- matrix(c(0.2, 0.5, 0.3, 0.25, 0.35, 0.4),3)
S <- array(NA, dim = c(p, p, K))
S[,,1] <- matrix(c(0.4, 0, 0, 0.4), 2)
S[,,2] <- matrix(c(1, -0.2, -0.2, 0.6), 2)
S[,,3] <- matrix(c(2, -1, -1, 2), 2)

Step b: Overlap assessment

It is desirable to be capable of understanding the degree of interaction among mixing components
to assess clustering complexity. Function Manly.overlap(), employing the measure of pairwise
overlap, is implemented for this purpose. It has the following syntax:

Manly.overlap(tau, Mu, S, la, N = 1000)

with arguments la, tau, Mu, S and N. Here, N represents the number of samples simulated from the given
mixture for pairwise overlap estimation. The larger N is, the more precise the calculation is. By default,
1000 samples are employed. Four objects are returned by the function, including the misclassification
probability matrix $OmegaMap, pairwise overlap $OverlapMap, average mixture overlap $BarOmega,
and maximum mixture overlap $MaxOmega. Here, element $OmegaMap[k2,k1] corresponds to ωk1|k2

in
Equation 7. In this case, for example, ω3|2 = 0.046 means that a random variable coming from the
second component has approximate probability of 0.046 to be misclassified to group 3. ω3|3 = 0.933
represents the probability that a point belonging to group 3 is correctly assigned to this group. Each
row of $OmegaMap sums up to 1. Then, pairwise overlaps ωk1,k2 given in Equation 6 are provided in
the $OverlapMap. Among all pairwise overlaps (ω1,2, ω1,3 and ω2,3), ω2,3 yields the maximum value
of 0.097 and produces $MaxOmega. The average of these three values, on the other hand, results in
$BarOmega being 0.08066667.

A <- Manly.overlap(tau, Mu, S, la)
print(A)
## $OmegaMap
## [,1] [,2] [,3]
## [1,] 0.909 0.058 0.033
## [2,] 0.038 0.916 0.046
## [3,] 0.016 0.051 0.933
##
## $OverlapMap
## Components Overlap
## 1 (1, 2) 0.096
## 2 (1, 3) 0.049
## 3 (2, 3) 0.097
##
## $BarOmega
## [1] 0.08066667
##
## $MaxOmega
## [1] 0.097

It can be seen that in the considered case, function Manly.overlap() calculates all characteris-
tics based on the input of true model parameters. If parameters la, tau, Mu and S are estimated,
Manly.overlap() provides estimates of misclassification probabilities and overlap values. As for
high-dimensional data, we can not readily visually assess the interaction between data groups, such
output helps approximate the proximity of clusters and discover properties associated with them.

Step c: Data generation

Function Manly.sim() simulates Manly mixture datasets based on user-specified model parameters.
It employs the built-in R function rmultinom() for assigning data points to K mixture components
according to the mixing proportion τk’s. Then the function simulates normally distributed data
points by function rnorm(). The covariance structures Σk are applied to the data points before back-
transforming them to Manly distributed components.

The Manly.sim() command has the following syntax:
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Manly.sim(n, la, tau, Mu, S)

The user can input n as the desired sample size. Here, a dataset of 30 observations is simulated
from Equation 11 and data matrix $X as well as its true membership vector $id are returned.

n <- 30
B <- Manly.sim(n, la, tau, Mu, S)
print(B)
## $X
## [,1] [,2]
## [1,] 3.259485 3.882271
## [2,] 3.247362 4.269247

Part of the output is intentionally omitted.

## [30,] 3.310186 2.974554
##
## $id
## [1] 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3

Illustrative example 2: Iris dataset

The Iris dataset (Anderson, 1935; Fisher, 1936) has 150 observations and 4 variables that represent
sepal length, sepal width, petal length, and petal width. Three species, Iris setosa, Iris versicolor, and Iris
virginica, have equal representation, consisting of 50 observations each. The function Manly.EM() fits a
Manly mixture to the Iris dataset and 95% confidence intervals of the model MLE are provided by
Manly.var(). The Manly F and Manly B models are obtained by Manly.select(). The Manly K-means
algorithm clusters the dataset through Manly.Kmeans().

Step a: Data preparation

Manly.EM() requires input of a matrix object X, where rows of X represent p-variate observations.
If X is univariate data with vector input, it will be automatically transformed into a matrix of just one
column. Thus, X has the dimensionality n× p. In this case, we transform the Iris dataset into a matrix
of dimensionality 150× 4 and assign it to X.

library(ManlyMix)
K <- 3
p <- 4
X <- as.matrix(iris[,-5])

Step b: Initialization of the EM algorithm

Good initialization strategy of the EM algorithm is important to improve chances of finding a
correct result. There are two ways for the user to initialize the Manly.EM() function. One is by means
of providing the initial partition of the data id (vector input of length n) and skewness parameters
la. Here, it needs to be noticed that the specification of la matrix serves as an indicator of whether
the transformation is applied to a specific variable and component or not. For example, for the Iris
dataset, assumes that all variables in all components enjoy normality except for the first variable in
the first component, la needs to be set as la <-matrix(c(0.1,rep(0,11)),3,4), with 0.1 (that can be
any non-zero value) serving as the starting point in Nelder-Mead optimization. If no la is provided,
the skewness parameters are all set equal to 0 and a Gaussian mixture model will be fitted. The other
way of starting the algorithm is to enter initial model parameters, including la, tau, Mu, and S. The
algorithm employs these parameters to compute the posterior probabilities in the first E-step.

Here, we adopt the first strategy. The initial partition of the Iris data is obtained by running the
traditional K-means algorithm and specifying la is a matrix of size 3× 4, with all elements set to a
non-zero value of 0.1.

set.seed(123)
id.km <- kmeans(X, K)$cluster
la <- matrix(0.1, K, p)

Step c: EM algorithm for Manly mixture modeling

Manly.EM() runs the EM algorithm for modeling based on Manly mixtures given in Equation 1.
The command has the following syntax:

Manly.EM(X, id = NULL, la = NULL, tau = NULL, Mu = NULL, S = NULL,
tol = 1e-5, max.iter = 1000).
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The parameters tol and iter correspond to the stopping rule for the EM algorithm. tol specifies
the tolerance level of the EM algorithm. If the relative difference of the Q function values from two
consecutive steps is smaller than tol, the EM algorithm is terminated. By default, tol is set equal
to 10−5. max.iter stands for the maximum number of iterations allowed for the EM algorithm. The
default value of max.iter is 1000. We fit the Iris dataset by both Gaussian mixture (assigned to object
G) and Manly mixture (assigned to object M).

G <- Manly.EM(X, id = id.km)
colnames(G$la) <- colnames(X)
print(G$la)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## [1,] 0 0 0 0
## [2,] 0 0 0 0
## [3,] 0 0 0 0

M <- Manly.EM(X, id.km, la)
colnames(M$la) <- colnames(X)
print(M$la)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## [1,] -0.1158602 0.05907443 -0.2382086 -4.033529
## [2,] -0.1254022 -0.65079974 -0.3848938 0.479587
## [3,] -0.1282339 0.64271380 0.3343054 -1.134275

print(M$id)
## [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [75] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 3
## [112] 2 2 2 2 2 2 2 2 3 2 2 2 3 2 2 3 3 2 2 2 2 2 3 2 2 2 2 3 3 2 3 2 2 2 3 3 3
## [149] 2 2

The estimated model parameters returned by the function Manly.EM() include $la (matrix output
of size K× p), $tau (vector output of length K), $Mu (matrix output of size K× p) and $S (array output
of dimensionality p × p × K). They correspond to the parameters λk, τk, µk and Σk in Equation 3
and 4, respectively. In this example, it can be observed that the returned $la for the Gaussian mixture
have all elements fixed at zero, while the Manly mixture has estimated the skewness parameters for
each component and variable. For example, the skewness parameter associated with the sepal length
variable of the first cluster is estimated to be −0.1158602. It can be observed that most of the estimated
parameters are relatively close to zero, which indicates approximate normality of the Iris data.

Some other parameters returned by Manly.EM() are the n× K matrix of posterior probabilities
$gamma calculated from Equation 2 in the last E-step and the membership vector $id assigned by
the Bayes decision rule in Equation 5. In this case, the output of $id demonstrates the model-based
clustering solution of the Iris dataset.

The characteristics of the fitted model are demonstrated in terms of the model log-likelihood $ll
and BIC $bic. The number of iterations run by the EM algorithm until convergence is recorded through
$iter. In this example, the EM algorithm reaches convergence after 13 iterations and the model BIC is
618.46. Finally, a dummy indicator $flag reports the validity of the fitted model, where 0 represents
the successful convergence of the EM algorithm and 1 stands for the failure of convergence. A warning
message is given if $flag is equal to 1. It may happen when one cluster disappears or shrinks so that
some parameter estimates are NA’s. Such issue is related to spurious solutions (McLachlan and Peel,
2000) where one or more components model a local pattern in data rather than a systematic one.

Step d: Variability assessment of Manly mixture model

Variability assessment of the model parameters allows practitioners to study the specific nature
of the fitted model as well as detected clustering solutions. We provide the user with function
Manly.var(), which calculates the inverse of the empirical observed information matrix given in
Equation 8 and returns the variance-covariance matrix of the estimated MLE from Manly.EM() function.
It also outputs the confidence intervals of each parameter.

The command has the following syntax:

Manly.var(X, model = NULL, conf.CI = NULL)

X represents the data matrix and model is the object of class "ManlyMix". conf.CI is user-specified
confidence level, which needs to take a value between 0 and 1. Here by setting model = M, we take
the MLE of the fitted Manly mixture obtained from step c and evaluate its variability. The number
of unique model parameters is K− 1 + 2K× p + K× p(p + 1)/2 = 56 for the Iris dataset. conf.CI =
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0.95 calculates 95% confidence intervals for these 56 parameters. Thus Manly.var() function returns
a 56× 56 covariance matrix (assigned to V) and 56 confidence intervals (assigned to CI).

result <- Manly.var(X, model = M, conf.CI = 0.95)

In the code output of 95% confidence intervals, the first column represents the point estimates of
the 56 model parameters, while the second and third columns stand for the lower and upper bounds
of confidence intervals, respectively.

print(result$CI)
## Estimates Lower Upper
## [1,] 0.333333333 0.257887628 0.408779039
## [2,] 0.264119102 0.175676489 0.352561716
## [3,] 3.794594378 -8.303528084 15.892716840

Part of the output is intentionally omitted.

## [54,] 0.642713799 -0.407079526 1.692507125
## [55,] 0.334305435 -0.128841410 0.797452280
## [56,] -1.134275340 -2.079185136 -0.189365544

Step e: Forward and backward selection algorithms

Step e targets detecting the normally distributed variables in Iris. Manly.select() provides
the selection algorithm for eliminating unnecessary skewness parameters in M$la. These skewness
parameters are fixed to be equal to zero and the log-likelihood is maximized based on the rest of
parameters. The use of the function is shown below:

Manly.select(X, model, method, tol = 1e-5, max.iter = 1000,
silent = FALSE)

The argument model is the initial model to start the selection procedure with. method is set to
either "forward" or "backward" for the implementation of Algorithm 1 or Algorithm 2, respectively.
The selection criterion for each step is based on $bic values obtained from all candidate models that
are of class "ManlyMix". silent is an argument that controls the code output. By default, silent
provides the steps of selection and BIC values for all candidate models. Thus, the user can monitor
the selection procedures. The output can be turned off by setting silent = TRUE. We first discuss
the implementation of the forward selection on the Iris dataset. The algorithm is initialized by the
Gaussian mixture model G obtained in step c.

MF <- Manly.select(X, model = G, method = "forward")
## step 1 :
## current BIC = 580.8389
## alternative BICs = 585.6791 585.0607 582.1893 585.7369 585.2193 583.7374
## 585.7081 583.963 579.8978 573.4626 585.8161 585.8407
## step 2 :
## current BIC = 573.4626
## alternative BICs = 578.3191 577.6844 574.813 578.3719 577.843 576.3611
## 578.3282 576.5866 572.5215 578.4397 578.4643
## step 3 :
## current BIC = 572.5215
## alternative BICs = 577.378 576.7713 575.8067 577.4308 576.8833 575.3526
## 577.3871 575.6213 577.4799 577.3221

The forward selection takes three steps for the algorithm to find the best model (assigned to MF).
In step 3, there is no alternative BIC value that is smaller than the current model BIC, so the forward
selection algorithm stops searching over non-zero λkj’s. Compared to the Gaussian mixture fit, Manly
F model improves by 8 in BIC value.

On the contrary, the backward selection starts with the full Manly mixture M and drops one
skewness parameter at a time.

MB <- Manly.select(X, model = M, method = "backward")
## step 1 :
## current BIC = 618.4553
## alternative BICs = 613.5161 612.7184 613.8658 613.448 614.3828 616.6445
## 613.5442 616.3626 617.0157 625.7431 613.1927 610.7879
## step 2 :
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## current BIC = 610.7879
## alternative BICs = 605.9157 605.9075 607.3512 605.8475 606.3851 607.8112
## 605.9437 607.0513 609.9457 618.1426 605.7915

Part of the output is intentionally omitted.

## step 10 :
## current BIC = 575.3526
## alternative BICs = 572.5215 576.3611 582.729
## step 11 :
## current BIC = 572.5215
## alternative BICs = 573.4626 579.8978

After 11 steps, the backward selection produces the Manly B model, which enjoys the same BIC
value as the Manly F model.

Step f: Diagnostics

The skewness parameters of the Manly F and Manly B models are investigated in the following
example. It is observed that the forward selection adopts only two λkj’s in the model. They correspond
to the petal width variable of the first species and the petal length variable of the third one. For all
other components and variables, the data appear to be nearly normally distributed. The same two
skewness parameters are found by the backward selection. It is worth mentioning, however, that
Manly F and Manly B models can produce different results.

colnames(MF$la) <- colnames(X)
print(MF$la)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## [1,] 0 0 0.0000000 -4.04
## [2,] 0 0 0.0000000 0.00
## [3,] 0 0 0.5615625 0.00
colnames(MB$la) <- colnames(X)
print(MB$la)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## [1,] 0 0 0.0000000 -4.034815
## [2,] 0 0 0.0000000 0.000000
## [3,] 0 0 0.5619671 0.000000

Step g: Manly K-means algorithm

The Manly K-means algorithm written in Equation 9 is implemented in function Manly.Kmeans(),
which has the following syntax:

Manly.Kmeans(X, id = NULL, la = NULL, Mu = NULL, S = NULL,
initial = "k-means", K = NULL, nstart = 100,
method = "ward.D", tol = 1e-5, max.iter = 1000).

Manly.Kmeans() has most of the arguments and returned values the same as those of the function
Manly.EM(). As the Manly K-means algorithm assumes that all clusters are of the same size, the mixing
proportions tau are not needed in this function. S is a vector of length K that represents variance within
each cluster, as the transformed data groups are assumed to be spherical. The parameters returned by
the function $la, $Mu, and $S correspond to λk, µk and σ2

k given in Equation 10. The log-likelihood and
BIC values are not provided since the parameter estimates are not MLE’s. Manly.Kmeans() has several
initialization choices: (1) by providing id and la; (2) by providing la, Mu, and S; (3) by specifying
the number of clusters K and letting initial = "k-means"; It takes the default traditional K-means
clustering result and passes it into the CEM algorithm; (4) by specifying the number of clusters K and
letting initial = "hierarchical"; It adopts the hierarchical clustering solution as the initial dataset
partition. nstart is responsible for controlling the number of random starts tried in initialization
choice (3) with a default value equal to 100. method sets the linkage method in initialization choice
(4) with a default of method = "ward.D", which represents the Ward’s linkage (Ward, 1963). Here, the
initialization choice of Manly.Kmeans() is (1), which is the same as that of Manly.EM().

MK <- Manly.Kmeans(X, id.km, la)
colnames(MK$la) <- colnames(X)
print(MK$la)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## [1,] -0.37975529 -0.5815382 -0.81530022 -2.5572830
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## [2,] -0.27067058 -0.4103692 -0.31001602 -0.5367999
## [3,] -0.02896526 0.1138177 -0.05694487 0.2617650

print(MK$S)
## [1] 0.002717844 0.006156015 0.160435910

Illustrative example 3: AIS dataset

In this subsection, dataset AIS (Cook and Weisberg, 1994) is studied for illustrative purposes. The
Australian Institute of Sports (AIS) dataset was first introduced by Cook and Weisberg (1994). It
contains information collected from 202 athletes, among which 100 are females and 102 are males.
There are 13 variables, including the gender, sport kind and 11 numeric measurements of the athletes.
We adopt the same variables and analysis as Lee and McLachlan (2013). The goal of the analysis is
to cluster the athletes into two groups: males and females by constructing models based on three
measurements: the body mass index (“BMI”), lean body mass (“LBM”), and the percentage of body fat
(“Bfat”). Function ClassAgree() compares the estimated and true partitions. Function Manly.plot()
is introduced for visual analysis of Manly mixture fitted results.

Step a: model fit

The AIS dataset is analyzed by six mixture models: the traditional K-means (kmeans()), Manly K-
means (Manly.Kmeans()), Gaussian mixture model (Manly.EM()), Manly mixture model (Manly.EM()),
Manly forward model and Manly backward model (both available through Manly.select()).

library(ManlyMix)
data("ais"); set.seed(123)
X <- as.matrix(ais[,c(8, 10, 11)])
id <- as.numeric(ais[,1])
n <- dim(X)[1]
p <- dim(X)[2]
K <- max(id)
Kmeans <- kmeans(X, K)
id.km <- Kmeans$cluster

By running the following code, we not only obtain the fitted models, but also test the package
from different aspects. The number of parameters in the models are 7 (K-means), 19 (Gaussian), 25
(Manly), 23 (Manly F), 22 (Manly B) and 14 (Manly K-means). The computing times are 0.001, 0.004,
0.083, 0.8, 1.143, 0.024, respectively. These results are rather efficient compared to those from other
packages (see Appendix).

MK <- Manly.Kmeans(X, id = id.km, la = matrix(0.1, K, p))
G <- Manly.EM(X, id = id.km, la = matrix(0, K, p))
M <- Manly.EM(X, id = id.km, la = matrix(0.1, K, p))
MF <- Manly.select(X, G, method = "forward", silent = TRUE)
MB <- Manly.select(X, M, method = "backward", silent = TRUE)

Now we consider the fitted model parameters to perform a comprehensive analysis and diagnostics
of the AIS dataset. From the following output, it is observed that the Manly F model drops two
skewness parameters from the full Manly mixture model while Manly B drops three. This yields the
conclusion that the “Bfat” variable in the first group and “LBM” variable in the second one are close
to be normal. Through the one-to-one correspondence between skewness parameters and dataset
variables, ManlyMix is proved to be particularly useful for model variable diagnostics.

colnames(MF$la) <- colnames(X)
MF$la
## BMI Bfat LBM
## [1,] -0.08671894 0.0000000 0.01002851
## [2,] -0.12882354 -0.1902031 0.00000000

colnames(MB$la) <- colnames(X)
MB$la
## BMI Bfat LBM
## [1,] -0.09362427 0.0000000 0
## [2,] -0.12720459 -0.1933216 0

BIC values for the four models are 3595.35 (Gaussian), 3543.00 (Manly), 3538.42 (Manly F) and
3533.63 (Manly B). It shows considerable improvement in terms of BIC from Manly mixture models.
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They provide better fits for the data, among which Manly backward is the best model selected
according to BIC.

Step b: classification table

Classification results from the six models are compared using function ClassAgree() in step b.
Function ClassAgree() adopts input of both the estimated and true id vectors with the following
syntax:

ClassAgree(est.id, trueid)

ClassAgree() permutes the partition labels to achieve the lowest number of misclassifications.
Then, based on the switched labels, it returns the confusion matrix and number of misclassifications.
In the analysis of the AIS dataset, the following output is produced by ClassAgree().

ClassAgree(id.km, id)
## $ClassificationTable
## est.id
## trueid 1 2
## 1 98 2
## 2 12 90
##
## $MisclassificationNum
## [1] 14

ClassAgree(MK$id, id)
## $ClassificationTable
## est.id
## trueid 1 2
## 1 95 5
## 2 7 95
##
## $MisclassificationNum
## [1] 12

ClassAgree(G$id, id)
## $ClassificationTable
## est.id
## trueid 1 2
## 1 100 0
## 2 8 94
##
## $MisclassificationNum
## [1] 8

ClassAgree(M$id, id)
## $ClassificationTable
## est.id
## trueid 1 2
## 1 98 2
## 2 2 100
##
## $MisclassificationNum
## [1] 4

ClassAgree(MF$id, id)
## $ClassificationTable
## est.id
## trueid 1 2
## 1 99 1
## 2 3 99
##
## $MisclassificationNum
## [1] 4

ClassAgree(MB$id, id)
## $ClassificationTable
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## est.id
## trueid 1 2
## 1 99 1
## 2 4 98
##
## $MisclassificationNum
## [1] 5

Rows and columns represent the true and estimated partitions, respectively. The diagonal and off-
diagonal elements in the table correspond to correct and incorrect classifications, respectively. The
lowest number of misclassifications (4 misclassifications) is obtained by the Manly mixture and Manly
forward models. One worth-mentioning fact is that these two models enjoy the clustering solution as
good as the unrestricted skew-t mixture, which is reported to be the best model by Lee and McLachlan
(2013). The Manly backward model comes second with 5 misclassifications. The remaining three
models, traditional K-means, Manly K-means and Gaussian mixture model show worse performance.

Step c: visualization tool

In order to investigate the behavior of each model, contour plots with classified data points need to
be analyzed. Manly.plot() allows conducting the visual analysis of a dataset fitted by Manly mixture
model. The command has the following syntax:

Manly.plot(X, var1 = NULL, var2 = NULL, model = NULL, x.slice = 100,
y.slice = 100, x.mar = 1, y.mar = 1, col = "lightgrey", ...).

If both var1 and var2 are provided, they represent variables on the X-axis and Y-axis of a contour
plot, respectively. Argument model is the object of class "ManlyMix". The parameters of model object
are used to calculate the density and draw contour lines. The estimated membership vector model$id
is reflected through different colors. x.slice and y.slice options control the number of grid points
for which a density is calculated. The larger these two values are, the more grid values are considered.
Thus, the contour lines look smoother. x.mar and y.mar specify plot margins. The parameter col
specifies the color of contour lines with the default color being light grey. Other variables in the built-in
R function contour() can also be used as specified. On the other hand, if only var1 is provided, a
density plot of this variable is constructed. x.slice and x.mar have the same functionality as those in
the contour plot. The parameter col stands for density line color with the default being light grey. ...
allows other arguments from the built-in R function hist() to be passed.

In this case, we conduct the same analysis as that in Lee and McLachlan (2013) and adopt the two
variables “LBM” and “Bfat” for constructing contour plots. The margins of the plots are set to be 3
on the X-axis and 13 on the Y-axis. The light grey contour lines have width equal to 3.2. Labels and
axes are suppressed. The function is first applied to the four fitted models Gaussian mixture, Manly
mixture, Manly F and Manly B in step a.

Manly.plot(X, var1 = 3, var2 = 2, model = G, x.mar = 3, y.mar = 13,
xaxs="i", yaxs="i", xaxt="n", yaxt="n", xlab="", ylab = "",
nlevels = 10, drawlabels = FALSE, lwd = 3.2,
col = "lightgrey", pch = 19)

Manly.plot(X, var1 = 3, var2 = 2, model = M, x.mar = 3, y.mar = 13,
xaxs="i", yaxs="i", xaxt="n", yaxt="n", xlab="", ylab = "",
nlevels = 10, drawlabels = FALSE, lwd = 3.2,
col = "lightgrey", pch = 19)

Manly.plot(X, var1 = 3, var2 = 2, model = MF, x.mar = 3, y.mar = 13,
xaxs="i", yaxs="i", xaxt="n", yaxt="n", xlab="", ylab = "",
nlevels = 10, drawlabels = FALSE, lwd = 3.2,
col = "lightgrey", pch = 19)

Manly.plot(X, var1 = 3, var2 = 2, model = MB, x.mar = 3, y.mar = 13,
xaxs="i", yaxs="i", xaxt="n", yaxt="n", xlab="", ylab = "",
nlevels = 10, drawlabels = FALSE, lwd = 3.2,
col = "lightgrey", pch = 19)

Function Manly.plot() enjoys sufficient flexibility to adopt other parsimonious models. Parame-
ters obtained by traditional K-means and Manly K-means can be adjusted according to the object of
class "ManlyMix" so that $id, $tau, $Mu, $la, $S are extracted in their correct forms.

Kmeans$id <- id.km
Kmeans$tau <- MK$tau <- rep(1 / K, K)
Kmeans$Mu <- Kmeans$centers
Kmeans$la <- matrix(0, K, p)
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Kmeans$S <- array(0, dim = c(p, p, K))
for(k in 1:K)
diag(Kmeans$S[,,k]) <- Kmeans$tot.withinss / n / p

s2 <- MK$S
MK$S <- array(0, dim = c(p, p, K))
for(k in 1:K)
diag(MK$S[,,k]) <- s2[k]

Manly.plot(X, var1 = 3, var2 = 2, model = Kmeans, x.mar = 3, y.mar = 13,
xaxs="i", yaxs="i", xaxt="n", yaxt="n", xlab="", ylab = "",
nlevels = 4, drawlabels = FALSE, lwd = 3.2,
col = "lightgrey", pch = 19)

Manly.plot(X, var1 = 3, var2 = 2, model = MK, x.mar = 3, y.mar = 13,
xaxs="i", yaxs="i", xaxt="n", yaxt="n", xlab="", ylab = "",
nlevels = 10, drawlabels = FALSE, lwd = 3.2,
col = "lightgrey", pch = 19)

Figure 1 combines all output plots from Manly.plot().

It can be observed that the two components have a slight overlap, so the clustering problem is
not over-complicated. However, the red cluster is highly skewed and has a heavy tail. This imposes
difficulties for the traditional K-means, Manly K-means, and Gaussian mixture model. Manly mixture
model shows great flexibility and captures the skewness pattern in both components. Manly forward
drops the skewness parameters associated with variable “Bfat” in the female cluster (black component)
and “LBM” in the male group (red component). Manly backward drops both skewness parameters
that correspond to the female cluster and uses a black ellipsoid. It also drops the “LBM” variable in the
male cluster (red component). The above results reveal the applicability and effectiveness of function
Manly.plot() on real-life datasets.

Alternative coding d: wrapper function

Wrapper function Manly.model() enables practitioners to run analysis in a simple and convenient
way. The function has the following syntax:

Manly.model(X, K = 1:5, Gaussian = FALSE, initial = "k-means",
nstart = 100, method = "ward.D", short.iter = 5,
select = "none", silent = TRUE, plot = FALSE,
var1 = NULL, var2 = NULL, VarAssess = FALSE,
conf.CI = NULL, overlap = FALSE, N = 1000, tol = 1e-5,
max.iter = 1000, ...).

Argument K is an integer vector providing the numbers of clusters to be tested for the data. The
default setting tests 1, 2, 3, 4, or 5 clusters. It calls the Manly.EM() function to fit all five models. The
one with the lowest BIC value is chosen to be the best model. Gaussian option specifies whether
skewness parameters are adopted or not. If TRUE, Gaussian mixtures are fitted. With the default value
being FALSE, it runs full Manly mixture models. initial specifies the initialization strategy used. It
has three input options: (1) initial = "k-means" is the default initialization strategy, which passes
the traditional K-means result into the EM algorithm as the initial partition. nstart is passed into the
built-in R function kmeans for specifying the number of random starts (the default nstart = 100); (2)
if initial = "hierarchical", the hierarchical clustering initialization is used. The linkage method is
passed by method argument into R function hclust. The default is Ward’s linkage; (3) if initial =
"emEM", the emEM (Biernacki et al., 2003) initialization is run. Short runs of EM are conducted based
on random starts and the one that corresponds to the highest log-likelihood is picked for running until
convergence. nstart controls the number of random starts. The number of iterations for the short EM
is specified by short.iter with a default value set to 5 iterations.

select argument has three input values: "none", "forward" and "backward". If select = "none",
then the object returned by function Manly.EM() is adopted directly. If select = "forward", the
Gaussian option is automatically adjusted to Gaussian = TRUE. It calls function Manly.select(...,method
= "forward") to improve the original Gaussian fit. On the other hand, if select = "backward",
Gaussian option is automatically set to Gaussian = FALSE. The full Manly mixture is followed by the
backward selection Manly.select(...,method = "backward"). silent argument controls the output
in function Manly.select(). The default setting suppresses the output. plot determines whether
Manly.plot() function is called or not. If plot = TRUE, then Manly.plot() runs and arguments var1
and var2 allow user to specify which variable(s) to plot. Argument VarAssess provides the option
of using Manly.var() for variability assessment. Notice here that it only provides assessment for a
full Manly mixture model. conf.CI specifies the confidence level of the confidence intervals returned.
The overlap option, if specified to be TRUE, adopts the Manly.overlap() function and estimates pair-
wise overlap values for the returned model. N is the number of Monte Carlo simulations run in
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Figure 1: AIS dataset: fitted contour plots from function Manly.plot() based on the two variables
“LBM” (X-axis) and “Bfat” (Y-axis). The model locations are: K-means (first row left), Manly K-means
(first row right), Gaussian mixture (second row left), Manly mixture (second row right), Manly forward
(third row left) and Manly backward (third row right).
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Manly.overlap().

Three objects are returned by function Manly.model(): $model, $VarAssess, and $Overlap. $model
is the final model of class "ManlyMix" by Manly.EM() or Manly.select(). $VarAssess returns the
variance-covariance matrix and confidence intervals by Manly.var() function. $Overlap returns the
object by Manly.overlap().

For AIS dataset, suppose the user wants to obtain the Manly F or Manly B model and take a look
at their contour plots. A compact version of the code is given by:

MF <- Manly.model(X, K = 2, initial = "k-means", nstart = 100,
select = "forward", plot = TRUE, var1 = 3, var2 = 2,
x.mar = 3, y.mar = 13, xaxs="i", yaxs="i",
xaxt="n", yaxt="n", xlab="", ylab = "",
nlevels = 4, drawlabels = FALSE, lwd = 3.2,
col = "lightgrey", pch = 19)

MB <- Manly.model(X, K = 2, initial = "k-means", nstart = 100,
select = "backward", plot = TRUE, var1 = 3, var2 = 2,
x.mar = 3, y.mar = 13, xaxs="i", yaxs="i",
xaxt="n", yaxt="n", xlab="", ylab = "",
nlevels = 4, drawlabels = FALSE, lwd = 3.2,
col = "lightgrey", pch = 19)

Here, MF$model and MB$model obtained are the same as those in step a. The contour plots are generated
automatically and can be found in Figure 1.

Alternative coding e: initialization with model parameters

Functions Manly.EM() can take initial model parameters as initialization of the algorithm. It is
especially useful for the emEM initialization. The practitioner can construct a large number of short
EM runs, select the one with the highest log-likelihood and obtain its estimated parameters. Then, the
EM algorithm initialized by these parameters is run until convergence. Here is a small example on the
AIS dataset. 100 short EM algorithms run for 5 iterations each. As we can see, the obtained object M is
the same as that from step a.

ll <- -Inf
init <- NULL
nstart <- 100
iter <- 0
repeat {

id.km <- kmeans(X, centers = K, iter.max = 1)$cluster
temp <- Manly.EM(X, id = id.km, la = matrix(0.1, K, p), max.iter = 5)
if(temp$ll > ll) {

ll <- temp$ll
init <- temp

}
iter <- iter + 1
if(iter == nstart)

break
}
M <- Manly.EM(X, tau = init$tau, Mu = init$Mu, S = init$S, la = init$la)

Illustrative example 4: acidity dataset

Since one reviewer is interested in seeing a showcase of a univariate Manly mixture, we illustrate
its utility on the acidity dataset (Crawford, 1994). It provides the acidity measure of 155 lakes in the
Northeastern United States. There are two clusters, but the true partition is unknown.

Step a: model fit

We run the following models: the traditional K-means (kmeans()), Manly K-means (Manly.Kmeans()),
Gaussian mixture model (Manly.EM()), Manly mixture model (Manly.EM()), Manly forward model,
and Manly backward model (both available through Manly.select()).

library(ManlyMix)
data("acidity"); set.seed(123)
K <- 2
p <- 1
X <- acidity
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Kmeans <- kmeans(X, K)
id.km <- Kmeans$cluster
MK <- Manly.Kmeans(X, id = id.km, la = matrix(0.1, K, p))
G <- Manly.EM(X, id = id.km, la = matrix(0, K, p))
M <- Manly.EM(X, id = id.km, la = matrix(0.1, K, p))
MF <- Manly.select(X, G, method = "forward", silent = TRUE)
MB <- Manly.select(X, M, method = "backward", silent = TRUE)

The model BIC values for Gaussian, Manly, Manly F and Manly B are 394.51, 389.84, 389.84 and
389.84, respectively. There is an indication of skewness as both the Manly F and Manly B models fail
to drop any skewness parameters. The Manly models improve by 5 in the BIC value.

Step b: visualization tool

To visually assess the fit provided by all models, we use the command Manly.plot() with univari-
ate input. The fitted density plots associated with histogram of the data are provided in Figure 2.

Kmeans$id <- id.km
Kmeans$tau <- MK$tau <- rep(1 / K, K)
Kmeans$Mu <- Kmeans$centers
Kmeans$la <- matrix(0, K, p)
Kmeans$S <- array(0, dim = c(p, p, K))
for(k in 1:K)

Kmeans$S[,,k] <- Kmeans$tot.withinss / n / p
s2 <- MK$S
MK$S <- array(0, dim = c(p, p, K))
for(k in 1:K)

MK$S[,,k] <- s2[k]
Manly.plot(X = acidity, model = Kmeans, var1 = 1, main = "",

ylim = c(0, 0.75), xlab = "", xaxt = "n", ylab = "",
yaxt = "n", x.slice = 200, col = "red")

Manly.plot(X = acidity, model = MK, var1 = 1, main = "", ylim = c(0, 0.75),
xlab = "", xaxt = "n", ylab = "", yaxt = "n",
x.slice = 200, col = "red")

Manly.plot(X = acidity, model = G, var1 = 1, main = "", ylim = c(0, 0.75),
xlab = "", xaxt = "n", ylab = "", yaxt = "n",
x.slice = 200, col = "red")

Manly.plot(X = acidity, model = M, var1 = 1, main = "", ylim = c(0, 0.75),
xlab = "", xaxt = "n", ylab = "", yaxt = "n",
x.slice = 200, col = "red")

Manly.plot(X = acidity, model = MF, var1 = 1, main = "", ylim = c(0, 0.75),
xlab = "", xaxt = "n", ylab = "", yaxt = "n",
x.slice = 200, col = "red")

Manly.plot(X = acidity, model = MB, var1 = 1, main = "", ylim = c(0, 0.75),
xlab = "", xaxt = "n", ylab = "", yaxt = "n",
x.slice = 200, col = "red")

Manly models provide the most reasonable fit of the data. The first component is slightly skewed
to the right and only the Manly models pick up the high density at its peak. The second component is
slightly skewed to the left. The density fits provided by K-means and Manly K-means are insufficient
due to the assumption of equal size components.

Alternative coding c: wrapper function

The wrapper function Manly.model() is capable of combining steps a and b in one command. The
following code directly yields the Manly F or Manly B model:

MF <- Manly.model(X, K = 2, Gaussian = TRUE, initial = "k-means",
nstart = 100, select = "forward", plot = TRUE,
var1 = 1, main = "", ylim = c(0, 0.75),
xlab = "", xaxt = "n", ylab = "", yaxt = "n",
x.slice = 200, col = "red")

MB <- Manly.model(X, K = 2, Gaussian = FALSE, initial = "k-means",
nstart = 100, select = "backward", plot = TRUE,
var1 = 1, main = "", ylim = c(0, 0.75),
xlab = "", xaxt = "n", ylab = "", yaxt = "n",
x.slice = 200, col = "red")

The Manly F and Manly B density plots given in Figure 2 are generated automatically.
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Figure 2: acidity dataset: fitted density plots from function Manly.plot(): K-means (first row left),
Manly K-means (first row right), Gaussian mixture (second row left), Manly mixture (second row
right), Manly forward (third row left) and Manly backward (third row right).
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Demo examples

For users who need further information about the package, we have constructed 16 demo examples
listed in Table 3 that provide a comprehensive demonstration of ManlyMix capabilities. Among the
examples, 11 of them are designed to demonstrate the capability and utility of each function and 5 of
them run comprehensive analysis of classification datasets. Each demo can be accessed by its name
and the users can reproduce themselves.

As an illustration of how these demos can be employed, the code of the first example can be
approached through running the following code in R.

library(ManlyMix)
demo(EMalgorithm1)

Function Demo example(s)
Manly.EM() demo(EMalgorithm1), demo(EMalgorithm2)
Manly.select() demo(ForwardSelection), demo(BackwardSelection)
Manly.Kmeans() demo(ManlyKmeans1), demo(ManlyKmeans2)
Manly.overlap() demo(Overlap)
Manly.sim() demo(DataSimulation)
Manly.var() demo(VarAssess)
Manly.plot() demo(DensityPlot), demo(ContourPlot)
Comprehensive analysis demo(utility), demo(ais), demo(seeds), demo(bankruptcy)

demo(acidity)

Table 3: Summary of demo examples included in ManlyMix.

Summary

The R package ManlyMix is discussed and illustrated in detail. The provided functions enable
practitioners to analyze heterogeneous data and conduct cluster analysis with Manly mixture models.
The algorithms behind functions are introduced and explained carefully. Illustrative examples based
on challenging real-life datasets are studied to demonstrate the usefulness and efficiency of the
package. Promising results suggest that ManlyMix is not only a powerful package for clustering and
classification, but also a diagnostic tool to investigate skewness and deviation from normality in data.
Demo examples are provided for each function in ManlyMix for the users to study.

Appendix

The six competitors for mixture modeling of skewed data given in Table 1 are applied to the AIS
dataset in Section 28.3.3, including t mixture with Box-Cox transformation (flowClust), scale skew-
normal (SSN) and skew-t (SST) mixtures, restricted skew-normal (rMSN) and skew-t (rMST) mixtures,
and unrestricted skew-t mixture (uMST). All models are initialized by the partition obtained by the
traditional K-means clustering. The algorithms stop when the stopping criterion meets the tolerance
level of 1e− 5. For more information about the behavior of different models, we refer the reader to the
recent paper by Zhu and Melnykov (2016a), where a comprehensive simulation study is conducted to
compare model performance.

Table 4 provides model-based clustering results. The number of parameters of the models are 20
(flowClust), 25 (SSN), 25 (SST), 25 (rMSN), 27 (rMST), and 27 (uMST). The computing times are 0.012,
1.553, 4.737, 0.024, 0.136, 3547.527, respectively. The BIC values of the models are 3551.125, 3576.886,
3558.227, 3566.007, 3562.151, 3591.241. flowClust enjoys the lowest BIC value, which is still higher
than that of Manly B. uMST yields the lowest number of misclassifications, which is as good as the full
Manly mixture model and Manly forward model.
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Table 4: Classification tables for the AIS dataset. Rows and columns represent the true and estimated
partitions, respectively. The bold font highlights correct classifications.

flowClust SSN SST
Group 1 2 1 2 1 2

1 99 1 99 1 99 1
2 8 94 7 95 5 97

rMSN rMST uMST
Group 1 2 1 2 1 2

1 100 0 99 1 98 2
2 8 94 6 96 2 100
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adegraphics: An S4 Lattice-Based Package
for the Representation of Multivariate
Data
by Aurélie Siberchicot, Alice Julien-Laferrière, Anne-Béatrice Dufour, Jean Thioulouse and Stéphane
Dray

Abstract The ade4 package provides tools for multivariate analyses. Whereas new statistical methods
have been added regularly in the package since its first release in 2002, the graphical functions, that
are used to display the main outputs of an analysis, have not benefited from such enhancements. In
this context, the adegraphics package, available on CRAN since 2015, is a complete reimplementation
of the ade4 graphical functionalities but with large improvements. The package uses the S4 object
system (each graph is an object) and is based on the graphical framework provided by lattice and
grid. We give a brief description of the package and illustrate some important functionalities to build
elegant graphs.

Introduction

In many fields, data consists in tables containing measurements of several variables for a number of
samples. In this context, multivariate analyses provide tools to summarize the main structures of
multivariate data. After a dimension reduction step, these methods provide a graphical display of
the primary relationships between variables and similarities between samples. Multivariate methods
are routinely used in various fields including marketing, psychometry or ecology and have been
implemented in several R packages (e.g. vegan (Oksanen et al., 2017), MASS (Venables and Ripley,
2002), FactoMineR (Lê et al., 2008), see the Multivariate Task View of CRAN). The ade4 package (Dray
and Dufour, 2007) is an alternative, distributed on CRAN since 2002, that implements more than
30 different methods, mainly oriented to the analysis of ecological data, and around 40 graphical
functions to display the results of analyses.

During the last 15 years, a major effort was made in the implementation of new statistical methods
in ade4 but the graphical functionalities have not benefited from such improvements. At this time,
graphs from ade4 were black and white and lacked flexibility. It became increasingly difficult to
customize the graphical outputs as the results of analyses are increasingly complex. In parallel, R has
evolved and now proposes new paradigms of development (the S4 object system) and new graphical
environments (lattice (Sarkar, 2008), grid (Murrell, 2005)). In this context, we started the development
of a new add-on package: adegraphics. It is available on CRAN since 2015 and is designed to provide
enhanced graphical functionalities for representing outputs of multivariate analysis, especially from
ade4.

For users, adegraphics provides a flexible environment to produce, edit and easily manipulate
graphs. To ensure continuity with the graphical functions of ade4, functions and parameters names
have been largely preserved in adegraphics, so that regular users can easily migrate to the new
package. Moreover, the graphical functions of ade4 are not removed to preserve the functioning
of other R packages and scripts that depend on ade4. The use of the new adegraphics functions is
preferred and encouraged for future developments. Keeping the old version of the functions in ade4
has some practical effects. In a classical case, when multivariate analyses are performed with ade4, it
is imperative to load ade4 before adegraphics. This solves the issues of conflicting names between
functions by ensuring that the versions from adegraphics will be used.

> library(ade4)
> library(adegraphics)

The adegraphics package can be installed from CRAN. A development release is available on
GitHub (https://github.com/sdray/adegraphics) and a detailled description of the package is given
in the vignette available at https://cran.r-project.org/web/packages/adegraphics/vignettes/
adegraphics.html or in any R session by typing vignette("adegraphics"). A reproducible version
of the code in this paper is available online at http://lbbe-shiny.univ-lyon1.fr/Reproducible_
Research/TRJ.Siberchicot.2017/.

This paper is divided in three parts: simple graphs, multiple graphs, and multivariate analysis
graphs. The simple graphs part includes a presentation of basic elements and graphical parameters,
with examples of graph manipulation and spatial representations. The multiple graphs part shows
how to do automatic collections of graphs, and how to create and customize multiple graphs. The
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multivariate analysis part shows an example of how the plot of a coinertia analysis can be customized
and improved with adegraphics.

A simple example

We illustrate some principles and functionalities of adegraphics by considering the analysis of the
mafragh data set available in ade4. It contains a phyto-ecological survey collected in an Algerian plain,
called La Mafragh (de Bélair and Bencheikh-Lehocine, 1987; Pavoine et al., 2011).

> data("mafragh")
> names(mafragh)

[1] "xy" "flo" "neig" "env"
[5] "partition" "area" "tre" "traits"
[9] "nb" "Spatial" "spenames" "Spatial.contour"

The aim of the original study (de Bélair and Bencheikh-Lehocine, 1987) was to propose an inte-
grated management project of the Mafragh marshy coastal plain. mafragh$flo is a data frame giving
the abundance of 56 plant species (columns) in 97 sites (rows) distributed in the plain. mafragh$env is
a data frame with 97 rows and 11 columns describing the physico-chemical and topographic character-
istics, and the granulometry of soil samples taken at the same sampling sites. mafragh$partition is a
factor defined by de Bélair and Bencheikh-Lehocine (1987), classifying the 97 sites in 7 ecologically
coherent regions according to observed vegetation units (ecoregions).

Basic elements and simple graphs

Classes, objects and calling functions

The adegraphics package uses object-oriented programming (OOP) in R: graphs are S4 objects that
can be displayed or stored for later modification.

In adegraphics, there are two main parent classes of objects, one to store simple graphs (i.e. with
only one represented information) called “ADEg” and the other, called “ADEgS”, to store multiple
graphs. The “ADEg” class has 5 sub-classes dedicated to different representation types: the “ADEg.T”
class can be used to represent raw data such as distance matrices or contingency tables, the “ADEg.S2”
class is associated with bidimensional data and can show factorial maps, the “ADEg.S1” class is used
to represent a numeric score such as only one factorial axis in a unidimensional graph, the “ADEg.C1”
class allows to represent unidimensional data associated with a supplementary information into two
dimensions and the “ADEg.Tr” class is a peculiar class to represent data in a ternary plot. Each of
these sub-classes itself has several child classes. The list of classes evolves and can be enriched to
satisfy future developments. The adegraphics package provides user-friendly functions to create each
type of graphical object. Some examples of these functions are listed in the Table 1 for each of the 5
sub-classes.

“ADEg” sub-classes Example of sub-classes Example of associated user functions

“ADEg.T” “T.image”, “T.value”, . . . table.image, table.value, . . .

“ADEg.S2” “S2.class”, “S2.corcircle”, s.class, s.corcircle,
“S2.density”, “S2.value”, . . . s.density, s.value, . . .

“ADEg.S1” “S1.boxplot”, “S1.distri”, s1d.boxplot, s1d.distri,
“S1.match”, . . . s1d.match, . . .

“ADEg.C1” “C1.curve”, “C1.gauss”, s1d.curve, s1d.gauss,
“C1.hist”, . . . s1d.hist, . . .

“ADEg.Tr” “Tr.class”, “Tr.label”, triangle.class, triangle.label,
“Tr.match”, “Tr.traject” triangle.match, triangle.traject

Table 1: Examples of classes and associated graphical functions in adegraphics

In our example, a normed principal component analysis (PCA) is applied (using the dudi.pca func-
tion of ade4) on the mafragh$env data table. This table contains the measurements of 11 environmental
variables for 97 sites. The first four axes are kept and the results are stored in object pca1.
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> pca1 <- dudi.pca(mafragh$env, scale = TRUE, center = TRUE, scannf = FALSE, nf = 4)

The sites can be displayed on the factorial map formed by the first two axes. A graphical object
is created (by the call to the s.label function) but not printed because of the argument plot =
FALSE. Correlations between environmental variables and the first two PCA axes are represented on a
correlation circle (with the user function s.corcircle, Figure 1). Both graphs (g_sl1 and g_sc1) are
stored in S4 objects of different sub-classes.

> g_sl1 <- s.label(pca1$li, plot = FALSE)
> class(g_sl1)

[1] "S2.label"
attr(,"package")
[1] "adegraphics"

> g_sc1 <- s.corcircle(pca1$co)
> class(g_sc1)

[1] "S2.corcircle"
attr(,"package")
[1] "adegraphics"

d = 0.4
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Figure 1: Default representation of the correlation circle of the 11 environmental variables on the
first two PCA axes (g_sc1). The direction and length of arrows show correlations between variables
and principal components. This graph helps to describe the Mafragh environment. The first axis is a
salinity/elevation gradient with high salinity and low altitude on the right, opposed to high elevation
and low salinity on the left. The second axis refines this gradient by opposing clay and potassium ions
(up) to sodium ions and silts (down).

Each simple graphical object created with adegraphics (i.e. object belonging to class “ADEg”) is
defined by 8 attributes. These attributes are reachable by the @ operator and their names are given by
the slotNames function.

> slotNames(g_sc1)

[1] "data" "trellis.par" "adeg.par" "lattice.call" "g.args"
[6] "stats" "s.misc" "Call"

The data slot contains information about the data used in the plot and the Call slot contains the
matched call.

> g_sc1@Call

s.corcircle(dfxy = pca1$co, xax = 1, yax = 2, labels = row.names(as.data.frame(pca1$co)),
fullcircle = TRUE, facets = NULL, plot = TRUE, storeData = TRUE,
add = FALSE, pos = -1)
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Slots s.misc and stats store lists of internal parameters and internal preliminary computations.
The lattice.call slot contains all the information required to create a “trellis” object (see the lattice
package) associated to the adegraphics instruction. Note that an adegraphics object can be converted
to a lattice one using the gettrellis function. The trellis.par, adeg.par and g.args slots manage
several graphical parameters and are detailed in the next section.

Graphical parameters

A great flexibility is provided in adegraphics by the management of many graphical parameters.
Parameter names are more intuitive and their number is greater than in ade4. There are 3 kinds of
parameters in adegraphics user functions.

First, parameters implemented in adegraphics are itemized by the adegpar function (that works
like the basic par function). When the graphical object is created, these parameters are stored
in the adeg.par attribute. For example, the adeg.par attribute of the g_sc1 object is yielded by
g_sc1@adeg.par or by getparameters(g_sc1,2). These parameters can be applied locally on a graph
(as arguments to a user function) or globally in the working environment (using the adegpar function)
and so applied on all graphs created thereafter.

Second, lattice parameters are managed in adegraphics and stored in the trellis.par attribute
of the created object. For example, the trellis.par attribute of the g_sc1 object is returned by
g_sc1@trellis.par or by getparameters(g_sc1,1). These parameters are itemized by the lattice
function trellis.par.get and can also be applied locally or globally (see the trellis.par.set func-
tion of lattice).

Last, some general parameters are also managed like xlim and ylim, xlab and ylab, main, scales.
These parameters are stored in the g.args attribute of the created object.

The adegraphics vignette explains more precisely how to manage these various graphical parame-
ters and which one can be applied according to the class of the created object. The vignette appendix
lists the correspondences between the graphical parameters used in ade4 and their translation in
adegraphics.

In the example below, the representation of environmental variables onto the first factorial map of
pca1 in the correlation circle (Figure 1) is customized: boxes around labels are removed and a subtitle
is added. The background color of this new graph (called g_sc2) can be reached as the element col of
the pbackground list of the adeg.par attribute. Here, the background color of g_sc2 is "white". Note
that g_sc2 is not printed right now (plot = FALSE).

> g_sc2 <- s.corcircle(pca1$co, plabels.boxes.draw = FALSE,
psub.text = "Correlations of the environmental variables", plot = FALSE)

> g_sc2@adeg.par$pbackground$col

[1] "white"

Manipulating a simple graph

There are several methods in adegraphics to manipulate the graphical objects created and stored. For
example, the update method allows to modify a posteriori some graphical parameters of a graph
previously created with adegraphics, without recreating it. Besides, users can zoom in or out a stored
graph thanks to the zoom method. Note that this function is only allowed for some sub-classes of
adegraphics. Simply, the plot, print and show methods can be used to display a stored adegraphics
object. Other functions and methods are described in the vignette of the adegraphics package.

In the example below, the grid and background color of the previously created g_sc2 object are
changed using the update method (Figure 2). As above, the background color parameter is reachable
through the adeg.par slot of the g_sc2 object; now it is "grey90".

> update(g_sc2, pgrid.col = "white", pbackground.col = "grey90")
> g_sc2@adeg.par$pbackground$col

[1] "grey90"

Representation of spatial information

In ade4, classes were implemented to manage spatial information: the “area” class for geographic
maps and the “neig” class to store spatial neighborhood objects. The adegraphics package abandoned
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Figure 2: Customization of the g_sc2 object using the update method. Labels are more readable and
the graph is highlighted by changing the colors and adding a title.

these outdated implementations and adopted more efficient classes. Maps are now considered as
objects inherited from classes of the sp package (Pebesma and Bivand, 2005; Bivand et al., 2013b). “nb”
and “listw” objects, from the spdep package (Bivand and Piras, 2015; Bivand et al., 2013a), are used
to manage spatial neighborhood graphs. Note that only “ADEg.S2” objects (bidimensional plot of
xy coordinates, implemented in s.* functions) of adegraphics support the representation of spatial
objects by the use of arguments Sp and nb. See also the useful s.Spatial function to easily draw
thematic maps. adegraphics provides specific parameters to manage the customization of spatial
objects: the pSp parameters affect maps and pnb affects neighborhood.

In our example, a thematic map is simply obtained by displaying the score of sites on the first PCA
axis (pca1$li[,1]) on a spatial map used as background. The s.value function is hereafter used to
create the g_sv1 object (Figure 3, left) and takes as argument the mafragh$Spatial.contour object (an
object of a class from the sp package) in the Sp parameter and a color palette in the col parameter.
As many colors as classes of value are stored in a valuecolors vector created with the brewer.pal
function of the RColorBrewer package (Neuwirth, 2014).

> class(mafragh$Spatial.contour)

[1] "SpatialPolygons"
attr(,"package")
[1] "sp"

> library(RColorBrewer)
> valuecolors <- rev(brewer.pal(6, "RdBu"))
> g_sv1 <- s.value(mafragh$xy, z = pca1$li[, 1], Sp = mafragh$Spatial.contour,

method = "color", symbol = "circle", col = valuecolors, pgrid.draw = FALSE,
ppoints.cex = 0.4)

A similar graph (called g_sp1) can easily be built (Figure 3, right) using the s.Spatial func-
tion and a “SpatialPolygonsDataFrame” object (from the sp package). The spobj object couples a
“SpatialPolygons” object with the scores of sites on the first PCA axis.

> library(sp)
> spobj <- SpatialPolygonsDataFrame(Sr = mafragh$Spatial, data = pca1$li[,

1, drop = FALSE], match.ID = FALSE)
> class(spobj)

[1] "SpatialPolygonsDataFrame"
attr(,"package")
[1] "sp"

> g_sp1 <- s.Spatial(spobj, col = valuecolors)
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Figure 3: Thematic map: the scores on the first PCA axis are mapped in the geographical space.
The g_sv1 object (left) is created by a call to the s.value function and the g_sp1 object (right) by the
s.Spatial function. The color of sites is given by the value of scores on the first axis. The PCA first axis
described by the correlation circle in Figure 2 helps interpret this figure: regions with high elevation
(blue color, negative coordinates) are located at the extreme west and east, while the lowest points are
located in the center of the map. Salinity (particularly potassium ions) is high in the southern region
(red color, positive coordinates) because local conditions (clay) prevent the drainage of sea waters that
accummulate there. Salinity (sodium ions) is also high in a particular region of the north because it is
just next to the sea shore and receives a lot of sea water that stays trapped here.

Dealing with multiple graphs

The “ADEgS” class stores a collection of “ADEg”, “ADEgS” and/or “trellis” (from the lattice package)
objects, as a list of graphical objects. It is defined by 4 attributes, given by the slotNames function
applied on a “ADEgS” object:

• ADEglist contains the list of graphs (i.e. objects) in the collection;

• positions is a matrix that contains the positions of subgraphs in the display;

• add is a matrix that contains the information about subgraphs superposition;

• Call contains the matching call.

“ADEgS” objects can be simply manipulated with methods associated to lists (i.e. $, [], [[]]).
The names function outputs the labels of subgraphs contained in an “ADEgS” object and the length
function returns the number of subgraphs stored in the object.

We implemented different ways to generate collections of graphs. “ADEgS” objects can be created
by a call to a simple function or built step-by-step using longer code. They can be customized in the
same way as “ADEg” objects.

Automatic collections

Several user-friendly functionalities are implemented in adegraphics to facilitate the creation of
collections of graphs, repeating (without using a for-loop command) a simple graph for different
groups of individuals, variables or axes. The building of these collections is very simple for the user
(definition of an argument in the call of a function) and leads to the creation of an “ADEgS” object.

For instance, as in the ggplot2 package (Wickham, 2016), a facets argument is available to split a
dataset into groups of individuals and to produce one graph per group. The g_sv2 object (Figure 4)
displays the scores of sites of the first PCA axis (as in the g_sv1 object, left of Figure 3) for each of the 7
ecoregions, called C1,. . . ,C7, defined in magragh$partition.

> g_sv2 <- s.value(mafragh$xy, z = pca1$li[, 1], facets = mafragh$partition,
Sp = mafragh$Spatial.contour, method = "color", symbol = "circle",
col = valuecolors, pgrid.draw = FALSE, ppoints.cex = 0.4)

The g_sv2 object is an “ADEgS” containing 7 subgraphs belonging to the “S2.value” class. The sub-
graphs names are given by the names function and are equal to the level names of mafragh$partition.
Combined with the $ symbol, these names can be used to select only one subgraph to the “ADEgS”
object. For example, g_sv2$C1 is the extraction of the C1 subgraph of g_sv2.
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Figure 4: Automatic creation of an “ADEgS” object using the facets argument. The g_sv2 object is cre-
ated by only a call to the s.value function. Seven thematic maps (one for each ecoregion) are displayed
to facilitate the read of PCA results. These 7 ecoregions were defined by de Bélair and Bencheikh-
Lehocine (1987) from a correspondence analysis of the plant species data table (mafragh$flo) and
phytosociological interpretations. Each ecoregion takes into account the distribution of plant species
of various floristic groups, but also pedological characteristics of sampling sites, and geographical
areas. For example, ecoregion C1 is defined by 6 pedological sampling sites (numbered 43, 44, 45, 46,
49 and 51 in g_sv2$C1@data$dfxy) and the Bolboschoenus maritimus and Schoenoplectus litoralis plant
communities (high abundances in mafragh$flo[c(43, 44, 45, 46, 49, 51), ]).

> class(g_sv2)

[1] "ADEgS"
attr(,"package")
[1] "adegraphics"

> names(g_sv2)

[1] "C1" "C2" "C3" "C4" "C5" "C6" "C7"

> class(g_sv2$C1)

[1] "S2.value"
attr(,"package")
[1] "adegraphics"

On the other hand, multiple graphs can also be produced by splitting graphs by columns. This
is achieved when a data frame with several variables is given as an argument to a function that
usually requires a vector. For instance, the abundance of four focused species is easily displayed
along the mafragh sites. The g_sv3 object (Figure 5) is created with the s.value function, using the
mafragh$flo[, selectedspecies] data frame as z parameter. A line surrounding the entire mafragh
region (contained in the mafragh$Spatial.contour object) is added thanks to the Sp argument.

> selectedspecies <- c(9, 12, 31, 34)
> floselectedspecies <- mafragh$flo[, selectedspecies]
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> colnames(floselectedspecies) <- mafragh$spenames$code[selectedspecies]
> colnames(floselectedspecies)

[1] "Juma" "Scli" "Boof" "Plco"

> g_sv3 <- s.value(mafragh$xy, z = floselectedspecies, symbol = "circle",
centerpar = list(cex = 0.1), ppoints.cex = 0.7, pgrid.draw = FALSE, psub.cex = 2,
porigin.draw = FALSE, plegend.drawK = FALSE, Sp = mafragh$Spatial.contour)

Juma Scli

Boof Plco

Figure 5: Automatic creation of an “ADEgS” object. The g_sv3 object is created by only a call to the
s.value function using a multivariate argument z. Four maps of abundance are produced, one for
each of four species of interest: Juncus maritimus (Juma), Schoenoplectus litoralis (Scli), Borago officinalis
(Boof) and Plantago coronopus (Plco).

Step-by-step creation

“ADEgS” objects can also be created by the manipulation of several simple graphs. Several functions
in adegraphics allow superposition, combination or insertion of two objects: superpose, +, cbindADEg,
rbindADEg and insert.

Following our example, a Correspondence Analysis (CA, called coa1) is performed on the abun-
dance of the 56 plant species of mafragh (contained in the mafragh$flo data table) with the dudi.coa
function of the ade4 package, displayed but not shown with the s.label function and stored in a
g_sl2 object. Note here the plabel.optim parameter set to TRUE which automatically optimize the
label positions and remove label boxes.

> coa1 <- dudi.coa(mafragh$flo, scannf = FALSE, nf = 2)
> g_sl2 <- s.label(coa1$co, labels = mafragh$spenames$code, plabel.optim = TRUE,

plot = FALSE)

To help interpret the results of this CA, three among four maps of species abundance created in
the g_sv3 object can be inserted, one at a time, close to the matching species point on the g_sl2 object.
The insert function takes as parameters a first graph to insert, a second one in which to insert and a
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posi argument to define the insertion position. Each of the three inserted subgraph is extrated from
the g_sv3 object by the [[]] method. The final output called g_in1 is an object of “ADEgS” class
(Figure 6).

> g_in1 <- insert(g_sv3[[1]], g_sl2, posi = c(0.06, 0.16), plot = FALSE)
> g_in1 <- insert(g_sv3[[2]], g_in1, posi = c(0.15, 0.75), plot = FALSE)
> g_in1 <- insert(g_sv3[[3]], g_in1, posi = c(0.57, 0.77))
> class(g_in1)

[1] "ADEgS"
attr(,"package")
[1] "adegraphics"
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Figure 6: Creation of an “ADEgS” by the manipulation of four “ADEg” objects. This display can be
produced by the insert or ADEgS function. Three geographical maps are superimposed on the first
factor map of the CA of the plant species table. The spatial distribution of Juncus maritimus (Juma),
Schoenoplectus litoralis (Scli) and Borago officinalis (Boof) are very different, and the CA scores clearly
take these differences into account, even though spatial coordinates of sampling sites are not used in
the analysis. They correspond to ecoregions C1, C2 and C6, respectively.

This object has four elements (i.e. graphs). As for a standard list, the function names can be used to
modify labels of each g_in1 subgraph:

> names(g_in1)

[1] "g1" "g2" "X" "X.1"

> names(g_in1) <- c("CA", "Juma", "Scli", "Boof")
> names(g_in1)

[1] "CA" "Juma" "Scli" "Boof"

The insert function is a shortcut that calls a very flexible function designed to generate “ADEgS”
objects. The general ADEgS function allows to arrange multiple graphs. It takes as arguments (i) a list
of several “ADEg”, “ADEgS” and/or “trellis” objects and (ii) information about their layout.

Below, the g_in2 object, created by the ADEgS function, is strictly identical to g_in1. The positions
of each of the four subgraphs is yielded by the positions attribute of the g_in1 object.

> g_in1@positions

[,1] [,2] [,3] [,4]
0.00 0.00 1.00 1.00
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positions 0.06 0.16 0.26 0.36
positions 0.15 0.75 0.35 0.95
positions 0.57 0.77 0.77 0.97

> g_in2 <- ADEgS(list(CA = g_sl2, Juma = g_sv3[[1]], Scli = g_sv3[[2]],
Boof = g_sv3[[3]]), positions = rbind(c(0, 0, 1, 1), c(0.06,
0.16, 0.26, 0.36), c(0.15, 0.75, 0.35, 0.95), c(0.57, 0.77,
0.77, 0.97)), plot = FALSE)

Customizing an “ADEgS”

Like simple graphs (“ADEg”), the multiple graphs generated with adegraphics can be customized
during or after the creation of the object, thanks to the update function. It is possible to apply changes
to all or only one subgraph contained in the “ADEgS”. To modify a graphical parameter for all
subgraphs of the “ADEgS”, the syntax is the same as for a simple “ADEg”. To modify a graphical
parameter for only a given subgraph, the parameter name must be preceded by the name of the
subgraph, separated by a dot. This supposes that the subgraph names (available by a call to the names
function) is known.

For example, the background color of the g_in1 object can be updated for all subgraphs:

> update(g_in1, pbackground.col = "grey90")

or only for the one called CA:

> update(g_in1, CA.pbackground.col = "grey90")

The “ADEgS” created hereafter by the ADEgS function is a good example how to manipulate
“ADEg” objects and deal with adegraphics graphical parameters. The g_adegs1 object is a personal
graph (Figure 7) to explore pca1 results. It arranges four “ADEg” objects in a personal layout.

First, default global graphical parameters are stored in a oldadegpar object in order to be restored
at the end by the adegpar function.

> oldadegpar <- adegpar()

Two graphs called g_gau1d and g_lab1d are created to represent the scores of ecoregions and
environmental variables on the first pca1 axis. Parameters about unidimensional displays, affecting
this two graphs, are globally modified by the call of the adegpar function.

> adegpar(p1d = list(horizontal = FALSE, rug.tck = 1, margin = 0.07))
> g_gau1d <- s1d.gauss(pca1$li[, 1], fac = mafragh$partition, col = c(1:6, 8),

p1d.reverse = TRUE, p1d.rug.margin = 0.1, plabels.cex = 2, plot = FALSE)
> g_lab1d <- s1d.label(pca1$co[, 1], labels = rownames(pca1$co), plabels.cex = 2,

plot = FALSE)

Then the thematic map of the scores of sites on the first pca1 axis (g_sv1, Figure 3 at left) is kept
back.

Finally the graph of the pca1 eigenvalues is created (called g_eig) with the relevant plotEig
function of adegraphics. Here, only the first axis is kept to interpret the results (see the black bar).

> g_eig <- plotEig(pca1$eig, xax = 1, yax = 1, nf = 1, pbackground.box = TRUE,
plot = FALSE)

The g_adegs1 can now be created, arranging the four graphs previously stored.

> g_adegs1 <- ADEgS(list(g_gau1d, g_lab1d, g_sv1, g_eig),
layout = matrix(c(1, 2, 3, 1, 2, 4), nrow = 2, byrow = TRUE), plot = FALSE)

After the “ADEgS” creation, some graphical parameters can be a posteriori updated: the grid is
removed on all graphs, a title is added to the third (called g3 in the g_adegs1 object) and fourth (called
g4 in the g_adegs1 object) graphs and these titles are enlarged.

> names(g_adegs1)

[1] "g1" "g2" "g3" "g4"

> update(g_adegs1, pgrid.draw = FALSE, psub.cex = 1.6,
g3.psub = list(text = "Map of scores of the first PCA axis"),
g4.psub = list(text = "PCA eigenvalues"))

> adegpar(oldadegpar)
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Figure 7: Creation of an “ADEgS” by the manipulation of four “ADEg” objects. Some graphical
parameters are globally set before creating the graphs, others are defined when each subgraph is
created, and others are updated after the final creation. The left part of the figure is the one-dimensional
biplot of the PCA first axis. Gauss curves on the left show the distribution of sampling site PCA scores
for the seven ecoregions. The labels on the right show the physico-chemical characteristics of each
ecoregion, as evidenced by the PCA. For example, the sampling sites of ecoregion C1 are characterized
by a high conductivity and high levels of salinity, while sites of ecoregions C5, C6 and C7 are higher
and more sandy. The top right map recalls that this first axis has a strong spatial structure (see legend
to Figure 1), and the bottom right barplot shows that this corresponds to a large part (41%) of the total
inertia.

Multivariate analysis outputs

All functions formerly available in ade4 to display the outputs of multivariate analyses have been
reimplemented in adegraphics. Most of them return an “ADEgS” object.

In our example, the PCA on environmental variables is now applied with the CA weights (coa1$lw)
and stored in pca2. Then, a coinertia analysis is built to identify relationships between environmental
variables (pca2) and species distributions (coa1). The results are stored in a coi1 object and are
graphically summarized by a call to the plot method.

> pca2 <- dudi.pca(mafragh$env, row.w = coa1$lw, scannf = FALSE, nf = 2)
> coi1 <- coinertia(coa1, pca2, scannf = FALSE, nf = 3)
> g_coi1 <- plot(coi1)

The resulting graphical object (g_coi1, Figure 8) is an “ADEgS” containing 6 subgraphs displaying
the main outputs required to interpret the results.

> length(g_coi1)

[1] 6

In ade4, the graphical outputs provided by the plot function were initially designed to obtain a
quick view on the main outputs. However, the number of graphs and their relatively small size did
not allow a deep interpretation of the results. Hence, it was often required to write some new R code
to redraw only the useful information in a publication-ready format. In adegraphics, the process is
simplified because results are produced as “ADEgS” objects that can be manipulated as standard lists.
Each graph is an element of this list and can be easily extracted using the names of elements (for the $
operator) or their index in the list (for [[]]). The way a graph is created with adegraphics is reachable
with the Call attribute of this object.
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Figure 8: Default representation of a coinertia analysis. The g_coi1 object is a collection of 6 graphs
produced by the plot.coinertia method implemented in adegraphics.

> names(g_coi1)

[1] "Xax" "Yax" "eig" "XYmatch" "Yloadings" "Xloadings"

> g_coi1$XYmatch # the same as g_coi1[[4]]

> g_coi1@Call

plot.coinertia(x = coi1)

> g_coi1$XYmatch@Call

s.match(dfxy1 = coi1$mX, dfxy2 = coi1$mY, xax = 1, yax = 2, plot = FALSE,
storeData = TRUE, pos = -3, psub = list(text = "Row scores (X -> Y)"),
labels = row.names(as.data.frame(coi1$mX)), arrows = TRUE,
facets = NULL, add = FALSE)

In some subgraphs of Figure 8, information is not easy to read and not necessarily relevant. Thanks
to the graphical facilities developped in adegraphics, a new multiple graph can be created to better
explore coinertia results.

First, to improve the top-right subgraph (g_coi1$XYmatch) which is unreadable, a scatter plot is
created (g_scl) to represent the scores of sites on the first factorial map of the coinertia, not for each
sites (as in g_coi1$XYmatch) but grouped and colored by ecoregion. To build the new graph, it is
usefull to know how g_coi1$XYmatch was created thanks to its Call attribute (see above). Then the
eigenvalues barplot of the coi1 coinertia (the subgraph called g_coi1$eig, located at the bottom left
of g_coi1, in Figure 8) is inserted at the topleft of g_scl.

> g_scl1 <- s.class(coi1$mX, fac = mafragh$partition, ellipseSize = 0, chullSize = 0,
starSize = 0.5, ppoints.cex = 0, col = c(1:6, 8), plot = FALSE)

> g_scl2 <- s.class(coi1$mY, fac = mafragh$partition, ellipseSize = 0, chullSize = 0,
starSize = 0.5, ppoints.cex = 0, col = c(1:6, 8), plot = FALSE)
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> g_scs1 <- superpose(g_scl1, g_scl2)
> g_sm1 <- s.match(g_scl1@stats$means, g_scl2@stats$means, plabels.cex = 0,

plines.lwd = 2, plot = FALSE)
> g_scl <- superpose(g_scs1, g_sm1)
> g_scl <- insert(g_coi1$eig, g_scl, posi = "topleft", ratio = 0.3, plot = FALSE)

Next, the g_coi1$Yloadings subgraph is stored in a new g_yload object and then updated: boxes
around labels and grid are removed; the subtitle is enlarged.

> g_yload <- g_coi1$Yloadings
> update(g_yload, plabels.box.draw = FALSE, pgrid.draw = FALSE, psub.cex = 1.2,

plot = FALSE)

Then a g_sl3 object is inspired by the bottom-right subgraph (g_coi1$Xloadings) of g_coi1: a
s.label function is used instead of the s.arrow one, labels are extracted from the mafragh$spenames$code
vector, labels positions are optimized, points and grid are removed.

> g_sl3 <- s.label(dfxy = coi1$c1, psub = list(text = "X loadings"),
labels = mafragh$spenames$code, plabels.optim = TRUE, plabels.cex = 1.2,
psub.cex = 1.2, ppoints.cex = 0, pgrid.draw = FALSE, plot = FALSE)

The g_adegs2 object is at last created with the ADEgS function.

> g_adegs2 <- ADEgS(list(g_scl, g_yload, g_sl3),
layout = list(mat = matrix(c(1, 1, 2, 1, 1, 3), nrow = 2, byrow = TRUE)))
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Figure 9: A customized coinertia analysis. The g_adegs2 object is an improvement to the default
g_coi1 one. Each graphical parameter can be customized before, during and/or after the object
creation and the “ADEgS” building becomes easy. This figure helps interpret the relationships between
plant species and environmental parameters. For example, Schoenoplectus Litoralis (Scli) is found
preferentially in sites with high clay and potassium rates. On the opposite, Plantago coronopus (Plco)
is found in sites with high levels of sodium ions and high conductivity. Cynosurus polybracteatus
(Cypo) and Chrozophora tinctoria (Chti) are found in sandy sites with high elevation above sea level.
The discrepancy between plant and environmental parameters in the 7 ecoregions is shown in the
left graph. For each ecoregion, the coordinates of sites are linked to their gravity center, forming an
irregular star. The gravity centers of site coordinates from the plants table and from the environmental
parameters table are linked by an arrow. The length of this arrow is therefore representative of the
discrepancy between plants and environmental parameters. Regions C1 and C6 have to the longest
arrows, which means that the discrepancy is higher in these three ecoregions.
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Conclusions

The adegraphics package is a complete reimplementation of ade4 graphical functionalities with large
improvements. The structure of this new package is quite rigorous (formalism provided by S4 classes)
but very flexible and easily extendable to support new features. The graphical engine of the lattice
package allows to produce high quality graphs for data exploration and publication. This lattice-based
implementation provides an efficient and highly-customizable object-based environment to build
graphs and it also facilitates the connections between packages. The “ADEgS” class allows to integrate
simple “trellis” objects from the lattice package and thus offers the possibility to integrate, in the same
graphical object, various graphs created by different packages.

This code is executed with R 3.4.2, ade4 1.7-8 and adegraphics 1.0-8. Other examples are available
in the vignette and in the help pages of the package.
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carx: an R Package to Estimate Censored
Autoregressive Time Series with
Exogenous Covariates
by Chao Wang and Kung-Sik Chan

Abstract We implement in the R package carx a novel and computationally efficient quasi-likelihood
method for estimating a censored autoregressive model with exogenous covariates. The proposed
quasi-likelihood method reduces to maximum likelihood estimation in absence of censoring. The carx
package contains many useful functions for practical data analysis with censored stochastic regression,
including functions for outlier detection, model diagnostics, and prediction with censored time series
data. We illustrate the capabilities of the carx package with simulations and an elaborate real data
analysis.

Introduction

Censored data are frequently encountered in diverse fields including environmental monitoring,
medicine, economics, and social sciences. Censoring may arise, for example, when a measuring device
is subject to some detection limits beyond which the device cannot yield a reliable measurement.
Censoring can also occur due to regulations on price change, e.g., limits on maximal intra-daily price
change in a stock market.

There exists an extensive literature on regression analysis with censored responses since the
pioneering work of Buckley and James (1979). Considerable efforts have also been spent implementing
existing methods for estimating various models with censored observations, many of which have been
implemented in R. For instance, Henningsen (2010) introduced the censReg package (Henningsen,
2013), which covers standard regression models with censored responses including the standard Tobit
model (Tobin, 1958), maximum likelihood estimation with cross-sectional data, and random-effects
maximum likelihood procedure for panel-data using Gauss-Hermite quadrature. The Tobit model is
also implemented in other packages with possibly different estimation methods, including tobit()
in AER (Kleiber and Zeileis, 2008), cenmle() in NADA (Lee, 2013), tobit() in VGAM (Yee, 2015),
MCMCtobit() in MCMCpack (Martin et al., 2011), etc.

While there exists an extensive literature on estimating regression models with censored responses
and associated software, there are few studies with censored time series response data. More generally,
the problem of stochastic regression with both the response and covariates being possibly censored is
relatively under-explored. Zeger and Brookmeyer (1986) studied maximum likelihood estimation of a
regression model with the errors driven by an autoregressive model of known order p ≥ 0 (AR(p)).
Owing to censoring, the “state" vector is generally of variable dimension which can increase rapidly
with increasing censoring and AR order. Thus, the maximum likelihood estimation becomes quickly
numerically intractable with increasing censoring even for moderately high AR order (Wang and
Chan, 2017a). Zeger and Brookmeyer (1986) also briefly discussed a pseudo-likelihood approach but
did not further develop it. Park et al. (2007) proposed an imputation method to estimate a censored
autoregressive moving average (ARMA) process. Their method imputes each censored value by some
random value simulated from their conditional distribution given the observed data and the censoring
information, and treats the imputed time series as the complete data with which estimation can be
done by any standard method. However, they focused on the AR(1) model and relied on simulation
studies to demonstrate their method, with no derivation of theoretical properties.

In term of publicly available R packages facilitating estimation with censored time series data,
we are aware of only three such packages to date, namely, cents (McLeod et al., 2014), ARCensReg
(Schumacher et al., 2016), and our carx (Wang and Chan, 2017b). The cents package includes the
fitcar1() function, for fitting an AR(1) model in the presence of censored and/or missing data, and
the cenarma() function which, according to the authors, implements a quasi-EM algorithm whose
M-step is carried out by the arima() function and the E-step via the Durbin-Levinson recursions.
However, there is little documentation about these functions, rendering it hard to understand and
use the cents package. The ARCensReg package offers similar functionality as our carx package. But
their estimation is implemented via a stochastic approximation version of the EM (SAEM), which is
different from our approach. In addition, it seems to be developed after the carx, as a dataset in carx is
included in ARCensReg.

Motivated by the need for developing a computationally efficient method for estimating censored
stochastic regression models, Wang and Chan (2017a) have recently introduced such a method for

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=censReg
https://CRAN.R-project.org/package=AER
https://CRAN.R-project.org/package=NADA
https://CRAN.R-project.org/package=VGAM
https://CRAN.R-project.org/package=MCMCpack
https://CRAN.R-project.org/package=cents
https://CRAN.R-project.org/package=ARCensReg
https://CRAN.R-project.org/package=carx


CONTRIBUTED RESEARCH ARTICLES 214

censored autoregressions with exogenous covariates (CARX). The basic idea of our new approach
assumes that the score of the complete-data conditional log-likelihood of Y∗t (the uncensored coun-
terpart of Yt) given Y∗t−j, j = 1, . . . , p (and the covariates) has a closed-form expression and so does
its expectation given the possibly censored time series Yt−j, j = 0, . . . , p, evaluated at the same set of
model parameters. Setting the preceding conditional mean score to zero then provides an unbiased
estimating equation for estimating the model. The proposed method reduces to maximum likeli-
hood estimation in the absence of censoring, hence it is referred to as quasi-likelihood estimation.
Furthermore, the consistency and asymptotic normality of the quasi-likelihood estimator have been
established under some mild regularity conditions (Wang and Chan, 2017a).

In this paper we aim to introduce the R package carx, in which quasi-likelihood estimation of
a CARX model is implemented for the important special case of normal innovations. The main
functionality of the package is to provide an intuitive interface with comprehensive documentation to
enable the user to estimate the parameters of a CARX model. In addition, some utility functions for
model summary, model diagnostics, outlier detection, and prediction with censored time series data
are also included in the package.

In addition, we have also implemented a new object class for censored time series, i.e., "cenTS".
The "cenTS" class inherits the extensible time series class "xts" in the R package xts (Ryan and
Ulrich, 2017). Some functionalities, including plotting and summary, for the "cenTS" class have been
implemented. The "cenTS" class is expected to be extended in future and is hoped to be used as a
standard data structure for censored time series data.

In the following sections we first elaborate the CARX model and review the quasi-likelihood esti-
mation method, then present the functionality and main functions of the R package carx and illustrate
the package with data analyses using both simulated and real data examples. Some simulation studies
assessing the empirical performance of model selection by minimizing the AIC and the accuracy of
the proposed forecasting method and real data example are also reported.

The CARX model

In this section we briefly review the quasi-likelihood method for estimating a CARX model, and refer
the reader to Wang and Chan (2017a) for details and some theoretical properties of the estimator. We
first formulate the problem by specifying the model, then outline the estimation method and discuss
some specific topics including model prediction, model diagnostics, and outlier detection.

Model specification

Let {Y∗t }
∞
t=0 denote a real-valued time series of interest with Y∗t being not observable if it falls inside a

censoring region Ct ⊂ R which may be time-varying. The censoring region Ct is generally an interval
of the form (−∞, lt), (ut, ∞), or (lt, ut) corresponding to left, right, and interval censoring, respectively
(Huang and Rossini, 1997; Park et al., 2007). (Left and/or right censoring is allowed by carx but
interval censoring is not yet implemented in carx.) In practice, when an observation is censored, it
is often recorded as the nearest censoring limit, as it is typically known whether it is left or right
censored. The carx package assumes the censoring limits to be independent of the underlying process,
and automatically treats any missing data as resulting from left censoring with their corresponding
censoring limit l = ∞.

In practice, Y∗t is often found to be correlated with some vector covariate, say, Xt. We assume
a linear regression relationship between Y∗t and Xt, with the regression errors following an AR(p)
model, where p is the AR order.

The Censored Auto-Regressive model with eXgenous variables (CARX) specifies that the uncen-
sored response {Y∗t } is an autoregressive (AR) process given by

(
Y∗t − Xᵀ

t β
)
−

p

∑
j=1

ψj

(
Y∗t−j − Xᵀ

t−jβ
)
= εt, (1)

and Y∗t ’s are linked to the observations as follows

Yt =


lt, if Y∗t is left censored,
ut, if Y∗t is right censored,
Y∗t , otherwise,

(2)

where β is the vector of regression coefficients, ψi, i = 1, 2, . . . , p, are the AR parameters, {εt} is an
independent and identically distributed (iid) process with mean 0, variance σ2

ε , and independent of
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{Xt}.
The εt’s are also known as the innovations in the time series literature. Eqn. (1) is equivalent to the

regression model Y∗t = Xᵀ
t β + ηt, where the regression errors ηt are correlated over time and follow

an AR(p) process with the ψ’s being the AR coefficients. In the package, the innovations are assumed
to be normal although it is shown by Wang and Chan (2017a) that the proposed estimation method is
robust to mild departure from the normality assumption.

Parameter estimation

Let ψ = (ψ1, · · · , ψp)ᵀ. Throughout, θ = (βᵀ, ψᵀ, σε)ᵀ denotes a generic parameter vector, while
θ0 denotes the true parameter vector. Let {(Yt, Xt)}n

t=1 be data generated from the CARX model
with parameter θ0. The quasi-likelihood estimation procedure is motivated by maximum like-
lihood estimation and leverages on (i) the availability of the closed-form expression of `t(θ) =

`
(

Y∗t |Y∗t−j, j = 1, . . . , p, Xt−k, k = 0, . . . , p; θ
)

(which holds, for instance, for the case of normal errors

as implemented in carx) and (ii) ∑n
t=p+1 St(θ) = 0 is an unbiased estimating equation, where St(θ)

is the first derivative of `t(θ) with respect to θ. Since Y∗t are unobservable, we replace St(θ) by
Eθ (St(θ)|Yt−k, Xt−k, k = 0, . . . , p) resulting in the following estimating equation:

n

∑
t=p+1

Eθ (St(θ)|Yt−k, Xt−k, k = 0, . . . , p) = 0. (3)

The quasi-likelihood method estimates θ by solving Eq (3). Note that, in the absence of censoring,
solving the preceding estimating equation reduces to maximum likelihood estimation, asymptotically.

The following iterative scheme for solving Eq (3) was proposed by Wang and Chan (2017a).

Step(1) Initialize the parameter estimate by some consistent estimate, denoted by θ(0).

Step(2) For each k = 1, . . . , obtain an update of estimate θ(k) by

θ(k) = argmaxθ Q
(

θ|θ(k−1)
)

, (4)

where

Q
(

θ|θ(k−1)
)
=

n

∑
t=p+1

Qt

(
θ|θ(k−1)

)
, (5)

Qt

(
θ|θ(k−1)

)
= Eθ(k−1) (`t(θ)|Yt−k, Xt−k, k = 0, . . . , p) . (6)

Step(3) Iterate Step (2) until ‖θ(k) − θ(k−1)‖2/‖θ(k−1)‖2 < ε for some positive tolerance ε ≈ 0. Let θ̂ be
the estimate obtained from the last iteration.

The optimization in Step (2) for the case of normal innovations is elaborated in Section 2.4 of Wang
and Chan (2017a). The value Q(θ̂|θ̂) evaluated at the convergence of the algorithm will be referred
to as the maximum (quasi-)log-likelihood. In the absence of censoring, it reduces to the maximum
log-likelihood, hence it will be used to replace the latter in evaluating information criteria such as the
Akaike information criterion (AIC) (Konishi and Kitagawa, 2008).

In the carx package, the initial value for the preceding iterative algorithm is set to the conditional
least squares estimate obtained with the censored data replaced by the corresponding censoring limit,
which appears to work well in simulation examples reported in Wang and Chan (2017a).

Wang and Chan (2017a) proved the consistency and asymptotic normality of the quasi-likelihood
estimator under mild regularity conditions. But the asymptotic covariance matrix of the estimator
involves two intractable matrices. Consequently, Wang and Chan (2017a) proposed to use para-
metric bootstrap for drawing inference, including estimating the asymptotic covariance matrix and
constructing confidence intervals of the unknown parameters.

Model prediction

It is of practical interest to predict the future values Y∗n+h given the observations {(Yt, Xt)}n
t=1, where

h = 1, 2, . . . , H and H is some fixed upper bound, for instance, H = 14 for bi-weekly forecast, assuming
the data are sampled daily. This is generally a non-trivial problem in the presence of censoring, and can
be handled by Monte Carlo simulation for its solution. Since X is an exogenous process, we consider
the simple case of the prediction problem conditioned on the given future covariate values {Xt+h}H

h=1.
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We also assume normality of εt and known parameter θ0, although the following discussion can be
readily extended to non-normal innovations. Relaxation of these assumptions will be discussed at the
end of this subsection. The prediction problem is equivalent to finding the conditional distribution

Dn,h = D
(

Y∗n+h| {Xn+i}h
i=1 , {(Yt, Xt)}n

t=1

)
= D

(
Y∗n+h| {Xn+i}h

i=1 , {(Yt, Xt)}n
t=τ

)
,

where τ = max
(
{1} ∪

{
u : 1 ≤ u ≤ n− p + 1, and none of {Yt}

u+p−1
t=u is censored

})
, due to the

autoregressive nature of the regression errors ηt = Y∗t − Xᵀ
t β (Zeger and Brookmeyer, 1986).

There are two cases. Case 1: τ = n− p + 1, i.e., the most recent p Yt’s are uncensored so that the
prediction problem admits a closed-form solution which is well-known; see, e.g., Cryer and Chan (2008,
Chapter 9). Specifically, for any h = 1, . . . , H, Dn,h is a normal distribution whose mean serves as the
point predictor denoted by Ŷ∗n+h that can be recursively computed as follows: Ŷ∗n+h = Xᵀ

n+hβ + η̂n+h,
with η̂t = ∑

p
l=1 ψl η̂t−l for t > n, and η̂t = Yt − Xᵀ

t β if t ≤ n. The prediction error, denoted by
εn+h = Yn+h − Ŷ∗n+h, can be written as εn+h = εn+h + ∑

p
l=1 ψlεn+h−l = ∑h

i=0 ωh,iεn+h−i, where the
coefficients ωh,i can be recursively calculated by making use of the preceding identity and the initial
condition ωh,0 = 1. The prediction variance is given by var(εn+h) = σε

2 ∑h
i=0 ω2

h,i.

We now consider Case 2: τ < n− p + 1. Then Dn,h is a truncated multivariate normal distribution.
Although the first and second moments of Dn,h admit closed-form solutions (Tallis, 1961; Genz et al.,
2017), they are not useful for constructing predictive intervals as the predictive distributions are
non-normal. Thus, we propose to use a sampling approach to estimate any interesting characteristic
of the predictive distribution of Y∗n+h. First, note that the regression errors

{
ηt = Y∗t − Xᵀ

t β
}n

t=τ
are jointly normal. Let ηc and ηo be the sub-vectors of ητ:n such that the corresponding elements
of Yτ:n are censored and observed, respectively. Then given {(Yt, Xt)}n

t=τ , ηc follows a truncated
multivariate normal distribution, whose realizations can be readily simulated, and hence we can
simulate Y∗t = X

ᵀ

t β + ηt, τ ≤ t ≤ n. Then the realizations of Y∗n+h, h = 1, . . . , H can be drawn from the
multivariate normal predictive distribution stated in Case 1. Predictive intervals of Y∗n+h can then be
approximately constructed from a random sample from the predictive distribution of Y∗n+h, using the
percentile method.

Note that the proposed predictive scheme is conditional on the future covariate values {Xt}H
h=1,

which, in general, are non-deterministic. Extension to the case of stochastic {Xt+h}H
h=1 is straightfor-

ward, provided that its stochastic generating mechanism is known, as drawing a realization from
the predictive distribution of Y∗n+h can be done in two steps. Step 1 consists of drawing a realization

{xt+h}H
h=1, followed by drawing a future realization for Y∗n+h given the data and {xt+h}H

h=1. In prac-
tice, θ0 is unknown and it can be replaced by the quasi-likelihood estimator or a parametric bootstrap
approach which can be readily implemented to incorporate parametric uncertainty in the prediction.

Model diagnostics

A main task in model diagnostics consists of checking whether or not the data are consistent with
the model assumption that the innovations are independent and identically normally distributed
of zero mean and constant variance. In the presence of censoring, how to define the residuals is
unclear. For the simple case when Y∗t is observed, the corresponding residual is universally defined
as Y∗t − Ŷ∗t|t−1, where Ŷ∗t|t−1 is the mean of Dt−1,1, evaluated at the parameter estimate. In the case of
censoring so that some Y∗t s are unobserved, Wang and Chan (2017a) advocated the use of the simulated
residuals (Gourieroux et al., 1987) for model diagnostics. The simulated residuals are constructed
as follows. First, impute each unobserved Y∗t by a realization from the conditional distribution

D
(

Y∗t | {(Ys, Xs)}t
s=1

)
, evaluated at the parameter estimate. Then, refit the model with {(Y∗t , Xt)} so

obtained, via conditional maximum likelihood; the residuals from the latter model are the simulated
residuals ε̂t. Let the corresponding parameter estimate of θ be θ̃. The corresponding (simulated) partial
residuals for the X’s, i.e., X

ᵀ

t β̃ + ε̂t, can be used to assess the relationship between Y and X, after
adjusting for the autoregressive errors.

A simulation study reported in Wang and Chan (2017a) suggests that the asymptotic null distri-
bution of the Ljung-Box test statistic, for checking residual autocorrelations, based on the simulated
residuals is the same as that based on the uncensored data. Thus, standard diagnostic tools for residual
analysis may be applicable with the simulated residuals.
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Outlier detection

Real data are often marred by outliers. An outlier in a time series may result from a perturbation
inducing an unknown shift in an observation or an innovation, resulting in the so-called additive or
innovative outlier, respectively ( Cryer and Chan, 2008). An innovative outlier (IO) may mask as a
contiguous block of additive outliers (AO). Since it is harder to detect IOs in censored time series, we
focus on detecting AOs with a new method for doing so in censored time series.

As the number of outliers and their locations are generally unknown, outlier detection is carried
out one by one and iteratively. The procedure begins with an outlier-free CARX model. Then we check
for the presence of additive outliers by a method to be described below. If an outlier is detected at
time to, the covariate X will be augmented with the indicator variable Ito which equals 1 if t = to, and
0 otherwise. The augmented CARX model is then fitted, with which outlier detection is repeated until
no more outliers are found.

More specifically, we describe a method to detect any remaining additive outliers given the data
and a CARX model. For the sake of fast computation, we consider the predictive distribution of Yt

given the information from t− p to t, i.e., D̃t := D
(

Y∗t |Xt,
{(

Yt−j, Xt−j

)
, j = 1, . . . , p

})
. Let PD̃t

(E)

be the probability of the event E evaluated with distribution D̃t and n the sample size, for each
t = p + 1, · · · , n, we calculate the following probability pt.

pt =


PD̃t

(Yt > ut) , if Y∗t is right censored,
PD̃t

(Yt < lt) , if Y∗t is left censored,
min{PD̃t

(Yt > yt) , PD̃t
(Yt < yt)}, otherwise.

Let to = argmint=1,··· ,n pt, and the response at to is declared as an AO if pto < 0.025/n, where the
Bonferroni inequality is used to limit the family error rate to not exceed 5% ( Cryer and Chan, 2008);
otherwise, it is deemed that there are no remaining outliers.

The carx package

In this section we present the R package carx in which the estimation, prediction, and diagnostics
procedures discussed in previous section are implemented, assuming the normality of εt. For more
detail, see the documentation of the package. Examples will be given in the next section.

A class for censored time series

First, let us introduce a class "cenTS" designed to encapsulate a censored time series with its observed
values as well as the left (lower) and right (upper) censoring limits. The "cenTS" inherits the extensible
time series class "xts" in the R package xts. A "cenTS" object can be constructed by the following
function call.

cenTS(value, order.by, lcl = NULL, ucl= NULL, value.name = "value", ...)

Note that the value (whose name can be set in value.name) and order.by denote the observed
values and their corresponding indices respectively, and lcl and ucl denote the left (lower) and right
(upper) censoring limits respectively. Other time series variables to be included as covariates in the
regression can be supplied via additional arguments.

A "cenTS" object can be inspected by the print() and plot() methods. Any covariate time series
can be retrieved by the xreg() method.

The default estimation method

The foremost function is the method for the S3 class "carx", carx(), whose signature is the following.

carx(formula, data = list(), p = 1,
prmtrX = NULL, prmtrAR = NULL, sigma = NULL,
y.na.action = c("skip","as.censored"), addMu = TRUE,
tol = 1e-4, max.iter = 500,
CI.compute = FALSE, CI.level = 0.95,
b = 1000,b.robust = FALSE,b.show.progress = FALSE,
init.method = c("biased","consistent"),
cenTS = NULL, verbose = FALSE,...)
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The carx() method provides a simple-to-use interface for the user to input a formula, a data set, and
other arguments to estimate a CARX model.

The carx() method returns a "carx" object which stores the supplied data, the quasi-likelihood
coefficient estimates, as well as other information. It allows many optional arguments to control the
function behavior. The main arguments are listed below:

• formula is a formula representing the regression part of the model, such as y ~ x1 + x2.

• data denotes a data.frame which includes the following:

– The response variable with variable name identified by the supplied formula.

– Any covariate(s) with variable name(s) identified by the supplied formula.

– A vector with name ci whose components take values from {−1, 0, 1}, where -1 (0,1)
indicates that the corresponding element in the response variable is left-censored (not
censored, right censored).

– lcl representing the vector of left (lower) censoring limits. If not present, indicating no
lower limit.

– ucl representing the vector of right (upper) censoring limits. If not present, indicating no
upper limit.

• p denotes the autoregressive order of the regression errors, default = 1.

The above arguments supply the data structure including the censoring information, and specify
the CARX model to be estimated. Although the function contains many optional arguments for fine-
tuning the fitting algorithm and obtaining more information about the fitted model such as confidence
intervals, we merely discuss the following two arguments:

• prmtrX, prmtrAR, and sigma are used to specify the initial values of the regression coefficients β,
the autoregressive parameters Ψ, and the innovation standard deviation σε, respectively.

• y.na.action is a string indicating how to handle missing (NA) values in y. If it is set to "skip"
(default), cases containing a missing value will be skipped, so that the estimating equation of
future cases will be conditional on the most recent p complete cases after the skipped case. For
"as.censored", the y value will be treated as left-censored with the left (lower) censoring limit
replaced by positive infinity. The user may choose to use skip if there exist few long gaps in the
response. Use "as.censored" in the presence of numerous, non-contiguous missing values in y.
Note that the presence of any missing values in x will automatically hard-code y.na.action to
be "skip".

Other methods

As "carx" is an S3 class, some generic methods have been implemented so that the estimation function
can be easily called for practical use and more information about the model fitting can be easily
extracted.

The function print() simply returns a plain output of the fitted model, while the summary()
function provides a more elaborate summary of the fitted model including the estimates, their standard
errors, 95% confidence limits and p-values, based on parametric bootstrap, for each model parameter,
if CI.compute = TRUE. The model parameters can be conveniently extracted by the function coef(),
which returns all coefficient estimates except that the error (innovation) standard deviation is returned
as the sigma component of the list returned by carx(). logLik() returns the maximum (quasi-
)log-likelihood ∑n

t=p+1 Eθ̂

[
`
(
Y∗t |F ∗t ; θ̂

)
|Gt
]
, which can be used in lieu of the intractable maximum

log-likelihood. For instance, the function AIC() computes the AIC of the model with the maximum
log-likelihood replaced by maximum (quasi-)log-likelihood.

There are some other useful functions in the package. The method plot() draws the time plot of
the censored response time series, superimposed with the fitted values (1-step-ahead predictors) from
the supplied CARX model. The function predict() computes the multi-step-ahead point predictors
and their associated prediction limits, based on a given model and future values of the covariates
supplied by the user. The function fitted() returns the fitted values by calling the predict method.
The function residuals() returns the simulated residuals of the fitted model. The outlier detection
method discussed in Section 32.2.5 is implemented by the method outlier(). Model diagnostics based
on the simulated residuals are visualized by the method tsdiag(), which consists of four subplots:
the time plot of standardized simulated residuals, the residuals versus fitted values plot, the residual
autocorrelation function plot, and the plot of the p-values of the Ljung-Box test statistics, for testing no
residual autocorrelations.
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Using the package

In this section we illustrate the various functions of the package through two examples, the first one is
a simulated data set and the second a real data set. Note that an extensive simulation study about the
performance of the proposed estimation method and some model diagnostics can be found in Wang
and Chan (2017a) which shows the robustness of the proposed estimation method to slight departure
from the normality assumption of the innovations. We first load the carx package by the following
command.

> library(carx)

A function to simulate data

To begin, we introduce the function carxSimCenTS() for simulating data from a CARX model, whose
signature and default values of arguments are shown below.

carxSimCenTS(nObs = 200, prmtrAR = c(-0.28,0.25),
prmtrX = c(0.2,0.4), sigma = 0.60, lcl = -1, ucl = 1, x = NULL,
seed = NULL, value.name = 'y', end.date = Sys.date())

The carxSimCenTS() function generates a simulated "cenTS" time series of length nObs, with the
AR parameters (ψi, i = 1, . . . , p) supplied through the argument prmtrAR, the regression coefficients
through prmtrX, and innovation standard deviation through sigma, the lower and upper censoring
limits through lcl and ucl respectively. The regressors can be supplied via x, which, if is NULL, will be
generated as independent standard normal variables. The user can also specify the seed of the random
number generator by seed for ensuring repeatability. As carxSimCenTS() encapsulates the simulated
data into a "cenTS" object, the construction of which need a time/date-based index. The default treats
the data as daily observations, with the end date specified by end.date. The user can set the name
of the censored time series via value.name but the names of the regressors are hard-coded as X1, X2,
etc. There is another function carxSim(), which returns a data.frame consisting of y, x, lcl, ucl and
ci. We will mainly use the carxSimCenTS() function for simulation as it encapsulates the data as a
"cenTS" object.

A step-by-step illustration with a simulated series

We first simulate a "cenTS" series, using the carxSimCenTS() function with essentially the default
setting, i.e., simulate interval-censored data from a regression model with a 2-dimensional covariate
comprising independent standard normal components whose regression coefficients are 0.2 and 0.4,
and AR(2) regression noise terms with the AR coefficients being ψ1 = −0.28, ψ2 = 0.25; the data are
then censored unless they fall inside the interval (−1, 1).

> datSim <- carxSimCenTS(seed = 0,end.date = as.Date('2015-08-01'))

A glimpse of the last few data cases of the series is instructive.

> tail(datSim)

y lcl ucl ci X1 X2
2015-07-26 1.000 -1 1 1 -0.5466 0.288
2015-07-27 -0.321 -1 1 0 -1.6887 -1.505
2015-07-28 -0.259 -1 1 0 -1.5724 1.519
2015-07-29 0.386 -1 1 0 -0.4050 0.367
2015-07-30 0.282 -1 1 0 0.3193 1.700
2015-07-31 0.181 -1 1 0 0.0404 0.644

Censoring rate: 0.205

The simulated series can be readily visualized using the plot function (see Figure 1).

> plot(datSim)

Then the parameters can be estimated by the carx() method, with the fitted model saved in the
object named modelSim.

> modelSim <- carx(y ~ X1 + X2 - 1,data = datSim, p = 2, CI.compute = TRUE)
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Figure 1: Time plot of the simulated "cenTS" series. The observed responses are connected as a
solid black line, and the lower and upper censoring limits drawn as red dotted and dashed line with
censored observations marked by triangles pointing up and down, respectively.

Note that -1 in the formula specifies no intercept in the regression. Information about the fitted
model can be obtained directly by typing the variable name modelSim.

> modelSim

Call:
carx.formula(formula = y ~ X1 + X2 - 1, data = datSim, p = 2,

CI.compute = T)

Coefficients:
X1 X2 AR1 AR2

0.203 0.460 -0.234 0.279

Residual (innovation) standard deviation:
[1] 0.548

Censoring rate:
[1] 0.205

Sample size:
[1] 200

Number of parameters:
[1] 5

Quasi-log-likelihood:
[1] 20.1

AIC:
[1] -30.1

Confidence interval:
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2.50% 97.50%
X1 0.131 0.2766
X2 0.383 0.5446
AR1 -0.390 -0.0919
AR2 0.123 0.4066
sigma 0.483 0.6122

Variance-covariance matrix:
X1 X2 AR1 AR2 sigma

X1 1.41e-03 1.98e-05 5.86e-05 -1.49e-04 9.95e-05
X2 1.98e-05 1.73e-03 1.28e-04 9.08e-05 2.45e-04
AR1 5.86e-05 1.28e-04 5.76e-03 2.08e-03 1.32e-04
AR2 -1.49e-04 9.08e-05 2.08e-03 5.15e-03 5.88e-05
sigma 9.95e-05 2.45e-04 1.32e-04 5.88e-05 1.05e-03
N.B.: Confidence intervals and variance-covariance matrix
are based on 1000 bootstrap samples.

A summary of the fitted model can be obtained by running the summary() function.

> summary(modelSim)

Call:
carx.formula(formula = y ~ X1 + X2 - 1, data = datSim, p = 2,

CI.compute = T)

Coefficients:
Estimate StdErr lowerCI upperCI p.value

X1 0.2025 0.0375 0.1314 0.28 <2e-16 ***
X2 0.4602 0.0416 0.3826 0.54 <2e-16 ***
AR1 -0.2336 0.0759 -0.3903 -0.09 0.002 **
AR2 0.2792 0.0717 0.1232 0.41 <2e-16 ***
sigma 0.2025 0.0324 0.4834 0.61 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

AIC:
[1] -30.1

Although it can be shown that the quasi-likelihood estimator is asymptotically normal under some
regularity conditions (Wang and Chan, 2017a), the asymptotic variance-covariance matrix is intractable
so it is computed via parametric bootstrap. The summary function prints out the coefficient estimates
and innovation standard deviation estimate, together with their estimated (bootstrap) standard errors,
and lower and upper 95% confidence limits. Note that the bootstrap computation time increases
almost linearly with the bootstrap replicate size; the default is 1000. More specific information can be
easily obtained by invoking various methods. For instance, logLik returns the quasi-log-likelihood of
the data, coef returns the coefficients of the model, and the standard deviation of εt can be obtained
by modelSim$sigma.

> logLik(modelSim)

[1] 20.1
attr(,"class")
[1] "logLik.carx"

> coef(modelSim)

X1 X2 AR1 AR2
0.203 0.460 -0.234 0.279

> modelSim$sigma

[1] 0.548

The plot() function provides a visual check of how the fitted values track the data, with the
censoring limits superimposed on the diagram, see Figure 2.
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> plot(modelSim)
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Figure 2: Time plot of the raw data and fitted values from the CARX model. The observed responses
are connected as a solid black line, and the lower and upper censoring limits drawn as red dotted and
dashed line with censored observations marked by triangles pointing up and down, respectively. The
fitted values are connected as a blue dashed line.

Model diagnostics are facilitated by the tsdiag() function which is similar to the tsdiag() func-
tion in TSA package (Chan and Ripley, 2012). The tsdiag() function generates a plot of 4 sub-figures,
namely, the time plot of the simulated residuals which is useful for visually checking the presence of
residual temporal patterns and/or outliers, the simulated residuals versus fitted values plot which is
useful for checking the adequacy of the linear regression model assumptiom, the residual autocorrela-
tion function (ACF) plot that quantifies the residual correlations, and the plot of the p-values of the
Ljung-Box tests for the presence of residual autocorrelation. The following command generates the
diagnostics plot for the model fitted to the simulated data.

> tsdiag(modelSim)

The uppermost diagram in Figure 3 shows no apparent residual temporal patterns, which is also
confirmed by the fact that none of the examined residual autocorrelations in the second sub-figure
from the bottom are significant and that the bottom sub-figure shows that all p-values of the Ljung-Box
test statistics based on the first k lags of residual autocorrelations are larger than 5% for all allowable
k ≤ 23. Moreover, the second sub-figure from the top shows that the linear regression assumption is
justifiable and so is the constant innovation variance assumption. Hence, we can conclude that the
model is correctly specified, as it should be, and it provides a good fit to the data.

A real data application

In this example we utilize the package to analyze the change of total phosphorus (P) concentrations in
river water. Phosphorus is a major nutrient in river water, of which an excessive amount can result
in environmental problem such as eutrophication. Phosphorus concentration in many rivers in Iowa
has been monitored under the ambient water quality program conducted by the Iowa Department of
Natural Resources (Libra et al., 2004). An analysis of the change of P concentration has been reported
by Wang et al. (2016). Here we illustrate the analysis for a particular data set from an ambient site
located in the West Fork Cedar River at Finchford, with the data available in a "cenTS" object named
pts in the carx package.
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Figure 3: Diagnostic plots based on simulated residuals.
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The P concentrations (in mg/l) were left-censored whenever they fell below certain time-varying
detection limits, resulting in a censoring rate of 12.6%. The data were collected monthly from October
1998 to October 2013, but data collection was suspended between September 2008 to March 2009,
owing to lack of funding. In the data set, there are serveral variables.

> names(pts)

[1] "logP" "lcl" "ci" "tInMonth" "logQ" "season"

The variable logP consists of the logarithmic P, lcl the corresponding censoring limits, ci the
indicator variable of censoring, tInMonth is the time index (in month), logQ is the corresponding
logarithmic water discharge data (Q) measured in cf/s, obtained from the U.S. Geological Survey,
and season indicates to which season the month index belongs (see below for further details). P is
generally correlated with the water discharge (Schilling et al., 2010). We will explore the relationship
between P and Q. See Figure 4 for the time plots of P, Q, and the historical censoring limits.
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Figure 4: Time series plots of P (black line, scale shown on the left vertical axis), Q (blue line, scale
shown on the right vertical axis) and the censor limits lt (red line, in the same scale as that of P).
Censored observations are marked by triangles.

It is also conjectured that the association between the logP and logQ may be seasonal. The variable
season in pts is constructed to denote the quarter of the month with Quarter 1 consists of the first
three months, namely, January, February, and March; Quarter 2 comprises the next three months, and
so on. Figure 5 illustrates the seasonal relationship between logP and logQ. It is of interest whether
there exists a linear trend in the logarithmic P. Preliminary analysis (not reported here) suggests the
presence of significant autocorrelation in the regression errors. Thus, the general model takes the
following form

log (Pt) = β1t + f (log (Qt)) + ηt,

where f is some linear function that may be seasonal in the intercept and/or seasonal in the coefficient
of logQ, and ηt follows an AR process.

Note that we need to determine whether the intercept and/or the regression coefficient are seasonal,
and whether to include in the model a time trend, resulting in 8 combinations. Moreover, the AR order
for the regression errors has to be specified. Assuming the maximal AR order to be m, we have to
select among 8×m models, which can be done by selecting the best model that achieves the smallest
AIC. Model selection by AIC is automated by the function carxSelect(). Here, the maximal AR order
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Figure 5: Scatter plot of logP versus logQ. The data are labeled by different numbers (1 for Quarter 1
and so on) and colors (black, red, green, blue for Quarter 1, 2, 3 and 4, respectively). Least squares
quaterly regression lines (solid, dashed, dotted, and dash dotted) are superimposed with the same
color as the data points.

is 3.

> arOrder <- 3

The list of models, named M1 to M8, is specified in the following code.

> s1 <- logP ~ logQ
> s2 <- logP ~ tInMonth + logQ
> s3 <- logP ~ logQ:as.factor(season)
> s4 <- logP ~ tInMonth + logQ:as.factor(season)
> s5 <- logP ~ as.factor(season) + logQ - 1
> s6 <- logP ~ tInMonth + as.factor(season) + logQ - 1
> s7 <- logP ~ as.factor(season) + logQ:as.factor(season) - 1
> s8 <- logP ~ tInMonth + as.factor(season) + logQ:as.factor(season) - 1
> fmls <- c(s1,s2,s3,s4,s5,s6,s7,s8)
> names(fmls) <- paste0('M',seq(1,8))

The model selection is performed by invoking the function carxSelect() which has two required
arguments: a list of formulas and the maximal AR orders, plus an optional argument detect.outlier,
which by default is TRUE, indicates whether outliers should be detected in the model. The function
carxSelect() returns a "carx" object comprising an additional element selectionInfo which is a list
containing more information about the selection result, including aicMat which is a matrix whose
(i, j)th element is the AIC of the model represented by the ith formula in the list and AR order j.

For the purpose of illustrating the prediction by the predict() method, we use all data up to the
end of 2012 for model selection and fitting, and then check the model prediction against the observed
data in 2013.

> cs <- carxSelect(fmls, arOrder, data = pts['1998/2012'],
+ detect.outlier = TRUE, CI.compute = TRUE)
> print(round(cs$selectionInfo$aicMat,1))

AR1 AR2 AR3
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M1 -41.8 -39.6 -38.2
M2 -39.7 -38.1 -36.8
M3 -51.2 -47.5 -45.1
M4 -49.4 -45.9 -43.6
M5 -53.2 -49.6 -47.1
M6 -51.5 -48.2 -45.8
M7 -53.9 -50.8 -47.6
M8 -52.8 -49.8 -46.8

A summary of the model fit is shown below.

> summary(cs)

Call:
carx.formula(formula = formula(m0), data = m0$data, p = m0$p,

CI.compute = ..1)

Coefficients:
Estimate StdErr lowerCI upperCI p.value

as.factor(season)1 -6.053239 0.633190 -7.325537 -4.9191 <2e-16 ***
as.factor(season)2 -3.455734 0.612764 -4.696565 -2.2607 <2e-16 ***
as.factor(season)3 -4.235837 0.414149 -5.028568 -3.4297 <2e-16 ***
as.factor(season)4 -4.854407 0.476015 -5.764154 -3.9324 <2e-16 ***
as.factor(season)1:logQ 0.633582 0.111002 0.436431 0.8566 <2e-16 ***
as.factor(season)2:logQ 0.248797 0.086893 0.073705 0.4247 0.006 **
as.factor(season)3:logQ 0.373538 0.068555 0.235532 0.5053 <2e-16 ***
as.factor(season)4:logQ 0.389721 0.087467 0.217672 0.5584 <2e-16 ***
AR1 0.075072 0.090671 -0.137839 0.2227 0.596
sigma 0.482897 0.028770 0.412907 0.5265 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

AIC:
[1] -53.85639

The fitted model can be visualized by calling the plot() function, which is shown in Figure 6. The
fitted values appear to track the data well.

> plot(cs)

We examine the goodness-of-fit of the fitted model via the tsdiag() function which generates 4
diagnostic plots in Figure 7. These plots indicate that the fitted model provides good fit to the data.

> tsdiag(cs)

The selected model can be interpreted as follows. The linear trend was not selected, suggesting no
significant long-term change in the P concentrations. The intercept and the regression coefficient of
logQ were seasonal. The regression errors appeared to be mildly auto-correlated and can be modeled
as an order 1 AR process, although the AR coefficient was not significant.

Finally, we compute the prediction of logP via the predict() method and compare the prediction
with the actual data from January to October 2013. Note the prediction makes use of observed
discharge data in 2013. Figure 8 shows the point predictors (blue dashed line) against the actual values
(black solid line) and the 95% prediction bands (red lines), which indicates that the prediction tracks
the actual data well.

A simulation study on model selection

In this section, we report a simulation study on the effectiveness of model selection by minimizing the
AIC. Recall this functionality is implemented by the carxSelect() function which outputs the model
with the smallest AIC from a set of models of various AR orders up to some pre-specified maximum
order.

We restrict the simulation study to the problem of selecting the AR order with the same model
specification, i.e, the same set of regressors, which is conducted as follows. We simulated 1000 series
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Figure 6: Time plot of the raw data and fitted values from the CARX model. The observed responses
are connected as a solid black line, and the lower censoring limits drawn as a red dotted line with
censored observations marked by triangles pointing up. The fitted values are connected as a blue
dashed line. Outliers (if detected) are marked with a dashed red vertical line.

by calling carxSim() with the default setting, hence the true AR order is equal to 2, and for each
simulated series we selected the best model among the models with the AR order from 1 to 6. Since
the uncensored data were available in the simulation, we repeated the model selection with the
uncensored observed data, for comparing with the results using the censored data. This simulation
study can be reproduced by the following code.

> singleTestSelectAROrder <- function(iter)
+ {
+ seed <- 1375911
+ cts <- carxSim(seed = iter*seed)
+ m0 <- carxSelect(list(f1 = as.formula(y~X1+X2-1)), max.ar = 6,
+ data=cts[,c("y","X1","X2")],detect.outlier = FALSE)
+ m1 <- carxSelect(list(f1 = as.formula(y~X1+X2-1)),max.ar = 6,
+ data = cts, detect.outlier = FALSE)
+ c(m0$fitted$p, m1$fitted$p)
+ }
> nRep <- 1000
> orders <- parallel::mclapply( 1:nRep, singleTestSelectAROrder,
+ mc.cores = parallel::detectCores() - 1)
> orders <- do.call(rbind, lapply(orders, matrix, ncol = 2, byrow = TRUE))
> freqComDat = count(orders[1,])
> freqCenDat = count(orders[2,])

The selected orders are reported in Table 1, which shows that the true order can be recovered with
an empirical probability of 52.7%, and the results using censored and complete data are comparable.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 228

2000 2005 2010

−
2

0
1

2
3

Index

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●●
●

●

●

●●

●

●

●

●

●

●●
●●

●
●●●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●●
●

●

●

●●

●

●

●

●

●

● ●
●●

●
●● ●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

−3.5 −3.0 −2.5 −2.0 −1.5

−
2

0
1

2
3

Fitted

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

0 5 10 15 20

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F
 o

f R
es

id
ua

ls

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

5 10 15 20

0.
0

0.
4

0.
8

Number of lags

P
−

va
lu

es

Diagnostic Plots from Simulated Residuals

Figure 7: Model diagnostic plots. The plots from top to bottom correspond respectively to the
time series plots of standadized simulated residuals, residuals versus fitted values, the residual
autocorrelation plots, and the Ljung-Box test statistics of the residuals.
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Figure 8: Plot of predictions and observed values. The observed values are drawn by black solid line.
The predicted values, lower and upper bound of confidence intervals are drawn by blue dashed, red
dotted, and red dash dotted lines respectively.

AR order 1 2 3 4 5 6

Frequency (complete data) 17 626 139 97 69 52

Frequency (censored data) 37 527 160 99 101 76

Table 1: Summary of selected orders. The frequency of selected orders with complete data and
censored data are reported.

Performance of model prediction

In this section we report a simulation study about the empirical performance of the model prediction
procedure. A series of 210 data was simulated using the default parameters of carxSim(), with the first
200 data used to estimate the model, and the last 10 observations used to compare with the predicted
values based on the fitted model and the simulated future covariate values. The above procedure
was repeated 500 times. The empirical coverage rates of the 95% `-step ahead prediction intervals,
` = 1, 2, . . . , 10, are summarized in Table 2, which indicates a close match between the empirical and
nominal coverage rates. The simulation exercise can be reproduced by the following code.

> nRep = 500; nObs = 200; n.ahead=10
> runSimPredCR <- function()
+ {
+ set.seed(0)
+ crMat = matrix(nrow = n.ahead, ncol = nRep)
+ for(iRep in 1:nRep)
+ {
+ sdata = carxSim(nObs = nObs + n.ahead)
+ trainingData = sdata[1:nObs,]
+ testData = sdata[-(1:nObs),]
+ mdl = carx(y ~ X1 + X2 - 1, data = trainingData, p = 2)
+ newxreg = testData[,c('X1','X2')]
+ predVal = predict(mdl, newxreg = newxreg, n.ahead = n.ahead)
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+ crInd = (predVal$ci[,1] <= testData$y) & (predVal$ci[,2] >= testData$y)
+ crMat[,iRep] = crInd
+ }
+ crPred = apply(crMat,1,mean)
+ }
> runSimPredCR()

n.ahead 1 2 3 4 5 6 7 8 9 10

Empirical Coverage 0.954 0.932 0.946 0.952 0.946 0.946 0.938 0.946 0.948 0.952

Table 2: Empirical coverage rates of nominally 95% predictive confidence intervals for `-step-ahead
prediction, for ` = 1, 2, . . . , 10.

Conclusion

In summary, we have reviewed the quasi-likelihood method to estimate a censored time series regres-
sion model and introduced the carx package in which quasi-likelihood estimation is implemented,
together with other useful functions for model selection, prediction, diagnostics and outlier detections.
We illustrated the carx package with two major examples, and shed light on the effectiveness of model
selection via minimizing AIC and the prediction accuracy.

Future work includes extending the method for more complex regression noise structure than the
AR model, for instance, the more general ARIMA model, and updating the package according to the
feedback from the public.
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liureg: A Comprehensive R Package for
the Liu Estimation of Linear Regression
Model with Collinear Regressors
by Muhammad Imdadullah, Muhammad Aslam, Saima Altaf

Abstract The Liu regression estimator is now a commonly used alternative to the conventional
ordinary least squares estimator that avoids the adverse effects in the situations when there exists a
considerable degree of multicollinearity among the regressors. There are only a few software packages
available for estimation of the Liu regression coefficients, though with limited methods to estimate
the Liu biasing parameter without addressing testing procedures. Our liureg package can be used
to estimate the Liu regression coefficients utilizing a range of different existing biasing parameters,
to test these coefficients with more than 15 Liu related statistics, and to present different graphical
displays of these statistics.

Introduction

For data collected either from a designed experiment or from an observational study, the ordinary
least square (OLS) method does not provide precise estimates of the effect of any explanatory variable
(regressor) when regressors are interdependent (collinear with each other). Consider a multiple linear
regression (MLR) model,

y = Xβ + ε,

where y is an n× 1 vector of observations on dependent variable, X is known design matrix of order
n× p, β is a p× 1 vector of unknown parameters, and ε is an n× 1 vector of random errors with mean
zero and variance σ2 In, where In is an identity matrix of order n.

The OLS estimator (OLSE) of β is given by

β̂ = (X′X)−1X′y,

which depends on the characteristics of the matrix X′X. If X′X is ill-conditioned (near dependencies
among various regressors of X′X exist) or det(X′X) ≈ 0, then the OLS estimates are sensitive to a
number of errors, such as non-significant or imprecise regression coefficients (Kmenta, 1980) with
wrong sign and non-uniform eigenvalues spectrum. Moreover, the OLS method, for example, can
yield a high variance of estimates, large standard errors, and wide confidence intervals.

Researchers may be tempted to eliminate regressor(s) causing problems by consciously removing
regressor from the model or by using some screening method such as stepwise and best subset
regression etc. However, these methods may destroy the usefulness of the model by removing relevant
regressor(s) from the model. To control variance and instability of the OLS estimates, one may
regularize the coefficients, with some regularization methods such as the ridge regression (RR), Lasso
regression and Liu regression (LR) methods etc., as alternative to the OLS. Computationally, the RR
(β̂r = (X′X + kI)−1X′y) suppresses the effects of collinearity and reduces the apparent magnitude
of the correlation among regressors in order to obtain more stable estimates of the coefficients than
the OLS estimates and it also improves the accuracy of prediction (see Hoerl and Kennard, 1970;
Montgomery and Peck, 1982; Myers, 1986; Rawlings et al., 1998; Seber and Lee, 2003; Tripp, 1983, etc.).
However, the ridge coefficient is a complicated function of k when some popular methods (such as
given in Golub et al. (1979), Mallows (1973) and McLeod and Xu (2017) etc.) are used for (optimal)
selection of k. Different applications can yield values for k which are too small to correct the problem
of the ill-conditioned product, X′X. In such cases, the RR may still be unstable. Similarly, the choice
of k belongs to the researcher, there being no consensus regarding how to select optimal k. As such,
other innovative methods were needed to deal with collinear data. Liu (1993) proposed another biased
estimator to mitigate the collinearity effect on regressors. They also discussed some of the properties
and methods for suitable selection of biasing parameter used in LR. For further detail, see Section "Liu
regression estimator."

We have developed the liureg (Imdadullah and Aslam, 2017) package to provide the functionality
of Liu related computations. The package provides the most complete suite of tools for the LR
available in R. Table 1 provides a comparison with other alternatives. For package development and
R documentation, we followed Wickham (2015); Leisch (2008); Team (2015). The ridge package by
Cule and De Iorio (2012), lmridge by Imdadullah and Aslam (2016a) and lm.ridge from the MASS
by Venables and Ripley (2002) also provided guidance in coding.
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lrmest (1) ltsbase (2) liureg

Standardization of regressors
X X X

Estimation and testing of Liu coefficient
Estimation X X X
Testing X X
SE of coeff. X X

Liu related statistics
R2 X X
Adj-R2 X
Variance X
Bias2 X
MSE X
F-test X
σ2 X
CL X
Effective df X
Hat matrix X
Var-Cov matrix X
VIF X
Residuals X X
Fitted values X X
Predict values X

Liu model selection
GCV X
AIC&BIC X
PRESS X

Liu related graphs
Liu trace X
Bias, Var, MSE X X
AIC, BIC X

Table 1: Comparison of Liu related R packages (1 Dissanayake and Wijekoon, 2016; 2 Kan et al., 2013 )

In the available literature, there are only two R packages capable of estimating and/or testing
of the Liu coefficients. The R packages mentioned in Table 1 are compared with our liureg package.
The lrmest package (Dissanayake and Wijekoon, 2016) computes different estimates such as the OLS,
ordinary ridge regression (ORR), Liu estimator (LE), LE type-1, 2, 3, adjusted Liu estimator (ALTE),
and their type-1, 2, 3 etc. Moreover, lrmest provides scalar mean square error (MSE), prediction
residual error sum of squares (PRESS) values of some of the estimators. The testing of ridge coefficient
is performed only on scalar k, however, for a vector of d, the function liu() of lrmest package returns
only MSE along with value of the biasing parameter used. The ltsbase package (Kan et al., 2013)
computes ridge and Liu estimates based on the least trimmed squares (LTS) method. The MSE value
from four regression models can be compared graphically if the argument plot=TRUE is passed to the
ltsbase() function. There are three main functions, (i) ltsbase() computes the minimum MSE values
for six methods: OLS, ridge, ridge based on LTS, LTS, Liu, and Liu based on LTS method for sequences
of biasing parameters ranging from 0 to 1, (ii) the ltsbaseDefault() function returns the fitted values
and residuals of the model having minimum MSE, and (iii) the ltsbaseSummary() function returns the
regression coefficients and the biasing parameter for the best MSE among the four regression models.

It is important to note that the ltsbase package displays these statistics for models having minimum
MSE (bias and variance are not displayed in their output), while our package, liureg, computes these
and all other statistics not only for scalar but also for vector biasing parameter.

This paper outlines the collinearity detection methods available in the existing literature and uses
the mctest (Imdadullah and Aslam, 2016b) package through an illustrative example. To overcome the
issues of the collinearity effect on regressors a thorough introduction to Liu regression, properties of
the Liu estimator, different methods for the selecting values of d, and testing of the Liu coefficients
is presented. Finally, estimation of the Liu coefficients, methods of selecting a biasing parameter,
testing of the Liu coefficients, and different Liu related statistics are implemented in R within the
liureg package.
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Collinearity detection

Diagnosing collinearity is important to many researchers. It consists of two related but separate
elements: (1) detecting the existence of collinear relationship among regressors and (2) assessing the
extent to which this relationship has degraded the parameter estimates. There are many diagnostic
measures used for detection of collinearity in the existing literature provided by various authors
(Belsley et al., 1980; Curto and Pinto, 2011; Farrar and Glauber, 1967; Fox and Weisberg, 2011; Gunst
and Mason, 1977; Klein, 1962; Koutsoyiannis, 1977; Kovács et al., 2005; Marquardt, 1970; Theil, 1971).
These diagnostic methods assist in determining whether and where some corrective action is necessary
(Belsley et al., 1980). Widely used, and the most suggested diagnostics, are the value of pair-wise
correlations, the variance inflation factor (VIF)/ tolerance (TOL) (Marquardt, 1970), the eigenvalues
and eigenvectors (Kendall, 1957), the CN & CI (Belsley et al., 1980; Chatterjee and Hadi, 2006; Maddala,
1988), Leamer’s method (Greene, 2002), Klein’s rule (Klein, 1962), the tests proposed by Farrar and
Glauber (Farrar and Glauber, 1967), the Red indicator (Kovács et al., 2005), the corrected VIF (Curto
and Pinto, 2011), and Theil’s measures (Theil, 1971), (see also Imdadullah et al. (2016)). All of these
diagnostic measures are implemented in a the R package mctest (Imdadullah and Aslam, 2016b).
Below, we use the Hald dataset (Hald, 1952), for testing collinearity among regressors. We then use
the liureg package to compute the Liu regression coefficients for different Liu related statistics and
methods of selection of Liu biasing parameter is performed. For optimal choice of biasing parameter,a
graphical representation of the Liu coefficients is considered, along with a bias variance trade-off plot.
In additino, model selection criteria is also performed. The Hald data are about heat generated during
setting of 13 cement mixtures of 4 basic ingredients and used by Hoerl et al. (1975). Each ingredient
percentage appears to be rounded down to a full integer. The data set is included in both the mctest
and liureg packages.

Collinearity detection: An example

R > data(Hald)
R > x <- Hald[, -1]
R > y <- Hald[, 1]
R > mctest (x, y)

Call:
omcdiag(x = x, y = y, Inter = TRUE, detr = detr, red = red, conf = conf,

theil = theil, cn = cn)

Overall Multicollinearity Diagnostics

MC Results detection
Determinant |X'X|: 0.0011 1
Farrar Chi-Square: 59.8700 1
Red Indicator: 0.5414 1
Sum of Lambda Inverse: 622.3006 1
Theil's Method: 0.9981 1
Condition Number: 249.5783 1

1 --> COLLINEARITY is detected
0 --> COLLINEARITY is not detected by the test

===================================
Eigenvalues with INTERCEPT

Intercept X1 X2 X3 X4
Eigenvalues: 4.1197 0.5539 0.2887 0.0376 0.0001
Condition Indices: 1.0000 2.7272 3.7775 10.4621 249.5783

The results from all overall collinearity diagnostic measures indicate the existence of collinearity among
regressor(s). These results do not tell which regressor(s) are reasons of collinearity. The individual
collinearity diagnostic measures can be obtained though:

> mctest(x = x, y, all = TRUE, type = "i")

Call:
imcdiag(x = x, y = y, method = method, corr = FALSE, vif = vif,

tol = tol, conf = conf, cvif = cvif, leamer = leamer, all = all)
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All Individual Multicollinearity Diagnostics in 0 or 1

VIF TOL Wi Fi Leamer CVIF Klein
X1 1 1 1 1 0 0 0
X2 1 1 1 1 1 0 1
X3 1 1 1 1 0 0 0
X4 1 1 1 1 1 0 1

1 --> COLLINEARITY is detected
0 --> COLLINEARITY in not detected by the test

X1 , X2 , X3 , X4 , coefficient(s) are non-significant may be due to multicollinearity

R-square of y on all x: 0.9824

* use method argument to check which regressors may be the reason of collinearity

The results from most of the individual collinearity diagnostics suggest that all of the regressors are
the reason for collinearity among regressors. The last line of the imcdiag() function’s output suggests
that method argument should be used to check which regressors may be the reason of collinearity
among different regressors. This finding suggest that one should use regularization method such as
LR.

Liu regression estimator

To deal with multicollinear data, Liu (1993) formulated a new class of biased estimators that has
combined benefits of ORR by Hoerl and Kennard (1970) and the Stein type estimator Stein (1956),
β̂S = cβ̂, where c is parameter 0 < c < 1 to avoid their disadvantages. The Liu estimator (LE) can be
defined as,

β̂d = (X′X + Ip)
−1(X′y + dβ̂ols), (1)

= (X′X + Ip)
−1(X′X + dIp)β̂ols,

= Fd β̂ols,

where d is the Liu parameter also known as the biasing (tuning or shrinkage) parameter and lies
between 0 and 1 (i.e., 0 ≤ d ≤ 1), Ip is the identity matrix of order p× p, and β̂ is OLSE.

and other statistical areas, the LE has produced a number of new techniques and ideas, see for
example Akdeniz and Kaçiranlar (2001); Hubert and Wijekoon (2006); Jahufer and Chen (2009, 2011,
2012); Kaçiranlar et al. (1999); Kaçiranlar and Sakalhoğlu (2001); Torigoe and Ujiie (2006).

However, Liu (2011) and Druilhet and Mom (2008) have made statements that the biasing parame-
ter d may lie outside the range given by Liu (1993), that is, it may be less than 0 or greater than 1. The
LE is a linear transformation of the OLSE, β̂d = β̂ols.

the main interest of LE lies in the suitable selection of d for which MSE is minimum and that the
efficiency of estimators improves, as compared to other values of d. The β̂d is named as the LE by
Akdeniz and Kaçiranlar (1995) and Gruber (1998). Liu (1993), in applications to econometrics and
engineering, provided some important methods for the selection of d and also provided numerical
examples using an iterative minimum MSE method to get the smallest possible value to overcome the
problem of collinearity in an effective manner.

Reparameterization

The design matrix Xn×p and response variable yn×1 should be standardized, scaled or centered
first such that information matrix X′X is in the correlation form and vector X′y is in the form of
the correlation among regressors and the response variable. Consider the regression model, y =

β0 1+ X̃β1 + ε, where X̃ is centered and 1 = c(1, 1, · · · , 1)′. The value for β0 can be estimated by using
y. Let λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0, be the ordered eigenvalues of the matrix X̃′X̃ and q1, q2, · · · , qp be
the eigenvectors corresponding to their eigenvalues, such that Q = (q1, q2, · · · , qp) is an orthogonal
matrix of X̃′X̃ and
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Λ =

λ1
. . .

λp

 ,

therefore, the model can be rewritten in canonical form as y = β0 1 + Zα + ε, where Z = X̃Q and
α = Q′β1. Note that, Λ = Z′Z = Q′X̃′X̃Q. The estimate of α is α̂ = Λ−1Z′y. Similarly, Eq. 1 can be
written in canonical form as,

α̂d = (Λ + Ip)
−1(Z′y + dα̂).

The corresponding estimates of β̂1 and β̂d can be obtained by following the relations β̂1 = Qα̂ and
β̂d = Qα̂d, respectively. For simplification of notations, X̃ and α̂ will be represented as X and β,
respectively.

The fitted values of the LE can be found using Eq. 1,

ŷd = Xβ̂d,

= X(X′X + Ip)
−1(X′y + d)β̂,

= Hd y,

where, Hd is LE the matrix (Liu, 1993; Walker and Birch, 1988). It is worthwhile to note that Hd is not
idempotent because it is not a projection matrix, therefore it is called quasi-projection matrix.

As β̂d is computed on centered variables, they need to be converted back to the original scale:

β̂ =

(
β̂dj

Sxj

)
,

where Sxj is the scaling method of regressors.

The intercept term for the LE (β̂0d) can be estimated using the following relation:

β̂0d = y− (β̂1d, · · · , β̂pd)x′j

= y−
p

∑
j=1

xj β̂ jd. (2)

Properties of the Liu estimator

Like the linear RR, the Liu regression is also the most popular method among biased methods, because
of its relation to OLS. Its statistical properties have been studied by Akdeniz and Kaçiranlar (1995, 2001),
Arslan and Billor (2000), Kaçiranlar and Sakalhoğlu (2001), Kaçiranlar et al. (1999) and Sakalhoğlu
et al. (2001) among many others. Due to comprehensive properties of the LE, researchers have been
attracted towards this area of research.

For d = 1, β̂d = βols. In which case, LE is the shrinkage estimator, though biased, but has lower
MSE than OLS. That is, MSE(β̂d) < MSE(β̂ols) (see Sakalhoğlu et al., 2001, etc.).

Let Xj denote the jth column of X(j = 1, 2, · · · , p), where Xj = (x1j, x2j, · · · , xnj)
′. As already

discussed, the regressors are centered, thus, the intercept will be zero and can thereby be removed
from the model. However, it can be estimated from relation given in Eq. 2. Table 2, lists the Liu
properties that are implemented in our liureg package.

Theoretically and practically, LR is used to propose new methods for the choice of the biasing
parameter d to investigate the properties of LR, since the biasing parameter plays a key role while the
optimal choice of d is the main issue in this context. In the literature, many methods for the selection
of an appropriate biasing parameter d have been studied by Akdeniz and Özkale (2005), Arslan and
Billor (2000), Akdeniz et al. (2006), Özkale and Kaçiranlar (2007), and Liu (1993).

Methods of selecting values of d

The existing methods to select biasing parameter in the LR may not fully address the problem of
ill-conditioning when there exists severe multicollinearity, while the appropriate selection of biasing
parameter d also remains a problem of interest. The parameter d should be selected when there are
improvements in the estimates (have stable estimates) or prediction is improved.

The optimal value of d is one which gives minimum MSE. There is one optimal d for any problem

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 237

Sr.# Property Formula

1) Linear transformation The LE is a linear transformation of the OLSE (β̂d = Fd β̂)
2) Wide range d Wide range of d have smaller MSE than the OLS
3) Optimal d An optimal d always exists that gives minimum MSE
4) Mean E(β̂d) = Fdβ, where Fd = (X′X + Ip)−1(X′X + dIp)
5) Bias Bias = Q′(Fd − Ip)β

6) Var-Cov matrix Cov(β̂d) = σ2Fd(X′X)−1F′d

7) MSE

MSE(β̂d) = σ2Fd(X′X)−1Fd + (Fd − Ip)ββ′(Fd − Ip)
′

= σ2
p

∑
j=1

(λj + d)2

λj(λj + 1)2 + (d− 1)2
p

∑
j=1

β2

(λ + 1)2

8) Effective DF (EDF) EDF = trace[XFd(X′X)−1X′]
9) Larger regression coeff. β̂′d β̂d ≥ β̂′ols β̂ols

10) Inflated RSS ∑(y− Xβ̂d)
2

Table 2: Properties of Liu estimator.

by the analogy with the estimate of k in RR, a wide range of d (−∞ < d < 1) can give smaller MSE
as compared to that of the OLS. For collinear data, a small change in d varies the LR coefficients
rapidly. Therefore, a disciplined way of selecting the shrinkage parameter is required that minimizes
the MSE. The biasing parameter d depends on the true regression coefficients (β) and the variance of
the residuals σ2, unfortunately these are unknown, but they can be estimated from the sample data.

We classified estimation methods as (i) Subjective or (ii) Objective

Subjective methods

In these methods, the selection of d is subjective or of judgmental nature and provides graphical
evidence of the effect of collinearity on the regression coefficient estimates and also accounts for
variation by the LE as compared to the OLSE. In these methods, the reasonable choice of d is done
using the Liu trace and the plotting of bias, variance, and MSE. Like ridge trace, the Liu trace is also a
graphical representation of the regression coefficients, β̂d, as a function of d over the interval (−∞, ∞).
Similarly, the plotting of bias, variance, and MSE from the LE may also be helpful in selecting an
appropriate value of d. At the cost of bias, optimal d can be selected at which MSE is minimum. All
these graphs can be used for selection of optimal (but judgmental) value of d from the horizontal
axis to assess the effect of collinearity on each of the coefficients. These graphical representations
do not provide a unique solution, rather they render a vaguely defined class of acceptable solutions.
However, these traces are still useful graphical representations to check for some optimal d.

Objective methods

Objective methods, to some extent, are similar to judgmental methods for selection of biasing parameter
d, but they require some calculations to obtain these biasing parameters. Table 3 lists widely used
methods to estimate the biasing parameter d already available in the existing literature. Table 3 also
lists other statistics that can be used for the selection of the biasing parameter d.

Testing of the Liu coefficients

Testing of the Liu coefficients is performed by following Aslam (2014) and Halawa and El-Bassiouni
(2000). For testing H0 : βdj = 0 against βdj 6= 0, the non-exact t-statistics defined by Halawa and
El-Bassiouni (2000) are,

Tdj =
β̂dj

SE(β̂dj)
,

where β̂dj is the jth Liu coefficient estimate and SE(β̂dj) is an estimate of standard error, which is the
square root of the jth diagonal element of the covariance matrix of LE (see property # 6 in Table 2).

The statistics Tdj are assumed to follow Student’s t distribution with (n − p) df (Halawa and
El-Bassiouni, 2000). Hastie and Tibshirani (1990) and Cule and De Iorio (2012) suggest using the df
from (n − trace(Hd)). For large sample size, the asymptotic distribution of this statistic is normal
(Halawa and El-Bassiouni, 2000).
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Sr.# Formula Reference

1) dopt =

p
∑

j=1

[
α2

j −σ2

(λj+1)2

]
p
∑

j=1

[
σ2+λjα2

j
λj(λj+1)2

]
Liu (1993)

2) d̂ = 1− σ̂2


p
∑

j=1

1
λj(λj+1)

p
∑

j=1

α̂2
j

(λj+1)2

 Liu (1993)

3) d̂imp =

n
∑

i=1

ẽ
1−gii

(
ẽi

1−h1−ii
− êi

1−hii

)
n
∑

i=1

(
ẽ

1−gii
− êi

1−hii

)2 ,

where, ê = yi − x′i(X′X− xix′i)
−1(X′y− xiyi),

ẽ = yi − x′i(X′X + Ip − xix′i)
−1(X′y− xiyi),

G = X(X′X + Ip)
−1X′, and H ∼= X(X′X)−1X′

Liu (2011)

4) PRESSd =
n

∑
i=1

(êd(i))
2,

where êd(i) =
êei

1− h1−ii
− êi

(1− h1−ii)(1− hii)
(h1−ii − h̃d−ii),

êdi
= yi − ŷdi

,

H̃d−ii diagonal elements from Liu hat matrix,

hii = x′i(X′X)−1xi,

and h1−ii = x′i(X′X + I)−1xi

Özkale and
Kaçiranlar
(2007)

5) CL =
SSRd

σ̂2 + 2 trace(H̃d)− (n− 2),

where, H̃d is hat matrix of LE
Mallows (1973)

6) GCV = SSRd
(n−[1+trace(H̃d)])2 Liu (1993)

7) AIC = n log(RSS) + 2d f ,
BIC = n log(RSS) + d f log(n), where d f = trace(Hd)

Table 3: Different available methods to estimate d.

For testing overall significance of vector of LE (β̂d) with E(β̂d) = Fd β and Cov(β̂d), the F-statistic
is,

F =
1
p
(β̂d − Fdβ)′(Cov(β̂d))

−1(β̂d − Fdβ)

The standard error of β̂d is computed by considering the variance of the estimator, given in Eq. 2,
and then taking the square root of this variance, that is:

S.E(β̂0d) =
√

Var(y) + X2
j diag[Cov(β̂d)] (3)

The R package liureg

Our R package liureg contains functions related to fitting of the LR model and provides a simple
way of obtaining the estimates of LR coefficients, testing the Liu coefficients, and the computation of
different Liu related statistics, which prove helpful for selection of optimal biasing parameter d. The
package computes different Liu related measures available for the selection of biasing parameter d,
and computes value of different biasing parameters proposed by some researchers in the literature.

The liureg objects contain a set of standard methods such as print(), summary(), plot(), and
predict(). Therefore, inferences can be made easily using the summary method for assessing the
estimates of regression coefficients, their standard errors, t-values and their respective p-values. The
default function liu which calls liuest() to perform required computations and estimation for given
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values of non-stochastic biasing parameter d. The syntax of default function is,

liu(formula,data,scaling=("centered","sc","scaled"),d,...)

The four arguments of liu() function are described in Table 4.

Argument Description

formula Symbolic representation for LR model of the form, response ∼ predictors.
data Contains the variables that have to be used in LR model.
d The biasing parameter, may be a scalar or vector. If a d value is not provided,

d = 1 will be used as the default value, i.e., the OLS results will be produced.
scaling The methods for scaling of predictors. The centered option, centers the

predictors, suggested by Liu (1993), and uses the default scaling option; the
sc option scales the predictors in correlation form as described in Belsley
(1991); Draper and Smith (1998); and the scaled option standardizes the
predictors having zero mean and unit variance.

Table 4: Description of liu() function arguments.

The liu() function returns an object of class "liu". The functions summary(), dest(), and lstats()
etc., are used to compute and print a summary of the LR results, list of biasing parameter by Liu
(1993, 2011) and Liu related statistics such as estimated squared bias, R2 and variance etc., after bias
is introduced in regression model. An object of class "liu" is a list, the components of which are
described in Table 5.

Object Description

coef A named vector of fitted Liu coefficients.
lfit Matrix of Liu fitted values for each biasing parameter d.
mf Actual data used.
xm A vector of means of design matrix X.
y The centered response variable.
xscale The scales used to standardize the predictors.
xs The scaled matrix of the predictors.
scaling The method of scaling used to standardize the predictors.
d The LR biasing parameter(s).
Inter Whether an intercept is included in the model or not.
call The matched call.
terms The terms object used.

Table 5: Components of the "liu" class.

Table 6 lists the functions and methods available in liureg package.

The Liu package implementation in R

The use of liureg is explained through examples using the Hald dataset.

> library(liureg)
> mod <- liu(y ~ X1 + X2 + X3 + X4, data = as.data.frame(Hald),
+ scaling = "centered", d = seq(0, 1, 0.01) )

The output of linear LR from liu() function is assigned to an object mod. The first argument
of the function is formula, which is used to specify the required LR model for the data provided
as second argument. The print method for mod, an object of class "liu", will display the de-scaled
coefficients. The output (de-scaled coefficients) from the above command is only for a few selected
biasing parameter values.

Call:
liu.default(formula = y ~ ., data = as.data.frame(Hald), d = c(0,
0.01, 0.49, 0.5, 0.9, 1))
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Functions Description

Liu coefficient estimation and testing
liuest() The main model fitting function for implementation of LR models in R.
coef() Display de-scaled Liu coefficients.
liu() Generic function and default method that calls liuest() and returns

an object of S3 class "liu" with different set of methods to standard
generics. It has a print method for display of Liu de-scaled coefficients.

summary() Standard LR output (coefficient estimates, scaled coefficient estimates,
standard errors, t-value and p-values); returns an object of class
"summary.liu" containing the relative summary statistics. Has a print
method.

Residuals, fitted values and prediction
predict() Produces predicted value(s) by evaluating liuest() in the frame

newdata.
fitted() Displays Liu fitted values for observed data.
residuals() Displays Liu residuals values.
press() Generic function that computes prediction residuals error sum of

squares (PRESS) for Liu coefficients.

Methods to estimate d
dest() Displays various d (biasing parameter) values from different authors

available in literature and have a print method.

Liu statistics
vcov() Displays associated Var-Cov matrix with matching Liu parameter d

values.
hatl() Generic function that displays hat matrix from LR.
infoliu() Generic function that compute information criteria AIC and BIC.
lstats() Generic function that displays different statistics of LR such as MSE,

squared bias, R2 etc. Has a print method.
Liu plots
plot() Liu coefficient trace plot against biasing parameter d.
plot.biasliu() Bias, variance, and MSE plot as a function of d.
plot.infoliu() Plot of AIC and BIC against d.

Table 6: Functions and methods in liureg package.

Intercept X1 X2 X3 X4
d=0 75.01755 1.41348 0.38190 -0.03582 -0.27032
d=0.01 74.89142 1.41486 0.38318 -0.03445 -0.26905
d=0.49 68.83758 1.48092 0.44475 0.03167 -0.20845
d=0.5 68.71146 1.48229 0.44603 0.03304 -0.20719
d=0.9 63.66659 1.53734 0.49734 0.08814 -0.15669
d=1 62.40537 1.55110 0.51017 0.10191 -0.14406

To obtain Liu scaled coefficients mod$coef can be used:

> mod$coef

d=0 d=0.01 d=0.49 d=0.5 d=0.9 d=1
X1 1.41348287 1.41485907 1.48091656 1.48229276 1.53734067 1.5511026
X2 0.38189878 0.38318147 0.44475049 0.44603318 0.49734070 0.5101676
X3 -0.03582438 -0.03444704 0.03166517 0.03304251 0.08813603 0.1019094
X4 -0.27031652 -0.26905396 -0.20845133 -0.20718877 -0.15668658 -0.1440610

Objects of class "liu" contain components such as lfit, d, and coef etc. For a fitted Liu model,
the generic method summary is used to investigate the Liu coefficients. The parameter estimates of
the Liu model are summarized using a matrix of 5 columns, namely estimates, estimates(Sc), StdErr
(Sc), t-values (Sc), and P(>|t|). The following results are shown only for d=-1.47218 which produces a
minimum MSE as compared to others values specified in the argument.

> summary(mod)
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Call:
liu.default(formula = y ~ ., data = as.data.frame(Hald), d = -1.47218)

Coefficients for Liu parameter d= -1.47218
Estimate Estimate (Sc) StdErr (Sc) t-val (Sc) Pr(>|t|)

Intercept 93.5849 93.5849 15.6226 5.990 2.09e-09 ***
X1 1.2109 1.2109 0.2711 4.466 7.97e-06 ***
X2 0.1931 0.1931 0.2595 0.744 0.4568
X3 -0.2386 -0.2386 0.2671 -0.893 0.3717
X4 -0.4562 -0.4562 0.2507 -1.820 0.0688 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Liu Summary
R2 adj-R2 F AIC BIC MSE

d=-1.47218 0.9819 0.8372 127.8 23.95 59.18 0.7047

The summary() function also displays Liu related R2, adjusted-R2, F-test, AIC, BIC, and minimum
MSE at certain d given in liu().

The dest() function, which works with Liu fitted models, computes different biasing parameters
developed by researchers, see Table 3. The list of different d values (5 in number) may help in deciding
the amount of bias needs to be introduced in LR. The biasing parameters by Liu (1993, 2011) include
dCL, dmm, dopt, dILE, and GCV for the appropriate selection of d.

> dest(mod)

Liu biasing parameter d
d values

dmm -5.91524
dcl -5.66240
dopt -1.47218
dILE -0.83461
min GCV at 1.00000

The lstats() function can be used to compute different statistics for a given Liu biasing parameter
specified in a call to liu. The Liu statistics are MSE, squared bias, F-statistics, Liu variance, degrees
of freedom (df) by Hastie and Tibshirani (1990), and R2 etc. Following are results using lstats() for
some d = −1.47218,−0.06, 0, 0.1, 0.5, 1.

> lstats(mod)

Liu Regression Statistics:

EDF Sigma2 CL VAR Bias^2 MSE F R2 adj-R2
d=-1.47218 9.4135 5.2173 5.0880 0.2750 0.4297 0.7047 127.8388 0.9819 0.8372
d=-0.06 9.0760 5.2989 5.5077 1.0195 0.0790 1.0985 125.8693 0.9823 0.8406
d=0 9.0677 5.3010 5.5315 1.0625 0.0703 1.1328 125.8194 0.9823 0.8407
d=0.1 9.0548 5.3043 5.5722 1.1362 0.0569 1.1931 125.7427 0.9823 0.8408
d=0.5 9.0169 5.3139 5.7488 1.4561 0.0176 1.4737 125.5157 0.9824 0.8412
d=1 9.0000 5.3182 6.0000 1.9119 0.0000 1.9119 125.4141 0.9824 0.8414

minimum MSE occurred at d= -1.47218

The lstats() also displays the value of d which produces minimum MSE among all provided
values of d as argument in liu() function.

The residuals, fitted values from the LR, and predicted values of the response variable y can
be computed using the fuctions residuals(), fitted(), and predict(), respectively. To obtain the
Var-Cov and Hat matrices, the functions vcov() and hatl() can be used. The df are computed by
following Hastie and Tibshirani (1990). The results for Var-Cov and diagonal elements of the hat
matrix from vcov() and hatl() functions are given below for d = −1.47218.

> vcov(liu(y ~ ., as.data.frame(Hald), d = -1.47218))

$`d=-1.47218`
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X1 X2 X3 X4
X1 0.07351333 0.04805778 0.06567391 0.04874902
X2 0.04805778 0.06732869 0.05192626 0.06412284
X3 0.06567391 0.05192626 0.07134433 0.05149914
X4 0.04874902 0.06412284 0.05149914 0.06284562

> diag(hatl(liu(y ~ ., as.data.frame(Hald), d = -1.47218)))
1 2 3 4 5 6 7

0.43522319 0.22023015 0.21341231 0.18535953 0.27191765 0.04296839 0.28798591
8 9 10 11 12 13

0.30622895 0.15028900 0.59103231 0.30392765 0.14087610 0.18778716

Following are possible uses of some functions to compute different Liu related statistics. For a
detailed description of these functions/commands, see the liureg package documentation.

> hatl(mod)
> halt(mod)[[1]]
> diag(hatl(mod)[[1]])
> vcov(mod)
> residual(mod)
> fitted(mod)
> predict(mod)
> lstats(mod)$lEDF
> lstats(mod)$var

For given values of X, such as for first five rows of X matrix, the predicted values for some
d = −1.47218,−0.06, 0, 0.1, 0.5, 1 will be computed by predict():

> predict(mod, newdata = as.data.frame(Hald[1 : 5, -1]))

d=-1.47218 d=-0.06 d=0 d=0.1 d=0.5 d=1
1 78.27798 78.40208 78.40736 78.41615 78.45130 78.49524
2 73.09404 72.91968 72.91227 72.89992 72.85053 72.78880
3 106.68373 106.27656 106.25926 106.23043 106.11510 105.97094
4 89.54007 89.41842 89.41325 89.40463 89.37017 89.32710
5 95.61470 95.63443 95.63527 95.63667 95.64226 95.64924

The model selection criteria’s of AIC and BIC can be computed using infoliu() function for each
value of d used in argument of liu(). For some d = −1.47218,−0.06, 0.5, 1, the AIC and BIC values
are:

> infoliu(liu(y ~ ., as.data.frame(Hald), d = c(-1.47218, -0.06, 0.5, 1)))

AIC BIC
d=-1.47218 23.95378 59.18349
d=-0.06 24.43818 59.88178
d=0.5 24.69007 60.21849
d=1 24.94429 60.54843

The effect of multicollinearity on the coefficient estimates can be identified by using different
graphical displays such as the Liu trace (see Figure 1); the plotting of bias, variance, and MSE against
d (see Figure 2); and plotting the information criteria against d f (Figure 3). These graphical displays
are (subjective) methods for selection of the optimal biasing parameter d.

> mod <- liu(y ~ ., as.data.frame(Hald), d = seq(-5, 5, .001) )
> plot(mod)
> plot.biasliu(mod)
> plot.infoliu(mod)

Summary

The liureg package provides the most complete suite of tools for LR available in R, comparable to
those available as listed in Table 1. We have implemented functions to compute the Liu coefficients,
the testing of these coefficients, the computation of different Liu related statistics and the computation
of the biasing parameter for different existing methods by various authors (see Table 3). We have
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Figure 1: Liu trace: Liu coefficient against biasing parameter d.

Figure 2: Bias, variance trade-off.

Figure 3: Information Criteria against d f .
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greatly increased the Liu related statistics and different graphical methods for the selection of the
biasing parameter d through the liureg package in R.

Up to now, a complete suite of tools for LR was not available for an open source or paid version
of statistical software packages, resulting in reduced awareness and use of developed Liu related
statistics. The package liureg provides a complete open source suite of tools for the computation of
Liu coefficients estimation, testing, and computation of different statistics. We believe the availability
of these tools will lead to an increased utilization and better Liu related practices.
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A Tidy Data Model for Natural Language
Processing using cleanNLP
by Taylor Arnold

Abstract Recent advances in natural language processing have produced libraries that extract low-
level features from a collection of raw texts. These features, known as annotations, are usually stored
internally in hierarchical, tree-based data structures. This paper proposes a data model to represent
annotations as a collection of normalized relational data tables optimized for exploratory data analysis
and predictive modeling. The R package cleanNLP, which calls one of two state of the art NLP
libraries (CoreNLP or spaCy), is presented as an implementation of this data model. It takes raw text
as an input and returns a list of normalized tables. Specific annotations provided include tokenization,
part of speech tagging, named entity recognition, sentiment analysis, dependency parsing, coreference
resolution, and word embeddings. The package currently supports input text in English, German,
French, and Spanish.

Introduction

There has been an ongoing trend towards converting raw data into a collection of normalized tables
prior to conducting further analyses. This paradigm, recently popularized by Hadley Wickham under
the term “tidy data” (Wickham, 2014), draws on concepts from database and visualization theory to
provide a welcomed theoretical basis for data analysis. There are also many pragmatic benefits to
putting data into a set of normalized tables prior to beginning an exploratory analysis or building
inferential models. When working with normalized data most modeling, data manipulation, and
visualization tasks can be described using a small collection of functions. This makes code more
readable, less-error prone, and allows for better code reuse. As many of these simple functions reduce
to basic database operations, this style of coding can simplify the task of integrating statistical models
into a production codebase. Also, normalized tables can be stored unambiguously as delimited plain
text flat files, allowing for interoperability between programming languages and users.

As both a cause and result of the popularity of this approach, a number of software packages
have been developed to help construct and manipulate collections of normalized data tables. In R,
well-known examples include dplyr (Wickham and Francois, 2016), ggplot2 (Wickham, 2009), magrittr
(Bache and Wickham, 2014), broom (Robinson, 2017), janitor (Firke, 2016), and tidyr (Wickham, 2017).
On the Python side, much of this functionality is included within the pandas (McKinney et al., 2010)
and sklearn (Pedregosa et al., 2011) modules.

While cleaning messy data is often a time-consuming task, deciding on a specific normalized
schema for representing a set of inputs is in most cases relatively straightforward. Outside of po-
tentially removing outliers, missing data, and bad inputs, the process of tidying data is generally a
lossless procedure. At a high-level, data tidying is often simply a reorganization of the raw inputs.
However, if we are working with unstructured data such as collections of text, images, or sound,
converting into a normalized tabular format is significantly more involved. The process of tidying in
these cases becomes synonymous with featurization, whereby structured outputs are algorithmically
extracted from a raw input. For example, from an audio music file we might extract features such as
the overall length, beats per minute, and quantiles of the music’s loudness.

The featurization of raw text, known in natural language processing as text annotation, includes
tasks such as tokenization (splitting text into words), part of speech tagging, and named entity
recognition. Recent advancements in neural networks and heavy investment from both industry and
academia have produced fast and highly accurate annotation libraries such as Stanford’s CoreNLP
(Manning et al., 2014), spaCy (Honnibal and Johnson, 2015), Apache’s OpenNLP (Baldridge, 2005),
and Google’s SyntaxNet (Petrov, 2016). All of these, however, internally represent annotations using
collections of complex, hierarchical, object-oriented classes. While these structures are ideal for
annotation, they are not optimal for exploratory and predictive modeling.

In this paper, we present a method for uniting the cutting edge advancements in natural language
processing with the popular normalized data paradigm. Specifically, we give a data schema repre-
senting the output of an NLP annotation pipeline as a collection of normalized tables. Alongside
this specification, we present the R package cleanNLP that implements this specification over three
distinct back ends. The package contains:

• custom Java code, called by rJava (Urbanek, 2016), that annotates raw text using the CoreNLP
library;
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• a custom Python script, called by reticulate (Allaire et al., 2017), that annotates raw text using
the spaCy library;

• a simple, system dependency free, annotation engine using the package tokenizers (Mullen,
2016).

The package cleanNLP also includes tools for converting from the normalized data model into (sparse)
data matrices appropriate for exploratory and predictive modeling. Together, these contributions
simplify the process of doing exploratory data analysis over a corpus of text.

There are several existing R packages that have some similar or complementary features to those in
cleanNLP. The R package tidytext (Silge and Robinson, 2016) also offers the ability to convert raw rext
into a data frame. It is quite similar to the functionality of cleanNLP when using the tokenizers back
end, with the addition of basic sentiment analysis and part of speech tagging for English through the
use of word lists. With all annotations occurring at the token level, results are given as a single table
rather than a normalized schema between many tables as in cleanNLP, which simplifies its application
for new users. As such, tidytext works well for applications that do not need more advanced annotators
such as named entities, dependencies, and coreferences. Given the overlap in general approaches,
it should be relatively straightforward for users to transition from tidytext to cleanNLP when they
find the need for these annotation tasks. There are two existing R packages that also call functions
in the CoreNLP library. The package StanfordCoreNLP (Hornik, 2016c), available only through the
datacube website at Vienna University, integrates into the NLP framework. A similar, standalone
approach is offered by coreNLP (Arnold and Tilton, 2016). Both of these packages run the annotation
pipeline over a corpus of text, call the java class edu.stanford.nlp.pipeline.XMLOutputter, and then
parse the output using the XML package. This approach is not ideal as parsing the output XML
file is computationally time-consuming. It is also error prone because there is no published format
specifying the output of the XML.1 There is also the package spacyr (Benoit and Matsuo, 2017), which
was published after cleanNLP, that offers another way of calling the spaCy library from R. Internally,
spacyr works similarly to the spaCy back end in cleanNLP by calling the Python library and extracting
information into R data types. However, spacyr returns results as a single denormalized data frame
and (perhaps in part as a result of having no easy way of storing them in the one-table output) does
not support the word embeddings feature of the spaCy library.

The package has been designed to integrate into workflows that utilize the many other packages for
text processing available in R, such as those found in the CRAN Taskview NaturalLanguageProcessing.
For example, users may use the framework provided by tm (Feinerer et al., 2008) to manage external
corpora or the classes within NLP (Hornik, 2016a) to run alternative parsers that can be converted
into a tidy framework by way of the from_CoNLL function. The Apache OpenNLP annotation pipeline,
available via openNLP (Hornik, 2016b), for instance, provides several languages not yet supported by
spaCy or the CoreNLP pipeline. Packages that focus on the analysis and modeling of text data can
usually be used directly with the output from cleanNLP; these include lda (Chang, 2015), lsa (Wild,
2015), and topicmodels (Grün and Hornik, 2011). Similarly, general-purpose database back-ends such
as sqliter (Freitas, 2014) can be used to store the tidy data tables; predictive modeling functions may
be used to do predictive analytics over generated term-frequency matrices.

In the following section we illustrate the usage of the R package across all three back ends. Next,
we give a detailed description and justification of our data model. Along the way, we give a high-level
introduction to the ideas behind the underlying NLP annotators. We finish by illustrating a longer
example of using the package to study a corpus of historical speeches made by Presidents of the
United States.

Basic usage of cleanNLP

Before describing the data model for text annotations, it is useful to understand the basic workflow
provided by the R package cleanNLP. We start by writing the opening lines of Douglas Adams’ Life,
the Universe and Everything to a temporary file.

> txt <- c("The regular early morning yell of horror was the sound of Authur",
+ "Dent waking up and suddenly remembering where he was. It wasn't",
+ "just that the cave was cold, it wasn't just that it was damp and",
+ "smelly. It was the fact that the cave was in the middle of",

1This author, who is also the maintainer of coreNLP, has witnessed this first-hand by way of the persistent
bug reports centering around the formatting of the XML output in strange edge cases or over new versions of the
CoreNLP library. The coreNLP will still be maintained for users looking explicitly to access methods from the
Stanford Library, whereas cleanNLP is being developed to provide a simpler interface that is consistent across
various back ends.
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+ "Islington and there wasn't a bus due for two million years.")
> writeLines(txt, tf <- tempfile())

The package cleanNLP can be installed directly from CRAN, with binaries available for all major
operating systems. In order to annotate raw text, an NLP back end must first be initalized. Once
this is done, annotation is done by calling the function annotate with a vector of path(s) to the input
documents. We start with an example using the tokenizers back end.

> library(cleanNLP)
> init_tokenizers()
> anno <- run_annotators(tf)

The result of the annotation is a named list of six data frames and one matrix. We can see the elements
of the object by printing out their names.

> names(anno)
[1] "coreference" "dependency" "document" "entity" "sentence"
[6] "token" "vector"

The individual tables can be referenced with the generic R accessor functions (such as `[[`), however
the preferred method is to call the relevant cleanNLP functions of the form get_TABLENAME(). For
example, the tokens table for this example can be accessed with the get_token function.

> get_token(anno)
# A tibble: 61 x 8

id sid tid word lemma upos pos cid
<int> <int> <int> <chr> <chr> <chr> <chr> <int>

1 1 0 1 The <NA> <NA> <NA> NA
2 1 0 2 regular <NA> <NA> <NA> NA
3 1 0 3 early <NA> <NA> <NA> NA
4 1 0 4 morning <NA> <NA> <NA> NA
5 1 0 5 yell <NA> <NA> <NA> NA
6 1 0 6 of <NA> <NA> <NA> NA
7 1 0 7 horror <NA> <NA> <NA> NA
8 1 0 8 was <NA> <NA> <NA> NA
9 1 0 9 the <NA> <NA> <NA> NA
10 1 0 10 sound <NA> <NA> <NA> NA
# ... with 51 more rows

The get functions are preferable because they provide useful options for modifying the output before
returning it. Notice that the annotation process here has split out each word in the input into its own
row. There are also several columns of ids and columns filled with missing values. The specific schema
of the tables will be the focus of discussion in the following section.

The tokenizers back end requires no external dependencies, however it does not support any of
the advanced annotation tasks that illustrate the utility of the cleanNLP package. This explains why
most of the columns in the example are missing. It is included primarily for testing and demonstration
purposes in cases where the other back ends cannot be installed. The spaCy back end uses the Python
library by the same name for the purpose of extracting text annotations. Users must install Python
and the library externally (detailed instructions are provided in the package documentation). Once
installed, the only modification required by the R code is to adjust which init_ function is being
called.

> init_spaCy()
> anno <- run_annotators(tf)
> get_token(anno)
# A tibble: 68 x 8

id sid tid word lemma upos pos cid
<int> <int> <int> <chr> <chr> <chr> <chr> <int>

1 1 1 1 The the DET DT 0
2 1 1 2 regular regular ADJ JJ 4
3 1 1 3 early early ADJ JJ 12
4 1 1 4 morning morning NOUN NN 18
5 1 1 5 yell yell NOUN NN 26
6 1 1 6 of of ADP IN 31
7 1 1 7 horror horror NOUN NN 34
8 1 1 8 was be VERB VBD 41
9 1 1 9 the the DET DT 45
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table name record primary key foreign keys
document document id ·
token word / punctuation id, sid, tid cid
dependencies token pairs id, sid, tid, tid_target ·
entity set of tokens id, sid, tid, tid_end ·
coreference mentions id, rid, mid sid, tid, tid_end, tid_head
sentence sentence id, sid ·
vector word embedding id, sid, tid ·

Table 1: Tables in the data model and their (composite) primary and foreign keys. All keys are given
by non-negative integers. Namely, id indexes the documents, sid the sentences within a document,
and tid the tokens within a sentence. The cid gives character offsets into the raw input text. Keys rid
and mid are specifically constructed by the coreference annotator.

10 1 1 10 sound sound NOUN NN 49
# ... with 58 more rows

The output is in the exact some format but now all of the token columns are filled in with useful
information such as the lemmatized form of each word and part of speech codes. Similar details are
also filled into the other fields.

The third and final back end currently available uses the Java library coreNLP. Users must install
Java version 1.8 or higher and link it to R using the rJava. The coreNLP models, which are over 1 GB,
can then be either manually downloaded or grabbed using the helper function download_coreNLP().
Once installed, the back end works just as with the other back ends.

> init_coreNLP()
> anno <- run_annotators(tf)
> get_token(anno)
# A tibble: 68 x 8

id sid tid word lemma upos pos cid
<int> <int> <int> <chr> <chr> <chr> <chr> <int>

1 1 1 1 The the DET DT 0
2 1 1 2 regular regular ADJ JJ 4
3 1 1 3 early early ADJ JJ 12
4 1 1 4 morning morning NOUN NN 18
5 1 1 5 yell yell VERB VB 26
6 1 1 6 of of ADP IN 31
7 1 1 7 horror horror NOUN NN 34
8 1 1 8 was be VERB VBD 41
9 1 1 9 the the DET DT 45
10 1 1 10 sound sound NOUN NN 49
# ... with 58 more rows

The token output here is similar, but not exactly the same, as that produced by the spaCy annotation
engine. The only distinction in the first ten rows is whether the word yell is categorized as a noun
(spaCy) or a verb (coreNLP). While yell can be either part of speech, in context the spaCy interpretation
is correct.

As seen in the code-snippets here, the philosophy behind the design of the cleanNLP package is
to make it as easy as possible to get raw text turned into data frames. All of the functions introduced
here have optional parameters that change the way the back ends are run or how the annotations
are returned. This includes which annotators to run and selecting the desired language model to use.
Complete documentation is available within the R help pages.

A data model for the NLP pipeline

An annotation object is simply a named list with each item containing a data frame. These frames
should be thought of as tables living inside of a single database, with keys linking each table to one
another. All tables are in the second normal form of Codd (1990). For the most part they also satisfy
the third normal form, or, equivalently, the formal tidy data model of Wickham (2014). The limited
departures from this more stringent requirement are justified below wherever they exist. In every case
the cause is a transitive dependency that would require a complex range join to reconstruct.

Several standards have previously been proposed for representing textual annotations. These
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get_document()

id integer. Id of the source document.
time date time. The time at which the parser was run on the text.
version character. Version of the NLP library used to parse the text.
language character. Language of the text, in ISO 639-1 format.
uri character. Description of the raw text location.

Table 2: Schema for the document table. The id field serves as a primary key, and other meta data
fields may be appended that give domain-specific information about each document.

include the linguistic Annotation Framework (Ide and Romary, 2001), NLP Interchange Format
(Hellmann et al., 2012), and CoNLL-X (Buchholz and Marsi, 2006). The function from_CoNLL is
included as a helper function in cleanNLP to convert from CoNLL formats into the cleanNLP data
model. All of these, however, are concerned with representing annotations for interoperability between
systems. Our goal is instead to create a data model well-suited to direct analysis, and therefore requires
a new approach.

In this section each table is presented and justifications for its existence and form are given.
Individual tables may be pulled out with access functions of the form get_*. Example tables are pulled
from the dataset obama, which is included with the cleanNLP package. This gives the annotation
object obtained from the text of the annual speeches Barack Obama made to Congress. These annual
addresses, known as The State of the Union, are mandated by the US Constitution and have been given
by every president since George Washington.

Documents

The documents table contains one row per document in the annotation object. What exactly constitutes
a document is up to the user. It might include something as granular as a paragraph or as coarse as
an entire novel. For many applications, particularly stylometry, it may be useful to simultaneously
work with several hierarchical levels: sections, chapters, and an entire body of work. The solution in
these cases is to define a document as the smallest unit of measurement, denoting the higher-level
structures as metadata. For example, when working with a corpus of texts where each book is broken
into chapters, we would make each document an individual chapter. A metadata field would be
assigned to each chapter indicating which book it is a part of.

The primary key for the document table is a document id, stored as an integer index. By design,
there should be no extrinsic meaning placed on this key. Other tables use it to map to one another
and to the document table, but any metadata about the document is contained only in the document
table rather than being forced into the document key. In other words, the temptation to use keys
such as “Obama2016” is avoided because, while these look nice, trying to make use of them to extract
document-level metadata is error prone and ultimately more verbose than making use of a join with
the document table.

The minimal fields required by the document table are given in Table 2. These are all filled in
automatically by the annotation function. Any number of additional corpora-specific metadata, such
as the aforementioned section and chapter designations, may be attached as well by giving it as an
option to the meta parameter of run_annotators. The document table for the example corpus is:

> get_document(obama)
# A tibble: 8 x 5

id time version language uri
<int> <dttm> <chr> <chr> <chr>

1 1 2017-05-21 09:27:55 1.8.2 en 2009.txt
2 2 2017-05-21 09:28:00 1.8.2 en 2010.txt
3 3 2017-05-21 09:28:05 1.8.2 en 2011.txt
4 4 2017-05-21 09:28:10 1.8.2 en 2012.txt
5 5 2017-05-21 09:28:14 1.8.2 en 2013.txt
6 6 2017-05-21 09:28:18 1.8.2 en 2014.txt
7 7 2017-05-21 09:28:22 1.8.2 en 2015.txt
8 8 2017-05-21 09:28:26 1.8.2 en 2016.txt

It may seem that common fields such as year and author should be added to the formal specification
but the perceived advantage is minimal. It would still be necessary for users to manually add the
content of these fields at some point as any other metadata is not unambiguously extractable from the
raw text.
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get_token()

id integer. Id of the source document.
sid integer. Sentence id, starting from 0.
tid integer. Token id, with the root of the sentence starting at 0.
word character. Raw word in the input text.
lemma character. Lemmatized form the token.
upos character. Universal part of speech code.
pos character. Language-specific part of speech code; uses the Penn Treebank codes.
cid integer. Character offset at the start of the word in the original document.

Table 3: Schema for the token table. The fields id, sid, and tid serve as a composite key for each token.
A row also exist for the root of each sentence.

Tokens

The token table contains one row for each unique token, usually a word or punctuation mark, in any
document in the corpus. Any annotator that produces an output for each token has its results displayed
here. These include the lemmatizer and the part of the speech tagger (Toutanova and Manning, 2000).
Table 3 shows the required columns contained in the token table. Given the annotators selected during
the pipeline initialization, some of these columns may contain only missing data. A composite key
exists by taking together the document id, sentence id, and token id. There is also a foreign key, cid,
giving the character offset back into the original source document. An example of the table looks like
this:

> get_token(obama, include_root = TRUE)
# A tibble: 65,758 x 8

id sid tid word lemma upos pos cid
<int> <int> <int> <chr> <chr> <chr> <chr> <int>

1 1 1 0 ROOT ROOT <NA> <NA> NA
2 1 1 1 Madam madam PROPN NNP 0
3 1 1 2 Speaker speaker PROPN NNP 6
4 1 1 3 , , PUNCT , 13
5 1 1 4 Mr. mr. PROPN NNP 15
6 1 1 5 Vice vice PROPN NNP 19
7 1 1 6 President president PROPN NNP 24
8 1 1 7 , , PUNCT , 33
9 1 1 8 Members members PROPN NNPS 35
10 1 1 9 of of ADP IN 43
# ... with 65,748 more rows

A phantom token “ROOT” is included at the start of each sentence (it always has tid equal to 0) if
the option include_root is set to TRUE (it is FALSE by default). This is useful so that joins from the
dependency table, which contains references to the sentence root, into the token table have no missing
values.

The field upos contains the universal part of speech code, a language-agnostic classification, for
the token. It could be argued that in order to maintain database normalization one should simply
look up the universal part of speech code by finding the language code in the document table and
joining a table mapping the Penn Treebank codes to the universal codes. This has not been done for
several reasons. First, universal parts of speech are very useful for exploratory data analysis as they
contain tags much more familiar to non-specialists such as “NOUN” (noun) and “CONJ” (conjunction).
Asking users to apply a three table join just to access them seems overly cumbersome. Secondly, it is
possible for users to use other parsers or annotation engines. These may not include granular part of
speech codes and it would be difficult to figure out how to represent these if there were not a dedicated
universal part of speech field.

Dependencies

Dependencies give the grammatical relationship between pairs of tokens within a sentence (Green et al.,
2011; Rafferty and Manning, 2008). As they are at the level of token pairs, they must be represented
as a new table. All included fields are described in Table 4. Only one dependency should exist for
any pair of tokens; the document id, sentence id, and source and target token ids together serve as
a composite key. As dependencies exist only within a sentence, the sentence id does not need to be
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get_dependency()

id integer. Id of the source document.
sid integer. Sentence id of the source token.
tid integer. Id of the source token.
sid_target integer. Sentence id of the target token.
tid_target integer. Id of the target token.
relation character. Language-agnostic universal dependency type.
relation_full character. Language specific universal dependency type.

word character. The source word in the raw text.
lemma character. Lemmatized form of the source word.
word_target character. The target word in the raw text.
lemma_target character. Lemmatized form of the target word.

Table 4: Schema for the dependency table. The final four variables are only provided when the option
get_token is set to TRUE. The first five fields together create a composite key for the table.

defined separately for the source and target. Dependencies take significantly longer to calculate than
the lemmatization and part of speech tagging tasks.

The get_dependency function has an option (set to FALSE by default) to auto join the dependency
to the target and source words and lemmas from the token table. This is a common task and involves
non-trivial calls to the left_join function making it worthwhile to include as an option. For example,
the following code replicates the behavior of get_dependency when set to return words and lemmas:

dep <- get_dependency(obama) %>%
left_join(select(get_token(obama, include_root = TRUE),

id, sid, tid, word, lemma),
by = c("id", "sid", "tid")) %>%

left_join(select(get_token(obama, include_root = TRUE),
id, sid, tid_target = tid,
word_target = word, lemma_target = lemma),

by = c("id", "sid", "tid_target"))

The output, equivalently using a call to get_dependency, is given by:

> get_dependency(obama, get_token = TRUE)
# A tibble: 62,781 x 10

id sid tid tid_target relation relation_full word lemma
<int> <int> <int> <int> <chr> <chr> <chr> <chr>

1 1 1 2 1 compound <NA> Speaker speaker
2 1 1 0 2 ROOT <NA> ROOT ROOT
3 1 1 2 3 punct <NA> Speaker speaker
4 1 1 6 4 compound <NA> President president
5 1 1 6 5 compound <NA> President president
6 1 1 2 6 appos <NA> Speaker speaker
7 1 1 6 7 punct <NA> President president
8 1 1 6 8 appos <NA> President president
9 1 1 8 9 prep <NA> Members members
10 1 1 9 10 pobj <NA> of of

word_target lemma_target
<chr> <chr>

1 Madam madam
2 Speaker speaker
3 , ,
4 Mr. mr.
5 Vice vice
6 President president
7 , ,
8 Members members
9 of of
10 Congress congress
# ... with 62,771 more rows

The word “ROOT” shows up in the first row, which would have been NA had sentence roots not been
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get_entity()

id integer. Id of the source document.
sid integer. Sentence id of the entity mention.
tid integer. Token id at the start of the entity mention.
tid_end integer. Token id at the end of the entity mention.
entity_type character. Type of entity.
entity character. Raw words of the named entity in the text.
entity_normalized character. Normalized version of the entity.

Table 5: Schema for the entity table. The first three fields serve as a composite key.

explicitly included in the token table.

Our parser produces universal dependencies (De Marneffe et al., 2014), which have a language-
agnostic set of relationship types with language-specific subsets pertaining to specific grammatical
relationships with a particular language. For the same reasons that both the part of speech codes and
universal part of speech codes are included, each of these relationship types have been added to the
dependency table.

Named entities

Named entity recognition is the task of finding entities that can be defined by proper names, catego-
rizing them, and standardizing their formats (Finkel et al., 2005). The XML output of the Stanford
CoreNLP pipeline places named entity information directly into their version of the token table. Doing
this repeats information over every token in an entity and gives no canonical way of extracting the
entirety of a single entity mention. We instead have a separate entity table, as is demanded by the
normalized database structure, and record each entity mention in its own row. The full set of fields
are given in Table 5, with the combination of document id, sentence id, and token id serving as a
composite key.

An example of the named entity table is given by:

> get_entity(obama)
# A tibble: 3,035 x 6

id sid tid tid_end entity_type entity
<int> <int> <int> <int> <chr> <chr>

1 1 1 1 2 PERSON Madam Speaker
2 1 1 8 10 ORG Members of Congress
3 1 1 12 14 ORG the First Lady
4 1 1 16 18 GPE the United States
5 1 1 30 30 TIME tonight
6 1 1 43 44 EVENT Chamber,
7 1 2 6 6 NORP Americans
8 1 4 24 25 DATE every day
9 1 8 23 23 TIME tonight
10 1 8 27 27 NORP American
# ... with 3,025 more rows

The categories available in the field entity_type are dependent on the specific back end used. When
using the coreNLP back end, the entities ‘MONEY’, ‘ORDINAL’ ‘PERCENT’, ‘DATE’ and ‘TIME’ also
have a normalized form. Entities for the spaCy backend offer more granular distinctions, with a full
list contained in the help page for the function get_entity. As with the coreference table, a complete
representation of the entity is given as a character string due to the difficulty in reconstructing this
after the fact from the token table, so the character string has been included as an explicit field.

Coreference

Coreferences link sets of tokens that refer to the same underlying person, object, or idea (Recasens
et al., 2013; Lee et al., 2013, 2011; Raghunathan et al., 2010). One common example is the linking
of a noun in one sentence to a pronoun in the next sentence. The coreference table describes these
relationships but is not strictly a table of coreferences. Instead, each row represents a single mention of
an expression and gives a reference id indicating all of the other mentions that it also coreferences.
Table 6 gives the entire schema of the coreference table. The document, reference, and mention ids
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get_coreference()

id integer. Id of the source document.
rid integer. Relation ID.
mid integer. Mention ID; unique to each coreference within a document.
mention character. The mention as raw words from the text.
mention_type character. One of "LIST", "NOMINAL", "PRONOMINAL", or "PROPER".
number character. One of "PLURAL", "SINGULAR", or "UNKNOWN".
gender character. One of "FEMALE", "MALE", "NEUTRAL", or "UNKNOWN".
animacy character. One of "ANIMATE", "INANIMATE", or "UNKNOWN".
sid integer. Sentence id of the coreference.
tid integer. Token id at the start of the coreference.
tid_end integer. Token id at the start of the coreference.
tid_head integer. Token id of the head of the coreference.

Table 6: Schema for the coreference table. Each row is best thought of as a coreference mention, rather
than the coreference itself.

serve as a composite key for the table. Links back into the token table for the start, end and head of
the mention are given as well; these are pushed to the right of the table as they should be considered
foreign keys within this table.

An example helps to explain exactly what the coreference table represents:

> get_coreference(obama)
# A tibble: 6,982 x 12

id rid mid mention mention_type number gender
<int> <int> <int> <chr> <chr> <chr> <chr>

1 1 2049 7 the United States PROPER SINGULAR NEUTRAL
2 1 2049 77 the United States of America PROPER SINGULAR NEUTRAL
3 1 2049 102 America PROPER SINGULAR NEUTRAL
4 1 2049 315 America PROPER SINGULAR NEUTRAL
5 1 2049 742 America 's PROPER SINGULAR NEUTRAL
6 1 2049 782 America PROPER SINGULAR NEUTRAL
7 1 2049 939 America PROPER SINGULAR NEUTRAL
8 1 2049 991 America PROPER SINGULAR NEUTRAL
9 1 2049 1003 America PROPER SINGULAR NEUTRAL
10 1 2049 1045 America PROPER SINGULAR NEUTRAL

animacy sid tid tid_end tid_head
<chr> <dbl> <int> <int> <int>

1 INANIMATE 1 16 18 18
2 INANIMATE 8 41 45 43
3 INANIMATE 12 6 6 6
4 INANIMATE 40 12 12 12
5 INANIMATE 103 8 9 8
6 INANIMATE 109 8 8 8
7 INANIMATE 132 5 5 5
8 INANIMATE 138 27 27 27
9 INANIMATE 140 41 41 41
10 INANIMATE 147 4 4 4
# ... with 6,972 more rows

Here, these are all mentions of the same underlying entity: The United States of America. There is a
special relationship between the reference id rid and the mention id mid. The coreference annotator
selects a specific mention for each reference that gets treated as the canonical mention for the entire
class. The mention id for this mention becomes the reference id for the class. This relationship
provides a way of identifying the canonical mention within a reference class and a way of treating the
coreference table as pairs of mentions rather than individual mentions joined by a given key.

The text of the mention itself is included within the table. This was done because as the mention
may span several tokens it would otherwise be very difficult to extract this information from the token
table. It is also possible, though not supported in the current CoreNLP pipeline, that a mention could
consist of a set of non-contiguous tokens, making this field impossible to otherwise reconstruct.
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get_sentence()

id integer. Id of the source document.
sid integer. Sentence id.
sentiment integer. Predicted sentiment; 0 (very negative) to 4 (very positive).

Table 7: Schema for the setence table. The document and sentence ids serve as a composite key.

Sentence level annoations

The sentiment tagger provided by the CoreNLP pipeline predicts whether a sentence is very negative
(0), negative (1), neutral (2), positive (3), or very positive (4) (Socher et al., 2013). There is no native
sentiment model currently supported by spaCy. The sentiment output is placed in a separate table
because it returns information exclusively at the sentence level, unlike any of the other parsers. The
schema, described in Table 7, has the document and sentence ids serving as composite keys, with the
only other field being an integer sentiment code. An example of the output can be seen in:

> get_sentence(obama)
# A tibble: 2,988 x 3

id sid sentiment
<int> <dbl> <int>

1 1 1 1
2 1 2 3
3 1 3 1
4 1 4 1
5 1 5 2
6 1 6 1
7 1 7 3
8 1 8 1
9 1 9 1
10 1 10 1
# ... with 2,978 more rows

The underlying sentiment model is a neural network. While at the moment few annotators exist at the
sentence level, there is currently active research in modeling features that would eventually fit well
into this table such as indicators of mood (Gaikwad and Joshi, 2016), levels of sarcasm (Schifanella
et al., 2016) or a characterization of the sentence’s “style” (Kabbara and Cheung, 2016).

Word vectors

Our final table in the data model stores the relatively new concept of a word vector. Also known
as word embeddings, these vectors are deterministic maps from the set of all available words into a
high-dimensional, real valued vector space. Words with similar meanings or themes will tend to be
clustered together in this high-dimensional space. For example, we would expect apple and pear to
be very close to one another, with vegetables such as carrots, broccoli, and asparagus only slightly
farther away. The embeddings can often be used as input features when building models on top of
textual data. For a more detailed description of these embeddings, see the papers on either of the
most well-known examples: GloVe (Pennington et al., 2014) and word2vec (Mikolov et al., 2013). Only
the spaCy back end to cleanNLP currently supports word vectors; these are turned off by default
because they take a significantly large amount of space to store. The embedding model uses the
fasttext embeddings (Bojanowski et al., 2016), a modification of the GloVe embeddings, which map
words into a 300-dimensional space. To compute the embeddings, set the vector_flag parameter of
init_spaCy to TRUE prior to running the annotation.

Word vectors are stored in a separate table from the tokens table out of convenience rather than as
a necessity of preserving the data model’s normalized schema. Due to its size and the fact that the
individual components of the word embedding have no intrinsic meaning, this table is stored as a
matrix. We can see that there is exactly one row in the word embeddings for every non-ROOT token
in the token table (note that the word embeddings for the obama dataset are not included with the
package as they are too large to be uploaded to CRAN).

> dim(get_token(obama))
[1] 62781 8
> dim(get_vector(obama))
[1] 62781 303
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The first three columns hold the keys id, sid, and tid, respectively. If no embedding is computed, the
function get_vector returns an empty matrix.

Using cleanNLP to study State of the Union addresses

The President of the United States is constitutionally obligated to provide a report known as the State
of the Union. The report summarizes the current challenges facing the country and the president’s
upcoming legislative agenda. While historically the State of the Union was often a written document,
in recent decades it has always taken the form of an oral address to a joint session of the United States
Congress. In this final section the utility of the package is illustrated by showing how it can be used
to study a corpus consisting of every such address made by a United States president through 2016
(Peters, 2016). It highlights some of the major benefits of the tidy data model as it applies to the study
of textual data, though by no means attempts to give an exhaustive coverage of all the available tables
and approaches. The examples make heavy use of the table verbs provided by dplyr, the piping
notation of magrittr and ggplot2 graphics. These are used because they best illustrate the advantages
of the tidy data model that has been built in cleanNLP for representing corpus annotations. Relevant
functions are prepended with cleanNLP:: in the following analysis in order to be clear which functions
are supplied by the cleanNLP package.

Loading and parsing the data

The full text of all the State of the Union addresses through 2016 are available in the R package sotu
(Arnold, 2017), available on CRAN. The package also contains meta-data concerning each speech that
we will add to the document table while annotating the corpus. The code to run this annotation is
given by:

> library(sotu)
> library(cleanNLP)
>
> data(sotu_text)
> data(sotu_meta)
> init_spaCy()
> sotu <- cleanNLP::run_annotators(sotu_text, as_strings = TRUE,
+ meta = sotu_meta)

The annotation object, which we will use in the example in the following analysis, is stored in the
object sotu.

Exploratory analysis

Simple summary statistics are easily computed off of the token table. To see the distribution of sentence
length, the token table is grouped by the document and sentence id and the number of rows within
each group are computed. The percentiles of these counts give a quick summary of the distribution.

> library(ggplot2)
> library(dplyr)
> cleanNLP::get_token(sotu) %>%
+ count(id, sid) %$%
+ quantile(n, seq(0,1,0.1))
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
1 11 16 19 23 27 31 37 44 58 681

The median sentence has 28 tokens, whereas at least one has over 600 (this is due to a bulleted list in
one of the written addresses being treated as a single sentence) To see the most frequently used nouns
in the dataset, the token table is filtered on the universal part of speech field, grouped by lemma, and
the number of rows in each group are once again calculated. Sorting the output and selecting the top
42 nouns, yields a high level summary of the topics of interest within this corpus.

> cleanNLP::get_token(sotu) %>%
+ filter(upos == "NOUN") %>%
+ count(lemma) %>%
+ top_n(n = 42, n) %>%
+ arrange(desc(n)) %>%
+ use_series(lemma)
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Figure 1: Length of each State of the Union address, in total number of tokens. Color shows whether
the address was given as a speech or delivered as a written document.

[1] "year" "country" "people" "government"
[5] "law" "time" "nation" "who"
[9] "power" "interest" "world" "war"
[13] "citizen" "service" "duty" "part"
[17] "system" "peace" "right" "man"
[21] "program" "policy" "work" "act"
[25] "state" "condition" "subject" "legislation"
[29] "force" "effort" "treaty" "purpose"
[33] "what" "land" "business" "action"
[37] "measure" "tax" "way" "question"
[41] "relation" "consideration"

The result is generally as would be expected from a corpus of government speeches, with references
to proper nouns representing various organizations within the government and non-proper nouns
indicating general topics of interest such as “tax”, “law”, and “peace”.

The length in tokens of each address is calculated similarly by grouping and summarizing at the
document id level. The results can be joined with the document table to get the year of the speech and
then piped in a ggplot2 command to illustrate how the length of the State of the Union has changed
over time.

> cleanNLP::get_token(sotu) %>%
+ count(id) %>%
+ left_join(cleanNLP::get_document(sotu)) %>%
+ ggplot(aes(year, n)) +
+ geom_line(color = grey(0.8)) +
+ geom_point(aes(color = sotu_type)) +
+ geom_smooth()

Here, color is used to represent whether the address was given as an oral address or a written
document. The output in Figure 1 shows that their are certainly time trends to the address length,
with the form of the address (written versus spoken) also having a large effect on document length.

Finding the most used entities from the entity table over the time period of the corpus yields an
alternative way to see the underlying topics. A slightly modified version of the code snippet used
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to find the top nouns in the dataset can be used to find the top entities. The get_token function is
replaced by get_entity and the table is filtered on entity_type rather than the universal part of
speech code.

> cleanNLP::get_entity(sotu) %>%
+ filter(entity_type == "GPE") %>%
+ count(entity) %>%
+ top_n(n = 26, n) %>%
+ arrange(desc(n)) %>%
+ use_series(entity)
[1] "the United States" "America"
[3] "States" "Mexico"
[5] "Great Britain" "Spain"
[7] "Washington" "China"
[9] "Executive" "France"
[11] "Cuba" "Japan"
[13] "Texas" "Russia"
[15] "The United States" "Germany"
[17] "United States" "California"
[19] "Nicaragua" "the Soviet Union"
[21] "Mississippi" "Iraq"
[23] "Alaska" "U.S."
[25] "Philippines" "Panama"
[27] "the District of Columbia"

The ability to redo analyses from a slightly different perspective is a direct consequence of the tidy
data model supplied by cleanNLP. The top locations include some obvious and some less obvious
instances. Those sovereign nations included such as Great Britain, Mexico, Germany, and Japan seem
as expected given either the United State’s close ties or periods of war with them. The top states
include the most populous regions (New York, California, and Texas) but also smaller states (Kansas,
Oregon, Mississippi), the latter being more surprising.

One of the most straightforward way of extracting a high-level summary of the content of a speech
is to extract all direct object object dependencies where the target noun is not a very common word.
In order to do this for a particular speech, the dependency table is joined to the document table, a
particular document is selected, and relationships of type “dobj” (direct object) are filtered out. The
result is then joined to the data set word_frequency, which is included with cleanNLP, and pairs with
a target occurring less than 0.5% of the time are selected to give the final result. Here is an example of
this using the first address made by George W. Bush in 2001:

> cleanNLP::get_dependency(sotu, get_token = TRUE) %>%
+ left_join(get_document(sotu)) %>%
+ filter(year == 2001, relation == "dobj") %>%
+ select(id = id, start = word, word = lemma_target) %>%
+ left_join(word_frequency) %>%
+ filter(frequency < 0.001) %>%
+ select(id, start, word) %$%
+ sprintf("%s => %s", start, word)
Joining, by = "id"
Joining, by = "word"
[1] "take => oath" "using => statistic"
[3] "increasing => layoff" "protects => trillion"
[5] "makes => welcoming" "accelerating => cleanup"
[7] "fight => homelessness" "helping => neighbor"
[9] "allowing => taxpayer" "provide => mentor"
[11] "fight => illiteracy" "promotes => compassion"
[13] "asked => ashcroft" "end => profiling"
[15] "pay => trillion" "throw => dart"
[17] "restores => fairness" "promoting => internationalism"
[19] "makes => downpayment" "discard => relic"
[21] "confronting => shortage" "directed => cheney"
[23] "sound => footing" "divided => conscience"
[25] "done => servant"

Most of these phrases correspond with the “compassionate conservatism" that George W. Bush ran
under in the preceding 2000 election. Applying the same analysis to the 2002 State of the Union, which
came under the shadow of the September 11th terrorist attacks, shows a drastic shift in focus.
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Figure 2: State of the Union Speeches, highlighting each President’s first address, plotted using the
first two principal components of the term frequency matrix of non-proper nouns.

> cleanNLP::get_dependency(sotu, get_token = TRUE) %>%
+ left_join(get_document(sotu)) %>%
+ filter(year == 2002, relation == "dobj") %>%
+ select(id = id, start = word, word = lemma_target) %>%
+ left_join(word_frequency) %>%
+ filter(frequency < 0.0005) %>%
+ select(id, start, word) %$%
+ sprintf("%s => %s", start, word)
Joining, by = "id"
Joining, by = "word"
[1] "urged => follower" "called => troop"
[3] "brought => sorrow" "owe => micheal"
[5] "ticking => timebomb" "have => troop"
[7] "hold => hostage" "eliminate => parasite"
[9] "flaunt => hostility" "develop => anthrax"
[11] "put => troop" "increased => vigilance"
[13] "fight => anthrax" "thank => attendant"
[15] "defeat => recession" "want => paycheck"
[17] "set => posturing" "enact => safeguard"
[19] "embracing => ethic" "owns => aspiration"
[21] "containing => resentment" "erasing => rivalry"
[23] "embrace => tyranny"

Here the topics have almost entirely shifted to counter-terrorism and national security efforts.

Models

The get_tfidf function provided by cleanNLP converts a token table into a sparse matrix representing
the term-frequency inverse document frequency matrix (or any intermediate part of that calculation).
This is particularly useful when building models from a textual corpus. The tidy_pca, also included
with the package, takes a matrix and returns a data frame containing the desired number of principal
components. Dimension reduction involves piping the token table for a corpus into the get_tfidif
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Figure 3: Distribution of topic model posterior probabilities over time on the State of the Union corpus.
The top five words associated with each topic are displayed, with topics sorted by the median year of
all documents placed into the respective topic using the maximum posterior probabilities.

function and passing the results to tidy_pca.

> pca <- cleanNLP::get_token(sotu) %>%
+ filter(pos %in% c("NN", "NNS")) %>%
+ cleanNLP::get_tfidf(min_df = 0.05, max_df = 0.95,
+ type = "tfidf", tf_weight = "dnorm") %$%
+ cleanNLP::tidy_pca(tfidf, get_document(sotu))

In this example only non-proper nouns have been included in order to minimize the stylistic attributes
of the speeches in order to focus more on their content. A scatter plot of the speeches using these
components is shown in Figure 2. There is a definitive temporal pattern to the documents, with the
20th century addresses forming a distinct cluster on the right side of the plot.
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Figure 4: Boxplot of predicted probabilities, at the sentence level, for all 16 State of the Union addresses
by Presidents George W. Bush and Barack Obama. The probability represents the extent to which the
model believe the sentence was spoken by President Obama. Odd years were used for training and
even years for testing. Cross-validation on the training set was used, with the one standard error rule,
to set the lambda tuning parameter.

Topic models are a collection of statistical models for describing abstract themes within a textual
corpus. Each theme is characterized by a collection of words that commonly co-occur; for example, the
words ‘crop’, ‘dairy’, ‘tractor’, and ‘hectare’, might define a farming theme. One of the most popular
topic models is latent Dirichlet allocation (LDA), a Bayesian model where each topic is described
by a probability distribution over a vocabulary of words. Each document is then characterized by a
probability distribution over the available topics. For a formal description, see Blei et al. (2003) and
Pritchard et al. (2000), the original papers outlining LDA. To fit LDA on a corpus of text parsed by the
cleanNLP package, the output of get_tfidf can be piped directly to the LDA function in the package
topicmodels. The topic model function requires raw counts, so the type variable in get_tfidf is set to
“tf”.

> library(topicmodels)
> tm <- cleanNLP::get_token(sotu) %>%
+ filter(pos %in% c("NN", "NNS")) %>%
+ cleanNLP::get_tfidf(min_df = 0.05, max_df = 0.95,
+ type = "tf", tf_weight = "raw") %
+ LDA(tf, k = 16, control = list(verbose = 1))

The topics, ordered by approximate time period, are visualized in Figure 3. We describe each topic by
giving the five most important words Most topics exist for a few decades and then largely disappear,
though some persist over non-contiguous periods of the presidency. The “program, energy, effort,
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legislation, policy” topic, for example, appears during the 1950s and crops up again during the energy
crisis of the 1970s. The “world, man, freedom, force, life” topic peaks during both World Wars, but is
absent during the 1920s and early 1930s.

Finally, the cleanNLP data model is also convenient for building predictive models. The State of
the Union corpus does not lend itself to an obviously applicable prediction problem. A classifier that
distinguishes speeches made by George W. Bush and Barrack Obama will be constructed here for the
purpose of illustration. As a first step, a term-frequency matrix is extracted using the same technique
as was used with the topic modeling function. However, here the frequency is computed for each
sentence in the corpus rather than the document as a whole. The ability to do this seamlessly with a
single additional mutate function defining a new id illustrates the flexibility of the get_tfidf function.

> df <- get_token(sotu) %>%
+ left_join(get_document(sotu)) %>%
+ filter(year > 2000) %>%
+ mutate(new_id = paste(id, sid, sep = "-")) %>%
+ filter(pos %in% c("NN", "NNS"))
Joining, by = "id"
> mat <- get_tfidf(df, min_df = 0, max_df = 1, type = "tf",
+ tf_weight = "raw", doc_var = "new_id")

It will be nessisary to define a response variable y indicating whether this is a speech made by President
Obama as well as a training flag indicating which speeches were made in odd numbered years. This is
done via a separate table join and a pair of mutations.

> meta <- data_frame(new_id = mat$id) %>%
+ left_join(df[!duplicated(df$new_id),]) %>%
+ mutate(y = as.numeric(president == "Barack Obama")) %>%
+ mutate(train = year %in% seq(2001,2016, by = 2))
Joining, by = "new_id"

The output may now be used as input to the elastic net function provided by the glmnet package. The
response is set to the binomial family given the binary nature of the response and training is done on
only those speeches occurring in odd-numbered years. Cross-validation is used in order to select the
best value of the model’s tuning parameter.

> library(glmnet)
> model <- cv.glmnet(mat$tf[meta$train,], meta$y[meta$train], family = "binomial")

A boxplot of the predicted classes for each address is given in Figure 4. The algorithm does a very
good job of separating the speeches. Looking at the odd years versus even years (the training and
testing sets, respectively) indicates that the model has not been over-fit.

One benefit of the penalized linear regression model is that it is possible to interpret the coefficients
in a meaningful way. Here are the non-zero elements of the regression vector, coded as whether the
have a positive (more Obama) or negative (more Bush) sign:

> beta <- coef(model, s = model[["lambda"]][11])[-1]
> sprintf("%s (%d)", mat$vocab, sign(beta))[beta != 0]
[1] "job (1)" "business (1)" "citizen (-1)"
[4] "terrorist (-1)" "government (-1)" "freedom (-1)"
[7] "home (1)" "college (1)" "weapon (-1)"
[10] "deficit (1)" "company (1)" "peace (-1)"
[13] "enemy (-1)" "terror (-1)" "income (-1)"
[16] "drug (-1)" "kid (1)" "regime (-1)"
[19] "class (1)" "crisis (1)" "industry (1)"
[22] "need (-1)" "fact (1)" "relief (-1)"
[25] "bank (1)" "liberty (-1)" "society (-1)"
[28] "duty (-1)" "folk (1)" "account (-1)"
[31] "compassion (-1)" "environment (-1)" "inspector (-1)"

These generally seem as expected given the main policy topics of focus under each administration.
During most of the Bush presidency, as mentioned before, the focus was on national security and
foreign policy. Obama, on the other hand, inherited the recession of 2008 and was more focused on the
overall economic policy.
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Conclusions

In this paper a normalized data model for representing text annotations has been presented and
rationalized. We have also demonstrated how the R package cleanNLP implements this data model
using various, configurable back ends. Our focus has been to illustrate why this general approach
and specific implementation is both powerful and easy to integrate into existing data pipelines. It
is expected that some users will utilize the entirety of the underlying annotation pipelines, internal
R structures, and helper functions. Others may use the package as a convenient wrapper around
either the CoreNLP or spaCy libraries. In either extreme, or anywhere in between, our approach
provides powerful tools for applying exploratory, graphical, and model-based techniques to textual
data sources.

The cleanNLP package continues to be actively developed. In particular, we hope to include
new sentence-level annotations as they are integrated into the spaCy and CoreNLP libraries. While
major releases are available on CRAN, new features are added periodically on the development
branch located at: https://github.com/statsmaths/cleanNLP. Bug reports, feature and collaboration
requests can all be made using the GitHub issues page.
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mle.tools: An R Package for Maximum
Likelihood Bias Correction
by Josmar Mazucheli, André Felipe B. Menezes and Saralees Nadarajah

Abstract Recently, Mazucheli (2017) uploaded the package mle.tools to CRAN. It can be used for
bias corrections of maximum likelihood estimates through the methodology proposed by Cox and
Snell (1968). The main function of the package, coxsnell.bc(), computes the bias corrected maximum
likelihood estimates. Although in general, the bias corrected estimators may be expected to have
better sampling properties than the uncorrected estimators, analytical expressions from the formula
proposed by Cox and Snell (1968) are either tedious or impossible to obtain. The purpose of this paper
is twofolded: to introduce the mle.tools package, especially the coxsnell.bc() function; secondly, to
compare, for thirty one continuous distributions, the bias estimates from the coxsnell.bc() function
and the bias estimates from analytical expressions available in the literature. We also compare, for
five distributions, the observed and expected Fisher information. Our numerical experiments show
that the functions are efficient to estimate the biases by the Cox-Snell formula and for calculating the
observed and expected Fisher information.

Introduction

Since it was proposed by Fisher in a series of papers from 1912 to 1934, the maximum likelihood
method for parameter estimation has been employed to several issues in statistical inference, because of
its many appealing properties. For instance, the maximum likelihood estimators, hereafter referred to
as MLEs, are asymptotically unbiased, efficient, consistent, invariant under parameter transformation
and asymptotically normally distributed (Edwards, 1992; Lehmann, 1999). Most properties that make
the MLEs attractive depend on the sample size, hence such properties as unbiasedness, may not be
valid for small samples or even moderate samples (Kay, 1995). Indeed, the maximum likelihood
method produces biased estimators, i.e., expected values of MLEs differ from the real true parameter
values providing systematic errors. In particular, these estimators typically have biases of order
O
(
n−1), thus these errors reduce as sample size increases (Cordeiro and Cribari-Neto, 2014).

Applying the corrective Cox-Snell methodology, many researchers have developed nearly unbiased
estimators for the parameters of several probability distributions. Interested readers can refer to
Cordeiro et al. (1997), Cribari-Neto and Vasconcellos (2002), Saha and Paul (2005), Lemonte et al.
(2007), Giles and Feng (2009) Lagos-Álvarez et al. (2011), Lemonte (2011), Giles (2012b), Giles (2012a),
Schwartz et al. (2013), Giles et al. (2013), Teimouri and Nadarajah (2013), Xiao and Giles (2014), Zhang
and Liu (2015), Teimouri and Nadarajah (2016), Reath (2016), Giles et al. (2016), Schwartz and Giles
(2016), Wang and Wang (2017), Mazucheli and Dey (2017) and references cited therein.

In general, the Cox-Snell methodology is efficient for bias corrections. However, obtaining ana-
lytical expressions for some probability distributions, mainly for those indexed by more than two
parameters, can be notoriously cumbersome or impossible. Stočsić and Cordeiro (2009) presented
Maple and Mathematica scripts that may be used to calculate closed form analytic expressions for
bias corrections using the Cox-Snell formula. They tested the scripts for 20 two-parameter continuous
probability distributions, and the results were compared with those published in earlier works. In the
same direction, researchers from the University of Illinois, at Urbana-Champaign, have developed
a Mathematica program, entitled “CSCK MLE Bias Calculation” (Johnson et al., 2012b) that enables
the user to calculate the analytic Cox-Snell MLE bias vectors for various probability distributions
with up to four unknown parameters. It is important to mention that both, Maple (Maple, 2017) and
Mathematica (Wolfram Research, Inc., 2010), are commercial softwares.

In this paper, our objective is to introduce a new contributed R (R Core Team, 2016) package,
namely mle.tools that computes the expected/observed Fisher information and the bias corrected
estimates by the methodology proposed by Cox and Snell (1968). The theoretical background of
the methodology is presented in Section Overview of the Cox-Snell methodology. Details about the
mle.tools package are described in Section The mle.tools package details. Closed form solutions of
bias corrections are collected from the literature for a large number of distributions and compared to
the output from the coxsnell.bc() function, see Section Comparative study. In Section Additional
Applications, we compare various estimates of Fisher’s information, considering a real application
from the literature. Finally, Section Concluding Remarks contains some concluding remarks and
directions for future research.
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Overview of the Cox-Snell methodology

Let X1, . . . , Xn be n be independent random variables with probability density function f (xi | θ)
depending on a p-dimensional parameter vector θ =

(
θ1, . . . , θp

)
. Without loss of generality, let

l = l (θ | x) be the log-likelihood function for the unknown p-dimensional parameter vector θ given
a sample of n observations. We shall assume some regularity conditions on the behavior of l (θ | x)
(Cox and Hinkley, 1979).

The joint cumulants of the derivatives of l are given by:

κij = E

[
∂2 l

∂ θi ∂ θj

]
, (1)

κijl = E

[
∂3 l

∂ θi ∂ θj ∂ θl

]
, (2)

κij,l = E

[(
∂2 l

∂ θi ∂ θj

) (
∂ l

∂ θl

)]
, (3)

κ
(l)
ij =

∂ κij

∂ θl
(4)

for i, j, l = 1, . . . , p.

The bias expression of the sth element of θ̂, the MLEs of θ, when the sample data are independent,
but not necessarily identically distributed, was proposed by Cox and Snell (1968):

B
(

θ̂s

)
=

p

∑
i=1

p

∑
j=1

p

∑
l=1

κsi κ jl
[
0.5κijl + κij,l

]
+O

(
n−2

)
, (5)

where s = 1, . . . , p and κij is the (i, j)th element of the inverse of the negative of the expected Fisher
information.

Thereafter, Cordeiro and Klein (1994) noticed that equation (5) holds even if the data are non-
independent, and it can be re-expressed as:

B
(

θ̂s

)
=

p

∑
i=1

κsi
p

∑
j=1

p

∑
l=1

[
κ
(l)
ij − 0.5κijl

]
κ jl +O

(
n−2

)
. (6)

Defining a(l)ij = κ
(l)
ij − 0.5κijl , A(l) =

{
a(l)ij

}
and K =

[
−κij

]
, the expected Fisher information

matrix for i, j, l = 1, . . . , n, the bias expression for θ̂ in matrix notation is:

B
(

θ̂
)
= K−1 Avec

(
K−1

)
+O

(
n−2

)
, (7)

where vec
(
K−1) is the vector obtained by stacking the columns of K−1 and A =

{
A1 | · · · | Ap}.

Finally, the bias corrected MLE for θs can be obtained as:

θ̃s = θ̂s − B̂
(

θ̂s

)
. (8)

Alternatively, using matrix notation the bias corrected MLEs can be expressed as Cordeiro and Klein
(1994):

θ̃ = θ̂− K̂−1 Âvec
(

K̂−1
)

, (9)

where K̂ = K
∣∣
θ=θ̂

and Â = A
∣∣
θ=θ̂

.

The mle.tools package details

The current version of the mle.tools package, uploaded to CRAN in February, 2017, has implemented
three functions — observed.varcov(), expected.varcov() and coxsnell.bc() — which are of great
interest in data analysis based on MLEs. These functions calculate, respectively, the observed Fisher
information, the expected Fisher information and the bias corrected MLEs using the bias formula in
(5). The above mentioned functions can be applied to any probability density function whose terms
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are available in the derivatives table of the D() function (see “deriv.c” source code for further details).
Integrals, when required, are computed numerically via the integrate() function. Below are some
mathematical details of how the returned values from the three functions are calculated.

Let X1, . . . , Xn be independent and identical random variables with probability density function
f (xi | θ) depending on a p-dimensional parameter vector θ =

(
θ1, . . . , θp

)
. The (j, k)th element of the

observed, Hjk, and expected, Ijk, Fisher information are calculated, respectively, as

Hjk = −
n

∑
i=1

∂2

∂θj∂θk
log f (xi | θ)

∣∣∣∣∣
θ=θ̂

and

Ijk = −n× E

(
∂2

∂θj∂θk
log f (x | θ)

)
= −n×

∫
X

∂2

∂θj∂θk
log f (x | θ)× f (x | θ)dx

∣∣∣∣∣∣
θ=θ̂

,

where j, k = 1, . . . , p, θ̂ is the MLE of θ and X denotes the support of the random variable X.

The observed.varcov() function is as follows:

function (logdensity, X, parms, mle)

where logdensity is an R expression of the log of the probability density function, X is a numeric
vector containing the observations, parms is a character vector of the parameter name(s) specified in
the logdensity expression and mle is a numeric vector of the parameter estimate(s). This function
returns a list with two components (i) mle: the inputed MLEs and (ii) varcov: the observed variance-
covariance evaluated at the inputed MLE argument. The elements of the Hessian matrix are calculated
analytically.

The functions expected.varcov() and coxsnell.bc() have the same arguments and are as follows:

function (density, logdensity, n, parms, mle, lower = "-Inf", upper = "Inf", ...)

where density and logdensity are R expressions of the probability density function and its logarithm,
respectively, n is a numeric scalar of the sample size, parms is a character vector of the parameter
names(s) specified in the density and log-density expressions, mle is a numeric vector of the parameter
estimates, lower is the lower integration limit (-Inf is the default), upper is the upper integration
limit (Inf is the default) and ... are additional arguments passed to the integrate() function. The
expected.varcov() function returns a list with two components:

$mle the inputed MLEs and

$varcov the expected covariance evaluated at the inputed MLEs.

The coxsnell.bc() function returns a list with five components:

$mle the inputed MLEs,

$varcov the expected variance-covariance evaluated at the inputed MLEs,

$mle.bc the bias corrected MLEs,

$varcov.bc the expected variance-covariance evaluated at the bias corrected MLEs

$bias the bias estimate(s).

Furthermore, the bias corrected MLE of θs, s = 1, . . . , p denoted by θ̃s is calculated as θ̃s =

θ̂s − B̂
(

θ̂s

)
, where θ̂s is the MLE of θs and

B̂
(

θ̂s

)
=

p

∑
j=1

p

∑
k=1

p

∑
l=1

κsjκkl
[
0.5κjkl + κjk,l

]∣∣∣∣∣∣
θ=θ̂

,

where κ jk is the (j, k)th element of the inverse of the negative of the expected Fisher information,

κjkl = n
∫
X

∂3

∂θj∂θk∂θl
log f (x | θ) f (x | θ)dx

∣∣∣∣∣∣
θ=θ̂

,

κjk,l = n
∫
X

∂2

∂θj∂θk
log f (x | θ)

∂

θl
log f (x | θ) f (x | θ)dx

∣∣∣∣∣∣
θ=θ̂
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and X denotes the support of the random variable X.

It is important to emphasize that first, second and third-order partial log-density derivatives
are analytically calculated via the D() function, while integrals are computed numerically, using the
integrate() function. Furthermore, if numerical integration fails and/or the expected/observed
information is singular, an error message is returned.

Comparative study

In order to evaluate the robustness of the coxsnell.bc() function, we compare, through real applica-
tions, the estimated biases obtained from the package and from the analytical expressions for a total
of thirty one continuous probability distributions. The analytical expressions for each distribution,
named as distname.bc(), can be found in the supplementary file “analyticalBC.R”. For example, the
entry lindley.bc(n,mle) evaluates the bias estimates locally at n and mle values.

In the sequel, the probability density function, the analytical Cox-Snell expressions and the bias
estimates are provided for: Lindley, inverse Lindley, inverse Exponential, Shanker, inverse Shanker,
Topp-Leone, Lévy, Rayleigh, inverse Rayleigh, Half-Logistic, Half-Cauchy, Half-Normal, Normal,
inverse Gaussian, Log-Normal, Log-Logistic, Gamma, inverse Gamma, Lomax, weighted Lindley,
generalized Rayleigh, Weibull, inverse Weibull, generalized Half-Normal, inverse generalized Half-
Normal, Marshall-Olkin extended Exponential, Beta, Kumaraswamy, inverse Beta, Birnbaum-Saunders
and generalized Pareto distributions.

It is noteworthy that analytical bias corrected expressions are not reported in the literature for
the Lindley, Shanker, inverse Shanker, Lévy, inverse Rayleigh, half-Cauchy, inverse Weibull, inverse
generalized half-normal and Marshall-Olkin extended exponential distributions.

According to all the results presented below, we observe concordance between the bias estimates
given by the coxsnell.bc() function and the analytical expression(s) for 28 out the 31 distributions.
The distributions which did not agree with the coxsnell.bc() function were the beta, Kumaraswamy
and inverse beta distributions. Perhaps there are typos either in our typing or in the analytical
expressions reported by Cordeiro et al. (1997), Lemonte (2011) and Stočsić and Cordeiro (2009).
Having this view, we recalculated the analytical expressions for the biases. For the beta and inverse
beta distributions, our recalculated analytical expressions agree with the results returned by the
coxsnell.bc() function, so there are actually typos in the expression of Cordeiro et al. (1997) and
Stočsić and Cordeiro (2009). For the Kumaraswamy, we could not evaluate the analytical expression
given by the author but we compare the results from coxsnell.bc() function with a numerical
evaluation in Maple (Maple, 2017) and the results are exactly equals.

1. One-parameter Lindley distribution with scale parameter θ

f (x | θ) =
θ2

1 + θ
(1 + x) exp(−θx), x > 0.

• Bias expression (not previously reported in the literature):

B
(

θ̂
)
=

(
θ3 + 6 θ2 + 6 θ + 2

)
(θ + 1) θ

n (θ2 + 4 θ + 2)2 . (10)

Using the data set from Ghitany et al. (2008) we have n = 100, θ̂ = 0.1866 and ŝe
(

θ̂
)
= 0.0133.

Evaluating the analytical expression (10) and the coxsnell.bc() function, we have, respectively,

lindley.bc(n = 100, mle = 0.1866)
## theta
## 0.0009546
pdf <- quote(theta^2 / (theta + 1) * (1 + x) * exp(-theta * x))
lpdf <- quote(2 * log(theta) - log(1 + theta) - theta * x)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 100,

parms = c("theta"), mle = 0.1866, lower = 0)$bias
## theta
## 0.0009546

2. Inverse Lindley distribution with scale parameter θ

f (x | θ) =
θ2

1 + θ

(
1 + x

x3

)
exp

(
− θ

x

)
, x > 0.
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• Bias expression (Wang, 2015):

B
(

θ̂
)
=

(θ + 1) θ
(
θ3 + 6 θ2 + 6 θ + 2

)
n (θ2 + 4 θ + 2)2 . (11)

Using the data set from Sharma et al. (2015) we have n = 58, θ̂ = 60.0016 and ŝe
(

θ̂
)
= 7.7535.

Evaluating the analytical expression (11) and the coxsnell.bc() function, we have, respectively,

invlindley.bc(n = 58, mle = 60.0016)
## theta
## 1.017
pdf <- quote(theta^2 / (theta + 1) * ((1 + x) / x^3) *

exp(-theta / x))
lpdf <- quote(2 * log(theta) - log(1 + theta) - theta / x)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 58,

parms = c("theta"), mle = 60.0016, lower = 0)$bias
## theta
## 1.017

3. Inverse exponential distribution with rate parameter θ

f (x | θ) =
θ

x2 exp
(
− θ

x

)
, x > 0.

• Bias expression (Johnson et al., 2012b):

B
(

θ̂
)
=

θ

n
. (12)

Using the data set from Lawless (2011), we have n = 30, θ̂ = 11.1786 and ŝe
(

θ̂
)
= 2.0409.

Evaluating the analytical expression (12) and the coxsnell.bc() function, we have, respectively,

invexp.bc(n = 30, mle = 11.1786)
## theta
## 0.3726
pdf <- quote(theta / x^2 * exp(- theta / x))
lpdf <- quote(log(theta) - theta / x)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 30,

parms = c("theta"), mle = 11.1786, lower = 0)$bias
## theta
## 0.3726

4. Shanker distribution with scale parameter θ

f (x | θ) =
θ2

θ2 + 1
(θ + x) exp(−θ x), x > 0.

• For bias expression (not previously reported in the literature, see the “analyticalBC.R” file.

Using the data set from Shanker (2015), we have n = 31, θ̂ = 0.0647 and ŝe
(

θ̂
)

= 0.0082.
Evaluating the analytical expression and the coxsnell.bc() function, we have, respectively,

shanker.bc(n = 31, mle = 0.0647)
## theta
## 0.001035
pdf <- quote(theta^2 / (theta^2 + 1) * (theta + x) *

exp(-theta * x))
lpdf <- quote(2*log(theta) - log(theta^2 + 1) + log(theta + x) -

theta * x)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 31,

parms = c("theta"), mle = 0.0647, lower = 0)$bias
## theta
## 0.001035

5. Inverse Shanker distribution with scale parameter θ

f (x | θ) =
θ2

1 + θ2

(
1 + θ x

x3

)
exp

(
− θ

x

)
, x > 0.
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• Bias expression (not previously reported in the literature):

B
(

θ̂
)
=

θ3 + 2 θ

n (θ2 + 1)
. (13)

Using the data set from Sharma et al. (2015), we have n = 58, θ̂ = 59.1412 and ŝe
(

θ̂
)
= 7.7612.

Evaluating the analytical expression (13) and the coxsnell.bc() function, we have, respectively,

invshanker.bc(n = 58, mle = 59.1412)
## theta
## 1.02
pdf <- quote(theta^2 / (theta^2 + 1) * (theta * x + 1) /

x^3 * exp(-theta / x))
lpdf <- quote(log(theta) - 2 * log(x) - theta / x)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 58,

parms = c("theta"), mle = 59.1412, lower = 0)$bias
## theta
## 1.02

6. Topp-Leone distribution with shape parameter ν

f (x | ν) = 2 ν (1− x) xν−1 (2− x)ν−1, 0 < x < 1.

• Bias expression (Giles, 2012a):

B (ν̂) = ν

n
. (14)

Using the data set from Cordeiro and dos Santos Brito (2012), we have n = 107, ν̂ = 2.0802 and
ŝe (ν̂) = 0.2011. Evaluating the analytical expression (14) and the coxsnell.bc() function, we
have, respectively,

toppleone.bc(n = 107, mle = 2.0802)
## nu
## 0.01944
pdf <- quote(2 * nu * x^(nu - 1) * (1 - x) * (2 - x)^(nu - 1))
lpdf <- quote(log(nu) + nu * log(x) + log(1 - x) + (nu - 1) *

log(2 - x))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 107,

parms = c("nu"), mle = 2.0802, lower = 0, upper = 1)$bias
## nu
## 0.01944

7. One-parameter Lévy distribution with scale parameter σ

f (x | σ) =

√
σ

2 π
x−

3
2 exp

(
− σ

2 x

)
, x > 0.

• Bias expression (not previously reported in the literature):

B (σ̂) = 2 σ

n
. (15)

Using the data set from Achcar et al. (2013), we have n = 361, σ̂ = 4.4461 and ŝe (σ̂) = 0.3309.
Evaluating the analytical expression (15) and the coxsnell.bc() function, we have, respectively,

levy.bc(n = 361, mle = 4.4460)
## sigma
## 0.02463
pdf <- quote(sqrt(sigma / (2 * pi)) * exp(-0.5 * sigma / x) /

x^(3 / 2))
lpdf <- quote(0.5 * log(sigma) - 0.5 * sigma / x - (3 / 2) * log(x))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 361,

parms = c("sigma"), mle = 4.4460, lower = 0)$bias
## sigma
## 0.02463
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8. Rayleigh distribution with scale parameter σ

f (x | σ) =
x

σ2 exp
(
− x2

2 σ2

)
, x > 0.

• Bias expression (Xiao and Giles, 2014):

B (σ̂) = − σ

8 n
. (16)

Using the data set from Bader and Priest (1982), we have n = 69, σ̂ = 1.2523 and ŝe (σ̂) = 0.0754.
Evaluating the analytical expression (16) and the coxsnell.bc() function, we have, respectively,

rayleigh.bc(n = 69, mle = 1.2522)
## sigma
## -0.002268
pdf <- quote(x / sigma^2 * exp(- 0.5 * (x / sigma)^2))
lpdf <- quote(- 2 * log(sigma) - 0.5 * x^2 / sigma^2)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 69,

parms = c("sigma"), mle = 1.2522, lower = 0)$bias
## sigma
## -0.002268

9. Inverse Rayleigh distribution with scale parameter σ

f (x | σ) =
2 σ2

x3 exp
(
− σ

x2

)
, x > 0.

• Bias expression (not previously reported in the literature):

B (σ̂) = 3σ

8 n
. (17)

Using the data set from Bader and Priest (1982), we have n = 63, σ̂ = 2.8876 and ŝe (σ̂) = 0.1819.
Evaluating the analytical expression (17) and the coxsnell.bc() function, we have, respectively,

invrayleigh.bc(n = 63, mle = 2.8876)
## sigma
## 0.01719
pdf <- quote(2 * sigma^2 / x^3 * exp(-sigma^2 / x^2))
lpdf <- quote(2 * log(sigma) - sigma^2 / x^2)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 63,

parms = c("sigma"), mle = 2.8876, lower = 0)$bias
## sigma
## 0.01719

10. Half-logistic distribution with scale parameter σ

f (x | σ) =
2 exp

(
− x

σ

)
σ
[
1 + exp

(
− x

σ

)]2 , x > 0.

• Bias expressions (Giles, 2012b):

B (σ̂) = −0.05256766607 σ

n
. (18)

Using the data set from Bhaumik et al. (2009), we have n = 34, σ̂ = 1.3926 and ŝe (σ̂) = 0.2056.
Evaluating the analytical expression (17) and the coxsnell.bc() function, we have, respectively,

halflogistic.bc(n = 34, mle = 1.3925)
## sigma
## -0.002153
pdf <- quote((2/sigma) * exp(-x / sigma) / (1 + exp(-x / sigma))^2)
lpdf <- quote(-log(sigma) - x / sigma - 2 * log(1 + exp(-x / sigma)))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 34,

parms = c("sigma"), mle = 1.3925, lower = 0)$bias
## sigma
## -0.002153
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11. Half-Cauchy distribution with scale parameter σ

f (x | σ) =
2
π

σ

σ2 + x2 , x > 0.

• Bias expression (not previously reported in the literature):

B (σ̂) = −σ

n
. (19)

Using the data set from Alzaatreh et al. (2016), we have n = 64, σ̂ = 28.3345 and ŝe (σ̂) = 4.4978.
Evaluating the analytical expression (19) and the coxsnell.bc() function, we have, respectively,

halfcauchy.bc(n = 64, mle = 28.3345)
## sigma
## 0.4427
pdf <- quote( 2 / pi * sigma / (x^2 + sigma^2))
lpdf <- quote(log(sigma) - log(x^2 + sigma^2))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 64,

parms = c("sigma"), mle = 28.3345, lower = 0)$bias
## sigma
## 0.4456

12. Half-normal distribution with scale parameter σ

f (x | σ) =

√
2
π

1
σ

exp
(
− x2

2 σ2

)
, x > 0.

• Bias expressions (Xiao and Giles, 2014):

B (σ̂) = − σ

4 n
. (20)

Using the data set from Raqab et al. (2008), we have n = 69, σ̂ = 1.5323 and ŝe (σ̂) = 0.1304.
Evaluating the analytical expression (20) and the coxsnell.bc() function, we have, respectively,

halfnormal.bc(n = 69, mle = 1.5323)
## sigma
## -0.005552
pdf <- quote(sqrt(2) / (sqrt(pi) * sigma) * exp(-x^2 / (2 * sigma^2)))
lpdf <- quote(-log(sigma) - x^2 / sigma^2 / 2 )
coxsnell.bc(density = pdf, logdensity = lpdf, n = 69,

parms = c("sigma"), mle = 1.5323, lower = 0)$bias
## sigma
## -0.005552

13. Normal distribution with mean µ and standard deviation σ

f (x | µ, σ) =
1√

2 π σ
exp

[
− (x− µ)2

2 σ2

]
, x ∈ (−∞, ∞).

• Bias expressions (Stočsić and Cordeiro, 2009):

B (µ̂) = 0 and B (σ̂) = −3 σ

4 n
. (21)

Using the data set from Kundu (2005), we have n = 23, µ̂ = 4.1506, σ̂ = 0.5215, ŝe (µ̂) = 0.1087
and ŝe (σ̂) = 0.0769. Evaluating the analytical expressions (21) and the coxsnell.bc() function,
we have, respectively,

normal.bc(n = 23, mle = c(4.1506, 0.5215))
## mu sigma
## 0.00000 -0.01701
pdf <- quote(1 / (sqrt(2 * pi) * sigma) *

exp(-0.5 / sigma^2 * (x - mu)^2))
lpdf <- quote(-log(sigma) - 0.5 / sigma^2 * (x - mu)^2)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 23,

parms = c("mu", "sigma"), mle = c(4.1506, 0.5215))$bias
## mu sigma
## -4.071e-13 -1.701e-02
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14. Inverse Gaussian distribution with mean µ and shape λ

f (x | µ, λ) =

√
λ

2 π x3 exp
[
−λ (x− µ)2

2 x µ2

]
, x > 0.

• Bias expressions (Stočsić and Cordeiro, 2009):

B (µ̂) = 0 and B
(

λ̂
)
=

3λ

n
. (22)

Using the data set from Chhikara and Folks (1977), we have n = 46, µ̂ = 3.6067, λ̂ = 1.6584,

ŝe (µ̂) = 0.7843 and ŝe
(

λ̂
)

= 0.3458. Evaluating the analytical expressions (22) and the
coxsnell.bc() function, we have, respectively,

invgaussian.bc(n = 46, mle = c(3.6065, 1.6589))
## mu lambda
## 0.0000 0.1082
pdf <- quote(sqrt(lambda / (2 * pi * x^3)) *

exp(-lambda * (x - mu)^2 / (2 * mu^2 * x)))
lpdf <- quote(0.5 * log(lambda) - lambda * (x - mu)^2 /

(2 * mu^2 * x))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 46,

parms = c("mu", "lambda"), mle = c(3.6065, 1.6589),
lower = 0)$bias

## mu lambda
## 3.483e-07 1.082e-01

15. Log-normal distribution with location µ and scale σ

f (x | µ, σ) =
1√

2 π x σ
exp

[
− (log x− µ)2

σ2

]
, x > 0.

• Bias expressions (Stočsić and Cordeiro, 2009):

B (µ̂) = 0 and B (σ̂) = −3 σ

4 n
. (23)

Using the data set from Kumagai et al. (1989), we have n = 30, µ̂ = 2.164, σ̂ = 1.1765, ŝe (µ̂) =
0.2148 and ŝe (σ̂) = 0.1519. Evaluating the analytical expressions (23) and the coxsnell.bc()
function, we have, respectively,

lognormal.bc(n = 30, mle = c(2.1643, 1.1765))
## mu sigma
## 0.00000 -0.02941
pdf <- quote(1 / (sqrt(2 * pi) * x * sigma) *

exp(-0.5 * (log(x) - mu)^2 / sigma^2))
lpdf <- quote(-log(sigma) - 0.5 * (log(x) - mu)^2 / sigma^2)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 30,

parms = c("mu", "sigma"), mle = c(2.1643, 1.1765),
lower = 0)$bias

## mu sigma
## -5.952e-09 -2.941e-02

16. Log-logistic distribution with shape β and scale α

f (x | α, β) =
(β/α) (x/α)β−1[

1 + (x/α)β
]2 , x > 0.

• For bias expressions, see Reath (2016).

From Reath (2016) we have n = 19, α̂ = 6.2542, β̂ = 1.1732, ŝe (α̂) = 2.1352, ŝe
(

β̂
)
= 0.2239,

B̂ (α̂) = 0.3585 and B̂
(

β̂
)
= 0.0789. Evaluating the coxsnell.bc() function, we have:

pdf <- quote((beta / alpha) * (x / alpha)^(beta - 1) /
(1 + (x / alpha)^beta)^2)

lpdf <- quote(log(beta) - log(alpha) + (beta - 1) * log(x / alpha) -
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2 * log(1 + (x / alpha)^beta))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 19,

parms = c("alpha", "beta"), mle = c(6.2537, 1.1734),
lower = 0)$bias

## alpha beta
## 0.35854 0.07883

17. Gamma distribution with shape α and rate λ

f (x | α, λ) =
λα

Γ(α)
xα−1 exp(−λ x), x > 0.

• Bias expressions (Giles and Feng, 2009):

B (α̂) = α [Ψ′(α)− αΨ′′(α)]− 2

2 n [αΨ′(α)− 1]2
(24)

and

B
(

λ̂
)
=

λ
[
2 α (Ψ′(α))2 − 3 Ψ′(α)− α Ψ′′(α)

]
2 n [αΨ′(α)− 1]2

. (25)

Using the data set from Delignette-Muller et al. (2008), we have n = 254, α̂ = 4.0083, λ̂ = 0.0544,

ŝe (α̂) = 0.3413 and ŝe
(

λ̂
)
= 0.0049. Evaluating the analytical expressions (24), (25) and the

coxsnell.bc() function, we have, respectively,

gamma.bc(n = 254, mle = c(4.0082, 0.0544))
## alpha lambda
## 0.0448278 0.0006618
pdf <- quote((lambda^alpha) / gamma(alpha) * x^(alpha - 1) *

exp(-lambda *x))
lpdf <- quote(alpha * log(lambda) - lgamma(alpha) + alpha * log(x) -

lambda * x)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 254,

parms = c("alpha", "lambda"), mle = c(4.0082, 0.0544),
lower = 0)$bias

## alpha lambda
## 0.0448278 0.0006618

18. Inverse gamma distribution with shape α and scale β

f (x | α, β) =
1

Γ(α) βα
xα−1 exp

(
− x

β

)
, x > 0.

• Bias expressions (Stočsić and Cordeiro, 2009):

B (α̂) = −0.5 α2 Ψ′′ (α) + 0.5 Ψ′ (α) α− 1

n α (Ψ′ (α)− 1)2 (26)

and

B
(

β̂
)
=

β
(
−0.5 α Ψ′′ (α)− 1.5 Ψ′ (α) + (Ψ′ (α))2

α
)

n (Ψ′ (α) α− 1.0)2 . (27)

Using the data set from Kumagai and Matsunaga (1995), we have n = 31, α̂ = 1.0479, β̂ = 5.491,

ŝe (α̂) = 0.2353 and ŝe
(

β̂
)
= 1.5648. Evaluating the analytical expressions (26), (27) and the

coxsnell.bc() function, we have, respectively,

invgamma.bc(n = 31, mle = c(5.4901, 1.0479))
## beta alpha
## 0.60849 0.08388
pdf <- quote(beta^alpha / gamma(alpha) * x^(-alpha - 1) *

exp(-beta / x))
lpdf <- quote(alpha * log(beta) - lgamma(alpha) -

alpha * log(x) - beta / x)
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coxsnell.bc(density = pdf, logdensity = lpdf, n = 31,
parms = c("beta", "alpha"), mle = c(5.4901, 1.0479),
lower = 0)$bias

## beta alpha
## 0.60847 0.08388

19. Lomax distribution with shape α and scale β

f (x | α, β) = α β (1 + β x)−(α+1), x > 0.

• Bias expressions (Giles et al., 2013):

B (α̂) =
2 α (α + 1)

(
α2 + α− 2

)
(α + 3) n

(28)

and

B
(

β̂
)
= −2 β (α + 1.6485) (α + 0.3934) (α− 1.5419)

n α (α + 3)
. (29)

Using the data set from Tahir et al. (2016), we have n = 179, α̂ = 4.9103, β̂ = 0.0028, ŝe (α̂) =
0.6208 and ŝe

(
β̂
)
= 3.4803× 10−4. Evaluating the analytical expressions (28), (29) and the

coxsnell.bc() function, we have, respectively,

lomax.bc(n = 179, mle = c(4.9103, 0.0028))
## alpha beta
## 1.281e+00 -9.438e-05
pdf <- quote(alpha * beta / (1 + beta * x)^(alpha + 1))
lpdf <- quote(log(alpha) + log(beta) - (alpha + 1) *

log(1 + beta * x))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 179,

parms = c("alpha", "beta"), mle = c(4.9103, 0.0028),
lower = 0)$bias

## alpha beta
## 1.281e+00 -9.439e-05

20. Weighted Lindley distribution with shape α and scale θ

f (x | α, θ) =
θα+1

(θ + α) Γ(α)
xα−1 (1 + x) exp(−θx), x > 0.

• For bias expressions, see (Wang and Wang, 2017):

Using the data set from Ghitany et al. (2013), we have n = 69, α̂ = 22.8889, θ̂ = 9.6246,

ŝe (α̂) = 3.9507 and ŝe
(

θ̂
)
= 1.6295. Evaluating the analytical expressions and the coxsnell.bc

function, we have, respectively,

wlindley.bc(n = 69, mle = c(22.8889, 9.6246))
## alpha theta
## 1.0070 0.4167
pdf <- quote(theta^(alpha + 1) / ((theta + alpha) * gamma(alpha)) *

x^(alpha - 1) * (1 + x) * exp(-theta * x))
lpdf <- quote((alpha + 1) * log(theta) + alpha * log(x) -

log(theta + alpha) - lgamma(alpha) - theta * x)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 69,

parms = c("alpha", "theta"), mle = c(22.8889, 9.6246),
lower = 0)$bias

## alpha theta
## 1.0068 0.4166

21. Generalized Rayleigh with shape α and scale θ

f (x | β, µ) =
2 θα+1

Γ(α + 1)
x2 α+1 exp

(
−θ x2

)
, x > 0.

• For bias expressions, see (Xiao and Giles, 2014):
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Using the data set from Gomes et al. (2014), we have n = 384, θ̂ = 0.5195, α̂ = 0.0104, ŝe
(

θ̂
)
=

0.2184 and ŝe (α̂) = 0.0014. Evaluating the analytical expressions and the coxsnell.bc()
function, we have, respectively,

generalizedrayleigh.bc(n = 384, mle = c(0.5195, 0.0104))
## alpha theta
## 1.035e-02 8.865e-05
pdf <- quote(2 * theta^(alpha + 1) / gamma(alpha + 1) *

x^(2 * alpha + 1) * exp(-theta * x^2 ))
lpdf <- quote((alpha + 1) * log(theta) - lgamma(alpha + 1) +

2 * alpha * log(x) - theta * x^2)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 384,

parms = c("alpha", "theta"), mle = c(0.5195, 0.0104),
lower = 0)$bias

## alpha theta
## 1.035e-02 8.865e-05

22. Weibull distribution with shape β and scale µ

f (x | β, µ) =
β

µβ
xβ−1 exp

(
− x

µ

)β

, x > 0.

• Bias expressions (the expressions below differs from Stočsić and Cordeiro (2009)):

B (µ̂) = µ (0.5543324495− 0.3698145397 β)

n β2 (30)

and

B
(

β̂
)
=

1.379530692 β

n
. (31)

From Datta and Datta (2013), we have n = 50, µ̂ = 2.5752, β̂ = 38.0866, ŝe (µ̂) = 0.2299 and

ŝe
(

β̂
)
= 2.2299. Evaluating the analytical expression (30), (31) and the coxsnell.bc() function,

we have, respectively,

weibull.bc(n = 50, mle = c(38.0866, 2.5751))
## mu beta
## -0.04572 0.07105
pdf <- quote(beta / mu^beta * x^(beta - 1) *

exp(-(x / mu)^beta))
lpdf <- quote(log(beta) - beta * log(mu) + beta * log(x) -

(x / mu)^beta)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 50,

parms = c("mu", "beta"), mle = c(38.0866, 2.5751),
lower = 0)$bias

## mu beta
## -0.04572 0.07105

23. Inverse Weibull distribution with shape β and scale µ

f (x | β, α) = β µβ x−(β+1) exp
[
−
(µ

x

)β
]

, x > 0.

• Bias expressions (not previously reported in the literature):

B
(

β̂
)
=

1.379530690 β

n
(32)

and

B (µ̂) = µ (0.3698145391 β + 0.5543324494)
nβ2 . (33)

Using the data set from Nichols and Padgett (2006), we have n = 100, β̂ = 1.769, µ̂ = 1.8917,

ŝe
(

β̂
)
= 0.1119 and ŝe (µ̂) = 0.1138. Evaluating the analytical expressions (32), (33) and the

coxsnell.bc() function, we have, respectively,
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inverseweibull.bc(n = 100, mle = c(1.7690, 1.8916))
## beta mu
## 0.024404 0.007305
pdf <- quote(beta * mu^beta * x^(-beta - 1) *

exp(-(mu / x)^beta))
lpdf <- quote(log(beta) + beta * log(mu) - beta * log(x) -

(mu / x)^beta)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 100,

parms = c("beta", "mu"), mle = c(1.7690, 1.8916),
lower = 0)$bias

## beta mu
## 0.024404 0.007305

24. Generalized half-normal distribution with shape α and scale θ

f (x | α, θ) =

√
2
π

α

θα
xα−1 exp

[
−1

2

( x
θ

)2 α
]

.

• Bias expressions (Mazucheli and Dey, 2017):

B (α̂) = 1.483794456
α

n
(34)

and

B
(

θ̂
)
= (0.2953497661− 0.3665611957 α)

θ

n α2 . (35)

Using the data set from Nadarajah (2008a), we have n = 119, α̂ = 3.8096, θ̂ = 4.9053,

ŝe (α̂) = 0.2758 and ŝe
(

θ̂
)

= 0.0913. Evaluating the analytical expressions (34), (35) and
the coxsnell.bc() function, we have, respectively,

genhalfnormal.bc(n = 119, mle = c(3.8095, 4.9053))
## alpha theta
## 0.047500 -0.003127
pdf <- quote(sqrt(2 / pi) * alpha / theta^alpha * x^(alpha - 1)*

exp(- 0.5 * (x / theta)^(2 * alpha) ))
lpdf <- quote(log(alpha) - alpha * log(theta) + alpha * log(x) -

0.5 * (x / theta)^(2 * alpha))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 119,

parms = c("alpha", "theta"), mle = c(3.8095, 4.9053),
lower = 0)$bias

## alpha theta
## 0.047500 -0.003127

25. Inverse generalized half-normal distribution with shape α and scale θ

f (x | α, θ) =

√
2
π

(α

x

) ( 1
θ x

)α

exp

[
−1

2

(
1

θ x

)2 α
]

, x > 0.

• For bias expressions (not previously reported in the literature, see the “analyticalBC.R” file.

Using the data set from Nadarajah et al. (2011), we have n = 20, α̂ = 3.0869, θ̂ = 0.6731, ŝe (α̂) =
0.5534 and ŝe

(
θ̂
)

= 0.0379. Evaluating the analytical expressions and the coxsnell.bc()

function, we have, respectively,

invgenhalfnormal.bc(n = 20, mle = c(3.0869, 0.6731))
## alpha theta
## 0.229016 -0.002953
pdf <- quote(sqrt(2) * pi^(-0.5) * alpha * x^(-alpha - 1) *

exp(-0.5 * x^(-2 * alpha) * (1 / theta)^(2 * alpha)) *
theta^(-alpha))

lpdf <- quote(log(alpha) - alpha * log(x) - 0.5e0 / (x^alpha)^2*
theta^(-2 * alpha) - alpha * log(theta))

coxsnell.bc(density = pdf, logdensity = lpdf, n = 20,
parms = c("alpha", "theta"), mle = c(3.0869, 0.6731),
lower = 0)$bias
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## alpha theta
## 0.229016 -0.002953

26. Marshall-Olkin extended exponential distribution with shape α and rate λ

f (x | α, λ) =
λ α exp (−λ x)

[1− (1− α) exp (−λ x)]2
, x > 0.

• For bias expressions (not previously reported in the literature, see the “analyticalBC.R” file.

Using the data set from Linhart and Zucchini (1986), we have n = 20, α̂ = 0.2782, λ̂ =

0.0078, ŝe (α̂) = 0.2321 and ŝe
(

λ̂
)
= 0.0049. Evaluating the analytical expressions and the

coxsnell.bc() function, we have, respectively,

moeexp.bc(n = 20, mle = c(0.2781, 0.0078))
## alpha lambda
## 0.210919 0.003741
pdf <- quote(alpha * lambda * exp(-x * lambda) /

((1- (1 - alpha) * exp(- x * lambda)))^2)
lpdf <- quote(log(alpha) + log(lambda) - x * lambda -

2 * log((1 - (1-alpha) * exp(- x * lambda))))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 20,

parms = c("alpha", "lambda"), mle = c(0.2781, 0.0078),
lower = 0)$bias

## alpha lambda
## 0.21086 0.00374

27. Beta distribution with shapes α and β

f (x | α, β) =
Γ(α + β)

Γ(α) Γ(β)
xα−1 (1− x)β−1, 0 < x < 1.

• For bias expressions, see (Cordeiro et al., 1997).

Using the data set from Javanshiri et al. (2015), we have n = 48, α̂ = 5.941, β̂ = 21.2024,

ŝe (α̂) = 1.1812 and ŝe
(

β̂
)
= 4.3462. Evaluating the analytical expressions in Cordeiro et al.

(1997), our analytical expressions and the coxsnell.bc() function, we have, respectively,

beta.gauss.bc(n = 48, mle = c(5.941, 21.2024))
## alpha beta
## -4.784 -4.125
beta.bc(n = 48, mle = c(5.941, 21.2024))
## alpha beta
## 0.3582 1.3315
pdf <- quote(gamma(alpha + beta) / (gamma(alpha) * gamma(beta)) *

x^(alpha - 1) * (1 - x)^(beta - 1))
lpdf <- quote(lgamma(alpha + beta) - lgamma(alpha) -

lgamma(beta) + alpha * log(x) + beta * log(1 - x))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 48,

parms = c("alpha", "beta"), mle = c(5.941, 21.2024),
lower = 0, upper = 1)$bias

## alpha beta
## 0.3582 1.3315

28. Kumaraswamy distribution with shapes α and β

f (x | α, β) = α β xα−1 (1− xα)β−1, 0 < x < 1.

• For bias expressions, see (Lemonte, 2011).

Using the data set from Wang et al. (2017), we have n = 20, α̂ = 6.3478, β̂ = 4.4898, ŝe (α̂) =
1.5576 and ŝe

(
β̂
)

= 2.0414. Evaluating the analytical expressions and the coxsnell.bc()

function, we have, respectively,

kum.bc(n = 20, mle = c(6.3478, 4.4898))
## alpha beta
## -6.573 -13.323
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pdf <- quote(alpha * beta * x^(alpha - 1) *
(1 - x^alpha)^(beta - 1))

lpdf <- quote(log(alpha) + log(beta) + alpha * log(x) + (beta - 1) *
log(1 - x^alpha))

coxsnell.bc(density = pdf, logdensity = lpdf, n = 20,
parms = c("alpha", "beta"), mle = c(6.3478, 4.4898),
lower = 0, upper = 1)$bias

## alpha beta
## 0.514 1.013

29. Inverse beta distribution with shapes α and β

f (x | α, β) =
Γ(α + β)

Γ(α) Γ(β)
xα−1 (1 + x)−(α+β), x > 0.

• For bias expressions, see (Stočsić and Cordeiro, 2009).

Using the data set from Nadarajah (2008b), we have n = 116, α̂ = 28.5719, β̂ = 1.3783, ŝe (α̂) =
4.0367 and ŝe

(
β̂
)

= 0.1637. Evaluating the analytical expressions and the coxsnell.bc()

function, we have, respectively,

invbeta.bc(n = 116, mle = c(28.5719, 1.3782))
## alpha beta
## 534.26 17.73
pdf <- quote(gamma(alpha + beta) * x^(alpha - 1) *

(1 + x)^(- alpha - beta) / gamma(alpha)/gamma(beta))
lpdf <- quote(lgamma(alpha + beta) + alpha * log(x) -

(alpha + beta) * log(1 + x) - lgamma(alpha) - lgamma(beta))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 116,

parms = c("alpha", "beta"), mle = c(28.5719, 1.3782),
lower = 0)$bias

## alpha beta
## 0.8025 0.0306

30. Birnbaum-Saunders distribution with shape α and scale β

f (x | α, β) =
1

2 α β
√

2 π

[(
β

x

)1/2
+

(
β

x

)3/2
]

exp
[
− 1

2, α2

(
x
β
+

β

x
− 2
)]

, x > 0.

• Bias expressions (Lemonte et al., 2007):

B (α̂) = − α

4 n

(
1 +

2 + α2

α (2 π)−1/2 h(α) + 1

)
(36)

and

B
(

β̂
)
=

β2 α2

2 n
[
α (2 π)−1/2 h(α) + 1

] , (37)

where

h(α) = α

√
π

2
− π e2/α2

[
1−Φ

(
2
α

)]
.

Using the data set from Gross and Clark (1976), we have n = 20, α̂ = 0.3149, β̂ = 1.8105,

ŝe (α̂) = 0.0498 and ŝe
(

β̂
)
= 0.1259. Evaluating the analytical expressions (36), (37) and the

coxsnell.bc() function, we have, respectively,

birnbaumsaunders.bc(n = 20, mle = c(0.3148, 1.8104))
## alpha beta
## -0.011991 0.004374
pdf <- quote(1 / (2 * alpha * beta * sqrt(2 * pi)) *

((beta / x)^0.5 + (beta / x)^1.5) *
exp(- 1/(2 * alpha^2) * (x / beta + beta/ x - 2)))

lpdf <- quote(-log(alpha) - log(beta) - 1 / (2 * alpha^2) *
(x / beta + beta/ x - 2) + log((beta / x)^0.5 +
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(beta / x)^1.5))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 20,

parms = c("alpha", "beta"), mle = c(0.3148, 1.8104),
lower = 0)$bias

## alpha beta
## -0.011991 0.004374

31. Generalized Pareto distribution with shape ξ and scale σ

f (x | ξ, σ) =
1
σ

(
1 +

ξ x
σ

)−(1/ξ+1)
, x > 0, ξ 6= 0.

• Bias expressions (Giles et al., 2016):

B
(

ξ̂
)
= − (1 + ξ) (3 + ξ)

n (1 + 3 ξ)
(38)

and

B (σ̂) = −
σ
(
3 + 5 ξ + 4 ξ2)
n (1 + 3 ξ)

. (39)

Using the data set from Ross and Lott (2003), we have n = 58, ξ̂ = 0.736, σ̂ = 1.709, ŝe
(

ξ̂
)
=

0.223 and ŝe (σ̂) = 0.41. Evaluating the analytical expressions (38), (39) and the coxsnell.bc()
function, we have, respectively,

genpareto.bc(n = 58, mle = c(0.736, 1.709))
## xi sigma
## -0.03486 0.08126
pdf <- quote(1 / sigma * (1 + xi * x / sigma )^(-(1 + 1 / xi)))
Rlpdf <- quote(-log(sigma) - (1 + 1 / xi) * log(1 + xi * x / sigma))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 58,

parms = c("xi", "sigma"), mle = c(0.736, 1.709),
lower = 0)$bias

## xi sigma
## -0.03486 0.08126

Additional Applications

In this section, we present additional numerical results returned by cosnell.bc(),
observed.varc() and expected.varcov(). For the data describing the times between successive
electric pulses on the surface of isolated muscle fiber (Cox and Lewis, 1966; Jørgensen, 1982), we fitted
the exponentiated Weibull, Marshall-Olkin extended Weibull, Weibull, Marshall-Olkin extended expo-
nential and exponential distributions. These distributions were also fitted by Cordeiro and Lemonte
(2013). There are 799 observations and for each distribution we report the MLEs, the bias corrected

MLEs, the observed variance-covariance obtained from the numerical Hessian H−1
1

(
θ̂
)

, the observed

variance-covariance obtained from the analytical Hessian H−1
2

(
θ̂
)

, the expected variance-covariance

I−1
(

θ̂
)

and the expected variance-covariance evaluated at the bias corrected MLEs I−1
(

θ̃
)

. The

MLEs and the H−1
1

(
θ̂
)

matrix were obtained by the fitdistrplus package (Delignette-Muller et al.,
2017). The R codes used to obtain the numerical results are available in the supplementary material.

It is important to emphasize that for the Marshall-Olkin extended Weibull and exponentiated
Weibull distributions, it is not possible to obtain analytical expressions for bias corrections. The
exponentiated-Weibull family was proposed by Mudholkar and Srivastava (1993). Its probability
density function is:

f (x | λ, β, α) = α β λ xβ−1 e−λ xβ
(

1− e−λ xβ
)α−1

,

where λ > 0 is the scale parameter and β > 0 and α > 0 are the shape parameters. The Marshall-Olkin
extended Weibull distribution was introduced by Marshall and Olkin (1997). Its probability density
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function is:

f (x | λ, β, α) =
α β λ xβ−1 e−λ xβ(

1− α e−λ xβ
)2 ,

where λ > 0 is the scale parameter, β > 0 is the shape parameter, α > 0 is an additional shape
parameter and α = 1− α.

The fitted parameter estimates and their bias corrected estimates are shown in Table 1. We see
that the bias corrected MLEs for α and λ of the MOE-Weibull and exp-Weibull distributions are quite
different from the original MLEs.

Table 1: MLEs and bias corrected MLEs.

Distribution α̂ β̂ λ̂ α̃ β̃ λ̃
MOE-Weibull 0.3460 1.3247 0.0203 0.3283 1.3240 0.0188

exp-Weibull 1.9396 0.7677 0.2527 1.8973 0.7625 0.2461
Weibull – 1.0829 0.0723 – 1.0811 0.0723

MOE-exponential 1.1966 – 0.0998 1.1820 – 0.0994
exponential – – 0.0913 – – 0.0912

It is important to assess the accuracy of MLEs. The two common ways for this are through the
inverse observed Fisher information and the inverse expected Fisher information matrices. The results
below show large differences between the observed H−1 and expected I−1 information matrices. As
demonstrated by Cao (2013), the I−1 outperforms the H−1 under a mean squared error criterion,
hence with mle.tools the researchers may choose one of them and not use the easier. Furthermore, in
general, we observe that the bias corrected MLEs decrease the variance of estimates.

• Exponentiated Weibull distribution:

H−1
1

(
θ̂
)
=

 0.00726 −0.00717 0.03564
−0.00717 0.00718 −0.03493

0.03564 −0.03493 0.18045

 , H−1
2

(
θ̂
)
=

 0.00729 −0.00720 0.03579
−0.00720 0.00721 −0.03509

0.03579 −0.03509 0.18120

 ,

I−1
(

θ̂
)
=

 0.00532 −0.00524 0.02609
−0.00524 0.00527 −0.02545

0.02609 −0.02545 0.13333

 , I−1
(

θ̃
)
=

 0.00510 −0.00510 0.02482
−0.00510 0.00519 −0.02454

0.02482 −0.02454 0.12590

 .

•Marshall-Olkin extended Weibull distribution:

H−1
1

(
θ̂
)
=

 0.00004 −0.00036 0.00052
−0.00036 0.00361 −0.00430

0.00052 −0.00430 0.00748

 , H−1
2

(
θ̂
)
=

 0.00005 −0.00047 0.00068
−0.00047 0.00468 −0.00582

0.00068 −0.00582 0.00967

 ,

I−1
(

θ̂
)
=

 0.00006 −0.00056 0.00082
−0.00056 0.00542 −0.00699

0.00082 −0.00699 0.01146

 , I−1
(

θ̃
)
=

 0.00005 −0.00051 0.00072
−0.00051 0.00526 −0.00651

0.00072 −0.00651 0.01030

 .

•Weibull distribution:

H−1
1

(
θ̂
)
=

[
0.00004 −0.00018
−0.00018 0.00086

]
, H−1

2

(
θ̂
)
=

[
0.00004 −0.00018
−0.00018 0.00087

]
,

I−1
(

θ̂
)
=

[
0.00004 −0.00018
−0.00018 0.00089

]
, I−1

(
θ̃
)
=

[
0.00004 −0.00018
−0.00018 0.00089

]
.

•Marshall-Olkin extended exponential distribution:

H−1
1

(
θ̂
)
=

[
0.00004 0.00081
0.00081 0.02022

]
, H−1

2

(
θ̂
)
=

[
0.00004 0.00081
0.00081 0.02023

]
,

I−1
(

θ̂
)
=

[
0.00004 0.00083
0.00083 0.02094

]
, I−1

(
θ̃
)
=

[
0.00004 0.00082
0.00082 0.02047

]
.
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• Exponential distribution:

H−1
1

(
θ̂
)
= 0.000010433, H−1

2

(
θ̂
)
= 0.000010436,

I−1
(

θ̂
)
= 0.000010436, I−1

(
θ̃
)
= 0.000010410.

Concluding Remarks

As pointed out by several works in the literature, the Cox-Snell methodology, in general, is efficient for
reducing the bias of the MLEs. However, the analytical expressions are either notoriously cumbersome
or even impossible to deduce. To the best of our knowledge, there are only two alternatives to obtain
the analytical expressions automatically, those presented in Stočsić and Cordeiro (2009) and Johnson
et al. (2012a). They use the commercial softwares Maple (Maple, 2017) and Mathematica (Wolfram
Research, Inc., 2010).

In order to calculate the bias corrected estimates in a simple way, Mazucheli (2017) developed
an R (R Core Team, 2016) package, uploaded to CRAN on 2 February, 2017. Its main function,
coxsnell.bc(), evaluates the bias corrected estimates. The usefulness of this function has been tested
for thirty one continuous probability distributions. Bias expressions, for most of them, are available in
the literature.

It is well known that the Fisher information can be computed using the first or second order
derivatives of the log-likelihood function. In our implementation, the functions expected.varcov()
and coxsnell.bc() are using the second order derivatives, analytically returned by the D() function.
In a future work, we intend to check if there is any gain in calculating the Fisher information from
the first order derivatives of the log-hazard rate function or from the first order derivatives of the
log-reversed-hazard rate function. Efron and Johnstone (1990) showed that the Fisher information
can be computed using the hazard rate function. Gupta et al. (2004) computed the Fisher information
from the first order derivatives of the log-reversed-hazard rate function. In general, expressions of the
first order derivatives of the log-hazard rate function (log-reversed-hazard rate function) are simpler
than second order derivatives of the log-likelihood function. In this sense, the integrate() function
can work better. It is important to point out that the hazard rate function and the reversed hazard
rate function are given, respectively, by h (x | θ) = − d

dx log [S(x | θ)] and h (x | θ) = d
dx log [F(x | θ)],

where S (x | θ) and F (x | θ) are, respectively, the survival function and the cumulative distribution
function.

In the next version of mle.tools, we will include, using analytical first and second-order partial
derivatives, the following:

• the MLEs of g (θ) and Var [g (θ)],

• the negative log likelihood value −2 log(L),

• the Akaike’s information criterion −2 log(L) + 2p,

• the corrected Akaike’s information criterion −2 log(L) + 2np
n−p−1 ,

• the Schwarz’s Bayesian information criterion −2 log(L) + p log(n),

• the Hannan-Quinn information criterion −2 log(L) + 2 log log(n)p,

where L is the value of the likelihood function evaluated at the MLEs, n is the number of observations,
and p is the number of estimated parameters.

Also, the next version of the package will incorporate analytical expressions for the distributions
studied in Section 38.4 implemented in the supplementary file “analyticalBC.R”.
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afmToolkit: an R Package for Automated
AFM Force-Distance Curves Analysis
by Rafael Benítez, Vicente J. Bolós and José-Luis Toca-Herrera

Abstract Atomic force microscopy (AFM) is widely used to measure molecular and colloidal inter-
actions as well as mechanical properties of biomaterials. In this paper the afmToolkit R package is
introduced. This package allows the user to automatically batch process AFM force-distance and
force-time curves. afmToolkit capabilities range from importing ASCII files and preprocessing the
curves (contact point detection, baseline correction. . . ) for finding relevant physical information,
such as Young’s modulus, adhesion energies and exponential decay for force relaxation and creep
experiments. This package also contains plotting, summary and feature extraction functions. The
package also comes with several data sets so the user can test the aforementioned features with ease.
The package afmToolkit eases the basic processing of large amount of AFM F-d/t curves at once. It
is also flexible enough to easily incorporate new functions as they are needed and can be seen as a
programming infrastructure for further algorithm development.

Introduction

In the last thirty years, atomic force microscopy (AFM) has become a necessary surface analytical
tool for life and materials scientists (Müller and Dufrêne, 2008; Kainz et al., 2014). AFM offers the
possibility to investigate molecular topographies and dynamical processes at (sub) nanometer scale as
a function of time (Hansma et al., 1996; Ortega-Vinuesa et al., 1998; Kuznetsov et al., 2010; Lopez et al.,
2010).

In addition, the AFM is a mechanical machine being able to measure forces between molecules,
particles or surfaces (Hinterdorfer et al., 1996; Butt et al., 2005; Borkovec et al., 2012). It can also be
used to measure mechanical properties of biomaterials, either indenting or stretching them (Rief, 1997;
Marszalek et al., 1999; Alcaraz et al., 2003; Best et al., 2003; Kasas and Dietler, 2008; Garcia-Manyes
and Sanz, 2010; Benitez and Toca-Herrera, 2014; Melzak and Toca-Herrera, 2015).

One problem that the researcher faces while performing force-distance (F-d) curves is the handling
and the interpretation of the amount of data. For example, for determining the unbinding force
between two molecules, hundreds of curves might be needed. Therefore, adaptive and flexible
software routines are necessary to export, analyze and organize the measured data before starting the
physical data interpretation. Several authors have addressed this type of problem before, proposing
algorithms to F-d curve signals (Benítez et al., 2013; Kasas et al., 2000; Andreopoulos and Labudde,
2011; Crick and Yin, 2007; Lin et al., 2007a). However, these works focused mostly on contact point
detection, adhesion energy quantification, or unfolding events. Here we present a set of functions
bundled in a package of R statistical software that offer a compact analysis of the whole F-d curve.

Force – distance curve parts

In force-distance experiments, an AFM-tip or a colloidal probe (see Ducker et al. (1991)) is extended
towards and retracted from the sample at speeds that may vary between a few nm/s and dozens
of µm/s. While performing the F-d experiment, the deflection of the cantilever is quantified as a
function of the displacement of the piezo-scanner (Moreno-Flores and Toca-Herrera, 2013). Thus,
the force sensed by the cantilever is calculated by multiplying its deflection by its spring constant
(Hooke’s law), which must be evaluated in every experiment. A general F-d curve (or force-time
curve) can be divided in three parts: move towards the sample, contact with the sample and separation
from the sample. Every part of the curve contains valuable and different information about the
sample of study. The first one delivers information about repulsive, attractive or structural forces
between the tip/colloidal probe and the sample (e.g. electrostatic, van der Waals, hydration, entropic,
etc.). The second part of the curve corresponds to the so-called contact regime, that is, when the
cantilever is touching (compressing) the sample. This part of the curve provides information about the
mechanical properties of the sample (i.e. Young’s modulus, relaxation time and viscosity of cells or
hydrogels). Finally, the separation curve contains information about adhesion or rupture forces (i.e.
ligand-receptor interactions), the existence of tethers, and possible molecular unfolding events (i.e.
mechanical unfolding of polymers).

However, the operating way of the piezo-electric does not follow this segmentation. The piezo-
electric distinguishes three movements: approach, pause and retract (see Figure 1). In this way, the
F-d raw data that can be acquired from the AFM is structured in these three parts. Indeed, it does not
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know where the contact point is located (zero distance between tip and sample).
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Figure 1: F-d curve. Left: Schematic representation of a typical Force-distance curve. Right (above and
below): Schematic representation of a typical Force-time at constant height.

Therefore, it is necessary to extract all above mentioned physically relevant information from the
F-d raw data as it is given by the device.

The afmToolkit package

In this article we introduce the afmToolkit package whose aim is to automate certain operations and
calculations that are normally done routinely on the F-d curves.

Package afmToolkit is available in CRAN and can be installed via the command ‘install.package’.
Nevertheless, the development version of the package of afmToolkit is also stored in the github plat-
form (github.com) and it can be installed directly from the R console using the ‘install_github’
function from package devtools (Wickham and Chang, 2016).

> install.packages("devtools") % chktex 8
> library("devtools") % chktex 8
> install_github("rbensua/afmToolkit")
> library(afmToolkit)

The package depends on the ggplot2 package (Wickham, 2016a) and uses functions from the
non-standard packages minpack.lm, (Elzhov et al., 2015), gridExtra (Auguie, 2016), scales (Wickham,
2016b) and dplyr (Wickham and Francois, 2016).

The "afmdata" class

The basic data structure for AFM F-d curves analysis with the afmToolkit package is the "afmdata"
class. It is an S3 class consisting on a list having at least the fields data and params (see Figure 2).

The field data is a data frame containing the data itself. The columns are Z, for the distance, Force
and segment, being the later a factor with levels approach, pause and/or retract, denoting which
part of the force – distance curve each data belongs to. In some cases also a Time column could be
present.

Eventually the number of columns of the data data frame may be increased, as different analysis
are performed. For example, once the baseline correction is done, a new column ForceCorrected is
added.

The params field is a list containing different parameters gathering information about the experi-
ment (e.g. the cantilever spring constant, the ID of the curve, etc.).

As further analyses are performed, the results are added as new fields to the "afmdata" list.
Therefore, the "afmdata" list will eventually contain, in a single data structure, the whole F-d curve
relevant information.
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...

...

...

afmdata (List)

data (Data Frame)

Z (numeric vector)

Force (numeric vector)

Time (numeric vector)

Segment (Factor: "approach", "pause", "retract")

params (List)

spring (numeric scalar)

curvename (string)

Figure 2: "afmdata" class. Basic "afmdata" class list description.

Importing data

Although the "afmdata" class definition function is flexible enough to create an "afmdata" structure
from a data frame directly, it is usually more convenient, in order to speed up the work flow, to import
the data from a file obtained directly from the AFM device used.

At the moment, there are only available two functions for importing F-d curves: afmReadJPK and
afmReadVeeco, which import NanoWizard JPK and Veeco (Bruker) data files, respectively, provided
they had previously been exported as ASCII files.

Importing data from JPKTM ASCII files: In the first case, a full AFM experiment is stored in a
single text file in which the different segments of the experiment (approach, contact or pause, and
retract) are separated by a header (see Figure 3-Left).

# TEXT EXPORT
# data-description.comment:  no comment entry
...............................
...............................
...............................
# columns: smoothedStrainGaugeHeight vDeflection strainGaugeHeight height aux1......
# fancyNames:  "Height (measured & smoothed)" "Vertical Deflection" "Height (mea.......
# springConstant:  46.49999999999999
# calibrationSlots:  nominal force nominal nominal volts volts volts volts volts elapsed......
# units:  m N m m V V V V V s s m
#
7.5088715E-6 -2.0092958E-9 7.50868E-6 1.3336258E-5 1.2999372 4.9851866 5.01......
7.5049657E-6 -1.1662475E-9 7.5049816E-6 1.3331452E-5 1.3002454 4.985496 5.0......
7.5010594E-6 -3.2319686E-10 7.500975E-6 1.3325729E-5 1.3002454 4.9851866 5.......
...............................
...............................
...............................
# index: 0
# xPosition:  -1.3571685006212897E-15
# yPosition:  7.414648816382621E-16
# approachID: 2015.11.12-09.02.48-00009
# segmentIndex:  1
# segment:  pause
...............................
...............................
...............................
# calibrationSlots:  nominal force nominal nominal volts volts volts volts volts elapsed ......
# units:  m N m m V V V V V s s m
#
-2.5333889E-6 1.057096E-6 -2.4900037E-6 3.0221559E-6 1.299321 4.9981904 5.01....
-2.5336294E-6 1.055449E-6 -2.4912365E-6 3.0233002E-6 1.299321 4.9985003 5.01...
-2.533869E-6 1.0542141E-6 -2.4924693E-6 3.0233002E-6 1.299321 4.9981904 5.01...
...............................
...............................
...............................
# index: 0
# xPosition:  -1.3571685006212897E-15
# yPosition:  7.414648816382621E-16
# approachID: 2015.11.12-09.02.48-00009
...............................
...............................
...............................
# units:  m N m m V V V V V s s m
#
-2.731993E-6 1.0502324E-6 -2.7325584E-6 3.0425263E-6 1.299321 4.9981904 5.0157...
-2.7280869E-6 1.0411486E-6 -2.7282435E-6 3.0521394E-6 1.299321 4.9981904 5.015...
-2.7241801E-6 1.0365973E-6 -2.724237E-6 3.0578612E-6 1.299321 4.9981904 5.0160...
...............................
...............................
...............................

FIRST 
HEADER

SECOND
HEADER

THIRD
HEADER

APPROACH
SEGMENT

PAUSE
SEGMENT

RETRACT
SEGMENT

"\?Force file list"
"\Version: 0x07300000"
"\Date: 07:32:42 PM Fri Jul 10 2015"
"\Start context: FOL"
"\Data length: 40960"
"\Text: "
"\History: "
"\Navigator note: "
"\Engage X Pos: "
"\Engage Y Pos: "
"\*Equipment list"
"\Description: MultiMode V"
"\Microscope: MultiMode V"
"\Extender: None"
"\Vision: Hauppauge WinTV Capture"
"\Scanner file: 3064e-z.scn"
"\*Scanner list"
"\Scanner type: AFM"
"\Serial Number: 3064E-z"
"\Piezo size: E"
.............................................................................
.............................................................................
.............................................................................
.............................................................................
"\@4:Ramp offset: V [Sens. Zsens] (0.006713765 V/LSB) -27.17536 V"
"\@4:Ramp Begin: 0 nm"
"\@4:Ramp End: 0 nm"
"\@4:Z display: 122.232 nm"
"\*Force file list end"
Time_s_Ex Time_s_Rt Calc_Ramp_Ex_nm Calc_Ramp_Rt_nm Defl_nm_Ex Defl_nm_Rt Defl_pN_Ex Defl_pN_Rt
0.00000e+000 1.151999e+000 0.000000e+000 5.399999e+002 -2.439994e+001 2.160553e+001 -1.816331e+003 1.608316e+003
1.730768e-004 1.152172e+000 8.112980e-002 5.399188e+002 -2.439994e+001 2.160553e+001 -1.816331e+003 1.608316e+003
3.461537e-004 1.152346e+000 1.622596e-001 5.398377e+002 -2.446810e+001 2.155101e+001 -1.821405e+003 1.604257e+003
5.192305e-004 1.152519e+000 2.433894e-001 5.397566e+002 -2.416821e+001 2.152374e+001 -1.799081e+003 1.602228e+003
6.923073e-004 1.152692e+000 3.245192e-001 5.396755e+002 -2.479524e+001 2.145559e+001 -1.845758e+003 1.597154e+003
8.653841e-004 1.152865e+000 4.056490e-001 5.395944e+002 -2.439994e+001 2.142833e+001 -1.816331e+003 1.595125e+003
1.038461e-003 1.153038e+000 4.867788e-001 5.395132e+002 -2.411368e+001 2.129201e+001 -1.795023e+003 1.584978e+003
1.211538e-003 1.153211e+000 5.679086e-001 5.394321e+002 -2.442720e+001 2.118296e+001 -1.818361e+003 1.576860e+003
1.384615e-003 1.153384e+000 6.490384e-001 5.393510e+002 -2.438631e+001 2.122386e+001 -1.815317e+003 1.579904e+003
1.557692e-003 1.153557e+000 7.301682e-001 5.392699e+002 -2.430452e+001 2.111481e+001 -1.809229e+003 1.571786e+003
1.730768e-003 1.153730e+000 8.112980e-001 5.391888e+002 -2.430452e+001 2.095123e+001 -1.809229e+003 1.559610e+003
1.903845e-003 1.153903e+000 8.924277e-001 5.391077e+002 -2.463167e+001 2.092397e+001 -1.833582e+003 1.557580e+003

HEADER

COLUMN NAMES

EXTEND COLUMNS RETRACT COLUMNS

Figure 3: ASCII Files. Left: structure of a JPK ASCII file with three headers. Right: Structure of a Veeco
(Bruker) ASCII file.

The function finds out how many headers the file contains (up to three headers), which columns
contain the relevant information: distance, force and time (if available), and it also looks for the spring
constant in the header and stores it in the params field. The ID (curvename) of the experiment will be
the name of the ASCII file (by default).
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The afmToolkit has two JPK text example files: ‘force-save-JPK-2h.txt’ and ‘force-save-JPK-3h.txt’,
with two and three segments, respectively. Let’s see an example.

> data <- afmReadJPK("force-save-JPK-2h.txt.gz",
path = path.package("afmToolkit"))

JPK file force-save-JPK-2h.txt loaded. 2 headers found.

Once it is loaded we can check the structure of the new "afmdata" variable created.

> str(data)

List of 2
$ data :'data.frame': 1227 obs. of 4 variables:
..$ Z : num [1:1227] 6.48e-06 6.48e-06 6.48e-06 6.48e-06 ...
..$ Force : num [1:1227] -1.71e-08 -1.70e-08 -1.71e-08 -1.71 ...
..$ Time : num [1:1227] 0.000244 0.000732 0.001221 0.001709 ...
..$ Segment: Factor w/ 2 levels "approach","retract": 1 1 1 1 ...
$ params:List of 2
..$ SpringConstant: num 0.16
..$ curvename : chr "force-save-JPK-2h.txt"
- attr(*, "class")= chr "afmdata"

From the output we can see that there are two fields in the "afmdata" structure: the data field, and
the params field.

We can easily plot the whole experiment using the available plotting S3-method plot.afmdata,
which makes use of the ggplot2 package.

> plot(data)

The result is depicted in Figure 4.
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Figure 4: plot.afmdata function. Two segment JPK F-d curve plotted with the plot.afmdata function.
JPK refers to the type of AFM. In this case the cantilever moves and the sample is at rest. For the
Multimode (Bruker) the cantilever is at rest and the sample moves.

Note that the afmReadJPK function automatically determines the number of segments from the
number of headers present in the ASCII file. However it does not find out from the headers which
segment is each one of them. That is, if afmReadJPK finds only one header, it will assume that the
file contains only an approach segment. If two headers are detected, it will be assumed that the first
one is the approach and the second is the retract segment. Finally, if three headers are found, they
will be assigned to the approach, pause and retract, respectively. At this moment no more than three
segments per file are supported.
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Importing data from VeecoTM ASCII files: A Veeco ASCII file is, in comparison, simpler than the
JPK file. It contains a single header with the details of the parameters of the AFM experiment and
the data from each part of the experiment (approach or extend, and retract) are stored on separated
columns (see Figure 3-right).

The afmReadVeeco function reads the data file and creates an "afmdata" structure separating the
different parts of the experiment obtained from their corresponding columns in the file.

The syntax for importing a Veeco file is very similar to the one of the JPK file.

> dataVeeco <- afmReadVeeco("veeco_file.txt",
path = path.package("afmToolkit"))

Veeco file veeco_file.txt loaded.

Contact point and detach point determination

Contact point: The first, and probably the most important step in the AFM F-d curve analysis is the
determination of the contact point. We define such point as the location in the approach segment of
the F-d curve where the deflection of the cantilever is, for the first time, significantly higher than the
baseline average slope. It should be noted that we are using here the term “contact point” in a broad
sense, since there is no necessity for a real contact between the tip and the sample to take place, but we
are rather considering the contact point as the point at which the interactions between the sample and
the tip start to appear. Such interactions could be caused by an actual contact between tip and sample,
or they could be the response to a repulsive force or even a “jump to contact” attractive interaction.

Lots of different approaches to the determination of the contact point have already been made
(Lin et al., 2007a,b; Rudoy et al., 2010; Benítez et al., 2013; Gavara, 2016). Function afmContactPoint
estimates the contact point using the algorithm described in Benítez et al. (2013). This method
computes, from the F-d signal, a new δ signal which is, roughly speaking, the lagged difference
between two values of the slopes of the best lines fitted by a local linear regression on a rolling window
of some predetermined width. High absolute values of δ are related to abrupt changes in either
the original F-d curve or its slope. From the δ signal, the contact point is obtained using two given
thresholds which are multiples of the δ signal noise (i.e. standard deviation) in the first part of the
curve (i.e. non-contact part). See Benítez et al. (2013) for specific details on the algorithm.

For example, for the two segments example shown above, we could take the following parameters:

• width: Width of the window, given in number of points, in which the local regression is
performed. We shall set width = 20.

• mul1: Value of the first multiplier used to determine the first threshold. It should be small
enough to detect the contact point accurately (even zero is a possible value). In this case we will
set mul1 = 1.

• mul2: Value of the second multiplier used to determine the second threshold. Its value should
be large enough to distinguish the contact point from the regular noise of the signal but no so
large that the contact point remains undetected. We will set this value as mul2 = 10.

The rest of the parameter will remain in their default values. Then the following command will
detect the contact point and plot it together with the approach segment of the F-d curve.

> width <- 20
> mul1 <- 1
> mul2 <- 10
> data <- afmContactPoint(data, width, mul1, mul2)
> plot(data, segment = "approach") +
geom_vline(xintercept = data$CP$CP, lty = 2)

Figure 5-Left shows the approach segment of the curve together with the contact point estimation
(dashed vertical line). Note that the contact point is the first point in the approach curve (from right to
left) in which the curve starts to deviate from the baseline. When there is an attraction force (like in the
example) this contact point is overestimated and, in order to be sure that we are starting the contact
regime in which the tip is indeed contacting the sample, we should calculate the zero force point (see
below).

Detach point: The detach point is the point in the retract segment where the tip finally leaves the
sample. It is computed exactly in the same way that the contact point, but the computations are
performed to the retract part and the curve is traced backwards. The input parameters of function
afmDetachPoint are the same than for function afmContactPoint. Let us continue with our example:
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Figure 5: Contact point/Detach point detection. Left: F-d approach curve (solid line) and the esti-
mation of the contact point (dashed line) with the afmContactPoint function. Right: Detach point
(dashed line) estimated on the retract segment (solid line) with afmDetachPoint.

> data <- afmDetachPoint(data, width = 20, mul1 = 1, mul2 = 10)
> plot(data, segment = "retract") +

geom_vline(xintercept = data$DP$DP, lty = 2)

The estimation of the detach point can be seen in Figure 5-Right.

Baseline correction

Once the contact and detach points are found, the baseline calibration can be carried out. Theoretically,
when the tip is far from the sample, the deflection of the cantilever and therefore the measured force
should be zero. Nevertheless, in most cases there is an offset, or even a drift that keeps this part of
the curve away from the zero value. In order to fix this behaviour, a baseline correction is done. Such
correction is usually done manually, by selecting the part of the curve which we know to be away
from the sample and then substract to the whole F-d curve, the least squares fitted line to such selected
segment of the curve.

Since we already determined the contact and detach points, we know exactly when the tip is away
from the sample. Function afmBaselineCorrection will perform this calibration automatically. This
function will add a new column called ForceCorrected to the data data frame field of the "afmdata"
class.

> data <- afmBaselineCorrection(data)
> plot(data)

Once the baseline correction is done, futher analyses will only use the Corrected Force column of
the data field. For example, the ‘plot(data)’ command will plot the "afmdata" F-d curve with the
calibration already done, as can be observed in Figure 2 where it can be seen that when the tip is away
from the sample, the force is actually zero.

Zero force point

As we mentioned above, function afmContactPoint finds the first point in the approach segment
for which the slope of the curve is significantly different from the baseline. This usually coincides
with what would be considered the contact point by “eye inspection”. Nevertheless, when there is
an attraction force prior to the contact regime, the point found with function afmContactPoint is an
overestimation of the real contact point since it does not distinguish between attraction and repulsions.
Therefore, a new function, afmZeroPointSlope, can be used to find the point after the minimum which
is the intersection between the curve and the baseline (zero force line).

With the following commands we can obtain the zero force point and the slope of the F-d curve
after that point. The results will be added to the data structure in new field named Slope. We finally
plot the curve and both in Figure 7, the contact point (dashed red line) and the zero force point (blue
dotted line).
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Figure 6: Base line correction. F-d curve with the baseline correction done with
afmBaselineCorrection function.

> data <- afmZeroPointSlope(data, segment = "approach")
> plot(data, segment = "approach") +

geom_vline(xintercept = data$CP$CP, col = "red", lty = 2) +
geom_vline(xintercept = data$Slope$Z0Point, col = "blue", lty = 3)

Young’s modulus estimation

One of the most important parameters for determining the mechanical properties of a sample is the
Young’s modulus. Obtaining the Young’s modulus from an AFM F-d curve is not straightforward
and depends on several factors. Namely, the spring constant of the cantilever, the contact area, which
largely depends on the tip’s geometry and the Poisson ratio, which depends on the compressibility of
the sample. The typical AFM tip geometries are: spherical (colloidal probes), pyramidal and conical.

Function afmYoungModulus computes the Young’s modulus of the sample from the approach
segment fo the force-distance curve. Before it is called, be aware that the spring constant should be
available in the params field of the "afmdata" structure and both, the baseline correction and the zero
force point should have been obtained.

Currently, only the two most used geometries are available for this function: the four-sided
pyramidal tip and the paraboloid tip. The former uses the classical Snedon formulae:

F =
E

1− ν2
tan α√

2
δ2, (1)

being E the Young’s modulus, ν the Poisson ratio, α the pyramid face angle and δ the indentation of
the tip into the sample. Parameters ν and α should be provided (ν = 0.5 is the default value) and first
we will need to determine the tip’s indentation.

The latter uses the Hertz model given by

F =
4
√

R
3

E
1− ν2 δ3/2. (2)

The indentation can be obtained substracting to the piezo displacement, Z, the zero force point, Z0
and the deflection of the cantilever,

δ = Z− Z0 −
F
κ

,

where κ is the cantilever’s spring constant. Function afmIndentation computes the indentation and
adds it as a new column to the data field of the "afmdata" structure. Once the indentation is calculated,
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Figure 7: Zero-force point. Contact point (red dashed line) and zero force point (blue dotted line)
obtained with afmContactPoint and afmZeroPointSlope, respectively.

function afmYoungModulus computes the Young’s modulus by fitting a straight line to F vs δ2. From the
slope of the line fitted and (1), E can be obtained and it is added to the params field of the "afmdata"
variable.

For the example data, using a pyramidal tip with α = 22 deg considering an incompressible
sample (ν = 0.5), we have

> data <- afmIndentation(data) # First compute the indentation
> data <- afmYoungModulus(data, thickness = , 5e-9,

params = list(alpha = 22))
> data$YoungModulus$YoungModulus
[1] 59730377

We have, therefore, obtained a Young’s modulus of E = 59.73 MPa.

Exponential decay fit

Another important type of experiment used to obtain viscoelastic mechanical properties of the sample
is the Force relaxation – Creep experiment. In these experiments, after reaching the sample, the tip
remains in contact for a predetermined elapsed time. In the Force relaxation experiment, the height of
the AFM’s piezo is held constant, and in presence of a viscoelastic material, an exponential decay in
the force should be observed. On the other hand, in a Creep experiment, the force remains constant
and, as a consequence, it is the height of the tip what shows an exponential decay behaviour.

The presence of the exponential decays in force and/or in height, can be explained in terms of the
classical linear viscoelastic theory, where combinations of Maxwell and Voight elements (springs and
dahspots) are used. However they will not be discussed here and we refer the reader to Riande et al.
(1999) for a general discussion of linear viscoleasticity and Moreno-Flores et al. (2010a,b) for more
specific models used in nanoindentation AFM experiments in cell mechanics problems.

Plainly speaking, each different viscoelastic material in the sample is characterized by a different
relaxation time. Thus, the response Force vs Time or Z vs Time could be represented by a Prony series
of the form (following the notation of Moreno-Flores et al. (2010a)):

F(t) = a0 +
n

∑
k=1

aket/τk ,
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for the Force relaxation experiment, and

Z(t) = c0 +
n

∑
k=1

ckexkt,

for the creep experiment.

The afmToolkit can determine the parameters of the above mentioned Prony series for both types
of experiments by fitting the sum of exponential to the data via a nonlinear least squares Levenberg-
Mardquart algorithm provided by the minpack.lm package (Elzhov et al., 2015). Presently, only either
one or two exponentials in the Prony series can be considered. This can be explained because in typical
AFM experiments, there is usually either an homogenenous material or, for cell mechanics problems,
at least two materials – cell membrane and cell cytoskeleton – are considered.

An important issue when performing nonlinear least square fits is the election of the initial values
for the parameters. Often there is an extremely high sensitivity to such values, so it is critical to
make good initial guesses. For a general single exponential decay function y(t) = a0 + a1 exp(−t/τ1),
we find that a0 is the horizontal asymptote, a0 + a1 is the value at t = 0 and τ1 should be of the
same order of magnitude of the total time. In case there is a two-exponential decay function y(t) =
a0 + a1 exp(−t/τ1) + a2 exp(−t/τ2), a0 is again the horizontal asymptote, but now a0 + a1 + a2 is the
initial value y(0), so a good initial guess could be setting both parameters a1 and a2 with the same
values (i.e. a1 = a2 = (y(0)− a0)/2). For the initial values of the decay times (or frequencies), a
usually good guess is to set one of them, say τ1, of the same order of magnitude as the total time, and
then set the second one an order of magnitude smaller (i.e. τ2 = τ1/10).

Let us see an example. We will need a data file with three segments: approach, contact and retract.

> data <- afmReadJPK("force-save-JPK-3h.txt",
path = path.package("afmToolkit"))

JPK file force-save-JPK-3h.txt loaded. 3 headers found.

Once the data is loaded, we will proceed with the contact and detach point determination, baseline
correction and the zero force point estimation.

> data <- afmContactPoint(data, width, mul1, mul2)
> data <- afmDetachPoint(data, width , mul1, mul2)
> data <- afmBaselineCorrection(data)
> data <- afmZeroPointSlope(data, segment = "approach")

We may now plot the Force vs Time curve in the contact segment:

> plot(data, segment = "pause" , vs = "Time")

In Figure 8 it is shown the Force vs. Time curve together with the values of the magnitudes that
will be used to make the initial guesses for the parameters.

Taking into account the values depicted in Figure 8, we shall see two options for the starting values
of the fit parameters, one for the single exponential fit and other for the two exponentials fit.

> data1 <- afmExpDecay(data, nexp = 1, tmax = 7.5,type = "CH",
start = c(a0 = 8.2e-7, a1 = 3.35e-7, tau1 = 5))

> data <- afmExpDecay(data, nexp = 2, tmax = 7.5,type = "CH",
start = c(a0 = 8.2e-7, a1 = 1.675e-7,
a2 = 1.675e-7, tau1 = 5, tau2 = 0.1))

The output of this function is another afmdata class variable with an extra Expfit field, which is a
list with two fields: expdecayModel and expdecayFit, being the former the nls class structure resulting
from the nlsLM function from package minpack.lm, and the latter a numerical vector containing the
exponentially decaying forces estimated by the fit.

Therefore, the standard summary function can be used to extract the relevant information of the fits:

> summary(data1$ExpFit$expdecayModel)
> summary(data$ExpFit$expdecayModel)

The fits are shown in Figure 9. It is seen that in this case, the double exponential clearly beats
the single exponential fit, but in order to be sure we can check the goodness of fit data. From the fit
summaries shown in Table 1 we may assert that the double exponential fit performs a better prediction
than the single exponential fit – the Residual standard error is an order of magnitude smaller – while
keeping all the parameters statistically significant, i.e. the standard error of all coefficient are at least
one order of magnitude smaller than the value estimated.
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Figure 8: Force exponential decay. Force vs. Time plot in the contact segment. A clear exponential
decay is observed. The important magnitudes are indicated in the plot.

Adhesion energy

When the cantilever retracts from the sample several events can take place, depending on the type of
experiment. One of the most important effects that may occur is the adhesion phenomena. In a force
spectroscopy experiment, the adhesion event is usually reflected in the F-d curve as an hysteresis loop,
in which, as a result of the presence of non-conservative forces, the retract curve is below the approach
curve.

The adhesion energy can be estimated as the area between the retract force-distance curve and
the Z-axis from the zero-force point – in which it is considered that the tip starts to detach from the
sample – to the point at which there is a jump-from-contact event.

Sometimes, after this jump-from-contact event, some other important phenomena, like tether
formation, can take place before the tip fully detaches from the sample and the F-d curve finally enters
in the off-contact region.

We can compute these energies by means of the afmAdhesionEnergy function. This function uses
an algorithm similar to the contact point estimation method implemented in the afmContactPoint
and afmDetachPoint functions. It has as inputs the width of the rolling window in which a best line
fit is computed and a multiplier mul that will be used to determine the jumps in the F-d curve that
determine the different adhesion events.

Following the example of the three segment F-d curve, we could easily find the adhesion energies
with the commands

> data <- afmAdhesionEnergy(data, width = 10, mul = 15)
> data$AdhEner$Points
[1] 68.0 124.5 347.0
> data$AdhEner$Energies

E1adh E2adh Etotal
1 1.142784e-14 1.171835e-15 1.259942e-14

The afmAdhesionEnergy function appends to the afmdata class data input another field named
AdhEner, which is a list with two fields: Points and Energies. The Points field is a vector of length 3
containing the indices of the F-d curve where the three events take place: the zero-force point (left
end), the jump-from contact event (middle) and the full-detach event point (right end). The Energies
field is also a vector of three components containing the adhesion energy, E1adh, computed from the
zero-force point to the jump-from-contact point, the remaining energy, E2adh, computed from the
jump-from-contact point to the full-detach event point, and the total energy Etotal which is the sum
of these two. Therefore, in this example, the total adhesion energy is around 1.26 10−14 J.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 301

Figure 9: Exponential decay fits. Single and double exponential fits.

Summarizing an "afmdata" class

After all these analyses have been done to an F-d curve stored in an "afmdata" class, function summary
can display the most relevant information about the curve in both, numerical and visual ways.

In order to illustrate a full example, we will first compute the Young’s modulus of the three
segments F-d curve example.

> data <- afmIndentation(data)
> data <- afmYoungModulus(data, thickness = 5e-8,

params = list(alpha = 22))

Now that all analyses are performed, let us see how the summary function shows us all relevant
information.

> summary(data)
Estimate Std. Error t value Pr(>|t|)

a0 8.295849e-07 3.445595e-10 2407.66801 0
a1 1.497522e-07 3.367846e-10 444.65288 0
a2 1.358410e-07 1.012757e-09 134.12989 0
tau1 2.779792e+00 2.169182e-02 128.14933 0
tau2 1.334409e-01 1.836281e-03 72.66913 0
# of segments Spring Constant Contact Point Young's Modulus

1 3 52.9146 6.982701e-06 249153289
Zero force pt. Type of Experiment

6.99318e-06 Constant Height

The graphical information provided is depicted in Figure 10. Thus, from the plots one can easily
know the number of segments of the F-d curve, the goodness of the exponential decay fit, the value
of the Young’s modulus obtained with an Hertz’s contact model and a pyramidal tip, among other
useful information.

A sample R afmToolkit session for batch processing

Up to now, we have shown the capabilities of the afmToolkit package for dealing with one F-d curve.
However, the usual workflow in AFM force spectroscopy experiments is to repeat the measures a
number of times that can be very large (even hundreds of repetitions). Therefore it is absolutely
necessary algorithms and methods allowing us to batch-process all the curves at once.
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Table 1: Comparison of the single and double exponential fits.

Single exponential

Estimate Std. Error t value Pr (>|t|)
a0 8.5e-07 2.3e-10 3.6e+03 0
a1 1.8e-07 4.3e-10 4.1e+02 0
τ1 1.6 0.0095 1.7e+02 0
Residual standard error: 1.232e-08 on 14333 d.o.f.

Double exponential

Estimate Std. Error t value Pr (>|t|)
a0 8.3e-07 3.6e-10 2.3e+03 0
a1 1.5e-07 3.5e-10 4.3e+02 0
a2 1.4e-07 1e-09 1.3e+02 0
τ1 2.6 0.021 1.2e+02 0
τ2 0.13 0.0018 71 0
Residual standard error: 8.196e-09 on 14331 d.o.f.

The afmToolokit package can deal with a set of F-d curves stored as "afmdata" class variables
and bundled together in one special data class called "afmexperiment".

An "afmexperiment" data class is a list of "afmdata" variables. Almost every function in the
afmToolkit package first checks for the input data class. If the input is of "afmdata" class, it performs
the analysis for one curve, but if it is an "afmexperiment" class variable, it loops for every "afmdata"
curve in the list, executing the function to each individual F-d curve.

Next, we will show as an example, how would it be to deal with several F-d curves at once. First
we will use the afmReadJPKFolder function in order to read all JPK files contained in some folder.

> dataFolder <- paste(path.package("afmToolkit"),"afmexperiment",sep = "/")
> data <- afmReadJPKFolder(dataFolder)
JPK file force-save-1.txt loaded. 2 headers found.
JPK file force-save-2.txt loaded. 2 headers found.
JPK file force-save-3.txt loaded. 2 headers found.
JPK file force-save-4.txt loaded. 2 headers found.

This function will create the "afmexperiment" data variable:

> class(data)
[1] "afmexperiment"

As an illustrative example we can make use of the batchExperiment data set available in afm-
Toolkit. This data set consists on an "afmexperiment" data class containing 14 F-d curves in "afmdata"
format.

> data(batchExperiment)

The 14 curves correspond to two different experiments: the first one is a sample covered with
Polyallylamine hydrochloride (“PAH”) (6 curves) while the second one is covered with Chitosan
(“CHI”) (8 curves). Such factor is specified in the params field of the "afmdata" structure. For example:

> str(batchExperiment[[1]]$params)
List of 3
$ SpringConstant: num 0.102
$ curvename : chr "force-save-2016.07.27-16.41.34.558.txt"
$ type : chr "PAH"

Now, the standard analysis procedure would be:

1. Preprocessing the curves: Contact and detach points detection, Baseline correction, Zero force
point determination and indentation calculus.

> width <- 50
> mul1 <- 1
> mul2 <- 10
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Figure 10: Summary plots. Information and plots given by the summary function.

> batchExperiment <- afmContactPoint(batchExperiment, width=width,
mul1 = mul1, mul2 = mul2)

> batchExperiment <- afmDetachPoint(batchExperiment, width=width,
mul1 = mul1, mul2 = mul2)

> batchExperiment <- afmBaselineCorrection(batchExperiment)
> batchExperiment <- afmZeroPointSlope(batchExperiment,

segment = "approach")
> batchExperiment <- afmIndentation(batchExperiment)

2. Curve analysis.

> batchExperiment <- afmYoungModulus(batchExperiment,
thickness = 2.5e-7,
geometry = "paraboloid",
params = list(R = 1e-8))

> batchExperiment <- afmExpDecay(batchExperiment, nexp = 2,
type = "CH", plt = FALSE, tmax = 5)

> batchExperiment <- afmAdhesionEnergy(batchExperiment,
width = 5, mul = 15)

After some warning messages due to the afmExpDecay function telling us that we did not
provide some initial values for the Levenberg-Mardquart algorithm, we will find that now our
"afmexperiment" structure is a list of 14 "afmdata" class variables, each one with 8 fields:

> head(summary(batchExperiment))
Length Class Mode

force-save-2016.07.27-16.56.36.140.txt 8 afmdata list
force-save-2016.07.27-16.57.00.672.txt 8 afmdata list
force-save-2016.07.27-16.57.25.194.txt 8 afmdata list
...

3. Extracting the results: Once all the analyses are performed, we need to extract the information
from the "afmexperiment" list and store it in spreadsheet-like data frames, since they are more
suitable formats for further analysis or plotting.
To that aim we use the afmExtract function.

> parameters <- afmExtract(batchExperiment,
params = list("YM", "AE", "ED"),
opt.param = "type")
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The parameter params is a list with the parameters we want to extract (YM stands for “Young’s
Modulus”, AE for “Adhesion Energies” and ED for “Exponential decay”). The parameter
opt.param is an optional parameter with additional information that we may want to store
in our data frames (like factors describing the experiments). In this case we set ‘opt.param =
"type"’ so we include the information relative to the type of experiment (“PAH” or “CHI”).
The result of the afmExtract function is a list with two data frames. The first one storing the
Young’s Modulus and the Adhesion Energies, and the second one containing the exponential
decay results (coefficients and standard errors).

4. Plotting the results. Plotting the parameters is now straightforward, provided the dplyr
package for data frame manipulation is installed and loaded:

> library(dplyr)
> parameters[[1]] %>% ggplot(aes(x = type, y = YM)) +

geom_boxplot() + ylab("Young's Modulus (Pa)")

> parameters[[1]] %>% ggplot(aes(x = type, y = Etotal)) +
geom_boxplot() + ylab("Total Adhesion Energy (J)")

> parameters[[2]] %>% ggplot(aes(x = type, y = Estimate)) +
geom_boxplot() + facet_wrap(~parameter, scales = "free")

Young’s Modulus results are depicted in Figure 11 (left plot), total Adhesion Energy results
in Figure 11 (right plot), and the different parameter estimates for the exponential decays are
shown in Figure 12.
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Figure 11: Batch processing: Left: Young’s Modulus vs. Experiment type boxplot. Right: “Total
Adhesion Energy” vs. “Experiment type” boxplot. Both plots extracted from an "afmexperiment"
data class variable.

Conclusions

The R programming language has became in the recent years the “lingua franca” of statistics and data
science. The number of users contributed packages has increased exponentially reaching more 10000
packages. However, although there are several packages for AFM image processing at CRAN, up to
our knowledge, this is the first R package for force spectroscopy analysis.

Our goal has been to create a set of functions for the automatic analysis of force-distance curves
while being flexible enough to be easily extended by adding algorithms that allow easier analysis in
more and more different types of AFM experiments.
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Figure 12: Batch processing: Exponential decay. Boxplot of the values of the estimated parameters in
the double exponential decay fit for each experiment type.

For example, in the scope of event detection, the use of wavelets has proven to be very effective
in determining protein folding events (García-Massó et al., 2016) or in the detection of jumps in the
retract segment of the curve, that may be associated with the formation of tethers (Benítez and Bolós,
2017). Thus, new directions in the development of this afmToolkit could be the inclusion of peak
detectors.

We sincerely hope that this package will be found useful by the force - spectroscopy scientists and
we are willing to recieve feedback from the users.
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The welchADF Package for Robust
Hypothesis Testing in Unbalanced
Multivariate Mixed Models with
Heteroscedastic and Non-normal Data
by Pablo J. Villacorta

Abstract A new R package is presented for dealing with non-normality and variance heterogeneity of
sample data when conducting hypothesis tests of main effects and interactions in mixed models. The
proposal departs from an existing SAS program which implements Johansen’s general formulation of
Welch-James’s statistic with approximate degrees of freedom, which makes it suitable for testing any
linear hypothesis concerning cell means in univariate and multivariate mixed model designs when
the data pose non-normality and non-homogeneous variance. Improved type I error rate control is
obtained using bootstrapping for calculating an empirical critical value, whereas robustness against
non-normality is achieved through trimmed means and Winsorized variances. A wrapper function
eases the application of the test in common situations, such as performing omnibus tests on all effects
and interactions, pairwise contrasts, and tetrad contrasts of two-way interactions. The package is
demonstrated in several problems including unbalanced univariate and multivariate designs.

Introduction

The problem of testing for mean equality between several groups can be accomplished using classical
techniques such as Student’s t test, when only two groups are compared, or ANOVA when more than
two groups are involved. Both of them have been widely applied in the past in a number of areas
ranging from ecology and biology to psychology, social sciences and medicine (Levin, 1997; Coates
and McKenzie-Mohr, 2010), although their use tends to decrease for the reasons mentioned next.

In order for these approaches to work well, the data must satisfy three conditions, namely inde-
pendence, normality and homoscedasticity of the errors. While ANOVA is known to be robust to
small departures from normality, homogeneity of population variances is crucial as concluded by
simulation studies in which these methods have been found to exhibit type I error rates oscillating
from too conservative to extremely liberal, specially in unbalanced designs leading to very heteroge-
neous cell variances. The behaviour depends on the relation between the variance of the cell with the
fewest observations and the number of observations contained in it (Milligan et al., 1987). Indeed,
data from a number of experiments conducted in the aforementioned research fields often exhibit
non-homogeneous variances. This is not a problem for one-way designs since the built-in function
oneway.test in package stats is able to account for different variances. Unfortunately, real-world
studies usually require more complex designs, like the typical mixed between x within-subjects designs
for clinical trials involving either animals or persons. For both reasons, the application of simple
ANOVA in serious analyses of experimental data is nowadays not very common.

A distinction should be made here on what homogeneity of variances means depending on the
design being considered (Lix and Keselman, 1995). In univariate settings with between-subjects factors
only, all the cell variances should be equal, while in multivariate settings, it refers to the equality of the
population covariance matrices across all cells. In mixed designs with at least one between-subjects
factor, a set of orthonormalized contrasts on the repeated measures must have common covariance
matrices (sphericity assumption), and all those matrices must be equal across all cells of the between-
subject factors. When both conditions are met, it is said that multisample sphericity holds (Huynh,
1978).

A number of alternatives have been proposed to overcome the parametric restrictions (Higgins,
2003). Traditionally the most widely used choices have been nonparametric tests such as Mann-
Whitney-Wilcoxon rank sum test and Kruskal test for two groups, or Wilcoxon signed-rank test and
Friedman test (for which paired versions exist) for more than two groups. However, they cannot
handle multiple factors or interactions. Generalized Linear Models can deal with multiple factors and
interactions with non-normal data, but require specifying the link function and are unable to handle
repeated measures. Since our study focuses on the most general models, i.e. those with between-
subjects and within-subjects interactions, the aforementioned tests are not useful. The generalization
of Mixed Models, namely Generalized Linear Mixed Models (Bolker et al., 2009), do constitute a valid
alternative. They present some drawbacks, though, such as being complex to apply and interpret,
not very widely available, and requiring a particular treatment for each problem since a suitable link
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function must be supplied in each case, which is not always possible.

Two surveys on nonparametric techniques in experimental design can be found in Sawilowsky
(1990); Salazar-Alvarez et al. (2014). In these works, several rank transformation variants are empha-
sized, as they constitute the most widely used nonparametric approach for detecting interactions
Conover (2012). Among them, the Aligned Rank Transform (Higgins and Tashtoush, 1994), for which
an implementation in R has been made available in package ART (Villacorta, 2015), is one of the best
performing for this task, keeping type I error rates close to the theoretical significance level while
preserving good power. Although it has been applied to a split-plot design (one between- and one
within-subjects factor) in Beasley (2002), showing good type I error rates and power, it lacks a general
unified formulation for mixed models with any number of between- and within-subjects factors
that also works in unbalanced and multivariate settings. Erce-Hurn and Mirosevich (2008); Ruscio
and Roche (2012) constitute two more broad surveys (the latter dealing with variance heterogeneity
in depth) covering both classical nonparametric methods and recent research efforts like the one
implemented here, which is cited in both works.

Some other valid alternatives for nonparametric analysis of any mixed model are the Improved
General Approximation (IGA), the generalization of Welch-James (WJ) test statistic, the Kenward-
Roger correction with mixed models (KR), and the modified Brown and Forsythe (MBF) procedure.
They all do a correction for the degrees of freedom to account for heterogeneous variances, hence the
name ADF for approximate degrees of freedom. The IGA (Huynh, 1978) was specifically developed to
account for multisample sphericity violations in repeated measures designs by adjusting the critical
value, and was generalized to any mixed model by Algina (1997). Similarly, Welch’s non-pooled
statistic with approximate degrees of freedom (ADF) (Welch, 1951) was also conceived for this purpose,
using the sample data to estimate the error degrees of freedom. Several non-pooled ADF statistics
have been proposed later but all can be derived from the general matrix formulation of Welch’s
statistic given by Lix and Keselman (1995) based on Johansen (1980), which makes it applicable for
univariate and multivariate mixed models with an arbitrary number of effects. Lix and Keselman
(1995) shows how the same statistic can be employed in different models for both omnibus contrasts
(testing whether a given effect is significant or not) and pairwise comparisons for a given effect (for
every pair of categories of a given effect, testing whether the response is significantly different for one
of the categories against one another). Generally, the IGA and WJ statistic perform similarly; however
a slight advantage favorable to WJ has been reported by Algina (1997) in some contexts. The WJ ADF
approach has been successfully tested in nonparametric analysis of a variety of mixed models; see
Keselman et al. (2003) and references therein. The KR correction for the degrees of freedom can be
implemented on top of a conventional mixed model and performs similarly to the MBF procedure
with slight advantage for the latter (Vallejo and Livacic-Rojas, 2005). Both yield reasonably good
results. With respect to the comparison between the MBF and the generalized WJ statistic, there is no
consensus about the results. In most conditions they perform similarly, but some authors state that
MBF is better at detecting interaction effects when the number of subjects is not high enough (Vallejo
et al., 2001, 2006). However, to the best of our knowledge, there is no general formulation of MBF
for any mixed model with an arbitrary number of between- x within-subjects factors, although it has
been tested in split-plot designs (Vallejo et al., 2006) (which are probably the most common design in
medicine and particularly in psychological studies) and factorial designs (Vallejo et al., 2008).

Software available for robust testing of mixed models not meeting parametric assump-
tions

Wilcox (2012) constitutes an important source dealing with robust estimation. The book is accompanied
by an R package called WRS 1 that implements all the methods reviewed in the book, including the
Welch-James test following Johansen’s approach with robust mean estimators described in sections
7.2, 8.6 and 8.7 which our package welchADF also implements. The functions described in those
sections, bwtrim,t1way,t1waybt,t2way,t2way,t3way, include the most common designs such as one,
two and three-way and split-plot (one between x one within subjects designs) also with bootstrapping
and trimming. Although not included in WRS2, the original WRS exposes functions bbw-,bww- for
between x between x within, and between x within x within subjects designs, and their trimmed and
bootstrap versions. While useful, they do not provide a uniform, easy-to-use interface in a single
function valid for any mixed design.

There exists a CRAN task force on robust statistical methods2. Unfortunately, none of the packages
mentioned there implements the aforementioned approaches. Nevertheless, packages robustbase
(Maechler et al., 2016), robust (Wang et al., 2017) (by the authors of Maronna et al. (2006)) and function

1Not on CRAN but in http://github.com/nicebread/WRS. A less-comprehensive but more user-friendly
version can be found in package WRS2 (Mair and Wilcox, 2017).

2http://cran.r-project.org/web/views/Robust.html
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rlmer in package robustlmm (Koller, 2017) are some remarkable efforts. The latter implements the
techniques proposed in Koller (2013) for linear mixed models on a basis of a parametric model having
some contaminated data (Koller, 2016). However, it does not focus on testing inherently heterogeneous
and non-normal data. Package nlme (Pinheiro et al., 2017) provides a way of capturing and modeling
variance heterogeneity in mixed models through the argument weights of function lme, which can be
set to different covariance matrix structures that are fitted from the data. The well-known package
lme4 (Bates et al., 2016, 2015) is also a good choice for dealing with non-normal models in presence of
within-subjects effects (called generalized linear mixed models as an extension to generalized linear
models where the user can specify the probabilistic model to be used). Package glmmADMB 3 (Skaug
et al., 2016; Fournier et al., 2012) has a similar purpose.

SAS (SAS Institute, 2011) implementations of the WJ statistic, MBF statistic (split-plot and fac-
torial designs only) and IGA do exist; see Keselman et al. (2003); Vallejo et al. (2006); Algina (1997)
respectively. While SAS is still widely used mainly in social and biomedical sciences, it is proprietary
software. The same applies to the ERP-PCA software (Dien, 2010) written in Matlab. Interestingly,
ERP-PCA incorporates a Matlab translation of the SAS code described in Keselman et al. (2003) for
the WJ statistic. For these reasons, together with the fast expansion of R and open-source statistical
software in general -closely related to the growing interest in reproducible research- among researchers
of many different disciplines, we consider the R package introduced here a useful effort.

Main contributions

The present work describes an R package called welchADF (Villacorta, 2017) that implements Jo-
hansen’s formulation of the Welch-James test, with two additional improvements: first, the use of
trimmed means and Winsorized variances to deal with non-normality, and second, the use of bootstrap
for calculating an empirical critical value for achieving better type I error control. Both aspects are
mentioned in Wilcox et al. (1998) and implemented in Keselman et al. (2003). Trimmed means and
Winsorized variances are being used in medical and behavioral research in the last years; see Müller
et al. (2011); Aronoff et al. (2011); Ryzin et al. (2011).

The core of our code is an R translation of the SAS program4 described in Keselman et al. (2003). A
new wrapper function has been built on top of it that poses the following benefits:

• It can be applied to univariate and multivariate mixed models with an arbitrary number of
within- and between-subjects effects.

• It simplifies some common tasks such as performing omnibus tests on effects or interactions,
multiple pairwise comparisons on the levels of one factor, and tetrad contrasts. All of these
can be done without indicating the contrast matrices, which are automatically formed by the
program depending on the kind of test required and the number of levels found in each factor.

• It provides a more natural and uniform data input mechanism through data frames that do not
depend on the model specified. In the original SAS code, the input data had to be carefully
arranged in matrices whose shape had to mirror the experimental design being analyzed in
each problem, which can be error-prone.

• It integrates with other similar packages of the R ecosystem through a formula interface and
also provides additional interfaces that accept model objects returned by some commonly used
functions such as stats::lm, lme4::lmer and stats::aov.

• It enables selecting one among several built-in p-value correction methods when performing
multiple pairwise comparisons.

There are several reasons that justify an R implementation of this particular test:

• The generalized WJ test described in Lix and Keselman (1995); Keselman et al. (2003) has good
theoretical properties and has proven successful in controlling type I error rate while preserving
high power. Moreover, the use of trimmed means and Winsorized variances can protect both
against skewness and outliers in the data, as noted by Keselman et al. (2008). The percentage of
trimming can be adjusted to deal with higher ratios of outliers and skewness. The statistic is also
able to cope with heterogeneous variances, which commonly (but not only) arise when having
very different cell sample sizes. In this sense, one should notice the sample size requirement
stated right after this list.

• These two works have received a number of citations, and the approach explained there is
being used in current research in different fields such as medicine (Dien et al., 2008; Dien, 2010),
psychology (Müller et al., 2011; Kayser et al., 2014; Huang and Jun, 2015) and behavioral research
(Symes et al., 2010), just to cite a few.

3http://glmmadmb.r-forge.r-project.org/
4Available at http://homepage.usask.ca/~lml321/Program.pdf
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• The function interface is simple and the test can be used in a straightforward way for the most
common tasks. This may contribute positively towards its adoption by the research community,
specially by researchers with little expertise in statistics, but with an understanding of the
importance of applying suitable, robust techniques when parametric conditions are not met.

• Despite the existence of different alternatives explained before, some of them also implemented
in R, these are either not applicable to multivariate mixed models with heterogeneous variance
or non-normal data, or are generally complex and more difficult to use.

The WJ approach also has some disadvantages. The first one is the sample size needed to assure an
effective control of type I error under some (somewhat extreme) circumstances, specially in repeated-
measures designs, like when the cell with the fewest subjects presents the largest variance (i.e. cell
size and cell variance are negatively paired). In general, the number of subjects of the smallest cell
should be four or five times greater than the number of repeated measures minus one, and sometimes
even more when testing an interaction. However, when combined with trimmed means, robustness is
increased and some of these problems are mitigated as a much smaller number of subjects are required
(Keselman et al., 2000). The second drawback is that welchADF is only applicable to categorical
predictors. In case the design has numeric predictors, the reader may try the packages mentioned in
the preceding section, as well as gamm4 (Wood and Scheipl, 2017) and mgcv (Wood, 2017) for fitting
generalized additive mixed models.

Finally, the application of bootstrap to contaminated data has been extensively studied and even
questioned by some authors in the past (Singh, 1998), specially regarding numerical instability: some
bootstrap samples that intervene in the computation of the final bootstrapped estimate may contain
a higher proportion of outliers than the general dataset, and therefore be too heavily influenced by
them (Salibián-Barrera et al., 2008). Singh (1998) proposed using bootstrapping with Winsorized
observations, which is what we do in this package when enabling trimming and bootstrapping at
the same time, as it provides some additional benefits. Salibián-Barrera et al. (2008) introduce a fast
and robust bootstrap (FRB) method that improves classical bootstrapping. Although it has not been
incorporated to welchADF, it may be done in the future.

The remainder of this contribution is structured as follows. In first place, the mathematical
background is briefly reviewed. In second place, we present the function exposed by the package
and explain its arguments, together with some issues regarding the arrangement of the data. In third
place, we address three case studies, namely a univariate one-way between-subjects design, a two-way
factorial design, a mixed design, and a doubly multivariate design analyzed as a multivariate mixed
design. Finally, we present some conclusions and further work.

The Welch-James ADF test statistic

Here we summarize the theoretical background given in Lix and Keselman (1995); Keselman et al.
(2003). Following the General Linear Model,

Y = Xβ + ξ (1)

where Y is an N × p matrix of observations on p dependent variables or p repeated measures, N is
the sample size, X is the design matrix (formed by zeros and ones, such that rank(X) = r with r being
the number of different groups or cells5), β is an r× p matrix of non random (unknown) parameters
(population means) and ξ is an N × p matrix of random error components.

If we denote by Yj(j = 1, ..., r) the submatrix of Y that contains the observations of the nj subjects
of the j-th cell, the original parametric model assumes Yj ∼ N (β j, Σj) where β j = (µj1, ..., µjp) is the
j-th row of matrix β, and Σj 6= Σj′ when j 6= j′.

We proceed to explain how population means and variances are estimated. The matrix of popula-
tion means can be estimated by the usual least-squares approach (Eq. 2) or by using robust estimation
techniques such as trimming, discussed later. Now, let Xj(j = 1, ..., r) be the j-th column of X, com-
posed of zeros and ones, and let 1p be a p× 1 vector of ones. Define Yj = Y ◦ (Xj1T

p ) as the N × p
matrix that results of the Hadamard (i.e. element-wise) product between matrices Y and Xj1T

p . Then,
the following expressions are used to estimate population means and variances:

β̂ = (XTX)−1XTY (2)

Σ̂j =
(Yj − Xj β̂ j)

T(Yj − Xj β̂ j)

nj − 1
(3)

5This does not entail that one-way designs are the only possible. The formulation is valid also for several factor
designs.
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The matrix formulation of the WJ statistic always tests the following general linear hypothesis:

H0 : Rµ = 0 (4)

with R = C⊗UT . In this expression, ⊗ is the Kronecker product, C is a d fC × r matrix that indicates
the contrasts on the between-subjects effects, so that rank(C) = d fC ≤ r, and U is a p× d fU matrix
that indicates the contrasts on the within-subjects effects, so that rank(U) = d fU ≤ p. Therefore R has
d fCd fU rows and rp columns. Note that µ = vec(βT) = (β1, ...βr)T , which is a column vector with rp
elements obtained by stacking the columns of βT , one on top of another. Matrices C and U determine
the type of contrast being performed, be it an omnibus contrast, a pairwise contrast, etc. We provide
details about the structure of both matrices in the general case in Section 42.2.1.

The generalized Welch-James test statistic presented by Johansen in Johansen (1980) is

TWJ = (Rµ̂)T(RˆRT)−1(Rµ̂) (5)

Σ̂ = diag(Σ̂1/n1, ..., Σ̂r/nr)

where µ̂ is an estimate of µ (either with LS or any other technique), and Σ̂ is a block diagonal matrix
whose blocks are Σ̂j/nj. It is known that TWJ/c approximately follows an F(ν1; ν2) where

ν1 = d fCd fU ; ν2 = ν1(ν1 + 2)/(3A) ; c = ν1 + 2A− (6A)/(ν1 + 2)

A =
1
2

r

∑
j=1

tr
[
Σ̂RT(RΣ̂RT)−1RQj

]2
+
(
tr
[
Σ̂RT(RΣ̂RT)−1RQj

])2

nj − 1

where tr is the trace of an square matrix (sum of the elements on the main diagonal), and Qj is an
rp× rp matrix associated with Xj in which the (s, t)-th diagonal block of Qj = Ip when s = t = j and
is 0 otherwise.

In a between-subjects design (no within-subjects factors), U must be set to Ip where p is the number
of dependent variables (in univariate designs, it reduces to U = 1). In a within-subjects design (no
between-subjects factors), C must be set to 1 both in the univariate and multivariate cases.

Structure of the contrast matrices

The preceding formulation of the model is valid for any type of contrasts. Most often the user may
want to perform two types of contrasts, namely omnibus contrasts to check whether a given effect
or interaction is statistically significant, and in case it is, post-hoc pairwise contrasts on one effect or
interaction to check whether the response associated to some of the levels of that factor or interaction
is statistically different than the responses associated to other levels of the factor.

Omnibus contrasts This test is aimed at checking whether the level adopted by a given variable
of interest (effect or interaction) has an influence over the response variable. In the simplest case,
consider a one-way design, either univariate or multivariate, whose single factor A has a different
levels. Then C would be an (a− 1)× a matrix specifying linearly independent contrasts between the
levels. We will call this matrix CA (capital A) because it is the matrix we use to conduct an omnibus
test on effect A. If for instance, a = 3, we would have

CA =

[
1 −1 0
1 0 −1

]
; U = Ip

Algina and Olejnik (1984) provide a general formulation to compose matrix C for omnibus tests on
factorial designs with several between-subjects factors. The same idea, slightly modified, is also valid
to compose matrix U in designs with several within-subjects factors. These procedures have been
implemented in our welchADF package. Let Ca (non-capital a) be the (a− 1)× a matrix of linear
contrasts associated to the a levels of effect A. Its rows define a− 1 linearly independent contrasts
between the levels of A. When the design has no more factors than A, then CA = Ca as in the case
above. However, when more than one between-subjects factor exists, then C has to be properly set
according to the factor to which we want to apply an omnibus test. In those cases, C is the Kronecker
product of one matrix (or vector) per factor existing in the design, as follows.

Assume a between-subjects design with four effects A, B, C, D. Let 1T
a denote a (1× a) vector of

ones. If we want to perform an omnibus contrast on a main effect, say B, then C = CB = 1T
a ⊗ Cb ⊗

1T
c ⊗ 1T

d . In other words, if the factor matches the effect being tested, the corresponding contrast matrix
appears in the product; otherwise, a vector of ones appears. The same applies to interactions. If we
want to test the B× D interaction, for instance, we would have C = CBD = 1T

a ⊗ Cb ⊗ 1T
c ⊗ Cd. Since

factors B and D are involved in the interaction BD being tested, their contrast matrices appear in the
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product, while a vector of ones appears in the positions of the remaining factors of the design.

For within-subjects designs a similar rule applies. Assume that now A is a within-subjects factor,
and let Ua = CT

a , so that the columns of Ua define a− 1 linearly independent contrasts between the
levels of A. In a within-subjects design with several factors, the transposes of the U contrast matrices
of those factors involved in the effect or interaction being tested appear in the Kronecker product;
otherwise, a row vector of ones is used in that place as explained before. If the design is multivariate
with p dependent response variables, an additional factor Ip always appears in the last place of
the product. At the end, the result of the Kronecker product must be transposed again to obtain
U. For example, in a two-factor within-subjects multivariate design, the U matrices for conducting
ominbus tests on effects A, B and the interaction AB would be, respectively, UA = (UT

a ⊗ 1T
b ⊗ Ip)T ,

UB = (1T
a ⊗UT

b ⊗ Ip)T , and UAB = (UT
a ⊗UT

b ⊗ Ip)T .

In case we want to test a main effect (either a between- or a within-subjects effect) in a design
containing both between- and within-subjects factors, the same rules apply: C and U are composed
separately, and one of them will (for sure) be the result of the Kronecker product of vectors of ones
only (including Ip as well when constructing U if the design is multivariate). Finally, if we want to test
an interaction involving one or more between-subjects factors and one or more within-subjects, C must
be formed as if we were testing only the between-subjects factors involved in the mixed interaction,
and U as if testing the within-subjects factors, following the rules explained above.

Pairwise contrasts Now for a given effect, we are aimed at testing for every pair of categories of the
effect whether the response is significantly different for one of the categories against one another. The
procedure is similar to the omnibus contrasts. The only difference is that contrast matrices Ca and
Ua associated to an effect A are replaced by contrast vectors, as follows. When testing for significant
differences between factor levels j and j′ of an effect A, either Ca is replaced by a row vector cjj′ if A is
a between-subjects factor, or Ua is replaced by a column vectors ujj′ if A is a within-subjects factor.
In a pairwise contrast vector, all positions are set to 0 except for those corresponding to the factor
levels j and j′ being tested, which are set to 1 and -1 respectively. These vectors are then used in the
corresponding positions of the Kronecker products described before. For probing interactions (once
the omnibus test on such interaction proved significant), tetrad contrasts have been implemented
in our package. The null hypothesis being tested in a tetrad contrast involving two factors A and B,
from which the interaction between levels j and j′ from A, and k and k′ from B is being tested, can be
written as

Hjj′ ;kk′ : (µjk − µjk′ )− (µj′k − µj′k′ ) = 0 (6)

Trimmed means and Winsorized variances

Trimmed means help mitigate the effects of non-normality. When least-squares means are substituted
by trimmed means, the null hypotheses being tested are the equality of population trimmed means:
Rµ(t) = 0. Let Y(1)j ≤ Y(2)j ≤ ... ≤ Y(nj)j be the sorted observations of the j-th group, and gj = dγnje
with γ being the proportion of observations to be trimmed in each tail of the distribution. Therefore
the sample size for the j-th group becomes hj = nj − 2gj, and its sample trimmed mean is computed
by averaging the hj central observations of that group:

µ̂
(t)
j =

1
hj

nj−gj

∑
k=gj+1

Y(k)j (7)

Some authors suggest using 20 % trimming.

The sample Winsorized mean is a similar measure that is computed by replacing all observations
smaller than Y(gj+1)j (i.e. the 20th percentile) by that value, and those larger than Y(nj−gj)j (i.e. the 80th
percentile) by that value, and then averaging over all the (modified) observations. In the j-th group:

µ̂
(W)
j =

1
nj

nj

∑
i=1

Xij, where Xij =


Y(gj+1)j if Yij ≤ Y(gj+1)j

Yij if Y(gj+1)j < Yij < Y(nj−gj)j
Y(nj−gj)j if Yij ≥ Y(nj−gj)j

(8)

This measure is required to compute the sample Winsorized variance:

σ̂
2(W)
j =

1
nj − 1

nj

∑
i=1

(Xij − µ̂
(W)
j )2 (9)

Therefore, in order to compute the trimmed version of the WJ statistic, T(t)
W J , trimmed means replace
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least-squares means, Winsorized variances replace least-squares variances, and the new sample sizes
hj replace the original nj in all groups. Past studies have found the trimmed version of the WJ statistic
to be more robust and provide better type I error control to non-normality, also in more complex
designs; see Keselman et al. (2000) and references therein.

Bootstrapping to obtain an empirical critical value

After computing the cell trimmed means, let Cij = Yij − µ̂
(t)
j , i.e. the Cij are shifted observations so that

the null hypothesis of equal trimmed means is true in the sample. Repeat B times the next two steps (B
is the user-supplied number of bootstrap simulations): (i) for each cell, generate a bootstrap sample of
size nj by sampling with replacement from the original sample. When the bootstrap samples of all the

cells are put together, an N-sample bootstrap dataset is obtained; (ii) compute the value F∗(t) = T(t)
W J/c

on the bootstrap dataset. Sort the B values obtained in ascending order, F∗(t)
(1) ≤ ... ≤ F∗(t)

(B) . An estimate

of an appropriate critical value is F∗(t)
(a) where a = (1− α)B rounded to the nearest integer. This critical

value should be compared with T(t)
W J/c computed on the original data. The null hypothesis Rµ(t) = 0

of trimmed means equality will be rejected if T(t)
W J/c ≥ F∗(t)

(a) .

The process explained before applies to omnibus contrasts. For focused contrasts such as pairwise
tests on marginal means, the same idea with minor modifications is used. For more details as well as a
generalization to other designs, see Keselman et al. (2003) and references therein.

Effect size and confidence intervals

As stated in Keselman et al. (2008); APA (2013), it is now widely recommended to report an estimate
of the effect size when performing a hypothesis test. Many different measures exist for this purpose,
although few of them are valid for non-homogeneous variances. The approach implemented in our
package was proposed in Keselman et al. (2008) and has the following formulation for the case of two
groups:

δ̂
(R)
j = η

µ̂
(t)
2 − µ̂

(t)
1

σ̂
(W)
j

(10)

Note this approach uses trimmed means and Winsorized standard deviation and for that reason, it is
robust to non-normality. Factor η stands for a scaling factor of the Winsorized standard deviation. In
case 20 % trimming is used (as recommended), η = .642 which is the Winsorized standard deviation for
a 20% trimmed standard normal distribution. In our code, η is computed according to the percentage
of trimming indicated by the user. For building a robust CI around this value, a percentile bootstrap
method is run to determine the empirical bounds of the interval as recommended in Keselman et al.
(2008).

An R implementation of the WJ statistic

The WJ test is implemented in our package as an S3 generic called welchADF.test. The name has
been chosen to be compliant with other existing tests such as t.test,wilcox.test, etc. The function
receives parameters to modulate its behaviour, such as the type of contrast to be performed (omnibus
or pairwise), whether trimming should be employed or not, and if employed, the percentage of
data to be trimmed at each side, and whether bootstrapping should be used or not. The default S3
method expects a data.frame in the formula parameter, but additional S3 methods are provided for
classes formula, lm, lmer and aov, which allow our package to integrate well with other linear models
functions, as described later in this section.

The prototype of the S3 default method is

welchADF.test(formula, response, between.s, within.s = NULL, subject = NULL,
contrast = c("omnibus", "all.pairwise"), effect = NULL,
correction = c("hochberg", "holm"), trimming = FALSE, per = 0.2,
bootstrap = FALSE, numsim_b = 999, effect.size = FALSE, numsim_es = 999,
scaling = TRUE, standardize.effsz = TRUE, alpha = 0.05, seed = 0, ...)

We summarize below the meaning of the arguments; the reader may refer to the package docu-
mentation for further detail. Note only the three first arguments are required.
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A B X W Subject Y1 Y2

A1 B1 X1 W1 1 (1)YA1B1X1W1
1

(1)YA1B1X1W1
2

...
...

...
... 1

...
...

A1 B1 X1 Ww 1 (1)YA1B1X1Ww
1

(1)YA1B1X1Ww
2

A1 B1 X2 W1 1 (1)YA1B1X1W1
1

(1)YA1B1X1W1
2

...
...

...
... 1

...
...

A1 B1 Xx Ww 1 (1)YA1B1XxWw
1

(1)YA1B1XxWw
2

A1 B1 X1 W1 2 (2)YA1B1X1W1
1

(2)YA1B1X1W1
2

...
...

...
... 2

...
...

A1 B1 Xx Ww 2 (2)YA1B1XxWw
1

(2)YA1B1XxWw
2

...
...

...
...

...
...

...
A1 B1 Xx Ww nA1B1

(nA1 B1 )YA1B1XxWw
1

(nA1 B1 )YA1B1XxWw
2

A1 B2 X1 W1 nA1B1 + 1 (nA1 B1 )YA1B1XxWw
1

(nA1 B1 )YA1B1XxWw
2

...
...

...
...

...
...

...
Aa Bb Xx Wx N (N)YAa Bb XxWw

1
(N)YAa Bb XxWw

2

Table 1: An example dataset with two between-subjects factors A, B, with a and b different levels,
respectively; two within-subjects factors X, W with x and w different levels, and a multivariate
response with p = 2 correlated response columns Y1, Y2. The total number of subjects is N.

• formula is a data frame object containing the observations and the level combination to which
they correspond. The next four arguments refer to the column names.

• response,between.s,within.s,subject are strings (or string vectors) indicating the column
names for the response, the between-subjects effect(s), the within-subject(s) effects, and the
subject column that stores which subject corresponds to each row (hence it cannot be a vector
but a single string). In case the design is multivariate, the response will be a vector of columns,
one for each response variable. A sample data frame is displayed in Table 1. Each cell AiBj has
nAi Bj subjects, and nAi Bj · x·w rows in the data frame. Here, N = ∑i,j nAi Bj subjects.

• contrast refers to the type of contrast to be performed. Both in "omnibus" and "all.pairwise"
contrasts, the corresponding contrasts matrices are automatically computed as described in
Section 42.2.1.

• effect is the effect (i.e. column name) involved in the selected contrast. If effect is a vector
with length 2 or greater and contrast = "omnibus", then an omnibus contrast on an interaction
effect will be tested involving simultaneously all the effects of the vector. If contrast =
"all.pairwise", then effect must have length 1 or 2 to indicate a single effect or a two-way
interaction to which tetrad contrasts will be applied; otherwise an error will be thrown. If left
blank, the contrast will be applied separately to all of the existing effects and their interactions.

• The rest of arguments specify whether trimmed means and Winsorized variances will be used
and the percentage of trimming (use.robust.estimators, per), whether bootstrapping should
be used to compute an empirical critical value and how many iterations to do (use.bootstrap,
numsim_b), and whether the effect size and a confidence interval should be computed (again
via bootstrap). Effect size allows the choice of using scaling (scaling = TRUE) or not (if not,
η = 1 in Eq. 10) and the number of effect-size bootstrap simulations (effect.size, scaling,
numsim_es, loc1, loc2).

The aforementioned function is an R wrapper that configures the parameters needed for each type
of problem by two private functions, which lie at the core of our package. Both are R translations of the
SAS functions wjglm and bootcom and have been named almost the same. Function wjglm is used in all
cases (including those in which bootstrapping is needed), except when bootstrap is applied to obtain
an empirical critical value for a family of contrasts. A modification of function bootcom is only invoked
in that case in order to control family-wise type I error rate (FWER) via percentile bootstrapping. This
scenario arises when performing all pairwise contrasts or tetrad contrasts via bootstrap (i.e. contrast
= "all.pairwise",bootstrap = TRUE).

The prototype of the S3 method for class formula is as usual:

welchADF.test(formula,data,subset,...)

where data is a data frame following the same rules as described above for the formula parameter
of the default method, subset is an indexing vector to indicate which rows of data should be used
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(all by default), and ... stands for the rest of arguments accepted by welchADF.test.default and
described above to configure the behavior of the test. As with other models, the terms in formula
are first sought in data and then in the environment of the formula. Note, however, that only
between-subjects and within-subjects effects and interactions can be specified together with a Subject
column when conducting a WJ test, but no model is fit to the data. For this reason, formula should be
understood only as a way to indicate the factors involved and their nature (between- or within-subjects)
but not as a description of a particular model structure. The presence or absence of an interaction
in the formula only affects which effects are tested when contrast = "omnibus",effect = NULL;
otherwise it does not affect at all. The structure should mirror that of the lme4 package, e.g.

welchADF.test(cbind(visits,time,latency) ~ nurs*tunnel + (tunnel|Subject), miceData)

means that there is a multivariate response composed of three correlated variables visits, time,
latency, and the design has one between-subjects factor nurs (because it appears outside but not inside
the parenthesis term) and one within-subjects factor tunnel because it appears inside the parenthesis.
While a within-subjects effect may appear outside the parenthesis to indicate an interaction with a
between-subjects effect, between-subjects must not appear inside the parenthesis.

The function returns an object of class welchADFt, which is actually a tagged list of lists, one sub-list
per effect in an omnibus contrast, or per category involved a pairwise contrast of a given effect. The call
is also stored as the last element of the upper-level list with the name call, no matter the S3 method em-
ployed (be it welchADF.test.default, or the ones for class formula,lm,aov or lmer). This allows to im-
plement S3 method update for class welchADFt, no matter which S3 method was called to calculate the
model object 6. Each sub-list has elements named welch.T,numeratorDF,denominatorDF,contrast.matrix,

mean.vector,sigma.matrix which store, respectively, the value of the TW J/c statistic (or T(t)
W J/c if the

trimmed version was used), the approximate degrees of freedom of the numerator and denominator,
the contrast matrix R obtained as R = C⊗UT , and the estimates µ̂ and Σ̂. It also stores the user
arguments when the function was called and, in case the user asked for the effect size, it provides the
effect size along with a confidence interval. Refer to the package documentation for further detail.

The package implements S3 methods summary, format and print for objects of class welchADFt, as
well as other methods widely used on model objects such as confint to get confidence intervals of the
effect size (in case the user requested to compute it), model.frame to extract the input data frame, and
formula to extract the formula (not available if the object was generated by welchADF.test.default).

Case studies

All the datasets analyzed in this section were mentioned in examples designed by the authors of the
SAS implementation (Lix and Keselman, 1995), and have also been included in our R package. For
that reason it is not necessary to explicitly read them from text files. They are described in detail in the
package documentation.

Univariate one-way between-subject design

The dataset was artificially created by Lix et al. and can be downloaded from her personal website7.
The data recreate those reported by a real study on perception and concentration, on which 42 students
were given several puzzles to be solved. The students are divided into three balanced groups as
they had previously been asked to imagine solving puzzles in the distant future, near future, or not
to imagine anything at all (control group). The response variable represents the number of puzzles
each student was able to solve, out of 12. The data are delivered in our package in a variable named
perceptionData.

This design presents one between-subjects variable, namely the Group to which the student
belongs, and no within-subjects variables as each student is measured on only one response variable
and then the student is never measured again. The following R commands demonstrate the types of
analyses that can be done with this dataset. The results can be checked on the PDF file of the footnote.

> str(perceptionData)
'data.frame': 42 obs. of 2 variables:
\$ Group: Factor w/ 3 levels "control","distantFuture",..: 2 2 2 2 2 2 2 2 2 2 ...
\$ y : int 7 5 8 9 8 8 7 7 6 2 ...

> omnibus_LSM <- welchADF.test(perceptionData, response = "y", between.s = "Group")

6The update should be done in accordance with the function that generated the welchADFt object, i.e. passing a
formula is not allowed if the object was generated by the default method, and vice-versa.

7http://homepage.usask.ca/~lml321/Example1.pdf
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> summary(omnibus_LSM, verbose = TRUE)
Call:

welchADF.test(formula = perceptionData, response = "y", between.s = "Group")

Welch-James Approximate DF Test (Least squares means & variances)
Omnibus test(s) of effect and/or interactions

WJ statistic Numerator DF Denominator DF Pr(>WJ)
Group 1.795 2 24.16 0.1875
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The omnibus contrast on the between-subjects effect Group determined it is not statistically significant
when using least-square means. But if we apply trimming:

> omnibus_trimmed <- update(omnibus_LSM, trimming = TRUE)
> omnibus_trimmed_boot <- update(omnibus_trimmed, bootstrap = TRUE, seed = 12345)
> summary(omnibus_trimmed)
Call:

welchADF.test(formula = perceptionData, response = "y", between.s = "Group",
trimming = TRUE)

WJ statistic Numerator DF Denominator DF Pr(>WJ)
Group 4.975 2 16.11 0.02076 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

By applying trimmed means and Winsorized variances we do get a statistically significant result.
Hence, since the omnibus test was significant on this factor, we do pairwise comparisons on it in order
to test which pairs of group levels make the associated groups of responses statistically different. Since
the result was obtained with trimming, we continue with it in pairwise comparisons. Only the result
of non-bootstrapped trimming is displayed here.

> pairwise_trimmed <- welchADF.test(y ~ Group, data = perceptionData, effect = "Group",
contrast = "all.pairwise", trimming = TRUE, effect.size = TRUE)

> pairwise_trimmed_boot <- update(pairwise_trimmed, bootstrap = TRUE, seed = 12345)
> summary(pairwise_trimmed)
Call:

welchADF.test(formula = y ~ Group, data = perceptionData, effect = "Group",
contrast = "all.pairwise", trimming = TRUE, effect.size = TRUE)

WJ statistic Numerator DF Denominator DF eff.size adj.pval
control:nearFuture 0.004398 1 10.089 -0.02674 0.9484
distantFuture:nearFuture 0.876366 1 9.778 0.38620 0.7435
control:distantFuture 10.088968 1 17.510 -1.09981 0.0161 *
---
Signif. codes (Hochberg p-values): 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The output shows that the responses associated to the control group significantly differs from those
associated to the distantFuture group. The confidence intervals on the effect size can be retrieved as

> confint(pairwise_trimmed)
2.5 % 97.5 %

control:nearFuture -0.8208 0.85290
distantFuture:nearFuture -0.3402 1.74365
control:distantFuture -2.2571 -0.09678

An important issue arises in this example that justifies again the use of trimmed estimators. As
can be seen in the omnibus tests, the Group is not significant with Least-squares means but it is when
we use trimmed means and Winsorized variances. This yields a significant result which could not
be detected unless trimming is applied. As the result of the omnibus test with trimmed means is
significant, we proceed to the pairwise comparisons using trimming as well. This yields that control
and distantFuture have associated significantly different values of the number of puzzles solved by
the students on average.
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Two-way factorial (between-subjects) design

Once again, this dataset8 was artificially created by Lix et al. Quoting from the PDF, the author used
summary data presented by Wicherts et al. (2005). These authors examined the effects of stereotype
threat on women’s mathematics ability. Study participants were assigned to one of six groups defined
by crossing the independent factors of test condition (control, nullified, stereotype threat) and sex
(male, female). Originally there were four different tests administered to study participants (arithmetic,
number series, word problems, and sums tests) the dataset contains only scores for the arithmetic test
(out of 40) because these scores exhibited a greater magnitude of variance heterogeneity than scores for
the other tests. It is an unbalanced design with cell sizes ranging from 45 to 50 participants, and a total
sample size of 283. The data are delivered in our package in a variable named womenStereotypeData.

The output of the omnibus tests using robust estimators (trimmed means and Winsorized variances)
with and without bootstrapping is shown in first place. Since the interaction between "condition" and
"sex" is significant according to trimmed means, the post-hoc pairwise comparisons (tetrad contrasts)
are shown using trimmed means with and without bootstrapping. The results match those presented
in pages 5 and 6 of the PDF.

> omnibus_LSM <- welchADF.test(womenStereotypeData, response = "y", between.s =
c("condition", "sex"), contrast = "omnibus")

> omnibus_trimmed <- update(omnibus_LSM, trimming = TRUE)
> summary(omnibus_LSM)
Call:

welchADF.test(formula = womenStereotypeData, response = "y",
between.s = c("condition", "sex"), contrast = "omnibus")

WJ statistic Numerator DF Denominator DF Pr(>WJ)
condition 2.151 2 154.7 0.11986
sex 2.933 1 216.4 0.08824 .
condition:sex 2.521 2 154.7 0.08368 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> summary(omnibus_trimmed)
Call:

welchADF.test(formula = womenStereotypeData, response = "y",
between.s = c("condition", "sex"), contrast = "omnibus",
trimming = TRUE)

WJ statistic Numerator DF Denominator DF Pr(>WJ)
condition 5.205 2 93.38 0.007189 **
sex 5.754 1 130.06 0.017875 *
condition:sex 3.130 2 93.38 0.048347 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In this case, the omnibus test is unclear when using least-square means (p-values only slightly
greater than the common significance threshold of 0.05 according to the summary of omnibus_LSM) but
trimming helps make things clearer. This results in both factors and their interaction being statistically
significant at a significance level of 0.05 (see the summary of omnibus_trimmed above).

Since the omnibus test confirms the significance of all effects, pairwise comparisons should be
done on all of them. Due to space constraints, only the two-way condition:sex interaction effect was
probed (as effect = c("condition","sex") in the call to create the pairwise_LSM object that was
subsequently updated to account for trimming and bootstrapping). Pairwise contrasts on two-way
interactions are also known as tetrad contrasts.

> pairwise_trimmed <- welchADF.test(y ~ condition*sex, data = womenStereotypeData,
contrast = "all.pairwise", effect = c("condition", "sex"), trimming = TRUE)

> pairwise_trimmed_boot <- update(pairwise_trimmed, bootstrap = TRUE, seed = 12345)

> summary(pairwise_trimmed_boot, verbose = TRUE)
Call:

welchADF.test(formula = y ~ condition * sex, data = womenStereotypeData,

8http://homepage.usask.ca/~lml321/Example2.pdf
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contrast = "all.pairwise", effect = c("condition", "sex"),
trimming = TRUE, bootstrap = TRUE, seed = 12345)

Welch-James Approximate DF Test (Trimmed means [20% trimming] & Winsorized variances)
Multiple tetrad interaction contrasts with respect to condition x sex interaction
using a Bootstrap Critical Value for FWER control

WJ statistic Numerator DF Denominator DF significant?
control:stereotype x female:male 0.4662 1 97.49 no
nullified:stereotype x female:male 1.9846 1 79.63 no
control:nullified x female:male 5.7662 1 88.55 yes

Bootstrap critical value: 5.145

Pairwise comparisons on the condition:sex interaction with trimmed bootstrapped means reveal only
one significant interaction between the pairs of levels control:nullified and female:male.

Multivariate (mixed) between- × within-subjects design

The problem and the data are described in Keselman et al. (2003). The data represent the reaction times
in milliseconds of children with attention-deficit hyperactivity (ADHD) and normal children when
they are presented four kinds of inputs: a target alone or an arrow stimuli incongruent, congruent and
neutral to the target. According to the authors, the dataset was artificially generated from the summary
measures given in the original study by Jonkman et al. (1999), in groups of 20 and 10 children to create
an unbalanced design. The data are delivered in our package in two variables named adhdData and
adhdData2.

One-way multivariate vs univariate mixed model This problem can be approached in two differ-
ent ways: (a) as a one-way multivariate design, which would be the non-parametric equivalent of
MANOVA (multivariate ANOVA), or (b) as a univariate mixed model having one between-subjects
factor (the student’s group) and one within-subjects factor (with four levels, namely the four stimuli
measured in every single student). In case we were analysing the data under parametric assumptions,
the second option requires sphericity while MANOVA does not (although it needs more data). On the
other hand, mixed models are able to capture the covariance structure of the dependent variables and
can be generalized to any number of factors. An in-depth discussion on this topic can be found in
chapter 9 of Maxwell and Delaney (2004). Keselman et al. (2003) (page 593) insist on using trimmed
means and/or bootstrapping with this kind of models in order to overcome deviations from sphericity.

Our package admits both types of analysis. When dealing with a one-way multivariate design, the
data must be formated as in Figure 1(a), while a mixed model requires the more systematic format of
Figure 1(b) which is valid for an arbitrary amount of factors of both types. As done in their paper, we
will analyze this dataset as a mixed model in which the stimuli are an explicit within-subjects factor.

Implicit within-subjects effect The package admits a third way to indicate the within-subjects
effects that simplifies its use. It is common to have a dataset with a within-subjects effect expressed in
the form of Figure 1(a). In this case, we may want to consider the within-subjects effect underlying
the multivariate response. Reshaping this file to match the structure of Figure 1(b) would require
some effort by the user. To avoid this, the function allows indicating that the multivariate response
is actually an implicit within-subjects effects by including the word "multivariate" in the vector of
within-subjects column names (if this argument was empty, then we just set the argument within.s
= "multivariate"). This can be generalized as follows: if we have K within-subjects effects, we
can have K− 1 columns in the data with their explicit names and levels, and leave one effect to be
indicated in the multivariate response. In that case, we set within.s = c("within1", "within2",
..., "within-k-1", "multivariate") and pass a multivariate response vector argument because the
data must have one response column per level of the K-th within-subjects effect. In the code below, the
variables with the termination _multi show the equivalent calls. Unless we change the model itself
(i.e. consider a mixed model or a multivariate one-way model with no within-subjects factor), the
results obtained are the same in all types of analyses (omnibus, pairwise, etc), no matter the structure
of the input data file. We demonstrate all the possibilities below.

> omnibus_LSM_mixed_implicit <- welchADF.test(adhdData, response = c("TargetAlone",
"Congruent", "Neutral", "Incongruent"), within.s = "multivariate", between.s = "Group",
contrast = "omnibus")

> omnibus_LSM_multi_oneway <- welchADF.test(cbind(TargetAlone, Congruent, Neutral,
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Group TargetAlone Incongruent Congruent Neutral

Normal 568.52 433.80 658.51 711.33
Normal 1034.82 864.79 639.42 815.18

...
...

...
...

ADHD 707.15 872.39 645.83 677.84

(a) As a one-way multivariate model,
stored in variable adhdData

Group Stimulus Subject Millisec

Normal TargetAlone 1 568.52
Normal Incongruent 1 433.80
Normal Congruent 1 658.51
Normal Neutral 1 711.33

...
...

...
ADHD TargetAlone 30 707.15
ADHD Incongruent 30 872.39
ADHD Congruent 30 645.83
ADHD Neutral 30 677.84

(b) A a mixed model with one between-× one
within-subjects factor, as in adhdData2

Figure 1: Two alternative ways of arranging the ADHD data input file (wide vs long format).

Incongruent) ~ Group, data = adhdData)
> omnibus_LSM_mixed <- welchADF.test(adhdData2, response = "Milliseconds",
between.s = "Group", within.s = "Stimulus", subject = "Subject", contrast = "omnibus")

> omnibus_LSM_mixed_formula <- welchADF.test(Milliseconds ~ Group*Stimulus +
(Stimulus|Subject), data = adhdData2)

> omnibus_trimmed_formula <- update(omnibus_LSM_mixed_formula, trimming = TRUE)
> omnibus_trimmed_boot <- update(omnibus_trimmed_formula, bootstrap = TRUE, seed = 12345)

Above we have demonstrated the possibilities of an omnibus contrast to both arrangements of the
data. The first and third models assume a mixed model, where the within-subjects factor is implicit in
omnibus_LSM_mixed_implicit (using adhdData) and explicit in omnibus_LSM_mixed (using adhdData2).
The second model assumes a multivariate one-way model with no within-subjects effects. The model
omnibus_LSM_mixed_formula assumes an explicit mixed model described by a formula. The formula
interface can be fitted only to data in long format like adhdData2. Finally, this model is updated to
include trimming, and the resulting updated model is updated again to include bootstrapping as well.

> summary(omnibus_LSM_mixed_implicit)
Call:

welchADF.test(formula = adhdData, response = c("TargetAlone",
"Congruent", "Neutral", "Incongruent"), between.s = "Group",
within.s = "multivariate", contrast = "omnibus")

WJ statistic Numerator DF Denominator DF Pr(>WJ)
Group 0.2249 1 24.84 0.639482
multivariate 5.6591 3 21.02 0.005282 **
Group : multivariate 0.5750 3 21.02 0.637759
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> summary(omnibus_LSM_multi_oneway)
Call:

welchADF.test(formula = cbind(TargetAlone, Congruent, Neutral,
Incongruent) ~ Group, data = adhdData)

WJ statistic Numerator DF Denominator DF Pr(>WJ)
Group 0.4227 4 20.52 0.7904
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The results match those presented in Keselman et al. (2003), page 594. The only significant effect
is the Stimulus, which acts as the within-subjects factor. When we consider a one-way multivariate
design, with no within-subjects factor, then the Group (the between-subjects factor) is deemed not
significant. In order perform all pairwise comparisons between the levels of Stimulus, we proceed as
follows (only the bootstrap results are shown due to space constraints). The comparison is statistically
significant when the value of the WJ statistic is greater than or equal to the bootstrap critical value. In
this case, there were two significant differences, namely Incongruent vs TargetAlone, and Incongruent
vs Congruent, as mentioned in page 595 of the aforementioned work.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 322

> pairwise_trimmed_formula <- update(omnibus_trimmed_formula, contrast = "all.pairwise",
effect = "Stimulus")

> pairwise_trimmed_formula_boot <- update(pairwise_trimmed_formula, bootstrap = TRUE,
seed = 123456)

> summary(pairwise_trimmed_formula_boot)
Call:

welchADF.test(formula = Milliseconds ~ Group * Stimulus + (Stimulus |
Subject), data = adhdData2, trimming = TRUE, contrast = "all.pairwise",
effect = "Stimulus", bootstrap = TRUE, seed = 123456)

WJ statistic Numerator DF Denominator DF significant?
Congruent:TargetAlone 3.3278 1 15.515 no
Incongruent:TargetAlone 17.3549 1 15.436 yes
Neutral:TargetAlone 0.8251 1 8.419 no
Congruent:Neutral 0.1818 1 8.852 no
Incongruent:Neutral 13.9212 1 15.305 yes
Congruent:Incongruent 8.0013 1 15.503 no

Bootstrap critical value: 8.577

Note that, when using the implicit within-subjects effect format, we have to specify effect =
"multivariate" to indicate that the effect to be tested is the within-subjects effect, even though there is
no column with such name in our data. In case we are using the formula interface, this is not available
because formula terms must strictly correspond to column names or variables in the environment of
the formula.

Multivariate within-subjects design (doubly multivariate)

The three case studies addressed before are probably the most common in practice. Nevertheless,
and with the aim of demonstrating the flexibility of the welchADF package, we present here an
additional, not-so-common setting, namely a doubly multivariate design also proposed by Lix and
Keselman (1995). In general, this design arises when several dependent variables are measured for
each individual at several time points (every variable measured at each time point), or under different
conditions; the latter is the case of the example addressed below.

We could not access the data employed by Lix, hence we have analyzed data from Wuensch (1992)
which are freely available in the author’s website9. In this experiment, wild strain house mice were,
at birth, cross fostered onto house mouse (Mus), deer mouse (Peromyscus) or rat (Rattus) nursing
mothers. Ten days after weaning, each subject was tested in an apparatus that allowed it to enter four
different tunnels: one scented with clean pine shavings, and the other three tunnels with shavings
bearing the scent of Mus, Peromyscus, or Rattus respectively. Three variables were measured for each
tunnel: the number of visits to the tunnel during a twenty minute test, the time spent by each subject
in each of the four tunnels and the latency to first visit of each tunnel.

In this design, the type of nursing mother is a between-subjects factor. The within-subjects factor is
scent, with four levels (clean, Mus, Peromyscus, and Rattus). The multivariate response is composed
of visits, time, and latency for each tunnel. With this approach, the multivariate response is not treated
as another within-subjects factor. The data are delivered in our package in a variable named miceData.

> head(miceData)
Subject nurs tunnel visits time latency

1 1 Mus Clean 6 721.35 207.90
2 1 Mus MusSc 4 318.15 26.78
3 1 Mus PeromyscusSc 2 48.83 1025.33
4 1 Mus RattusSc 0 0.00 1212.75
5 2 Mus Clean 8 119.70 685.13
6 2 Mus MusSc 7 207.90 113.40

We first do an omnibus contrast. In the second call we demonstrate how the formula interface can be
used in this design to obtain exactly the same result.

> omnibus_LSM <- welchADF.test(miceData, response = c("visits", "time", "latency"),
between.s = "nurs", within.s = "tunnel", subject = "Subject", contrast = "omnibus")

9http://core.ecu.edu/psyc/wuenschk/SPSS/TUNNEL4b.sav
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> omnibus_LSM_formula <- welchADF.test(cbind(visits, time, latency) ~ nurs*tunnel +
(tunnel | Subject), data = miceData)

> summary(omnibus_LSM_formula)
Call:

welchADF.test(formula = cbind(visits, time, latency) ~ nurs *
tunnel + (tunnel | Subject), data = miceData)

WJ statistic Numerator DF Denominator DF Pr(>WJ)
nurs 4.008 6 21.46 0.0076171 **
tunnel 5.201 9 22.08 0.0007601 ***
nurs : tunnel 5.153 18 21.38 0.0002407 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The least-square means were able to deem all effects statistically significant. Therefore we move to
pairwise contrasts for each of the effects, with and without trimming. The pairwise results of the
interaction term are not displayed as they consist of a large table.

> pairwise_LSM_nurs <- update(omnibus_LSM_formula, effect = "nurs",
contrast = "all.pairwise")

> pairwise_LSM_tunnel <- update(pairwise_LSM_nurs, effect = "tunnel")
> pairwise_tunnel_trimmed <- update(pairwise_LSM_tunnel, trimming = TRUE)
> pairwise_nurs_trimmed <- update(pairwise_LSM_nurs, trimming = TRUE)

> summary(pairwise_LSM_nurs)
Call:

welchADF.test(formula = cbind(visits, time, latency) ~ nurs *
tunnel + (tunnel | Subject), data = miceData, effect = "nurs",
contrast = "all.pairwise")

WJ statistic Numerator DF Denominator DF adj.pval
Mus:Rattus 4.210 3 16.85 0.04287 *
Peromyscus:Rattus 6.141 3 17.34 0.01468 *
Mus:Peromyscus 1.255 3 17.44 0.32030
---
Signif. codes (Hochberg p-values): 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> summary(pairwise_LSM_tunnel)
Call:

welchADF.test(formula = cbind(visits, time, latency) ~ nurs *
tunnel + (tunnel | Subject), data = miceData, effect = "tunnel",
contrast = "all.pairwise")

WJ statistic Numerator DF Denominator DF adj.pval
Clean:RattusSc 0.9554 3 24.71 0.42925
MusSc:RattusSc 6.7816 3 23.36 0.01129 *
PeromyscusSc:RattusSc 2.4812 3 24.74 0.33190
Clean:PeromyscusSc 1.2393 3 22.83 0.42925
MusSc:PeromyscusSc 2.2319 3 23.84 0.33190
Clean:MusSc 3.0873 3 24.97 0.22712
---
Signif. codes (Hochberg p-values): 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We will now incorporate bootstrapping to the pairwise comparisons and check the results:

> pairwise_nurs_trimmed_boot <- update(pairwise_nurs_trimmed, bootstrap = TRUE, seed = 123)
> pairwise_tunnel_trimmed_boot <- update(pairwise_nurs_trimmed_boot, effect = "tunnel")

> summary(pairwise_nurs_trimmed_boot)
Call:

welchADF.test(formula = cbind(visits, time, latency) ~ nurs *
tunnel + (tunnel | Subject), data = miceData, effect = "nurs",
contrast = "all.pairwise", trimming = TRUE, bootstrap = TRUE,
seed = 123)
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WJ statistic Numerator DF Denominator DF significant?
Mus:Rattus 3.6147 3 10.662 no
Peromyscus:Rattus 6.3409 3 9.551 yes
Mus:Peromyscus 0.6982 3 10.438 no

Bootstrap critical value: 6.292

> summary(pairwise_tunnel_trimmed_boot)
Call:

welchADF.test(formula = cbind(visits, time, latency) ~ nurs *
tunnel + (tunnel | Subject), data = miceData, effect = "tunnel",
contrast = "all.pairwise", trimming = TRUE, bootstrap = TRUE,
seed = 123)

WJ statistic Numerator DF Denominator DF significant?
Clean:RattusSc 1.544 3 15.76 no
MusSc:RattusSc 6.053 3 15.20 yes
PeromyscusSc:RattusSc 3.729 3 15.03 no
Clean:PeromyscusSc 3.106 3 14.26 no
MusSc:PeromyscusSc 1.976 3 15.50 no
Clean:MusSc 4.842 3 14.12 no

Bootstrap critical value: 5.922

The pairwise comparisons using least-squares means are able to detect significant differences only
between MusSc and RattusSc in the tunnel effect, and the trimmed-bootstrapped comparison also
supports this fact and negates significant differences for any other pair of levels. Regarding the nurs
effect, the LSM comparison reveals significant differences in Mus vs Rattus and also in Peromyscus vs
Rattus, but the trimmed-bootstrapped only agrees with the latest.

Conclusions and further work

This contribution has demonstrated the applicability of the new welchADF package in a variety of
experimental designs, ranging from the most simple one, namely a univariate one-way between-
subjects design, to a more exotic one like a doubly-multivariate design. The unified approach of
Johansen (1980) that has been implemented here leads to a great ease of use for any case study. We
have shown in the example code that specifying the factors involved in the design and the type of
analysis are done in a straightforward way, and then the code automatically generates the contrast
matrices needed and runs the test, no matter how complex the user’s design is. Therefore, researchers
from other areas may find it more friendly and hence, our effort may contribute to the diffusion of the
Welch-James ADF test in applied studies.

In the future, an enhancement may be added so that custom contrasts can be done in addition to
the most common omnibus and pairwise contrasts. This requires designing a simple, yet powerful
mechanism for the user to describe the desired test in the function arguments.
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ider: Intrinsic Dimension Estimation with
R
by Hideitsu Hino

Abstract In many data analyses, the dimensionality of the observed data is high while its intrinsic
dimension remains quite low. Estimating the intrinsic dimension of an observed dataset is an essential
preliminary step for dimensionality reduction, manifold learning, and visualization. This paper
introduces an R package, named ider, that implements eight intrinsic dimension estimation methods,
including a recently proposed method based on a second-order expansion of a probability mass
function and a generalized linear model. The usage of each function in the package is explained with
datasets generated using a function that is also included in the package.

Introduction

An assumption that the intrinsic dimension is low even when the apparent dimension is high—that
the data distribution is constrained onto a low dimensional manifold—is the basis of many machine
learning and data analysis methods, such as dimension reduction and visualization (Cook and Yin,
2001; Kokiopoulou and Saad, 2007). Without good estimates of the intrinsic dimension, dimensionality
reduction is no more than a risky bet, insofar as one does not know to what extent the dimensionality
can be reduced. We may overlook important information by projecting the original data on too small
dimensional subspace. By analyzing high-dimensional data unnecessarily, computation resources and
time can be wasted. When we use visualization techniques to gain insights about data, it is essential to
understand whether the data at hand can be safely visualized at low dimensions, and to what extent
the original information will be preserved via the visualization method. Several methods for intrinsic
dimension estimation (IDE) have been proposed, and they can be roughly divided into two categories:

• projection-based methods and
• distance-based methods.

The former category of IDE methods basically involve two steps. First, the given dataset is
partitioned. Then, in each partition, principal component analysis (PCA) or another procedure for
finding a dominant subspace is performed. This approach is generally easy to implement and suitable
for exploratory data analysis (Fukunaga and Olsen, 1971; Verveer and Duin, 1995; Kambhatla and
Leen, 1997; Bruske and Sommer, 1998). However, the estimated dimension is heavily influenced by
how the data space is partitioned. Moreover, it is also unknown how the threshold for the eigenvalue
obtained by PCA should be determined. This class of methods is useful for explanatory analysis with
human interaction and trial-and-error iteration. However, it is unsuitable for plugging into a pipeline
for automated data analysis, and we do not consider this sort of method in this paper.

The package ider implements various methods for estimating the intrinsic dimension from a
set of observed data using a distance-based approach (Pettis et al., 1979; Grassberger and Procaccia,
1983; Kégl, 2002; Levina and Bickel, 2005; Hein and Audibert, 2005; Fan et al., 2009; Gupta and
Huang, 2010; Eriksson and Crovella, 2012; Hino et al., 2017). The implemented algorithms work with
either a data matrix or a distance matrix. There are a large number of distance-based IDE methods.
Among them, methods based on the fractal dimension (Mandelbrot, 1977) are well studied in the
fields of both mathematics and physics. The proposed package ider implements the following fractal
dimension-based methods:

corint: the correlation integral (Grassberger and Procaccia, 1983)
convU: the kernel-version of the correlation integral (Hein and Audibert, 2005)
packG,packT: capacity dimension-based methods with packing number estimation (a greedy method (Kégl,

2002) and a tree-based method (Eriksson and Crovella, 2012))
mada: first-order local dimension estimation (Farahmand et al., 2007)
side: second-order local dimension estimation (Hino et al., 2017)

There are several other distance-based methods, such as one based on a maximum-likelihood
estimate of the Poisson distribution (Levina and Bickel, 2005), which approximates the distance
distribution from an inspection point to other points in a given dataset. This method is implemented
in our package as a function lbmle. A similar but different approach utilizing the nearest-neighbor
information has also been implemented as a function nni (Pettis et al., 1979).

The proposed package also provides a data-generating function gendata that generates several
famous artificial datasets often used as benchmarks for IDE and manifold learning.
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Fractal dimensions

In fractal analysis, the Euclidean concept of a dimension is replaced with the notion of a fractal
dimension, which characterizes how the given shape or datasets occupy their ambient space. There are
many different definitions of the fractal dimension, from both mathematical and physical perspectives.
Well-known fractal dimensions include the correlation dimension and the capacity dimension. There
are already some R packages for estimating the fractal dimension, such as fractal, nonlinearTseries,
and tseriesChaos. In fractal and nonlinearTseries, the correlation dimension and its generalization
estimators are implemented, and in tseriesChaos, the method of false nearest neighbors (Kennel
et al., 1992) is implemented. These packages focus on estimates of the embedded dimension of a time
series in order to characterize its chaotic property. To complement the above-mentioned packages, we
implemented several fractal dimension estimators for vector-valued observations.

Global dimensions

Correlation dimension

For a set of observed data D = {xi}n
i=1, the correlation integral is defined as

V2(ε) = lim
n→∞

2
n(n− 1)

n

∑
i<j

I(‖xi − xj‖ < ε) (1)

using a sufficiently small ε > 0. In Eq. (1), I(u) is the indicator function which returns one when
the statement u is true and zero if the statement is false. The correlation integral V2(ε) is the ratio
of pairs whose distance is below ε, and this number grows as a length for a one-dimensional object,
as a surface for a two-dimensional object, as a volume for a three-dimensional object, and so forth.
So, it is natural to assume that V2(ε) grows proportional to the intrinsic dimension, and the intrinsic
dimension associated with V2(ε) is defined as the correlation dimension. To be precise, using the
correlation integral, the correlation dimension is defined as

pcor = lim
ε→0

log V2(ε)

log ε
. (2)

Intuitively, the number of sample pairs with a distance smaller than ε should increase in proportion to
εp, where p is the intrinsic dimension. The correlation dimension exploits this property, i.e., V2(ε) ∝ εp,
to define the intrinsic dimension pcor. Grassberger and Procaccia (1983) proposed the use of the
empirical (finite sample) estimates V̂2(εk) =

2
n(n−1) ∑n

i<j I(‖xi − xj‖ < εk), k = 1, 2 of the correlation
integral V2(ε) with two different radii, ε1 and ε2, in order to estimate the correlation dimension (2) as
follows:

p̂cor(ε1, ε2) =
log V̂2(ε2)− log V̂2(ε1)

log ε2 − log ε1
. (3)

Hein and Audibert (2005) proposed the use of a U-statistic with the form

V̂2,h =
2

n(n− 1)

n

∑
i<j

κh(‖xi − xj‖2) (4)

using a kernel function κh with bandwidth h to count the number of samples, and replaced the
correlation integral by V̂2,h. The convergence of this U-statistic with n→ ∞, by an argument similar
to kernel bandwidth selection (Wand and Jones, 1994), requires that h → 0 and nhp → ∞. These
conditions are used in (Hein and Audibert, 2005) to derive a formula for estimating the global intrinsic
dimension p.

In the ider package, the classical correlation dimension estimator proposed in Grassberger and
Procaccia (1983) is performed using the function corint as follows.

> set.seed(123)
> x <- gendata(DataName='SwissRoll', n=300)
> estcorint <- corint(x=x, k1=5, k2=10)
> print(estcorint)
> [1] 1.963088

where k1 and k2 respectively correspond to ε1 and ε2 in Eq. (3). Indeed, it is easy and safe to specify an
integer k for the k-th nearest neighbor rather than the radius ε, because there is no guarantee that there
is a data point in ε-ball in general. In the above example, we used the function gendata to generate
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the famous ‘SwissRoll’ data with an ambient dimension of three and an intrinsic dimension of two.
As observed, the correlation integral method by Grassberger and Procaccia (1983) works well for this
dataset. The kernel-based correlation dimension estimator is performed by using the function convU
as follows:

> set.seed(123)
> x <- gendata(DataName='SwissRoll', n=300)
> estconvU <- convU(x=x, maxDim=5)
> print(estconvU)
> [1] 2

The method proposed by Hein and Audibert (2005) attempts to find the possible intrinsic dimension
one-by-one up to maxDim. Consequently, the estimated dimension can only be a natural number. All
IDE functions in ider support both vector-valued data matrices and distance matrices as the input data.
This is useful in cases where we exclusively obtain a distance matrix, and in cases where the original
data object cannot be represented by a finite and fixed dimensional vector. This is also useful when we
treat very high-dimensional data, such that retaining its distance matrix saves memory storage. To
indicate that the input is a distance matrix, we set the parameter DM to TRUE as follows:

> set.seed(123)
> x <- gendata(DataName='SwissRoll', n=300)
> estcorint <- corint(x=dist(x), DM=TRUE, k1=5, k2=10)
> print(estcorint)
> [1] 1.963088

The distance matrix can be either a matrix object or dist object.

Capacity dimension

Let X be a given metric space with distance metric d : X ×X → R+. The ε-covering number N(ε)
of a set S ⊂ X is the minimum number of open balls b(z; ε) = {x ∈ X |d(x, z) < ε} whose union is a
covering of S . The capacity dimension (Hentschel and Procaccia, 1983) or box-counting dimension is
defined by

pcap = − lim
ε→0

log N(ε)

log ε
. (5)

The intuition behind the definition of capacity dimension is the following. Assuming a three-
dimensional space divided in small cubic boxes with a fixed edge length ε, the box-counting dimension
is related to the proportion of occupied boxes. For a growing one-dimensional object placed in this
compartmentalized space, the number of occupied boxes grows proportionally to the object length.
Similarly, for a growing two-dimensional object, the number of occupied boxes grows proportionally
to the object surface, and for a growing three-dimensional object, the number grows proportionally
to the volume. Considering the situation that the size of the object remains unchanged but the edge
length ε of the boxes decreases justify the definition of pcap.

The problem of estimating pcap is reduced to the problem of estimating N(ε), but finding the
covering number is computationally intractable. Kégl (2002) proposed the replacement of the covering
number N(ε) with the ε-packing number M(ε). Given a metric space X with distance d, a set V ⊂ X
is said to be ε-separated if d(x, y) ≥ ε for all x, y ∈ V, x 6= y. The ε-packing number M(ε) is defined
by the maximum cardinality of an ε-separated subset of the data space X , and it is known that the
inequalities N(ε) ≤ M(ε) ≤ N(ε/2) hold. Considering the fact that the capacity dimension is defined
as the limit ε→ 0, the following holds:

pcap = − lim
ε→0

log M(ε)

log ε
. (6)

The capacity dimension based on the packing number is estimated using the estimates of the packing
number at two different radii, ε1 and ε2, as

p̂cap = − log M̂(ε2)− log M̂(ε1)

log ε2 − log ε1
. (7)

The ε-packing number M(ε) has been estimated using a greedy algorithm (Kégl, 2002) and by using a
hierarchical clustering algorithm (Eriksson and Crovella, 2012).

In the ider package, the capacity dimension estimation is based on the packing number with
greedy approximation, and it is performed using the function pack as
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> set.seed(123)
> x <- gendata(DataName='SwissRoll', n=300)
> estpackG <- pack(x=x, greedy=TRUE) ## estimate the packing number by greedy method
> print(estpackG)
> [1] 2.289935

whereas the hierarchical clustering-based method is performed as

> estpackC <- pack(x=x, greedy=FALSE) ## estimate the packing number by cluttering
> print(estpackC)
> [1] 2.393657

Packing-number-based methods require two radii ε1 and ε2, which are specified by arguments k1 and
k2, respectively. If one of these arguments is NULL, both can be determined by a 0.25 and 0.75 quantile
of distance from all pairs of data points.

Local dimensions

The former two fractal dimensions, viz., the correlation dimension and capacity dimension, are
designed to estimate a global intrinsic dimension. Any global IDE method can be converted into a
local method by running the global method on a neighborhood of a point. However, we introduce
two inherently local fractal dimension estimators. The relationship between global and local fractal
dimensions are shown in (Hino et al., 2017).

Let µ be an absolutely continuous probability measure on a metric space X , and let the correspond-
ing probability density function (pdf) be f (x). Consider the problem of estimating the value of the pdf
at a point z ∈ X ⊆ Rp using a set of observations D = {xi}n

i=1.

First-order method

Let the p-dimensional hyper-ball of radius ε centered at z be b(z; ε) = {x ∈ Rp|d(z, x) < ε}. The
probability mass of the ball b(z; ε) is defined as

Pr(X ∈ b(z; ε)) =
∫

x∈b(z;ε)
dµ(x) =

∫
x∈b(z;ε)

f (x)dν(x),

where ν is the uniform measure in p-dimensional Euclidean space. We assume that for a sufficiently
small radius ε > 0, the value of the pdf f (z) is approximately a constant within the ball b(z; ε). Under
this assumption, using the Taylor series expansion of the probability mass, we obtain

Pr(X ∈ b(z; ε)) =
∫

x∈b(z;ε)

{
f (z) + (x− z)>∇ f (z) + O(ε2)

}
dν(x)

=|b(z; ε)|
(

f (z) + O(ε2)
)
= cpεp f (z) + O(εp+2),

where
∫

x∈b(z;ε) dν(x) = |b(z; ε)|. The volume of a ball with a uniform measure is |b(z; ε)| = cpεp,

where cp = πp/2/Γ(p/2 + 1), and Γ( · ) is the gamma function. In this expansion, the integration is
performed within the ε-ball; hence x− z is of the same order as ε. The term with the first derivative
of the density function vanishes owing to symmetry. When we fix the number of samples k falling
within the ball b(z; ε) instead of the radius ε, the radius ε is determined by the distance between the
inspection point z and its k-th nearest neighbor. In this paper, εk denotes the radius determined by
k. Inversely, when we fix the radius ε, the number of samples falling within the ε-ball centered at
an inspection point is determined and denoted by kε. In (Farahmand et al., 2007), Pr(X ∈ b(z; ε)) is
approximated by the ratio of b(z; ε) and the sample size n as follows:

Pr(X ∈ b(z; ε)) ' kε

n
' cpεp f (z). (8)

Then, for different radii ε1, ε2, the logarithm of the above approximation formula derives the following:

log
kε1

n
= log cp f (z) + p log ε1,

log
kε2

n
= log cp f (z) + p log ε2.
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Solving this system of equations with respect to the dimension yields the estimate of the local fractal
dimension:

p̂mada =
log kε2 − log kε1

log ε2 − log ε1
. (9)

The convergence rate of this estimator is independent of the ambient dimension, but it depends on the
intrinsic dimension. Hence, p̂mada is called the manifold adaptive dimension estimator in (Farahmand
et al., 2007). This estimator is simple and easy to implement, and it provides a finite sample error
bound. We explain the usage of this first-order local IDE method in package ider. To demonstrate
the ability of a local estimate, we use a dataset “lbdl” (i.e., line-disc-ball-line), which comprises sub-
datasets with one, two, and three dimensions embedded in three-dimensional space. Using this
dataset, the example of the use of a first-order local IDE called mada is shown below:

> set.seed(123)
> tmp <- gendata(DataName='ldbl', n=300)
> x <- tmp$x
> estmada <- mada(x=x, local=TRUE)
> estmada[c(which(tmp$tDim==1)[1], which(tmp$tDim==2)[1], which(tmp$tDim==3)[1])]
> 1.113473 2.545525 2.207250

This sample code estimates the local intrinsic dimensions of every point in the dataset x, and shows
the estimates at the points with true intrinsic dimensions of one, two, and three.

Second-order method

In (Hino et al., 2017), accurate local IDE methods based on a higher-order expansion of the probability
mass function and Poisson regression modeling are proposed. By using the second-order Taylor series
expansion for Pr(X ∈ b(z; ε)), we obtain the following proposition:

Proposition 1 The probability mass Pr(X ∈ b(z; ε)) of the ε-ball centered at z is expressed in the form

Pr(X ∈ b(z; ε)) = cp f (z)εp +
p

4(p/2 + 1)
cptr∇2 f (z)εp+2 + O(εp+4).

The proof for this is detailed in (Hino et al., 2017). However, there is no need to know the exact form
of the second-order expansion. By approximating the probability mass Pr(X ∈ b(z; ε)) empirically
with the ratio kε/n, i.e., the ratio of the number of samples falling into the ε-ball to the whole sample
size, we obtain the following relationship:

kε

n
= cp f (z)εp +

p
4(p/2 + 1)

cptr∇2 f (z)εp+2

by ignoring the higher-order term with respect to ε. Furthermore, by multiplying both sides of each
equation by n, and letting the coefficients of εp and εp+2 be β1 and β2, respectively, we obtain

kε = β1εp + β2εp+2. (10)

To estimate the intrinsic dimension using the second-order Taylor series expansion, we fit a generalized
linear model (GLM; (Dobson, 2002)) to Eq. (10), which expresses the counting nature of the left-hand
side of the equation.

Let the intrinsic dimension at the inspection point z be p (p = 1, . . . , maxDim), where maxDim is
the pre-determined upper limit of the intrinsic dimension. We express realizations of a vector-valued
random variable xε,p ∈ R2, which is composed of εp and εp+2, where ε is the distance from the
inspection point, by

xε,p ∈
{(

ε
p
1

ε
p+2
1

)
,

(
ε

p
2

ε
p+2
2

)
, . . .

}
. (11)

We also introduce realizations of a random variable yε = kε ∈ {1, 2, . . . }, which is the number of
samples included in the ball b(z; ε). Specifically, we consider a pair of random variables (Y, Xp) and
fix a radius ε corresponding to a trial that results in realizations (yε, xε,p). Because the realization yε is
the number of samples within the ε-ball, and assuming that the number of observation n is sufficiently
large, we assume that the error structure of Y is a Poisson distribution. Then, we can formulate the
relationship between the distance from the inspection point ε and the number of samples falling within
the ε-ball using a generalized linear model with a Poisson error structure and linear link function as
follows:

E[y] = x>β. (12)
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A set of m different radii is denoted as E , i.e., {ε1, . . . , εm} ∈ E . We maximize the log-likelihood of the
Poisson distribution with the observation {(yε, xε,p)}ε∈E with respect to the coefficient vector β ∈ R2.
In this work, we simply consider the m-th nearest neighbor with m = min{dn/5e, 100}, and let the
Euclidean distance from the inspection point z to its m-th nearest point x(m) be d(z, x(m)). Then, we
uniformly sample m radii E = {ε1, ε2, . . . , εm} from a uniform distribution in [0, d(z, x(m))]. Let the
observation vector and design matrix, which are composed of realizations of Y and X, be

y =(yε1 , yε2 , . . . , yεm )
> ∈ Rm (13)

Xp =(xε1,p, xε2,p, . . . , xεm ,p)
>

=

(
ε

p
1 ε

p
2 . . . ε

p
m

ε
p+2
1 ε

p+2
2 . . . ε

p+2
m

)>
∈ Rm×2. (14)

We consider a generalized linear model (Dobson, 2002) with the linear predictor Xpβ and identity link

E[y] = Xpβ, (15)

and the log-likelihood function of the Poisson distribution:

L({y, Xp}; β) = log ∏
ε∈E

e−x>ε,p β(x>ε,pβ)yε

yε!
. (16)

By assuming that the intrinsic dimension is p, the optimal IDE is estimated on the basis of the goodness
of fit of the data to the regression model (10). We use the log-likelihood (16) to measure this goodness
of fit. Note that the number of parameters is always two, even when we change the assumed IDE p;
hence, the problem of over-fitting by maximizing the likelihood is avoided in our setting.

In the package ider, two IDE algorithms are implemented based on the maximization of Eq. (16).
The first method simply assumes distinct intrinsic dimensions and maximizes the log-likelihood (16)
with respect to β with fixed p. Let the ambient dimension or maximum possible dimension of the
observation be maxDim. We assume that the intrinsic dimension is p = 1, 2, . . . , maxDim, and for
every p, we fit the regression model (10) by maximizing the log-likelihood (16) with respect to β, and
employ the dimension p that maximizes the likelihood:

p̂s1 = arg max
p∈{1,...,maxDim}

max
β∈R2

L({y, Xp}; β). (17)

The second method treats the log-likelihood (16) as a function of both the regression coefficients
β ∈ R2 and the intrinsic dimension p ∈ R+. Given a set of observations, we can maximize the log-
likelihood function with respect to (p, β1, β2). Because it is difficult to obtain a closed-form solution for
the maximizer of the likelihood (16), we numerically maximize the likelihood to obtain the estimate as

p̂s2 = arg max
p∈R+

max
β∈R2

L({y, Xp}; β) (18)

by using the quasi-Newton (BFGS) method. The initial point for the variables (p, β1, β2) is set to the
estimate obtained using the first method explained above.

In the ider package, a second-order local IDE with discrete dimensions is performed using the
function side (Second-order Intrinsic Dimension Estimator) as follows:

> set.seed(123)
> tmp <- gendata(DataName='ldbl', n=300)
> x <- tmp$x
> idx <- c(sample(which(tmp$tDim==1)[1:10], 3), sample(which(tmp$tDim==2)[1:30], 3))
> estside <- side(x=x[1:100,], local=TRUE, method='disc')
> print(estside[idx]) ## estimated discrete local intrinsic dimensions by side
[1] 1 1 1 3 1 2

An example of the same, using the method ’cont’ is as follows:

> estside <- side(x=x[1:100,], local=TRUE, method='cont')
> print(estside[idx]) ## estimated continuous local intrinsic dimensions by side
[1] 1.020254 1.338089 1.000000 2.126269 3.360426 2.074643

It is seen that the obtained estimates are not natural numbers.

The local dimension estimate is easily aggregated to a global estimate by taking an average,
median, or voting of local estimates, and this is realized when we set the argument local = TRUE in
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mada or side. The functions mada and side have an argument comb to specify how the local estimates
are combined. When comb='average', the local estimates are averaged as a global IDE. Likewise,
when comb='median', the median of the local estimates is adopted; and when comb='vote', the voting
of local estimates is adopted as a global IDE. Note that the combination method vote should be used
only with method='disc'.

> set.seed(123)
> x <- gendata(DataName='SwissRoll', n=300)
> estmada <- mada(x=x, local=FALSE, comb='median')
> estmada
[1] 1.754866
> estside <- side(x=x, local=FALSE, comb='median', method='disc')
> estside
[1] 2

Other distance-based approaches

The package ider supports two other distance-based dimension-estimation methods, namely lbmle
and nni.

Maximum likelihood estimation

Levina and Bickel (2005) derived the maximum likelihood estimator of the dimension p from i.i.d.
observations D = {xi}n

i=1. Let f be a pdf of the data points smoothly embedded in a p-dimensional
space, i.e., a space with intrinsic dimension, and assume that when a point x is fixed, the value of pdf
f (x) is constant in a small ball b(x; ε). Consider the point process

{N(t, x), 0 ≤ t ≤ ε}, N(t, x) =
n

∑
i=1

1{xi ∈ b(x; t)}, (19)

which counts the observations within distance t from the inspection point x. This point process is
approximated using a homogeneous Poisson process, with rate

λ(t) = cp f (x)ptp−1. (20)

The log-likelihood of the observed process N(t) is written as

L(p, log f (x)) =
∫ ε

0
log λ(t)dN(t)−

∫ ε

0
λ(t)dt. (21)

Solving the likelihood equation, the maximum likelihood estimate of the intrinsic dimension around x
is

p̂ε(x) =

 1
N(ε, x)

N(ε,x)

∑
j=1

log
ε

ε j(x)


−1

, (22)

or, more conveniently in practice,

p̂k(x) =

 1
k− 1

k−1

∑
j=1

log
εk(x)
ε j(x)


−1

, (23)

where ε j(x) denotes the distance between the inspection point x to its j-th nearest point. Then, choosing
two indices, k1 and k2, the maximum likelihood estimate p̂ml of the intrinsic dimension is obtained as
follows:

p̂ml =
1

k2 − k1 + 1

k2

∑
k=k1

q̂k, q̂k =
1
n

n

∑
i=1

p̂k(xi). (24)

In the ider package, the maximum likelihood estimation is obtained by using the function lbmle:

> set.seed(123)
> x <- gendata(DataName='SwissRoll', n=300)
> estmle <- lbmle(x=x, k1=3, k2=5, BC=FALSE)
> print(estmle)
[1] 3.174426
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It was pointed out by MacKay and Ghahramani that the above MLE contains a certain bias 1. With
the function lbmle, however, we can calculate the bias-corrected estimate by setting the argument BC,
which stands for "bias-correction", to TRUE:

> set.seed(123)
> x <- gendata(DataName='SwissRoll', n=300)
> estmle <- lbmle(x=x, k1=3, k2=5, BC=TRUE)
> print(estmle)
[1] 2.032756

Near-neighbor information

Pettis et al. (1979) proposed an IDE method based on the analysis of the distribution of distances from
one point to its nearest neighbors. Pettis et al. (1979) derived that the distribution of the distance
from a point x to its k-th nearest neighbor εk,x is, based on the Poisson approximation, given by the
following probability density function

fk,x(εk,x) = n f (x)cp
{n f (x)cp}k−1

Γ(k)
exp(−n f (x)cpε

p
k,x). (25)

The expected value of the sample average of distance to the k-th nearest neighbor over the given
dataset is

E[ε̄k] =
1
n

n

∑
i=1

E[εk,xi
] =

1
Gk,p

k1/p An, (26)

where

Gk,p =
k1/pΓ(k)

Γ(k + 1/p)
, An =

1
n

n

∑
i=1
{n f (xi)cp}−1/p. (27)

Note that An is sample-dependent but independent of k. Let p̂0 be the first rough estimate of the
intrinsic dimension. Taking logarithm of eq. (26) yields

log Gk,p̂0 + log ε̄k =
1
p

log k + log An, (28)

where E[εk] is replaced with the sample average ε̄k. From k1 to k2, we calculate the left hand side
of eq. (28) for each k, and treat them as the realizations of the response variable. Linear regression of
log k, k ∈ [k1, k2] on those response variable yields the updated estimate p̂1 of the intrinsic dimension.
Replacing p̂0 in Gk,p with the updated p̂1 and repeat the procedure until the gap between the new and
the old estimates p̂ is smaller than certain threshold.

The estimator is implemented as a function nni in ider and used as follows:

> set.seed(123)
> x <- gendata(DataName='SwissRoll', n=300)
> estnni <- nni(x=x)
> print(estnni)
[1] 2.147266

The function nni has parameters k1 and k2, which are the same in lbmle. This method is based on
an iterative estimate of IDE, and the function nni has a parameter eps to specify the threshold for
stopping the iteration, which is set at 0.01 by default.

Data-generating function

The ider package is equipped with a data-generating function gendata. It can generate nine different
artificial datasets, which are manifolds of dimension p embedded in ambient space of dimension
(≥ p). The dataset is specified by setting the argument DataName to one of the following:

SwissRoll SwissRoll data, a 2D manifold in 3D space.

NDSwissRoll Non-deformable SwissRoll data, a 2D manifold in 3D space.

Moebius Moebius strip, a 2D manifold in 3D space.

SphericalShell Spherical Shell, p-dimensional manifold in (p + 1)-dimensional space.

Sinusoidal Sinusoidal data, a 1D manifold in 3D space.

1http://www.inference.phy.cam.ac.uk/mackay/dimension/
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Spiral Spiral-shaped data, a 1D manifold in 2D space.

Cylinder Cylinder-shaped data, a 2D manifold in 3D space.

SShape S-shaped data, a 2D manifold in 3D space.

ldbl Four subspaces, line - disc - filled ball - line, in this order, along the z-axis, embedded in 3D
space.

The final dataset lbdl is used to see the ability of local dimension estimations. The dataset
comprises four sub-manifolds: line-shape (1D), disc (2D), filled ball (3D), and line-shape again, and
these four sub-manifolds are concatenated in this order.

The parameter n of the function gendata specifies the number of samples in a dataset. All but
the SphericalShell dataset have fixed ambient and intrinsic dimensions. For the SphericalShell
dataset, an arbitrary integer can be set as the ambient dimension by setting the argument p.

The realizations of each dataset are shown in Fig. 1.
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Figure 1: Samples of datasets generated by gendata.

Example: estimating the degree of freedom of hand motion

The aim of this paper is to introduce the package ider and explain the standard usage of its imple-
mented functions. Exhaustive experiments comparing IDE methods in various settings can be found in
(Hino et al., 2017). In this paper, as a simple example of the application of the IDE methods to realistic
problems, we consider estimating the intrinsic dimension of a set of images. We used the CMU Hand
Rotation dataset2, which was also used in (Kégl, 2002) and (Levina and Bickel, 2005). Examples of the
hand images are shown in Fig. 2. The original CMU Hand Rotation dataset is composed of 481 images
of 512× 480 pixels. In the package ider, the distance matrix of these images is included:

2http://vasc.ri.cmu.edu/idb/html/motion/hand/index.html
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Figure 2: Example images in the Hand Rotation dataset.

> data(handD)
> str(handD)
Class 'dist' atomic [1:115440] 4.96 8.27 8.33 8.31 8.12 ...
..- attr(*, "Labels")= chr [1:481] "dimg" "dimg" "dimg" "dimg" ...
..- attr(*, "Size")= int 481
..- attr(*, "call")= language as.dist.default(m = handD)
..- attr(*, "Diag")= logi FALSE
..- attr(*, "Upper")= logi FALSE

> dim(as.matrix(handD))
[1] 481 481

Because the object handD is a distance matrix, when we apply IDE methods to this data, we must set
the argument DM to TRUE:

>lbmle(x=handD, DM=TRUE, k1=3, k2=5, BC=TRUE, p=NULL)
[1] 4.433915
>corint(x=handD, DM=TRUE, k1=3, k2=10)
[1] 2.529079
> pack(x=handD, DM=TRUE, greedy=TRUE)
[1] 3.314233
> pack(x=handD, DM=TRUE, greedy=FALSE)
[1] 2.122698
> nni(handD, DM=TRUE)
[1] 2.646178
> side(x=handD, DM=TRUE, local=FALSE, method='disc', comb='median')
[1] 3
> side(x=handD, DM=TRUE, local=FALSE, method='cont', comb='median')
[1] 2

These results suggest that even the extrinsic dimension of the image is very high (512× 480 = 245760),
whereas the intrinsic dimension is quite low, and there are only a few between 2 to 4.5.

Computational cost

We measured computational costs of dimension estimation methods for SwissRoll dataset, where
the number of observations n were varied from 500 to 3000 by 500. Datasets of size n are repeatedly
generated 100 times. The experiments are performed on an iMac with Mac OS X, 2.6GHz Intel Core
i7 processor, with 16GB memory. The results are shown in Fig. 3 by boxplots. It is seen that the
computational costs of packT and side grow almost quadratically. Among various methods, lbmle
and nni are computationally very efficient. When we apply packT or side to large scale dataset, it is
advised to subsample the original dataset.

Summary and future directions

In this paper, we introduced an R package, ider, that implements several IDE algorithms for vector-
valued observation or distance matrices. Different IDE methods capture different aspects of the data
distribution in low-dimensional subspace, and the estimated dimension varies. Our goal in developing
ider is to provide a systematic method for selecting or comparing different methods for analyzing a
given dataset. In practice, it is not expected that there is a ground-truth intrinsic dimension. In such
cases, one possible approach is to apply all of the IDE methods provided in ider. In doing so, we can
check whether the estimates agree with one another. If a consensus on the estimate cannot be reached,
the reason why will be of interest, and this can help to characterize the nature of the data distribution.
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Figure 3: Computational costs and number of observations.

It is worth noting that there is another approach to IDE based on the minimum spanning tree.
In (Costa et al., 2004), a method for estimating the f -divergence (Ali and Silvey, 1966; Csiszár and
Shields, 2004) based on the total edge length of the minimum spanning tree of the observed objects
has been proposed, and the authors used this method to estimate the intrinsic dimension (Costa
and Hero, 2006; Carter et al., 2010). This kind of IDE method, and some of the projection-based
methods, shall be included in a future version of the package ider. Furthermore, as we included
representative fractal dimension estimation methods, the related methods based on them are not
covered in the current version of ider. For example, the correlation dimension by Grassberger and
Procaccia (1983) is known to have finite sample bias, and bias correction method based on simulated
data is proposed in (Camastra and Vinciarelli, 2002). Also, the maximum likelihood and other
approaches for correlation dimension estimation are summarized in (Camastra, 2003). We will update
the package with implementations of these variations of the methods already included in current ider.

Finally, another important future work is improving computational efficiency. IDE methods based
on packing number and second-order expansion of probability mass function are not computationally
efficient. Implementation using Rcpp or parallelization would be an effective means for realizing the
fast computation, and we will now be working on a parallel implementation.
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rpsftm: An R Package for Rank
Preserving Structural Failure Time
Models
by Annabel Allison, Ian R White and Simon Bond

Abstract

Treatment switching in a randomised controlled trial occurs when participants change from their
randomised treatment to the other trial treatment during the study. Failure to account for treatment
switching in the analysis (i.e. by performing a standard intention-to-treat analysis) can lead to biased
estimates of treatment efficacy. The rank preserving structural failure time model (RPSFTM) is a
method used to adjust for treatment switching in trials with survival outcomes. The RPSFTM is due to
Robins and Tsiatis (1991) and has been developed by White et al. (1997, 1999).

The method is randomisation based and uses only the randomised treatment group, observed
event times, and treatment history in order to estimate a causal treatment effect. The treatment effect,
ψ, is estimated by balancing counter-factual event times (that would be observed if no treatment
were received) between treatment groups. G-estimation is used to find the value of ψ such that a test
statistic Z (ψ) = 0. This is usually the test statistic used in the intention-to-treat analysis, for example,
the log rank test statistic.

We present an R package, rpsftm, that implements the method.

Introduction

In a two-arm randomised controlled trial, participants are randomly allocated to receive one of two
treatments or interventions. Ideally, all participants would fully receive their allocated treatment and
no other treatment. However, in a recent review, 98 of 100 trials published in four high quality general
medical journals reported some form of departure from randomised treatment (Dodd et al., 2012).
When treatment is ‘all-or-nothing’ (for example, a surgical procedure), possible departures include not
receiving the allocated treatment, receiving the other trial treatment, or receiving a non-trial treatment.
When treatment is given over time (for example, a drug for HIV treatment), departures also occur over
time, and often include starting a new treatment in response to a disease-related event.

This paper specifically focuses on the case of treatment switching over time, where participants
may switch to receive the other trial treatment during the trial (Latimer et al., 2014). A common
example is in a trial of active treatment versus placebo where placebo arm participants may start the
active treatment in response to disease progression.

A randomised controlled trial with departures from randomised treatment is commonly analysed
by intention-to-treat, in which departures from randomised treatment are ignored and all randomised
participants are compared in the groups to which they were randomised (Higgins et al., 2011). This
provides an unbiased comparison of two treatment policies, which accept that treatment may be
changed, but does not compare the efficacies of the treatments themselves (White et al., 1999).

In order to compare the efficacies of the treatments, analysts often use per-protocol analysis, which
censors participants when they depart from randomised treatment. However, this loses the advantage
that randomisation produces comparable groups and instead introduces selection bias. Another
possibility is to include treatment as a time-dependent variable in a Cox regression model. The issue
with this method is that the estimate of treatment effect may not have a causal interpretation when
switchers are prognostically different to non-switchers (Robins and Tsiatis, 1991).

There has therefore been strong interest in causal inference methods including marginal structural
models (MSM) (i.e. inverse probability of censoring weighting (IPCW)) (Hernán et al., 2001) and
instrumental-variable-type methods (White, 2005; Watkins et al., 2013).

The IPCW method is an extension of the per-protocol censoring approach, whereby the bias
associated with censoring participants that depart from randomised treatment is removed by weighting
the remaining non-switchers (Latimer et al., 2016). A model is formed for the probability of switching
using baseline and time-dependent covariates. Time-varying weights are then obtained for each
participant based on the inverse probability of not switching until a given time (Watkins et al.,
2013). The method relies on data on prognostic factors for mortality that also affect the probability
of switching being collected at both baseline and over time. This is called the ‘no unmeasured
confounders’ assumption. Since this assumption is untestable, the method relies on good planning
at the study design stage in order to collect information on all possible confounders. The method
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also has two potential issues: a) if many prognostic factors are included in the model to calculate
weights the model may fail to converge, and b) if only a few participants switch then large weights are
assigned to the remaining participants, which may result in biased analyses. The method has already
been implemented in R in the package ipw (van der Wal and Geskus, 2011) and so is not considered
further here.

Instead, this paper focuses on a popular causal method - the rank preserving structural failure
time model (RPSFTM) (Robins and Tsiatis, 1991). In contrast to the IPCW method which requires
potential confounders to be collected over time, the RPSFTM is randomisation based and only requires
information on the randomised treatment group, observed event times, and treatment history in order
to estimate a causal treatment effect. The method has been used, for example, in submissions to the
UK’s National Institute for Health and Clinical Excellence whose Decision Support Unit commissioned
a guidance document (Latimer and Abrams, 2014). The RPSFTM has been implemented in Stata
(White et al., 2002) but not in R.

This paper describes the theory of the RPSFTM and presents a new implementation of the method
with the R package rpsftm (Bond and Allison, 2017), using data based on a trial in HIV infection.

Theory

RPSFTM method and assumptions

The RPSFTM uses a causal model to produce counter-factual event times (the time that would be
observed if no treatment were received) in order to estimate a causal treatment effect. Let Ti =

Toff
i + Ton

i be the observed event time for participant i, where Toff
i and Ton

i represent the time spent
off and on treatment, respectively. The Ti are related to the counter-factual event times, Ui, via the
following causal model:

Ui = Toff
i + Ton

i exp (ψ0) , (1)

where exp (−ψ0) is the acceleration factor associated with treatment and ψ0 is the true causal parame-
ter.

A grid search (g-estimation) procedure is used to estimate the treatment effect that balances the
counter-factual event times across randomised treatment groups. To estimate the causal treatment
effect, ψ, we assume that the Ui are independent of randomised treatment group Ri, i.e. if the groups
are similar with respect to all other characteristics except treatment, the average event times should be
the same in each group if no participant were treated. In general, this assumption is plausible in a
randomised controlled trial.

A g-estimation procedure is used to find the value of ψ such that Ui is independent of Ri. For a
range of ψs, the hypothesis ψ0 = ψ is tested by computing Ui (ψ) , subject to censoring, and calculating
the test statistic Z (ψ) . This is usually the same test statistic as for the intention-to-treat analysis, for
example, the log rank test statistic to compare survival distributions between groups. In the rpsftm()
function, the possible test options are the log rank, and the Wald test from a Cox or Weibull regression
model. For the parametric Weibull test, the point estimate (ψ̂) is the value of ψ for which Z (ψ) = 0.
For the non-parametric tests (log rank, Cox), ψ̂ is the value of ψ for which Z (ψ) crosses 0, since Z (ψ)
is a step function. Confidence intervals are similarly found with the 100 (1− α)% confidence interval
being the set {ψ : |Z (ψ) | < z1−α/2}, where z1−α/2 is the 1− α/2 percentile of the standard normal
distribution.

After finding ψ̂, an adjusted hazard ratio can be calculated. For example, by comparing counter-
factual event times at ψ̂ in the control group to the observed event times in the experimental group we
can estimate the treatment effect that would have been observed in the absence of switching (in the
case where only the control group switch).

As well as assuming that the only difference between randomised groups is the treatment received,
the RPSFTM also assumes a ‘common treatment effect’. The common treatment effect assumption
states that the treatment effect is the same for all participants (with respect to time spent on treatment)
regardless of when treatment is received, which is implicit in equation (1).

Re-censoring

We assume that censoring occurs if participants survive to a specific calendar date (Robins and Tsiatis,
1991). Thus the potential censoring time Ci is known for all participants. The censoring indicators of
the observed event times are initially carried over to the counter-factual event times. However, the
uninformative censoring on the Ti scale may be informative on the Ui scale. Suppose we have two
participants with the same Ui, one of whom receives the superior treatment. The participant receiving
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the superior treatment has their Ui extended so that they are censored whilst the other participant
may observe the event.

In detail, Ci, the censoring times for the Ti, are transformed to Ci (1− Pi + Pi exp (ψ)) when
we work on the Ui scale, where Pi is a random variable, the proportion of time on treatment,

Ton
i /

(
Ton

i + Toff
i

)
. This transformation of censoring times occurs by representing the censoring

status in two equivalent ways: {Ci < Ti}, and re-scaling both sides {Ci (1− Pi + Pi exp (ψ)) <
Ti (1− Pi + Pi exp(ψ)) = Ui}. We cannot assume the variable Pi is independent of Ui. For example,
adherence to a protocolised treatment may depend on the underlying prognosis.

We can overcome this induced dependence by considering the sample space for Pi marginally over
Ui and, optionally, conditioning on Ri. If we replace Pi with a function of its sample space then any
dependency on Ui is thus removed. Any alternative transformed censoring times must be smaller
than the original censoring times, else we may have to impute uncensored Ui values for censored Ti
observations, which would be impossible. Hence taking the minimum value from the sample space
for Pi meets both desiderata. If the sample space differs between arms, say switching is impossible in
one arm, then this can be utilised to potentially observe more events with gains in efficiency.

Operationally, let Ci be the potential censoring time for participant i. A participant is then re-
censored at the minimum possible censoring time:

D∗i (ψ) = min (Ci, Ci exp (ψ)) .

If D∗i (ψ) < Ui (ψ), then Ui is replaced by D∗i and the censoring indicator is replaced by 0. For treatment
arms where switching does not occur, there can be no informative censoring and so re-censoring is not
applied.

Sensitivity analysis

As previously mentioned, the RPSFTM has two assumptions:

1. The only difference between randomised groups is the treatment received.

2. The treatment effect is the same for all participants regardless of when treatment is received.

Whilst the first assumption is plausible in a randomised controlled trial, the latter may be unlikely
to hold. For example, if control group participants can only switch at disease progression then the treat-
ment benefit may be different in these participants compared to those randomised to the experimental
treatment. The rpsftm() function allows for investigation of deviations from the common treatment
effect assumption by featuring a treatment-effect modifier variable which means the treatment effect
can be varied across participants. The assumption that defines the counter-factual treatment-free event
times Ui is thus modified by multiplying ψ by some factor ki > 0:

Ui = Toff
i + Ton

i exp (kiψ) .

The value taken by ki is derived from observed data and is left to the user to assign.

The package assumes that ki is determined at baseline, and re-censoring is undertaken in a similar
way by re-censoring at the minimum possible censoring time:

D∗i (ψ) = min (Ci, Ci exp (kiψ)) .

Again, if D∗i (ψ) < Ui (ψ) , then Ui is replaced by D∗i and the censoring indicator is replaced by 0.
The case where ki is observed post randomisation is equally valid in terms of defining Ui, but more
complicated re-censoring may be required, taking the minimum value of D∗i over the sample space of
ki conditional on arm. This is not implemented in the package.

Using package rpsftm

The main function in the package rpsftm is of the same name, rpsftm(), which returns an object that
has print, summary, and plot methods, and that inherits from the class used to define the test statistic
(survdiff, coxph or survreg) . The arguments to rpsftm() are given in table 1 below.

Example

The rpsftm function will be illustrated using a simulated dataset immdef taken from (White et al.,
2002), based on a randomized controlled trial (Concorde Coordinating Committee, 1994). The trial
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rpsftm() arguments

formula a formula with a minimal structure of Surv(time,status) ∼
rand(arm,rx) where

• arm is the randomised treatment arm

• rx is the proportion of time spent on treatment, taking val-
ues in [0, 1].

Further terms can be added to the right hand side to adjust for
covariates.

data an optional data frame containing the variables
censor_time variable or constant giving the time at which censoring would, or

has occurred. This should be provided for all observations unlike
standard Kaplan-Meier or Cox regression where it is only given
for censored observations. If no value is given then re-censoring
is not applied.

subset an expression indicating which subset of the rows of data should
be used in the fit. This can be a logical vector, a numeric vector
indicating which observation numbers are to be included, or a
character vector of row names to be included. All observations
are included by default.

na.action a missing-data filter function. This is applied to the model.frame
after any subset argument has been used. Default is
options()$na.action.

test one of survdiff, coxph or survreg. Describes the test to be used
in the estimating equation. Default is survdiff.

low_psi the lower limit of the range to search for the causal parameter.
Default is −1.

hi_psi the upper limit of the range to search for the causal parameter.
Default is 1.

alpha the significance level used to calculate the confidence intervals.
Default is 0.05.

treat_modifier an optional variable that ψ is multiplied by on an participant
observation level to give differing impact to treatment. Default is
1.

autoswitch a logical to autodetect cases of no switching. Default is TRUE. If all
observations in an arm have perfect compliance then re-censoring
is not applied in that arm. If FALSE then re-censoring is applied
regardless of perfect compliance.

n_eval_z The number of points between hi_psi and low_psi at which to
evaluate the Z-statistics in the estimating equation. Default is 100.

Table 1: Arguments for the rpsftm() function
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compares two policies (immediate or deferred treatment) of zidovudine treatment in symptom free
participants infected with HIV. The immediate treatment arm received treatment at randomisation
whilst the deferred arm received treatment either at onset of AIDS related complex or AIDS (CDC
group IV disease) or development of persistently low CD4 count. The endpoint considered here was
time from study entry to progression to AIDS, or CDC group IV disease, or death.

Data

The immdef data frame has 1000 rows of 9 variables as described in table 2

immdef variables

id participant ID number
def indicator that the participant was assigned to the Deferred treat-

ment arm
imm indicator that the participant was assigned to the Immediate treat-

ment arm
censyrs censoring time, in years, corresponding to the close of study minus

the time of entry for each participant
xo an indicator that switching occurred
xoyrs the time, in years, from entry to switching, or 0 for participants in

the Immediate arm
prog an indicator of disease progression (1), or censoring (0)
progyrs time, in years, from entry to disease progression or censoring
entry the time of entry into the study, measured in years from the date

of randomisation

Table 2: Description of simulated data set

The first six observations are given below

> library(rpsftm)
> head(immdef)

id def imm censyrs xo xoyrs prog progyrs entry
1 1 0 1 3 0 0.000000 0 3.000000 0
2 2 1 0 3 1 2.652797 0 3.000000 0
3 3 0 1 3 0 0.000000 1 1.737838 0
4 4 0 1 3 0 0.000000 1 2.166291 0
5 5 1 0 3 1 2.122100 1 2.884646 0
6 6 1 0 3 1 0.557392 0 3.000000 0

For example, participant 2 was randomised to the deferred arm, started treatment at 2.65 years and
was censored at 3 years (the end of the study). Subject 3 was randomised to the immediate treatment
arm and progressed (observed the event) at 1.74 years. Subject 5 was randomised to the deferred
treatment arm, started treatment at 2.12 years and progressed at 2.88 years. The trial lasted 3 years
with staggered entry over the first 1.5 years. The variable censyrs gives the time from entry to the end
of the trial.

Intention-to-treat analysis

First, we estimate the effect of giving zidovudine ignoring any treatment changes during the trial. This
is found by fitting an accelerated failure time model using the eha package (Broström, 2017):

> library(eha)
> itt_fit <- aftreg(Surv(progyrs, prog) ~ imm, data = immdef)
> itt_fit
Call:
aftreg(formula = Surv(progyrs, prog) ~ imm, data = immdef)

Covariate W.mean Coef Time-Accn se(Coef) Wald p
imm 0.510 -0.147 0.863 0.077 0.056

Baseline parameters:
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log(scale) 1.404 0.062 0.000
log(shape) 0.392 0.052 0.000
Baseline life expectancy:

Events 312
Total time at risk 1932.5
Max. log. likelihood -855.14
LR test statistic 3.69
Degrees of freedom 1
Overall p-value 0.0548817

The intention-to-treat estimate is−0.147 which means that lifetime is used up exp (−0.147) = 0.863
times as fast when on zidovudine as when off zidovudine (or zidovudine extends lifetime by a factor
of exp (0.147) = 1.16).

Fitting the RPSFTM

We now show how to use rpsftm with the immdef data. First, a variable rx for the proportion of time
spent on treatment must be created:

rx <- with(immdef, 1 - xoyrs / progyrs)

This sets rx to 1 in the immediate treatment arm (since no participants could switch to the deferred
arm, and xoyrs = 0 in such participants), 0 in the deferred arm participants that did not receive
treatment (as xoyrs = progyrs in such participants) and 1 -xoyrs / progyrs in the deferred arm
participants that did receive treatment. Using the default options, the fitted model is

rpsftm_fit_lr <- rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx),
data = immdef,
censor_time = censyrs)

The above formula fits an RPSFTM where progyrs is the observed event time, prog is the indicator
of disease progression, imm is the randomised treatment group indicator, rx is the proportion of time
spent on treatment and censyrs is the censoring time. The log rank test is used in finding the point
estimate of ψ̂. Re-censoring is performed since the censor_time parameter is specified; if not specified
then re-censoring would not be performed. After finding ψ̂, rpsftm refits the model at ψ̂ and produces
a survdiff object of the counter-factual event times to be used in plotting Kaplan-Meier curves. The
list of objects that the function returns is given in table 3.

The point estimate and 95% confidence interval (CI) can be returned using rpsftm_fit_lr$psi
and rpsftm_fit_lr$CI which gives ψ̂ = −0.181 (−0.350, 0.002) , slightly larger than in the intention-
to-treat analysis. This means that lifetime is used up exp (−0.181) = 0.834 times as fast when on
zidovudine as when off zidovudine, i.e. the time to progression to AIDS, or CDC group IV disease,
or death is longer when on zidovudine (treatment is beneficial). However, the confidence interval
contains zero, which suggests the treatment effect is non-significant. The function plot() produces
Kaplan-Meier curves of the counter-factual event times in each group and can be used to check that
the distributions are indeed the same at ψ̂ as shown in figure 1

We now provide examples of using the Cox regression model and the Weibull model in place
of the log rank test. To use the Wald test from a Cox regression model, we specify test = coxph
in the function parameters. Covariates can also be included in the estimation procedure by adding
them to the right hand side of the formula. For example, baseline covariates that are included in the
intention-to-treat analysis may also be incorporated into the estimation procedure of the RPSFTM. In
the following example we add entry time as a covariate and use summary() to find the value of ψ̂ and
its 95% CI.

> rpsftm_fit_cph <- rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx) + entry,
+ data = immdef,
+ censor_time = censyrs,
+ test = coxph)
> summary(rpsftm_fit_cph)

arm rx.Min. rx.1st Qu. rx.Median rx.Mean rx.3rd Qu. rx.Max.
1 0 0.0000000 0.0000000 0.0000000 0.1574062 0.2547779 0.9770941
2 1 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
n= 1000, number of events= 286

coef exp(coef) se(coef) z Pr(>|z|)
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rpsftm() outputs

psi the estimated parameter
fit a survdiff object to produce Kaplan-Meier curves of the esti-

mated counter-factual event times in each treatment arm using
plot()

CI a vector of the confidence interval around psi
Sstar the (possibly) re-censored Surv() data using the estimate value of

psi to give counterfactual untreated failure times.
rand the rand() object used to specify the allocated and observed

amount of treatment.
ans the values from uniroot.all used to solve the estimating equa-

tion, but embedded within a list as per uniroot, with an extra
element root_all, a vector of all roots found in the case of mul-
tiple solutions. The first element of root_all is subsequently
used.

eval_z a data frame with the Z-statistics from the estimating equation
evaluated at a sequence of values of psi. Used to plot and check if
the range of values to search for solution and limits of confidence
intervals need to be modified.

Further elements corresponding to either a survdiff, coxph, or
survreg object. This will always include:

call the R call object
formula a formula representing any adjustments, strata or clusters - used

for the update() function
terms a more detailed representation of the model formula

Table 3: Outputs from the rpsftm() function

Figure 1: Output from plot(rpsftm_fit_lr)
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entry 0.1235 1.1315 0.1487 0.831 0.406

exp(coef) exp(-coef) lower .95 upper .95
entry 1.131 0.8838 0.8454 1.514

Concordance= 0.514 (se = 0.018 )
Rsquare= 0.001 (max possible= 0.976 )

psi: -0.1811697
exp(psi): 0.8342938
Confidence Interval, psi -0.3496874 0.003370267
Confidence Interval, exp(psi) 0.7049084 1.003376

For the Weibull model we specify test = survreg in the function parameters. :

> rpsftm_fit_wb <- rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx) + entry,
+ data = immdef,
+ censor_time = censyrs,
+ test = survreg)
> summary(rpsftm_fit_wb)

arm rx.Min. rx.1st Qu. rx.Median rx.Mean rx.3rd Qu. rx.Max.
1 0 0.0000000 0.0000000 0.0000000 0.1574062 0.2547779 0.9770941
2 1 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

Call:
rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx) + entry,

data = immdef, censor_time = censyrs, test = survreg)
Value Std. Error z p

(Intercept) 1.3881 0.0857 16.197 5.34e-59
entry -0.0582 0.0906 -0.642 5.21e-01
Log(scale) -0.4176 0.0568 -7.349 2.00e-13

Scale= 0.659

Weibull distribution
Loglik(model)= -759.8 Loglik(intercept only)= -760
Number of Newton-Raphson Iterations: 6
n= 1000

psi: -0.1811851
exp(psi): 0.8342809
Confidence Interval, psi -0.3501459 0.005170935
Confidence Interval, exp(psi) 0.7045852 1.005184

As we can see from the output for the Cox and Weibull models, the estimates of ψ are similar to the
estimate obtained from using the log rank test. Both fitted models could be used as inputs to the
plot() function, which produce figures very similar to figure 1.

As a sensitivity analysis we can investigate what would happen to the estimate of ψ if the treatment
effect in the deferred treatment group was half of that in the immediate treatment group by setting
ki = 1 for participants in the latter group and ki = 0.5 for participants in the former group.

> weight <- with(immdef, ifelse(imm == 1, 1, 0.5))
> rpsftm(Surv(progyrs, prog) ~ rand(imm, rx), data = immdef, censor_time = censyrs,
+ treat_modifier = weight
+ )

arm rx.Min. rx.1st Qu. rx.Median rx.Mean rx.3rd Qu. rx.Max.
1 0 0.0000000 0.0000000 0.0000000 0.1574062 0.2547779 0.9770941
2 1 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
Call:
rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx), data = immdef,

censor_time = censyrs, treat_modifier = weight)

N Observed Expected (O-E)^2/E (O-E)^2/V
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.arm=0 500 157 157 5.75e-07 1.22e-06

.arm=1 500 143 143 6.31e-07 1.22e-06

Chisq= 0 on 1 degrees of freedom, p= 0.999

psi: -0.1704745
exp(psi): 0.8432646

In this case the estimate of treatment effect is reduced slightly to −0.170 and lifetime is used up 0.843
times as fast when on treatment as when off treatment.

Trouble shooting

There is no guarantee that unique solutions exist to the estimating equations for the estimate and
confidence interval limits, or that we have searched a wide enough interval to find them if they do
exist and are unique.

There are three instances where rpsftm will produce warning messages due to the search interval.
The function first evaluates Z (ψ) at low_psi and hi_psi and will produce a warning message if Z (ψ)
is the same sign at these two points and no root exists within the interval.

Warning messages:
1: In rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx), data = immdef, :

The starting interval (-1, -0.9) to search for a solution for psi
gives values of the same sign (7.53, 6.88).
Try a wider interval. plot(obj$eval_z, type="s"), where obj is the output of rpsftm()
2: In rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx), data = immdef, :
Evaluation of the estimated values of psi failed. It is set to NA

3: In rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx), data = immdef, :
Evaluation of a limit of the Confidence Interval failed. It is set to NA

4: In rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx), data = immdef, :
Evaluation of a limit of the Confidence Interval failed. It is set to NA

This suggests widening the search interval via trial and error until a root for ψ can be found
between low_psi and hi_psi. The second warning message occurs when uniroot.all, the function
used to solve the estimating equation for ψ̂ and its 95% confidence interval limits, fails to find any one
of these. It will set the value to NA and produce the following warning message

> rpsftm_fit <- rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx),
+ data = immdef,
+ censor_time = censyrs,
+ low_psi = -1,
+ hi_psi = -0.1)
Warning message:
In rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx), data = immdef, :
Evaluation of a limit of the Confidence Interval failed. It is set to NA

Investigation of a plot of Z (ψ) against ψ in figure 2 for a range of values of ψ could show why the
function fails to find a root. The fitted object, rpsftm_fit, returns a data frame rpsftm_fit$eval_z
with values of the Z-statistic evaluated at 100 points between the limits of the search interval. The data
frame can be supplied as the argument to plot() to visualise the estimating equation.

plot(rpsftm_fit$eval_z, type = "s", ylim = c(-2, 6))
abline(h = qnorm(c(0.025, 0.5, 0.975)))
abline(v = rpsftm_fit$psi)
abline(v = rpsftm_fit$CI)

In this case, we see that the search interval used was not wide enough to find the upper confidence
limit. The third warning message occurs when multiple roots are found:

Warning message:
In root(0) : Multiple Roots found

In order to show what happens when multiple roots are found, a subset of the immdef dataset was
created and is stored within the test area of rpsftm. Whilst the function uniroot.all will return
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Figure 2: Plot of Z (ψ) against ψ to detect problems with the choice of search interval

multiple roots, the function rpsftm will only display the first root found by uniroot.all. A plot of
Z (ψ) against ψ can be used to find the other roots.

The limits of the confidence intervals may not exist at all if Z (·) reaches an asymptote before it hits
the required quantile of the standard normal distribution, in which case the limits should be reported
as ±∞. This scenario would be illustrated by a similar plot to figure 2.

Another possibility is for the coxph function to fail to converge. This occurs when the maximum
likelihood estimate of a coefficient is infinity, e.g. if one of the treatment groups has no events. The
coxph documentation states that the Wald statistic should be ignored in this case and therefore the
rpsftm output should be taken with caution.

Limitations

As well as the potential computational issues highlighted in the previous section, the RPSFTM itself
has some limitations. The method relies on the assumption that the treatment effect is the same for all
participants regardless of when treatment is received. We have allowed for investigation of deviations
from this assumption within the rpsftm() function by adding a treatment-effect modifier variable.
Another possible limitation of the model is its requirement for only the total amount of time spent
on/off treatment. In instances where participants can switch back and forth between treatments the
model may be inefficient.

Conclusion

The intention is to fill a void in the methodology available to R users by providing this package and
thus facilitate the adoption of newer methods in application to real data in future. The sensitivity
analyses, which generalise the definition of the counter-factual treatment-free event times, are an
original development.

Further developments to the package may include expanding the functionality to allow multi-
armed studies with three or more arms. Such an extension would have at its core a set of g-estimating
equations to solve, one for each element of the vector of ψ parameters. Defining the syntax to
capture the multi-dimensional metric of time on treatments is challenging, as will be the numerical
computational details when the g-estimating equations are step functions.
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anomalyDetection: Implementation of
Augmented Network Log Anomaly
Detection Procedures
by Robert J. Gutierrez, Bradley C. Boehmke, Kenneth W. Bauer, Cade M. Saie, Trevor J. Bihl

Abstract As the number of cyber-attacks continues to grow on a daily basis, so does the delay in threat
detection. For instance, in 2015, the Office of Personnel Management discovered that approximately
21.5 million individual records of Federal employees and contractors had been stolen. On average,
the time between an attack and its discovery is more than 200 days. In the case of the OPM breach,
the attack had been going on for almost a year. Currently, cyber analysts inspect numerous potential
incidents on a daily basis, but have neither the time nor the resources available to perform such a task.
anomalyDetection aims to curtail the time frame in which anomalous cyber activities go unnoticed
and to aid in the efficient discovery of these anomalous transactions among the millions of daily logged
events by i) providing an efficient means for pre-processing and aggregating cyber data for analysis
by employing a tabular vector transformation and handling multicollinearity concerns; ii) offering
numerous built-in multivariate statistical functions such as Mahalanobis distance, factor analysis,
principal components analysis to identify anomalous activity, iii) incorporating the pipe operator
(%>%) to allow it to work well in the tidyverse workflow. Combined, anomalyDetection offers cyber
analysts an efficient and simplified approach to break up network events into time-segment blocks
and identify periods associated with suspected anomalies for further evaluation.

Introduction

Organizations worldwide rely heavily on the systems of cyberspace, and the wider Internet as a
whole, for commerce, defense operations, infrastructure control systems, financial management,
transportation, and other critical services. Unfortunately, the number of cyber-attacks are growing
on a daily basis and the ability of organizations to spot anomalous cyber activitiy is becoming more
and more delayed (Gutierrez et al., 2017). On average, the time between an attack and its discovery is
more than 200 days (Koerner, 2016). In the case of the 2015 Office of Personnel Management breach, in
which approximately 21.5 million individual records of Federal employees and contractors had been
stolen, the attack had been going on for almost a year prior to the anomalous activity being identified
(U.S. Office of Personnel Management, 2015).

Cyber analysts inspect numerous potential incidents on a daily basis, but lack the time and
resources to scour the high volumes of data in an efficient manner to identify anomalous activity
worth further investigation (Samuelson, 2016). Firewalls and intrusion detection and prevention
systems (IDPS) are one line of defense in identifying and stopping suspicious internet traffic. When a
suspicious event occurs, these devices generate a log file containing details of what preprogrammed
rules were violated and how it was handled (Goodall et al., 2009). Such log files contain details of the
event, (i.e. source and destination IP addresses, port numbers, and protocols), but not the packet and
data that led to the event. A primary activity of cyber analysts is the analysis of these log files to detect
anomalies (Gutierrez et al., 2017). Although a reduced form of anomalous cyber data, these data sets
can still represent millions of cyberspace transactions per minute (Jayathilake, 2012). Unfortunately,
analysis of these log files has, historically, been heavily manual in nature and often leverages subject
matter expertise to find possible threats in logged events to further investigate (Goodall et al., 2009;
Jayathilake, 2012; Samuelson, 2016). This approach is inefficient and can suffer from biased, subjective
assessments (Zamani, 2013). Moreover, much of the related research has focused on anomaly detection
at the device/software level (i.e. Lazarevic et al., 2003; Denning, 1987; Garcia-Teodoro et al., 2009),
with little exploration into anomaly detection in the log files generated from the preexisting devices or
software (i.e McDonald et al., 2012; Winding et al., 2006; Breier and Branišová, 2015). Consequently,
efficient analytic approaches are desirable to help detect anomalous activity in cyber network log data
(Gutierrez et al., 2017).

This research introduces the anomalyDetection package (Boehmke and Gutierrez, 2017) to provide
cyber analysts efficient means for performing anomaly detection in log files. The purpose of the
package is to make identifying abnormal activity more efficient so that cyber analysts can spend
more time researching the potential threat. It is important to note that there is no guarantee that
anomalous activity is evidence of malicious cyber activity; however, identification of anomalous
activity provides cyber security experts a starting point in their search for undetected malicious
activity. anomalyDetection simplifies this process.

This paper proceeds as follows. First, we introduce the anomalyDetection functions and the
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security_logs data set that will be leveraged for the illustrative examples. Next, we demonstrate
how anomalyDetection can pre-process a data set for follow on analysis. This includes converting
a data set with non-numeric attributes into numeric data using a tabulated state vector approach.
anomalyDetection further prepares this tabulated state vector by inspecting and correcting for mul-
ticollinearity. We then illustrate how anomalyDetection provides efficient multivariate statistical
analysis processes to help identify anomalous activity. Last, we end with some concluding remarks.

anomalyDetection functions

anomalyDetection provides 13 functions to aid in the detection of potential cyber anomalies, which
are listed in Table 1. The package also incorporates the pipe operator (%>%) from the magrittr package
(Bache and Wickham, 2014) for streamlining function composition. To illustrate the functionality of
anomalyDetection we will use the security_logs data that mimics common information that appears
in security logs and comes with anomalyDetection. Note that we also load the tidyverse package
(Wickham, 2017) for common manipulation and visualization tasks.

Table 1: anomalyDetection Functions

Function Purpose

tabulate_state_vector() Employs a tabulated vector approach to transform security log
data into unique counts of data attributes based on time blocks.

block_inspect() Creates a list where the original data has been divided into blocks
denoted in the state vector.

mc_adjust() Handles issues with multicollinearity.
mahalanobis_distance() Calculates the distance between the elements in data and the

mean vector of the data for outlier detection.
bd_row() Indicates which variables in data are driving the Mahalanobis

distance for a specific row, relative to the mean vector of the data.
horns_curve() Computes Horn’s Parallel Analysis to determine the factors to

retain within a factor analysis.
factor_analysis() Reduces the structure of the data by relating the correlation be-

tween variables to a set of factors, using the eigen-decomposition
of the correlation matrix.

factor_analysis_results() Provides easy access to factor analysis results.
kaisers_index() Computes scores designed to assess the quality of a factor analysis

solution. It measures the tendency towards unifactoriality for both
a given row and the entire matrix as a whole.

principal_components() Relates the data to a set of a components through the eigen-
decomposition of the correlation matrix, where each component
explains some variance of the data.

principal_components_results() Provides easy access to principal component analysis results.
get_all_factors() finds all factor pairs for a given integer.

library(tidyverse)
library(anomalyDetection)

security_logs
# A tibble: 300 × 10
# Device_Vendor Device_Product Device_Action Src_IP
# <chr> <chr> <chr> <chr>
# 1 McAfee NSP Attempt 223.70.128.61
# 2 CISCO ASA Failure 174.110.206.174
# 3 IBM SNIPS Success 174.110.206.174
# 4 McAfee NSP Success 227.12.127.87
# 5 Juniper SRX Success 28.9.24.154
# 6 McAfee NSP Success 28.9.24.154
# 7 McAfee NSP Attempt 28.9.24.154
# 8 McAfee ePO Attempt 223.70.128.61
# 9 McAfee ePO Attempt 174.110.206.174
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# 10 CISCO ASA Attempt 227.12.127.87
# ... with 290 more rows, and 6 more variables: Dst_IP <chr>,
# Src_Port <int>, Dst_Port <int>, Protocol <chr>, Country_Src <chr>,
# Bytes_TRF <int>

Data pre-processing

In order to develop a statistical framework for firewall log analysis, data pre-processing is necessary
prior to applying any multivariate analytic techniques. To assist in this process anomalyDetection
offers two main approaches to pre-process log file data - aggregating the data into a tabulated state
vector and managing multicollinearity concerns.

First, we can employ the tabulated vector approach introduced by Gutierrez et al. (2017). This
approach transforms the security log data into unique counts of data attributes based on pre-defined
time blocks. Therefore, as each time block is generated, the categorical fields are separated by their
levels and a count of occurrences for each level are recorded into a vector. All numerical fields, such as
bytes in and bytes out, are recorded as a summation within the time block. The result is what we call a
state vector matrix .

Thus, for our security_logs data we can create our state vector matrix based on our data being
divided into 10 time blocks. What results is the summary of instances for each categorical level in
our data for each time block. Consequently, row one represents the first time block and there were
2 instances of CISCO as the device vendor, 1 instance of IBM, etc. By adjusting the block_length,
level_limit, and level_keep arguments, the user can refine the level of aggregation and variables to
retain and analyze.

tabulate_state_vector(security_logs, 10)
# A tibble: 30 × 43
# CISCO IBM Juniper McAfee `Palo Alto Networks` NA1 ASA ePO
# <int> <int> <int> <int> <int> <int> <int> <int>
# 1 2 1 1 6 0 0 2 2
# 2 0 2 4 2 2 0 0 2
# 3 2 4 2 2 0 0 2 2
# 4 5 1 2 1 1 0 5 1
# 5 3 1 1 3 2 0 3 1
# 6 2 1 2 4 1 0 2 1
# 7 2 2 1 3 2 0 2 0
# 8 3 3 1 3 0 0 3 2
# 9 0 1 4 3 2 0 0 1
# 10 2 2 2 4 0 0 2 3
# ... with 20 more rows, and 35 more variables: Firewall <int>, NSP <int>,
# SNIPS <int>, SRX <int>, NA2 <int>, Attempt <int>, Failure <int>,
# Success <int>, NA3 <int>, `174.110.206.174` <int>,
# `223.70.128.61` <int>, `227.12.127.87` <int>, `28.9.24.154` <int>,
# `89.130.69.91` <int>, NA4 <int>, `145.114.4.203` <int>,
# `151.194.233.198` <int>, `219.142.109.8` <int>, `32.73.26.223` <int>,
# `56.137.121.203` <int>, NA5 <int>, TCP <int>, UDP <int>, NA6 <int>,
# China <int>, India <int>, Korea <int>, Netherlands <int>,
# Russia <int>, `United Kingdom` <int>, US <int>, NA7 <int>,
# Src_Port <int>, Dst_Port <int>, Bytes_TRF <int>

The state vector matrix provides us with a numerical construct to analyze our log file data; however,
prior to proceeding with any multivariate statistical analyses we should inspect the state vector for
multicollinearity, to avoid issues such as matrix singularity, rank deficiency, and strong correlation
values, and remove any columns that pose an issue. We can use mc_adjust() to handle issues with
multicollinearity by first removing any columns whose variance is close to or less than a minimum
level of variance (min_var). Then, it removes linearly dependent columns. Finally, it removes any
columns that have a high absolute correlation value equal to or greater than that defined by the user
(max_cor).

(state_vec <- security_logs %>%
tabulate_state_vector(10) %>%
mc_adjust())

# A tibble: 30 × 26
# CISCO IBM Juniper McAfee `Palo Alto Networks` ePO Attempt Failure
# <int> <int> <int> <int> <int> <int> <int> <int>
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# 1 2 1 1 6 0 2 5 1
# 2 0 2 4 2 2 2 4 2
# 3 2 4 2 2 0 2 3 3
# 4 5 1 2 1 1 1 0 5
# 5 3 1 1 3 2 1 3 3
# 6 2 1 2 4 1 1 4 1
# 7 2 2 1 3 2 0 3 3
# 8 3 3 1 3 0 2 6 2
# 9 0 1 4 3 2 1 4 4
# 10 2 2 2 4 0 3 3 0
# ... with 20 more rows, and 18 more variables: `174.110.206.174` <int>,
# `223.70.128.61` <int>, `227.12.127.87` <int>, `28.9.24.154` <int>,
# `145.114.4.203` <int>, `151.194.233.198` <int>, `219.142.109.8` <int>,
# `32.73.26.223` <int>, TCP <int>, China <int>, India <int>,
# Korea <int>, Netherlands <int>, Russia <int>, `United Kingdom` <int>,
# Src_Port <int>, Dst_Port <int>, Bytes_TRF <int>

By default, mc_adjust() removes all columns that violate the variance, dependency, and correlation
thresholds. Alternatively, we can use action = "select" as an argument, which provides interactivity
where the user can select the variables that violate the correlation threshold that they would like to
remove.

Multivariate statistical analyses

With our data adjusted for multicollinearity we can now proceed with multivariate analyses to identify
anomalies in our log file. First we’ll use the mahalanobis_distance() function to compare the distance
between each observation by its distance from the data mean, independent of scale. This is computed
as

MD =
√
(x− x̄)C−1(x− x̄) (1)

where x is a vector of p observations, x = (x1, . . . , xp), x̄ is the mean vector of the data, x̄ =

(x̄1, . . . , x̄p), and C−1 is the inverse data covariance matrix. Here, we include output = "both" to
return both the Mahalanobis distance and the absolute breakdown distances and normalize = TRUE
so that we can compare relative magnitudes across our data.

state_vec %>%
mahalanobis_distance("both", normalize = TRUE) %>%
as_tibble

# A tibble: 30 × 27
# MD CISCO_BD IBM_BD Juniper_BD McAfee_BD
# <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 0.4548638 0.005536981 0.013005457 0.016020254 0.021822626
# 2 4.3843567 0.024664733 0.005573767 0.044055697 0.008985787
# 3 0.3604934 0.005536981 0.042732214 0.004005063 0.008985787
# 4 0.8456701 0.050839552 0.013005457 0.004005063 0.016687890
# 5 3.3541555 0.020637838 0.013005457 0.016020254 0.001283684
# 6 1.0900635 0.005536981 0.013005457 0.004005063 0.006418419
# 7 0.6769615 0.005536981 0.005573767 0.016020254 0.001283684
# 8 0.6968967 0.020637838 0.024152991 0.016020254 0.001283684
# 9 0.9910771 0.024664733 0.013005457 0.044055697 0.001283684
# 10 5.7822393 0.005536981 0.005573767 0.004005063 0.006418419
# ... with 20 more rows, and 22 more variables: `Palo Alto
# Networks_BD` <dbl>, ePO_BD <dbl>, Attempt_BD <dbl>, Failure_BD <dbl>,
# `174.110.206.174_BD` <dbl>, `223.70.128.61_BD` <dbl>,
# `227.12.127.87_BD` <dbl>, `28.9.24.154_BD` <dbl>,
# `145.114.4.203_BD` <dbl>, `151.194.233.198_BD` <dbl>,
# `219.142.109.8_BD` <dbl>, `32.73.26.223_BD` <dbl>, TCP_BD <dbl>,
# China_BD <dbl>, India_BD <dbl>, Korea_BD <dbl>, Netherlands_BD <dbl>,
# Russia_BD <dbl>, `United Kingdom_BD` <dbl>, Src_Port_BD <dbl>,
# Dst_Port_BD <dbl>, Bytes_TRF_BD <dbl>

We can use this information in a modified heatmap visualization (Figure 1) to identify outlier
values across our security log attributes and time blocks. Brighter columns represent time blocks
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deserving greater attention and further investigation. Larger circles represent variables within a time
block that have more anomalous activity. Thus, the larger and brighter the dot the more significant the
outlier is and the more it deserves attention.

state_vec %>%
mahalanobis_distance("both", normalize = TRUE) %>%
as_tibble %>%
dplyr::mutate(Block = 1:n()) %>%
gather(Variable, BD, -c(MD, Block)) %>%
ggplot(aes(factor(Block), Variable, color = MD, size = BD)) +
geom_point()

Figure 1: Modified heatmap for time block and feature outlier detection.

We can build onto this with the bd_row() function to identify which security log attributes in
the data are driving the Mahalanobis distance. bd_row() measures the relative contribution of each
variable, xi, to MD by computing

BDi =

∣∣∣∣∣ xi − x̄i√
Cii

∣∣∣∣∣ (2)

where Cii is the variance of xi. Furthermore, bd_row() will look at a specified row and rank-order
the columns by those that are driving the Mahalanobis distance. For example, the plot above identified
block 17 as having the largest Mahalanobis distance suggesting some abnormal activity may be
occurring during that time block. We can drill down into that block and look at the top 10 security
log attributes that are driving the Mahalanobis distance as these may be areas that require further
investigation.

state_vec %>%
mahalanobis_distance("bd", normalize = TRUE) %>%
bd_row(17, 10)

# Src_Port_BD Bytes_TRF_BD Dst_Port_BD 32.73.26.223_BD
# 3.2733887 2.1016995 1.3575754 1.3398650
# 223.70.128.61_BD McAfee_BD IBM_BD Korea_BD
# 1.2376147 1.0828415 1.0372208 0.9979392
# Russia_BD Juniper_BD
# 0.9937290 0.8478386

Next, we can use factor analysis as a dimensionality reduction technique to identify the underlying
structure of the data and identify factors (features) in the data that appear abnormal. Factor analysis
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relates the correlations between variables through a set of factors to link together seemingly unrelated
variables. The basic factor analysis model is

X = Λ f + e (3)

where X is the vector of responses X = (x1, . . . , xp), f are the common factors f = ( f1, . . . , fq), e
is the unique factors e = (e1, . . . , ep), and Λ is the factor loadings. Factor loadings are correlations
between the factors and the original data and can thus range from -1 to 1, which indicate how much
that factor affects each variable. Values close to 0 imply a weak effect on the variable. For the desired
results, anomalyDetection uses the correlation matrix in its factor analysis computation.

A factor loadings matrix can be computed to understand how each original data variable is related
to the resultant factors. This can be computed as

Λ =

[√
λ1 ∗ e1, . . . ,

√
λp ∗ ep

]
(4)

where λ1 is the eigenvalue for each factor, ei is the eigenvector for each factor, and p is the number
of columns. Factor scores are used to examine the behavior of the observations relative to each factor
and can be used to identify anomaly detection. Factor scores are calculated as

f̂ = XsR−1Λ (5)

where Xs is the standardized observations, R−1 is the inverse of the correlation matrix, and Λ is
the factor loadings matrix. To simplify the results for interpretation, the factor loadings can undergo an
orthogonal or oblique rotation. Orthogonal rotations assume independence between the factors while
oblique rotations allow the factors to correlate. anomalyDetection utilizes the most common rotation
option known as varimax. Varimax rotates the factors orthogonally to maximize the variance of the
squared factor loadings which forces large factors to increase and small ones to decrease, providing
easier interpretation.

To begin using factor analysis, the dimensions of the reduced state vector matrix are first passed
to horns_curve(), which computes Horn’s Parallel Analysis (Horn, 1965) to determine the factors to
retain within a factor analysis.

horns_curve(state_vec)
# [1] 3.421431145 2.920860390 2.562571534 2.260732869 2.007756392
# [6] 1.789346403 1.595986779 1.418585893 1.255915765 1.106646364
# [11] 0.968567809 0.844067782 0.730563435 0.628690131 0.534405206
# [16] 0.450673920 0.374269067 0.306115502 0.244354685 0.191335630
# [21] 0.144295808 0.103873773 0.070143272 0.043042783 0.022553583
# [26] 0.008092665

Next, the dimensionality is determined by finding the eigenvalues of the correlation matrix of the
state vector matrix and retaining only those factors whose eigenvalues are greater than or equal to
those produced by horns_curve(). We use factor_analysis() to reduce the state vector matrix into
resultant factors. The factor_analysis() function generates a list containing five outputs:

$fa_loadings numerical matrix with the original factor loadings

$fa_scores numerical matrix with the row scores for each factor

$fa_loadings_rotated numerical matrix with the varimax rotated factor loadings

$fa_scores_rotated numerical matrix with the row scores for each varimax rotated factor

$num_factors : numeric vector identifying the number of factors

state_vec %>%
horns_curve() %>%
factor_analysis(state_vec, hc_points = .) %>%
names()

# [1] "fa_loadings" "fa_scores" "fa_loadings_rotated"
# [4] "fa_scores_rotated" "num_factors"

For easy access to these results we can use the factor_analysis_results() parsing function. The
factor_analysis_results() function will parse the results either by their list name or by location. For
instance to extract the rotated factor scores you can use factor_analysis_results(data, results =
fa_scores_rotated) or factor_analysis_results(data, results = 4) as demonstrated below.
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state_vec %>%
horns_curve() %>%
factor_analysis(state_vec, hc_points = .) %>%
factor_analysis_results(4) %>%
as_tibble

# A tibble: 30 × 11
# V1 V2 V3 V4 V5 V6
# <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 -0.362674625 0.3348386 0.6915550 0.08187007 -0.09327471 1.6577954
# 2 -0.006043119 -0.4959245 -1.7713249 1.48113530 0.75941566 0.4949437
# 3 0.783216952 -0.8394997 -0.4961150 1.31512814 0.97310016 -0.4546721
# 4 0.462460483 1.3648730 -0.1082969 -2.54886990 -0.42566777 -1.9486609
# 5 0.175061099 -0.8789010 1.2417347 -0.36983659 1.55454286 -0.5180766
# 6 -0.207615911 1.2025271 0.2300188 0.40146898 1.23209508 0.3752129
# 7 0.731099082 -1.9734310 -0.9490889 -0.62509695 1.04029889 -0.3571424
# 8 0.030558029 -1.2308883 1.1503857 0.08635927 -1.60839067 1.9569930
# 9 0.265720779 -0.0830922 -1.7467551 -0.13258281 0.47299019 -0.4580762
# 10 -0.875234891 -1.5917696 0.8289798 -1.23316029 1.25799551 0.3656262
# ... with 20 more rows, and 5 more variables: V7 <dbl>, V8 <dbl>,
# V9 <dbl>, V10 <dbl>, V11 <dbl>

To evaluate the quality of a factor analysis solution, Kaiser (Kaiser, 1974) proposed the Index of
Factorial Simplicity (IFS). The IFS is computed as

IFS =
∑i
[
q ∑s λ4

js − (∑s λ2
js)

2]
∑i
[
(q− 1)(∑s λ2

js)
2
] (6)

where q is the number of factors, j the row index, s the column index, and λjs is the value in the
loadings matrix. Furthermore, Kaiser created the following evaluations of the score produced by the
IFS as shown below:

In the .90s Marvelous

In the .80s Meritorious

In the .70s Middling

In the .60s Mediocre

In the .50s Miserable

Less than .50 : Unacceptable

Thus, to assess the quality of our factor analysis results we apply kaisers_index() to the rotated
factor loadings and, as the results show below, our output value of 0.702 suggests that our results are
“middling”.

state_vec %>%
horns_curve() %>%
factor_analysis(data = state_vec, hc_points = .) %>%
factor_analysis_results(fa_loadings_rotated) %>%
kaisers_index()

# [1] 0.7018006

Furthermore, Figure 2 visualizes the factor analysis results to show the correlation between the
columns of the reduced state vector to the rotated factor loadings. Strong negative correlations are
depicted as red while strong positive correlations are shown as blue. This helps to identify which
factors are correlated with each security log data attribute. Furthermore, this helps to identify two or
more security log data attributes that appear to have relationships with their occurrences. For example,
this shows that Russia is highly correlated with IP address 223.70.128 since both these attributes are
strongly correlated with factor 5. If there is an abnormally large amount of instances with Russian
occurrences this would be the logical IP address to start investigating.

fa_loadings <- state_vec %>%
horns_curve() %>%
factor_analysis(state_vec, hc_points = .) %>%
factor_analysis_results(fa_loadings_rotated)

row.names(fa_loadings) <- colnames(state_vec)
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gplots::heatmap.2(fa_loadings, dendrogram = 'both', trace = 'none',
density.info = 'none', breaks = seq(-1, 1, by = .25),
col = RColorBrewer::brewer.pal(8, 'RdBu'))

Figure 2: Modified factor analysis heatmap to identify correlated attributes.

We can also visualize the rotated factor score plots as in Figure 3 to see which time blocks appear
to be outliers and deserve closer attention.

state_vec %>%
horns_curve() %>%
factor_analysis(state_vec, hc_points = .) %>%
factor_analysis_results(fa_scores_rotated) %>%
as_tibble() %>%
dplyr::mutate(Block = 1:n()) %>%
gather(Factor, Score, -Block) %>%
dplyr::mutate(Absolute_Score = abs(Score)) %>%
ggplot(aes(Factor, Absolute_Score, label = Block)) +
geom_text(size = 2) +
geom_boxplot(outlier.shape = NA)

This allows us to look across the factors and identify outlier blocks that may require further
intra-block analysis. If we assume that an absolute rotated factor score ≥ 2 represents our outlier
cut-off then we see that time blocks 4, 13, 15, 17, 24, 26, and 27 require further investigation. We saw
block 17 being highlighted with mahalanobis_distance() earlier, but these other time blocks were not
as obvious, so by performing and comparing these multiple anomaly detection approaches we can
gain greater insights or confirm prior suspicions.

An alternative, yet similar approach to factor analysis is principal component analysis. These two
approaches can produce similar outcomes, especially when the error component in equation 4 is close
to zero (Fabrigar et al., 1999). However, the results often differ and there are important distinctions
in the interpretation of these results (Park et al., 2002). First, a primary difference between the two
approaches is that factor analysis estimates errors while principal component analysis does not. This
indicates that principal component analysis assumes that the measurement is without error. Second,
the goal in factor analysis is to explain the covariances or correlations between the variables. Therefore
anomaly detection using factor analysis will identify time blocks and variable attributes in which their
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Figure 3: Detecting outlier time blocks based on rotated factor analysis scores.

abnormal behavior is highly correlated to one another. This allows you to identify latent features
in the data. By contrast, the goal of principal component analysis is to explain as much of the total
variance in the variables as possible. Therefore, if your goal is to reduce the log file variables into a
composite component for further analysis, principal component analysis would be appropriate. To
maintain clarity between these two approaches the following discussion leverages different notation.

The first principal component of a set of features X1, X2, . . . , Xp is the normalized linear combina-
tion of the features

Z1 = φ11X1 + φ21X2 + · · ·+ φp1Xp (7)

that has the largest variance. By normalized , we mean that ∑
p
j=1 φ2

j1 = 1. We refer to the elements
φ11, . . . , φp1 as the loadings of the first principal component; together, the loadings make up the
principal component loading vector, φ1 = (φ11, φ21, . . . , φp1)

T . The loadings are constrained so that
their sum of squares is equal to one, since otherwise setting these elements to be arbitrarily large in
absolute value could result in an arbitrarily large variance. After the first principal component Z1
of the features has been determined, we can find the second principal component Z2. The second
principal component is the linear combination of X1, . . . , Xp that has maximal variance out of all linear
combinations that are uncorrelated with Z1. The second principal component scores z12, z22, . . . , zn2
take the form

z12 = φ12xi1 + φ22xi2 + · · ·+ φp2xip (8)

where φ2 is the second principal loading vector, with elements φ12, φ22, . . . , φp2. This continues
until all principal components have been computed. Therefore anomaly detection using PCA will
maximize the difference in behaviors across time blocks and variable attributes. Thus, identifying
anomalies with PCA will identify those attributes that behave very differently than all the other
features. To perform a principal components analysis we use principal_components() which will
create a list containing:

$pca_sdev the standard deviations of the principal components (i.e., the square roots of the eigen-
values of the covariance/correlation matrix, though the calculation is actually done with the
singular values of the data matrix).

$pca_loadings the matrix of variable loadings (i.e., a matrix whose columns contain the eigenvectors).
$pca_rotated the value of the rotated data (the centered, and scaled if requested, data multiplied by

the rotation matrix) is returned.
$pca_center the centering used.
$pca_scale a logical response indicating whether scaling was used.

principal_components(state_vec) %>% names
# [1] "pca_sdev" "pca_loadings" "pca_rotated" "pca_center"
# [5] "pca_scale"

For easy access to these results we can use the principal_components_result parsing func-
tion. The principal_components_result will parse the results either by their list name or by lo-
cation. For example, to extract the computed component scores as outlined in Eq. 8 you can use
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principal_components_result(data, results = pca_rotated) or principal_components_result(data,
results = 3) as demonstrated below.

state_vec %>%
principal_components() %>%
principal_components_result(pca_rotated) %>%
as_tibble

# A tibble: 30 × 26
# PC1 PC2 PC3 PC4 PC5 PC6
# <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 1326.436 -285.25443 36.72628 3.2968478 -0.2977835 -1.3016917
# 2 20404.603 420.02358 236.94988 3.8917064 2.1798436 2.4849683
# 3 1884.370 -229.68499 45.39825 1.2682210 2.4212424 1.2380853
# 4 1555.892 171.11547 116.14809 -6.0588320 -0.5539837 -0.1773544
# 5 -37890.373 -470.91871 55.73837 -0.9419323 -0.3674156 -0.7529821
# 6 -19041.547 -307.40718 -44.48265 0.3985038 -1.2587089 -2.3739508
# 7 -19117.070 130.64729 30.69814 -2.1478778 3.1516592 1.0870282
# 8 21346.072 35.75772 12.44375 1.5784997 2.8835997 -2.4794129
# 9 -18901.619 -251.41102 55.19655 0.1510258 -0.3283588 4.0431385
# 10 -37321.917 -848.69603 -77.71478 2.1905376 2.3692681 -0.3439843
# ... with 20 more rows, and 20 more variables: PC7 <dbl>, PC8 <dbl>,
# PC9 <dbl>, PC10 <dbl>, PC11 <dbl>, PC12 <dbl>, PC13 <dbl>, PC14 <dbl>,
# PC15 <dbl>, PC16 <dbl>, PC17 <dbl>, PC18 <dbl>, PC19 <dbl>,
# PC20 <dbl>, PC21 <dbl>, PC22 <dbl>, PC23 <dbl>, PC24 <dbl>,
# PC25 <dbl>, PC26 <dbl>

We can then follow the principal components analysis with similar visualization activities as
performed post-factor analysis to identify features that exhibit abnormal behavior. Since visualizing
principal components analysis to identify anomolies mirrors that which we performed in the factor
analysis section, we will leave this to the reader as an independent exercise.

Conclusion

Cyber attacks continue to be a growing concern for organizations. Unfortunately, the process of
analyzing log files has, historically, been unorganized and lacked efficient approaches. The presented
anomalyDetection package makes the log file analysis process more efficient and facilitates the
identification and analysis of anomalies within log files.

First, anomalyDetection improves the pre-processing of cyber data. The package offers functions
that help to narrow down abnormal behavior by aggregating internet traffic data into customizable
time blocks. Aggregated activity at a higher-level time block should be easier to analyze while still
offering a map to suspicious areas to drill down using smaller time blocks. For very large data sets,
the analyst can tune the function parameters to start with less blocks and more aggregated data and
then iteratively drill down into less aggregated data. Furthermore, anomalyDetection improves the
process of adjusting for multicollinearity concerns.

Second, anomalyDetection improves the modeling process to perform multivariate statistical
analysis by offering built-in functions to perform Mahalanobis distance, factor analysis, and principal
components analysis along with functions to improve the efficiency of extracting and assessing the
results from these multivariate approaches.

Third, we demonstrated how the anomalyDetection incorporates the pipe operator (%>%) to allow
it to work well in the tidyverse workflow, which helps to improve the overall efficiency of the data
analysis process.

It is also important to note that although the authors’ focus with this package was to target and
improve the analysis of network log-file data, anomalyDetection can also be used for other large data
sets that contain arbitrary features that require data aggregation and anomaly analysis. Furthermore,
as with any package, we readily admit that further improvements to the package can be made. Future
versions of anomalyDetection plan to integrate additional multivariate and time series approaches
to offer analysts a wider suite of modeling tools. Integrating plotting functions are also planned for
future iterations to further enhance the efficiency of visualizing analytic results. Furthermore, future
updates could explore how anomalyDetection could interact with distributable systems such as spark
by integrating capabilities from packages such as SparkR. This would improve anomalyDetection’s
ability to work with Big data architectures.
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Simulating Noisy, Nonparametric, and
Multivariate Discrete Patterns
by Ruby Sharma, Sajal Kumar, Hua Zhong and Mingzhou Song

Abstract Requiring no analytical forms, nonparametric discrete patterns are flexible in representing
complex relationships among random variables. This makes them increasingly useful for data-driven
applications. However, there appears to be no software tools for simulating nonparametric discrete
patterns, which prevents objective evaluation of statistical methods that discover discrete relationships
from data. We present a simulator to generate nonparametric discrete functions as contingency tables.
User can request strictly many-to-one functional patterns. The simulator can also produce contingency
tables representing dependent non-functional and independent relationships. An option is provided
to apply random noise to contingency tables. We demonstrate the utility of the simulator by showing
the advantage of the FunChisq test over Pearson’s chi-square test in detecting functional patterns. This
simulator, implemented in the function simulate_tables in the R package FunChisq (version 2.4.0 or
greater), offers an important means to evaluate the performance of nonparametric statistical pattern
discovery methods.

Introduction

The demand for pattern discovery methodologies has elevated as massive automatic data collection
takes place in every application domain. Consequently, an increasingly critical task in data science is
to design effective algorithms to recognize complex meaningful patterns from data. Nonparametric
discrete patterns do not require an analytical form, allowing them to flexibly represent functional and
associative relationships among random variables. This makes them appealing to data-driven capture
of complex relationships from big data sources. Indeed, many classical statistical methods can detect
associative patterns between discrete random variables, including the widely used Pearson’s chi-
square test (Pearson, 1900), Fisher’s exact test (Fisher, 1922), G-test (McDonald, 2014), and Barnard’s
test (Barnard, 1945).

However, these methods are not specifically designed for detecting functional patterns, where a
dependent variable is a mathematical function of other independent variables. Functional relationships
are considered powerful indicators of causality (Simon and Rescher, 1966). Recent methods for
detecting discrete functional patterns such as the functional chi-square test (FunChisq) (Zhang and
Song, 2013) have demonstrated their effectiveness in identifying causal molecular interactions in
human breast cancer from both real and simulated protein abundance data (Hill et al., 2016). To
evaluate such methods, software tools that can randomly generate diverse functional patterns are
necessary. Such computer programs are unavailable as far as we are aware, in spite of several R
functions for generating other types of random contingency table. The function r2dtable in the
base package stats creates random two-way tables with given marginals using Patefield’s algorithm
(Patefield, 1981) under product-multinomial sampling. The package rTableICC (Demirhan, 2016)
produces random 2× 2×K tables and R×C tables based on either intraclass-correlated or uncorrelated
individuals. No utility known to us can generate noisy, random, and nonparametric discrete patterns
that satisfy requirements on functional relationships between the row and column variables.

To address this gap, we present a new simulator to generate discrete functional patterns. This
simulator is publicly available and implemented as the R function simulate_tables within the R
package FunChisq (≥2.4.0) (Zhang et al., 2017), which also contains statistical hypothesis testing
methods for non-parametric functional dependencies using asymptotic chi-square or exact distribu-
tions. Functional chi-squares are asymmetric and functionally optimal, unique from other related
statistics. The simulator can generate associative two-way contingency tables to depict several types
of relationships. A relationship type can be a combination of statistical dependency and mathematical
functionality. In a dependent relationship, the outcomes of two random variables are statistically
dependent; whereas in an independent relationship, the outcomes of two random variables are statisti-
cally independent of each other. Dependency can be further categorized as functional (Bartle, 1964) or
non-functional. The simulator is also capable of generating many-to-one functional patterns whose
inverse is non-functional. To emulate real data often tainted with noise, our simulator can apply a
controllable level of house noise (Zhang et al., 2015) into the contingency tables. This option enables
one to evaluate the robustness of a discrete pattern discovery algorithm subject to noise. We utilized
the simulator to contrast FunChisq and Pearson’s chi-square tests and demonstrate their expected
difference in detecting discrete functional relationships. We also report the runtime of the simulator as
a function of sample size with and without noise. Finally, we illustrated how to use this computer
program to generate simulated data for weather forecasting, drug development, molecular biology,
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and statistical algorithm design. This discrete data simulator thus can serve as a benchmarking tool
for the development of new statistical methods for pattern discovery in various scientific fields.

Generating random contingency tables with required discrete patterns

The simulator randomly samples contingency tables with specified functional and statistical patterns
and also has an option to apply additional noise on the tables. Let X ∈ {1, . . . , r} be a discrete random
variable with r levels, and Y ∈ {1, . . . , c} be a second discrete random variable with c levels. We
use pXY(i, j) to represent the joint probability mass function of X and Y, and pX(i) and pY(j) for
the marginal probability mass functions of X and Y, respectively. We use the notation Y = f (X) to
indicate that Y is some function of X, and the notation X 6= g(Y) to indicate that X is not any function
of Y. We use the notation X ⊥ Y to indicate that X and Y are statistically independent.

We define four pattern types formed by X and Y as follows:

• Functional—Y is a function of X;

• Many-to-one—Y is a function of X, but not vice versa. A discrete non-monotonic function is not
necessarily many-to-one;

• Dependent non-functional—Y and X are statistically dependent, but not a function of each
other;

• Independent—Y and X are statistically independent.

For all functional patterns, we do not consider the special case where X or Y can take only one value
(r = 1 or c = 1), as in constant functions. We do not include the pattern type where Y is not a function
of X but X is a function of Y, as it can be generated easily by transposing a many-to-one functional
pattern. These four patterns are characterized by the mathematical and statistical relations between X
and Y in Table 1.

Pattern Is Y = f (X)? Is X = g(Y)? Is X ⊥ Y?

Functional True True or False False
Many-to-one True False False
Dependent non-functional False False False
Independent False False True

Table 1: Four pattern types between two random variables X and Y. Here functional patterns do not
include constant functional patterns.

The simulator will generate three related tables in order: a noise-free sampled contingency table,
a pattern table, and a noisy contingency table. All tables are r× c, where X and Y are the row and
column variables, respectively. Here is an explanation of these tables:

• The sampled contingency table—With given sample size n and row and/or column marginal
probability mass functions, this table satisfies both the functional and statistical requirements.
This table, being noise free, can be used to simulate noisy versions and evaluate the performance
of pattern discovery algorithms on their statistical effectiveness.

• The binary pattern table—This table is created by setting all non-zero entries in the sampled
contingency table to 1. Thus values in the pattern table are either 0 or 1. The table strictly
satisfies the mathematical relationship for a given pattern type requested by the user, but it
does not meet the statistical requirements. It can be used as the ground truth or gold stan-
dard for benchmarking how well pattern discovery algorithms can uncover the mathematical
relationships.

• The noisy contingency table—At a user-specified noise level, this table is the noisy version of
the sampled contingency table. Due to the added noise, this table may no longer strictly satisfy
the required functional or statistical relationships. This table is the main output to be used for
the evaluation of a discrete pattern discovery algorithm.

Figure 1 illustrates the four pattern types by sampled contingency tables generated using the simulator.
The tables are rotated so that the horizontal axis represents the row variable X.

Next, we describe how to generate the sampled contingency tables for each type of discrete pattern.
All pattern types require the common input of sample size n and table size r× c. They differ in which
marginal probability mass functions, pX , pY , or both, must be provided. Let nij be the count in the
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Functional

X

Y
0 19 0 0 0

19 0 24 0 14

0 0 0 24 0

Many−to−one

X

Y

0 0 20 0 0

0 29 0 17 0

16 0 0 0 18

Dependent non−functional

X

Y

15 9 22 10 14

11 4 0 0 0

0 5 0 10 0

Independent

X

Y

5 12 12 5 6

4 4 10 6 2

6 7 8 5 8

Figure 1: Four pattern types generated by the simulator. The contingency tables are rotated so that
row variable X is the horizontal axis. The original tables are all 5× 3 with a sample size of 100. The
number in each square is the count in the corresponding table entry. No noise is applied. The color
intensity of each entry is proportional to the sample count in that entry.

entry at row i and column j. We use the notation ni· to indicate the sum of row i in a contingency table:

ni· =
c

∑
j=1

nij, i = 1, . . . , r (1)

and n·j as the sum of column j:

n·j =
r

∑
i=1

nij, j = 1, . . . , c (2)

Generating functional tables

Functional patterns can be used to model causal relationships that are either linear or nonlinear. A
contingency table reduces the burden of assuming a parametric form for the function. In a functional
table representing Y = f (X), every level X = i maps to exactly one outcome Y = j in the contingency
table. The following steps generate a noise-free sampled table that satisfies all mathematical and
statistical requirements:

Input: row marginal probability function pX , sample size n ≥ 2, table size r× c, r, c ≥ 2.

Output: a non-constant functional table.

1. Randomly generate the row sums ni· (i = 1, . . . , r) by the multinomial distribution with success
probability function pX and the sample size n.

2. For each row i in the table, initialize the entire row to be 0, randomly pick a column j ∈ {1, . . . , c}
with equal probability, and set nij = ni·.

3. Convert the function from constant to non-constant: If the function is constant—all nonzero
values are on the same column j, randomly pick a row i′ from {1, . . . , r} with equal probability
and a column j′ from {1, . . . , c}\{j} with equal probability. Swap the values of nij and ni′ j′ . This
will guarantee function Y = f (X) is a non-constant function.

Generating many-to-one functional tables

Many-to-one functions are special cases of functional relationships. They are increasingly relevant as
they can expose complex patterns from data of large sample sizes. Being able to generate such patterns
will facilitate the evaluation of complex pattern discovery methods. The following two main steps
generate this type of patterns:
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Input: row marginal probability function pX , sample size n ≥ 2, table size r× c, r ≥ 3, c ≥ 2.

Output: a strictly many-to-one and non-constant functional table.

1. Generate a non-constant functional table using Step 1 to 3 above.

2. Convert the function from one-to-one to many-to-one: If the function is one-to-one—every
column of the table has at most one non-zero entry, do the following. Randomly pick a row i
from all those rows with non-zero totals with equal probability. Let j be the index to the only
non-zero entry on row i. Pick j′ from the indices of those columns with non-zero totals except j
with equal probability. Swap the values of nij and nij′ .

Generating dependent and non-functional tables

In non-functional dependent relationships between X and Y, X and Y are statistically dependent but Y
is not a function of X and X is neither a function of Y. They are not as strong as functional patterns in
revealing causal relationships, but can reveal strong associative relationships such as a circular pattern.
Their joint probability function must satisfy

pXY(i, j) 6= pX(i) · pY(j) for some i, j (3)

As we do not have the above true probability functions, we will directly estimate them using frequen-
cies in the table. If the above inequality is satisfied, we call X and Y empirically statistically dependent;
otherwise, X and Y are empirically statistically independent.

Lemma 1. Let p, P, Q, M, N be five positive numbers and q be a nonnegative number, where P > p
and Q > q. If these numbers satisfy two equalities

P
N
· M

N
=

p
N

(4)

and
Q
N
· M

N
=

q
N

(5)

and if we are given a number k such that 0 < k ≤ p, then the following two inequalities must be true:

P− k
N
· M

N
>

p− k
N

(6)

and
Q + k

N
· M

N
<

q + k
N

(7)

Proof. As we are given P > p, we have algebraically

P− k
p− k

=
P− p
p− k

+ 1 (8)

monotonically increasing as k increases from 0 to p. Thus it follows

P− k
p− k

>
P
p
=

N
M

(9)

using the equality in Eq. (4). Multiplying both sides by (p−k)M
N2 , we immediately prove inequality (6).

Similarly, with given Q > q and as k increases from 0, we have a monotonic decreasing function of k

Q + k
q + k

=
Q− q
q + k

+ 1 (10)

which implies
Q + k
q + k

<
Q
q

=
N
M

(11)

based on Eq. (5). Multiplying both sides by (q+k)M
N2 , we immediately prove inequality (7). Q.E.D.

Based on Lemma 1, we design Algorithm 1 to break the statistical independency. Let (i, j) represent
the entry at row i and column j.

Algorithm 1. Convert an independent non-functional table to a dependent non-functional table.

Input: an independent non-functional table

Output: a dependent non-functional table
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1. Randomly pick an entry (i, j) with at least one sample point (nij > 0).

2. Randomly select column j′ 6= j with equal probability from row i.

3. Move all nij samples from entry (i, j) to (i, j′), which finally have 0 and nij + nij′ sample points,
respectively.

Theorem 1. An empirically statistically independent non-functional contingency table can be con-
verted to dependent non-functional contingency table by Algorithm 1. The row marginal probability
function remains the same after the conversion.

Proof. Table 2 illustrates that any independent non-functional table has at least two rows and two
columns with non-zero entries. Non-functionality guarantees at least one row (row i1 in Table 2) and
one column (column j1 in Table 2) each with two non-zero entries. The independent property ensures
that at least another non-zero row (row i2 in Table 2) and another non-zero column (column j2 in
Table 2) has the same distribution of numbers proportional to row i1 and the column j1, respectively.
Additionally, all non-zero rows are proportional to each other by a constant, and so do the columns.

· · · · · · · · · · · · · · ·
· · · ni1 j1 > 0 · · · ni1 j2 > 0 · · ·
· · · · · · · · · · · · · · ·
· · · ni2 j1 > 0 · · · ni2 j2 > 0 · · ·
· · · · · · · · · · · · · · ·

Table 2: Any independent non-functional table has at least two rows and two columns each with at
least two non-zero entries.

In the input table to Algorithm 1, entry (i, j) satisfies the empirical independence equation

ni·
n
·

n·j
n

=
nij

n
(12)

where ni· is the sum of row i and n·j is the sum of column j. After the move, we have by Lemma 1

ni·
n
·

n·j − nij

n
>

0
n

(13)

where n·j − nij > 0 is guaranteed by the property shown in Table 2. As the left hand side of the
inequality is the product of the new marginal probabilities and the right hand side is the new joint
probability, it implies the loss of statistical independency in the modified table. Therefore the modified
table is now statistically dependent.

Also by the property shown in Table 2, no matter where nij was moved to, we will indeed
have another row and another column with at least two non-zero entries, which will guarantee the
non-functionality of the modified table.

As the samples are moved within the same row i, the row sum is unchanged and thus the row
marginal probability function is unchanged in the modified table.

Therefore, we conclude that the new table must be dependent non-functional. Q.E.D.

Such tables are only possible when n ≥ 4. The following steps generate such tables by distributing
samples to rows and then to columns and converting any resulting functions to non-functions:

Input: row marginal probability function pX , sample size n ≥ 4, table size r × c, r ≥ 2, and
c ≥ 2.

Output: a dependent non-functional table.

1. Randomly generate the row sums ni· (i = 1, . . . , r) by the multinomial distribution with success
probability function pX and the sample size n.

2. For each row i in the table, initialize the entire row to be 0. Sample a value k from {1, . . . , c}with
equal probability. Randomly pick k columns j1, . . . , jk from {1, . . . , c} with equal probability.
Then randomly determine the values of nij1 , . . . , nijk using the multinomial distribution with
equal success probability of 1/k.

3. If Y = f (X), convert the function to a non-function: If the table represents a valid function—
each row has at most one non-zero entry, do the following. Pick a row i from all rows with at
least two samples with equal probability. Let j be the index to the only non-zero entry in row i.
Pick j′ from {1, . . . , c}\{j} with equal probability. Redistribute the row sample ni· into nij and
nij′ with equal probability using a binomial distribution.
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4. If X = g(Y), convert the function to a non-function: follow the previous step but switch rows
and columns. This operation also maintains the non-functionality Y 6= f (X) as no non-zero
entries are eliminated.

5. If empirically X ⊥ Y, we break the statistical independency by converting the table to a
dependent non-functional table using Algorithm 1.

Generating independent tables

When X and Y are statistically independent, their joint probability mass function is

pXY(i, j) = pX(i) · pY(j) for all i ∈ {1, . . . , r} and j ∈ {1, . . . , c} (14)

where pX(i) and pY(j) are marginal probabilities of occurrence for X = i and Y = j, respectively.
The tables formed by such X and Y are useful as a negative control, because they represent patterns
that are typically considered uninteresting. To generate an independent pattern, the input needs
both row and column marginal probability mass functions pX and pY . As X and Y are statistically
independent, the numbers of samples in each entry follow a multinomial distribution. The success
probability in the entry at row i and column j is exactly pXY(i, j). Given the sample size n, we randomly
generate samples from the multinomial distribution with r× c outcomes and map them to the sampled
contingency table.

The house noise model

It is very common to observe noise in real data; noise may arise due to a multitude of reasons ranging
from data preparation through the machinery involved in the entire data acquisition process. In
statistical inference, noise needs to be handled to reduce type I and type II errors. Thus, our simulator
also factors in noise to make the contingency tables resemble those constructed out of real data sets in
order to additionally provide for a test of robustness.

By specifying the noise level parameter in the simulate_tables function, one can apply noise to a
contingency table. We use the discrete house noise model (Zhang et al., 2015) that is controlled by the
noise level parameter θ. θ is a continuous constant between 0 and 1, where 0 represents no noise and
1 represents maximum noise level. Let Y ∈ {1, . . . , c} be a dependent discrete random variable and
c > 1 be the number of discrete levels of Y. Let Y′ ∈ {1, . . . , c} be a random discrete variable which
represents the noisy version of Y. Let y and y′ represent values for Y and Y′, respectively. The house
noise model is defined through a probability function of noisy Y′ conditioned on truth Y and noise
level θ by

pY′ |Y(y
′|y, θ) = Pr(Y′ = y′|Y = y, θ) =


[(

1− |y−y′ |
∑c

d=1(|d−y|)

)
θ

c−1

]
(1− θ) + θ

c if y′ 6= y(
θ

c−1 + 1− θ
)
(1− θ) + θ

c if y′ = y
(15)

The model works on the principle of making its value closer to the true value rather than being further
away. By this model, the probability of a larger deviation of Y′ from Y is smaller than that of a smaller
deviation. At θ = 0, we have Y′ = Y and it is thus noise free; at θ = 1, the conditional probability
function becomes uniformly distributed and the noise completely destroys the underlying patterns.

We implemented the model as an R function add.house.noise to apply noise to an input con-
tingency table and return a noisy contingency table as the output. The syntax of the function is as
follows:

add.house.noise(tables, u, margin = 1)

where tables is a list of input contingency tables and u is the noise level between 0 and 1. The noise
can be applied along rows (margin=1), columns (margin=2), or both rows and columns (margin=0). In
simulate_tables, the noise is always applied along the rows, which can be interpreted as applying
noise to the dependent variable Y if the column variable is a function of the row variable X. The house
noise model can be used independently of function simulate_tables.

Performance evaluation

To affirm each table type generated by the simulator indeed has the required characteristics, we
compared two hypothesis testing methods: the fun.chisq.test (Zhang and Song, 2013) in the R
package FunChisq and chisq.test in the R package stats.
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We first simulated 1000 randomly generated tables for each of the four types at the noise level of
0.1. The numbers of rows and columns of the tables were randomly selected from 3 to 10. The sample
size of each table was randomly drawn from 10 to 1000 and must be at least the table size.

Next we applied the two tests on the tables.The log p-value distributions of both tests are shown in
Fig. 2. In Fig. 2a, the FunChisq test tends to yield smaller p-values compared to Pearson’s chi-square
on functional patterns. In Fig. 2b, both tests are approximately equal on dependent non-functional
patterns. The p-values remarkably increased in comparison to functional patterns but are still showing
significance due to statistical dependency in the pattern. Taken together, the FunChisq test has a higher
sensitivity of functional over non-functional patterns than Pearson’s chi-square test, as expected.

In Fig. 2c, the FunChisq test was performed first on noisy many-to-one functional patterns and
second on the transposed table. There is an increase in the p-value by the latter which explains that the
transposed noisy many-to-one tables are no longer functional. We did not show Pearson’s chi-square
p-values because they are equal on transposed contingency tables. Indeed, one expects to see such
a difference in the distribution of FunChisq statistics when comparing functional tables versus their
transposed non-functional tables, as FunChisq, unlike Pearson’s chi squares, is asymmetric when
testing functional dependency.

In Fig. 2d the log p-value distributions of both FunChisq and Pearson’s chi-squares are nearly
identical and the p-values are very close to 1, because both tests follow the same χ2 distribution under
the null hypothesis when using independent patterns.

These results confirm that our simulator was indeed able to generate functional, non-functional,
many-to-one, and independent patterns.

We further benchmarked the runtime of the simulator over four table types, four sample sizes (100,
500, 1000, and 10000), and two noise levels (0 and 0.5) at a fixed table size of 5×5. This gives a total of
32 configurations. For each configuration, we repeated the simulation 100 times to account for random
variations. We ran the simulation on iMac (27-inch, Mid 2010) with 2.93 GHz Intel Core i7 processor
and 16 GB 1333 MHz DDR3 RAM. Figure 3 shows the runtime of generating noise-free and noisy
versions of all four pattern types. It is apparent from the figure that table type, sample size, and noise
application can all influence the runtime of table generation. Dependent non-functional tables took
the most time because they are subject to more mathematical requirements. Applying noise incurred
additional time for all table types. Sample size has an observable effect on the runtime when noise is
applied.

Installation and examples of discrete pattern generation

Here we demonstrate the usage of the simulator by providing examples of all four pattern types
including the description of important parameters. The R package FunChisq (≥ 2.4.0) contains the
function simulate_tables that implements the simulator. The package is publicly available from the
Comprehensive R Archive Network (CRAN). The package can be installed and loaded by

install.packages("FunChisq")
library("FunChisq")

The signature of the function simulate_tables is given below:

simulate_tables(n=100, nrow=3, ncol=3, type=c("functional", "many.to.one",
"independent", "dependent.non.functional"), noise=0.0, n.tables=1,
row.marginal=rep(1/nrow, nrow), col.marginal=rep(1/ncol, ncol))

The arguments are

• n—an integer specifying the sample size to be distributed in the table. For "functional" and
"many.to.one" tables, n must be no less than nrow. For "independent" tables, n must be no less
than nrow*ncol. For "dependent.non.functional" tables, n must be greater than nrow.

• nrow—an integer specifying the number of rows of output tables. The value must be no less
than 2. For "many.to.one" tables, nrow must be no less than 3.

• ncol—an integer value specifying the number of columns in desired table. The value for ncol
must be no less than 2.

• type—a character string to specify the type of pattern underlying the table. The options are
"functional" (default), "many.to.one", "independent", and "dependent.non.functional".

• noise—a numeric value between 0 and 1 specifying the factor of noise to be added to the table
using the house noise model (Zhang et al., 2015). The house noise is applied along the rows of
the table. See add.house.noise for details.
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Figure 2: The FunChisq test is more sensitive to functional patterns than Pearson’s chi-square test,
while being equally sensitive to non-functional patterns. The distributions of log p-values for all four
table types using the two tests at a noise level of 0.1 are shown. The means of the distributions are
indicated by the vertical lines. (a) Noisy functional patterns. (b) Noisy dependent non-functional
patterns. (c) Noisy many-to-one functional patterns. The FunChisq test was applied on both the
original table and the transposed table, indicated by inverse FunChisq. (d) Noisy independent patterns.

• n.tables—an integer value specifying the number of tables to be generated.

• row.marginal—a numeric vector of length at least 2 specifying row marginal probabilities. For
"many.to.one" tables, the length of row.marginal vector must be no less than 3.

• col.marginal—a numeric vector specifying column marginal probabilities. It is only applicable
in generating independent tables.

The return value of the function simulate_tables is a list containing the following components:

• pattern.list—a list of tables containing 0-1 binary patterns. Each table is created by setting
all non-zero entries in the corresponding sampled contingency table from sample.list to 1.
Each table strictly satisfies the functional relationship for a given pattern type requested. This
table does not meet the statistical requirements. As each table represents the truth regarding
the mathematical relationship between the row and column variables, they can be used as the
ground truth or gold standard for benchmarking.

• sample.list—a list of tables satisfying both the functional and statistical requirements. These
tables are noise free.

• noise.list—a list of tables after applying noise to the corresponding tables in sample.list.
Each table is the noisy version of the sampled contingency table. Due to the added noise, each
table may no longer strictly satisfy the required functional or statistical relationships. These
tables are the main output to be used for the evaluation of a discrete pattern discovery algorithm.
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Figure 3: The empirical runtime of generating a contingency table as a function of sample size over
four table types and two noise levels. We fix the table size to be 5×5. The runtime is measured in
milliseconds and the box plots are colored by sample sizes. The runtime differs in sample size, table
type, and whether noise was applied, as shown in (a) noise-free and (b) noisy functional patterns, (c)
noise-free and (d) noisy dependent non-functional patterns, (e) noise-free and (f) noisy many-to-one
functional patterns, and (g) noise-free and (h) noisy independent patterns.

• pvalue.list—a list of p-values reporting the statistical significance of the generated tables for
the required type. When the pattern type specifies a functional relationship, the p-values are
computed by the FunChisq test; otherwise, the Pearson’s chi-square test of independence is
used to calculate the p-value.

Example 1. A functional table. A scientist working at a weather forecasting agency came up with
a novel method that can be trained for each geographical area to predict the amount of rainfall in that
area given a month. While the agency is busy collecting real data for the last 10 years, the scientist
wants to test his method and train the method to learn the following hypothesis: ’The amount of
rainfall in an area is a function of time, expressed in months’. Using different probability distributions
for each month (row.marginal) the scientist can simulate contingency tables with X being month
with 12 levels and Y being the amount of rainfall with 3 levels ’Scant’, ’Medium’ and ’Heavy’. We
assume that the amount of rainfall is equally likely in a given month. Noise can be added to imitate
imperfect real-world scenario. The following code generates 12×3 functional contingency tables with
100 samples using multinomial distribution at the noise level of of 0.1:

simulate_tables(nrow=12, ncol=3, type='functional', n=100, n.tables=1,
row.marginal = c(0.116, 0.109, 0.049, 0.142, 0.083,
0.070, 0.140, 0.151, 0.037, 0.032, 0.050, 0.015), noise=0.1)

## Output:
## pattern.table sampled.table noise.table

C1 C2 C3 C1 C2 C3 C1 C2 C3
## R1 0 1 0 R1 0 5 0 R1 0 5 0
## R2 0 0 1 R2 0 0 17 R2 0 1 16
## R3 0 0 1 R3 0 0 3 R3 0 0 3
## R4 0 1 0 R4 0 15 0 R4 0 14 1
## R5 0 1 0 R5 0 3 0 R5 1 2 0
## R6 0 0 1 R6 0 0 5 R6 1 0 4
## R7 1 0 0 R7 22 0 0 R7 20 1 1
## R8 0 1 0 R8 0 15 0 R8 1 13 1
## R9 0 0 1 R9 0 0 4 R9 0 1 3
## R10 1 0 0 R10 5 0 0 R10 5 0 0
## R11 0 0 1 R11 0 0 3 R11 0 0 3
## R12 0 0 1 R12 0 0 3 R12 0 0 3

The scientist can also tune parameters and generate 100 or more such tables representing data for 100
or more years.
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Example 2. A many-to-one functional table. This type of table is a special case of functional table.
It can be used to model the relationship between the effectiveness Y and the dosage X of a drug. When
the dosage of the drug is too low or too high, it becomes ineffective. The following code generates 4×5,
noisy, many-to-one contingency tables with 100 samples distributed using multinomial distribution.
The row marginals used are 0.1, 0.3, 0.2, 0.4. Noise factor of 0.5 is added to the sampled table.

simulate_tables(nrow=4, ncol=5, type='many.to.one', n=100, n.tables=1, noise=0.5)
## Output:
## pattern.table sampled.table noise.table
## C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5
## R1 0 0 0 1 0 R1 0 0 0 19 0 R1 2 4 0 11 2
## R2 0 1 0 0 0 R2 0 32 0 0 0 R2 5 12 7 3 5
## R3 0 1 0 0 0 R3 0 31 0 0 0 R3 5 10 4 7 5
## R4 0 0 1 0 0 R4 0 0 18 0 0 R4 2 3 7 4 2

Example 3. An independent table. This type of table is useful in generating null distribution or
bootstrapping. To measure the statistical significance or probability of getting a certain empirical score
reported by a method, one needs to randomly sample from an independent and identically distributed
population. The following code generates 4×5 contingency tables with 100 samples distributed using
multinomial distribution, where row and column variables are statistically independent. The row
marginal probabilities are 0.1, 0.3, 0.2, 0.4 and column marginal probabilities are 0.3, 0.2, 0.1, 0.3, 0.1.
No noise is applied.

simulate_tables(nrow=4, ncol=5, type='independent', n=100, n.tables=1, noise=0.0,
row.marginal=c(0.1,0.3,0.2,0.4), col.marginal=c(0.3,0.2,0.1,0.3,0.1))

## Output:
## pattern.table sampled.table noise.table
## C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5
## R1 1 1 1 1 1 R1 4 3 2 4 1 R1 4 3 2 4 1
## R2 1 1 1 1 1 R2 8 4 1 5 3 R2 8 4 1 5 3
## R2 1 1 1 1 1 R3 6 3 1 6 5 R3 6 3 1 6 5
## R2 1 1 1 1 1 R4 16 8 5 7 8 R4 16 8 5 7 8

Example 4. A dependent non-functional table. Two genes X and Y may be regulated by a
common transcription factor. Here X and Y are categorized as low, medium and high. The two
variables are dependent but not a function of each other. We simulate this type of data using dependent
non-functional table type. The following code generates 3×3, noise free, non-functional contingency
tables with 100 samples distributed using multinomial distribution. The row marginals used are 0.3,
0.5, 0.2.

simulate_tables(nrow=3, ncol=3, type='dependent.non.functional', n=100, n.tables=1,
row.marginal=c(0.3,0.5,0.2), noise=0.1)

## Output:
## pattern.table sampled.table noise.table
## C1 C2 C3 C1 C2 C3 C1 C2 C3
## R1 1 1 0 R1 12 11 0 R1 8 13 2
## R2 0 0 1 R2 0 0 49 R2 3 1 45
## R3 1 1 1 R3 7 10 11 R3 9 9 10

Discussion

We have just introduced a new simulator which conveniently generates random noisy r×c contin-
gency tables exhibiting four contrasting pattern types including functional, many-to-one functional,
dependent non-functional, and independent. These contingency tables are advantageous for methods
which are designed to discover patterns among discrete random variables.

Although other methods for constructing random contingency tables are available (Demirhan,
2016), the generation of functional tables is innovative. Having diverse functional tables meets a need
to detect causal relationships from functional dependencies without using a parametric form.

For practical reasons, if the row marginal is non-zero, we will generate at least one sample for
that row. Currently the simulator utilizes row marginal probabilities for the generation of dependent
contingency tables; in the future we may provide an option to use the column marginal probabilities
instead, to match some experimental design where the distribution of the effect variable is predefined,
such as in case-control studies of cancer.
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The generated dependent non-functional patterns may span a wide range of statistical dependency
from being very weak to very strong. The p-values associated with these patterns can be used to filter
out tables of weak statistical dependency.

Beyond generating tables of bivariate patterns between the row and column variables, one may con-
sider the row variable as a combination of multiple discrete variables. Therefore one can immediately
extend the procedures to generate contingency tables representing multivariate patterns.

In summary, we described algorithms and implemented a simulator to construct contingency
tables of desired mathematical and statistical properties, and illustrated the use of this function with
several examples. We validated the generation of all table types by the FunChisq and Pearson’s
chi-square tests. We evaluated the runtime of the function in generating various noisy patterns. This
function offers a previously overlooked utility to generate diverse functional patterns to evaluate
discrete pattern discovery methods increasingly important in data science research.
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glmmTMB Balances Speed and Flexibility
Among Packages for Zero-inflated
Generalized Linear Mixed Modeling
by Mollie E. Brooks, Kasper Kristensen, Koen J. van Benthem, Arni Magnusson, Casper W. Berg,
Anders Nielsen, Hans J. Skaug, Martin Mächler, Benjamin M. Bolker

Abstract Count data can be analyzed using generalized linear mixed models when observations
are correlated in ways that require random effects. However, count data are often zero-inflated,
containing more zeros than would be expected from the typical error distributions. We present a new
package, glmmTMB, and compare it to other R packages that fit zero-inflated mixed models. The
glmmTMB package fits many types of GLMMs and extensions, including models with continuously
distributed responses, but here we focus on count responses. glmmTMB is faster than glmmADMB,
MCMCglmm, and brms, and more flexible than INLA and mgcv for zero-inflated modeling. One
unique feature of glmmTMB (among packages that fit zero-inflated mixed models) is its ability to
estimate the Conway-Maxwell-Poisson distribution parameterized by the mean. Overall, its most
appealing features for new users may be the combination of speed, flexibility, and its interface’s
similarity to lme4.

Introduction

Observed response variables are often in the form of discrete count data, e.g., the number of times that
owl nestlings beg for food (Roulin and Bersier, 2007), counts of salamanders in streams (Price et al.,
2016), or counts of parasite eggs in fecal samples of sheep (Denwood et al., 2008). These counts are
often analyzed using generalized linear models (GLMs) and their extensions (O’Hara and Kotze, 2010;
Wilson and Grenfell, 1997). GLMs quantify how expected counts change as a function of predictor
variables, e.g., nestlings change their behavior depending on which parent they interact with (Roulin
and Bersier, 2007), salamander abundance decreases in streams affected by coal mining (Price et al.,
2016), and helminth infection intensity in sheep decreases in response to treatment with anthelmintic
drugs (Wang et al., 2017). Repeated measurements on the same individual, at the same location, or
observations during the same time period are often correlated; this correlation can be accounted for
using random effects in generalized linear mixed models (GLMMs; Bolker et al., 2009; Bolker, 2015).

These types of count data are commonly modeled with GLMs and GLMMs using either Poisson
or negative binomial distributions. For the Poisson distribution, the variance is equal to the mean.
When data are overdispersed — meaning the variance is larger than the mean — they are often instead
modeled using the negative binomial distribution, which can be defined as a mixture of Poisson
distributions with Gamma-distributed rates. Overdispersion can also be addressed by adding a
random effect with one level for each observation, i.e., a log-normal Poisson distribution (Elston et al.,
2001; Hadfield, 2010; Harrison, 2014, 2015). Ignoring overdispersion causes confidence intervals to
be too narrow and inflates the rate of false positives in statistical tests (Rhodes, 2015). When data
are either over- or underdispersed, they can be modeled with the lesser-known, Conway-Maxwell-
Poisson distribution (Shmueli et al., 2005; Lynch et al., 2014; Barriga and Louzada, 2014). Depending
on the dispersion, the upper tail of the Conway-Maxwell-Poisson distribution can be either longer
or shorter than that of the Poisson (Sellers and Shmueli, 2010). With two parameters, the Conway-
Maxwell-Poisson is a generalization of the Poisson distribution and, depending on the dispersion
parameter, it also includes the Bernoulli and geometric distributions as special cases (Sellers and
Shmueli, 2010). Among other generalizations, the Sichel and Delaporte distributions (Stasinopoulos
et al., 2017) provide flexibility in skewness in addition to dispersion.

For these distributions, the expected number of zeros decreases as the mean increases. However,
when multiple processes underlie the observed counts, the counts can contain many zeros even if the
mean is much greater than zero. For example, an observation of a stream with zero salamanders could
be a “structural” zero due to the stream being uninhabitable due to mining waste, or a “sampling”
zero due to the combination of a low mean (due to poor ecological suitability and/or low detectability)
and sampling variation (Price et al., 2016). Zero-inflated (more broadly zero-altered) GLMs allow us
to model count data using a mixture of a Poisson, negative binomial, or Conway-Maxwell-Poisson
distribution and a structural zero component. Models that ignore zero-inflation, or attempt to handle
it in the same way as simple overdispersion, can yield biased parameter estimates (Harrison, 2014).

In this article, we outline the R packages available for fitting models to count data while introducing
glmmTMB. We assume that the reader already has a basic understanding of GLMs (Buckley, 2015),
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GLMMs (Bolker, 2015), and zero-altered models (Zeileis et al., 2008; Harrison, 2014)).

Several R packages are available for fitting zero-inflated models: pscl, INLA, MCMCglmm,
glmmADMB, mgcv, brms, and gamlss (Table 1; Zeileis et al., 2008; Rue et al., 2009; Hadfield, 2010;
Skaug et al., 2012; Wood et al., 2016; Bürkner, 2017; Stasinopoulos et al., 2017). The widely-used pscl
package can fit zero-inflated and hurdle GLMs with predictor variables on the zero-inflation using
maximum likelihood estimation (MLE: Zeileis et al., 2008). For example, pscl can be used to test
the hypothesis that sheep fecal egg counts depend on age and structural zeros depend on genotype.
However, pscl cannot model the correlation within sampling units caused by repeated samples; this
requires random effects. Omitting random effects and thereby ignoring correlation makes statistical
inference anti-conservative (Bolker et al., 2009; Bolker, 2015). Several other packages have similar
capabilities for fitting zero-inflated GLMs (flexmix, MXM, VGAM: Grün and Leisch, 2008; Lagani
et al., 2017; Yee, 2017), but in this paper we focus on packages that can also estimate random effects.
One such package is glmmADMB which can fit zero-inflated GLMMs (Skaug et al., 2012). However,
glmmADMB cannot fit models where the degree of zero-inflation varies across observational units;
thus, it is only appropriate for models where all observational units have an equal probability of
producing a structural zero. INLA has the same limitation as glmmADMB (Rue et al., 2009). The
mgcv package can only fit zero-inflated GLMMs with predictors of zero-inflation when using a Poisson
distribution (Wood et al., 2016). The MCMCglmm and brms packages can fit zero-inflated GLMMs
with predictors of zero-inflation, but they are relatively slow (as we will show) because they rely on
Markov chain Monte Carlo (MCMC) sampling (Bürkner, 2017; Hadfield, 2010). gamlss is a flexible
package that fits generalized additive models with predictors on all parameters of a distribution; its
scope includes several zero-inflated and zero-altered distributions (Stasinopoulos et al., 2017).

The list of features documented here is not exhaustive. It should be appreciated that brms, gamlss
and MCMCglmm have additional features that go beyond the scope of zero-inflated GLMMs (Bürkner,
2017; Stasinopoulos et al., 2017; Hadfield, 2010). We focus on the process of fitting models, largely
neglecting questions of statistical frameworks (frequentist vs. Bayesian) or post-fitting procedures
such as inference and prediction. For example, having MCMC samples from a fitted model allows a
wide range of inferential and predictive procedures.

Here we introduce a new R package, glmmTMB, that estimates GLMs, GLMMs and extensions
of GLMMs including zero-inflated and hurdle GLMMs using ML. The ability to fit these types of
models quickly and using a single package will make it easier to perform model selection. We focus
on zero-inflated counts, but note that there are many other distributions available in glmmTMB,
including continuous distributions. We demonstrate the package using two examples without going
into details of the reasons why a user would want to fit these models. We use an example of salamander
abundance to show how to fit and compare zero-inflated and hurdle GLMMs and then how to extract
results from a model. We then use variations of the salamander data to compare how the timings of
different packages scale with the number of observations and random effect levels. We use a classic
example of owl nestling behavior to compare the timing and parameter estimates from glmmTMB
with other R packages.

Implementation of glmmTMB

The design goal of glmmTMB is to extend the flexibility of GLMMs in R while maintaining a familiar
interface. To maximize flexibility and speed, glmmTMB’s estimation is done using the TMB package
(Kristensen et al., 2016), but users need not be familiar with TMB. We based glmmTMB’s interface
(e.g., formula syntax) on the lme4 package — one of the most widely used R packages for fitting
GLMMs (Bates et al., 2015). Like lme4, glmmTMB uses MLE and the Laplace approximation to
integrate over random effects; unlike lme4, glmmTMB does not have the alternative options of doing
restricted maximum likelihood (REML) estimation nor using Gauss-Hermite quadrature to integrate
over random effects (Bolker et al., 2009; Bolker, 2015). The Laplace approximation may perform poorly
when there is little information available on each random effect level (Ogden, 2015). REML may be
added to glmmTMB in the future. The underlying implementation using TMB is a fundamental
difference compared to lme4 and provides glmmTMB with a speed advantage when estimating
non-Gaussian models (Figures 1 and 2) and gives it greater flexibility in the classes of distributions it
can fit (Table 1).

The flexibility of glmmTMB enables users to fit and compare many varieties of models with
assurance that the log-likelihood values are calculated in a consistent way. Comparing likelihoods of
models fit by multiple packages must be done carefully because some packages drop constants from
the log-likelihood calculations while others do not.

A glmmTMB model has four main components: a conditional model formula, a distribution for
the conditional model, a dispersion model formula, and a zero-inflation model formula. Simple GLMs
and GLMMs can be fit using the conditional model while leaving the zero-inflation and dispersion
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Feature glmmTMB glmmADMB MCMCglmm brms INLA mgcv gamlss
hurdle models1 X X X X X
predictors of zero-inflation X X X X
predictors of dispersion X X X
zero-truncated distributions X X X X X X
nbinom2 distribution X X X X X2 X
nbinom1 distribution X X X2

compois distribution X3

Delaporte distribution X2

Sichel distribution X
geometric distribution X X X2

PIG distribution X
weights X4 X X X X X
offsets X X 5 X X X
various RE structures X6 X X X X
RE cor across components 7 X X
MLE X X X X
MCMC samples8 X9 X X X X10 X
multivariate responses 11 X X
GAM 12 X X X

Table 1: Features of packages that are used for modeling zero-inflated count data. This table only
contains packages that can at least fit zero-inflated Poisson GLMMs. lme4 is omitted because it
can only estimate zero-inflation when wrapped in an expectation maximization algorithm (Bolker
et al., 2013). nbinom2 and nbinom1 are negative binomial distributions in which the variance increases
quadratically and linearly (respectively) with the mean. compois is the Conway-Maxwell-Poisson
distribution. PIG is the Poisson inverse Gaussian distribution. Notes: 1 We restrict this to mean a single function
call, rather than two separate models. 2 Not available with zero-inflation. 3 Conway-Maxwell-Poisson distribution parameterized
by the mean. 4 Weights are often used to reduce the influence of some observations over others, e.g., Gurevitch and Hedges, 1999;
additionally, glmmTMB’s dispersion formula can be used to model heteroskedasticity. 5 Offsets can be implemented using priors. 6
See vignette("covstruct") for details. 7 Some packages allow for correlation across random effects from different components of
the model (e.g., conditional and zero-inflation). 8 Here, we mean that MCMC samples can be obtained from an estimated model
(i.e., joint samples from the full distribution, conditional on the data) whether it is estimated using MCMC sampling or MLE. In
the case of MLE, flat priors are used for MCMC sampling and chains are initiated at the ML estimate. 9 See vignette("mcmc") for
details. 10 This feature is available and widely used e.g., Chevin et al., 2015, but apparently unsupported by any formal evaluation.
11 We exclude the possibility that the correlation structure of random effects makes a model mathematically equivalent to a
multivariate response. 12 Here, we mean generalized additive modeling with automatic smoothness selection. However, a spline
can be included in any of these methods using the bs or ns functions from the splines package.

formulas at their default values. The mean of the conditional model is specified using a two-sided
formula with the response variable on the left and predictors on the right, potentially including
random effects and offsets. This formula uses the same syntax as lme4. For example, if salamander
counts vary by species (spp) and vary randomly by site, then the formula for the dependence of mean
count on species could be

count ~ spp + (1 | site)

The distribution around the mean of the conditional model is specified using the argument family.
For the types of count data described in the introduction, the distribution will typically be either
Poisson or negative binomial. The Conway-Maxwell-Poisson is a less commonly known distribution
for count data that is flexible enough to fit both over- and underdispersed data. Following the standard
of glmmTMB described above, the Conway-Maxwell-Poisson distribution (family = compois) is
parameterized with the mean (Huang, 2017), which differs from the COMPoissonReg package(Sellers
et al., 2017). The Poisson, Conway-Maxwell-Poisson, and negative binomial distributions use a
log link by default, but other links can be specified as in family = poisson(link = "identity").
glmmTMB provides two parameterizations of the negative binomial which differ in the dependence
of the variance (σ2) on the mean (µ). For family = nbinom1, the variance increases linearly with the
mean as σ2 = µ(1 + α), with α > 0; for family = nbinom2, the variance increases quadratically with
the mean as σ2 = µ(1 + µ/θ), with θ > 0 (Hardin and Hilbe, 2007). For the Conway-Maxwell-Poisson
distribution, there is no closed form equation for the variance (Huang, 2017).

With the default dispersion model (dispformula = ~ 1), the dispersion parameter (e.g., α or θ
for the negative binomial distribution) is identical for each observation. Alternatively, the dispersion
parameter can vary with fixed effects; in this case, the dispersion model uses a log link. The dispersion
model can be used to account for heteroskedasticity. For example, if the response is more variable
(relative to the mean) as the year progresses, then a model with either negative binomial distribution
might use the one-sided formula dispformula = ~ DOY where DOY is the day of the year. When the
same variables are in the conditional and dispersion models, the mean-variance relationship can be
manipulated, but this could potentially lead to non-convergence issues. A description of the dispersion
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parameter for each distribution can be accessed by typing ?sigma.glmmTMB in R.

The zero-inflation model describes the probability of observing an extra (i.e., structural) zero that
is not generated by the conditional model. Zero-inflation creates an extra point mass of zeros in the
response distribution; the overall distribution is a mixture of the conditional model and zero-inflation
model (Lambert, 1992; Rhodes, 2015). The zero-inflation probability is bounded between zero and
one by using a logit link. For example, if salamanders emerged seasonally at each site, such that a
structural zero could occur either because a site was contaminated or because it was visited too early
in the season, then the model could include the one-sided formula ziformula = ~ DOY. The probability
of producing a structural zero can be modeled as equal for all observations with ziformula = ~ 1. In
glmmTMB, it is possible to include random effects in the conditional and zero-inflation models, but
not the dispersion model.

Installation of glmmTMB

The package is available from The Comprehensive R Archive Network (CRAN) via the command
install.packages("glmmTMB"). The current version is 0.2.0. Development versions are available from
GitHub and can be installed using devtools (Wickham and Chang, 2017). Current details for installing
development versions should be accessed on the GitHub page https://github.com/glmmTMB/glmmTMB.

Examples and benchmarks

To illustrate how to use glmmTMB and to compare it to other packages, we applied it to two data sets
that are distributed with glmmTMB. Additional code and graphs for these examples can be found in
Appendicies A and B.

ABUNDANCE OF SALAMANDERS IN STREAMS

Salamander data We demonstrate how to use features of glmmTMB to do model selection and output
model results using a data set of the abundance of salamanders (Figure 3). They were observed four
times at 23 sites in streams, some of which were impacted by coal mining; multiple species and life
stages of salamanders were observed. The data set contains covariates that may affect the habitat
suitability of a site and the ability of researchers to capture salamanders that inhabit the site (Price
et al., 2016, 2015). Price et al. analyzed the data using a Bayesian model with an ecological and a
sampling component; abundance was estimated with a hurdle Poisson model and then observations
were modeled as binomial samples from the abundance.

Model fitting and selection We fit GLMMs, zero-inflated GLMMs, and hurdle models to the sala-
mander data with Poisson, Conway-Maxwell-Poisson, and negative binomial distributions on the
conditional model. For simplicity, we neglected some possible covariates. As a null model, we assumed
that counts varied by species (spp) and randomly by site (site). We fit models where the mean count
additionally depended on mining status (mined). Our full zero-inflated GLMMs allowed both the
conditional and zero-inflation models to differ between mined and unmined sites. Full zero-inflated
and hurdle negative binomial GLMMs were fit using the following commands (respectively) :

zinb = glmmTMB(count~spp * mined + (1|site), zi=~spp * mined,
data=Salamanders, family=nbinom2)

hnb = glmmTMB(count~spp * mined + (1|site), zi=~spp * mined,
data=Salamanders, family=truncated_nbinom2)

As is generally the case for model formulas in R, the * indicates an interaction plus main effects. We
used Akaike information criteria (AIC) to compare all models via the AICtab function from the bbmle
package (Bolker and Team, 2017). For convenience, glmmTMB reports the log-likelihood of unconverged
models as NA and version 1.0.19 of bbmle puts these models at the bottom of AIC tables. The code for
fitting these models and doing model selection is presented in Appendix A.

Of the models we considered, the most parsimonious was a Conway-Maxwell-Poisson GLMM that
allowed counts to vary with species, mining, and their interaction. It did not include zero-inflation,
as is common in abundance models (Warton, 2005). Two zero-inflated negative binomial and one
zero-inflated Conway-Maxwell-Poisson model did not converge. Failed convergence is typically
caused by trying to estimate parameters for which the data do not contain information. Models that
do not converge should not be considered in model comparison. General model convergence issues
are discussed in vignette("troubleshooting",package="glmmTMB").
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Model summary The summary of simple GLMMs from glmmTMB is modeled on the familiar
output format of lme4. To demonstrate the extra output from zero-inflation and dispersion models,
we present the summary from a more complicated model.

glmmTMB(count ~ mined + (1|site), zi=~mined , disp=~DOY, Salamanders, family=nbinom2)

Following the arguments in the function call above, this model allows the conditional mean to
depend on whether or not a site was mined and to vary randomly by site. It allows the number of
structural (i.e., extra) zeros to depend on mining. Additionally, it allows the dispersion parameter to
depend on the day of the year. This model can be represented by the following set of equations

µ = E(count|u, NSZ) = exp(β0 + βminedno + u), (1)

u ∼ N
(

0, σ2
u

)
, (2)

σ2 = Var(count|u, NSZ) = µ(1 + µ/θ), (3)

logit(p) = β
(zi)
0 + β

(zi)
minedno, (4)

log(θ) = β(disp)0 + β(disp)DOY · DOY, (5)

where u is a site specific random effect, NSZ is the event “non-structural zero“, p = 1− Pr(NSZ) is
the zero inflation probability, and β’s are regression coefficients with subscript denoting covariate/level
(with 0 denoting intercept).

summary(glmmTMB(count~mined+(1|site), zi=~mined , disp=~DOY, Salamanders, family=nbinom2))

#> Family: nbinom2 ( log )
#> Formula: count ~ mined + (1 | site)
#> Zero inflation: ~mined
#> Dispersion: ~DOY
#> Data: Salamanders
#>
#> AIC BIC logLik deviance df.resid
#> 1735 1767 -861 1721 637
#>
#> Random effects:
#>
#> Conditional model:
#> Groups Name Variance Std.Dev.
#> site (Intercept) 0.134 0.366
#> Number of obs: 644, groups: site, 23
#>
#> Conditional model:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -0.540 0.376 -1.44 0.15
#> minedno 1.424 0.365 3.90 0.000098 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Zero-inflation model:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 0.256 0.487 0.53 0.5988
#> minedno -2.244 0.745 -3.01 0.0026 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Dispersion model:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 0.0278 0.3177 0.09 0.93
#> DOY -0.3947 0.1537 -2.57 0.01 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This summary can be broken down into five sections. The top section is a general overview
containing a description of the model specification (Family, Formula, Zero inflation, Dispersion,
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Data) and resulting information criteria. The information criteria can only be compared to models
fitted by packages that, like, glmmTMB, compute the full form of the log-likelihood without dropping
constant terms. The second section describes the variability of the Random effects. In this model,
we only had random effects in the conditional model (equation 1), but random effects from the zero-
inflation model (equation 4) could also appear here. The estimated variance 0.134 is σ2

u in equation 2.
The third section describes the coefficients of the Conditional model (β0 and βminedno in equation 1)
including Wald Z statistics and p-values. Apart from the intercept, the estimates are all contrasts as is
standard in regression models. This model has a log link as stated in the top line of the summary. The
fourth section describes the Zero-inflation model similarly to the Conditional model except that
this model has a logit link. The zero-inflation model estimates the probability of an extra zero such that
a positive contrast indicates a higher chance of absence (e.g. minedno <0 means fewer absences in sites
unaffected by mining); this is the opposite of the conditional model where a positive contrast indicates
a higher abundance (e.g., minedno >0 means higher abundances in sites unaffected by mining). The

estimates in this section correspond to β
(zi)
0 and β

(zi)
minedno in equation 4. The last section provides

estimated coefficients from the Dispersion model (equation 5), which uses a log link to keep the
dispersion parameter θ positive. In contrast, a model with the default (simple) dispersion model
would report the single dispersion parameter on the natural (rather than log) scale. To interpret the
dispersion parameters of any distribution, see ?sigma.glmmTMB.

The current version of the summary function does not display uncertainty estimates for the random
effects nor for single dispersion parameters, but confidence intervals can be calculated using the
confint function. See ?confint.glmmTMB for details. All confidence intervals produced by the current
version of the confint function are Wald intervals, based on the standard errors calculated using the
delta method for the parameter on the scale of the internal parameterization (which varies by family).

Additional model output using the predict and simulate functions from glmmTMB is demonstrated
in appendix A (Figures 4, 5, 6, and 7).

Timing comparisons Because glmmTMB is the only package that can fit Conway-Maxwell-Poisson
GLMMs, it was not possible to do benchmarking with the most parsimonious model. Therefore, for
benchmarking, we used the second best model (∆ AIC=0.5 ) which substituted a negative binomial
response for the Conway-Maxwell-Poisson response. We measured the time required to fit this model
using multiple packages. We performed three sets of timing benchmarks: (1) on simulated data
with the same structure as the original salamander data, (2) on the original data replicated to create
more observations per random effect level and the same number of random effect levels, (3) on
simulated data with increasing numbers of random effect levels and the same number of observations
per random effect level. Benchmarks were run in parallel using parLapply on a high performance
computing cluster with 12 cores. This performance should match running on a single core. We used
default values for all packages except with glmmADMB which required an additional argument
(extra.args="-ndi 1000000") to allocate additional memory. By default, brms runs four MCMC
chains while MCMCglmm runs one, which greatly affects their estimation time. However, it would be
simple to speed up fitting of brms models by running the chains in parallel. For Bayesian methods, the
important aspect of timing is sampling efficiency (minimum effective samples per unit time, Bürkner,
2017), but this is not compatible with the MLE methods, so we limit our presentation of the timings of
the Bayesian methods.

Benchmarking showed that fitting the negative binomial model to simulated data with the same
structure as the original data was, on average, equally fast in glmmTMB and INLA, 14 times slower with
glmmADMB, 29 times slower with lme4, and 190 times slower with brms. mgcv fit the model the fastest,
taking 0.03 times as long as glmmTMB. gamlss took 0.24 times as long as glmmTMB. With increasing
numbers of observations, the estimation times of all packages appeared to follow power law functions
(Figure 1). For simulated data sets with increasing numbers of random effect levels, estimation time
increased as a power-law function for all packages except INLA which had estimation times that
accelerated (Figure 2). The speed of glmmTMB for models with more random effect levels is due to the
sparseness handling by TMB. Benchmarking nuances such as memory usage and how timings scale
with model complexity could be investigated in more detail in future studies.

BEGGING BEHAVIOR OF OWL NESTLINGS

To further compare R packages for fitting zero-inflated GLMMs, we analyzed counts of begging
behavior by owl nestlings. The full analyses can be found in Appendix B. This example previously
appeared in Zuur et al. (2009) and Bolker et al. (2013) and was originally published by Roulin and
Bersier (2007). We compared the estimates of fixed effects and the amount of time required for fitting
the same model in INLA, MCMCglmm, glmmADMB, mgcv, and brms (Rue et al., 2009; Hadfield,
2010; Skaug et al., 2012; Wood et al., 2016; Bürkner, 2017). For brms and MCMCglmm, we used the
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Figure 1: The Salamander data set was replicated by 1, 2, 4, 6, 8, and 10 times to create larger data
sets. The time required to fit the same model using functions glmmadmb,glmmTMB,inla, glmer.nb, and
gam was recorded. That model can be represented as glmmTMB(count ~ spp * mined + (1 |
site), Salamanders, family="nbinom2"). All models had the same number of parameters including
random effect levels. Lines represent linear models fit on the log-log scale. With increasing numbers of
observations (n), estimation times increased as a power-law function (nx) with exponents (x) reported
next to model names.

default number of iterations, burn-in samples, and thinning. In each package, we fit zero-inflated
Poisson models with six fixed effects, one random effect; we also accounted for overdispersion,
although sometimes (of necessity) in slightly different ways with different packages (e.g., negative
binomial vs. log-normal-Poisson models). We allowed zero-inflation to vary with food treatment and
vary randomly with nest. See Appendix B for details of these methods, including code.

Estimates and confidence (or credible) intervals (CI) from brms, mgcv, MCMCglmm, and INLA were
nearly identical to those of glmmTMB, when running the Bayesian models with flat priors (Figures 8
and 9).

Conclusions

We have introduced an R package that can quickly estimate a variety of models including GLMs,
GLMMs, zero-inflated GLMMs, and hurdle models. By providing this flexibility in a single package,
we reduce the need for researchers to learn multiple packages. Another benefit is that models estimated
with a single package can be compared using likelihood-based methods including information criteria.
Using information criteria to select a model for the salamander data, we found that (among the
models we considered) zero-inflation did not improve the fit; we expect that this will be a common
result. While glmmTMB allows users to easily fit complicated models, a maximally complex model
might not be necessary and might not converge, as we saw here. Other packages have many of
the features implemented in glmmTMB, but none have the ability to fit Conway-Maxwell-Poisson
GLMMs. Overall, glmmTMB is a very flexible package for modeling count data with zero-inflated
GLMMs while still ranking highly in speed comparisons.
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Appendix A: Salamander example comparing GLMMs, zero-inflated GLMMs,
and hurdle models using glmmTMB

In this appendix, we reanalyze counts of salamanders in streams. Repeated samples of salamanders
were taken at 23 sites. Some of the sites were affected by mountain top removal coal mining. The data
was originally published in (Price et al., 2016) and was acquired from Dryad (Price et al., 2015). These
analyses are intended to be a simple demonstration of how to use some features of the glmmTMB
package, so we do not attempt to fit all of the models that could be reasonable to try with the covariates
that were collected.
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Figure 3: Observed numbers of salamanders. Histograms show count data split into separate panels
for each salamander species or life stage. Each panel contains two overlaid histograms in which color
represents whether the site was affected by mining.

Poisson models

The syntax for fitting GLMMs with glmmTMB is quite similar to using glmer. In the first model, the
formula, count ~ spp + (1 | site), says that counts depend on species and vary randomly by
site. We also pass it the data frame, Salamanders, and specify a Poisson distribution using the family
argument. glmmTMB assumes that we want a log link with the Poisson distribution because that’s
the standard.

pm0 = glmmTMB(count~spp + (1|site), Salamanders, family=poisson)
pm1 = glmmTMB(count~spp + mined + (1|site), Salamanders, family=poisson)
pm2 = glmmTMB(count~spp * mined + (1|site), Salamanders, family=poisson)

Conway-Maxwell-Poisson models

To fit Conway-Maxwell-Poisson models, we use family=compois instead of poisson.

cmpm0 = glmmTMB(count~spp + (1|site), Salamanders, family=compois)
cmpm1 = glmmTMB(count~spp + mined + (1|site), Salamanders, family=compois)
cmpm2 = glmmTMB(count~spp * mined + (1|site), Salamanders, family=compois)

Negative binomial models

nbm0 = glmmTMB(count~spp + (1|site), Salamanders, family=nbinom2)
nbm1 = glmmTMB(count~spp + mined + (1|site), Salamanders, family=nbinom2)
nbm2 = glmmTMB(count~spp * mined + (1|site), Salamanders, family=nbinom2)

Unlike the Poisson, the negative binomial distribution has a dispersion parameter. If we expected
the counts to become more dispersed (relative to the mean) as the year progresses, then we could
use the dispersion formula to model how the dispersion changes with the day of the year (DOY) using
disp= ~ DOY.

nbdm0 = glmmTMB(count~spp + (1|site), disp=~DOY, Salamanders, family=nbinom2)
nbdm1 = glmmTMB(count~spp + mined + (1|site), disp=~DOY, Salamanders, family=nbinom2)
nbdm2 = glmmTMB(count~spp * mined + (1|site), disp=~DOY, Salamanders, family=nbinom2)
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Zero-inflated models

To fit zero-inflated models, we use the ziformula argument, or glmmTMB will also recognize zi. This
is a formula that describes how the probability of an extra zero (i.e., structural zero) will vary with
predictors. In this example, we might assume that absences will at least vary by species (spp), so we
write zi= ~ spp. This formula only has a right side because the left side is always the probability
of having a structural zero in the response that was specified in the first formula. The zero-inflation
probability is always modeled with a logit link to keep it between 0 and 1.

Zero-inflation can be used with any of the distributions in glmmTMB, so we compare the same
conditional and zero-inflation models with Poisson, Conway-Maxwell-Poisson, and negative binomial
distributions.

Warning messages tell us that zicmpm3, zinbm0, and zinbm1 do not converge. The convergence
warning refers to vignette("troubleshooting"); this vignette will expand as advice for troubleshoot-
ing convergence issues develops. It seems that zicmpm3 is overparameterized, but the problem with
zinbm0 and zinbm1 is that they only have mined in the conditional model and not the zero-inflation
model, so that they do not agree well with the data. Plotting the data and thinking carefully about the
models should help to avoid convergence issues.

zipm0 = glmmTMB(count~spp +(1|site), zi=~spp, Salamanders, family=poisson)
zipm1 = glmmTMB(count~spp + mined +(1|site), zi=~spp, Salamanders, family=poisson)
zipm2 = glmmTMB(count~spp + mined +(1|site), zi=~spp + mined, Salamanders, family=poisson)
zipm3 = glmmTMB(count~spp * mined +(1|site), zi=~spp * mined, Salamanders, family=poisson)

zicmpm0 = glmmTMB(count~spp +(1|site), zi=~spp, Salamanders, family=compois)
zicmpm1 = glmmTMB(count~spp + mined +(1|site), zi=~spp, Salamanders, family=compois)
zicmpm2 = glmmTMB(count~spp + mined +(1|site), zi=~spp + mined, Salamanders, family=compois)
zicmpm3 = glmmTMB(count~spp * mined +(1|site), zi=~spp * mined, Salamanders, family=compois)

#> Warning in fitTMB(TMBStruc): Model convergence problem; non-positive-
#> definite Hessian matrix. See vignette('troubleshooting')

zinbm0 = glmmTMB(count~spp +(1|site), zi=~spp, Salamanders, family=nbinom2)

#> Warning in fitTMB(TMBStruc): Model convergence problem; non-positive-
#> definite Hessian matrix. See vignette('troubleshooting')

zinbm1 = glmmTMB(count~spp + mined +(1|site), zi=~spp, Salamanders, family=nbinom2)

#> Warning in fitTMB(TMBStruc): Model convergence problem; non-positive-
#> definite Hessian matrix. See vignette('troubleshooting')

zinbm2 = glmmTMB(count~spp + mined +(1|site), zi=~spp + mined, Salamanders, family=nbinom2)
zinbm3 = glmmTMB(count~spp * mined +(1|site), zi=~spp * mined, Salamanders, family=nbinom2)

#> Warning in fitTMB(TMBStruc): Model convergence problem; singular
#> convergence (7). See vignette('troubleshooting')

Hurdle models

We can also fit hurdle models in a single model by using a truncated distribution for the conditional
model and adding zero-inflation.

hpm0 = glmmTMB(count~spp + (1|site), zi=~spp, Salamanders, family=truncated_poisson)
hpm1 = glmmTMB(count~spp + mined + (1|site), zi=~spp + mined, Salamanders,

family=truncated_poisson)
hpm2 = glmmTMB(count~spp * mined + (1|site), zi=~spp + mined, Salamanders,

family=truncated_poisson)
hnbm0 = glmmTMB(count~spp + (1|site), zi=~spp, Salamanders, family=truncated_nbinom2)
hnbm1 = glmmTMB(count~spp + mined + (1|site), zi=~spp + mined, Salamanders,

family=truncated_nbinom2)
hnbm2 = glmmTMB(count~spp * mined + (1|site), zi=~spp + mined, Salamanders,

family=truncated_nbinom2)
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Model comparison using AIC

We can use AICtab to compare all the GLMMs, including zero-inflated and hurdle models. Here,
to save space, we only output the AICtable for the top four and bottom four models. The most
parsimonious model has a Conway-Maxwell-Poisson distribution with effects of species, mining, and
their interaction.

AICtab(pm0, pm1, pm2,
cmpm0, cmpm1, cmpm2,
nbm0, nbm1, nbm2,
nbdm0, nbdm1, nbdm2,
zipm0, zipm1, zipm2, zipm3,
zicmpm0, zicmpm1, zicmpm2, zicmpm3,
zinbm0, zinbm1, zinbm2, zinbm3,
hpm0, hpm1, hpm2,
hnbm0, hnbm1, hnbm2)

The top of the table

model df dAIC

cmpm2 16 0.00
nbm2 16 0.48
nbdm2 17 1.99
zicmpm2 18 2.09
zinbm3 30 6.80

and the bottom

model df dAIC

hpm0 15 314
pm0 8 330
zicmpm3 30 NA
zinbm0 16 NA
zinbm1 17 NA

The log-likelihood of the unconverged models is reported as NA so that these models appear at the end
of the AIC table. The negative log-likelihood could be extracted with zinbm1$fit$objective if it was
needed.

Plotting model results

There are many decisions to make about marginalizing over or conditioning on the random ef-
fects. See discussion at https://cran.r-project.org/web/packages/merTools/vignettes/Using_
predictInterval.html.

For demonstration purposes, we plot results from the top zero-inflated model zinbm3.

Quick and dirty plot

It’s easiest to see the pattern by using the predict function. To avoid marginalizing over or condition-
ing on random effects, we can refit the best model without the random effect of site; however, this is
not ideal because it ignores the correlation within sites. We present a more rigorous version next.

The predict function has a parameter zitype that specifies whether you want predictions from
the conditional model, the zero-inflation model, or the expected response that combines both parts of
the model.

zinbm3FE = glmmTMB(count~spp * mined, zi=~spp * mined, Salamanders, family=nbinom2)
newdata0 = newdata = unique(Salamanders[,c("mined","spp")])
temp = predict(zinbm3FE, newdata, se.fit=TRUE, zitype="response")
newdata$predFE = temp$fit
newdata$predFE.min = temp$fit-1.96*temp$se.fit
newdata$predFE.max = temp$fit+1.96*temp$se.fit

real=ddply(Salamanders, ~site+spp+mined, summarize, m=mean(count))

ggplot(newdata, aes(spp, predFE, colour=mined))+geom_point()+
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geom_errorbar(aes(ymin=predFE.min, ymax=predFE.max))+
geom_point(data=real, aes(x=spp, y=m) )+
ylab("Average abundance \n including presences and absences")+
xlab("Species")
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Figure 4: Estimated abundance ignoring correlation. Points represent site-specific average counts.
Error bars represent the 95% Wald-type confidence intervals for the predicted average count.

Alternative prediction method

We can predict at the population mode, by setting the random effects to zero.

X.cond = model.matrix(lme4::nobars(formula(zinbm3)[-2]), newdata0)
beta.cond = fixef(zinbm3)$cond
pred.cond = X.cond %*% beta.cond

ziformula = zinbm3$modelInfo$allForm$ziformula #$
X.zi = model.matrix(lme4::nobars(ziformula), newdata0)
beta.zi = fixef(zinbm3)$zi
pred.zi = X.zi %*% beta.zi

These are estimates of the linear predictors (i.e., predictions on the link scale: logit(prob) and log(cond)),
not the predictions themselves. The easiest thing to do for the point estimates of the unconditional
count (ucount) is to transform to the response scale and multiply:

pred.ucount = exp(pred.cond)*(1-plogis(pred.zi))

For the standard errors/confidence intervals, we could use posterior predictive simulations (i.e., draw
multivariate normal samples from the parameter for the fixed effects). This conditions on/ignores
uncertainty in the random-effect parameters.

library(MASS)
set.seed(101)
pred.condpar.psim = mvrnorm(1000,mu=beta.cond,Sigma=vcov(zinbm3)$cond)
pred.cond.psim = X.cond %*% t(pred.condpar.psim)
pred.zipar.psim = mvrnorm(1000,mu=beta.zi,Sigma=vcov(zinbm3)$zi)
pred.zi.psim = X.zi %*% t(pred.zipar.psim)
pred.ucount.psim = exp(pred.cond.psim)*(1-plogis(pred.zi.psim))

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 392

ci.ucount = t(apply(pred.ucount.psim,1,quantile,c(0.025,0.975)))
ci.ucount = data.frame(ci.ucount)
names(ci.ucount) = c("ucount.low","ucount.high")
pred.ucount = data.frame(newdata0, pred.ucount, ci.ucount)

These predicted counts should be close to the median counts, so we plot them together to compare.

real.count = ddply(Salamanders, ~spp+mined, summarize, m=median(count), mu=mean(count))
ggplot(pred.ucount, aes(x=spp, y=pred.ucount, colour=mined))+geom_point(shape=1, size=2)+
geom_errorbar(aes(ymin=ucount.low, ymax=ucount.high))+
geom_point(data=real.count, aes(x=spp, y=m, colour=mined), shape=0, size=2)+
geom_point(data=real.count, aes(x=spp, y=mu, colour=mined), shape=5, size=2)+
ylab("Abundance \n including presences and absences")+
xlab("Species")
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Figure 5: Estimated abundance at mode. Circles represent predicted unconditional counts at the mode
(i.e., site effect = 0) and error bars represent the 95% confidence intervals for that mode. Squares
represent the observed median and diamonds represent observed means calculated across samples
and sites. In this highly skewed data, the mode is closer to the mean than the median.

Simulating from a fitted model

We could also examine the distribution of simulated values from the best fitted model. For this we use
the function simulate.glmmTMB. This function works for zero-inflated and hurdle models as well as
less complex models.

sims=simulate(nbm2, seed = 1, nsim = 1000)

This function returns a list of vectors. The list has one element for each simulation (nsim) and the
vectors are the same shape as our response variable.

simdatlist=lapply(sims, function(count){
cbind(count, Salamanders[,c('site', 'mined', 'spp')])

})
simdatsums=lapply(simdatlist, function(x){
ddply(x, ~spp+mined, summarize,

absence=mean(count==0),
mu=mean(count))
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})
ssd=do.call(rbind, simdatsums)

Then we can plot them with the observations summarized in the same way.

real = ddply(Salamanders, ~spp+mined, summarize,
absence=mean(count==0),
mu=mean(count))

ggplot(ssd, aes(x=absence, color=mined))+
geom_density(adjust=4)+
facet_wrap(~spp)+
geom_point(data=real, aes(x=absence, y=1, color=mined), size=2)+
xlab("Probability that salamanders are not observed")+ylab(NULL)
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Figure 6: Simulated zero counts. Each panel represents a different species or life stage of a species.
Densities are values from 1000 data sets simulated from our best fit model. Points represent the
observed data.

We can see that this model does a good job of capturing the observed zero counts.

ggplot(ssd, aes(x=mu, color=mined))+
geom_density(adjust=4)+
facet_wrap(~spp)+
geom_point(data=real, aes(x=mu, y=.5, color=mined), size=2)+
xlab("Abundance including presences and absences")+ylab(NULL)

Appendix B: Compare zero-inflated mixed models across R packages

In this appendix, we analyze counts of begging behavior by owl nestlings. This example previously
appeared in similar forms (Zuur et al., 2009) and (Bolker et al., 2013); the data were originally published
by (Roulin and Bersier, 2007). The response variable is the number of calls from chicks (NCalls) in a
nest. Two changes from the example published in (Bolker et al., 2013) are that (1) we use an observation-
level random effect to account for overdispersion; (2) instead of assuming that the number of calls
is strictly proportional to brood size (i.e., using an offset of log(brood size)), we fit the model with
log(brood size) as a predictor, equivalent to assuming that calls ∝ (brood size)γ, with γ not necessarily
equal to 1.
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Figure 7: Simulated unconditional abundances. Each panel represents a different species or life stage
of a species. Densities are values from 1000 data sets simulated from our best fit model. Points
represent the observed data.

Since nests were repeatedly measured, Nest is included as a random effect; observation-level
random effects are incorporated to allow for overdispersion (Elston et al., 2001; Hadfield, 2010).
Covariates of interest include the sex of the parent visiting the nest (SexParent), whether the chicks
were satiated or not (FoodTreatment), and the timing of the parent’s arrival (ArrivalTime).

Preliminaries

Load packages

library(glmmTMB)
library(glmmADMB)
library(MCMCglmm)
library(brms)
library(INLA)
library(mgcv)
library(broom) #for tidy devtools::install_github("bbolker/broom")
library(plyr)
library(dplyr) #tidyverse
library(ggplot2); theme_set(theme_bw())
library(ggstance)#for position_dodgev

Data organization and helper functions (hidden)

data(Owls,package="glmmTMB")
Owls = plyr::rename(Owls, c(SiblingNegotiation="NCalls"))
Owls = transform(Owls,

ArrivalTime=scale(ArrivalTime, center=TRUE, scale=FALSE),
obs=factor(seq(nrow(Owls))))
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Constant zero-inflation

Here we fit the model with zero-inflation assumed to be constant across the data set, i.e., zero-inflation
is independent of the predictor variables.

glmmTMB

fixef1 = NCalls~(FoodTreatment + ArrivalTime) * SexParent + logBroodSize
form1 = update(fixef1, . ~ . + (1|Nest)+(1|obs))
time.tmb = tfun(m1.tmb <<- glmmTMB(form1,

ziformula=~1, data = Owls,
family=poisson))

glmmADMB

With the additions to the model (logBroodSize as a covariate and observation-level random effects),
we were unsuccessful in fitting the model with glmmADMB. Some variants (e.g., with observation-
level random effects, but with logBroodSize as an offset) were possible by modifying control settings
(i.e. admb.opts=admbControl(shess=FALSE,noinit=FALSE)), but even when successful these fits were
very slow (>10 minutes).

MCMCglmm

Code for this example was modified from Bolker et al. (2013); a more complete description appears in
the supplementary material for that paper.

fixef2 = NCalls~trait-1+ # intercept terms for both count and binary terms
# other fixed-effect terms only apply to count term
at.level(trait,1):logBroodSize+
at.level(trait,1):((FoodTreatment+ArrivalTime)*SexParent)

nfix = 8
# residual variances independent for count and binary terms;
# fixed to 1 for binary term
# random-effects variances independent for count and binary terms;
# fixed very small (1e-6) for binary term
prior_overdisp = list(R=list(V=diag(c(1,1)),nu=0.002,fix=2),

G=list(list(V=diag(c(1,1e-6)),nu=0.002,fix=2)))
prior_overdisp_broodoff = c(prior_overdisp,

list(B=list(mu=rep(0,nfix),
V=diag(rep(1e4,nfix)))))

set.seed(101)
time.MCMCglmm = tfun(m1.MCMCglmm <<- MCMCglmm(fixef2,

rcov=~idh(trait):units,
random=~idh(trait):Nest,
prior=prior_overdisp_broodoff,
data=Owls,
nitt=103000,
thin=100,
family="zipoisson",
verbose=FALSE))

We adjusted the number of samples until the effective sample size of the most poorly sampled
parameter (the zero-inflation parameter, in this case) was greater than 500; with 100,000 samples
after a burn-in of 3,000, we achieved a minimum effective sample size of 568 (for the zero-inflation
parameter).

brms

time.brms = tfun(m1.brms <<- brm(form1, data = Owls,
iter=1000,
family="zero_inflated_poisson"))

#> Compiling the C++ model
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#> Start sampling

One of the known advantages of Hamiltonian Monte Carlo, as implemented in Stan (on which
brms is built), is that it achieves high effective sample size per MCMC step; we were able to cut down
the number of samples considerably from the default of 2000 and still achieve a minimum effective
sample size of approximately 500 (the minimum effective sample size achieved was 460).

We resample to estimate the time required for sampling only (i.e., not including model compilation

time.brms2 = tfun(m1.brms2 <<- update(m1.brms))

#> Start sampling

INLA

form2 = update(fixef1, . ~ . + f(Nest, model="iid") + f(obs, model="iid"))
time.inla = tfun(m1.inla <<-

inla(form2,
family= "zeroinflatedpoisson1",
data=Owls))

mgcv

To the best of our knowledge, mgcv::gam is currently unable to fit models with the combination
of zero-inflation and overdispersion (the ziplss() famiy that handles zero-inflation handles only
a ZIP case rather than zero-inflated negative binomial or other extensions, and observation-level
random effects cannot be fit with gam’s random-effect approach). To address this issue, we fitted a
GAM with zero-inflated Poisson responses and used a quasi-likelihood approach: i.e., estimating
overdispersion as [sum of squared Pearson residuals/residual degrees of freedom] and inflating the
parameter standard errors by the square root of the overdispersion.

form3 = update(fixef1, . ~ . + s(Nest, bs="re"))
time.mgcv = tfun(m1.gam <<- gam(list(form3, ~ 1),

data = Owls,
family = ziplss(), method = "REML"))

Comparing the results

Timings:

time (sec)

mgcv 0.2
glmmTMB 2.5
INLA 4.2
MCMCglmm 53.0
brms (no compilation) 55.2
brms (with compilation) 115.6

The deterministic methods (gam, glmmTMB and inla) were all fast; gam was fastest, because we fitted
a simpler model (see above). The stochastic methods (MCMCglmm and brm) were about an order of
magnitude slower.

Because we ran brms with flat priors, the estimates are very close to the ML estimates of glmmTMB.
The most different results are from gam, because we used a quasi-likelihood model with a slightly
different implicit variance scaling.

Complex zero-inflation

Here we fit the model with zero-inflation depending on some of the predictor variables. We can
no longer use glmmADMB or INLA (INLA allows the zero-inflation probabilities to depend on
covariates in hurdle models — “type 0” in the INLA documentation — but not for zero-inflated
models).
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Figure 8: Estimated fixed-effect coefficients: Estimates are from similar zero-inflated Poisson models
fit using functions glmmTMB, MCMCglmm, brm, inla, and gam.

glmmTMB

form0 = update(fixef1, . ~ . + (1|Nest))
ziform = ~FoodTreatment+(1|Nest)
time.tmb_czi = tfun(m1.tmb_czi <<- glmmTMB(form0,

ziformula=ziform,
data = Owls, family=nbinom2))

Attempting to fit the glmmTMB model with a log Normal-Poisson model (i.e., a Poisson model
with observation-level random effects) and covariate-dependent zero-inflation led to convergence
failure, so we substituted a similar model (a negative-binomial model without observation-level
random effects).

MCMCglmm

fixef3 = NCalls~trait-1+ # intercept terms for both count and binary terms
# fixed-effect terms for count term
at.level(trait,1):logBroodSize+
at.level(trait,1):((FoodTreatment+ArrivalTime)*SexParent)+
# fixed-effect terms for binary term
at.level(trait,2):FoodTreatment

nfix = 9
# residual variances independent for count and binary terms;
# fixed to 1 for binary term
# random-effects variances now allow estimated variance for binary term
# as well
prior_overdisp_czi = list(R=list(V=diag(c(1,1)),nu=0.002,fix=2),

G=list(list(V=diag(c(1,1)),nu=0.002)))
prior_overdisp_broodoff_czi = c(prior_overdisp_czi,

list(B=list(mu=rep(0,nfix),
V=diag(rep(1e4,nfix)))))

set.seed(101)
time.mcmc_czi=tfun(m1.mcmc_czi <<- MCMCglmm(fixef3,

rcov=~idh(trait):units,
random=~idh(trait):Nest,
prior=prior_overdisp_broodoff_czi,
data=Owls,
nitt=153000,
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family="zipoisson",
verbose=FALSE))

## warning message suppressed ...

Minimum effective sample size: 884

brms

time.brms_czi = tfun(m1.brms_czi <<- brm(brmsformula(form1, zi=ziform),
data = Owls,
family="zero_inflated_poisson"))

#> Compiling the C++ model

#> Start sampling

time.brms_czi2 = tfun(m1.brms_czi2 <<- update(m1.brms_czi))

#> Start sampling

mgcv

time.mgcv_czi = tfun(m1.gam_czi <<- gam(list(form3,
~FoodTreatment+ s(Nest, bs = "re")),

data = Owls, family = ziplss(), method = "REML"))

Comparison

Timings:

time (sec)

mgcv 0.3
TMB 3.9
brms (no compilation) 53.1
MCMCglmm 88.5
brms (with compilation) 174.4

ArrivalTime
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Figure 9: Estimated fixed-effect coefficients: Estimates are from the same zero-inflated Poisson model
with predictors on zero-inflation fit using functions glmmTMB, MCMCglmm, brm, and gam.

Package versions:
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#> brms glmmADMB glmmTMB INLA MCMCglmm mgcv
#> 1.10.2 0.8.5 0.2.0 17.6.20 2.25 1.8.20
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Simulating Probabilistic Long-Term
Effects in Models with Temporal
Dependence
by Christopher Gandrud, Laron K. Williams

Abstract The R package pltesim calculates and depicts probabilistic long-term effects in binary models
with temporal dependence variables. The package performs two tasks. First, it calculates the change in
the probability of the event occurring given a change in a theoretical variable. Second, it calculates the
rolling difference in the future probability of the event for two scenarios: one where the event occurred
at a given time and one where the event does not occur. The package is consistent with the recent
movement to depict meaningful and easy-to-interpret quantities of interest with the requisite measures
of uncertainty. It is the first to make it easy for researchers to interpret short- and long-term effects of
explanatory variables in binary autoregressive models, which can have important implications for the
correct interpretation of these models.

Introduction

Scholars from a wide variety of academic disciplines study phenomena with binary outcomes. This
includes the study of war or peace (Beck et al., 1998), civil war or stability (Collier et al., 2003), wildlife
habitat selection (Keating and Cherry, 2004), automobile accident severity (Al-Ghamdi, 2002), banking
decisions (Maddala and Trost, 1982), labor force participation (Mroz, 1987), individual decisions about
drinking water sources (Gelman et al., 2004), conflicts over water resources (Gleditsch et al., 2006), and
education policy (Bailey et al., 2016), just to name a diverse few.

The desire to generalize produces the incentive for scholars to incorporate information both
over time and across units, which results in time-series cross-sectional data. While helpful from an
inferential standpoint, modeling processes that vary across time and space increase the number of
potential estimation and interpretation problems facing scholars.

One problem that is unique to scholars examining binary time-series cross-sectional (BTSCS) data
is the role of temporal dependence, or the notion that the probability of the occurrence of the event (i.e.,
the dependent variable) depends in part on how much time has passed since the previous occurrence.
Whenever scholars estimate BTSCS models where there are omitted (or potentially unobservable)
variables that are also correlated with time, there is a substantial risk of incorrect standard errors and
highly misleading results (Beck et al., 1998).

Beck et al. (1998, 1261) offered a ground-breaking solution to this inferential obstacle by noting
that “BTSCS data are grouped duration data”, which implies that one can borrow techniques from
duration analysis to properly model the influence of time since the previous event at some time t.
This discovery led to a drastic increase in the number of scholars, political scientists in particular,
employing duration modeling techniques with BTSCS data. Notable alternatives include dummy
variables representing each value of t, splines, and cubic polynomials (Beck et al., 1998; Carter and
Signorino, 2010). Put simply, these approaches assume that, for possibly un-modeled reasons, the
probability of the event occurring at time t is a function of how much time has elapsed since the event
previously occurred.

At the same time, another movement has produced meaningful improvements in the interpretation
of dynamic models in the social sciences. Over the last decade or so, scholars have improved our
understanding of the various short- and long-term effects that arise from dynamic models. These long-
term effects can take the form of long-range multipliers in autoregressive distributed lag models (De
Boef and Keele, 2008) or dynamic simulations in models with lagged dependent variables (Williams
and Whitten, 2012). In addition to providing a more complete picture of the inferences of key theoretical
variables, one reason for the explosion in scholarly attention is the emphasis on providing appropriate
measures of uncertainty with easy-to-implement software packages (e.g. Williams and Whitten, 2011;
Gandrud et al., 2016; Choirat et al., 2017).

To this end, this article introduces the R (R Core Team, 2017) package pltesim, which utilizes simu-
lation methods to depict probabilistic long-term effects in binary models with temporal dependence
(PLTE). The package is available from the Comprehensive R Archive Network (CRAN). The package
follows the methodology introduced in Williams (2016). In the remainder of the paper, we will first
discuss the methodological principles at work, then the process pltesim uses to calculate probabilistic
long-term effects, and finally an example with various visualization approaches.
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Long-term effects in models with temporal dependence

Probabilistic long-term effects are the product of the intersection of two methodological trends:
controlling for unmodeled duration dependence by including temporal dependence variables and
interpreting short- and long-term effects of explanatory variables in autoregressive models. For
example, if one is interested in the effects of X on the probability of Y at time t, and one controls
for temporal dependence in any of the ways stated above, then X will have both a short-term effect
(interpreted in the traditional manner based on the link function) and a long-term effect. However,
contrary to the calculation of long-term effects in dynamic models of continuous dependent variables
(De Boef and Keele, 2008), the long-term effects in BTSCS models are probabilistic. As Williams (2016,
247) notes, “modifying the values of any of the independent variables at time t potentially influences
the predicted probabilities of the outcome in future time periods by forcing time since previous event to
revert back to 0, which itself affects the probability of observing the event”.

Calculating probabilistic long-term effects involves a two-step process. The first step finds the
change in the predicted probability of the outcome, given a change in the independent variable (XK),
and a particular configuration of values of the other independent variables (or simulation scenario,
XC). More formally, ∆Pr(ŷ = 1|XC, ∆XK). A long-term effect occurs (by changing the values of the
temporal dependence variables at future observations) if the observed outcome, ŷ = 1|XC changes as
a result of the change in XK . The problem is that since this is a counterfactual, we never observe the
actual outcome (just its probability). The change in the predicted probability of the event is typically
the quantity of interest, and often is the point of emphasis when researchers interpret their results. In
the calculation of PLTE, this quantity has a secondary interpretation as the likelihood of a variable
having a PLTE. This is the change in the probability that ŷ = 1|XC, which also reflects the change in
the probability that the time since previous event variables are reset to 0 at time t + 1.1

The second step is to calculate the long-term effect (LTE). Assume that we have modeled temporal
dependence in a simple fashion, with time representing a counter based on how many time periods
have elapsed since the last event. The long-term effect, then, is the difference in the probability of
the event occurring at time t + 1 to t + k, given that an event occurred at time t, compared to the
probability, given that the event did not occur at time t. Put another way, the LTE is a sequence of
moving differences in the probability for two points along the hazard rate: one that assumes the event
occurred at time t and one that does not. If we use the notation that we establish above, we first set up
a simulation scenario (XC) containing the values of the independent variables (typically this would be
the mean or median values) including time (t̄). We then compare the probabilities of the event for this
scenario—assuming that the time variable increases at each time period—to the scenario where the
event occurred at time t and the value of time resets to 0 at time t + 1. The long-term effect at time
t + 1 is the following (L. K. Williams 2016, 248):

LTEt+1
XC

= Pr(ŷ = 1|XC, time = 0)− Pr(ŷ = 1|XC, time = t̄).

Then the LTE is calculated at time t + 2 by updating the values of time in both scenarios:

LTEt+2
XC

= Pr(ŷ = 1|XC, time = 1)− Pr(ŷ = 1|XC, time = t̄ + 1).

And so on, up to a value of k, which represents the maximum or some other intuitive value of time.
It is important to note that time—in addition to all the other temporal dependence variables derived
from time such as splines or cubic polynomials—must be updated at each time period.

These probabilistic long-term effects can be modified so that they reflect a wide variety of quantities
of interest. For example, scholars can easily depict the PLTE of a short-term change in XK (such as a
one-unit change) or more lasting or permanent shocks in XK . Figures can also depict the possibility
of compounded effects, or the fact that having an event occur in one counterfactual increases the
probability of future events. Finally, PLTE can provide interesting illustrations of the lasting effects of
XK in models that explicitly model non-proportional hazards, such as when time is interacted with
XK . In the next section we provide an overview of the process of estimating PLTE using pltesim.

pltesim Process

pltesim is the only tool we know of that makes it easy to calculate and visualize probabilistic long-term
effects in binary models with temporal dependence. pltesim has four steps:

1Two other considerations are important here. First, since these quantities are all based on estimates, then
scholars interested in hypothesis testing must use the appropriate measures of uncertainty. Second, the quality of
these quantities depends on the model’s fit, so the interests of transparency requires that scholars provide measures
of model fit.
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1. Find the parameter estimates. Currently pltesim works with binary outcome models, e.g. logit.
So use a binary response with the glm function included with the default R installation.

2. Create a counterfactual scenario in a data.frame class object. This should have a row with the
fitted counterfactual values and columns with names matching variables in your fitted model.
All variables without values will be treated as having values of 0 in the counterfactual.

3. Simulate the long-term effects with pltesim’s plte_builder function.
4. Plot the results with pltesim’s plte_plot function.

In the next section we use simulated data from Williams (2016) to illustrate these steps.

Examples

The following examples replicate panels from Figure 1 in Williams (2016, 249). We start by loading the
necessary packages:

library(pltesim)
library(ggplot2)

Notice that ggplot2 is loaded. It will be used later in this section to customize the plots created by
pltesim.

The simulated data we will use in these examples is packaged with pltesim. It is called negative_year.
The name refers to the simulated data having negative duration dependence. It has the following
form:

data("negative_year", package = "pltesim")

head(negative_year)

#> group year y x
#> 1 1 1991 0 -1.04320703
#> 2 1 1992 0 0.56581828
#> 3 1 1993 0 -1.21016176
#> 4 1 1994 0 0.07632362
#> 5 1 1995 0 -0.40669992
#> 6 1 1996 1 0.44269959

where y is the binary response, x is the non-time independent variable, year is the time variable, and
group identifies each section of the panel.

Before finding the parameter estimates from this data, we need to create a standardized time
variable that is in terms of time periods from the last spell (or the beginning of the observation period
if left-censored), rather than years. pltesim includes the btscs function to accomplish this:2

neg_set <- pltesim::btscs(df = negative_year, event = "y", t_var = "year",
cs_unit = "group")

where df specifies the data frame. event is the binary response variable where 1 indicates an event, 0
otherwise. t_var specifies the time variable, cs_unit specifies the cross-sectional unit. The resulting
data frame has the form:

head(neg_set, n = 10)

#> group year y x spell_time
#> 1 1 1991 0 -1.04320703 1
#> 2 1 1992 0 0.56581828 2
#> 3 1 1993 0 -1.21016176 3
#> 4 1 1994 0 0.07632362 4
#> 5 1 1995 0 -0.40669992 5
#> 6 1 1996 1 0.44269959 6
#> 7 2 1991 0 -1.25522659 1
#> 8 2 1992 0 0.29738988 2
#> 9 2 1993 0 1.00741250 3
#> 10 2 1994 0 -0.42211204 4

2btscs is based on a function by the same name from the R package DAMisc which itself is based on the Stata
(StataCorp, 2009) command implementing the procedure in Beck et al. (1998). btscs was included in pltesim to
(a) allow improvements for handling single period spells, (b) match pltesim’s syntax for ease of use within one
workflow, and (c) to reduce pltesim’s dependencies. It also starts the spell time counter at 1 rather than 0.
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This is the same data frame as before with the addition of a spell_time column containing a counter
of time periods within each spell.

Now estimate the parameters:

m1 <- glm(y ~ x + spell_time + I(spell_time^2) + I(spell_time^3),
family = binomial(link = "logit"), data = neg_set)

Note the inclusion of the I interpretation function to create the squared and cubed versions of
spell_time.3 Additionally, the bs function from the splines package, included with R, allows similar
inclusion of polynomial splines for time using the B-spline basis.

The change in x is specified with:

x_change <- data.frame(x = 0.5)

which can be passed to plte_builder along with the fitted model object (m1). The counterfactual must
be in the form of a data frame with column names matching each variable in the model and one row of
fitted values. Variables from the model not included in the fitted value data frame will be treated as 0.

The counterfactual is passed to plte_builder with the cf argument. The fitted model object is
specified with obj. The time variable is identified with obj_tvar. Information about how long the
change in x persists in the simulation is given with cf_duration. It is permanent by default. The time
period from the last spell over which to simulate the effects is given with the t_points argument.

The first simulation example finds the estimated impact of the counterfactual lasting for one time
period. To do this, the plte_builder function’s cf_duration argument is set to "one-time".

sim1 <- plte_builder(obj = m1, obj_tvar = "spell_time",
cf_duration = "one-time",
cf = x_change, t_points = c(13, 25))

Running this code simulates a one period increase in x by 0.5 that occurs at 13 time points from
the last spell. By default the central 95 percent interval of 1,000 simulations is returned. The extent of
the returned central interval can be specified with plte_builder’s ci argument and the number of
simulations can be adjusted with the nsim argument.

We can now plot the results with the plte_plot function:

plte_plot(sim1) +
scale_y_continuous(limits = c(0, 0.4))

The first dot from the left in Figure 1 (and vertical dashed line) represents the median simulated
baseline probability (and central 95 percent simulation interval) of the event occurring given the
simulation scenario Pr(ŷ = 1|XC). The second dot from the left represents the updated probability of
the event occurring given a one-time change in the variable of interest (or Pr(ŷ = 1|XC, ∆XK)). In this
case, the probability of the event occurring at time t given x = 0.5 is about 0.09. The number labels
next to the dots represent the values of t in both scenarios.

One can assess whether the change in XK produces a statistically significant change in the proba-
bility of an LTE by determining whether the confidence intervals overlap. In this case, the increase
in XK does not produce a statistically significant change in the probability for that time period. The
remainder of Figure 1, however, reveals that the change in XK has a meaningful impact on the proba-
bility in future periods by changing the probability that the t variable resets to 0. The dashed lines
from t + 1 onwards are the 95 percent central simulation intervals for the probability of the event,
given that the event did not occur at time t: Pr(ŷ = 1|XC, time = 14 . . . 25). The solid lines represent
the counterfactual where ŷt = 1. The two vertical lines at time t + 1 illustrate how the value of t
either resets to 0 (if Yt = 1) or continues beyond its current value (if Yt = 0). Of the two scenarios, the
counterfactual where the event does not occur (Yt = 0) is much more likely given its small probability
(0.09). The difference between these two vertical lines is the visual representation of the LTE from
equation 1. The intervals show that there is a statistically significant LTE from t+ 1 until t+ 9, at which
point the central intervals overlap and there is no statistical difference between the two probabilities.

Note that because the output of plte_plot is a gg class ggplot2 object, we can modify it using the
full set of ggplot2 functions, including in this case, the plot’s y-axis limits with scale_y_continuous.
This modification makes the plot more easily comparable with the ones that follow in this section.

To examine the effects of changes to XK that last for the entire simulation period, we set cf_duration
= "permanent". The results are show in Figure 2.

3This will allow plte_builder to identify the polynomials given just the base spell_time variable name.
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Figure 1: Simulated LTE with a one-period change in x by 0.5.

sim2 <- plte_builder(obj = m1, obj_tvar = "spell_time",
cf = x_change,
cf_duration = "permanent",
t_points = c(13, 25))

plte_plot(sim2) +
scale_y_continuous(limits = c(0, 0.4))

Users can also specify changes that last for periods shorter than the entire simulation period, but
longer than one-period by supplying a numeric value to cf_duration. For example, to have the 0.5
increase in x last for 4 time periods use:

sim3 <- plte_builder(obj = m1, obj_tvar = "spell_time",
cf_duration = 4,
cf = x_change,
t_points = c(13, 25))

plte_plot(sim3) +
scale_y_continuous(limits = c(0, 0.4))

The results are shown in Figure 3.

Finally, we can use pltesim to examine not only the effects of changes in x, but also the compound
effect of experiencing multiple events. To specify multiple events, supply an additional value to
t_points. For example, to simulate and visualize the compound effect of an event at simulated time
20 use:

sim4 <- plte_builder(obj = m1, obj_tvar = "spell_time",
cf = x_change,
t_points = c(13, 20, 25))

plte_plot(sim4) +
scale_y_continuous(limits = c(0, 0.4))

We can see in Figure 4 that in addition to the LTE given the event at time t (with probability 0.09),
there is a compounding effect that results in an even larger LTE because of the event at time t + 6 (with
probability of approximately 0.20).

Conclusion

The goal of pltesim is to allow researchers to easily explore and present the short- and long-term effects
of models estimated with temporal dependence. These variables can have a massive influence on the
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Figure 2: Simulated LTE with a permanent change in x to 0.5.
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Figure 3: Simulated LTE with a four period increases of x by 0.5.
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Figure 4: Simulated LTE with multiple events and a permanent increases of x by 0.5.

outcome of interest and can change the substantive effects of key theoretical variables. Prominent
theories (such as the conflict trap; see Collier et al., 2003) often have expectations that their variables
have long-lasting effects, or that a variable’s influence grows with each recurring event. Yet, up
until the introduction of pltesim, scholars have been unable to estimate and graphically depict these
theoretically interesting long-run dynamics from BTSCS models.
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RQGIS: Integrating R with QGIS for
Statistical Geocomputing
by Jannes Muenchow, Patrick Schratz, Alexander Brenning

Abstract Integrating R with Geographic Information Systems (GIS) extends R’s statistical capabilities
with numerous geoprocessing and data handling tools available in a GIS. QGIS is one of the most
popular open-source GIS, and it furthermore integrates other GIS programs such as the System for
Automated Geoscientific Analyses (SAGA) GIS and the Geographic Resources Analysis Support
System (GRASS) GIS within a single software environment. This and its QGIS Python API makes
it a perfect candidate for console-based geoprocessing. By establishing an interface, the R package
RQGIS makes it possible to use QGIS as a geoprocessing workhorse from within R. Compared to
other packages building a bridge to GIS (e.g., rgrass7, RSAGA, RPyGeo), RQGIS offers a wider
range of geoalgorithms, and is often easier to use due to various convenience functions. Finally,
RQGIS supports the seamless integration of Python code using reticulate from within R for improved
extendability.

Introduction

Defining a GIS as a system for the analysis, manipulation and visualization of geographical data
(Longley et al., 2011), one could argue that R has become a GIS (Bivand et al., 2013). In great part
this is thanks to packages that provide spatial classes and algorithms coded in and for R (despite this
these packages might also link to other software outside of R). These include maptools (Bivand and
Lewin-Koh, 2017), raster (Hijmans, 2017), sp (Bivand et al., 2013) and sf (Pebesma, 2017). Further
packages even extend R’s GIS capabilities through advanced mapping, e.g., mapview (Appelhans
et al., 2017) and mapmisc (Brown, 2016), and routing, e.g., osmar (Eugster and Schlesinger, 2013)
and dodgr (Padgham and Peutschnig, 2017), among others. Despite this, native R (in the sense of
coded in and for R) lacks fundamental GIS capabilities. GIS topology and topological operations are
only partially (RArcInfo, Gómez-Rubio and López-Quílez, 2005) or indirectly available via rgrass7
(Bivand, 2017). Furthermore, R is neither a spatial database management system nor especially good
at the manipulation of large data sets (Ripley et al., 2016). Hence, computationally demanding GIS
operations (point cloud processing, overlay operations on ’big’ spatial data) executed in R may be
rather slow. Performance and scalability, of course, depend on the computer hardware, and cloud
computing may eventually alleviate or even settle this problem. Yet, most R users most likely still
work on a local machine. What is more, R is lacking a number of fundamental GIS operations such as
the derivation of various terrain attributes from a digital elevation model (DEM). And the same is true
for 3D data visualization and voxel processing (Hengl et al., 2015). Finally, though interactive tasks
such as digitizing of geodata have become possible within R very recently (mapedit, Appelhans and
Russell, 2017), extensive manual editing is better done with the help of a GIS.

Many of R’s geospatial shortcomings could potentially be addressed through R programming
directly. However, R was designed from the very beginning as an interactive interface to the algorithms

Figure 1: The R-interface to geospatial software - geospatial libraries, Desktop GIS, geobrowsers as
well as web mapping and the position of RQGIS (left circle; WMS: Web Mapping Service). QGIS and
corresponding third-party providers (right circle, the upper three symbols correspond to (from left to
right): LiDAR tools, TauDEM, Orfeo Toolbox.
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of other software (Chambers, 2016). Hence, it is unnecessary and even counterproductive to duplicate
the functionality provided by an existing dedicated software with an expert developer and user
community as long as there is a way to access it from within R. Therefore, it is barely surprising that
numerous R packages provide access to third-party geoprocessing tools (Figure 1), only some of which
will be discussed here. rgdal (Bivand et al., 2017) accesses the geospatial data abstraction library
(GDAL/OGR) (GDAL Development Team, 2017). rgeos (Bivand and Rundel, 2017) is an interface
to geometry engine - open source (GEOS, GEOS Development Team, 2017), which opens the way to
GIS vector operations. However, GEOS performance is somewhat limited. Think, for instance, of the
spatial union of all US American census tracts and postal code layers, and it may be quite possible
that rgeos::gUnion may take a very long time. The successor of the sp package, package sf combines
the functionality of sp (spatial classes), rgdal (here: import/export of spatial vector data) and rgeos
(geometrical operations) in just one package. Note also that GEOS is a C API for topology operations
on geometries. Consequently, it expects topologically correct data. To make sure that our geodata lives
up to topological expectations in general, our best approach is probably through another third-party
integration, namely R-GRASS (Bivand, 2007, 2017). Additionally, GRASS GIS comprises a large suite
of vector and raster functions. Basically, the user has to set up a spatial database before being able to
use GRASS’s geoprocessing utilities (Neteler and Mitasova, 2008). Hence, less experienced GIS users
will likely prefer faster-to-use GIS interfaces also providing extensive geoprocessing capabilities. In
particular, RSAGA (Brenning et al., 2008) integrates R with SAGA (Conrad et al., 2015) and RPyGeo
(Brenning, 2012b) provides an interface to ArcGIS (ESRI, 2017), which is probably still the most popular
GIS environment in the world with >1 million users and the greatest market share among proprietary
GIS (Longley et al., 2011).

What has been missing, however, is an R interface to one of the most widely used open-source GIS,
QGIS (QGIS Development Team, 2017; Graser and Olaya, 2015). So far, the QGIS processing toolbox
provided only the opposite interface by letting the user integrate R scripts as a user-defined ‘tool‘ in
QGIS. This is fine for people unwilling to use R directly. However, interfacing from R to QGIS has
multiple benefits to the R user community. First and foremost, native QGIS geoalgorithms are now
available from within R for the first time. Moreover, it is a special feature of QGIS that it acts as an
umbrella integrating various other GIS power houses under its hood. These include SAGA, GRASS,
GDAL, the Orfeo Toolbox (Inglada and Christophe, 2009), TauDEM (Tarboton and Mohammed,
2017) and additional tools for light detection and ranging (LIDAR) data (Rapidlasso, 2017). RQGIS
(Muenchow and Schratz, 2017) brings this incredibly powerful geoprocessing environment to the
R console in just one package. This, however, does not mean that specialized packages such as
RSAGA and rgrass7 (Bivand, 2007) will become obsolete, as discussed later. RQGIS also aims to be
user-friendly by automatically retrieving GIS function parameter names and corresponding default
values as well as supporting R named arguments for geoalgorithm parameters through the ellipsis
argument.

In general, R–GIS interfaces open the way to extremely powerful and innovative statistical geo-
processing as for example shown by Brenning (2008), Hengl et al. (2010), Muenchow et al. (2012),
Vanselow and Samimi (2014), Brenning et al. (2015) Mergili et al. (2015), Mergili and Kerschner (2015),
Poggio and Gimona (2015) and Zandler et al. (2015). In this paper we will first introduce the general
architecture and main features of the RQGIS package. We will then demonstrate the application of this
integrated scientific programming approach with an ecological example. Subsequently, we will show
how to easily complement and extend RQGIS with Python programming, especially PyQGIS (Sher-
man, 2014). In our discussion, we will finally compare and contrast RQGIS with other approaches to
R–GIS integration, and provide an outlook and motivation for future developments.

Introducing the RQGIS package

Basic concepts

The RQGIS package utilizes the QGIS Python API in order to access QGIS modules. To successfully
run the QGIS Python API, RQGIS first sets up all required environment variables (Figure 2). And
secondly, it establishes a tunnel to Python using reticulate (Allaire et al., 2017) - a package providing
an R interface to Python. The older package rPython (Bellosta, 2015) is similar to reticulate, however,
it is only available for Unix-based systems which is why we had to dismiss it as an option for RQGIS.
With reticulate, we set up the Python environment only once, and use the resulting tunnel to exchange
functions and objects between R and Python seamlessly.

We can divide RQGIS roughly into two major components:

• The Python code (‘python_funs.py’ located in ‘inst/python’ of RQGIS) defines a Python class
named "RQGIS" with methods to be called during the geoprocessing. Defining an own class has
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Figure 2: Conceptual model of how RQGIS calls QGIS from within R.

the additional benefit that it becomes highly unlikely that (advanced) users interacting with the
QGIS Python API accidentally overwrite some of our predefined methods.

• The ‘processing.R’ file (found in the ‘R’ folder of RQGIS) actually establishes the QGIS Python
interface, and lets the user run QGIS from within R. The most important functions are (see also
Usage for a detailed description):

1. open_app() to establish a tunnel to Python and a QGIS custom application
2. find_algorithms() to retrieve the QGIS command-line names for all available geoal-

gorithms
3. open_help() and get_args_man() to access help resources as well as function argu-

ments and default values
4. run_qgis() to call QGIS geoalgorithms from within R

The most notable features of RQGIS are:

• For the first time, native QGIS algorithms are available from within R.
• Additionally, RQGIS provides access to hundreds of third party geoalgorithms including

GDAL, GRASS GIS and SAGA GIS. In the future many more integrations can be expected.
For instance, there is already a plugin providing access to PostGIS geoprocessing tools (clip,
dissolve, distance, etc.) available in the QGIS processing toolbox (https://plugins.qgis.org/
plugins/postgis_geoprocessing/).

• R users can stay in their preferred programming language without having to touch Python.
• Convenient access to QGIS help resources facilitates the geoprocessing work flow. While

open_help accesses the QGIS online help for a specific geoalgorithm, get_args_man() retrieves
function arguments and their default values.

• run_qgis() also accepts "sf", "sp" and "raster" objects as arguments. Similarly, users may
directly load the QGIS output into R by setting load_output to TRUE when using run_qgis().

Usage

Since RQGIS is an interface to various GIS software packages, the user needs to install this software
beforehand. To facilitate the installation process we have written an installation guide, see http:
//jannes-m.github.io/RQGIS/articles/install_guide.html. Or after having installed the package,
one can also access the corresponding vignette by typing:

vignette("install_guide", package = "RQGIS")

We will demonstrate the usage of RQGIS by showing how to compute the plan and tangential
curvatures of a digital elevation model (DEM). The first thing to do is to make sure, that all paths are
set correctly to successfully run the Python API from within R. Function set_env() facilitates this
since the user only needs to specify the root path to the QGIS installation. If the root path remains
unspecified, set_env() tries to be smart by checking the default QGIS installation directories. If
this is unsuccessful, set_env() will try to find the QGIS installation on the computer which may be
time-consuming especially on Windows machines. A much faster way is to explicitly indicate the root
path. For Windows this might look like this ‘qgis_env <-set_env(root = 'C:/OSGEO4~1')’.

Subsequently, set_env() finds all required paths. Virtually all subsequent RQGIS functions
require the output list of set_env(). This is why, RQGIS automatically caches the output of set_env(),
and reuses it when required by another function later on. To establish a tunnel to the QGIS Python
API, we run open_app(). Explicitly, the function sets all necessary paths (e.g., path to the QGIS Python
binary) to successfully run QGIS, and secondly opens a QGIS custom application (i.e., outside of the
QGIS GUI interface) while importing necessary Python modules.
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library("RQGIS")
set_env()
open_app()

Running set_env() and open_app() is optional here since all subsequent functions dependent
on their output will run them automatically in case they have not been executed before. To work in
a reproducible manner, and to find out which QGIS and third-party GIS versions we are using, we
execute:

## $root
## [1] "C:/OSGeo4W64"
##
## $qgis_prefix_path
## [1] "C:/OSGeo4W64/apps/qgis"
##
## $python_plugins
## [1] "C:/OSGeo4W64/apps/qgis/python/plugins"

info_r <- version
info_qgis <- qgis_session_info()
c(platform = info_r$platform, R = info_r$version.string, info_qgis)
## $platform
## [1] "x86_64-w64-mingw32"
##
## $R
## [1] "R version 3.4.2 (2017-09-28)"
##
## $qgis_version
## [1] "2.18.14"
##
## $gdal
## [1] "2.2.2"
##
## $grass6
## [1] "6.4.3"
##
## $grass7
## [1] "7.2.2"
##
## $saga
## [1] "2.3.2"

Continuing with our analysis, we need to find out the command-line name of a geoalgorithm
available in QGIS that computes the curvatures from a DEM. find_algorithms() lets the user use
regular expressions to search for a function which contains the search terms in its short description.
Leaving the search_term-argument empty, will return all available geoalgorithms. Here, we assume
that the function we are looking for contains the word ’curvature’ in its short description. Setting
name_only to TRUE gives back the name of the geoalgorithm instead of its name plus the corresponding
short description.

find_algorithms(search_term = "curvature",
name_only = TRUE)

## [1] "grass7:r.slope.aspect" "saga:curvatureclassification"
## [3] "saga:slopeaspectcurvature" "saga:upslopeanddownslopecurvature"
## [5] "grass:r.slope.aspect"

Several functions are available for our task, we will go on with function grass7:r.slope.aspect.
To familiarize ourselves with the function, we can access its online help by calling (not shown):

open_help(alg = "grass7:r.slope.aspect")

Next, we would like to know how to use a specific geoalgorithm. get_usage() prints the parame-
ters and default values for a given geoalgorithm to the console.

get_usage(alg = "grass7:r.slope.aspect")
## ALGORITHM: r.slope.aspect - Generates raster layers of slope
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## aspect
## curvatures and partial derivatives from a elevation raster layer.
## elevation <ParameterRaster>
## format <ParameterSelection>
## precision <ParameterSelection>
## -a <ParameterBoolean>
## zscale <ParameterNumber>
## min_slope <ParameterNumber>
## GRASS_REGION_PARAMETER <ParameterExtent>
## GRASS_REGION_CELLSIZE_PARAMETER <ParameterNumber>
## slope <OutputRaster>
## aspect <OutputRaster>
## pcurvature <OutputRaster>
## tcurvature <OutputRaster>
## dx <OutputRaster>
## dy <OutputRaster>
## dxx <OutputRaster>
## dyy <OutputRaster>
## dxy <OutputRaster>
##
##
## format(Format for reporting the slope)
## 0 - degrees
## 1 - percent
## precision(Type of output aspect and slope layer)
## 0 - FCELL
## 1 - CELL
## 2 - DCELL

get_args_man() lets us retrieve automatically a corresponding parameter-argument list. Setting
the options parameter to TRUE (the default) automatically chooses the default value from a list of
possible options for a parameter. This is always the first option which is in accordance with the QGIS
GUI behavior. To make the user aware of the automatically chosen options, get_args_man() prints the
corresponding values to the console.

params <- get_args_man(alg = "grass7:r.slope.aspect", options = TRUE)
## Choosing default values for following parameters:
## format: 0
## precision: 0
## See get_options('grass7:r.slope.aspect') for all available options.

grass7:r.slope.aspect has 17 parameters. Here, we only show the first six parameters for brevity.

head(params)
## $elevation
## [1] "None"
##
## $format
## [1] "0"
##
## $precision
## [1] "0"
##
## $`-a`
## [1] "True"
##
## $zscale
## [1] "1.0"
##
## $min_slope
## [1] "0.0"

Next, we specify the required arguments. Of course, grass7:r.slope.aspect expects a spatial
input file, here a DEM. Conveniently, run_qgis() accepts as input both a path to a spatial file stored
on disk or a spatial object residing in R’s environment (specifically "raster"-, "sp"- and "sf"-objects).
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Here, we use a DEM that comes as an example file with the RQGIS package. Note that run_qgis()
simply saves spatial input files to a temporary output location. Hence, if the file already exists on
disk, it is much more efficient to indicate the path to the file instead of loading it into R and letting
run_qgis() export it again. By contrast, indicating output paths is not strictly necessary. If an output
path parameter equals None (QGIS default), QGIS automatically creates an output file which it saves
to a temporary processing output folder. In the code chunk below, we specifically indicate curvature
outputs while keeping the default, i.e. None, for the remaining output parameters slope, aspect,
dx, dy, dxx, dyy and dxy (check out the GRASS function documentation for more information, i.e.
run ‘open_help("grass7:r.slope.aspect")’). run_qgis() prints all output paths to the console if
show_output_paths is set to TRUE. Here, we turn this behavior off for two reasons. First, we are
not interested in the output paths of the seven terrain attributes we left unspecified. Secondly, we
have explicitly specified the curvature output paths, i.e., we already know the corresponding output
locations. We recommend to specify those output paths which are relevant to the analysis. Manual
specification has the additional benefit that we can indicate a specific file format (QGIS default for
raster data sets is in most cases .tif, but we might want to use e.g., .asc or SAGA’s .sdat). Additionally,
loading QGIS output directly back into R (load_output-parameter) only works with output paths
specified by the user.

data("dem", package = "RQGIS")
out <- run_qgis(alg = "grass7:r.slope.aspect",

elevation = dem,
pcurvature = file.path(tempdir(), "pcurv.tif"),
tcurvature = file.path(tempdir(), "tcurv.tif"),
show_output_paths = FALSE,
load_output = TRUE)

Note that we used R named arguments in run_qgis(), i.e., we assigned values or objects to the
parameters whose names we have identified with the help of get_args_man() or get_usage(). We
could replace the R named arguments also by a parameter-argument list. Remember that we have
already created a parameter-argument list named params using get_args_man() (see above):

params$elevation <- dem
params$pcurvature <- file.path(tempdir(), "pcurv.tif")
params$tcurvature <- file.path(tempdir(), "tcurv.tif")
out <- run_qgis(alg = "grass7:r.slope.aspect",

params = params,
load_output = TRUE,
show_output_paths = FALSE)

class(out)
## [1] "list"
names(out)
## [1] "pcurvature" "tcurvature"

However, providing R named arguments and a parameter-argument list is not possible, and
run_qgis() will complain telling the user to user either one of these but not a mixture. Since we have
set load_output to TRUE, run_qgis() automatically loads the QGIS output into R. In this case, the
object out is a list with two "raster" objects. If we only had specified one output raster, out would
have been a "RasterLayer" object. In case the output is a vector layer, run_qgis() will load it as an
"sf" object. To have a look at the output, we can execute following code (not shown):

library("raster")
plot(stack(out))

Concerning the handling of parameter-argument pairs, run_qgis() uses get_args_man() through
pass_args() in the background to access the default values of all missing arguments if available.
If the user accidentally omits a required argument, run_qgis() will return an error message that
informs about the missing argument. The help documentation of pass_args() presents a detailed list
of argument checks that are run before executing run_qgis().

Experienced GRASS users may wonder if there is a need to specify the GRASS_REGION_PARAMETER.
pass_args() determines this parameter automatically based on the spatial layers provided as input
by the user (in our example above this is dem). However, the GRASS_REGION_PARAMETER can also be set
manually (see the pass_args() documentation for details).
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Figure 3: The study area Mount Mongón in northern Peru (Landsat image: path 9, row 67, acquisition
date 09/22/2000; USGS 2016).

Ecological example: combining geocomputing and statistics

To show the utility of RQGIS in real-world applications, we combine QGIS functionality with R’s
modeling and (geo-)statistical capabilities in an ecological study in the coastal desert of northern Peru
(Figure 3). Despite the extreme aridity of the Mount Mongón region (200-1100 m asl), this area is the
habitat of a distinct flora and fauna (Dillon et al., 2003). The unique vegetation, locally termed lomas,
mainly survives due to heavy fog during the austral winter months (Muenchow et al., 2013b,c).

Linking species richness to environmental predictors along gradients is a key topic of community
ecology and biogeography (Muenchow et al., 2017), and the fundamental basis for conservation
planning (Pomara et al., 2012). In our use case, we model vascular plant species richness along an
altitudinal gradient as a function of topographic and remotely sensed variables by means of count
regression. In the following, we will show a simplified version of an analysis by Muenchow et al.
(2013b).

Before running a Poisson model, we need to compute terrain attributes from a DEM. These will
serve as predictors to model species richness. To account for the unimodal relationship between
elevation and species richness, we use a second-order orthogonal polynomial function (Figure 4, Panel
Elevation). In the original paper, we dropped the least significant variables one at a time until only
significant predictors remained (elevation and its squared term, catchment slope, catchment area
and the normalized difference vegetation index, NDVI). Due to space constraints and demonstration
purposes, we will simply use the final model here (for details see Muenchow et al., 2013b). Instead of
calculating all predictors used in the original paper, we only show how to derive selected geospatial
predictors using RQGIS, namely tangential and profile curvature, catchment slope and catchment
area.

Terrain attributes

The numerical representation as well as the analysis of the land surface is frequently referred to
as terrain analysis and terrain modeling. The corresponding surface-characterizing measures are
known as terrain attributes (Pike et al., 2008). Terrain attributes play an important role, for example,
in pedometrics (McBratney et al., 2000), precision agriculture (Kühn et al., 2009), geomorphometry
(Pike et al., 2008) and ecology (Muenchow et al., 2013a). They are frequently related to slope stability
(Montgomery and Dietrich, 1994; Muenchow et al., 2012). Additionally, they are proxies for variables
representing water availability such as soil moisture, soil texture or moisture-holding capacity, among
others (Brenning, 2008; Franklin et al., 2000; Muenchow et al., 2013c). Especially the latter is of utmost
importance regarding plant distribution in a desert environment. While GIS can easily calculate terrain
attributes, R is rather limited in this respect. However, without terrain attributes, we would neither be
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Figure 4: Scatterplot of all predictors used in the Poisson model against the response variable. Each
dot represents a visited plot on Mount Mongón. The gray line smoother should aid visual inspection.

able to model nor predict species richness appropriately.

First we would like to use SAGA to remove local depressions from the DEM, since these may
be artifacts. For this, we use the [1] Fill Sinks method. Note that you also may use numbers for
specifying the option, here, the fill sinks method corresponds to 1.

get_usage("saga:sinkremoval")
## ALGORITHM: Sink removal
## DEM <ParameterRaster>
## SINKROUTE <ParameterRaster>
## METHOD <ParameterSelection>
## THRESHOLD <ParameterBoolean>
## THRSHEIGHT <ParameterNumber>
## _RESAMPLING <ParameterSelection>
## DEM_PREPROC <OutputRaster>
##
##
## METHOD(Method)
## 0 - [0] Deepen Drainage Routes
## 1 - [1] Fill Sinks
## _RESAMPLING(Resampling method)
## 0 - Nearest Neighbour
## 1 - Bilinear Interpolation
## 2 - Bicubic Spline Interpolation
## 3 - B-Spline Interpolation
run_qgis(alg = "saga:sinkremoval",

DEM = dem,
METHOD = "[1] Fill Sinks",
DEM_PREPROC = file.path(tempdir(), "sdem.sdat"),
show_output_paths = FALSE)

Next, we compute the catchment area (or upslope contributing area) and its mean slope from the
preprocessed DEM. These raster datasets are calculated while calculating the ’Saga wetness index’,
which is also frequently used as a predictor in ecological studies. To calculate the catchment slope
instead of the local slope we set the SLOPE_TYPE argument to 1. The names of the output rasters are
‘carea.sdat’ and ‘cslope.sdat’ both of which will be stored in tempdir().

get_usage("saga:sagawetnessindex")
## ALGORITHM: Saga wetness index
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## DEM <ParameterRaster>
## SUCTION <ParameterNumber>
## AREA_TYPE <ParameterSelection>
## SLOPE_TYPE <ParameterSelection>
## SLOPE_MIN <ParameterNumber>
## SLOPE_OFF <ParameterNumber>
## SLOPE_WEIGHT <ParameterNumber>
## _RESAMPLING <ParameterSelection>
## AREA <OutputRaster>
## SLOPE <OutputRaster>
## AREA_MOD <OutputRaster>
## TWI <OutputRaster>
##
##
## AREA_TYPE(Type of Area)
## 0 - [0] absolute catchment area
## 1 - [1] square root of catchment area
## 2 - [2] specific catchment area
## SLOPE_TYPE(Type of Slope)
## 0 - [0] local slope
## 1 - [1] catchment slope
## _RESAMPLING(Resampling method)
## 0 - Nearest Neighbour
## 1 - Bilinear Interpolation
## 2 - Bicubic Spline Interpolation
## 3 - B-Spline Interpolation
run_qgis(alg = "saga:sagawetnessindex",

DEM = file.path(tempdir(), "sdem.sdat"),
SLOPE_TYPE = 1,
SLOPE = file.path(tempdir(), "cslope.sdat"),
AREA = file.path(tempdir(), "carea.sdat"),
show_output_paths = FALSE)

To have a look at the output rasters, we can run (not shown):

library("dplyr")
library("raster")
file.path(tempdir(), c("cslope.sdat", "carea.sdat")) %>%
raster::stack(.) %>%
plot

We furthermore need to apply some transformations to these raster files for improved interpretabil-
ity. On the one hand, we convert slope angle from radians to degrees.

library("raster")
cslope <- raster(file.path(tempdir(), "cslope.sdat"))
cslope <- cslope * 180 /pi

On the other hand, we divide the catchment area variable by one million to change the unit from
m2 to km2. Furthermore, we transform it logarithmically since it is strongly skewed to the right.

carea <- raster(file.path(tempdir(), "carea.sdat"))
log_carea <- log(carea / 1e+06)

Apart from the catchment area and catchment slope, our final model requires the NDVI as an
indicator of vegetation properties. To calculate it, we would have to perform pixel-by-pixel arithmetic
operations on raster data sets representing the Landsat satellite’s spectral bands three (red) and four
(near infrared). These so-called map algebra operations are available through raster and the QGIS
modules saga:rastercalculator and grass:r.mapcalculator; however, the RQGIS package already
provides the NDVI raster as an example dataset. Therefore, we merely have to attach the data to our
workspace.

data("ndvi", package = "RQGIS")

To account for the nonlinear unimodal relationship between elevation and species richness, we
need two rasters representing the second-order orthogonal polynomials of the original DEM. First, we
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convert the elevation unit from m to km by dividing the original DEM raster by 1000. Next, we use R’s
built-in poly() function to calculate the orthogonal polynomials for each pixel in our DEM raster to
avoid collinearity among the predictors. Before saving the resulting rasters and the catchment slope,
the catchment area and the NDVI to a temporary output location, we apply the crop() function from
the raster package to ensure that all rasters share the same extent.

data("dem", package = "RQGIS")
dem <- dem / 1000
my_poly <- poly(values(dem), degree = 2)
dem1 <- dem2 <- dem
values(dem1) <- my_poly[, 1]
values(dem2) <- my_poly[, 2]
for (i in c("dem1", "dem2", "log_carea", "cslope", "ndvi")) {
tmp <- crop(get(i), dem)
writeRaster(x = tmp,

filename = file.path(tempdir(), paste0(i, ".asc")),
format = "ascii",
prj = TRUE,
overwrite = TRUE)

}

After creating these raster datasets, we would like to extract their attributes to the randomly
sampled points. Conveniently, RSAGA’s pick.from.ascii.grids() function accepts multiple rasters
for parallel attribute extraction. Note that pick.from.ascii.grids() is a pure R function, i.e., it runs
without accessing SAGA. Here, we only extract the predictor variables needed in the final model
(see above). The "sf" object random_points refers to randomly sampled points we visited in the field.
Unfortunately, pick.from.ascii.grids() does not accept spatial point objects as input; instead we
have to provide it with a "data.frame" and indicate which columns refer to the coordinates. In the
file argument we specify the raster files from which we would like to extract values to our points.
The output columns in vals will be named like the input rasters.

library("dplyr")
data("random_points", package = "RQGIS")
random_points[, c("x", "y")] <- sf::st_coordinates(random_points)
raster_names <- c("dem1", "dem2", "log_carea", "cslope", "ndvi")
vals <- RSAGA::pick.from.ascii.grids(data = as.data.frame(random_points),

X.name = "x",
Y.name = "y",
file = file.path(tempdir(), raster_names),
varname = raster_names)

dplyr::select(vals, -geometry) %>%
head(., 3)

## id spri x y dem1 dem2 log_carea cslope ndvi
## 1 1 4 797179 8932755 -0.01049 0.01268 -1.21800 21.18 -0.3603
## 2 2 4 796749 8932621 -0.01019 0.01163 0.04145 13.02 -0.3488
## 3 3 3 796816 8932739 -0.01008 0.01124 -0.48148 23.70 -0.3396

Modeling species richness and predictive mapping

To model species richness, which is a count variable, we naturally opt for a Poisson regression. Overall,
spatial count regression models are popular across many fields including epidemiology (Fernandez
et al., 2012), demography (Chien et al., 2016), criminology (Jones-Webb and Wall, 2008), remote
sensing (Comber et al., 2016) and ecology (Moreno-Fernández et al., 2015). Since we observed a
unimodal nonlinear relationship between species richness and elevation, elevation enters the model as
a second-order polynomial function.

fit <- glm(formula = spri ~ dem1 + dem2 + cslope + ndvi + log_carea,
data = vals,
family = "poisson")

To spatially predict species richness (Figure 5), we apply the estimated beta coefficients to the input
rasters. raster’s predict function does this by accepting the fitted model and the predictor rasters as
input. Finally, the crop-function ensures that the predictions are restricted to the study area.

library("sf")
library("raster")
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Figure 5: Prediction map of species richness. The points represent the visited plots.

raster_names <- c("dem1.asc", "dem2.asc", "log_carea.asc", "cslope.asc",
"ndvi.asc")

s <- stack(x = file.path(tempdir(), raster_names))
pred <- predict(object = s,

model = fit,
fun = predict,
type = "response")

pred <- crop(x = pred,
y = as(random_points, "Spatial"))

# plot the output (shown in Figure 5)
plot(pred)
plot(st_geometry(random_points), add = TRUE)

Note that an alternative to raster::predict() is RSAGA’s multi.local.function() in conjunc-
tion with grid.predict() (see Brenning, 2008).

The model reached a good goodness-of-fit (explained deviance divided by null deviance) of 0.78.
The most important variable in predicting species richness was elevation and its squared term. In our
interpretation, variation with elevation mainly relates to differences in water availability. Humidity,
and thus species richness, is greatest just below the temperature inversion (ca. 750–850 m). For a more
detailed interpretation of the model and its predictors, refer to Muenchow et al. (2013b).

Extending RQGIS through Python and PyQGIS

In this section we would like to show examplarily how one can easily extend RQGIS through Python
and especially PyQGIS. As explained in sections Basic concepts and Usage, RQGIS uses the reticulate
package to establish a tunnel to the QGIS API. To find out which Python binary is in use we run the
py_config() function of the reticulate package. When using Windows, please do so only after having
run open_app before, since this sets all necessary paths to run the QGIS Python binary. Otherwise
py_config() will be unable to find it, in which case it most likely would use another Python binary
(e.g., the one shipped with Anaconda) if available. Additionally, open_app() imports various necessary
Python libraries (among others osgeo, processing and qgis), and attaches our Python RQGIS class
(see section Usage).

library("reticulate")
py_config()
## python: C:/OSGeo4W64/bin/python.exe
## libpython: C:/OSGeo4W64/bin/python27.dll
## pythonhome: C:\OSGeo4W64\apps\Python27
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## version: 2.7.5 (default, May 15 2013, 22:44:16) [MSC v.1500 64 bit (AMD64)]
## Architecture: 64bit
## numpy: C:\OSGeo4W64\apps\Python27\lib\site-packages\numpy
## numpy_version: 1.12.1
##
## NOTE: Python version was forced by use_python function

We have defined the Python class RQGIS in python_funs.py which is part of ’inst/python’. Aside
from set_env() all functions found in ’R/processing’ make extensive use of the Python RQGIS
methods. Most of the Python methods have the same names as their counterparts in R. We can access
them with py_run_string() of the reticulate-package. This sends a call to Python, and converts the
Python into R output if desired.

py_run_string("methods = dir(RQGIS)")$methods
## [1] "__doc__" "__init__" "__module__"
## [4] "check_args" "get_args_man" "get_options"
## [7] "open_help" "qgis_session_info"

Of course, we can use the Python RQGIS methods directly via reticulate which is exactly what
the RQGIS-package is doing. For example, to find out what the options are for a QGIS geoalgorithm
named qgis:randompointsinsidepolygonsvariable, we can run:

py_cmd <- "opts = RQGIS.get_options('qgis:randompointsinsidepolygonsvariable')"
py_run_string(py_cmd)$opts
## $STRATEGY
## [1] "Points count" "Points density"

Or we can use PyQGIS-functionality directly. For instance, assuming we would like to find out the
function parameters of qgis:randompointsinsidepolygonsvariable, we can use alghelp() from the
QGIS Python processing framework (Graser and Olaya, 2015, and see also https://docs.qgis.org/
2.8/en/docs/user_manual/processing/console.html). Here, we only show the first 40 characters of
the output.

py_cmd <- "processing.alghelp('qgis:randompointsinsidepolygonsvariable')"
py_capture_output(py_run_string(py_cmd)) %>%
substring(., 1, 40)

## [1] "ALGORITHM: Random points inside polygons"

Users can easily extend the RQGIS class with additional methods, or they could write their own
classes and methods. Also if there is a need to write Python one-liners or make use of some Python
functionality, this can easily be done using RQGIS in conjunction with reticulate. Here, we will
present one last example. Frequently, users have asked us if it was possible to also use the QGIS
map canvas from within R. Therefore, we provide a proof-of-concept how this could be achieved (see
also http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/canvas.html). First of
all, we save random_points to a temporary output location.

data("random_points", package = "RQGIS")
file <- normalizePath(file.path(tempdir(), "points.shp"), winslash = "/",

mustWork = FALSE)
sf::st_write(random_points, dsn = file)

Before running the subsequent code, make sure that you have already attached the packages
RQGIS and reticulate. Additionally, you need to run open_app() first. Then we can create the map
canvas, add the previously saved shapefile to it, set the extent to the extent of our shapefile, set the
map canvas layer, and finally open a standalone map window (Figure 6). If this does not open a
standalone window you might have to run py_run_string('app.exec_()') to initialize a Qt event
loop which in turn renders the points in a standalone window (pers. comm. Barry Rowlingson). We
emphasize that this is only a proof-of-concept, and a rather unstable solution (see section Current and
future developments).

# create the map canvas
py_run_string("canvas = QgsMapCanvas()")
# import point shapefile
py_run_string(sprintf("layer = QgsVectorLayer('%s', 'points', 'ogr')", file))
# add imported point layer to the map canvas
py_run_string("QgsMapLayerRegistry.instance().addMapLayer(layer)")

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://docs.qgis.org/2.8/en/docs/user_manual/processing/console.html
https://docs.qgis.org/2.8/en/docs/user_manual/processing/console.html
http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/canvas.html


CONTRIBUTED RESEARCH ARTICLES 421

Figure 6: A very simple example how to access the QGIS map canvas from within R.

# set the extent of the map canvas to the extent of the imported shapefile
py_run_string("canvas.setExtent(layer.extent())")
# set the map canvas layer
py_run_string("canvas.setLayerSet([QgsMapCanvasLayer(layer)])")
# open a standalone window
py_run_string("canvas.show()")
# if a standalone window has not already opened, run the next line
# py_run_string("app.exec_()")

Discussion

R/GIS-integration: Combining the best of two worlds

In our use case (see section Ecological example: combining geocomputing and statistics) we mainly
used QGIS for raster preprocessing and the generation of terrain attributes. Naturally, there are many
more geospatial analysis problems that can be solved using the thousands of geoalgorithms that
are accessible through RQGIS and other R–GIS packages. For instance, SAGA provides more than
600 (Conrad et al., 2015) and GRASS more than 500 functions (http://grass.osgeo.org/grass72/
manuals/).

For example, apart from relatively simple DEM derivatives (slope angle and orientation), a GIS
can also calculate more complex, process-oriented terrain attributes such as the relative slope position
or the topographic wetness index (Conrad et al., 2015). Additionally, most GIS can easily extract
stream networks (Hengl et al., 2010) and surface roughness (Grohmann, 2004). Somewhat related are
geospatial calculations concerned with terrain classification and landform identification (Brenning,
2012a; Rocchini et al., 2013). Physically-based models (e.g., SHALSTAB or Factor of Safety, both
available in SAGA GIS) may provide additional insights (Goetz et al., 2011). Of course, GIS also
provide an extensive suite of vector processing tools as required, for example, in geomarketing.

As pointed out in the beginning R has its limitations regarding GIS capabilities, but when it comes
to statistical analyses, R is the uncontested champion in its field. For instance, instead of using a
polynomial function in our use case (see section Modeling species richness and predictive mapping),
we could have used a generalized additive model (GAM) with a logarithmic link function to allow
for nonlinear relationships between various predictors and species richness (Figure 4). A GAM is
the nonlinear extension of a generalized linear model (GLM), and uses smoothing functions to deal
with nonlinearity (Hastie, 2017). In ecology, coupling ordination techniques and GAMs is a fruitful
approach to spatially predict ecological communities (Muenchow et al., 2013a).

Equally, machine learning algorithms (support vector machines, random forests, etc.) are read-
ily available in R, although these methods may tend to overfit the training data (Brenning, 2005).
Overfitting in turn limits a model’s ability to spatially predict the response variable. Here, spatial
cross-validation through the sperrorest package (Brenning et al., 2012) provides an opportunity to
assess spatial predictive capabilities.

Frequently, the residuals of spatial models show some form of spatial autocorrelation. This violates
the assumption of independent model residuals made by most statistical models (Dormann et al., 2007;
Zuur et al., 2009). Violating this assumption can lead to untrustworthy p values, biased coefficients
and subsequently poor predictions (Zuur et al., 2009). Fortunately, packages such as nlme (Pinheiro
et al., 2017) and mgcv (Wood, 2017) let the user incorporate various correlation structures into a
model. This is most helpful in the presence of temporal and spatial autocorrelation (e.g, Iturritxa et al.,
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2015). Sometimes mixed-effect models may also account for autocorrelation since random intercepts
allow for correlation within a group (e.g., Peters et al., 2014). Another way of dealing with spatial
autocorrelation is e.g., to include auto-regressive correlation structures in a GLM or GAM within a
Bayesian modeling approach (Zuur and Ieno, 2017).

To summarize, R offers an incredibly vast suite of advanced statistical and data science methods.
On the other hand, QGIS and other GIS software offer a rich suite of geoalgorithms and geocomputa-
tional power. Interfacing R with GIS simply combines the best of two worlds for automated statistical
geocomputing.

RSAGA and R/GRASS-integration

Compared to the two separate packages rgrass7 and RSAGA, RQGIS has the advantage of providing
a unified interface to both GRASS and SAGA GIS toolboxes. Moreover, QGIS facilitates the usage
of third-party geoalgorithms by automatically converting vector (e.g., shapefiles) and raster formats
(e.g., ASCII grid files) into the particular format supported by the third-party module. For instance,
SAGA has its own grid format (sgrd-files) and GRASS uses its own database format. Running SAGA
or GRASS functions, (R)QGIS automatically converts the input data using io_gdal() in the case of
SAGA and v.in.ogr() or r.in.gdal() in the case of GRASS. Though this is extremely user-friendly
especially when providing interfaces to various third-party providers, it comes at the prize of increased
computing time due to the necessity of multiple format conversions during one geoalgorithm call.
Equally user-friendly it the automatic setup of the GRASS environment (projection, region and mapset)
through (R)QGIS, if necessary. This certainly facilitates access to GRASS, especially for less experienced
GIS users. Finally, RQGIS is overall quite user-friendly due to its convenience functions open_help()
and get_args_man() and through its support of R named arguments for geoalgorithm parameters (see
sections Basic concepts and Usage).

However, (R)QGIS only integrates a subset of the modules available in SAGA and GRASS GIS.
While this fraction is likely to grow in the near future, a full integration of all modules is improbable as
it would duplicate functionality (though this of course already has happened) and interface functions
that are unnecessary within the QGIS environment, such as the GRASS database functions. If the user’s
intention is to use GRASS’s database management system (DBMS), the direct R–GRASS integration
via the spgrass6 (Bivand et al., 2013) and rgrass7 packages (Bivand and Neteler, 2000) would be the
appropriate path. RQGIS does not provide access to this DBMS since the GRASS plugin of the QGIS
processing toolbox only allows restricted access to GRASS’s DBMS functionality. The use of rgrass7
also allows the user to operate within a single GRASS session instead of calling a new one for each
GRASS command as implicitly done by QGIS.

In the case of SAGA GIS, RSAGA has additional benefits. First of all, RSAGA provides numerous
user-friendly wrapper functions with arguments (and meaningful default values) documented in
the R help pages. RSAGA also strives to provide unified access to a range of SAGA versions while
using, if possible, persistent function and argument names as well as default values. This allows for an
easier migration between SAGA versions. At the moment RSAGA supports versions 2.0.4–2.2.3, but
support for SAGA versions until the current version 6.1 has already been developed, and is currently
being tested. By contrast, QGIS 2.14 supports SAGA 2.1.2–2.3.1. With the release of QGIS 2.18.10, this
support was limited to the long term SAGA release 2.3.x. Extremely useful are furthermore RSAGA’s
special geocomputing functions that allow, for example, the application of any user-defined R function
to a stack of grids, either locally or within moving windows (functions multi.focal.function() and
multi.local.function()). In conjunction with grid.predict(), predict methods of models fitted in
R can therefore also be applied to stacks of raster files, as shown in Brenning (2008).

In the end, it will be up to the user to decide whether to use RQGIS, RSAGA, rgrass7 or some
combination of these, depending on the user’s preferences, expertise and tasks at hand. In any case,
we would recommend RQGIS if a user

• requires mainly the more commonly used SAGA and GRASS functions,

• does not want to be bothered with setting up the GRASS environment,

• does not plan to use GRASS geodatabase capabilities,

• does not want to worry about spatial data format conversions,

• would like to use spatial objects residing in R as input-arguments, and load GIS output auto-
matically into R,

• cherishes the flexibility of seamlessly integrating QGIS, GRASS, SAGA and other third-party
software (GDAL/OGR, Orfeo Toolbox, LAStools, TauDEM) within a single geoprocessing
workflow in R.
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Accessing ArcGIS through RPyGeo

The integration of GIS functionality into R is not limited to the mentioned open-source GIS software,
but also includes the global leader in commercial GIS software (Longley et al., 2011), ArcGIS, through
the RPyGeo package (Brenning, 2012b). This package piggybacks on ArcGIS’s own Python interface to
ArcGIS functions, or ‘tools’. RPyGeo generates Python code that calls ArcGIS. Some of the challenges
currently include

• latency times related to launching Python and ArcGIS before each GIS call,

• passing data and files between R and ArcGIS,

• error tracking based on Python and/or ArcGIS error messages,

• interpretation of ArcGIS help pages from the perspective of a geoprocessing interface function
in R.

While some of these limitations may be overcome in future releases of RPyGeo and ArcGIS, the
growing interest in integrating R and ArcGIS is also evident from recent efforts to provide access to R
from within ArcGIS (https://r-arcgis.github.io/). This so-called R–Bridge allows users to

• retrieve data from ArcGIS geodatabases into R as "sp" objects, and export R data back into
ArcGIS geodatabases,

• run R code within ArcGIS as a user-defined ‘tool’. This is similar to QGIS’s ability to integrate R
scripts as user-defined GIS modules in the Processing toolbox.

While this connectivity, in principle, goes both ways, the integration of ArcGIS into R through the
R–Bridge is currently limited to data import/export, which is complementary to RPyGeo’s capability
of executing ArcGIS modules from within R.

Current and future developments

There are several interesting developing directions in the R-spatial world and for RQGIS. For example,
we have been asked multiple times to include the QGIS mapping widget within R for fast interactive
visualization and styling of multiple layers. In section Extending RQGIS through Python and PyQGIS
we have shown that this is theoretically possible. However, mixing R and Qt events seems to cause
frequently trouble (also pers. comm. Barry Rowlingson). For instance, when running QgsMapCanvas()
twice or enlarging the standalone window manually (Figure 6), one runs a high risk of crashing the
current R session. Therefore, Kevin Stadler, Barry Rowlingson and Julia Wagemann have opted for
a different approach realized within a Google Summer of Code Project. In this project they wrote
the QGIS Plugin Network API which enables the user to access the QGIS API via a HTTP interface
from another language capable of making HTTP calls (such as R). Along with the sibling R package
qgisremote (https://qgisapi.gitlab.io/qgisremote/index.html) this allows R users to seamlessly
exchange spatial data between R and QGIS. For example, one can add vector and raster layers from
within R to the QGIS map canvas, interactively edit them (such as adding new points or changing
polygon vertices), and load the results back into R. Similarly, the packages mapview (build on top of
leaflet, Cheng et al., 2017) and mapedit lets the user interactively visualize and edit spatial objects
on leaflet maps. The advantage of qgisremote over these two packages is that the QGIS map canvas
probably is better able to handle larger quantities of spatial data compared to leaflet, and that it
provides the user with the full power of a Desktop GIS for manually editing spatial data (trace, snap,
etc.). Nevertheless, mapview is a great tool for interactive visualization, and mapedit is a good
alternative for small and quick modifications of spatial vector data within R. Coming back to the user
request to include the QGIS mapping widget into RQGIS, we can state that qgisremote already filled
this gap perfectly. In summary, RQGIS and qgisremote complement one another. The first gives an
R user direct access to the QGIS processing engine, and the latter hands an R user the power of a
Desktop GIS graphical user interface.

Adding new functionalities to RQGIS will generally include Python programming. Since QGIS
migrates from Python 2 to Python 3 by the end of 2017, it is probably best to postpone major RQGIS
extensions until after the migration. To guarantee a smooth transition, and to offer the possibility
to work either with QGIS 2 or QGIS 3, we have designed RQGIS in such a way that we ideally
would merely have to add a Python 3 script to ’inst/python’ to make RQGIS also work with QGIS
3. In the case of a bumpier transition than anticipated, RQGIS users may rest assured that RQGIS
will work in any case with the QGIS long term release 2.18 which will be further developed and
regularly updated (see https://www.qgis.org/en/site/getinvolved/development/roadmap.html#
release-schedule).

Another envisaged RQGIS update includes the support for "stars" classes (see https://github.
com/r-spatial/stars). stars aims to mainly extend the raster package.
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Conclusions

Combining R and GIS software creates a powerful environment for advanced statistical geocomputing.
RQGIS makes this also possible with QGIS—one of the most-widely used open-source GIS, which
is therefore probably also very appealing to R users. Conveniently, RQGIS offers a unified interface
to various desktop GIS (SAGA, GRASS, etc.) that are integrated into QGIS. The use of GIS tools is
facilitated through auxiliary functions for the automatic retrieval of function arguments and their
default values, the support of R named arguments in run_qgis(), the seamless exchange of spatial
data types, and the quick access of the online help for any QGIS geoalgorithm.
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Partial Rank Data with the hyper2
Package: Likelihood Functions for
Generalized Bradley-Terry Models
by Robin K. S. Hankin

Abstract Here I present the hyper2 package for generalized Bradley-Terry models and give examples
from two competitive situations: single scull rowing, and the competitive cooking game show Mas-
terChef Australia. A number of natural statistical hypotheses may be tested straightforwardly using
the software.

Introduction: the Bradley-Terry model

The Bradley-Terry model for datasets involving paired comparisons has wide uptake in the R com-
munity. However, existing functionality1 is restricted to paired comparisons. The canonical problem
is to consider n players who compete against one another; the basic inference problem is to estimate
numbers p = (p1, . . . , pn), pi > 0, ∑ pi = 1 which correspond to player “strengths”. Information
about the pi may be obtained from the results of paired comparisons between the players.

Applications are legion. The technique is widely used in a competitive sport context (Turner and
Firth, 2012), in which matches are held between two opposing individuals or teams. It can also be
applied to consumer choice experiments in which subjects are asked to choose a favourite from among
two choices (Hatzinger and Dittrich, 2012), in which case the pi are known as “worth parameters”.

If player i competes against player j, and wins with probability Pij then the likelihood function
for p1, . . . pn corresponding to a win for i is pi

pi+pj
. As Turner and Firth (2012) point out, this may be

expressed as

logit
(

Pij

)
= log pi − log pj

and this fact may be used to estimate p using generalized linear models. However, consider the case
where three competitors, i, j, and k compete. The probability that i wins is then pi

pi+pj+pk
(Luce, 1959);

but there is no simple way to translate this likelihood function into a GLM. However, working directly
with the likelihood function for p has several advantages which are illustrated below. The resulting
likelihood functions may readily be generalized to accommodate more general order statistics, as in a
race. In addition, likelihood functions may be specified for partial order statistics; also, observations in
which a loser is identified may be given a likelihood function using natural R idiom in the package.

Further generalizations

Observing the winner w from a preselected set of competitors C has a likelihood function of pw/ ∑i∈C pi.
But consider a more general situation in which two disjoint teams A and B compete; this would have
likelihood ∑i∈A pi/ ∑i∈A∪B pi. Such datasets motivate consideration of likelihood functions L (·)
with

L (p) = ∏
s∈O

(
∑
i∈s

pi

)ns

(1)

where O is a set of observations and s a subset of [n] = {1, 2, . . . , n}; numbers ns are integers which
may be positive or negative. The approach adopted by the hyperdirichlet package is to store each of
the 2n possible subsets of [n] together with an exponent:

∏
s∈2[n]

(
∑
i∈s

pi

)ns

. (2)

but this was noted as being needlessly memory intensive and slow; it is limited, in practice, to n 6 9.

Consider, for example, the following inference problem. Suppose we wish to make inferences
about p1, . . . , p20, the unknown parameters of a multinomial distribution with classes c1, . . . , c20; we

1In theory, the deprecated hyperdirichlet package (Hankin, 2010) provides similar functionality but it is slow
and inefficient. It is limited to a small number of players and cannot cope with the examples considered here, and
is superceded by hyper2, which was originally called hyperdirichlet2.
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demand that pi > 0 and ∑ pi = 1. If our observation is a single trial with result c1 ∪ c2 [that is, the
observation was known to be either c1 or c2], then a likelihood function might be L1 (p1, . . . , p20) =
p1 + p2. However, observe that this very simple example is not accessible to the hyperdirichlet
package, which would have to store 220 > 106 powers, almost all of which are zero.

The hyper2 package uses the obvious solution to this problem: work with equation 1, rather
than equation 2 and store only nonzero powers. However, this requires one to keep track of which
subsets of [n] have nonzero powers. Suppose we wish to incorporate subsequent observations into
our likelihood function p1. We might observe two further independent trials, with results c1 ∪ c2
and c1 ∪ c3 respectively, having a likelihood (p1 + p2) (p1 + p3). Then a likelihood function for all
three trials might be L2 (p1, . . . , p20) = (p1 + p2)

2 (p1 + p3).

One natural representation for the likelihood function (p1 + p2)
2 (p1 + p3) would be as a function

mapping subsets of {1, 2, . . . , 20} to the real numbers; in this case we would map the set {1, 2} to (the
power) 2, and map {1, 3} to 1. However, note that updating our likelihood function from L1 to L2
increments the power of p1 + p2: some mechanism for identifying that the same sum appears in both
marginal likelihood functions is needed.

The hyper2 package

One such mechanism is furnished by the C++ Standard Template Library’s “map” class (Musser et al.,
2009) to store and retrieve elements. In STL terminology, a map is an associative container that stores
values indexed by a key, which is used to sort and uniquely identify the values. In the package, the
key is a (STL) set of strictly positive integers 6 n. The relevant typedef statements are:

typedef set<unsigned int> bracket;
typedef map<bracket, double> hyper2;

Thus a bracket object is a set of (unsigned) integers—here a sum of some pi; and a hyper2 object is a
function that maps bracket objects to real numbers—here their power. The following C++ pseudocode
shows how the aforementioned likelihood function would be created:

const bracket b1.insert({1,2}); // b1 = (p1+p2)
const bracket b2.insert({1,3}); // b2 = (p1+p3)

hyper2 L; // L2 is the likelihood function

// first observation:
L[b1] = 1; // L = (p1+p2)

//second observation:
L[b1] += 1; // L = (p1+p2)^2 # updating of existing map element
L[b2] += 1; // L = (p1+p2)^2*(p1+p3)^1

In the STL, a map object stores keys and associated values in whatever order the software considers
to be most propitious. This allows faster access and modification times but the order in which the
maps, and indeed the elements of a set, are stored is not defined. In the case of likelihood functions
such as Equation 1, this is not an issue because both multiplication and addition are associative and
commutative operations. One side-effect of using this system is that the order of the bracket-power
key-value pairs is not preserved.

The package in use

Consider the Chess dataset of the hyperdirchlet package, in which matches between three chess
players are tabulated (Table 1). The Bradley-Terry model (Bradley and Terry, 1952) is appropriate
here (Caron and Doucet, 2012), and the hyper2 package provides a likelihood function for the strengths
of the players, p1, p2, p3 with p1 + p2 + p3 = 1. A likelihood function might be

p30
1 p36

2 p22
3

(p1 + p2)
35 (p2 + p3)

35 (p1 + p3)
18 .

Using the hyper2 package, the R idiom to create this likelihood function would be a two-stage
process. The first step would be to implement the numerator, that is the number of games won by
each player:
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Topalov Anand Karpov total
22 13 - 35
- 23 12 35
8 - 10 18

30 36 22 88

Table 1: Results of 88 chess matches (dataset chess in the aylmer package (Hankin, 2008)) between
three Grandmasters; entries show number of games won up to 2001 (draws are discarded). Topalov
beats Anand 22-13; Anand beats Karpov 23-12; and Karpov beats Topalov 10-8.

R> library("hyper2")
R> chess <- hyper2(list(1, 2, 3), c(30, 36, 22))
R> chess

p1^30 * p2^36 * p3^22

Thus the chess object has the correct number of players (three), and has the numerator recorded
correctly. To specify the denominator, which indicates the number of matches played by each pair of
players, the package allows the following natural idiom:

R> chess[c(1, 2)] <- -35
R> chess[c(2, 3)] <- -35
R> chess[c(1, 3)] <- -18
R> chess

p1^30 * (p1 + p2)^-35 * (p1 + p3)^-18 * p2^36 * (p2 + p3)^-35 * p3^22

Note how the terms appear in an essentially random order, a side-effect of the efficient map class. It is
sometimes desirable to name the elements explicitly:

R> pnames(chess) <- c("Topalov", "Anand", "Karpov")
R> chess

Topalov^30 * (Topalov + Anand)^-35 * (Topalov + Karpov)^-18 * Anand^36
* (Anand + Karpov)^-35 * Karpov^22

The package can calculate log-likelihoods:

R> loglik(chess, c(1/3, 1/3))

[1] -60.99695

[the second argument of function loglik() is a vector of length 2, third element of p being the
“fillup” value (Aitchison, 1986)]; the gradient of the log-likelihood is given by function gradient():

R> gradient(chess, c(1/3, 1/3))

[1] 24.0 16.5

Such functionality allows the rapid location of the maximum likelihood estimate for p:

R> maxp(chess)

Topalov Anand Karpov
0.4036108 0.3405168 0.2558723

Men’s single sculling in the 2016 Summer Olympic Games

In this section, I will take results from the 2016 Summer Olympic Games and create a likelihood
function for the finishing order in Men’s single sculling. In Olympic sculling, up to six individual
competitors race a small boat called a scull over a course of length 2 km; the object is to cross the
finishing line first. Note that actual timings are irrelevant, given the model, as the sufficient statistic
is the order in which competitors cross the finishing line. The 2016 Summer Olympics is a case in
point: the gold and silver medallists finished less than 5 milliseconds apart, corresponding to a lead
of ∼ 2.5 cm. Following Luce (1959), the probability of competitor i winning in a field of j = 1, . . . , n is
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pi
p1 + · · ·+ pn

.

However, there is information in the whole of the finishing order, not just the first across the line. Once
the winner has been identified, then the runner-up may plausibly be considered to be the winner
among the remaining competitors; and so on down the finishing order. Without loss of generality, if the
order of finishing were 1, 2, 3, 4, 5, 6, then a suitable likelihood function would be, following Plackett
(1975):

p1
p1 + p2 + p3 + p4 + p5 + p6

· p2
p2 + p3 + p4 + p5 + p6

· p3
p3 + p4 + p5 + p6

· p4
p4 + p5 + p6

· p5
p5 + p6

· p6
p6
(3)

The result of heat 1 may be represented as

fournier � cabrera � bhokanal � saensuk � kelmelis � teilemb

(a full list of the finishing order for all 25 events is given in the package as rowing.txt). The first step
to incorporating the whole finishing order into a likelihood function is to define a hyper2 object which
stores the names of the participants:

R> data("rowing")
R> H <- hyper2(pnames = allrowers)
R> H

(banna + bhokanal + boudina + cabrera + campbell + dongyong + drysdale
+ esquivel + fournier + gambour + garcia + grant + hoff + kelmelis +
khafaji + kholmirzayev + martin + memo + molnar + monasterio + obreno +
peebles + rivarola + rosso + saensuk + shcharbachenia + synek +
szymczyk + taieb + teilemb + yakovlev + zambrano)^0

Observe that the resulting likelihood function is uniform, as no information has as yet been included.
Incorporating the information from Heat 1 into a likelihood function corresponding to Equation 3 is
straightforward using the order_likelihood() function:

R> heat1 <- c("fournier", "cabrera", "bhokanal", "saensuk",
+ "kelmelis", "teilemb")
R> H <- H + order_likelihood(char2num(heat1, allrowers))
R> H

bhokanal * (bhokanal + cabrera + fournier + kelmelis + saensuk +
teilemb)^-1 * (bhokanal + cabrera + kelmelis + saensuk + teilemb)^-1 *
(bhokanal + kelmelis + saensuk + teilemb)^-1 * cabrera * fournier *
kelmelis * (kelmelis + saensuk + teilemb)^-1 * (kelmelis + teilemb)^-1
* saensuk

(variable heat1 shows the finishing order for Heat 1). Again observe that object H includes its terms in
no apparent order. Although it would be possible to incorporate information from subsequent heats
in a similar manner, the package includes a ready-made dataset, sculls2016:

R> head(sculls2016)

banna^4 * (banna + boudina + cabrera + molnar + obreno + rivarola)^-1 *
(banna + boudina + cabrera + molnar + rivarola)^-1 * (banna + boudina +
molnar + rivarola)^-1 * (banna + cabrera + campbell + grant + hoff)^-1
* (banna + cabrera + campbell + grant + hoff + szymczyk)^-1

Finding the maximum likelihood estimate for the parameter pbanna, . . . , pzambrano is straightforward
using the maxp() function, provided with the package (Figure 1). The optimization routine has access
to derivatives which means that the estimate is found very quickly.

Figure 1 shows very clearly that the competitor with the highest strength is Drysdale, the gold medallist
for this event. The bronze and silver medallists were Synek and Martin respectively, whose estimated
strengths were second and third highest in the field.

MasterChef Australia

MasterChef Australia is a game show in which amateur cooks compete for a title (Wikipedia, 2017a).
From a statistical perspective the contest is interesting because the typical show format is to identify the
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R> dotchart(maxp(sculls2016))

banna
bhokanal
boudina
cabrera
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drysdale
esquivel
fournier
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molnar
monasterio
obreno
peebles
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saensuk
shcharbachenia
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taieb
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Figure 1: Maximum likelihood estimate for the strengths of the 32 competitors in the Men’s singles
sculls in the 2016 Summer Olympics.
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weakest player, who is then eliminated from the competition. Here, results from MasterChef Australia
Series 6 (Wikipedia, 2017b) will be analysed; an extended discussion of the data used is given in the
package at masterchef.Rd.

We wish to make inferences about the contestents’ generalized Bradley-Terry strengths p1, . . . , pn,
∑ pi = 1. One informative event was a team challenge in which the contestants were split randomly
into two teams, red and blue:

R> team_red <- c("Jamie", "Tracy", "Ben", "Amy", "Renae", "Georgia")
R> team_blue <- c("Brent", "Laura", "Emelia", "Colin", "Kira", "Tash")

We may represent the fact that the red team won as

{Jamie + Tracy + Ben + Amy + Renae + Georgia} � {Brent + Laura + Emelia + Colin + Kira + Tash} .
(4)

A plausible likelihood function can be generated using the standard assumption (Hankin, 2010)
that the competitive strength of a team is the sum of the strengths of its members. The likelihood
function for the observation given in Equation 4 would then be

pJamie + pTracy + pBen + pAmy + pRenae + pGeorgia

pJamie + pTracy + pBen + pAmy + pRenae + pGeorgia + pBrent + pLaura + pEmelia + pColin + pKira + pTash
.

(5)

To generate a likelihood function in R, we need to set up a hyper2 object with appropriate contes-
tants:

R> H <- hyper2(pnames = c(
+ "Amy", "Ben", "Brent", "Colin", "Emelia",
+ "Georgia", "Jamie", "Kira", "Laura", "Renae",
+ "Sarah", "Tash", "Tracy"))
R> H

(Amy + Ben + Brent + Colin + Emelia + Georgia + Jamie + Kira + Laura +
Renae + Sarah + Tash + Tracy)^0

Object H is a uniform likelihood function. The package R idiom for incorporating likelihood from
Equation 5 is straightforward and natural:

R> H[team_red] <- +1
R> H[c(team_red, team_blue)] <- -1
R> H

(Amy + Ben + Brent + Colin + Emelia + Georgia + Jamie + Kira + Laura +
Renae + Tash + Tracy)^-1 * (Amy + Ben + Georgia + Jamie + Renae +
Tracy)

(Sarah did not take part). The above idiom makes it possible to define likelihoods for observations
that have a peculiar probability structure, and I give two examples below.

One event involved eight competitors who were split randomly into four teams of two. The show
format was specified in advance as follows: The teams were to be judged, and placed in order. The
two top teams were to be declared safe, and the other two teams sent to an elimination trial from
which an individual winner and loser were identified, the loser being obliged to leave the competition.
The format for this event is also typical in MasterChef.

The observation was that Laura and Jamie’s team won, followed by Emelia and Amy, then Brent
and Tracy. Ben and Renae’s team came last:

{Laura + Jamie} � {Emelia + Amy} � {Brent + Tracy} � {Ben + Renae} . (6)

Again assuming that the team strength is the sum of its members’ strengths, a likelihood function
for this observation may be obtained by using the order statistic technique of Plackett (1975):

pLaura + pJamie

pLaura + pJamie + pEmelia + pAmy + pBrent + pTracy + pBen + pRenae
·

pEmelia + pAmy

pEmelia + pAmy + pBrent + pTracy + pBen + pRenae
·

pBrent + pTracy

pBrent + pTracy + pBen + pRenae
(7)

and we would like to incorporate information from this observation into object H, which is a likelihood
function for the two-team challenge discussed above. The corresponding package idiom is natural:
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R> blue <- c("Laura", "Jamie")
R> yellow <- c("Emelia", "Amy")
R> green <- c("Brent", "Tracy")
R> red <- c("Ben", "Renae")

(the teams were randomly assigned a colour). We may now generate a likelihood function for the
observation that the order of teams was blue, yellow, green, red, as per Equation 7:

R> H[blue] <- 1
R> H[c(blue, yellow, green, red)] <- -1
R> H[yellow] <- 1
R> H[c(yellow, green, red)] <- -1
R> H[green] <- 1
R> H[c(green, red)] <- -1
R> H

(Amy + Ben + Brent + Colin + Emelia + Georgia + Jamie + Kira + Laura +
Renae + Tash + Tracy)^-1 * (Amy + Ben + Brent + Emelia + Jamie + Laura
+ Renae + Tracy)^-1 * (Amy + Ben + Brent + Emelia + Renae + Tracy)^-1 *
(Amy + Ben + Georgia + Jamie + Renae + Tracy) * (Amy + Emelia) * (Ben +
Brent + Renae + Tracy)^-1 * (Brent + Tracy) * (Jamie + Laura)

We may incorporate subsequent observations relating to the elimination trial among the four com-
petitors comprising the losing two teams. The observation was that Laura won, and Renae came last,
being eliminated. We might write

{Laura} � {Brent, Tracey, Ben} � {Renae} , (8)

which indicates that Laura came first, then Brent/Tracey/Ben in some order, then Renae came last.
For this observation a likelihood function, following Critchlow (1985), might be

L (p1, p2, p3, p4, p5) = Prob (p1 � p2 � p3 � p4 � p5 ∪ p1 � p2 � p4 � p3 � p5 ∪ . . .) (9)

= Prob

 ⋃
[abc]

p1 � pa � pb � pc � p5

 (10)

=
p1

p1 + p2 + p3 + p4 + p5
· p2

p2 + p3 + p4 + p5
· p3

p3 + p4 + p5
· p4

p4 + p5

+
p1

p1 + p2 + p4 + p3 + p5
· p2

p2 + p4 + p3 + p5
· p4

p4 + p3 + p5
· p3

p3 + p5

+
p1

p1 + p3 + p2 + p4 + p5
· p3

p3 + p2 + p4 + p5
· p2

p2 + p4 + p5
· p4

p4 + p5

+ · · ·

where Laura’s strength is shown as p1 etc for brevity. The R idiom is as follows:

R> L <- ggol(H,
+ winner = "Laura",
+ btm4 = c("Brent", "Tracy", "Ben"),
+ eliminated = "Renae")

Arguments to ggol() are disjoint subsets of the players, the subsets themselves being passed in
competition order from best to worst. Object L includes information from the team challenge (via first
argument H) and the elimination results. It is a list of length 3! = 6 objects of class hyper2, each of
which gives a Luce likelihood function for a consistent total ordering of the competitors.

A final example (taken from MasterChef series 8, week 10) is given as a generalization of the Luce
likelihood. The format was as follows. Eight contestents were split randomly into four teams of two,
the top two teams being declared safe. Note that the likelihood interpretation differs from the previous
team challenge, in which the observation was an unambiguous team ranking: here, there is only a
partial ranking of the teams and one might expect this observation to be less informative. Without loss
of generality, the result may be represented as

{p1 + p2, p3 + p4} � {p5 + p6, p7 + p8} (11)
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and a likelihood function on p1, . . . p8 for this observation might be

L (p1, . . . , p8) = Prob
(
{p1 + p2} � {p3 + p4} � {p5 + p6} � {p7 + p8} ∪

{p1 + p2} � {p3 + p4} � {p7 + p8} � {p5 + p6} ∪
{p3 + p4} � {p1 + p2} � {p5 + p6} � {p7 + p8} ∪

{p3 + p4} � {p1 + p2} � {p5 + p6} � {p7 + p8}
)

(12)

=
p1 + p2

p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8
· p3 + p4

p3 + p4 + p5 + p6 + p7 + p8
· p5 + p6

p5 + p6 + p7 + p8

+ · · ·+
p3 + p4

p3 + p4 + p1 + p2 + p7 + p8 + p5 + p6
· p1 + p2

p3 + p4 + p7 + p8 + p5 + p6
· p7 + p8

p7 + p8 + p5 + p6
.

Maximum likelihood estimation

The package provides an overall likelihood function for all informative judgements in the series on the
final 13 players in object masterchef_series6. We may assess a number of related hypotheses using
the package. The first step is to calculate the likelihood for the hypothesis that all players are of equal
strength:

R> data("masterchef")
R> n <- 13
R> equal_strengths <- rep(1/n,n-1)
R> like_series(equal_strengths, masterchef_series6)

[1] -78.68654

The strengths of the 13 players may be estimated using standard maximum likelihood techniques. This
requires constrained optimization in order to prevent the search from passing through inadmissible
points in p-space:

R> UI <- rbind(diag(n-1), -1)
R> CI <- c(rep(0, n-1), -1)
R> constrOptim(
+ theta = equal_strengths,
+ f = function(p){-like_series(p, L)},
+ ui = UI, ci = CI,
+ grad = NULL)

In the above code, UI enforces pi > 0 and CI enforces p1 + · · ·+ pn−1 6 1. The resulting maximum
likelihood estimate, pmax_masterchef6 in the package, is shown pictorially in Figure 2. The support at
the precalculated evaluate is

R> like_series(indep(pmax_masterchef6), masterchef_series6)

[1] -66.19652

and this allows us to test the hypothesis of equal player strengths: by Wilks’s theorem (Wilks, 1938)
the quantity −2 log Λ (where Λ is the likelihood ratio) has an asymptotic null distribution of χ2

12. This
corresponds to a p-value of

R> pchisq(2*(78.7-66.2), df = 12, lower.tail = FALSE)

[1] 0.01482287

showing that the observations do constitute evidence for differential player strengths. Figure 2 suggests
that Laura, the runner-up, is actually a stronger competitor than the winner, Brent. We may assess this
statistically by finding the maximum likelihood for p, subject to the constraint that pLaura 6 pBrent:

R> UI <- rbind(UI, c(0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0))
R> CI <- c(CI, 0)
R> ans2 <-
+ constrOptim(
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R> pmax_masterchef6

Amy Ben Brent Colin Emelia Georgia
1.086182e-01 7.457970e-02 1.343553e-01 2.819606e-02 1.169766e-01 6.850455e-09

Jamie Kira Laura Renae Sarah Tash
1.065412e-01 2.055794e-02 2.750621e-01 4.070643e-02 2.803893e-02 1.142094e-09

Tracy
6.636755e-02

R> dotchart(pmax_masterchef6)
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Figure 2: Maximum likelihood estimate for the strengths of the top 13 competitors in Series 6 of
MasterChef Australia.
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+ theta = equal_strengths,
+ f = function(p){-like_series(p, masterchef_series6)},
+ grad = NULL,
+ ui = UI, ci = CI)

(updated object UI represents the constraint that Brent’s strength exceeds that of Laura). In the package,
object pmax_masterchef6_constrained is included as the result of the above optimization, at which
point the likelihood is

R> like_series(indep(pmax_masterchef6_constrained), masterchef_series6)

[1] -67.37642

The two estimates differ by about 1.18, less than the two-units-of-support criterion of Edwards (1992);
alternatively, one may observe that the likelihood ratio is not in the tail region of its asymptotic
distribution (χ2

1) as the p-value is about 0.12. This shows that there is no strong evidence for Laura’s
competitive strength being higher than that of Brent. Similar techniques can be used to give a profile
likelihood function; the resulting support interval for Laura’s strength is [0.145, 0.465], which does not
include 1

13 ' 0.077, the mean player strength.

However, further work would be needed to make statistically robust inferences from these findings.
Suppose, for example, that all competitors have equal competitive ability: then all the pi are identical,
and players are exchangeable. Under these circumstances, one could run a tournament and identify a
winner. One might expect that the winning player would have the highest pi as estimated by pmax().
It is not clear at this stage how to interpret likelihood functions for players conditional on their
competition performance. Another issue would be the applicability of Wilks’s theorem (Wilks, 1938)
which states only that the asymptotic distribution of −2 log Λ is chi-squared. Although the likelihood
ratio statistic is inherently meaningful, its sampling distribution is not clear at this stage.

Conclusions

Several generalizations of Bradley-Terry strengths are appropriate to describe competitive situations
in which order statistics are sufficient.

The hyper2 package is introduced, providing a suite of functionality for generalizations of the par-
tial rank analysis of Critchlow (1985). The software admits natural R idiom for translating commonly
occurring observations into a likelihood function.

The package is used to calculate maximum likelihood estimates for generalized Bradley-Terry
strengths in two competitive situations: Olympic rowing, and MasterChef Australia. The estimates for
the competitors’ strengths are plausible; and several meaningful statistical hypotheses are assessed
quantitatively.
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riskRegression: Predicting the Risk of an
Event using Cox Regression Models
by Brice Ozenne, Anne Lyngholm Sørensen, Thomas Scheike, Christian Torp-Pedersen, Thomas
Alexander Gerds

Abstract In the presence of competing risks a prediction of the time-dynamic absolute risk of an event
can be based on cause-specific Cox regression models for the event and the competing risks (Benichou
and Gail, 1990). We present computationally fast and memory optimized C++ functions with an R inter-
face for predicting the covariate specific absolute risks, their confidence intervals, and their confidence
bands based on right censored time to event data. We provide explicit formulas for our implementation
of the estimator of the (stratified) baseline hazard function in the presence of tied event times. As
a by-product we obtain fast access to the baseline hazards (compared to survival::basehaz()) and
predictions of survival probabilities, their confidence intervals and confidence bands. Confidence
intervals and confidence bands are based on point-wise asymptotic expansions of the corresponding
statistical functionals. The software presented here is implemented in the riskRegression package.

Introduction

Predictions of hazards and risks based on a Cox regression analysis need to be fast and memory
efficient, especially in large data, in simulation studies, and for cross-validation or bootstrap loops.
The CRAN task view Survival lists many R packages implementing the Cox regression model and
extensions thereof. Among the most popular routines are the function coxph() from the survival
package (Therneau, 2017) and the function cph() from the rms package (Harrell Jr, 2017). We present
a fast and memory efficient algorithm to extract baseline hazards and predicted risks with confidence
intervals from an object obtained with either of these functions.

In the presence of competing risks one needs to combine at least two Cox regression models
to predict the absolute risk of an event (cumulative incidence) conditional on covariates (Benichou
and Gail, 1990). We present the CSC()-function of the R package riskRegression which fits the Cox
regression models using either coxph() or cph(). We also present a concomitant predict() S3 method
which computes the absolute risks of the event of interest for given combinations of covariate values
and time points. Optionally, the predict() method computes asymptotic confidence intervals and
confidence bands for the predicted absolute risks. We review the formula behind the estimators
implemented and illustrate the R interface.

It is possible to obtain the predictions of absolute risks based on cause-specific Cox regression
also with the survival package or with the mstate package (Putter et al., 2016). However, both require
more work from the user. Finally, it should be noted that there are alternative regression methods for
absolute risks in the presence of competing risks such as Fine-Gray regression (Fine and Gray, 1999) or
direct binomial regression (Gerds et al., 2012; Scheike et al., 2008).

Data used for examples

For the sole purpose of illustration we use the ‘Melanoma’ data set which is included in the riskRegres-
sion package. It contains data from 205 malignant melanoma patients. Among the risk factors for
cancer specific death were patient age and sex and the histological variables tumor thickness, invasion
(levels 0,1,2), and epithelioid cells (no present vs. present). Within the limitation of the follow-up
periods, it was observed that 57 patients had died from cancer (“status” equals 1) and 14 had died
from other causes (“status” equals 2). The remaining patients were right censored (“status” equals 0).

library(riskRegression, verbose = FALSE, quietly = TRUE)
library(survival)
data(Melanoma)
str(Melanoma)

## 'data.frame': 205 obs. of 7 variables:
## $ time : int 10 30 35 99 185 204 210 232 232 279 ...
## $ status : int 3 3 2 3 1 1 1 3 1 1 ...
## $ sex : int 1 1 1 0 1 1 1 0 1 0 ...
## $ age : int 76 56 41 71 52 28 77 60 49 68 ...
## $ year : int 1972 1968 1977 1968 1965 1971 1972 1974 1968 1971 ...
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## $ thickness: num 6.76 0.65 1.34 2.9 12.08 ...
## $ ulcer : int 1 0 0 0 1 1 1 1 1 1 ...

Predicting absolute risks based on cause-specific Cox regression

We denote by T the time between a baseline date and the date of an event and by D ∈ {1, ..., K}
the cause of the event. We assume that {D = 1} is the event of interest. Let X = (X1, . . . , Xp) be a
p-dimensional vector of baseline covariates with arbitrary distribution, and Z = (Z1, . . . , Zq) be the
strata variables, i.e. a set of categorical baseline covariates with finitely many possible values. Without
loss of generality and to ease the notation we set q = 1. We use {1, . . . , L} for the categories of Z.

We consider a setting in which the event time T is right censored at a random time C. We
assume that C is conditionally independent of T given (X, Z) and fix a time τ such that almost surely
P(C > τ|X, Z) > 0. We denote T̃ = min(T, C), D̃ = ∆D, and ∆ = 1{T ≤ C}.

Cause-specific Cox regression

Given covariates (X, Z), let S0(t|x, z) = P(T > t|X = x, Z = z) denote the event-free survival function
and Fj(t|x, z) = P(T ≤ t, D = j|X = x, Z = z) the cumulative incidence function for event j. The
cause-specific hazard rates are defined as λj,z(t|x) = dFj(t|x, z)/S0(t|x, z) (Andersen et al., 1993). We

also denote the cumulative hazard rates by Λj,z(t|x) =
∫ t

0 λj,z(s|x)ds. The stratified Cox regression
model (Cox, 1972) for cause j is given by

λj,z(t|x) = λ0j,z(t) exp(xβ j), (1)

where β j = (β1
j , . . . , β

p
j )

ᵀ
is a p-dimensional vector of regression coefficients (the log-hazard ratios),

and {λ0j,z(t) : z = 1, . . . , L} a set of unspecified baseline hazard functions.

Predicting the absolute risk of an event

The cause-specific Cox regression models can be combined into a prediction of the absolute risk of an
event of type 1 until time t conditional on the covariates x, z. For the case where K = 2 the absolute
risk formula of Benichou and Gail (1990) is given by:

F1(t|x, z) =
∫ t

0
S(s− |x, z)λ1,z(s|x)ds. (2)

where s− denotes the right sided limit, e.g. Λ1,z(s − |x) = limv→s,v<sΛ1,z(v|x). The absolute risk
accumulates over time the product between the event-free survival and the hazard of experiencing the
event of interest, both conditional to the baseline covariates and to the strata variable. The event free
survival can be estimated from the cause-specific hazards using the product integral estimator:

S(t|x, z) = T
s≤t

(1− dΛ1,z(t|x)− dΛ2,z(t|x))

or the exponential approximation:

Ŝ(t|x, z) = exp
[
− Λ̂1,z(t|x)− Λ̂2,z(t|x)

]
. (3)

which is asymptotically equivalent to the product-limit estimator if the distribution of the event times
is continuous. Using the product integral estimator ensures that S(t|x, z)+ F1(t|x, z)+ F2(t|x, z) equals
exactly 1. This is a desirable property since the sum of the transition probabilities over all possible
transitions should sum to one.

Formula (2) generalizes to situations with more than 2 competing risks, i.e., K > 2. However, in
applications with many competing risks there will sometimes be few events of specific causes, and it
may be hard to fit a Cox regression model for each cause separately. One possibility when K > 2 is to
combine all causes where D̃ > 1 into a single competing risk for the cause of interest D̃ = 1. While
the riskRegression package allows the use of more than 2 competing risks, we will illustrate its use
considering only 2 competing risks . The package implements formula (2) in two steps.
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Step 1: estimation of the cause-specific hazards

The first step is to fit the Cox regression models with the CSC() function in order to estimate λ1,z and
λ2,z:

cfit0 <- CSC(formula = Hist(time,status) ~ age + logthick + epicel + strata(sex),
data = Melanoma)

coef(cfit0)

## $`Cause 1`
## age logthick epicelpresent
## 0.01548722 0.68178505 -0.73848649
##
## $`Cause 2`
## age logthick epicelpresent
## 0.07680909 0.04750975 0.31497177

In the call of CSC() the argument formula is used to define the outcome variables with the help of
the function prodlim::Hist(). The variable “time” in the data set contains the values of the observed
event time T̃ and the variable “status” the cause of the event D̃. Objects generated with the function
prodlim::Hist() have a print method:

h <- with(Melanoma, prodlim::Hist(time,status))
h

## Right-censored response of a competing.risks model
##
## No.Observations: 205
##
## Pattern:
##
## Cause event right.censored
## 1 57 0
## 2 14 0
## unknown 0 134

and a plot method:

plot(h, arrowLabelStyle = "count",
stateLabels = c("Radical\noperation", "Cancer\nrelated death", "Death\nother causes"))

Radical
operation

Cancer
related death

Death
other causes

n= 14

n= 57

Figure 1: Box-arrow diagram showing the three states of the competing risk model and the number
of observed transitions in the Melanoma data set.

A nice complement to the regression models is the marginal Aalen-Johansen estimate of the
absolute risk of cancer related death (Figure 2):
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library(prodlim)
plot(prodlim(Hist(time,status) ~1, data = Melanoma),

atrisk.at = seq(0,3652.5,365.25), xlim = c(0,3652.5),
axis1.at = seq(0,3652.5,365.25), axis1.lab = 0:10,
xlab = "Years", ylab = "Absolute risk", cause = 1)
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Figure 2: Non-parametric estimation of the absolute risk of cancer related death over time obtained
using the Aalen-Johansen estimator.

The right hand side of the formula in the call of the CSC() function:

Hist(time,status) ~ age + logthick + epicel + strata(sex)

defines the covariate(s) X which enter into the linear predictor xβ in formula (1), and the strata
variable(s) Z which define the baseline hazard functions λ0j,z. Strata variables are specified by
wrapping the variable names into the special function strata(), as one would do when using the
coxph() function. If only one formula is provided, the CSC() function will use the same baseline
covariates and strata variables for all cause-specific Cox regression models. Instead one may feed a list
of formulas into the argument formula, one for each cause:

cfit1 <- CSC(formula = list(Hist(time,status) ~ age + logthick + epicel + strata(sex),
Hist(time,status) ~ age + strata(sex)),

data = Melanoma)
coef(cfit1)

## $`Cause 1`
## age logthick epicelpresent
## 0.01548722 0.68178505 -0.73848649
##
## $`Cause 2`
## age
## 0.07919648

Note that the choice of the baseline covariates relative to each cause made here is not based
on clinical or statistical criteria; it was done to illustrate the software possibilities. The causes are
internally ordered with respect to the levels of the variable “status”, if this variable is a factor, and
otherwise with respect to sort(as.character(unique(status))). The order of the causes is saved as
cfit1[["causes"]]. Accordingly, the first formula is used to fit a Cox regression model to the first
cause and the second formula is used to fit a Cox regression model to the second cause and so on.
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Internally, CSC() constructs dummy variables, one for each cause, and then calls the function defined
by the argument fitter on a suitably constructed Surv() formula. By default the cause-specific
Cox models are fitted with the function survival::coxph(). Alternatively, one can set the argument
fitter to the name of a different routine, e.g., cph.

Step 2: computation of the absolute risk

The object obtained with CSC() has class "CauseSpecificCox". The second step is to call the cor-
responding predict() method. In addition to the object obtained with CSC() this requires three
additional arguments: newdata, times, cause. The argument newdata should be a "data.frame"
which contains the covariates X and Z in the same format as the data used to fit CSC(). The argument
cause defines the cause of interest D and the argument times defines a vector of prediction horizon(s)
whose values are used as the upper integration limit t in formula (2). The predict() method computes
the absolute risks (formula (2)) for each row in newdata and each value of times:

newdata <- data.frame(age = c(45,67), logthick = c(0.1,0.2),
epicel = c("present","not present"),
sex = c("Female","Male"))

pfit1 <- predict(cfit1, newdata = newdata, cause = 1, times = c(867,3500))

By default, the product integral estimator is used to estimate the event-free survival function.
Setting the argument productLimit to FALSE when calling the predict function enables to use the
exponential approximation. The predict function returns a structured list of class "predictCSC".
The corresponding print() method calls as.data.table.predictCSC() to display the predictions as
follows:

print(pfit1)

## observation age logthick epicel sex times strata absRisk
## 1: 1 45 0.1 present Female 867 sex=Female 0.021
## 2: 2 67 0.2 not present Male 867 sex=Male 0.149
## 3: 1 45 0.1 present Female 3500 sex=Female 0.117
## 4: 2 67 0.2 not present Male 3500 sex=Male 0.428

For each row in newdata (values are repeated for each prediction horizon) and each prediction
horizon (column times) the column “absRisk” contains the absolute risk of cancer specific mortality
(cause 1). Standard errors and confidence intervals for the absolute risk can be obtained setting the
argument se to TRUE:

pfit1se <- predict(cfit1, newdata = newdata, cause = 1, times = c(867,3500),
se = TRUE, keep.newdata = FALSE)

print(pfit1se)

## observation times strata absRisk absRisk.se absRisk.lower absRisk.upper
## 1: 1 867 sex=Female 0.021 0.122 0.00738 0.0478
## 2: 2 867 sex=Male 0.149 0.161 0.07356 0.2502
## 3: 1 3500 sex=Female 0.117 0.151 0.05552 0.2025
## 4: 2 3500 sex=Male 0.428 0.320 0.20416 0.6355

Here we have set the argument keep.newdata to FALSE to not export the value of the covariates.
The structure of the "predictCSC" object is as follows.

str(pfit1se)

## List of 11
## $ absRisk : num [1:2, 1:2] 0.021 0.149 0.117 0.428
## $ absRisk.se : num [1:2, 1:2] 0.122 0.161 0.151 0.32
## $ absRisk.lower : num [1:2, 1:2] 0.00738 0.07356 0.05552 0.20416
## $ absRisk.upper : num [1:2, 1:2] 0.0478 0.2502 0.2025 0.6355
## $ times : num [1:2] 867 3500
## $ strata : Factor w/ 2 levels "sex=Female","sex=Male": 1 2
## $ conf.level : num 0.95
## $ se : logi TRUE
## $ band : logi FALSE
## $ nsim.band : num 10000
## $ transformation.absRisk:function (x)
## - attr(*, "class")= chr "predictCSC"
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The elements $absRisk, $absRisk.se, $absRisk.lower and $absRisk.upper are matrices where
each row corresponds to a row in newdata and each column to a value of the times vector. All
these matrices are sorted according to the original orders of the arguments newdata and times. To
conveniently extract a subset of the results, one should first call as.data.table.predictCSC() to
combine these results into a "data.table" object. Here is an example:

ptable1 <- as.data.table(pfit1se)
ptable1[times == 3500 & observation == 1,

.(times,absRisk,absRisk.lower,absRisk.upper)]

## times absRisk absRisk.lower absRisk.upper
## 1: 3500 0.1166383 0.05551508 0.2025222

In the same way confidence bands can be obtained by setting the argument band to TRUE:

vec.times <- cfit1$eventTimes
pfit1band <- predict(cfit1, newdata = newdata[1], cause = 1,

times = vec.times, se = TRUE, band = TRUE)
newdata[1]

## age logthick epicel sex
## 1: 45 0.1 present Female

By default 10,000 simulations will be used to estimate the appropriate quantile for the confidence
bands (see explanations in section Construction of the confidence bands). This default behavior can be
changed by setting the argument nsim.band to another value. The autoplot() function can then be
used to compare confidence bands and the confidence intervals:

figure3 <- autoplot(pfit1band, band = TRUE, ci = TRUE)$plot
figure3 <- figure3 + xlab("Time (days)") + ylab("Absolute risk")
print(figure3)
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Figure 3: Absolute risk over time for a 45 years old female patient with a tumor thickness of 0.1 mm
and epithelioid cells (blue line). The continuous black lines represent the confidence bands while the
dashed black lines represent the range of the confidence intervals.

Note that the resulting object is a "ggplot" graphic. This can be useful to personalize the graph,
e.g. change the font size of the text.
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Construction of the confidence intervals

In this section we describe the asymptotic formula behind the confidence intervals for the predicted
absolute risks and the empirical counterpart which is implemented in riskRegression. We assume
a sample (Xi)i∈{1,...,n} of n independent and identically distributed replications of X = (T̃, D̃, X, Z).
The estimator F̂1 of F1 is obtained by substituting the Cox partial likelihood estimate β̂ j for β j and the
baseline hazard estimate λ̂0j,z for λ0j,z in equations (1) and (2).

The asymptotic confidence intervals for the covariate specific absolute risks of event 1 before time
t are based on the following von Mises expansion (van der Vaart, 1998):

√
n(F̂1(t|x, z)− F1(t|x, z)) =

1√
n

n

∑
i=1

φF1 (Xi; t, x, z) + oP(1). (4)

where the exponential approximation is used for defining the event free survival in F1(t|x, z). Given
(4), for fixed values t, x, z the central limit theorem implies that F̂1(t|x, z) has an asymptotic normal
distribution with asymptotic variance VF1 (t, x, z) = E(φF1 (Xi; t, x, z)2). Based on the estimate φ̂F1 of
the influence function φF1 (both defined in subsequent subsections) our variance estimate is given by

V̂(t, x, z) =
1
n

n

∑
i=1

φ̂F1 (Xi; t, x, z)2. (5)

We then construct Wald confidence intervals for F1(t|x, z) in the usual way:[
F1(t|x, z) + qα/2

√
V̂(t, x, z)); F1(t|x, z) + q1−α/2

√
V̂(t, x, z)

]
where qα is the α-quantile of the normal distribution. Since the absolute risk is bounded below by 0
and above by 1, the confidence interval is automatically restricted to this interval. Alternatively the
confidence interval can be computed using a log-log transformation: first the confidence interval is
computed on the log-log scale:[

log(− log(F1(t|x, z))) + qα/2

√
V̂log−log(t, x, z)); log(− log(F1(t|x, z)))− q1−α/2

√
V̂log−log(t, x, z)

]
where Vlog−log is the variance of the influence function on the log-log scale. Then the confidence inter-
val is back transformed using the link function: x 7→ exp(− exp(x)). This ensures that the confidence
interval is bounded below by 0 and above by 1. By default, the confidence intervals are computed
using the log-log transformation. To compute them without using the log-log transformation, the
argument log.transform needs to be set to FALSE when calling predict.CauseSpecificCox():

pfit2se <- predict(cfit1, newdata = newdata, cause = 1, times = c(867,3500),
se = TRUE, log.transform = FALSE, keep.newdata = FALSE)

print(pfit2se)

## observation times strata absRisk absRisk.se absRisk.lower absRisk.upper
## 1: 1 867 sex=Female 0.021 0.00992 0.00157 0.0404
## 2: 2 867 sex=Male 0.149 0.04586 0.05945 0.2392
## 3: 1 3500 sex=Female 0.117 0.03795 0.04226 0.1910
## 4: 2 3500 sex=Male 0.428 0.11620 0.20021 0.6557

Here the column “absRisk.se” contains Vlog−log (log-log scale) while the columns “absRisk”,
“absRisk.lower”, and “absRisk.upper” are on the original scale. The benefit of using a log-log transfor-
mation is studied in the section Coverage of the confidence interval and the confidence bands.

Asymptotic formula

The influence function φF1 can be expressed as a function of the influence functions φλ1 and φλ2 of the
cause-specific hazard rates:

φF1 (X , t, x, z) =
∫ t

0
exp(−Λ1,z(s|x)−Λ2,z(s|x))dφΛ1,z (X ; s, x)

−
∫ t

0
λ1,z(s|x) exp(−Λ1,z(s|x)−Λ2,z(s|x))

(
φΛ1,z (X ; s, x) + φΛ2,z (X ; s, x)

)
ds. (6)
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We use the shorthand notations v⊗0 = 0, v⊗1 = v, v⊗2 = vvᵀ and∫
f (s, d, v, w)dP(s, d, v, w) =

∫ ∞

0

K

∑
d=0

∫
Rp

L

∑
z=1

f (s, d, v, w)dP(s, d, v, w).

We also suppress the dependence on τ when we in the following adapt the usual notation for Cox
model asymptotic theory to the cause-specific and stratified case:

S (r)(t, β j, z) =
∫

1{t ≤ s ≤ τ, w = z} exp(vβ j)v⊗rdP(s, d, v, w)

E(t, β j, z) =
S (1)(t, β j, z)

S (0)(t, β j, z)

I(β j) =
∫

1{d = j}
(
S (2)(s, βl , w)

S (0)(s, β j, w)
− E(s, β j, w)⊗2

)
dP(s, d, v, w).

For fixed cause j, time t and strata z the expansions
√

n(β̂ j − β j) = 1√
n ∑n

i=1 φβ j (Xi) + oP(1)

and
√

n(Λ̂0j,z(t)− Λ0j,z(t)) = 1√
n ∑n

i=1 φΛ0j,z (Xi, t) + oP(1) are then characterized by the influence
functions

φβ j (X ) = I(β j)
−1
(

1{D̃ = j, T̃ < τ}
(

X− E(T̃, β j, Z)
)

− exp(Xβ j)
∫

1{d = j, s ≤ T̃}
X− E(s, β j, Z)

S (0)(s, β j, Z)
dP(s, d, v, w)

)
(7)

φΛ0j,z (X ; t) = −φβ j (X )
∫ t

0
E(s, β j, z)λ0j,z(s)ds

− 1{Z = z}
(

exp(Xβ j)
∫ min(t,T̃)

0

λ0j,z(s)

S (0)(s, β j, z)
ds− 1{T̃ ≤ t, D̃ = j}

S (0)(T̃, β j, Z)

)
. (8)

In absence of strata, formula (7) is equal to formula 2 of (Reid, 1981) and formula (8) equals the
one given in Gerds and Schumacher (2001, top of page 576; note however that there is a sign mistake
in their first term). To connect these formulas with formula (6) it remains to note that under the Cox
regression model the influence function of the cause-specific hazard rate can be written as:

φΛj,z (X ; t, x) = exp(xβ j)
(

φΛ0j,z (X ; t) + Λ0j,z(t) x φβ j (X )ᵀ
)

. (9)

Empirical estimates

The following formulas are obtained with the plug-in principle substituting the Cox partial likelihood
estimates β̂ j for β j and the baseline hazard estimates λ̂0j,z for λ0j,z into formulas (6) - (9). We denote
by Nz

j (t) = ∑n
i=1 1{T̃i ≤ t, D̃i = j, Zi = z} the strata and cause specific counting process, and by

Yz(t) = ∑n
i=1 1{Ti ≥ t, Zi = z} the strata specific “at-risk” process (Andersen et al., 1993). The

empirical estimate of the influence function of the partial likelihood estimate is given by

φ̂β j (Xi) = Î(β j)
−1
(

∆i

(
Xi − Ê(T̃i, β̂ j, Zi)

)
− exp(Xi β̂ j)

∫ Ti

0

Xi − Ê(s, β̂ j, Zi)

Ŝ (0)(s, β̂ j, Zi)
dNj(s)

)

where

Ŝ (r)(t, β̂ j, z) =
∫ τ

0
exp(Xi β̂ j)X⊗r

i dNz
j (t).
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The influence functions for the cumulative baseline hazard and its first differential are estimated by:

φ̂Λ0j,z (Xi; t) = −φ̂β j (Xi)
∫ t

0
E(s, β̂ j, z)λ̂0j,z(s)ds

− 1{Zi = z}
(

exp(Xi β̂ j)
∫ min(t,T̃i)

0

λ̂0j,z(s)

Ŝ (0)(s, β̂ j, z)
ds− 1{T̃i ≤ t, D̃i = j}

Ŝ (0)(T̃i, β̂ j, Zi)

)
(10)

dφ̂Λ0j,z (Xi; t) = −φ̂β j (Xi)E(t, β̂ j, z)λ̂0j,z(t)

− 1{Zi = z}
(

exp(Xi β̂ j)1{t ≤ T̃i}
λ̂0j,z(t)

Ŝ (0)(t, β̂ j, z)
− 1{T̃i = t, D̃i = j}
Ŝ (0)(T̃i, β̂ j, Zi)

)
. (11)

These estimates lead to the following estimates of the influence functions of the covariate specific
cumulative hazard and its derivative relative to the time:

φ̂Λj,z (Xi; t, x) = exp(xβ̂ j)
(

φ̂Λ0j,z (Xi; t) + Λ̂0j,z(t) x φ̂β j (Xi)
ᵀ
)

(12)

dφ̂Λj,z (Xi; t, x) = exp(xβ̂ j)
(

dφ̂Λ0j,z (Xi; t) + λ̂0j,z(t) x φ̂β j (Xi)
ᵀ
)

. (13)

Finally, we obtain our estimate of the influence function of the absolute risk:

φ̂F1 (Xi, t, x, z) =
∫ t

0
exp(−Λ̂1,z(s|x)− Λ̂2,z(s|x))dφ̂Λ1,z (Xi; s, x) (14)

−
∫ t

0
λ̂1,z(s|x) exp(−Λ̂1,z(s|x)− Λ̂2,z(s|x))

(
φ̂Λ1,z (Xi; s, x) + φ̂Λ2,z (Xi; s, x)

)
ds. (15)

Construction of the confidence bands

A confidence band with confidence level 1− α for the absolute risk F1(.|x, z) restricted to the time
interval T = [τ1; τ2] is a region RT (x, z) = [lx,z(t); ux,z(t)]t∈T satisfying:

P(F1(t|x, z) ∈ [lx,z(t); ux,z(t)] |∀t ∈ T ) = 1− α.

In figure Figure 3, τ1 = 0 and τ2 = 3458, the time at which the last event occurred. Using the
martingale central limit theorem, (Cheng et al., 1998) have shown that F̂1(t|x, z)− F1(t|x, z) converges
weakly to a zero-mean Gaussian process on T . The asymptotic variance of this process is V(t, x, z).
However the 1− α quantile achieving simultaneous coverage is larger than the 1− α quantile of a
standard normal distribution. Since the dependence between the increments of the process F̂1(t|x, z)−
F1(t|x, z) makes the derivation of an explicit expression for the quantile difficult, we used instead a
resampling technique (Scheike and Zhang, 2008). Consider over t ∈ T the normalized process:

ψF1 (Xi; t, x, z) = φF1 (Xi; t, x, z)/
√

V(t, x, z).

Denote by c1−α/2 the 1− α/2 quantile of the sample:

sup
t∈T
|ψF1 (Xi; t, x, z)|

and using the symmetry of the Gaussian distribution, i.e. cα/2 = −c1−α/2, a 1− α confidence band
over T is constructed as follows:[

F1(t|x, z)− c1−α/2

√
V̂(t, x, z)); F1(t|x, z) + c1−α/2

√
V̂(t, x, z)

]
.

Like for the confidence intervals, the confidence bands will be restricted to the interval [0;1] when they
are not computed using a log-log transformation.

Implementation details

The function predict.CauseSpecificCox() calls two important functions, predictCox() that com-
putes the hazard and cumulative hazard for a fitted Cox model, and iidCox() that computes the
influence function for the baseline hazard and regression coefficients. In this section we first explain
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how predictCox() deals with ties in the event times. We then show that the function predictCox()
can also be used to obtain confidence intervals and bands for covariate specific survival probabilities
in the situation without competing risks. Implementation details about the function iidCox() are
postponed to appendix B. These details may be useful for programmers who need to care about
memory usage.

Handling of tied event times

We speak of ties when two or more observations have the same value of the time variable T̃. Ties occur
for example when time is recorded on a discrete scale such as months. The survival package imple-
ments three different methods to deal with ties (“efron”, “breslow”, and “exact”, see help(coxph)) for
the partial likelihood estimator of the log hazard ratios β j (Therneau and Grambsch, 2000). We have
implemented the “efron” and the “breslow” method but not the “exact” method. For a comparison of
these methods and yet another method see Scheike and Sun (2007). We now state the formula for the
baseline hazard function under Breslow’s (Breslow, 1974) and Efron’s method (Efron, 1977) for the
handling of ties. The baseline hazard estimate in strata z given by the Breslow method is:

dΛ̂B
0j,z(t) =

dNz
j (t)

∑i∈Yz(t) exp(βtXi)
.

With the Efron method for handling ties the formula is given by:

dΛ̂E
0j,z(t) =

dNz
j (t)

∑
k=1

1

∑i∈Yz(t) exp(βtXi)− k−1
dNz

j (t)
∑

dNz
j (t)

i=1 exp(βtXi)
.

Both estimators are implemented in the function predictCox() which provides estimates of the
baseline hazard, the cumulative baseline hazard and baseline survival. The predictCox() function
does not have an argument to specify whether Breslow method or Efron method should be used;
instead it uses the same method that has been used to estimate the regression coefficients. In the case
of the coxph() function, the default method is Efron:

f1 <- coxph(Surv(time,status != 0) ~ age + logthick + epicel + strata(sex),
data = Melanoma, x = TRUE, y = TRUE)

f1$method

## [1] "efron"

Therefore the baseline hazard will be estimated using the Efron method when calling predictCox():

baseH1 <- predictCox(f1)
as.data.table(baseH1[c("time","cumhazard","strata","survival")])

## time cumhazard strata survival
## 1: 99 0.00623279 Female 0.9937866
## 2: 232 0.01256406 Female 0.9875145
## 3: 279 0.01897728 Female 0.9812017
## 4: 295 0.02555481 Female 0.9747690
## 5: 355 0.03221850 Female 0.9682950
## ---
## 199: 3909 0.69673810 Male 0.4982078
## 200: 4119 0.69673810 Male 0.4982078
## 201: 4207 0.69673810 Male 0.4982078
## 202: 4310 0.69673810 Male 0.4982078
## 203: 4492 0.69673810 Male 0.4982078

The cumulative baseline hazard and baseline survival are displayed in the columns “cumHazard”,
and “survival” of the output. This corresponds, respectively, to Λ0j,z(t) and exp(−Λ0j,z(t)) where j is
1, z can be found in the column “strata” and t in “time”. The covariate specific cumulative hazard
Λj,z(t|x) and survival exp(−Λj,z(t|x)) can be estimated using the same function:

predictCox(f1, newdata = Melanoma[c(17,101,123),],
times = c(7,3,5)*365.25)

## observation times strata cumhazard survival
## 1: 1 2557 Male 0.884 0.413
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## 2: 2 2557 Female 0.555 0.574
## 3: 3 2557 Female 0.949 0.387
## 4: 1 1096 Male 0.453 0.635
## 5: 2 1096 Female 0.202 0.817
## 6: 3 1096 Female 0.346 0.708
## 7: 1 1826 Male 0.670 0.512
## 8: 2 1826 Female 0.366 0.693
## 9: 3 1826 Female 0.626 0.535

Confidence intervals and confidence bands for survival probabilities

In absence of competing risks, the influence function of a Cox model can be used to estimate confidence
intervals for the survival. This can be done by setting the argument se to TRUE when calling the
predictCox() function:

p1 <- predictCox(f1, newdata = Melanoma[3:5,],
times = c(Melanoma$time[5:7],1000),
se = TRUE, type="survival")

The predictCox() function output an object of class "predictCox". The print() method can be
used to display the confidence intervals for the survival computed at different times:

print(p1)

## observation times strata survival survival.se survival.lower survival.upper
## 1: 1 185 Male 0.980 0.616 0.935 0.994
## 2: 2 185 Female 0.985 1.014 0.893 0.998
## 3: 3 185 Male 0.947 0.652 0.823 0.985
## 4: 1 204 Male 0.973 0.567 0.921 0.991
## 5: 2 204 Female 0.985 1.014 0.893 0.998
## 6: 3 204 Male 0.929 0.594 0.791 0.977
## 7: 1 210 Male 0.967 0.503 0.913 0.987
## 8: 2 210 Female 0.985 1.014 0.893 0.998
## 9: 3 210 Male 0.912 0.552 0.762 0.969
## 10: 1 1000 Male 0.864 0.321 0.760 0.925
## 11: 2 1000 Female 0.769 0.286 0.631 0.860
## 12: 3 1000 Male 0.673 0.391 0.426 0.832

Here the confidence intervals were computed using a log-log transformation. The argument
log.transform can be set to FALSE to compute them without using the log-log transformation. Confi-
dence bands can also be obtained using predictCox() by setting the argument band to TRUE. As for the
predict.CauseSpecificCox() function, 10,000 simulations will be used to compute the confidence
bands; this can be changed specifying the argument nsim.band. The function as.data.table.predictCox()
makes it easy to extract subsets from "predictCox" object:

p1 <- as.data.table(p1)
p1[times == 185,]

## observation times strata survival survival.se survival.lower survival.upper
## 1: 1 185 Male 0.9801395 0.6163925 0.9350597 0.9940246
## 2: 2 185 Female 0.9845660 1.0137483 0.8927600 0.9978695
## 3: 3 185 Male 0.9470887 0.6524116 0.8226132 0.9849795

Coverage of the confidence interval and the confidence bands

To assess the validity of the estimation of the standard error, we performed a simulation study. The
sample size was varied between 50 and 10000. For each sample size, 5000 datasets were simulated
using the SimCompRisk() function from the riskRegression package. The time of first event typically
ranged between 0.001 and 20 with a median around 4. For each dataset, a Cox model specific to cause
1 and a 2 cause-specific Cox model were fitted considering 2 covariates (X1 and X2). The survival,
absolute risk, their confidence intervals were estimated (with or without log-log transformation) at
time 1, 1.5, 2, 3, 4, 5, 6, and 7 conditional on X1 = 0 and X2 = 1. The confidence bands over those 8
times were also computed.

The true absolute risk was defined as the median of the absolute risks over the 5000 datasets. The
coverage of the confidence intervals was computed as the percentage of times that the true absolute
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risk was inside the confidence interval, at a given time. The coverage of the confidence bands was
computed as the percentage of times that the true absolute risk was inside the confidence bands,
simultaneously for all of the 8 times.

As expected, the coverage of the confidence intervals is improving with increasing sample size
and reaches its nominal level of 95% at around sample size 1000 (figure Figure 4, left panel). Using a
log-log transformation leads to better small sample properties and similar large sample properties
(figure Figure 4, right panel). A larger sample size was necessary for the confidence bands to converge
toward the nominal coverage level (n = 5000, figure Figure 5 left panel). Again log-log transformation
leads to better small sample properties. We only displayed here the coverage for the absolute risk but
similar coverage was obtained for the survival function.

Figure 4: Coverage of the asymptotic confidence interval of the absolute risk plotted against the
sample size. Each color corresponds to a prediction time. The figure is only shown for samples size
below 2000 since for larger sample sizes the coverage is always approximately equal to 0.95. Left
panel: confidence intervals are computed on the original scale. Right panel: confidence intervals are
computed on the log-log scale and back-transformed.

Runtime and memory usage

Baseline hazard

We compare the performance of predictCox() regarding the estimate of the baseline hazard function
with that of the function survival::basehaz(). For this purpose we simulate data with 10 covariates
including both continuous and discrete type using the sampleData().

In our performance study we vary the sample size ranging from 500 to 1,000,000 observations and
consider both stratified:

Surv(time,event) ~ strata(X1) + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10

and non-stratified Cox regression models:

Surv(time,event) ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10

The computation times were estimated using the rbenchmark package (Kusnierczyk, 2012) and
averaged across 100 simulated data sets. The memory usage was estimated using the profvis package
(Chang and Luraschi, 2017) and averaged across 10 simulations. When the execution time of the
function was extremely fast (i.e. <0.005s), the memory usage could not be reliably assessed and was
set to NA.

Memory usage and computation time are displayed on figure Figure 6 and Figure 7. Both functions
lead to a reasonable computation time (<1 min) even when considering very large datasets (e.g. >10,000
observations). Nevertheless the predictCox() function outperforms the basehaz() function by a factor
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Figure 5: Coverage of the asymptotic confidence band of the absolute risk plotted against the sample
size. Left panel: confidence intervals are computed on the original scale. Right panel: confidence
intervals are computed on the log-log scale and back-transformed.

varying between 3 and 11 in terms of computation time. The gain in speed is especially expressed in
large datasets. Memory usage is also lower for predictCox() and decreases by a factor between 1 and
1.6 as compared to basehaz().

Absolute risk

We now compare two implementations for computing the standard errors of the absolute risk. The
default implementation corresponds to setting the argument store.iid to "full" when calling
predict.CauseSpecificCox() or predictCox() while the second is obtained by setting store.iid
to "minimal". The two implementations are described in more detail appendix B.

First we compare their computation time and memory consumption when making only one
prediction. As before, we simulated datasets for K = 2 using the SimCompRisk() function with
increasing sample size. Then, the two cause-specific Cox models were fitted to each of the simulated
datasets using riskRegression::CSC. Then we measured the computation time and memory usage
necessary to estimate the absolute risk with its standard error for the first observation at time 4, when
using the argument store.iid="minimal" or store.iid="full" in predict.CauseSpecificCox().

The results are show on figure Figure 8. While both implementations lead to a similar computation
time, the memory usage for store.iid="minimal" grows linearly while for store.iid="full" it grows
approximately in n1.4. However, if instead of estimating the absolute risk with its standard error
for one prediction, we estimate it for all the observations the implementation store.iid="minimal"
becomes slower compared to store.iid="full" (e.g. 28.5 minutes vs. 6 minutes for n=2000).
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Figure 6: The computation time (in seconds) of predictCox() and basehaz() plotted against the
sample size for a Cox model (left panel) and a stratified Cox model (right panel). The x axis is
displayed using a logarithmic scale but its labels refer to the (untransformed) sample size. The curves
represent the median values over 100 simulations while the shaded areas represent the 95% confidence
intervals.

no strata strata

10
3

10
4

10
5

10
6

10
3

10
4

10
5

10
6

0

500

1000

1500

sample size

m
e
m

o
ry

 u
s
a
g
e
 (

M
B

)

implementation basehaz predictCox

Figure 7: The memory usage (in megabytes) of predictCox() and basehaz() plotted against the
sample size for a Cox model (left panel) and a stratified Cox model (right panel). The x axis is
displayed using a logarithmic scale but its labels refer to the (untransformed) sample size. The curves
represent the median values over 100 simulations while the shaded areas represent the 95% confidence
intervals.
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Figure 8: The computation time (left panel) and memory usage (right panel) for computing the
absolute risk with its standard error for one observation plotted against the sample size, setting the
argument store.iid to "full" or "minimal" when calling predict.CauseSpecificCox(). The curves
represent the median values over 100 simulations while the shaded areas represent the 95% confidence
intervals.
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Summary

This paper introduces new features of the riskRegression package for prediction of absolute risks from
cause-specific Cox regression models using computationally efficient functions. Table 1 summarizes
the main functions described in this paper. Confidence intervals and confidence bands for the absolute
risks can be computed using the predict() function and displayed using the print() method. The
predictCox() function can be applied on "coxph" and "cph" objects to predict the survival with
its confidence interval or confidence bands. In both cases, the autoplot() function can display
the predicted risk (or survival) over time. When dealing with small to moderate sample sizes, we
advise to compute confidence intervals or confidence bands using a log-log transformation (argument
log.transform).

Table 1: Functions implemented in the riskRegression package for making prediction from Cox
regression models

CSC() Fit cause-specific Cox models
predict() Predict covariate specific absolute risks for given time hori-

zons
iidCox() Compute the influence function of the baseline hazard esti-

mator and of the partial likelihood estimator of the regres-
sion coefficients

predictCox() Compute the (cumulative) baseline hazard function and
predictions of hazards and survival probabilities in new
data

autoplot() Graphical display of the predicted risk across time
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Appendix A Modularity

The CSC() function requires a routine to estimate the regression coefficients of the Cox model. By
default, CSC() calls the coxph() function from the survival package to do so. This has several reasons:
coxph() has been thoroughly tested, is reasonably fast, widely used and provides flexible modeling
options. However in specific contexts, other routines may be more appropriate, e.g. faster. Also,
developers that have implemented their own routine may be interested in computing the baseline
hazard or the influence function.

To be able to apply the predictCox() and iidCox() functions on new classes, one needs to define
the methods extracting the necessary information from the new class. For instance, the mets package
(Holst and Scheike, 2017) contains an efficient routine for estimating Cox models. However "phreg"
object that are quite different from "coxph" objects:

library(mets, verbose = FALSE)
Melanoma$entry <- 0
f1.phreg <- phreg(Surv(entry, time, status != 0) ~ age + logthick + epicel +

strata(sex), data = Melanoma)
list(coxph=names(f1),

phreg=names(f1.phreg))

## $coxph
## [1] "coefficients" "var" "loglik" "score"
## [5] "iter" "linear.predictors" "residuals" "means"
## [9] "concordance" "method" "n" "nevent"
## [13] "terms" "assign" "wald.test" "x"
## [17] "strata" "y" "formula" "xlevels"
## [21] "contrasts" "call"
##
## $phreg
## [1] "coef" "ploglik" "gradient" "hessian" "U" "S0"
## [7] "nevent" "ord" "time" "jumps" "jumptimes" "strata"
## [13] "entry" "exit" "status" "p" "X" "id"
## [19] "opt" "call" "model.frame"

Therefore to be able to use the predictCox() and iidCox() functions on "phreg" one needs to
define methods to extract:

The values used to center the covariates (CoxCenter() method). Instead of working on X, many
routines estimating the Cox model parameters works on a centered version X̃ = X − X̄. The
CoxCenter() method returns X̄:

riskRegression:::coxCenter.coxph(f1)

## age logthick epicelpresent
## 52.4634146 0.6181706 0.4341463

The design matrix used to fit the Cox model (CoxDesign() method). The first two columns describe
the beginning and the end of the interval of time when the individual was followed. The third
contains the event type (0 corresponding to censoring and 1 to an observed event, e.g. death).
The remaining columns contain the design matrix corresponding to the coefficients β of the Cox
model and the strata variable (if any):

head(riskRegression:::coxDesign.coxph(f1))

## start stop status age logthick epicelpresent strata
## 1 0 10 1 76 1.9110229 1 2
## 2 0 30 1 56 -0.4307829 0 2
## 3 0 35 0 41 0.2926696 0 2
## 4 0 99 1 71 1.0647107 0 1
## 5 0 185 1 52 2.4915512 1 2
## 6 0 204 1 28 1.5769147 0 2

The formula of the Cox model (CoxFormula() method):

riskRegression:::coxFormula.coxph(f1)
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Surv(time, status != 0) ~ age + logthick + epicel + strata(sex)

The value of the linear predictor Xβ (CoxLP() method). This function has three arguments: object,
data, and center.

head(riskRegression:::coxLP.coxph(f1, data = NULL, center = FALSE))

## [1] 2.433793 1.136828 1.168604 2.332216 2.165533 1.559629

When setting data to NULL, the CoxLP() method will return the linear predictor computed on the
dataset used to fit the Cox model. The center argument indicates whether the covariates should be
centered before computing the linear predictor.

The number of observations used to fit the Cox model (CoxN() method):

riskRegression:::coxN.coxph(f1)

## [1] 205

The character string indicating the strata variable(s) in the formula (CoxSpecialStrata() method):

riskRegression:::coxSpecialStrata.coxph(f1)

## [1] "strata"

The variable encoding to which strata belongs each observation (CoxStrata() method). This vari-
able must be univariate, aggregating all the strata variables.

head(riskRegression:::coxStrata.coxph(f1, data = NULL, strata.vars = "strata(sex)"))

## [1] Male Male Male Female Male Male
## Levels: Female Male

Similarly to CoxLP(), when setting data to NULL, the CoxStrata() method will return the strata
variable computed on the dataset used to fit the Cox model.

The variance-covariance matrix of the regression coefficients (CoxVarCov() method):

riskRegression:::coxVarCov.coxph(f1)

## age logthick epicelpresent
## age 6.553939e-05 -0.0002102408 -0.0004363469
## logthick -2.102408e-04 0.0206977373 0.0076882093
## epicelpresent -4.363469e-04 0.0076882093 0.0692047486

Most of the above methods correspond to a very small piece of code that reformats the information
contained in the object, e.g.:

riskRegression:::coxVarCov.coxph

## function (object)
## {
## Sigma <- object$var
## if (!is.null(Sigma)) {
## coefName <- names(coef(object))
## colnames(Sigma) <- coefName
## rownames(Sigma) <- coefName
## }
## return(Sigma)
## }
## <environment: namespace:riskRegression>

We refer to the help page of each method for a more precise description of each method arguments
and expected output, as well as examples. Once all of the methods have been defined for a new object
(e.g. "phreg"), predictCox() and iidCox() can be applied on the new object:

all.equal(predictCox(f1), predictCox(f1.phreg))

## [1] TRUE

all.equal(iidCox(f1), iidCox(f1.phreg))

## [1] TRUE
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Appendix B Saving the influence functions

The function iidCox() computes the estimates of the influence functions φβ j , φλ0j , and φΛ0j for a given
set of covariates and time points:

f1.iid <- iidCox(f1)

The default implementation (store.iid="full") stores the influence function for the baseline
cumulative hazard as a list of matrices, one for each strata. The size of each matrix is the number
of observations n times the number of unique event times nT(z) in stratum z. Storing the influence
function can be very memory demanding when considering large datasets. This is why the influence
function is only temporary stored during the execution of the predict() method.

When dealing with very large datasets, e.g. following n = 20000 patients during nT = 365 days,
storing the influence function can be too memory demanding. Instead of computing and storing φλ0j ,
an alternative solution is to only store the necessary quantities to compute φλ0j :

1{T̃i = t, D̃i = j}
Ŝ (0)(T̃i, β̂ j, Zi)

, E(t, β̂ j, z)λ̂0j,z(t),
∫ t

0
E(s, β̂ j, z)λ̂0j,z(s)ds,

λ̂0j,z(t)

Ŝ (0)(t, β̂ j, z)
,
∫ t

0

λ̂0j,z(s)

Ŝ (0)(s, β̂ j, z)
ds. (16)

These quantities are lists containing L vectors of length n or nT(z). Since in most applications n and
nT(z) are large compared to L this approach is much more memory efficient. Setting the argument
store.iid to "minimal" when calling iidCox will return the influence function using this alternative
storage method:

f2.iid <- iidCox(f1, store.iid = "minimal")

We can compare the memory cost of the default implementation vs. the alternative one:

size.f1.iid <- object.size(f1.iid$IFcumhazard)
size.f2.iid <- object.size(f2.iid$calcIFhazard)
as.numeric(size.f2.iid/size.f1.iid)

## [1] 0.08627399

and see that the memory use for storing the influence function of the cumulative hazard has been
divided by more than 10.

Computing the influence function of the absolute risk with the default implementation only
requires to:

• use φ̂Λ0j,z (Xi; t) and dφ̂Λ0j,z (Xi; t) with formula (12) and (13) to obtain φ̂Λj,z (Xi; t, x) and dφ̂Λj,z (Xi; t, x).

• use formula (14) to obain φ̂F1 (Xi, t, x, z).

When using the alternative implementation, φ̂Λ0j,z (Xi; t) and dφ̂Λ0j,z (Xi; t) have not been computed.
Therefore an additional step is needed:

• use (16) with formula (10) and (11) to compute φ̂Λ0j,z (Xi; t) and dφ̂Λ0j,z (Xi; t).

The two implementations will lead to the same influence function and therefore the same confidence
intervals or confidence bands.

The alternative implementation is performed iterating over the set of covariates used to make the
predictions, avoiding to store the influence function of the baseline hazard for all event times and
strata. It will also not compute the influence function at unnecessary times and strata. Thus it should
always be more memory efficient and, when asking for a single prediction, it should also be have a
lower computation time. However, compared to the default implementation where φ̂Λ0j,z (Xi; t) and
dφ̂Λ0j,z (Xi; t) are only computed once, the alternative implementation recomputes these quantities for
each prediction.

Therefore when the prediction is to be made for many different sets of covariates (i.e. new patients)
this may lead to a substantial increase in computation time. See the subsection Runtime and memory
usage for more details.

To use the implementation for computing the standard errors, confidence intervals, or confidence
bands one must set the argument store.iid to "minimal":

pfit3se <- predict(cfit1, newdata = newdata, cause = 1, times = c(867,3500),
se = TRUE, store.iid = "minimal", keep.newdata = FALSE)

print(pfit3se)
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## observation times strata absRisk absRisk.se absRisk.lower absRisk.upper
## 1: 1 867 sex=Female 0.021 0.122 0.00738 0.0478
## 2: 2 867 sex=Male 0.149 0.161 0.07356 0.2502
## 3: 1 3500 sex=Female 0.117 0.151 0.05552 0.2025
## 4: 2 3500 sex=Male 0.428 0.320 0.20416 0.6355

range(pfit3se$absRisk.se-pfit1se$absRisk.se)
range(pfit3se$absRisk.upper-pfit1se$absRisk.upper)
range(pfit3se$absRisk.lower-pfit1se$absRisk.lower)

## [1] -2.775558e-17 5.551115e-17
## [1] -5.551115e-17 0.000000e+00
## [1] -5.551115e-17 0.000000e+00

This option also applies when computing standard errors, confidence intervals, or confidence
bands for the survival probabilities:

p2 <- predictCox(f1, newdata = Melanoma[3:5,],
times = c(Melanoma$time[5:7],1000),
se = TRUE, store.iid = "minimal", type="survival")

p2 <- as.data.table(p2)
p2[times == 185, survival.lower]-p1[times == 185, survival.lower]
p2[times == 185, survival.upper]-p1[times == 185, survival.upper]

## [1] 0.000000e+00 1.110223e-16 -1.110223e-16
## [1] 0 0 0
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LeArEst: Length and Area Estimation
from Data Measured with Additive Error
by Mirta Benšić, Petar Taler, Safet Hamedović, Emmanuel Karlo Nyarko and Kristian Sabo

Abstract This paper describes an R package LeArEst that can be used for estimating object dimensions
from a noisy image. The package is based on a simple parametric model for data that are drawn from
uniform distribution contaminated by an additive error. Our package is able to estimate the length
of the object of interest on a given straight line that intersects it, as well as to estimate the object area
when it is elliptically shaped. The input data may be a numerical vector or an image in JPEG format.
In this paper, background statistical models and methods for the package are summarized, and the
algorithms and key functions implemented are described. Also, examples that demonstrate its usage
are provided.

Availability: LeArEst is available on CRAN.

Introduction

Image noise may arise by the physical processes of imaging, or it can be caused by the presence of
some unwanted structures (e.g., soft tissue captured in X-ray images of bones). Such problems can
occur, for example, when the object is observed with a fluorescent microscope (Ruzin and others, 1999),
ground penetrating radar, medical equipment (X-ray, ultrasound), etc. With the presence of additive
noise, the detection of the object edge as well as determining length or area of the object becomes a
non-trivial problem. The well known edge detection methods (Qiu, 2005; Canny, 1986) generally do
not perform well.

Our approach does not use the mentioned edge detection methods, but looks at the problem
in a different way. We start with a simple univariate model where the data represent independent
realizations of a random variable X, X = U + ε. In the aforementioned equation U is supposed to be
uniformly distributed over the object image and describes the object image without an error, while
ε represents measurement error. It is shown that such a simple model can also be very useful in
applications itself, not only related to the image analysis. For instance, in Tolić et al. (2017) the sum of
uniform and normal distributions is confirmed to be the most representative distribution for modelling
transmission loss data.

Different aspects of this model are developed in Benšić and Sabo (2007b), Benšić and Sabo (2007a),
Benšić and Sabo (2010), Benšić and Sabo (2016), Sabo and Benšić (2009), and Schneeweiss (2004).
The basic one-dimensional model is described in Section B.2 together with the results that are used
for statistical inference incorporated in the package. Although this model is not universal in all
applications, we find it useful in some cases.

With the assumption that the observed object has a circular or elliptical shape, a two-dimensional
approach has been developed, dealing with an object area estimation problem (Benšić and Sabo, 2007a;
Sabo and Benšić, 2009). This approach utilizes many border estimations and performs parametric
curve fitting on its results.

The package LeArEst (Bensic et al., 2017) uses these methods for length and area estimation of an
object captured with noise. It supports numerical inputs, which is useful if a machine that records an
object stores numerical data (coordinates of recorded points). However, if an object is captured in a
picture file, the package includes a web interface with which one can load a picture, specify a line that
intersects the object, adjust the parameters, and perform an edge detection on the drawn line. Another
web interface allows the user to draw a rectangle around the object and perform area estimation of
the marked object. Description of functions dealing with numerical and graphical estimations and
examples of their use are given in Section B.3.

Basic statistical model

The basic model we deal with in this package is an additive error model

X = U + ε.
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Figure 1: Line intersecting the object and histogram of recorded points for statistical inferences

Here we suppose that the random variable U is uniformly distributed on the interval [−a, a], a > 0,
i.e., has a density

fU(x; a) =
{ 1

2a , x ∈ [−a, a].
0, else

(1)

and ε is an absolutely continuous random variable describing measurement error. Further, we assume
that ε is independent of U with zero mean. Instead of the sample U1, U2, . . . , Un from U, one can
only observe the contaminated i.i.d. sample X1, X2, . . . , Xn from X. We are to estimate the unknown
parameter a.

Our model is the special case of a general additive error model X = Y + ε, where Y and ε are
assumed to be independent continuous random variables, but only X is observable. Estimating the
unknown density fY from an i.i.d. sample X1, X2, . . . , Xn, X1 ∼ X, is known as the deconvolution
problem. Usually, the error part ε is assumed to have a known density fε. Several nonparametric
methods have been developed to estimate fY (Meister, 2009); the most popular and studied is the
deconvolution kernel density estimator (Carroll and Hall, 1988; Stefanski and Carroll, 1990). The
packages decon (Wang and Wang, 2013) and deamer (Stirnemann et al., 2012) provide functions for
estimating density fY in a nonparametric way. Two different approaches in estimating the support of
a density from a contaminated sample can be seen in (Meister, 2006) and (Delaigle and Gijbels, 2006).
One is based on the deconvolving kernel density estimator (Delaigle and Gijbels, 2006) and the other
on the moment estimation (Meister, 2006). To our knowledge, none of them is implemented in some R
package submitted to the CRAN repository.

For our purpose (e.g., estimating borders of some object from a noisy image), we find that the
model with Y ∼ U [−a, a] is useful in some instances. Namely, in many cases we have a relatively
high contrast between an object and its background as it is the case in Figure 5. It seems reasonable to
assume that the data extracted from the green line in Figure 5 come from a uniform distribution, but
contaminated by an additive error.

Let fε and Fε be the density and distribution function of the error part ε. Then the density of
X = U + ε is

fX(x; a) =
∫ ∞

−∞
fU(t) fε(x− t)dt =

1
2a

(Fε(x + a)− Fε(x− a)) . (2)

If we suppose that the distribution of ε belongs to a scale family, with scale parameter σ, then (2) may
be rewritten as

fX(x; a, σ) =
1
2a

(
F
(

x + a
σ

)
− F

(
x− a

σ

))
,

with F(x) being the standard (σ = 1 and zero mean) distribution function.

Let x = (x1, . . . , xn) denote the realization of the i.i.d. sample X = (X1, . . . , Xn). The likelihood
function has the form

L (a, σ; x) =
n

∏
i=1

fX(xi; a, σ) =
1

(2a)n

n

∏
i=1

(
F
(

xi + a
σ

)
− F

(
xi − a

σ

))
,
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and the log-likelihood function is given by

l(a, σ) = −n log(2a) +
n

∑
i=1

log
(

F
(

xi + a
σ

)
− F

(
xi − a

σ

))
.

If the distribution of ε is symmetric around zero, then the Fisher information is

I(a) =
−1
a2 +

1
aσ2

∫ ∞

0

(
f
( x+a

σ

)
+ f

( x−a
σ

))2

F
( x+a

σ

)
− F

( x−a
σ

) dx.

Supposing that parameter σ is known or consistently estimated then, under regularity, we have

√
n (âML − a0)

D−→ N
(

0,
1

I(a0)

)
, (3)

where a0 is the true value of a.

Some flexibility of our model is achieved by changing the error distribution. For now, three
types of error distributions are available in the package. The normal distribution ε ∼ N

(
0, σ2) is

sometimes a natural choice. Properties of maximum likelihood (ML) and method of moments (MM)
estimators with known σ2 are given in Benšić and Sabo (2007b). The model with Y ∼ U [0, a] is treated
in Schneeweiss (2004). Benšić and Sabo (2010) considered the unknown σ2 case. The possibility of this
(one-dimensional) model in two-dimensional problems is given in Benšić and Sabo (2007a) and Sabo
and Benšić (2009). For the sake of robustness Laplace and scaled Student (with 5 degrees of freedom)
distributions are also incorporated in the package as a choice of the error distribution. Estimating
issues with Laplacian error can be seen in Benšić and Sabo (2016), as well as a discussion connected to
robustness.

Two procedures for deriving confidence intervals for a are described in (Hamedović et al., 2017).
The first one is based on the asymptotic distribution of ML estimator in (3). For a specified 0 < α < 1,
an asymptotic (1− α)100% confidence interval for a is1

(
âML −

zα/2√
nI(âML)

, âML +
zα/2√

nI(âML)

)
.

The second method is based on the likelihood ratio statistic

λ(X) =

sup
H0

L (a; X)

sup
(0,∞)

L (a; X)
=

L (a0; X)
L (âML; X)

.

From the asymptotic distribution of the log-likelihood ratio statistic

−2 log λ(X) D−→ χ2
1

an approximate (1− α)100% confidence interval for a is{
a| l(âML)− l(a) ≤ 0.5χ2

1(1− α)
}

,

where χ2
1(1− α) is the 1− α quantile of χ2

1 distribution.

These two approaches can be used to test hypotheses regarding the parameter a. For example, in
the case of a two-sided hypotheses H0 : a = a0 versus H1 : a 6= a0, the critical regions of asymptotic
size α are {

x|
√

nI(a0)|âML − a0| ≥ zα/2

}
, and{

x| − 2 log λ(x) ≥ χ2
1(1− α)

}
,

respectively. Note that both methods are asymptotically equivalent.

Overview of the package

The package LeArEst depends on the following packages that should installed in addition to the
LeArEst package: conicfit (Gama and Chernov, 2015), jpeg (Urbanek, 2014), and opencpu (Ooms,

1as usual, zα is the 1− α quantile of the standard normal distribution
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Function Description

lengthest() Performs length estimation from a numerical data set.
lengthtest() Performs one-sided and two-sided tests for uniform

distribution half-length.
areaest() Performs area estimation of a numerically described object

in plane.
startweb.esttest() Opens default web browser and loads a web page for length

estimation and testing (the object of interest is shown in
an image).

startweb.area() Opens default web browser and loads a web page for area
estimation of the object shown in an image.

Table 1: Overview of LeArEst functions

Arguments Description

x Vector of input data.
error Error distribution.
var Error variance.
var.est Method of error variance estimation.
conf.level Confidence level of the confidence interval. Defaults to 0.95.

Results Description

radius Estimated half-length of the uniform support.
var.error Error variance, estimated or explicitly given by argument var.
conf.int Confidence interval for half-length of the uniform support.
method Method used for computing a confidence interval

(asymptotic distribution of ML or likelihood ratio statistic).

Table 2: Summary of arguments and results of lengthest

2014). The stable version of the package is available on the Comprehensive R Archive Network
repository (CRAN; https://CRAN.R-project.org/) and can be downloaded and installed by issuing
the following command at the R console:

> install.packages("LeArEst")

The package is loaded using the following command:

> library(LeArEst)

An overview of the package’s functions is given in Table 1.

Length estimation — a numerical data set

The function lengthest computes the length of an interval which is the domain of a uniform distribu-
tion from data contaminated by an additive error according to the model described in the previous
section. The function’s arguments and results are given in Table 2.

In order to perform length estimation, a type of the error distribution must be chosen through the
argument error with three possibilities: ‘laplace’ (Benšić and Sabo, 2016), ‘gauss’ (Benšić and Sabo,
2007b, 2010), or ‘student’ (scaled Student distribution with 5 degrees of freedom).

The variance of the additive error may or may not be known. If the variance is known, argument
var should be used and the variance should be assigned to it. In the case of unknown variance,
function lengthest implements two methods for its estimation: Method of Moments and Maximum
Likelihood. Value ‘MM’ of the argument var.est instructs the functions to use Method of Moments,
while the corresponding value ‘ML’ triggers Maximum Likelihood Method. There is the possibility,
depending on the input data, that the Method of Moments estimate of error variance does not exist.
When that is the case, the function stops and outputs the message instructing the user to use Maximum
Likelihood estimator or to give an explicit variance. It is important to mention that arguments var and
var.est may not be used simultaneously.
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Figure 2: Estimation of the density function

The last argument, conf.level, specifies the confidence level of the confidence interval calculated
by the function.

The results of this function are the estimated half-length of uniform distribution (i.e., of an object),
estimated or explicitly given error variance, confidence interval for half-length (with regard to the
given confidence level) and the statistical method for computing a confidence interval.

Usage example. Let us generate a sample of size 1000 from X = U + ε, where U ∼ U [−1, 1] and
ε ∼ N

(
0, (0.1)2):

set.seed(12)
sample_1 <- runif(1000, -1, 1)
sample_2 <- rnorm(1000, 0, 0.1)
sample <- sample_1 + sample_2

Figure 2 shows density estimation from the generated data obtained with the R function density. A
half-length estimation of the uniform support for these data can be done with the following command:

lengthest(x = sample, error = "gauss", var.est = "MM", conf.level = 0.90)

The most important part of its output is:

$radius
MLE for radius (a) of uniform distr.: 0.9916513
$var.error
MM estimate for error variance: 0.01279636
$method
[1] "Asymptotic distribution of LR statistic"
$conf.int
[1] 0.9724316 1.0116479

Testing hypothesis — a numerical data set

Function lengthtest performs one-sided and two-sided tests against hypothesized half-length of the
uniform support as it is described in Section B.2. Since the actual calculations inside this function are
based on the ML approach most input arguments are similar to those in the function lengthest (see
Table 3). Argument null.a is a positive number representing hypothesized half-length of the uniform
support, while argument alternative defines the usual forms of alternatives (‘two.sided’, ‘greater’,
or ‘less’).

Function lengthtest also performs length estimation, so all values from its output, except p.value
and the calculated value of the test statistic (tstat), are the same as that of the function lengthest.
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Arguments Description

x Vector of input data.
error Error distribution.
null.a Specified null value being tested.
alternative The form of the alternative hypothesis.
var Error variance.
var.est Method of error variance estimation.
conf.level Confidence level of the confidence interval. Defaults to 0.95.

Results Description

p.value p-value of the test.
tstat The value of the test statistic.
radius Estimated half-length of the uniform support.
var.error Error variance, estimated or explicitly given by argument var.
conf.int Confidence interval for half-length.
method Method used for computing a confidence interval

(asymptotic distribution of ML or likelihood ratio statistic).

Table 3: Summary of arguments and results of lengthtest

Usage example. Generate the data in a similar manner as in the lengthest example:

set.seed(12)
sample_1 <- runif(1000, -1, 1)
sample_2 <- rnorm(1000, 0, 0.1)
sample <- sample_1 + sample_2

To test that the uniform support half-length equals 1 against that it is less than 1 the function
lengthest can be used in the following way:

lengthtest(x = sample, error = "gauss", alternative = "less", var.est = "MM",
null.a = 1, conf.level = 0.95)

Part of the output dealing with a testing procedure is:

$p.value
[1] 0.2418929
$tstat
[1] -0.7002265

Area estimation — a numerical data set

The input for the function areaest is supposed to be a data set of points in the plane representing
independent realizations of a two-dimensional random vector

X = U + ε.

It is assumed that U has a uniform distribution on an ellipsoid and ε is a two-dimensional error term
independent of U. Arguments and results of this function are listed in Table 4.

The algorithm implemented in the function areaest is explained in detail in Benšić and Sabo
(2007a). The main task in area estimation is to estimate edge points of the uniform support. In order
to achieve this, the original problem is reduced to several corresponding one-dimensional problems,
which can in turn be solved by function lengthest.

Let us denote the data set with D = {(xi, yi) , i = 1, . . . , n}. The function areast transforms
this data set in two different ways: through the y-axis and through the x-axis. The algorithm for
transformation through the y-axis is presented below, while the transformation through the x-axis is
done analogously.

ALGORITHM 1 (Transformation through the y-axis (Benšić and Sabo, 2007a))

Step 1. Separating through the y-axis.

Choose an integer m < n and real numbers η1 < η2 < · · · < ηm such that
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Arguments Description

data Two-column data matrix containing the points that describe the
observed object. The first column represents the x coordinate of the point,
while the second column represents its y coordinate.

nrSlices Number of slices applied for plain data cutting. Defaults to 10.
error Error distribution.
var Error variance.
var.est Method of error variance estimation.
plot Logical parameter that determines whether to plot data set, calculated

edge points, and the resulting ellipse. Defaults to FALSE.

Results Description

area Estimated area of the object.
points Set of estimated object’s edge points.
semiaxes Resulting ellipse’s semi-axes.

Table 4: Summary of arguments and results of areaest

(i) η1 ≤ min{yi : i = 1, . . . n}, max{yi : i = 1, . . . n} ≤ ηm and
(ii) Ck := {(xi, yi) ∈ D : yi ∈ [ηk, ηk+1]}, k = 1, . . . , m− 1 is a nonempty set.

Step 2. Centering through the y-axis.

Let us denote
ck :=

1
|Ck| ∑

(xi ,yi)∈Ck

xi, dk :=
1
|Ck| ∑

(xi ,yi)∈Ck

yi,

k = 1, . . . , m− 1,

for k = 1, . . . , m− 1 define Ck := {xi − ck : (xi, yi) ∈ Ck}.

Using this algorithm the data are transformed in the way that we have sets Ck, k = 1, . . . , m− 1
that represent centered tiny strips. Argument nrSlices corresponds to m− 1 and specifies the number
of strips. The lengths of these strips (in x-direction) can be estimated using the function lengthest
(the parameters error, var, and var.est are used in a lengthest call in the way described earlier).
After doing so, the algorithm needs to be repeated through the x-axis. Finally, at this point of the
procedure, the data that is a noisy version of points from the curve is created – it represents estimated
points from the border of the object.

The next task is to choose one of the well-known curve fitting procedures for parameter estimation.
Here we are dealing with a nonlinear parameter estimation problem.

Let us suppose that we have an elliptical domain, i.e.,

D(p) =
{
(x, y) ∈ R2 :

(x− p)2

α2 +
(y− q)2

β2 ≤ 1
}

,

p = (p, q, α, β)T .

On the basis of data obtained so far, the vector of unknown parameters p needs to be estimated,
and by doing so, the optimal ellipse that fits into our points is to be defined. For this purpose
EllipseDirectFit function from the conicfit package is used. This function implemets the algebraic
ellipse fit method by Fitzgibbon-Pilu-Fisher (Fitzgibbon et al., 1999). Having parameters p, it is a
trivial task to calculate the area of the ellipse that approximates the observed object.

Usage example. Two internal files are provided with the package: ‘ellipse_3_4_0.1_gauss.txt’ and
‘ellipse_3_4_0.1_laplace.txt’. Both of them represent an ellipsoidal object with center in point (1, 1),
half-axes 1.5 and 2, with added measurement error. In the first file, the error distribution is a two-
dimensional normal with independent margins and variance 0.01, while in the other it is Laplacian
(λ = 0.1) in both directions, again with independent margins.

In order to use one of these files, the data needs to be read into a data frame:

inputfile <- system.file("extdata", "ellipse_3_4_0.1_laplace.txt", package = "LeArEst")
inputdata <- read.table(inputfile)

Area estimation of the uniform support can be done with the command:

areaest(inputdata, error = "laplace", var.est = "ML", nrSlices = 5, plot = TRUE)
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Figure 3: Data points, estimated border points, and the resulting ellipse obtained by the function
areaest

In the previous example, the parameter plot is set to TRUE, so the function plots the given input
data (black dots), estimated border points (red dots), and the resulting ellipse (cyan ellipse); see Figure
3.

The most important parts of the numerical output are:

$area
[1] 9.938305
$semiaxes
[1] 2.048028 1.544638

Length estimation and testing for an object shown in a picture

In order to apply the described methods to a picture of an object, two web interfaces have been built
and embedded into the package.

As far as we know, shiny (Chang et al., 2017) provides the simplest way of building web applica-
tions using R. However, limitations of its free version discouraged us from using it, so we decided
to use the opencpu package. This package provides a reliable and interoperable HTTP API for data
analysis based on R. Basically, it provides an interface between functions in R package and a custom-
made web page bundled with the package, using JavaScript and AJAX. Building web interfaces using
opencpu is more complex than using shiny, but at the same time, it provides more flexibility in
application design. It is assumed that developers are familiar with HTTP protocol, HTML, and the
JavaScript language, in order to develop such web applications.

Function startweb.esttest will be described in this section. This function takes no arguments
and returns no results, its task is to start a web interface for length estimation and hypothesis testing
(Figure 4).

To start the analysis using the web interface the picture in JPG format should be loaded (Load
Picture button). Then, a line should be drawn that intersects the object of interest by clicking on two
points in the picture - length estimation will be performed on that line. Finally, parameters for a data
set preparation should be set.

The Levels of gray parameter determines how many levels of grey the algorithm should take
into account. It is important to mention that, although color images can be loaded, they are internally
converted to grey-scales prior to any calculations. Since JPG format supports 224 different colors,
the number of possible colors should be reduced in order to optimize estimation speed and memory
consumption.

Line thickness specifies how many picture pixels around the drawn line are taken into account
in length estimation. For instance, if Line thickness is set to 3, the algorithm takes pixels which are
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Figure 4: Web interface for length estimation and hypothesis testing. Loaded image shows arterial
wall of the carotid artery; we are trying to estimate its intima media thickness (darker layer below
artery cavity).

direct left neighbours of the line, pixels on the line itself, and the ones which are direct right neighbours
of the line. By doing so, the matrix of (length of the line) × Line thickness pixels – PixelMatrix is
obtained.

By doing so, we have obtained the matrix of (length of the line) × Line thickness pixels –
PixelMatrix.

By clicking on the Prepare data button the data set will be prepared for the inference.

The following step deals with data preparation and is a crucial step of the algorithm. Each pixel
of PixelMatrix is mapped to a new matrix of Box size × Box size booleans – DotMatrix (note that
Box size is a parameter). Further, every DotMatrix is filled with uniformly distributed dots (i.e., TRUE
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Figure 5: Web interface for length estimation and hypothesis testing - hypothesis testing output

values) in a way that total number of dots in each DotMatrix corresponds to the brightness of the pixel
it represents. Then, DotMatrices are tiled up with respect to the position of corresponding pixel and, by
doing so, a new matrix of (length of the line · Box size) × (Line thickness · Box size) booleans is
obtained – FinalDotMatrix. The last step is to summarize rows of the FinalDotMatrix to obtain a vector
of (length of the line) · Box size integers. The vector’s histogram is shown on a web interface (Figure
4, at the bottom) and the vector itself serves as an input to the functions lengthest or lengthtest.

Parameters in the Estimation section of the web interface are transferred to lengthest, as well.
After the user clicks on Estimate button, lengthest is executed, and its results are displayed below the
picture. Additionally, the estimated uniform support is marked red on the intersecting line.

Estimated length is expressed in width of a pixel and in percentage of whole image’s width as
well. As stated in the info box, it is important to use a proportional screen resolution on user’s display,
so the pixels on the screen are square-shaped.

The Testing section of this web interface serves for hypothesis testing. Procedures related to image
loading, choosing an intersecting line, and data preparation are the same as described above. For the
purpose of testing, values for H0, unit, and alternative (‘greater’, ‘less’, or ‘two-sided’) need to be
specified. The part of the web interface dealing with output of hypothesis testing procedure is shown
in Figure 5.

Area estimation of an object shown in a picture

The function startweb.area starts a web interface for area estimation (Figure 6). Again, the first step
is to load an image. To select an object whose surface needs to be evaluated, a rectangle should be
drawn around it. It is done by clicking on its upper-left and lower-right corners, after which a green
rectangle is drawn on the picture.

Data parameters are similar to ones in the length estimation web interface, with the exception of
number of slices.

The first step in the area estimation algorithm for this function is to roughly isolate the object in
the selected rectangle. In order to do that, pixels from the selected rectangle are divided into two
clusters by using the kmeans function from base-R stats package (the criterion for clustering is pixel
brightness). Further, only pixels from the ’object cluster’ are observed and divided into horizontal
and vertical stripes, as described earlier in Algorithm B.3.3. The number of stripes is dictated by the
number of slices parameter. A length estimation procedure is conducted on each stripe, obtaining
two estimated edge points of the object for each stripe (red dots in Figure 5). Two parameters in the
Estimation section of the web interface are related to the length estimation procedure of the stripes.

Finally, an optimal ellipse that fits into edge points is found using EllipseDirectFit function
from the conicfit package, as well as in the areaest function described earlier. The resulting ellipse is
drawn in red in Figure 5. Its area is printed below, this is measured in pixels and the percentage of the
whole image area.

Concluding remarks

The R package LeArEst provides routines for estimating the support of the random variable U, U ∼
U [−a, a], based on a sample from X = U + ε. The random variable ε represents additive measurement
error and is supposed to have either a normal, Laplace, or scaled Student distribution with 5 degrees
of freedom. The package also includes functions for estimating either the borders or the area of some
object from a noisy image. The package may be useful for this purpose mainly in the case of images
with reasonable contrast between the object of interest and background. For greater robustness, we
find it convenient to use some error distributions with heavier tails. Sometimes we have different
amounts of noise in the tails, so it would be useful to include some asymmetric error distributions as
well. These are some features we are going to add in the package in order to improve flexibility of our
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Figure 6: Web interface for area estimation showing an MRI scan detail (taken from Bankman (2008))

models.
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Splitting It Up: The spduration
Split-Population Duration Regression
Package for Time-Varying Covariates
by Andreas Beger, Daniel W. Hill, Jr., Nils. W. Metternich, Shahryar Minhas, and Michael D. Ward

Abstract We present an implementation of split-population duration regression in the spduration
(Beger et al., 2017) package for R that allows for time-varying covariates. The statistical model accounts
for units that are immune to a certain outcome and are not part of the duration process the researcher
is primarily interested in. We provide insights for when immune units exist, that can significantly
increase the predictive performance compared to standard duration models. The package includes
estimation and several post-estimation methods for split-population Weibull and log-logistic models.
We provide an empirical application to data on military coups.

Introduction

Duration models are an important class of statistical estimators that take into account the duration
dependency of specific outcomes. A prominent example is that the risk of dying depends on the age
of an individual. Newborns are at a greater risk of dying, but as they grow older this risk quickly
declines and then gradually starts to increase again after the age of 9-10. While individual behavior
(smoking, exercising, diet) and structural factors (health care, health regulations, urban vs rural) can
increase or decrease the probability of dying over time, the underlying risk is time dependent and
impacts on all individuals.

However, there are conditions under which not all individuals have the same underlying risk to
experience a specific outcome and might not even be at risk at all. Consider the risk of acquiring a
viral infection like the common flu. Let us initially assume that everyone is at risk of infection, and
individual behavior (e.g., good hygiene) and structural factors (e.g., workplace) determine whether
individuals catch the flu. Under these assumptions a standard duration model should provide us with
efficient estimates of how different behavioral and structural factors impact on the general baseline
risk. But, there might be individuals that are immune to the flu in the overall population—because
they received vaccination, had the specific flu virus in the past, or have some other characteristic
that makes it impossible for them to attract the disease. In this instance we have two underlying
populations: an at risk population and an immune one. If the immune population is relatively large,
estimates using a standard duration model will be biased and predictions inaccurate.

Additionally, risk factors might change over time requiring estimators that can account for such
dynamics. We therefore present a split-population estimator that allows for the inclusion of time-
varying covariates, which is an important distinction to other R implementations of split-population
or cure models.

Immune populations and inference of duration processes

Regular duration models, where baseline risk is modeled by some distribution of time, were originally
developed in health and demographic research and grew naturally from life tables and survival
records for medical patients. Basic formulations of such models, like the parametric exponential or
Weibull regressions or the semi-parametric Cox regression, implicitly assume that all subjects or units
under observation, including right-censored observations, will eventually experience the event of
interest. This assumption may be violated in many substantive areas and empirical applications,
where a sub-population of units or individuals will never experience an event, and thus are effectively
“cured.”

The insight that populations might be split in regard to their baseline risk has been formulated as
early as 1949 by Boag (1949) and Berkson and Gage (1952), who were researching survival rates in
cancer patients. In their application some fraction of patients survived because their cancer was cured,
while others relapsed after apparent remission due to levels of disease below detectable thresholds.
The development of duration methods in health and medicine has also shaped the terminology
conventionally used for such models. For example, split-population duration models are also referred
to as cure rate models. Similarly, the basic concepts like survival and failure rates reference the survival
of humans.

Yet the intuition underlying split-population duration models has led to applications in a broad
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range of subject areas outside demographics and medicine. In an early and foundational application
that reached beyond medicine, Schmidt and Witte (1989) examined criminal recidivism using data on
close to 10,000 prisoners from the North Carolina prison system in the late 1970s and early 1980s to
identify factors that influence whether a criminal relapses at all, and if so which factors are related to
the amount of time between prison stints. This work already includes a full formulation of a model
with independent covariates for both the duration equation and the risk or cure equation, although
only with subject-specific covariates rather than time-varying covariates for multiple data points per
individual.

In a complementary set of research from public health, Douglas and Hariharan (1994) use data
from the United States to model the age at which individuals began to smoke, and Forster and Jones
(2001) examine the impact of tobacco taxes on smoking and quitting decisions. DeYoung (2003), an
economist, models the failure of new commercial banks in the US during the 1980’s. Svolik (2008)
uses a split-population duration framework to examine whether democratic regimes persist or revert
to authoritarianism, and when. Building on this effort, split-population duration models have also
been used, along with other models, to produce regular predictions for five different forms of political
conflict for the Integrated Crisis and Early Warning System (ICEWS) project (Ward et al., 2013) and to
model irregular leadership changes for the Political Instability Task Force (PITF; Beger et al., 2014).

Model development

Conventional duration models assume that all subjects will eventually fail, die, or experience a specific
outcome. The likelihood for a data point with survival time t is thus the failure rate f (t) at that time or
the probability of survival beyond t, S(t), depending on whether the subject has already experienced
the event (δi) or is right-censored (1− δi):

L =
N

∏
i=1

( f (ti))
δi × (S(ti))

1−δi (1)

The major modeling question in this setting, which we will return to below, is the choice of
a function form (e.g., exponential, Weibull, or log-logistic) describing the underlying hazard rate
h(t) = f (t)

S(t) over time.

The cumulative failure rate (F(t) = 1− S(t)) over time converges to 1, meaning all subjects fail
eventually. In the examples of applied research discussed above this assumption is untenable. Some
cancer patients are cured after treatment, most young people never become regular smokers, and
many states will not experience the kind of violence that persists in other parts of the world. The
presence of a large sub-population which is not at risk for an event, will in practice inflate estimates
of the survival fraction, and reduce hazard estimates for all subjects. This is the case because the
underlying risk is estimated based on subjects that genuinely will fail and those that are cured. Hence,
such a model will over predict the hazard for subjects that are not at risk (cured), and under predict
for those who are at risk of eventually experiencing the event of interest.

We can incorporate the presence of a sub-population, where we label the subpopulation at risk
with π, by rewriting the likelihood as:1

L{θ|(t1, . . . , tn)} =
N

∏
i=1

(πi f (ti))
δi × ((1− πi) + πiS(ti))

1−δi (2)

Crucially, this split-population framework is primarily useful in contexts where sub-populations
are not clearly or easily identifiable. For example, there is a clear sub-population in a model of the
age at first pregnancy for humans—men—which researchers can easily identify and exclude from
their data. Less clear are answers to questions such as whether a cancer patient is cured or not cured
given that they have no visible signs of cancer following treatment or have hit the 5-year disease free
survival mark. In such situations, split-population models provide a way to infer sub-populations in a
probabilistic fashion.

Early efforts focused only on the cure rate (1− π) and treated it as a constant, but we can model
membership in the subpopulation with its own covariates through a logistic link function:

1Usual presentation of the split-population duration framework in medical contexts focus on the “cured” sub-
population. In our applications events are typically rare and it thus is easier to emphasize the “risk” subpopulation.
As risk = 1− cured, this difference is trivial.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 476

πi =
1

1 + e−ziγ
(3)

Where zi is a vector of covariates for a subject at a given time. For interpretation, it is important
to note that with time-varying covariates, the risk (or cured) estimate for a subject is particular to a
given time point rather than being constant over all time periods in the spell.2 Depending on the
covariates, the risk estimate for a subject can thus fluctuate over time. To ease interpretation, it might
be convenient to restrict covariates in the logit risk model to slow-moving, stable covariates in order to
produce stable risk estimates for subjects.

The last component to complete the likelihood is the choice of a distribution for the shape of the
hazard rate. The spduration package implements two hazard rate shapes, Weibull and log-logistic:

Weibull

f (t) = αλ (λt)α−1 e−(λt)α

S(t) = e−(λt)α

h(t) = αλ (λt)α−1

log-logistic

f (t) =
αλ (λt)α−1

(1 + (λt)α)2

S(t) =
1

1 + (λt)α

h(t) =
αλ (λt)α−1

1 + (λt)α

Where λ = e−xi β is a parameter of covariates. The Weibull density allows for hazard rates that are
increasing, constant, or decreasing over survival time, while the log-logistic density also can fit rates
that have a peak at a particular survival time.

Given the density distribution, the main quantity of interest is the conditional hazard h(t, π),
where both the risk/cure probabilities and hazard are conditional on survival to time t:

h (t, π) =
f (t, π)

S (t, π)
=

π (t)× f (t)
(1− π (t)) + π (t)× S (t)

(4)

π (t) =
1− π

S (t) + (1− π) (1− S (t))
(5)

For a given unconditional risk rate π, the probability that a subject with survival time t is in the risk
set decreases over time, because an increasing number of surviving cases consist of immune or cured
(1− π) cases that will never fail. In the hazard rate, the failure rate in the numerator is conditional
on the probability that a case is in the risk set, given survival up to time t, and the numerator is an
adjusted survivor function that accounts for the fraction of cured cases by time t, which is 1− π(t).

Fit a split-population model on coups data

In order to illustrate the package functionality, we examine a model of coups d‘etat in Belkin and
Schofer (2003). Belkin and Schofer’s paper lends itself to re-analysis with a split-population duration
model because they explicitly distinguish long-term structural risk factors for coups from more short-
term triggering causes that can explain the timing of a coup in an at-risk regime. They argue that many
countries never experience coups because coups are effectively impossible due to structural factors,
while others that never experience coups are nevertheless at risk due to a different configuration of
those same factors. Using language which fits nicely with the class of models described above, they
write “[t]riggers are not the source of the original risk, and in the absence of structural causes, the
presence of triggering factors alone cannot lead to a coup. Hence, triggers should not be equated with

2We use “spell” to designate all time periods observed for a subject up to the failure time. Subjects can
theoretically have multiple spells, e.g., cancer patients who go into remission and relapse more than once, or states
that experience multiple civil wars over their history.
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coup risk. Rather, they are factors that may determine the exact timing of a coup in regimes that suffer
from high coup risk” (Belkin and Schofer, 2003).

For their empirical test Belkin and Schofer develop a measure of “structural coup risk” which
incorporates factors such as the strength of democratic institutions and civil society, and a recent
history of successful coups. However, they implement a logistic regression model, which does not
capture the process as described in their quote above. This is because the logistic regression model
assumes that all observations are at risk for a coup (i.e., the probability of a coup is non-zero for all
observations). Since their structural coup risk indicator is developed precisely to distinguish between
at risk and “immune” cases, the split-population model allows one to examine whether the indicator
effectively does so.

We begin by loading the package and the Belkin and Schofer replication data, and formatting the
data to add several variables needed by the split-population duration model.

library("spduration")
data(bscoup)
?bscoup
head(bscoup[, 1:5])
countryid year couprisk recentcoups rwar

1 909 1960 0.2200166 0 0
2 909 1961 0.2200166 0 0
3 909 1962 0.2200166 0 0
4 909 1963 0.2200166 0 0
5 909 1964 2.5702426 1 0
6 909 1965 2.5702426 2 0

The data are documented in ‘?bscoup’, which also gives a reference to the source citation. It consists
of a little more than 5,000 observations of 162 countries from 1960 to 2000. Each row corresponds to a
country c in year t. Excluding the country and year identifiers, the data include 12 variables, including
a binary indicator for successful coups.

str(bscoup)
'data.frame': 5463 obs. of 14 variables:
$ countryid : num 909 909 909 909 909 909 909 920 920 920 ...
$ year : num 1960 1961 1962 1963 1964 ...
$ couprisk : num 0.22 0.22 0.22 0.22 2.57 ...
$ recentcoups: num 0 0 0 0 1 2 4 0 0 0 ...
$ rwar : num 0 0 0 0 0 0 1 0 0 0 ...
$ milreg : num 0 0 0 1 0 1 1 0 0 0 ...
$ wealth : num NA NA NA NA NA ...
$ instab : num 4 2 9 9 12 13 12 NA 0 4 ...
$ coup : Factor w/ 2 levels "no","yes": 1 1 1 2 2 2 1 1 1 1 ...
$ africa : num 0 0 0 0 0 0 0 0 0 0 ...
$ eurnam : num 0 0 0 0 0 0 0 1 1 1 ...
$ samerica : num 0 0 0 0 0 0 0 0 0 0 ...
$ camerica : num 0 0 0 0 0 0 0 0 0 0 ...
$ regconf : num 0 0 0 0.019 0.019 ...
- attr(*, "datalabel")= chr ""
- attr(*, "time.stamp")= chr "30 Jul 2003 12:15"
- attr(*, "formats")= chr "%9.0g" "%9.0g" "%9.0g" "%9.0g" ...
- attr(*, "types")= int 102 102 102 102 102 102 102 102 102 102 ...
- attr(*, "val.labels")= chr "" "" "" "" ...
- attr(*, "var.labels")= chr "country code .pr89" "year coded" "" "" ...
- attr(*, "version")= int 7
- attr(*, "label.table")=List of 1
..$ hadcoup: Named int 0 1
.. ..- attr(*, "names")= chr "no" "yes"

Altogether the data include 290 coups, which makes for a positive rate of slightly more than 5% of
all observations.

bscoup$coup <- ifelse(bscoup$coup == "yes", 1, 0)
table(bscoup$coup)
0 1
5173 290
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Country Year Coup Spell ID Failure Censor At risk Duration

Portugal 1960 0 1 0 0 1 1
. . . . . . 0 1 0 0 1 . . .
. . . 1975 1 1 1 0 1 16

Portugal 1976 0 2 0 0 0 1
. . . . . . 0 2 0 0 0 . . .
. . . 2000 0 2 0 1 0 20

Canada 1960 0 3 0 0 0 1
. . . . . . 0 3 0 0 0 . . .
. . . 2000 0 3 0 1 0 41

Table 1: Example data frame with select duration variables.

Before we can estimate a split-population duration model with the data, we need to add several
variables that capture the survival characteristics of the data.

bscoup <- add_duration(bscoup, "coup", unitID = "countryid",
+ tID = "year", freq = "year", ongoing = FALSE)
Warning message:
In attempt_date(data[, tID], freq) :
Converting to 'Date' class with yyyy-06-30

The add_duration function takes as input a data frame with a binary response variable—coup—
that measures the occurrence of the event, or failure, recorded over discrete time periods. We assume
that the data frame is in a cross-sectional time-series format that consists of multiple observations over
time for a number of subjects, in our case countries.

Within the framework of duration modeling, these data conceptually consist of “spells,” which
are repeated observations of a unit from the time they enter the data (left-censoring) or after they
experienced the event of interest, until the next event or the end of observation (right censoring). Table
1 shows how a single country could have two spells during the observation period. Observations for
Portugal make up two spells, one that begins in 1960, when our data start, to a coup event in 1975,
when a second spell starts and continues until either the next coup or the data end. Canada on the
other hand experienced no coups and so observations for that country from 1960 to 2000 make up one
spell.

The add_duration functions identifies spells in the data and returns the data frame with several
additional variables needed for estimation. The most important of these are shown in Table 1. Using
coups as the outcome, failure is coded when a coup occured. This also triggers a new spell if there are
more observations for a country. If a spell ends without a failure event it is coded as right censored
(censor). This can occur either because we have reached the end of observed data—the year 2000, or
because a country dropped out of the data, e.g., if it was subsumed by another country. Duration is
then coded for each spell by counting the number of time periods until a spell ends. The at risk coding
depends on whether a spell ended in failure—spells that end in failure are coded as being at risk for
their entire duration, otherwise they are coded as not being at risk.

The add_duration function also adds several other variables that should be of less concern in
typical use. If the data contain outcomes that can occur over multiple time periods, like civil wars,
add_duration should be used with the ongoing = TRUE flag so that only the first time period is treated
as a failure, rather than as repeated failures. In that case ongoing is a marker for ongoing events
beyond the initial onset. The variable cured is the inverse of atrisk, i.e., 1− atrisk. Lastly, t.0 marks
the starting time for the row. It is by default duration −1, but is retained to allow extension, if needed
in the future, for observations that do not span a fixed time period, e.g. if observations are taken at
irregular time intervals.

Though the data used in this example are recorded annually, the function supports annual, monthly,
or daily data and will try to convert the tID input to class Date given the provided argument in freq,
as indicated by the warning it returned in the example above. This can be avoided by first converting
any numeric dates using R’s "Date" class.

Another important question is how to handle consecutive 1s in the response variable. This is
controlled with the ongoing argument. In the case of civil war occurrence, the y variable records all
years during which a country experienced a civil war. Here ongoing should be set to TRUE so that the
models try to predict the onset of the civil war, but disregard ongoing conflicts (failure is set to NA for
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these cases, dropping them from analysis). With ongoing set to FALSE, successive 1s in y are treated as
distinct new failures, and kept in the analysis. This makes sense for discrete, short-term events like
coups. Countries can experience distinct coups in successive years.

The spdur function is the primary function in the package and produces a regression model object
of class "spdur" which can then be used with further methods. We begin by fitting first a Weibull (the
default) and then a log-logistic split-population duration model using the coups data, including the
measure of coup risk in the logit (risk) equation.

weib_model <- spdur(
+ duration ~ milreg + instab + regconf,
+ atrisk ~ couprisk + wealth + milreg + rwar + regconf + samerica +
+ camerica,
+ data = bscoup, distr = "weibull", silent = TRUE)

loglog_model <- spdur(
+ duration ~ milreg + instab + regconf,
+ atrisk ~ couprisk + wealth + milreg + rwar + regconf + samerica +
+ camerica,
+ data = bscoup, distr = "loglog", silent = TRUE)

Using the summary function on either model object will produce standard output showing the
model formula, estimates for the duration and risk equations, and test statistics with p-values. The
estimates are based on maximum likelihood estimation and standard errors are derived using the
Hessian matrix of the optimization results. The spdur parameter estimates can be exported by calling
xtable (see Dahl, 2016) directly on the "spdur" object to produce Table 2.

library("xtable")
tbl <- xtable(loglog_model, caption = "Coup model with log-logistic hazard",
+ label = "loglog_table")
print(tbl, caption.placement = "top", comment = FALSE,
+ include.rownames = FALSE)

Parameter Estimate Std. Error t value Pr(>|t|)
Dur_(Intercept) 2.40 0.21 11.43 0.00
Dur_milreg −1.13 0.21 −5.46 0.00
Dur_instab −0.09 0.02 −4.79 0.00
Dur_regconf −2.52 2.16 −1.16 0.24
log(alpha) −0.45 0.06 −7.09 0.00
Risk_(Intercept) 2.93 1.87 1.57 0.12
Risk_couprisk 0.59 0.32 1.82 0.07
Risk_wealth −0.36 0.28 −1.29 0.20
Risk_milreg 10.82 9.31 1.16 0.25
Risk_rwar −0.52 0.94 −0.56 0.58
Risk_regconf −5.43 5.62 −0.97 0.33
Risk_samerica 2.09 1.45 1.45 0.15
Risk_camerica −0.39 0.73 −0.53 0.59

Table 2: Coup model with log-logistic hazard.

Table 2 shows estimates from the duration equation, beginning with the intercept, and then
estimates from the risk equation. The duration component of the model is in accelerated failure time
format and the coefficient estimates are the log of expected time to failure. The negative coefficient for
military regimes, for example, means that the expected time to a coup is shorter in military regimes
than non-military regimes, holding all other factors constant. In the risk equation, positive coefficients
mean higher risk of coup. Thus, military regimes have a higher risk of experiencing a coup.

One may also use the AIC and BIC function to calculate the information criterion statistics for spdur
objects. In our example, both models are close enough in both statistics to be indistinguishable, so we
will continue to focus on the log-logistic form.

matrix(c(
+ AIC(weib_model), AIC(loglog_model), BIC(weib_model), BIC(loglog_model)
+ ), ncol = 2, dimnames = list(c("Weibull", "Loglog"), c("AIC", "BIC")))

AIC BIC
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Figure 1: Hazard rate plots for the Weibull and log-logistic coup models.
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Figure 2: Plots of the hazard rate for the log-logistic model of coups. Graph A uses the default mean
values for covariates, while graph B uses user-specified variable values for a high-risk military regime.

Weibull 1329.908 1348.972
Loglog 1331.214 1350.278

The package includes two types of plots that show the estimated hazard rates and predictive
performance, respectively. The hazard rates can be plotted by either calling plot_hazard directly, or
with plot(x,type = "hazard"), on a fitted spdur object. It will produce a plot of the conditional
hazard, which is the probability of survival conditional on the covariates in the risk and duration
equations, and conditional on survival up to time t, when holding all covariates at their sample
means. The function calculates the average hazard rate as well as 90% confidence intervals, which are
produced by simulating values from the estimated sampling distributions of the model parameters.

plot(weib_model, type="hazard", main="Weibull")
plot(loglog_model, type="hazard", main="Loglog")

By default the plot_hazard function uses the mean values of the covariates during the simulations,
but users can choose specific covariate values by entering them as vectors in the arguments xvals
and zvals, which correspond to the covariates in the duration and risk equations, respectively. The
command below creates the graph A in Figure 2.

plot(loglog_model, type = "hazard", main = "A")

As mean values are maybe not that interesting, we can also generate scenarios by entering values
manually. The values are used in the same order that variables are specified in the equations used to
estimate the models, which also corresponds to the order of variables in Table 2. Note the inclusion of
an intercept term. This produces plot B in Figure 2

plot(loglog_model, type = "hazard", xvals = c(1, 1, 10, 0.05),
+ zvals = c(1, 7, 8.64, 1, 1, 0.05, 0, 0), main = "B")
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Weibull

Loglog

Figure 3: In-sample separation plots of Weibull and log-logistic model conditional hazard predictions.

While plot(x,type = "hazard") will produce a hazard rate plot, without a type argument,
plot.spdur will produce a separation plot. Separation plots are a graphical display for evaluating
model predictions (Greenhill et al., 2011). The code below produces Figure 3:

plot(weib_model, lwd1 = 1, lwd2 = 1)
title(main="Weibull")
plot(loglog_model, lwd1 = 1, lwd2 = 1)
title(main="Loglog")

The option endSpellOnly is set to FALSE so that every observation, not only those at the end of
a spell, is used in the plot. By default, the plot function will calculate the conditional hazard for
each observation. The separation plot sorts observations from left to right according to the predicted
probability assigned by the model (higher values to the right), and shows each event/failure as red
line, with non-events shown in beige. This makes it easy to see whether the model is assigning high
probabilities of failure to actual cases of failure, and low probabilities to non-failures.

Underlying both plotting functions is the predict function, which can be used on an object of class
spdur to generate several kinds of predictions, including the probability that an observation is “at-risk”
and the probability of failure for a given time period. By default predict calculates the conditional
hazard, but the probability that an observation is at risk may also be of interest. These models are most
appropriate in cases where there is a strong theoretical reason to suspect some units are not at risk, as
in the canonical applications (not everyone smokes, some cancer patients are cured, some convicts do
not relapse, etc.). Whether an observation is cured or at-risk is ultimately unknowable, but estimating
cure probabilities can give users some idea of whether a split-population model is appropriate for their
application. Here we use predict to estimate conditional cure probabilities from the Weibull model.

bscoup$ccure_prob <- predict(weib_model, type = "conditional cure",
+ newdata = bscoup, na.action = "na.exclude")
mean(bscoup$ccure_prob, na.rm = TRUE)
[1] 0.4333912

Out-of-sample testing

Finally, we demonstrate how to evaluate a model’s out-of-sample predictions. We will use the data
from 1996 onwards as the test set, and the prior data for training purposes. The add_duration function
retrospectively codes the risk variable based on how a spell ended, and we therefore need to take care
in how we add the duration variables for each data set. For the training data we need to subset the
training set first, so that coups in the tests set don’t influence the risk coding in the training data.

data(bscoup)
bscoup$coup <- ifelse(bscoup$coup == "yes", 1, 0)
coup_train <- bscoup[bscoup$year < 1996, ]
coup_train <- add_duration(coup_train, "coup", unitID = "countryid",
+ tID = "year", freq = "year", ongoing = FALSE)

For the test set it is recommended to add the duration variables and then subset the test set. Since
the test set is later in time than the training set we do not have to worry about contamination of the
risk coding, but if we subset the data before building the duration variables we will start all duration
counters at 1996, when in fact we can safely use the previous historic coup information. To do this we
need to build the duration variables first:
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coup_test <- add_duration(bscoup, "coup", unitID = "countryid",
+ tID = "year", freq = "year", ongoing = FALSE)
coup_test <- coup_test[coup_test$year >= 1996, ]

Now we can fit new models using the training data, and calculate predictions from these models
for the test data, using predict(...,newdata = coup_test).

weib_model2 <- spdur(
+ duration ~ milreg + instab + regconf,
+ atrisk ~ couprisk + wealth + milreg + rwar + regconf + samerica +
+ camerica,
+ data = coup_train, distr = "weib", silent = TRUE)

loglog_model2 <- spdur(
+ duration ~ milreg + instab + regconf,
+ atrisk ~ couprisk + wealth + milreg + rwar + regconf + samerica +
+ camerica,
+ data = coup_train, distr = "loglog", silent = TRUE)

weib2_test_p <- predict(weib_model2, newdata = coup_test, na.action = "na.omit")
loglog2_test_p <- predict(loglog_model2, newdata = coup_test, na.action = "na.omit")

Since we are predicting for data that is not contained in the spdur model objects, we have to use
the separationplot functions directly from the package to produce Figure 4.

library("separationplot")
obs_y <- coup_test[complete.cases(coup_test), "coup"]

par(mfrow=c(2,1),mar=c(2,2,2,2))
separationplot(weib2_test_p, obs_y, newplot = FALSE)
separationplot(loglog2_test_p, obs_y, newplot = FALSE)

Weibull

Loglog

Figure 4: Out-of-sample separation plots.

Additional discussion

Censoring considerations

Truncation and censoring are problematic for split-population duration models, as they are for standard
duration regression, and pose some additional considerations. In left-truncation we do not observe
data for a spell prior to some date, and thus have incomplete and inaccurate values for the duration
or time to failure for a spell. Since immune spells in the sample are over time going to distinguish
themselves with exceptionally long survival times compared to spells at risk which fail periodically,
left-censoring also makes it more difficult to distinguish the immune and at risk subpopulations.

Sometimes information about previous failures in the data is available beyond the time period
over which covariates are observed, making it possible to ameliorate or eliminate left-censoring by
using the information of previous failures when constructing the necessary duration variables with
add_duration().
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Right-censoring, where spells end before outcomes are observed, also poses a unique problem in
the split-population framework. Although right-censored spells themselves are accommodated in the
modeling function, they impact the coding of at risk vs. immune spells. The add_duration() function
retroactively codes all observations in a spell as at risk if the spell itself ended in failure. Right-censored
spells are coded as immune over their entire duration. This can lead to some misclassification of
observations as immune even though they experience failure at some point in the unobserved future.

Furthermore, as the example above shows, in out-of-sample testing based on some kind of data
partitioning scheme, this coding scheme can lead to unintentional contamination of in-sample cases
with knowledge of out-of-sample failures through the risk coding for failed spells. This leads to
two recommendations. First, data should be partitioned spell or block-wise, e.g., by withholding
the last x years of data, and not randomly. Second, given the two concerns of left-censoring and
non-independence induced through the duration and risk coding, care should be taken to ensure that
duration data are built without access to future information in another data partition.

Comparison with other software

The survival library (Thernau, 2000, 2015), arguably the most well-established library for survival and
event history analysis in R, allows for the estimation of a wide variety of semi-, non-, and parametric
survival models, and provides facilities for handling and providing descriptive summaries of survival
and event history data. It does not include cure rate or split-population mixture models of the type we
have implemented though.

One useful extension of our project in the future would be to integrate and adapt the "Surv" class
for survival data in survival to the spduration library. This would require some modification of the
class, as our model also requires information on the risk status of spells, but would give access to the
much broader functionality, especially for descriptive summaries of data, in the survival library.

Other currently available R routines for estimation of split-population/cure rate duration models
include the packages smcure (Cai et al., 2012b), described in Cai et al. (2012a), and nltm (Garibotti
and Tsodikov, 2010). The smcure package implements semi-parametric proportional hazards and
accelerated failure time cure models using estimation procedures presented in Peng (2003) and Zhang
and Peng (2007).3 The package nltm will estimate a semi-parametric proportional hazard cure model,
and a number of other survival models, using the approach developed in Tsodikov (2003) and Tsodikov
and Garibotti (2007). Semi-parametric estimation of the hazard function is attractive because it requires
no assumption about its shape, and such assumptions can be difficult in practice to empirically evaluate.
The main advantage spduration offers is the ability to include time varying covariates, which gives it
a broader range of practical applications, as smcure and nltm will only accommodate case-based data.
spduration also features more post-estimation methods than alternative packages, including those
discussed above to create and evaluate model predictions.

Conclusion

Beger et al 2014

Fearon and Laitin 2003

Belkin & Schofer 2003

0 20 40

Positives per 1,000

Figure 5: Rates of positive outcomes in select publications with binary outcomes.

Many outcomes of interest are rare events. For example, coups, war onset, or mass killings are
exceedingly rare events when considering that most countries do not experience high levels of violence.
Figure 5 shows a few examples of published research that models binary outcomes. Fearon and Laitin
(2003) is a widely cited study of civil war onset that uses yearly observations of all major countries;
Beger et al. (2014) is an example of the positive rates when moving to monthly data for a similar set of
countries. The positive rates range from 5 to less than 0.2% of all data points.4

3There is also the older gfcure package, which estimates the parametric accelerated failure time cure model
discussed in Peng et al. (1998). A version for Windows is available at http://post.queensu.ca/~pengp/software.
html.

4For a discussion of the difficulties rare events can pose for prediction see King and Zeng (2001a) and King and
Zeng (2001b).
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In the language of machine learning, we are dealing with highly imbalanced classes. It is a well-
recognized problem and has led to the development or use of several specialized mixture models like
zero-inflated Poisson and negative binomial regression for count data, and a zero-inflated ordered
probit for ordinal outcomes (Bagozzi et al., 2015). Split-population duration regression provides
another principled solution to the challenges posed by data in this domain, but, unlike other solutions
to the sparse outcome problem, also addresses underlying temporal dynamics that are an important
part of the non-independent data political scientists and other social scientists commonly use.

Split-population duration models are not only appealing in a technical sense, but they also match
the logic or intuition many social scientists use when they distinguish long-term risk factors from
more fleeting triggering causes. The example we have used, Belkin and Schofer (2003), is a particularly
clear illustration of how well the language of theorists maps onto the model intuition.
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Bayesian Regression Models for
Interval-censored Data in R
by Clifford Anderson-Bergman

Abstract The package icenReg provides classic survival regression models for interval-censored data.
We present an update to the package that extends the parametric models into the Bayesian framework.
Core additions include functionality to define the regression model with the standard regression
syntax while providing a custom prior function. Several other utility functions are presented that
allow for simplified examination of the posterior distribution.

Introduction

Interval-censoring occurs when observations are not known exactly, but rather up to an interval.
For example, suppose a component of a machine is inspected at time c1 and c2. The component
is observed to be operational at c1, but broken at c2. In such a case, while the exact failure time
is not known, it is known that the event occurred inside the interval (c1, c2]. In some cases, these
intervals are small and the interval-censored aspect of the data can be ignored with only minor
biases. For example, if age is reported in years, it is likely to be interval-censored due to binning, i.e.
reporting "28 years old" typically implies age is in the interval [28, 29). Similarly, if the intervals are
non-overlapping, such as reported income brackets, one can simply treat the data as ordinal data and
use appropriate models. However, if the data set contains moderate sized overlapping intervals, then
interval-censoring methods should be used for valid inference. Note that a right censored observation
can be represented as (C, ∞), where C is the censoring time, left censoring can be represented as [0, C)
and an uncensored observation occurring at time t can be represented as [t, t].

Although interval-censoring is not strictly a survival analysis problem (for example, the Tobit
model (Tobin, 1958)), this work focuses on the survival analysis setting in which the outcome of
interest is time to event. A common assumption in many interval censored models, including those
provided by icenReg, is that the distribution of the inspection times is independent of the event time
of interest (Gruger et al., 1991). This can be framed as each subject having an event time of interest, ti,
and a set of inspections ci0 = 0 < ci1 < ... < ciki

= ∞ where the subject is inspected to determine if the
event has occurred. The interval [cij, cij+1) such that ti ∈ [cij, cij+1) is then recorded as the interval for
subject i. The independence assumption states that ti is independent of cij.

The standard univariate estimator is the non-parametric maximum likelihood estimator (NPMLE)
(Turnbull, 1976), which can be viewed as a generalization of the Kaplan-Meier curves (Kaplan and
Meier, 1958) that allow for interval-censoring (Ng, 2002). Many of the standard survival regression
models can be extended to the interval-censored such as the proportional hazards, accelerated failure
time (AFT) model and proportional odds. Semi-parametric models in which the baseline distribution
is fit with the NPMLE are often used to avoid the need to specify the baseline distribution (Finkelstein,
1986), (Rossini and Tsiatis, 1996). While it has been shown that the regression coefficients are asymptot-
ically normal and bootstrap procedures can be used for inference on the regression parameters (Huang,
1995), it is also noted that the asymptotic distribution of the baseline survival curve is currently an
open question. This implies that while standard errors can be produced for the regression coefficients,
quantifying the uncertainty in estimated survival probabilities when using the semi-parametric models
is not currently available; even the bootstrap estimator has been shown to be inconsistent (Sen and
Xu, 2015). It has also been noted that while the regression coefficients are consistent, a non-trivial
upward bias in the coefficient estimates has been observed (Pan, 1999). Fully parametric regression
survival models can also be used and are fairly straightforward to implement (Rabinowitz et al., 1995).
In contrast to semi-parametric models, fully parametric models provide more efficient inference and
allow for quantification of uncertainty of survival estimates at the cost of requiring assumptions of
the family of baseline distribution, although it has been shown empirically that inference is fairly
robust to mis-specification of the baseline distribution (Lindsey, 1998). Fully parametric models can
be easily extended to the Bayesian framework (Gómez et al., 2004). For a thorough review of the
non-parametric, semi-parametric and fully-parametric models in the interval-censoring context, see
(Sun, 2007). In this work, we focus on parametric regression models in the Bayesian framework.

In general, interval-censored data is less informative than uncensored data. As such, incorporating
prior information into an analysis using Bayesian methods can be especially useful. Recent additions
to the R package icenReg (Anderson-Bergman, 2017) allow for simplified Bayesian analysis using
standard regression formulas and user written prior functions. In Section F.2, the regression models
available in icenReg are mathematically formulated. In Section F.3, the general form of the posterior
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distribution is presented and the MCMC sampler is briefly discussed. In Section F.4, the core Bayesian
functions in icenReg are presented. In Section F.5, an example analysis on a classic dataset is presented.

Regression models

To completely define a parametric survival regression model, one needs to specify the

• Baseline distribution

• Effect of the covariates on the baseline distribution

In icenReg, several classic survival baseline distributions are included: Weibull, gamma, exponen-
tial, log-normal and log-logistic.

At this time, three classic regression models are supported in icenReg: proportional hazards,
AFT and proportional odds. In describing these regression models, we use several standard survival
definitions. Defining f (t) and F(t) to represent the probability density function and cumulative
density function for a given distribution, the survival distribution is defined as S(t) = 1− F(t) and the
hazard function h(t) = f (t)

S(t) . The functions ho(t) and So(t) represent the baseline hazard and survival
function; i.e. the corresponding functions if all covariates are equal to 0. The vector X represents
a subject’s covariates, α represents a vector of parameters defining the baseline distribution and β
represents a vector of regression coefficients.

The proportional hazards model can be defined as having the relation

h(t|α, β, X) = ho(t|α) exp(XT β).

This definition can be used to interpret a regression coefficient β j as a one unit increase in xj is
associated with an exp(β j) fold increase in the hazard at any time.

The proportional odds model is defined as the relation

S(t|α, β, X)

1− S(t|α, β, X)
= exp(XT β)

So(t|α)
1− So(t|α)

.

This definition can be used interpret a regression coefficient β j as a one unit increase in xj is
associated with exp(β j) fold increase in the odds of survival at any given time.

The AFT model is defined by the relation

S(t|α, β, X) = So(t exp(XT β)|α).

This definition can be used to interpret a regression coefficient β j as a one unit increase in xj is
associated with events occuring exp(β j) fold faster.

To define the likelihood function, we let n1 be the number of uncensored subjects, n2 be the number
of interval-censored subjects (note that this can include left and right censored subjects), ti be subject
i’s event time if subject i is uncensored, {Li, Ri} be the left and right side of the interval containing
subject i’s event time if subject was censored and Xi be a vector of subject i’s covariates. Then the
likelihood can be written as

n1

∏
i=1

f (ti|α, β, Xi)×
n1+n2

∏
i=n1+1

S(Li|α, β, Xi)− S(Ri|α, β, Xi)

under the implication that if n1 or n2 are equal to 0, the corresponding term of the likelihood function
reduces to 1.

Bayesian inference

To perform Bayesian inference, the prior is multiplied by the likelihood function to form the posterior
distribution. For the Bayesian models included in icenReg, the posterior distribution is proportional
to

p(α, β)×
n1

∏
i=1

f (ti|α, β, Xi)×
n1+n2

∏
i=n1+1

S(Li|α, β, Xi)− S(Ri|α, β, Xi)
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where p is the prior distribution on the α and β parameters. Because the posterior is not in closed
form for these models, Markov Chain Monte Carlo (MCMC) methods are used to draw samples from
the posterior distribution.

In icenReg, MCMC sampling is carried out by an adaptive block updater (Haario et al., 2001).
Default behavior is to first calculate the maximum likelihood estimator (MLE)1, use the MLE point
estimates as initial values and the inverse Fisher’s information as an initial estimate for the posterior
covariance. During the burn-in period, the posterior covariance is updated. A default target acceptance
rate of 0.25 is used, as suggested in (Gelman et al., 1996).

Alternatively, the user can specify not to use the MLE and Fisher’s information to build the starting
proposal distribution. In this case, the starting proposal covariance matrix will be the identity matrix
multiplied by a user-provided scalar (by default 0.1), which then has the option to adaptively learn
the covariance matrix. While this is generally not recommended for efficiency purposes, it may be
beneficial when the prior is strongly informative compared with the likelihood function. As an extreme
example, if all the data were right censored, the MLE would be degenerate but an informative prior
can still lead to valid Bayesian inference. In such cases, starting at the MLE would cause the MCMC
algorithm to fail.

Core functionality

Function Name Basic Description

ic_bayes() Fit Bayesian interval-censored regression model
bayesControls() Outputs control parameters for MCMC algorithm
sampleSurv() Draws samples of the posterior survival distribution
ic_sample() Draws samples from the posterior survival distribution
imputeCens() Draw samples from the distribution, conditional on censoring interval
survCIs() Credible intervals for survival curve
plot() Plots posterior median survival curve

The workhorse for fitting Bayesian regression models is ic_bayes(). The arguments are defined
as the following.

ic_bayes(formula, data,
logPriorFxn = function(x) return(0),
model = "ph", dist = "weibull",
weights = NULL, controls = bayesControls(),
useMCores = F)

The formula argument declares the likelihood function in the same manner as other icenReg
model functions, to be demonstrated in the following section. The logPriorFxn argument allows
the user to write a custom prior function that takes in a vector of parameters and returns the log
prior density (or a value equal up to an additive constant). The order of the values should be the
same order as the parameters returned when a user calls coef() on a model. Default behavior is
to use a flat prior. The model argument declares the regression model, with choices "ph" (propor-
tional hazards), "po" (proportional odds) and "aft" (accelerated failure time). The dist defines the
baseline distribution, with options "exponential", "weibull", "gamma", "lnorm" (log-normal) and
"loglogistic". The function argument controls accepts a list of control parameters for the MCMC
sampler, see ?bayesControls for details of options. The argument useMCores is a logical variable
indicating whether the multiple chains should be run in parallel. If set to TRUE, a cluster must be
registered in advance; this is demonstrated in Section F.5.

The output from ic_bayes() provides a list of samples from the posterior of α and β. Users
are often interested in the survival probabilities for subjects with different sets of covariates, which
requires a decent amount coding and double checking differing distribution parameterization. To
simplify this process, the sampleSurv() function allows a user to take draws of the posterior survival
distribution for a given set of covariates. The arguments are defined as

sampleSurv(fit, newdata = NULL,
p = NULL, q = NULL,
samples = 100)

The argument fit is a fit returned from ic_bayes(). The argument newdata is a "data.frame"
which includes the set of covariates from which we would like to draw the posterior probabilities from.

1The MLE and not the maximum a posterior (MAP) is used, as the likelihood and its derivatives are hard coded
into icenReg, but priors are allowed to be generically supplied by user without derivatives.
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If newdata is NULL, the baseline distribution is used. A user should either provide a numeric vector p
of percentiles to sample or a numeric vector q, a set of times to sample the cumulative probabilities at.

The function ic_sample() allows a user to take posterior samples of event times for a given set of
covariates. The arguments are defined as

ic_sample(fit, newdata = NULL,
sampleType = "fullSample",
samples = 5)

The argument sampleType has two options: "fullSample", in which event times are sampled from
the full posterior and "fixedParSample", in which event times are sampled conditional on the MAP
estimates.

In some cases, a user may wish to impute posterior samples of the exact event times for the
response variables in their dataset. This may be for the purpose of inferring the distribution of the
exact event time for a specific subject, or for passing the data to an analysis tool that does not account
for interval-censoring. This can be done with imputeCens(). The arguments are defined as

imputeCens(fit, newdata = NULL,
imputeType = "fullSample",
samples = 5)

The arguments are the same as ic_sample(), except that the newdata "data.frame" must include
a pair of columns that contain the lower and upper bounds of the response variable. If newdata is set
to NULL, imputeCens() will impute all the rows from the original dataset.

The function survCIs() returns credible intervals for the survival distribution, along with the
posterior mean and posterior median estimates. The arguments for survCIs() are

survCIs(fit, newdata = NULL,
p = NULL, q = NULL,
ci_level = 0.95,
MC_samps = 40000)

Finally, the plot() function accepts the following arguments

plot(x, newdata = NULL,
plot_legend = T, lgdLocation = "topright",
cis = T, ci_level = 0.9,
...)

In this case, x should be a fit from ic_bayes(), newdata is a "data.frame" with a set of covariates
to determine the survival functions to plot, plot_legend() is a logical argument indicating whether
to include a legend with labels provided by the rownames of newdata, cis is a logical indicator for
whether credible intervals should be included, ci_level is the credible levels for the credible intervals,
and ... is additional arguments to be passed to the base plot() function. Note that if the col
argument is supplied, each color will be matched to the corresponding row of newdata. The solid lines
plotted are the posterior median survival probabilities, with dashed lines representing the upper and
lower limits of the credible interval.

Example analysis

To demonstrate the use of Bayesian regression models in icenReg, we will use the miceData dataset
included in icenReg (Hoel and Walburg, 1972). This dataset examined occurrances of lung cancer in
RFM mice (bred for high rates of cancer) kept in two different environments; conventional environment
(ce) or germ-free environment (ge). At different ages, mice are sacrificed and examined for lung tumors.
If mouse i is inspected at age Ci and a tumor is found, then time of onset is recorded as being in the
interval [0, Ci]. If no tumor is found, then the time of onset is recorded as being in the interval (Ci, ∞).
Note that this form of data is referred to as current status data .

We first load the icenReg library along with foreach (Revolution Analytics and Weston, 2014b)
and doParallel (Revolution Analytics and Weston, 2014a), which are required to run MCMC chains in
parallel.

library(icenReg)
library(foreach)
library(doParallel)
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We then load and examine the miceData dataset.

data(miceData)
head(miceData)
## l u grp
## 1 0 381 ce
## 2 0 477 ce
## 3 0 485 ce
## 4 0 515 ce
## 5 0 539 ce
## 6 0 563 ce
summary(miceData)
## l u grp
## Min. : 0 Min. :381.0 ce:96
## 1st Qu.: 0 1st Qu.:809.5 ge:48
## Median :439 Median : Inf
## Mean :343 Mean : Inf
## 3rd Qu.:644 3rd Qu.: Inf
## Max. :986 Max. : Inf

The column “l” and “u” represent the lower and upper end of the intervals containing the onset
time for each mouse. We note that there are 96 mice in the ce group and 48 mice in the ge group.
Because current status data is fairly uninformative per subject, this dataset contains limited information
about the distribution of time to onset.

For the sake of demonstration, suppose that we had expert information regarding onset of lung
cancer. An expert tells us that (a) after two years in the conventional environment, the expert is
50% certain that between 10-30% of the mice will have developed lung tumors and (b) hazard rates
are non-decreasing with age. To incorporate (a), we can set a Beta(α = 1.5, β = 5.5) prior onto the
probability of an event occuring before t = 730 for the CE group. For (b), we note the fact that for the
Weibull distribution, a shape parameter below 1 implies a decreasing hazard, while a shape parameter
above 1 implies an increasing hazard. To enforce a non-decreasing hazard, we will set zero probability
mass to the shape parameter below 1. We note that this is an improper prior: we have put a flat prior
of the regression coefficient.

To demonstrate how to incorporate this into ic_bayes(), we first look at the parameters that will
be handed to our prior function. This will be vector of parameters given in the same form and order
as returned by coef(), for either a Bayesian model or maximum likelihood model (ic_par()).

mle_fit <- ic_par(cbind(l, u) ~ grp,
model = "ph",
dist = "weibull",
data = miceData)

coef(mle_fit)
## log_shape log_scale grpge
## 0.7071843 6.9481420 0.7861709

All the syntax used for defining models for ic_par() is shared with ic_bayes(). In the formula,
we define the response by calling cbind(l,u), where l and u represent the lower and upper ends of
the interval. We see that we will be given the baseline log shape parameter, baseline log scale and the
coefficient for the dummy variable indicating belonging to the GE group. We then write our log prior
density function as such:

expertPrior <- function(x){
# Extracting parameters from input
shape <- exp(x[1])
scale <- exp(x[2])
ge_coef <- x[3]

# ans is log-density of the prior
ans <- 0
# First prior: S(730) ~ beta(1.5, 5.5)
# Note that we are using a Weibull distribution
s_730 <- 1 - pweibull(730, shape = shape, scale = scale)
ans <- ans + dbeta(s_730, 1.5, 5.5, log = TRUE)
# Second prior: shape >= 1
if(shape < 1) ans <- -Inf
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return(ans)
}

This prior is then provided to the ic_bayes() function. We use doParallel’s registerDoParallel()
to sample from the 4 chains in parallel.

myClust <- makeCluster(4)
registerDoParallel(myClust)
bayes_fit <- ic_bayes(cbind(l,u) ~ grp,

data = miceData,
model = "ph", dist = "weibull",
logPriorFxn = expertPrior,
useMCores = TRUE)

stopCluster(myClust)

We can examine the results using the summary() method.

summary(bayes_fit)

## Model: Bayesian Cox PH
## Baseline: weibull
## Call: ic_bayes(formula = cbind(l, u) ~ grp, data = miceData, logPriorFxn = expertPrior,
## model = "ph", dist = "weibull", useMCores = T)
##
##
## Iterations = 1001:5996
## Thinning interval = 5
## Number of chains = 4
## Sample size per chain = 1000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## log_shape 0.6337 0.3220 0.005092 0.008220
## log_scale 6.9570 0.1829 0.002892 0.005239
## grpge 0.6916 0.3014 0.004765 0.007971
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## log_shape 0.04927 0.3860 0.6316 0.8685 1.228
## log_scale 6.68745 6.8180 6.9221 7.0694 7.384
## grpge 0.08428 0.4928 0.6967 0.8965 1.274
##
## 3. MAP estimates:
## log_shape log_scale grpge
## 0.9118 6.8550 0.7530

We can access the raw MCMC samples from the $mcmcList field. This is a "mcmcList" object
(Plummer et al., 2006), and as such all the standard coda methods can be used directly on this object.
For example, if we want traceplots and marginal density estimates of the samples, we can directly call
plot(). The results are plotted on Figure 1.

plot(bayes_fit$mcmcList)

We can examine a plot of the posterior survival distribution using the plot() method. If we do
not provide any new data, the baseline survival distribution will be plotted. This is demonstrated on
Figure 2. The solid line is the median posterior survival probability at any given time, with the dashed
lines representing upper and lower credible intervals for the survival probabilities.

plot(bayes_fit,
main = "Posterior Baseline Survival",
col = "blue",
lwd = 2)
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Figure 1: Posterior samples

Figure 2: Posterior survival probabilities for baseline distribution
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Figure 3: Comparing survival curves between groups

More often, we would like to plot the survival distribution for a given set of covariates, or compare
the survival distribution for two different sets of covariates. This can be done by providing a new
data set with the covariates of interest, as is done in the code below. If more than one row of data is
provided, a legend is added with the row names of the new data set. The location of the legend can be
changed using the lgdLocation argument. To keep the plot from looking overly cluttered, we will
remove the credible bands in this example. The plot can be seen on Figure 3.

plot(bayes_fit,
newdata = newdata,
main = "Comparing Survival Curves",
col = c("blue", "orange"),
lwd = 2,
cis = F,
lgdLocation = "topright")

Using the survCIs() function, we can extract credible intervals for the survival function with a
given set of covariates, along with the posterior mean and posterior medians.

survCIs(bayes_fit,
newdata = newdata,
p = seq(from = 0.1, to = 0.9, by = .2),
ci_level = 0.95)

## Model call:
## ic_bayes(formula = cbind(l, u) ~ grp, data = miceData, logPriorFxn = expertPrior,
## model = "ph", dist = "weibull", useMCores = T)
## Credible Level = 0.95
## Rowname: Conventional
## Percentile estimate (mean) estimate (median) lower upper
## [1,] 0.1 308.7645 310.4224 165.6698 450.7731
## [2,] 0.3 598.7705 597.9676 471.6719 736.6549
## [3,] 0.5 876.7032 843.0287 700.4579 1242.3366
## [4,] 0.7 1217.7391 1133.4531 849.1271 2013.4947
## [5,] 0.9 1816.5917 1604.8638 1036.7680 3629.9967
## Rowname: Germ-free
## Percentile estimate (mean) estimate (median) lower upper
## [1,] 0.1 217.1181 211.0069 71.82923 402.7130
## [2,] 0.3 403.0740 405.2846 219.64849 579.6520
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Figure 4: Posterior densities of event times for each group

## [3,] 0.5 574.8200 582.3774 393.62514 723.9960
## [4,] 0.7 780.1581 778.2784 618.57113 957.4698
## [5,] 0.9 1131.2446 1088.8539 899.39371 1573.0770

Now suppose we wanted to draw posterior samples of the event time distribution for each group.
For example, we may wish to construct density plots for event time from each group. This can be done
with ic_samples() and is demonstrated in the code below. The generated plot can be found on Figure
4.

eventTimeSamples <- ic_sample(bayes_fit,
newdata = newdata,
samples = 4000)

ce_dens <- density(eventTimeSamples["Conventional",],
from = 0)

ge_dens <- density(eventTimeSamples["Germ-free",],
from = 0)

plot(ge_dens,
main = "Posterior Densities of Event Times",
col = "orange",
xlim = c(0, 4000),
lwd = 2)

lines(ce_dens,
col = "blue",
lwd = 2)

legend("topright",
c("Conventional", "Germ-free"),
col = c("blue", "orange"),
lwd = 1)

Finally, we can draw posterior samples of the event time, given that it occurs within some specified
interval, with imputeCens(). To demonstrate, suppose we were interested in the exact event time
for mice in each group that were sacrificed at one year and found to have no tumors, implying the
event time was right censored at t = 365. This can be expressed in the interval censoring format as
t ∈ [365, ∞). Below, we use imputeCens() to draw posterior samples of event times conditional on
being greater than 365 and plot the estimate posterior density in Figure 5.

# Adding event time intervals
newdata$l <- c(365, 365)
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Figure 5: Posterior densities of event time conditional on occurring after first year

newdata$u <- c(Inf, Inf)
imputedTimes <- imputeCens(bayes_fit,

newdata = newdata,
samples = 4000)

ce_dens <- density(imputedTimes["Conventional",],
from = 365)

ge_dens <- density(imputedTimes["Germ-free",],
from = 365)

plot(ge_dens,
main = "Posterior Densities of Event Times\nConditional on Event in First Year",
col = "orange",
xlim = c(300, 3000),
ylim = c(0, 0.0015),
lwd = 2)

lines(ce_dens,
col = "blue",
lwd = 2)

legend("topleft",
c("Conventional", "Germ-free"),
col = c("blue", "orange"),
lwd = 1)

Summary

Interval-censoring occurs when event times are not known exactly, but rather only up to an interval.
Naturally, this results in less informative data than if the event time were observed exactly. The poten-
tially weakly informative data further motivates using prior information about the data generating
process to provide a more informative analysis of a given data set. Bayesian methodology provides
a straightforward framework for incorporating such prior information. The addition of ic_bayes()
to the icenReg package allows for simple, efficient interval-censored regression models with generic
user provided prior distributions and a variety of tools to simplify analyses.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 497

Acknowledgements

The icenReg package uses Rcpp (Eddelbuettel and Francois, 2011) to interface R objects with C++.
Linear algebra at the C++ level is handled by the Eigen library (Guennebaud et al., 2010), which is
interfaced with RcppEigen (Bates and Eddelbuettel, 2013).

Bibliography

C. Anderson-Bergman. icenReg: Regression models for interval censored data. Journal of Statistical
Software, 81(12), 2017. [p487]

D. Bates and D. Eddelbuettel. Fast and elegant numerical linear algebra using the RcppEigen package.
Journal of Statistical Software, 52(5):1–24, 2013. URL https://doi.org/10.18637/jss.v052.i05.
[p497]

D. Eddelbuettel and R. Francois. Rcpp: Seamless R and C++ integration. Journal of Statistical Software,
40(8):1–18, 2011. URL http://www.jstatsoft.org/v40/i08/. [p497]

D. M. Finkelstein. A proportional hazards model for interval-censored failure time data. Biometrika,
42:845–854, 1986. [p487]

A. Gelman, G. O. Roberts, W. R. Gilks, and others. Efficient metropolis jumping rules. Bayesian statistics,
5(599-608):42, 1996. [p489]

J. Gruger, R. Kay, and M. Schumacher. The validity of inferences based on incomplete observations in
disease state models. Biometrics, pages 595–605, 1991. [p487]

G. Guennebaud, B. Jacob, and others. Eigen V3, 2010. [p497]

G. Gómez, M. L. Calle, and R. Oller. Frequentist and bayesian approaches for interval-censored data.
Statistical Papers, 45(2):139–173, 2004. URL https://doi.org/10.1007/bf02777221. [p487]

H. Haario, E. Saksman, J. Tamminen, and others. An adaptive metropolis algorithm. Bernoulli, 7(2):
223–242, 2001. URL https://doi.org/10.2307/3318737. [p489]

D. G. Hoel and H. E. Walburg. Statistical analysis of survival experiments. The Annals of Statistics, 18:
1259– 1294, 1972. [p490]

J. Huang. Efficient estimation for the proportional hazards model with interval censoring. The Annals
of Statistics, 24:540–568, 1995. [p487]

E. Kaplan and P. Meier. Nonparametric estimation from incomplete observations. Communications in
Statistics - Theory and Methods, 27:1961 – 1977, 1958. [p487]

J. Lindsey. A study of interval censoring in parametric regression models. Lifetime data analysis, 4(4):
329–354, 1998. [p487]

M. Ng. A modification of peto’s nonparametric estimation of survival curves for interval-censored
data. Biometrics, 58:439–442, 2002. URL https://doi.org/10.1111/j.0006-341x.2002.00439.x.
[p487]

W. Pan. Extending the iterative convex minorant algorithm to the Cox model for interval-censored
data. Journal of Computational and Graphical Statistics, 8:109–120, 1999. [p487]

M. Plummer, N. Best, K. Cowles, and K. Vines. CODA: Convergence diagnosis and output analysis
for MCMC. R News, 6(1):7–11, 2006. URL https://journal.r-project.org/archive/. [p492]

D. Rabinowitz, A. Tsiatis, and J. Aragon. Regression with interval-censored data. Biometrika, 82(3):
501–513, 1995. [p487]

Revolution Analytics and S. Weston. doParallel: Foreach Parallel Adaptor for the Parallel Package, 2014a.
URL http://CRAN.R-project.org/package=doParallel. R package version 1.0.8. [p490]

Revolution Analytics and S. Weston. foreach: Foreach Looping Construct for R, 2014b. URL http:
//CRAN.R-project.org/package=foreach. R package version 1.4.2. [p490]

A. Rossini and A. Tsiatis. A semiparametric proportional odds regression model for the analysis of
current status data. Journal of the American Statistical Assocation, 91:713–721, 1996. [p487]

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=RcppEigen
https://doi.org/10.18637/jss.v052.i05
http://www.jstatsoft.org/v40/i08/
https://doi.org/10.1007/bf02777221
https://doi.org/10.2307/3318737
https://doi.org/10.1111/j.0006-341x.2002.00439.x
https://journal.r-project.org/archive/
http://CRAN.R-project.org/package=doParallel
http://CRAN.R-project.org/package=foreach
http://CRAN.R-project.org/package=foreach


CONTRIBUTED RESEARCH ARTICLES 498

B. Sen and G. Xu. Model based bootstrap methods for interval censored data. Computational Statistics
& Data Analysis, 81:121–129, 2015. URL https://doi.org/10.1016/j.csda.2014.07.007. [p487]

J. Sun. The Statistical Analysis of Interval-Censored Failure Time Data. Springer-Verlag, 2007. URL
https://doi.org/10.1007/0-387-37119-2. [p487]

J. Tobin. Estimation of relationships for limited dependent variables. Econometrica: journal of the
Econometric Society, pages 24–36, 1958. [p487]

B. Turnbull. The empirical distribution with arbitrarily grouped and censored data. Journal of the Royal
Statistical Society B, 38:290–295, 1976. [p487]

Clifford Anderson-Bergman
Sandia National Labs
7011 East Avenue
USA
ciande@sandia.gov

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://doi.org/10.1016/j.csda.2014.07.007
https://doi.org/10.1007/0-387-37119-2
mailto:ciande@sandia.gov


CONTRIBUTED RESEARCH ARTICLES 499

openEBGM: An R Implementation of the
Gamma-Poisson Shrinker Data Mining
Model
by Travis Canida and John Ihrie

Abstract We introduce the R package openEBGM, an implementation of the Gamma-Poisson Shrinker
(GPS) model for identifying unexpected counts in large contingency tables using an empirical Bayes
approach. The Empirical Bayes Geometric Mean (EBGM) and quantile scores are obtained from
the GPS model estimates. openEBGM provides for the evaluation of counts using a number of
different methods, including the model-based disproportionality scores, the relative reporting ratio
(RR), and the proportional reporting ratio (PRR). Data squashing for computational efficiency and
stratification for confounding variable adjustment are included. Application to adverse event detection
is discussed.

Introduction

Contingency tables are a common way to summarize events that depend on categorical factors.
DuMouchel (1999) describes an application of contingency tables to adverse event reporting databases.
The rows represent products, such as drugs or food, and the columns represent adverse events. Each
cell in the table represents the number of reports that mention both that product and that event.
Overreported product-event pairs might be of interest.

One naïve approach for analyzing counts in this table is to calculate the observed relative reporting
ratio (RR)—which DuMouchel (1999) calls relative report rate—for each cell. While RR is easy
to compute, it has the drawback of being highly variable, and thus unreliable, for small counts
(DuMouchel, 1999; Madigan et al., 2011). To combat the high variability of RR, DuMouchel (1999)
created an empirical Bayes (EB) data mining model for finding "interestingly large" counts. The
model-based EB scores are measures of disproportionality, similar to RR. However, the model uses
Bayesian shrinkage to correct for the high variability in RR associated with small counts.

After the EB model was introduced, Evans et al. (2001) created another disproportionality approach
called the proportional reporting ratio (PRR). The PRR compares "the proportion of all reactions to a
drug which are for a particular medical condition of interest...to the same proportion for all drugs in
the database" (Evans et al., 2001). Like RR, PRR is easy to calculate, but has the same drawback of
high variability (Madigan et al., 2011). Almenoff et al. (2006) found that PRR finds more false positives
than DuMouchel’s model; however, it also finds more true positives. Another difference between
DuMouchel’s model and the PRR metric is that while DuMouchel’s model considers the event of
interest when calculating the expected count for the pair, PRR does not (Duggirala et al., 2015).

The openEBGM (Ihrie and Canida, 2017) package implements the model described in DuMouchel
(1999) and the computational efficiency improvement techniques described in DuMouchel and Pregi-
bon (2001). Our goal was to create a general-purpose, flexible, efficient implementation of DuMouchel’s
model, but we also include PRR in case users want to compare the results. Other disproportionality
approaches exist (Madigan et al., 2011), but our goal for this article is not to provide an exhaustive
list or to compare DuMouchel’s model to other methods. Instead, we focus on our implementation
of DuMouchel’s model and provide some comparisons with other R packages. Users can refer to
openEBGM’s vignettes to follow future developments and modifications to the package.

While openEBGM was developed mainly for adverse event detection, we structured the code to
be general enough for any similar application. DuMouchel describes multiple applications of his EB
model, which can find statistical associations but not necessarily causal relationships (DuMouchel, 1999;
DuMouchel and Pregibon, 2001). Thus, the model is used primarily for signal detection. Regardless
of the application, subject-matter experts should investigate using other means to determine if any
causal relationships might exist.

Attenuating the relative reporting ratio

The relative reporting ratio compares a table cell’s actual count, N, to its expected count, E, under the
assumption of independence between rows and columns: RR = N/E. Thus, RR = 1 if the actual count
is equal to the expected count. When RR > 1, more events are observed than expected. Therefore,
large RR scores may indicate interesting row-column pairs. This approach to analyzing contingency
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table counts works well for large cell counts, but small cell counts result in unstable RR values. Since
the expected counts can be close to zero, RR can be very large (DuMouchel, 1999) for small actual
counts which could have easily occurred simply by chance. The EB approach shrinks large RRs with
small Ns to a value much closer to 1. The shrinkage is less for larger counts. Shrinkage produces more
reliable results than the simple RR score.

Model description

The EB model uses a Poisson(µij) data distribution (i.e. likelihood) for contingency table cell counts
in row i and column j, where i = 1, . . . , I and j = 1, . . . , J. We are interested in the ratio λij =

µij /Eij .
The prior distribution on λ (Equation 1) is a mixture of two gamma distributions, resulting in gamma-
mixture posterior distributions (Equation 2). Thus, the model is sometimes referred to as the Gamma-
Poisson Shrinker (GPS) model.

The prior is a single distribution that models all cell counts; however, each cell has a separate
posterior distribution determined both by that cell’s actual and expected counts and by the distribution
of actual and expected counts in the entire table. The λijs are assumed to come from the prior
distribution with hyperparameter θprior = (α1, β1, α2, β2, P), where P is the mixture fraction. The

posterior distributions have parameters θpost, ij =
(

α1 + nij, β1 + Eij, α2 + nij, β2 + Eij, Qn, ij

)
, where

Qn, ij are the mixture fractions. The posterior distributions are, in a sense, Bayesian representations
of the relative reporting ratios (note the similarity in the equations RRij =

Nij /Eij and λij =
µij /Eij ).

DuMouchel (1999, Eqs. 4, 7) summarized the model with row and column subscripts suppressed:

prior : π (λ; α1, β1, α2, β2, P) = Pg (λ; α1, β1) + (1− P)g(λ; α2, β2) (1)

posterior : λ|N = n ∼ π (λ; α1 + n, β1 + E, α2 + n, β2 + E, Qn) (2)

where g(·) ∼ Γ (α, β) is the gamma distribution with shape and rate parameters α and β, respectively.

Model-based scores

The EB scores are based on the posterior distributions and used in lieu of RR. The Empirical Bayes
Geometric Mean (EBGM) score is the geometric mean of a posterior distribution. The 5th and 95th

percentiles of a posterior distribution create a two-sided 90% credibility interval for the EB dispropor-
tionality score. Alternatively, since we are primarily interested in the lower bound, we could create a
one-sided 95% credibility interval (Szarfman et al., 2002). Bayesian shrinkage causes the EB scores to
be smaller than RR scores, but the shrinkage amount decreases as N increases (Figure 1).
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Figure 1: Asymptotic behavior of EBGM for various hyperparameter values. θ1 = (.01, .1, 5, 20, .5);
θ2 = (.1, 1.2, .4, 8, .05); θ3 = (2, 2, 5, 5, .8); θ4 = (5, 5, 5, 5, .5)
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Example application

The U.S. Food and Drug Administration (FDA) monitors regulated products (such as drugs, vaccines,
food and cosmetics) for adverse events. For food, FDA’s Center for Food Safety and Applied Nutrition
(CFSAN) mines data from the CFSAN Adverse Events Reporting System (CAERS) (U.S. Food and
Drug Administration, 2017). Adverse events are tabulated in contingency tables (separate tables for
separate product types). The FDA previously used the GPS model to analyze these tables (Szarfman
et al., 2002). Later, we show an example of GPS using the CAERS database.

Existing open-source implementations

Existing open-source implementations of the GPS model include the R packages PhViD (Ahmed and
Poncet, 2016) and mederrRank (Venturini and Myers, 2015). Each of the existing implementations has
its own feature set and drawbacks.

The PhViD package does not offer data squashing, stratification, or a means of counting events
from raw data. Nor does it account for unique event identifiers to eliminate double counting of reports
when calculating expected counts. PhViD does, however, offer features (Ahmed et al., 2009) not found
in openEBGM, such as false discovery rate decision rules. PhViD’s approach to implementation of the
GPS model seems focused on adding multiple comparison techniques. We used the PhViD package as
a starting point to write our own code. However, we focused on creating a tool that simply implements
the GPS model in a flexible and efficient manner. See Appendix H.10 for a timing comparison between
openEBGM and PhViD.

The mederrRank package adapts the GPS model to a specific medication error application. Al-
though mederrRank does not appear to offer data squashing or a means of counting events from raw
data, it does allow for stratification by hospital (Venturini et al., 2017). Hyperparameters are estimated
using an expectation-maximization (EM) algorithm, whereas openEBGM uses a gradient-based ap-
proach. mederrRank seems focused on comparing the GPS model to the Bayesian hierarchical model
suggested by Venturini et al. (2017).

Main functions

Table 1 shows a listing of openEBGM’s main functions:

Function Description

processRaw() Counts unique reports; calculates expected counts, RR, and PRR.

squashData() Squashes points (N, E) to reduce computational burden for hy-
perparameter estimation.

autoHyper() Calculates hyperparameter estimates.

ebgm() Calculates EBGM scores.

quantBisect() Calculates quantile scores.

ebScores() Creates an object with EBGM and quantile scores.

Table 1: The main functions in openEBGM.

Hardware and software specifications

We ran the code presented in this article on a 64-bit Windows 7 machine with 128 GB of DDR3 RAM
clocked at 1866 MHz and two 6-core Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60 GHz processors. We
used R v3.4.1, openEBGM v0.3.0, and PhViD v1.0.8.

Data preparation

Use of the openEBGM package requires that the data be formatted in a tidy way (Wickham, 2014);
the data must adhere to the standards of one column per variable and one row per observation. The
columns may be of class "factor", "character", "integer" or "numeric". Although zero counts can
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exist in the contingency table, missing values are not allowed in the unprocessed data and must be
replaced with appropriate values or removed before using openEBGM’s functions.

Column names

The input data frame must contain some specific columns. In particular, these are: ‘var1’, ‘var2’ and
‘id’. ‘var1’ and ‘var2’ are simply the row and column variables of the contingency table, respectively.
The identifier (‘id’) column allows openEBGM to properly handle marginal totals and remove the
effect of double counting. For example, many CAERS reports contain multiple products and events.
However, if an application does use a unique cell for each event of interest, the user can then create a
column of unique sequential identifiers with df$id <-1:nrow(df), where df is the input data frame.

In addition to the columns mentioned above, a column which stratifies the data (by, for example,
gender, age, race, etc.) may be of interest as it can help reduce the effects of confounding variables
(DuMouchel, 1999). If stratification is used, any column whose name contains the case-sensitive
substring ‘strat’ will be treated as a stratification variable. If a continuous variable (e.g. age) is used
for stratification, it should be appropriately categorized so that it is no longer continuous. Additional
columns besides those mentioned above are allowed, but ignored by openEBGM.

CAERS data example

One example use case of the openEBGM package is adverse event signal detection. This application
is utilized by FDA’s CFSAN with data from CAERS, which collects adverse event reports on consumer
products such as foods and dietary supplements and is freely available and updated quarterly (U.S.
Food and Drug Administration, 2017). An example of data preparation with the CAERS dataset is
shown below. We start by downloading the data from FDA’s website and selecting dietary supplement
(Industry Code 54) reports before the year 2017.

> Sys.setlocale(locale = "C") #locale can affect sorting order, etc.
> site <- "https://www.fda.gov/downloads/Food/ComplianceEnforcement/UCM494018.csv"
> dat <- read.csv(site, stringsAsFactors = FALSE, strip.white = TRUE)
> dat$yr <- dat$RA_CAERS.Created.Date
> dat$yr <- substr(dat$yr, start = nchar(dat$yr) - 3, stop = nchar(dat$yr))
> dat$yr <- as.integer(dat$yr)
> dat <- dat[dat$PRI_FDA.Industry.Code == 54 & dat$yr < 2017, ]

Next we rename the columns:

> dat$var1 <- dat$PRI_Reported.Brand.Product.Name
> dat$var2 <- dat$SYM_One.Row.Coded.Symptoms
> dat$id <- dat$RA_Report..
> dat$strat_gen <- dat$CI_Gender
> vars <- c("id", "var1", "var2", "strat_gen")
> dat <- dat[, vars]

Gender needs to be recategorized:

> dat$strat_gen <- ifelse(dat$strat_gen %in% c("Female", "Male"),
+ dat$strat_gen, "unknown")

We can remove rows with non-ASCII characters in case they cause problems in certain locales:

> dat2 <- dat[!dat$var1 %in% tools::showNonASCII(dat$var1), ]

Each row has one product, but multiple adverse events:

> head(dat2, 3)

id var1 var2 strat_gen
7 65353 HERBALIFE RELAX NOW PARANOIA, PHYSICAL EXAMINATION, DELUSION Female
8 65353 HERBALIFE TOTAL CONTROL PARANOIA, PHYSICAL EXAMINATION, DELUSION Female
9 65354 YOHIMBE BLOOD PRESSURE INCREASED Male

We can use the tidyr (Wickham, 2017) package to reshape the data:

> dat_tidy <- tidyr::separate_rows(dat2, var2, sep = ", ")
> dat_tidy <- dat_tidy[, vars]
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> head(dat_tidy, 3)

id var1 var2 strat_gen
1 65353 HERBALIFE RELAX NOW PARANOIA Female
2 65353 HERBALIFE RELAX NOW PHYSICAL EXAMINATION Female
3 65353 HERBALIFE RELAX NOW DELUSION Female

Data cleaning

As a small digression, it is worth noting that the quality of the data can greatly impact the results of
the openEBGM package. For instance, openEBGM considers the drug-symptom pairs ‘drug1-symp1’,
‘Drug1-symp1’, and ‘DRUG1-symp1’ to be distinct var1-var2 pairs. Even minor differences (e.g. spelling,
capitalization, spacing, etc.) can influence the results. Thus, we recommend cleaning data before using
openEBGM to help improve hyperparameter estimates and signal detection in general.

While the issue above could be fixed simply by using the R functions tolower() or toupper(),
other issues such as punctuation, spacing, string permutations in the ‘var1’ or ‘var2’ variables, or
some combination of these must first be vetted and repaired by the user.

Counts and simple disproportionality measures

openEBGM contains functions which take the prepared data and output var1-var2 counts, as well as
some simple disproportionality measures for these var1-var2 pairs. As mentioned in other sections,
there are a number of disproportionality measures of interest that this package concerns, including
the EB scores, RR as well as the PRR. The processRaw() function in the openEBGM package takes
the prepared data and outputs the var1-var2 pair counts (N), the expected number of counts for the
var1-var2 pair (E), as well as the RR and PRR for the var1-var2 pair.

Data processing function

The function processRaw() takes the prepared data and returns a data frame with one row for each
var1-var2 pair. Each row contains the simple disproportionality measures (RR, PRR) as well as the
counts (N, E) for that pair. In the case that the calculation for PRR involves division by zero, a default
value of ‘Inf’ is returned.

The user may decide if stratification should be used to calculate E and whether zero counts (i.e.
a given var1-var2 pair is never observed in the data) should be included. Stratification affects RR,
but not PRR. For the purpose of reducing computational burden, zero counts should not typically
be included for hyperparameter estimation; however, they may help when convergence issues are
encountered. If included, the points should be squashed (discussed in later sections) in order to reduce
the computation time. These zero counts should not typically be used for EB scores since they are
meaningless for studying larger-than-expected counts (which is usually the goal).

Data processing example

Here, the tidyr package is only needed for the pipe (%>%) operator.

> library("tidyr")
> library("openEBGM")
> data("caers") #small subset of publicly available CAERS data
> head(caers, 3)

id var1 var2 strat1
1 147289 PREVAGEN BRAIN NEOPLASM Female
2 147289 PREVAGEN CEREBROVASCULAR ACCIDENT Female
3 147289 PREVAGEN RENAL DISORDER Female

First, we process the data without using stratification or zeroes:

> processRaw(caers) %>% head(3)

var1 var2 N E RR PRR
1 1-PHENYLALANINE HEART RATE INCREASED 1 0.0360548272 27.74 27.96
2 11 UNSPECIFIED VITAMINS ASTHMA 1 0.0038736591 258.15 279.58
3 11 UNSPECIFIED VITAMINS CARDIAC FUNCTION TEST 1 0.0002979738 3356.00 Inf
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Now, using stratification:

> processRaw(caers, stratify = TRUE) %>% head(3)

stratification variables used: strat1
there were 3 strata

var1 var2 N E RR PRR
1 1-PHENYLALANINE HEART RATE INCREASED 1 0.0287735849 34.75 27.96
2 11 UNSPECIFIED VITAMINS ASTHMA 1 0.0047169811 212.00 279.58
3 11 UNSPECIFIED VITAMINS CARDIAC FUNCTION TEST 1 0.0004716981 2120.00 Inf

Finally, we use stratification and a cap on the number of strata (useful for preventing excessive data
slimming, especially with uncategorized continuous variables):

> processRaw(caers, stratify = TRUE, max_cats = 2) %>% head(3)

stratification variables used: strat1
Error in .checkStrata_processRaw(data, max_cats) :
at least one stratification variable contains more than 2 categories --
did you remember to categorize stratification variables?
if you really need more categories, increase 'max_cats'

Hyperparameter estimation

The marginal distribution of each Nij is a negative binomial mixture (DuMouchel, 1999, p. 180, Eq.
5) and is a function of the hyperparameter (θprior), the actual observed counts (nij), and the expected
counts (Eij). The prior distribution’s maximum likelihood hyperparameter estimate, θ̂prior, is obtained
by minimizing the negative log-likelihood from these marginal distributions. Global optimization
is needed to estimate θprior. openEBGM’s approach to global optimization is to simply use local
optimization with multiple starting points. The user can manually optimize the likelihood function
using another approach if desired. openEBGM’s optimization functions are wrappers for functions
from the stats package. (Note: Results might vary slightly by operating system and version of R.)
Users are encouraged to explore many optimization approaches because the accuracy of a global
optimization result is difficult to verify, convergence is not guaranteed, and some approaches may
outperform others.

Data squashing

DuMouchel and Pregibon (2001) used a method of reducing computational burden they called data
squashing , which reduces the number of data points (nij, Eij) used for hyperparameter estimation.
A very large table with I rows and J columns can require immense computational resources. Data
squashing reduces this set of points to a much smaller set of K points (nk, Ek, Wk), where k = 1, . . . , K <
I × J and Wk is the weight of the kth squashed point.

For a given n, squashData() bins points with similar Es and uses the average E within each bin as
the expected count for that squashed point. The new points are weighted by bin size. For example,
the points (1, 1.1) and (1, 1.3) could be squashed to (1, 1.2, 2). To minimize information loss, we
recommend only squashing points in close proximity. By default, squashData() does not squash the
points with the highest Es for a given n since those points tend to have more variability (at least for
small n; see Figure 2). The user can call squashData() repeatedly on different values of n (e.g. n = 1,
then n = 2). We recommend squashing the data to less than 20,000 points.

Likelihood functions

The likelihood function for θprior (DuMouchel, 1999, p. 181, Eq. 12) must be adjusted (DuMouchel
and Pregibon, 2001) when using data squashing or removing small counts (often just zeroes) from
the estimation procedure, so openEBGM offers 4 likelihood functions: negLL(), negLLsquash(),
negLLzero(), and negLLzeroSquash(). Since the GPS model was developed to study large datasets,
negLLsquash() will usually be used since it allows for both data squashing and the removal of smaller
counts. The user will not call the likelihood functions directly if using the wrapper functions described
in the next section.
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Optimization wrapper functions

exploreHypers() requires the user to choose one or more starting points (i.e. guesses) for θprior. For
each starting point, the corresponding estimate, θ̂prior, is returned if the algorithm converges. Examin-
ing estimates from multiple starting points allows the user to study the consistency of the results and
reduces the chances of false convergence or getting trapped in a local minimum. Hyperparameter
estimates are calculated using an implementation of one of three Newton-like or quasi-Newton meth-
ods from the stats package: nlminb(), nlm(), or optim() (using method = "BFGS" for optim()). The
N_star argument defines the smallest actual count (usually 1) used for hyperparameter estimation
(DuMouchel and Pregibon, 2001). Setting the std_errors argument to TRUE calculates estimated
standard errors using the observed Fisher information as discussed in DuMouchel (1999, p. 183).

autoHyper() uses a semi-automated approach that returns a list including a final θ̂prior after run-
ning some verification checks on the estimates returned by exploreHypers(). From the solutions
that converge inside the parameter space, autoHyper() chooses the θ̂prior with the smallest negative
log-likelihood. By default, at least one other convergent solution must be similar to the chosen
θ̂prior (i.e. within a specified tolerance defined by the tol argument). Each of the three methods
available in exploreHypers() are attempted in sequence until these conditions are satisfied. If all
methods are exhausted without consistent convergence, autoHyper() returns an error message. Set-
ting the conf_ints argument to TRUE returns standard errors and asymptotic normal confidence
intervals. exploreHypers() is called internally, so autoHyper() may be used without first calling
exploreHypers().

Hyperparameter estimation example

We start by counting item pairs and squashing the counts twice:

> proc <- processRaw(caers)

Figure 2 illustrates why squashing the largest Es for each N could result in a large loss of information.

Figure 2: Larger expected counts are generally more spread out; by default, they are not squashed (to
prevent information loss).

> squashed <- squashData(proc)
> squashed <- squashData(squashed, count = 2, bin_size = 10)
> head(squashed, 3); tail(squashed, 2)

N E weight
1 1 0.0002979738 50
2 1 0.0002979738 50
3 1 0.0002979738 50

N E weight
946 53 14.30095 1
947 54 16.05721 1
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We can optimize the likelihood function directly:

> theta_init1 <- c(alpha1 = 0.2, beta1 = 0.1, alpha2 = 2, beta2 = 4, p = 1/3)
> stats::nlminb(start = theta_init1, objective = negLLsquash,
+ ni = squashed$N, ei = squashed$E, wi = squashed$weight)$par

alpha1 beta1 alpha2 beta2 p
3.25120698 0.39976727 2.02695588 1.90892701 0.06539504

Or we can use openEBGM’s wrapper functions:

> theta_init2 <- data.frame(
+ alpha1 = c(0.2, 0.1, 0.5),
+ beta1 = c(0.1, 0.1, 0.5),
+ alpha2 = c(2, 10, 5),
+ beta2 = c(4, 10, 5),
+ p = c(1/3, 0.2, 0.5)
+ )

> exploreHypers(squashed, theta_init = theta_init2, std_errors = TRUE)

$estimates
guess_num a1_hat b1_hat a2_hat b2_hat p_hat ... minimum

1 1 3.251207 0.3997673 2.026956 1.908927 0.06539504 ... 4161.921
2 2 3.251187 0.3997670 2.026961 1.908933 0.06539553 ... 4161.921
3 3 3.251243 0.3997702 2.026965 1.908933 0.06539509 ... 4161.921

$std_errs
guess_num a1_se b1_se a2_se b2_se p_se

1 1 2.280345 0.1434897 0.4515784 0.4328318 0.03575796
2 2 2.280247 0.1434851 0.4515718 0.4328231 0.03575709
3 3 2.280786 0.1435108 0.4516005 0.4328767 0.03576430

There were 11 warnings (use warnings() to see them)

> (theta_hat <- autoHyper(squashed, theta_init = theta_init2, conf_ints = TRUE))

$method
[1] "nlminb"

$estimates
alpha1 beta1 alpha2 beta2 P

3.25118662 0.39976698 2.02696130 1.90893277 0.06539553

$conf_int
pt_est SE LL_95 UL_95

a1_hat 3.2512 2.2802 -1.2180 7.7204
b1_hat 0.3998 0.1435 0.1185 0.6810
a2_hat 2.0270 0.4516 1.1419 2.9120
b2_hat 1.9089 0.4328 1.0606 2.7573
p_hat 0.0654 0.0358 -0.0047 0.1355

$num_close
[1] 2

$theta_hats
guess_num a1_hat b1_hat a2_hat b2_hat p_hat ... minimum

1 1 3.251207 0.3997673 2.026956 1.908927 0.06539504 ... 4161.921
2 2 3.251187 0.3997670 2.026961 1.908933 0.06539553 ... 4161.921
3 3 3.251243 0.3997702 2.026965 1.908933 0.06539509 ... 4161.921

There were 11 warnings (use warnings() to see them)

Warnings are often produced. Global optimization results are not guaranteed even when no warnings
are produced and convergence is reached. The starting points can have an impact on the results.
DuMouchel (1999) and DuMouchel and Pregibon (2001) provide some recommendations for starting
points. The user must decide if the results seem reasonable.
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EB disproportionality scores

The empirical Bayes scores are obtained from the posterior distributions. Thus, the posterior functions
calculate the EB scores. Casual users will rarely call these functions directly since they are called
internally by the ebScores() function described in the next section. However, we still exported these
functions for users that want added flexibility.

Posterior functions

Qn() calculates the mixture fractions for the posterior distributions using the hyperparameter estimates
(θ̂prior) and the counts (nij, Eij). The values returned by Qn() correspond to "the posterior probability
that λ came from the first component of the mixture, given N = n" (DuMouchel, 1999, p. 180). Recall
that a posterior distribution exists for each cell in the table. Thus, Qn() returns a numeric vector with
the same length as the number of (usually non-zero) var1-var2 combinations. Use the counts returned
by processRaw()—not the squashed dataset—as inputs for Qn().

ebgm() finds the EBGM scores. These scores replace the RR scores and represent the geometric
means of the posterior distributions. Scores much larger than 1 indicate var1-var2 pairs that occur at a
higher-than-expected rate. quantBisect() finds the quantile scores (i.e. credibility limits) using the
bisection method and can calculate any percentile between 1 and 99. Low percentiles (e.g. 5th or 10th)
can be used as conservative disproportionality scores.

EB scores example

Continuing with the previous example:

> theta_hats <- theta_hat$estimates
> qn <- Qn(theta_hats, N = proc$N, E = proc$E)
> proc$EBGM <- ebgm(theta_hats, N = proc$N, E = proc$E, qn = qn)
> proc$QUANT_05 <- quantBisect(5, theta_hat = theta_hats,
+ N = proc$N, E = proc$E, qn = qn)
> proc$QUANT_95 <- quantBisect(95, theta_hat = theta_hats,
+ N = proc$N, E = proc$E, qn = qn)
> head(proc, 3)

var1 var2 ... RR ... EBGM QUANT_05 QUANT_95
1 1-PHENYLAL... HEART RATE INCREASED ... 27.74 ... 2.23 0.49 13.85
2 11 UNSPECIFIED VIT... ASTHMA ... 258.15 ... 2.58 0.52 15.78
3 11 UNSPECIFIED VIT... CARDIAC FUNCTION TEST ... 3356.00 ... 2.63 0.52 16.02

Object-oriented features

In addition to the capabilities described above, openEBGM can create S3 objects of class "openEBGM"
to aid in the calculation and inspection of disproportionality scores, as well as reduce the number
of direct function calls needed. When using an "openEBGM" object, the generic functions print() ,
summary() and plot() dispatch to methods written specifically for objects of this class.

Object creation

The ebScores() function instantiates an object, which includes the EB scores (EBGM and chosen
posterior quantile scores). After calculating the hyperparameters, ebScores() can instantiate an object
by calling the posterior distribution functions (previous section), thus simplifying the analyst’s work.
Generic functions can then be used to quickly review the results. An example is provided below.

> proc2 <- processRaw(caers)
> ebScores(proc2, hyper_estimate = theta_hat, quantiles = 10)$data %>% head(3)

var1 var2 N ... EBGM QUANT_10
1 1-PHENYLALANINE HEART RATE INCREASED 1 ... 2.23 0.67
2 11 UNSPECIFIED VITAMINS ASTHMA 1 ... 2.58 0.71
3 11 UNSPECIFIED VITAMINS CARDIAC FUNCTION TEST 1 ... 2.63 0.72

We can also calculate upper and lower credibility limits for the EB disproportionality score:
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> obj <- ebScores(proc2, hyper_estimate = theta_hat, quantiles = c(10, 90))
> head(obj$data, 3)

var1 var2 N ... EBGM QUANT_10 QUANT_90
1 1-PHENYLALANINE HEART RATE INCREASED 1 ... 2.23 0.67 10.79
2 11 UNSPECIFIED VITAMINS ASTHMA 1 ... 2.58 0.71 12.62
3 11 UNSPECIFIED VITAMINS CARDIAC FUNCTION TEST 1 ... 2.63 0.72 12.83

Or we can specify EBGM scores without limits, which may reduce computation time:

> ebScores(proc2, hyper_estimate = theta_hat, quantiles = NULL)$data %>% head(3)

var1 var2 N ... EBGM
1 1-PHENYLALANINE HEART RATE INCREASED 1 ... 2.23
2 11 UNSPECIFIED VITAMINS ASTHMA 1 ... 2.58
3 11 UNSPECIFIED VITAMINS CARDIAC FUNCTION TEST 1 ... 2.63

Like all S3 objects in R, class "openEBGM" objects are list-like. The first element, ‘data’, contains the
var1-var2 pair counts, simple disproportionality scores, and EB scores. Other elements describe the
hyperparameter estimation results and the quantile choices, if present.

Simple descriptive analysis

As stated previously, there are some generic functions included in openEBGM, two of which assist
with descriptive analysis. These functions provide textual summaries of the disproportionality scores.
Examples are provided below.

> obj <- ebScores(proc2, hyper_estimate = theta_hat, quantiles = c(10, 90))
> obj

There were 157 var1-var2 pairs with a QUANT_10 greater than 2

Top 5 Highest QUANT_10 Scores
var1 var2 N ... QUANT_10

13924 REUMOFAN PLUS WEIGHT INCREASED 16 ... 17.22
8187 HYDROXYCUT REGULAR RAPID... EMOTIONAL DISTRESS 19 ... 12.69
13886 REUMOFAN PLUS IMMOBILE 6 ... 11.74
4093 EMERGEN-C (ASCORBIC ACID... COUGH 6 ... 10.29
7793 HYDROXYCUT HARDCORE... CARDIO-RESPIRATORY DISTRESS 8 ... 10.23

When the print() function is executed on the object, the textual output gives a brief overview of the
highest EB scores for the lowest quantile calculated. In the absence of quantiles, the highest EBGM
scores are returned with their associated var1-var2 pairs. In addition, it states how many var1-var2
pairs with a minimal quantile score above 2 existed in the data. Two is used as a rule of thumb in
determining whether a pair is observed more than would be expected.

When summary() is called on an "openEBGM" object, the output includes a numerical summary on
the EB scores. One may use the log.trans=TRUE argument to log2 transform the EBGM scores before-
hand, in order to get information on the "Bayesian version of the information statistic" (DuMouchel,
1999, p. 180).

> summary(obj)

Summary of the EB-Metrics
EBGM QUANT_10 QUANT_90

Min. : 0.200 Min. : 0.0900 Min. : 0.43
1st Qu.: 2.010 1st Qu.: 0.6500 1st Qu.: 9.19
Median : 2.390 Median : 0.6900 Median :11.62
Mean : 2.355 Mean : 0.7266 Mean :10.42
3rd Qu.: 2.580 3rd Qu.: 0.7100 3rd Qu.:12.57
Max. :23.260 Max. :17.2200 Max. :31.07

Graphical analysis

In addition to the above descriptive analysis, plots are exceedingly helpful when analyzing dispro-
portionality scores. There are a number of different plot types included in the openEBGM package,
all of which utilize the ggplot2 package (Wickham and Chang, 2016; Wickham, 2009). The plots may

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2


CONTRIBUTED RESEARCH ARTICLES 509

be used to diagnose the performance of the package, as well as to aid in analysis and identification
of interesting var1-var2 pairs. All of the plots are created by using the generic plot() function when
called on an "openEBGM" object. The plot types include histograms, bar plots and shrinkage plots, and
may be specified using the plot.type parameter in the generic function.

For all of the plots that follow, they may be created for the entire dataset in general, or with a
specified event. When one wishes to look at the EBGM scores (and corresponding quantiles, etc.) for
‘var1’ observations corresponding to a specific ‘var2’ variable, the argument ‘event’ may be used in
the plot() function call. An example is provided for bar plots using this feature.

Bar plots

It may be of interest to the researcher to see the comparison of var1-var2 pairs in the disproportionality
scores. For this reason, the generic plot() function’s default plot type is a bar plot showing var1-var2
pairs by their EBGM scores, with error bars when appropriate. Counts for each pair are also displayed
as an additional layer of information. When quantiles were requested in the ebScores() function
call, then the error bars on the bar plot represent the bounds of the quantiles specified. That is, the
lower end of the error bar is the lowest quantile requested, and the upper end is the highest quantile
requested. When no quantiles or only one quantile is requested, then error bars are not printed onto
the plot. The bars are colored by the magnitude of the EBGM score.

Continuing from the last example, ‘obj’ is an object of class "openEBGM", with quantile specification
of the 10th and 90th percentiles. Figure 3 then displays the bar plot on the data in general, corresponding
to the highest EBGM scores for the var1-var2 pairs, and Figure 4 displays the bar plot when only
considering the event terms which match the regular expression ‘CHOKING’.

> plot(obj) #Figure 3
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Figure 3: Top 15 product-event EBGM scores on entire dataset

> plot(obj, event = "CHOKING") #Figure 4

Histograms

It may also be of interest to the researcher to see the distribution of EBGM scores. This distribution
may provide the researcher with valuable insight regarding the extent of high-scoring var1-var2 pairs,
as well as their relative magnitudes. For this reason, a histogram may be created by the generic plot()
function. The histogram output is always the EBGM score, regardless of whether or not quantiles
were specified in the ebScores() function call. Figure 5 demonstrates that most of the EBGM scores
are relatively small, with far fewer more interesting large scores representing unusual occurrences,
illustrating why the GPS model is useful for signal detection.
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Figure 4: Top 15 product-event EBGM scores for choking events only

> plot(obj, plot.type = "histogram") #Figure 5
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Figure 5: Histogram of EBGM scores on entire dataset

Shrinkage plots

Finally, the last plot that is included in the openEBGM package is a Chirtel Squid Shrinkage Plot
(Chirtel, 2012; Duggirala et al., 2015), similar to Madigan et al. (2011, Fig.1), which shows the per-
formance of the shrinkage algorithm on the data. In particular, it plots the EBGM score versus the
natural log transformation of the RR. This plot may be useful by allowing the researcher to investigate
the extent of the shrinkage that is being performed on the data, and how this shrinkage changes with
varying N counts. The plot is colored by the count of each individually displayed var1-var2 pair.
Figure 6 illustrates that scores for product/event pairs that only occur once are greatly shrunk, but the
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shrinkage lessens quickly as the number of occurrences increases. For this reason, single counts are
typically not considered signals, effectively eliminating many of the false signals that occur with the
simple relative reporting ratio.

> plot(obj, plot.type = "shrinkage") #Figure 6
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Figure 6: Shrinkage performance plot on entire dataset

Computational efficiency

As mentioned earlier, the openEBGM package implements the GPS model, taking into account the
computational requirements that are involved when working with contingency tables, as well as when
exploring a parameter space for the purposes of log-likelihood maximization (here, minimization of
negative log-likelihood).

Efficient processing

As seen in the data squashing section, methodologies may be implemented that provide more efficient
data processing in order to reduce overall computation time without significant loss in posterior
estimates. An example is provided below showing the difference in time in hyperparameter estimation
for data with and without zeroes, along with the utilization of data squashing and no data squashing.

> library("openEBGM")
> data("caers")
> proc_zeroes <- processRaw(caers, zeroes = TRUE)
> proc_no_zeroes <- processRaw(caers)
> squash_zeroes <- squashData(proc_zeroes, count = 0)
> squash_no_zeroes <- squashData(proc_no_zeroes)
> theta_init <- data.frame(alpha1 = c(0.2, 0.1),
+ beta1 = c(0.1, 0.1),
+ alpha2 = c(2, 10),
+ beta2 = c(4, 10),
+ p = c(1/3, 0.2))

> system.time(hyper_zeroes <- autoHyper(squash_zeroes,
+ theta_init = theta_init, squashed = TRUE,
+ zeroes = TRUE, N_star = NULL,
+ max_pts = nrow(squash_zeroes)))
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> system.time(hyper_no_zeroes <- autoHyper(squash_no_zeroes,
+ theta_init = theta_init,
+ squashed = TRUE, zeroes = FALSE,
+ N_star = 1))

> qn_zeroes <- Qn(theta_hat = hyper_zeroes$estimates,
+ N = proc_no_zeroes$N, E = proc_no_zeroes$E)
> ebgm_zeroes <- ebgm(theta_hat = hyper_zeroes$estimates,
+ N = proc_no_zeroes$N, E = proc_no_zeroes$E, qn = qn_zeroes)

> qn_no_zeroes <- Qn(theta_hat = hyper_no_zeroes$estimates,
+ N = proc_no_zeroes$N, E = proc_no_zeroes$E)
> ebgm_no_zeroes <- ebgm(theta_hat = hyper_no_zeroes$estimates,
+ N = proc_no_zeroes$N, E = proc_no_zeroes$E, qn = qn_no_zeroes)

> hyper_zeroes$estimates
> hyper_no_zeroes$estimates

We may look at the output of the above code to see how long it took to estimate the hyperparameters
with and without zeroes, as well as their associated estimates. In the output below, for both the time
elapsed in calculation as well as the estimates, the data including zeroes is displayed first.

user system elapsed
311.73 10.09 321.83

user system elapsed
2.58 0.00 2.58

alpha1 beta1 alpha2 beta2 P
0.1874269 0.2171502 2.3409023 1.6725397 0.4582590

alpha1 beta1 alpha2 beta2 P
3.25091549 0.39971566 2.02580114 1.90804807 0.06539048

A Bland-Altman plot comparing the EBGM scores when using zero counts vs. strictly nonzero
counts for hyperparameter estimates can be seen in Figure 7. We can also compare the difference
between squashed data and non-squashed data on the estimates of the hyperparameters, as well as
how long it takes to estimate them.

> system.time(hyper_squash <- autoHyper(data = squash_no_zeroes,
+ theta_init = theta_init, squashed = TRUE,
+ zeroes = FALSE, N_star = 1))
> system.time(hyper_no_squash <- autoHyper(data = proc_no_zeroes,
+ theta_init = theta_init, squashed = FALSE,
+ zeroes = FALSE, N_star = 1))
> hyper_squash$estimates
> hyper_no_squash$estimates

user system elapsed
2.54 0.00 2.54

user system elapsed
24.62 0.17 24.79

alpha1 beta1 alpha2 beta2 P
3.25091549 0.39971566 2.02580114 1.90804807 0.06539048

alpha1 beta1 alpha2 beta2 P
3.25599765 0.39999135 2.02374652 1.90612584 0.06530695

As we see in the example above, the difference in EBGM estimates when comparing the use
of squashing and not squashing for hyperparameter estimation is minimal, and by analysis of the
Bland-Altman plot of the EBGM scores (see Figure 8), the results are nearly identical.

We see that not including zero counts makes the estimation of the hyperparameters far more
computationally feasible than when one uses zeroes, which would occur if we used contingency table
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Figure 7: Bland-Altman plot of EBGM scores with and without zeroes (zeroes - no zeroes)
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Figure 8: Bland-Altman plot of EBGM scores with and without data squashing (data squashing - no
data squashing)

data structures instead of tidy data where zeroes are generally not needed. Appendix H.11 further
illustrates efficiency gains from removing zeroes.

Additionally, openEBGM utilizes other strategies to reduce the amount of unnecessary computa-
tion required to employ the GPS model. In particular, the package uses certain data structures which
represent the sometimes large contingency table of var1-var2 pairs as a "data.table" (Dowle and
Srinivasan, 2017) in tidy form (Wickham, 2014). This results in more efficient data squashing and
computation of marginal totals and expected counts. Representing data in tidy form instead of a matrix
resembling a contingency table avoids inefficient row-wise operations involving many unnecessary
zeroes. Furthermore, the documentation for data.table claims fast merging of "data.table" objects.
While developing the code, we noticed a sizable speed improvement for the merging and aggregation
methods for "data.table" objects over the standard methods for traditional data frames. Appendix
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H.12 demonstrates that openEBGM can process very large data sets in a reasonable amount of time,
even when including zeroes for hyperparameter estimation.

Conclusion and discussion

Our package greatly simplifies the process of generating disproportionality scores for large contin-
gency tables. In addition, the analysis of these scores is simplified using built-in functions which
summarize and display the results. Furthermore, openEBGM’s implementation of the GPS model
aims for greater efficiency (see Appendix H.10), flexibility and usability compared to other open-source
implementations of the same model.

Further applications

Adverse event reporting is not the only application of the GPS methodology. DuMouchel (1999)
provides other examples, including natural language processing. GPS can find word pairs that appear
more frequently than expected, which could prove to be useful for crawling the web in search of trends
(e.g. document searches). DuMouchel also suggests using the model to find supermarket products
that are often purchased together (stratified by store location).

Multi-item gamma-Poisson shrinker

openEBGM currently implements the GPS model, which can only examine single var1-var2 pairs. An
extension of this model exists, allowing the study of interactions. The FDA currently uses (Duggirala
et al., 2016; Szarfman et al., 2002) the Multi-item Gamma-Poisson Shrinker (MGPS) model (DuMouchel
and Pregibon, 2001) to find higher-than-expected reporting of adverse events associated with specific
products or product groups. MGPS can model Drug-Drug-Event or Drug-Event-Event triples (with
higher order interactions also being possible). DuMouchel and Pregibon (2001) use a log-linear model
in the MGPS approach to account for lower-order associations. More discussion on the details of
MGPS can be found in Szarfman et al. (2002). Existing proprietery implementations of MGPS include
Oracle Health Science’s Empirica Signal (Oracle, 2017) and some versions of JMP® Clinical software
(SAS Institute Inc., 2017). Future improvements to openEBGM could include the addition of the
MGPS model.
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Appendix A

# Purpose: To compare computing times for openEBGM vs. PhViD.
# Notes: We continue from the data set created in the CAERS data set example.
# PhViD also computes many multiplicity-adjusted values not shown here.
# The pre-2017 CAERS data set might change slightly over time.

> library("PhViD")
> dat_tidy$id <- 1:nrow(dat_tidy) #since PhViD cannot count unique reports
> counts <- processRaw(dat_tidy)
> nrow(counts) #number of points/var1-var2 pairs

[1] 145257

> theta_init <- c(alpha1 = 0.2, beta1 = 0.06, alpha2 = 1.4, beta2 = 1.8, P = 0.1)

#Start with the PhViD package
> system.time({
+ dat_phvid <- as.PhViD(counts[, 1:3])
+ results_phvid <- GPS(dat_phvid, RANKSTAT = 3, TRONC = TRUE, PRIOR.INIT = theta_init)
+ })

user system elapsed
342.08 4.32 346.46

> results_phvid <- results_phvid$ALLSIGNALS[, 1:6]
> results_phvid <- results_phvid[order(results_phvid$drug, results_phvid$event), ]
> results_phvid$EBGM <- round(2 ^ results_phvid[, 'post E(Lambda)'], 3)
> row.names(results_phvid) <- NULL
> head(results_phvid, 3)

drug event count ... n11/E EBGM
1 CENTRUM SILVER WOMEN'S 50+... CHOKING 2 ... 14.27370 1.639
2 CENTRUM SILVER WOMEN'S 50+... DYSPHAGIA 1 ... 13.53379 1.153
3 CENTRUM SILVER WOMEN'S 50+... THROAT IRRITATION 1 ... 48.00568 1.187

#Now for the openEBGM package
> theta_init_df <- t(data.frame(theta_init))
> system.time({
+ theta1 <- exploreHypers(counts, theta_init = theta_init_df, squashed = FALSE,
+ method = "nlm", max_pts = nrow(counts))$estimates
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+ theta1 <- as.numeric(theta1[1, 2:6])
+ results_open1 <- ebScores(counts, list(estimates = theta1), quantiles = NULL)
+ })

user system elapsed
84.18 0.02 84.19

> dat_open1 <- results_open1$data
> head(dat_open1, 3)

var1 var2 N ... RR ... EBGM
1 CENTRUM SILVER WOMEN'S 50+... CHOKING 2 ... 14.27 ... 1.64
2 CENTRUM SILVER WOMEN'S 50+... DYSPHAGIA 1 ... 13.53 ... 1.15
3 CENTRUM SILVER WOMEN'S 50+... THROAT IRRITATION 1 ... 48.01 ... 1.19

#Now with data squashing
> system.time({
+ squashed <- squashData(counts, bin_size = 100)
+ squashed <- squashData(squashed, count = 2, bin_size = 10)
+ theta2 <- exploreHypers(squashed, theta_init = theta_init_df,
+ method = "nlm")$estimates
+ theta2 <- as.numeric(theta2[1, 2:6])
+ results_open2 <- ebScores(counts, list(estimates = theta2), quantiles = NULL)
+ })

user system elapsed
5.64 0.03 5.68

> dat_open2 <- results_open2$data
> head(dat_open2, 3)

var1 var2 N ... RR ... EBGM
1 CENTRUM SILVER WOMEN'S 50+... CHOKING 2 ... 14.27 ... 1.64
2 CENTRUM SILVER WOMEN'S 50+... DYSPHAGIA 1 ... 13.53 ... 1.15
3 CENTRUM SILVER WOMEN'S 50+... THROAT IRRITATION 1 ... 48.01 ... 1.19

Appendix B

Rows Without zeroes With zeroes

Unstratified Stratified Points Unstratified Stratified Points

50K 0.6 0.8 40K 32 47 18M

100K 1.3 1.9 80K 84 122 44M

150K 2.2 2.9 118K 157 226 72M

200K 3.1 3.8 156K 205 308 103M

250K 3.0 3.9 194K 273 430 139M

300K 3.6 4.6 227K 352 519 171M

Elapsed time (in seconds) and approximate number of points (N, E) for processRaw() on various sizes
of raw data. Using gender only when stratifying. K = 1,000; M = 1,000,000

Appendix C

# Purpose: To assess how quickly openEBGM can process a very large data set.
# Notes: We include all industry codes. We also include zero counts in the
# hyperparameter estimation step to further illustrate how quickly openEBGM
# can process a very large number of points (~177 million).

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 518

> site <- "https://www.fda.gov/downloads/Food/ComplianceEnforcement/UCM494018.csv"
> dat <- read.csv(site, stringsAsFactors = FALSE, strip.white = TRUE)
> dat$yr <- dat$RA_CAERS.Created.Date
> dat$yr <- substr(dat$yr, start = nchar(dat$yr) - 3, stop = nchar(dat$yr))
> dat$yr <- as.integer(dat$yr)
> dat <- dat[dat$yr < 2017, ] #using all industry codes
> dat$var1 <- dat$PRI_Reported.Brand.Product.Name
> dat$var2 <- dat$SYM_One.Row.Coded.Symptoms
> dat$id <- dat$RA_Report..
> dat$strat_gen <- dat$CI_Gender
> dat$strat_gen <- ifelse(dat$strat_gen %in% c("Female", "Male"),
+ dat$strat_gen, "unknown")
> vars <- c("id", "var1", "var2", "strat_gen")
> dat <- dat[, vars]
> dat <- dat[!dat$var1 %in% tools::showNonASCII(dat$var1), ]
> dat_tidy <- tidyr::separate_rows(dat, var2, sep = ", ")
> dat_tidy <- dat_tidy[dat_tidy$var2 != "", ]
> nrow(dat_tidy) #rows in raw data

[1] 307719

> system.time(counts <- processRaw(dat_tidy, zeroes = TRUE))

user system elapsed
289.07 63.22 352.33

> nrow(counts) #number of points/var1-var2 pairs in processed data

[1] 176739728

> system.time({
+ squashed <- squashData(counts, count = 0, bin_size = 50000, keep_bins = 0)
+ })

user system elapsed
75.38 12.40 87.80

> nrow(squashed)

[1] 235734

> system.time({
+ squashed <- squashData(squashed, bin_size = 500, keep_bins = 1)
+ squashed <- squashData(squashed, count = 2, bin_size = 100, keep_bins = 1)
+ squashed <- squashData(squashed, count = 3, bin_size = 50, keep_bins = 1)
+ squashed <- squashData(squashed, count = 4, bin_size = 25, keep_bins = 1)
+ squashed <- squashData(squashed, count = 5, bin_size = 10, keep_bins = 1)
+ squashed <- squashData(squashed, count = 6, bin_size = 10, keep_bins = 1)
+ })

user system elapsed
0.16 0.00 0.16

> nrow(squashed) #number of points used for hyperparameter estimation

[1] 7039

> theta_init <- c(alpha1 = 0.2, beta1 = 0.06, alpha2 = 1.4, beta2 = 1.8, P = 0.1)
> theta_init_df <- t(data.frame(theta_init))

> system.time({
+ theta_est <- exploreHypers(squashed, theta_init = theta_init_df,
+ squashed = TRUE, zeroes = TRUE, N_star = NULL,
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+ method = "nlminb", std_errors = TRUE)
+ theta_hat <- theta_est$estimates
+ theta_hat <- as.numeric(theta_hat[1, 2:6])
+ })

user system elapsed
4.63 0.09 4.72

> theta_hat

[1] 0.036657366 0.006645404 0.681479849 0.605705800 0.020295102

> theta_est$std_errs #standard errors of hyperparameter estimates

guess_num a1_se b1_se a2_se b2_se p_se
1 1 0.007072148 0.000275861 0.00964448 0.008095735 0.00389658

> system.time({
+ counts_sans0 <- counts[counts$N != 0, ] #do not need EB scores for zero counts
+ results <- ebScores(counts_sans0, list(estimates = theta_hat), quantiles = NULL)
+ })

user system elapsed
2.95 0.02 2.97

> nrow(results$data) #number of nonzero counts

[1] 232203
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rentrez: An R package for the NCBI eUtils
API
by David J. Winter

Abstract The USA National Center for Biotechnology Information (NCBI) is one of the world’s most
important sources of biological information. NCBI databases like PubMed and GenBank contain mil-
lions of records describing bibliographic, genetic, genomic, and medical data. Here I present rentrez,
a package which provides an R interface to 50 NCBI databases. The package is well-documented,
contains an extensive suite of unit tests and has an active user base. The programmatic interface to the
NCBI provided by rentrez allows researchers to query databases and download or import particular
records into R sessions for subsequent analysis. The complete nature of the package, its extensive
test-suite and the fact the package implements the NCBI’s usage policies all make rentrez a powerful
aid to developers of new packages that perform more specific tasks.

Introduction

The USA National Center for Biotechnology Information (NCBI) is one of the world’s largest and
most important sources of biological data. At the time of writing, the NCBI PubMed database
provided information on 27.5 million journal articles, including 4.6 million full text records. The
NCBI Nucleotide Database (including GenBank) had data for 243.3 million different sequences and
dbSNP described 997.3 million different genetic variants. Records from all of these databases can
be cross-referenced with the 1.3 million species in the NCBI taxonomy, and PubMed entries can be
searched using a controlled vocabulary containing 272 thousand unique terms.

The NCBI provides access to a total of 50 databases through a web interface, public FTP sites and
an API called Entrez Programming Utilities (eUtils, Sayers and Wheeler (2004)). R packages from the
Bioconductor project (e.g., genomes, Stubben (2015); RMassBank, Stravs et al. (2013) and MeSHSim,
Zhou and Shui (2015)) or available from CRAN (e.g., ape, Paradis et al. (2004); RISmed, Kovalchik
(2017) and pubmed.mineR, Rani et al. (2014)) take advantage of the Eutils API to perform specific
tasks. Two packages, rentrez and reutils (Schöfl, 2016), provide functions that cover the entire API.
Here I describe rentrez, a package which provides users with a simple and consistent interface to
eUtils. This paper discusses the design of the package, illustrates its use in biological research and
demonstrates how the provided functions can aid the development of other packages designed to
meet more specific goals.

The eUtils API and rentrez

The eUtils API provides endpoints for searching each of the databases it covers, finding cross-references
among records in those databases and fetching particular records (in complete or summary form).
The design of rentrez mirrors that of eUtils, with each of these endpoints represented by a core
function that has arguments named to match those used in the API documentation (Table 1). The most
important arguments to each R function are documented, and the help pages associated with these
functions contain a reference to the relevant section of the eUtils documentation.

Table 1: Core eUtils endpoints and their rentrez counterparts

NCBI endpoint Purpose Core function
esearch Locate records matching search criteria. entrez_search
elink Discover cross-linked records. entrez_link
esummary Fetch summary data on a set of records. entrez_summary
efetch Fetch complete records in a variety of formats. entrez_fetch

Typically, a user will begin by using entrez_search to discover unique identifiers for database
records matching particular criteria. This function requires a database (argument db) and a search term
(argument term). The term argument can take advantage of the eUtils search syntax, in which queries
can be associated with particular ‘search fields’ (enclosed in square brackets), to limit the number
of matching records. The fields available for a given database can be retrieved with the function
entrez_db_searchable. The following call demonstrates the use of this search syntax. This query
finds scientific papers that contain the phrase ‘R Package’ in their title while limiting the result to
include only papers published in 2017.
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pubmed_search <- entrez_search(db="pubmed",
term="(R package[TITL]) AND 2017[PDAT]",
use_history=TRUE)

pubmed_search

#> Entrez search result with 62 hits (object contains 20 IDs and a web_history object)
#> Search term (as translated): R package[TITL] AND 2017[PDAT]

For the most part, the objects returned by rentrez functions are S3 objects that inherit from "list"
objects. Each of these classes has its own print method, providing users with a succint summary of
the object’s contents. In this case, entrez_search returns a an "esearch", object and the print method
describes the number of records matching the query. These objects also contain either a character
vector containing the unique identifiers of records that match the query or a "web_history" object that
serves as a reference to this set of identifiers stored on the NCBI’s servers. These "web_history" objects
are useful when dealing with large numbers of records, as they reduce the number of identifiers that
need to be exchanged between a user and NCBI servers. Both identifiers and "web_history" objects
can be passed to the other core functions to retrieve information about the records they represent.
For example, a call to entrez_summary returns information about each paper identified in the search
above.

pkg_paper_summs <- entrez_summary(db="pubmed", web_history=pubmed_search$web_history)
pkg_paper_summs

#> List of 62 esummary records. First record:
#>
#> $`28759592`
#> esummary result with 42 items:
#> [1] uid pubdate epubdate
#> [4] source authors lastauthor
#> [7] title sorttitle volume
#> [10] issue pages lang
#> [13] nlmuniqueid issn essn
#> [16] pubtype recordstatus pubstatus
#> [19] articleids history references
#> [22] attributes pmcrefcount fulljournalname
#> [25] elocationid doctype srccontriblist
#> [28] booktitle medium edition
#> [31] publisherlocation publishername srcdate
#> [34] reportnumber availablefromurl locationlabel
#> [37] doccontriblist docdate bookname
#> [40] chapter sortpubdate sortfirstauthor

In addition to matching each of the eUtils endpoints, rentrez provides utility functions that
facilitate common workflows. For example, the function extract_from_esummary allows users to
extract some subset of the items contained in each of a set of summary records. In this case, the names
of the journals that these papers appeared in can be retrieved. The resulting character vector can then
be used to identify the PubMed-indexed journals that have published the most papers describing R
packages this year.

journals <- extract_from_esummary(pkg_paper_summs, "fulljournalname")
journals_by_R_pkgs <- sort(table(journals), decreasing = TRUE)
head(journals_by_R_pkgs,3)

#> journals
#> Bioinformatics (Oxford, England) BMC bioinformatics
#> 16 9
#> Molecular ecology resources
#> 9

Demonstration: retrieving unique transcripts for a given gene

Records in the NCBI’s various databases are heavily cross-referenced, allowing users to identify
and download data related to particular papers, organisms or genes. By providing a programmatic
interface to these records rentrez allows R users to develop reproducible workflows that either
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download particular datasets for further analysis or load them into an R session. Here I demonstrate
such a workflow, downloading DNA sequences corresponding to unique mRNA transcripts of a
particular gene in a particular species.

Our aim is to retrieve the sequence of mRNA transcripts associated with the gene that encodes
Amyloid Beta Precursor Protein in humans. This gene is identified by the gene symbol 1 ‘APP’. The
NCBI database dealing with genetic loci (rather than particular sequences) is called ‘Gene’, so the first
step to recovering the sequence data is discovering the unique identifier associated with APP in this
database. This can be achieved with entrez_search, using the gene symbol and species in the search
term.

app_gene <- entrez_search(db="gene", term="(Homo sapiens[ORGN]) AND APP[GENE]")
app_gene

#> Entrez search result with 1 hits (object contains 1 IDs and no web_history object)
#> Search term (as translated): "Homo sapiens"[Organism] AND APP[GENE]

We now have a unique identifier for APP in the Gene database. In order to download sequences
for this gene we need to find records from the NCBI Nucleotide database that are associated with the
Gene record. The function entrez_link can be used to find cross-referenced records. In this case, a
single call to entrez_link can identify human APP sequences in the nucleotide database in general
and in a number of restrictive subsets of that database.

nuc_links <- entrez_link(dbfrom="gene", id=app_gene$ids, db="nuccore")
nuc_links$links

#> elink result with information from 5 databases:
#> [1] gene_nuccore gene_nuccore_mgc gene_nuccore_pos
#> [4] gene_nuccore_refseqgene gene_nuccore_refseqrna

The RefSeq RNA subset on the Nucleotide database contains a curated set of mRNA transcripts
for different genes. Thus the unique identifiers contained in the gene_nuccore_refseqrna element
correspond to the sequences we wish to download.The function entrez_fetch allows users to retrieve
complete records in a variety of formats. Here the sequences are retrieved in the standard ‘fasta’
format, and returned as a character vector with a single element.

raw_recs <- entrez_fetch(db="nuccore",
id=nuc_links$links$gene_nuccore_refseqrna,
rettype="fasta")

cat(substr(raw_recs, 1,303), "...")

#> >NM_001136131.2 Homo sapiens amyloid beta precursor protein (APP) ...
#> GTCGGATGATTCAAGCTCACGGGGACGAGCAGGAGCGCTCTCGACTTTTCTAGAGCCTCAGCGTCCTAGG
#> ACTCACCTTTCCCTGATCCTGCACCGTCCCTCTCCTGGCCCCAGACTCTCCCTCCCACTGTTCACGAAGC
#> CCAGGTACCCACTGATGGTAATGCTGGCCTGCTGGCTGAACCCCAGATTGCCATGTTCTGTGGCAGA...

Sequences retrieved in this way could be written to file to be used by other software.

cat(raw_recs, file="APP_transcripts.fasta")

Alternatively, the sequences can be analysed within R using packages designed for sequence data.
In this case, the data can be represented as a 'DNAbin' object using the phylogenetics package ape.

tf <- tempfile()
cat(raw_recs, file=tf)
ape::read.dna(tf, format="fasta")

#> 10 DNA sequences in binary format stored in a list.
#>
#> Mean sequence length: 3477.9
#> Shortest sequence: 3255
#> Longest sequence: 3648
#>
#> Labels:
#> NM_001136131.2 Homo sapiens amyloid beta precursor protein (...

1http://www.genenames.org/
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#> NM_001136016.3 Homo sapiens amyloid beta precursor protein (...
#> NM_001204303.1 Homo sapiens amyloid beta precursor protein (...
#> NM_001204301.1 Homo sapiens amyloid beta precursor protein (...
#> NM_001204302.1 Homo sapiens amyloid beta precursor protein (...
#> NM_201414.2 Homo sapiens amyloid beta precursor protein (APP...
#> ...
#>
#> Base composition:
#> a c g t
#> 0.276 0.223 0.258 0.244

The workflow detailed above provides a relatively simple example of how functions provided by
rentrez can be used to identify, retrieve and analyse data from the NCBI’s databases. The package
includes an extensive vignette which documents each of the eUtils endpoints and demonstrates a
number of detailed workflows. This document also describes how analyses can be scaled to analyse
much larger datasets than are described in this paper. The tutorial can be accessed from within an R
session by typing vignette(topic="rentrez_tutorial").

Demonstration: development of a new package

Development of rentrez has deliberately focused on producing a "low-level" package that provides a
flexible interface to the entire eUtils API. As a result the package does not provide functions for any
particular analysis or return records in any of the object classes made available for biological data
by other packages. Rather, it is hoped that by providing a reliable interface to the eUtils API that
meets the NCBI’s terms of use rentrez will help other developers to build packages for more specific
use-cases. Indeed, the package has already been used to integrate NCBI data into packages dealing
with sequence analysis (genbankr, Becker and Lawrence (2017)), retrieval of phylogenetic trees (rotl,
Michonneau et al. (2016)) and handling of full-text journal articles (fulltext, Chamberlain (2016)).

New packages that take advantage of rentrez will usually focus on providing a simple interface to
users, so researchers will not need to be familiar with the syntax or arguments used in eUtils to perform
tasks. Packages may also provide functions to parse files returned by entrez_fetch, either to extract
particular information from those files or represent them as R objects. Here I present an example
of a small package that performs both of these tasks.The software repository for this manuscript
(https://github.com/dwinter/rentrez_ms) includes the code for a package called ‘tidytaxonomy’
that can be used to explore the taxonomic diversity of various NCBI databases. This demonstrates
how the low-level code in rentrez can be used to develop specific applications that have a simpler
interface than could be achieved with core rentrez functions alone.

The exposed functions from tidytaxonomy retrieve data from NCBI, but do not require the user to
have any knowledge of the eUtils API. Internal functions

parse the XML formatted records returned from the NCBI Taxonomy database and extract relevant
information. The core function tidy_taxonomy allows users to retrieve a part of the NCBI Taxonomy
database in ‘tidy data’ format (Wickham, 2014).

# install.packages('devtools') # (If not already installed)
devtools::load_all("tidytaxon")

animal_orders <- tidy_taxonomy("animals",
lowest_rank="order",
higher_ranks=c("phylum", "class"))

head(animal_orders,3)

#> phylum class order
#> 1 Chordata Actinopteri Lutjaniformes
#> 2 Chordata Actinopteri Gerreiformes
#> 3 Chordata Actinopteri Priacanthiformes

Once this data is obtained, two additional functions make it easy to include the number of
records a given taxon has in a particular database. The function taxon_children is specifically for
counting taxonomy records which are subordinate to a given taxonomic group. The other function,
taxon_records, discovers records in any NCBI database.

animal_orders$species <- taxon_children(animal_orders$order)
animal_orders$genomes <- taxon_records(animal_orders$order, db="genome")
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Figure 1: Taxonomic diversity of various NCBI databases (considering only animals). Panels in each
plot are scaled to represent the number of database records corresponding to a given taxonomic rank
and are shaded to reflect the phylum to which they belong. Starting from the upper left in clockwise
direction subplots represent number of species in NCBI Taxonomy, the number of papers in PubMed,
the number of sequences in NCBI Nucleotide database and the number of nuclear genome sequences
in NCBI Genome database.

animal_orders$sequences <- taxon_records(animal_orders$order, db="nuccore")
animal_orders$papers <- taxon_records(animal_orders$order, db="pubmed")
head(animal_orders,3)

#> phylum class order species genomes sequences papers
#> 1 Chordata Actinopteri Lutjaniformes 279 0 9315 0
#> 2 Chordata Actinopteri Gerreiformes 62 0 901 0
#> 3 Chordata Actinopteri Priacanthiformes 34 0 602 0

The resulting data can be used to visualise the taxonomic diversity of NCBI databases (Figure
1). The Appendix to this paper includes code that takes advantage of treemap (Tennekes, 2017) to
produce these visualisations.

Continued development of rentrez

rentrez covers the complete eUtils API, is well-documented at the function and package level and
includes an extensive test suite that covers internal functions as well as typical use-cases of the software.
The current version of rentrez is thus considered a stable release, and it is unlikely any additional
functionality will be added. The software is nevertheless still actively maintained to keep pace with
CRAN and NCBI policies and to fix any bugs that arise. Software issues, including bug reports
and requests for help with particular use-cases, are welcomed at the package’s software repository:
http://github.com/ropensci/rentrez.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=treemap
http://github.com/ropensci/rentrez


CONTRIBUTED RESEARCH ARTICLES 525

Acknowledgements

Development of rentrez has benefited greatly from being part of the rOpenSci project. I am especially
grateful to Scott Chamberlain for his guidance. I am also very grateful to everyone who has pro-
vided pull-requests or filed issues including Chris Stubben, Karthik Ram, Han Guangchun, Matthew
O’Meara, Reed Cartwright and Pavel Fedotov.

Bibliography

G. Becker and M. Lawrence. Genbankr: Parsing GenBank Files into Semantically Useful Objects, 2017. R
package version 1.2.1. [p523]

S. Chamberlain. Fulltext: Full Text of ’Scholarly’ Articles Across Many Data Sources, 2016. URL https:
//CRAN.R-project.org/package=fulltext. R package version 0.1.8. [p523]

S. Kovalchik. RISmed: Download Content from NCBI Databases, 2017. URL https://CRAN.R-project.
org/package=RISmed. R package version 2.1.7. [p520]

F. Michonneau, J. W. Brown, and D. J. Winter. rotl: An R package to interact with the open tree of life
data. Methods in Ecology and Evolution, 7(12):1476–1481, 2016. URL https://doi.org/10.1111/2041-
210x.12593. [p523]

E. Paradis, J. Claude, and K. Strimmer. APE: Analyses of phylogenetics and evolution in R language.
Bioinformatics, 20:289–290, 2004. [p520]

J. Rani, S.Ramachandran, and A. R. Shah. An R Package for Text Mining of PubMed Abstracts., 2014. R
package version 1.0.5. [p520]

E. Sayers and D. Wheeler. Building Customized Data Pipelines Using the Entrez Programming Utilities
(eUtils). NCBI, 2004. [p520]

G. Schöfl. Reutils: Talk to the NCBI EUtils, 2016. URL https://CRAN.R-project.org/package=reutils.
R package version 0.2.3. [p520]

M. A. Stravs, E. L. Schymanski, H. P. Singer, and J. Hollender. Automatic recalibration and processing
of tandem mass spectra using formula annotation. Journal of Mass Spectrometry, 48(1):89–99, 2013.
[p520]

C. Stubben. Genomes: Genome Sequencing Project Metadata, 2015. R package version 3.4.0. [p520]

M. Tennekes. Treemap: Treemap Visualization, 2017. URL https://CRAN.R-project.org/package=
treemap. R package version 2.4-2. [p524]

H. Wickham. Tidy data. The Journal of Statistical Software, 59, 2014. URL http://www.jstatsoft.org/
v59/i10/. [p523]

J. Zhou and Y. Shui. MeSHSim: MeSH(Medical Subject Headings) Semantic Similarity Measures, 2015. R
package version 1.6.0. [p520]

David J. Winter
Institute of Fundamental Sciences, Massey University
Palmerston North 4442
New Zealand
ORCiD: 0000-0002-6165-0029
david.winter@gmail.com

Appendix

Code used to produce Figure 1, using animal_orders data generated above.

# Format the total number of records for a graph title
make_title <- function(col_name, data){

n <- sum(data[,col_name])
with_commas <- formatC(n, format = "d", big.mark = ",")
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paste0(col_name, " (n = ", with_commas, ")")
}

# Generate a treemap from taxonmic data.frame
# * data= tidy_taxonomy data.frame
# * size_col = name of column for tm tile-size
# * fill_col = name of column for tile-fil
# * row = plot row in 2x2 grid
# * col = plot col in 2x2 grid
# * pal = palette for fill
taxic_diversity_tm <- function(data, size_col, fill_col, row, col, pal){

treemap(data,
index=c("phylum", "class", "order"), vSize=size_col, vColor=fill_col,
palette=pal, type='categorical', position.legend="none",
title=make_title(size_col, data), border.col=c("white","white","black"),
vp = viewport(layout.pos.row = row, layout.pos.col = col)

)
}

library(treemap)
library(grid)
library(gridExtra)
# 24 phyla means some fill-colours will be re-used, ordering phylum factor by spp
# will prevent any "major" phyla from getting the same colour.
spp_per_phylum <- aggregate(species ~ phylum, FUN=sum, data=animal_orders)
phyla_ordered <- spp_per_phylum$phylum[ order(spp_per_phylum$species, decreasing=TRUE)]
animal_orders$phylum<- factor(animal_orders$phylum, levels=phyla_ordered)
pal <- rep(RColorBrewer::brewer.pal(8, name="Set1"), 3)

grid.newpage()
pushViewport(viewport(layout = grid.layout(2, 2)))

taxic_diversity_tm(animal_orders, "species", "phylum", 1,1, pal)
taxic_diversity_tm(animal_orders, "papers", "phylum", 1,2, pal)
taxic_diversity_tm(animal_orders, "sequences", "phylum", 2,1, pal)
taxic_diversity_tm(animal_orders, "genomes", "phylum", 2,2, pal)
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An Introduction to Rocker: Docker
Containers for R
by Carl Boettiger, Dirk Eddelbuettel

Abstract We describe the Rocker project, which provides a widely-used suite of Docker images with
customized R environments for particular tasks. We discuss how this suite is organized, and how these
tools can increase portability, scaling, reproducibility, and convenience of R users and developers.

Introduction

The Rocker project was launched in October 2014 as a collaboration between the authors to provide
high-quality Docker images containing the R environment (Boettiger and Eddelbuettel, 2014). Since
that time, the project has seen both considerable uptake in the community and substantial development
and evolution. Here we seek to document the project’s objectives and uses.

What is Docker?

Docker is a popular open-source tool to create, distribute, deploy, and run software applications
using containers. Containers provide a virtual environment (see Clark et al. (2014) for an overview of
common virtual environments) requiring all operating-system components an application needs to
run. Docker containers are lightweight as they share the operating system kernel, start instantly using
a layered filesystem which minimizes disk footprint and download time, are built on open standards
that run on all major platforms (Linux, Mac, Windows), and provide an added layer of security by
running an application in an isolated environment (Docker, 2015). Familiarity with a few key terms is
helpful in understanding this paper. The term “container” refers to an isolated software environment
on a computer. R users can think of running a container as analogous to loading an R package; a
container is an active instance of a static Docker image. A Docker “image” is a binary archive of that
software, analogous to an R binary package: a given version is downloaded only once, and can then
be “run” to create a container whenever it is needed. A “Dockerfile” is a recipe, the source-code, to
create a Docker image. Pre-built Docker images are publicly available through Docker Hub, which
plays a role for central distribution similar to CRAN in our analogy. Development and contributions
to the Rocker project focus on the construction, organization and maintenance of these Dockerfiles.

Design principles and use cases

Docker gives users very convenient access to pre-configured and pre-built binary images that “just
work”. This allows R users to access a wider-variety of ready-to-use environments than provided by
either the R Project itself or, say, their distribution which will generally focus on one (current) release.
For example, R users on Windows may run RStudio® Server or Shiny® Server locally just by launching
a single command (once Docker itself is installed). Another common use-case is access to R-devel
without affecting the local system. Here, we detail some of the principal use cases motivating these
containerized versions of R environments, and the design principles that help make them work.

Portability: From laptop to cloud

One common use case for Rocker containers is to provide a fast and reliable mechanism to deploy a
custom R environment to a remote server, such as Amazon Web Services Elastic Compute (AWS EC2),
DigitalOcean, NSF’s Jetstream servers (Stewart et al., 2015), or private or institutional server hardware.
Rocker containers are also easy to run locally on most modern laptops using Windows, MacOS, or
Linux-based operating systems. By sharing volumes with the local host, users can still manipulate
files with familiar, native tools while performing computation through a reproducible, containerized
environhment (Boettiger, 2015). Being able to test code in a predictable, pre-configured R environment
on a local machine and to then run the same code in an identical environment on a remote server (e.g.,
for access to greater RAM, more processors, or merely to free up the local machine from a long-running
computation) is essential for low-friction scaling of analysis. Without such containerization, getting
code to run appropriately in a remote environment can be a major undertaking, requiring both time
and knowledge many would-be users may not have.
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For instance, on any platform with Docker installed, the following Docker command will launch a
Rocker container providing the RStudio® server environment over a web interface.

wget -qO- https://get.docker.com/ | sh
sudo docker run -p 8787:8787 -e PASSWORD=<PICK-A-PASSWORD> rocker/rstudio

The docker run option -p sets the port on which RStudio® will appear, for which 8787 is the
default (adding your user to the docker group avoids the need for a sudo command to call docker:
sudo usermod -g docker $USER). Many academic and commercial cloud providers make it possible
to execute such code snippets when a container is launched, without ever needing to ssh into the
machine. The user may log into the server merely by pasting its IP address or DNS name (followed
by the chosen port, e.g., :8787) into a browser and entering the appropriate password. This provides
the user with a familiar, interactive environment running on a remote machine while requiring a
minimum of expertise.

This portability is also valuable in an instructional context. Requiring students to install all
necessary software on personal laptops can be particularly challenging for short workshops, where
download and installation time and troubleshooting across heterogeneous machines can prove time
consuming and frustrating for students and instructors alike. By deploying a Rocker image or Rocker-
derived image (see Extensibility) on a cloud machine, an instructor can easily provide all students
access to the pre-configured software environment using only the browser on their laptops. This
strategy has proven effective in our own experience in both workshops and semester-length courses.
Similar Docker-based cloud deployments have been scaled to courses of 100s of students, e.g., at Duke
(Cetinkaya-Rundel and Rundel, 2017) and UC Berkeley (UC Berkeley, 2017).

HPC application

The portability of Rocker images can be particularly valuable in High Performance Computing contexts
Setting up a specific R environment on High Performance Computing platforms and other centrally
administrated multi-user machines or clusters has traditionally been challenging due to restrictions on
root access that may be needed to install certain libraries. Versions of R and packages installed by the
system administrator may also lag behind the most recent releases. Deploying Docker containers on
HPC systems has previously been more very problematic since most system administrators do not
want to allow the elevated user permissions the Docker runtime environment requires. To work around
this problem, Lawrence Berkeley National Labs (LBNL) has made ‘Singularity’ (Lawrence Berkeley
National Laboratories, 2017): a container runtime environment that users can both install and use to
run most Docker containers without requiring root privileges. Singularity has seen rapid adoption
in the HPC community (http://singularity.lbl.gov/install-request). Rocker containers can be
run through Singularity with a single command much like the native Docker commands, e.g.

singularity exec docker://rocker/tidyverse:latest R

More details can be found in the Singularity documentation.

Interfaces

An important aspect of the Rocker project design is the ability for users to interact with the software
on the container through either an interactive shell session (such as the R shell or a bash shell), or
through a web browser accessing the RStudio® Server integrated development environment (IDE).
Traditional remote and high-performance computing workflows for R users have usually required the
use of ssh and a terminal-only interface, posing a challenge for interactive graphics and a barrier to
users unfamiliar with these tools and environments. Accessing an RStudio® container through the
browser removes these barriers. Rocker images include the RStudio-server software pre-installed and
configured with the explicit permission of RStudio® Inc.

Users can access a bash shell running as root within a Rocker container using

docker exec -ti <container-id> bash

which can be useful for administrative tasks such as installing system dependencies. All Rocker
images can also be run as an interactive R, RScript or bash shell without running RStudio, which can
be useful for batch jobs or for anyone who prefers that environment.

As with any interactive Docker container, users should specify the terminal (-t) and interactive
(-i) flags, (here combined with interactive as -ti), and specify the desired executable environment
(e.g., R, though other common options could be Rscript or bash):
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docker run --rm -ti rocker/tidyverse R

This example shows the use of the --rm flag to indicate that the container should be removed
when the interactive session is finished. Details on sharing volumes, managing user permissions, and
more can be found on the Rocker website, https://rocker-project.org.

Sandboxed

Another feature of Rocker containers is the ability to provide a sandboxed environment, isolated from
software and potentially from other data on the machine. Many users are reluctant to upgrade their
suite of installed packages, which may break their existing code or even their R environment if the
installation goes poorly. However, upgrading packages and/or the R environment is often necessary
to run analyses from a colleague, or access more recent methods. Rocker offers an easy solution. For
instance, a user can run R code requiring the most recent versions of R and related packages inside a
Rocker container without having to upgrade their local installations first. Conversely, one could use
Rocker to run code on an older R release with prior versions of R packages, again without having to
make any alteration to one’s local R install. Another common use case is to access a container with
support for particular options such as using gcc or clang compiler sanitizers (Eddelbuettel, 2014).
These require R itself be built with specialized settings that may not be not available or familiar
to many R users on their native system, but can be easily deployed by pulling the Rocker images
rocker/r-devel-san or rocker/r-devel-ubsan-clang.

This sandboxing feature is also valuable in the remote computing context, allowing system
administrators to grant users freedom to install software which requires root privileges inside a
container, while not granting them root access on the host machine. Root access is required to launch
Docker containers, though not to access containers already running and providing some service such
as RStudio. Users logging into a container through the RStudio® interface do not by default have root
privileges, though are able to install R packages. Granting these users root privileges in the container
still leaves them sandboxed from the host container. Sandboxing also serves an important function in
reproducible research by making it easier to test a specified environment in isolation from the host
machine. Unlike traditional virtual machines, containers do not impose a large footprint of reserved
resources as a typical host can easily support 100s of containers (Docker, 2015).

Transparent

Users can easily determine the software stack installed on any Rocker image by examining the
associated Dockerfile recipe, which provides a concise, human-readable record of the installation. All
Rocker images use automated builds through Docker Hub, which also acts as the central, default
repository distributing the images. Using automated builds rather than uploading pre-built image
binaries to Docker Hub avoids the potential for the build not to match the recipe. The corresponding
Dockerfile is visible both on the Docker Hub and in the linked GitHub repository, which provides
a transparent versioned history of all changes made to these recipes, as well as documentation, a
community wiki, and issue trackers for discussing proposed changes, bugs, improvements to the
Dockerfiles and troubleshoot any issues users may encounter. Having these public source files built
automatically by a trusted provider (Docker Hub), rather than built locally and uploaded as binaries,
is also useful from a security perspective in avoiding malware.

Community optimized

Having a shared, transparent computational environment created by a publicly hosted, reproducible
recipe facilitates community input into configuration details. R and many of its packages and related
software can be configured with a wide range of options, compilers, different linear-algebra libraries
and so forth. While this flexibility reflects varying needs, many users rely on default settings which
are most often are optimized more for simplicity of installation rather than than performance. The
Rocker recipes reflect significant community input on these choices. This helps create a more finely
tuned, optimized reference implementation of the R environment as well as a platform for comparing
and discussing these concerns which are often overlooked elsewhere. Issues and Pull Requests on the
Rocker repositories on GitHub attest to some of these discussions and improvements. In particular,
input from the Docker Inc. employees through the official approval process for the r-base image,
expertise from the Debian R maintainer and other Debian developers, and both direct and indirect
feedback from the experience and user-generated documentation from many early adopters in the R
community has helped shape and strengthen the project over the past few years. Widespread use of
the Rocker image helps promote both testing of these choices and contributions, further tweaking the
configuration from many members of the R community.
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Versioned

Access to specific versions of software can be important for users who need computational repro-
ducibility more than having the latest release of any piece of software, since subsequent releases can
alter the behavior of code, introduce errors or otherwise alter previous results. The versioned stack
(r-ver, rstudio, tidyverse, verse, and geospatial) provides images which are intended to build an
identical software stack every time, regardless of the release of new libraries and packages. Users
should specify an R version tag in the Docker image name to request a version stable image, e.g.,
rocker/verse:3.4.0. If no tag is explicitly requested, Docker will provide the image with the tag
:latest, which will always have the latest available versions of the software (built nightly).

Users building on the version-tagged images will by default use the MRAN snapshot mirror
(Revolution Analytics, 2017) associated with the most recent date for which that image was current.
This ensures that a Dockerfile building FROM rocker/verse:3.4.1 will only install R package versions
that were available on CRAN on 2017-06-30, i.e., the day R 3.4.1 was released. This default can of
course be overwritten in the standard R manner, e.g., by specifying a different CRAN mirror explicitly
in any command to install packages, e.g., install.packages(), or by adjusting the default CRAN
mirror in options(repo=<CRAN-MIRROR>) in an .Rprofile. Note that the MRAN date associated with
the current release (e.g., 3.4.2 at the time of writing) will continue to advance on the Docker-hub
image until the next R release. Software installed from apt-get in these images will come from the
the stable Debian release (stretch or jessie) and thus not change versions (though it will receive
security patches). Packages installed from BioConductor using the bioclite() utility will also install
the version appropriate to the version of R found on the system (the Bioconductor semi-annual release
model avoids the need for an MRAN mirror). Users installing packages from GitHub or other sources
can request a specific git release tag or hash for a more reproducible build, or adopt an alternative
approach such as packrat (Ushey et al., 2016). A more general discussion of the use and limitations of
Docker for computational reproducibility can be found in Boettiger (2015).

Extensible

Any portable computational environment faces an inevitable tension between the “kitchen sink
problem” at one extreme, and the “discovery problem” on the other. A kitchen sink image seeks
to accommodate too many use cases in a single image. Such images are inevitably very large and
thus slow or difficult to deploy, maintain and optimize. At the other extreme, providing too many
specialized images makes it more difficult for a user to discover the one they need. The Rocker project
seeks to avoid both of these problems by providing a carefully-curated suite of images that an be easily
extended by individuals and communities.

To make extensions transparent and persistent, Rocker images can be extended by any user
by writing their own Dockerfiles based on an appropriate Rocker image. The Dockerfiles in the
Rocker stack should themselves provide a simple example of this, (as described in the following
section). A user begins by selecting an appropriate base image for their needs: if the RStudio®

interface is desired, a user might start with FROM rocker/rstudio; an image for testing an R package
with compiled code might use FROM rocker/r-devel-san, and an image for reproducing a data
analysis will probably select a stable version tag in addition to an appropriate base library, e.g.,: FROM
rocker/tidyverse:3.4.1. Users can easily add additional software to any running Rocker image
using the standard R and Debian mechanisms. Details on how to extend Rocker images can be found
at https://rocker-project.org.

Sharing these Dockerfiles can also facilitate the emergence of extensions tuned to particular
communities. For instance, the rocker/geospatial image emerged from the input of a number of
Rocker users all adding common geospatial libraries and packages on top of the existing Rocker
images. This coalescence helped create a more fine-tuned image with broad support for a wide
range of commonly-used data formats and libraries. Other community images are developed and
maintained independently of the Rocker project, such as the popgen image of population-genetics-
oriented software developed by the National Evolutionary Synthesis Center (NESCent). Rocker images
are also being used as base Docker images in the NSF sponsored Whole Tale project for reproducible
computing (Ludaescher et al., 2017), and are heavily used by the rhub project in automated package
testing (Csárdi, 2017).

Rocker organization and workflow

The Rocker project consists of a suite of images built automatically by and hosted on the Docker
Hub, https://hub.docker.com/r/rocker. Source Dockerfiles, supporting scripts and documentation
are hosted on GitHub under the organization rocker-org, https://github.com/rocker-org. The
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issue tracker and pull requests are used for community input, discussions, and contributions to these
images. The Rocker project wiki, https://github.com/rocker-org/rocker/wiki, provides a place to
synthesize community-contributed documentation, use-cases, and other knowledge about using the
Rocker images.

Images in the Rocker Project

The Rocker project aims to provide a small core of Docker images that serve as convenient ‘base’
images on which other users can build custom R environments by writing their own Dockerfiles,
while also providing a ‘batteries included’ approach to images that can be used out of the box. The
challenges of balancing diverse needs driven by very different use cases against the overarching goals
of creating images that are still sufficiently light-weight, easy to use, and easy to maintain is a difficult
art. The implementation in both individual Rocker images and image stacks can never perfect that
balance for everyone, but today reflects the considerable community input and testing over the past
few years.

All Rocker images are based on the Debian Linux distribution. It provides a small base image,
the well-known apt package management system, and a rich ecosystem of software libraries, making
it the base image of choice for Docker images, including many of the “official” images maintained
by Docker’s own development team. The Debian platform is also perhaps the best-supported Linux
platform within the R community, including an active r-sig-debian listserve. The relatively long
period between stable Debian releases (roughly two years recently) means that software in the Debian
stable (e.g., debian:jessie, debian:stretch) releases can lag significantly behind current releases
of popular software, including R. More recent versions of packages can be found in the pre-release
distribution, debian:testing, while the very latest binary builds can be found on debian:unstable.
The Rocker project can be largely divided into two stacks which address different needs, reflected in
which Debian distribution they are based on. The first stack is based on debian:testing. The second,
more recently-introduced stack, is based only on Debian stable releases. Rocker images always point
to specific stable releases (jessie, stretch), and do not use the tag debian:stable, which is a rolling
tag that always points to the most recent stable version. The different Rocker stacks have different
aims and thus provide different images, as shown in Tables 1 & 2 below.

The debian:testing-based images

The debian:testing stack aims to make the most efficient use of upstream builds: the pre-compiled
.deb binaries provided by the Debian repositories. It is both quicker and easier to install software from
binaries, since the package manager (apt) manages the necessary (binary) dependencies and bypasses
the time-consuming process of compiling from source. Basing this stack on debian:testing means
that much more recent versions of commonly-used libraries and compilers are available as binaries
than would be found in a Debian stable release. In order to provide optional access to the most recent
available binaries, this stack uses apt-pinning (Debian Project, 2017) to allow the apt package manager
to selectively install binaries from debian:unstable, which represents the most recent set of packages
built for Debian. Similarly, recent versions of many popular R packages can also be installed pre-built
through the package manager, e.g., apt-get install r-cran-xml. This can be particularly helpful
for packages with external system dependencies (such as libxml2-dev in this example) which cannot
be installed from the R console as they are system dependencies rather than R packages installed
from within R. We should note, however, that only about 500 of the over 11,000 CRAN packages are
available as Debian packages.

As the names testing and unstable imply, particular versions of package can change as packages
move from unstable into testing. New versions are sent to unstable during the normal course of
Debian development. This can occasionally break a previously-working installation command in a
Dockerfile until the maintainer redirects the package manager to install a package from the unstable
sources that could previously be installed from testing, or vice versa (using the -t option in apt).
That said, packages only migrate from unstable to testing after a period of several days—and if the
migration and installation of the particular version is free of interactions with other packages in their
dependency graph. That way, unstable serves as validation lab which leaves testing reasonably
stable yet current.

Relative to stable, the testing stack thus offers some advantages as almost all software can
be installed through the package manager. Installation of binary packages from testing generally
provides the most recent available software, and installs it quickly as a binary. On the other hand, these
Dockerfiles may require occasional maintenance when packages migrate and/or versions change.
The resulting images are also inherently dynamic: rebuilding the same Dockerfile months or years
apart will generate images with significantly different versions of software installed as the pool of
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underlying packages changes through time.

Images overview

The debian:testing-based stack currently includes seven images actively maintained by the Rocker
development team (Table 1). r-base builds on debian:testing, and the other six in the stack each
build directly from r-base. The r-base image is unique in that it is designated as the official image for
the R language by the Docker organization itself. This official image is reviewed and then built by
employees of Docker Inc. based on a Dockerfile maintained by the Rocker team. Consequently, users
should refer to this image in Docker commands without an organization namespace, e.g., docker run
-ti r-base to access the official image. All other images in the Rocker project are not individually
reviewed and built by Docker Inc. and must be referenced using the rocker namespace, e.g., docker
run -ti rocker/r-devel.

Several of the images in this stack are oriented towards the R development community: r-devel,
drd, r-devel-san, and r-devel-ubsan-clang which all add a copy of the development version of
R side-by-side to the current release of R provided by r-base. On these images, the development
version is aliased to RD to distinguish from the current release, R. As the names suggest, each provide
slightly different configurations. Of particular interest are the images providing development R built
with support for C/C++ address and undefined-behavior sanitizers, which are somewhat difficult to
configure (Eddelbuettel, 2014).

As these images focus on developers and/or as base images for custom uses, this stack does not
include many specific R packages. Additional dependencies and packages can easily be installed from
apt. R packages not available in the apt repositories can be installed directly from CRAN using either
R or the littler scripts, as described in https://rocker-project.org/use.

This stack also includes the images shiny and rstudio:testing that provide Shiny server and
RStudio® server IDE from RStudio® Inc, built on the r-base image. RStudio® and Shiny are registered
trademarks of RStudio Inc, and their use and the distribution of their software in binary form on
Docker Hub has been granted to the Rocker project by explicit permission from RStudio. Users should
review RStudio®’s trademark use policy (http://www.rstudio.com/about/trademark/) and address
inquiries about further distribution or other questions to permissions@rstudio.com. The Rocker
project also provides images with RStudio® server and Shiny server in the stable versioned stack.

Build schedule: The official r-base image is rebuilt by Docker following any updates to the official
debian images (roughly every few weeks). The rest of the stack uses build triggers that rebuild the
images whenever r-base is updated or the Dockerfile sources are updated on the corresponding
GitHub repository. The only exception in this stack is the drd image, which is rebuilt each week by a
cron trigger.

Table 1: The debian:testing image stack

image description size downloads

r-base official image with current version of R 254 MB 632,000
r-devel R-devel added side-by-side to r-base (using alias

RD)
1 GB 4,000

drd lightweight r-devel, built weekly 571 MB 4,000
r-devel-san as r-devel, but built with compiler sanitizers 1.1 GB 1,000
r-devel-ubsan-clang sanitizers, clang c compiler (instead of gcc) 1.1 GB 525
rstudio:testing rstudio on debian:testing 1.1 GB 1,000
shiny shiny-server on r-base 409 MB 123,000

Table 2: The rocker-versioned stack of images

image description size downloads

r-ver version-stable base R & src build tools 219 MB 6,000
rstudio adds rstudio 334 MB 314,000
tidyverse adds tidyverse & devtools 656 MB 83,000 1

verse adds java, tex & publishing-related packages 947 MB 9,000
geospatial adds geospatial libraries 1.3 GB 4,000

1This figure includes 49,000 downloads under the earlier name hadleyverse.
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The debian:stable-based stack

This stack emphasizes stability and reproducibility of the Docker build. This stack was introduced
much more recently (November 2016) in response to considerable user input and requests. The key
feature of this stack is the ability to run older versions of R along with the then-contemporaneous ver-
sions of R packages. A user specifies the version desired using an image tag, e.g., rocker/r-ver:3.3.1
will refer to an image with R version 3.3.1 installed. Omitting the tag is equivalent to using the tag
latest, which, as the name implies, will always point to an image using the current R release. Thus,
users who want to create downstream Dockerfiles, which are based on the current release at the
time (but will continue to reconstruct the same environment in the future after newer R versions are
released), should explicitly include the corresponding version tag, e.g., rocker/r-ver:3.4.2 at the
time of writing, and not the latest tag. Users can also run the current development version of R using
the tag devel, which is built nightly from R-devel sources from subversion.

MRAN archives: To facilitate installation of only contemporaneous versions of R packages on
these images, the default CRAN mirror from which to install R packages is fixed to a snapshot of CRAN
corresponding to the last date for which that version of R was current (e.g., 3.4.2 was released on 2017-
09-28, thus 3.4.1 is pinned to the MRAN snapshot for that date). These snapshots are provided by the
MRAN archive created by Revolution Analytics (now part of Microsoft). It archives daily snapshots
of all of CRAN from which a user can install packages with the usual install.packages() function
(Revolution Analytics, 2017). Users can always override this default by passing any current CRAN
repository explicitly. Unlike CRAN, Bioconductor only updates its repositories through bi-annual
releases aligned to R’s spring release schedule. Thus, Bioconductor packages can be installed in the
usual way using bioclite, which automatically selects the Bioconductor release corresponding to the
version of R in use.

Version tags: The version tags are propagated throughout this stack: e.g., rocker/tidyverse:devel
will provide the currently-released versions of the R packages in the tidyverse (Wickham, 2017) in-
stalled on the nightly build of R-devel. Developers building packages on this stack are encouraged to
tag their images accordingly as well. Table 3 indicates which versions of R are currently available in the
stack, going back to 3.1.0. While older versions may be added to the stack at a later date, we note that
the MRAN snapshots began in 2014-09-17 and thus go back only to the R 3.1 era. Each tag must be
built from a separate Dockerfile, enabling minor differences in the build instructions to accommodate
changing dependencies. Dockerfiles for past versions (e.g., prior to 3.4.2 currently) are intended to
remain static over the long term, while the tag for the current version, latest, and devel may be
tweaked to accommodate new features or dependencies. Version tags also obey semantics so that
omitting the second or third position of the tag is identical to asking for the most recent version: i.e.,
rocker/verse:3.3 is the same as rocker/verse:3.3.3, and rocker/verse:3 is (at the time of writing),
rocker/verse:3.4.2. This is accomplished using post-build hooks in Docker Hub—see examples at
https://github.com/rocker-org/rocker-versioned/ for details.

Installation: In this stack, the desired version of R is always built directly from source rather than
the apt repositories. Compilers and dependencies are still installed from the stable apt repositories,
and thus lag behind the more recent versions found in the testing stack. Version tags 3.3.3 and
older are based on the Debian 8.0 release, code-named jessie, while 3.4.0 - 3.4.2, devel, and latest
are based on Debian 9.0, stretch, (released 2017-06-17, while R was at 3.4.0), and thus have access
to much newer versions of common system dependencies and compilers. Dependencies needed to
compile R that are not required at runtime are removed once R is installed, keeping the base images
light-weight for faster download times. While most system dependencies required by common R
packages can still be installed from the apt repositories, occasionally a more recent version must be
compiled from source (e.g., the Gibbs Sampling program JAGS (Plummer, 2017), and the geospatial
toolkit GDAL, must both be compiled from source on debian:jessie images). In this stack, users
should avoid installing R packages using apt without careful consideration as this will install a second
(probably different) version of R from the Debian repositories, and a dated version of the R package
since any r-cran-pkgname package in the Debian repositories will depend on r-base in apt as well.

Build schedule: All images are built automatically from their corresponding Dockerfiles (found
in the GitHub repositories rocker-org/rocker-versioned and rocker-org/geospatial). A cron job
sends nightly build triggers to Docker Hub to rebuild the latest and devel tagged images throughout
the stack. To decrease load on the hub, build triggers for the numeric version tags are sent monthly.
Although the Dockerfiles for older R versions install an almost-identical software environment every
time, the monthly rebuilding of these images on Docker Hub ensures they continue to receive Debian
security updates from upstream, and proves the build recipe still executes successfully. Note that
rebuilding images with software from external repositories never produces a bit-wise identical image,
and thus the image identifier hash will change at each build.
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Images overview

In this stack, each image builds on the previous image, rather than all other images building directly
on the base image, as in the testing stack. Table 2 lists the names and descriptions of the five images
in this stack, along with image size and approximate download counts from Docker Hub. Sizes
reflect (compressed) cumulative size: a user who has already downloaded the most recent version
of r-ver and then pulls a copy of rstudio image will only need to download the additional 115 MB
in the rstudio layers and not the full 334 MB listed. This linear design limits flexibility (no option
for tidyverse without rstudio) but simplifies use and maintenance. While no single environment
will be optimal for everyone, both the packages selected in this stack and the stack ordering reflect
considerable community input and tuning.

The rstudio image includes a lightweight, easy-to-use and docker-friendly init system, s6 (Bercot,
2017) for running persistent services, including the RStudio® server. This system provides a convenient
way for downstream Dockerfile developers to add additional persistent services (such as an ssh server)
to a single container, or additional start-up or shutdown scripts that should be run when a container
starts up or shuts down. The rstudio image uses such a start-up script to configure user settings such
as login password and permissions through environmental variables at run time.

The tidyverse image contains all required and suggested dependencies of the commonly-used
tidyverse and devtools R packages, including external database libraries (e.g., MariaDB and Post-
greSQL). Users should consult the package Dockerfiles or installed.packages() list directly for a
complete list of installed packages. The verse library adds commonly-used dependencies, notably
a large but not comprehensive LaTeX environment and Java development libraries. Previously, the
Rocker project provided the image hadleyverse which has since been divided into tidyverse and
verse based on community input.

Table 3: Available tags in the rocker-versioned stack.

tag apt repos MRAN date Build frequency images with tag

devel stretch current date nightly r-ver, rstudio, tidyverse,
verse, geospatial

latest stretch current date nightly r-ver, rstudio, tidyverse,
verse, geospatial

3.4.2 stretch current date monthly r-ver, rstudio, tidyverse,
verse, geospatial

3.4.1 stretch 2017-09-28 monthly r-ver, rstudio, tidyverse,
verse, geospatial

3.4.0 stretch 2017-06-30 monthly r-ver, rstudio, tidyverse,
verse, geospatial

3.3.3 jessie 2017-04-21 monthly r-ver, rstudio, tidyverse,
verse, geospatial

3.3.2 jessie 2017-03-06 monthly r-ver, rstudio, tidyverse,
verse, geospatial

3.3.1 jessie 2016-10-31 monthly r-ver, rstudio, tidyverse,
verse, geospatial

3.3.0 jessie 2016-06-21 monthly r-ver
3.2.0 jessie 2015-06-18 monthly r-ver
3.1.0 jessie 2014-09-17 monthly r-ver

Several images in the rocker-versioned stack can be customized on build when built locally
(rather than pulling prebuilt images from Docker Hub) by using the --build-arg option of docker
build. In the r-ver image, users can set R_VERSION and BUILD_DATE (MRAN default snapshot). In the
rstudio image users can set RSTUDIO_VERSION (otherwise defaults to the most recent version), and the
PANDOC_TEMPLATES_VERSION .

This stack also makes use of Docker metadata labels defined by http://schema-label.org, in-
dicating image license (GPL-2.0), vcs-url (GitHub repository), and vendor (Rocker Project). These
metadata can be altered or extended in downstream images.

Conclusions

Over the past several years, Docker has seen immense adoption across industry and academia. The
Open Container initiative (The Linux Foundation: Projects, 2017) now provides an open standard
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that has further extended this container approach to research environments through projects such as
Singularity (Lawrence Berkeley National Laboratories, 2017), allowing users to deploy containerized
environments such as Rocker on machines where they do not have root access, such as clusters or
private servers. Containerization promises to solve numerous challenges such as portability and
replicability in research computing, which often relies on complex and heterogeneous software stacks
(Boettiger, 2015). Yet implementing such environments in containers is not a trivial task, and not all
implementations provide the same usability, portability or reproducibility. Here we have detailed the
approach taken by the Rocker project in creating and maintaining these environments through an open
and community-driven process. This structure of the Rocker project has evolved over three years of
operation while drawing in an ever-widening base of academic researchers, university instructors and
industry users. We believe this overview will be instructive not only to users and developers interested
in the Rocker project, but as a model for similar efforts around other environments or domains.
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Conference Report: useR!2017
by Tobias Verbeke

Introduction

After a very successful 2016 edition in Stanford (US), the useR conference invited the R
community to meet from July 4 to July 7 in Brussels (Belgium), heart of Europe. The response
was extraordinary: 1175 people (of 54 nationalities) travelled the globe to join for a week
of intense exchange and discussion. The conference was held in the Wild Gallery which
was – for the occasion – the exclusive territory of R aficionados with many co-hosted events
including DSC 2017, RIOT 2017 and an R Foundation meeting.

An important theme throughout the conference was to be welcoming and inclusive.
In this respect 25 diversity scholarships were awarded and newbies were welcomed at a
newbies session the evening before the tutorial day. Dedicated childcare was organized for
the youngest R enthusiasts and besides the regular hacking and relaxing space, a breast-
feeding area and quiet zone were foreseen.

The program consisted of 16 pre-conference tutorials, 6 invited talks, 147 oral presen-
tations, 70 lightning talks and 70 poster sessions. The social program included a welcome
reception, poster reception and conference dinner where a stand-up comedian offered an
introduction to Belgium and a well known beer sommelier revealed the secrets of Belgian
beers to a very receptive audience (914 liters to be precise).

Pre-conference tutorials

The pre-conference tutorials were free and open to all attendees.

• OpenML: Connecting R to the Machine Learning Platform OpenML – Joaquin Van-
schoren, Heidi Seibold and Bernd Bischl

• Sports Analytics with R – Stephanie Kovalchik

• Environmental Modeling using R – Karline Soetaert and Thomas Petzoldt

• Introduction to parallel computing with R – Hana Sevcikova

• Introduction to Bayesian inference with JAGS – Martyn Plummer

• R Package Development with R-hub – Gabor Csardi

• purrr – Charlotte Wickham

• Spatial Data in R: New Directions – Edzer Pebesma

• Extending R with C++: Motivation, Introduction and Examples – Dirk Eddelbuettel

• Efficient R Programming – Colin Gillespie

• Introduction to Optimal Changepoint Detection Algorithms – Toby Dylan Hocking
and Rebecca Killick

• Data Carpentry: Open and Reproducible Research with R: Colin Rundel, Mine
Cetinkaya-Rundel

• data.table for Beginners – Arun Srinivasan

• Dose-response analysis using R – Signe M. Jensen and Christian Ritz

• Geospatial Visualization using R – Bhaskar V. Karambelkar

• Introduction to Natural Language Processing with R – Taylor Arnold and Lauren
Tilton
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Invited talks

As befits an R conference, the invited talks kept statistics and computing in balance with the
following keynote speakers:

• Structural Equation Modeling: Models, Software and Stories – Yves Rosseel

• Teaching Data Science to new useRs – Mine Cetinkaya-Rundel

• Dose-Response Analysis: Considering Dose both as Qualitative Factor and Quantita-
tive Covariate, using R – Ludwig Hothorn

• Parallel Computation in R: What We Want, and How We (Might) Get It – Norm Matloff

• R Tools for the Analysis of Complex Heterogeneous Data – Isabella Gollini

• 20 Years of CRAN – Uwe Ligges

Contributed sessions

Fourty-two sessions were held in six parallel tracks demonstrating the ever rich diversity of R
usage with contributions in Bioinformatics, Business and Management, Clustering, Commu-
nity Data management, Data reproducibility, Education, GIS, Graphics, HPC, Kaleidoscope,
Lightning Talks (six sessions!), Machine Learning, Medical statistics, Methods, Methods in
Business, Missing Data, Packages, Programming, Shiny, Social, Statistical Modelling, Text
Mining and Web.

Conference organizers

The quality of the scientific program of the conference was the achievement of Ziv Shkedy
(chair), Heather Turner (chair), Michela Battauz, Przemyslaw Biecek, Roger Bivand, Di Cook,
Dirk Eddelbuettel, Bettina Gruen, Torsten Hothorn, Julie Josse, Helena Kotthaus and Tobias
Verbeke. The organization was in the hands of Tobias Verbeke (chair), Ziv Shkedy, Heather
Turner and Matthias Verbeke.

Additional information

Conference website https://user2017.brussels/

Video Recordings https://channel9.msdn.com/Events/useR-international-R-User-conferences/
useR-International-R-User-2017-Conference

Aftermovie https://youtu.be/YWF6nbUTRao

Sponsors https://user2017.brussels/sponsors

Tobias Verbeke
Open Analytics NV
Jupiterstraat 20
2600 Antwerp, Belgium
tobias.verbeke@openanalytics.eu
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Conference Report: R in Insurance 2017
by Nicolas Baradel, Christophe Dutang and Caroline Hillairet

Conference summary

The fifth R in Insurance conference took place at Ecole Nationale de la Statistique et de
l’Administration Economique (ENSAE, one of the leading French graduate schools in the
fields of statistics, economics, finance and actuarial science) Paris on 8 June 2017. This
one-day conference focused once more on the wide range of applications of R in insurance,
actuarial science and beyond. The conference programme covered topics including reserving,
pricing, loss modelling, the use of R in a production environment and also new statistical
methods such as big data analysis.

The audience of the conference included both practitioners (around 70%) and academics
(30%) who are active or interested in the applications of R in Insurance. The fifth edition was
a fair success with 128 participants compared to the 100 participants of the fourth edition.
Furthermore, it was a truly international event with speakers and delegates from many
different countries, including USA, Belgium, Netherlands, Switzerland, Germany, Italy,
Qatar, UK, India and of course France. Overall, there were 17 speakers from USA, Belgium,
Netherlands, Switzerland, Italy, UK, India and France. The coffee breaks and the lunch
time offered great networking opportunities, while the conference dinner at Musée d’Orsay
closed on a high note this enlighting day.

In the first plenary session, Julie Seguela (from Covea) spoke about the textual analysis of
expert reports to increase knowledge of technological risks. She used open datasets from the
ARIA database (Analysis, Research and Information about Accidents), which has collected
more than 40 000 technological accidents, between 1995 and 2015 in France, susceptible to
damage public health or safety, etc. Text mining techniques and some helpful visualization
packages were used on expert reports detailing circumstances, causes and consequences of
these accidents. This master class talk highlighted how various R packages can interact to
achieve our goal.

This plenary talk was followed by two sessions to close the morning. The first session
focused on big data analytics emphasizing new usage in the insurance industry. Then, the
second session consisted of a series of lightning talks about R packages or R modelling.
Thereafter, the afternoon started with the third session on non-life insurance with speeches
rather theoretical on non-life reserving or vine copulas. The fourth and last session followed
with topics in life insurance.

In the closing plenary talk, Katrien Antonio (Professor of Actuarial Science at KU Leuven,
Belgium) presented recent development and challenges in non-life reserving. In order to
be able to fulfill future liabilities, insurance companies approach micro-level reserving by
using granular, detailed data on the development of individual claims. In her talk, she gave
an overview of the research on micro-level reserving and presented ongoing developments
of statistical modeling and data analytic tools for reserving with granular data. Her talk was
illustrated on a large European dataset of liability claims (from private individuals) with
monthly exposures using R.

All conference presentations are available on the conference website at
https://rininsurance17.sciencesconf.org/.

Scientific committee and sponsors

The members of the scientific committee were: Arthur Charpentier (University of Ams-
terdam and KU Leuven), Christophe Dutang (Université du Maine and Université Paris
Dauphine, France), Markus Gesmann (ChainLadder project), Giorgio A. Spedicato (Unipol
Gruppo Finanziario), Andreas Tsanakas (Cass Business School).

Finally, we are grateful to our sponsors RStudio, Verisk Insurance Solutions, Barnett
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Waddingham, Mirai Solutions, Milliman. This conference would not have been possible
without their generous support.

R in Insurance 2018

We are delighted to announce next year’s event already on 16 July 2018. Following three
years in London, one year in Paris and one year in Amsterdam, the conference will go back
to London, UK. Further details will be published on https://insurancedatascience.org/.

Nicolas Baradel
ENSAE, Paris, France
http://www.nicolasbaradel.fr/

Christophe Dutang
Université du Maine, Le Mans, France
Université Paris Dauphine, Paris, France
http://dutangc.free.fr/

Caroline Hillairet
ENSAE, Paris, France
https://sites.google.com/site/carolinehillairet
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Forwards Column
by Stella Bollmann, Dianne Cook, Jasmine Dumas, John Fox, Julie Josse, Oliver Keyes, Carolin
Strobl, Heather Turner and Rudolf Debelak

Forwards is a task force that was set up by the R Foundation in 2015 to address the under-
representation of women that has since widened its scope to encompass other under-
represented groups. The task force is organised as a core team comprising leaders from a
number of sub-teams that focus on particular aspects:

Community General outreach to help people from under-represented groups get into R
and develop as useRs. Members have represented the task force at events such as Al-
terConf, Trans*Code International Transgender Day of Visibility Hackathon, National
Federation of the Blind Convention, and Society for Advancement of Chicanos/His-
panics and Native Americans in Science. The team promotes outreach schemes such
as NASA Datanauts and works alongside others in the R community seeking to widen
participation, such as R-Ladies or other sub-teams, for example co-ordinating the
diversity scholarship scheme for useR! 2017.

Conferences With a particular focus on R Foundation conferences, this team liaises with
the organizers/program committee on policies and inclusion initiatives. For example
this team initiated the conference buddy scheme for useR! 2017 and collaborated with
R-Ladies to host a special session for newcomers.

On-ramps Creating paths for useRs to develop their skills and make contributions to the
R/Bioconductor package ecosystem. Activities have included speaking at the useR!
2017 newcomer session and R-Ladies meetings on collaborative coding.

Social Media Managing the Twitter account and the recently started Facebook group to
support people from under-represented groups. Maintaining the website and co-
ordinating the blog.

Surveys Running and analysing community surveys; publishing corresponding reports
and data. For example, this team ran a survey at useR! 2016 to find out about the
demographics, programming experience and community involvement of useR! atten-
dees.

Teaching Working on methodology, materials and workshops designed for under-represented
groups. In particular, this team have developed materials for two workshops: one
aimed at high school girls, on creating a data analysis web application and another
aimed at women, on package development. So far these workshops have been run in
Australia and New Zealand, with repeats planned for Europe and North America.

This new column provides an outlet for news about the work of the task force as well as
more detailed reports. This inaugural column presents an article on the results of the useR!
2016 survey.
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A First Survey on the Diversity of the R Community

Abstract The study presented here is a first attempt to capture the demographics and opinions of
the R community, starting with the attendees of the useR! conference 2016. One aim of Forwards,
the R Foundation taskforce on women and other under-represented groups, is to identify groups
that are under-represented in the R community and to further stimulate ideas and take initiatives
for widening their participation. Since R is an open-source software with various platforms for
exchange, however, it is difficult to obtain information about its community – let alone define this
community in the first place. As a starting point, a survey was conducted with the attendees of
the useR! conference 2016 to document their sociodemographic and computational backgrounds,
experiences and opinions. The present paper gives an overview of the results of this first survey.
Most of the analysis focuses on women participants, that are generally under-represented in STEM
(Science, Technology, Engineering, Mathematics) disciplines, but the results also show a severe under-
representation of minorities. A surprising finding concerns a gender difference with regard to the
experience with R and the publication of R packages. We investigated possible reasons for this
difference by the means of a logistic regression analysis. The self-evident limitations of this first
survey are discussed and directions for future research as well as potential means for improvement
are outlined.

The R environment for statistical computing is an open-source project for data analysis. It provides
an opportunity for users worldwide to benefit from an extensive number of software tools for a wide
spectrum of data analysis and also allows users to participate in the project. This participation may
take many forms. Beginners may attend tutorials on data analysis with R and contribute through their
feedback while advanced users may write their own code and even publish it on one of the public
repositories. As a whole, we will refer to the participants of the R project as the “R community” – but
be assured of our awareness that this community is very hard to grasp.

Several studies have already investigated important aspects of the R community. A central place
in the development of R is taken by the R Core Team. It is responsible for the development of the
basic R software and the maintenance of infrastructure which is necessary for its distribution. Several
interesting aspects of the organization and work of the R Core Team have been summarized by Fox
(2009), who conducted a series of interviews with its members. Mair et al. (2015) investigated the
motivation and values of the authors of R software packages published on the CRAN, Bioconductor
and R-Forge repositories by the means of a questionnaire. Like the R Core Team, package authors are a
well-defined subgroup of the R community that is quite easily accessible because their names are made
public. However, very little is known about the remaining part of the R community, which consists of
regular R users as well as developers who have not published R packages on public repositories so far.
They are usually anonymous and can not be directly addressed.

Therefore, in a first attempt to start gathering information on the R community, we turned to
a subsample of the community that was more clearly defined, namely the attendees of the useR!
conference 2016, held in Stanford, CA. The advantage of the useR! conference as a platform for the
survey – besides feasibility – was that it is attended by both R users and R developers, which is an
important prerequisite for getting a broader insight than the previous studies on R Core members and
CRAN package developers.

Yet we are fully aware that the useR! attendees are not a representative sample from the R
community as a whole, because conference attendance itself depends on a variety of resources. This is
particularly true for an expensive location like Stanford. Therefore, in this study we don’t claim that
our results can be generalized to other parts of the R community – nevertheless they tell us something
about a quite relevant part of this community.

Speaking in terms of study design, we can only consider the useR! attendees – not the R community
as a whole – as the population, from which again only a sample answered the questionnaire. We did,
however, achieve a rather high return rate of 455/904 and also checked the representativeness of this
sample as compared to the population of useR! attendees with respect to demographic information
provided at or derived from registration1. Like most studies, we found that women were slightly more
willing to participate in the survey compared to men, however this imbalance only becomes relevant
when men and women differ in their responses, in which case we present results for men and women
separately.

All attendees of the useR! conference 2016 received an invitation to participate in the survey.
The questionnaire was presented online and contained 26 questions, which concerned demographic
information, experience with and opinions about R, and involvement in the R community. Our results
will be presented in two sections: In the first section, we report results on the demographic data. In
the second section, we summarize the responses concerning the participants’ usage of R and their
involvement in the R community.

1For more detail see our supplementary report Non-Responses in the UseR! 2016 Survey
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The main goal of the survey was to obtain information from R users and developers that may
help in setting up more inclusive infrastructure for the usage, development and teaching of R. The
results may also point out prerequisites for successfully developing R expertise and hopefully initiate
a dialogue with under-represented subgroups of the R community in order to help them formulate
their needs.

While the initial focus of the survey, as well as the task force itself, was on addressing the under-
representation of women, we did also investigate the representation of minority groups identified
by race and sexuality. We will show that these minorities are severely under-represented. However,
for a detailed statistical analysis the group sizes were so small that conclusions would have been
questionable and identifiability of individual respondents would have become an issue.

Given that this survey was the first attempt towards addressing a broader part of the R community,
both the structure of the questionnaire and its analysis are of a rather explorative nature. This, together
with the above-mentioned fact that the respondents are a representative sample from the attendees,
but not necessarily from the R community as a whole, has led us to formulate any conclusions carefully
and emphasize effect sizes rather than significance in our statistical analysis.

Based on the work of Cohen (1988), we calculated Cohen’s Omega as an effect size measure for
describing associations between categorical variables. Cohen also provided guidelines for interpreting
these measures: For Cohen’s Omega, values around 0.1 correspond to a small effect, values around
0.3 correspond to a medium effect, and values around 0.5 correspond to a large effect. For all results
presented here, a Cohen’s Omega of 0.13 or higher also corresponded to a p-value below 0.05.

Demographic information

The sample consists of 455 respondents. We first investigated the basic characteristics of this sample,
which include the age of the respondents, the number of women and men respondents, and the
educational level of the respondents, as well as variables related to under-represented groups. Unless
noted otherwise, all reported percentages refer to the relative size compared to the entire sample of
455 respondents.

Most respondents identified as men or women: an extremely small number of attendees had a
gender outside the binary, but are not included in this analysis to avoid risking identifying them
without their consent. Of the remaining respondents, 169 (37.22%) identified as women. 27 respondents
(5.93%) reported to identify as members of the LGBT community, whereas 11 respondents (2.42%)
did not reply to this question. When asked about their ethnicity and country of origin, a wide array
of responses was given. We used a free text field in order to avoid deficiencies in standard race
classification systems, which may not represent the respondents’ identity. The open answer format
does, however, make summarizing the results more difficult, so for this analysis we did compare the
free answers to a standard classification system. There were 409 responses on the subject of racial
identity. This number was used as the reference for the following percentages: 302 respondents
(73.83%) identified as White/Caucasian. Only 7 attendees (1.71%) identified as Black, Native American
(including Pacific Islanders) or Middle Eastern.

To put this in context, more respondents identified primarily as Jewish (8 responses, corresponding
to 1.96%), than as Black, Middle Eastern or Native American combined. Of the other attendees, 67
(16.38%) fell within what the standard American Federal criteria would class as Asian, 12 (2.93%) as
Hispanic/Latinx, and the remainder as mixed-race.

Given these results, there appears to be a severe under-representation of non-white attendees
compared to the general population. These results might further indicate an under-representation of
members of the LGBT community, although this question is more difficult to address. In the adult
population of the United States, around 3.5% of the adult population consider themselves as part
of the LBGT community, as was shown in the report of Gates (2011). However, these figures might
constitute a severe underestimation, as was argued by Coffman et al. (2013). We are not able to further
investigate these minorities and their possible reasons for not attending the conference for two reasons:
First, the small sample sizes of the under-represented groups would make it difficult to generalize any
conclusions. Still we do not find it justified to merge ethnic minorities into larger groups just for the
sake of the analysis. Second, if a group consists of very few attendees, reporting more detailed findings
could compromise the anonymity of individual respondents. Therefore, the remaining analysis will
focus only on gender differences.

We do, however, want to point out that the under-representation of non-white attendees we found
in the useR! survey was more severe than we would have expected and led to a broadening of the
focus of the task force to represent not only the concerns of women but also of other under-represented
groups, be they identified by race, gender, sexuality, class, or disability.

With respect to gender differences, we found that women and men respondents differed with
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regard to their age (approximated from their birth year, see Figure 1), but not with regard to their
educational level (with response options “max. secondary school”, “undergraduate degree”, “Masters
degree”, “Doctorate” and “Professional degree”).
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Figure 1: Approximate age of useR! 2016 attendees.

The median birth year of men respondents was earlier than that of women respondents, with men
respondents on average being in their early 40s and women respondents being in their mid-30s.

Therefore, when comparing women and men respondents in the remainder of the analysis, care
should be taken with the interpretation of gender differences in bivariate analyses, because they might
be confounded with age differences.

Gender differences were indeed found in the reported employment status of the respondents (see
Figure 2): A higher rate of men respondents tended to be employed in industry or to be permanently
employed in academia. On the other hand, a higher rate of women respondents tended to be students.
Part of these differences might be due to the age differences reported earlier.

Note that here and in all following figures comparing the answers of men and women respondents,
the graphs display conditional relative frequencies of answering in a certain category given the gender.
Accordingly, the percentages within one gender add up to 100% (missing values are not considered).

Employed in government/non−profit
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Employed non−permanently in academia
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Figure 2: Employment status.

116 respondents (25.49%) reported to be caregivers for children or adult dependents on a regular
basis, with men attendees being more likely to be caregivers than women attendees. 28.97% of the men
respondents reported to be caregivers, while only 21.83% of the women respondents did. Even though
this difference was relatively small (Omega = 0.08), we decided to report it since it demonstrates
the self-selection effect inherent in this study: Our sample contained only those members of the R
community who were able to attend the useR! conference in Stanford (and were also willing to answer
the questionnaire).
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At first glance, the fact that men respondents were more likely than women to be caregivers may
sound like the R community might have overcome traditional role models already. But the more
probable interpretation, that is also supported by the free text answers, is that traditional role models
do still make it easier for men to leave children at home with their partner (if applicable) than for
women to do the same, resulting in a self-selection effect in which women with children are less likely
to be able to attend – and as a result women who do attend are less likely to be caregivers.

This again reflects the general problem of this survey: We cannot draw any conclusion about
reasons why women or other under-represented groups did not attend the conference, since we do
not have any information on them.

Opinion on R

After having reported demographical information about the useR! sample, we now report our findings
on the opinions reported by the respondents towards R and working with R. Since the demographic
information reported in the last section suggested that women respondents came from a different
professional background than men respondents, we were particularly interested in further gender
differences in their opinion towards R.

A first question was whether the respondents would recommend R to friends or colleagues as a
programming language to learn. This was agreed to by 418 (91.87%) respondents, while 21 (4.62%)
respondents disagreed and 19 (4.18%) respondents did not answer. Asked about their number one
argument for or against learning R by selecting one argument from a list, numerous responses were
given. We summarized these reponses discarding all answers that were given less than 10 times – this
left only arguments for using R. Figure 3 summarizes these most frequently given answers.

Free

Open source

Good for visualisation

Wide range of packages

Good for reproducible research

Good for statistical analysis

0% 10% 20% 30%

Figure 3: Number one argument for using R

These data seem to suggest that the respondents would recommend learning R because of it being
a good tool for statistical analyses, followed by its use as a tool for reproducible research. Men and
women respondents did not differ in their willingness to recommend to learn R, or in their arguments
for or against R (note, however, that for the arguments the cell frequencies may have been too small
for a valid analysis).

Further questions of the survey asked the respondents to indicate to what extent they agreed with
certain statements about R. Figure 4 summarizes the responses to the statements that

1. Writing R is fun.

2. Writing R is considered cool or interesting by my peers.

3. Writing R is difficult.

4. Writing R is a monotonous task.

Percentages are in reference to the number of all given answers to the respective question.

We did not find any gender differences in these questions. Attendees of the useR! conference
– unsurprisingly – regard R mostly as something fun and interesting and not very monotonous or
difficult.

It seems interesting to note that a large part (160 respondents, 35.16%) of the sample reported to
use R not only in a professional or educational setting, but also in their free time. When compared
with men respondents, women respondents tend to use R less often in their free time, and more often
in an educational or professional setting (see Figure 5). Percentages again add up to 100% for each
gender respectively, while missing values are not considered.

In a chi square test, we found a medium effect size (Cohen’s Omega = 0.25) for this gender
difference.
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Figure 4: useR! 2016 attendees opinions on writing R.
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Figure 5: Primary purpose of using R.

Given that the higher share of R usage in their free time might also correspond to longer exposure
times for men, which might again affect subjective or objective expertise as well as self-confidence
for actively participating in activities like package writing, it might be worth investigating the factors
behind this different usage behavior – be they motivational or due to structural differences like inequal
distributions of household or childcare duties – in future research.

Experience with R

A significant part of the survey concerned the respondents’ experience of working with R. Generally,
the respondents tended to be rather experienced R users. 369 respondents (81.10%) reported that they
had already worked with R for 2 years or longer, with 338 respondents (74.29%) stating that they had
already had programming experience before working with R.

Since women respondents tended to be younger, it could be expected that they would also have
shorter experience in working with R. As can be seen in Figure 6, our analysis shows that this is indeed
the case (Omega = 0.19). Again, percentages add up to 100 per gender.

There were also gender differences when the respondents were asked about their previous pro-
gramming experience before using R (Omega = 0.18). While 82.25% of the men who answered this
question reported to have previous programming experience, the corresponding percentage among
women was 66.06%.

A related question concerned whether the respondents use only existing functions of R or whether
they also write and publish their own functions. A majority of the respondents (389, 85.49%) reported
to have written R functions for their own use. A smaller part of the sample (253, 55.60% of the
respondents who answered) reported to have written their own R package or have contributed to an R
package. 155 respondents (33.07% of the respondents who answered) reported to have published their
own R packages on CRAN. These results are further illustrated in Figure 7. Percentages in this plot
are in reference to the respective gender again. They do not add up to 100% for each group though
because multiple answers per person were possible. Notably, men were more predominant when it
comes to R package development.
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Figure 6: Length of R usage.
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Figure 7: Usage types of R.

So far, our results indicate that women respondents tended to be younger and have used R for
a shorter amount of time than men respondents. Furthermore, we found that women respondents
have contributed to R packages less often. From these bivariate analyses, however, we cannot assess
whether the gender difference in package development is confounded with the usage length and
programming experience, or whether there are gender differences beyond these effects, that may again
be confounded with the younger age of the women participants. Therefore, in the next section we
conduct a multiple logistic regression model to assess the partial effects of gender and the experience
variables on package writing.

Modeling gender differences in contribution to R packages

As was outlined in the previous sections, women respondents were less likely to contribute to R
packages, but also tended to have less programming experience and a shorter length of R usage.
The observed gender differences in the contribution to R packages could be confounded with these
variables.

In order to assess the partial effects of these and further variables, we employed a logistic regression
model. It should be clearly stated that this was a fully exploratory analysis, as no clear hypotheses
about the factors affecting R package contributions in the general R community were available to guide
the design of the survey or this statistical anlysis. As will be outlined in the following, we explored
the association between package contributions and those survey variables that seemed plausible.

In the logistic regression models, we predicted whether someone had contributed to an R package
in any form (i.e., the categories “contribute to packages”, “have written package” and “written and
released package” from Figure 7 were combined to form response category 1). Different models were
compared, with contribution to R packages as outcome variable and gender, length of R usage and previous
programming experience as a first set of candidate predictors. Length of R usage was coded as an ordered

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



NEWS AND NOTES 548

factor variable that consists of 5 response categories that correspond to less than 1 year, 1-2 years, 2-5
years, 5-10 years, and 10 or more years. Previous programming experience was coded as a dichotomous
variable indicating whether someone had previous programming experience before using R or not.

The results were inconclusive as to whether gender differences remain after accounting for the
differences in length of R usage. With respect to AIC, the model with length of R usage and gender as
predictors was the best model, whereas the BIC and the Likelihood ratio test preferred the model with
only length of R usage as a predictor. The variable previous programming experience had no additional
effect and was excluded by all criteria. From this first logistic regression analysis, it looked like a large
part – but maybe not all – of the gender differences in the contribution to R packages were caused
by differences in the length of R usage (with women showing shorter usage lengths, as displayed in
Figure 6).

To explore potential effects of additional survey variables, we also included employment status,
purpose of R usage and community in the analysis. Employment status was coded as a factor variable with
eight different categories like in Figure 2. Purpose of R usage is the factor variable from Figure 5, and
community is a binary variable indicating whether someone stated to feel as part of the R community
or not (with descriptive statistics for this variable presented in the next section).

The logistic regression model with gender, length of R usage, employment status and community had
the lowest AIC and was also the best model according to the Likelihood ratio test. The BIC again
preferred the more sparse model without gender. Purpose of R usage did not improve model fit for any
of the criteria.

With respect to the interpretation of the effects of the additional variables included in this model,
for employment status we find that people working permanently and non-permanently in academia
contribute most to R packages, whereas those working in government/non-profit and industry are
slightly less likely to contribute to R packages. Feeling as part of the R community goes along with
contributing more to R packages. Of course, the direction of this association may also be the other way
round, since people who have already contributed to R packages are more likely to feel as part of the
R community.

Again, the analysis does not give a clear answer to the question whether any gender differences in
package contributions remain beyond the differences already captured by the other predictor variables.
Any remaining differences might depend on a variety of other individual and structural factors, such
as differences in motivation or self-confidence, in access to information, or in networking and peer
support for contributing to R packages. After this first exploratory study, it would be very interesting
to further question women R users that are on the verge of becoming R developers what might be
keeping them back – as well as asking men R users that did cross over and become developers what
helped them take that step.

The respondents as part of the R community

A final set of questions in the survey concerned the role of the respondents as part of the R community.
Asked whether they considered themselves to be part of the R community, 361 (79.34%) respondents
agreed, whereas 69 (15.16%) respondents disagreed and 28 (6.15%) respondents did not answer. Men
and women respondents did feel as part of the R community to a comparable extent.

The respondents further reported to use a variety of resources to support their work with R.
The respective question in the survey provided a list of possible resources, and also allowed the
respondents to enter additional resources that were not listed as free text. Among the listed resources,
StackOverflow and the R mailing list were the most frequently used resources. We found no gender
differences here. Reporting only given answers that were chosen more than 4 times for brevity, the
results are displayed in Figure 8.
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Figure 8: Resources men and women use to support their work with R.
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Further asked about their preferred medium for R community news, the respondents most
frequently chose the website (24.18%) and the mailing lists (21.10%). Other selected options were blog
(18.02%), Twitter (15.16%) and Facebook (4.62%). Given these preferences, communication across a
range of media is necessary to be confident in reaching a large proportion of R users and developers. A
sizeable proportion (7.91%) did not select any option, so does not have a preference or is not interested
in R community news. Nonetheless, as conference participants, they may receive some news in person.

We further investigated whether men and women respondents differed with regard to their
preference of individual resources. Therefore, we tested for every single response category of the
previous question whether the relative frequency with which it was selected differed between men and
women respondents. When correcting for multiple testing, none of them was statistically significant.

Among the 455 respondents of the survey, 163 (35.82%) respondents reported that they attend
meetings of a R user group, whereas 268 (58.90%) responded that they did not, and 27 (5.93%)
respondents did not reply. Among the 163 respondents attending R user group meetings, 134 (82.21%)
respondents indicated that they attended a general user group, whereas 16 (9.82%) respondents
reported that they visited a user group within a university. Other types of user groups were less often
named.

The respondents who did not visit R user group meetings were further asked about their reasons
for this decision. Again, the respondents could answer this question by either selecting statements
from a list or by entering new statements. The arguments that were chosen most frequently were that
the respondents were too busy or that no active user group was available.

Finally, we investigated whether men and women respondents differed with respect to their
attendance of R user group meetings, and how these meetings could be made more attractive for new
attendees. In a first step, we found gender differences with regard to the reported attendance of R user
group meetings. Men respondents reported to attend R user group meetings more often than women
respondents with a small to medium effect (Omega = 0.21).

In a second step, we investigated gender differences to the question what measure would make
the respondent more likely to attend user group meetings. For the individual response options,
the following differences were found (only those answers are listed that were chosen by at least 10
respondents, with n indicating the total number of respondents that chose the respective option):

• New R user group near me (n = 122): no gender differences (Omega = 0.02)

• New R user group near me aimed at my demographic (n = 31): More positive responses by
women respondents with a small effect (Omega = 0.19)

• Free local introductory R workshops (n = 61): no gender differences (Omega = 0.02)

• Paid local advanced R workshops (n = 61): no gender differences (Omega = 0.08)

• R workshop at conference in my domain (n = 73): no gender differences (Omega = 0.08)

• R workshop aimed at my demographic (n = 20): More positive responses by women respondents
with a small effect (Omega = 0.12)

• Mentoring (e.g. first CRAN submission/useR! abstract submission/GitHub contribution) (n =
87): no gender differences (Omega = 0.09)

• Online forum to discuss R-related issues (n = 62): More positive responses by women respon-
dents with a small effect (Omega = 0.14)

• Online support group for my demographic (n = 18): More positive responses by women
respondents with a small effect (Omega = 0.15)

These answers indicate that most people who do not attend user group meetings do not have
a user group near them or (as was suggested by free text answers) do not know that there are user
groups. Other measures that could help to make people attend user group meetings would be R
workshops at conferences in their domain, an online forum or local R workshops of different kinds.
When it comes to gender differences, women might be more attracted by user groups explicitly aiming
at women, but might also hint in the direction of women being less willing or less able or both to
spend their free time with R, as we have seen in an earlier question.

Discussion

Our results draw a complex picture of the sample of attendees who agreed to respond to our survey.
When looking at the sample as a whole, the respondents to this survey tended to have programming
experience prior to working with R, and usually used R for 2 or more years. Most respondents further
wrote their own R code, either to create functions for their own work or to contribute to R packages.
Moreover, the average respondent had a positive opinion towards working with R. These results are
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not very surprising, given that this sample was collected among the attendants of a useR! conference.
However, as no comparable results on the community of R users have been published so far, these
findings are nevertheless valuable. Future studies could use the results reported here as a benchmark
for the evaluation of long-term developments in the R community.

In accordance with the initial question of the taks force, we did find that women were under-
represented at the useR! conference 2016 – but even more strikingly, that non-white users were even
more severely under-represented.

When looking at gender differences in more detail, results from three areas of the questionnaire
stand out, that may however be confounded as discussed above. First, women respondents tended to
be younger and have shorter experience in R usage than men respondents. Second, women used R
less in their free time and contributed less to R packages. Third, women agreed less to feeling part of
the R community.

The results of the exploratory logistic regression analysis suggest that the survey questions cap-
tured some factors associated with gender differences in contributions to R packages, such as the
length of R usage, employment in academia and a feeling of belonging to the R community, that were
positively associated with contributing to R packages. Yet the results were not conclusive as to whether
there may be further gender differences, for example due to personal or structural factors, that may
discourage women from writing R packages and would be important to investigate.

An additional hierarchical cluster analysis of the same data found three different groups of people:
The first group (around 38% of the sample) are experienced R users, who tend to be men, from
academia and people with doctorate. They use R not only in a professional setting, but also for
recreational purposes. The second group (around 57% of the sample) are intermediately experienced
users who use R for less than 2 years and mainly apply existing packages. They tend to be female,
and are either undergraduates or have a master degree. They are using R mainly in professional or
educational settings. The last group (around 3% of the sample) are the least experienced users who are
using R during their free time. Details on this analysis as well as further multivariate analyses of the
data can be found at UseR! 2016 R community: a multivariate analysis and UseR! 2016 participants: a
multivariate analysis.

An anonymised form of the survey data, which minimises disclosure risk by excluding some
demographic variables and recoding others, is available on CRAN (forwards). This data set includes
aggregated versions of all demographic variables used in the logistic regression analysis and the
majority of demographic variables used to aid interpretation in the multivariate analysis. Apart
from the suppression of a small number of data values and a few free text variables that contained
sensitive/identifying information, the responses to the programming and community questions are
provided as recorded.

As stated already in the beginning of this text, due to the limitations of the study design, the results
from the conference sample might not generalize to other subgroups of the R community, in particular
not to those individuals who could not attend the conference due to factors associated with their being
part of an under-represented group. Further studies are necessary to try to obtain a better picture of
the R community as a whole.

Moreover, several topics which could be of further interest for the support of R users had not yet
been included in the survey in order to keep it as short as possible. Further potentially interesting
questions include, besides the ones already mentioned above, for example, what programming
languages R users had already used before they started working with R, whether being in contact with
other users that contribute to R packages makes it more likely to contribute to R packages oneself, etc.

Still the answers from this questionnaire give some indication to measures that could be taken
to advance the participation of women, for example that user groups and other means of exchange
explicitly targeting women might make them more accessible. Even though this would be method-
ologically challenging both due to the unspecific nature of the R community and the confounding
of any interventions with different developments over time, it would be important to evaluate the
development of under-represented groups over time.

The fact that women useR! attendees are on average younger and have lower R usage lengths
might stimulate the hope that, once they reach the age and experience of their men counterparts,
any gender differences might disappear automatically. However, this may not be the case, since
multivariate analyses (see for instance Josse and Turner (2017)) tend to suggest that after adjusting for
the age, women are still less involved in the R community. We still expect that if the R community and
the opportunities to contribute are not equally attractive for women, they will not have the motivation
to develop the skills to become contributors.

Although our initial framing looked specifically at gender as an axis of exclusion, the results show
that race, not gender, is the area where there is the greatest disparity, and it is vital that inclusivity
efforts factor this in. While the survey results give some ideas for improving inclusion in general,
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specific efforts should be made to reach out to people from under-represented races, for example
through diversity scholarships, invited conference contributions, or invitations to serve in community
roles. Further information on who is under-represented, and for what reason, would support such
efforts.
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R Teaching Column
by Matthias Gehrke, Reed Davis, Norman Matloff, Paul Thompson, Tiffany Chen, Emily Watkins
and Laurel Beckett

Invitation to collaborate

With this issue of the R Journal, there will be a section for teaching R and teaching using R
as well as for empirical research on teaching R.

Teaching material

A GitHub repository will be setup where the teaching material can be accessed. All material
should be under some licence of Creative Commons to allow re-use. Please prepare a short
text describing your material. For a sample, see the description by Norman Matloff et al.
(below) of class room material he is using.

Research on teaching R

Some research is considering the relative success of different approaches to teaching R and
teaching statistics with R. For example, see some contributions on the recent useR!2017 in
Brussels (Gert Janssenwill et al., The analysis of R learning styles with R, Matthias Gehrke
and Karsten Luebke, A quasi-experiment for the influence of the user interface on the
acceptance of R). The R Journal is interested in receiving such submissions.

Technical details

This column will appear before this GitHub repository is established, so only links to an
existing cooperating repository and mailing list can be provided at this time. Subsequent
columns will provide full technical details or links to such details.

Matthias Gehrke
FOM University of Applied Sciences
Franklinstr. 52, 60486 Frankfurt a. M.
Germany
matthias.gehrke@fom.de
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The ’revisit’ Package As a Teaching Tool

Abstract The revisit package, developed as a collaborative tool for scientists, also serves as a tool for
teaching statistics, in a manner that can be highly motivating for students. Using either the included
case studies or datasets/code provided by the instructor, students can explore several alternate paths
of analysis, such as the effects of including/excluding certain variables, employing different types of
statistical methodology and so on. The package includes features that help students follow modern
statistical standards and avoid various statistical errors, such as “p-hacking” and lack of attention to
outlier data.

Overview

The R package revisit was developed in response to the recent concern over reproducibility in research,
especially problems related to statistical analysis (Baker, 2016). The motivation and methods are
detailed in Matloff et al. (2017), but in this paper we turn to teaching.

The package has both text and GUI versions, the latter being based on the RStudio integrated de-
velopment environment for R. It is currently at an early stage of development, with more features and
refinements being added continuously. It may be downloaded from https://github.com/matloff/
revisit.

One can obtain a quick introduction to the package by starting it and running one of the case
studies. To start the package in GUI form, click Addins in RStudio, and choose “Revisit”. The text
version is not colorful, but is more flexible. To run it, simply run library(revisit). Use of the case
studies will be introduced later in this paper.

An excellent motivator: the Reinhart/Rogoff study controversy

The package includes a number of examples for student examination and participation. One of the case
studies involves the controversial paper by Harvard economists C. Reinhart and K. Rogoff (Cassidy,
2016). They had found that nations with high budget deficits average a −0.1% growth rate in GDP.
This finding had major impact on policymakers, with the paper attracting particular interest from the
“deficit hawks” in the U.S. Congress. The Washington Post took to describing the finding as “consensus
among economists.”

But when later researchers tried alternate analysis, the picture changed entirely. Some data had
been excluded from the initial published analysis, for what arguably were weak reasons. The original
analysis also had the flaw of giving equal weights to all nations, regardless of size, as well as other
aspects that some researchers considered flaws. When the alternate analysis was run, the figure −0.1%
changed to +2.2%. Thus the original findings on deficit spending now seem questionable. This leads
to the theme in the present paper, use of revisit for teaching.

At a talk given by one of the authors of the present paper (Matloff, 2017), the author was stunned
at student reaction to the Reinhart/Rogoff example. The students, all doing graduate work in science
and engineering, were captivated by the fact that the study, which had had such influence on policy,
may have been seriously flawed, with alternate analyses of the same data yielding starkly different
results. The potential of revisit as a teaching tool had been suggested earlier by one of the other
authors of the present paper, but the strong student reaction here dramatized the point.

General structure of the package

The package is structured as follows:

• A set of case studies for students to explore and modify (and to which instructors can add their
own examples).

• “Statistical audit” warnings/advice given to students regarding statistical best practices as they
proceed in their analyses.

• A code management infrastructure to facilitate exploration of alternative analyses.

The case study approach

The package includes various case studies, consisting of data and code. The latter comprises a
complete, though possibly brief, analysis of the data from start to finish — the code may include
data configuration, data cleaning, preliminary graphical analysis, predictor variable/model selection,

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://github.com/matloff/revisit
https://github.com/matloff/revisit


NEWS AND NOTES 555

and so on. Students can then try their own alternative analyses. Most of the case studies are not as
dramatic as Reinhart and Rogoff, but each illustrates important concepts in data analysis.

There are just a few case studies included in the package currently, but more are being added, and
instructors will often prefer to use their own data anyway. In many cases, the code will be minimal,
affording the students even more opportunity for nonpassive thought and exploration.

Assignments centered on the use of revisit can be very specific or more open-ended, according to
the instructor’s preference. Here are possible samples:

• “This assignment involves the Reinhart and Rogoff data, included in the revisit package. Revisit
the analysis with different weightings for the nations based on various factors.”

• “This assignment involves the famous Pima diabetes study. Some later inspection suggested
that the data includes a number of erroneous values, such as impossible 0 values. Investigate
this, say using graphical means. Run a logistic regression model, with and without the suspect
data points, and compare the results. Also, the authors of the study used a neural network
approach. Try using random forests, and compare to the authors’ level of predictive ability.”

• “This assignment analyzes the famous Forest Cover dataset, in which one of seven cover types
is predicted from variables such as Hillside Shade at Noon. The given code tries prediction
using, of course, the random forests method. The first 10 predictors are used. In your alternate
analysis, try using all 54 predictors. That is quite a bit, and even with over 500,000 observations,
one must always worry about overfitting; investigate that here.”

• “This assignment analyzes the Fong-Ouliaria currency data. The supplied code fits a linear
regression model, with a respectable R2 value. However, one can do better. First, explore
this with some of the graphical methods in the regtools package, and then try adding some
quadratic and interaction terms to the model, and/or try a nonparametric regression approach.”

• “Here you will work with data from the 2000 Census, involving salaries of programmers and
engineers in Silicon Valley. One aspect of interest is the gender issue — are women paid less
than comparable men? A preliminary regression analysis indicates a difference of over $10,000,
for fixed age and educational level. But much more needs to be done. For instance, what
happens when occupation is factored in, and when the non-monotonic relation of wage and age
is accounted for? Investigate such questions.”

We are continuing to add case studies. At this early stage, the list includes:

• UCI Pima diabetes data (Lichman, 2017)

• Zavodny guestworker data (Zavodny, 2011)

• Reinhart and Rogoff (Cassidy, 2016)

• MovieLens (Harper and Konstan, 2015)

• Fong-Ouliaria currency data (Fong and Ouliaris, 1995)

• UCI forest cover data (Lichman, 2017)

• Salary data on programmers and engineers, Silicon Valley, 2000 Census

We anticipate that instructors will typically develop their own case studies. We encourage them to
contribute these to revisit.

To load a case study in the GUI, just select the desired one from the Case Studies window. The
code will then be loaded, ready to run. For the text version, at present this is done as in this example,
for the Currency data:

fname <- system.file('CaseStudies/Currency/currency.R',package='revisit')
loadb(fname)

A “statistical audit”

One of the most important features of revisit is that it plays the role of a “statistical audit,” in much
the same way that tax preparation software might warn of questionable claims in a tax return.

Much of this is accomplished by wrapper functions provided by revisit. For instance, if the student
wishes to form a confidence interval for a mean in R, she might use t.test(). But in revisit she can
instead use t.test.rv(). Instead of lm() she can call lm.rv(), a wrapper for lm() that adds “statistical
audit” functionality.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=regtools


NEWS AND NOTES 556

The wrapper lm.rv()

As noted, this function calls lm() and returns an object of class "lm", but with additional functionality.
At present this takes on two forms:

• It checks whether the response variable takes on only two values, in which case the function
suggests a logistic model using glm():

> y <- c(1,0,1)
> x <- 1:3
> d <- data.frame(y,x)
> lm.rv(y ~ x,d)
...
Coefficients:
(Intercept) x

0.6667 0.0000

Warning message:
In lm.rv(y ~ x, user.data = d) :

only 2 distinct Y values; consider a logistic model

• It runs a parallel analysis, i.e. with the same formula and data as the lm() call, but with median
(Minimum Absolute Deviation) regression, implemented with rq() from the quantreg package.
For instance, with the salary case study, one might run:

> lm.rv(wageinc ~ age+sex+ms+phd,user.data=pe)
max. prop. difference, linear median regression: 0.3221592
larger values, may indicate outlier or model fit issues

Call:
lm(formula = formula, data = user.data)

Coefficients:
(Intercept) age sex ms phd

53286.4 441.4 -12343.6 18363.6 27770.3

There is more than a 32% difference in the two model fits, which turns out to be in the age
coefficient. (The rq() coefficients are available as a component $rqc of the "lm" object returned
by lm.rv().) As noted, this may indicate issues with outliers or model fit.

“Audits” of signficance testing

The package aims to reduce p-hacking by monitoring the number of inference actions — p-values,
confidence intervals — the student has accumulated in his/her analysis, and may issue a warning
that the student should consider employing multiple-inference methods. For the latter, at present the
package offers just Bonferroni’s Method, but more will be added (Hsu, 1996).

Moreover, the package responds to the dramatic 2016 announcement by the American Statistical
Assocation (Wasserstein and Lazar, 2016), which warned on the overuse of p-values. Though this
problem had been common knowledge for many years (Ziliak and McCloskey, 2008; Freedman et al.,
1978; Jones and Matloff, 1986), the ASA announcement gave new urgency to the issue. The revisit
package takes an active role in encouraging students not to rely much on p-values in the first place.
Confidence interval-based analysis is preferred.

Here is the code for t.test.rv():

> t.test.rv
function (x, y, alpha = 0.05, bonf = 1)
{

alpha <- alpha/bonf
tout <- t.test(x, y, conf.level = 1 - alpha)
muhat1 <- tout$estimate[1]
muhat2 <- tout$estimate[2]
tout$p.value <- tout$p.value * bonf
rvenv$pcount <<- rvenv$pcount + 1
if (tout$p.value < alpha && muhat1 != 0) {

if (abs(muhat1 - muhat2)/abs(muhat1) < rvenv$smalleffect)
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warning(paste("small p-value but effect size",
"could be of little practical interest"))

}
tout

}

Here the argument bonf is a multiplicative factor used to expand confidence interval widths for
Bonferroni corrections, as seen in the above code.

Note the incrementing of rvenv$pcount. This is the global count (which includes potential confi-
dence intervals) alluded to earlier, to be used in the warning that the user should consider multiple
inference methods.1 Note too that the code may warn the student that there was a “small p-value but
effect size could be of little practical interest.”

Other wrappers

Steering students (and their instructors) to confidence intervals instead of p-values can be difficult
not only in terms of breaking habits, but also in technical terms. Consider the log-linear model.
for instance. Most packages perform log-lin solely from a hypothesis testing point of view. R’s
stats::loglin() function, for instance, will not provide standard errors, and only provides point
estimates on request. Our package will go further, offering point estimates and standard errors for
estimated cell probabilities. As the user steps through the model hierarchy, at a certain point it will
become clear that the estimates are not changing in important ways, and one can stop the model
selection process. This will be accomplished by the “Poisson trick”(Christensen, 2013), in conjunction
with R’s glm() function.

Generating and managing alternative analyses

After a student selects an example from the Case Study menu, the package loads the desired code and
data, and enters the code into the package’s visual text editor. The student can now edit and run the
revised code, including just a partial run, up to a given line.

The latter capability is especially useful. Say the code consists of 32 lines, and line 11 is of interest
to the student. The student can direct revisit to run lines 1-10 of the code, then pause. At that point the
student can try executing an alternative to line 11, by executing the alternative line in the Console box,
which provides direct access to the RStudio R console in which execution takes place. The student
can then resume execution of the code starting from line 12. This allows the student to quickly try
alternative code without actually changing the contents of the text editor.

In generating various alternative analyses, the student can save the interesting ones, each version
in a different file, but all managed conveniently by revisit. Borrowing from software engineering
terminology, each of these files is called a branch.

Example: Pima diabetes study

Let’s start with a simple and quite well-known example, the Pima diabetes data. The authors (Baker,
2016) used a form of neural networks to predict diabetes from variables such as BMI and insulin. To
keep things simple, though, we will not engage in prediction analysis here.

Upon launching revisit in the GUI, a new window associated with the RStudio session then pops
up, and the screen then looks like Figure 1. Pima is the first case study listed.

The included code here consists of just forming confidence intervals comparing diabetic and
nondiabetic groups, on each of the eight predictor variables. The student can choose to run the entire
code or just a part; say she chooses the former. The confidence intervals can then be seen in the R
console portion of the RStudio window (Figure 2).

At this point, the student may ask, “What if we make the Bonferroni correction here?” Although
she could edit line 15 in the revisit text editor window to

tmp <- t.test.rv(diab[ ,i], nondiab[ ,i])$conf.int

1Technically switching to multiple inference methods midstream like this does not fully solve the problem, as
the probabilistic behavior of the analysis now is conditional on having made the switch. However, this is a general
problem in statistical analysis, far beyond the scope of revisit. For instance, typically an analyst will perform
graphical analysis of the data before embarking on formal inference analysis, again resulting in a conditional
setting.
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and then re-run, if this is just a tentative change, she could avoid changing the code, by entering the
above into the Console box, as seen in Figure 3. As expected, the confidence intervals become wider
(not shown). If the student wishes to make further changes, she may now wish to make the above
change in the text editor, and possibly save the new code into a new branch.

After the Pima dataset was curated, there were reports of erroneous values in some data points. To
investigate this, one might run the discparcoord() function from the package cdparcoord, included
in revisit:

discparcoord(pima,k=769)

Here the second argument specifies forming the graph on all 769 records in the data.2

The resulting graph will be displayed in the Viewer pane in the RStudio window. In the text
version, the student would run the above directly, in which case the graph appears in the student’s
Web browser.

The result is shown in Figure 4. This is a parallel coordinates plot (Inselberg, 2009). Each data point
is displayed as a segmented line connecting dots at heights given by the values of the variables in that
data point.3

The results are rather striking. We see that there are data points having the impossible value of 0
for variables such as glucose and blood pressure. Indeed, there are some data points with multiple 0s.
Clearly the student will need to remove some of the data points, and re-run the analyses.

The student may wish to create multiple versions of the code, e.g. in this case, code with and
without the erroneous points. The revisit package facilitates this, creating branches 0, 1, 2 and so on of
the code.

Future development

As mentioned, a number of wrapper functions are planned, as well as expanding the “statistical audit”
features of existing wrappers. Much more graphical analyis is slated.

The number of case studies will continue to grow.

Conclusions

The revisit package facilitates nonpassive, hands-on exploration of statistical and data analytic method-
ology on real data. The students learn that even published data is not sacrosanct, and that alternate
analysis can yield additional insight into the phenomena under study.

Statistical methodology pervades almost every conceivable aspect of our world today. In addition
to the students’ possible future usage of statistics in professional roles, educators should prepare them
to act as informed, critical thinkers in their roles as citizens and consumers. We hope that revisit can
play a part in achieving such goals.

It is also hoped that instructors and students will contribute suggestions for improvement, includ-
ing pull requests on GitHub. These, and of course new datasets, would be highly appreciated.
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Figure 1: Opening screen.

Figure 2: Ordinary CIs.
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Figure 3: Console box.

Figure 4: Parallel coordinates view.
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R Foundation News
by Torsten Hothorn

Donations and members

Membership fees and donations received between 2017-06-16 and 2017-12-01.

Donations

Yahaya Nazoumou (Niger) Jørgen Raffnsøe (Denmark) Romuald Riem (France) Renan
Silverio (Brazil) Appstam Consulting GmbH, Berlin (Germany) Spängler IQAM Invest
GmbH, Salzburg (Austria)

Supporting benefactors

Thomas Dangl (Austria) Transmitting Science, Barcelona (Spain)

Supporting members

Ayala S. Allon (Israel) Michael Blanks (United States) Gilberto Camara (Brazil) Jorge de la
Vega (Mexico) Elliott Deal (United States) Kristina Dietz (United Kingdom) Charles Geyer
(United States) Michael Griffiths (United States) Ken Ikeda (Japan) Artem Ilievskiy (Russia)
JUNE KEE KIM (South Korea) Felix Kluxen (Germany) Sebastian Kreutzer (France) Pawel R.
Kulawiak (Germany) Chel Hee Lee (Canada) Detlef Lehmann (Germany) Gorka Navarrete
(Chile) Matt Parker (United States) Gerard Pennefather (Singapore) Alfonso Reyes (United
States) Carlos Erwin Rodríguez Hernández Vela (Mexico) Joshua Rosenstein (United States)
Fabian Scheipl (Germany) Surendra Singh (United Kingdom) Earo Wang (Australia) Dave
Williams (United Kingdom) Kisung You (United States)

Torsten Hothorn
Universität Zürich, Switzerland Torsten.Hothorn@R-project.org
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Changes on CRAN
2017-06-01 to 2017-11-30

by Kurt Hornik, Uwe Ligges and Achim Zeileis

In the past 6 months, 1244 new packages were added to the CRAN package repository. 19
packages were unarchived, 55 archived and 3 removed. The following shows the growth of
the number of active packages in the CRAN package repository:

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

2000 2005 2010 2015

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

Number of CRAN Packages

●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

2000 2005 2010 2015

50
10

0
20

0
50

0
10

00
20

00
50

00
10

00
0

Number of CRAN Packages (Log−Scale)

On 2017-11-30, the number of active packages was around 11875.

Changes in the CRAN checks

The package check pages now also show issues found by checks of corruption of constants
(provided by Tomáš Kalibera).

Changes in the CRAN submission pipeline

Package maintainers who submitted packages this year found the automated submission
system accepted or rejected some packages automatically while other packages went into
a manual inspection queue. The number of false positives that led to wrong rejections
has been reduced. Given the system is pretty stable now, we will go a step further and
also auto-accept packages with reverse dependencies where the check status of all reverse
dependencies checked is not worse than before. So far incoming checks in CRAN have
been performed on a single platform (Linux or Windows) only. While (incoming) checks are
improved all the time, we will shortly have both Linux and Windows systems analyzing
packages before publishing automatically.

CRAN received 2087 package submissions in November 2017, i.e., around 70 submissions
a day. Hence the CRAN team is no longer able to respond to individual help requests or be
involved in lengthy discussions for exceptions. Please really use the corresponding mailing
lists such as R-package-devel (see https://www.r-project.org/mail.html).
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Changes in the CRAN Repository Policy

The Policy now says the following:

• CRAN packages should use only the public API. Hence they should not use entry
points not declared as API in installed headers nor .Internal() nor .Call() etc. calls
to base packages. Also, ::: should not be used to access undocumented/internal
objects in base packages (nor should other means of access be employed).

• Packages should not attempt to disable compiler diagnostics.

• All correspondence with CRAN must be sent to CRAN-submissions@R-project.org
(not members of the team) and be in plain text ASCII (and not HTML).

In addition, the Policy now also points to a new Checklist for CRAN submissions.

CRAN mirror security

Currently, there are 95 official CRAN mirrors, 58 of which (about 61%) provide both secure
downloads via ‘https’ and use secure mirroring from the CRAN master (via rsync through
ssh tunnels). Since the R 3.4.0 release, chooseCRANmirror() offers these mirrors in preference
to the others which are not fully secured (yet).

Hyperlinks in package DESCRIPTION files on CRAN

For package authors specified via an ‘Authors@R’ field in the DESCRIPTION file,
ORCID identifiers (see https://orcid.org/ for more information) can be provided
via elements named ‘ORCID’ in the comment argument of the person() calls, e.g.,
person("Achim","Zeileis",comment = c(ORCID = "0000-0003-0918-3766")). These iden-
tifiers will then be hyperlinked in the CRAN package web pages to the corresponding
ORCID pages. See, e.g., the page for package ctv.

Windows binaries

Starting with R 3.4.3, Jeroen Ooms maintains the Windows base R binaries and the toolchain
for building both R and contributed packages on Windows.

New packages in CRAN task views

Bayesian openEBGM, tRophicPosition.

ClinicalTrials InformativeCensoring, Mediana, ThreeArmedTrials, clusterPower, crm-
Pack, dfped, dfpk, ewoc, gsbDesign.

DifferentialEquations QPot, cOde, dMod, phaseR, rODE, rodeo, rpgm.

Distributions MittagLeffleR, coga, hyper2.

Econometrics OrthoPanels, dlsem, pder, wooldridge, zTree.

ExperimentalDesign DoE.MIParray, FMC, MBHdesign, PBIBD, bioOED, edesign, ide-
fix, minimalRSD, odr, optbdmaeAT, optrcdmaeAT, rsurface, sFFLHD, skpr∗, sopt-
dmaeA, unrepx.

ExtremeValue POT.

FunctionalData covsep, denseFLMM, freqdom.fda, ftsspec.

HighPerformanceComputing Sim.DiffProc, drake, parSim.
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MachineLearning ICEbox, effects, ggRandomForests, pdp, plotmo, tensorflow.

MetaAnalysis CIAAWconsensus, ConfoundedMeta, MetaSubtract, RandMeta, TFisher,
clubSandwich, effsize, forestmodel, getmstatistic, metaBMA, metacart, metaforest,
nmaINLA, psychmeta, ratesci, rma.exact.

NaturalLanguageProcessing alineR, ore, rel, stm, stringdist.

NumericalMathematics PythonInR, SnakeCharmR, XR, XRJulia, XRPython, expint,
feather, findpython, fourierin, interp, logOfGamma, reticulate, tripack.

Optimization ABCoptim, CVXR, ManifoldOptim, Rtnmin, SACOBRA, colf, coneproj,
ecr, flacco, metaheuristicOpt, mize, n1qn1, ompr, optimr, optimsimplex, quad-
progXT, sdpt3r.

Pharmacokinetics RxODE.

Phylogenetics treeplyr.

Psychometrics CTTShiny, EFAutilities, MIIVsem, PLmixed, dexter, umx.

Spatial spm, spsann.

SpatioTemporal FLightR, sf, sigloc.

TimeSeries dLagM, fpp2, freqdom, freqdom.fda, ftsa, funtimes, influxdbr, odpc, sweep,
timetk, tscount, wktmo.

WebTechnologies gtrendsR.

Kurt Hornik
WU Wirtschaftsuniversität Wien, Austria
Kurt.Hornik@R-project.org

Uwe Ligges
TU Dortmund, Germany
Uwe.Ligges@R-project.org

Achim Zeileis
Universität Innsbruck, Austria
Achim.Zeileis@R-project.org
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News from the Bioconductor Project
by Bioconductor Core Team

The Bioconductor project provides tools for the analysis and comprehension of high-
throughput genomic data. Bioconductor 3.6 was released on 31 October, 2017. It is compati-
ble with R 3.4.3 and consists of 1473 software packages, 326 experiment data packages, and
911 up-to-date annotation packages. The release announcement includes descriptions of 100
new software packages, and updated NEWS files for many additional packages. Start using
Bioconductor by installing the most recent version of R and evaluating the commands

source("https://bioconductor.org/biocLite.R")
biocLite()

Install additional packages and dependencies, e.g., BiocFileCache, with

BiocInstaller::biocLite("BiocFileCache")

Docker and Amazon images provide a very effective on-ramp for power users to rapidly
obtain access to standardized and scalable computing environments. Key resources include:

• The bioconductor.org web site to install, learn, use, and develop Bioconductor pack-
ages.

• A listing of available software, linking to pages describing each package.

• A question-and-answer style user support site and developer-oriented mailing list.

• The F1000Research Bioconductor channel for peer-reviewed Bioconductor work flows.

• Our package submission repository for open technical review of new packages.

Our annual conference, still in the planning stages, will be on July 25 (‘Developer Day’), 26,
and 27, in Toronto, Canada.

Bioconductor Core Team
Biostatistics and Bioinformatics
Roswell Park Cancer Institute, Buffalo, NY
USA maintainer@bioconductor.org
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Changes in R
From version 3.4.2 to version 3.4.3

by R Core Team

CHANGES IN R 3.4.3

INSTALLATION on a UNIX-ALIKE

• A workaround has been added for the changes in location of time-zone files in macOS
10.13 ‘High Sierra’ and again in 10.13.1, so the default time zone is deduced correctly
from the system setting when R is configured with ‘--with-internal-tzcode’ (the
default on macOS).

• R CMD javareconf has been updated to recognize the use of a Java 9 SDK on macOS.

BUG FIXES

• raw(0) & raw(0) and raw(0) | raw(0) again return raw(0) (rather than logical(0)).

• intToUtf8() converts integers corresponding to surrogate code points to NA rather
than invalid UTF-8, as well as values larger than the current Unicode maximum of
0x10FFFF. (This aligns with the current RFC3629.)

• Fix calling of methods on S4 generics that dispatch on ... when the call contains ....

• Following Unicode ‘Corrigendum 9’, the UTF-8 representations of U+FFFE and
U+FFFF are now regarded as valid by utf8ToInt().

• range(c(TRUE,NA),finite = TRUE) and similar no longer return NA. (Reported by
Lukas Stadler.)

• The self starting function attr(SSlogis,"initial") now also works when the y val-
ues have exact minimum zero and is slightly changed in general, behaving symmetri-
cally in the y range.

• The printing of named raw vectors is now formatted nicely as for other such atomic
vectors, thanks to Lukas Stadler.

CHANGES IN R 3.4.2

NEW FEATURES

• Setting the LC_ALL category in Sys.setlocale() invalidates any cached locale-specific
day/month names and the AM/PM indicator for strptime() (as setting LC_TIME has
since R 3.1.0).

• The version of LAPACK included in the sources has been updated to 3.7.1, a bug-fix
release.

• The default for tools::write_PACKAGES(rds_compress=) has been changed to "xz"
to match the compression used by CRAN.

• c() and unlist() are now more efficient in constructing the names(.) of their return
value, thanks to a proposal by Suharto Anggono. (PR#17284)
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UTILITIES

• R CMD check checks for and R CMD build corrects CRLF line endings in shell scripts
configure and cleanup (even on Windows).

INSTALLATION on a UNIX-ALIKE

• The order of selection of OpenMP flags has been changed: Oracle Developer Studio
12.5 accepts ‘-fopenmp’ and ‘-xopenmp’ but only the latter enables OpenMP so it is now
tried first.

BUG FIXES

• within(List,rm(x1,x2)) works correctly again, including when List[["x2"]] is
NULL.

• regexec(pattern,text,*) now applies as.character(.) to its first two arguments,
as documented.

• write.table() and related functions, writeLines(), and perhaps other functions
writing text to connections did not signal errors when the writes failed, e.g. due to a
disk being full. Errors will now be signalled if detected during the write, warnings if
detected when the connection is closed. (PR#17243)

• rt() assumed the ncp parameter was a scalar. (PR#17306)

• menu(choices) with more than 10 choices which easily fit into one
getOption("width")-line no longer erroneously repeats choices. (PR#17312)

• length()<- on a pairlist succeeds. (https://stat.ethz.ch/pipermail/r-devel/
2017-July/074680.html)

• Language objects such as quote(("\n")) or R functions are correctly printed again,
where R 3.4.1 accidentally duplicated the backslashes.

• Construction of names() for very large objects in c() and unlist() now works, thanks
to Suharto Anggono’s patch proposals in PR#17292.

• Resource leaks (and similar) reported by Steve Grubb fixed. (PR#17314, PR#17316,
PR#17317, PR#17318, PR#17319, PR#17320)

• model.matrix(~1,mf) now gets the row names from mf also when they differ from
1:nrow(mf), fixing PR#14992 thanks to the suggestion by Sebastian Meyer.

• sigma(fm) now takes the correct denominator degrees of freedom for a fitted model
with NA coefficients. (PR#17313)

• hist(x,"FD") no longer “dies” with a somewhat cryptic error message when x has
extreme outliers or IQR() zero: nclass.FD(x) tries harder to find a robust bin width h
in the latter case, and hist.default(*,breaks) now checks and corrects a too large
breaks number. (PR#17274)

• callNextMethod() works for ... methods.

• qr.coef(qd,y) now has correct names also when qd is a complex QR or stems from
qr(*,LAPACK=TRUE).

• Setting options(device = *) to an invalid function no longer segfaults when plotting
is initiated. (PR#15883)

• encodeString(<very large string>) no longer segfaults. (PR#15885)
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• It is again possible to use configure --enable-maintainer-mode without having
installed notangle (it was required in R 3.4.[01]).

• S4 method dispatch on ... calls the method by name instead of .Method (for consis-
tency with default dispatch), and only attempts to pass non-missing arguments from
the generic.

• readRDS(textConnection(.)) works again. (PR#17325)

• (1:n)[-n] no longer segfaults for n <-2.2e9 (on a platform with enough RAM).

• x <-1:2; tapply(x,list(x,x),function(x) "")[1,2] now correctly returns NA.
(PR#17333)

• Running of finalizers after explicit GC request moved from the R interface do_gc to
the C interface R_gc. This helps with reclaiming inaccessible connections.

• help.search(topic) and ??topic matching topics in vignettes with multiple file
name extensions (e.g., ‘*.md.rsp’ but not ‘*.Rmd’) failed with an error when using
options(help_type = "html").

• The X11 device no longer uses the Xlib backing store (PR#16497).

• array(character(),1) now gives (a 1D array with) NA as has been documented for a
long time as in the other cases of zero-length array initialization and also compatibly
with matrix(character(),*). As mentioned there, this also fixes PR#17333.

• splineDesign(..,derivs = 4) no longer segfaults.

• fisher.test(*,hybrid=TRUE) now (again) will use the hybrid method when
Cochran’s conditions are met, fixing PR#16654.
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