The

Journal

Volume 9/2, December 2017

A peer-reviewed, open-access publication of the
R Foundation for Statistical Computing

Contents

Editorial Lo e 4

Contributed Research Articles

anchoredDistr: a Package for the Bayesian Inversion of Geostatistical Parameters with

Multi-type and Multi-scale Data00 6
dGAselID: An R Package for Selecting a Variable Number of Features in High Dimen-

sional Data L Lo e e e e e 18
Allele Imputation and Haplotype Determination from Databases Composed of Nu-

clear Families Lo Lo 35
Visualization of Regression Models Using visreg 56
fourierin: An R package to compute Fourier integrals. 72
Discrete Time Markov ChainswithR 84
CRTgeeDR: an R Package for Doubly Robust Generalized Estimating Equations

Estimations in Cluster Randomized Trials with Missing Data 105
queueing: A Package For Analysis Of Queueing Networks and ModelsinR. 116
ctmcd: An R Package for Estimating the Parameters of a Continuous-Time Markov

Chain from Discrete-TimeData 127
Furniture for Quantitative Scientists 142
BayesBD: An R Package for Bayesian Inference on Image Boundaries 149
arulesViz: Interactive Visualization of Association RuleswithR 163
ManlyMix: An R Package for Manly Mixture Modeling. 176

adegraphics: An 54 Lattice-Based Package for the Representation of Multivariate Data 198

carx: an R Package to Estimate Censored Autoregressive Time Series with Exogenous

Covariates L L e e e e e e e e 213
liureg: A Comprehensive R Package for the Liu Estimation of Linear Regression

Model with Collinear Regressors. 232
A Tidy Data Model for Natural Language Processing using cleanNLP. 248
mle.tools: An R Package for Maximum Likelihood Bias Correction. 268
afmToolkit: an R Package for Automated AFM Force-Distance Curves Analysis . . . 291

The welchADF Package for Robust Hypothesis Testing in Unbalanced Multivariate
Mixed Models with Heteroscedastic and Non-normal Data 309

ider: Intrinsic Dimension EstimationwithR. 329

rpsftm: An R Package for Rank Preserving Structural Failure Time Models 342
anomalyDetection: Implementation of Augmented Network Log Anomaly Detection

Procedures 0oL Lo Lo 354
Simulating Noisy, Nonparametric, and Multivariate Discrete Patterns. 366
glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Gener-

alized Linear Mixed Modeling 378
Simulating Probabilistic Long-Term Effects in Models with Temporal Dependence . . 401
RQGIS: Integrating R with QGIS for Statistical Geocomputing. 409
Partial Rank Data with the hyper2 Package: Likelihood Functions for Generalized

Bradley-Terry Models. 429
riskRegression: Predicting the Risk of an Event using Cox Regression Models 440
LeArEst: Length and Area Estimation from Data Measured with Additive Error . . . 461
Splitting It Up: The spduration Split-Population Duration Regression Package for

Time-Varying Covariates 474
Bayesian Regression Models for Interval-censored DatainR. 487
openEBGM: An R Implementation of the Gamma-Poisson Shrinker Data Mining

Modelo e 499
rentrez: An R package for the NCBI eUtils API. 520
An Introduction to Rocker: Docker Containers forR 527

News and Notes

Conference Report: useR!2017 Lo 537
Conference Report: R in Insurance 2017. 539
Forwards Column e 541
RTeaching Column. 553
RFoundationNews0 563
Changeson CRAN o 564
News from the Bioconductor Project 567
ChangesinRo 568

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

The R Journal is a peer-reviewed publication of the R
Foundation for Statistical Computing. Communications
regarding this publication should be addressed to the
editors. All articles are licensed under the Creative
Commons Attribution 4.0 International license (CC BY 4.0,
http://creativecommons.org/licenses/by/4.0/).

Prospective authors will find detailed and up-to-date
submission instructions on the Journal’s homepage.

Editor-in-Chief:
Roger Bivand, Norwegian School of Economics, Bergen,
Norway

Executive editors:
Michael Lawrence, Genentech, Inc., San Francisco, USA
Norman Matloff, University of California, Davis, USA
John Verzani, City University of New York, USA

Email:
r-journal@R-project.org

R Journal Homepage:
https://journal.r-project.org/

Editorial advisory board:

Vincent Carey, Harvard Medical School, Boston, USA
Peter Dalgaard, Copenhagen Business School, Denmark
John Fox, McMaster University, Hamilton, Ontario, Canada
Bettina Gruen, Johannes Kepler Universitdt Linz, Austria
Kurt Hornik, WU Wirtschaftsuniversitit Wien, Vienna,
Austria
Torsten Hothorn, University of Zurich, Switzerland
Friedrich Leisch, University of Natural Resources and Life
Sciences, Vienna, Austria
Paul Murrell, University of Auckland, New Zealand
Martyn Plummer, International Agency for Research on
Cancer, Lyon, France
Deepayan Sarkar, Indian Statistical Institute, Delhi, India
Heather Turner, University of Warwick, Coventry, UK
Hadley Wickham, RStudio, Houston, Texas, USA

The R Journal is indexed /abstracted by EBSCO and
Thomson Reuters.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

http://creativecommons.org/licenses/by/4.0/
https://journal.r-project.org/

Editorial

by Roger Bivand

In my editorial for the 2017-1 issue, I concentrated on tabulating the status of this jour-
nal with respect to its authors and reviewers (updated tables below). This time, I was
prompted by an interesting blog posting by Jan Wijffels of BNOSAC, describing the use
of the udpipe package to apply natural language processing (NLP) to the CRAN package
database available from tools: : CRAN_package_db() since the release of R 3.4. The interac-
tive NLP searcher is a dashboard permitting exploration of annotated CRAN package title
and description NLP data.

It struck me that an analysis of abstracts of contributed research articles published in
the R Journal would now be possible since the introduction of article landing pages earlier
this year, because the website configuration file containing the abstracts can be read using
the yaml package. Jan Wijffels kindly and rapidly responded, providing an R Journal NLP
search tool analogous to the CRAN NLP search tool.

parameter . Information gypport

tro uc? .
software application

demonstrate parameter

process Sé’gg’\i'ageappl ication

measure a.ppyoach
performancegstimation *$rocess

Package compare iNtroduGe have
i||u$avtzlff. methOdSFOWK“OW way present perform illustrate describeoffer
become = €Xampleexist introduce ... DaSedevelop sudy_example appiication
?el\l{ﬁ']%) () % g base ggg%gn result ;ana ySIS feature prgb\‘en’hbevse mOde set design

SO o] allowbe time tool = © number ™ riaarlnger O o
< | typeplot © illustrate 7 O pePropose
level O mOde plo hod Q'd taset “*“"method >gve
addition settime study Method € datase 5i F S Ive piot
: i call g variable 2 implement & make
gggggeana|y8|s tool feature ave modelbs' $. apoly 8 workpresent tool @ ¢
number aCCESs rceoﬁtlé{ilrtw value describe @ Smake 8 algorithmapply variable

estimate _describe regression
implementjmplementation

2012-2013

structure .
procedure algorithm 5000
introduction estimation

2014-2015

estimate distribution
implement istiuier

parameter yemonstrate
implementation

2016-2017

Figure 1: Wordcloud for abstracts of contributed research articles: left panel 53 articles 2012-2013,
centre panel: 69 articles 20142015, right panel: 115 articles 2016-2017.

Figure 1 shows total cumulative wordclouds for the last six years in two-year slices, and
indicates that we are, broadly, maintaining topical consistency with a sustained focus on
data. The search tool permits much more detailed exploration as well, such as term search
to supplement web searches on site:journal.r-project.org.

While we do not have on-site indexing or searching, a tab has been added for news and
notes contributions by issue. In this issue, two new columns are initiated, one for news and
notes from Forwards, starting with a report on the useR! 2016 survey (see also forwards).
The second new column covers teaching R and teaching with R, and kicks off with a note
on linking teaching and reproducible research (see also the revisit package). Progress in
answering Heather Turner’s appeal to help useRs navigate their way through the R world
(editorial, 2011-1) is at best incremental, but progress none the less. A year later, Martyn
Plummer pointed out (editorial, 2012-1) that “it is worth spending some time browsing
these sections in order to catch up on changes you may have missed.”

From the publication of this issue, fuller benefits from the introduction of landing pages
may be realised through the addition of citation page metadata tags, permitting search
engines to index contributed research articles more efficiently, thanks to a suggestion by
Carl Boettiger. We expect to begin providing DOI for published contributed research articles
during 2018 as a further step towards increasing the visibility of the valuable work published
here.

We have already added links for supplementary matter (typically reproduction code)
on article landing pages, for articles published in this issue. Since the beginning of 2017,
submissions were expected to provide scripts permitting reviewers to run code without
copying from the manuscript, but previously this was only exceptionally the case, so it may
not be practical to provide supplementary matter for articles published in earlier issues.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

http://www.bnosac.be/index.php/blog/70-cran-search-based-on-natural-language-processing
https://CRAN.R-project.org/package=udpipe
http://datatailor.be:9999/app/cran_search
http://datatailor.be:9999/app/cran_search
https://raw.githubusercontent.com/rjournal/rjournal.github.io/master/_config.yml
https://CRAN.R-project.org/package=yaml
http://datatailor.be:9999/app/rjournal_search
http://datatailor.be:9999/app/rjournal_search
https://forwards.github.io/
https://CRAN.R-project.org/package=forwards
https://github.com/matloff/revisit

The wisdom of the editors in choosing to consolidate, and become a listed journal (see
Peter Dalgaard’s editorial in 2010-1) is manifest in our current standing in Journal Citation
Reports, with a 2016 impact factor of 1.075, and a five-year score of 2.114. The steps being
taken by the editors and the R Foundation should enhance the discoverability and impact of
work published here. It is fair to repeat from the 2010-1 editorial that “we need to show that
we have a solid scientific standing with good editorial standards, giving submissions fair
treatment and being able to publish on time.”

2009 2010 2011 2012 2013 2014 2015 2016 2017

Published 26 26 26 22 31 36 51 74 24
Rejected 11 14 11 24 29 32 53 68 55
Under review 0 0 0 0 0 0 0 2 65
Total 37 40 37 46 60 68 104 144 144

Table 1: Submission outcomes 20092017, by year of submission.

2009 2010 2011 2012 2013 2014 2015 2016 2017

Page count 109 123 123 136 362 358 479 895 1023
Article count 18 18 20 18 35 33 36 62 68
Average length 6.1 6.8 6.2 76 103 108 133 144 15.0

Table 2: Published contributed articles 2009-2017, by year of publication.

2013 2014 2015 2016 2017
Median 347.0 2255 2125 2120 2440

Table 3: Median day count from acknowledgement to acceptance and online publication 2013-2017,
by year of publication.

Roger Bivand
Roger.Bivand@r-project.org

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

mailto:Roger.Bivand@r-project.org

CONTRIBUTED RESEARCH ARTICLES

anchoredDistr: a Package for the Bayesian
Inversion of Geostatistical Parameters
with Multi-type and Multi-scale Data

by Heather Savoy, Falk HefSe, and Yoram Rubin

Abstract The Method of Anchored Distributions (MAD) is a method for Bayesian inversion designed
for inferring both local (e.g. point values) and global properties (e.g. mean and variogram parameters)
of spatially heterogenous fields using multi-type and multi-scale data. Software implementations
of MAD exist in C++ and C# to import data, execute an ensemble of forward model simulations,
and perform basic post-processing of calculating likelihood and posterior distributions for a given
application. This article describes the R package anchoredDistr that has been built to provide an R-
based environment for this method. In particular, anchoredDistr provides a range of post-processing
capabilities for MAD software by taking advantage of the statistical capabilities and wide use of the
R language. Two examples from stochastic hydrogeology are provided to highlight the features of
the package for MAD applications in inferring anchored distributions of local parameters (e.g. point
values of transmissivity) as well as global parameters (e.g. the mean of the spatial random function for
hydraulic conductivity).

Introduction

The field of geostatistics originated in the 1950s with the pioneering work of Krige (1951) and Matheron
(1962) who tried to estimate the characteristics of subsurface properties with the limited measurements
typically available in this field. This scarcity, caused by the high explorations costs, is exacerbated by
the strong heterogeneity that many such subsurface properties exhibit. Both these factors combined
make it impossible to describe any subsurface process with certainty, therefore necessitating the
application of statistical tools. Today, geostatistics is used in many fields of earth science such as
geology (Hohn, 1962), hydrogeology (Kitanidis, 2008), plus hydrology and soil science (Goovaerts,
1999). To meet this demand, many software packages have been developed that provide practitioners
and scientists alike with the much needed tools to apply geostatistics. In R, the best collection of
such tools is arguably found in the gstat package (Pebesma, 2004) developed and maintained by
Pebesma and colleagues. With gstat, it is possible to estimate (Kriging) and simulate (Gaussian process
generation) heterogenous fields in one, two or three dimensions, therefore providing necessary tools
for geostatistical analysis.

Any such statistical analysis should draw on all available data that are connected to the variable
of interest to infer, i.e. to learn about, its spatial distribution as much as possible. Examples for such
spatially distributed variables in earth sciences would be, e.g. the hydraulic conductivity of an aquifer,
evapotranspiration rates of different land surface areas, and soil moisture. In classical statistics, such
information may consist of measurements of the variable itself or so-called local variables. Here, local
means that a point-by-point relationship between both variables exists. However, many data are
non-local, which means they are connected to the variable of interest via a complicated forward model.
For instance, hydraulic conductivity may be connected by a solute transport model to break-through
curves of said solutes and soil moisture may be connected by a hydraulic catchment model to river
discharge. To learn about the input from the output of such forward models means to invert them,
hence the name inversion for such techniques.

The Method of Anchored Distributions (MAD) provides a Bayesian framework for the geostatistical
inversion of spatially heterogeneous variables. MAD solves the aforementioned problem by converting
non-local data into equivalent local data using the tools of Bayesian inference. The result of such a
conversion is the consistent representation of all data (local and non-local) as local data only, which
is then amendable to further geostatistical analysis (Rubin et al., 2010). So far, applications of MAD
have been focused on hydrogeology (Murakami et al.,, 2010; Chen et al., 2012; Hefle et al., 2015)
as well as soil science (Over et al., 2015). However, given the explanations above, MAD is in no
way limited to these fields and can be employed wherever non-local data need to be incorporated
into a geostatistical framework. This generality also extends to the spatial model being inferred.
While there are R packages utilizing Bayesian inference for spatial models such as spBayes (Finley
etal., 2015), spTimer (Bakar and Sahu, 2015), and INLA (Lindgren and Rue, 2015, software available
from http://www.r-inla.org/), these packages have several constraints compared to anchoredDistr.
First, each method assumes a Gaussian process for the spatial variability. MAD has no inherent
distributional assumptions, which allows its application to a wide variety of scenarios where, for

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=gstat
https://CRAN.R-project.org/package=spBayes
https://CRAN.R-project.org/package=spTimer
http://www.r-inla.org/

CONTRIBUTED RESEARCH ARTICLES

example, Gaussian fields are not justified. In addition, these packages are either geared toward large
data sets (spBayes and spTimer) or applied to only local data (spBayes, spTimer, and INLA) while
MAD focuses on addressing uncertainty due to sparse data sets by incorporating non-local data.
Finally, MAD employs a non-parameteric likelihood estimation, which allows for great flexibility,
in particular for non-linear forward models. The presented R package anchoredDistr provides an
interface to the C# implementation of MAD. It allows post-processing of calculating likelihood and
posterior distributions as well as visualization of the data.

The Method of Anchored Distributions

Equation 1 displays the general procedure of Bayesian inference where 6 represents the parameters
of the variable being inferred (e.g. hydraulic conductivity) and z represents the data informing the
inference:

p(0]z) < p(0)p(z]0). 1)

An important element of MAD is a strict classification of all data into local z, and non-local data
zp,, with the latter being the target of inversion. MAD employs Bayesian inference in the realm of
geostatistics by expanding the supported parameters into 6 for global parameters (describing overall
trend and spatial correlation) and ¢ for local parameters. Since MAD is a Bayesian scheme, these 6 and
¢ both have probability distributions. As mentioned above, MAD turns non-local data into equivalent
local data @ by inverting the forward model that connects both. The non-local data therefore become
anchored in space, hence the name Method of Anchored Distributions. Equation 2 displays the general
form of MAD:

p(0,0|zq,2) < p (0) p (810,2a) p (210, 8, 2a) -)

Open-source software implementations for applying the entirety of MAD are available both with a
graphical interface and a command-line interface to guide users through connecting their forward
models and random field generators and to execute the ensemble of forward simulations (a. Osorio-
Murillo et al., 2015). This software (available at http://mad.codeplex.com) was inspired by the claim
that inverse modeling will be widely applied in hydrogeology only if user-friendly software tools are
available (Carrera et al., 2005).

The package anchoredDistr described here focuses on extending the post-processing capabilities
of MAD software, particularly the calculation of the likelihood distribution p (246, 9,z,) and the
posterior distribution p (6,9, zp,z4) after the ensemble of forward model simulations is already
complete. The MAD# software has basic post-processing capabilities, but does not offer the degree of
flexibility as R for the post-processing analysis. For example, when handling z;, in the form of time
series, dimension reduction techniques are necessary for calculating the likelihood values. By having
the R package anchoredDistr, users have the support to attach whichever applicable technique for
their data.

General workflow

In the current version of anchoredDistr, which only handles the post-processing of a MAD application,
it is assumed that prior distributions of local and global parameters, p (816, z;) and p (6) respectively,
have already been defined and sampled and that forward model simulations based on those samples
have been executed either within the MAD# software or by other means of batch execution. If the
MAD# software is used, this data is stored by MAD# in databases (extensions .xresult for project
metadata and .xdata for each sample). The package anchoredDistr primarily consists of methods for
the S4 class "MADproject" that extract and analyze data from these databases, i.e. handling information
regarding the samples from the prior distributions and the resulting ensemble of simulated z;, data.
If MAD# is not used, the information can be formatted into a "MADproject" manually. The usage of
anchoredDistr will generally follow the workflow below (also see Figure 1):

1. Create "MADproject” object with new() function (passing slot information if manually filling
data)

Read data from MAD# databases, if being used, into "MADproject” object with readMAD ()
View the observations and realizations with plotMAD()

Apply any necessary dimension reduction techniques to z; with reduceData()

L

Test the convergence of the likelihood distribution with respect to the number of realizations with
testConvergence() (return to MAD software to run additional realizations if unsatisfactory)

6. Calculate likelihood and posterior distributions with calcLikelihood() and calcPosterior(),
respectively

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=anchoredDistr
http://mad.codeplex.com

CONTRIBUTED RESEARCH ARTICLES

7. View the posterior distribution with plotMAD().

plotMAD(proj, "priors”)

plotMAD(proj, "observations”)

plotMAD(proj, "realizations”)

plotMAD(proj, "posteriors”)

[y
1 1
L L
new("MADproject”) readMAD () proj <- calcLikelihood(proj) proj <- calcPosterior(proj)
Reads in: Calculates: Calculates:
p(e) P(2610, 8, 24) (6, 8124, 2)
p(816,za)
l !
¥ 1
test_convergence(proj)

)
1
1

proj <- reduceData(proj, foo)

Transforms:
Zp

T

1

¥
plotMAD(proj, "realizations™)

Figure 1: Schematic of utilizing anchoredDistr for MAD post-processing if the MAD# is used. Solid
arrow lines indicate the fundamental workflow while dashed arrow lines are optional.

To install the anchoredDistr package, the release version is available from CRAN:

install.packages("anchoredDistr")
library(anchoredDistr)

Alternatively, the development version can be obtained by using the devtools package (Wickham and
Chang, 2016) to download the necessary files from GitHub:

library(devtools)
install_github("hsavoy/anchoredDistr")
library(anchoredDistr)

Other packages used by anchoredDistr include RSOLite (Wickham et al., 2014) for reading from
MAD databases, np (Hayfield and Racine, 2008) for estimating non-parametric density distributions,
plyr (Wickham, 2011) and dplyr (Wickham and Francois, 2016) for efficient data manipulation, and
ggplot2 (Wickham, 2009) for plotting. The methods included in anchoredDistr are listed in Table 1
and two examples utilizing these methods are provided next.

Method Description

readMAD () Reads data from databases generated by MAD software

reduceData() Applies dimension reduction to z; time series

testConvergence() Tests for convergence of likelihood values for
increasing number of realizations

calclLikelihood() Calculates the likelihood values for the samples

calcPosterior() Calculates the posterior values for the samples

plotMAD() Plots the observations, realizations, reduced data,

and/or posteriors

Table 1: The methods for the "MADproject"” S4 class provided by anchoredDistr.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=devtools
https://CRAN.R-project.org/package=RSQLite
https://CRAN.R-project.org/package=np
https://CRAN.R-project.org/package=plyr
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLES

Example 1: aquifer characterization with steady-state hydraulic head from
multiple wells

Scenario setup

In this first example, we will use the tutorial example available from the MAD website http://
mad. codeplex.com. Within the anchoredDistr package, this tutorial example is available as MAD#
databases, as well as a "MADproject” object accessed by data(tutorial). The variable of interest is
transmissivity T, an aquifer property that represents how much water can be transmitted horizontally
through an aquifer. We will use the one-dimensional heterogenous field of the decimal log transform
of T (see Figure 2) as our baseline field from which we can generate virtual measurements and validate
our resulting posterior distributions. The field was generated as a Gaussian process by the gstat
package in R with a mean g 1 = —2 and an exponential covariance function with a variance

(7120 g0 T = 0.4 and length scale ljo; 7 = 3 m. Within the scope of this example, we assume these

global parameter values to be known. Furthermore, we assume that we have local data in the form of
measurements of T at three different locations. In addition, non-local data are available in the form of
head measurements (indication of water pressure) at the same locations. The forward model used to
solve the groundwater flow equation and relate T to head is the software MODFLOW-96 (Harbaugh
and Mcdonald, 1996), part of the open source MODFLOW series that is the industry standard for
groundwater modeling. To convert the non-local data into equivalent local data of T, we will place
four anchors at selected unmeasured locations. The number of anchors needs to be justified by the data
content of the measurements such that the complexity of the model does not become disproportionate
to the information available. The locations of these anchors reflect locations where there is no other
local data available but there is non-local data nearby for conversion (see Yang et al. (2012) for more
discussion on anchor placement). The locations of the measurements and anchors are depicted in
Figure 2. The prior distributions for these anchors are based on simple kriging with the local data z,
for conditioning and the known Gaussian process for the covariance function:

p(0116,2) = N (1 = Z(y),0* = Var (Z (i) - Z ())., @)

where Z generally represents log;, T, y; is the y-coordinate of the it" anchor, Z (y;) is the kriging
estimate at the i anchor , and Var (Z (y;) — Z (y;)) is the kriging variance at the i" anchor. The
goal of the example is to compare the posterior distributions of the four anchors resulting from the
inversion to their prior distributions which will indicate the information gain from the inclusion of the
non-local data zj,.

® Meas. 4 Anchor

® -0.5
__ © 1.0
E 4 158
X o -2.0 E’
2.5
o
S
0 5 10 15 20
y (m)

Figure 2: The one-dimensional baseline field of log;, T used in Example 1 with locations of measure-
ments (co-located z, and z;) marked along with the anchors to be inferred.

Reading and viewing data

In the first step, a "MADproject” object is created with the new() function. Three arguments must be
provided to read the MAD databases: madname (the name of the MAD project, e.g. the filename for the
xmad database), resultname (the name of the result from MAD, e.g. the result folder name), and xpath
(the path to where the .xresult database and result folder are located). These three arguments ensure
the MAD databases can be read by the method readMAD(), which will read in the prior distribution
samples for the global and local parameters plus the observations and forward model predictions for
the z;. Note that anchoredDistr could be used independently of the MAD software, if desired, as long

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

http://mad.codeplex.com
http://mad.codeplex.com

CONTRIBUTED RESEARCH ARTICLES

as the slots filled in by readMAD() (see Table 2) are provided manually (see next example). To create a
"MADproject” object for this tutorial example, the code below will read the MAD# databases stored in
the anchoredDistr package files.

tutorial <- new("MADproject”, madname="Tutorial”, resultname="examplel”,
xpath=paste@(system.file("extdata”, package = "anchoredDistr"),"/"))
tutorial <- readMAD(tutorial, 1:3)

Slot Description Source

madname MAD project name user provided
resultname MAD result name user provided
xpath Path to .xresult database user provided
numLocations Number of z;, locations readMAD ()
numTimesteps Number of time steps measured at each z; locations readMAD ()
numSamples Number of samples drawn from prior distributions readMAD ()
numAnchors Number of local parameters / anchors placed in field readMAD()
numTheta Number of random global parameters to infer readMAD()
truevalues True values for the parameters to infer, if known readMAD ()
observations Observed values of the z; locations and time steps readMAD ()
realizations Simulated values of the z;, locations and time steps readMAD ()

priors Samples from the prior distributions of each parameter readMAD()
likelihoods Likelihood values for each sample calcLikelihoods()
posteriors Posterior values for each sample of each parameter calcPosteriors()

Table 2: The slots for the "MADproject” S4 class provided by anchoredDistr.

The prior distributions can be viewed by calling the plotMAD() function with the "MADproject”
object and the string "priors" (see below). Figure 3 shows the prior distributions for the four anchors
in Example 1. The distributions roughly follow a Gaussian distribution due to the baseline field being
a Gaussian field and the prior distributions based on the kriging mean and variance at these four
locations from the z, data and the known spatial random function. The x-axis labels are pulled from
the "MADproject” object’s priors slot, which contains the random parameter names as provided in
the MAD software.

plotMAD(tutorial, "priors")

Figure 3: The relative frequency (gray bars) and estimated density (red line) of the prior distributions
for the four anchor locations based on samples supplied in Example 1.

Calculating likelihoods and posteriors

After the information contained in the MAD databases has been read into the "MADproject” object, the
likelihood and posterior distributions can be calculated by calcLikelihood() and calcPosterior(),
respectively. The method calcLikelihood() uses non-parametric kernel density estimation (from the

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

11

package np) to estimate the probability density of measured inversion data from the probability density
function of inversion data simulated from the realizations per sample. The method calcPosterior()
multiplies the resulting likelihood distribution across the samples and the provided prior distribution
to calculate the posterior.

First, we can call the testConvergence () method to visually inspect if we have enough realizations
for the likelihood values of samples to converge (this method calls the calcLikelihood() internally
to perform this test). Figure 4 depicts this qualitative convergence test for Example 1 by plotting the
likelihood values of a sample with increasing number of realizations. In order to prevent cluttering, the
default number of samples to display is set to seven samples randomly selected from those available
in the project. Convergence is achieved when the likelihood stabilizes with increasing realizations.
For this example, it appears that the log likelihood of the samples have started to stabilize by 50
realizations, but more realizations may be warranted.

The posterior distributions for each random parameter can be seen by calling plotMAD() with the
"MADproject” object and the string "posteriors". Figure 5 shows the posteriors for Example 1 along
with the prior distribution and the true values for each of the four anchors. The posterior distributions
for Anchors 2 and 3, which were surrounded by z, measurements, show an increase in probability
near the true value, indicating a successful information transfer from the non-local z; into equivalent
local data.

testConvergence(tutorial)

tutorial <- calclLikelihood(tutorial)
tutorial <- calcPosterior(tutorial)
plotMAD(tutorial, "posteriors”)

1e-041 Sample ID
— 1
B
S 1e13- = 10
T —
=
- — 57
2 feo2-
o — 67
o
- — 82
1e-31- i 12

10 20 30 40
Number of Realizations

Figure 4: Convergence testing for Example 1 by plotting the decimal log of likelihood of a collection
of randomly selected samples wth increasing number of realizations.

1.00-
0.9
> >075-
‘G 06 D o
E é 0.50
0.3 0.25 -
0.0 ; T : 0.00- : x T g
2 1 -3 -2 1
A1 A3
0.75-
> 1.0- >
‘® ‘B 0.50-
G 05 &
o = 0.25-
0.0~ . . — 0.00- — . -
-3 -2 -1 -3 -2 -1
A2 A4

Figure 5: The prior (red) and posterior (blue) distributions with the true value (black) for the four
anchor locations in Example 1.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

12

Example 2: aquifer characterization with one pumping drawdown curve

Scenario setup

The second example depicts a different aquifer characterization scenario for a two-dimensional field
where the natural log transform of hydraulic conductivity (K) is assumed to be an isotropic Gaussian
field with variance ‘71211 x = land length scale /;, g = 10m but unknown mean i, k (Figure 6). There are
no anchors placed in this example, leaving the mean as the only parameter to infer. Unlike Example
1, Example 2 is therefore a demonstration of how MAD can be employed as a regular Bayesian
inversion scheme, too. The prior distribution for global parameters ideally come from previous
knowledge of similar sites, e.g. the distribution of mean In K observed at other aquifers with the
same geological setting. For this example, we will compare three equally spaced samples for In K to
represent a uniform prior distribution for the mean. The data include four local data z, (K) at four
different locations and one non-local data series z; (hydraulic head drawdown) at a single location
(see Figure 6). The z;, location provides 100 time steps, i.e. data points, of drawdown measurements
(Figure 7). The forward model used to solve the groundwater flow equation and relate K to drawdown
is OpenGeoSys (Kolditz et al., 2012), an open source software that simulates a variety of subsurface
processes. This second example uses a different forward model than the first example to showcase
the MAD software’s modular design, which does not assume or rely on specific forward models. The
observation, realizations, and prior sample data for this example is provided within the package as
external data that can be created with new() as shown below, as well as a pre-made "MADproject”
object accessed with data(pumping).

load(system.file("extdata”, "pumpingInput.RData”, package = "anchoredDistr"))
pumping <- new("MADproject”,

numLocations = 1,
numTimesteps = 100,
numSamples = 50,

numAnchors = 0,

numTheta = 1,

observations = obs,
realizations = realizations,
priors = priors)

® 7a AzDb ¢+ wel

8 i I il 2 ||
o | E ¥ s 8
<t =
o ol
= E = -9
_ 8 N
E - . -10<
& - ..Eu"-i 11
e e M |
; ‘._ # s . | 2
u I L
o |.
0 20 40 60 80 100

x (m)

Figure 6: The two-dimensional baseline field of In K used in Example 2 with the location of measure-
ments marked.

When the pumping dataset is initially loaded, we can view the observation of z;, i.e. drawdown
time series (Figure 7), the prior distribution of the three samples (Figure 8), and the interquartile range
of the time series simulated by the forward model for the samples (Figure 9).

plotMAD(pumping, "observations")

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

13

plotMAD(pumping, "priors")
plotMAD(pumping, "realizations")

c -20-
2
®
c
(]
(7]
Qo
O .40-
0
N

-60 -

0 25 50 75 100
Time Steps

Figure 7: The observed time series of hydraulic head drawdown to be used as non-local data z; in
Example 2.

0.6~

density

0.2-

0.0-

-10.0 9.6 9.2 -8.8
Mean

Figure 8: The histogram (gray bars) and estimated density (red line) of the prior distributions for the
mean In K Example 2.

Applying dimension reduction to time series

Even though we have the time series of drawdown, we cannot use these 100 individual values to
calculate the likelihood because they are correlated and the multivariate likelihood distribution would
be 100-dimensional. Such dimensionality would require an unrealistic number of realizations to
resolve, known as "the curse of dimensionality." To overcome this obstacle, dimension reduction is
needed and the method to use depends on the type of non-local data z;,. For this example, we will
simply use the min() function to collect the minimum head value in the time series since the observed
head reduces and converges to a stable head value with time (Figure 7). The anchoredDistr package
can handle any non-parameterized function, such as min(), or a parameterized function if initial
values for each parameter are given and the nls() function (R Core Team, 2016) can perform the
fitting (see the package vignette for an example). The reduceData() function is used to perform the
dimension reduction on the time series:

pumping.min <- reduceData(pumping, min)
plotMAD(pumping.min, "realizations"”)

The reduceData() function returns a "MADproject"” object with a realizations slot with reduced
dimensions. The reduced data can be viewed by calling plotMAD() with the string "realizations". The
plot shows the distributions of each parameter for each sample. In this case, Figure 10 shows the

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

14

-20 -

-40-

zb, Sample 1

-60 -

-20 -

40 -

zb, Sample 2

60 -

o-

o-

o
'

©
)]
3 -20-
5
v -40-
o
N _50 -
25 50 75 100 0 25 50 75 100
Time steps Time steps

|
25 50 75 100
Time steps

Figure 9: The observed time series of drawdown at the z; location along with the inter-quartile range
of simulated values for each time step for the three samples.

0.03-

0.02-

density

0.01-

0.00-

Sample ID
il
It
HE

-100 -50
Parameter 1

Figure 10: The reduced z;, data (minimum of drawdown curve) for Example 2. Distributions are
estimated from the realizations’ reduced data per sample.

1.00-

0.75-

0.50 -

density

0.25-

0.00-

-10.00

9.75 -9.50 -9.25 -9.00
Mean

Figure 11: The prior (red) and posterior (blue) distributions with the true value (black) for the mean
In K locations in Example 2.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

15

minimum head value distribution for the three samples, which will be used to calculate the three
likelihood samples.

With this new "MADproject” object, calcLikelihoods() and calcPosteriors() can be called. In
Figure 11, the posterior distributions are shown for the three samples along with the true value of —10.
The posterior distribution assigns greater probability toward the true value.

pumping.min <- calcLikelihood(pumping.min)
pumping.min <- calcPosterior(pumping.min)
plotMAD(pumping.min, "posteriors")

Summary

The examples given above show how the anchoredDistr package allows flexible post-processing of
results by virtue of the MAD software such that users can apply their own post-processing analyses,
such as dimension-reduction techniques. The first example shown here is available as external and
internal datasets in the anchoredDistr package. The second example is also included in anchoredDistr
and is further detailed in the package vignette. The release version of the anchoredDistr package
is hosted on CRAN and the development version is hosted on GitHub, which can be accessed
by calling devtools::install_github("hsavoy/anchoredDistr") or by downloading from http://
hsavoy.github.io/anchoredDistr.

Acknowledgements

This work was supported by the National Science Foundation under grant EAR-1011336, "The Method
of Anchored Distributions (MAD): Principles and Implementation as a Community Resource." Any
opinions, findings and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation.

Bibliography

C. a. Osorio-Murillo, M. W. Over, H. Savoy, D. P. Ames, and Y. Rubin. Software framework for inverse
modeling and uncertainty characterization. Environmental Modelling & Software, 66:98-109, 2015.
ISSN 13648152. URL https://doi.org/10.1016/].envsoft.2015.01.002. [p7]

K. S. Bakar and S. K. Sahu. spTimer: Spatio-temporal Bayesian modeling using R. Journal of Statistical
Software, 63(15):32, 2015. ISSN 1548-7660. [p6]

J. Carrera, A. Alcolea, A. Medina, J. Hidalgo, and L.]. Slooten. Inverse problem in hydrogeology.
Hydrogeology Journal, 13(1):206-222, 2005. ISSN 14312174. URL https://doi.org/10.1007/s10040-
004-0404-7. [p7]

X. Chen, H. Murakami, M. S. Hahn, G. E. Hammond, M. L. Rockhold, J. M. Zachara, and Y. Rubin.
Three-dimensional Bayesian geostatistical aquifer characterization at the Hanford 300 Area using
tracer test data. Water Resources Research, 48(6):W06501, 2012. ISSN 0043-1397. URL https://doi.
org/10.1029/2011wr010675. [p6]

A. O. Finley, S. Banerjee, and A. E. Gelfand. spBayes for large univariate and multivariate point-
referenced spatio-temporal data models. Journal of Statistical Software, 63(13):1-28, 2015. ISSN
1548-7660. URL http://www. jstatsoft.org/v63/i13. [p6]

P. Goovaerts. Geostatistics in soil science: State-of-the-art and perspectives. Geoderma, 89(1-2):1 — 45,
1999. ISSN 0016-7061. URL https://doi.org/10.1016/s0016-7061(98)00078-0. [p6]

W. Harbaugh and M. G. Mcdonald. User’s documentation for MODFLOW-96 , an update to the U.S.
Geological Survey modular finite-difference ground-water flow model, Open File Report 96-485.
Technical report, U.S. Geological Survey, 1996. [p9]

T. Hayfield and J. S. Racine. Nonparametric econometrics: The np package. Journal of Statistical
Software, 27(5), 2008. URL http://www. jstatsoft.org/v27/105/. [p8]

F. Hef3e, H. Savoy, C. A. Osorio-Murillo, J. Sege, S. Attinger, and Y. Rubin. Characterizing the impact
of roughness and connectivity features of aquifer conductivity using Bayesian inversion. Journal of
Hydrology, 531:73-87, 2015. ISSN 00221694. URL https://doi.org/10.1016/j.jhydrol.2015.09.
067. [p6]

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

http://hsavoy.github.io/anchoredDistr
http://hsavoy.github.io/anchoredDistr
https://doi.org/10.1016/j.envsoft.2015.01.002
https://doi.org/10.1007/s10040-004-0404-7
https://doi.org/10.1007/s10040-004-0404-7
https://doi.org/10.1029/2011wr010675
https://doi.org/10.1029/2011wr010675
http://www.jstatsoft.org/v63/i13
https://doi.org/10.1016/s0016-7061(98)00078-0
http://www.jstatsoft.org/v27/i05/
https://doi.org/10.1016/j.jhydrol.2015.09.067
https://doi.org/10.1016/j.jhydrol.2015.09.067

CONTRIBUTED RESEARCH ARTICLES

16

M. Hohn. Geostatistics and Petroleum Geology (2nd Ed.). Kluwer, 1962. [p6]

P. Kitanidis. Introduction to Geostatistics: Applications in Hydrogeology. Cambridge University Press,
2008. [p6]

O.Kolditz, S. Bauer, L. Bilke, N. Bottcher, J. O. Delfs, T. Fischer, U. J. Gorke, T. Kalbacher, G. Kosakowski,
C. I. McDermott, C. H. Park, F. Radu, K. Rink, H. Shao, H. B. Shao, F. Sun, Y. Y. Sun, A. K. Singh,
J. Taron, M. Walther, W. Wang, N. Watanabe, Y. Wu, M. Xie, W. Xu, and B. Zehner. OpenGeoSys: An
open-source initiative for numerical simulation of Thermo-Hydro-Mechanical /chemical (THM/C)
processes in porous media. Environmental Earth Sciences, 67(2):589-599, 2012. ISSN 1866-6280. URL
https://doi.org/10.1007/s12665-012-1546-x. [p12]

D. G. Krige. A statistical approach to some basic mine valuation problems on the Witwatersrand.
Journal of the Chemical, Metallurgical and Mining Society of South Africa, 52(6):119-139, 1951. URL
https://doi.org/10.2307/3006914. [p6]

F. Lindgren and H. Rue. Bayesian spatial modelling with R-INLA. Journal of Statistical Software, 63(19):
1-25,2015. ISSN 1548-7660. URL https://doi.org/10.18637/jss.v063.119. [p6]

G. Matheron. Traité De Géostatistique Appliquée, volume 14. Editions Technip, Paris, 1962. [p6]

H. Murakami, X. Chen, M. S. Hahn, Y. Liu, M. L. Rockhold, V. R. Vermeul, J. M. Zachara, and
Y. Rubin. Bayesian approach for three-dimensional aquifer characterization at the Hanford 300
Area. Hydrology and Earth System Sciences, 14(10):1989-2001, 2010. ISSN 1607-7938. URL https:
//doi.org/10.5194/hess-14-1989-2010. [p6]

M. W. Over, U. Wollschlaeger, C. a. Osorio-Murillo, and Rubin. Bayesian inversion of Mualem-Van
Genuchten parameters in a multilayer soil profile: A data-driven assumption-free likelihood func-
tion. Water Resources Research, 51(2):861-884, 2015. URL https://doi.org/10.1002/2013wr014956.
received. [p6]

E.]. Pebesma. Multivariable geostatistics in S: The gstat package. Computers & Geosciences, 30:683-691,
2004. [p6]

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2016. URL https://www.R-project.org/. [p13]

Y. Rubin, X. Chen, H. Murakami, and M. Hahn. A Bayesian approach for inverse modeling, data
assimilation, and conditional simulation of spatial random fields. Water Resources Research, 46
(October 2009):1-23, 2010. ISSN 00431397. URL https://doi.org/10.1029/2009wr008799. [p6]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, 2009. ISBN 978-0-387-98140-6.
URL http://ggplot2.org. [p8]

H. Wickham. The split-apply-combine strategy for data analysis. Journal of Statistical Software, 40(1):
1-29,2011. URL http://www. jstatsoft.org/v40/i01/. [p8]

H. Wickham and W. Chang. devtools: Tools to Make Developing R Packages Easier, 2016. URL https:
//CRAN.R-project.org/package=devtools. R package version 1.11.1. [p8]

H. Wickham and R. Francois. dplyr: A Grammar of Data Manipulation, 2016. URL https://CRAN.R-
project.org/package=dplyr. R package version 0.5.0. [p8, 292]

H. Wickham, D. A. James, and S. Falcon. RSQLite: SQLite Interface for R, 2014. URL https://CRAN.R-
project.org/package=RSQLite. R package version 1.0.0. [p8]

Y. Yang, M. Over, and Y. Rubin. Strategic placement of localization devices (such as pilot points and
anchors) in inverse modeling schemes. Water Resources Research, 48(8):W08519, 2012. ISSN 00431397.
URL https://doi.org/10.1029/2012wr011864. [p9]

Heather Savoy

Civil and Environmental Engineering
University of California, Berkeley
Berkeley, CA, USA
frystacka@berkeley.edu

Falk Hefse
Computational Hydrosystems

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://doi.org/10.1007/s12665-012-1546-x
https://doi.org/10.2307/3006914
https://doi.org/10.18637/jss.v063.i19
https://doi.org/10.5194/hess-14-1989-2010
https://doi.org/10.5194/hess-14-1989-2010
https://doi.org/10.1002/2013wr014956.received
https://doi.org/10.1002/2013wr014956.received
https://www.R-project.org/
https://doi.org/10.1029/2009wr008799
http://ggplot2.org
http://www.jstatsoft.org/v40/i01/
https://CRAN.R-project.org/package=devtools
https://CRAN.R-project.org/package=devtools
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=RSQLite
https://CRAN.R-project.org/package=RSQLite
https://doi.org/10.1029/2012wr011864
mailto:frystacka@berkeley.edu

CONTRIBUTED RESEARCH ARTICLES

17

Helmholtz Centre for Environmental Research (UFZ)
Leipzig, Germany
falk.hesse@ufz.de

Yoram Rubin

Civil and Environmental Engineering
University of California, Berkeley
Berkeley, CA, USA
rubin@ce.berkeley.edu

The R Journal Vol. 9/2, December 2017

ISSN 2073-4859

mailto:falk.hesse@ufz.de
mailto:rubin@ce.berkeley.edu

CONTRIBUTED RESEARCH ARTICLES

18

dGAselID: An R Package for Selecting a
Variable Number of Features in High

Dimensional Data
by Nicolae Teodor Melita and Stefan Holban

Abstract The dGAselID package proposes an original approach to feature selection in high dimen-
sional data. The method is built upon a diploid genetic algorithm. The genotype to phenotype
mapping is modeled after the Incomplete Dominance Inheritance, overpassing the necessity to define
a dominance scheme. The fitness evaluation is done by user selectable supervised classifiers, from a
broad range of options. Cross validation options are also accessible. A new approach to crossover,
inspired from the random assortment of chromosomes during meiosis is included. Several mutation
operators, inspired from genetics, are also proposed. The package is fully compatible with the data
formats used in Bioconductor and MLInterfaces package, readily applicable to microarray studies,
but is flexible to other feature selection applications from high dimensional data. Several options for
the visualization of evolution and outcomes are implemented to facilitate the interpretation of results.
The package’s functionality is illustrated by examples.

Introduction

Recent advances in information technology provide tools for gathering an immense amount of data
on various scopes. Investigators have increasingly improved tools to collect data describing different
areas of research. The need to efficiently manage, analyze and extract the important features from
high dimensional data is also growing with the different exploration areas benefiting from these
technologies.

The DNA microarray technology is widely used for exploring the differential gene expression. The
method is very established and offers a very good opportunity to develop new methods for selecting
features in real high dimensional data. The vast amount of microarray data that is freely available
along with the results obtained by employing other exploratory techniques, belonging to statistics or
artificial intelligence, provide a unique opportunity to evaluate the performance of newly developed
techniques.

The Genetic Algorithms (GAs) were extensively used to select features in various high dimensional
data, for different research goals. The GA designs evolved and were adapted with particular explo-
ration interests since they were introduced (Holland, 1975). Different GA designs were specifically
adapted to address optimizations or diverse feature selection (Xue et al., 2016) assignments.

The literature on GAs is comprehensive and covers various aspects of interest. The fundamentals of
GAs, including the schema theorem, are covered in very instructive introductory books (Mitchell, 1998)
and (Goldberg, 1989). Other authors propose exhaustive investigations in the GAs’ behavior (Berard
and Bienvenue, 2003) and properties (Rudolph, 1994). The genetic operators and their impact on
evolution, with emphasis on mathematical details (Doerr and Doerr, 2015) were extensively examined.
The genetic algorithms model the naturally occurring evolution and are designed to solve particular
problems. In consequence, the theoretical foundations are yet to catch up with the practically applied
algorithms. Nevertheless, the theory of genetic algorithms is emerging (Droste et al., 2002).

The project R offers a great environment for developing methods for high dimensional data analysis.
The variety of techniques already implemented by numerous contributors and the availability of
the methods, source code, countless data, and results as well as the very forthcoming community
make it the environment of choice for implementing our method. Moreover, the Bioconductor project
(Huber et al., 2015) available in R, offers a wide range of methods and tools for analyzing microarray
data, as well as real data sets to experiment with and compare the results. Our package dGAselID
was developed to be cohesive with Bioconductor. The "ExpressionSet class” used in Bioconductor
was adopted as standard for our package; any data formatted accordingly can be analyzed with our
method.

Different GA implementations are available as contributors’ packages in R. Implementations of
GAs for both floating-point and binary chromosomes are included in the genalg (Willighagen and
Ballings, 2015) package. The GA (Scrucca, 2016), nsga2R (Tsou, 2015), and gaoptim (Tenorio, 2013)
packages are dedicated to optimizations using GAs. A GA designed for determining training popula-
tions (Akdemir et al., 2015) is offered in the STPGA package. The package kofnGA (Wolters, 2015)
aims to select a fixed-size set of integers. Variable selection applications of GAs are proposed in the

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=dGAselID
https://CRAN.R-project.org/package=genalg
https://CRAN.R-project.org/package=GA
https://CRAN.R-project.org/package=nsga2R
https://CRAN.R-project.org/package=gaoptim
https://CRAN.R-project.org/package=STPGA
https://CRAN.R-project.org/package=kofnGA

CONTRIBUTED RESEARCH ARTICLES

19

mogavs (Pajala, 2016) and gaselect (Kepplinger, 2015) packages for regression and high-dimensional
data respectively.

Algorithm

Haploid GAs were previously employed to address feature selection in microarray studies (Melita
et al., 2008). In this type of data, the number of samples is significantly lower than the number
of features and the utilization of cross validation techniques is necessary for reliable results. The
diploid GAs offer better performance than the haploid implementations for selecting features in a
cross validation scenario in general, and for microarray data (Melita and Holban, 2016b) in particular.

The GA implementation in the dGAselID package uses a diploid representation. All the features
in the data form a genome, and each feature retains a specific locus in the genome, the position in the
original data. Every individual in the population will consist of two such genomes.

The fitness evaluation function is a supervised classifier. Any implementation of supervised classi-
fier available in MLInterfaces package (Carey et al., 2016) is a possible choice for fitness evaluation
function in dGAselID. The fitness value is the accuracy of the given classifier in discerning between
samples belonging to different classes.

Every feature in the data, inputted according to the format in the "ExpressionSet class”, is
represented by a gene in the genome. Every gene has two alleles, represented as @ and 1. The allele 1
codes for the corresponding feature to be present in the classifier. The allele @ cyphers for discarding
the gene from the classifier. A genome with a limited number of alleles = 1, codes for the supervised
classifier working on a subset of features from the data. The number of desired features is user
selectable at the initialization of the algorithm.

Our implementation offers the possibility to divide the genomes into a variable number of chro-
mosomes. The number of chromosomes to split the genomes in is user selectable. The value 1 for
the number of chromosomes will result in the genome being treated as a single chromosome, like in
the classical GA implementation. The default value in the dGAselID is 22. In this case, the genome
is parted into 22 chromosomes, the total of human autosomes. The chromosomes will have variable
length, with different number of genes, following the dispersal found in the human autosomes, as
illustrated in the Table 1. The number of genes found on each chromosome will follow the spread
found in the human autosomes with different values for the number of chromosomes. We chose the
default value 22 to emphasize the foundation of our evolutionary approach. Different values will
serve diverse practical applications. This parameter is particularly important when variables belong to
several previously known categories, as with the custom microarray chips. When no such information
is known, an appropriate value can be empirically determined.

The initial population is randomly generated from a discrete uniform distribution. The user can
specify the number of genomes in the population, the number of activated genes in each genome and
the number of chromosomes to split the genomes in. The population will encompass individuals, with
each individual consisting of two sets of haploid chromosomes, randomly assigned.

In a diploid GA it is mandatory to determine how different alleles on heterozygous chromosomes
influence the phenotype. The dominance schemes typically used in genetic algorithms are built upon
the Complete Dominance model, described in biology by Gregor Mendel in 1865. In this model,
one of the alleles, called dominant, produces effects into phenotype and masks the existence of the
other allele in genotype. The alternative that does not affect the phenotype is called recessive allele.
The Complete Dominance model describes only a few of the interactions between alleles in nature.
Various models were later developed to describe different interactions between alleles. In Incomplete
Dominance model, the phenotype of an individual is considered to be in between the phenotypes
resulting from each of the inherited alleles. Both alleles influence the phenotype and the existence of
none is masked in genotype. The main difference between the two models is illustrated in Figure 1. We
can suppose that a gene that codes for the color of an organism has two alleles; one of them produces
a red individual and the alternative shapes a blue entity. With the Complete Dominance model, one of
the alleles is dominant and masks the presence of the other. In our example, the allele that codes for the
red color is dominant and is noted with capital letter (R). Every diploid organism that inherits at least
one allele R will be a red entity. Only if a diploid organism inherits two copies of the recessive allele
(b), the phenotype will be influenced by it, resulting in a blue individual. The interaction described by
the Incomplete Dominance model results in three different phenotypes. In this case, an individual can
be red, blue or purple. Both alleles affect the phenotype and are noted with capital letters (R and B).

The Incomplete Dominance inheritance is an alternative to genotype to phenotype dominance
schemes (Melita and Holban, 2016b) in genetic algorithms and is the approach adopted in our algo-
rithm. Moreover, this method does not require an explicit scheme for genotype-phenotype mapping.
The fitness of each individual is consequently evaluated as the mean accuracy of the two classifiers,

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=mogavs
https://CRAN.R-project.org/package=gaselect
https://www.bioconductor.org/packages/release/bioc/html/MLInterfaces.html

CONTRIBUTED RESEARCH ARTICLES

20

Chromosome No.

No. of features

O 0O NJIONUl = WN -~

9.17%
7.64%
5.81%
4.89%
5.19%
5.81%
5.50%
4.28%
4.28%
4.28%
6.11%
4.89%
2.44%
3.66%
3.66%
3.97%
4.89%
1.83%
5.19%
2.75%
1.22%
2.44%

Table 1: Default distribution of features on chromosomes.

Complete dominance

Incomplete dominance

Figure 1: Complete vs. Incomplete Dominance.

The R Journal Vol. 9/2, December 2017

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

21

each set of haploid chromosomes in the individual. With this approach it is possible to maintain a better
variability in the late generations, as features from the poorly performing genotypes will be present in
later generations when compared to the classical technique. Exploitation of the Incomplete Dominance
model is optional. The value "ID2" for the parameter ID enables the Incomplete Dominance model,
while the value "ID1" turns it off. In evaluating the fitness of an individual, any supervised classifier
available in MLInterfaces package can be selected. The package offers a unified way to call super-
vised classifiers on data formatted according to "ExpressionSet class” specifications with several
options (svmI, 1dal, rdal, knnI, knn.cvI, randomForrestI, dldal, nnetI, qdal, naiveBayeslI, etc). The
cross-validation techniques implemented in MLInterfaces are also available for fitness evaluation in
our package, and are accessible through the trainTest parameter. The default value "L0OG" for the
trainTest parameter enables the leave-out-group cross-validation, while specifying "L00", the user
can opt for the leave-one-out cross-validation. Moreover, is if possible to shape the data into training
and testing sets. A value of the form x:y for the trainTest parameter identifies the samples with
indexes from x to y as training examples while all the others are used as testing set.

In the next step, the individuals are ranked according to their fitness. Our implementation offers
the option of applying an elitist selection over the ranked individuals. The default value for elitism
is NA, but a user can decide on the desired value for elitism, keeping the chosen number of best
performing genotypes in the population.

Crossovers are applied next, between the two haploid sets of chromosomes in each individual.
Two-point crossovers were preferred to the single-point alternative which preferentially affects the
string ends. The two-point crossover follows the classical implementation. One two-point crossover is
applied between homologous chromosomes, in each individual. A parameter to explicitly specify the
chance for a crossover to occur is not implemented in our algorithm. The number of chromosomes
implicitly affects the number of crossovers.

Another approach to crossover, modeled after the Random Assortment of Chromosomes in meiosis
is also available. The Random Assortment of Chromosomes Crossover (Melita and Holban, 2016a)
takes advantage of splitting the genomes in a number of chromosomes with variable size. When
selected, two-point crossovers are performed between homologous chromosomes. After the crossovers
are applied, the chromosomes are randomly assorted and distributed to one of the chromosomes set in
each individual. This process, models the events that occur during meiosis I in eukaryotes. The user
can choose at the initialization of the algorithm if the chromosomes will be randomly assorted through
the randomAssortment parameter. The default value is TRUE. This operator is especially important
when selecting a small number of features from a very large poll. In this case, the two-point crossover
frequently recombines strings containing only zeros, with no effect on the very long genotypes. The
Random Assortment operator offers a significant advantage in these situations. The distinctions
between these approaches to recombination are highlighted in Figure 2, a part of the R output using
the code:

library(dGAsellD)
set.seed(1357)

cl<-rep(0, 10)

c2<-rep(1, 10)
individual<-rbind(c1, c2)
individual

V V V V V V

A\

chrConfoi1<-rep(1, 10)
> chrConfo1

> #Two-point crossover on genotypes with 1 chromosome
> Crossover(individual [1,], individual [2,], chrConf@1)

> chrConf@3<-c(rep(1, 4), rep(2, 3), rep(3, 3))
> chrConf@3

> #Two-point crossovers on genotypes with 3 chromosomes
> cr3<-Crossover(individual [1,], individual [2, 1, chrConf@3)
> cr3

> #Random Assortment on the recombined genotypes with 3 chromosomes
> RandomAssortment(cr3, chrConf@3)

Subsequently, the haploid sets of chromosomes with a higher fitness are kept and the others are
discarded from each individual and mutations are applied with a chance that is specified by the user
when initializing the algorithm. These haploid sets and the genotypes obtained thru crossovers are

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://www.bioconductor.org/packages/release/bioc/html/MLInterfaces.html

CONTRIBUTED RESEARCH ARTICLES

22

Individual

[,11 ,21 ,31 [,41 [,51 [,61 [,71 [,8] [,91 [,10]
cl 0 0 0 0 0 0] 0 0 0 0
c2 1 1 1 1 1 1 1 1 1 1

Genotypes with 1 chromosome
1 1 1 1 1 1 1 1 1 1

Classical two-point crossover with 1 chromosome

[,11 t,21 ,31 [,41 [,51 [,61 [,71 [,8] [,9]1 [,10]
c3 0 0 0 0 0 1 1 0 0 0
c4 1 1 1 1 1 0 0 1 1 1

a)

Genotypes with 3 chromosomes
1 1 1 1 2 2 2 3 3 3

Two-point crossovers with 3 chromosomes
[,11 r,21 ,31 [,41 [,5] [,6] [,71 [,8] [,9] [,10]
c3 0 0 0 1 1 1 0 0 1 0
c4 1 1 1 0 0 0 1 1 0 1
b)

Crossovers and Random Assortment with 3 chromosomes
[,11 ,21 [,31 [,41 [,51 [,6]1 [,71 [,8] [,9] [,10]

c3 0 0 0 1 0 0 1 1 0 1

c4 1 1 1 0 1 1 0 0 1 0

c)

Figure 2: Recombination operators a) classical two-point crossover with 1 chromosome, b) two-point
crossover with 3 chromosomes, c) two-point crossover with 3 chromosomes and Random Assortment

then assembled and a new generation of randomly generated individuals is created. Six different
operators for mutation are available in the package. They can be used solitarily or in any combination,
to support exploration with the genetic algorithm. The classical point mutation is implemented.
However, when selecting a small number of features from a large poll with a genetic algorithm, the
point mutation has the tendency to progressively increase the number of activated genes in genotypes,
with every generation. To address this drawback, we implemented several mutation mechanisms
inspired from genetics. These operators take advantage of the genotypes being partitioned on different
chromosomes. The alternatives to point mutation available in the dGAselID package are:

Nonsense Mutation,
Frameshift Mutation,
Large Segment Deletion,

Whole Chromosome Deletion,

SR

Transposons.

The Nonsense Mutation operator annuls all the genes on a chromosome following a randomly
selected locus (treated as a stop codon). The other chromosomes in the genotype are not influenced by
the nonsense mutation. The Frameshift Mutation operator randomly selects a locus on an arbitrarily
selected chromosome. The gene at the selected locus is deleted and all the following chain is shifted
with one position to the left. The last locus on the implicated chromosome is subsequently annulled to
conserve its length. Other chromosomes in the genotype are not altered by the mutation. The Large
Segment Deletion operator annuls all the genes in a randomly generated interval on an arbitrarily
selected chromosome. The Whole Chromosome Deletion operator acts in a similar fashion, but
on the whole chromosome rather than an interval. The Transposons operator randomly selects a
chromosome, a gene on that chromosome and a distance for relocation. The elected gene is then
transferred at a locus indicated by the generated distance. All the mutation operators occur with
chances specified by designated parameters. The mutated genotypes are verified to have at least 4
active genes and the invalid mutations are not inherited, to prevent errors during the subsequent
fitness evaluations. The following code demonstrates the mutation operators. The R output is partially
presented in Figure 3.

library(ALL)
data(ALL)

>
>
>
> demoALL<-ALL[1:12, 1:8]
>
>

set.seed(1234)

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

23

VVVVVVVVVVVVVVVVVYVVVYVYVYVYVYV

population<-InitialPopulation(demoALL, 4, 9)
individuals<-Individuals(population)
individuals

set.seed(123)
pointMutation(individuals, 4)

chrConf<-splitChromosomes(demoALL, 2)
chrConf

individuals

set.seed(123)
nonSenseMutation(individuals, chrConf, 20)

set.seed(123)
frameShiftMutation(individuals, chrConf, 20)

set.seed(123)
largeSegmentDeletion(individuals, chrConf, 20)

set.seed(123)
wholeChromosomeDeletion(individuals, chrConf, 20)

set.seed(123)
transposon(individuals, chrConf, 20)

> individuals

Id 1000_at 1001_at 1002_f at 1003 s_at 1004_at 1005_at 1006_at 1007_s_at

1 o 1 1 1 1 [1

1 1 1 1 0 1 1 1
2 1 1 1 1 o 1 1
2 1 '] 1 1 1 1 1

VOB wN e

> set.seed(123)
> pointMutation(individuals, 4)
Applying 1 Point Mutations. ..

1

1
1
']

Id 1000_at 1001_at 1002_f at 1003 s_at 1004_at 1005_at 1006_at 1007_s_at

1 o 1 1 1 1

W
MR o
e

1 1 1 1 1 1
2 1 1 1 1 o
2 1 0 1 1 1

"
"

>

> chrConf<-splitChromosomes (demoALL, 2)

> chrConf

1111111222222

>

> set.seed(123)

> nonSenseMutation(individuals, chrConf, 20)
Applying 1 NonSenseMutation mutationms...

R

Id 1000_at 1001_at 1002_f_at 1003_s_at 1004_at 1005_at 1006_at 1007_s_at

1 o 1 1 1 1 [1

1 1 "] "] 0 0 0
2 1 1 1 1 o 1
2 1] 1 1 1 1

Voswn e
o

> set.seed(123)
> frameshiftMutation(individuals, chrConf, 20)
Applying 1 FrameShiftMutation mutations..

Id 1000_at 1001_at 1002_f at 1003_s at 1004_at 1005_at 1006 at 1007 s ;

1 0 1 1 1 1 L] 1

1 1 1 '] 1 1 o
2 1 1 1 1 o 1
2 1] 1 1 1 1

Ve W e
o

> set.seed(123)
> largeSegmentDeletion(individuals, chrConf, 20)
Applying 1 LargeSegmentDeletion mutations. ..

Id 1000_at 1001_at 1002_f at 1003_s at 1004_at 1005_at 1006 at 1007 .

1 o 1 1 1 1 o 1

1 1 1 0 0 o 1
2 1 1 1 1 o 1
2 1 0 1 1 1 1

Vawne
o

> set.seed(123)
> wholeChromosomeDeletion (individuals, chrConf, 20)
Applying 1 WholeChromosomeDeletion mutations. ..

1

1
1
]

t
1
1
1
]

Id 1000_at 1001_at 1002_f at 1003_s_at 1004_at 1005_at 1006 _at 1007_s_at

1 L] 1 1 1 1 o 1
0 0

e

1
2
2

oro

0 0 0
1 1 1 o 1
1 1 1 1 1

Vom W e

> set.seed(123)
> transposon(individuals, chrConf, 20)
Applying 1 Transposons mutations...

1 1
2 1 1 1 1 1 0 1 1
3 2 1 1 1 1 o 1 1
14 2 1] 1 1 1 1 1

oH e

Id 1000_at 1001_at 1002_f_at 1003_s_at 1004_at 1005_at 1006_at 1007_s_at
[

1
1
]

1008_f at
0

"]
1
1

1008_f_at
0

0
1
1

1008_f_at
o

[+
1
1

1008_f_at
0

[
1
1

1008_f_at

rreo

1008_f_at

Hoo

"

1008_f_at
0

1]
1
1

1009_at
1

[+]
"]
1

1009_at

Hoor

1009_a

FPoor T

1009_at
1

o
1]
1

1009_at

roor

1009_at

roor

1009_at
1

0
o]
1

100_g_at
1

1
1
0

100_g_at
1

1
1
0

100_g_at
1

1
1
0

100_g_at
1

1
1
0

100_g_at

or e

1010_at
1

1
0
1

1010_at
1

1
0
1

1010_at
1

1
0
1

1010_at
1

1
0
1

1010_at

Hop e

100_g_at 1010_at

or e

1

1
0
1

100_g_at 1010_at

or R

Figure 3: Partial R output illustrating the mutation operators

1

1
0
1

Iteration with the new generation follows. The number of generations is established at the
initialization of the algorithm.

The R Journal Vol. 9/2, December 2017

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

24

Argument Description

X The dataset in "ExpressionSet class” format
response The response variable

method Supervised classifier for fitness evaluation

trainTest Specifies the training set or the cross-validation method
startGenes Number of alleles=1 in the starting genomes
populationSize Initial populations size

iterations Number of generations

noChr The number of desired chromosomes

elitism Elitism in percentages

D Dominance

pMutationChance Chance for a point mutation to occur
nSMutationChance Chance for a Nonsense Mutation to occur
fSMutationChance Chance for a Frameshift Mutation to occur
1SDeletionChance Chance for a Large Segment Deletion to occur
wChrDeletionChance Chance for a Whole Chromosome Deletion to occur
transposonChance Chance for a Transposon mutation to occur
randomAssortment Random Assortment of chromosomes for recombinations
embryonicSelection Remove chromosomes with fitness < specified value
EveryGeneInInitialPopulation Request for every gene to be present in the initial population
nnetSize For nnetI

nnetDecay For nnetl

rdaAlpha For rdal

rdaDelta For rdal

Table 2: Parameters accepted by the dGAselID() function.

Working with the dGAselID package

The dGAselID package is structured around the dGAselID() function. This function manages the
initial parameters for the algorithm and, depending on the user selected options, sets the stage for
the experiment. The dGAselID() function calls other functions for the different steps and options in
the algorithm. The arguments accepted by dGAselID() along with short descriptions are presented
in Table 2. The other functions, for different operators used during the genetic algorithm search, are

"

summarized in Table 3.

Graphical representations of the evolution are available with the built-in functions in real-time.
The maximum and average accuracy, accompanied by the most frequently selected genes can be
displayed after each generation, offering a very intuitive image of the evolution. Evidence about the
number of individuals in the current population, crossovers or the number of mutations are displayed
for each generation.

The algorithm retains various data about the evolution for further analysis. For each gene, the
frequency of selection across generations is recorded, along with other characteristics of the evolution.
The output data format with a hypothetical result is shown below, together with a description of the
recorded variables in the Table 4.

> ## Not run:
> names(result) #hypothetical result
[1] "DGenes" "dGenes" "MaximumAccuracy” "MeanAccuracy”

[5] "MinAccuracy” "BestIndividuals”

> ## End(Not run)

Example

We illustrate the functionality of the dGAselID package with the ALL dataset (Li, 2009), a very known
set of real DNA microarray data, available in Bioconductor. We are searching for the differentially
expressed genes that could characterize the patients suffering from acute lymphoblastic leukemia but
have different BCR/ABL classification, negative or positive. For this example, we use a subset of the
original ALL data, non-specifically and specifically filtered to 628 features and 79 samples, from the

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://www.bioconductor.org/packages/release/bioc/html/ALL.html

CONTRIBUTED RESEARCH ARTICLES

25

Function Description

dGAselID() Main function

AnalyzeResults() Ranks individuals according to their fitness and records
the results

Crossover() Operator for the two-point crossover

Elitism() Performs elitism for the desired threshold

EmbryonicSelection() Deletes individuals with a fitness below a specified
threshold

EvaluationFunction() Evaluates the individuals’ finesses
after each iteration

frameShiftMutation() Operator for the Frameshift Mutation

Individuals() Generates individuals from haploid chromosome sets

InitialPopulation() Generates the initial random haploid chromosome sets

largeSegmentDeletion() Operator for the Large Segment Deletion mutation

nonSenseMutation() Operator for the Nonsense Mutation

PlotGenAlg() Plots the evolution after each generation

pointMutation() Operator for the point mutation

RandomAssortment () Performs the Random Assortment of chromosomes

RandomizePop () Creates the random population for the next generation

splitChromosomes() Divides the genotypes in a set with the desired number
of chromosomes

transposon() Operator for the Transposon mutation

wholeChromosomeDeletion()

Operator for the Whole Chromosome Deletion mutation

Table 3: Functions in the dGAselID package.

Variable Description

DGenes The occurrences in selected genotypes for every gene
dGenes The occurrences in discarded genotypes for every gene
MaximumAccuracy Maximum accuracy in every generation

MeanAccuracy Average accuracy in every generation

MinAccuracy Minimum accuracy in every generation

BestIndividuals Bestindividual in every generation

Table 4: dGAselID() output.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 26

12625 features and 128 patients in the complete data set. The data was filtered using the capabilities
offered in the genefilter package (Gentleman et al., 2016). The algorithm works as well on the original
data set, but the filtered data is searched faster. However, our experiments with real data show that
more reliable results are obtained with full featured data.

The code for constructing the dataset used in the following examples is presented below:

library(genefilter)

library(ALL)

data(ALL)

bALL = ALL[, substr(ALL$BT,1,1) == "B"]

smallALL = bALL[, bALL$mol.biol %in% c("BCR/ABL", "NEG")]
smallALL$mol.biol = factor(smallALL$mol.biol)
smallALL$BT = factor(smallALL$BT)

f1 <- pOverA(@.25, log2(100))

f2 <= function(x) (IQR(x) > 0.5)

f3 <- ttest(smallALL$mol.biol, p = @.1)

ff <- filterfun(f1, f2, f3)

selectedsmallALL <- genefilter(exprs(smallALL), ff)
smallALL = smallALL[selectedsmallALL,]

VV VYV VYV VYVVYVYVYVYV

An example of function call is:

set.seed(149)

resNoID<-dGAselID(smallALL, "mol.biol"”, trainTest = 1:79, startGenes = 12,
populationSize = 200, iterations = 300, noChr = 5, pMutationChance = 0.0075,
elitism = 4)

+ + V V

The choice for evaluation function was knn. cvI from the MLInterfaces package, with the param-
eters k=3 and 1=2. This is the default method in the package. The evaluation function used in this
example, knn.cvI, is a kNN classifier with the leave-one-out cross validation embedded. For this
reason, the requirement for the trainTest parameter is special, addresses all the instances in the data,
1:79. For any other supervised classifier, the trainTest parameter shapes the training and testing
subsets in the same fashion as the trainInd parameter in MLInterfaces. When cross-validation is
required, the trainTest parameter specifies the desired method as "L00" or "L0G", and is equivalent
to xvalSpec("L00") or xvalSpec("LOG") respectively, in MLInterfaces package. An illustration of
the evolution is presented in Figure 4. The figure pictures a juncture during the search, including
the information provided by the verbose mode and graphical representations of the evolution, as
they appear in real-time on the computer screen. The evolutions of the Maximum Accuracy, Average
Accuracy and the most frequently selected genes are presented after each generation.

Maximum Fitness in iteration no. 17 equals 93.6708860759494 %
Analyzing the results
Applying crossovers. ..
Applying Random Assortment. ..
Applying Elitism...Keeping the Best 4 &
Elitistic genotypes...
Applying 9 Point Mutations...
Randomizing the population...
Generating Individuals...
Population Size in iteration mo. 17 = 200
Starting iteration no. 18
Evaluating Fitnesses...
Minimum Fitness in iteration no. 18 equals 54.4303797468354 §
Mean Fitness in iteration no. 18 equals 74.5253164556962 % Genes inheritance.
Maximum Fitness in iteration no. 18 equals 93.6708860759494 % 1
Analyzing the results
Applying crossovers. ..
Applying Random Assortment. ..
Applying Elitism...Keeping the Best 4 %
Elitistic genotypes...
Applying 9 Point Mutations...

Randomizing the population...
Generating Individuals...
Population Size in iteration no. 18 = 200

Figure 4: Screenshot of the algorithm execution after 18 generations.

After the desired number of generations, the evolution of the Maximum Accuracy and Average
Accuracy in every generation and the most frequently selected genes can be displayed with the
included functions. The Figure 5 represents the most frequently selected genes after the specified
number of generations, 300 in our example. Their characteristics can be acquired with methods already
implemented in Bioconductor. The 10 most selected genes are presented and could be obtained using
hgu95av2.db (Carlson, 2016) with the code below. The selected genes can be studied and evaluated
with all the methods available in Bioconductor. For reliable and interpretable results, an adequate
number of replications are mandatory in such an experiment, due to the stochastic makeup of the
genetic algorithms. The evolution of the maximum accuracy and the average accuracy can be plotted
as illustrated in the Figure 6 and Figure 7, respectively.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://www.bioconductor.org/packages/release/bioc/html/genefilter.html
https://www.bioconductor.org/packages/release/bioc/html/hgu95av2.db.html

CONTRIBUTED RESEARCH ARTICLES

27

Genes inheritance

1000
|

800

600
1

Occurrences

Gene

Figure 5: The most frequently selected genes after 300 generations.

Maximum Accuracy

1.00
|

resNolD3$MaximumAccuracy

0.90
|

T T T T T T T
0 50 100 150 200 250 300

iteration no.

Figure 6: Evolution of the maximum accuracy after 300 generations.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

Mean Accuracy

resNolD3$MeanAccuracy
0.80
1

T T T T T T T
0 50 100 150 200 250 300

iteration no.

Figure 7: Evolution of the average accuracy after 300 generations.

> library(hgu95av2.db)

> DGenes<-resNoID$DGenes

> selectedD<-colnames(DGenes)[order(DGenes, decreasing = TRUE)]
> mget(selectedD, hgu95av2GENENAME, ifnotfound=NA)[1:10]
$%1635_at"

[1]1 "ABL proto-oncogene 1, non-receptor tyrosine kinase”

$*39730_at*
[1]1 "ABL proto-oncogene 1, non-receptor tyrosine kinase”

$'39070_at"
[1] "fascin actin-bundling protein 1"

$'34362_at"
[1] "solute carrier family 2 member 5"

$%39338_at"
[1] "S100 calcium binding protein A10"

$'40091_at*
[1] "B-cell CLL/lymphoma 6"

$*1135_at*
[1]1 "G protein-coupled receptor kinase 5"

$'38385_at*
[1] "destrin, actin depolymerizing factor”

$'40396_at"
[1] "purinergic receptor P2X 5"

$'38069_at*
[1] "chloride voltage-gated channel 7"

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

29

Other graphical representation tools offered in R are readily available for further investigation. An

image of the evolution for the best individual in every generation can be depicted as in Figure 8. The
tendency to increment the number of active genes in the genotypes with the successive generations,
induced by the point mutation, becomes apparent. In contrast, the transposon mutation does not
convey this inconvenience, as illustrated in Figure 9. The graphical representations are accessible with

the code:

> bestsNoID<-resNoID$BestIndividuals

> dev.off()

> image(1:ncol(bestsNoID), 1:nrow(bestsNoID), t(bestsNoID),

+ x1im = c(@, ncol(bestsNoID)), ylim = c(@, nrow(bestsNoID)), col = c("white”, "red"),
+ cex.axis = 0.7, cex.lab = 0.8, cex.main = 1.2, 1ty =1, lwd = 2, las= 2, xaxs = "r",
+ yaxs = "r", pty = "m", ylab = "Generation no.", xlab = "Gene no.",

+ main = "Best Individuals with the Point Mutation")

+ + V V

+ 4+ + + V V V

set.seed(149)

restransp<-dGAselID(smallALL, "mol.biol”, trainTest = 1:79, startGenes = 12,
populationSize = 200, iterations = 300, noChr = 5, pMutationChance = 0,
transposonChance = 2, elitism= 4)

beststransp<-restransp$BestIndividuals

dev.off()

image(1:ncol(beststransp), 1:nrow(beststransp), t(beststransp),
xlim = c(@, ncol(beststransp)), ylim = c(@, nrow(beststransp)),

col = c("white"”, "red"), cex.axis = 0.7, cex.lab = 0.8, cex.main = 1.2, 1ty =1,
Iwd = 2, las = 2, xaxs = "r", yaxs = "r", pty = "m", ylab = "Generation no.",
xlab = "Gene no.", main = "Best Individuals with the Transposon Mutation")

Best Individuals with the Point Mutation

250 o 4o I

200 —

150 —

Generation no.

100 —

50 —

100 —
200 —
300 —
400 o =L
500 —
600 —

o
Gene no.

Figure 8: Evolution of the best individual after 300 generations with Point Mutation.

Best Individuals with the Transposon Mutation

200 — . A

150 — i S L

Generation no.

i .
100 —| | e | |

50 —

100 |
200 |
300 - :
400
500 —|
600 —|

o
Gene no.

Figure 9: Evolution of the best individual after 300 generations with Transposon Mutation.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

30

An illustrative comparison between the classical and the Incomplete Dominance implementations
is accessible with the subsequent code. The two approaches can be assessed in terms of evolutions of
the maximum and average fitness, as depicted in Figure 10 and Figure 11, respectively. The scales
package (Wickham, 2016) is very useful for the direct visual comparison. The most frequently selected
features are compared in Figure 12. It is noticeable that the Incomplete Dominance approach favors
exploration, while still evolving very solidly. This behavior is desirable when selecting features with a
genetic algorithm. The same tendency is perceptible when examining Figure 12, where the number
of significant features is higher with the Incomplete Dominance method. Multiple replications of an
experiment are mandatory to draw reliable conclusions. This example is presented for illustration

purpose only.

+ vV + V + + V V V + + V V. V

+ V + V + + V

The R Journal Vol. 9/2, December 2017

Maximum Accuracy

o
Q — (63)
-
-)
@_ -
o = o R
O - . RELE N
CT? _| W (T T
o
> i
3 o mw
5 34
8 o -
<
g
o~ O @
E o4
x o =
g L —— Classical
— Incomplete Dominance
o
@)]
o
oo}
QQ —]
o
[(e}
w‘ -
o
T T T T T T T
0 50 100 150 200 250 300

Generation no.
Figure 10: Comparative evolution of the maximum fitness over 300 generations.

library(scales)

set.seed(149)

resID<-dGAselID(smallALL, "mol.biol”, trainTest
populationSize = 200, iterations = 300, noChr =
elitism = 4, ID = "ID2")

= 1:79, startGenes 12,
5, pMutationChance = 0.0075,

dev.off()

par ("xlog"=FALSE)

plot(resNoID$MaximumAccuracy, type = "o", col = alpha("red”, 0.5), pch =1,
cex.axis = 1.2, cex.lab = 1.2, cex.main = 1.2, 1ty = 3, lwd = 0.5,

xlab = "Generation no.”, ylab = "Maximum Accuracy”, main = "Maximum Accuracy")
points(resID$MaximumAccuracy, type = "o", col = alpha("darkblue”, 0.5), pch =1,
1ty = 3, 1lwd = 0.5)

legend(120, 0.92, c("Classical”, "Incomplete Dominance"), cex = 1.2,

col = c("red”, "darkblue"), merge = FALSE, bg = "gray9e”, 1lty = c(1, 1, 1))

plot(resNoID$MeanAccuracy, type = "o", col = alpha("red”, ©.5), pch = 1, 1lwd = 0.5,

cex.axis = 1.2, cex.lab = 1.2, cex.main = 1.2, xlab = "Generation no.",

ylab = "Mean Accuracy”, main = "Mean Accuracy")

points(resID$MeanAccuracy, type = "o0", col = alpha("”darkblue”, ©.5), pch =1,
1ty = 3, 1lwd = 0.5)

legend(120, 0.8, c("Classical”, "Incomplete Dominance"”), cex = 1.2,

col = c("red”, "darkblue"), merge = FALSE, bg = "gray9e", lty = c(1, 1, 1))

ISSN 2073-4859

https://CRAN.R-project.org/package=scales

CONTRIBUTED RESEARCH ARTICLES

31

Mean Accuracy

Mean Accuracy
0.80 0.85 0.90 0.95
| | | |

0.75
I

0.70
|

—— Classical
—— Incomplete Dominance

0 50 100

T T T
150 200 250

Generation no.

300

Figure 11: Comparative evolution of the average fitness over 300 generations.

1000
|

800

Occurrences

400
1

Genes inheritance

—— Classical
— Incomplete Dominance

Gene

Figure 12: Comparatison of the most selected genes after 300 generations.

The R Journal Vol. 9/2, December 2017

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

32

> DGenes1<-resNoID$DGenes[sort(resNoID$DGenes, decreasing = TRUE,

+ index.return = TRUE)$ix]

> DGenes2<-resID$DGenes[sort(resID$DGenes, decreasing = TRUE, index.return = TRUE
+)$ix]

> significant1<-DGenes1[sort(resNoID$DGenes, decreasing = TRUE, index.return = TRUE
+)$ix] > floor(5*max(DGenes1)/100)

> significant2<-DGenes2[sort(resID$DGenes, decreasing = TRUE, index.return = TRUE
+)$ix] > floor(5*max(DGenes2)/100)

> barplot(DGenes1[significant1], main = "Genes inheritance”, xlab = "Gene",

+ ylab = "Occurrences”, col = alpha(”"red”, 0.5), beside = FALSE, add = FALSE)

> barplot(DGenes2[significant2], main = "Genes inheritance”, xlab = "Gene",

+ ylab = "Occurrences”, col = alpha("darkblue”, 0.5), beside = FALSE, add = TRUE)
> legend(50, 900, c("Classical”, "Incomplete Dominance"”), cex = 1.2, col = c("red",
+ "darkblue"), merge = FALSE, bg = "gray9e", 1ty = c(1, 1, 1))

Conclusions

The dGAsellID package provides a creative approach to feature selection in high dimensional data.
The package utilizes the data format used in Bioconductor and is readily operational for microarray
data analysis. The algorithm is flexible for high dimensional data other than microarray, when data
is provided according to the "ExpressionSet class” specifications. In our experience, the diploid
implementation offers advantages over the haploid GA, especially when cross-validation techniques
are engaged. The Incomplete Dominance approach allows for a diploid framework, bypassing the
requirement to specify a dominance scheme. Also, the Incomplete Dominance inheritance models an
evolution process present in nature, tested by billions of years of evolution. Moreover, the diploid
structure is a foundation for crossover and mutation operators that model the natural processes
and provide improvements in performance over the classical versions. In our tests, the Random
Assortment of Chromosomes provides an important performance advantage, in many situations.

Future development

The main disadvantages of the algorithm presented in dGAselID package are the necessity to replicate
an experiment several times for reliable results, given the fortuity in generating the initial population,
and the tendency of the GA to converge in local optima. Following the conduit in evolutionary
computation, we will reconsider the principles of evolution and accurately model operators for
crossover and mutation to offer a better tension between exploration and exploitation.

Bibliography

D. Akdemir, J. Sanchez, and J.-L. Jannink. Optimization of genomic selection training populations
with a genetic algorithm. Genetics Selection Evolution, 47(1):38, 2015. URL https://doi.org/10.
1186/8127WT*®15*®116*6.[pl8]

J. Berard and A. Bienvenue. Sharp asymptotic results for simplified mutation-selection algorithms.
The Annals of Applied Probability, 13(4):1534-1568, 2003. URL https://doi.org/10.1214/aoap/
1069786510. [p18]

V. Carey, R. Gentleman, J. Mar, J. Vertrees, and L. Gatto. MLInterfaces: Uniform interfaces to R ma-
chine learning procedures for data in Bioconductor containers, 2016. URL http://bioconductor.org/
packages/MLInterfaces/. R package version 1.52.0. [p19]

M. Carlson. hgu95av2.db: Affymetrix Human Genome U95 Set annotation data (chip hgu95av2), 2016. URL
http://bioconductor.org/packages/hgu95av2.db/. R package version 3.2.3. [p26]

B. Doerr and C. Doerr. A tight runtime analysis of the (1 + (A,A)) genetic algorithm on onemax.
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pages 1423-1430,
2015. URL http://doi.acm.org/10.1145/2739480.2754683. [p18]

S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+ 1) evolutionary algorithm. Theoretical
Computer Science, 276(1-2):51-81, Apr. 2002. ISSN 0304-3975. URL https://doi.org/10.1016/50304-
3975(01)00182-7. [p18]

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://doi.org/10.1186/s12711-015-0116-6
https://doi.org/10.1186/s12711-015-0116-6
https://doi.org/10.1214/aoap/1069786510
https://doi.org/10.1214/aoap/1069786510
http://bioconductor.org/packages/MLInterfaces/
http://bioconductor.org/packages/MLInterfaces/
http://bioconductor.org/packages/hgu95av2.db/
http://doi.acm.org/10.1145/2739480.2754683
https://doi.org/10.1016/S0304-3975(01)00182-7
https://doi.org/10.1016/S0304-3975(01)00182-7

CONTRIBUTED RESEARCH ARTICLES

33

R. Gentleman, V. Carey, W. Huber, and F. Hahne. genefilter: genefilter: methods for filtering genes from high-
throughput experiments, 2016. URL https://bioconductor.org/packages/genefilter/. R package
version 1.56.0. [p26]

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989. ISBN 0201157675. [p18]

J. Holland. Adaptation in natural and artificial systems: An introductory analysis with applications to biology,
control, and artificial intelligence. University of Michigan Press, 1975. ISBN 0472084607. Extended
new Edition, MIT Press, Cambridge (1992). [p18]

W. Huber, V. Carey, R. Gentleman, ..., and M. Morgan. Orchestrating high-throughput genomic
analysis with bioconductor. Nature Methods, 12(2):115-121, 2015. ISSN 1548-7091. URL https:
//doi.org/10.1038/nmeth.3252. [p18]

D. Kepplinger. gaselect: Genetic Algorithm (GA) for Variable Selection from High-Dimensional Data,
2015. URL https://cloud.r-project.org/web/packages/gaselect/index.html. R package ver-
sion 1.0.5. [p19]

X. Li. ALL: A data package, 2009. URL http://bioconductor.org/packages/release/data/
experiment/html/ALL.html. R package version 1.14.0. [p24]

N. Melita and S. Holban. The random assortment for selecting features with genetic algorithms in
microarray data analysis. in publishing, 2016a. [p21]

N. Melita and S. Holban. An incomplete dominance genetic algorithm approach to microarray data
analysis. 2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing
(ICCP), 2016b. URL https://doi.org/10.1109/ICCP.2016.7737137. [p19]

N. Melita, I. Popescu, and S. Holban. A genetic algorithm approach to dna microarrays analysis of
pancreatic cancer. Advances in Electrical and Computer Engineering, 8(2):43—48, 2008. ISSN 1582-7445.
URL https://doi.org/10.4316/AECE. 2008.02008. [p19]

M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA, USA, 1998. ISBN
0262631857. [p18]

T. Pajala. mogavs: Multiobjective Genetic Algorithm for Variable Selection in Regression, 2016. URL
https://cloud.r-project.org/web/packages/mogavs/index.html. R package version 1.0.1. [p19]

G. Rudolph. Convergence analysis of canonical genetic algorithms. IEEE Trans. Neural Net., 5(1):
96-101, 1994. URL https://doi.org/10.1109/72.265964. [p18]

L. Scrucca. On some extensions to ga package: hybrid optimisation, parallelisation and islands
evolution. Submitted to R Journal, 2016. URL http://arxiv.org/abs/1605.01931. [p18]

F. Tenorio. gaoptim: Genetic Algorithm optimization for real-based and permutation-based problems, 2013.
URL https://cloud.r-project.org/web/packages/gaoptim/index.htmll. R package version 1.1.

[p18]

C.-S. Tsou. nsga2R: Elitist Non-dominated Sorting Genetic Algorithm based on R, 2015. URL https:
//cloud.r-project.org/web/packages/nsga2R/index.html. R package version 1.0. [p18]

H. Wickham. scales: Scale Functions for Visualization, 2016. URL https://CRAN.R-project.org/
package=scales. R package version 0.4.1. [p30]

E. Willighagen and M. Ballings. genalg: R Based Genetic Algorithm, 2015. URL https://cloud.r-
project.org/web/packages/genalg/index.html. R package version 0.2.0. [p18]

M. Wolters. A genetic algorithm for selection of fixed-size subsets with application to design problems.
Journal of Statistical Software, 68(1):1-18,2015. URL https://doi.org/10.18637/jss.v068.c01. [p18]

B. Xue, M. Zhang, W. Browne, and X. Yao. Survey on evolutionary computation approaches to feature
selection. IEEE Transactions on Evolutionary Computation, 20(4), 2016. URL https://doi.org/10.
1109/TEVC. 2015. 2504420. [p18]

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://bioconductor.org/packages/genefilter/
https://doi.org/10.1038/nmeth.3252
https://doi.org/10.1038/nmeth.3252
https://cloud.r-project.org/web/packages/gaselect/index.html
http://bioconductor.org/packages/release/data/experiment/html/ALL.html
http://bioconductor.org/packages/release/data/experiment/html/ALL.html
https://doi.org/10.1109/ICCP.2016.7737137
https://doi.org/10.4316/AECE.2008.02008
https://cloud.r-project.org/web/packages/mogavs/index.html
https://doi.org/10.1109/72.265964
http://arxiv.org/abs/1605.01931
https://cloud.r-project.org/web/packages/gaoptim/index.htmll
https://cloud.r-project.org/web/packages/nsga2R/index.html
https://cloud.r-project.org/web/packages/nsga2R/index.html
https://CRAN.R-project.org/package=scales
https://CRAN.R-project.org/package=scales
https://cloud.r-project.org/web/packages/genalg/index.html
https://cloud.r-project.org/web/packages/genalg/index.html
https://doi.org/10.18637/jss.v068.c01
https://doi.org/10.1109/TEVC.2015.2504420
https://doi.org/10.1109/TEVC.2015.2504420

CONTRIBUTED RESEARCH ARTICLES

34

Nicolae Teodor MELITA

Department of Computer and Software Engineering
Politehnica University of Timisoara

Timisoara, RO-300223

Romania

nt_melita@yahoo.com

Stefan HOLBAN

Department of Computer and Software Engineering
Politehnica University of Timisoara

Timisoara, RO-300223

Romania

stefan.holban@cs.upt.ro

The R Journal Vol. 9/2, December 2017

ISSN 2073-4859

mailto:nt_melita@yahoo.com
mailto:stefan.holban@cs.upt.ro

CONTRIBUTED RESEARCH ARTICLES

35

Allele Imputation and Haplotype
Determination from Databases

Composed of Nuclear Families
by Nathan Medina-Rodriguez and Angelo Santana

Abstract The alleHap package is designed for imputing genetic missing data and reconstruct non-
recombinant haplotypes from pedigree databases in a deterministic way. When genotypes of related
individuals are available in a number of linked genetic markers, the program starts by identifying
haplotypes compatible with the observed genotypes in those markers without missing values. If
haplotypes are identified in parents or offspring, missing alleles can be imputed in subjects containing
missing values. Several scenarios are analyzed: family completely genotyped, children partially
genotyped and parents completely genotyped, children fully genotyped and parents containing
entirely or partially missing genotypes, and founders and their offspring both only partially genotyped.
The alleHap package also has a function to simulate pedigrees including all these scenarios. This
article describes in detail how our package works for the desired applications, including illustrated
explanations and easily reproducible examples.

Introduction

The knowledge about human genetic variation has been growing exponentially over the last decade.
Collaborative efforts of international projects such as HapMap (Consortium and others, 2005) and 1000
Genomes (Consortium and others, 2012) have contributed to improving the discovery about human
genetic diversity.

Genotype imputation and haplotype reconstruction have achieved an important role in Genorme-
Wide Association Studies (GWAS) during recent years. Estimation methods are frequently used to infer
missing genotypes as well as haplotypes from databases containing related and/or unrelated subjects.
The majority of these analyses have been developed using several statistical methods (Browning and
Browning, 2011a) which are able to impute genotypes as well as perform haplotype phasing (also
known as haplotype estimation) of the corresponding genomic regions.

Most of the currently available computer programs such as IMPUTE2 (Howie and Marchini, 2010),
MINIMACS3 (Das, 2015), BEAGLE (Browning and Browning, 2011b), and others, or R packages such
as: haplo.ccs (French and Lumley, 2012), haplo.stats (JP and DJ, 2016), hsphase (Ferdosi et al., 2014),
linkim (Xu and Wu, 2014), rrBLUP (Endelman, 2011), and synbreed (Wimmer et al., 2012) carry
out genotype imputation or haplotype reconstruction using probabilistic methods to achieve their
objectives when deterministic methods are insufficient to get them without errors. These methods are
usually focused on population data and in the case of pedigree data, families normally are comprised
by duos (parent-child) or trios (parents-child) (Browning and Browning, 2009). Studies focused on
more than two offspring for each line of descent are uncommon. In these cases, the above programs
do not take full advantage of the information contained in the global family structure to improve the
process of imputation and construction of haplotypes. The program HAPLORE (Zhang et al., 2005),
developed in C++, takes a similar approach as alleHap for haplotype reconstruction in pedigrees, but
can not be easily integrated into an environment where R packages are extensively used.

On the other hand, certain genomic regions are very stable against recombination but at the same
time they may have a considerable amount of mutations. For this reason, in some well-studied regions,
such as the Human Leukocyte Antigen (HLA) loci (Mack et al., 2013), located in the extended Major
Histocompatibility Complex (MHC) (de Bakker et al., 2006), an alphanumeric nomenclature is needed
to facilitate later analysis. At this juncture, the available typing techniques usually are not able to
determine the allele phase and therefore the constitution of the appropriate haplotypes is not possible.

This paper presents new improvements and a detailed description for the R package alleHap
(Medina-Rodriguez et al., 2014). Our program is capable of imputing missing alleles and identifying
haplotypes from non-recombinant regions considering the mechanism of heredity and the genetic in-
formation present in parents and offspring. The algorithm is deterministic in the sense that haplotypes
are identified from the existing genotypes guaranteeing compatibility between parents and children.
When a haplotype can not be identified (due to genotyping errors, or recombination events in the
genetic region), the procedure does not infer more haplotypes in the corresponding family members.
The following sections will describe the implemented methods as well as some functional examples.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=haplo.ccs
https://CRAN.R-project.org/package=haplo.stats
https://CRAN.R-project.org/package=hsphase
https://CRAN.R-project.org/package=linkim
https://CRAN.R-project.org/package=rrBLUP
https://CRAN.R-project.org/package=synbreed
https://CRAN.R-project.org/package=alleHap

CONTRIBUTED RESEARCH ARTICLES

36

Basics

The algorithms in alleHap are based on a preliminary analysis of all possible combinations that may
exist in the genotype of a marker, considering that each member of the family should unequivocally
have inherited two alleles, one from each parent. The analysis is based on the differentiation of seven
cases, as described in (Berger-Wolf et al., 2007). Each case is characterized by the number of different
alleles present in the family and the way these alleles are distributed among parents that determine
the set of possible genotypes in children.

Table 1 shows these cases when there are no missing genotypes. For example, in case 1 both
parents are a|a and so the only possible child is a|s; in case 2 if a parent is a|a and the other is b|b the
only possible child is a|b. Note that in both cases it is possible for a child to determine from which
parent comes each allele. The rest of the cases can be easily understood in the same way. Note that in
case 5 if a child is a|b it is not possible to know from whom comes each allele. The notation ‘| indicates
that the source of each allele can be assigned without error, and the notation ’/” implies that origin is
unknown.

To determine the haplotypes, alleHap creates an IDentified /Sorted (IDS) matrix from the geno-
types of each family. For example, in a child, the genotype a/b of a marker is phased if it can be
unequivocally determined that the first allele comes from the father and the second from the mother.
In this way, the sequence of first (second) alleles of phased markers is the haplotype inherited from the
father (or mother). So, when a marker in a child can be phased this way its IDS value is 1; in other case
its value is 0. In parents, genotypes can be phased if there exists at least one child with all its genotypes
phased reference child'. Then, for every marker, the alleles of a parent genotype are sorted in such a
way that first allele coincides with the corresponding allele inherited from that parent in the reference
child. When this sorting is achieved, the IDS value in the parent is 1; in other case its value is 0.

An example of the IDS matrix values (right) and the corresponding phased genotypes (left) is
shown in Table 1. Note that when the genotype a/b is phased we denote it by a|b; the first child in
each group is considered to be the reference child for phasing the parents. In this case the IDS values
of parents have been deduced considering as reference child! the first one of the family.

Phased Data IDS Matrix
Marker | 1 2 3 4 5 6 7 |1 2 3 4 5 6 7
Parents ala ala ala ala ajb ab ab|1 1 1 1 1 1 1
ala._ bb alb blc ab ajc ¢d|1 1 1 1 1 1 1
ala alb ala alb ala aja ac|1 1 1 1 1 1 1
Offsprin alb alc blb ab ald 1 1 1 1 1
pring a/b alc blc 0 1 1
blc bld 1 1

Table 1: Phased genotypes and IDS matrix.

Sometimes, missing values may occur. These can be located either in parents or children. An
example of this is depicted in Table 2, where missing values have been denoted as NA (Not Available).

Phased Data IDS Matrix
Marker ‘ 1 2 3 4 5 6 7 ‘ 1 2 3 4 5 6 7
Parents ala ala ala ala NA NA NA|1 1 1 1 0 0 O
NA NA NA blc ab ab ab|0 0 0 1 1 1 1
ala alb ala NA aja ajla ajc|1 1 1 0 1 1 1
. ab alc bb a/b ald 11 1 0 1
Offspring a/b alc Dblc 01 1
blc bld 1 1

Table 2: Phased genotypes and IDS matrix containing missing data.

An identification of the homozygous genotypes for each family is also necessary for the proper
operation of alleHap. This identification is done in the Homozygosity matrix (HMZ). This matrix has
as many rows as members in the family and as many columns as markers. The term HMZ; ; is 0 if
the subject i is heterozygous in the marker j, and 1 if he/she is heterozygous. An example of some
unphased genotypes (left) and their corresponding HMZ values is shown in Table 3.

! Reference child has the highest number of phased marker’s alleles (maximum number of IDS values equal to 1).

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

37

Unphased Data Homozygosity Info.

Marker | 1 2 3 4 5 6 7 |1 2 3 4 5 6 7
a/a a/a a/a a/a a/b a/b a/b |1 1 1 1 0 0 O

Parents
a/a b/b a/b b/c a/b a/c c¢/d|1 1 0 0 0 0 O
a/a a/b a/a a/b a/a a/a a/c|1 0 1 1 1 0 O
Offsrin a/b a/c b/b a/b a/d 01 1 0 0
sting a/b a/c b/c 0 0 O
b/c b/d 0 0

Table 3: Biallelic unphased genotypes and HMZ matrix.
Formats

The alleHap package only works with PED files, although it can be easily adapted to similar formats
(with similar structure) to later be loaded into the program.

PED files

A PED file (Purcell et al., 2007) is a white-space (space or tab) delimited file where the first six
columns are mandatory and the rest of columns are the genotype: ‘Family ID’ (identifier of each
family), ‘Individual ID’ (identifier of each member of the family), ‘Paternal ID’ (identifier of the
paternal ancestor), ‘Maternal ID’ (identifier of the maternal ancestor), ‘Sex’ (genre of each individual:
1=male, 2=female, other=unknown), ‘Phenotype’ (quantitative trait or affection status of each individual:
—9=missing, 1=unaffected, 2=affected), and the ‘genotype” of each individual (in biallelic or coded
format).

The identifiers are alphanumeric: the combination of family and individual ID should uniquely
identify a person. PED files must have one and only one phenotype in the sixth column. The
phenotype can be either a quantitative trait or an affection status column. Genotypes (seventh column
onwards) should also be white-space delimited; they can be any character (e.g. 1,2, 3,4 or A, C,
G, T or anything else) except 0, =9, —99. All markers should be biallelic and must have two alleles
specified (Purcell et al., 2007). Note that alleHap does not use the phenotypic information that is
located in these columns.

NA values

The missing or NA values may be placed either in the first six columns or also in genotype columns. In
the last case, when some values are missing, both alleles should be 0, =9, —99 or NA. For example, a
family composed of five individuals typed along three markers can be represented in the following
way:

famID indID patID matID sex phenot Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2

FAM0OQ1 1 Q (] 1 1 1 2 NA NA 1 2

FAM0OQ1 2 Q (] 2 2 3 4 1 2 3 4

FAMOO1 3 1 2 1 2 1 3 1 2 1 3

FAM0OQ1 4 1 2 2 1 NA NA 1 1 2 4

FAMOQ1 5 1 2 1 2 1 4 1 1 2 4
Workflow

The workflow of alleHap comprises three stages: data loading, data imputation, and data haplotyping.
Optionally if simulated data are to be used, a "pre-stage" data simulation must be done. The next
subsections will describe each of them.

Data simulation

This "pre-stage" is implemented by an R function called alleSimulator that simulates genotypic data
for parent-offspring pedigrees taking into account many different factors such as: number of families
to generate, number of markers (allele pairs), maximum number of different alleles per marker in the
population, type of alleles (numeric or character), number of unique haplotypes in the population,

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

38

o alleLoader alleSimulator
£ N\ Biallelic I. Internal Functions I Internal Functions
-% . Database Il. Extention Check and Il. Alleles per Marker (Hlai:/t:tjep‘ella:fsme
' . (-ped format) Data Read Il Haplotypes in Population
3 . PED file Ill. Data Check IV. Data Concatenation simulated dataset)
' V. Missing Data Count V. Data Labelling
E . . Missing Data Check VI. Data Conversion
- . Function Output VII. Missing Data
[VIII. Function Output
datasetAlls datasetAlls
.............................. (Alleles of the ... (Alleles of the -+ ...
loaded dataset) simulated dataset)
Ve \
allelmputer
c .
9
=
.‘E . mkrimputer
5 .
Q.
§ . mbkrimputer
© . mkrimputer
-
w I. Internal Functions
[Il. Data Loading
' 1ll. Imputation
IV. Data Summary
V. Data Storing
VL. Function Output
S
imputedMkrs [mputation
............. (IMPULEd MATKEIS’ - - - - -« oo St?mmary
alleles)
g 1
f (A
i alleHaplotyper
(=2
£
Q.
> .
=
o .
o famHaplotyper
T . .
T . I. Internal Functions
© - Il Imputation
w© Il. Haplotyping
oo IV. Data Summary
: V. Data Storing
VI. Function Output
imputedMkrs relmputedAlls haplotypes DS)
....... (Imputed markers’ - - - (Re-lmpultedvalleles - (Reconstructed - - - (IDentified/Sorted " * - Haplotyping . .
alleles) considering Haplotypes) Matrix) Summary

Haplotypes’ length)

Figure 1: Graphical description of the package’s workflow.

probability of parent/offspring missing genotypes, proportion of missing genotypes (genotyping
errors) per individual, probability of being affected by disease, and recombination rate.

To perform the data simulation, this function goes through the following steps:

I. Internal functions: In this step all the necessary functions to simulate the data are loaded. These
functions are: 1abelMrk (which creates the "A’, 'C’, G/, or "T’ character labels), simHapSelection
(which selects & different haplotypes between the total number of possible haplotypes), simOffspring
(which generates n offspring by selecting randomly one haplotype from each parent), simOneFamily
(which simulates one family from a population containing the haplotypes 'popHaplos') and
simRecombHap (which simulates the recombination of haplotypes).

The R Journal Vol. 9/2, December 2017

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

39

II.

III.

Iv.

VL

VIL

VIIL

Alleles per marker: The second step is the simulation of the number of different alleles per
marker for the entire population (if the user does not supply them). The user can specify
whether the alleles are letters (coded as A, C, G, or T) or if they are coded numerically. When the
alleles are letters, only two possible different values are assigned to each marker; otherwise,
between two and nine different values are randomly allotted.

Haplotypes in population: If there are many markers or alleles per marker, the number of
possible haplotypes can be very large. By default, the number of possible different haplotypes
generated by the function is limited to 1200, although the user can modify this value with the
argument nHaplos.

Data concatenation: In this step, the non-genetic information of all families and previously
simulated data are concatenated.

Data Labeling: The fifth step is the labeling of the previous concatenated data (‘famID’, “indID’,
‘patID’, ‘matID’, ‘sex’, ‘phen’, ‘markers’, ‘recombNr’, ‘ParentalHap’, ‘MaternalHap’).

Data conversion: This step performs the conversion of previously generated data into a more
suitable data type which will lead to a more efficient processing.

Missing data generation: The seventh step is the insertion of missing values in the previous
generated dataset (only when users require it). The missing values may be generated taking
into account four different factors: missParProb (probability of parents’ missing genotype), mis-
sOffProb (probability of offspring’ missing genotype), ungenotPars (proportion of ungenotyped
parents) and ungenotOffs (proportion of ungenotyped offspring).

Function output: The last step is the creation of a list containing two different data frames, for
genotypes and haplotypes respectively. This may be useful to compare simulated haplotypes
with later reconstructed haplotypes.

The following examples show how alleSimulator works:

alleSimulator Example 1: ~ Simulation of a family containing parental missing data.

> simulatedFaml <- alleSimulator(1, 2, 3, missParProb=0.3)
> simulatedFam1[[1]] # Alleles (genotypes) of the 1st simulated family

famID indID patID matID sex phen Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2

1 FAMO1 1 4 o 1 1 T T C C <NA> <NA>
2 FAMO1 2 0 0 2 1 <NA> <NA> T C C G
3 FAMO1 3 1 2 2 1 T T C T G C
4 FAMO1 4 1 2 1 1 T T C T C C

> simulatedFam1[[2]] # 1st simulated family haplotypes (without missing values)

famID indID patID matID sex phen Paternal_Hap Maternal_Hap

1 FAMO1 1 4 o 1 1 T-C-G T-C-C
2 FAMO1 2 4 0 2 1 T-T-C T-C-G
3 FAMO1 3 1 2 2 1 T-C-G T-T-C
4 FAMO1 4 1 2 1 1 T-C-C T-T-C

alleSimulator Example 2: Simulation of a family containing offspring missing data.

> simulatedFam2 <- alleSimulator(1, 2, 3, missOffProb=0.3)
> simulatedFam2[[1]] # Alleles (genotypes) of the 2nd simulated family
famID indID patID matID sex phen Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2

1 FAMO1 1 0 0 1 1 T T C T C C
2 FAMO1 2 4 o 2 2 T C C C C T
3 FAMO1 3 1 2 2 1 T T C T <NA> <NA>
4 FAMO1 4 1 2 2 1 T T C C <NA> <NA>

> simulatedFam2[[2]] # 2nd simulated family haplotypes (without missing values)

famID indID patID matID sex phen Paternal_Hap Maternal_Hap

1 FAMO1 1 4 o 1 1 T-C-C T-T-C
2 FAMO1 2 0 0 2 2 T-C-C C-C-T
3 FAMO1 3 1 2 2 1 T-C-C T-T-C
4 FAMO1 4 1 2 2 1 T-C-C T-C-C

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

40

Data loading

Before the data loading process, since alleHap can handle large amounts of missing data, users should
check what kind of missing values will be loaded. If those values are different from "—9" or "—99",
the parameter ‘"missingValues”’ of alleLoader has to be updated with the corresponding value. Per
example, if the file to be loaded has been codified with zeros as missing values, ‘missingValues = @’
must be specified.

nrs

Data loading may be used with either simulated or actual genetic data. This stage has been
implemented in the allelLoader function for “.ped’ files, the default input format. This function tries to
read family data from an R data frame or from an external file, to later pass it into the alleImputer
and/or alleHaplotyper functions. For this purpose this function goes through these five steps:

I. Loading of the internal function recodeNA: This auxiliary function recodes pre-specified miss-
ing data as NA values.

II. Extention check and data read: In this step, the extension file is checked and if it has a “.ped’
extension the dataset is loaded into R as a data frame. Should this not occur, the message
"The file must have a .ped extension” is returned and the data will not be loaded. Then, if the file
extension is appropriate, data is loaded and missing values (by default ~9” or ~99”) are recoded
as NAs (users may supply other codings values).

III. Data check: The third step counts the number of families, individuals, parents, children, males,
females and markers of the dataset, as well as, it checks the ranges of ‘Paternal IDs’, ‘Maternal
IDs’, ‘genotypes’ and ‘phenotype’ values.

IV. Missing data count: This step counts the missing/unknown data which may exist in either
genetic data or subjects’ identifiers.

V. Function output: In the final step, the dataset is returned as an R data frame, with the same
structure as a PED file, with the variables renamed and the missing values correctly identified
and coded. If ‘dataSummary = TRUE’ a summary of previous data counting, ranges, and missing
values is printed to the screen.

The intended datasets must conform to the specifications of a PED file: in each row the first six
variables correspond to ‘family ID’, ‘subject ID’, ‘paternal ID’, ‘maternal ID’, ‘sex’, and affection
status (‘phenotype’). The rest of the variables are the observed genotypes in each marker, where each
marker comprises two other variables.

The following examples depict how alleloader should be used:

alleLoader Example 1: Loading of a dataset in PED format with alphabetical alleles (A, C, G, or T).

> examplel <- file.path(find.package("alleHap"), "examples”, "examplel.ped")
> examplelAlls <- alleloader(examplel) # Loaded alleles of example 1

Data have been successfully loaded from:
/home/nmr/R/x86_64-pc-linux-gnu-library/3.2/alleHap/examples/examplel.ped

===== DATA COUNTING ======
Number of families: 50
Number of individuals: 227
Number of founders: 100
Number of children: 127
Number of males: 118
Number of females: 109
Number of markers: 12

======== DATA RANGES =========
Family IDs: [1,...,50]
Individual IDs: [1,...,8]
Paternal IDs: [0,1]

Maternal IDs: [0,2]

Sex values: [1,2]

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

41

Phenotype values: [1,2]

========= MISSING DATA =========
Missing founders: @

Missing ID numbers: @

Missing paternal IDs: 0

Missing maternal IDs: @

Missing sex: @

Missing phenotypes: 0

Missing alleles: @

Markers with missing values: 0

> examplelAlls[1:9, 1:12] # Alleles of the first 9 subjects

famID indID patID matID sex phen Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2
1 1 1 Q 0 1 1 T T C T A A
2 1 2 Q 0 2 1 A T C G C C
3 1 3 1 2 1 2 A T G T A C
4 1 4 1 2 2 1 A T C G A o
5 1 5 1 2 2 1 A T C G A C
6 2 1 Q 0 1 1 A T A G A G
7 2 2 Q 0 2 1 G T A C A G
8 2 3 1 2 2 1 G T A C A G
9 2 4 1 2 1 1 A G C G G G

alleLoader Example 2: Loading of a dataset in PED format with numerical alleles

> example2 <- file.path(find.package("alleHap"), "examples”, "example2.ped")
> example?2Alls <- alleloader(example2, dataSummary=FALSE) # Example 2
> example2Alls[1:6,] # Alleles of the first 6 subjects

famID indID patID matID sex phen Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2

1 1036 1 4 o 1 1 101 1601 101 102 501 502
2 1036 2 0 0o 2 1 301 401 301 501 201 301
3 1036 3 1 2 1 2 301 1601 102 501 201 502
4 1036 4 1 2 1 2 301 1601 102 501 201 502
5 1239 1 0 o 1 1 NA NA NA NA NA NA
6 1239 2 0 0o 2 1 NA NA NA NA NA NA

Allele imputation marker by marker

At this stage, the imputation of missing alleles in previously loaded /simulated datasets is performed.
For this purpose, first a simple quality control of data is conducted and second a "marker by marker"
allele imputation is carried out in those cases where possible. Both procedures are implemented in the
alleImputer function where the corresponding operation can be reduced to the following steps:

1. Internal functions: In this step all the necessary functions to impute the data are loaded. The
most important ones are:

¢ mkrImputer, which performs the imputation in one marker. This function first receives as
input data the alleles of that marker in one family, and then applies the quality control
and makes imputation when possible, attending to the family structure as shown in
Table 1. In the most simple cases, missing alleles in children are imputed only if a parent
is homozygous. Missing alleles in a parent are imputed when a child is homozygous, or
when the other parent has no missing values and alleles not present in that parent are
found in some children.

e famImputer, which applies mkrImputer sequentially to impute all the markers in a family.

e famsImputer, which applies famImputer to all the families of the given data frame, return-
ing a dataset with the same format and dimensions as the input data (with imputed values
in those alleles where imputation has been possible).

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

42

2. Data loading: The second step tries to read genotypic data and the families information into a
fully compatible format employing the allelLoader function. If this process is successful, data
are stored in an R data frame with the same structure as a PED file.

3. Imputation: This is the most important step of the alleImputer function. First, marker by
marker and then family by family, the imputation of the corresponding missing alleles is
performed by the mkrImputer function in two stages: children imputation first and then parent
imputation, as has been described.

4. Data summary: Once the imputation is done, a summary of the imputed data is collected. This
summary contains information about the imputation process, i.e., number of imputed alleles,
detected incidences (number of canceled markers due to problems detected in the quality control
process), imputation rate (quotient of the imputed alleles to the number of originally missing
alleles) and time consumed in the process.

5. Data storing: In this step, the imputed data are stored in the same path where the PED file was
located. The generated new file will have the same name and extension as the original, ending
as ‘imputed.ped’.

6. Function output: In this final step, if ‘dataSummary = TRUE’ the imputation summary is printed
out. Imputed data is directly returned as an R data frame (with the same structure and dimen-
sions as the input dataset). Incidence messages are shown if they are detected at the ‘quality
control’ phase.

The following examples show how alleImputer works:

alleImputer Example 1: Deterministic imputation for familial data containing parental missing values.

Simulation of a family containing parental missing data

>
>

A w N =

simulatedFaml <- alleSimulator(1, 2, 3, missParProb=0.6)
simulatedFam1[[1]] # Simulated alleles

famID indID patID matID sex phen Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2
FAMO1 1 0 0 1 1 A G <NA> <NA> A G

FAMO1 2 0 o 2 1 <NA> <NA> <NA> <NA> <NA> <NA>
FAMO1 3 1 2 1 1 G G G G G G
FAMO1 4 1 2 2 2 A A T T A A

Genotype imputation of previous simulated data

>
>

A w N =

imputedFaml <- alleImputer(simulatedFam1[[1]], dataSummary=FALSE)
imputedFam1['imputedMkrs'] # Imputed alleles (markers)

famID indID patID matID sex phen Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2
FAMO1 1 Q 0 1 1 A G G T A G
FAMO1 2 Q 0 2 1 G A G T G A
FAMO@1 3 1 2 1 1 G G G G G G
FAMO1 4 1 2 2 2 A A T T A A

alleImputer Example 2: Deterministic imputation for familial data containing offspring missing values.

Simulation of two families containing offspring missing data

>
>

0 NO O~ w N =

simulatedFam2 <- alleSimulator(2, 2, 3, missOffProb=0.6)
simulatedFam2[[1]] # Simulated alleles

famID indID patID matID sex phen Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2

FAMO1 1 0 0 1 A A C T C C
FAMO1 2 4 o 2 1 A G T T C C
FAMO1 3 1 2 2 1 A G <NA> <NA> <NA> <NA>
FAMO1 4 1 2 1 1 A G T T C C
FAM@2 1 4 o 1 1 G G C T T T
FAM@2 2 0 0o 2 2 A G C C T T
FAM@2 3 1 2 2 1 A G C C <NA> <NA>
FAM@2 4 1 2 2 1 <NA> <NA> C T <NA> <NA>

Genotype imputation of previous simulated data

>
>

imputedFam2 <- alleImputer(simulatedFam2[[1]], dataSummary=FALSE)
imputedFam2['imputedMkrs'] # Imputed alleles (markers)

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

43

famID indID patID matID sex phen Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2
1 FAMo1 1 Q] 1 1 A A C T C C
2 FAMO1 2 Q 0 2 1 A G T T C C
3 FAMO1 3 1 2 2 1 A G <NA> T C C
4 FAMO1 4 1 2 1 1 A G T T C C
5 FAM@2 1 Q 0 1 1 G G C T T T
6 FAMO2 2 Q 0 2 2 A G C C T T
7 FAMO2 3 1 2 2 1 A G C C T T
8 FAM@2 4 1 2 2 1 G <NA> C T T T

It must be taken into account that the alleImputer function makes the imputation for each marker
without "looking" at the rest of the markers in the subject/family. Imputation results obtained with
alleImputer improve when the rest of the markers come into consideration assuming that there is no
recombination. This task is addressed by the function alleHaplotyper.

Data haplotyping

At this stage, the corresponding haplotypes of the pedigree database are generated. To accomplish this,
based on the user’s knowledge of the genomic region to be analysed, it is necessary to slice the data
into non-recombinant chunks in order to perform the haplotype reconstruction in each one of them.

Depending on the existence of missing alleles in parents or/and children, we have considered
four haplotyping scenarios. In the first one, there are no completely missing markers in parents, and
children may be complete without missing alleles or may have full or partially missing data. In the
second one, all of the parental markers may be entirely missing, and there are at least three children in
the family without missing alleles. The third scenario is a mixture of the previous two: some markers
have completely missing alleles in parents but are complete (without missing alleles) in at least three
children; some markers have non-missing alleles in parents, with some missing values in children;
and some markers may have no missing values in parents nor children. In the fourth scenario, parents
have completely missing markers, and non-missing markers are available in only two children; in this
scenario, deterministic reconstruction of the haplotypes is possible only in a small number of cases
under some specific conditions.

Several algorithms have been developed in alleHap for the reconstruction of haplotypes and the
imputation of missing alleles in each one of these scenarios.

The function alleHaplotyper identifies the adequate scenario in each case and applies the corre-
sponding algorithm for imputing and haplotyping. The user does not have to worry about deciding
what scenario corresponds to each family in the database, since the function takes care of it.

Users may choose among several icons in order to specify the non-identified and missing values
in the haplotypes. It is also possible to define the character that will be used as a separator between
the alleles for the corresponding haplotypes. By default, the non-identified /missing allele symbol is
’?’, and haplotypes will be joined without any separator symbol between their correspondig alleles.

The alleHaplotyper function constructs the haplotypes "family by family" taking into account
the initially known genotypes as well as the genotypes already imputed by the function alleImputer,
along with the matrix IDS. In order to generate the haplotypes, this function performs six successive
steps:

I. Loading of internal functions: In this step, several functions are loaded, the most important
ones being;:
e famHaplotyper, which carries out the haplotype reconstruction for each family data as
follows:

1) Receives as input data the matrix of imputed data returned by alleImputer for one
family.

2) Applies the adequate algorithm depending on the specific scenario of each family
(according to the amount of genotypic information available).

3) Returns: a) a matrix equal to the input matrix, but with the new imputed alleles, b)
a matrix with the same dimensions as the previous one filled with 0’s an 1’s. The
value 0 indicates a non-phased allele, and the value 1 represents a phased allele, and
¢) another matrix with two columns corresponding to the haplotypes found in each
member of the family.

e famsHaplotyper, which applies famHaplotyper sequentially to all the families in the
dataset.

* summarizeData, which generates a summary of the haplotyping process.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

II. Allele imputation marker by marker in each family: This step calls the alleImputer function
which performs the imputation marker by marker and then, family by family.

III. Haplotyping: This part is the most important of the alleHaplotyper function since it tries to
solve the haplotypes when possible. The process is the following: once each family genotype
has been imputed marker by marker, those markers containing two unique heterozygous alleles
(both in parents and offspring) are excluded from the process. Then, a set of IDentified /Sorted
(IDS) matrices is generated per family (one per subject), organized in an R array. Later, the
internal function famHaplotyper tries to solve the haplotypes of each family, comparing the
information between parents and children in an iterative and reciprocal way. When there are not
genetic data in both parents, and there are two or more "unique" offspring (not twins or triplets),
the internal functions makeHapsFromThreeChildren and makeHapsFromTwoChildren try to solve
the remaining data. Finally, the HoMoZygosity (HMZ) matrix is updated, and the excluded
markers are again included. Even if both parental alleles are missing in each marker, it is possible in
some cases to reconstruct all the family haplotypes, identifying the corresponding children’s haplotypes,
although in certain cases their parental provenance will be unknown.

IV. Data summary: Once the data haplotyping is done, a data summary is collected, containing a
re-imputation® rate (after the haplotyping process), the proportions of phased and non-phased al-
leles, the proportion of full, partial and empty reconstructed haplotypes, and the time employed
in the process.

V. Data storing; In this step, the re-imputed data are stored in the same path where the PED file was
located, when data have been read from an external file. Two new files will be generated with
the same name and extension as the original, but ending as ‘re-imputed.ped” and ‘haplotypes.txt’,
for the re-imputed genotypes and the reconstructed haplotypes, respectively.

VI. Function output: In this final step, a summary of the generated data may be printed out, if
‘dataSummary=TRUE’. All the results can be directly returned, whether “invisibleOutput=FALSE’.

The list of results contains: imputedMkrs (with the preliminary imputed marker alleles), IDS
(including the resulting IDentified /Sorted matrix), reImputedAlls (including the re-imputed
alleles) and haplotypes (storing the reconstructed haplotypes), and haplotypingSummary (show-
ing a summary of the haplotyping process). Incidence messages can also be shown if they are
detected. These may be caused by haplotype recombination (detected on children), genotyping
errors, or inheritance from non-declared parents.

The following example depicts how alleHaplotyper works:

alleHaplotyper Example 1: Haplotype reconstruction of a simulated family with parental missing data.

Simulation of a family containing parental missing data
> simulatedFaml <- alleSimulator(1, 9, 8, missParProb=0.9, missOffProb=0.3)

Haplotype reconstruction of previous simulated data
> famlList <- alleHaplotyper(simulatedFam1[[1]], dataSummary=FALSE)
> simulatedFam1[[1]] # Original data

famID indID patID matID sex phen Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2

1 FAMO1 1 0 0 1 2 <NA> <NA> <NA> <NA> <NA> <NA>
2 FAMO1 2 4 o 2 1 <NA> <NA> <NA> <NA> <NA> <NA>
3 FAMO1 3 1 2 1 1 A G C C <NA> <NA>
4 FAMO1 4 1 2 2 1 <NA> <NA> <NA> <NA> A G
5 FAMO1 5 1 2 2 1 G G C T A G
6 FAMO1 6 1 2 1 2 G G <NA> <NA> A G
7 FAMO1 7 1 2 2 1 <NA> <NA> <NA> <NA> G G
8 FAMO1 8 1 2 1 1 <NA> <NA> C C G G
9 FAMO1 9 1 2 1 1 <NA> <NA> C C G G
10 FAMO1 10 1 2 2 1 <NA> <NA> C C G G
11 FAMO1 1 1 2 1 1 A G C C <NA> <NA>

Mk4_1 Mk4_2 Mk5_1 Mk5_2 Mk6_1 Mk6_2 Mk7_1 Mk7_2 Mk8_1 Mk8_2
1 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
2 <NA> <NA> <NA> <NA> <NA> <NA> T T <NA> <NA>
3 C T <NA> <NA> T T <NA> <NA> C T

2We have called "re-imputation" to the second imputation process (performed by the alleHaplotyper function)
in which new alleles (that have not been previously imputed by the alleImputer function) can be imputed.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

4 <NA> <NA> C G C C <NA> <NA> C T
5 C T C G C C C T C T
6 C T <NA> <NA> C C C T C T
7 C C G G C T T T T T
8 <NA> <NA> C G T T T T <NA> <NA>
9 C T C G T T T T C T
10 C T <NA> <NA> <NA> <NA> <NA> <NA> C T
11 <NA> <NA> G G <NA> <NA> T T <NA> <NA>

> famlList['reImputedAlls'] # Re-imputed alleles

famID indID patID matID sex phen Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2
1 FAMO1 1 0 0 1 2 A G C T G A
2 FAMo1 2 0 0 2 1 G G C C G G
3 FAMO1 3 1 2 1 1 A G C C G G
4 FAMO1 4 1 2 2 1 G G T C A G
5 FAMQ1 5 1 2 2 1 G G T C A G
6 FAMO1 6 1 2 1 2 G G T C A G
7 FAMO1 7 1 2 2 1 A G C C G G
8 FAMOo1 8 1 2 1 1 A G C C G G
9 FAMO1 9 1 2 1 1 A G C C G G
10 FAMO1 10 1 2 2 1 A G C C G G
11 FAMO1 11 1 2 1 1 A G C C G G
Mk4_1 Mk4_2 Mk5_1 Mk5_2 Mk6_1 Mk6_2 Mk7_1 Mk7_2 Mk8_1 Mk8_2
1 C T G C T C T C T C
2 T C C G T C T T C T
3 C T G C T T T T T C
4 T C C G C C C T C T
5 T C C G C C C T C T
6 T C C G C C C T C T
7 C C G G T C T T T T
8 C T G C T T T T T C
9 C T G C T T T T T C
10 C T G C T T T T T C
11 C C G G T C T T T T
> famlList['haplotypes'] # Reconstructed haplotypes
famID indID patID matID sex phen hap1 hap2
1 FAMO1 1 0 0 1 2 ACGCGTTT GTATCCCC
2 FAMo1 2 0 0 2 1 GCGTCTTC GCGCGCTT
3 FAMo1 3 1 2 1 1 ACGCGTTT GCGTCTTC
4 FAMO1 4 1 2 2 1 GTATCCCC GCGCGCTT
5 FAMo1 5 1 2 2 1 GTATCCCC GCGCGCTT
6 FAMO1 6 1 2 1 2 GTATCCCC GCGCGCTT
7 FAMO1 7 1 2 2 1 ACGCGTTT GCGCGCTT
8 FAMo1 8 1 2 1 1 ACGCGTTT GCGTCTTC
9 FAMOQ1 9 1 2 1 1 ACGCGTTT GCGTCTTC
10 FAMO1 10 1 2 2 1 ACGCGTTT GCGTCTTC
11 FAMO1 1 1 2 1 1 ACGCGTTT GCGCGCTT
> famiList['haplotypingSummary'] # Haplotyping Summary
nAlls pPhasAlls pNonPhasAlls nHaps pFullHaps pEmptyHaps
1 176 1 0 22 1 0
pPartialHaps newImputedAlleles relImputationRate haplotypingTime
1 0 55 1 0.357

alleHaplotyper Example 2: Haplotype reconstruction of a family containing parental and offspring missing
data from a PED file.

PED file path
> family2path <- file.path(find.package("alleHap"), "examples”, "example3.ped")

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

46

Loading of the ped file placed in previous path
> family2Alls <- alleloader(family2path, dataSummary=FALSE)

Haplotype reconstruction of previous loaded data
> family2List <- alleHaplotyper(family2Alls, dataSummary=FALSE)
> family2Alls # Original data

famID indID patID matID sex phen Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2
1 1 Q 0 2 1 C T <NA> <NA> <NA> <NA>
<NA> <NA> <NA> <NA> <NA> <NA>
C C A G A T

C T A C <NA> <NA>

C T A G C T

C T A G C T
<NA> <NA> <NA> <NA> C G

No o~ wnN =
)

2 1
1 2
1 2
1 2
1 2
2 1

—_ a4 a4
~N o oA wN

Mk4_1 Mk4_2 Mk5_1 Mk5_2 Mk6_1 Mk6_2 Mk7_1 Mk7_2 Mk8_1 Mk8_2

T <NA> <NA> <NA> <NA> A C <NA> <NA> <NA> <NA>
2 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
3 A A G T A C A C A G
4 A T C G C C C T C G
5 <NA> <NA> G T A C A C A A
6 A A G T A C A C A A
7 A T C G <NA> <NA> C T <NA> <NA>

Vv

family2list['reImputedAlls'] # Re-imputed alleles

famID indID patID matID sex phen Mk1_1 Mk1_2 Mk2_1 Mk2_2 Mk3_1 Mk3_2
1 1 1 Q 0 2 1 C T G C T G
2 1 2 Q 0 2 1 C T A A A C
3 1 3 1 2 1 2 C C G A T A
4 1 4 1 2 1 2 T C C A G A
5 1 5 1 2 1 2 C T G A T C
6 1 6 1 2 1 2 C T G A T C
7 1 7 1 2 2 1 T T C A G C
Mk4_1 Mk4_2 Mk5_1 Mk5_2 Mk6_1 Mk6_2 Mk7_1 Mk7_2 Mk8_1 Mk8_2
1 A T T C A C A T A C
2 A A G G C C C C G A
3 A A T G A C A C A G
4 T A C G C C T C C G
5 A A T G A C A C A A
6 A A T G A C A C A A
7 T A C G C C T C C A
> family2List['haplotypes'] # Reconstructed haplotypes
famID indID patID matID sex phen hap1 hap2
1 1 1 Q Q 2 1 CGTATAAA TCGTCCTC
2 1 2 Q 0 2 1 CAAAGCCG TACAGCCA
3 1 3 1 2 1 2 CGTATAAA CAAAGCCG
4 1 4 1 2 1 2 TCGTCCTC CAAAGCCG
5 1 5 1 2 1 2 CGTATAAA TACAGCCA
6 1 6 1 2 1 2 CGTATAAA TACAGCCA
7 1 7 1 2 2 1 TCGTCCTC TACAGCCA
> famiList['haplotypingSummary'] # Haplotyping Summary
nAlls pPhasAlls pNonPhasAlls nHaps pFullHaps pEmptyHaps
1 112 1 Q 14 1 Q
pPartialHaps newImputedAlleles relmputationRate haplotypingTime
1 0 34 1 0.098

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

47

Accuracy

Initial considerations

The alleHap package was originally thought to determine haplotypes from nuclear families, i.e. both
parents and their offspring (several children). The program can reconstruct haplotypes even when the
genotypes of both parents (or only one) are completely missing. However, it does not fit well with the
typical situation of cattle breeding in which a single progenitor (male) has had offspring with many
females; or vice versa when there is a female that has had offspring of several males.

Although in future versions of alleHap this functionality will be included, the following simula-
tions have been developed using the standard context of nuclear families containing the same parents
and a variable number of descendants.

We established the foregoing to compare the accuracy and performance of alleHap versus other
software we have selected Alphalmpute (Hickey et al., 2012) and Flmpute (Sargolzaei et al., 2014)
programs, since both programs have similar characteristics to alleHap, namely both consider pedigree
information for inferring haplotypes and imputing missing data. As such, the following comparisons
have been performed regarding the proportion of genotyping errors, missing values, and phasing
(haplotyping) errors for the three programs.

Simulation parameters

Data for nuclear families ranging from one to 15 children and 50 alleles per haplotype have been
simulated. In each case, haplotypes have been generated for missing values in the children’s alleles,
0.10 (10% of the children’s alleles are missing) and 0.25 (25% of genotypes in children are missing).
Likewise, families with missing rates for parental alleles from 0% (fully genotyped) to 100% (completely
ungenotyped) were simulated. In order not to slow down the simulations, only 100 families were
simulated for each case.

Incorrectly identified alleles per haplotype

Figure 2 shows the proportion of incorrectly identified alleles in each haplotype. As it can be ap-
preciated, when using alleHap the ratio is always zero. In those cases when an allele can not be
unequivocally identified it is left as a missing value. However, both Alphalmpute and FImpute have
algorithms that use HMM and the information of the rest of the families to impute probabilistically.

When using Alphalmpute, it can be seen that when there is a low proportion of children and
parents with missing genotypes, the rate of imputation errors is low (practically null when the parents
are completely genotyped). However, as the rate of alleles of lost parents increases, the proportion of
alleles wrongly accused also increases. This effect is greater the higher the number of children per
family, which indicates that with more data Alphalmpute tends to impute more, but returning higher
number of imputation errors.

With Flmpute, it is observed that even when there are not missing alleles in parents or children,
the program tends to erroneously impute a proportion of alleles (it does so in cases of heterozygous
SNPs in which it is not possible to deterministically decide which haplotype belongs to each allele).
The imputation error rate decreases as there are available larger families. In any case, the imputation
error rates reach between 20% and 25% when parents have all alleles missing.

Missing alleles per haplotype

In Figure 3 it can be seen that the proportion of non-imputed alleles that remain after the application
of the algorithm tends to be lower in alleHap than in Alphalmpute for all conditions. In addition, the
greater the number of children available and the lower the rate of missing alleles in both parents and
children, the lower the proportion of alleles remaining unallocated.

For Flmpute, if the rate of missing alleles in parents is less than 75%, in the cases we have explored
(missing allele rate in children up to 25%), there are practically no alleles left unallocated, that is almost
all the alleles are imputed. However, as mentioned previously, FiImpute has a high imputation error
rate, which increases precisely with the rate of missing alleles in parents/children, and decreases with
the number of families.

So, regarding the rate of missing alleles per haplotype, it could be said that alleHap is advantageous
with respect to Alphalmpute, since it produces a smaller proportion of alleles that are finally left
not imputed, and does not generate imputation errors. On the other hand, FImpute has an allele
imputation rate higher than alleHap, but at the cost of making many more imputation errors.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

48

Incorrectly identified alleles per Haplotype

Method

alleHap Alphalmpute Fimpute

0.3-
0.2-
o
0.1- /
0.0- el No. Sibs

o
3
o
O
o
= - 1
0.3- =
= - 2
s 3
£ 0.2- 8 -3
8 = =
<] 5 E k]
o 0.1- 2 =9
2 =12
0.0- S o
a =15
03- 3
0.2- o
o
(]
0.1- ;
0'0- ' ' ' l 1) 1 ' l 1)) 1 ' '
000 025 050 075 100000 025 050 075 1.000.00 025 050 075 1.00
Probability of missing allele in Parents
Figure 2: Proportiton of incorrectly identified alleles per haplotype.
Missing alleles per Haplotype
Method
alleHap Alphalmpute Flmpute
0.75-
0.50-
o
0.25-
o
0.00- S No.Sibs
&
= - 1
o <
0.75 S —P
S 3
_g 73 - 3
.8._ 0.50- ° é
[5 -6
o 0.25- 2 o= 9
I Z 2 =12
0.00- e
k<l == 15
=l
0.75- <
0.50 - o
n
(4]
0.25- é
000-) ' Ll l ') ' ' l ' l 1 ' l '
0.00 025 050 075 1.00000 025 050 075 1.000.00 025 050 075 1.00

Probability of missing allele in Parents

Figure 3: Proportion of missing alleles per haplotype.

Completely reconstructed haplotypes after imputation and haplotyping

In Figure 4 it is shown the proportion of haplotypes that were completely and correctly created with
each method. It can be seen that for a large number of families with a low rate of missing alleles (under
10%), alleHap is able to completely and correctly reconstruct more than 90% of haplotypes.

Obviously, as the rate of missing alleles in parents and offspring increases, alleHap’s haplotyping
rate decreases (if 50% of the parental alleles are missing, alleHap is able to completely and correctly
reconstruct 25% of haplotypes, provided that large families are available).

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

49

When the allele missing rate in parents or children exceeds 10%, complete haplotype reconstruction
rates are (in comparison to alleHap) generally lower with Alphalmpute and somewhat higher with
FImpute. However, it should be noted that the completely reconstructed haplotypes by alleHap do
not have any incorrectly allocated alleles.

In the case of FImpute, for an entirely reconstructed haplotype, we can not know whether recon-
struction has been good (no errors), or if there have been misidentified alleles (could have a high
proportion of misidentified alleles).

Completely reconstructed haplotypes

Method

alleHap Alphalmpute Flmpute
1.00-

0.75-
0.50- o
0251 E%
— 3
0.00- =0 ! — - . S No.Sibs
|4
1.00- c z 1
\ Z
c 0.75- X §~ -2
g E o
S 0.50- 5
Q. Q
[5 =6
Q- 025- 2 -9
Z
12
0.00- = g
1.00- E 15
«Q

0.75-

0.50 -

0.25-

000 025 050 075 1.00000 025 050 075 1.00000 025 050 075 1.00
Probability of missing allele in Parents

Figure 4: Proportion of fully reconstructed haplotypes after imputation and haplotyping.

Performance

Initial considerations

Since our package was mainly created for primase accuracy, i.e., the univocal treatment of family-based
allelic databases, and not for processing large genomic data, it does not make much sense to perform
a comparison on equal terms with programs that were implemented and compiled in other, faster
languages.

In any case, we have carried out a benchmarking where the alleHap computing times were
measured, evaluating the performance of the simulation, imputation, and haplotyping processes
depending on two main factors: number of individuals and number of markers.

Computing times regarding the number of individuals

The simulations depending on the number of individuals had the following parameters: from 1 to
8000 individuals (two children per family), 3 markers (three allele pairs), two different alleles per
marker, non-numerical alleles (A, C, G, or T), 25% of parental missing genotypes, 25% of children’s
missing genotypes, and 1200 different haplotypes in the population.

In Figure 5, it can be seen how haplotyping and imputation times grow linearly as the number
of individuals increases while simulation times hardly grow. Therefore, it can be said that alleHap
consumes very little time when using a small number of markers, even for a considerabe number of
individuals.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

Computing times per number of individuals

40

30 4

T T T T
0 2000 4000 6000 8000
No. individuals

Computational task Imputation == Haplotyping === Simulation

Figure 5: Computing times for simulation, imputation, and haplo-
typing, depending on the number of individuals.

Computing times regarding the number of markers

The simulations depending on the number of markers were developed using the following factors:
from 1 to 5000 markers (from one allele pair to five thousand), one family (four individuals), two
different alleles per marker, non-numerical alleles (A,C,G or T), 25% of parental missing genotypes,
25% of children’s missing genotypes, and 1200 different haplotypes in the population.

Computing times per number of markers

20 A

Time (s)

T T T T T
0 1000 2000 3000 4000 5000
No. Markers
Computational task Imputation == Haplotyping == Simulation

Figure 6: Computing times for simulation, imputation, and haplo-
typing, depending on the number of markers.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

51

Figure 5 shows how simulation times grow in a non-linear way as the number of markers increase,
while imputation and reconstruction times remain linear (even considering a large number of markers).
Note that for this analysis only, it has been taken into account a family (containing four individuals),
although it is presumable that for a larger number of indivuals this growth will also continue in linear
manner.

Summary

We have developed an improved version of the R package alleHap for the imputation of alleles and
the reconstruction of haplotypes in non-recombinant genomic regions using pedigree databases. The
procedure is entirely deterministic and uses the information contained in the family structure to guide
the process of imputation and reconstruction of haplotypes, without resorting to a reference panel.
The package has two main functions alleImputer and alleHaplotyper.

The first one, alleImputer, makes allele imputation marker by marker, taking into account the
alleles present in parents and siblings and considering that each individual (due to meiosis) should
unequivocally have two alleles per marker, one inherited from each parent.

The function alleHaplotyper first calls alleImputer for an initial imputation of missing alleles
and then, considering that there is no recombination (by comparing parental genotypes with children)
determines the compatible haplotypes with the family structure. When an inconsistency is detected,
alleHaplotyper reports an error message specifying if such inconsistency can be due to a possible
recombination or to a genotyping error. Besides, the procedure of construction of haplotypes allows
the imputation of those alleles that were not previously imputed by alleImputer. The function
alleHaplotyper has been entirely rewritten with respect to previous versions of the package. Also the
function alleImputer has been modified to include a new quality control procedure and to improve
the presentation of a summary of results.

Genotypic information can be read from an R data frame or from a PED file by the function
alleloader designed specifically with this aim.

The package also includes the function alleSimulator for the simulation of pedigrees. This
function handles many arguments, such as number of families, markers, alleles per marker, probability
and proportion of missing genotypes, recombination rate, etc., and it generates an R data frame with
two lists, one with the structure of a .ped file, and other with the haplotypes generated for each
member of the simulated families. We have used alleSimulator for testing the performance of the
other functions, with satisfactory results regarding imputation rate, haplotyping rate, and time of
execution, even when handling large amounts of genetic data.

Future improvements of the package include the possibility of considering extended pedigrees
(including grandparents, grandchildren, and other relatives) and to make inferences on haplotypes
and missing alleles when these can not be deterministically derived.

Bibliography

T. Y. Berger-Wolf, S. I. Sheikh, B. DasGupta, M. V. Ashley, I. C. Caballero, W. Chaovalitwongse, and
S. L. Putrevu. Reconstructing sibling relationships in wild populations. Bioinformatics, 23(13):49-56,
2007. [p36]

B. L. Browning and S. R. Browning. A unified approach to genotype imputation and haplotype-phase
inference for large data sets of trios and unrelated individuals. The American Journal of Human
Genetics, 84(2):210-223, 2009. [p35]

B. L. Browning and S. R. Browning. Haplotype phasing: Existing methods and new developments.
Nature Reviews Genetics, 12(10):703-714, 2011a. [p35]

B. L. Browning and S. R. Browning. A fast, powerful method for detecting identity by descent. The
American Journal of Human Genetics, 88(2):173-182, 2011b. [p35]

G. P. Consortium and others. An integrated map of genetic variation from 1,092 human genomes.
Nature, 491(7422):56-65, 2012. [p35]

I. H. Consortium and others. A haplotype map of the human genome. Nature, 437(7063):1299-1320,
2005. [p35]

S. Das. Minimac3. Center for Statistical Genetics, University of Michigan, 2015. [p35]

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

http://Genome.sph.umich.edu/Wiki/Minimac3

CONTRIBUTED RESEARCH ARTICLES

52

P. I. de Bakker, G. McVean, P. C. Sabeti, M. M. Miretti, T. Green, J. Marchini, X. Ke, A. J. Monsuur,
P. Whittaker, M. Delgado, and others. A high-resolution hla and snp haplotype map for disease
association studies in the extended human mhc. Nature genetics, 38(10):1166-1172, 2006. [p35]

J. B. Endelman. Ridge regression and other kernels for genomic selection with R package rrblup. Plant
Genome, 4:250-255, 2011. [p35]

M. H. Ferdosi, B. P. Kinghorn, J. H. Van der Werf, S. H. Lee, and C. Gondro. Hsphase: An R package
for pedigree reconstruction, detection of recombination events, phasing and imputation of half-sib
family groups. BMC bioinformatics, 15(1):1, 2014. [p35]

B. French and T. Lumley. Haplo.ccs: Estimate Haplotype Relative Risks in Case-Control Data, 2012. URL
http://CRAN.R-project.org/package=haplo.ccs. R package version 1.3.1. [p35]

J. M. Hickey, B. P. Kinghorn, B. Tier, J. H. van der Werf, and M. A. Cleveland. A phasing and
imputation method for pedigreed populations that results in a single-stage genomic evaluation.
Genetics Selection Evolution, 44(1):9, 2012. [p47]

B. Howie and J. Marchini. Using IMPUTE?2 for Phasing of GWAS and Subsequent Imputation. University
of Chicago and University of Oxford, 2010. [p35]

S.JP and S. DJ. Haplo.stats: Statistical Analysis of Haplotypes with Traits and Covariates When Linkage Phase
Is Ambiguous, 2016. URL http://CRAN.R-project.org/package=haplo.stats. R package version
1.7.7. [p35]

S.]J. Mack, P. Cano, J. A. Hollenbach, J. He, C. K. Hurley, D. Middleton, M. E. Moraes, S. E. Pereira, J. H.
Kempenich, E. F. Reed, M. Setterholm, A. G. Smith, M. G. Tilanus, M. Torres, M. D. Varney, C. E. M.
Voorter, G. F. Fischer, K. Fleischhauer, D. Goodridge, W. Klitz, A.-M. Little, M. Maiers, S. G. E. Marsh,
C. R. Miiller, H. Noreen, E. H. Rozemuller, A. Sanchez-Mazas, D. Senitzer, E. Trachtenberg, and
M. Fernandez-Vina. Common and well-documented hla alleles: 2012 update to the cwd catalogue.
Tissue Antigens, 81(4):194-203, 2013. [p35]

N. Medina-Rodriguez, A. Santana, A. M. Wégner, and J. M. Quinteiro. allehap: An efficient algorithm
to reconstruct zero-recombinant haplotypes from parent-offspring pedigrees. BMC Bioinformatics,
15(Suppl 3):A6, 2014. [p35]

S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender, J. Maller, P. Sklar, P. I. De
Bakker, M. J. Daly, and others. Plink: a tool set for whole-genome association and population-based
linkage analyses. The American Journal of Human Genetics, 81(3):559-575, 2007. [p37]

M. Sargolzaei, J. P. Chesnais, and F. S. Schenkel. A new approach for efficient genotype imputation
using information from relatives. BMC genomics, 15(1):478, 2014. [p47]

V. Wimmer, T. Albrecht, H.-J. Auinger, and C.-C. Schoen. Synbreed: a framework for the analysis of
genomic prediction data using R. Bioinformatics, 28(15):2086-2087, 2012. [p35]

Y. Xu and J. Wu. Linkim: Linkage Information Based Genotype Imputation Method, 2014. URL http:
//CRAN.R-project.org/package=linkim. R package version 0.1. [p35]

K. Zhang, F. Sun, and H. Zhao. Haplore: a program for haplotype reconstruction in general pedigrees
without recombination. Bioinformatics, 21(1):90-103, 2005. [p35]

Nathan Medina-Rodriguez

Departament of Mathematics

IUMA - Information and Communication Systems
University of Las Palmas de Gran Canaria

Spain

nathan.medina@ulpgc.es

Angelo Santana

Departament of Mathematics

University of Las Palmas de Gran Canaria
Spain

angelo.santana@ulpgc.es

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

http://CRAN.R-project.org/package=haplo.ccs
http://CRAN.R-project.org/package=haplo.stats
http://CRAN.R-project.org/package=linkim
http://CRAN.R-project.org/package=linkim
mailto:nathan.medina@ulpgc.es
mailto:angelo.santana@ulpgc.es

CONTRIBUTED RESEARCH ARTICLES 53

Appendix

Genotype combinations

An example of the genotype combinations that may exist in a nuclear family (considering that each
member should unequivocally have inherited two alleles) is depicted in Figure 7.

(a) Homologous
Chromosome

A

uol}BUIgLIOD3
Ajjuanbauay

(A e
(OO

Frequently
recombination

Marker 5

Alleles Alleles
a |_Marker 6 B g b
Haplotype 1 | d 3 g d | Haplotype 2
a-d-c-ba) < ¢ *%E ¥ = » §§< d (b-d-d-c-a
b B s c
a 2 o a

Marker 11
Marker 12
Marker 13

Marker 14
Marker 15

Y
uoljeulqWwosal
Apuanbaiy
Frequently
recomtiination

Marker 15

= i Chromatid Chromatid

(b)
Parents | 1 2
ald blc
Offspring é %4>
alc b|d c|ld

o

: Allele pair of Marker 6
: Allele pair of Marker 7
: Allele pair of Marker 8
: Allele pair of Marker 9
: Allele pair of Marker 10

2 TO oD
»00ao

Hap1 Hap2

Figure 7: Graphical description of inherited genetic information. (a) Description of null
and frequently recombination regions and their corresponding alleles/haplotypes located
in a homologous chromosome. (b) [llustration of a parent-offspring pedigree containing 6
members: 2 parents and 4 children.

Genetic information can be arranged so that an allele may correspond to a single nucleotide (A, C,
G, T) or a genomic nucleotide sequence. It has to be taken into account that the allele nomenclature in
both cases would comprise different alphanumeric values chosen for a given purpose.

Used notation

As it has been described in the Basics section, our theoretical analysis is based on the differentiation of
seven configurations, each one grouped considering the number of unique (or different) alleles per
family. Thus, in order to clarify the genotype identification and to simplify posterior computations,
when K markers are observed, the following notation has been used for describing the alleles in the i*"

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

54

subject of a family (being i = 1 for the father, i = 2 for the mother and i > 2 for the offspring):

Ani A - Ak
A = 1
VA A ... Ak @

Each column k of this matrix represents a marker, being (A1;, Aox;) the pair of alleles identified in
that marker. Either allele (or both) may be missing, and would then be denoted as Not Available (NA).

Associated to the previous matrix, we can define inheritance identifiers, which we have renamed
as [Dentified/Sorted (IDS) for all subjects, being DSy, the corresponding identifier of marker k in the
individual i. The resulting matrix containing the IDSy; values can be defined as:

IDSq1; IDSqp; ... IDSqk;

IDS; = IDSy; IDSy; ... IDSok; @

If all terms in the matrix IDS; are 0, the phase of each allele is unknown. In turn, when all terms
are equal to 1, the alleles are phased and the rows of the matrix A; can be read as the haplotypes of the
ith subject of the family. In this way, being h = 1,2, we have:

0 if allele Ay; does not belong to
IDSy; = haplotype £, or is missing 3)
1 if allele Ayy; belongs to haplotype h
When familial genotypes are read, the matrices IDS; are initially equal to 0 for all members, as the
genotype phase is unknown.

At the data haplotyping stage, the main objective is to order the Ayy; alleles in each marker of
every subject in such a way that the IDS; matrices may contain as values equal to 1 as possible. When
the i row in IDS; is completely (or partially) filled with ones, the corresponding 4" row in the A;
matrix can be deterministically phased.

In the same way as described above, a vector of Homozygosity (HMZ) identifiers per individual
was defined. Therefore, HMZ;; = 1 if individual i is homozygous in marker k (i.e. identical alleles),
and HMZ;;, = 0 if the subject is heterozygous. Consequently, considering a given individual of family,
the HMZ vector is defined as:

HMZ; = [HMZ; HMZp ... HMZy] @)

Data imputation

As long as one child was genotyped, in certain cases it is possible for an unequivocal imputation of
missing genotypes both in parents and children. For this purpose, first is conducted a "marker by
marker" Quality Control (QC) of the genetic data and second, imputation is performed, in those cases
where possible. The QC rules which has been considered are the following:

1. There cannot be more than two different homozygous children in a family.

2. If there are two different homozygous children in the family, there cannot be a different allele in
any other family member.

3. Considering all the individuals in the family, there can be at most four different alleles in a
marker.

If a family has four different alleles in a marker, no child can be homozygous.
If there are three of more unique heterozygous children, they cannot share a common allele.

There cannot be more than four genotypically different children per marker and family.

N o O

If a child has the same alleles as one of his/her parent, there can only be at most three different
alleles in the family.

8. When parental alleles are not missing:
(a) Each child must have at least a common allele with each parent.
(b) A child can not have an allele not present in any of the parents.
In the above, when referring to families with more than one child, it has been considered that
children have different genotypes each other. This is because of two or more children share the same

genotype in all the markers. For the purposes of genotype identification, he/she will count as an only
child (since will not provide different or new information).

Throughout this procedure, a “marker by marker” allele imputation is performed as follows:

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

55

1. Imputation of children’s genotypes: It is identified which allele has been inherited from the
father and which from the mother. If a parent has a homozygous genotype, the corresponding

allele is imputed in all children with missing alleles (which do not already have this allele).
Moreover, if both parents are homozygous, all children with missing alleles are readily imputed.

2. Imputation of parental genotypes: Given a reference child, it is determined which allele has
been transmitted to such child:

(a) If a child has a homozygous genotype, the allele is imputed in that parent that do not
already have this allele.

(b) If a parent has missing alleles and the other not, and there are heterozygous children, the
alleles present in those children (which are not located in the non-missing parent) are
imputed to the parent with missing alleles.

Assuming that genotypic markers are part of the same haplotype, i.e., there is no recombination
between markers, we have considered that when missing data occurs in a subject’s marker, missingness
affects both alleles (i.e. each marker is fully missing for the given subject); but if the subject is a child
and a parent is homozygous at the same marker (say G/G), only one allele will be imputed in such
a child by alleImputer function. Thus, the child’s genotype would be G/NA (where NA stands for
missing value). The same would occur if a fully missing marker is located in a parent and there is a
homozygous child in that marker.

Data haplotying

The haplotyping procedure begins by considering only the offspring, trying to identify/sort the alleles
in each marker in such a way that the allele in the first row of the matrix, A;, be the one inherited
from the father (see Used notation section), and the allele in the second row be the inherited from
the mother. So, if all the markers are sorted this way, the first row of the matrix A; would inherit the
first haplotype from the father and the second one from the mother. Once these haplotypes have been
found in children, they can be readily identified in parents. What complicates this idea and makes
difficult its direct application is the fact that in some cases both parents and a child can share the same
genotype (say G/T for the three subjects), and therefore it is not possible to know which allele has been
inherited from which parent. Thus, we considered these four scenarios for the haplotyping procedure:

® Scenario 1: There are no fully missing markers in parents.

* Scenario 2: There are missing markers in parents.

* Scenario 3: Mixture of the previous scenarios.

® Scenario 4: There are missing markers in parents and only two fully genotyped children.

In the first one there are no fully missing markers in parents, and children may be completely
without missing alleles or may have full or partially missing data. In the second one we have taken

into account that all of the parental markers are fully missing and there are at least three children in
the family without missing alleles. The third scenario is a mixture of the previous two: some markers

have parents with fully missing alleles and at least three complete children (without missing alleles).

Some markers have non-missing alleles in parents, with some missing values in children, and some
markers may have no missing values in parents nor in children. Finally, in the fourth scenario we
show the conditions in which alleles can be deterministically phased with only two children, when
parents have completely missing markers.

Furthermore there may be missing alleles in parents or children that prevent the determination the
provenance of some alleles in some markers. In particular, if both parents have all the alleles missing
in a marker it is impossible to determine the provenance of the alleles of that marker in the children, at
least if there are less than three children in the family. When Scenario 2 occurs the family has three
or more children, if there are no missing alleles in at least three children, deterministic phasing can
be carried out even when parents are fully missing. Also, in Scenario 4, for the particular case of
having only two children, if parental alleles are available in some markers and in the other markers are
fully missing, it is possible (under certain conditions) to determine the alleles’ phase in those missing
markers.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

56

Visualization of Regression Models

Using visreg
by Patrick Breheny and Woodrow Burchett

Abstract Regression models allow one to isolate the relationship between the outcome and an ex-
planatory variable while the other variables are held constant. Here, we introduce an R package,
visreg, for the convenient visualization of this relationship via short, simple function calls. In addition
to estimates of this relationship, the package also provides pointwise confidence bands and partial
residuals to allow assessment of variability as well as outliers and other deviations from modeling
assumptions. The package provides several options for visualizing models with interactions, including
lattice plots, contour plots, and both static and interactive perspective plots. The implementation of
the package is designed to be fully object-oriented and interface seamlessly with R’s rich collection of
model classes, allowing a consistent interface for visualizing not only linear models, but generalized
linear models, proportional hazards models, generalized additive models, robust regression models,
and many more.

Introduction

In simple linear regression, it is both straightforward and extremely useful to plot the regression line.
The plot tells you everything you need to know about the model and what it predicts. It is common to
superimpose this line over a scatter plot of the two variables. A further refinement is the addition of
a confidence band. Thus, in one plot, the analyst can immediately assess the empirical relationship
between x and y in addition to the relationship estimated by the model and the uncertainty in that
estimate, and also assess how well the two agree and whether assumptions may be violated.

Multiple regression models address a more complicated question: what is the relationship between
an explanatory variable and the outcome as the other explanatory variables are held constant? This
relationship is just as important to visualize as the relationship in simple linear regression, but doing
so is not nearly as common in statistical practice.

As models get more complicated, it becomes more difficult to construct these sorts of plots. With
multiple variables, we cannot simply plot the observed data, as this does not hold the other variables
constant. Interactions among variables, transformations, and non-linear relationships all add extra
barriers, making it time-consuming for the analyst to construct these plots. This is unfortunate,
however — as models grow more complex, there is an even greater need to represent them with clear
illustrations.

In this paper, we aim to eliminate the hurdle of implementation through the development of a
simple interface for visualizing regression models arising from a wide class of models: linear models,
generalized linear models, robust regression models, additive models, proportional hazards models,
and more. We implement this interface in R and provide it as the package visreg, publicly available
from the Comprehensive R Archive Network. The purpose of the package is to automate the work
involved in plotting regression functions, so that after fitting one of the above types of models, the
analyst can construct attractive and illustrative plots with simple, one-line function calls. In particular,
visreg offers several tools for the visualization of models containing interactions, which are among the
easiest to misinterpret and the hardest to explain.

It is worth noting that there are two distinct goals involved in plotting regression models: illustrat-
ing the fitted model visually and diagnosing violations of model assumptions through examination of
residuals. The approach taken by visreg is to construct a single plot that simultaneously addresses
both goals. This is not a new idea. Indeed, this project was inspired by the work of Trevor Hastie,
Robert Tibshirani, and Simon Wood, who have convincingly demonstrated the utility of these types of
plots in the context of generalized additive models (Hastie and Tibshirani, 1990; Wood, 2006).

In particular, visreg offers partial residuals, which can be defined for any regression model and are
easily superimposed on visualization plots. Partial residuals are widely useful in detecting many types
of problems, although several authors have pointed out that they are not without limitations (Mallows,
1986; Cook, 1993). Various extensions and modifications of partial residuals have been proposed,
and there is an extensive literature on regression diagnostics (Belsley et al., 1980; Cook and Weisberg,
1982); indeed, many diagnostics are specific to the type of model (e.g., Pregibon, 1981; Grambsch and
Therneau, 1994; Loy and Hofmann, 2013). Partial residuals are a useful, easily generalized idea that
can applied to virtually any type of model although it is certainly worth being aware of other types of
diagnostics that are specific to the modeling framework in question.

There are a number of R packages that offer functions for visualizing regression models, including

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=visreg

CONTRIBUTED RESEARCH ARTICLES

57

rms (Harrell, 2015), rockchalk (Johnson, 2016), car (Fox and Weisberg, 2011), effects (Fox, 2003), and,
in base R, the termplot function. The primary advantage of visreg over these alternatives is that each
of them is specific to visualizing a certain class of model, usually 1m or glm. visreg, by virtue of its
object-oriented approach, works with any model that provides a predict method — meaning that it
can be used with hundreds of different R packages as well as user-defined model classes. We also feel
that visreg offers a simpler interface and produces nicer-looking plots, but admit that beauty is in the
eye of the beholder. Nevertheless, there are situations in which each of these packages are very useful
and offer some features that others do not, such as greater flexibility for other types of residuals (car)
and better support for visualizing three-way interactions (effects).

Each type of model has different mathematical details. All models, however, describe how the
response is expected to vary as a function of the explanatory variables. In R, this is implemented for an
extensive catalog of models that provide an associated predict method. Although there are no explicit
rules forcing programmers to write predict methods for a given class in a consistent manner, there
is a widely agreed-upon convention to follow the general syntax of predict.1m. It is this abstraction
upon which visreg is based: the use of object-oriented programming to provide a single tool with a
consistent interface for the convenient visualization of a wide array of models.

There are thousands of R packages, many of which provide an implementation of some type of
model. It is impossible for any programmer or team of programmers to write an R package that is
familiar with the details of all of them. However, the encapsulation and abstraction offered by an
object-oriented programming language allow for an elegant solution to this problem. By passing a
fitted model object to visreg, we can call the predict method provided by that model class to obtain
appropriate predictions and standard errors without needing to know any of the details concerning
how those calculations work for that type of model; the same applies to construction of residuals
through the residual method.

The only other R package that we are aware of that provides this kind of object-oriented flexibility
is plotmo by Stephen Milborrow. The visreg and plotmo projects were each started independently
around the year 2011 and have developed into mature, widely used packages for model visualization.
The organization and syntax of the packages is quite different, but both are based on the idea of using
the generic predict and residuals methods provided by a model class to offer a single interface
capable of visualizing virtually any type of model. The primary difference between the two packages
is that plotmo separates the visualization of models and the plotting of residuals, constructed using
the plotmo() and plotres() functions, respectively, while as mentioned earlier, visreg combines the
two into a single plot (plotmo offers an option to superimpose the unadjusted response onto a plot,
but this is very different from plotting partial residuals). Furthermore, as one would expect, each
package offers a few options that the other does not. For example, plotmo offers the ability to construct
partial dependence plots (Hastie et al., 2009), while visreg offers options for contrast plots and what
we call “cross-sectional” plots (Figs. 6, 7, and 8). Broadly speaking, plotmo is somewhat more oriented
towards machine learning-type models, while visreg is more oriented towards regression models,
though both packages can be used for either purpose. In particular, plotmo supports the X,y syntax
used by packages like glmnet, which is more popular among machine learning packages, while visreg
focuses exclusively on models that use a formula-based interface.

The outline of the paper is as follows. In “Conditional and contrast plots”, we explicitly define
the relevant mathematical details for what appears in visreg’s plots. The remainder of the article is
devoted to illustrating the interface and results produced by the software in three extensions of simple
linear regression: multiple (additive) linear regression models, models that possess interactions, and
finally, other sorts of models, such as generalized linear models, proportional hazards models, random
effect models, random forests, etc.

Conditional and contrast plots

We begin by considering regression models, where all types of visreg plots are well-developed and
clearly defined. At the end of this section, we describe how these ideas can be extended generically to
any model capable of making predictions.

In a regression model, the relationship between the outcome and the explanatory variables is
expressed in terms of a linear predictor #:

n1=Xp= ijﬁjr o
j

where x; is the jth column of the design matrix X. For the sake of clarity, we focus in this section on
linear regression, in which the expected value of the outcome E(Y;) equals #;; extensions to other,
nonlinear models are discussed in “Other models”. In the absence of interactions (see “Linear models

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=rms
https://CRAN.R-project.org/package=rockchalk
https://CRAN.R-project.org/package=car
https://CRAN.R-project.org/package=effects
https://CRAN.R-project.org/package=plotmo

CONTRIBUTED RESEARCH ARTICLES

58

with interactions”), the relationship between Xj and Y is neatly summarized by ﬁj, which expresses
the amount by which the expected value of Y changes given a one-unit change in X]-.

Partial residuals are a natural multiple regression analog to plotting the observed x and y in simple
linear regression. Partial residuals were developed by Ezekiel (1924), rediscovered by Larsen and
McCleary (1972), and have been discussed in numerous papers and textbooks ever since (Wood, 1973;
Atkinson, 1982; Kutner et al., 2004). Letting r denote the vector of residuals for a given model fit, the
partial residuals belonging to variable j are defined as

1‘]' :y—X,]‘B\,]‘ (2)
= r—&-x]-,[?j,)

where the —j subscript refers to the portion of X or B that remains after the jth column/element is
removed.

The reason partial residuals are a natural extension to the multiple regression setting is that the
slope of the simple linear regression of r; on x; is equal to the value B; that we obtain from the multiple
regression model (Larsen and McCleary, 1972).

Thus, it would seem straightforward to visualize the relationship between X; and Y by plotting a
line with slope i through the partial residuals. Clearly, however, we may add any constant to the line
and to 1; and the above result would still hold. Nor is it obvious how the confidence bands should be
calculated.

We consider asking two subtly different questions about the relationship between X; and Y:
(1) What is the relationship between E(Y) and X; given x_; = x* 2
(2) How do changes in X; relative to a reference value x]”f affect E(Y)?

*
whereas the second does not. The reward for specifying x* i is that specific values for the predicte%l

The biggest difference between the two questions is that the first requires specification of some x

E(Y) may be plotted on the scale of the original variable Y; the latter type of plot can address only
relative changes. Here, we refer to the first type of plot as a conditional plot, and the second type as
a contrast plot. As we will see, the two questions produce regression lines with identical slopes, but
with different intercepts and confidence bands. It is worth noting that these are not the only possible
questions; other possibilities, such as “What is the marginal relationship between X; and Y, integrating
over X_;?” exist, although we do not explore them here.

For a contrast plot, we consider the effect of changing X; away from an arbitrary point x;-‘ ; the
choice of x]’f thereby determines the intercept, as the line by definition passes through (x]*f, 0). The

equation of this lineis y = (x — xj*) ,/B\]u For a continuous X;, we set x]* equal to ¥;. The confidence
interval at the point x; = x is based on

V(x) =V {0() - 1)} = (x = x)?V(B)).

When X; is categorical, we plot differences between each level of the factor and the reference category
(see Figure 3 for an example); in this case, we are literally plotting contrasts in the classical ANOVA
sense of the term (hence the name). Our usage of the term “contrast” for continuous variables is
somewhat looser, but still logical in the sense that it estimates the contrast between a value of Xj and
the reference value.

For a conditional plot, on the other hand, all explanatory variables are fully specified by x and x* i

Let A(x)T denote the row of the design matrix that would be constructed from xj = x and x* i Then
the equation of the lineis y = A(x)T E and the confidence interval at x is based on

-~

V(x) = V{Ax)TB} = Ax)TV(BA).

In both conditional and contrast plots, the confidence interval at x is then formed around the
estimate in the usual manner by adding and subtracting t,,_, 1_4/2/V (x), where thpl-asaisl—a/2
quantile of the t distribution with 1 — p degrees of freedom. Examples of contrast plots and conditional
plots are given in Figures 2 and 3. Both plots depict the same relationship between wind and ozone
level as estimated by the same model (details given in the following section). Note the difference,
however, in the vertical scale and confidence bands. In particular, the confidence interval for the
contrast plot has zero width at x;‘ ; all other things remaining the same, if we do not change X;, we can

say with certainty that E(Y) will not change either. There is still uncertainty, however, regarding the

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

59

actual value of E(Y), which is illustrated in the fact that the confidence interval of the conditional plot
has positive width everywhere.

This description of confidence intervals focuses on Wald-type confidence intervals of the form
of estimate + multiple of the standard error, constructed on the scale of the linear predictor. This
is the most common type of interval provided by modeling packages in R, and the only one for
which a widely agreed-upon, object-oriented consensus has emerged in terms of what the predict
method returns. For this reason, this is usually the only type of interval available for plotting by
visreg. However, it should be noted that these intervals are common for their convenience, not due to
superiority; it is typically the case that more accurate confidence intervals exist (see, for example, Efron,
1987; Withers and Nadarajah, 2012). In principle, one could plot other types of intervals, but visreg
does not calculate intervals itself so much as plot the intervals that the modeling package returns.
Thus, unless the modeling package provides methods for calculating other types of intervals, visreg is
restricted to plotting Wald intervals.

Contrast plots can only be constructed for regression-based models, as they explicitly require an
additive decomposition in terms of a design matrix and coefficients. Conditional plots, however, can
be constructed for any model that produces predictions. Denote this prediction f(x), where x is a
vector of predictors for the model. Writing this as a one-dimensional function of predictor j with the
remaining predictors fixed at x* i’ let us express this prediction as f(x|x* j)’ In a conditional plot, the

partial residuals for predictor j are
1 =1+ +x5;B
— 1+ flxlx"),

which offers a clear procedure for constructing the equivalent of partial residual for general prediction
models. Note that this construction requires the model class to implement a residuals method. If a
model class lacks a residuals method, visreg will still produce a plot, but must omit the partial residu-
als; see “Non-regression models” for additional details. Likewise, visreg requires the predict method
for the model class to return standard errors in order to plot confidence intervals; see “Hierarchical
and random effect models” for an example in which standard errors are not returned.

It is worth mentioning that visreg is only concerned with confidence bands for the conditional
mean E(Y|X), not “prediction intervals” that have a specified probability of containing a future
outcome Y observed for a certain value of X. Unlike standard errors for the mean, very few model
classes in R offer methods for calculating such intervals — indeed, such intervals are often not well-
defined outside of classical linear models.

Additive linear models

We are now ready to describe the basic framework and usage of visreg. In this section, we will
fit various models to a data set involving the relationship between air quality (in terms of ozone
concentration) and various aspects of weather in the standard R data set airquality.

Basic framework

The basic interface to the package is the function visreg, which requires only one argument: the fitted
model object. So, for example, the following code produces Figure 1:

fit <- 1Im(Ozone ~ Solar.R + Wind + Temp, data=airquality)
visreg(fit)

By default, visreg provides conditional plots for each of the explanatory variables in the model. For
the conditioning, the other variables in x* jare set to their median for numeric variables and to the most
common category for factors. All of these options can be modified by passing additional arguments
to visreg. For example, contrast plots can be obtained with the type argument; the following code
produces Figure 2.

visreg(fit, "Wind"”, type="contrast")
visreg(fit, "Wind", type="conditional")

The second argument specifies the explanatory variable to be visualized; note that the right plot in
Figure 2 is the same as the middle plot in Figure 1.

In addition to continuous explanatory variables, visreg also allows the easy visualization of
differences between the levels of categorical variables (factors). The following block of code creates a

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

60

: 150
140 150 —

120)
1007 1004, - . 100
80 o . :
60 -
40 A —
20 4.

Ozone
Ozone
Ozone

0 50 150 250 5 10 15 20 60 70 80 90

Solar.R Wind Temp

Figure 1: Basic output of visreg for an additive linear model: conditional plots for each explanatory
variable.

100 4 150
g 50 4. ° o 100 —
N R .
2 0] =
0 - 50 - -
_50 — 0 -
T T T T T T T T
5 10 15 20 5 10 15 20
Wind Wind

Figure 2: The estimated relationship between wind and ozone concentration in the same model, as
illustrated by two different types of plots. Left: Contrast plot. Right: Conditional plot.

factor called Heat by discretizing Temp, and then visualizes its relationship with 0zone, producing the
plot in Figure 3.

airquality$Heat <- cut(airquality$Temp, 3, labels=c("Cool”, "Mild"”, "Hot"))
fit.heat <- 1m(Ozone ~ Solar.R + Wind + Heat, data=airquality)
visreg(fit.heat, "Heat"”, type="contrast")

visreg(fit.heat, "Heat"”, type="conditional”)

140 —
100 ‘ 120 4
o 297 100 |
5 60 £ &0
S 40+ s N | =
< 04 .- o o 60
40 -0
T T T 0 - T T T
Cool Mild Hot Cool Mild Hot
Heat Heat

Figure 3: Visualization of a regression function involving a categorical explanatory variable. Left:
Contrast plot. Right: Conditional plot.

Again, note that the confidence interval for the contrast plot has zero width for the reference
category. There is no uncertainty about how the expected value of ozone will change if we remain at
the same level of Heat; it is zero by definition. On the other hand, the width of the confidence interval
for Mild heat is wider for the contrast plot than it is for the conditional plot. There is less uncertainty
about the expected value of ozone on a mild day than there is about the difference in expected values
between mild and cool days.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

61

Transformations

Often in modeling, we introduce transformations of explanatory variables, transformations of the
response variable, or both. The visreg package automatically handles these transformations when
visualizing the regression model.

Linear models assume a linear relationship between the explanatory variables and the outcome. A
common way of extending the linear model is to introduce transformations of the original explanatory
variables. For example, to allow the effect of wind on ozone to be nonlinear, we may introduce a
quadratic term for wind into the model:

fit1 <- 1m(Ozone ~ Solar.R + Wind + I(Wind”2) + Temp, data=airquality)

Transformations of the response are also common. For example, ozone levels must be positive.
However, as Figure 1 illustrates, a standard linear model allows the estimated relationship and its
confidence band to fall below 0. One way of remedying this is to model the log of ozone concentrations
instead of the ozone concentrations directly:

fit2 <- 1m(log(Ozone) ~ Solar.R + Wind + Temp, data=airquality)
And of course, these elements may be combined:
fit3 <- 1m(log(Ozone) ~ Solar.R + Wind + I(Wind*2) + Temp, data=airquality)

Visualization is particularly important in these models, as it is difficult to determine the exact nature
of the relationship between explanatory variable and response simply by looking at the regression
coefficients when that relationship is nonlinear. The visreg package provides a convenient way to
view such relationships. Transformations involving explanatory variables are handled automatically,
while transformations involving the response require the user to provide the inverse transformation.
The following code produces Figure 4.

visreg(fitl, "Wind")
visreg(fit2, "Wind”, trans=exp, ylab="Ozone", partial=TRUE)
visreg(fit3, "Wind", trans=exp, ylab="0zone", partial=TRUE)

By default, visreg suppresses partial residuals when trans is specified, as this can provide a distorted
view of outliers (a mild outlier can become an extreme outlier once a transformation has been applied,
and vice versa), but we include them here by explicitly specifying partial=TRUE.

150 140 4 - 140
120) 120
N . , 1004 : , 100 4
5 100 73 § 80 § 80
o O 60 o 60 . \
50 4 ° - 40 H - 40 4 -
20 — 20
T T T T 0 0 T T T T
5 10 15 20 5 10 15 20
Wind Wind Wind

Figure 4: Plots of the modeled relationship between wind and ozone concentration, as estimated by
different models. Left: The model contains a transformation of wind. Middle: The model contains a
transformation of ozone concentration. Right: The model contains transformations of both wind and
ozone.

Conditioning

As noted in “Basic framework”, the default behavior of visreg when constructing a conditional plot is
to fill in x* . with the median for continuous variables and the most common category for categorical
variables. This behavior can be modified using the cond argument. Note that this has no bearing on
contrast plots in additive models, which do not require a full specification of x* i

The cond argument must be provided as a named list. Each element of that list specifies the
value for an element of x* j; any elements left unspecified are filled in with the median/most common

category. We revisit our initial model from “Basic framework” with this code, which produces Figure 5.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

62

visreg(fit, "Wind", cond=list(Temp=50))
visreg(fit, "Wind")
visreg(fit, "Wind", cond=list(Temp=100))

0 200
100 150
c. 150 4 -
) o 100 o, -) .
c c N c
S S S 100 =i’
o o O .
50 +
T T T T T T T T
5 10 15 20 5 10 15 20
Wind Wind Wind

Figure 5: Estimated relationship between wind and ozone concentration, conditioning on different
values of temperature. Left: Temperature=50 °F. Middle: The median temperature, 79 °F (default).
Right: Temperature=100 °F.

We make several observations concerning Figure 5: i) The values on the vertical axis differ; as
we condition on higher temperatures, the expected ozone concentration goes up since the regression
coefficient for temperature is positive. ii) The slope of the line, the distance from the line to each
residual, and the range of the residuals is the same in all three plots; conditioning on different values
of temperature merely adds a constant to the regression line and the partial residuals. iii) The width of
the confidence band does change, however: the data set has few observations at very high and very
low temperatures, so the standard errors are much larger for the plots on the right and left than for
the plot in the middle. iv) The shape of the confidence band also changes. In the middle plot, the
confidence band is narrowest in the middle and wider at the ends. In the left plot (conditioning on
low temperature), however, the confidence band is narrowest for high wind levels. This arises because
there is a negative correlation between wind and temperature (9 = —0.46), and thus, more cold windy
days in the data set than cold calm days. The opposite phenomenon happens in the right plot, where
the relative absence of hot windy days causes the confidence band to be wider for high winds than for
low winds.

Recall that this model had three explanatory variables; in the above example, visreg calculated
the conditional response by filling in solar radiation with its median value, as it was not specified
otherwise in the cond argument.

Linear models with interactions

Visualization is also very important for models with interactions — as with polynomial terms, in
these models the relationship between an explanatory variable and the response depends on multiple
regression coefficients, and a model’s fit is more readily understood with a visual representation than
by looking at a table of regression coefficients.

For models with interactions, we must simultaneously visualize the effect of two explanatory
variables. The visreg package offers two methods for doing this: cross-sectional plots, which plot
one-dimensional relationships between the response and one predictor for several values of another
predictor, and surface plots, which attempt to provide a picture of the regression surface over both
dimensions simultaneously.

Cross-sectional plots

To begin, let’s fit a model that involves an interaction between a continuous term and a categorical
term, using our derived variable Heat from “Basic framework”:

fit <- 1m(Ozone ~ Solar.R + Wind * Heat, data=airquality)

The visreg package creates cross-sectional plots using, by default, the lattice package (Sarkar,
2008). To request a cross-sectional plot, the user specifies a by variable, as in the following code which
produces Figure 6.

visreg(fit, "Wind", by="Heat")

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=lattice

CONTRIBUTED RESEARCH ARTICLES

63

150 -
@ 100 - -
<
R
O 50 . -
—
0 : -
T T T T T T T T T T T T
5 10 15 20 5 10 15 20

Wind

Figure 6: Cross-sectional plots depicting the fit of a model with an interaction between a continuous
term (Wind) and a categorical term (Heat), with the continuous term on the horizontal axis.

Alternatively, one can use ggplot2 (Wickham, 2009) as the plotting engine using the option gg=TRUE,
as in the following code which produces Figure 7.

visreg(fit, "Wind"”, by="Heat", gg=TRUE)

Cool Mild Hot

150 -

100-

Ozone

5 10 15 20 5 10 15 20 5 10 15 20
Wind

Figure 7: Same as Figure 6, but using ggplot2 as the plotting engine.

The cross-sectional plots in either Figure 6 or 7 allow us to see that the relationship between
wind and ozone concentration appears to become more pronounced depending on how hot the day
is. On cool days, wind has no effect on ozone concentration. Wind has a moderate effect on ozone
concentrations on mild days, and an even larger effect on hot days.

Note that visreg handles the partial residuals properly — the partial residuals for observations
collected on cool days appear only in the left panel, and so on. As with the earlier plots, this ensures
that the least squares line drawn through the residuals on the plot will yield the same slope as that
estimated by the full model fit. Furthermore, this allows us to see potentially influential observations
like the one in the middle panel, which has very low wind and very high ozone concentration. Finally,
the proper handling of partial residuals also allows us to observe the lack of hot windy days and cool
days with no wind that we commented on in “Conditioning”. Note that the confidence intervals in
these regions are comparatively wide.

Alternatively, we may wish to overlay these cross-sections. This allows for a more direct com-
parison between the different regression lines, although it often becomes difficult to include partial
residuals and confidence bands without crowding the figure. The visreg package allows an overlay
option for creating these plots:

visreg(fit, "Wind", by="Heat", overlay=TRUE, partial=FALSE)

The above code produces Figure 8, where the plotting of partial residuals has been turned off
for the sake of clarity (similarly, band=FALSE can be specified to turn off the confidence bands). If
partial=TRUE, the partial residuals are colored according to the existing scheme.

The above examples featured a continuous variable along the horizontal axis and a categorical
variable as the by variable. However, visreg allows each of these variables to be either continuous or
categorical. For example, let us try plotting the same model, but reversing the roles of Heat and Wind
(Figure 9).

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLES

64

—— Cool =—— Mild =—— Hot
100
2
o 50
N
o
07
L hl
5 10 15 20
Wind

Figure 8: Cross-sectional plot depicting the fit of a model with an interaction between a continuous
term (Wind) and a categorical term (Heat), where the regression lines for each category are overlaid.

visreg(fit, "Heat", by="Wind")

The model is the same, but the emphasis of the plot is now on heat instead of wind. Figure 9
illustrates that heat has a pronounced effect on ozone concentration when the day is not windy, but a
relatively insignificant effect on ozone for windy days.

Cool Mild Hot
Il Il Il Il Il Il Il Il Il
Wind Wind Wind

150 : -

g 100 o
(e} 50 - _— . -y . 0 L
0+ T T T T T T T T

Cool Mild Hot Cool Mild Hot
Heat

Figure 9: Cross-sectional plots depicting the fit of a model with an interaction between a continuous
term (Wind) and a categorical term (Heat), with the categorical term on the horizontal axis.

In contrast to Figure 6, where it was natural to construct a panel for each level of the categorical
variable, Figure 8 requires arbitrary decisions concerning how many cross-sections to take, and where
to place them. The default behavior of visreg is to take cross-sections at the 10th, 50th, and 90th
percentiles of the by variable, although both the number of points and their location can be modified
using the breaks option. Again, each residual appears only once, in the panel it is closest to. However,
the least squares estimates are no longer equivalent to drawing a line through the partial residuals
due to the continuous manner in which information is pooled across the panels.

We have been focusing here on conditional plots, but contrast plots can be made as well by
specifying type="contrast"”. It is worth noting that for a model containing an interaction, a basic
call to visreg (i.e., without a by argument) amounts to plotting a main effect in the presence of an
interaction. Because this has the potential to be misleading, visreg by default prints a message warning
the user of this and reminding him or her of the levels of the other variables at which the plot is
constructed. For example, since "Mild" is the most common level of Heat, visreg(fit, "Wind") will
produce the middle panel of Figure 6. The left and right panels, respectively, could be produced by
passing Heat="Cool"” and Heat="Hot" to the cond argument.

Surface plots

Another approach to visualizing models with interactions is plotting the regression surface using
contour or perspective plots. Suppose we fit a complicated model involving a multiplicative interaction
between two-degree-of-freedom natural spline terms for wind and temperature (the function ns is
from the splines () package):

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=splines

CONTRIBUTED RESEARCH ARTICLES

65

fit <- 1m(Ozone ~ Solar.R +ns(Wind, df=2)*ns(Temp, df=2), data=airquality)

Putting aside the question of whether or not this is a good model for analyzing these data, our
purpose here is to show that it is difficult to grasp the fit of the model by looking at the regression
coefficients directly, but easy to do so using visreg. In addition to the tools for creating cross-sectional
plots described in the “Cross-sectional plots”, the visreg package provides the function visreg2d,
which can be used to produce two-dimensional contour and perspective plots. The following code
produces Figure 10:

visreg2d(fit, "Wind", "Temp”, plot.type="image")
visreg2d(fit, "Wind"”, "Temp", plot.type="persp")

Ozone

100

|
80 ’ 50

70 —

Temp

-50

60

Wind

Figure 10: Representations of the regression surface as a function of wind and temperature. Left:
Filled contour plot. Right: Perspective plot.

The advantage of these kinds of plots compared with those in “Cross-sectional plots” are that
they allow us to visualize the effect of simultaneously varying two factors. The disadvantage is that
there is no convenient way of superimposing either residuals or confidence intervals. These plots
are most useful when both variables are continuous, as one is not forced to take cross-sections over a
continuous variable. The visreg2d function still functions correctly when one or both of its arguments
is a categorical variable, although in our opinion, the cross-section plots of “Cross-sectional plots” are
more useful in these settings.

In addition to the static perspective plot presented above, visreg2d can also create interactive
perspective plots using the rgl package (Adler and Murdoch, 2011), which allow the user to rotate, tilt,
and spin the regression surface. This makes it considerably easier to comprehend its three-dimensional
shape. Such plots can be constructed with the code:

visreg2d(fit, x="Wind", y="Temp", plot.type="rgl")

Visualization of higher-order interactions, such as three-way or four-way interactions, becomes
increasingly difficult. To some extent, visreg facilitates visualization of such models through the use
of the cond argument. For example, code such as the following could be used to visualize a three-way
interaction:

fit <- 1m(Ozone ~ Solar.R * Wind * Temp, data=airquality)
visreg2d(fit, "Wind"”, "Temp"”, cond=list(Solar.R=100))
visreg2d(fit, "Wind"”, "Temp”, cond=list(Solar.R=300))

Other models

As mentioned at the outset, the goal in creating the visreg package was to implement visualization in
an object-oriented manner, so that it works with as many classes of models from different functions
and packages as possible. All that it requires is functioning model. frame and predict methods for
the fitted model object (plotting of partial residuals requires a residuals method as well). Thus,
the visreg package and all its options work not only with linear model objects produced by 1m, but
with generalized linear models produced by glm, proportional hazards models produced by coxph
(Therneau, 2012), robust linear models produced by rlm (from MASS: Venables and Ripley, 2002),

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=rgl
https://CRAN.R-project.org/package=MASS

CONTRIBUTED RESEARCH ARTICLES

66

negative binomial models produced by glm.nb (from MASS), generalized additive models produced
by gam (from mgcv: Wood, 2012), local regression models produced by loess and locfit (Loader, 2010),
and many more. Indeed, the type of object does not even need to be part of an R package; user-defined
model classes can also be visualized with visreg, provided that they are compatible with model. frame
and predict. In this section, we briefly illustrate the use of visreg with some of the above types of
models.

Generalized linear models

We begin with a logistic regression model applied to a study investigating risk factors associated with
low birth weight (Hosmer and Lemeshow, 2000). The following code produces Figure 11.

data("birthwt”, package="MASS")

fit <- glm(low ~ age + race + smoke + lwt, data=birthwt, family="binomial")

visreg(fit, "lwt"”, xlab="Mother's weight”, ylab="Log odds (low birthweight)")

visreg(fit, "lwt”, scale="response", rug=2, xlab="Mother's weight",
ylab="P(low birthweight)")

5 0- o 04

; ey

£ 17 2 03

5 5 2

g - £ 02

w -3 - 2

3 S 01

2] *

S ‘ , , ‘ 0.0~y SR Ly

100 150 200 250 100 150 200 250
Mother's weight Mother's weight

Figure 11: Visualization of a logistic regression model. Left: Log odds scale. Right: Probability scale.

On the left side of Figure 11, the model is plotted on the scale of the linear predictor (the default
scale in visreg), where the model is indeed linear. The confidence intervals in the figure are Wald
confidence intervals based on standard errors returned by predict.glm. The partial residuals are
calculated based on Equation 2, with r the deviance residuals (the default residuals returned by
residuals.glm). The plot on the right is simply a transformed version of the plot on the left, where an
inverse logistic transformation has been applied to the regression line and confidence bands (this is
handled automatically by the scale="response"” option).

Note that for the plot on the right, we have opted to plot a rug as opposed to the partial residuals.
The visreg package provides two types of rug annotations. With rug=TRUE or rug=1, a standard
rug along the bottom of the plot is provided. With rug=2, separate rugs are drawn on the top for
observations with positive residuals and on the bottom for observations with negative residuals (for
logistic regression, this corresponds to Y = 1 and Y = 0, respectively).

In practice, we have found plots like those on the left useful for visualizing the model fit and
observing potential departures from model assumptions such as outliers and influential points, and
plots like those on the right very useful for communicating modeling results to non-statisticians.

Other regression models

Here, we provide a brief demonstration applying visreg to some other types of models (note that these
are models for which the effects package is incompatible): a proportional hazards model, a robust
regression model, and a local regression model. The left side of Figure 12 presents a visualization of
the following proportional hazards model:

require(”"survival”)
fit <- coxph(Surv(futime, fustat) ~ age + rx, data=ovarian)
visreg(fit, "age", ylab="log(Hazard ratio)")
Note that in proportional hazards models, baseline hazard functions are not explicitly estimated,
and therefore the meaning behind a conditional plot is questionable. For this reason, contrast plots
are (arguably) more appropriate. A similar phenomenon occurs with logistic regression applied to

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=mgcv
https://CRAN.R-project.org/package=locfit

CONTRIBUTED RESEARCH ARTICLES

67

= 150 150
i)
§ .
B 2 100 2 100 -
< <] S
g 8 8
I 50 —
=
o
O -
T T T T T T T T
5 10 15 20 5 10 15 20
Age Wind Wind

Figure 12: Visualizations of proportional hazards (left), robust regression (middle), and loess (right)
models.

case-control studies, in which an intercept is estimated, but is the estimate is biased by the study
design.

The middle of Figure 12 presents a visualization of the following robust regression model (using
rlm from the MASS package):

fit <- rlm(Ozone ~ Solar.R + Wind * Heat, data=airquality)
visreg(fit, "Wind", ylab="Ozone")

Note that the design matrix for the robust regression model is the same as that from “Cross-
sectional plots”, and that the plot in the middle of Figure 12 is analogous to the middle panel from
Figure 6. Note, however, that the robust regression model produces a different fit, due in part to
the reduced impact of the potential outlier mentioned in “Cross-sectional plots”. Specifically, the fit
produced by the robust regression model is flatter and does not predict negative ozone concentrations
for high wind levels as the linear regression model does.

Finally, we apply visreg to a local regression model fit with loess, producing a much more useful
visualization of the model than the default plot method for loess. This plot appears on the right side
of Figure 12.

fit <- loess(Ozone ~ Wind, airquality)
visreg(fit, "Wind", ylab="0Ozone")

All of the features and options we mentioned earlier; in particular cross-section and surface plots work
in the same way for nonlinear models as they do for linear models.

Computationally, the extension of visreg to nonlinear models is straightforward due to its object-
oriented implementation, but it is worth making some comments about partial residuals for nonlinear
models. In particular, it is no longer the case that the regression line through the partial residuals
produces a line with the same slope as that produced by the model. Viewing nonlinear models as
reweighted least squares models, the observations have different weights and these weights are not
reflected in the partial residuals plotted by visreg. This phenomenon has been commented on by
many authors, with a variety of proposals for alternative types of reweighted partial residuals that
may be better at detecting outliers and influential observations (Pregibon, 1981; Landwehr et al., 1984;
O’Hara Hines and Carter, 1993).

Non-regression models

Moving even further from linear models, visreg is also compatible with modeling frameworks that are
not even regression-based, such as random forests and support vector machines. Such methods are
often thought of as “black boxes”, but visreg offers a convenient way to visualize the resulting fit and
possibly gain some insight into the model. The following code fits each of the aforementioned models
to the airquality data using the randomForest (Breiman et al., 2015) and e1071 (Meyer et al., 2017)
packages, and plots the resulting estimated association between ozone and temperature (Figure 13).
Some of these packages do not automatically handle missing data, so we first create a complete-case
data set aq:

ag <- na.omit(airquality)

fit1 <- randomForest(Ozone ~ Solar.R + Wind + Temp, data=aq)
fit2 <- svm(Ozone ~ Solar.R + Wind + Temp, data=aq)
visreg(fitl, "Temp”, ylab="0zone", ylim=c(0, 150))
visreg(fit2, "Temp"”, ylab="0zone", ylim=c(@, 150))

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=randomForest
https://CRAN.R-project.org/package=e1071

CONTRIBUTED RESEARCH ARTICLES

68

150 150
o 100 o 100
= =
(=} [=}
o o
50 50
0 — . 0 —
T T T T T T T T
60 70 80 90 60 70 80 90
Temp Temp

Figure 13: Left: Random forest. Right: Support vector machine.

Both of the results in Figure 13 appear reasonable with the default settings employed, although
neither of these models is able to provide confidence bands for fitted values, so no shaded bands
appear. A useful feature of plotting the model’s predictions, however, is that it illustrates the effect of
changing those settings. For example, consider the application of gradient boosting machines to this
same data using the gbm package (Ridgeway, 2017). First, it is worth noting that the gbm package
does not offer a residuals method. This would normally cause visreg to omit plotting the partial
residuals. However, we can supply our own user-defined residuals method, which enables visreg to
produce the plots in Figure 14.

residuals.gbm <- function(fit) fit$data$y - fit$fit

fit3 <- gbm(Ozone ~ Solar.R + Wind + Temp, data=aq)

fit4 <- gbm(Ozone ~ Solar.R + Wind + Temp, data=aq, n.trees=5000)
visreg(fit3, "Temp"”, ylab="0zone", ylim=c(0, 150))

visreg(fit4, "Temp”, ylab="0zone", ylim=c(0, 150))

150 150
» 100 — ’ o 100 —
c L c
o o
<) S
50 — iR 50 —
0 — 0 —
T T T T T T T T
60 70 80 90 60 70 80 90
Temp Temp

Figure 14: Visualizations of gradient boosting machine. Left: Default setting (100 trees) Right: 5,000
trees.

Note that the default settings for gbm do not produce a very good fit here. In particular, the
default number of trees (100) is too low to capture the relationship between temperature and ozone.
By increasing the number of trees (to 5,000), we obtain a much more reasonable fit.

Hierarchical and random effect models

The ability of visreg to visualizing mixed effect models is hindered by the fact that incorporating
uncertainty about random effects into predictions is difficult from a frequentist perspective and most
R packages for such models do not offer confidence intervals for such estimates. Nevertheless, visreg
is still useful for visualizing the effects of fixed effects in such models using contrast plots, as well as
plotting effects without confidence intervals.

As an illustration, we consider a study involving the protein content of cows’ milk in the weeks
following calving (Diggle et al., 2002). Consider the following random-intercept, random-slope model,
fit using the Ime4 package (Bates et al., 2012), which also contains a fixed effect for the type of diet
each cow was fed.

data(Milk, package="nlme")
fit <- lmer(protein ~ Diet + Time + (Time|Cow), Milk)

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=gbm
https://CRAN.R-project.org/package=lme4

CONTRIBUTED RESEARCH ARTICLES

69

In the Ime4 package, the predict method does not return standard errors. This means that any
conditional plots constructed by visreg will lack confidence intervals, like those in Figures 13 and
14. This is another example of a situation where a contrast plot is useful: by considering the effect
of changing diet while other terms remain constant, the random effects drop out of the model and
standard errors/confidence intervals are straightforward, as illustrated in Figure 15. The following
code also illustrates how to change graphical options, as there is considerable overplotting of the
partial residuals under the default settings.

visreg(fit, "Diet"”, type="contrast”, ylab=expression(Delta*'Protein'),
points.par=1list(col="#55555540", cex=0.25))

0.5
£ ¢
7] « ' ' E
§ 0.0 == i i s a ¢
o PN 5 AN R Far X 'y
< ace® D] ; 3
-0.5
-1.0 T T T
barley barley+lupins lupins
Diet

Figure 15: Contrast plot illustrating the fixed effect of diet in the Milk example.

The visreg package can also be used to plot random effects, although as mentioned earlier, the
plots will not include intervals. Below, we provide code to plot the modeled relationship between
protein content and time. Two aspects of the code are worth pointing out. First, note that according to
the object-oriented design of visreg, the predict method supplied by Ime4 will used. It has its own
option, re. form, to control how random effects are used in the prediction, and this must be passed
through visreg accordingly. Second, for the sake of space we subset the plot to ten cows rather than all
79. This can be accomplished by returning, then subsetting, the raw visreg object prior to plotting.
Returning the data frames, estimates, confidence intervals, and residuals used in the construction of
its plots like this allows users to write their own extensions and modifications of visreg plots.

v <- visreg(fit, "Time", by="Cow", re.form=~(Time|Cow), plot=FALSE)
subCow <- sample(Milk$Cow, 10)

vv <- subset(v, Cow %in% subCow)

plot(vv, ylab="Protein”, layout=c(10,1))

5 10 15 5 10 15 5 10 15 5 10 15 5 10 15
1 1
BL7 B2l BO5 BLO5 BL20 BL27 BL25 19 20 23
4.0 1 . ro. 5 c . s N\,) [
o — d % = - B B
wl . .) . o . L
‘T T
5 10 15 5 10 15 5 10 15 5 10 15 5 10 15
Time

Figure 16: Subject-specific conditional plots for ten randomly chosen cows from the Milk example
illustrating the change in protein content over time.

Conclusion

Partial residuals and how useful they are in detecting influential observations and departures from
model assumptions depends on the model. Other types of plots, such as added variable plots

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

70

(Atkinson, 1985), are also helpful for visualizing regression models and their fit. We feel that the
approach provided by visreg is reasonable and the best that can be expected from an object-oriented
tool that can be applied generically to a wide variety of models, although we certainly acknowledge
that other types of plots and visualizations may offer useful additional information for certain types of
models.

The visreg package provides a very useful set of tools for simultaneously visualizing the estimated
relationship between an explanatory variables and the outcome, the variability of that estimate, and
the observations from which the estimates derive. These tools have a simple interface and are readily
applied in an object-oriented manner to wide variety of models. We have found the development of
this package to provide a convenient and versatile tool to assist with regression modeling, both for
model exploration and for communicating modeling results.

More information about visreg, illustrating its various options with numerous examples can be
found at http://pbreheny.github.io/visreg.

Bibliography
D. Adler and D. Murdoch. Rgl: 3D Visualization Device System (OpenGL), 2011. R package version
0.92.798. [p65]

A. C. Atkinson. Regression diagnostics, transformations and constructed variables. Journal of the Royal
Statistical Society B, 44:pp. 1-36, 1982. [p58]

A. C. Atkinson. Plots, Transformations, and Regression. Oxford University Press, 1985. [p70]

D. Bates, M. Maechler, and B. Bolker. Lme4: Linear Mixed-Effects Models Using S4 Classes, 2012. R
package version 0.999999-0. [p68]

D. A. Belsley, E. Kuh, and R. E. Welsch. Regression Diagnostics. John Wiley & Sons, 1980. [p56]

L. Breiman, A. Cutler, A. Liaw, and M. Wiener. randomForest: Breiman and Cutler’s Random Forests for
Classification and Regression, 2015. R package version 4.6-12. [p67]

R. D. Cook. Exploring partial residual plots. Technometrics, 35:351-362, 1993. URL https://doi.org/
10.2307/1270269. [p56]

R. D. Cook and S. Weisberg. Residuals and Influence in Regression. Chapman and Hall, 1982. [p56]

P.]. Diggle, P.]. Heagerty, K.-Y. Liang, and S. L. Zeger. Analysis of Longitudinal Data. Oxford University
Press, 2002. [p68]

B. Efron. Better bootstrap confidence intervals. Journal of the American Statistical Association, 82:171-185,
1987. URL https://doi.org/10.2307/2289144. [p59]

M. Ezekiel. A method of handling curvilinear correlation for any number of variables. Journal of the
American Statistical Association, 19:431-453,1924. URL https://doi.org/10.2307/2281561. [p58]

J. Fox. Effect displays in R for generalised linear models. Journal of Statistical Software, 8:1-27, 2003.
URL https://doi.org/10.18637/jss.v008.115. [p57]

J. Fox and S. Weisberg. An R Companion to Applied Regression. Sage, Thousand Oaks CA, 2nd edition,
2011. [p57]

P. M. Grambsch and T. M. Therneau. Proportional hazards tests and diagnostics based on weighted
residuals. Biometrika, 81:pp. 515-526, 1994. URL https://doi.org/10.1093/biomet/81.3.515.

[p56]

F. Harrell. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal
Regression, and Survival Analysis. Springer-Verlag, 2015. [p57]

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and
Prediction. Springer-Verlag, 2009. [p57]

T.]. Hastie and R. J. Tibshirani. Generalized Additive Models. Chapman & Hall/CRC, 1990. [p56]
D. W. Hosmer and S. Lemeshow. Applied Logistic Regression. John Wiley & Sons, 2000. [p66]

P. E. Johnson. Rockchalk: Regression Estimation and Presentation, 2016. R package version 1.8.101. [p57]

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

http://pbreheny.github.io/visreg
https://doi.org/10.2307/1270269
https://doi.org/10.2307/1270269
https://doi.org/10.2307/2289144
https://doi.org/10.2307/2281561
https://doi.org/10.18637/jss.v008.i15
https://doi.org/10.1093/biomet/81.3.515

CONTRIBUTED RESEARCH ARTICLES 71

M. Kutner, C. Nachtsheim, J. Neter, and W. Li. Applied Linear Statistical Models. McGraw-Hill, 2004.
[p58]

J. M. Landwebhr, D. Pregibon, and A. C. Shoemaker. Graphical methods for assessing logistic regression
models. Journal of the American Statistical Association, 79:61-71, 1984. URL https://doi.org/10.
2307/2288334. [p67]

W. A. Larsen and S.]. McCleary. The use of partial residual plots in regression analysis. Technometrics,
14:781-790, 1972. URL https://doi.org/10.2307/1267305. [p58]

C. Loader. Locfit: Local Regression, Likelihood and Density Estimation., 2010. R package version 1.5-6.
[po6]

A. Loy and H. Hofmann. Diagnostic tools for hierarchical linear models. Wiley Interdisciplinary Reviews:
Computational Statistics, 5:48-61, 2013. URL https://doi.org/10.1002/wics.1238. [p56]

C. L. Mallows. Augmented partial residuals. Technometrics, 28:313-319, 1986. URL https://doi.org/
10.2307/1268980. [p56]

D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch. E1071: Misc Functions of the
Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien, 2017. R package version
1.6-8. [p67]

R. J. O’'Hara Hines and E. M. Carter. Improved added variable and partial residual plots for the
detection of influential observations in generalized linear models. Journal of the Royal Statistical
Society C, 42:pp. 3-20,1993. URL https://doi.org/10.2307/2347405. [p67]

D. Pregibon. Logistic regression diagnostics. The Annals of Statistics, 9:705-724, 1981. URL https:
//doi.org/10.1214/a0s/1176345513. [p56, 67]

G. Ridgeway. Gbm: Generalized Boosted Regression Models, 2017. R package version 2.1.3. [p68]
D. Sarkar. Lattice: Multivariate Data Visualization with R. Springer-Verlag, 2008. [p62]

T. Therneau. A Package for Survival Analysis in S, 2012. R package version 2.36-12. [p65]

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer-Verlag, 2002. [p65]
H. Wickham. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, 2009. [p63]

C. S. Withers and S. Nadarajah. Improved confidence regions based on edgeworth expansions.
Computational Statistics & Data Analysis, 56:4366 — 4380, 2012. URL https://doi.org/10.1016/7.
csda.2012.03.019. [p59]

F.S. Wood. The use of individual effects and residuals in fitting equations to data. Technometrics, 15:
677-695,1973. URL https://doi.org/10.2307/1267381. [p58]

S. Wood. Mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML Smoothness Estimation, 2012. R
package version 1.7-17. [p66]

S. N. Wood. Generalized Additive Models: An Introduction with R. Chapman & Hall/CRC, 2006. [p56]

Patrick Breheny

Department of Biostatistics
University of lowa

ORCiD: 0000-0002-0650-1119
patrick-breheny@uiowa.edu

Woodrow Burchett
Department of Statistics
University of Kentucky
woodrow. burchett@uky.edu

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://doi.org/10.2307/2288334
https://doi.org/10.2307/2288334
https://doi.org/10.2307/1267305
https://doi.org/10.1002/wics.1238
https://doi.org/10.2307/1268980
https://doi.org/10.2307/1268980
https://doi.org/10.2307/2347405
https://doi.org/10.1214/aos/1176345513
https://doi.org/10.1214/aos/1176345513
https://doi.org/10.1016/j.csda.2012.03.019
https://doi.org/10.1016/j.csda.2012.03.019
https://doi.org/10.2307/1267381
http://orcid.org/0000-0002-0650-1119
mailto:patrick-breheny@uiowa.edu
mailto:woodrow.burchett@uky.edu

CONTRIBUTED RESEARCH ARTICLES

72

fourierin: An R package to compute
Fourier integrals

by Guillermo Basulto-Elias, Alicia Carriquiry, Kris De Brabanter and Daniel]. Nordman

Abstract We present the R package fourierin (Basulto-Elias, 2017) for evaluating functions defined as
Fourier-type integrals over a collection of argument values. The integrals are finitely supported with
integrands involving continuous functions of one or two variables. As an important application, such
Fourier integrals arise in so-called “inversion formulas”, where one seeks to evaluate a probability
density at a series of points from a given characteristic function (or vice versa) through Fourier
transforms. This paper intends to fill a gap in current R software, where tools for repeated evaluation
of functions as Fourier integrals are not directly available. We implement two approaches for such
computations with numerical integration. In particular, if the argument collection for evaluation
corresponds to a regular grid, then an algorithm from Inverarity (2002) may be employed based
on a fast Fourier transform, which creates significant improvements in the speed over a second
approach to numerical Fourier integration (where the latter also applies to cases where the points for
evaluation are not on a grid). We illustrate the package with the computation of probability densities
and characteristic functions through Fourier integrals/transforms, for both univariate and bivariate
examples.

Introduction

Continuous Fourier transforms commonly appear in several subject areas, such as physics and statis-
tics. In probability theory, for example, continuous Fourier transforms are related to the characteristic
function of a distribution and play an important role in evaluating probability densities from charac-
teristic functions (and vice versa) through inversion formulas (cf. Athreya and Lahiri (2006)). Similar
Fourier-type integrations are also commonly required in statistical methods for density estimation,
such as kernel deconvolution (cf. Meister (2009)).

At issue, the Fourier integrals of interest often cannot be solved in elementary terms and typically
require numerical approximations. As a compounding issue, the oscillating nature of the integrands
involved can cause numerical integration recipes to fail without careful consideration. However, Bailey
and Swarztrauber (1994) present a mid-point integration rule in terms of appropriate discrete Fourier
transforms, which can be efficiently computed using the Fast Fourier Transform (FFT). Inverarity
(2002) extended this characterization to the multivariate integral case. These works consequently offer
targeted approaches for numerically approximating types of Fourier integrals of interest (e.g., in the
context of characteristic or density functions).

Because R is one of the most popular programming languages among statisticians, it seems
worthwhile to have general tools available for computing such Fourier integrals in this software
platform. However, we have not found any R package that specifically performs this type of integral in
general, though this integration does intrinsically occur in some statistical procedures. See Stirnemann
et al. (2012) for an application in kernel deconvolution where univariate Fourier integrals are required.
Furthermore, beyond the integral form, the capacity to handle repeated calls for such integrals is
another important consideration. This need arises when computing a function, that is itself defined
by a Fourier integral, over a series of points. Note that this exact aspect occurs when determining a
density function from characteristic function (or vice versa), so that the ability to efficiently compute
Fourier integrals over a collection of arguments is crucial.

The intent of the package fourierin explained here is to help in computing such Fourier-type
integrals within R. The main function of the package serves to calculate Fourier integrals over a range of
potential arguments for evaluation and is also easily adaptable to several definitions of the continuous
Fourier transform and its inverse (cf. Inverarity (2002)). (That is, the definition of a continuous Fourier
transform may change slightly from one context to another, often up to normalizing constants, so
that it becomes reasonable to provide a function that can accommodate any given definition through
scaling adjustments.) If the points for evaluating Fourier integrals are specified on regular grid, then
the package allows use of the FFT for particularly fast numerical integration. However, the package
also allow the user to evaluate such integrals at arbitrary collections of points that need not constitute a
regular grid (though, in this case, the FFT cannot be used and computations naturally become slower).
The latter can be handy in some situations; for example, evaluations at zero can provide moments
of a random variable when computing derivatives of a characteristic function from the probability
density. The heavy computations in fourierin are performed in C++ via the ReppArmadillo package
(cf. Eddelbuettel and Sanderson (2014)).

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=fourierin
https://CRAN.R-project.org/package=RcppArmadillo

CONTRIBUTED RESEARCH ARTICLES

73

The rest of the paper has four sections. We first describe the Fourier integral for evaluation and its
numerical approximation in “Fourier Integrals and Fast Fourier Transform (FFT).” We then illustrate
how package fourierin may be used in univariate and bivariate cases of Fourier integration. In “Speed
Comparison,” we demonstrate the two approaches (FFT-based or not) for computing Fourier integrals,
both in one and two dimensions and at several grid sizes. We provide evidence that substantial
time savings occur when using the FFT-based method for evaluation at points on a grid. Finally, in
“Summary,” we present conclusions and upcoming extensions to the R package.

Fourier integrals and fast Fourier transform

Forw = (wy,...,wn), t = (t1,...,tn) € R", define the vector dot product (w, t) = wyt; + -+ - + wyty
and recall the complex exponential function exp{ix} = cos(x) + 1sin(x), x € R, where1 = /—1.

This package aims to compute Fourier integrals at several points simultaneously, which namely
involves computation of the integral

27)1-r

e "L L L esen

at more than one potential argument w € R", where f is a generic continuous n-variate function
that takes real or complex values, for n € {1,2}, and the above limits of integration are defined by
real values aj < b]- forj =1,...,n. Note that s and r in (1) denote real-valued constants, which are
separately included to permit some flexibility in the definition of continuous Fourier transforms to
be used (e.g., s = 1, 7 = 1). Hence, (1) represents a function of w € R", defined by a Fourier integral,
where the intention is to evaluate (1) over a discrete collection of w-values, often defined by a grid
in R". For example, if [c1,d1) X - -+ X [cy,dp) C R" denotes a rectangular region specified by some
real constants ¢j < dj, j=1,...,n,one may consider evaluating (1) at points w lying on a regular grid
of size my X my X - - - X my, within [c1,d1) X - -+ X [cy, dy), say, at points wlirdn) = (wjl, . ..,wjn) for
wj, = cx + ji(dy — cx) /my with ji € {0,1,...,m — 1}, k= 1,...,n (where m denotes the number of
grid points in each coordinate dimension). Argument points on a grid are especially effective for fast
approximations of integrals (as in 1), as we discuss in the following.

At given argument w € R"”, we numerically approximate the integral (1) with a discrete sum
using the mid-point rule, whereby the approximation of the j-th slice of the multiple integral involves
I; partitioning rectangles (or equi-spaced subintervals) for j = 1,...,n and n € {1,2}; that is, for
Iy, ..., 1, representing a selection of the numbers of approximating nodes to be used in the coordinates
of integration (i.e., a resolution size), the integral (1) is approximated as

r/z L-1L-1 I,—1

n b — . ‘ o
[[(zf)'m Y o X (i) exp {is(w, i), @
j=1] 11=01,=0 i, =0

with nodes ¢(i-in) = (ti,, ..., ti,) defined by coordinate midpoints t; = aj + (2ix +1)/2- (b — ar) /I
foriy € {0,1,...,lx —1} and k = 1,...,n. Note that a large grid size l; X - - - X I, results in higher
resolution for the integral approximation (2), but at a cost of increased computational effort. On the
other hand, observe that when a regular grid is used, the upper evaluation limits, d1, . .., d, are not
included in such grid, however, the higher the resolution, the closer we get to these bounds.

To reiterate, the goal is then to evaluate the Fourier integral (1) over some set of argument points
w € R" by employing the midpoint approximation (2), where the latter involves a Iy x --- X I
resolution grid (of midpoint nodes) for n € {1,2}. It turns out that when the argument points w fall
onamy X --- X my-sized regular grid and this grid size matches the size of the approximating node
grid from (2), namely [i = m; for each dimension j = 1,..., 1, then the sum (2) may be written in
terms of certain discrete Fourier transforms and inverses of discrete Fourier transforms that can be
conveniently computed with a FFT operation. Details of this derivation can be found in Inverarity
(2002). It is well known that using FFT greatly reduces the computational complexity of discrete
Fourier transforms from O(m?) to O(mlogm) in the univariate case, where m is the resolution or grid
size. The complexity of computing the multivariate discrete Fourier transform of an n-dimensional
array using the FFT is O(Mlog M), where M = my - - - m,, and m; is the grid /resolution size in the j-th
coordinate direction, j =1, ..., n.

The R package fourierin can take advantage of such FFT representations for the fast computation
of Fourier integrals evaluated on a regular grid. The package can also be used to evaluate Fourier
integrals at arbitrary discrete sets of points. The latter becomes important when one wishes to evaluate
the a continuous Fourier transform at only a few specific points (that may not necessarily constitute a
regular grid). We later compare evaluation time of Fourier integrals on a regular grid, both using the

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

74

FFT and without using it in fourierin.

Examples

In this section we present examples to illustrate use of the fourierin package. We begin with a
univariate example which considers how to compute continuous Fourier transforms evaluated on
a regular grid (therefore using the FFT operation) as well as how the computations proceed at three
specified points not on a regular grid (where the FFT is not be used). The second example considers a
two dimensional, or bivariate, case of Fourier integration.

The code that follows shows how the package can be used in univariate cases. The example we
consider is to recover a x> density f with five degrees of freedom from its characteristic function ¢,
where the underlying functions are given by

S — (1 —)52
()= 2/ (3) e and p(t) = (1—2u1) 772, 3)

forall x > 0 and t € R. We also show how to use the package on non-regular grids. Specifically, we
generate sample of three points from a x> distribution with five degrees of freedom and evaluate the
density in Formula 3 at these three points where the density has been computed using the Fourier
inversion formula approximated at four different resolutions. Results are presented in Table 1.

For illustration, the limits of integration are set from —10 to 10 and we compare several resolutions
(64, 256 or 512) or grid node sizes for numerically performing integration (cf. (2)), recalling that the
higher the resolution, the better the integral approximation. To evaluate the integrals at argument
points on a regular grid, we choose [—3,20] as an interval for specifying a collection of equi-spaced
points, where the number of such points equals the resolution specified (as needed when using FFT).

B m oo
Univariate example
HHE m o

Load packages
library(fourierin)
library(dplyr)
library(purrr)
library(ggplot2)

Set functions

df <- 5

cf <= function(t) (1 - 2ixt)*(-df/2)
dens <- function(x) dchisq(x, df)

Set resolutions
resolutions <- 2*(6:8)

Compute integral given the resoltion
recover_f <- function(resol){
Get grid and density values
out <- fourierin(f = cf, lower_int = -10, upper_int = 10,
lower_eval = -3, upper_eval = 20,
const_adj = -1, freq_adj = -1,
resolution = resol)
Return in dataframe format
out %>%
as_data_frame() %>%
transmute(
X = W,
values = Re(values),
resolution = resol)

3

Density approximations
vals <- map_df(resolutions, recover_f)

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

75

True values
true <- data_frame(x = seq(min(vals$x), max(vals$x), length = 150),
values = dens(x))

univ_plot <-
vals %>%
mutate(resolution = as.character(resolution),
resolution = gsub("64", "064", resolution)) %>%
ggplot(aes(x, values)) +
geom_line(aes(color = resolution)) +
geom_line(data = true, aes(color = "true values"))

univ_plot

Evaluate in a nonregular grid
set.seed(666)

new_grid <- rchisq(n = 3, df = df)
resolutions <- 2%(6:9)

fourierin(f = cf, lower_int = -10, upper_int = 10,
eval_grid = new_grid,
const_adj = -1, freq_adj = -1,
resolution = 128) %>%
c () %% Re() %>%
data_frame(x = new_grid, fx = .)

Function that evaluates the log-density on new_grid at different
resolutions (i.e., number of points to approximate the integral in
the Fourier inversion formula).
approximated_fx <- function (resol) {
fourierin(f = cf, lower_int = -10, upper_int = 12,
eval_grid = new_grid,
const_adj = -1, freq_adj = -1,
resolution = resol) %>%
c() %% Re() %>%
{data_frame(x = new_grid,
fx = dens(new_grid),
diffs = abs(. - fx),
resolution = resol)}

}

Generate table
tab <-
map_df (resolutions, approximated_fx) %>%
arrange(x) %>%
mutate(diffs = round(diffs, 7)) %>%
rename('f(x)' = fx,
'absolute difference' = diffs)

tab

Observe that the first call of the fourierin function above has the default argument use_fft =
TRUE. Therefore, this computation uses the the FFT representation described in Inverarity (2002) for
regular grids, which is substantially fast (Figure 5, as described later, provides timing comparisons
without the FFT for contrast). Also note that, when a regular evaluation grid is used, fourierin returns
a list with both the Fourier integral values and the evaluation grid. Figure 1 shows the resulting plot
generated. A low resolution (64) for numerical integration has been included in order to observe
differences between the true density and its recovered version using Fourier integrals.

At the bottom of the code above, we also show how fourierin() works when a non-regular
“evaluation grid” is provided. Observe that, in this case, one directly specifies separate points for
evaluation of the integral in addition to separately specifying a resolution level for integration. This
aspect is unlike the evaluation case on a regular grid. Consequently, only the Fourier integral values

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

76

x f(x) absolute difference resolution
3.0585883 0.1541368 0.0002072 64
0.0000476 128

0.0000472 256

0.0000471 512

6.4144242 0.0874281 0.0000780 64
0.0000155 128

0.0000148 256

0.0000147 512

11.7262677 0.0151776 0.0000097 64
0.0000025 128

0.0000022 256

0.0000022 512

Table 1: Absolute differences of true density values at three random points and density values at these
same three points obtained using the Fourier inversion formula approximated at different resolutions.

0.10- .
resolution

064
— 128

values

— 256

true values

Figure 1: Example of fourierin() function for univariate function at resolution 64. Recovering a)(2
density from its characteristic function. See Equation 3.

are returned, which is also unlike the regular grid case (where the evaluation grid is returned with
corresponding integrals in a list). Note that the function f from (1), when having a real-valued
argument, should be able to be evaluated at vectors in R.

In a second example, to illustrate how the fourierin() function works for bivariate functions, we
use a bivariate normal density f and find its characteristic function ¢. In particular, we have these
underlying functions as

1

) =

forallt,x € R?, with y = [_11} and X = {_31 _31}

exp |3z | and g0 = e (wa- 33, @

Below is the code for this bivariate case using a regular evaluation grid, where the output is a
complex matrix whose components are Fourier integrals corresponding to the gridded set of bivariate
arguments. As illustration, the limits of integration are set from (—8, —6) to (6, 8) (a square) and we
consider a resolution 128, where the range [—4,4] x [—4,4] is also chosen to define a collection of
evaluation points on a grid, where the number of such points again equals the resolution specified
(i.e., for applying FFT).

B —m
Bivariate example
B —m e

Load packages

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

77

library(fourierin)
library(tidyr)
library(dplyr)
library(purrr)
library(lattice)
library(ggplot2)

Set functions to be tested with their corresponding parameters.
mu <- c(-1, 1)
sig <- matrix(c(3, -1, -1, 2), 2, 2)

Multivariate normal density, x is n x d
f <= function(x) {
Auxiliar values
d <- ncol(x)
z <- sweep(x, 2, mu,
Get numerator and denominator of normal density
num <- exp(-0.5xrowSums(z * (z %*% solve(sig))))
denom <- sqrt((2xpi)~*d*det(sig))
return(num/denom)

n_n

3

Characteristic function, s is n x d
phi <- function (s) {
complex(modulus = exp(-0.5*xrowSums(s*x(s %*% sig))),
argument = s %*% mu)

3

Evaluate characteristic function for a given resolution.
eval <- fourierin(f,
lower_int = c(-8, -6), upper_int = c(6, 8),
lower_eval = c(-4, -4), upper_eval = c(4, 4),
const_adj = 1, freq_adj =1,
resolution = 2xc(64, 64),
use_fft = T)

Evaluate true and approximated values of Fourier integral
dat <- eval %>%
with(crossing(y = w2, x = wl) %>%
mutate(approximated = c(values))) %>%
mutate(true = phi(matrix(c(x, y), ncol = 2)),
difference = approximated - true) %>%
gather(value, z, -x, -y) %>%
mutate(real = Re(z), imaginary = Im(z)) %>%
select(-z) %>%
gather(part, z, -x, -y, -value)

Surface plot
wireframe(z ~ x*y | valuexpart, data = dat,
scales =
list(arrows=FALSE, cex= 0.45,
col = "black”, font = 3, tck = 1),
screen = list(z = 90, x = -74),
colorkey = FALSE,
shade=TRUE,
light.source= c(0,10,10),
shade.colors = function(irr, ref,
height, w = 0.4)
grey(wxirr + (1 - w)*(1 - (1 - ref)*0.4)),
aspect = c(1, 0.65))

Contours of values
biv_examplel <-

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

78

dat %>%

filter(value != "difference") %>%
ggplot(aes(x, y, z = z)) +
geom_tile(aes(fill = z)) +
facet_grid(part ~ value) +
scale_fill_distiller(palette = "Reds")

biv_examplel

Contour of differences

biv_example2 <-
dat %>%
filter(value == "difference") %>%
ggplot(aes(x, y, z = z)) +
geom_tile(aes(fill = z)) +
facet_grid(part ~ value) +
scale_fill_distiller(palette = "Spectral”)

biv_example2

The result of fourierin() was stored above in eval, which is a list with three elements: two
vectors with the corresponding evaluation grid values in each coordinate direction and a complex
matrix containing the Fourier integral values. If we do not wish to evaluate the Fourier integrals on a
regular grid and instead wish to evaluate these at, say I bivariate points, then we must passa l x 2
matrix in the argument w and the function will return a vector of size | with the Fourier integrals,
rather than a list. In the bivariate situation here, the function f must be able to receive a two-column
matrix with m rows, where m is the number of points where the Fourier integral will be evaluated.

Corresponding to this bivariate example, we have generated three plots to compare the approx-
imation from Fourier integrals to the underlying truth (i.e., compare the approximated and true
characteristic functions of the bivariate normal distribution). In Figure 2, we present the surface plots
of the approximated and the true values, as well as their differences for both the real and imaginary
parts. One observes that differences are small, indicating the adequacy of the numerical integration.

For a different perspective of the resulting Fourier integration, Figure 3 presents a contour plot
showing the approximated and true values of the bivariate normal characteristic function, for both
real and imaginary parts. We show a tile plot of the differences in Figure 4. Observe that the range of
differences in Figure 4 is relatively much smaller than the values in Figure 3.

Speed comparison

Through a small numerical study, here we compare the differences in execution times using fourierin()
for integration at points on a regular grid, both with or without FFT steps, considering univariate
and bivariate Fourier integrals. Figure 5 shows timing results for a univariate example of the integral
in (1) evaluated on a grid, while Figure ¢ presents timing results for a bivariate example. Note that
the reported time units differ between these figures, as the bivariate case naturally requires more
time. These figures provide evidence that, for evaluating integrals on a regular grid, the FFT option in
fourierin() creates large advantages in time.

The code that was used to generate Figure 5 and 6 is below.

B m o
Univariate speed test
B =

library(fourierin)
library(dplyr)
library(purrr)
library(ggplot2)
library(microbenchmark)

Test speed at several resolutions
resolution <- 27(3:8)

Function to be tested

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

79

rea

real

approximated

difference

2 X U -2 X
- H H 5 el
y
imaginary imaginary imaginary
approximated difference true
10 : 10 1 10 T
= o J M| j
z N W z N\) z L N
0.0 I' 0.0 I' 0.0 I'
! 2 X ! 2 X ! -2 X
T T _‘—4 T T T T

Figure 2: Example of fourierin function for univariate function at resolution 128 x 128: Obtaining
the characteristic function of a bivariate normal distribution from its density. See Equation 4. This
panel contains every combination of approximation-true-difference with real-imaginary parts.

myfnc <- function(t) exp(-t*2/2)

Aux. function
compute_times <- function(resol){
out <-
microbenchmark

fourierin_1d(f = myfnc, -5, 5, -3
fourierin_1d(f = myfnc, -5, 5, -3,

’ 3?
3

’

use_fft = FALSE),

times = 5) %>%
as.data.frame()
Rename levels
levels(out$expr) <- c("yes",
Obtain median of time.
out %>%
group_by(expr) %>%
summarize(time =
resolution =
rename(FFT = expr)

}

speedl <- resolution %>%
map_df (compute_times) %>%
mutate(resolution =

"

nou)

median(timex1e-6),
resol) %>%

as.factor(resolution)) %>%

-1,

-1, resol),

-1, -1, resol,

ggplot(aes(resolution, log(time), color = FFT)) +

geom_point(size =

2, aes(shape

= FFT)) +

The R Journal Vol. 9/2, December 2017

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

approximated true

Areuibew

1.0

[eal

Figure 3: Example of fourierin function for univariate function at resolution 128 x 128: Obtaining
the characteristic function of a bivariate normal distribution from its density. See Equation 4. Each
combination the approximated and true values are shown for both the real and imaginary parts.

geom_line(aes(linetype = FFT, group = FFT)) +
ylab("time (in log-milliseconds)")

speed1

o
Bivariate test
#H —m o

Load packages
library(fourierin)
library(dplyr)
library(purrr)
library(ggplot2)
library(microbenchmark)

Test speed at several resolutions
resolution <- 2%(3:7)

Bivariate function to be tested
myfnc <- function(x) dnorm(x[, 1])*dnorm(x[, 2])

Aux. function
compute_times <- function(resol){
resol <- rep(resol, 2)
out <-
microbenchmark(
fourierin(myfnc,
lower_int = c(-8, -6), upper_int = c(6, 8),
lower_eval = c(-4, -4), upper_eval = c(4, 4),
const_adj = 1, freq_adj =1,

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

81

difference
4-
2-
F = g.
0 F F g %
" 4 = o
3
-
z
[]
_4- 2.5e-05
> 0.0e+00
4-
-2.5e-05
B —5.0e-05
2.
0- 8
o
_4-
-4 -2 0 2 4

X

Figure 4: Example of fourierin function for univariate function at resolution 128 x 128: Obtaining
the characteristic function of a bivariate normal distribution from its density. See Equation 4. This plot
show the difference between the approximated and true values for the real and imaginary parts.

resolution = resol),

fourierin(myfnc,
lower_int = c(-8, -6), upper_int = c(6, 8),
lower_eval = c(-4, -4), upper_eval = c(4, 4),
const_adj = 1, freqg_adj =1,
resolution = resol, use_fft = FALSE),

times = 3) %>%

as.data.frame()

Rename levels
levels(out$expr) <- c("yes"”,
Obtain median of time.
out %>%
group_by(expr) %>%
summarize(time = median(timex1e-9),
resolution = resol[1]) %>%
rename(FFT = expr)

]

nO")

3

Values

comparison <-
resolution %>%
map_df (compute_times)

fctr_order <-
unique(comparison$resolution) %>%

paste(., ., sep = "x")
Plot
speed2 <- comparison %>%
mutate(resolution = paste(resolution, resolution, sep = "x"),

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

82

1 A
0-
P A
(%) L,
°
=4
S
o
[
9 FFT
‘E yes
S A -4 no
c
o
E —2-

8 16 32 64 128 256
resolution
Figure 5: Example of a univariate Fourier integral over grids of several (power of two) sizes. Specifi-
cally, the standard normal density is being recovered using the Fourier inversion formula. Time is in
log-milliseconds. The Fourier integral has been applied five times for every resolution and each dot
represents the mean for the corresponding grid size and method. Observe that both, x and y axis are
in logarithmic scale.

resolution = ordered(resolution, levels = fctr_order)) %>%
ggplot(aes(resolution, log(time), color = FFT)) +
geom_point(size = 2, aes(shape = FFT)) +
geom_line(aes(linetype = FFT, group = FFT)) +
ylab("time (in log-seconds)")

speed2

Summary

Continuous Fourier integrals/transforms are useful in statistics for computation of probability densi-
ties from characteristic functions, as well as the reverse, when describing probability structure; see
the “Examples” section for some demonstrations. The usefulness and potential application of Fourier
integrals, however, also extends to other contexts of physics and mathematics, as well as to statistical
inference (e.g., types of density estimation). For this reason, we have developed the fourierin package
as a tool for computing Fourier integrals over collections of evaluation points, where repeat evaluation
steps and often complicated numerical integrations are involved. When evaluation points fall on a
regular grid, fourierin allows use of a Fast Fourier Transform as a key ingredient for rapid numerical
approximation of Fourier-type integrals.

In “Speed Comparison,” we presented evidence of the gain in time when using this fast imple-
mentation of fourierin() on regular grids, while we also illustrated the versatility of fourierin in
“Examples” section. At present (version 0.2.1), the fourierin package performs univariate and bivariate
Fourier integration. An extension of the package to address higher dimensional integration will be
included in future versions.

Bibliography
K. B. Athreya and S. N. Lahiri. Measure theory and probability theory. Springer Science & Business Media,
2006. [p72]

D. H. Bailey and P. N. Swarztrauber. A fast method for the numerical evaluation of continuous Fourier
and Laplace transforms. SIAM Journal on Scientific Computing, 15(5):1105-1110, 1994. [p72]

G. Basulto-Elias. fourierin: Computes Numeric Fourier Integrals, 2017. URL https://CRAN.R-project.
org/package=fourierin. R package version 0.2.2. [p72]

D. Eddelbuettel and C. Sanderson. Rcpparmadillo: Accelerating R with high-performance C++
linear algebra. Computational Statistics and Data Analysis, 71:1054-1063, March 2014. URL http:
//dx.doi.org/10.1016/j.csda.2013.02.005. [p72]

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=fourierin
https://CRAN.R-project.org/package=fourierin
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://dx.doi.org/10.1016/j.csda.2013.02.005

CONTRIBUTED RESEARCH ARTICLES

83

time (in log-seconds)

8x8 16x16

Figure 6: Example of a bivariate Fourier integral over grids of several (power of two) sizes. Both axis
have the same resolution. Specifically, the characteristic function of a bivariate normal distribution is
being computed. Time is in log-seconds (unlike 5). The Fourier integral has been applied five times
for every resolution and each dot represents the mean for the corresponding grid size and method.
Observe that both, x and y axis are in logarithmic scale.

G. Inverarity. Fast computation of multidimensional Fourier integrals. SIAM Journal on Scientific
Computing, 24(2):645-651, 2002. [p72,73,75]

A. Meister. Deconvolution problems in nonparametric statistics, volume 193. Springer, 2009. [p72]

J. Stirnemann, A. Samson, and E. C. C. from Claire Lacour. deamer: Deconvolution density estimation with
adaptive methods for a variable prone to measurement error, 2012. URL https://CRAN.R-project.org/
package=deamer. R package version 1.0. [p72]

Guillermo Basulto-Elias
Towa State University
Ames, IA

United States
basulto@iastate.edu

Alicia Carriquiry
Iowa State University
Ames, IA

United States
alicia@iastate.edu

Kris De Brabanter

Iowa State University
Ames, IA

United States
kbrabant@iastate.edu

Daniel]. Nordman

Iowa State University
Ames, IA

United States
dnordman@iastate.edu

The R Journal Vol. 9/2, December 2017

ISSN 2073-4859

https://CRAN.R-project.org/package=deamer
https://CRAN.R-project.org/package=deamer
mailto:basulto@iastate.edu
mailto:alicia@iastate.edu
mailto:kbrabant@iastate.edu
mailto:dnordman@iastate.edu

CONTRIBUTED RESEARCH ARTICLES

84

Discrete Time Markov Chains with R

by Giorgio Alfredo Spedicato

Abstract The markovchain package aims to provide 54 classes and methods to easily handle Discrete
Time Markov Chains (DTMCs), filling the gap with what is currently available in the CRAN repository.
In this work, I provide an exhaustive description of the main functions included in the package, as
well as hands-on examples.

Introduction

DTMCs are a notable class of stochastic processes. Although their basic theory is not overly complex,
they are extremely effective to model categorical data sequences (Ching et al., 2008). To illustrate, no-
table applications can be found in linguistic (see Markov’s original paper Markov (1907)), information
theory (Google original algorithm is based on Markov Chains theory, Lawrence Page et al. (1999)),
medicine (transition across HIV severity states, Craig and Sendi (2002)), economics and sociology
(Jones (1997) shows an application of Markov Chains to model social mobility).

The markovchain package (Spedicato, Giorgio Alfredo, 2016) provides an efficient tool to create,
manage and analyse Markov Chains (MCs). Some of the main features include the possibility to:
validate the input transition matrix, plot the transition matrix as a graph diagram, perform structural
analysis of DTMCs (e.g. classification of transition matrices and states, analysis of the stationary
distribution, etc ...), perform statistical inference (such as fitting transition matrices from various
input data, simulating stochastic processes trajectories from a given DTMC, etc..). The author believes
that no R package provides a unified infrastructure to easily manage DTMCs as markovchain does at
the time this paper is being drafted.

The package targets data scientists using DTMC, Academia members, supporting faculty instruc-
tors, as well as students of undergraduate courses on Stochastic Processes.

The paper will be organized as follows: Section 14.2 gives a brief overview on R packages and
alternative software that provide similar functionalities, Section 14.3 reviews DTMC basic theory, Sec-
tion 14.4 discusses the package design and structure, Section 14.5 shows how to create and manipulate
homogeneous DTMCs, Section 14.6 and Section 14.7 respectively present the functions created to
perform structural analysis, and statistical inference on DTMCs. A brief overview of the functionalities
written to deal with non - homogeneous discrete dime Markov chains (NHDTMCs) is provided in
Section 14.8. A discussion on numerical reliability and computational performance is provided in
Section 14.9. Finally, Section 14.10 draws final conclusions and briefly discusses future potential
developments of the package.

Analysis of existing DTMC-related software

As reviewed later in more details, a DTMC is defined by a stochastic matrix known as transition matrix
(TM), which is a square matrix satisfying Equation 1.

{Pij S [0, 1] Vi,j
YiPj=1

Although defining a stochastic matrix is trivial in any mathematical or statistical software, a DTMC
dedicated infrastructure can provide object oriented programmed methods to verify the validity of the
input data (i.e. if the input matrix is a stochastic one) , as well as to perform structural analysis on
DTMC objects.

Various packages mention MCs - related models in the CRAN repository, whereby a few of them
will be now reviewed. The clickstream package (Scholz, 2016), on CRAN since 2014, aims to model
websites click stream using higher order Markov Chains. It provides a MarkovChain S4 class that is
similar to the markovchain class. Further, DTMCPack (Nicholson, William, 2013) and MTCM (Bessi,
Alessandro, 2015) also work with DTMCs but provide even more limited functions: the first one
focuses on creating simulations from a given DTMC, whilst the second contains only one function for
estimating the underlying transition matrix for a given categorical sequence. Moreover, none of them
appears to have been updated since 2015. The coverage of functionalities provided by markovchain
package for analysing DTMCs appears to be more complete than the above mentioned packages, since
none of them provides methods for importing or coercing transition matrices from other objects, such
as R matrices or data.frames. Furthermore, markovchain is the only package providing a quick
graph plotting facility for DTMC objects. The same applies when considering the functionalities used

)

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=markovchain
https://CRAN.R-project.org/package=clickstream
https://CRAN.R-project.org/package=DTMCPack
https://CRAN.R-project.org/package=MTCM

CONTRIBUTED RESEARCH ARTICLES

85

to perform structural analysis of transition matrices and to fit DTMCs from various kind of input data.

More interestingly, the FuzzyStatProb package (Pablo J. Villacorta and José L. Verdegay, 2016) gives
an alternative approach for estimating the parameters of DTMCs using "fuzzy logic".

This review voluntarily omits discussing packages that are not specifically focused on DTMC.

Nonetheless, the depmixS4 (Visser and Speekenbrink, 2010) and the HMM (Himmelmann, 2010)
packages deal with Hidden Markov Models (HMMs). In addition, the number of R packages focused
on the estimation of statistical models using the Markov Chain Monte Carlo simulation approach
is sensibly bigger. Finally, the msm (Jackson, 2011), heemod (Antoine Filipovi et al., 2017) and the
TPmsm packages (Artur Aratjo et al., 2014) focus on health applications of multi - state analysis using
different kinds of models, including Markov-related ones among them.

Finally, among other well known software used in Mathematics and Statistics, only Mathematica
(Wolfram Research, Inc., 2013) provides routines specifically written to deal with Markov processes
at the author’s knowledge. Nevertheless, the analysis of DTMCs could be easily handled within the
Matlab programming language (MATLAB, 2017) due to its well known linear algebra capabilities.

Review of underlying theory

In this section a brief review of the theory of DTMCs is presented. Readers willing to dive deeper can
inspect Cassandras (1993) and Grinstead and Snell (2012).

A DTMC is a stochastic process whose domain is a discrete set of states, {s1,s2,...,5¢}. The
chain starts in a generic state at time zero and moves from a state to another by steps. Let p;; be the
probability that a chain currently in state s; moves to state s; at the next step. The key characteristic
of DTMC processes is that p;; does not depend upon the previous state in the chain. The probability
pij for a (finite) DTMC is defined by a transition matrix previously introduced (see Equation 1). It is
also possible to define the TM by column, under the constraint that the sum of the elements in each
column is 1.

To illustrate, a few toy - examples on transition matrices are now presented; the "Land of Oz"
weather Matrix, Kemeny et al. (1974). Equation 2 shows the transition probability between (R)ainy,
(N)ice and (S)now weathers.

R N S
R 05 025 025 @)
N 05 0 0.5

S 025 025 05

Further, the Mathematica Matrix 3, taken from the Mathematica 9 Computer Algebra System
manual (Wolfram Research, Inc., 2013), that will be used when discussing the analysis the structural
proprieties of DTMCs, is as follows:

A B C D
A 05 05 0 0
B 05 05 0 0
C 025 025 025 025
D 0 0 0 1

®)

Simple operations on TMs allow to understand structural proprieties of DTMCs. For example, the
n — th power of P is a matrix whose entries represent the probabilities that a DTMC in state s; at time ¢
will be in state s; at time ¢ + n. In particular, if u; is the probability vector for time f (that is, a vector
whose j — th entries represent the probability that the chain will be in the j — th state at time ¢), then
the distribution of the chain at time ¢ + n is given by u,, = u * P". Main properties of Markov chains
are now presented.

A state s; is reachable from state s; if In — p?j > 0. If the inverse is also true then s; and s; are said
to communicate. For each MC, there always exists a unique decomposition of the state space into a
sequence of disjoint subsets in which all the states within each subset communicate. Each subset is
known as a communicating class of the MC. It is possible to link this decomposition to graph theory,
since the communicating classes represent the strongly connected components of the graph underlying
the transition matrix (Jarvis and Shier, 1999).

A state s; of a DTMC is said to be absorbing if it is impossible to leave it, meaning p;; = 1. An
absorbing Markov chain is a chain that contains at least one absorbing state which can be reached, not
necessarily in a single step. Non - absorbing states of an absorbing MC are defined as transient states.
In addition, states that can be visited more than once by the MC are known as recurrent states.

If a DTMC contains r > 1 absorbing states, it is possible to re-arrange their order by separating

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=FuzzyStatProb
https://CRAN.R-project.org/package=depmixS4
https://CRAN.R-project.org/package=HMM
https://CRAN.R-project.org/package=msm
https://CRAN.R-project.org/package=heemod
https://CRAN.R-project.org/package=TPmsm

CONTRIBUTED RESEARCH ARTICLES

86

transient and absorbing states such that the ¢ transient states come before the r absorbing ones. Such
re-arranged matrix is said to be in canonical form (see Equation 4), where its composition can be
represented by sub - matrices.

Qi Ry
(S) (4)
Such matrices are: Q (a t-square sub - matrix containing the transition probabilities across transient
states), R (a nonzero t-by-r matrix containing transition probabilities from non-absorbing to absorbing
states), 0 (an r-by-t zero matrix), and I, (an r-by-r identity matrix). It is possible to use these matrices
to calculate various structural proprieties of the DTMC. Since lim;, 0o Q" = 0, it can be shown that in

every absorbing matrix the probability to be eventually absorbed is 1, regardless of the state where the
MC is initiated.

Further, in Equation 5 the fundamental matrix is presented, where the generic n;; entry expresses
the expected number of times the process will transit in state s;, given that it started in state s;. Also,
the i-th entry of vector t = N x 1, being 1 a t-sized vector of ones, expresses the expected number of
steps before an absorbing DTMC, started in state s;, is absorbed. The b,-]- entries of matrix B= N xR
are the probabilities that a DTMC started in state s; will eventually be absorbed in state s;. Finally, the
probability of visiting the transient state j when starting from the transient state i is the /;; entry of the

matrix H = (N — [}) x N[zgl, being dg the diagonal operator.

N=(I-Q 1=I+ Y « (5)
i=0,1,...,00
A DTMC is said to be ergodic if there exist a number N such that it is possible to reach every state
in at most N steps. If P" > 0 for some 7, then P is a regular DTMC.

Fixed row vectors @, also known as steady state vectors, are vectors such that wP = @. Mathemat-
ically, they correspond to eigenvectors associated to unitary eigenvalues of the TM. It can be shown
that limy, e v * P" = w and that lim, . P = W, where v is a generic stochastic vector and w is a
matrix where all rows are @.

The mean first passage time m1;; is the expected the number of steps needed to reach state s; starting
from state s;, where m;; = 0 by convention. For ergodic MCs, r; is the mean recurrence time, that is the
expected number of steps to return to s; from s;. It is possible to prove that r; = %i, where w; is the i-th
entry of @. Further, let D be a diagonal matrix, in which the diagonal elements come from r;, and let C

be a matrix filled with ones. It is then possible to get the mean first passage matrix M from Equation 6.

(I-P)=C—M ©6)

LetZ=(I—-P+M) ~! be the fundamental matrix for an ergodic MC. It is possible to write m;; as
a function of Z and @, as Equation 7 shows.

Zjj — Zij

7)

Mij = .
wj

A further topic in structural analysis of irreducible DTMCs is periodicity. The period of a state s;,
denoted as d (i), is the greatest common divisor of n for which p;ﬁ. > 0. If the period is 1, the state is
aperiodic, while if the period is greater than 2, the state is periodic; all states in the same class share
the same period.

Given a generic DTMG, it is possible to simulate stochastic trajectories following the underlying
MC from the TM. Given an initial state s(t) = j, the s(f + 1) state is sampled from the multinomial
distribution whose probabilities are expressed by the j-th row. The sampled state indicates from which
row the probabilities to sample s(t 4 2) are taken from. Also, given a sample sequence, it is possible to
estimate the TM of the underlying DTMC. Equation 8 shows the maximum likelihood estimator (MLE)
of the TM p;; entry, being the n;; elements the number of sequences <X¢ =5;, Xp41 = s]-> counted in
the sample, that is:

i
~sMLE q
Pij = % . (8)
Y njy

u=1

Equation 10 shows asymptotic confidence intervals for p;;. The bootstrap approach allows to
define non - parametric ones.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

87

LowerEndpoint;; = p;j — 1.96 * SE;;)
UpperEndpoint;; = p;j +1.96 x SE;; (10)

The mode of the X;; conditional distribution given X; = s j represents the prediction from a given
DTMC and the current chain state X; = S;.

In conclusion, the markovchain package allows to perform statistical analysis on NHDTMCs, in
the special case where they can be treated as sequential lists of DTMCs.

Implementation design and details

The markovchain package has been originally written in "native" R. Most functions have been therefore
ported in Repp (Eddelbuettel, Dirk, 2013) since 2015, yielding sensible improvements in computational
time. Other dependencies of markovchain are: igraph Csardi, Gabor and Nepusz, Tamas (2006),
matlab Roebuck (2014), Matrix Bates and Maechler (2016) and expm Goulet et al. (2015) (for operation
on matrices), and the method package for defining 54 classes.

Homogeneous DTMCs are defined by a dedicated S4 class, "markovchain”. Such class is defined
by the following slots:

1. states: a character vector, listing the states for which transition probabilities are defined.

2. byrow: a logical variable, indicating whether transition probabilities are shown by row or by
column.

3. transitionMatrix: a matrix variable defining the TM.

4. name: an optional character variable to name the DTMC.

A "markovchain” 54 class has been designed based on Chambers,].M. (2008) suggestions. For
example, a 54 setValidity method checks the coherence of any newly created markovchain object, by
verifying that either the rows or columns of the transition matrix sum to one, and that all elements are
bounded between 0 and 1.

Another 54 class,"markovchainList"”, has been created for handling non - homogeneous DTMCs.
Finally, the package provides functions and S4 to analyse continuous MCs, as well as higher order
MCs, although their discussion is beyond the scope of this paper.

Three vignettes documents the markovchain package. The first one broadly describes the func-
tionalities of the package and it also presents real - world applications of DTMCs using the package.
The second one, written using knit and rmarkdown, is a beamer presentation that quickly introduces
the key functionalities of the package. The third one presents experimental functions for higher order
and multivariate MCs. Finally, the www. github.com/spedygiorgio/markovchain GitHub page hosts
the package’s wiki as well as its development version.

Creating and manipulating markovchain objects

The package is loaded within R as follows:
library("markovchain")
Creating a markovchain object is easy, and can be done with provided code.

#using "long" approach for mcWeather

weatherStates <- c("rainy”, "nice"”, "sunny")
weatherMatrix <- matrix(data = c(0.50, 0.25, 0.25,

0.5, 0.0, 0.5, 0.25, 0.25, 0.5), byrow = TRUE,

nrow = 3,dimnames = list(weatherStates, weatherStates))
mcWeather <- new("markovchain”, states = weatherStates,
byrow = TRUE, transitionMatrix = weatherMatrix,

name = "Weather")

#using "quick” approach on Mathematica's DTMC

mathematicaMatr <- matrix(c(1/2, 1/2, 0, @, 1/2, 1/2,

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=igraph
https://CRAN.R-project.org/package=matlab
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=expm
https://CRAN.R-project.org/package=method
www.github.com/spedygiorgio/markovchain

CONTRIBUTED RESEARCH ARTICLES

88

0, 0, 1/4, 1/4, 1/4, 1/4, 0, @, 0, 1),byrow=TRUE, nrow=4)
mathematicaMc<-as(mathematicaMatr, "markovchain")

#both are markovchain objects
is(mcWeather, "markovchain”)

[1] TRUE

is(mathematicaMc, "markovchain)
[1] TRUE

Commenting on the code snippet, the first part shows the “standard” approach to create a

markovchain, by calling the new 54 method, while the second part shows the “quick” method, by
coercing a matrix object into a markovchain one.

Specific methods allow to print and plot markovchain objects:

plot(mcWeather, main="Weather Markov Chain")

Weather Markov Chain

0:25 @
0:25

05

0.5

0,25
0.25

Figure 1: Plotting a markovchain object.

In particular, the plot method makes use of igraph package to draw the TM by default. It is
possible to modify the plot either by passing further parameters via ... or by choosing another
plotting devices, as further specified in the package vignette.

Algebraic operations have been defined in "markovchain” classes, as of the following example:
initialState <- c(0, 1, 0)
#multiplication

after2Days <- initialState * (mcWeather * mcWeather)
after2Days

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 89

rainy nice sunny
[1,] 0.375 @.25 0.375

in which multiplications by vectors and exponentiation are intuitively performed, making easy to
find the distribution of states at the n-th step.

A power operator also exists, /, and it is based on the expm package (Goulet et al., 2015), providing
efficient matrix exponentiation.

#after two days (by square power)
mcWeather”2

Weather*2

A 3 - dimensional discrete MC defined by the following states:
rainy, nice, sunny

The transition matrix (by rows) is defined as follows:

rainy nice sunny

rainy 0.4375 0.1875 0.3750

nice 0.3750 0.2500 0.3750

sunny ©.3750 0.1875 0.437

Finally, logical operators have been defined as well.

#logical equality and inequality
mcWeather==mcWeather

[1] TRUE
mcWeather!=mathematicaMc

[1] TRUE

Both the algebraic and logical operators have been defined by overriding standard R operators,
providing a more concise and "natural” code, which can bring the advantage of being more appealing
to a novice user, by executing certain operations on TM in an efficient way. Such approach has been
stressed in both the class help file and the package vignette code to make the final user fully aware of
any potential drawbacks of such choice.

Various convenience 54 methods have been defined to easily manipulate and manage markovchain
objects. In the following examples, some of the implemented methods in the "markovchain” class are
presented, allowing to: get and set names, return the MC dimension, transpose the transition matrix,
and directly access the transition probabilities.

#some markovchain specific methods

#naming
name (mcWeather)
[1] "Weather”

name (mathematicaMc) <- "Mathematica Markov Chain"
#list of defined states

states(mcWeather)

[1]1 "rainy” "nice” "sunny"

#the dimension
dim(mcWeather)
[11 3

#transpose operator
t(mcWeather)

Unnamed Markov chain
A 3 - dimensional discrete Markov Chain defined by the following states:
rainy, nice, sunny
The transition matrix (by cols) is defined as follows:
rainy nice sunny
rainy 0.50 0.5 0.25
nice 0.25 0.0 0.25

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=expm

CONTRIBUTED RESEARCH ARTICLES

90

sunny 0.25 0.5 0.50

#two ways to get transition probabilities
transitionProbability(mcWeather, "nice"”, "sunny")
[1] 0.5
mcWeather[2, 3]

[1]1 0.5

Finally, coerce methods allow to both import and export markovchain classes. Following, a brief
example on how to transform a markovchain object into a data. frame one.

#exporting to data.frame and matrix

as(mcWeather, "data.frame")
t0 t1 prob

1 rainy rainy 0.50
2 rainy nice 0.25
3 rainy sunny 0.25
4 nice rainy 0.50
5 nice nice 0.00
6 nice sunny 0.50
7 sunny rainy .25
8 sunny nice 0.25
9 sunny sunny 0.50

Structural properties of finite Markov chains

The markovchain package embeds functions to analyse the structural proprieties of DTMC. For exam-
ple, it is possible to find the stationary distribution, as well as classify the states. Feres, Renaldo (2007)
and Montgomery, James (2009) provide a full description of the algorithms underlying these functions,
whilst a more theoretical perspective can be found in Brémaud, Pierre (1999). The Mathematica MC
will be used to illustrate such features.

The summary method provides an overview of the structural properties of the DTMC process
underlying the markovchain object.

#plotting and summarizing
plot(mathematicaMc)

summary (mathematicaMc)

Mathematica Markov Chain Markov chain that is composed by:
Closed classes:

s1 s2

s4

Recurrent classes:

{s1,s2},{s4}

Transient classes:

{s3}

The Markov chain is not irreducible
The absorbing states are: s4

In the above example, closed and transient classes are identified, irreducibility checks are executed,
and a list of absorbing states is returned. Further, it is known that a finite MC has at least one
steady-state distribution, and the steadyStates method can be used to obtain it. To illustrate, for the
mcWeather matrix there exist a one - dimensional solution, since the underlying TM is irreducible. A
higher dimensional solution is given when the irreducibility property does not hold, as of the second
example.

#probability with DTMC: stationary distribution
when the TM is irreducibile
steadyStates(mcWeather)

rainy nice sunny

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

@ 025

0.5

® 0s

Figure 2: Plot of the Mathematica MC DTMC process.

[1,] 0.4 0.2 0.4
when reducibility applies
steadyStates(mathematicaMc)

s1 s2 s3 s4
[1,]0.50.5 @ 0
[2,] 0.00.0 0 1

Specific methods and functions return transient and absorbing states, and check whether any state
is accessible from another. Recurrent and communicating classes can be easily identified as well.

#probability with DTMC: classifying states

transientStates(mathematicaMc)
[—I] ”53”

absorbingStates(mathematicaMc)
I:'I] ”54”

is.accessible(mathematicaMc, from = "s1",6 to="s4")
[1] FALSE

#identifying recurrent and transient classes
recurrentClasses(mathematicaMc)

111

I:-I] 1151 n ”52"

[f21]
[11 "s4”

communicatingClasses(mathematicaMc)
[C1]1]
[1] ”51 n ”52”

[r211

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

[1] "s3"
[[31]
[1] "s4"

The communicating classes are the strongly connected components of the graph underlying the
DTMC. It is possible to convert a markovchain object into an igraph one, in order to use igraph’s
package clustering function to identify the strongly connected components as the following example
displays:

library(igraph)
#converting to igraph

mathematica.igraph<-as(mathematicaMc, "igraph")

#finding and formatting the clusters
SCC <- clusters(mathematica.igraph, mode="strong")
V(mathematica.igraph)$color <- rainbow(SCC$no)[SCC$membership]

#plotting
plot(mathematica.igraph, mark.groups = split(1:vcount(mathematica.igraph), SCC$membership),
main="Communicating classes - strongly connected components”)

Communicating classes - strongly connected components

®

@

Figure 3: The communicating classes are the strongly connected components of the graph underlying
the DTMC.

The three distinct clusters identified with different colors by the igraph package match with
the partition of the transition matrix into communicating classes given by markovchain package’s
communicatingClasses function.

We now illustrate the Canonical Form and the Fundamental Matrix concepts using another
example taken from classical theory: The Flipping Coin problem. Specifically, consider repeatedly
flipping a fair coin until the sequence (heads, tails, heads) appears; it is possible to model such process
using a DTMC with four states: “E” empty initial sequence, “H” head, “HT” head followed by tail,
“HTH” head followed by tail and head.

Flipping Coin Problem

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

defining the matrix

flippingMatr <- matrix(@, nrow=4, ncol=4)
flippingMatr[1,1:2] <- 0.5

flippingMatr[2,2:3] <- 0.5
flippingMatr[3,c(1,4)] <- 0.5

flippingMatr[4,4] <- 1

rownames (flippingMatr) <-
colnames(flippingMatr) <- c("E","H","HT","HTH")

creating the corresponding DTMC

flippingMc <- as(flippingMatr, "markovchain™)

The following function returns the Q, R, and I matrices by properly combining functions and
methods from the markovchain package.
#function to extract matrices
extractMatrices <- function(mcObj) {

require(matlab)
mcObj <- canonicForm(object = mcObj)

#get the indices of transient and absorbing

transIdx <- which(states(mcObj) %in% transientStates(mcObj))
absIdx <- which(states(mcObj) %in% absorbingStates(mcObj))

#get the Q, R and I matrices

Q <- as.matrix(mcObj@transitionMatrix[transIdx,transIdx])
R <- as.matrix(mcObj@transitionMatrix[transIdx,absIdx])
I <- as.matrix(mcObj@transitionMatrix[absIdx, absIdx])

#get the fundamental matrix

N <- solve(eye(size(Q)) - Q)

#computing final absorbion probabilities
NR <- N %*% R

#return

out <- list(
canonicalForm = mcObj,
Q=4q,
R =R,
I=1,
N=N,
NR=NR

)

return(out)

The expected number of visits to transient state j starting from state i can be found in the corre-

sponding entries of the fundamental matrix N = (I; — Q) ~1. Therefore, the fundamental matrix for
the above DTMC is:

#decompose the matrix

flipping.Dec <- extractMatrices(mcObj = flippingMc)

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 94

flipping.Fund <- flipping.Dec$N
#showing the fundamental matrix

flipping.Fund

m
NN Bm
N A~ BT

jum
NN N A

HT

#texpected number of steps before being absorbed

flipping.Fund%*%c(1,1,1)

C,11
E 10
H 8
HT 6

#calculating B matrix
#the probability to being absorbed in HTH state as a function of the starting transient state

flipping.B <- flipping.Fund%*%flipping.Dec$R
flipping.B

[,1]

#calculating H, probability of visiting transient state j starting in transient state i

flipping.H <- (flipping.Fund - matlab::eye(ncol(flipping.Fund))) * solve(diag(diag(flipping.Fund)))

flipping.H

E H HT
E 0.75 0.00 0.0
H ©0.00 0.75 0.0
HT ©0.00 0.00 0.5

The calculated fundamental matrix shows that the number of times the chain is in state HT, starting
from state H is two. Also, the N x 1 vector indicates that if the chains starts in HT, the expected number
of steps before being absorbed is eight. Since there is only one absorbing state, HT H, the probability
to be absorbed in HTH is one, whichever the starting transient state is. Also, matrix H shows that the
probability that a chain in state H will eventually visit again state H is 0.75.

It is possible to compute the distribution of first passage time, as the code that follows shows:

#first passage time

fptMc <- new("markovchain”, transitionMatrix=matrix(c(@, 1/2, 1/2,1/2,0, 1/2,
1/2, 1/2, @), byrow = TRUE,ncol=3), name="FistPassageTimeExample", states=c("a” ,"b","c"))

firstPassage(fptMc,state = "a",5)

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

95

a b c
1 0.0000 0.50000 0.50000
2 0.5000 0.25000 0.25000
3 0.2500 0.12500 0.12500
4 0.12
5 0.0

50 0.06250 0.06250
625 0.03125 0.03125

The output of firstPassage function shows that the probability that the first hit of state "b" occurs
at the second step is 0.25.

Periodicity analysis is shown in the following last example, in which the output shows that the
DTMC has a period of 2.

#defining a toy - model matrix for periodicity

periodicMc<-as(matrix(c(@,1,1,0),nrow=2),"markovchain™)
periodicMc

Unnamed Markov chain

A 2 - dimensional discrete Markov Chain defined by the following states:
s1, s2

The transition matrix (by rows) is defined as follows:

s1 s2
sl 0 1
s2 1 0

#computing periodicity

period(periodicMc)

[17 2

Statistical inference using markovchain package

Statistical analysis functions allow to estimate a DTMC from data and to simulate a DTMC, and can
be done through the rmarkovchain function:

weathersOfDays <- rmarkovchain(n = 30, object = mcWeather, t@ = "sunny")
weathersOfDays
[1] "sunny” "sunny” "rainy” "rainy” "rainy” "nice” "rainy" "rainy”
[9] "rainy” "rainy"” "nice"” "rainy” "rainy” "nice"” "sunny"” "nice"”

non

[17] "rainy” "rainy” "sunny” "rainy" "rainy"” "rainy
[25] "sunny” "sunny” "sunny” "sunny" "sunny” "rainy"”

sunny” "rainy”

The code shown above simulates 30 observations from the weather DTMC previously introduced.

Next, the function createSequenceMatrix is used to obtain the sequence matrix, that is the empiri-
cal transition matrix between the preceding and subsequent state, for a given sequence, whilst the
function markovchainFit fits DTMCs. We will exemplify the use of such functions on the rain data
set (recorded daily rainfall volume in Alofi island) bundled within the package.

#loading the Alofi's rain data set

data(rain)
rain$rain[1:10]

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

[1] n6+u n—l_sn 111_5!1 111_511 n—I_Sn 111_511 111_511 "6+” n6+n n6+n

#obtaining the empirical transition matrix
createSequenceMatrix(stringchar = rain$rain)
0 1-5 6+
Q 362 126 60

1-5 136 90 68
6+ 50 79 124

#fitting the DTMC by MLE

alofiMcFitMle <- markovchainFit(data = rain$rain, method = "mle”, name = "Alofi")
alofiMcFitMle

$estimate

Alofi

A 3 - dimensional discrete Markov Chain defined by the following states:

0, 1-5, 6+

The transition matrix (by rows) is defined as follows:

Q 1-5 6+

0 0.6605839 0.2299270 0.1094891
1-5 0.4625850 0.3061224 0.2312925
6+ ©.1976285 0.3122530 0.4901186

$standardError

0 1-5 6+
0 0.03471952 0.02048353 0.01413498
1-5 0.03966634 0.03226814 0.02804834
6+ ©.02794888 0.03513120 0.04401395

$confidencelnterval
$confidencelnterval$confidencelevel
[1] 0.95

$confidencelnterval$lowerEndpointMatrix
0 1-5 6+

@ 0.6034754 0.1962346 0.08623909

1-5 0.3973397 0.2530461 0.18515711

6+ ©.1516566 0.2544673 0.41772208

$confidencelnterval$upperEndpointMatrix
0 1-5 6+

@ 0.7176925 0.2636194 0.1327390

1-5 0.5278304 0.3591988 0.2774279

6+ ©.2436003 0.3700387 0.5625151

$loglikelihood
[1] -1040.419

Clearly, the markovchainFit function returns not only the pointwise estimate of the transition
matrix, but also its standard error and confidence intervals. MLE estimates are provided by default,
but a bootstrap one Efron, B. (1979) can also be obtained as the following code shows.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

97

#testimating Alofi TM

alofiMcFitBoot <- markovchainFit(data = rain$rain, method = "bootstrap”,
name = "Alofi",nboot=100)

#point estimate of the T™
alofiMcFitBoot$estimate
Alofi
A 3 - dimensional discrete Markov Chain defined by the following states:
0, 1-5, 6+
The transition matrix (by rows) is defined as follows:
0 1-5 6+
Q 0.6605457 0.2314278 0.1080264

1-5 0.4646651 0.3071925 0.2281424
6+ 0.1976978 0.3115299 0.4907723

#95 CIs

alofiMcFitBoot$standardError

0 1-5 6+
© 0.001957644 ©.001793261 ©0.001318923
1-5 0.002733252 0.002712275 0.002273845
6+ 0.002647255 0.002949244 0.003075143

Subsequently, the three-days forward predictions from alofiMcFitMle object are generated, as-
suming that the last two days were "1-5" and "6+" respectively. Clearly only the last state matters for a
MC stochastic process.

#obtain a prediction

predict(object = alofiMcFitMle$estimate, newdata = c("1-5", "6+"),n.ahead = 3)
[-I] H6+‘I H6+II ”6+Il

#obtain a prediction changing t-2 state

predict(object = alofiMcFitMle$estimate, newdata = c("@", "6+"),n.ahead = 3)

[1] "6+" "6+" "G+"

Non homogeneous Markov chains

Non homogeneous DTMCs (NHDTMCs) can be handled using the "markovchainList” S4 class, which
consists in a list of markovchain objects.

#define three DTMC

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

98

matri<-matrix(c(@.2, .8,

,.6),byrow=TRUE,ncol=2);mcl1<-as(matrl, "markovchain")

2,.8,.4,.
matr2<-matrix(c(@.1,.9,.2,.8),byrow=TRUE,ncol=2);mc2<-as(matr2, "markovchain")
5,.5,.2,.

matr3<-matrix(c(@.5,.5,

#tcreate the markovchainlList to store NHDTMCs

,.8),byrow=TRUE,ncol=2);mc3<-as(matr2, "markovchain")

mcList<-new("markovchainList"”, markovchains=list(mc1,mc2,mc3), name="My McList")

mcList

My McList 1list of Markov chain(s)
Markovchain 1
Unnamed Markov chain
A 2 - dimensional discrete Markov Chain defined by the
s1, s2

The transition matrix (by rows) 1is defined as follows:

s1 s2
s1 0.2 0.8
s2 0.4 0.6

Markovchain 2
Unnamed Markov chain

A 2 - dimensional discrete Markov Chain defined by the
s1, s2

The transition matrix (by rows) 1is defined as follows:

s1 s2
s1 0.1 0.9
s2 0.2 0.8
Markovchain 3
Unnamed Markov chain
A 2 - dimensional discrete Markov Chain defined by the

s1, s2

The transition matrix (by rows) is defined as follows:

s1 s2
s1 0.1 0.9
s2 0.2 0.8

following states:

following states:

following states:

The example above shows that creating a markovchainList 54 object is very simple. Moreover, the
rmarkovchain function also works on objects from the "markovchainList” class.

#simulating a NHDTMC

mysim<-rmarkovchain(n=100, object=mcList,include.t@=TRUE,what="matrix")

head(mysim,n = 10)

[,11 0,21 [,31 C,4]
[1,] "s2" "s2" "s2" "s2"
[2,] "s2" "s1" "s2" "s2"
[3,1 "s2" "s1" "s2" "s2"
[4,1 "s2" "s1" "s2" "s2”
[5,1 "s2" "s2" "s1" "s2"
[6,1 "s1” "s2" "s2" "s1”
[7,1 "s1” "s2" "s2" "s2"
[8,1 "s1” "s2" "s2" "s2”
[9,1 "s2" "s2" "s2" "s1”

[10,1 "s1” "s1” "s2" "s2"

Finally, it is possible to infer a non - homogeneous sequence of DTMC, that is a markovchainList
object from a given matrix, where each row represents a single trajectory and each column stands for a

different period.

The R Journal Vol. 9/2, December 2017

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

99

#using holson data set
data(holson)
head(holson,n = 3)

id timel time2 time3 time4 time5 time6 time7 time8 time9 timeld timel1l
11 1 1 1 1 1 1 1 1 1 1 1
2 2 1 1 1 1 1 1 1 1 1 1 1
3 3 1 1 1 1 1 1 1 1 1 1 1

#fitting a NHDTMCs on holson data set
nhmcFit<-markovchainListFit(holson[,2:12])

#showing estimated DTMC for time 1 -> time 2 transitions

nhmcFit$estimate[[1]]

timel

A 3 - dimensional discrete Markov Chain defined by the following states:
1, 2, 3

The transition matrix (by rows) is defined as follows:

1 2 3
1 0.94609164 ©.05390836 0.0000000
2 0.26356589 0.62790698 0.1085271
3 0.02325581 0.18604651 0.7906977

#showing estimated DTMC for time 2 -> time 3 transitions

nhmcFit$estimate[[2]]

time2

A 3 - dimensional discrete Markov Chain defined by the following states:
1,2, 3

The transition matrix (by rows) is defined as follows:

1 2 3
1 0.9323410 0.0676590 0.0000000
2 0.2551724 0.5103448 0.2344828
3 0.0000000 0.0862069 ©0.9137931

Numerical reliability and computational performance

Numerical reliability

Finding the stationary distribution is a computational - intensive task that could raise numerical issues.

The markovchain package relies on the R linear algebra facilities (built on LAPACK routines) when
the eigen function is called to find the stationary distribution. An initial analysis of the numerical
stability of the markovchain matrix computation has been performed estimating the error rate when
calculating the stationary distribution on a large sample of simulated DTMC of a given size k (range
set between 2 and 32). Initially, dense matrices were simulated. The following algorithm was used for
a given k:

1. generate N random k-sized DTMCs, where each row 7 has been independently sampled from a
Dirichlet distribution, 7 ~ Dir(&). The Dirichlet parameters’ vector, & is itself assumed to follow
an Uniform distribution (sampled independently for each row).

2. try to compute the steady - state distribution for the simulated DTMC.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 100

3. calculate the success rate as the relative frequency of previous step non - failures at size k .

Steady state computation success rate

0.8 1.0
|

success rate
0.6

0.4

0.2

T T T T T T
5 10 15 20 25 30

matrix sixe

Figure 4: Steady state computation success rate.

The figure shown above displays the success rate observed by TM size. The success rate is higher
than 95% for matrices no greater than 10 unit, then it decreases markedly and becomes lower than 50%
for matrices bigger then 22. A deeper analysis allowed to identify that the failure reason was due to
inaccuracy in the Dirichlet sampling function (row sums numerically different from zero). The TM
simulation process was therefore revised normalizing the sum of each row to be numerically equal to
one. The experiment was repeated at 23,24,...,28 TM sizes (wider matrices were not tested due to
computational timing issues). The observed success rate was always 100% for the sampled TM sizes.

The first example deserves few more words, even if it does not demonstrate any shortcomings
in the computational part of the package. Instead, it shows how easy it is to analyze numerically -
incorrect TMs as the size of the problems dealt with increases. Various posts have been raised on this
topic on the package Github address since the package was published on CRAN.

Steady state computation success rate — sparse matrices

success rate
0.94
|

0.92
|

0.88
|

T T T T T T
0 50 100 150 200 250

matrix sixe

Figure 5: Steady state computation success rate, sparse matrices.

A final test has been performed using TMs with a sparsity factor of 75%. The observed success rate
is 100% for matrices wider than 2°, inexplicably lower (around 90%) for smaller matrices matrices.

The previous examples are clearly far to exhaustively assess the numerical reliability of the
implemented algorithms that would require an much deeper analysis and beyond the scope of

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 101

the paper. In fact, the numerical reliability is likely to be significantly affected by particular TM
structures. Nevertheless they can provide an initial insight about the dimension of the problems
that the markovchain R package can "safely” handle. The R code used to generate the numerical
reliability assessment herewith discussed is available in the "reliability.R" file within the demo folder
of markovchain R package.

Computational performance

The computation time needed to estimate the TM from input data sequence depends by the size of
input data, as the following example displays:

#using the rain data sequence
data(rain)
rainSequence<-rain$rain

#choosing different sample size
sizes<-c(10,50,100,250,500,1096)

#timing assessiment
microseconds<-numeric(length(sizes))

for(i in 1:length(sizes)) {

mydim<-sizes[i]
mysequence<-rainSequence[1:mydim]
out<-microbenchmark(

myFit<-markovchainFit(data=mysequence)
)

microseconds[i]<-mean(out$time)

}

plot(sizes, microseconds,type="0",col="steelblue”,
xlab="character sequence size"”,ylab="microseconds”,
main="Computational time vs size")

Computational time vs size

8 /
e
@ Y
8 d
& /
2 yd
2
o
5] //
¢ 3
o F
E g
n
? /
3 /////
T T T T T T
0 200 400 600 800 1000

size of the sequence
Figure 6: Computation time by size of input data sequence.

The plot shows that the computation time increases linearly with the size of input data sequence,
as expected.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 102

The last numeric example presented in the section discussing NHDTMCs shows the computational
advantages of rewriting the kernel of core functions using Repp and ReppParallel snippets generated
by (Allaire et al., 2016). The rmarkovchain function allows the final user to choose whether to use the
C++ implementation and a parallel backend, by setting the boolean parameters useRcpp and parallel

respectively.

microbenchmark(

rmarkovchain(n=100,object=nhmcFit$estimate,what = "matrix",useRCpp = F),
rmarkovchain(n=100,object=nhmcFit$estimate,what = "matrix",useRCpp = T,parallel = F),
rmarkovchain(n=100,object=nhmcFit$estimate,what = "matrix”,useRCpp = T,parallel = T)

)

The omitted output of the code snippet shown above demonstrates that the joint use of Repp and
RcppParallel fastens the simulations around 10x with respect to the pure R sequential implementation.

Conclusions, discussion and acknowledgements

The markovchain package has been designed in order to make common operations on DTMCs as
easy as possible for statisticians. The package allows to create, manipulate, import and export DTMCs.
Further, the author believes that the current version of the package fully satisfies standard needs such
as inference of underlying TM from empirical data, and states classification of a given DTMC.

The author believes that no other R package provides a set of classes, methods, and functions as
wide as the one provided in markovchain, as of May 2017.

The package’s main vignette gives a complete descriptions of its capabilities, including bayesian
estimation, statistical tests, classes and methods for continuous time MCs. Also, a separate vignette
describes the functions designed to deal with higher order and multivariate MCs, and should still be
considered experimental. In fact, such techniques are generally less used than standard DTMCs, and
consequently much less literature, applied examples, and coded algorithms are available.

Clearly, an expanded version of the package’s capabilities in that area is expected to be re-
leased in the future. Current development efforts target optimizing computation speed and reli-
ability, and increasing the analysis capabilities regarding statistical inference. Rewriting core func-
tions using Repp gave a major boost in terms of computing speed, as exemplified in previous sec-
tions. Moreover, the rewriting of the internal core parts of the code affected many functions, such
as markovchainFit and markovchainFitList. Feedbacks provided by the users of the package at
https://github.com/spedygiorgio/markovchain/issues have been extremely useful for improving
the package. To illustrate, bugs due to numerical issues have been found when analyzing relatively
big MCs and have led to revising the steadyStates function to be computationally more robust. A
known limitation of the package is the lack of a deep assessment of the performance of the package’s
routines for a relatively large TM. In fact, improving the numerical reliability of the package for large
DTMCs is an area on which efforts will be certainly allocated in the near future. At this regard, the
implementation of numerical methods methods shown in Stewart (1994) will be explored.

Finally, the package has been available on CRAN since Summer 2013. Notably, it has been granted
a funding slot in both 2015, 2016 and 2017 Google Summer of Code (GSOC) editions. In particular,
during 2015 GSOC a material part of R code has been ported in Repp coding, yielding considerable
fastening in computational time. The author is extremely grateful to Tae Seung Kang, Sai Bhargav
Yalamanchi and Deepak Yadav for their contribution in improving the package. A special thank
should be given to the RJournal referees for their constructive comments.

Giorgio Alfredo Spedicato
UnipolSai Assicurazioni

Piazza della Costituzione 2
Bologna 40128, Italy
spedicato_giorgio@yahoo.it

Bibliography

J. Allaire, R. Francois, K. Ushey, G. Vandenbrouck, M. Geelnard, and Intel. RcppParallel: Parallel
Programming Tools for Repp, 2016. URL https://CRAN.R-project.org/package=RcppParallel. R
package version 4.3.20. [p102]

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=RcppParallel
https://github.com/spedygiorgio/markovchain/issues
mailto:spedicato_giorgio@yahoo.it
https://CRAN.R-project.org/package=RcppParallel

CONTRIBUTED RESEARCH ARTICLES 103

Antoine Filipovi, C., Pierucci, Kevin, Zarca, and Isabelle Durand-Zaleski. Markov models for health
economic evaluation: The r package heemod. ArXiv e-prints, 2017. URL https://pierucci.org/
heemod. R package version 0.9.0. [p85]

Artur Aratjo, Luis Meira-Machado, and Javier Roca-Pardifias. TPmsm: Estimation of the transition
probabilities in 3-state models. Journal of Statistical Software, 62(4):1-29, 2014. URL http://www.
jstatsoft.org/v62/i04/. [p85]

D. Bates and M. Maechler. Matrix: Sparse and Dense Matrix Classes and Methods, 2016. URL http:
//CRAN.R-project.org/package=Matrix. R package version 1.2-6. [p87]

Bessi, Alessandro. MCTM: Markov Chains Transition Matrices, 2015. URL http://CRAN.R-project.
org/package=MCTM. R package version 1.0. [p84]

Brémaud, Pierre. Discrete-Time Markov Models. Springer-Verlag, 1999. [p90]
C. G. Cassandras. Discrete Event Systems: Modeling and Performance Analysis. CRC, 1993. [p85]

Chambers,].M. Software for Data Analysis: Programming with R. Statistics and computing. Springer-
Verlag, 2008. ISBN 9780387759357. [p87]

W.-K. Ching, M. K. Ng, and E. S. Fung. Higher-order multivariate markov chains and their applications.
Linear Algebra and its Applications, 428(2):492-507, 2008. [p84]

B. A. Craig and P. P. Sendi. Estimation of the transition matrix of a discrete-time markov chain. Health
Economics, 11(1), 2002. [p84]

Csardi, Gabor and Nepusz, Tamas. The igraph software package for complex network research.
Interfournal, Complex Systems:1695, 2006. URL http://igraph.sf.net. [p87]

Eddelbuettel, Dirk. Seamless R and C++ Integration with Repp. Springer-Verlag, New York, 2013. ISBN
978-1-4614-6867-7. [p87]

Efron, B. Bootstrap methods: Another look at the jackknife. Ann. Statist., 7(1):1-26, 1979. URL
http://dx.doi.org/10.1214/a0s/1176344552. [p96]

Feres, Renaldo. Notes for math 450 matlab listings for markov chains, 2007. URL http://www.math.
wustl.edu/~feres/Math450Lect@4.pdf. [p90]

V. Goulet, C. Dutang, M. Maechler, D. Firth, M. Shapira, M. Stadelmann, and expm-developers@lists.R-
forge.R-project.org. Expm: Matrix Exponential, 2015. URL http://CRAN.R-project.org/package=
expm. R package version 0.999-0. [p87, 89]

C. M. Grinstead and J. L. Snell. Introduction to Probability. American Mathematical Soc., 2012. [p85]

L. Himmelmann. HMM: HMM - Hidden Markov Models, 2010. URL https://CRAN.R-project.org/
package=HMM. R package version 1.0. [p85]

C. H. Jackson. Multi-state models for panel data: The msm package for r. Journal of Statistical Software,
38(8):1-29, 2011. URL http://www. jstatsoft.org/v38/108/. [p85]

J. Jarvis and D. R. Shier. Graph-theoretic analysis of finite markov chains. Applied mathematical modeling:
a multidisciplinary approach, 1999. [p85]

C. I Jones. On the evolution of the world income distribution. Available at SSRN 59412, 1997. [p84]

J. G. Kemeny, J. L. Snell, and G. L. Thompson. Finite mathematics. DC Murdoch, Linear Algebra for
Undergraduates, 1974. [p85]

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking;:
Bringing order to the web. Technical Report 1999-66, Stanford InfoLab, 1999. URL http://ilpubs.
stanford.edu:8090/422/. Previous number = SIDL-WP-1999-0120. [p84]

A. A. Markov. Issledovanie zamechatel nogo sluchaya zavisimyh ispytanij. Izvestiya Akademii Nauk,
SPb, V1 seriya, 1(93):61-80, 1907. [p84]

MATLAB. Version 9.2.0 (R2017a). The MathWorks Inc., Natick, Massachusetts, 2017. [p85]

Montgomery, James. Communication classes, 2009. URL http://www.ssc.wisc.edu/~jmontgom/
commclasses. pdf. [p90]

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://pierucci.org/heemod
https://pierucci.org/heemod
http://www.jstatsoft.org/v62/i04/
http://www.jstatsoft.org/v62/i04/
http://CRAN.R-project.org/package=Matrix
http://CRAN.R-project.org/package=Matrix
http://CRAN.R-project.org/package=MCTM
http://CRAN.R-project.org/package=MCTM
http://igraph.sf.net
http://dx.doi.org/10.1214/aos/1176344552
http://www.math.wustl.edu/~feres/Math450Lect04.pdf
http://www.math.wustl.edu/~feres/Math450Lect04.pdf
http://CRAN.R-project.org/package=expm
http://CRAN.R-project.org/package=expm
https://CRAN.R-project.org/package=HMM
https://CRAN.R-project.org/package=HMM
http://www.jstatsoft.org/v38/i08/
http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
http://www.ssc.wisc.edu/~jmontgom/commclasses.pdf
http://www.ssc.wisc.edu/~jmontgom/commclasses.pdf

CONTRIBUTED RESEARCH ARTICLES 104

Nicholson, William. DTMCPack: Suite of Functions Related to Discrete-Time Discrete-State Markov Chains,
2013. URL http://CRAN.R-project.org/package=DTMCPack. R package version 0.1-2. [p&4]

Pablo J. Villacorta and José L. Verdegay. FuzzyStatProb: An r package for the estimation of fuzzy
stationary probabilities from a sequence of observations of an unknown Markov chain. Journal of
Statistical Software, 71(8):1-27, 2016. URL https://doi.org/10.18637/jss.v071.108. [p85]

P. Roebuck. Matlab: MATLAB Emulation Package, 2014. URL http://CRAN.R-project.org/package=
matlab. R package version 1.0.2. [p87]

M. Scholz. The R package clickstream: Analyzing clickstream data with markov chains. Journal of
Statistical Software, 74(4):1-17, 2016. URL https://doi.org/10.18637/jss.v074.104. [p84]

Spedicato, Giorgio Alfredo. markovchain: An R Package to Easily Handle Discrete Markov Chains, 2016.
R package version 0.6.5. [p84]

W. J. Stewart. Introduction to the Numerical Solutions of Markov Chains. Princeton Univ. Press, 1994.
[p102]

I. Visser and M. Speekenbrink. depmixS4: An r package for hidden markov models. Journal of
Statistical Software, 36(7):1-21, 2010. URL http://www. jstatsoft.org/v36/107/. [p85]

Wolfram Research, Inc. Mathematica. Wolfram Research, Inc., ninth edition, 2013. [p85]
NA

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

http://CRAN.R-project.org/package=DTMCPack
https://doi.org/10.18637/jss.v071.i08
http://CRAN.R-project.org/package=matlab
http://CRAN.R-project.org/package=matlab
https://doi.org/10.18637/jss.v074.i04
http://www.jstatsoft.org/v36/i07/

CONTRIBUTED RESEARCH ARTICLES 105

CRTgeeDR: an R Package for Doubly
Robust Generalized Estimating Equations
Estimations in Cluster Randomized Trials
with Missing Data

by Melanie Prague, Rui Wang, and Victor De Gruttola

Abstract Semi-parametric approaches based on generalized estimating equations (GEE) are widely
used to analyze correlated outcomes in longitudinal settings. In this paper, we present a package
CRTgeeDR developed for cluster randomized trials with missing data (CRTs). For use of inverse
probability weighting to adjust for missing data in cluster randomized trials, we show that other
software lead to biased estimation for non-independence working correlation structure. CRTgeeDR
solves this problem. We also extend the ability of existing packages to allow augmented Doubly Robust
GEE estimation (DR). Simulation studies demonstrate the consistency of estimators implemented in
CRTgeeDR compared to packages such as geepack and the gains associated with the use of the DR
for analyzing a binary outcome using a logistic regression. Finally, we illustrate the method on data
from a sanitation CRT in developing countries.

Introduction

We describe the R package CRTgeeDR, for estimating coefficients of regression in a marginal mean
model. The method is designed to analyze data collected in cluster randomized trials (CRTs) where 1)
observations within a cluster may be correlated, 2) observations in separate clusters are independent,
3) a monotone transformation of expectation of the outcome is linearly related to the explanatory
variables, and 4) treatment is randomized at a cluster level. The estimation approach generalizes the
Generalized Estimating Equation (GEE) (Zeger and Liang, 1986) for fitting marginal generalized linear
models to clustered data with possibly informative missingness of the outcome. It combines existing
methods for accommodating missing data that use inverse probability weighting (IPW) (Robins et al.,
1995) and for increasing precision of estimation by appropriate use of baseline covariates (AUG)
(Stephens et al., 2012). We have developed a method for estimating the intervention effect in cluster
randomized trials that combines the IPW and the AUG and is doubly robust (DR), meaning that the
resulting estimator is consistent if either the model predicting the outcome or the model predicting
the missing data is correctly specified—that is, they reflect the true data generation processes (Prague
et al., 2016). Below we illustrate the use of the software on a real dataset and clarify its benefits.

The package CRTgeeDR not only implements the DR estimator but also the standard GEE, the
IPW and the AUG. Regarding IPW, our package differs from most of those currently available in that
it avoids the bias that can result from conventional implementation applied to CRTs. Lin et al. (2015)
pointed out that implementation of GEE for complete longitudinal data in the current version of SAS
(GENMOD procedure) requires use of an independence correlation structure if the observation of the
outcome at one time point depends on covariates obtained at another time point; this problem had been
corrected in the new GEE procedure in SAS/STAT 13.2 (SAS Institute Inc., 2015). Tchetgen Tchetgen
et al. (2012) made a similar comment regarding the analysis of incomplete longitudinal data in which
time-varying covariates and previous outcome values are needed to model the missingness process.
This article clarifies this issue for CRTs and proposes an implementation in R that allows for unbiased
IPW (and thus DR) estimation with non-independence working correlation structure.

GEE-based approaches for estimating the coefficients in marginal models, in particular the marginal
effect of an intervention, have been implemented in only a limited number of R packages and other
software for general use. Of note, most of the available software was initially developed to deal with
correlated longitudinal data rather than data from CRTs. There are three R packages on CRAN, which
will solve GEEs and produce standard errors: whereas gee (Carey et al., 2012) and geepack (Jun, 2002;
Halekoh et al., 2006; Hojsgaard and Halekoh, 2016) are computationally demanding, the package
geeM allows a fast estimation through the use of sparse matrix representation (McDaniel et al., 2013).
When interest lies in adjusting for missing outcomes using the IPW, all the packages mentioned above
require specification of weights. These weights can be computed using packages such as ipw (van der
Wal and Geskus, 2011; Geskus and van der Wal, 2015) or directly assigned from a user-defined function.
These approaches require the missing data process to be known or correctly specified. Some packages,
such as drgee (Zetterqvist and Sjolander, 2015), implement doubly robust approaches for uncorrelated
data arising from observational studies. These packages provide estimates that are doubly robust in

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=CRTgeeDR
https://CRAN.R-project.org/package=gee
https://CRAN.R-project.org/package=geepack
https://CRAN.R-project.org/package=geeM
https://CRAN.R-project.org/package=ipw
https://CRAN.R-project.org/package=drgee

CONTRIBUTED RESEARCH ARTICLES 106

the sense that the consistency of the parameter estimator from the marginal models is guaranteed if the
model linking the outcome to covariates and treatment or the model linking the treatment assignment
to covariates correctly reflects the true data generation process. These methods have been extended to
deal with missing data with IPW approaches in Causal GAM (Glynn and Quinn, 2010a,b), but these
packages are intended for analysis of observational studies, not CRTs. Finally, the targeted maximum
likelihood estimation (tMLE) method allows estimation of the marginal additive effect of a treatment
(van der Laan, 2014a). It is implemented in the packages tmle (Gruber, 2014) and tmlenet (Sofrygin
and van der Laan, 2015) for longitudinal and correlated data. Except for Porter et al. (2011), there has
been little published discussion about the differences between GEE-based and tMLE estimation, and
we do not delve into a comparison of the two methods. The focus of this article is only on software
implementation of the doubly robust GEE for CRTs.

The paper is organized as follows. Section 16.2 introduces the theory of the doubly robust
estimator and Section 16.3 describes the features of the CRTgeeDR and the estimating function
denoted GeedrEstimation. Section 16.4 compares the performance of CRTgeeDR to geepack for the
IPW in CRTs and illustrates that the DR is consistent and more efficient than the IPW. Section 16.5
illustrates the analysis of a dataset on sanitation in developing countries (Guiteras et al., 2015a) and
illustrates the benefit of using the DR approach compared to standard GEE. Section 16.6 presents a
discussion.

IPW in CRTs and doubly robust estimation

Notation

Consider a CRT comprised of n clusters or communities, each with n; individuals. The cluster sample
sizes are assumed fixed and non-informative. Let Y; = [Yi]-} j=1,..,n; denote the outcome vector for
cluster i, some elements of which may be unobserved. Let R;; = 1if Yj; is observed and R;; = 0
otherwise. Let X;; = [XZV]] j=1,...n;;r=1,...,p denote the P baseline covariates for subject j in cluster i, which
is fully observed. Let A; be the treatment assigned to cluster i; the indicator for treated condition is
A; =1, and A; = 0 for control condition. We assume that the probability of treatment assignment
is known and fixed to ps = P(A; = 1). The conditional mean of Y; is denoted p;; = E(Y;j|Xij, A;),
and we let y; = [yl-]-} j=1,...,n; denote the full vector of means in the ith cluster. We assume that the
mean structure of Y;; depends on the covariate vector for subject j in cluster i (Robins et al., 1999), and
consider a model for the mean as follow:

8(uij) = XijBx + AiPa,

where g(.) is a monotone differentiable link function and B = (4, Bx) isa (P +1) x 1is a vector
of regression coefficients of interest. In this article, we focus on estimation of the marginal effect
of an intervention f4 for a binary outcome using the logit link. We assume the variance is v;; =
var (Y| Xij, Ai) = ¢h(p;j), where h(.) is the variance function and ¢ is the dispersion parameter. Thus
for our specific example, v;; = ¢p;j(1 — p;j) When data are missing at random (MAR), the observation
indicator R,-j is a function of covariates, treatment condition, and observed outcomes. For CRTs, we
assume a restricted version of MAR (rMAR), which requires that R;; cannot be a function of observed
outcomes. Although all the theory would hold for classical MAR assumption, it is most of the time
difficult to specify the function linking the observation indicator and the observed outcomes of other
individuals in the same cluster because there is no ordering. Thus, the probability of being observed
m;j for individual j in cluster , called the propensity score (PS), is: 71;;(Xjj, A;, nw) = P(R;j = 1|X;j, A;).
The parameters 7}y are nuisance parameters and must be estimated.

IPW in CRTs

In presence of rMAR outcome, as in Robins et al. (1995), we estimate by using inverse probability
weighted generalized estimating equation (IPW). Therefore, we must include a weight matrix W; to
the usual GEE, that is:

R

Wi(Xij, Ai fiw) dlag(i (Xij, A w))f:

1.1

This matrix W;(Xjj, A;, 1w), denoted simply as W; in the following, adjusts the contribution of each
individual in a given cluster by upweighting the contribution of individuals who are less likely to
be observed according to their characteristics. Thus, if the propensity score is correctly specified, i.e.,

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=CausalGAM
https://CRAN.R-project.org/package=tmle
https://CRAN.R-project.org/package=tmlenet

CONTRIBUTED RESEARCH ARTICLES 107

correspond to the true missingness process, the IPW equation provides consistent estimates:
O—ZDT Vi WY — i), (1)

where D; = dp;/0 is a derivative matrix and V; is the working covariance matrix for the response
Y;. In particular, V; = ([)Fil/zC(oc)Fil/z, where 1-"i1/2 = diag(h(yij))].zlwni
correlation structure with non-diagonal terms «. For example, for an independence correlation
structure « is zero; for exchangeable structure, all the elements of « are identical. Parameters a could
also depend on the treatment assignment C(«(A4;)) but we do not consider this possibility in our
implementation. In the package CRTgeeDR, we estimate the « and ¢ parameters using moment
estimators from the Pearson residuals and the Pearson Chi-Square statistic as in geeM (McDaniel and
Henderson, 2015) also described in McDaniel et al. (2013). In the absence of missing data, W; = I is
set to identity, and the standard GEE is performed by CRTgeeDR.

and C(«) is the working

In existing packages such as geepack, the Equation 1 is implemented as 0 = ?:1 Dinl (Y — i),
with Vfl = ¢Fi1/ ZI/Vil/ 2C(oc)‘/\/il/ 21-"1}1/ 2 to ensure the fast invertibility of V. It is easy to verify that
when an independence correlation structure is used, C(a) = I, and the two implementations are
identical. Therefore, one can always use geepack with an independence working correlation structure.
In contrast, if a non-independence working correlation structure is used, the consistency of IPW
estimators do not hold. See the Web-Supplementary Material for a demonstration. Regarding other
packages such as geeM, although the implementation was the same as in geepack up to version 0.8.0,
it is now implemented as in Equation 1 in version 0.10.0. In the SAS GEE procedure, one can use the
option "type=obslevel” (in the missing statement) in order to use the same implementation as in
Equation 1. In general, it is necessary to check the formula used for implementation of the estimating
equation in any desired software to avoid confusion.

Augmentation and doubly robust estimation

Recent advances in methods for analysis of data from CRTs have used augmented GEE to improve
efficiency of inferences by incorporating baseline covariates (Stephens et al., 2012); we denote this
estimator the AUG. They have also been extended to accommodate missing data using an approach
based on the IPW which is doubly robust GEE (DR). The DR properties are described in Prague et al.
(2016) and the estimating equation is given by :

‘[\12

Il
_

D/ v w; (Yi - Bi(Xij/Ai/’iB))

+ ¥ Pt —pa) D] v (BilXy, A —w)—m(ﬁ,Ai—u))} @)
a=0,1

= ®(Y;, R, Ay, Xij, B, 1w, 1B)-

Each element of the vector B;(X;, A; = a,y1p) = [Bjj(X;, Ai = a,4p)]j=1,...; is an arbitrary func-
tion linking Yj; with X;; for each treatment arm, which we refer to as the outcome model (OM) The
np are nulsance parameters. The estimator in Equation 2 is most efficient if Bi/‘(Xi/ A; =a,qp) =
E(Y;j|Xij, Ai = a) (Zhang et al., 2008), that is, the OM is correctly specified. If the OM is not correctly
spec1fled i.e., does not correspond to the true data generation process, the estimation remains consis-
tent provided that the PS model is correctly specified, but one may have a loss in efficiency. Without

missing data, W; = I is set to identity, and the AUG is performed by CRTgeeDR.

Without missing data or with data missing completely at random, the use of augmentation may
allow a gain in efficiency by incorporating information on baseline covariates. The PS should not
be used because it will be misspecified and therefore may lead to an increase of the variance of the
estimates. In presence of rMAR data, IPW alone can be used but DR should be preferred in order to
increase the chances to have an unbiased estimator. Finally, as mentioned above, for data missing not
at random, none of the methods implemented in CRTgeeDR are adequate.

The R package CRTgeeDR

The main function for estimation in the package CRTgeeDR

The call function for performing estimation is geeDREstimation:

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

108

R> geeDREstimation(formula, id, data = parent.frame(), family = gaussian,

+ 4+ + o+ + o+ o+ o+

corstr = "independence”, Mv = 1, corr.mat = NULL, init.beta = NULL,
init.alpha = NULL, init.phi = 1, scale.fix = FALSE, maxit = 20,
tol=1e-05, print.log = FALSE, nameTRT = "TRT", nameMISS = "MISSING",
nameY = "OUTCOME", sandwich = TRUE, sandwich.nuisance = FALSE,
fay.adjustment = FALSE, fay.bound = .75, aug = NULL, pi.a = 1/2,
model.augmentation.trt = NULL, model.augmentation.ctrl = NULL,
stepwise.augmentation = FALSE, weights = NULL, typeweights = "VW",
model.weights = NULL, stepwise.weights = FALSE)

The marginal model, to be estimated on the R dataframe data, is given in formula. The link

function, g, depends on the nature of the outcome, which is specified in the argument family. The name
of the outcome nameY, the clustering variable id, the binary treatment nameTRT (with the convention 1
is treated and 0 is control), and the missing indicator nameMISS must be specified if they differ from
default values. The algorithm iterates between the estimation the working correlation structure and
regression parameters with a stopping rule based on stabilisation of estimates (tolerance can be set by
the user; default is tol= 1075 or max. i ter=20). Depending on the specification or not of the PS and
the OM, geeDREstimation allows the implementation of standard GEE, the IPW, the AUG and the DR
approaches. The algorithm is defined as follow:

1. Determine the PS: 1;j(X;j, A, tw) = P(R;j|Xjj, A;), 7t;; for short. Either the 71;; are known from

prior analysis or by design and the weights can be specified directly in the weights argument.
Alternatively one can compute the PS by fitting a logistic regression of R;; on (Xjj, 4;). In this
case, the PS regression formula can be directly entered in model.weights. A glm with logit link
function is internally processed with or without variable selection, depending on the value
of the stepwise.weights argument. If all of the above are set to NULL or default, no IPW
adjustment will be made—GEE or AUG will be used. Finally, if despite our concern about the
implementation of weights, one wants to use the same implementation as in packages geepack
or proc GENMOD in SAS, then one can set typeweights="GENMOD".

. Determine group-specific OM: B;;(X;;, A; = a) = E [Yij\Ai =a, Xl»]»]. When the B; are known from

prior analysis, they can be directly entered in aug=c(ctrl=B;;(Xj;, A; = 0), trt=B;;(X;;, A; = 1)).
Alternatively, we can regress Y;; on X;; within each treatment group. In this case, the OM regres-

sion formulas can be directly entered in model . augmentation. trt and model.augmentation.ctrl.

A glmis then internally processed with or without variable selection depending on the value
of the argument stepwise.augmentation. If all of the above are set to NULL or default, no
augmentation adjustment will be made—GEE or IPW will be used. The probability of treatment
assignment, which is known in CRTs, must be specified in the argument pi.a. Of note for steps
1 and 2, when using the stepwise option to compute the OM or the PS, one runs the risk of
overfitting (van der Laan, 2014b). Avoiding this is possible by sparsely including only relevant
variables in the selection and also by running a bootstrap diagnostic using outputs (ps.model,
om.model.trt and om.model. ctrl). The underlying assumption is that the true OM or PS are
selected at the end of the stepwise selection and then held fixed in the estimating equation in
further steps.

. Determine the working correlation structure. Available structures are independence, exchangeable,

M-dependent (using Mv), unstructured, or user-defined (using corr.mat). Using the scale.fix
argument, the dispersion parameter ¢ can be either estimated or held fixed to a specified value.

. Obtain initial values. They are either specified by the user (init.beta, init.alpha, and init.phi)

or internally defined by fitting a glm under independence to obtain initial values for 8(°) and
by setting ¢(©) =1 and «(®) = 0.

5. Enter/continue the iterative procedure :

(a) Use the fit from ,3(”) to compute Pearson residuals. Use Pearson residuals based formulas

to compute the scale parameter (¢("*1)

, except if scale. fix=TRUE) and the parameters
in the working correlation matrix (a(”+1>).
(b) Construct the augmented equation given in Equation 2 and solve it numerically using

Newton-Raphson algorithm for f("+1):

aq)(yzr R;, Air Xij/ :B’ Hw, ﬂB)

gn+1) _ p(n) _
Ut — 55

@(Y;, R;, Aj, Xjj, B, . 1)
o

B(11+1)_B(11)

(c) If max > tol and n + 1 < max.iter go back to 5 else go to 6, where

B +prec.machine
prec.machine ~ 10716

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 109

6. Compute the requested variances of f("+1). If, sandwich and sandwich.nuisance are set to

TRUE, classical and nuisance-adjusted (for the estimation of parameters 7y in the PS and #p
in the OM) sandwich estimators of the variance are provided, see Prague et al. (2016) for their
definition. The nuisance-adjusted version is computed using numerical derivatives of score
equations for PS, OM and estimating equations jointly, which are obtained by using the jacobian
function of the package numDeriv (Gilbert and Varadhan, 2015); this is recommended if the
AUG, the IPW or the DR estimator are considered. Finally, a small-sample-adjusted sandwich
estimator of the variance can also be computed using Fay’s adjustment (Fay and Graubard,
2001) setting the argument fay.adjustment to TRUE. Its implementation is derived from the
function gee.var.fg in the package geesmv (Wang, 2015).

Adequacy of the PS and the OM to data

Consistency and efficiency of the DR estimator depend on the correct specification of the PS and
the OM, see Prague et al. (2016) for theoretical demonstrations. The user may want to check the
adequacy of the selected OM model to the data by using the function getOMPlot, which provides
plots to check the glm model assumption. The “Residuals vs. Fitted" and the "Scale-location" graphics
allow verification of the homogeneity of the variance and the adequacy of the link function. The
“"Normal Q-Q" checks for the normal distribution of the residuals. The “Residuals vs Leverage" plot
allows detection of points that have high leverage on the regression coefficients and that should
be investigated as outliers. In the same spirit, the “Cook’s distance" and the "Cook’s distance vs
leverage" provide measures of the effect of deleting a given observation. Of note, these graphs are only
interpretable for a continuous outcome. In addition, for the PS model the function getPSPlot provides
a histogram of the weights. If weights are too large then the IPW and DR approaches are likely to
be unstable. In this case, the user should compute weights externally using, for example, stabilized
weights with the associated package ipw (van der Wal and Geskus, 2011) or other approaches such
as described in Wang and Paik (2011). Finally, the user can access the glm objects created during the
PS and OM initial steps as objects named ps.model, om.model. trt, and om.model.ctrl from the main
function geeDREstimation.

Simulations

The properties of DR to accommodate complex correlation structure, rMAR outcomes, and the presence
of imbalance in baseline covariates have already been demonstrated in Prague et al. (2016). In this
article, we focus on the superiority of implementation of weights in the package CRTgeeDR compared
to package geepack. We focus on a simple example to illustrate that, even in very simple cases,
estimators implemented in broadly used R package geepack for IPW can be inconsistent when using an
exchangeable working correlation structure. This is the case when Vfl = ngil/ 2I/\/l.l 2c (oc)I/Vil/ 21-"l.1/ 2
is used in the estimating equation. We simulate data from a CRT with 100 communities of 90,
100, or 110 individuals with probability 1/3 for each. The treatment A is randomly assigned with
probability ps = 1/2. One covariate is of interest: X;; ~ N'(2,1). We simulate correlated outcome
with exchangeable structure, and correlation between individuals is set to 0.05. This is done by using a
cluster-level bridge distribution b; ~ B(0.05). Data generation process is as follow:

10git[P(Yi]' =1]A,;, XU)] = —05403A;+ 0.4X1']' + 0.4XZ']'A,' + b;, 3)
logit[P(Rij =1 ‘Ai/ X,])] = 40— 0'3Ai — OSXU — OSXIJAI

We simulated R=10,000 replicates. The observed average proportion of missing observa-
tions is around 25% and the observed average intraclass correlation is 0.08. Missingness is
associated strongly with individual covariates and, therefore, the weights differ between
individuals in the same cluster. The true value of the odds-ratio for the marginal effect of
treatment is computed for each dataset k without missing data by obtaining the counterfac-
tual values with and without treatment under this model:

E(Y;; =1]A; =1)/E(Y;; = 0|A; = 1)

ORy = :

The true OR is given by % lele ORy=2.56 with associated parameter for marginal interven-
tion effect in the marginal regression 4 = 0.941. For each dataset, we first ran the analysis
on the dataset without missing data for the standard GEE and the AUG using CRTgeeDR.
Then we ran the analysis on the dataset with missing data for the IPW using geepack and

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=numDeriv
https://CRAN.R-project.org/package=geesmv

CONTRIBUTED RESEARCH ARTICLES 110

for the standard GEE, the IPW, the AUG, and the DR using CRTgeeDR. Two types of DR
are presented here: DR1 is the estimator using the correct models for the OM and the PS,
and DR2 omits treatment-covariate interaction terms in the PS. The models for the PS and
OM for analysis are described in the Table 1. Table 1 shows the bias, empirical standard
error, sandwich standard error, and coverages for each analysis using independence (-I) and
exchangeable (-E) working correlation structure. The code to replicate this study is available
in Web-Supplementary Material.

Independence (-I) Exchangeable (-E)
Method Bias Emp.SE SE Cov. Bias Emp.SE SE Cow

No missing data:
GEE CRTgeeDR 0.002 0.102 0.099 943 0.002 0.108 0.099 93.2

GEE geepack 0.003 0.102 0.101 94.6 0.003 0.102 0.101 946
AUG CRTgeeDR 0.002 0.101 0.099 943 0.002 0.109 0114 958
With missing data:

GEE CRTgeeDR -0.257 0.103 0.177 820 -0.256 0.104 0.081 18.1
AUG CRTgeeDR 0.249 0.092 0.109 357 0.307 0.115 0139 371

With missing data and adjustment for it:

IPW CRTgeeDR 0.003 0.108 0.106 95.0 0.003 0.118 0.110 93.7
IPW geepack 0.008 0.107 0.104 948 0.582 0.577 0357 194
DR1 CRTgeeDR 0.003 0.107 0.104 945 0.004 0.120 0.125 96.1
DR2 CRTgeeDR 0.003 0.105 0.102 944 0.004 0.118 0.123 96.0

Marginal mean model:
logit(p;) = Bo + BaAi.
PS used for IPW and DR (true):
logit(P(R;; = 1|A;, Xij)) = 70 + vadi + v Xij + 11 XA
PS used for DR2 (omitting interactions in PS):
logit(P(R;; = 1|A;, Xij)) = 10+ vaAi + 7Xij.
OM used for AUG, DR1 and DR2 (fitted for each group a):
logit(P(Yij = llAi =a, Xz])) =C+CpAA + ch]

Table 1: Comparison of the standard GEE, the IPW, the AUG and the DR analysis with the packages
CRTgeeDR, geepack, and geeM using independence and exchangeable working correlation structure.
True value for the parameter 3 4 is 0.91 (OR=2.56). The bias, the empirical and the estimated standard
errors (SE), and the coverages for parameter ‘E; are computed over 10,000 replicates. The true data
generation process for outcome and missingness is provided in Equation 3. The PS and OM models
for analysis are correctly specified and given in the footnote of the table.

The results for standard GEE are unbiased in the absence of missing data (<0.003 for GEE-
I and GEE-E with all packages) and biased in presence of rMAR outcomes reflecting the fact
that the missingness is informative. Using the IPW-I corrects for this bias (0.008 for geepack).
All packages give a similar estimated standard error leading to acceptable coverage close to
their nominal value of 95%. When using an exchangeable correlation structure, the coverage
(93.7%) remains close to the nominal value for IPW-E using CRTgeeDR, but it drops to 19.4%
using geepack. This is mainly driven by an increase in the bias from 0.003 for CRTgeeDR
to 0.582 for geepack for IPW-E. Using the DR1 version of CRTgeeDR provides consistent
estimates (bias <0.004 for DR1-I and DR1-E). DR-1 yields coverage that is close to or greater
than 95% and gains, on average, in efficiency. For example, the empirical standard error
is 0.108 for IPW-I and 0.107 for DR-I. DR2, which omits the term X;;A; in the PS, yields
consistent and efficient estimates even when the treatment-covariate interactions are not
explicitly specified in the PS. As demonstrated in Prague et al. (2016), DR1 and DR2 have
similar properties.

Illustration on the sanitation data

In this section, we present a step-by-step analysis of data from a CRT to investigate the
efficacy of alternatives policies on the investment in hygienic latrines in developing coun-

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 111

tries. A total of 380 communities in rural Bangladesh were assigned to different marketing
interventions—community motivation, subsidies, supply side-market, a combination of
the three, and a control group. Results of this study were published in (Guiteras et al,,
2015a). All the code and data associated with this study are available on dataverse, see url
in Guiteras et al. (2015b).

Side-Market supply Control All

Cluster structure

M 36 (n =1651) 66 (n = 3186) 100 (n = 4837)

N; 49 (15) 48 (16) 48 (16)

Outcome Yj; Mean Missing % Mean Missing % Mean Missing %

Hygienic Latrine Ownership 34.8% 4.2% 30.3% 3.1% 31.8% 3.5%

Individual-level XZ.I]ND Mean Missing % Mean Missing % Mean Missing %

Report diarrhea 4.3% 0% 4.8% 0% 4.6% 0%

Male 91.1% <0.01% 90.0% <0.01% 90.1% <0.01%

Education 49.2% 0% 45.8% 0% 46.9% 0%

Muslim 83.2% <0.01% 86.3% <0.01% 85.2% <0.01%

Bengali 85.6% <0.01% 88.5% <0.01% 87.6% <0.01%

Agricultor 75.0% <0.01% 70.2% <0.01% 71.9% <0.01%

Stoves 58.2% <0.01% 62.9% <0.01% 61.3% <0.01%

Water Pipes 89.9% <0.01% 91.3% <0.01% 90.8% <0.01%

Phone 64.1% <0.01% 57.2% <0.01% 59.5% <0.01%

Age 39 (13) <0.01% 39 (14) <0.01% 39 (14) <0.01%

Cluster-level Xl? Mean Missing % Mean Missing % Mean Missing %

Village size 230 (120) 0% 270 (190) 0% 256 (170) 0%

Nb doctors 7(7) 0% 9(18) 0% 8 (15) 0%

% Landless 41.6 (12) 0% 34.4 (15) 0% 36.9 (15) 0%

% Almost Landless 19.3 (11) 0% 24.0 (8) 0% 22.4(9) 0%

% Access electricity 59.9 (26) 0% 59.1 (20) 0% 59.4 (22) 0%
Table 2: Description of the Sanitation dataset from (Guiteras et al., 2015a) considering only the Side-

Market supply and the Control group. Percentages are given for qualitative covariates. Means and
standard deviations in parentheses are provided for continuous covariates.

We consider only the comparison of a supply side-market versus control. The published
analysis used a mixed effect model and showed that the supply side-market alone did not
increase the hygienic latrine ownership (+0.3 percentage points, p-value=0.90). We reanalyze
the dataset using the GEE approaches in order to get the marginal effect of intervention.
Description of the outcome and variables for adjustment are available in Table 2. Because
covariates were missing in less than 0.01% of the observations, we assume that covariates are
missing completely at random and exclude individuals with missing covariates. The final
dataset contains 4774 individuals and 380 clusters. We assume the outcomes are rMAR. As
there is some evidence of imbalance in baseline covariates across armes, i.e., the descriptive
distributions of covariates in Table 2 are different between treated and control groups, we
use the DR approach. We assume that the correlation between any pair of individuals in the
same cluster is the same and hence use an exchangeable working correlation structure. In
this example, the PS and OM are fitted using a logistic regression with a linear combination
of all the individual-level and cluster-level covariates described in Table 2. Variables for
these models are selected using a forward stepwise regression before solving the estimating
equation. Adequacy of the model has been verified. The code for analysis is available in the
Web-Supplementary Material. To illustrate the use of the package CRTgeeDR, we provide
instructions for the DR estimator:

R> DR <- geeDREstimation(OUTCOME ~ TRT, id = CLUSTER, data = Sanitation,
+ family = binomial("logit"), corstr = "exchangeable”, typeweights = "VW",

+ model.weights = MISSING ~ TRT + DIARRHEA + ... + ELEC_ACCESS,
+ model.augmentation.trt = OUTCOME ~ DIARRHEA + ... + ELEC_ACCESS,
+ model.augmentation.ctrl = OUTCOME ~ DIARRHEA + ... + ELEC_ACCESS,

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 112

+ stepwise.weights = TRUE, stepwise.augmentation = TRUE)
R> summary (DR)

The output displays statistics for estimated coefficients B, « and ¢, the number of Newton-
Raphson iterations before convergence, and some description of the size of the clusters.

Estimates Model SE Robust SE wald p
(Intercept) -0.8106 0.09396 0.1088 -7.452 0.000000
TRT 0.4365 0.12890 0.1425 3.062 0.002198

Est. Correlation: 0.07306
Correlation Structure: exchangeable
Est. Scale Parameter: ©.9955

Number of GEE iterations: 2
Number of Clusters: 100 Maximum Cluster Size: 87
Number of observations with nonzero weight: 4612

Table 3 presents the PS and OM for analysis, the estimates, the nuisance-adjusted sand-
wich estimates of the variance, the confidence intervals for the odd-ratios, the p-values, and
the computation times for each of these analysis. For DR the computation time is 20 seconds,
most of which is required for the computation of the nuisance-adjusted sandwich estimator
of the variance (the estimation is < 3 seconds otherwise). Whereas GEE and IPW lead to
non-significant effect of supply side-market, the DR estimates are significantly different
from 0 at the 0.05 level (p=0.025). Using the DR, we conclude that there is 55% [8% - 121%]
greater chance of owning hygienic latrine after one year if there is a supply side-market.
This effect is significant (p<0.05) even using a nuisance-adjusted SE, which is generally
larger than the standard sandwich SE due to incorporation of additional variability from
estimation of the nuisance parameters in the PS and the OM (#y and #p). Information about
the PS and the OM can be obtained by using the following commands:

R> summary(DR$ps.model)

R> summary(DR$om.model. trt)
R> summary(DR$om.model.ctrl)
R> getPSPlot(DR)

Sandwich Nuis-adj. exp(Ba) p-value time

Ba SE SE OR ICyiy ICuax Unadj. Nuis-adj. (sec.)
GEE 0.19 0.171 - 1.21 0.87 1.69 0.262 - 1
IPW 0.19 0.182 0.219 1.21 0.79 1.86 0.290 0.386 32
AUG 045 0.141 0.176 1.57 1.12 2.22 0.001 0.010 11
DR 0.44 0.143 0.183 1.55 1.08 2.21 0.002 0.016 20

Marginal mean model: logit(y;;) = Bo + BaA;.
PS: logit(P(R;j| Ai, X[NP, X7) = 70+ vaAi + 5y RO X + 50 75 X5
OM: logit(P(Y;j|A; = a, XI»IJND,Xi?) ={o+ 2,1‘;1 é‘ZINDX}]l.}gD + Zle gZCXf];k, for each group a.

Table 3: Effects of the supply side-market vs. control on the probability of hygienic latrine ownership
in the sanitation data analysis (Guiteras et al., 2015a) using the standard GEE, the IPW adjustment
(IPW and DR), and the augmentation for imbalance (AUG and DR) assuming outcomes are rMAR.

Description of models for OM, PS and histogram of weights are given in the Web-
Supplementary Material Table 1 and Figure 1. As noted in Table 3, the estimates for IPW are
close to those for GEE, reflecting the fact that only 3.5% of data are missing. We also note
that all of the non-null weights are close to 1 (1.035 [1.02; 1.04]) showing that no covariate of
the PS explains the missingness pattern. Thus, the increased significance of the intervention
in the DR analysis compared to GEE is mainly driven by the augmentation. In both groups,
households with higher education and economic status (as evidenced by stoves, water

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 113

pipes, phones, and other factors) are more likely to have a hygienic latrine. For cluster-level
covariates the patterns differ by intervention group: a high number of doctors is positively
associated with the hygienic latrine ownership only in the intervention group indicating a
potential synergy between the number of doctors and the presence of side-supply markets.

Conclusion

We demonstrated that the IPW can be biased in CRTs if the weights are not implemented as
described in Robins et al. (1995) and a non-independence working correlation structure is
chosen. In particular, we discuss problems that arise in the package geepack implemented
in R. These concerns apply not only for outcome data in CRTs but also to longitudinal
outcome data, when the probability that an observations is missing at a given time depends
on time-varying covariates measured at other times. We recommend to always check the
implementation in the software that has been chosen for analysis. The CRTgeeDR package
protects against this bias and allows for adjustment in imbalance in baseline covariates
in CRTs. The package can accommodate a wide range of outcome types, link functions,
and working correlation structures. The CRTgeeDR package is easy to use and does not
require extensive programming. It therefore makes the augmented GEE (AUG) and the
Doubly robust (DR) methodology for CRTs more accessible to applied researchers. Of
note, although the CRTgeeDR package had been designed for CRTs, it can also be used
for analysis of correlated longitudinal data from a randomized trial. The use of version
2.0 of the CRTgeeDR package to analyze observational clustered data (in which treatment
attribution may be informative) is not straightforward, but updates with these capabilities
are under development.

Acknowledgement

We thank R. Guiteras for sharing the Sanitation study on the dataverse website. This work
was founded by NIH grants R37 Al 51164 and R01 MH100974. Portions of this research
were conducted on the Cluster at Harvard Medical (NIH grant NCRR 1510RR028832-01).

Bibliography

V.]. Carey, T. Lumley, and B. Ripley. gee: Generalized Estimation Equation Solver, 2012. URL
http://CRAN.R-project.org/package=gee. R package version 4.13-19. [p105]

M. P. Fay and B. I. Graubard. Small-sample adjustments for Wald-type tests using sandwich
estimators. Biometrics, 57(4):1198-1206, 2001. [p109]

R. B. Geskus and W. M. van der Wal. ipw: Estimate Inverse Probability Weights, 2015. URL
http://CRAN.R-project.org/package=ipw. R package version 1.0-11. [p105]

P. Gilbert and R. Varadhan. numDeriv: Accurate Numerical Derivatives, 2015. URL http:
//CRAN.R-project.org/package=numDeriv. R package version 2014.2.1. [p109]

A. Glynn and K. Quinn. Causal GAM: Estimation of Causal Effects with Generalized Additive
Models, 2010a. URL http://CRAN.R-project.org/package=CausalGAM. R package version
0.1-3. [p106]

A. N. Glynn and K. M. Quinn. An introduction to the augmented inverse propensity
weighted estimator. Political Analysis, 18(1):36-56, 2010b. [p106]

S. Gruber. tmle: Targeted Maximum Likelihood Estimation, 2014. URL http://CRAN.R-project.
org/package=tmle. R package version 1.2.0-4. [p106]

R. Guiteras, J. Levinsohn, and A. M. Mobarak. Encouraging sanitation investment in the
developing world: a cluster-randomized trial. Science, 348(6237):903-906, 2015a. [p106,
111, 112]

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

http://CRAN.R-project.org/package=gee
http://CRAN.R-project.org/package=ipw
http://CRAN.R-project.org/package=numDeriv
http://CRAN.R-project.org/package=numDeriv
http://CRAN.R-project.org/package=CausalGAM
http://CRAN.R-project.org/package=tmle
http://CRAN.R-project.org/package=tmle

CONTRIBUTED RESEARCH ARTICLES

114

R. Guiteras, J. Levinsohn, and M. Mobarak. Encouraging sanitation investment in the
developing world: A cluster-randomized trial. Harvard Dataverse; online data, 2015b. doi:
doi/10.7910/DVN/GJDUTV. URL http://dx.doi.org/10.7910/DVN/GIDUTV. [p111]

U. Halekoh, S. Hejsgaard, and]. Yan. The R package geepack for generalized estimating
equations. Journal of Statistical Software, 15(2):1-11, 2006. [p105]

S. Hejsgaard and R. Halekoh. geepack: Generalized Estimating Equations Package, 2016. URL
http://CRAN.R-project.org/package=geepack. R package version 1.2-0.1. [p105]

Y. Jun. geepack: Yet another R package for generalized estimating equations. R-News, 2(3):
12-14, 2002. [p105]

G. Lin, R. Rodriguez, and I. I. SAS. Weighted methods for analyzing missing data with the
GEE Procedure. Proceedings of SAS Global Forum, Washington DC(2014 March 23th-26th):
paper 166, 2015. [p105]

L. S. McDaniel and N. Henderson. geeM: Solve Generalized Estimating Equations, 2015. URL
http://CRAN.R-project.org/package=geeM. R package version 0.7.4. [p107]

L. S. McDaniel, N. C. Henderson, and P. J. Rathouz. Fast pure R implementation of gee:
Application of the Matrix package. The R journal, 5(1):181, 2013. [p105, 107]

K. E. Porter, S. Gruber, M. J. van der Laan, and J. S. Sekhon. The relative performance of
targeted maximum likelihood estimators. The International Journal of Biostatistics, 7(1):1-34,
2011. [p106]

M. Prague, R. Wang, A. Stephens, E. Tchetgen Tchetgen, and V. De gruttola. Accounting
for interactions and complex inter-subject dependency for estimating treatment effect in
cluster randomized trials with missing at random outcomes. Biometrics, 72(4):1066-1077,
2016. [p105, 107,109, 110]

J. M. Robins, A. Rotnitzky, and L. P. Zhao. Analysis of semiparametric regression models
for repeated outcomes in the presence of missing data. Journal of the American Statistical
Association, 90(429):106-121, 1995. [p105, 106, 113]

J. M. Robins, S. Greenland, and F.-C. Hu. Estimation of the causal effect of a time-varying
exposure on the marginal mean of a repeated binary outcome. Journal of the American
Statistical Association, 94(447):687-700, 1999. [p106]

SAS Institute Inc. SAS/STAT Software, Version 13.2. Cary, NC, 2015. URL http://www.sas.
com/. [p105]

O. Sofrygin and M. van der Laan. tmlenet: Targeted Maximum Likelihood Estimation for Network
Data, 2015. URL http://CRAN.R-project.org/package=tmlenet. R package version 0.1-0.
[p106]

A.]. Stephens, E. J. Tchetgen Tchetgen, and V. DeGruttola. Augmented generalized estimat-
ing equations for improving efficiency and validity of estimation in cluster randomized
trials by leveraging cluster-level and individual-level covariates. Statistics in medicine, 31
(10):915-930, 2012. [p105, 107]

E. J. Tchetgen Tchetgen, M. M. Glymour, J. Weuve, and]. Robins. A cautionary note on
specification of the correlation structure in inverse-probability-weighted estimation for
repeated measures. Epidemiology, 23(4):644-646, 2012. [p105]

M. van der Laan. Causal inference for a population of causally connected units. Journal
Causal Inference, 2(1):1374-1380, 2014a. [p106]

M. van der Laan. Targeted estimation of nuisance parameters to obtain valid statistical
inference. The International Journal of Biostatistics, 10(1):29-57, 2014b. [p108]

W. M. van der Wal and R. B. Geskus. ipw: an R package for inverse probability weighting.
Journal of Statistical Software, 43(13):1-23, 2011. [p105, 109]

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

http://dx.doi.org/10.7910/DVN/GJDUTV
http://CRAN.R-project.org/package=geepack
http://CRAN.R-project.org/package=geeM
http://www.sas.com/
http://www.sas.com/
http://CRAN.R-project.org/package= tmlenet

CONTRIBUTED RESEARCH ARTICLES

115

C. Wang and M. C. Paik. A weighting approach for gee analysis with missing data. Commu-
nications in Statistics-Theory and Methods, 40(13):2397-2411, 2011. [p109]

M. Wang. geesmuv: Modified Variance Estimators for Generalized Estimating Equations, 2015. URL
http://CRAN.R-project.org/package=geesmv. R package version 1.3. [p109]

S.L.Zeger and K.-Y. Liang. Longitudinal data analysis for discrete and continuous outcomes.
Biometrics, 42(1):121-130, 1986. [p105]

J. Zetterqvist and A. Sjolander. drgee: Doubly Robust Generalized Estimating Equations, 2015.
URL http://CRAN.R-project.org/package=drgee. R package version 1.1.3. [p105]

M. Zhang, A. A. Tsiatis, and M. Davidian. Improving efficiency of inferences in randomized
clinical trials using auxiliary covariates. Biometrics, 64(3):707-715, 2008. [p107]

Melanie Prague

Department of Biostatistics
Harvard T.H. Chan School of Public Health
655 Huntington Ave

Boston, MA 02115

and

INRIA - INSERM U1219 - SISTM
164 rue Leo Saignat Room 23
33076 Bordeaux Cedex, France
(ORCiD:0000-0001-9809-7848)
melanie.prague@inria.fr

Rui Wang

Department of Biostatistics

Harvard T.H. Chan School of Public Health
655 Huntington Ave

Boston, MA 02115
(ORCiD:0000-0001-5007-193X)
rwang@hsph.harvard. edu

Victor De Gruttola

Department of Biostatistics

Harvard T.H. Chan School of Public Health
655 Huntington Ave

Boston, MA 02115
degrut@hsph.harvard.edu

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

http://CRAN.R-project.org/package=geesmv
http://CRAN.R-project.org/package=drgee
mailto:melanie.prague@inria.fr
mailto:rwang@hsph.harvard.edu
mailto:degrut@hsph.harvard.edu

CONTRIBUTED RESEARCH ARTICLES 116

queueing: A Package For Analysis Of
Queueing Networks and Models in R

by Pedro Cafiadilla Jiménez, Yolanda Romdn Montoya

Abstract queueing is a package that solves and provides the main performance measures for both
basic Markovian queueing models and single and multiclass product-form queueing networks. It can
be used both in education and for professional purposes. It provides an intuitive, straightforward
way to build queueing models using S3 methods. The package solves Markovian models of the form
M/M/c/K/M/FECEFS, open and closed single class Jackson networks, open and closed multiclass
networks and mixed networks. Markovian models are used when both the customer inter-arrival time
and the server processing time are exponentially distributed. Queueing network solvers are useful for
modelling situations in which more than one station must be visited.

Introduction

Queueing theory is a mathematical branch of operations research. A pioneering work in this field was
The Theory of Probabilities and Telephone Conversations by A. K. Erlang (Erlang, Agner K., 1909).

Queueing exists when the demand for a service exceeds the available supply (Donald Gross and
Carl M. Harris, 1974). Although the common image of queues is that of people waiting in line, for
example at the supermarket checkout (Terry Green, 2012), queueing models are also used to analyse
computer performance (I. Mitrani, 1987, 1998; E. Gelembe and I. Mitrani, 1980; Mor Harchol-Balter,
2013; Ramoén Puigjaner et al., 1995; Edward D. Lazowska et al., 1984; Leonard Kleinrock, 1976), traffic
jams (Tom Vanderbilt, 2009) and in many other areas of activity.

Although there are computer programs that are applicable to queueing theory, to date the statistical
computing environment R has lacked specific packages for this purpose.

In 2015 and 2016 respectively, simmer (Ifiaki Ucar and Bart Smeets, 2015) and queuecomputer
(Anthony Ebert, 2016) were included at CRAN. Both apply simulation techniques to queueing models.
Simulation techniques have the great advantage of flexibility, enabling a system to be represented at the
level of detail desired. The disadvantages are the greater costs incurred, because many parameters must
be defined, a large and complex program developed (and debugged) and significant computational
resources deployed in order to obtain narrow confidence intervals (Edward D. Lazowska et al., 1984).
queueing is a queueing model solver, which has the advantage of achieving a favourable balance
between accuracy and efficiency (Edward D. Lazowska et al., 1984).

queueing provides R users with the most widely-used models: Markovian models, queueing
networks and calculators. Although Markovian models or queueing network models may be viewed
as very simple models with strong assumptions, they have actually been used to accurately model
many real situations, because the accuracy of queueing models is robust with respect to deviations
from prior assumptions (Edward D. Lazowska et al., 1984).

Markovian models include the familiar queues observed in real life at supermarket and airport
checkouts, restaurant queues, etc. The performance of computer systems can be modelled in a similar
way by assuming that the customers are operating system processes, database transactions, etc.
With queueing networks, several classes of customers can be considered, and therefore sizing, capacity
planning and what-if scenarios can be addressed with robust assumptions (Edward D. Lazowska et al.,
1984). For example, queueing networks can be observed at airports, where various stages, such as
check-in, passport control and security checks must be completed in turn before passengers enter the
aeroplane.

Finally, calculators are utilities that are used to obtain probabilities, such as that of a supermarket
customer being obstructed, of a passenger being rejected after arrival, or of a caller being transferred
to hear the operator voice message stating that all phone lines are busy.

These features of the queueing package make it a very valuable tool for the applied study of
queuing theory, in diverse fields of application, including the following:

* In education, to facilitate the presentation of class content, for learning and practice;

¢ Inresearch, to achieve a deeper understanding of the models and their principles, using this as
a basis for designing more advanced models.

¢ In health centres, to determine the appropriate size for waiting areas and the average time that
patients must wait.

¢ In database administration, to discover bottlenecks at database servers and to accomodate user
load.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=simmer
https://CRAN.R-project.org/package=queuecomputer
https://CRAN.R-project.org/package=queueing

CONTRIBUTED RESEARCH ARTICLES 117

¢ In the design of inbound call-centres, to calculate the optimal number of agents required to
maintain a given level of service.

Queueing Package

Nomenclature

To take into account different forms of queue organisation (limited or unlimited space, limited or
unlimited population, etc.), a nomenclature of six positions describing the characteristics of the model
is usually used (D. G. Kendall, 1953). Its structure is A/B/C/K/M/Z, where:

* A describes the inter-arrival time probability distribution,

* B describes the service time probability distribution,

e (C is the number of servers or channels,

* K is the space limit of the service facility in the sense that no more than K customers can be in

the system (C in service and K - C waiting in queue),

M is the size of the customer population,

* Z is the queue discipline, i.e how the next customer is chosen from the queue when the server
completes a service.

When Z is FCFS, M = 00, and K = oo, the last three positions are omitted.

Thus, M/M/1/c0/c0/FCFS, abbreviated to M/M/1, describes a model in which the inter-arrival and
service times are both exponential (M is obtained from the Markovian property of the exponential
distribution); there is a single server in a facility that does not impose any restriction on the number of
customers; customers arrive from a population that is considered infinite in the sense that the arrival
of an individual does not modify the probability of the next arrival; and FCFS (First Come, First Served)
is the most frequent way in which the next customer to be served is chosen from the queue.

Package contents
The package built provides a solution for two families of models, and three commonly-used calculators:

* Markovian models: in which inter-arrival and service times are both distributed exponentially
(Pazos Arias et al., 2003; Sixto Rios Insta et al., 2004; Donald Gross and Carl M. Harris, 1974;
Leonard Kleinrock, 1975):

. M/M/1
M/M/c
M/M/o0
M/M/1/K

. M/M/c/K
M/M/c/c

. M/M/1/K/K
. M/M/c/K/K
. M/M/c/K/m
. M/M/oo/K/K

SO P®NDURWN R

[y

Operational models (used mainly in modelling computer performance, see Edward D. La-
zowska et al. (1984)):

. Multiple channel open Jackson networks

. Multiple channel closed Jackson networks

. Single channel multiple class open networks

. Single channel multiple class closed networks
. Single channel multiple class mixed networks

o QN T

¢ Calculators:
i. B-Erlang

ii. C-Erlang
iii. Engset

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

118

Structure of queueing package

The queueing package was developed taking into account the S3 special class of functions in R. With
this type of function, different queueuing models can be created in the same way, thus providing the
user with a uniform and easy way to create the models. The model is created using the following
steps:

1. Create the inputs for the model with the NewInput function;

2. Optionally check the inputs with the CheckInput function.

3. Create the model by calling QueueingModel

4. Print a summary of the model using print, or a specific model performance measure such as W.

Although step 2 is optional (as it is applied when the QueueingModel function is called), it is
recommended that the inputs should always be checked, as this makes it easier to understand the data
and, thus to correctly build the model.

The following code is an example of a model using queueing. It can be thought of as cars
arriving at a petrol station, following an exponential distribution at the rate A = 2. The cars are served
exponentially distributed at the rate y = 3.

This situation is modelled in queueing using a single node in which the customer inter-arrival
time and service time both follow an exponential distribution, at the rates A =2 and u = 3 respectively,
as shown in Figure 1.

e o
Loy an
/ }‘ J— h |—
I"n_ N L ;"I x\\x- B /

- i - -

Figure 1: M/M/1 Infinite population, single server. Example applicable to service provided at a petrol
station

Load the package
library(queueing)

Create the inputs for the model.
i_mm1 <- NewInput.MM1(lambda=2, mu=3)

Optionally check the inputs of the model
CheckInput(i_mm1)

Create the model
o_mml <- QueueingModel (i_mm1)

Print on the screen a summary of the model
print(summary(o_mm1), digits=2)

#> lambda muc k m RO P00 Lg WgX
#> 1 2 31 NANA ©.67 .33 1.3 0.67 2

N

W Waq Laq
T 13

The output of the model also includes components, as the functions Fy, (t) and Fyy (t), which can
be used to view the cumulative probability distribution of the random variables w; (time waiting)
and w (time in the system: time in queue + time being served), assuming FIFO(Fist In, First Out)
or FCFS(Fist Come, First Served) as the queue discipline. Accordingly, Fy, (t) is the probability of a
customer waiting for a time less than or equal to ¢ for service (Donald Gross and Carl M. Harris, 1974).

As can be seen in Figure 2, the probability of a customer having to wait for at least 4 units of time
is 1, and this coincides with the probability of a customer having to spend 4 total units of time in the
system.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 119

gTitle <- "Distribution function of w and wq"
fw <= o_mm1$FW
fwg <- o_mml1$FWq

n <- 10
ty <- uln
ylab <- "FW(t), Fwg(t)"
xlab <- "t"

cols <- c("black”, "red")
leg <= c("FW(t)”, "FWa()")

curve(fw, from=0, to=n, type=ty, ylab=ylab, xlab=xlab, col=cols[1], main=gTitle)

curve(fwqg, from=0, to=n, type=ty, col=cols[2], add=T)
legend("bottomright”, leg, 1ty=c(1, 1), col=cols)

Distribution function of w and wq

o
= -
© _|
o
5 o©
S o
LL
S <
= o |
LL
(q\]
S
— FW(1)
o
[[[[[[
0 2 4 6 8 10

Figure 2: Distribution of random variables w and wq. As can be seen, from t=4, both variables has
probability of 1

Performance metrics comparision

queueing provides functions returning the outputs of the model, and therefore additional R functions
can be developed to study the effect of changing model inputs. For example:

¢ Change the input parameter A in the model M/M/1:

L_f_aux <- function(x){L (QueueingModel(NewInput.MM1(lambda=x, mu=1, n=-1)))}
Lg_f_aux <- function(x){Lq (QueueingModel(NewInput.MM1(lambda=x, mu=1, n=-1)))}
Lgg_f_aux <- function(x){Lqq(QueueingModel (NewInput.MM1(lambda=x, mu=1, n=-1)))}

L_f <- function(v){sapply(v, L_f_aux)?}

Lg_f <- function(v){sapply(v, Lg_f_aux)}
Lgg_f <- function(v){sapply(v, Lgg_f_aux)}

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 120

I

gt <- "L, Lg and Lqq’
ylab <- "L, Lg, Lgq"
xlab <- "rho"

n <- 100

to <- 0.99

ty <- "1"

1ty <-c(1, 1, 1D

cols <- c("blue”, "red", "green")

leg <- C(”L”, nan’ HquU)

curve(L_f, from=0, to=to, n=n, ylab=ylab, xlab=xlab, col=cols[1], type=ty, main=gt)
curve(Lg_f, from=0, to=to, n=n, col=cols[2], add=T, type=ty)

curve(Lqq_f, from=0, to=to, n=n, col=cols[3], add=T, type=ty)

legend("topleft”, leg, lty=c(1, 1, 1), col=cols)

L, Lg and Lqq

o
9 7 |
: |
& Lag |
|
‘\
o o _| ‘
g o
- |
-1 o
g < 7
o _|
N
O p—
I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

rho

Figure 3: Evolution of the number of customers in system (L), in queue (Lq) and in queue knowing
that queue exists (Lqq). The three functions exhibit a dramatic increase in the number of customers as
rho tends to 1. Observe that in general, Lqq > L > Lq

As can be seen in Figure 3, the three functions exhibit a dramatic increase in the number of
customers, from p — 1. Observe that Ly; > L > L;. L > L, because the number of customers in the
system must include the customer currently receiving the service; the interesting insight here is that
Lgq > L, and so merely knowing that there exists a queue raises the number of customers in the system.

x <- seq(from=0, to=0.99, by=0.01)
Lag_f(x) - L_f(x)

[11J1 11111
#> [36] 111111
[71J1 11111

1 11111
1 11111
1

_ a
—_ a
—_ a
—_ a4
—_ a4
—_ A
—_
NN

1
1
1

—_
—_
—_ a
—_ a
—_ a4
—_ a4
—_
N

1
1
1

—_ a4
—_ a4
—_ A a
—_
NN

* The arrival rate changes in line with the number of servers in a M/M/c model:

W_f_aux <- function(x){W (QueueingModel (NewInput.MMC(lambda=x, mu=1.01, c=x)))}
Wg_f_aux <- function(x){Wg (QueueingModel (NewInput.MMC(lambda=x, mu=1.01, c=x)))}

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

121

W_f <~ function(v){sapply(v, W_f_aux)}
Wg_f <- function(v){sapply(v, Wq_f_aux)}

gt <- "W and Wg"

ylab <= "W, Wg"

xlab <- "lambda, c”

n <- 14

ty <= " 1 n

leg <= c("W", "Wg")

1ty <-c(1, 1, 1D

cols <- c("blue”, "red")

curve(W_f, from=1, to=n, n=n, ylab=ylab, xlab=xlab , col=cols[1], type=ty, main=gt)

curve(Wg_f, from=1, to=n, n=n, col=cols[2], add=T, type=ty)
legend("topright”, leg, lty=1ty, col=cols)

W and Wq

o
O_
— — W
— Wq
gg]
g 8-
S
o _|
=
o _|
~

I I I I I I I
2 4 6 8 10 12 14

lambda, ¢

Figure 4: Evolution of the mean time in queue and in the system according to lambda and c increase
equally. Observe that the time tends to zero as the number of servers increase

Observe in Figure 4 that although A and c increase at the same rate, the time tends to zero as the
number of servers increases, meaning that the capacity of the facility increases faster than the work
pending attention.

* Sometimes it is useful to compare different models, for example to measure the impact of
duplicating the number of servers or of restricting the queue area. queueing includes a use-
ful function to compare different queueing models, so that the tradeoff between performace
measures can be seen at a glance.

o_mm2 <- QueueingModel (NewInput.MMC(lambda=2, mu=3, c=2))
o_mm2k <- QueueingModel (NewInput.MM1K(lambda=2, mu=3, k=5))
CompareQueueingModels(o_mm1, o_mm2, o_mm2k)

#> lambda mu ¢ k m RO Po Lq Wqg X
#> 1 2 3 1 NA NA 0.6666667 ©.3333333 1.33333333 0.66666667 2.000000

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 122

#> 2 3 2 NA NA 0.3333333 0.5000000 0.08333333 0.04166667 2.000000
#> 3 31 5 NA 0.6345865 ©.3654135 0.78796992 ©.41390205 1.903759
#> L W Waq Laq

2
2

#> 1 2.000000 1.0000000 1.0000000 3.000000
#> 2 0.750000 0.3750000 0.2500000 1.500000
#> 3 1.422556 0.7472354 0.6717949 2.015385

Queueing Network Models

In addition to the basic Markovian models, queueing also offers several routines with which to build
different queueing networks.

Although simple queueing models have been used to correctly model different situations (Allan
L. Scherr, 1967), a queueing network must be used when several stages or places need to be visited
in order to obtain full service. There are some “special” queueing networks in the simple models:
thus, M/M/c/K (J. Medhi, 2003; Hisashi Kobayashi, 1978) and M/M/c/K/m are two examples of closed
queueing models.

For models with more than two stations or with different classes of customers, queueing offers
single and multiple channel open and closed Jackson networks, single channel open and closed
multiple classes of customers and single channel mixed networks.

The steps taken to create a queueing network are the same as those for a single queueing model:
the first is to apply the corresponding NewlInput function; then, optionally, the CheckInput function
is called, to help with the input parameters of the model, and finally the model is built with the
QueueingModel function.

The difference between this and the single node model is that there exist several different functions
with which to create the inputs of the network. For example, for a single-class closed Jackson network,
there are three ways to create the input, as long as the problem has a probability route or the problem
has been defined as operational (Peter J. Denning and Jeffrey P. Buzen, 1978).

For example, imagine the urgent-treatment box of a hospital. Patients arrive at the rate of 10
patients/hour. A doctor examines each patient and may provide treatment and then send the patient
home, or derive the patient to a specialist (orthopaedist, cardiologist, etc.), who in turn may request
tests (blood analysis, radiography, etc.), and then send the patient home or recommend hospitalisation.
In the latter case(assuming there are beds available), treatment will be provided, more checks and tests
may be required and, eventually, the patient will leave (not always to go home).

In this case, the model used is a single-class Open Jackson network, with five nodes: general doctor,
orthopaedist, cardiologist, checks and tests box (composed of 15 technicians) and hospitalised (with
space for any number of patients). Except for visiting the general physician, in no case is a patient
allowed to directly enter another node.

The probability route matrix is measured as:

0 03 02 0 0
0O 0 0 07 01
0 0 0 08 015
0 03 07 O 0
0O 0 0 06 03

The model is built as follows, noting gd as general physician, ort as orthopaedist, car as cardiologist,
tb as checks and tests box and hos as hospitalised:

data <- c(0, 0.3, 0.2, 0, 0, 0, 0, 0, 0.7, 0.1, 0, 0, @, 0.8, 0.15, @0, 0.4, 0.3, 0, 0.3)
prob <- matrix(data=data, byrow = TRUE, nrow = 5, ncol=5)

gd <- NewInput.MM1(lambda=1@, mu=25, n=0)

ort <- NewInput.MM1(lambda=0, mu=18, n=0)

car <- NewInput.MM1(lambda=0, mu=20, n=0)

tb <- NewInput.MMC(lambda=0, mu=12, c=15, n=0)

hos <- NewInput.MMInf(lambda=0, mu=0.012, n=0)

hospital <- NewInput.OJN(prob=prob, gd, ort, car, tb, hos)

The fact that no patient is allowed to visit any doctor other than the general physician is specified,
by setting lambda to zero at the node.

The parameters can be checked using CheckInput and the model is built using QueueingModel

CheckInput(hospital)
m_hospital <- QueueingModel (hospital)

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 123

print(summary(m_hospital), digits = 2)

#> L W X Lk Wk Xk ROk
#> Net 465 47 10 NA NA NA NA
#> Nd1 NA NANA 0.67 0.067 10.0 0.400
#> Nd2 NANANA 1.11 @.111 9.5 0.525
#> Nd3 NA NANA 0.50 0.050 6.7 0.335
#> Nd4 NA NANA 1.00 0.100 12.0 0.067
#> Nd5 NA NA NA 462.21 46.221 5.5 462.213

As can be seen from the output, results are calculated both for the complete network and for each
node.

queueing also allows multiple classes of patients to be created, although currently only in the
operational way (Peter J. Denning and Jeffrey P. Buzen, 1978).

At the hospital, the patients arriving at the urgent-treatment box are usually one of two types:
high priority or normal priority.

By appropriately adjusting the input parameters, the problem can now be modelled as follows:

classes <- 2

vLambda <- c(2, 10)

nodes <-5

vType <= c("Q", "Q", "Q", "Q", "D")

vHigh <- ¢(2, 4, 2, 6, 2)

vNorm <- c(1, 2, 1, 3, 0.5)

vVisit <- matrix(data=c(vHigh, vNorm), nrow=2, ncol=5, byrow = TRUE)
sHigh <- c(1/100, 1/250, 1/300, 1/600, 1/5)

sNorm <- c(1/90, 1/150, 1/200, 1/300, 1/3)

vService <-matrix(data=c(sHigh, sNorm), nrow=2, ncol=5, byrow = TRUE)

cl_hosp <- NewInput.MCON(classes, vlLambda, nodes, vType, vVisit, vService)

Some parameters have a different meaning in this model. Although the order of the classes and
nodes is chosen by the modeller, once it is decided, consistency must be maintained.

* classes: number of classes of patients;

* vLambda: arrival rate of each class, setting high priority first;

* nodes: number of nodes;

e vType: except nodes like hospital (no limit to number of beds available), which is “D”, the rest
are “Q”;

* vHigh: average number of visits by each high priority patient to nodes;

e vNorm: average number of visits by each normal priority patient to nodes;

* oVisit: recall that order consistency must be preserved;

* sHigh: average service time in each node for high priority patients;

* sNorm: average service time in each node for normal priority patients.

As before, the CheckInput function should be used before building the model with QueueingModel.

CheckInput(cl_hosp)
m_cl_hosp <- QueueingModel(cl_hosp)
print(summary(m_cl_hosp), digits = 2)

#> L W X Lc Wc Xc Lk Wk Xk ROk Lck Wck Xck ROck
#> Net 3 0.25 12 NA NA NA NA NA NA NA NA NA NA NA
#> C1T NA NA NA ©0.92 0.46 2 NA NA NA NA NA NA NA NA
#> Cl2 NA NANA 2.12 0.21 10 NA NA NA NA NA NA NA NA

#> Nd1 NA NANA NA NANA 0.178 0.0148 14 0.151 NA NA NA NA
#> Nd2 NA NANA NA NA NA 0.198 0.0165 28 0.165 NA NA NA NA
#> Nd3 NA NANA NA NA NA 0.068 0.0056 14 0.063 NA NA NA NA
#> Nd4 NA NANA NA NANA 0.136 0.0114 42 0.120 NA NA NA NA
#> Nd5 NA NANA NA NA NA 2.467 0.2056 9 2.467 NA NA NA NA
#> CN1T NA NA NA NA NA NA NA NA NA NA 0.047 ©0.0236 4 0.040
#> CN12 NA NA NA NA NA NA NA NA NA NA 0.038 0.0192 8 0.032
#> CN13 NA NANA NA NA NA NA NA NA NA 0.014 0.0071 4 0.013
#> CN14 NA NA NA NA NA NA NA NA NA NA 0.023 0.0114 12 0.020
#> CN15 NA NA NA NA NA NA NA NA NA NA ©0.800 0.4000 4 0.800

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

124

#> CN21T NA NA NA NA NA NA NA NA NA NA 0.131 0.0131 10 0.111

#> CN22 NA NA NA NA NA NA NA NA NA NA 0.160 0.0160 20 ©0.133
#> CN23 NA NA NA NA NA NA NA NA NA NA 0.053 0.0053 10 0.050
#> CN24 NA NA NA NA NA NA NA NA NA NA 0.114 0.0114 30 0.100
#> CN25 NA NA NA NA NA NA NA NA NA NA 1.667 0.1667 5 1.667

In this case, the output has more detailed information than in the previous model, as the class
performance measures are also included.

Queueing Calculators

The calculators included in queueing are frequently used for sizing call centres, telecomunications
systems, etc.

1. Erlang-B. This function is derived from a M/M/c/c model when the c+1 customer arrives when
there are c already in the system.

2. Erlang-C. This function is frequently used in call centres to correctly set the number of agents.
It denotes the probability of a customer having to queue because all the servers are busy in a
M/M/e.

3. Engset. When the population is finite, that is, when each new arrival changes the probability of
the next arrival, the Engset function gives the probability of an arrival having to return to the
source merely because there is no room availabl. This situation is modelled by M/M/c/c/N with ¢
<N.

The graphics normally shown in queueing theory books such as (Donald Gross and Carl M. Harris,
1974), page 111, can be easily obtained and improved with the calculators included:

servers <- 1:50

numServers <- length(servers)

rho <- ¢(1, 5, 10, 15, 20, 24, 30, 40, 50)
rho_size <- length(rho)

pRes <- array(data=0, dim=c(numServers, rho_size))

for (i in 1:numServers)
for (j in 1:rho_size)
pRes[i, j] <- B_erlang(i, rho[jl)

colrs <- rainbow(n=rho_size)

xlim <- c(1, numServers)

ylim <- c(o, 1)

xlab <- "Number of servers”

ylab <- "Probability”

gt <- "B-Erlang prob. for different loads”
y <- pRes[, 1]

X <- servers

col <- colrs[1]

plot(x=x, y=y, xlim=xlim, ylim=ylim, type="1", col=col, xlab=xlab, ylab=ylab, main=gt)

for (j in 2:rho_size)
lines(x=1:numServers, y=pRes[, j1, col=colrs[j1)

leg <- as.character(rho)
tr <- "topright”

1ty <- rep(1, rho_size)
Iwd <- rep(0.01, rho_size)

legend(x=tr, legend=leg, lty=1ty, lwd=lwd, col=colrs)

Conclusions

queueing is a useful tool for both academic and professional use. In education, the main models
learned in class are presented in detail, providing numerous performance measures within a versatile

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 125

B-Erlang prob. for different loads

1.0

0.6

Probability
0.4

0.2

I I I I I I
0 10 20 30 40 50

Number of servers

Figure 5: Probability of not finding an available server as the number of servers increase

tool, helpful to students and teachers alike. For professionals, the package can be used both to design
and size systems or workloads according to perfomance requirements, and to explain deviations in
systems as they are evolving.

queueing has been developed to make it easy to learn how the Newlnput, CheckInputs and Queue-
ingModel models are built. Both basic Markovian models and queueing networks can be built using
the same process.

More queue disciplines, together with intermediate and advanced models, will be included
progressively in the package to make it even more versatile.

Acknowledgments

This work would not have been possible without the invaluable help of Yolanda Roman Montoya.

queueing has its roots in the peerless stochastic processes classes given by Sixto Rios Insta,
Alfonso Mateos Caballero, M* Concepcién Bielza Lozoya and David Rios Instia. Although the package
is dedicated especially to the memory of Sixto Rios Instia, I am sincerely grateful to and appreciative
of all these outstanding educators.

Finally, I thank everyone who has made contributions and suggestions or made use of the package.

Bibliography
Allan L. Scherr. An Analysis of Time-Shared Computer Systems. The M.L.T. Press, Cambridge, Mas-
sachusetts, 1967. [p122]

Anthony Ebert. queuecomputer: Computationally Efficient Queue Simulation, 2016. URL https://github.
com/AnthonyEbert/queuecomputer. [p116]

D. G. Kendall. Stochastic Processes Occurring in the Theory of Queues and Their Analysis by the
Method of the Imbedded Markov Chain. The Annals of Mathematical Statistics, 24(3):338-354, 1953.
URL https://doi.org/10.1214/aoms/1177728975. [p117]

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://github.com/AnthonyEbert/queuecomputer
https://github.com/AnthonyEbert/queuecomputer
https://doi.org/10.1214/aoms/1177728975

CONTRIBUTED RESEARCH ARTICLES 126

Donald Gross and Carl M. Harris. Fundamentals of Queueing Theory. Wiley, 1974. [p116, 117,118, 124]
E. Gelembe and I. Mitrani. Analysis and Synthesis of Computer Systems, 1980. [p116]

Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik. Quantitative System
Performance. Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., 1984.
[pl16,117]

Erlang, Agner K. The Theory of Probabilities and Telephone Conversations. Nyt Tidsskrift for Matematik,
20(B):33-39, 1909. URL http://www. jstor.org/stable/24528622. [p116]

Hisashi Kobayashi. Modeling and Analysis. An Introduction to System Performance Evaluation Methodology.
Addison Weasly, 1978. [p122]

I. Mitrani. Modelling of Computer and Communication Systems. Cambridge University Press, 1987. [p116]
I. Mitrani. Probabilistic Modelling. Cambridge University Press, 1998. [p116]

Ifiaki Ucar and Bart Smeets. simmer: Discrete-Event Simulation for R, 2015. URL http://r-simmer.org,
https://github.com/r-simmer/simmer. [p116]

J. Medhi. Stochastic Models in Queueing Theory, 2nd Edition. Academic Press, 2003. [p122]
Leonard Kleinrock. Queueing Systems. Volume 1: Theory. John Wiley and Sons, Inc, 1975. [p117]

Leonard Kleinrock. Queueing Systems. Volume 2: Computer Applications. John Wiley and Sons, Inc, 1976.
[pl16]

Mor Harchol-Balter. Performance Modeling and Design of Computer Systems. Queueing Theory in Action.
Cambridge University Press, 2013. [p116]

J.J. Pazos Arias, A. Suarez Gonzalez, and R. P. Diaz Redondo. Teoria de Colas y Simulacién de Eventos
Discretos. Pearson Educacién, 2003. [p117]

Peter J. Denning and Jeffrey P. Buzen. The Operational Analysis of Queueing Network Models. ACM
Computing Surveys, (10):225-261, 1978. URL https://doi.org/10.1145/356733.356735. [p122, 123]

Ramoén Puigjaner, Juan José Serrano, and Alicia Rubio. Evaluacion y explotacion de sistemas informdticos.
Editorial Sintesis, 1995. [p116]

Sixto Rios Instia, Alfonso Mateos Caballero, M* Concepcién Bielza Lozoya, and Antonio Jiménez
Martin. Investigacion Operativa. Modelos Deterministicos y Estocdsticos. Editorial Centro de Estudios
Ramoén Areces, 2004. [p117]

Terry Green. Cashier Number 3, Please!: Creating Fairer, Faster Service. Marshall Cavendish, 2012. [p116]

Tom Vanderbilt. Trdfico. DEBATE, 2009. [p116]

Pedro Cariadilla Jiménez

Statistics Operations Research Department
Universidad de Granada

Spain

pcanadilla@correo.ugr.es

Yolanda Romdn Montoya

Statistics Operations Research Department
Universidad de Granada

Spain

yroman@ugr.es

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

http://www.jstor.org/stable/24528622
http://r-simmer.org, https://github.com/r-simmer/simmer
http://r-simmer.org, https://github.com/r-simmer/simmer
https://doi.org/10.1145/356733.356735
mailto:pcanadilla@correo.ugr.es
mailto:yroman@ugr.es

CONTRIBUTED RESEARCH ARTICLES 127

ctmcd: An R Package for Estimating the
Parameters of a Continuous-Time Markov

Chain from Discrete-Time Data
by Marius Pfeuffer

Abstract This article introduces the R package ctmed, which provides an implementation of methods
for the estimation of the parameters of a continuous-time Markov chain given that data are only
available on a discrete-time basis. This data consists of partial observations of the state of the chain,
which are made without error at discrete times, an issue also known as the embedding problem for
Markov chains. The functions provided comprise matrix logarithm based approximations as described
in Israel et al. (2001), as well as Kreinin and Sidelnikova (2001), an expectation-maximization algorithm
and a Gibbs sampling approach, both introduced by Bladt and Serensen (2005). For the expectation-
maximization algorithm Wald confidence intervals based on the Fisher information estimation method
of Oakes (1999) are provided. For the Gibbs sampling approach, equal-tailed credibility intervals
can be obtained. In order to visualize the parameter estimates, a matrix plot function is provided.
The methods described are illustrated by Standard and Poor’s discrete-time corporate credit rating
transition data.

Introduction

The estimation of the parameters of a continuous-time Markov chain (see, e.g., Norris (1998) or
Ethier and Kurtz (2005); also referred to as Markov process) when only discrete time observations
are available is a widespread problem in the statistical literature. Dating back to Elfving (1937), this
issue is also known as the embedding problem for discrete-time Markov chains. The problem occurs
in the modeling of dynamical systems when due to various reasons such as a difficult measurement
procedure only discrete-time observations are available. This is the case in a wide range of applications,
e.g., in the analysis of gene sequence data (see, e.g., FHobolth and Stone (2009), Verbyla et al. (2013)
or Chen et al. (2014)), for causal inference in epidemiology (see, e.g., Zhang and Small (2012)), for
describing the dynamics of open quantum systems (see, e.g., Cubitt et al. (2012)), or in rating based
credit risk modeling (see, e.g., Dorfleitner and Priberny (2013), Yavin et al. (2014) or Hughes and
Werner (2016)) to name only a few.

In the following, an explicit statement of the missing data setting shall be given and the notation
used in this manuscript shall be introduced: Consider that realizations of a continuous-time Markov
chain, i.e., paths of states s € {1,...,S}, which change at times Ty, ..., T are given. For a single path,
this is exemplarily illustrated in figure 1.

State(Time) s(0) s(11) s(1) s(tk-1) s(tk) s(T)
: : — ANANNNN— : D

Figure 1: Discrete-Time / Continuous-Time Setting

In the missing data situation described in this paper, these paths are however not completely observed,
but only at points in time 0 and T. The available observations are thus the states s(0) and s(T) and
these states are assumed to be observed without error. The cumulative discrete-time data over all
paths can be summarized into conditional transition matrices with absolute transition frequencies
Nr|o or relative transition frequencies Pryo (in the following, the abbreviate notations N1 and Py will
be used). The continuous-time state changes s(1;), k € {1, ...,K} are latent variables.

A continuous-time Markov chain has the parameter set
J
Q = {gijh<i<ii<j<ri=j=s : Gi < 0,qij,izj >0, qij =0,
j=1

which is called generator matrix, transition rate matrix or intensity matrix. The problem is now to
estimate the parameters Q from the partial observations at times 0 and T. This allows to derive a
matrix of conditional discrete-time state change predictions Pr, for arbitrary time intervals [0, T,] of
length T, by employing the matrix exponential function

Pr = exp(QTy).

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 128

Besides the R package msm, see Jackson et al. (2011), which only provides functions for direct
likelihood optimization, there is no other publicly accessible implementation available which allows
for estimating the parameters of a continuous-time Markov chain given that data have been only
observed on a discrete-time basis. Against this background, this paper introduces the R package
ctmced, a continuously extended, improved and documented implementation based of what started as
supplementary R code to Pfeuffer (2016). The functions of the package are explained and illustrated by
Standard and Poor’s corporate rating transition data. The outline of the paper is as follows: first, three
matrix logarithm adjustment approaches are explained. Second, likelihood inference is illustrated for
an instance of the expectation-maximization algorithm. Third, the implementation of a Gibbs sampler
is presented to facilitate Bayesian inference. Numerical properties of the different approaches are
evaluated and examples for more complex applications of the methods are shown. Finally, the results
of the paper are summarized.

Matrix logarithm adjustment approaches

A basic approach to estimate generator matrices from discrete-time observations is to inversely use
the matrix exponential relationship between conditional discrete time transition matrices Pt (the
cumulative discrete-time state change data) and the parameters Q, i.e., to employ a matrix logarithm
function, which leads to the estimate

o (_ 1\k+1
Q. =log(Pr) =) %(PT - Dk
k=1

Besides finite truncation of this Taylor series, the matrix logarithm can, e.g., also be calculated by an
eigendecomposition, which is the default setting in ctmed.

However, the matrix logarithm approach has two shortcomings. First, the matrix logarithm is not
a bijective function. As, e.g., shown by Speakman (1967), a transition matrix can have more than one
valid generator. However, for a certain subset of discrete-time transition matrices, it can be shown that
there exists only a single unique generator, for details on criteria (for discrete-time transition matrices)
under which this is the case, see, e.g., Cuthbert (1972), Cuthbert (1973), Singer and Spilerman (1976) or
Israel et al. (2001). Second, the method requires that the derived matrix Q. actually meets the above
outlined parameter constraints for Markov generator matrices, concretely that off diagonal elements
are non-negative, which is not necessarily the case. Therefore, in the following we shall discuss
techniques for adjusting logarithms of the discrete time data matrices Pr, so that proper generator
matrices can be derived.

Diagonal and weighted adjustment

In this context, Israel et al. (2001) introduce two approaches. On the one hand, diagonal adjustment
(DA) works by forcing negative off-diagonal elements of Q. to zero

Gij,i#j = 04ij,c <O

and adjusting the diagonal elements
]
qii = — Z qij
j=1

to ensure that Z]]‘:1 gij = 0. In ctmed such an estimate can be performed by passing method="DA"
to gm(), the generic generator matrix estimation function of the package. The method requires the
specification of a discrete time transition matrix tm, which in the case of matrix logarithm adjustment
approaches is a matrix of relative transition frequencies, which refers to the matrix P introduced
above, as input data.

In order to illustrate the methods, we employ Standard and Poor’s (2000) global corporate credit
ratings data. The rating categories in this data set have the commonly known symbols AAA, AA,
A, BBB, BB, B, C and D. These abbreviations represent states of decreasing credit quality whereas
category D stands for the event of credit default, which means that if rated D the obligor cannot or
does not have the willingness to meet its financial obligations any more. The data is provided as
tm_abs a matrix of discrete-time absolute transition frequencies from the first to the last day of the
fiscal year 2000. We have to take into account that the default category D has to be considered as an
absorbing state, because once an obligor has defaulted it can not escape this state any more. Following
the intuitive ordering of decreasing credit quality described above, in this example the default state
will refer to row 8. Thus, in order to convert the data into the required format, we have to create

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=msm
https://CRAN.R-project.org/package=ctmcd

CONTRIBUTED RESEARCH ARTICLES 129

a matrix of relative transition frequencies tm_rel by standardizing the row entries to sum to 1 and
adding a unit row vector as row 8 with the last entry of this row being 1. Subsequently, we can apply
the diagonal adjustment approach by specifying tm=tm_rel and the time horizon of this discrete-time
matrix as te=1, because tm_abs and tm_rel refer to credit rating changes for a single year time interval
(fiscal year 2000).

data(tm_abs)
tm_rel <- rbind((tm_abs / rowSums(tm_abs))[1:7,]1, c(rep(@, 7), 1
gmda <- gm(tm=tm_rel, te=1, method="DA")

On the other hand, Israel et al. (2001) also describe the weighted adjustment (WA) of the non-
negative off-diagonal entries as an alternative, i.e., off diagonal elements are adjusted by

Giji#j = Gijc T Z];éz qz],c < 0)|qzjc >0,

j#i

where the cut off jump probability mass is redistributed among the remaining positive off diagonal
elements according to their absolute values. In analogy to diagonal adjustment, a weighted adjustment
estimate can be derived by using method="WA" as follows:

gmwa <- gm(tm=tm_rel, te=1, method="WA")

Quasi-optimization

The third matrix logarithm adjustment approach is the quasi-optimization (QO) procedure of Kreinin
and Sidelnikova (2001). This method finds a generator Q from the set of all possible generator matrices
Q’ by solving the minimization problem

I]
- argml Z Z qz] ql],

which means that the algorithm chooses a generator matrix which is closest to the matrix logarithm in
terms of sum of squared deviations.

gmgo <- gm(tm=tm_rel, te=1, method="Q0")

By specifying method="Q0", we can then get a quasi-optimization approach result for our data.
Despite the possibility to just show the parameter estimates for the different methods in the console
using, e.g., print(gmDA) or simply calling gmDA(), ctmed also provides a matrix plot function plotM()
that especially allows the visualization of generator matrix estimates and can be easily accessed by the
generic plot() function:

plot(gmda)
plot(gmwa)
plot(gmqgo)

The results can be seen in figure 2.

Likelihood inference

Given that complete continuous-time data is available, the likelihood function for a generator matrix
is given by

HH%] eXp ql]Rl(T))/

i=1j#i

where N;;(T) denotes the number of transitions from i to j within time T and R;(T) for the cumulative
sojourn times in state i before a state change occurs. A maximum likelihood estimate for a single
off-diagonal element of Q can then be derived by

_Ny(T)
qij,ML = RI(T) ’

for more information see, e.g., Inamura (2006).

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

130

Diagonal Adjustment Weighted Adjustment
AAA 4 =011 0.105 0.005 0 0 0 0 0 AAA 4 =011 0.104 0.005 0 0 0 0 0
AA — 0.006 | -0.096 0.088 0.001 0 0 0] AA -| 0.006 | -0.095 0.088 0.001 0 0 0 0

A- 0 0.038 - 0.093 0.002] 0.005 0.002 A- 0 0.038 - 0.093 0.002 0 0.005 0.002

BBB - 0.001 0.003 0.044 ' -0.101 0.044 0.004 0.002 0.003 BBB - 0.001 0.003 0.044 ' -0.101 0.044 0.004 0.002 0.003

£ 13
E BB — 0 0.004 0 0.044 0 E BB — 0 0.004 0 0.044 0.008 0
B - 0 0.006 0.003 0.006 0.055 B - 0 0.006 0.003 0.006 0.064 0.055
C 0 0 0 0 0.201 C 0 0 0 0 0.007 0.201
= 0 0 0 0 0 0 0 0 = 0 0 0 0 0 0 0 0
T T T T T T T 1 T T T T T T T 1
AAA AA A BBB BB B [¢] D AAA AA A BBB BB B c D
To To
Quasi Optimization
AAA - -0.11 0.105 0.005 0 0 0 0 0
AA — 0.006 | -0.095 0.088 0.001 0 0 0 0
A~ 0 0.038 - 0.093 0.002 0 0.005 0.002
£ BBB - O 0.003 0.044 -0.101 0.044 0.004 0.002 0.003
"EL BB - 0 0.004 0 0.044 0
B 0 0.006 0.003 0.006 0.055
c—H o0 0 0 0 0.201
= 0 0 0 0 0 0 0 0
T T T T T T T 1
AAA AA A BBB BB B [} D

Figure 2: Matrix Logarithm Adjustment Approaches

Expectation-maximization algorithm

The difficulty is now that when data is only observed at times 0 and T, the expressions N;;(T) and
R;(T) are not known. In order to derive a maximum likelihood estimate given this partially accessible
observations setting, Bladt and Serensen (2005) derive an instance of the expectation-maximization
(EM) algorithm. The missing data is then iteratively imputed by conditional expectations given the
current parameter set. This requires a complicated computation of the integrals in

T5(0)s(T) 2 0) (foT exp(Qit)uju exp(Qy(T — f))df) uy(7)
uly) exp(QiT)uyr)
15(0)s(T) 017,19) (foT exp(Qit)ujuf exp(Qy(T — f))df) uy(7)

d E(N;(T)|Qy,s(0),s(T)) = ’
and E(N;;(T)|Q;,s(0),s(T)) uly) exp(QiT)uy(r)

E(Ri(T)|Q;,5(0),s(T)) =

where 7 refers to an element of the discrete-time absolute transition frequency matrix N, u; denotes

a unit vector with entry 1 at position k and I points to the current iteration step of the EM algorithm.

The computation of the integrals is carried out following the matrix exponential approach described
in van Loan (1978) and Inamura (2006). In order to perform an estimate based on the EM algorithm
an initial generator matrix guess has to be chosen, which has to be a proper generator matrix. In the
following example, this will be the matrix gm@, which is an arbitrarily chosen generator matrix where
all off diagonal entries are 1 and state 8 is determined as an absorbing state.

gmo <- matrix(1, 8, 8)
diag(gmo) <- @

diag(gm@) <- -rowSums(gmo)
gmo[8,] <- 0

The maximum likelihood estimate can then be obtained by using the gm() function, providing a
matrix of absolute numbers of state changes (in the credit rating example i.e., tm=tm_abs), specifying
the method argument by method="EM" and setting an initial guess (here: gmguess=gmo).

gmem <- gm(tm=tm_abs, te=1, method="EM", gmguess=gm@)

plot(gmem)

plot(gmem$ll, main="Expectation Maximization Algorithm\nLog Likelihood Path”,
xlab="Iteration"”, ylab="Log-Likelihood")

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 131

The result of this estimate can be seen in figure 3 together with a plot of the log-likelihood path of the
single EM algorithm iteration steps.

Direct likelihood optimization

The function being actually optimized by the EM algorithm is the marginal likelihood

I

J
(QIN7) =[] J(exp(Q-T) nTl].

i=1j=1

Besides the EM algorithm, also other numerical optimization methods can be employed to perform the
maximization of this function. The R-package msm, which is actually built for estimating Markov mod-
els with covariates, so called multi-state models, contains simplex optimization (opt.method="optim"),
Newton optimization (opt.method="nlm"), a bounded optimization by a quadratic approximation
approach (opt.method="bobyga") introduced by Powell (2009) and a Fisher scoring technique by
Kalbfleisch and Lawless (1985) (opt.method="fisher"). In order to benchmark the EM algorithm, the
different techniques shall be compared using the derived maxima and the time needed to perform the
estimation.

Data transformation for msm function
mig <- NULL
id <- 0
for(i in 1:7) {
for(j in 1:8) {
if(tm_abs[i,j] > @) {
for(n in 1:tm_abs[i,jl1) {
id <- id + 1
mig <- rbind(mig, c(id, @, i), c(id, 1, j))
3
}
3

}
mig_df <- data.frame(id=mig[,1], time=mig[,2], state=mig[,3])

Comparing estimates
gmem <- gm(tm_abs, te=1, method="EM", eps=le-7, gmguess=gmo)
ctmcdloglik(gmem$par, tm_abs, 1)

g0 <- rbind(matrix(1, 7, 8), 0)
msm_est1l <- msm(state ~ time, id, data=mig_df, gmat=qo,
opt.method="optim”, gen.inits=TRUE)
ctmcdloglik(gmatrix.msm(msm_est)[[1]], tm_abs, 1)
msm_est2 <- msm(state ~ time, id, data=mig_df, gmat=qo,
opt.method="nlm", gen.inits=TRUE)
ctmcdloglik(gmatrix.msm(msm_est)[[1]], tm_abs, 1)
msm_est3 <- msm(state ~ time, id, data=mig_df, gmat=qo,
opt.method="nlm", gen.inits=TRUE)
ctmcdloglik(gmatrix.msm(msm_est)[[1]], tm_abs, 1)

msm_est4 <- msm(state ~ time, id, data=mig_df, gmat=qo,
opt.method="fisher"”, gen.inits=TRUE)

The marginal likelihood function for a given generator matrix, discrete-time interval T and
corresponding discrete-time transition frequencies Nt can be computed by the function ctmedloglik ().
Optimization with the previously employed remote initial value gmo fails for all msm optimization
methods, with the closer built-in parameter initialization gen.inits=TRUE, we obtain the results
presented in table 1. Optimization also fails for the method of Kalbfleisch and Lawless (1985). However,
it is already mentioned in the helpfiles for the msm() function, that optimization using this approach
lacks stability. Thus, the advantages of the EM algorithm in this specific data setting where no
covariates are included in the calculation are its numerical performance and its stability.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 132

Method | EM optim nlm bobyqa
Log-Likelihood | -3194.255 -3194.255 -3194.255 -3194.259
Time Elapsed [s] 0.46 4.65 28.33 167.52

Table 1: Likelihood Optimization - Numerical Comparison

Confidence intervals

The package ctmed also provides a function for deriving a confidence interval based on the asymptotic
normality of the maximum likelihood estimate. As however in a partially observed data setting
the maximum likelihood estimate is based on the likelihood function of the complete observations
{N;j(T), Ri(T) }1<i<1,1<j<J given that only part of them, N are actually available, the Fisher informa-
tion matrix has to be adjusted for the missing information in order to derive proper standard error
estimates. Following Oakes (1999), a Fisher information matrix estimate for the observed data Iy, can
be obtained by

Expectation Maximization Algorithm

Expectation—-Maximization Algorithm Log Likelihood Path

AAA - =041 0.105 0.005 0 0 0 0 0 3 5000000000000000
= o
<
AA -| 0006 | -0.095 0088 0.001 0 0 0 0 i o°
°
A o0 0.037 - 0093 0.002 0 0004 0.002 - 8 o
H
g ¢
£ BBB o 0001 0003 0044 0401 0044 0004 0002 0.003 £ o
g -
BB 0 0.004 0 0.044 0 7@ o
5>
2
B- o0 0006 0003 0.006 0.055 - o
7 o
cH o 0 0 0 0.201 00
8 gooocooooooo
p-J o 0 0 0 0 0 0 0 S 0°
} T T T T T T 1 I T T T T T
AAA AA A BBE BB B c D 0 10 20 30 40

To Iteration

Figure 3: Maximum-Likelihood Estimation.

Bladt and Serensen (2009) then concretize this expression for a generator matrix estimation
framework and derive

! 1 9
INg i-1) 1 (1) 14 :EE(NU(TNQZ,S(O),S(T)) - ;%E(Nij(T)IQI,S(O),s(T))
1 e
0
+5 —E(Ri(T)|Q;,5(0),5(T))

qij

1 o 5
and Ing (i 1)1+ = — ;WE(NU(T”QI/S(O)/S(T)) + 07 E(R,(T)[Q1,5(0), 5(T))

ij r J

as diagonal and off-diagonal (i,j) # (i/,j') elements of the observed Fisher information matrix In.
The confidence interval then has the common form

qij = 21 sse(q;7),

wherez; _ s denotes the 1 — 5 quantile of the standard normal distribution. The method is implemented
as a function ciEM(), which can be easily accessed using the generic gmci() command, which takes as
arguments an EM algorithm estimate object and a significance level alpha.

ciem <- gmci(gmem, alpha=.05)
plot(ciem)

By default, the derivatives for the information matrix are calculated using the analytical expressions of
Smith and dos Reis (2017) (cimethod="SdR"), numerical derivatives as suggested in Bladt and Serensen
(2009) can be accessed by cimethod="BS".

The matrix plot function can also be applied to "gmci” interval estimate objects, see, e.g., figure 4. One
can see in this example that interval estimates are not provided for all generator matrix entries. This
is due to the fact that the numerical evaluation of the above described expressions for deriving the
Fisher information matrix and inverting it becomes unstable when the parameter estimates are small.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 133

Thus a lower limit eps can or has to be specified so that for generator matrix elements smaller than
eps, no interval estimates are obtained. By default eps=1e-04.

95% Wald Confidence Interval (Oakes Standard Error)

AAA — [-0.15; -0.066] [0.061; 0.15] [-0.0084; 0.018]
AA — [0.00077;0.012] [-0.12; -0.074] [0.067; 0.11] [-0.0041; 0.0059]
A~ [0.028; 0.047] _ [0.077; 0.11] [-0.0013; 0.0054] [0.00086; 0.0081] [-0.00057; 0.0045]
£ BBB [-0.00061; 0.0018] [-0.00017; 0.0062] [0.033; 0.054] [-0.12; -0.085] [0.034; 0.055] [7.6e-05; 0.0083] [-0.00079; 0.0044] [0.00036; 0.0064]
"EL BB - [-0.00024; 0.0083] [0.03; 0.057] [0.066; 0.11] [0.001; 0.016]
B - [0.00053; 0.011] [-9e-04; 0.0074] [-6.5e-05; 0.012] [0.042; 0.076] [0.045; 0.083] [0.038; 0.071]
C [-0.016; 0.029] [0.07; 0.24] [0.11; 0.29]
D - [0; 0] [0; 0] [0; 0] [0; 0] [0; 0] [0; 0] [0; 0] [0; 0]
T T T T T T T 1
AAA AA A BBB BB B c D

To

Figure 4: Confidence Interval

Bayesian inference

Gibbs sampler

Bladt and Serensen (2005) show that the Gamma distribution I'(¢,) constitutes a conjugate prior for
the off diagonal elements of the generator matrix under the continuous-time Markov chain likelihood
function. The posterior distribution can then be derived as

I
F(QI{s(0),5(T)}) «L(QI{s(0), s(T)}) [T T4 exp(~g;91)

i=1j#i

1
Nii(T)+;i—
“1111;[%’(P e (— g (Ri(T) +).
i=1j#i

Based on these expressions, they describe a Gibbs sampling algorithm (GS) which in analogy to the
EM algorithm iteratively simulates the missing data N;;(T) and R;(T) given the current parameter
estimate and subsequently draws new parameter estimates given the imputed data. In order to use
the method, the prior parameters have to be specified as a "1ist" object named prior. Thereby, the
first element of the list has to be an I x | matrix of the Gamma parameters ¢;; and the second element
a vector of length I with the parameters ;. Consider, e.g.,

pr <- list()

pri[11] <- matrix(1, 8, 8)
prC[111[8,]1 <- @

pri[21] <- c(rep(5, 7), Inf)

as a simple example, where ¢;; = 1, ; = 5 and there is an absorbing state 8, which can be specified by
determining ¢. g = 0 and g = 0. As for the EM algorithm we need to provide a matrix of absolute,
rather than relative, transition frequencies as input data (in our example tm=tm_abs). Furthermore,
the length of the burn-in period must be chosen (here: burnin=1000). Convergence of the algorithm is
evaluated by the approach of Heidelberger and Welch (1981), which is implemented in the R package
coda, see Plummer et al. (2006). The advantage of this method is that it can be applied to single chains;
a shortcoming is that, as for similar methods, evaluation with multiple parameters is time consuming.
Thus, besides specifying a p-value for the convergence test by the argument conv_pvalue, one can also
set a frequency criterion conv_freq for how often with an equidistant number of trials convergence
shall be checked. By default, conv_pvalue=0.05 and conv_freg=10. One should notice that as the
method of Heidelberger and Welch (1981) is a two sample location test for comparing the stability
of the parameter estimates at the beginning and the end of the Markov chain, the hypotheses are set
so that an increasing p-value implies a stricter convergence criterion. Another stopping rule is the
maximum number of iterations niter, which by default is set as niter=1e04. If convergence according
to the method of Heidelberger and Welch (1981) is not given before the maximum number of iterations
is reached, a warning is displayed.

Setting the method argument to the value "GS" will then lead the generic generator matrix estima-
tion method to provide a posterior mean estimate

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=coda

CONTRIBUTED RESEARCH ARTICLES 134

gmgs <- gm(tm=tm_abs, te=1, method="GS", prior=pr, burnin=1000)
plot(gmgs)

The result can be seen in figure 5.

Gibbs Sampler

AAA - 0.108 0.01 0.005 0.004 0.004 0.005 0.004

AA — 0.007 | -0.103 0.087 0.003 0001 0001 0.001 0.001

A -{ 0.001 0.038 - 0.092 0.003 0.001 0.005 0.002

BBB - 0.001 0.004 0.044 -0.105 0.045 0.005 0.003 0.004

From

BB - 0.001 0.005 0.002 0.044 0.002

B 4 0.001 0.006 0.004 0.007 0.055

C - 0.008 0.011 0.01 0.011 0.202

To

Figure 5: Posterior Mean Estimate

Endpoint-conditioned path sampling

Central to the Gibbs sampling algorithm is the sampling of realizations from the missing data full
conditional distribution given the current parameters and the discrete time observations. This yields
the sample paths from a continuous-time Markov chain with generator matrix estimate Q; given
initial and end states s(0) and s(T). In the package, two methods for deriving these sampling paths
are provided, on the one hand the modified rejection sampling approach of Nielsen (2002) which can
be accessed by sampl_method="ModRej", on the other hand the uniformization sampling scheme of
Fearnhead and Sherlock (2006), which is set as default method and can be manually employed by
setting sampl_method="Unif". As the simulation of trajectories of the process is in practice often very
time consuming, the m