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Editorial
by John Verzani

On behalf of the editorial board, I am pleased to present Volume 10, Issue 2 of the R Journal.

This issue covers a wide range of topics through its 37 articles. As is typical, many of
these are related to packages that provide tools for new statistical modeling in R. Examples
in this issue include "clustMixType: User-Friendly Clustering of Mixed-Type Data in R"
by Szepannek and "BNSP: an R Package for Fitting Bayesian Semiparametric Regression
Models and Variable Selection" by Papageorgiou.

Several contributions highlight new packages that enhance and extend existing modeling
areas. Examples of this are "Forecast Combinations in R using the ForecastComb Package"
by Weiss, Raviv, and Roetzer; "testforDEP: An R Package for Modern Distribution-free
Tests and Visualization Tools for Independence" by Miecznikowski, Hsu, Chen, and Vexler;
"NetworkToolbox: Methods and Measures for Brain, Cognitive, and Psychometric Network
Analysis in R" by Christensen; and "bnclassify: Learning Bayesian Network Classifiers" by
Mihaljevic, Bielza, and Larrañaga".

Some of the contributions include easier interfaces to modeling, such as "SARIMA
Analysis and Automated Model Reports with BETS, an R Package" by Speranza, Ferreira,
and da Costa and "ShinyItemAnalysis for Teaching Psychometrics and to Enforce Routine
Analysis of Educational Tests" by Martinková and Drabinová.

Other modeling topics are estimation, as in "SMM: An R Package for Estimation and
Simulation of Discrete-time semi-Markov Models" by Vergne, Barbu, Bérard, Cellier, and
Sautreuil; missing data, as in "Profile Likelihood Estimation of the Correlation Coefficient
in the Presence of Left, Right or Interval Censoring and Missing Data" by Li, Gillespie,
Shedden, and Gillespie; and large data, as with "Basis-Adaptive Selection Algorithm in
dr-package" by Yoo.

Included in this volume are two submissions extending R’s visualization capabilities:
"ggplot2 Compatible Quantile-Quantile Plots in R" by Loy, Almeida, and Hofmann and
"Geospatial Point Density" by Evangelista and Beskow.

Several new tools are described in the articles. New takes on some programming idioms
are given in "Dot-Pipe: an S3 Extensible Pipe for R" by Mount and Zumel; some libraries
from other languages have been ported over, such as described in "sdpt3r: Semidefinite
Quadratic Linear Programming in R" by Rahman; and interfaces to other languages are
detailed in "jsr223: A Java Platform Integration for R with Programming Languages Groovy,
JavaScript, JRuby, Jython, and Kotlin" by Gilbert and Dahl and "RcppMsgPack: MsgPack
Headers and Interface Functions for R" by Eddelbuettel and Ching.

As usual, we have a few application areas represented in this issue, for example "stplanr:
A Package for Transport Planning" by Lovelace and Ellison.

Finally, as much as the R Journal helps put some sense of order to R’s ecosystem, it
can’t possibly cover the tremendous growth (CRAN grew to 13,592 packages by year’s
end; Bioconductor reports 1649 software packages). Silge, Nash, and Graves provide some
insight in "Navigating the R Package Universe."

There are notes from several conferences included. These highlight R’s expanded reach
into Latin America and Poland in addition to its reach into the pharmaceutical and medical
professions. The are also the usual reports about changes to CRAN, Bioconductor, and R;
and a report from the R Foundation.

This year, Di Cook joins the Editorial Board, as Roger Bivand rotates off. I extend my
thanks to Roger for his many contributions. His efforts now allow us to add digital object
identifiers (DOIs) for R Journal articles. I am very excited about all that Di will bring. She is
already off and running, securing funding from the R Foundation that will allow the journal
to have some paid assistance. I also wish to acknowledge the hard work of Norm Matloff
and Olivia Lau. The R Journal’s popularity has grown–the two volumes of 2018 are over
1100 printed pages–and these two were instrumental in managing the growth.
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Finally, I would like to thank the many reviewers that made this edition possible. In
my view, one of the biggest contributions of the R Journal is to provide peer review for
R’s sprawling package ecosystem and this only happens through the dedicated, informed,
volunteer efforts of the reviewers.

John Verzani
John.Verzani@r-project.org
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stplanr: A Package for Transport Planning
by Robin Lovelace, Richard Ellison

Abstract Tools for transport planning should be flexible, scalable, and transparent. The stplanr
package demonstrates and provides a home for such tools, with an emphasis on spatial transport
data and non-motorized modes. The stplanr package facilitates common transport planning tasks
including: downloading and cleaning transport datasets; creating geographic “desire lines” from
origin-destination (OD) data; route assignment, locally and interfaces to routing services such as
CycleStreets.net; calculation of route segment attributes such as bearing and aggregate flow; and
‘travel watershed’ analysis. This paper demonstrates this functionality using reproducible examples
on real transport datasets. More broadly, the experience of developing and using R functions for
transport applications shows that open source software can form the basis of a reproducible transport
planning workflow. The stplanr package, alongside other packages and open source projects, could
provide a more transparent and democratically accountable alternative to the current approach, which
is heavily reliant on proprietary and relatively inaccessible software.

Introduction

Transport planning can broadly be defined as the process of designing and evaluating transport
interventions (Ortuzar and Willumsen, 2011), usually with the ultimate aim of improving transport
systems from economic, social, and environmental perspectives. This inevitably involves a degree
of subjective judgment and intuition. With the proliferation of new transport datasets — and the
increasing availability of hardware and software to make sense of them — there is great potential for
the discipline to become more evidence-based and scientific (Balmer et al., 2009). Transport planners
have always undertaken a wide range of computational activities (Boyce and Williams, 2015), but with
the digital revolution the demands have grown beyond the capabilities of a single, monolithic product.
The diversity of tasks, and the need for democratic accountability in public decision making, suggests
that future-proof transport planning software should be:

• flexible, able to handle a wide range of data formats
• scalable, able to work at multiple geographic levels from single streets to large cities and regions
• robust and reliable, tested on a range of datasets and able to work “out of the box” in a range of

real-world projects
• open source and reproducible, ensuring transparency and encouraging citizen science

This paper sets out to demonstrate that open source software with a command-line interface (CLI)
can provide a foundation for transport planning software that meets each of these criteria. R provides
a strong basis for progress in this direction because it already contains functionality used in common
transport planning workflows. The sp, rgeos, and rgdal packages greatly improved R’s spatial abilities
(Bivand et al., 2013), work that is being consolidated and extended in the recent sf package.

Building on these foundations, a number of spatial packages have been developed for applied
domains including: disease mapping and modelling, with packages such as SpatialEpi and dis-
easemapping (Kim and Wakefield, 2016; Brown and Zhou, 2016); spatial ecology, with the adehabitat
family of packages (Calenge, 2006); and visualisation, with packages such as leaflet, tmap, mapview,
and mapmisc (Brown, 2016). However, there has been little prior work to develop R functionality
designed specifically for transport planning, with the notable exceptions of TravelR (a package on
R-Forge last updated in 2012) and gtfsr (a package for handling General Transit Feed Specification
(GTFS) data).

The purpose of stplanr is to provide a toolbox rather than a specific solution for transport planning,
with an emphasis on spatial data and active modes. This emphasis is timely given the recent emphasis
on sustainability (Banister, 2008) and ‘Big Data’ (Zheng et al., 2016) in the wider field of transport
planning.

A major motivation was the lack of R packages, and open source software in general, for transport
applications. This may be surprising given the ubiquity of transport problems;1 R’s proficiency at
handling spatial, temporal and travel survey data that describe transport systems; and the growing
popularity of R in applied domains (Jalal et al.; Moore and Hutchinson). Another motivation is the
growth in open access datasets: the main purpose of early versions of the package was to process open
origin-destination data (Lovelace et al., 2017).

1Many people can think of things that could be improved on their local transport networks, especially for
walking, cycling and wheel-chairs, but most lack the evidence to communicate the issues, and potential solutions,
to others.
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R is already used in transport applications, as illustrated by recent research that applies packages
from other domains to transport problems. For instance, Efthymiou and Antoniou (2012) use R to
analyse the data collected from an online survey focused on car-sharing, bicycle-sharing, and electric
vehicles. Efthymiou and Antoniou (2012) also used R to collect and analyse transport-related data from
Twitter using packages including XML, twitteR and ggplot2. These packages were used to download,
parse and plot the Twitter data using a method that can be repeated and the results reproduced or
updated. More general statistical analyses have also been conducted on transport-related datasets
using packages including muStat and mgcv (Diana, 2012; Cerin et al., 2013). Despite the rising use of
R for transport research, there has yet been to be a package for transport planning.

The design of the R language, with its emphasis on flexibility, data processing, and statistical
modelling, suggests it can provide a powerful environment for transport planning research. There
are many quantitative methods in transport planning, many of which fit into the classic ‘four stage’
transport model which involves the following steps (Ortuzar and Willumsen, 2011): (1) trip generation
to estimate trip frequency from origins; (2) distribution of trips to destinations; (3) modal split of trips
between walking, cycling, buses etc.; (4) assignment of trips to the transport route network. To this
we would like to add two more stages for the big data age: (0) data processing and exploration; and
(5) validation. This sequence is not the only way of transport modelling and some have argued that
its dominance has reduced innovation. However it is certainly a common approach and provides a
useful schema for classifying the kinds of task that stplanr can tackle:

• accessing and processing of data on transport infrastructure and behaviour (stage 0)
• analysis and visualisation of the transport network (0)
• analysis of origin-destination (OD) data and the visualisation of resulting ‘desire lines’
• the allocation of desire lines to roads and other guideways via routing services
• the aggregation of routes to estimate total levels of flow on segments throughout the transport

network
• development of models to estimate transport behaviour currently and under various scenarios

of change
• the calculation of “catchment areas” affected by transport infrastructure

The automation of such tasks can assist researchers and practitioners to create evidence for decision
making. If the data processing and analysis stages are fast and painless, more time can be dedicated to
visualisation and decision making. This should allow researchers to focus on problems, rather than on
clunky graphical user interfaces (GUIs), and ad-hoc scripts that could be generalised. Furthermore, if
the process can be made reproducible and accessible (e.g. via online visualisation packages such as
shiny), this could help transport planning move away from reliance on “black boxes” (Waddell, 2002)
and empower citizens to challenge decisions made by transport planning authorities based on the
evidence (Hollander, 2016).

There are many advantages of using a scriptable, interactive, and open source language such as R
for transport planning. Such an approach enables: reproducible research; the automation and sharing
of code between researchers; reduced barriers to innovation, as anyone can create new features for the
benefit of all planners; easier interaction with non domain experts (who will lack dedicated software);
and integration with other software systems, as illustrated by the use of leaflet to generate JavaScript
for sharing interactive maps for transport planning, used in the publicly accessible Propensity to Cycle
Tool (Lovelace et al., 2017). Furthermore, R has a strong user community which can support newcomers
(stplanr was peer reviewed thanks to the community surrounding ROpenSci). The advantages of
using R specifically to develop the functionality described in this paper are that it has excellent geo-
statistical capabilities (Pebesma et al., 2015), visualisation packages (e.g. tmap, ggplot2), support for
logit models (which are useful for modelling modal shift), and support for the many formats that
transport datasets are stored in (e.g., via the haven and rio packages).

Package structure and functionality

The package can be installed and attached as follows (see the package’s README for dependencies
and access to development versions):

install.packages("stplanr")

library(stplanr)

stplanr imports both sp and its successor sf. This means that spatial objects used in and produced
by the package work with base R generic functions such as summary, aggregate, and plot (Bivand
et al., 2013). Furthermore, output objects of class "sf" are mostly compatible with the popular data
processing package dplyr.
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Core functions and classes

The package’s core functions are structured around three common types of spatial transport data:

• Origin-destination (OD) data, which report the number of people travelling between origin-
destination pairs. This type of data is not explicitly spatial (OD datasets are usually represented
as data frames) but represents movement over space between points in geographical space. An
example is provided in the flow dataset.

• Line data, one dimensional linear features on the surface of the Earth. These are typically stored
as a "SpatialLinesDataFrame" object.

• Route data are special types of lines which have been allocated to the transport network. Routes
typically result from the allocation of a straight “desire line” allocated to the route network with
a route_ function. Route network represent many overlapping routes. All are typically stored
as a "SpatialLinesDataFrame" object.

A convention has been developed whereby function names are prefixed depending on the the
input data type (od_, line_ and route_ respectively, although route_ functions do not take routes as
inputs, they output them). A selection of these is presented in Table 1 (lsf.str("package:stplanr")
returns a list of all functions). Additional “core functions” could be developed, such as those prefixed
with rn_ (for working with route network data) and geo_ functions for geographic operations such as
buffer creation on lat/lon projected data (this function is currently named buff_geo).

Function Input data type(s) Output data type

od_dist Data frame Numeric vector
od_id_order Data frame Data frame
line_bearing Spatial line Numeric vector
line_midpoint Spatial line Spatial points
route_cyclestreet Coordinates, spatial point or text Spatial lines
route_graphhopper Coordinates, spatial point or text Spatial lines

Table 1: Selection of functions for working with or generating OD, line and route data types.

We aim to preserve type in some functions: line2route, for example, takes spatial lines objects
and returns spatial lines objects. Type stability has its limitations with spatial data, however: it would
be wasteful for functions such as line_bearing (which returns the bearing of a line) to duplicate the
spatial data contained in its input, for instance. Generic classes enable stplanr to handle objects of
class "sf" from the new sf package in a type preserving way.

A class system has not been developed for each data type (this option is discussed in the final
section) and more classes would be possible: transport datasets are diverse. This diversity helps
explain why some functions have more ad-hoc names. Rather than attempting a systematic description
of each of stplanr’s functions, the remainder of this paper shows how the package can be used for
transport planning, beginning with data access and ending with visualisation.

Road traffic casualty data

Gaining access to data is often the problem in transport planning. It can be a long and protracted
process but is becoming easier thanks to the “open data” movement and packages such as tigris and
osmdata (Walker, 2016).

The stplanr package helps import data with functions including read_table_builder, for im-
porting data from the Australian Bureau of Statistics (ABS), and dl_stats19 — which has now been
split-out into the package stats19 — for downloading datasets from the UK’s Stats19 road traffic
casualty system (Lovelace et al., 2019). A brief example of the latter is demonstrated below, which
begins with downloading the data (warning this downloads ~100 MB of data):

dl_stats19() # download and extract stats19 road traffic casualty data

#> [1] "Data saved at: /tmp/RtmpppF3E2/Accidents0514.csv"
#> [2] "Data saved at: /tmp/RtmpppF3E2/Casualties0514.csv"
#> [3] "Data saved at: /tmp/RtmpppF3E2/Vehicles0514.csv"

Once the data has been saved in the default directory, determined by tempdir, it can be read-in
and cleaned with the read_stats19_ functions (note these call format_stats19_ functions internally
to clean the datasets and add correct labels to the variables):
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ac <- read_stats19_ac()
ca <- read_stats19_ca()
ve <- read_stats19_ve()

The resulting datasets (representing accident, casualty, and vehicle level data, respectively) can be
merged and made geographic, as illustrated below:2

library(dplyr)
ca_ac <- inner_join(ca, ac)
ca_fatal <- ca_ac %>%
filter(Casualty_Severity == "Fatal" & !is.na(Latitude)) %>%
select(Age = Age_of_Casualty, Mode = Casualty_Type, Longitude, Latitude)

ca_sp <- sp::SpatialPointsDataFrame(coords = ca_cycle[3:4], data = ca_cycle[1:2])

Now that this casualty data has been cleaned, subsetted (to only include fatal crashes) and
converted into a spatial class system, we can analyse the data using geographical datasets of the
type commonly used by stplanr. The following code, for example, geographically subsets the dataset
to include only crashes that occurred within the bounding box of a sample route network dataset
contained as a dataset in stplanr for illustrative purposes. Note the use of bb2poly, which converts a
spatial dataset into a box, represented as a rectangular SpatialPolygonsDataFrame:

data("route_network")
sp::proj4string(ca_sp) <- sp::proj4string(route_network)
bb <- bb2poly(route_network)
sp::proj4string(bb) <- sp::proj4string(route_network)
ca_local <- ca_sp[bb,]

The above code chunk shows the importance of understanding geographical data when working
with transport data. It is only by converting the casualty data into a spatial data class, and adding a
coordinate reference system (CRS), that transport planners and researchers can link this important
dataset back to the route network. We can now perform GIS operations on the results. The next code
chunk, for example, finds all the fatalities that took place within 100 m of the route network, using the
function buff_geo:

rnet_buff_100 <- buff_geo(route_network, width = 100)
ca_buff <- ca_local[rnet_buff_100,]

These can be visualised using base R graphics, extended by sp, as illustrated in Figure 1. This
provides a good start for analysis but for publication-quality plots and interactive plots, designed for
public engagement, we recommend using dedicated visualisation packages that work with spatial
data such as tmap.

plot(bb, lty = 4)
plot(rnet_buff_100, col = "grey", add = TRUE)
points(ca_local, pch = 4)
points(ca_buff, cex = 3)

Reading census data

National censuses are one common source of transport data, that frequently include questions on
where people live and work. This is often accompanied by a question on what mode was taken. These
data are generally provided in standard tables that can be downloaded for free. For the Australian
census, both these standard tables are available as well as custom tables that can be produced using a
service named TableBuilder. TableBuilder generates Excel or CSV files that contain additional lines
that make reading these data into R difficult. The stplanr package provides the read_table_builder
function to read in these files.

Using the example SA1Population.xlsx file included with stplanr that contains the population
by SA1 zone (a statistical area used for the Australian census), we can use the read_table_builder
function to read and format the table for use in R. The function automatically removes the additional
lines and sets the column headers and data types as appropriate. The result is a data frame that can be
used with GIS boundary files and other datasets produced for SA1 zones.

2Note the inner_join function from the dplyr package was used because it is substantially faster and more
effective than the equivalent function, merge, in base R. This is communicated in a number of places, including on
the website zevross.com. For this reason we import dplyr and use it internally for joins.
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Figure 1: Road traffic fatalities in the study area downloaded with with stplanr (crosses). Deaths that
happened within 100 m of the route network are represented by circles.

data_dir <- system.file("extdata", package = "stplanr")
t2 <- read_table_builder(file.path(data_dir, 'SA1Population.xlsx'),

filetype = 'xlsx', sheet = 1, removeTotal = TRUE)

Bicycle share data

The stplanr package can also be used in conjunction with complementary R packages for downloading
data from Open Street Maps (OSM) using osmdata and bicycle share data using the bikedata package.

The bicycle share data that can be accessed using the bikedata package is particularly well suited
for integration with stplanr as it produces origin-destination (OD) flows from bicycle sharing systems.
This data can be used together with the sum_network_links function to generate the likely paths and
how these overlap. This can be used to generate heatmaps of a road network showing modelled
common routes such as in Figure 2.3

Creating geographic desire lines

Origin-destination (OD) data, which represent the number of people travelling between geographical
zones, is a key input for transport planning (Calabrese et al., 2011). OD data usually represent an
aggregate data source, and are therefore able to represent the travel patterns of an entire country in a
file of manageable size (see wicid.ukdataservice.ac.uk/ for example). They can be stored as a (sparse)
matrix or (more commonly) a long table of OD pairs. The long form is illustrated in the code chunk
below which shows a sample of the flow object. flow is a data frame representing the number of
home-work commutes by mode between residential areas in the UK, provided provided in stplanr for
teaching and demonstration purposes (see ?flow to see how this dataset was created):

data("flow", package = "stplanr")
head(flow[c(1:3, 12)])

#> Area.of.residence Area.of.workplace All Bicycle
#> 920573 E02002361 E02002361 109 2
#> 920575 E02002361 E02002363 38 0
#> 920578 E02002361 E02002367 10 0
#> 920582 E02002361 E02002371 44 3
#> 920587 E02002361 E02002377 34 0
#> 920591 E02002361 E02002382 7 0

3The figure is based on the shortest path, although other criteria could be used by setting weights in the network
accordingly — see https://github.com/ropensci/stplanr/issues/194 in the package’s issue tracker for details.
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Figure 2: Modelled common routes for bicycle share trips in New York City.

Although the flow data displayed above describes movement over geographical space, it contains
no explicitly geographical information. Instead, the coordinates of the origins and destinations are
linked to a separate geographical dataset (represented by the cents dataset), as illustrated below:4

data("cents", package = "stplanr")
as.data.frame(cents[1:3, -c(3,4)])

#> geo_code MSOA11NM coords.x1 coords.x2
#> 1708 E02002384 Leeds 055 -1.546463 53.80952
#> 1712 E02002382 Leeds 053 -1.511861 53.81161
#> 1805 E02002393 Leeds 064 -1.524205 53.80410

A common task is linking an OD dataset (e.g., flow) to a geographic dataset representing zone
centroids (e.g. cents). We use od2line to combine them, as illustrated in the code chunk below, which
creates an object named l, a spatial object that will be visualised in the next section:

l <- od2line(flow = flow, zones = cents)

A larger example represents flights from New York in 2013 from the nycflights13 package. The
code chunk below makes use of the function geo_buffer, and highlights stplanr’s ability to work with
"Spatial" or "sf" objects interchangeably. Figure 3 demonstrates how the resulting spatial object can
be plotted interactively using packages such as tmap (see the accompanying R file for visualisation
code).

library(nycflights13)
airports_sf <- sf::st_as_sf(airports, coords = c("lon", "lat"), crs = 4326)
ny_buff <- geo_buffer(airports_sf[airports_sf$faa == "NYC",], dist = 1e6)
airports_near <- airports_sf[ny_buff,]
flights_near <- flights[flights$dest %in% airports_near$faa,]
flights_agg <- dplyr::group_by(flights_near, origin, dest) %>%
dplyr::summarise(Flights = n())

flights_sf = od2line(flow = flights_agg, zones = airports_near)
plot(flights_sf, lwd = flights_sf$Flights / 1e3)

4Such geographic datasets are best represented as in a spatial class system, explaining stplanr’s close integration
with R’s spatial packages.
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Figure 3: Flights from New York to airports within 1000 km. Data from the nycflights package
converted to geographic desire lines with the od2line function.

Allocating flows to the transport network

A common problem faced by transport researchers is network allocation: converting the ‘as the crow
flies’ lines illustrated in Figure 3 into routes. These are the complex, winding paths that people and
animals make to avoid obstacles such as buildings and to make the journey faster and more efficient
(e.g. by following the route network).

This is difficult (and was until recently near impossible using free software) because of the size
and complexity of transport networks, the complexity of realistic routing algorithms and need for
context-specificity in the routing engine. Inexperienced cyclists, for example, would take a very
different route than a heavy goods vehicle. The stplanr package tackles this issue in two ways:
by providing routing functionality that can work on locally stored data and by using third party
APIs. Each approach has advantages: local routing functionality is fast and free, whereas online
routing services can be more sophisticated (e.g., taking into account local traffic conditions) and work
anywhere in the world without needing to download unwieldy datasets and new software libraries
such as OSRM. A disadvantage of relying on online services is that they may break or change without
warning in the future.

Route allocation is undertaken by route_ functions such as route_cyclestreets and
route_graphhopper. These allocate a single OD pair (represented by from and to arguments as
coordinates, spatial point objects, or text strings to be "geo-coded") to the transport network. This is
illustrated below with route_cyclestreet, which uses the CycleStreets.net API, a routing service “by
cyclists for cyclists” which provides "fastest", "quietest," and "balanced" routes:5

route_bl <- route_cyclestreet(from = "Bradford, Yorkshire", to = "Leeds, Yorkshire")
route_c1_c2 <- route_cyclestreet(cents[1,], cents[2,])

The raw output from routing APIs is usually provided as a JSON or GeoJSON text string. By
default, route_cyclestreet saves a number of key variables (including length, time, hilliness and
busyness variables generated by CycleStreets.net) from the attribute data provided by the API. If the
user wants to save the raw output, the save_raw argument can be used:

route_bl_raw <- route_cyclestreet(from = "Bradford", to = "Leeds", save_raw = TRUE)

Additional arguments taken by the route_ functions depend on the routing function in question.
By changing the plan argument of route_cyclestreet to fastest, quietest, or balanced, for example,
routes favouring speed, quietness or a balance between speed and quietness will be saved, respectively.

To automate the creation of route-allocated lines over many desire lines, the line2route function
loops over each line, wrapping any route_ function as an input. The output is a SpatialLinesDataFrame
with the same number of dimensions as the input dataset (see the right panel in Figure 4).

5An API key is needed for this function to work. This can be requested (or purchased for large scale routing)
from cyclestreets.net/api/apply. See ?route_cyclestreet for details. Thanks to Martin Lucas-Smith and Simon
Nuttall for making this possible. Note: an updated interface to cyclestreets.net has been made available via the
package cyclestreets.
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Figure 4: Visualisation of travel desire lines, with width proportional to number of trips between
origin and destination (black) and routes allocated to network (red) in the left-hand panel. The right
hand panel shows the route network dataset generated by overline().

routes_fast <- line2route(l = l, route_fun = route_cyclestreet)

The result of this ‘batch routing’ exercise is illustrated in Figure 4. The red lines in the left hand
panel are very different from the hypothetical straight ‘desire lines’, highlighting the importance of
this route-allocation functionality (see vignette("introducing-stplanr") and kateto.net for more
sophisticated visualisation methods).

plot(route_network, lwd=0)
plot(l, lwd = l$All / 10, add = TRUE)
lines(routes_fast, col = "red")
routes_fast$All <- l$All
rnet <- overline(routes_fast, "All", fun = sum)
rnet$flow <- rnet$All / mean(rnet$All) * 3
plot(rnet, lwd = rnet$flow / mean(rnet$flow))

To estimate the amount of capacity needed at each segment on the transport network, the overline
function demonstrated above, is used to divide line geometries into unique segments and aggregate
the overlapping values. The results, illustrated in the right-hand panel of Figure 4, could be used to
inform the decision making process at the route network level, such as where to create new bus routes
cycle paths.

Limitations with the route_cyclestreet routing API include its specificity to one mode (cycling)
and a single region (the UK and part of Europe). To overcome these limitations, additional routing
APIs were added with the functions route_graphhopper, route_transportapi_public, and viaroute.
These interface to Graphhopper, TransportAPI, and the Open Source Routing Machine (OSRM) routing
services, respectively. Advanced users can set-up local routing services (as demonstrated in a guide by
DigitalOcean), reducing the disadvantages of using online routing services (they rely on on potentially
slow internet connections, changeable APIs, and variable/high prices).

A short example of finding the route by car and bike between New York and Oaxaca demonstrates
how route_graphhopper can collect geographical and other data on routes by various modes, any-
where in the world. The output, shown in Table 2, shows that the function also saves time, distance,
and (for bike trips) vertical distance climbed for the trips.

ny2oaxaca1 <- route_graphhopper("New York", "Oaxaca", vehicle = "bike")
ny2oaxaca2 <- route_graphhopper("New York", "Oaxaca", vehicle = "car")
rbind(ny2oaxaca1@data, ny2oaxaca2@data)
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mode time dist change_elev

Bike 17522.73 4885663 87388.13
Car 2759.89 4754772 NA

Table 2: Results obtained from the Graphhopper API using the route_graphhopper function to es-
timate the time taken and route distance to travel between New York and Oaxaca by cycling and
driving.

Modelling travel catchment areas

Catchment areas are useful analytic and visual tools in transport planning. They can help who will
benefit from a particular transport intervention (such as a new bus stop) and illustrate the geographic
area that is covered by (or omitted from) a particular service or transport system, to help prioritize
new investment. Passengers are often said to be willing to walk up to 400 metres to a bus stop or 800
metres to a railway station (El-Geneidy et al., 2014), leading to surrounding smaller or larger polygons
representing the catchment within which people would be willing to travel. Such catchment areas have
been criticised as being arbitrary or as underestimating the true sphere of influence of public transport
nodes (El-Geneidy et al., 2014; Daniels and Mulley, 2013). However, they nonetheless represent a
good starting point from which the geographical and social distribution of service provision can be
estimated.

Often catchment areas are calculated using straight-line (or “as the crow flies”) distances. This
approach is appealing because it requires little additional data and is simple to compute (using buffer
function) and understand.

The stplanr package provides functionality that calculates catchment areas using straight-line
distances with the calc_catchment function. This function takes a "SpatialPolygonsDataFrame"
object that contains the population (or other) data, typically from a census, and a Spatial* layer that
contains the geometry of the transport facility. These two layers are overlayed to calculate statistics
for the desired catchments including "proportioning" polygons to account for the proportion located
within the catchment area.

To illustrate this functionality, the following code chunk reads-in sample datasets stored in the
common ESRI Shapefile format using the readOGR function from rgdal. The resulting object smallsa1
contains population data for Statistical Area 1 (SA1) zones in Sydney, Australia. The testcycleway
data set contains hypothetical cycleways aligned to streets in Sydney:

data_dir <- system.file("extdata", package = "stplanr")
unzip(file.path(data_dir, 'smallsa1.zip'))
unzip(file.path(data_dir, 'testcycleway.zip'))
sa1income <- rgdal::readOGR(".", "smallsa1")
testcycleway <- rgdal::readOGR(".", "testcycleway")
# Remove unzipped files
file.remove(list.files(pattern = "^(smallsa1|testcycleway).*"))

The calculation of catchment areas requires two parameters: a vector containing column names to
calculate statistics and a distance. Since proportioning the areas assumes projected data, unprojected
data are automatically projected to either a common projection (if one is already projected) or a
specified projection. It should be emphasized that the choice of projection is important and has an
effect on the results meaning setting a local projection is recommended to achieve the most accurate
results. The catchment area is calculated as follows:

catch800m <- calc_catchment(
polygonlayer = sa1income,
targetlayer = testcycleway,
calccols = c('Total'),
distance = 800,
projection = 'austalbers',
dissolve = TRUE

)

The result can be used to calculate the total population within the catchment areas of the cycleway,
with the command ‘sum(catch800m$Total)’: 39418 people. The catchment area can then be visualised
(see Figure 5):
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Figure 5: An 800 metre catchment area (red) associated with a cycle path (green) using straight-line
distance in Sydney.

plot(sa1income, col = "light grey")
plot(catch800m, col = rgb(1, 0, 0, 0.5), add = TRUE)
plot(testcycleway, col = "green", add = TRUE)

This simplistic catchment area is useful when the straight-line distance is a reasonable approxima-
tion of the route taken to walk (or cycle) to a transport facility. However, this is often not the case. The
catchment area in Figure 5 initially appears reasonable but the red-shaded catchment area includes
an area that requires travelling around a bay to access from the (green-coloured) cycleway: users
may have access but that does not mean it’s accessible. To allow for more realistic catchment areas for
most situations, stplanr provides the calc_network_catchment function that uses the same principle
as calc_catchment but also takes into account the transport network.

To use calc_network_catchment, a transport network, as a "SpatialLinesNetwork" object, must
be provided. This combines a "SpatialLinesDataFrame" object with a graph network (using the
igraph package) to allow routing (estimation of shortest paths). The network is used to calculate the
shortest actual paths within the specific catchment distance, as demonstrated in the following code
chunk:

unzip(file.path(data_dir, 'sydroads.zip'))
sydroads <- rgdal::readOGR(".", "roads")
file.remove(list.files(pattern = "^(roads).*"))
sydnetwork <- SpatialLinesNetwork(sydroads)

The network catchment is then calculated using a similar method as with calc_catchment but
with a few minor changes. Specifically these are including the SpatialLinesNetwork, and using the
maximpedance parameter to define the distance, with distance being the additional distance from
the network. In contrast to the distance parameter that is based on the straight-line distance in
both the calc_catchment and calc_network_catchment functions, the maximpedance parameter is the
maximum value in the units of the network’s weight attribute. In practice this is generally distance in
metres but can also be travel times, risk or other measures.

netcatch800m <- calc_network_catchment(
sln = sydnetwork,
polygonlayer = sa1income,
targetlayer = testcycleway,
calccols = c('Total'),
maximpedance = 800,
distance = 100,
projection = 'austalbers'

)

Once calculated, the network catchment area can be used just as the straight-line network catch-
ment. This includes extracting the catchment population of 23457 and plotting the original catchment
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Figure 6: A 800 metre network catchment are (blue) compared with a catchment area based on
Euclidean distance (red) associated with a cycle path (green).

area together with the original area with the results shown in Figure 6:

plot(sa1income, col = "light grey")
plot(catch800m, col = rgb(1, 0, 0, 0.5), add = TRUE)
plot(netcatch800m, col = rgb(0, 0, 1, 0.5), add = TRUE)
plot(testcycleway, col = "green", add = TRUE)

The calc_catchment and calc_network_catchment functions are complementary functions allow-
ing for the computation of catchment areas. Although for many transport applications it would be
better to use the calc_network_catchment function that uses the true network distances, it may still
be useful to use the straight-line version in some cases. These include calculating the population that
may be affected by noise levels from transport infrastructure (such as a motorway) where the effects
of noise are not limited by the network. In situations where network data is not available it would be
possible to use the calc_catchment function together with a fixed assumption about what straight-line
distance corresponds to the desired network distance (i.e., 1km network = 700m straight-line). It may
also be appropriate to use the straight-line distance when the network is not a reasonable constraint.
This may be because the infrastructure of interest is accessed primarily by walking or cycling in an area
where these are not limited to the road network (such as parks or shopping areas with passthroughs
or overpasses available to pedestrians).

Modelling and visualisation

Analysing mode use

Route-allocated lines allow estimation of route distance and therefore circuity (Q) (route distance divided
by Euclidean distance) (Levinson and El-Geneidy, 2009):

Q =
dR f

dE
,

where (dE) and (dR f ) represent Euclidean and fastest route distance respectively.

These variables can help model the rate of flow between origins and destination, as illustrated in
the left-hand panel of Figure 7. The code below demonstrates how objects generated by stplanr can be
used to undertake such analysis, with the line_length function used to find the distance, in meters,
of lat/lon data.

l$d_euclidean <- line_length(l)
l$d_rf <- routes_fast@data$length
plot(l$d_euclidean, l$d_rf,
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xlab = "Euclidean distance", ylab = "Route distance")
abline(a = 0, b = 1)
abline(a = 0, b = 1.2, col = "green")
abline(a = 0, b = 1.5, col = "red")

The left hand panel of Figure 7 shows the expected strong correlation between Euclidean (dE) and
fastest route (dR f ) distance. However, some OD pairs have a proportionally higher route distance than
others, as illustrated by distance from the black line in the plot.

An extension to the concept of circuity is the "quietness diversion factor" (QDF) of a desire line
(Lovelace et al., 2017), the ratio of the route distance of a quiet route option (dRq) to that of the fastest:

QDF =
dRq

dR f
.

Thanks to the "quietest" route option provided by route_cyclestreet, we can estimate average
values for both metrics as follows:

routes_slow <- line2route(l, route_cyclestreet, plan = "quietest")

l$d_rq <- routes_slow$length # quietest route distance
Q <- mean(l$d_rf / l$d_euclidean, na.rm = TRUE)
QDF <- mean(l$d_rq / l$d_rf, na.rm = TRUE)
Q

#> [1] 1.298767

QDF

#> [1] 1.034721

The results show that cycle paths are not particularly direct in the study region by international
standards (CROW, 2007). This is hardly surprisingly given the small size of the sample and the short
distances covered: Q tends to decrease at a decaying rate with distance, meaning longer paths tend to
be more direct. What is surprising is that the quietness diversion factor is close to unity, which could
imply that the quiet routes are constructed along direct, and therefore sensible routes. When time is
explored, we find that the "quietness diversion factor with respect to time" (QDFt) is slightly larger,
although larger datasets would be needed for any inferences to be made:

(QDFt <- mean(routes_slow$time / routes_fast$time, na.rm = TRUE))

#> [1] 1.052855

Analyzing and estimating trip flows

The second step in the four-stage transport model (after trip generation) is trip distribution. This
involves identifying destinations for trips generated in each zone (creating OD data), which can
be done with a gravity model, logit model, or other technique under the broad banner of "spatial
interaction model" (SIM). The stplanr package is not intended primarily as an SIM package, but could
be extended in this direction, as illustrated by the od_radiation function, which implements a SIM
proposed by Simini et al. (2012). Further development in this direction (or integration with a package
dedicated to SIMs) would complement stplanr’s focus on geographic functions.

At present there are no functions for modelling distance decay, but this is something we would like
to add in future versions of stplanr. Although it is only one of several methods used for modelling
trip distribution as part of four-step models, distance decay is an especially important concept for
sustainable transport planning due to physical limitations on the ability of people to walk and cycle
large distances (Iacono et al., 2010). It can also be used to model relationships between locations in
situations that are sensitive to distance (cycling facilities for instance) in addition to its use in four-step
models.

We can explore the relationship between distance and the proportion of trips made by walking
using the same object l generated by stplanr.

l$pwalk <- l$On.foot / l$All
plot(l$d_euclidean, l$pwalk, cex = l$All / 50,
xlab = "Euclidean distance (m)", ylab = "Proportion of trips by foot")
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Figure 7: Euclidean and fastest route distance of trips in the study area (left) and Euclidean distance
vs the proportion of trips made by walking (right).

Based on the right-hand panel in Figure 7, there is a clear negative relationship between distance
of trips and the proportion of those trips made by walking. This is unsurprising: beyond a certain
distance (around 1.5km according the the data presented in the figure above) walking is usually seen as
too slow and other modes are considered. This "distance decay" is non-linear and can be approximated
by a range of functional forms (Martínez and Viegas, 2013). From the range of options we test below
just two forms. We will compare the ability of linear and log-square-root functions to fit the data
contained in l for walking.

lm1 <- lm(pwalk ~ d_euclidean, data = l@data, weights = All)
lm2 <- lm(pwalk ~ d_rf, data = l@data, weights = All)
lm3 <- glm(pwalk ~ d_rf + I(d_rf^0.5),

data = l@data, weights = All, family = quasipoisson(link = "log"))

The results of these regression models can be seen using summary(). Surprisingly, Euclidean
distance was a better predictor of walking than route distance, but no strong conclusions can be drawn
from this finding, with such a small sample of desire lines (n = 42). The results are purely illustrative,
of the possibilities created by using stplanr in conjunction with R’s modelling capabilities (see Figure
8).

plot(l$d_euclidean, l$pwalk, cex = l$All / 50,
xlab = "Euclidean distance (m)", ylab = "Proportion of trips by foot")

l2 <- data.frame(d_euclidean = 1:5000, d_rf = 1:5000)
lm1p <- predict(lm1, l2)
lm2p <- predict(lm2, l2)
lm3p <- predict(lm3, l2)
lines(l2$d_euclidean, lm1p)
lines(l2$d_euclidean, exp(lm2p), col = "green")
lines(l2$d_euclidean, exp(lm3p), col = "red")

Visualization

Visualization is an important aspect of any transport study, as it enables researchers to communicate
their findings to other researchers, policy-makers, and, ultimately, the public. It may therefore come
as a surprise that stplanr contains no functions for visualisation. Instead, users are encouraged to
make use of existing spatial visualisation tools in R, such as tmap, leaflet, and ggmap (Cheshire and
Lovelace, 2015; Kahle and Wickham, 2013).

Furthermore, with the development of online application frameworks, such as shiny, it is now
easier than ever to make the results of transport analysis and modelling projects available to the public.
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Figure 8: Relationship between Euclidean distance and walking.

There is great potential to expand on the principle of publicly accessible transport planning tools via
"web apps", perhaps through new R packages dedicated to visualising and communicating transport
data.

Future directions of travel

This paper demonstrates that transport planning can be done with R. We set out reasons for using open
source software in general and command-line interfaces in particular for reproducibility, transparency,
and democratic accountability. This is, to our knowledge, the first R package aimed at enabling
practitioners and researchers to design more sustainable transport systems. Much more is possible in
this direction.

The stplanr package focuses on geographic analysis of transport systems, a niche that is apparent
from existing tools. Proprietary software such as INRO, PTV Visum, and TransCAD dominate geospa-
tial methods in applied transport planning. This differs from other fields that use geospatial methods
such as spatial epidemiology and ecology, where open source software dominate. Furthermore, the
successful "UNIX approach" to software development implies that each piece of software does a
limited number of things well. To avoid the pitfall of "feature creep" it makes sense to specialise.

The lack of existing packages that do the same job direct our attention towards stplanr’s basic
functionality rather than more advanced features. A good example of this is the SpatialLinesNetwork
class which could provide a basis for future developments including the recently implemented
route_local function. This direction of "incremental growth" could proceed by adding interfaces to
more transport planning APIs, including Routino and Directions provided by the mapping company
Mapbox.

Another example of the potential to develop basic functionality rather than new advanced features
is the the possibility of creating an "OD" class to represent origin-destination data, which could ease
the geographical analysis of OD data via generic methods. Building on the example data presented in
previous sections the idea is for a single OD object to be able represent flowlines, routes_fast and
routes_quiet. The recent development of the sf, with its support for multiple geometry columns,
makes this option more feasible.

Another direction of travel is towards better support for large datasets. We have demonstrated
stplnr’s capabilities on deliberately small datasets for ease of understanding. However, the third
criterion of transport planning software set-out in the introduction — scalability — is vital to package’s
real world utility in the age of transport-related "Big Data" (Lovelace et al., 2016). Some functions use
C++ (via Rcpp) for computationally intensive operations, and we plan to continue the drive toward
performant code. Opportunities for improving performance include: integration with transport
databases (e.g., via the bikedata package); support for batch routing APIs; parallel implementations
of time-consuming functions; and the refactoring of slow functions (e.g., overline, which takes hours
to run on large datasets).

Rather than a one-size-fits-all package, we see stplanr as an additional tool in the transport
planner’s cabinet. It is part of a wider movement that is making transport planning a more open
and democratic process. Other developments in this movement include the increasing availability
of open data (Naumova, 2016) and the rise of open source products for transport modelling, such as
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SUMO, MATSim, MITSIMLAB (Saidallah et al., 2016), and pgRouting. In this context, stplanr’s focus
on GIS operations represents a niche in the market, allowing it to complement such software and help
make better use of new open data sources. The stplanr package could also be used alongside other R
packages that use spatial transport data such as aspace and MCI (Wieland, 2017).

The stplanr package was first developed to generate data for the Propensity to Cycle Tool (PCT),
which estimates cycling potential down to the street level across all major cyclable routes in England
and Wales (Lovelace et al., 2017). We believe there are many other national and international transport
planning challenges the package could be used to solve. In the context of the increasing availability of
open access data6 packages for analyzing transport datasets. The stplanr package could help ensure
that the evidence on which transport planning decisions are based is reproducible, systematic, and
therefore democratically accountable.
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The utiml Package: Multi-label
Classification in R
by Adriano Rivolli and Andre C. P. L. F. de Carvalho

Abstract Learning classification tasks in which each instance is associated with one or more labels
are known as multi-label learning. The implementation of multi-label algorithms, performed by
different researchers, have several specificities, like input/output format, different internal functions,
distinct programming language, to mention just some of them. As a result, current machine learning
tools include only a small subset of multi-label decomposition strategies. The utiml package is a
framework for the application of classification algorithms to multi-label data. Like the well known
MULAN used with Weka, it provides a set of multi-label procedures such as sampling methods,
transformation strategies, threshold functions, pre-processing techniques and evaluation metrics. The
package was designed to allow users to easily perform complete multi-label classification experiments
in the R environment. This paper describes the utiml API and illustrates its use in different multi-label
classification scenarios.

Introduction

Multi-label classification (MLC) is a classification task where an instance can be simultaneously
classified in more than one of the existing classes. Labeled data extracted from several domains,
like text, web pages, multimedia (audio, image, videos), and biology are intrinsically multi-labeled.
Additionally, the number of application domains with MLC data is growing fast.

Many current, real-world data science applications are MLC by nature. They are problems
from very diverse domains, like labeling newspaper articles by subject and classification of proteins
according to their functions. MLC algorithms have been successfully used in these and other MLC
tasks (Diplaris et al., 2005). In a recent application, MLC algorithms were used to recommend food
truck cuisines (Rivolli et al., 2017), assuming that a person can have more than one cuisine preference,
and with the same level of preference.

Despite its growing relevance, there is a lack of comprehensive and easy to use tools for the R
environment. A tool frequently used in MLC experiments is MULAN (Tsoumakas et al., 2011), which
is a Java library built on top of Weka (Hall et al., 2009) to allow Weka users to deal with MLC data.
Its popularity in the research community can be attributed to its ease of use, its large number and
variation of its functionalities. The MLC alternative to Python users is the scikit-multilearn (Szymański,
2017), which provides a set of MLC algorithms and an interface for the MULAN library. Although
other simpler tools, like MEKA (Read et al., 2016) and general data mining software (Gibaja and
Ventura, 2015) include good functionalities to deal with MLC tasks, they address few MLC features
and are not available in R.

It is important to mention that there are packages that offer some level of support for MLC in R.
The most complete is the mldr package, an exploratory tool for the manipulation and analysis of MLC
datasets (Charte and Charte, 2015). Although it does not contain MLC strategies, it supports the ARFF
variation for MLC data, largely used for data mining and machine learning (ML) experiments, and has
useful features, such as dataset characterization, MLC evaluation measures, and a rich user interface
for the data exploration.

Some works use the mlr package, which was not specifically designed for MLC. As a result, it
provides only a few multi-label strategies (Probst et al., 2017) and does not support the MLC ARFF
format. In fact, it is a general purpose package, with an interface to more than one hundred algorithms
that supports several ML tasks (Bischl et al., 2016). Another related package, MLPUGS, is a simple
MLC package that contains only the implementation of the classifier chains (CC) strategy (Read et al.,
2009).

Although the previous packages make it easier to perform some procedures related to MLC
learning, their adoption in MLC experiments require more efforts from the developer/researcher than
MULAN, available for Weka uses, which motivated the authors to design utiml, a more comprehensive,
specific, easy to use, and extensible solution. The main features of the utiml package include:

• Pre-processing techniques: a set of techniques for the preparation and pre-possessing of MLC data
to be used in experiments. These techniques deal with simple tasks, like removal of predictive
attributes, instances and labels, replacement of nominal attribute values by numerical values,
and data normalization.

• Sampling: a set of methods used to split MLC data through the holdout and k-fold methodologies.
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Random or stratified strategies can be used for data partitioning.

• Classification/Ranking: the main MLC strategies. The transformation strategies support several
base algorithms and the result can be seen as bipartition, probability/score, and ranking.

• Threshold: score-based and ranking-based threshold functions to be employed after the label
prediction, so that bipartition values can be changed.

• Evaluation: traditional MLC evaluation measures and MLC confusion matrix for the summariza-
tion of classification result.

This paper describes the main aspects and resources of the utiml package. The current version
is 0.1.4 and an updated list with all resources available will be maintained in the vignette document
and the reference manual. The following section provides a brief review of MLC learning. Next, the
package API is detailed, its resources are presented and some illustrative examples are provided.
Finally, the main issues regarding the package use are highlighted in the summary section.

Multi-label classification learning

MLC tasks have attracted a growing attention in the ML community (de Carvalho and Freitas, 2009;
Tsoumakas et al., 2010; Gibaja and Ventura, 2014). While in multi-class classification only a single
class label is predicted, in MLC, more than one class label can be simultaneously predicted. In the
same way as multi-class classification tasks can be seen as a generalization of binary classification
tasks, which restricts to two the number of classes, MLC can be seen as a generalization of multi-class,
which restricts to one the number of predicted classes (de Carvalho and Freitas, 2009). The main MLC
approaches are prediction of multiple labels, label ranking, and multi-label ranking (Tsoumakas et al., 2010).

Multi-Label Classification (MLC), the most common task (Tsoumakas et al., 2010), induces a pre-
dictive model h(x) → Y from a set of training data, which later assigns one or more labels to each
new example. This task can be formally defined as: let D be a set of labeled instances E, such that
D = {E1, E2, ..., En}. Every labeled instance Ei = (xi, Yi) is composed of xi = (xi1, xi2, ..., xid), which
describes its position in aRd input space, and Yi ⊆ L | L =

{
λ1, λ2, ..., λq

}
, which describes a position

in a {0, 1}q output space.

The Label Ranking (LR) task can be characterized by a function f (x, λi), which, for each class label,
outputs a score value in the interval [0.0, 1.0], indicating the relevance, confidence, or probability of
instance x belonging to the class whose label is λi. The higher the score value, the better the ranking
position. While MLC predicts bipartitions and LR predicts scores, Multi-label Ranking (MLR) generates
both. Since MLC can be derived from the LR formulation (Gibaja and Ventura, 2015)1, if a strategy can
be used in the LR task, it can also be used in the two other tasks.

These models can be obtained by two approaches (Tsoumakas et al., 2010), problem transformation
and algorithm adaptation. Problem transformation converts the original MLC task into a set of binary or
multi-class classification subtasks. Afterwards, any classification algorithm, here called base algorithm,
can be used to induce models for the subtasks. In the algorithm adaptation approach, the multi-label
support is embedded into the algorithm structure. Thus, while transformation fits data to algorithms,
adaptation fits algorithms to data (Zhang and Zhou, 2014).

The transformation approach can be performed in three different ways: binary, pairwise, and
powerset. Binary transformation generates at least one dataset per label, as in the one-versus-all
multiclass strategy. Pairwise transformation, instead, creates one dataset for each pair of labels,
similarly to one-versus-one multiclass strategy. Finally, powerset is a multi-class transformation that
uses labelsets as classes. The adaptation approach, on the other hand, modifies conventional ML
algorithms, like Decision Tree Induction Algorithms (DT), K-Nearest Neighbors (KNN), Random
Forest (RF), and Support Vector Machines (SVM).

Other steps required for the application of ML algorithms need to be adapted to deal with MLC
tasks. For example, stratified sampling for MLC data must take into account multiple targets and the
predictive performance evaluation must consider situations like partially correct results and ranking
accuracy. A complete overview of the alternatives to deal with these issues can be seen in Zhang and
Zhou (2014) and Gibaja and Ventura (2015).

1Where h(x) = {λ | f (x, λ) ≥ τ(x), λ ∈ L}, where τ(x) is a threshold function.
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The utiml package

Handling multi-label classification data

The predictive performance of MLC tasks can be strongly affected by the use of data pre-processing
techniques. For such, utiml uses the mldr package (Charte and Charte, 2015), which provides the
support for data pre-processing. Moreover, when utiml is installed/loaded, the mldr package is
automatically installed/loaded. Specially, it supports the MLC ARFF format, which has an additional
XML file describing the label columns2.

By default, the mldr package handles categorical data as "character", instead of "factor", which
is not supported by the implementation of some traditional machine learning algorithms available in
R, like Random Forest from the randomForest package. To address this limitation, the mldata function
converts all text columns to factors of an "mldr" dataset. For example, the function mldata should be
used to load the ‘flags’ dataset3, contains categorical attributes, like

> flags <- mldata(mldr("flags"))

After a dataset is loaded, pre-processing techniques can be applied to it. Table 1 shows the pre-
processing techniques available in the utiml package. All these functions receive an "mldr" dataset as
argument and return a pre-processed version of this dataset.

Pre-processing function Description

fill_sparse_mldata(mdata) Exchanges the NA values present in the dataset to 0 or
"", according to the attribute type.

normalize_mldata(mdata) Re-scales all numerical attribute values to values be-
tween 0 and 1 according to the min-max transforma-
tion. The lowest value is modified to 0.0 and the
highest value is converted to 1.0.

remove_attributes(mdata, attributes) Removes the specified attributes from the dataset.

remove_labels(mdata, labels) Removes the specified labels from the dataset.

remove_unique_attributes(mdata) Removes from the dataset attributes whose values are
the same for all instances.

remove_unlabeled_instances(mdata) Removes from the dataset instances without class la-
bels.

remove_skewness_labels(mdata, t) Removes from the dataset highly infrequent or highly
frequent labels, according to a specific threshold value.
The threshold t indicates the minimum number of
positive and negative instances associated with each
label.

replace_nominal_attributes(mdata) Replaces categorical attributes by binary attributes.
An attribute with n different values will be mapped
to n− 1 new columns containing binary values.

Table 1: Pre-processing techniques available in the utiml package

The utiml package also supports the main methodologies for data sampling, as shown in Table
2. The holdout and k-fold sampling can partition a dataset randomly and in a stratified way. They
are selected by a parameter named method, which determines the sampling algorithm that creates
the partitions. According to Sechidis et al. (2011), the accepted values are "random", "iterative",
and "stratified", where the latter two are different stratification options. The "iterative" process
stratifies a MLC dataset considering each label independently, while "stratified" is based on the
different combinations of labels, also known as labelset.

These techniques were designed to improve the mldr package and to simplify the data preparation
for the learning step. Concerning the analysis of the MLC data, utiml does not provide additional
resources in this current version. However, it is possible to use the mldr package, which enables the
understanding and exploration of several data aspects through an interactive interface (Charte and
Charte, 2015).

2The complete specification is available at http://mulan.sourceforge.net/format.html.
3This dataset, available at http://mulan.sourceforge.net/datasets-mlc.html.
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Sampling function Description

create_holdout_partition(mdata,
partitions, method)

Splits the data into at least two distinct parts.
The second parameter defines the name and size
of the partitions and method defines the type of
sampling.

create_kfold_partition(mdata, k, method) Creates an object that contains the k distinct
parts of the dataset using the method for split-
ting the folds. It should be used in combination
with partition_fold(object, fold), which
provides the training and testing data to a spe-
cific fold. The parameter object is the result of
create_kfold_partition.

create_random_subset(mdata, instances,
attributes, replacement)

Creates a random subset of the dataset based
on the proportion of instances and attributes.
When replacement=TRUE, a same instance can
appear one more time in the training data.

create_subset(mdata, rows, cols) Creates a specific subset of the dataset based on
the instances (rows) and attributes (cols) speci-
fied.

Table 2: Sampling functions available in the utiml package

The utiml package also provides two MLC datasets: toyml, a synthetic dataset generated by the
Mldatagen tool (Tomás et al., 2014); and foodtruck, a dataset in which several food truck cuisines are
mapped as labels (Rivolli et al., 2017).

Multi-label classification strategies

The classification strategies are the heart of the utiml package. Table 3 shows the strategies available
in the current version of the package. Some of the implemented strategies, such as brplus, ctrl, dbr,
lift, prudent and rdbr were not found by the authors in other tools.

Transformation strategies build the multi-label models by using a ML base algorithm. The
base.algorithm parameter defines the base algorithm employed to create the internal models. Table 4
shows the ML algorithms currently supported by the package. Their use requires additional packages,
as indicated in column R function Called4. For example, "C5.0" algorithm requires the C50 package be
installed. Only the "MAJORITY" and "RANDOM" algorithms require no additional packages.

The arguments of the transformation strategies follow the pattern:

1. mdata: an "mldr" dataset object.

2. base.algorithm: a base algorithm, as listed in Table 4.

3. additional strategy parameters: specific parameters for each strategy. While the BR strategy
contains no additional parameters, the ensemble ECC receives 4 specific parameters, namely m,
subsample, attr.space and replacement5.

4. ...: extra parameters used by the base.algorithm selected. As illustration, if base.algorithm
= "SVM", the extra parameters can be those defined in the svm function of the e1071 package,
such as kernel,gamma,cost, among others.

5. cores: number of cores used for the parallelization of the training phase. Note some classifica-
tion strategies, as lp, ignore the parameter because the tasks can not be parallelized.

6. seed: a seed that ensures reproducibility. This is particularly important when the task is
parallelized. In other words, if cores = 1, the seed effect is similar to that of set.seed(seed).
However, if the cores are higher than 1, the set.seed(seed) command will not guarantee the
same result can be obtained, since the task will be performed in parallel.

4These packages are not installed together with utiml.
4The J48 algorithm has no support for task parallelization.
5These parameters denote, respectively, number of models in the ensemble, proportion of instances, attributes,

and a possible replacement of instances. The specific parameters of each strategy are reported in the reference
manual.
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Strategy function Description Approacha Reference

baseline Baseline - Metz et al. (2012)
br Binary Relevance BR Tsoumakas et al. (2010)
brplus BR+ BR, STA Cherman et al. (2012)
cc Classifier Chains BR, CC Read et al. (2009)
clr Calibrated Label Ranking PW Brinker et al. (2006)
ctrl ConTRolled Label correlation BR, ENS Li and Zhang (2014)
dbr Dependent Binary Relevance BR, STA Montañes et al. (2014)
ebr Ensemble of Binary Relevance BR, ENS Read et al. (2009)
ecc Ensemble of Classifier Chains BR, CC, ENS Read et al. (2009)
eps Ensemble of Pruned Set ENS, PS Read et al. (2008)
homer Hierarchy Of Multi-label classifiER HIE Tsoumakas et al. (2008)
lift Learning with Label specIfic FeaTures BR, CLU Zhang and Wu (2015)
lp Label Powerset PS Tsoumakas and Katakis (2007)
mbr Meta-BR, 2BR or stacking BR, STA Tsoumakas et al. (2009)
mlknn Multi-label kNN AD Zhang and Zhou (2007)
ns Nested Stacking BR, CC Senge et al. (2013)
ppt Pruned Problem Transformation PS Read et al. (2008)
prudent PRUned and confiDENT Stacking BR, STA Alali and Kubat (2015)
ps Pruned Set PS Read (2008)
rakel Random k-labelsets ENS, PS Tsoumakas and Vlahavas (2007)
rdbr Recursive Dependent Binary Relevance BR, ENS, STA Rauber et al. (2014)
rpc Ranking by Pairwise Comparison PW Hüllermeier et al. (2008)

a AD = Adaptation; BR = Binary transformation; CC = Chain of classifiers; CLU = Clustering based; ENS = Ensemble;
HIE = Hierarchy; PS = Powerset transformation; PW = Pairwise transformation; STA = Stacking

Table 3: Strategies available in the utiml package

base.algorithm value Description R function Called

"C5.0" C5.0 Decision Trees C50::C5.0
"CART" Classification and regression trees rpart::rpart
"KNN" K Nearest Neighbor kknn::kknn
"NB" Naive Bayes e1071::naiveBayes
"RF" Random Forest randomForest::randomForest
"SMO" Sequential Minimal Optimization RWeka::SMO
"SVM" Support Vector Machine e1071::svm
"XGB" eXtreme Gradient Boosting xgboost::xgboost

"MAJORITY" Majority class prediction -
"RANDOM" Random prediction -

Table 4: Base algorithms available in the utiml package

After the creation of a MLC model, the model can be applied to new data through the S3 predict
method. The arguments of predict are:

1. object: a multi-label classifier.

2. newdata: a "matrix", "data.frame" or "mldr" object, containing the data to be classified.

3. additional model parameters: specific parameters for each model. For example, the vote scheme to
be used in the ecc prediction function can be defined6.

4. probability: a logical value that indicates if the prediction result should be probability/score
or bipartition. If TRUE, a probability result is returned; otherwise, the bipartition is obtained. The
result can be changed, as observed next.

5. ...: extra parameters based on the predict method related to the base.algorithm selected.

6. cores: number of cores used for the parallelization of the prediction phase. Some models, like
CC, ignore this parameter because the tasks cannot be parallelized.

7. seed: a seed that ensures reproducibility. This is particularly important when the task is
parallelized and the base algorithm is not deterministic.

The prediction result is an "mlresult" type object and can be used directly as a matrix, where
each column is a label and each row is an instance. To change the type of result to bipartition, prob-
ability/score or a ranking matrix, the functions as.bipartition, as.probability, and as.ranking,
respectively, can be used.

6The specific parameters of each predict method are reported in the reference manual.
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Multi-label post-processing

Threshold functions adjust the bipartition result according to the score/probabilities predicted by the
predictive models. In MLC learning, these functions can be score-based or rank-based, depending on
the type of data used to define the threshold values. A single threshold value for all labels is named
global threshold, the use of one value per label is named label-wise, and the use of one value per
instance is named instance-wise (Al-Otaibi et al., 2014).

Table 5 shows the threshold functions available in the utiml package. All of them receive a
probability/score matrix or an "mlresult" object as input and return a new "mlresult" object with
different bipartitions as output. The only exception is scut_threshold, which returns threshold values,
instead of bipartitions, and should be combined with the fixed_threshold function. Additionally, the
subset_correction can be used as a threshold function (Senge et al., 2013). It changes the bipartition
based on the labelsets present in the training data and outputs only the known labelsets.

Threshold function Description Approach

fixed_threshold(prediction,
threshold)

Applies a fixed global or label-wise
threshold.

score-based

lcard_threshold(prediction,
cardinality)

Applies an instance-wise threshold us-
ing the cardinality measure.

rank-based

mcut_threshold(prediction) Applies an instance-wise threshold and
selects the subset of labels of the highest
interval between two sorted scores.

score-based

pcut_threshold(prediction, ratio) Applies a global or label-wise threshold
using the ratio value to define the pro-
portion of instances that will be relevant.

score-based

rcut_threshold(prediction, k) Applies an instance-wise threshold and
defines the k labels with highest scores
as relevant.

rank-based

scut_threshold(prediction,
expected, loss.function)

Returns a label-wise threshold using a
loss function that minimizes the differ-
ence between the value predicted and
the expected prediction value.

score-based

Table 5: Threshold functions available in the utiml package

Finally, utiml also supports the evaluation of MLC models. The multilabel_evaluate and
multilabel_confusion_matrix functions can be used during the evaluation. The first calculates
the traditional evaluation measures also available in mldr and MULAN, whereas the second generates
a multi-label confusion matrix ("mlconfmat" object) detailing labels and instances.

The multilabel_evaluate function receives an "mlresult" or an "mlconfmat" object and the
desired evaluation measures. One or more measures, likewise one or more group of measures can
be adopted. Figure 1 shows the measures values, currently supported. A complete review of MLC
evaluation measures can be found in Zhang and Zhou (2014) and Gibaja and Ventura (2015). Moreover,
if the hyperparameter labels=TRUE, the return will be a list that contains the multi-label and labels’
results detailed.

Default options

The utiml package uses the option function to customize some default parameters. For example, the
default base algorithm for all transformation strategies is "SVM". The utiml.base.algorithm option
can be used to change this parameter value. Table 6 shows the option’s names, a brief description of
each option parameter value, and their default value. The following code defines “Random Forest”
as the default base algorithm and sets the default number of cores to 8, to illustrate the setting of the
options.

> options(utiml.base.algorithm = "RF", utiml.cores=8)

The utiml.empty.prediction option defines whether the MLC strategies can predict no labels for
one or more instances. Among the alternatives to avoid an empty prediction (Liu and Chen, 2015),
utiml outputs the labels with the highest probability/score. It must be observed that this option may
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- accuracy

- F1

- hamming-loss

- precision

- recall

- subset-accuracy

all

bipartitions

label-based

- average-precision

- coverage

- margin-loss

- one-error

- ranking-loss

ranking

- micro-AUC

- micro-precision

- micro-recall

- micro-F1

micro-based

- macro-AUC

- macro-precision

- macro-recall

- macro-F1

macro-based

example-based

Figure 1: Groups of multi-label evaluation measures

Option parameter values Description Default value

utiml.base.algorithm Default base algorithm used in the transformation
strategies.

"SVM"

utiml.cores Default number of cores used to parallelize the tasks. 1

utiml.seed Default seed used by the MLC strategies. NA

utiml.use.probs Default type of the expected prediction results. If
TRUE, the expected prediction is in the probability/s-
core format, otherwise, a bipartition prediction is ex-
pected.

TRUE

utiml.empty.prediction Default option concerning empty predictions. If TRUE,
predictions can contain instances without labels, oth-
erwise, the most important label is considered rele-
vant and no empty predictions are obtained.

FALSE

Table 6: Options used by the utiml package

directly interfere with the result of the bipartition evaluation measures. Thus, it must be set according
to the characteristics of the experiment being carried out.

How to use the package for multi-label classification experiments

The toyml dataset was used in the examples illustrated in this section. As toyml has two irrele-
vant attributes ("iatt8" and "iatt9") and one redundant ("ratt10") attribute, the pre-processing
remove_attributes function can be applied to remove them.

> new.toyml <- remove_attributes(toyml, c("iatt8", "iatt9", "ratt10"))

> pre.process <- function (mdata) {
+ aux <- remove_skewness_labels(mdata, 5) # Remove infrequent labels (less than 5)
+ aux <- remove_unlabeled_instances(aux) # Remove instances without labels
+ aux <- remove_unique_attributes(aux) # Remove constant attributes
+ return(mdata)
+ }

As toyml is already normalized and the dataset has a small number of instances, no other pre-
processing technique is required. Thus, the pre.process function has no effect if applied in this case.
For other datasets, the same procedure can be useful for their preparation for MLC experiments. Two
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scenarios that illustrate the use of utiml for the development of MLC experiments are presented next.
Finally, a simple experimental analysis is performed using the foodtruck dataset, illustrating the use
of the package in a more realist scenario.

Training and test experiment example using holdout

This example shows a MLC experiment using holdout, in which 70% of the dataset instances are used
for training and 30% for test. A BR model that uses “Random Forest” as a base algorithm is induced
and applied to the test instances. Next, predictions are assessed using MLC evaluation measures.

> set.seed(123)
> ds <- create_holdout_partition(new.toyml, c(train=0.7, test=0.3))
> model <- br(ds$train, "RF")
> predictions <- predict(model, ds$test)

> results <- multilabel_evaluate(ds$test, predictions, c("example-based", "macro-F1"))
> round(results, 4)
## accuracy F1 hamming-loss macro-F1 precision recall subset-accuracy
## 0.6444 0.7411 0.1933 0.4015 0.7833 0.7722 0.3000

A MLC baseline can be included among the strategies being experimentally compared. In the
following code, the general baseline (Metz et al., 2012) is induced. A subtle difference is observed in
"hamming-loss" and "F1" measures in favor of the BR model. The small number of labels are due to
very common combinations of them found in toyml favors the general baseline.

> base.preds <- predict(baseline(ds$train, "general"), ds$test)
> base.res <- multilabel_evaluate(ds$test, base.preds, c("hamming-loss", "F1"))

> round(base.res, 4)
## F1 hamming-loss
## 0.7311 0.2000

In both examples, the test set predictions compose an "mlresult" object and, by default, show the
score/probability produced by the base algorithm. For example:

> head(predictions)
## y1 y2 y3 y4 y5
## 23 0.336 0.640 0.178 0.922 0.122
## 19 0.106 0.860 0.366 0.670 0.280
## 62 0.094 0.776 0.526 0.688 0.090
## 1 0.196 0.618 0.204 0.758 0.162
## 67 0.090 0.964 0.210 0.700 0.234
## 92 0.060 0.856 0.162 0.598 0.454

The as.bipartition and as.ranking functions can be used to change, respectively, the proba-
bility/score to a bipartition matrix or the raking values, as illustrated next. Optionally, a threshold
function can be applied to change the bipartitions.

> head(as.bipartition(predictions))
## y1 y2 y3 y4 y5
## 23 0 1 0 1 0
## 19 0 1 0 1 0
## 62 0 1 1 1 0
## 1 0 1 0 1 0
## 67 0 1 0 1 0
## 92 0 1 0 1 0

> head(as.ranking(predictions))
## y1 y2 y3 y4 y5
## 23 3 2 4 1 5
## 19 5 1 3 2 4
## 62 4 1 3 2 5
## 1 4 2 3 1 5
## 67 5 1 4 2 3
## 92 5 1 4 2 3
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> head(mcut_threshold(predictions))
## y1 y2 y3 y4 y5
## 23 0 1 0 1 0
## 19 0 1 0 1 0
## 62 0 1 1 1 0
## 1 0 1 0 1 0
## 67 0 1 0 1 0
## 92 0 1 0 1 1

Three different ECC models are created in the following code to illustrate the use of different
parameters and base algorithms. Each model uses a specific base algorithm and configuration, which,
consequently, results in different models for the same data and MLC strategy.

> # Using KNN with k = 5 and changing ECC parameters
> model1 <- ecc(ds$train, "KNN", m=7, subsample=0.8, k=5)

> # Using C5.0 and changing ECC parameters
> model2 <- ecc(ds$train, "C5.0", subsample=0.6, attr.space=1)

> # Using SVM with cost = 10 and gamma = 0.5 and default ECC parameters
> model3 <- ecc(ds$train, "SVM", cost=10, gamma=0.5)

By default, the create_holdout_partition function creates two random partitions (train and test)
with 70% and 30% of the dataset instances, respectively. The number of partitions, sizes and sampling
method can be modified. The following code shows how to create three, label-stratified partitions,
named "train", "test", and "val" with 70%, 20%, and 10% of the instances, respectively. The "val"
partition can be used in a validation step for model selection or hyperparameter tuning.

> partitions <- c(train=0.7, test=0.2, val=0.1)
> strat <- create_holdout_partition(new.toyml, partitions, "iterative")

Training and test example experiment using k-fold cross validation

This section shows some examples of how to perform cross-validation MLC experiments. The cv
method can be used to encapsulate the whole procedure, which simplifies the respective task, such
that a 10-fold stratified cross-validation can be performed with few lines of code. For instance, the
RAkEL strategy using the "SVM" base algorithm can be evaluated in the following way:

# Defining the evaluation measures
> measures <- c("hamming-loss", "subset-accuracy", "one-error")

# Running 10-fold cross validation
> results <- cv(new.toyml, method="rakel", base.algorith="SVM", cv.folds=10,
+ cv.sampling="stratified", cv.measures=measures, cv.seed=123)

> round(results, 4)
## hamming-loss one-error subset-accuracy
## 0.212 0.160 0.240

To obtain detailed results by folds and/or labels, the hyperparameter cv.results=TRUE can be set.
In this case, a list is returned where the multi-label and labels’ results can be obtained as illustrated in
the next example.

> results <- cv(new.toyml, method="rakel", base.algorith="SVM", cv.results=TRUE,
+ cv.sampling="stratified", cv.measures=measures, cv.seed=123)

> t(results$multilabel)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## hamming-loss 0.2 0.18 0.18 0.2 0.22 0.22 0.22 0.2 0.24 0.26
## one-error 0.3 0.20 0.20 0.2 0.10 0.00 0.00 0.2 0.20 0.20
## subset-accuracy 0.3 0.30 0.30 0.3 0.20 0.20 0.20 0.2 0.20 0.20

> round(sapply(results$labels, colMeans), 4)
## y1 y2 y3 y4 y5
## accuracy 0.83 0.78 0.81 0.6900 0.83
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## balacc 0.50 0.50 0.50 0.5054 0.50
## TP 0.00 7.80 0.00 6.8000 0.00
## TN 8.30 0.00 8.10 0.1000 8.30
## FP 0.00 2.20 0.00 3.0000 0.00
## FN 1.70 0.00 1.90 0.1000 1.70

Any MLC strategy can be used in the cv method, as well as specific hyperparameters for them.
Additionally, the procedure can be parallelized, using cv.cores. The next example shows the ECC
algorithm with specific hyperparameters being executed using 5 folds and parallelized in 4 cores.

> results <- cv(new.toyml, method="ecc", base.algorith="RF", subsample=0.9,
+ attr.space=0.9, cv.folds=5, cv.cores=4)

Finally, to perform a cross-validation procedure manually, the methods create_kfold_partition
and partition_fold, can be used to create the folds and obtain the train and test dataset for each one
of them, respectively. A good example, is the code used in the cv method, such that

...
> cvdata <- create_kfold_partition(mdata, cv.folds, cv.sampling)
> results <- parallel::mclapply(seq(cv.folds), function (k){
+ ds <- partition_fold(cvdata, k)
+ model <- do.call(method, c(list(mdata=ds$train), ...))
+ pred <- predict(model, ds$test, ...)
+ multilabel_evaluate(ds$test, pred, cv.measures, labels=TRUE)
+ }, mc.cores=cv.cores)
...

Experiments with the food truck dataset

In order to show how the package can be used in a real world problem, this section illustrates the use
of the utiml to perform an exploratory analysis of the food truck dataset (Rivolli et al., 2017). First, the
br strategy is evaluated with different ML base algorithms ("C5.0", "RF", "SVM" and "XGB") to identify
the algorithm that produces the best macro and micro-F1 results.

> measures <- c("macro-F1", "micro-F1")
> algorithms <- c("C5.0", "RF", "SVM", "XGB")

> res <- sapply(algorithms, function(alg) {
+ cv(foodtruck, "br", base.algorithm=alg, cv.measures=measures, cv.seed=1)
+ })

> round(res, 4)
## C5.0 RF SVM XGB
## macro-F1 0.1764 0.1824 0.1188 0.1827
## micro-F1 0.4856 0.5340 0.4835 0.5130

Regarding the macro-F1 measure, XGB presented the best result, however the difference observed
between RF and C5.0 was small. For micro-F1, RF obtained the best result, followed closely by XGB.
The differences observed between the macro and micro measures, independently of the base algorithm,
may indicate that some infrequent labels had a poor F1 performance. To analyze this hypothesis,
br was run again with RF, which obtained the best performance in the previous cross-validation
procedure, with a new data subset. In the confusion matrix for the induced model, some patterns can
be observed.

The following code shows that six labels (mexican_food, chinese_food, japanese_food, arabic_food,
healthy_food and fitness_food) had no True Positive (TP) and False Positive (FP) predictions. Thus,
for these labels, all instances were predicted as negative. This explains the difference observed between
the macro and micro-F1 result, since the macro-F1 is the average labels’ F1, which is 0 for these labels.

> set.seed(1)
> ds <- create_holdout_partition(foodtruck, method="iterative")

> model <- br(ds$train, "RF")
> pred <- predict(model, ds$test)

> cm <- multilabel_confusion_matrix(ds$test, pred)
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> as.matrix(cm)
## TP TN FP FN
## street_food 88 5 32 0
## gourmet 13 81 8 23
## italian_food 1 113 0 11
## brazilian_food 3 104 0 18
## mexican_food 0 113 0 12
## chinese_food 0 121 0 4
## japanese_food 0 115 0 10
## arabic_food 0 118 0 7
## snacks 7 103 2 13
## healthy_food 0 116 0 9
## fitness_food 0 116 0 9
## sweets_desserts 11 66 13 35

It must be observed that the cm object is a list containing several information about the prediction,
like the confusion matrix values summarized by instances and labels. Any evaluation measure can
be computed using only the information provided by this object. As an example, the next code
summarizes the proportion of instances and the number of labels correctly predicted in the previous
example. The results show that the BR model was not able to predict a correct label for almost 20% of
the test instances; around 65% of the instances were correctly predicted with a single label; 12% were
correctly predicted with 2 labels; and 3% were correctly predicted with 3 labels.

> prop.table(table(cm$TPi))
## 0 1 2 3
## 0.200 0.648 0.120 0.032

These results show a researcher can simulate new scenarios and explore different solutions in order
to improve the predictive performance in a MLC task. The utiml package offers several resources that
simplify the most basic and recurrent procedures adopted in the MLC domain.

Summary

Data classification is one of the main ML tasks. Although ML classification algorithms are usually
designed and employed for single label classification tasks, in several application domains, an instance
can have more than one class label. This paper introduced the utiml package, which provides several
functions for MLC experiments in R. Similarly to MULAN, one of the most popular MLC tools, utiml
offers a wide set of functionalities. The provided functions implement procedures that cover several
MLC-related tasks, which include data pre-processing, data sampling model induction, optimization
and evaluation of MLC models. The package utiml also supports the intrinsic parallelization of tasks
and allows the reproducibility of MLC experiments.

To the best of the authors knowledge, some of the features present in utiml are not available in
any other R tool, such as the implementation of MLC stratification (Sechidis et al., 2011), baselines
(Metz et al., 2012), thresholds (Al-Otaibi et al., 2014) and an option that allow the users to avoid the
empty prediction problem (Liu and Chen, 2015). Moreover, as in MULAN which enables users to
take advantage of the resources available in the Weka environment, utiml users can benefit from the
several libraries available in R.

The most important limitation of this package is that some common MLC procedures, like feature
selection, imbalanced data, and classification strategies based on the algorithm adaptation approach
are not available yet. They will be implemented in the future as a natural progression of this work and
will be included in the next versions of the utiml package. The authors encourage other developers to
integrate their own algorithms in the utiml package7, so that it becomes a more robust and complete
MLC package.
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rcss: R package for optimal convex
stochastic switching
by Juri Hinz and Jeremy Yee

Abstract The R package rcss provides users with a tool to approximate the value functions in the
Bellman recursion under certain assumptions that guarantee desirable convergence properties. This R
package represents the first software implementation of these methods using matrices and nearest
neighbors. This package also employs a pathwise dynamic method to gauge the quality of these value
function approximations. Statistical analysis can be performed on the results to obtain other useful
practical insights. This paper describes rcss version 1.6.

Motivation

Sequential decision making is usually addressed under the framework of discrete-time stochastic
control. The theory of Markov Decision Processes/Dynamic Programming provides a variety of methods
to deal with such questions. In generic situations, approaching analytical solutions for even some
of the simplest decision processes may be a cumbersome process (Powell (2007), Bauerle and Rieder
(2011), Pham (2009)). The use of numerical approximations may often be far more practical given
the rapid improvements in available computational power. The ability to gauge the quality of these
approximations is also of significant importance. This paper will describe the implementation of fast
and accurate algorithms to address problems with a finite time setting, finite action set, and convex
reward functions whose state processes follow linear dynamics.

Although these assumptions seem restrictive, a large class of practically important control problems
can be solved using our methods. For instance, approximating a compact action set by a sufficiently
dense finite grid of representative actions, an approximate solution with excellent precision and
numerical performance can be obtained. This technique is illustrated by battery storage control
(Hinz and Yee (2017a) in the present contribution. Furthermore, various extension to non-linear state
dynamics are possible. By using appropriate transformations to linearize the state dynamics, our
methodology becomes applicable to control partially observable systems (Hinz and Yee (2017b)).

This R package implements algorithms to approximate the value functions in finite horizon
Markov decision processes and also to gauge the quality of these approximations. Under the conditions
discussed in Hinz (2014), these value functions converge to the true unknown value functions uniformly
on compact sets. Defined by the maxima half-norms over compact sets, the corresponding topology
ensures that the decision rules, inferred from value function approximations, converge pointwise to
the optimal decision policy.

This paper points any interested readers to the technical details contained in Hinz (2014). The
package rcss represents the first software implementation of these algorithms and has already been
used to address problems such as pricing financial options (Hinz and Yap (2015)), natural resource
extraction (Hinz et al. (In Press)), battery management (Hinz and Yee (2017a)), and optimal asset alloca-
tion under hidden state dynamics (Hinz and Yee (2017b)). One of the major benefits of implementing
these methods within R (R Core Team (2013)) is that the results can be analysed using the vast number
of statistical tools available in this language.

This R package focuses on linear state dynamics for the continuous state component. While non-
linear dynamics have been covered in Yee (Preprint), linear dynamics allow much of the computational
effort to be reduced to a series of multiplications and additions of matrices. This is an attractive feature
given the availability of well developed linear algebra libraries. Linear state dynamics also allow for
a standardized problem formulation which is desirable for a software package. This R package also
focuses on problems with finite action sets which occur frequently in many real world problems. While
this may seem restrictive for other problems, note that action sets are often discretized in practice to
allow for numerical tractability.

Problem setting

Suppose that state space X = P× Z is the product of a finite set P and an open convex set Z ⊆ Rd.
Furthermore, assume that a finite set A represents all possible actions. Given a finite time horizon
{0, 1, . . . , T} ⊂ N, consider a fully observable controlled Markovian process (Xt)

T
t=0 := (Pt, Zt)

T
t=0

which consists of two parts. The discrete component (Pt)
T
t=0 describes the evolution of a finite-

state controlled Markov chain which takes values in a finite set P. Further assume that at any time
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t = 0, . . . , T − 1 the controller takes an action a ∈ A from a finite set A of all admissible actions in
order to cause the one-step transition from the mode p ∈ P to the mode p′ ∈ P with a probability
αp,p′ (a), where (αp,p′ (a))p,p′∈P are pre-specified stochastic matrices for all a ∈ A.

Let us now turn to the evolution of the other component (Zt)
T
t=0 of the state process (Xt)

T
t=0. Here,

we assume that it follows an uncontrolled evolution in the space Z driven as

Zt+1 = Wt+1Zt, t = 0, . . . , T − 1

by independent disturbance matrices (Wt)
T
t=1. That is, the transition kernels Ka

t governing the evolution
of our controlled Markov process (Xt)

T
t=0 := (Pt, Zt)

T
t=0 from time t to t + 1 are given for each a ∈ A

by
Ka

t v(p, z) = ∑
p′∈P

αp,p′ (a)E(v(p′, Wt+1z)), p ∈ P, z ∈ Z, t = 0, . . . , T − 1

which acts on each function v : P× Z→ R where the above expectations are well-defined.

If the system is in the state (p, z), the costs of applying action a ∈ A at time t = 0, . . . , T − 1 are
expressed through rt(p, z, a). Having arrived at time t = T in the state (p, z), a final scrap value rT(p, z)
is collected. Thereby the reward and scrap functions

rt : P× Z×A→ R, rT : P× Z→ R

are exogenously given for t = 0, . . . , T − 1. At each time t = 0, . . . , T, the decision rule πt is given by a
mapping πt : P× Z→ A, prescribing at time t an action πt(p, z) ∈ A for a given state (p, z) ∈ P× Z.
Note that each decision rule refers to the recent state of the system, representing a feedback control. A
sequence π = (πt)

T−1
t=0 of decision rules is called a policy. For each policy π = (πt)

T−1
t=0 , the so-called

policy value vπ
0 (p0, z0) is defined as the total expected reward

vπ
0 (p0, z0) = E(p0,z0),π

[
T

∑
t=0

rt(Pt, Zt, πt(Pt, Zt)) + rt(Pt, Zt)

]
.

In this formula E(p0,z0),π stands for the expectation with respect to the probability distribution of
(Xt)

T
t=0 := (Pt, Zt)

T
t=0 defined by Markov transitions from (Pt, Zt) to (Pt+1, Zt+1), which are induced

by the kernels Kπt(Pt ,Zt)
t for t = 0, . . . , T − 1, started at the initial point (P0, Z0) = (p0, z0).

Now we turn to the optimization goal. A policy π∗ = (π∗t )
T−1
t=0 is called optimal if it maximizes

the total expected reward over all policies π 7→ vπ
0 (p, z). To obtain such policy, one introduces for

t = 0, . . . , T − 1 the so-called Bellman operator

Ttv(p, z) = max
a∈A

[
rt(p, z, a) + ∑

p′∈P
αp,p′ (a)E[v(p′, Wt+1z)]

]
(1)

for (p, z) ∈ P×Z, acting on all functions v where the stochastic kernel is defined. Consider the Bellman
recursion, also referred to as backward induction:

vT = rT , vt = Ttvt+1 for t = T − 1, . . . , 0. (2)

Having assumed that the reward functions are convex and globally Lipschitz and the disturbances
Wt+1 are integrable, there exists a unique recursive solution (v∗t )

T
t=0 to the Bellman recursion. These

functions (v∗t )
T
t=0 are called value functions and they determine an optimal policy (possibly not unique)

π∗ = (π∗t )
T
t=0 via

π∗t (p, z) = arg max
a∈A

[
rt(p, z, a) + ∑

p′∈P
αp,p′ (a)E[v∗t+1(p′, Wt+1z)]

]
, (3)

for t = T − 1, . . . , 0.

The aim of the package rcss is to approximate the true value functions (v∗t )
T−1
t=0 and the correspond-

ing optimal policies π∗ = (π∗t )
T−1
t=0 . Given these approximations, our package also determines their

distance to optimality which will allow the user to decide whether it is within some acceptable margin
or whether further fine tuning is needed to obtain even more accurate results.
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Numerical approach

Since the reward and scrap functions are convex in the continuous variable, the value functions are
also convex and can be approximated by piecewise linear and convex functions. For this, introduce
the so-called subgradient envelope SGm f of a convex function f : Z → R on a grid Gm ⊂ Z with m
points:

(SGm f )(z) = max
g∈Gm

(Og f )(z),

for z ∈ Z where Og f is the tangent of f at grid point g ∈ Gm. Using the subgradient envelope operator,
define the double-modified Bellman operator as

T m,n
t v(p, z) = SGm max

a∈A

(
rt(p, z, a)+ ∑

p′∈P
αa

p,p′
n

∑
k=1

ν
(k)
t+1v(p′, W(k)

t+1z)

)
,

where the probability weights (ν(k)t+1)
n
k=1 correspond to the distribution sampling (W(k)

t+1)
n
k=1 of each

disturbance Wt+1. The corresponding backward induction

vm,n
T (p, z) = SGm rT(p, z), (4)

vm,n
t (p, z) = T m,n

t vm,n
t+1(p, z), t = T − 1, . . . 0, (5)

yields the so-called double-modified value functions (vm,n
t )T

t=0. Under appropriate assumptions
regarding grid density and the disturbance sampling, the double-modified value functions converge
uniformly to the true value functions on compact sets (see Hinz (2014)). To gauge the quality of the
above approximations, we construct two random variables whose expectations bound the true value
function i.e.

E(υ0(p, z0)) ≤ v0(p, z0) ≤ E(υ0(p, z0)), p0 ∈ P, z0 ∈ Z. (6)

We refer any interested readers to Hinz and Yap (2015) for the technical details. This process exhibits a
helpful self-tuning property. The closer the value function approximations resemble their true unknown
counterparts, the tighter the bounds in Equation 6 and the lower the standard errors of the bound
estimates. The R package rcss represents these piece-wise linear functions as matrices and utilises
nearest neighbor algorithms (from Mangenat and Jefferies (2018)) to reduce the computational effort.
Most of the computational work is done in C++ via Rcpp (Eddelbuettel and Francois (2011)) and
is parallelized using OpenMp (Dagum and Menon (1998)). The following sections give some code
demonstrations.

Example: Bermuda put

Stochastic control problems of optimal switching type naturally arise in the framework of valuation
of financial contracts. A simple example is given by the Bermudan put option. This option gives its
owner the right but not an obligation to choose a time to exercise the option in a finite number of
time points before the maturity of the option in order to receive a payment which depends on the
price of the underlying asset at the exercise time. The so-called fair price of the Bermudan option is
related to the solution of an optimal stopping problem (see Glasserman (2003)). Here, the risk-neutral
undiscounted asset price process (Z̃t)

T
t=0 at time steps 0, . . . , T is modeled as a sampled geometric

Brownian motion
Z̃t+1 = εt+1Z̃t, t = 0, . . . , T − 1, Z0 ∈ R+, (7)

where (εt)
T
t=1 are independent identically distributed random variables following a log-normal distri-

bution, usually modeled in terms of

εt = exp(((µ− σ2

2
)∆ + σ

√
∆Nt),

with independent, identically standard normally distributed random variables (Nt)
T
t=1 where the

parameters σ > 0 and µ ∈ R+ represent the stock price volatility and the continuously compounded
interest rate respectively , measured on yearly scale. The tenor ∆ describes the length (measured in
years) of the equidistant time interval between exercise times. The fair price of such option with strike
price K, interest rate parameter ρ = µ∆, and maturity date ∆T, is given by the solution to the optimal
stopping problem

sup{E(e−ρτ max((K− Z̃τ), 0)) : τ is {0, 1, . . . , T}-valued stopping time}.
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A transformation of the state space is required to represent the reward functions in a convenient way.
Thus, we introduce an augmentation with 1 via

Zt =

[
1
Z̃t

]
, t = 0, . . . , T.

then it becomes possible to represent the evolution as the linear state dynamics

Zt+1 = Wt+1Zt, t = 0, . . . , T − 1

with independent and identically distributed matrix-valued random variables (Wt)
T
t=1 given by

Wt+1 =

[
1 0
0 εt+1

]
, t = 0, ..., T − 1. (8)

This switching system is defined by two positions P = {1, 2} and two actions A = {1, 2}. Here,
the positions “exercised” and “not exercised” are represented by p = 1 and p = 2 respectively, and
the actions “don’t exercise” and “exercise” are denoted by a = 1 and a = 2 respectively. With this
interpretation, the position change is given by deterministic transitions to specified states:

αa
p,p′ =

{
1 if p′ = α(p, a)
0 else; (9)

deterministically determined by the target positions

(α(p, a))2
p,a=1 ∼

[
α(1, 1) α(1, 2)
α(2, 1) α(2, 2)

]
. =

[
1 1
2 1

]
, (10)

While the rewards at time t = 0, . . . , T, are defined as

rt(p, (z(1), z(2)), a) = e−ρt max(K− z(2), 0)(p− α(p, a)), (11)

rT(p, (z(1), z(2))) = e−ρT max(K− z(2), 0)(p− α(p, 2)), (12)

for all p ∈ P, a ∈ A, z ∈ R+.

Code example

As a demonstration, let us consider a Bermuda put option with strike price 40 that expires in 1 year.
The put option is exercisable at 51 evenly spaced time points in the year, which includes the start and
end of the year. The following code approximates the value functions in the Bellman recursion.

library(rcss)
rate <- 0.06 ## Interest rate
step <- 0.02 ## Time step between decision epochs
vol <- 0.2 ## Volatility of stock price process
n_dec <- 51 ## Number of decision epochs
strike <- 40 ## Strike price
control <- matrix(c(c(1, 1), c(2, 1)), nrow = 2, byrow = TRUE) ## Control
grid <- as.matrix(cbind(rep(1, 301), seq(30, 60, length = 301))) ## Grid
## Disturbance sampling
u <- (rate - 0.5 * vol^2) * step
sigma <- vol * sqrt(step)
condExpected <- function(a, b) {

aa <- (log(a) - (u + sigma^2)) / sigma
bb <- (log(b) - (u + sigma^2)) / sigma
return(exp(u + sigma^2 / 2) * (pnorm(bb) - pnorm(aa)))

}
weight <- rep(1 / 1000, 1000)
disturb <- array(0, dim = c(2, 2, 1000))
disturb[1,1,] <- 1
part <- qlnorm(seq(0, 1, length = 1000 + 1), u, sigma)
for (i in 1:1000) {

disturb[2,2,i] <- condExpected(part[i], part[i+1]) / (plnorm(part[i+1], u, sigma) -
plnorm(part[i], u, sigma))

}
## Subgradient representation of reward
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in_money <- grid[,2] <= strike
reward <- array(0, dim = c(301, 2, 2, 2, n_dec - 1))
reward[in_money,1,2,2,] <- strike
reward[in_money,2,2,2,] <- -1
for (tt in 1:n_dec - 1){

reward[,,,,tt] <- exp(-rate * step * (tt - 1)) * reward[,,,,tt]
}
## Subgrad representation of scrap
scrap <- array(data = 0, dim = c(301, 2, 2))
scrap[in_money,1,2] <- strike
scrap[in_money,2,2] <- -1
scrap <- exp(-rate * step * (n_dec - 1)) * scrap
## Bellman
r_index <- matrix(c(2, 2), ncol = 2)
bellman <- FastBellman(grid, reward, scrap, control, disturb, weight, r_index)

The matrix grid represents the grid points where each row represents a point. The 3-dimensional
array disturb represents the sampling of the disturbances where disturb[,,i] gives the i-th sam-
ple. Here, we use local averages on a 1000 component partition of the disturbance space. The
5-dimensional array reward represents the subgradient approximation with reward[,,a,p,t] repre-
senting SGm rt(p, ., a). The object bellman is a list containing the approximations of the value functions
and expected value functions for all positions and decision epochs. Please refer to the package manual
for the format of the inputs and outputs. To visualise the value function of the Bermuda put option,
simply run the following plot command:

plot(grid[,2], rowSums(bellman$value[,,2,1] * grid), type = "l", xlab = "Stock Price",
ylab = "Option Value")
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Figure 1: Bermuda put value function.

The following code then performs the solution diagnostics by computing the lower and upper
bound estimates for the value of the option when Z0 = 36.

## Reward function
RewardFunc <- function(state, time) {
output <- array(data = 0, dim = c(nrow(state), 2, 2))
output[,2,2] <- exp(-rate * step * (time - 1)) * pmax(40 - state[,2], 0)
return(output)

}
## Scrap function
ScrapFunc <- function(state) {
output <- array(data = 0, dim = c(nrow(state), 2))
output[,2] <- exp(-rate * step * (n_dec - 1)) * pmax(40 - state[,2], 0)
return(output)

}
## Get primal-dual bounds
start <- c(1, 36)
## Path disturbances
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set.seed(12345)
n_path <- 500
path_disturb <- array(0, dim = c(2, 2, n_path, n_dec - 1))
path_disturb[1, 1,,] <- 1
rand1 <- rnorm(n_path * (n_dec - 1) / 2)
rand1 <- as.vector(rbind(rand1, -rand1))
path_disturb[2, 2,,] <- exp((rate - 0.5 * vol^2) * step + vol * sqrt(step) * rand1)
path <- PathDisturb(start, path_disturb)
policy <- FastPathPolicy(path, grid, control, RewardFunc, bellman$expected)
## Subsim disturbances
n_subsim <- 500
subsim <- array(0, dim = c(2, 2, n_subsim, n_path, (n_dec - 1)))
subsim[1,1,,,] <- 1
rand2 <- rnorm(n_subsim * n_path * (n_dec - 1) / 2)
rand2 <- as.vector(rbind(rand2, -rand2))
subsim[2,2,,,] <- exp((rate - 0.5 * vol^2) * step + vol * sqrt(step) * rand2)
subsim_weight <- rep(1 / n_subsim, n_subsim)
mart <- FastAddDual(path, subsim, subsim_weight, grid, bellman$value, ScrapFunc)
bounds <- AddDualBounds(path, control, RewardFunc, ScrapFunc, mart, policy)

The above code takes the exact reward and scrap functions as inputs. The function FastPathPolicy
computes the candidate optimal policy. The object bounds is a list containing the primals and duals
for each sample path i and each position p at each decision time t. Again, please refer to the package
manual for the format of the inputs and outputs. If the price of the underlying asset is 36, the 99%
confidence interval for the option price is given by the following.

> print(GetBounds(bounds, 0.01, 2))
[1] 4.475802 4.480533

The package rcss also allows the user to test the prescribed policy from the Bellman recursion on
any supplied set of sample paths. The resulting output can then be further studied with time series
analysis or other statistical work. In the following code, we will use the previously generated 500
sample paths to backtest our policy and generate histograms.

test <- FullTestPolicy(2, path, control, RewardFunc, ScrapFunc, policy)
## Histogram of cumulated rewards
hist(test$value, xlab = "Cumulated Rewards", main = "")
## Exercise times
ex <- apply(test$position == 1, 1, function(x) min(which(x)))
ex[ex == Inf] <- 51
ex <- ex - 1
hist(ex, xlab = "Exercise Times", main = "")
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Figure 2: Distribution of cumulated rewards and exercise times.

Figure 2 contains the histograms for the cumulated rewards and exercise times. These can be
useful to a practitioner (e.g., anticipating when the holder will exercise their option). Let us emphasise
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the usefulness of such scenario generation. Given an approximately optimal policy and backtesting,
one can perform statistical analysis on the backtested values to obtain practical insights such as for
risk analysis purposes.

Example: swing option

Let us now consider the swing option which is a financial contract popular in the energy business. In
the simplest form, it gives the owner the right to obtain a certain commodity (such as gas or electricity)
at a pre-specified price and volume at a number of exercise times which can be freely chosen by the
contract owner. Let us consider a specific case of such a contract, referred to as a unit-time refraction
period swing option. In this contract, there is a limit to exercise only one right at any time. Given the
discounted commodity price (St)

T
t=0, the so-called fair price of a swing option with N rights is given

by the supremum,

sup
0≤τ1<···<τN≤T

E
[ N

∑
n=1

(Sτn − Ke−ρτn )+
]
,

over all stopping times, τ1, . . . , τN , with values in {0, . . . , T}. In order to represent this control problem
as a switching system, we use the position set P = {1, . . . , N + 1} to describe the number of exercise
rights remaining. That is, p ∈ P stands for the situation when there are p− 1 rights remaining to be
exercised. The action set A = {1, 2} represents the choice between exercising (a = 1) or not exercising
(a = 2). The control matrices (αa

p,p′ ) are given for exercise action a = 1

α1
p,p′ =

{
1 if p′ = max{1, (p− 1)}
0 else,

and for not-exercise action a = 2 as

α2
p,p′ =

{
1 if p′ = p
0 else

for all p, p′ ∈ P. In the case of the swing option, the transition between p and p′ occurs deterministically,
since once the controller decides to exercise the right, the number of rights remaining is diminished by
one. The deterministic control of the discrete component is easier to describe in terms of the matrix
(α(p, a))p∈P,a∈A where p′ = α(p, a) ∈ P stands for the discrete component which is reached from
p ∈ P by the action a ∈ A. For the case of the swing option this matrix is

(α(p, a))p∈P,a∈A =


1 1
1 2
2 3

. . . . . .
N N + 1

 . (13)

Having modelled the discounted commodity price process as an exponential mean-reverting process
with a reversion parameter κ ∈ [0, 1[, long run mean µ > 0, and volatility σ > 0, we obtain the
logarithm of the discounted price process as

Z̃t+1 = (1− κ)(Z̃t − µ) + µ + σεt+1, Z̃0 = ln(S0). (14)

A further transformation of the state space is required before linear state dynamics can be achieved. If
we introduce an augmentation with 1 via

Zt =

[
1
Z̃t

]
, t = 0, . . . , T,

then it becomes possible to represent the evolution as the linear state dynamics

Zt+1 = Wt+1Zt, t = 0, . . . , T − 1,

with independent and identically distributed matrix-valued random variables (Wt)
T
t=1 given by

Wt+1 =

[
1 0

κµ + σεt+1 (1− κ)

]
, t = 0, ..., T − 1.

The reward and scrap values are given by

rt(p, (z(1), z(2)), a) = (ez(2) − Ke−ρt)+
(

p− α(p, a)
)

(15)
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for t = 0, . . . , T − 1 and

rT(p, (z(1), z(2))) = (ez(2) − Ke−ρT)+
(

p− α(p, 1)
)

(16)

respectively for all p ∈ P and a ∈ A.

Code example

In this example, consider a swing option with 5 rights exercisable on 101 time points. As before, we
begin by performing the value function approximation.

## Parameters
rho <- 0
kappa <- 0.9
mu <- 0
sigma <- 0.5
K <- 0
n_dec <- 101 ## number of time epochs
N <- 5 ## number of rights
n_pos <- N + 1 ## number of positions
grid <- cbind(rep(1, 101), seq(-2, 2, length = 101)) ## Grid
## Control matrix
control <- cbind(c(1, 1:N), 1:(N + 1))
## Reward subgradient representation
reward <- array(0, dim = c(101, 2, 2, nrow(control), n_dec - 1))
slope <- exp(grid[, 2])
for (tt in 1:(n_dec - 1)) {

discount <- exp(-rho * (tt - 1))
for (pp in 2:n_pos) {

intercept <- (exp(grid[,2]) - K * discount) - slope * grid[, 2]
reward[, 1, 1, pp, tt] <- intercept
reward[, 2, 1, pp, tt] <- slope

}
}
## Scrap subgradient representation
scrap <- array(0, dim = c(101, 2, nrow(control)))
discount <- exp(-rho * (n_dec - 1))
for (pp in 2:n_pos) {

intercept <- (exp(grid[,2]) - K * discount) - slope * grid[, 2]
scrap[, 1, pp] <- intercept
scrap[, 2, pp] <- slope

}
## Disturbance sampling
weight <- rep(1/1000, 1000)
disturb <- array(0, dim = c(2, 2, 1000))
disturb[1, 1,] <- 1
disturb[2, 2,] <- 1 - kappa
CondExpected <- function(a, b){

return(1/sqrt(2 * pi) * (exp(-a^2/2)- exp(-b^2/2)))
}
part <- qnorm(seq(0, 1, length = 1000 + 1))
for (i in 1:1000) {
disturb[2,1,i] <- kappa * mu + sigma *
(CondExpected(part[i], part[i+1]) / (pnorm(part[i+1]) - pnorm(part[i])))

}
## Bellman recursion
r_index <- matrix(c(2, 1), ncol = 2)
bellman <- FastBellman(grid, reward, scrap, control, disturb, weight, r_index)

After obtaining these function approximations, the following code computes the 99% confidence
intervals for the value of a swing option with 5 remaining rights.

## Exact reward function
RewardFunc <- function(state, time) {

output <- array(0, dim = c(nrow(state), 2, nrow(control)))
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discount <- exp(-rho * (time - 1))
for (i in 2:nrow(control)) {

output[, 1, i] <- pmax(exp(state[, 2]) - K * discount, 0)
}
return(output)

}
## Exact scrap function
ScrapFunc <- function(state) {

output <- array(0, dim = c(nrow(state), nrow(control)))
discount <- exp(-rho * (n_dec - 1))
for (i in 2:nrow(control)) {

output[, i] <- pmax(exp(state[, 2]) - K * discount, 0)
}
return(output)

}
## Generate paths
set.seed(12345)
n_path <- 500
path_disturb <- array(0, dim = c(2, 2, n_path, n_dec - 1))
path_disturb[1, 1,,] <- 1
path_disturb[2, 2,,] <- 1 - kappa
rand1 <- rnorm(n_path * (n_dec - 1) / 2)
rand1 <- as.vector(rbind(rand1, -rand1))
path_disturb[2, 1,,] <- kappa * mu + sigma * rand1
start <- c(1, 0)
path <- PathDisturb(start, path_disturb)
policy <- FastPathPolicy(path, grid, control, RewardFunc, bellman$expected)
## Set subsimulation disturbances
n_subsim <- 500
subsim <- array(0, dim = c(2, 2, n_subsim, n_path, n_dec - 1))
subsim[1, 1,,,] <- 1
subsim[2, 2,,,] <- 1 - kappa
rand2 <- rnorm(n_subsim * n_path * (n_dec - 1) / 2)
rand2 <- as.vector(rbind(rand2, -rand2))
subsim[2, 1,,,] <- kappa * mu + sigma * rand2
subsim_weight <- rep(1 / n_subsim, n_subsim)
## Primal-dual
mart <- FastAddDual(path, subsim, subsim_weight, grid, bellman$value, ScrapFunc)
bounds <- AddDualBounds(path, control, RewardFunc, ScrapFunc, mart, policy)

> print(GetBounds(bounds, 0.01, 6))
[1] 13.42159 13.44162

The tight 99% confidence interval for the price of the swing option above seems to indicate that
the function approximations are of a good quality. With this in mind, we now proceed to backtesting
the associated policy. We reuse the 1, 000 sample path generated for the solution diagnostics.

test <- FullTestPolicy(6, path, control, RewardFunc, ScrapFunc, policy)
## Histogram of cumulated rewards
hist(test$value, xlab = "Cumulated Rewards", main = "")
## Exercise times
ex <- rep(0, n_dec)
for (i in 1:n_path) {
for (t in 1:(n_dec - 1)) {
if ((test$position[i, t] != 1) && (test$action[i, t] == 1)) {
ex[t] <- ex[t] + 1

}
}

}
plot(0:(n_dec-1), ex, xlab="Time", ylab="Number of Exercises", type="b", main="")

Figure 3 show the histogram for the cumulated rewards and the number of exercises at each time
point over the 1, 000 sample paths. As mentioned before, more sophisticated statistical analysis can be
performed on these path values to gain practical insights.
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Figure 3: Distribution of cumulated rewards and number of exercises.

Example: optimal energy storage

This section examines optimal energy storage for an energy retailer in the presence of a battery. The
model is beyond the scope of this paper and this paper points any interested readers to Hinz and Yee
(2017a) for more details.

Consumer
	

Renewable
Energy

⇐⇒

Optimal Control
m

Battery Storage &
Forward Contracts

⇐⇒ Grid

Figure 4: Energy dispatch in the presence of renewable energy and battery storage.

The model is represented by the above figure and the basic gist is as follows:

• At every decision epoch, the energy retailer faces an energy imbalance determined by the net
energy demand and the retailer’s forward position in the electricity market.

• Any real time imbalance must be rectified by buying or selling at real time grid prices.

• When the electricity retailer has access to a battery, any imbalances can be offset (at least
partially) by stored energy. This battery has fixed capacity.

• The retailer’s actions is given by the size of the retailer’s forward positions in the electricity
market. These actions determine the expected amount of energy stored in the battery at each
time.

• The goal of the retailer is to reduce the amount of balancing costs and forward trading costs.

The code below begins by specifying the grid, the battery specifications, the action set, and the
effect of the action on the battery level. The grid will be used to represent the continuous state
component that drives the forward price in the electricity market. Here, the battery has capacity 100
and discretized into steps of 5 from 0. The action set represents the safety margin (the amount of
energy bought in the day ahead market that exceeds the predicted net demand) that the retailer may
choose. The control array below captures the transition probabilities of the expected change in the
battery level based on the current battery level and the retailer’s safety margin.

## Grid
n_grid <- 501 ## number of grid points
grid_start <- -15 ## lowest state
grid_end <- 15 ## highest state
grid <- cbind(rep(1, n_grid), seq(grid_start, grid_end, length = n_grid))
## Battery specification
step <- 5 ## step between battery levels
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pos_start <- 0
pos_end <- 100
position <- seq(pos_start, pos_end, by = step) ## battery levels
n_pos <- length(position)
## Standard deviation for the consumer demand
std <- 10
## Actions
n_action <- 11 ## number of safety margins
safety_start <- 0
safety_end <- 50
safety <- seq(safety_start, safety_end, length = n_action) ## safety margins
## Control array
control <- array(data = 0, dim = c(n_pos, n_action, n_pos))
for (p in 1:n_pos) {

for (a in 1:n_action) {
temp <- position[p] + safety[a] ## center of normal distribution
control[p,a,1] <- pnorm(pos_start + step/2, temp, std)
control[p,a,n_pos] <- 1 - pnorm(pos_end - step/2, temp, std)
for (pp in 2:(n_pos-1)) {

control[p,a,pp] <- pnorm(position[pp] + step/2, temp, std) -
pnorm(position[pp] - step/2, temp, std)

}
}

}

Next the code computes the expected excess and shortages of electricity faced by the retailer at
each time period.

## Functions to calculate expected excess and shortage energy demand
erf <- function(x){ ## error function

return(2 * pnorm(x * sqrt(2)) - 1)
}
Excess <- function(pos, act) {

temp1 <- pos_end + step/2
temp2 <- pos + act
result <- std/sqrt(2*pi) * exp(-(temp1-temp2)^2/(2*std^2)) +

(temp2 - pos_end)/2 * (1 - erf(1/sqrt(2*std^2) * (temp1 - temp2)))
return(result)

}
Shortage <- function(pos, act) {

temp1 <- pos_start - step/2
temp2 <- pos + act
result <- std/sqrt(2*pi) * exp(-(temp1-temp2)^2/(2*std^2)) +

(pos_start - temp2)/2 * (erf(1/sqrt(2*std^2) * (temp1 - temp2)) + 1)
return(result)

}
## Expected excess and shortage energy demand
excess <- matrix(data = NA, nrow = n_pos, ncol = n_action)
shortage <- matrix(data = NA, nrow = n_pos, ncol = n_action)
for (p in 1:n_pos) {

for (a in 1:n_action) {
excess[p,a] <- Excess(position[p], safety[a])
shortage[p,a] <- Shortage(position[p], safety[a])

}
}

The subgradient envelope of the reward and scrap functions are then specified below. Essentially,
the reward is given by the cost of the forward trading and the cost of any expected shortages or excess
energy that needs to be balanced. At the final time, the retailer sells all stored energy in the battery at
the forward price. This is captured by the scrap reward function.

## Subgradient representation of reward functions
n_dec <- 48 * 7 ## number of decision epochs
u_t <- 10 + cos((0:(n_dec-1)) * 2*pi/48 + 3*pi/2)
v_t <- 1 + (sin((0:(n_dec-1)) * 2*pi/48 + 3*pi/2))/2
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buy <- 20 ## price to buy from grid
sell <- 0 ## price to sell to grid
reward <- array(0, dim = c(n_grid, 2, n_action, n_pos, n_dec - 1))
for (p in 1:n_pos) {

for (a in 1:n_action) {
for (t in 1:(n_dec-1)) {

reward[,1,a,p,t] <- -safety[a] * u_t[t] - shortage[p, a] * buy + excess[p, a] * sell
reward[,2,a,p,t] <- -safety[a] * v_t[t]

}
}

}
scrap <- array(0, dim = c(n_grid, 2, n_pos))
for (p in 1:n_pos) {

scrap[,1,p] <- position[p] * u_t[n_dec]
scrap[,2,p] <- position[p] * v_t[n_dec]

}

Finally, the disturbance sampling and the resulting double modified value functions are computed
using the subgradient approach. Here, we assume that the continuous state (Zt) driving the forward
price is an autoregression of order one. For the disturbance sample, we partition the disturbance space
into 1000 components of equal probability measure and take the local average on each component.

## Parameters for AR(1) process (Z_t)
mu <- 0
sigma <- 0.5
phi <- 0.9
## Disturbance sampling
n_disturb <- 1000 ## size of sampling
disturb_weight <- rep(1/n_disturb, n_disturb) ## probability weights
disturb <- array(matrix(c(1, 0, 0, phi), ncol = 2, byrow = TRUE), dim = c(2, 2, n_disturb))
CondExpected <- function(a, b){
return(1/sqrt(2 * pi) * (exp(-a^2/2)- exp(-b^2/2)))

}
part <- qnorm(seq(0, 1, length = n_disturb + 1))
for (i in 1:n_disturb) {
disturb[2,1,i] <- mu + sigma *
(CondExpected(part[i], part[i+1]) / (pnorm(part[i+1]) - pnorm(part[i])))

}
r_index <- matrix(c(2, 1), ncol = 2) ## randomness index
## Fast bellman recursion
bellman <- FastBellman(grid, reward, scrap, control, disturb, disturb_weight, r_index)

The following code example performs the solution diagnostics, computes the bound estimates,
and then outputs the results (shown in Table 1). This gives the expected cumulative cost (and its 99%
confidence interval) faced by the retailer depending on the current amount of stored energy in the
battery. If interested, we point the reader to Hinz and Yee (2017a) for more details regarding this
interesting problem.

## Exact reward function
RewardFunc <- function(state, time) {
output <- array(0, dim = c(nrow(state), n_action, n_pos))
for (p in 1:n_pos) {
for (a in 1:n_action) {
output[,a,p] <- -safety[a] * (u_t[time] + v_t[time] * state[,2]) -
shortage[p,a] * buy + excess[p,a] * sell

}
}
return(output)

}
## Scrap function
ScrapFunc <- function(state) {
output <- array(0, dim = c(nrow(state), n_pos))
for (p in 1:n_pos) {
output[,p] <- position[p] * (u_t[n_dec] + v_t[n_dec] * state[,2])

}
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return(output)
}
## Generate sample path disturbances
set.seed(12345)
n_path <- 100
path_disturb <- array(matrix(c(1, 0, 0, phi), ncol = 2, byrow = TRUE),

dim = c(2, 2, n_path, n_dec - 1))
rand <- rnorm(n_path * (n_dec - 1) / 2)
rand <- as.vector(rbind(rand, -rand))
path_disturb[2,1,,] <- mu + sigma * rand
start <- c(1, 0) ## z_0
path <- PathDisturb(start, path_disturb)
policy <- FastPathPolicy(path, grid, control, RewardFunc, bellman$expected)
## Specifying subsimulation disturbance matrices
n_subsim <- 100
subsim_weight <- rep(1/n_subsim, n_subsim)
subsim <- array(matrix(c(1, 0, 0, phi), ncol = 2, byrow = TRUE),

dim = c(2, 2, n_subsim, n_path, n_dec - 1))
rand <- rnorm(n_subsim * n_path * (n_dec - 1)/2)
rand <- as.vector(rbind(rand, -rand))
subsim[2,1,,,] <- mu + sigma * rand
## Compute primal and dual values
mart <- FastAddDual(path, subsim, subsim_weight, grid, bellman$value, ScrapFunc)
bounds <- AddDualBounds(path, control, RewardFunc, ScrapFunc, mart, policy)
## Storing the results
results <- matrix(data = NA, nrow = n_pos, ncol = 3)
alpha <- 0.01
for (p in 1:n_pos) {
results[p,1] <- sum(bellman$value[251,,p,1] * grid[251,])
results[p,2:3] <- GetBounds(bounds, alpha, p)

}
print(results)

Start Level (MWh) Subgradient Estimate 99% CI
0 -1679.859 (-1679.862, -1679.612)
5 -1629.859 (-1629.862, -1629.612)

10 -1579.859 (-1579.862, -1579.612)
15 -1529.859 (-1529.862, -1529.612)
20 -1480.168 (-1480.171, -1479.922)
25 -1433.574 (-1433.577, -1433.328)
30 -1389.685 (-1389.688, -1389.441)
35 -1348.509 (-1348.512, -1348.266)
40 -1310.129 (-1310.131, -1309.887)
45 -1274.601 (-1274.604, -1274.362)
50 -1241.952 (-1241.955, -1241.714)
55 -1212.186 (-1212.188, -1211.949)
60 -1185.294 (-1185.297, -1185.059)
65 -1161.261 (-1161.263, -1161.027)
70 -1140.063 (-1140.066, -1139.831)
75 -1121.677 (-1121.680, -1121.446)
80 -1106.080 (-1106.083, -1105.850)
85 -1093.250 (-1093.253, -1093.021)
90 -1083.161 (-1083.164, -1082.932)
95 -1075.727 (-1075.730, -1075.499)

100 -1070.728 (-1070.731, -1070.500)

Table 1: Subgradient and duality approach using Z(2)
0 = 0 .
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Natural resource extraction

As a final example, let us consider the case of optimal resource extraction in Hinz et al. (In Press).
Suppose we have a hypothetical copper mine represented in Table 2.

Output rate: 10 million pounds/year Inventory level: 150 million pounds
Costs of production: $0.50/pound Opening/closing costs: $200,000
Maintenance costs: $500,000/year Inflation rate: 8%/year
Convenience yield: 1%/year Price variance: 8%/year
Real estate tax: 2%/year Income tax: 50%
Royalty tax: 0% Interest rate: l0%/year

Table 2: Hypothetical copper mine.

The following code approximates the value function of the above mine using the following setting:

• The mining lease is 30 years. After 30 years, the owner relinquishes ownership of the mine to
the government.

• Time is discretized into quarter years.

• At the start of each time epoch, the owner decides whether the mine will be open (i.e. extracting
ore) or closed (not extracting) for the next quarter. The owner can also relinquish ownership of
the mine early at any of these time points.

• Switching between open and closed states incurs a switching cost.

• An open mine produces income but incurs higher operating costs than a closed mine.

• The amount of ore in the mine is finite and decreases whenever the mine is open.

• The owner wishes to maximise the expected total profits which gives the true value of the mine.

In the code below, the grid will be used to represent the price of the ore which is assumed to
follow geometric Brownian motion. The control matrix will be used to reflect changes in the amount of
unextracted ore based on the owner’s dynamic decision to open or close. For the disturbance sampling,
the disturbance space is partitioned into 1000 components of equal probability measure and the local
averages on each partition component is taken.

## Parameters
n_grid <- 501
grid <- as.matrix(cbind(rep(1, n_grid), seq(0, 10, length = n_grid)))
rate <- 0.1
delta <- 0.01
vol <- sqrt(0.08)
step <- 0.25
## Disturbance sampling
n_disturb <- 1000
disturb_weight <- rep(1/n_disturb, n_disturb)
disturb <- array(0, dim = c(2, 2, n_disturb))
disturb[1, 1,] <- 1
quantile <- rep(NA, n_disturb)
u <- (rate - delta - 0.5 * vol^2) * step
sigma <- vol * sqrt(step)
part <- qlnorm(seq(0, 1, length = n_disturb + 1), u, sigma)
condExpected <- function(a, b){ ##[a,b]
aa <- (log(a) - (u+sigma^2))/sigma
bb <- (log(b) - (u+sigma^2))/sigma
vv <- exp(u + sigma^2/2) * (pnorm(bb) - pnorm(aa))
return(vv)

}
for (i in 1:n_disturb) {
quantile[i] <- condExpected(part[i], part[i+1]) /

(plnorm(part[i+1], u, sigma) - plnorm(part[i], u, sigma))
}
disturb[2, 2,] <- quantile
r_index <- matrix(c(2, 2), ncol = 2)
## Control matrix, a = 1 (close), 2 (abandon), 3 (open)
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## p = 1 (exhausted), levels + 1 (full open), 2 * levels + 1 (full closed)
levels <- 15 / step
control <- matrix(data = 1, nrow = (2 * levels + 1), ncol = 3)
control[2:(2 * levels + 1), 1] <- (levels + 2):(2 * levels + 1)
control[2:(2 * levels + 1), 3] <- 1:levels

Next, we define the subgradient representation of the reward and scrap functions. When the
mine is open, the reward is essentially the income from selling the extracted ore minus the cost of
extracting that ore. When the mine is closed, the reward is the cost of maintenance. If the owner
switches between open and closed states, there is a switching cost. When the owner relinquishes
ownership of the mine, there is no reward or cost. The scrap reward function is set to zero in the below
code. These objects are then passed into the FastBellman function which computes the value function
approximations using nearest neighbors.

## Subgrad rep of rewards
H1 <- 5 * step
H2 <- -2.5 * step
maint <- 0.5 * step
switch <- 0.2
inflation <- 0.08
tax_property <- 0.02
n_dec <- 1 + 30 / step + 1
discount <- exp(-(rate + tax_property) * step)
n_pos <- nrow(control)
n_action <- ncol(control)
n_dim <- ncol(grid)
reward <- array(data = 0, dim = c(n_grid, n_dim, n_action, n_pos, n_dec - 1))
for (p in 2:n_pos) {
for (t in 1:(n_dec - 1)) {
pi <- exp(inflation * (t-1) * step)
adjust <- discount ^ (t-1)
## Close the asset
if (p > (levels + 1)) { ## Closed
## Close
reward[, 1, 1, p, t] <- adjust * -maint * pi
## Open
reward[, 1, 3, p, t] <- (H2 - switch) * pi * adjust
reward[, 2, 3, p, t] <- H1 * adjust

} else if (p <= (levels + 1)) { ## Opened
## Close
reward[, 1, 1, p, t] <- -(maint + switch) * pi * adjust
## Open
reward[, 1, 3, p, t] <- H2 * pi * adjust
reward[, 2, 3, p, t] <- H1 * adjust

}
}

}
## Subgrad rep of scrap
scrap <- array(data = 0, dim = c(n_grid, n_dim, n_pos))
## Performing fast bellman recursion
bellman <- FastBellman(grid, reward, scrap, control, disturb, disturb_weight, r_index)

Finally, running the following code gives an illustration of the value of an open mine based on the
current ore price.

plot(grid[,2], rowSums(bellman$value[,,levels,1] * grid), type = "l",
xlab = "Current Ore Price ($)", ylab = "Mine Value ($ millions)")

For more details regarding this problem, we point any interested readers to Hinz et al. (In Press).

Conclusion

This paper gives a demonstration of our R package, rcss in solving optimal switching problems. Our
package represents the first software implementation of this class of algorithms. The problem setting
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Figure 5: Mine valuation.

discussed in this paper is broad and can be used to model a wide range of problems. Using nearest
neighbor algorithms, the package rcss is able to solve some real world problems in an accurate and
quick manner. It is also worth mentioning that this R package can be used to address Markov decision
processes when there is a hidden Markov model as shown in Hinz and Yee (2017b). However, this is
not demonstrated here in order to preserve the brevity of this paper.
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nsROC: An R package for Non-Standard
ROC Curve Analysis
by Sonia Pérez-Fernández, Pablo Martínez-Camblor, Peter Filzmoser and Norberto Corral

Abstract The receiver operating characteristic (ROC) curve is a graphical method which has become
standard in the analysis of diagnostic markers, that is, in the study of the classification ability of a
numerical variable. Most of the commercial statistical software provide routines for the standard
ROC curve analysis. Of course, there are also many R packages dealing with the ROC estimation as
well as other related problems. In this work we introduce the nsROC package which incorporates
some new ROC curve procedures. Particularly: ROC curve comparison based on general distances
among functions for both paired and unpaired designs; efficient confidence bands construction; a
generalization of the curve considering different classification subsets than the one involved in the
classical definition of the ROC curve; a procedure to deal with censored data in cumulative-dynamic
ROC curve estimation for time-to-event outcomes; and a non-parametric ROC curve method for
meta-analysis. This is the only R package which implements these particular procedures.

Introduction

Given a continuous variable, (bio)marker , we are frequently interested in performing a binary clas-
sification according to its value. This binary classification can be regarded as the presence or not
of a certain characteristic of interest in the population (for instance, one disease). On the basis of
data containing the real diagnosis, subjects are called positive when they have the characteristic and
negative otherwise.

The receiver operating characteristic (ROC) curve assumes that higher values of the marker are
associated with a higher probability of having the characteristic. Therefore, a subject whose marker
value is below a fixed point (usually called threshold or cut-off point ) is classified as negative (without
the characteristic) while a subject with a marker value above the threshold is classified as positive
(with the characteristic). Under this proviso, it displays the ability of the marker to correctly classify
a positive subject as positive, or true-positive rate (TPR), versus the inability to correctly classify a
negative subject as negative, or false-positive rate (FPR), for each cut-off point along all the possible
values of the marker. That is, the sensitivity (TPR) versus the complementary of the specificity (FPR)
for each possible threshold. In addition, the area under the ROC curve , AUC, is frequently used as an
index of the global diagnostic capacity (Fluss et al., 2005). It ranges between 1/2, when the marker
does not contribute to a correct classification, and 1, if the marker may classify subjects properly.
If AUC is less than 1/2 it means that the direction of the classification should be the opposite (see
comments about side of the ROC curve discussed below).

Mathematically, let χ and ξ be two continuous random variables representing the marker values
for negative and positive subjects, respectively. For a fixed value t ∈ [0, 1], the usual ROC curve
(right-sided ) can be defined as follows in terms of the distribution function of negative (Fχ) and
positive (Fξ ) group:

R(t) = 1− Fξ

(
F−1

χ (1− t)
)
= F1−Fχ(ξ)(t)

leading the following area under the curve:

A =
∫ 1

0
R(t) dt = P (χ < ξ) .

Of course there exists a wide literature dealing with both theoretical and practical aspects of the
ROC curve and other related problems. The interested reader can consult the monographs of Zhou
et al. (2002) and Pepe (2003) for an extensive review of the topic. There are also a number of papers
dealing with some problems related to ROC curve such as the usual ROC curve point estimation (see
Gonçalvez et al. (2014) for a recent overview) from both parametric and non-parametric approaches,
even considering Bayesian methods as an alternative to the maximum likelihood principle; or the
curve interval estimation (confidence bands construction) also using both parametric (Demidenko,
2012) and non-parametric techniques (Jensen et al. (2000), Horváth et al. (2008) and Martínez-Camblor
et al. (2018)).

Furthermore, the ROC curve procedure has been extended to other situations where the outcome is
not binary. For instance, Mossman (1999) extends ROC concepts to diagnostic tests with trichotomous
outcomes; whereas Heagerty and Zheng (2005) deal with time-dependent responses, whose most
direct extension is by means of the cumulative/dynamic approach (Heagerty et al., 2000), but it
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involves a new problem: handling censored data. Additionally, Martínez-Camblor et al. (2017)
proposed a ROC curve generalization for non-monotone relationships between the marker and the
response, particularly convenient for situations in which both lower and higher marker values are
associated with higher probabilities of having the studied characteristic. Some other scenarios where
the information is not provided as standard may lead us to conduct a meta-analysis of ROC curves
(see Martínez-Camblor (2017) and references therein) or fit a regression model for these curves (Cai
(2004) and Rodríguez-Álvarez et al. (2011)).

On the other hand, the ROC curve comparison is one of the issues which has been more treated
in literature. Usually ROC curves are compared from their respective AUCs, but in some situations
these hypothesis tests are not the most appropriate (further discussed in the Comparison section). The
similarity between two ROC curves have been traditionally discussed by Venkatraman and Begg (1996)
for both paired and unpaired designs (Venkatraman, 2000). On the other hand, the comparison of the
curves as functions is not different from the cumulative distribution function comparison problem,
and this analogy was used by Martínez-Camblor et al. (2011), and subsequently extended to paired
structures (Martínez-Camblor et al., 2013).

Some of the previous approaches have already been implemented in several software packages,
including R packages such as pROC (Robin et al., 2018) and ROCR (Sing et al., 2015) which include
different procedures to estimate the usual ROC curve (incorporating smoothing techniques), as well
as confidence intervals computation for different parameters of the curve (sensitivity, specificity, AUC)
and comparison of areas under two curves. There exist also more specific packages to deal with
different particular topics and approaches of the ROC curve. For instance plotROC (Sachs, 2018)
displays sophisticated plots of these curves; fbroc (Peter, 2016) focuses on a fast implementation of
bootstrap techniques; OptimalCutpoints (Lopez-Raton and Rodriguez-Alvarez, 2014) includes several
methods to select optimal cut-off points of the marker; timeROC (Blanche, 2015) and survivalROC
(Heagerty and packaging by Paramita Saha-Chaudhuri, 2013) estimate time-dependent ROC curves
and deal with some related analyses; and HSROC (Schiller and Dendukuri, 2015) implements a model
for joint meta-analysis of sensitivity and specificity of the diagnostic test under evaluation.

ROC curves research is in fact a growing field in statistics. The aforementioned R packages are
some of the most relevant ones in this topic but there are also more implementations covering certain
algorithms. However, some non-standard ROC curve analyses exist which were not available to
the scientific community in a practical software and this is the main reason why the new package
presented in this paper has been created. The nsROC package (Pérez-Fernández, 2018) is a compilation
of different analyses not computed to date which attempts to boost awareness of new techniques
that have already been published but not implemented in a user-friendly software widely available.
Furthermore, it incorporates several studies and techniques (from comparison of ROC curves to
time-dependent estimation and meta-analysis), making it more manageable since all of them are
included in the same package.

The rest of the paper is organized as follows: in the next two sections, Estimation and Comparison,
some basic information about the statistical techniques included in the nsROC package, as well as some
remarkable technical issues about its main functions, are provided. Particularly, the Estimation section
incorporates several aforementioned situations: the ROC curve generalization for non-monotone
relationships, confidence bands construction, censored data treatment for time-dependent outcomes,
and meta-analysis involving ROC curves. In turn, the Comparison section includes three different
methods of comparison (based on AUC, diagnostic capacity of the marker, or ROC curve definition in
terms of CDF) to deal with both paired and unpaired data scenarios. Subsequently, in the Examples
section, a complete analysis with different datasets is carried out to illustrate certain applications of
the submitted package; and finally a Summary of the utility of the package is reported.

Estimation

Non-standard ROC curve estimation

As mentioned previously, an ROC curve is a graphical method which displays the sensitivity (Se)
versus the complementary of the specificity (1-Sp) for all possible thresholds of the considered marker.

Although different parametric and semi-parametric estimators for the ROC curve have been
studied, in our package the empirical estimator, based on replacing the involved unknown distribution
functions with their respective empirical cumulative distribution functions, F̂, has been considered.
Hence, the implemented ROC curve estimator is

R̂(t) = F̂1−F̂χ(ξ)
(t) .
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This is the usual definition when higher values of the marker are considered to be associated with
a higher probability of existence of the characteristic under study. It can be also called right-sided
ROC curve.

However, sometimes it can be supposed the opposite, i.e. that higher values of the marker are
associated with a lower probability of the existence of the characteristic. In this context, the definitions
should be adapted and the resulting ROC curve (usually called left-sided curve) estimator is

R̂(t) = F̂F̂χ(ξ)
(t) .

There exist several R packages also incorporating the non-parametric estimation, for instance
the pROC package includes smoothed estimates. However, they suppose one of the assumptions
aforementioned (right-sided or left-sided curve), considering a single threshold of the marker in
order to classify, since the standard ROC curve definition is associated with this particular type of
classification subsets.

Nevertheless, an extension of those classification subsets has been studied by Martínez-Camblor
et al. (2017), dealing with situations in which not only higher or lower values of the marker are
associated with a higher probability of existence of the studied characteristic, but both may be related.
Under this assumption, not only one cut-off point is considered, but two xl and xu corresponding
to the extremes of a marker interval are regarded, i.e those subjects with a marker value within the
interval (xl , xu) are classified as negative and those with a marker value below xl or greater that xu
are supposed to be positive. In this context, the sensitivity and specificity definitions are the following
ones:

Se(xl , xu) = P (ξ ≤ xl ∪ ξ ≥ xu) = Fξ(xl) + 1− Fξ(xu)

Sp(xl , xu) = P (xl < χ < xu) = Fχ(xu)− Fχ(xl).

At this juncture, it is important to note that there may be different couples (xl , xu) reporting the same
specificity but different sensitivity, so the generalized ROC curve is defined by the supreme of them:

Rg(t) = sup
(xl ,xu)∈Ft

{
Fξ(xl) + 1− Fξ(xu)

}
where (xl , xu) ∈ Ft iff xl ≤ xu and Sp(xl , xu) ≥ 1− t. It is clear that (xl , xu) ∈ Ft can also be written
as xl = F−1

χ (γt) and xu = F−1
χ (1− [1− γ] t) for some γ ∈ [0, 1], therefore

Rg(t) = sup
γ∈[0,1]

{
Fξ

(
F−1

χ (γt)
)
+ 1− Fξ

(
F−1

χ (1− [1− γ] t)
)}

.

Using the aforementioned notation, the implemented general ROC curve estimator is

R̂g(t) = sup
γ∈[0,1]

{
1− F̂1−F̂χ(ξ)

(1− γt) + F̂1−F̂χ(ξ)
([1− γ] t)

}
.

Different parametric models have been considered in order to estimate the ROC curve. Among
them, the binormal model is one of the most used, according to which the usual and general ROC
curves, respectively, are the following:

R(t) = Φ
(

a + b ·Φ−1(t)
)

Rg(t) = sup
γ∈[0,1]

{
Φ
(

a + b ·Φ−1 ([1− γ] · t)
)
+ 1−Φ

(
a + b ·Φ−1 (1− γ · t)

)}
where a =

(
µξ − µχ

)
/σξ , b = σχ/σξ and Φ is the cumulative distribution function of a standard

normal. Therefore, the parametric ROC curve estimation gets boiled down to estimate the parameters
involved.

While the usual AUC has a direct probabilistic interpretation: “given two randomly and indepen-
dently selected subjects, one negative and one positive, the AUC is the probability that the marker
value in the positive subject is greater than in the negative subject”, this reading is not directly related
to the classification subsets involved in the definition of the usual ROC curve. However, it is possible
to enunciate this relationship in terms of the diagnostic rule involved (citing Martínez-Camblor and
Pardo-Fernández (2017)) and following the same idea the authors also proved the interpretation of the
generalized AUC in terms of the probability of belonging to the corresponding classification subsets,
under a condition about the continuity of Rg(·) and self-contained subsets as specificity increases.

In the nsROC package the point non-parametric ROC curve estimation can be computed by the
gROC function. Some computational details must be mentioned: if Ni is NULL a fast algorithm is used to
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estimate the ROC curve for the considered sample; otherwise, if Ni is a number, thresholds considered
are the marker values collected (adding −∞ and ∞) and the specificities, t, used to estimate the ROC
curve are those resulting from dividing the unit interval in Ni subintervals with the same length. This
latter case is slower because the vector of γ-values taken into account in order to estimate the general
ROC curve is the result of dividing the unit interval in subintervals with length 0.001. The area under
the curve is computed by the trapezoidal rule.

Input parameters

X Vector of marker values.
D Vector of response values. Two levels; if more, the two first ones are used.

side Type of ROC curve. One of "right" (right-sided), "left" (left-sided), "auto"
(right or left-sided is automatically chosen so that AUC will be greater than 0.5) or
"both" (general). Default: "right".

Ni Number of subintervals of the unit interval considered to compute the curve. De-
fault: NULL (which will use the fast algorithm considering as many subintervals
as number of positive subjects).

pval.auc If TRUE, a permutation test to test H1 : AUC 6= 0 is performed.
B Number of permutations used for testing. Default: 500.

Output parameters

controls,cases Marker values of negative and positive subjects, respectively.
points.coordinates Matrix whose second and third columns correspond to coordinates where the

ROC curve has a step in case of right or left-sided ROC curves. In the first column
there are the marker thresholds considered reporting these coordinates.

pairpoints.coordinates Matrix whose third and fourth columns correspond to coordinates where the ROC
curve has a step in case of general ROC curves. The first and second columns
are the marker thresholds considered, xl and xu, respectively, reporting these
coordinates.

roc Vector of values of the ROC curve for each t considered.
auc Area under the curve estimate.

pval.auc,Paucs p-value and different permutation AUCs if the hypothesis test is performed.

Additional functions to be passed

plot Plot the ROC curve estimate.
print Print some relevant information.

Table 1: The most relevant input and output parameters of the gROC function.

The point estimation of the curve is essential, but it is also important to have an idea of how relevant
the underlying sample is in this estimation, i.e. the interval estimation: how to build confidence bands
of the ROC curve. This problem has been addressed from different points of view, most of them based
on point-wise confidence intervals for sensitivity and/or specificity instead of focusing on the curve
as a function.

There are some R packages providing some kind of confidence regions: fbroc includes a function
which computes regions for the right-sided curve but no information about the method used to build
them is provided; plotROC displays ‘rectangular confidence regions for the ROC curve’; and pROC
computes square pointwise confidence bands of the AUC, thresholds, specificity, sensitivity and/or
coordinates of an ROC curve.

A review of the performance of these methods has already been carried out by Macskassy et al.
(2005) who pointed out the difficulty of translating methods for building pointwise confidence intervals
into methods to obtain confidence bands. However, when the focus is the whole ROC curve, one
should construct confidence bands, and just considering the ‘band’ obtained joining the pointwise
confidence intervals does not provide a real confidence band with the desired confidence level, because
the probability that one point of the curve will be outside this ‘band’ is higher.

In this package three different techniques dealing with the ROC curve itself have been computed.
Namely, one parametric assuming the binormal model (Demidenko (2012)) and two non-parametric
have been included (Jensen et al. (2000) and Martínez-Camblor et al. (2018)):

• Demidenko (2012) adapted the Working-Hotelling type confidence bands used in linear regres-
sion and proposed a method called ellipse-envelope. It should be noted that the ROC curve
estimated by this method is not empirical, but the binormal one.

• Jensen et al. (2000) approach is based on the asymptotic distribution of the ROC curve in terms
of Brownian bridges, developing symmetrical non-parametric confidence bands for the curve,
even on a particular region. The main drawback is the need to estimate density functions from
smooth procedures involving a scale parameter (not chosen by the user) which can strongly
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affect the resulting ROC curve estimate. In terms of computational aspects it must be pointed
out that the BBridge function in the sde (Iacus, 2016) package has been used to simulate the
Brownian bridges involved. In addition, the extremes of the interval in (0, 1) in which the user
wants to compute the regional confidence bands must be set. The bootstrap method has been
applied and the confidence bands are truncated making the lower-band being inside the (0, 0.95)
interval and the upper-band within (0.05, 1).

• Martínez-Camblor et al. (2018) method approximates the distribution of the following pivotal
function by a smoothed bootstrap method:

√
n · σ−1

n (t) ·
[
R̂(t)−R(t)

]
where n is the number of positive subjects and σn(t) is the standard deviation estimate of√

n
[
R̂(t)−R(t)

]
. Computational issues which should be taken into account are the following:

confidence bands are truncated as in the previous method and the scale parameter, s, used to
compute the smoothed kernel distribution functions (with bandwidth h = s · σ̂ ·min {n+, n−})
must be set by the user. Furthermore, there exists the option of selecting a parameter, α1, affecting
the width between lower (and consequently upper) band and ROC curve point estimate. If
α1 is not specified by the user, the one minimizing the theoretical area between the bands is
automatically considered. It should be remarked that this is the only method designed to
estimate ROC curve confidence bands for the general ROC curve.

Input parameters

groc Output of the gROC function. Ni is the number of subintervals used for estimation.
method Method used. One of "PSN" (Martínez-Camblor et al., 2018), "JMS" (Jensen et al., 2000) or

"DEK" (Demidenko, 2012).
conf.level Confidence level considered. Default: 0.95.

B Number of bootstrap replicates. Default: 500.
alpha1,s Parameters to pass to "PSN" method. Default: s= 1.
a.J,b.J Extremes of interval to pass to "JMS" method. Default: a.J= 1/Ni, b.J= 1− 1/Ni.
plot.var If TRUE, variance estimate along t resulting from "PSN" or "JMS" method is displayed.

Output parameters

L,U Lower and upper bands respectively for each t ∈ {0, 1/Ni, 2/Ni, ..., 1}.
practical.area Estimated area between lower and upper band.
alpha1,alpha2 α1 and α2 used in "PSN" method.

Additional functions to be passed

plot Plot the confidence bands of the ROC curve.
print Print some relevant information.

Table 2: The most relevant input and output parameters of the ROCbands function.

Time-dependent ROC curve

Sometimes the response variable is not binary but time-dependent. In this case the resulting curve
is called time-dependent ROC curve. Although there exist different approaches of this kind of
curves depending on the association between the referred time-dependent outcome and the binary
classification (for instance, Heagerty and Zheng (2005) considered the incident sensitivity defined
as SeI(x) = P (X > x|T = t) to build the incident/dynamic ROC curve), the most direct one is the
cumulative/dynamic approach, which classifies as positive a subject in which the event happens
before a fixed point of time t and negative otherwise. In other words, the cumulative sensitivity and the
dynamic specificity are defined as follows: SeC(x) = P (X > x|T ≤ t) and SpD(x) = P (X ≤ x|T > t).

However, the time-dependent problem involves a new issue to be addressed: how to deal with
subjects censored before t. There are some R packages which incorporate time-dependent ROC curve
estimation procedures in the presence of censored data. Some good examples are timeROC, which
also performs some estimations about different concepts related to time-dependent ROC curve and
compare time-dependent AUCs (see Blanche et al. (2013) for a complete overview of the implemented
methods); survivalROC which computes time-dependent ROC curves from censored survival data
using the Kaplan-Meier (KM) or Nearest Neighbor Estimation (NNE) method by Heagerty et al. (2000);
and tdROC (Li et al., 2016), based on the Li et al. (2018) method mentioned below.

In order to deal with time-dependent outcomes, the nsROC package has used the cumulative/-
dynamic approach. A different solution for the censoring problem has been proposed by Martínez-
Camblor et al. (2016), considering a time-dependent ROC curve estimator based on assigning a
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probability to be negative (consequently positive) to those censored subjects. Particularly, two dif-
ferent statistics have been suggested in order to estimate the probability of surviving beyond t: a
semiparametric one, using a proportional hazard Cox regression model considering the marker as
the covariate; and a non-parametric one, using directly the Kaplan-Meier estimator. There exists a
subsequent paper based on the same idea (Li et al., 2018) but using the kernel-weighted Kaplan-Meier
estimator instead of the naive one. This last method is also included in nsROC package, allowing the
user to choose the kernel and bandwidth to be considered in the kernel-weighted statistic.

In terms of computational aspects it should be noted that the survival (Therneau, 2018) package
has been used. In particular, the survfit and Surv functions are required to estimate survival functions,
and the coxph function is used to fit the Cox proportional hazard regression model involved in the
semiparametric approach aforementioned.

Input parameters

stime Vector of observed times.
status Vector of status (0 if the subject is censored and 1 otherwise).
marker Vector of marker values.

predict.time Time point t considered.
method Method to estimate the probability aforementioned. One of "Cox", "KM" or "wKM".
kernel Procedure used to calculate kernel function if method is "wKM". One of "normal",

"Epanechnikov" or "other" (if the user defines a different one).
h,kernel.fun Bandwidth and kernel function used if method is "wKM" and kernel is "other".

boot.n Number of bootstrap samples considered. Default: 100.

Output parameters

TPR,TNR Vector of sensitivities and specificities estimates, respectively.
cutPoints Vector of marker thresholds considered.

auc Area under the time-dependent ROC curve estimate.

Additional functions to be passed

plot Plot the time-dependent ROC curve estimate.
print Print some relevant information.

Table 3: The most relevant input and output parameters of the cdROC function.

Meta-analysis

Meta-analysis is a popular statistical methodology for combining the results from multiple independent
studies about the same topic. It allows us to know the state of the art, strengths and weaknesses of
one considered topic, combining estimation effects from different independent comparable studies
(Riley et al., 2010). However, the main particularity of meta-analysis is that only limited information is
available from each study considered. There exist two different meta-analysis models depending on
the consideration (or not) of the variability between studies: the fixed-effects model just considers
the within-study variability whereas the random-effects model also takes into account the variability
between studies (DerSimonian and Laird, 1986).

In the case that the target is the ROC curve, the goal of meta-analysis is combining the results
from several independent studies performed by the same marker and characteristic of interest in a
single outcome. Different methods to compute summary ROC curves have been introduced in order to
determine the global diagnostic accuracy for both fixed-effects (Moses et al. (1993)) and random-effects
model (Hamza et al. (2008), among others). Besides, the HSROC package implements the procedure
of Rutter and Gatsonis (2001). However, most of those approaches are parametric and consider that
only one estimated pair of sensitivity and specificity from each paper exist and they are supposed
to be independently selected in each study, but often the reported points are the best ones in the
Youden index sense. Nevertheless, some new techniques have been developed taking into account all
the pairs of points reported; Hoyer and Kuss (2018) and Steinhauser et al. (2016) are good examples.
Martínez-Camblor (2017) includes a different view focusing on the direct ROC curve estimation from
a non-parametric approach, using weighted means of each individual ROC curve, taking all pairs of
points (Se, Sp) reported in each study, and performing a simple linear interpolation between them.
Moreover, both the fixed and random-effects model are covered.

The metaROC function in the nsROC package implements this last approach reporting a fully non-
parametric ROC curve estimate from a data frame including the number of true positive and negative
(TP and TN) subjects, false positive and negative (FP and FN) subjects and a identifier of the study they
come from. It displays in a plot the non-parametric summary ROC (nPSROC) curve estimate, and
the user has the possibility of including all ROC curve interpolations in the same graphic, as well
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as a confidence band estimate. In the random-effects model there is also the option of plotting the
inter-study variability estimate along the different specificities on the unit interval.

Input parameters

data A data frame containing the variables: "Author", "TP", "TN", "FP" and "FN".
model Meta-analysis model considered. One of "fixed-effects" or "random-effects".
Ni Number of subintervals of the unit interval considered to compute the curve. Default: 1000.

plot.Author If TRUE, a plot including ROC curve estimates (by linear interpolation) for each study under
consideration is displayed.

plot.bands If TRUE, confidence interval estimate for the ROC curve is added.
plot.inter.var If TRUE, a plot reflecting inter-study variability estimate is displayed on an additional window.

Output parameters

sRA nPSROC curve estimate resulting from the model considered with a slight modification to
ensure the monotonicity along the points on the unit interval considered.

se.RA Standard-error of nPSROC curve estimate.
area Area under the curve estimate.

youden.index Optimal specificity and sensitivity in the Youden index sense for nPSROC curve.
roc.j A matrix whose columns contain the ROC curve estimate (by linear interpolation) of each

study.
w.j,w.j.rem A matrix whose columns contain the weights in fixed or random-effects model, respectively,

of each study.

Table 4: The most relevant input and output parameters of the metaROC function.

Comparison

An important role of diagnostic medicine research is the comparison of the accuracy of diagnostic
tests. With the goal of comparing their global accuracy, the comparison of AUCs is the most usual
method (DeLong et al., 1988). However, when there is no uniform dominance between the involved
curves (i.e. the sensitivities associated with each specificity along the unit interval are not always
higher in one curve than in the other), they can differ having the same AUC. In these situations, these
tests are not valid to compare the equality among the ROC curves, and some other approaches could
be considered to compare the equality of all the curves, such as Martínez-Camblor et al. (2013) and
Martínez-Camblor et al. (2011) mentioned below, which deal with the ROC curve by its definition as a
cumulative distribution function. On the other hand, Venkatraman and Begg (1996) and Venkatraman
(2000) propose the use of a non-parametric permutation test to compare the equality of two diagnostic
criteria. Both paired and unpaired designs have been treated, i.e. when different markers for detecting
the existence of one characteristic are compared in the same sample (just one positive-negative sample)
or when the same marker is compared along different and independent samples (as many positive-
negative samples as groups to compare), respectively.

In the first case (paired design), different non-parametric tests have been implemented to perform
the comparison:

• The procedure of Martínez-Camblor et al. (2013) takes into account the expression of the ROC
curve in terms of the distribution function shown in the Estimation section and extends classical
tests for comparing the cumulative distribution functions to this context. Four of these tests
have been included in the compareROCdep function but any other can be defined by the FUN.dist
input parameter. Those included are the following: Kolmogorov-Smirnov, the two ones based
on the L1 or L2 measure and Cramér von-Mises. It is important to highlight that the user can set
any other criteria to perform the test.
Two different methods could also be considered in order to approximate the distribution function
of the selected statistic under the null hypothesis: the procedure of Venkatraman and Begg
(1996) or the one of Martínez-Camblor and Corral (2012) based on permutated and bootstrap
samples, respectively. This last one (gBA) is a novel bootstrap procedure which allows us to
deal with complex structures.

• Venkatraman and Begg (1996) method tests the hypothesis that two curves are identical for all
cut-off points. It should be noted that the permutation procedure covered in this paper requires
the exchangeability assumption.
Some technical issues should be also indicated: if the comparison involves more than two ROC
curves, the value of the statistic is the sum of the corresponding values of each pair without
repetition. In addition, the Venkatraman estimator has been developed just for comparing
right-sided ROC curves.
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• One test based on the comparison of the areas under the curve has also been included; in
particular, the one proposed by DeLong et al. (1988). It should be noted that two different
ROC curves can have the same AUC as it has been mentioned above. In computational
terms this procedure takes longer because the statistic involved requires positive sample size×
negative sample size comparisons.

Input parameters

X A matrix whose columns are the vectors of each marker-values sample.
D Vector of response values.

side Type of ROC curve. One of "right" or "left".
statistic Statistic used to compare the curves. One of "KS", "L1", "L2", "CR", "other" (if the user defines

a different one using other input parameters) or "VK".
FUN.dist The distance considered as a function of one variable. Example: FUN.dist =

function(g){max(abs(g))} defines the Kolmogorov-Smirnov statistic.
method Method used to approximate the statistic distribution under the null. One of

"general.bootstrap", "permutation" or "auc".
B,perm Number of bootstrap or permutation samples considered, respectively. Default: 500.

plot.roc If TRUE, a plot including the ROC curve estimates for each sample and their mean is displayed.

Output parameters

statistic The value of the test statistic.
p.value The p-value for the test.

Table 5: The most relevant input and output parameters of the compareROCdep function.

In the second case (unpaired design), different non-parametric tests have also been implemented
to perform the comparison. They are similar to the previous ones:

• The comparisons of Martínez-Camblor et al. (2011) are inspired by the usual distances be-
tween cumulative distribution functions. Three of those distances have been included in the
compareROCindep function (particularly, the two ones based on L1 and L2 measures and the
Cramér von-Mises criterion), but it should be highlighted that the user has the possibility to de-
fine any other distance by the FUN.stat.dist and FUN.stat.cons input parameters, described
in more detail below.
Furthermore, the permutation method proposed by Venkatraman (2000) is used to approximate
the distribution function of the selected statistic under the null. Related to this method, both
raw or ranked data (including a method for breaking ties) could be considered.

• The procedure of Venkatraman (2000) is based on the idea that two ROC curves are identical if
and only if for every cut-off point from one marker there is an equivalent one from the other
with the same probabilities of failure, i.e the same sensitivity and specificity. Technical issues
which are worth noting are the same as those aforementioned in the Venkatraman method for
paired samples.
A straightforward k-sample non-parametric test for the AUC statistic computing the differences
with respect to the mean can also be considered. It should be remembered the consideration
mentioned above about comparing areas under the curve.

Examples

Some examples analysing real data-sets are shown in this section in order to illustrate the application
of the different functions included in the nsROC package. Namely, the Breast Cancer dataset is
used to show the different estimation of the ROC curve considering the usual definition versus the
generalization (gROC function) as well as confidence bands estimation reported by different procedures,
particularly PSN, JMS and DEK (ROCbands function). Furthermore, a comparison of the ROC curve
reported by two different markers is performed by the compareROCdep function and also the diagnostic
capacity of one marker in three different groups is studied by the compareROCindep function. The
intended goal of the Primary Biliary Cirrhosis dataset example is considered to show time-dependent
ROC curve estimation in the presence of censored data at a specific time using different procedures
implemented in cdROC function: Cox, KM and wKM with different kernels. Finally, the Interleukin 6 dataset
includes the results regarding diagnostic ability of a marker over the same characteristic reported by
different research papers and the goal is to perform a meta-analysis over them in order to unify the
studies in one unique response (metaROC function).
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Input parameters

X Vector of marker values.
G Vector of group identifier values (with as many levels as independent samples to compare).
D Vector of response values.

side Type of ROC curve. One of "right" or "left".
statistic Statistic used to compare the curves. One of "L1", "L2", "CR", "other" (if the user defines a

different one using other input parameters), "VK" or "AUC".
FUN.stat.int A function of two variables, roc.i and roc standing for ROC curve estimate for i-th sample

and mean ROC curve estimate along k samples, respectively. Example: FUN.stat.int =
function(roc.i,roc){mean(abs(roc.i -roc))} defines the L1-measure statistic.

raw If TRUE, raw data is considered; if FALSE (default) data is ranked and a method to break ties
in permutations is performed.

perm Number of permutation samples considered. Default: 500.
plot.roc If TRUE, a plot of ROC curve estimates for each sample and their mean is displayed.

Output parameters

statistic The value of the test statistic.
p.value The p-value for the test.

Table 6: The most relevant input and output parameters of the compareROCindep function.

Breast cancer dataset

The Breast Cancer dataset consists of several features computed from a digitized image of a fine
needle aspirate (FNA) of a breast mass describing the characteristics of the cell nuclei present in a
3D image. This dataset, freely available at https://archive.ics.uci.edu/ml/machine-learning-
databases/breast-cancer-wisconsin/wdbc.data , includes a diagnosis variable (“malignant” vs
“benign”) and ten real-valued features about each cell nucleus (radius , texture , perimeter , area ,
smoothness , compactness , concavity, concave points , symmetry and fractal dimension) collected
from 569 patients in Wisconsin. The mean , standard error and worst (defined as the mean of the three
largest values) of these features were computed for each image, resulting in 30 variables. The reader is
referred to Bennett and Mangasarian (1992) for a complete information about the dataset.

There exists a variable, the fractal dimension (mean) , which does not seem to correctly distinguish
between “malignant” and “benign” cases, reporting an usual ROC curve (left-sided) crossing the
diagonal with an AUC of 0.513. Looking at the density function estimates displayed in Figure 1
(top), it can be seen that although the vast majority of the fractal dimension values are in the interval
(0.055, 0.075) in both groups (so this marker is not a good one to perform the classification), lower and
higher values are likely to be “malignant” cases (positive subjects). Thus, it makes sense to compute
the general ROC curve estimate proposed in this package, which reports an AUC of 0.633, higher than
the usual one, and of course the curve is above the diagonal by definition (see graph bottom-right in
Figure 1).

Figure 1 and information about ROC curve estimates have been reported using the gROC function:

library(data.table)
data <- fread('https://archive.ics.uci.edu/ml/machine-learning-databases/breast-
cancer-wisconsin/wdbc.data')
names(data) <- c("id", "diagnosis", "radius_mean", "texture_mean", "perimeter_mean",

"area_mean", "smoothness_mean", "compactness_mean", "concavity_mean",
"concave.points_mean", "symmetry_mean", "fractal_dimension_mean",
"radius_se", "texture_se", "perimeter_se", "area_se", "smoothness_se",
"compactness_se", "concavity_se", "concave.points_se", "symmetry_se",
"fractal_dimension_se", "radius_worst", "texture_worst",
"perimeter_worst", "area_worst", "smoothness_worst",
"compactness_worst", "concavity_worst", "concave.points_worst",
"symmetry_worst", "fractal_dimension_worst")

attach(data)

library(nsROC)

roc <- gROC(fractal_dimension_mean, diagnosis, side = "auto", plot.density = TRUE)
generalroc <- gROC(fractal_dimension_mean, diagnosis, side = "both")

print(roc)
#> Data was encoded with B (controls) and M (cases).
#> Wilcoxon rank sum test:
#> alternative hypothesis: median(cases) < median(controls); p-value = 0.7316
#> It is assumed that lower values of the marker indicate larger confidence that a
#> given subject is a case.
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Figure 1: Top, density function estimates of fractal dimension mean variable for both “malignant” and
“benign” subjects. Bottom, left-sided and generalized ROC curve estimates, respectively.

#> There are 357 controls and 212 cases.
#> The area under the ROC curve (AUC) is 0.513.

print(generalroc)
#> Data was encoded with B (controls) and M (cases).
#> It is assumed that both lower and larges values of the marker indicate larger
#> confidence that a given subject is a case.
#> There are 357 controls and 212 cases.
#> The area under the ROC curve (AUC) is 0.633.

plot(roc, main = "ROC curve (left-sided)")
plot(generalroc, main = "General ROC curve")

In order to illustrate the confidence bands construction reported by each method implemented
("PSN" (Martínez-Camblor et al., 2018), "JMS" (Jensen et al., 2000) and "DEK" (Demidenko, 2012)), a
marker with a better global diagnostic accuracy (in terms of AUC) than the previous one has been
considered: the texture (mean) .

In Figure 2 it can be seen that not only the bands are different but also the ROC curve point
estimates. This is because each method uses a different way to compute it: "PSN" considers the same
as the one computed in the gROC function, "JMS" performs a similar one with smoothed estimators and
"DEK" computes a parametric estimate based on the assumption of the binormal model. This last one
displays the narrowest confidence bands as it was expected (with an area between the CI bands equals
to 0.069).

The ROCbands function has been used for this purpose:

roc <- gROC(texture_mean, diagnosis) # right-sided in this case

rocbands_psn <- ROCbands(roc, method = "PSN")
rocbands_psn_mod <- ROCbands(roc, method = "PSN", alpha1 = 0.025)
rocbands_jms <- ROCbands(roc, method = "JMS")
rocbands_dek <- ROCbands(roc, method = "DEK")
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Figure 2: Top, confidence bands for the ROC curve using the "PSN" procedure for optimal α1 and fixed
α1 = α/2, respectively. Bottom, confidence bands for the ROC curve constructed by the "JMS" and
"DEK" method, respectively. Confidence level: 1− α = 0.95.

The computations performed to get the graphics and some useful information about the confidence
bands construction are detailed below:

print(rocbands_psn)
#> The method considered to build confidence bands is the one proposed in
#> Martinez-Camblor et al. (2016).
#> Confidence level (1-alpha): 0.95.
#> Bootstrap replications: 500.
#> Scale parameter (bandwidth construction): 1.
#> The optimal confidence band is reached for alpha1 = 0.035 and alpha2 = 0.015.
#> The area between the confidence bands is 0.2294 (theoretically 0.2453).

print(rocbands_psn_mod)
#> The method considered to build confidence bands is the one proposed in
#> Martinez-Camblor et al. (2016).
#> Confidence level (1-alpha): 0.95.
#> Bootstrap replications: 500.
#> Scale parameter (bandwidth construction): 1.
#> alpha1: 0.025.
#> The area between the confidence bands is 0.2368 (theoretically 0.2539).

print(rocbands_jms)
#> The method considered to build confidence bands is the one proposed in
#> Jensen et al. (2000).
#> Confidence level (1-alpha): 0.95.
#> Bootstrap replications: 500.
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#> Interval in which compute the regional confidence bands: (0.00280112,0.9971989).
#> K.alpha: 3.163202.
#> The area between the confidence bands is 0.1668.

print(rocbands_dek)
#> The method considered to build confidence bands is the one proposed in
#> Demidenko (2012).
#> Confidence level (1-alpha): 0.95.
#> The area between the confidence bands is 0.0694.

plot(rocbands_psn)
plot(rocbands_psn_mod)
plot(rocbands_jms)
plot(rocbands_dek)

Figure 3 presents the comparison of two dependent ROC curves describing the ability of the
markers mean and the worst smoothness to make an accurate diagnosis. Different procedures dealing
with different estimators and ways to approximate their distribution under the null hypothesis
(H0 : R1(t) = R2(t) ∀t ∈ (0, 1)) have been considered.
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Figure 3: Top, ROC curve estimates for mean (R̂1(t)) and worst (R̂2(t)) smoothness , in black the
mean ROC curve estimate (R̂(t)). Bottom, p-values of previous tests by bootstrap (black line) and
permutated (blue line) iterations based on the Kolmogorov-Smirnov test, L1 and L2 measures, Cramér

von-Mises criterion, a new one whose statistic value is defined as
1
2

2

∑
i=1

∫ 1

0
n2
(

R̂i(t)− R̂(t)
)4

dt, and

the Venkatraman approach.

The p-values reported by every method are below 0.05 except for Kolmogorov-Smirnov. It should
be noted that the p-values returned by the Venkatraman permutation method are slightly lower than
those ones obtained by the general bootstrap technique.

The compareROCdep function has been used with this objective:

depmarker <- cbind(smoothness_mean,smoothness_worst)
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out.KS <- compareROCdep(depmarker, diagnosis)
out.L1 <- compareROCdep(depmarker, diagnosis, statistic = "L1")
out.L2 <- compareROCdep(depmarker, diagnosis, statistic = "L2")
out.CR <- compareROCdep(depmarker, diagnosis, statistic = "CR")
out.new <- compareROCdep(depmarker, diagnosis, statistic = "other",

FUN.dist = function(g){mean(g^4)})

out.perm.KS <- compareROCdep(depmarker, diagnosis, method = "perm")
out.perm.L1 <- compareROCdep(depmarker, diagnosis, statistic = "L1", method = "perm")
out.perm.L2 <- compareROCdep(depmarker, diagnosis, statistic = "L2", method = "perm")
out.perm.CR <- compareROCdep(depmarker, diagnosis, statistic = "CR", method = "perm")
out.VK <- compareROCdep(depmarker, diagnosis, statistic="VK")
out.perm.new <- compareROCdep(depmarker, diagnosis, statistic = "other", method = "perm",

FUN.dist = function(g){mean(g^4)})

On the other hand, Figure 4 reflects the comparison of three independent ROC curves performed
to analyze the diagnostic accuracy of the mean radius variable in each group defined by symmetry
values: group 1 if symmetry_mean < 0.18 and symmetry_worst < 0.29, group 3 if symmetry_mean
> 0.18 and symmetry_worst > 0.29, and group 2 otherwise. The five estimators computed in the
compareROCindep function have been used.
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Figure 4: Top, ROC curve estimates for radius mean variable in each group (R̂i(t)) and their mean
ROC curve estimate (R̂(t)). Bottom, p-values of previous tests based on L1 and L2 measures, Cramér
von-Mises criterion, Venkatraman approach and AUC comparison test.

The p-value is greater than 0.1 for all tests considered, being the one reported by the AUC approach
the lowest one. Therefore it might be concluded that there is no statistically significant evidence to
state that these three ROC curves differ.

The commands used to build Figure 4 are the following, using the compareROCindep function:

type <- as.numeric(symmetry_mean > 0.18) + as.numeric(symmetry_worst > 0.29) + 1
table(type,diagnosis)
#> diagnosis
#> type B M
#> 1 189 48
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#> 2 91 51
#> 3 77 113

output.L1 <- compareROCindep(radius_mean, type, diagnosis, statistic = "L1")
output.L2 <- compareROCindep(radius_mean, type, diagnosis, statistic = "L2")
output.CR <- compareROCindep(radius_mean, type, diagnosis, statistic = "CR")
output.VK <- compareROCindep(radius_mean, type, diagnosis, statistic = "VK")
output.AUC <- compareROCindep(radius_mean, type, diagnosis, statistic = "AUC")

Primary Biliary Cirrhosis (PBC) Data

The Primary Biliary Cirrhosis (PBC) dataset contains the results of a trial in PBC of the liver conducted
between 1974 and 1984 referred to Mayo Clinic. A total of 424 PBC patients met eligibility criteria
for the randomized placebo controlled trial of the drug D-penicillamine; among them, the 393 non-
transplanted ones have been considered for this analysis. This dataset is freely available within the
R package survival by the name pbc. The reader is referred to Therneau and Grambsch (2000) for a
complete information about the study.

In order to analyze how good the marker serum bilirubin (mg/dl) is to detect those patients who
died or survived by 4000 days from their registration in the study, the ROC curve has been estimated.
However, there are some patients censored before the regarded time, and two different approaches
have been considered in order to estimate the survival probability of those patients censored before
the time considered: Figure 5 at top-left, a semi-parametric one based on Cox regression model; at
top-right and bottom, a non-parametric one based on naive and smoothed Kaplan-Meier estimators,
respectively.

As shown in Figure 5, the different approaches considered report similar ROC curves but it should
be noted that the area under the curve reported by the weighted Kaplan-Meier method with normal
kernel is slightly higher (AUC= 0.809) because the sensitivities related to specificity values close to
one are the highest.

The cdROC function has been used for this purpose:

library(survival)
data <- subset(pbc, status!=1)
attach(data)
status <- status/2

out1 <- cdROC(time, status, bili, 4000)
out2 <- cdROC(time, status, bili, 4000, method = "KM")
out3 <- cdROC(time, status, bili, 4000, method = "wKM")
out4 <- cdROC(time, status, bili, 4000, method = "wKM", kernel = "other",

kernel.fun = function(x,xi,h){u <- (x-xi)/h; 1/(2*h)*(abs(u) <= 1)}, h = 0.5)

plot(out1, main="ROC curve at time 4000 (Cox method)")
text(0.8, 0.1, paste("AUC =", round(out1$auc,3)))
plot(out2, main="ROC curve at time 4000 (KM method)")
text(0.8, 0.1, paste("AUC =", round(out2$auc,3)))
plot(out3, main="ROC curve at time 4000 \n (Weighted KM method with normal kernel)")
text(0.8, 0.1, paste("AUC =", round(out3$auc,3)))
plot(out4, main="ROC curve at time 4000 \n (Weighted KM method with uniform kernel)")
text(0.8, 0.1, paste("AUC =", round(out4$auc,3)))

Interleukin 6 (IL6) Data

The Interleukin 6 (IL6) dataset includes the results of 9 papers which study the use of the IL6 as a
marker for the early detection of neonatal sepsis. An analysis of this dataset, freely available within the
nsROC package by the name interleukin6, can be found in Martínez-Camblor (2017). Particularly it
includes true-positive (TP), false-positive (FP), true-negative (TN) and false-negative (FN) sizes for all
cut-off points reported in each paper, resulting in 19 entries.

Figure 6 shows the summary ROC curve estimate from the 9 papers included, considering either
a fixed-effects or a random-effects meta-analysis model (up and down, respectively). The optimal
point of the curve in the Youden index sense is displayed, as well as the area under the curve. In
this case, the curve does not vary much when the variability between studies is taken into account,
reporting similar AUC (0.772 and 0.788, respectively) as a consequence. In addition, both estimates
seem to be below most of the interpolated curves they come from; that is because the weights for the

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 69

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curve at time 4000 (Cox method)

1 − Specificity

S
en

si
tiv

ity

AUC = 0.759

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curve at time 4000 (KM method)

1 − Specificity

S
en

si
tiv

ity

AUC = 0.794

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curve at time 4000 
 (Weighted KM method with normal kernel)

1 − Specificity

S
en

si
tiv

ity

AUC = 0.809

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curve at time 4000 
 (Weighted KM method with uniform kernel)

1 − Specificity

S
en

si
tiv

ity

AUC = 0.803

Figure 5: Time-dependent ROC curve estimate using "Cox", "KM" (top) and "wKM" method with normal
kernel and bandwidth h = 1 and with uniform kernel and h = 0.5 (bottom), respectively.

study number 9 (with an interpolate ROC curve close to diagonal) are the largest ones in the interval
(0, 0.5). As it can be seen in the bottom-right plot of Figure 6, the FPR interval with higher inter-study
variability is (0, 0.2).

The code computed, using the metaROC function, is listed below:

data(interleukin6)

output1 <- metaROC(interleukin6, plot.Author = TRUE)
#> Number of papers included in meta-analysis: 9
#> Model considered: fixed-effects
#> The area under the summary ROC curve (AUC) is 0.772.
#> The optimal specificity and sensitivity (in the Youden index sense) for summary
#> ROC curve are 0.7 and 0.76, respectively.
points(1-output1$youden.index[1], output1$youden.index[2], pch = 16, col = 'blue')

output2 <- metaROC(interleukin6, model = "random-effects", plot.Author = TRUE,
plot.inter.var = TRUE)

#> Number of papers included in meta-analysis: 9
#> Model considered: random-effects
#> The area under the summary ROC curve (AUC) is 0.788.
#> The optimal specificity and sensitivity (in the Youden index sense) for summary
#> ROC curve are 0.701 and 0.763, respectively.
points(1-output2$youden.index[1], output2$youden.index[2], pch = 16, col = 'blue')
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Figure 6: Summary ROC curve estimate considering a fixed-effects (top) and a random-effects meta-
analysis model (bottom), respectively. Bottom-right, inter-study variability estimate of summary ROC
curve reported by a random-effects model.

Summary

This article introduces the usage of the R package nsROC for analyzing ROC curves. In particular, the
package contains the following new techniques:

• point ROC curve non-standard estimation implementing the generalization proposed by
Martínez-Camblor et al. (2017) [gROC function];

• confidence bands construction by three different methods: two of them are non-parametric
(Jensen et al. (2000) and Martínez-Camblor et al. (2018)) and the other one is based on the
binormal model (Demidenko (2012)) [ROCbands function];

• time-dependent ROC curve estimation, dealing with the presence of censored data respect to the
time-dependent response variable following Martínez-Camblor et al. (2016) procedure [cdROC
function];

• meta-analysis, implementing the methods proposed by Martínez-Camblor (2017), covering both
fixed and random-effects model considering all the points of the curve reported in each study
[metaROC function];

• comparison of several ROC curves using different procedures, among which the ones based on
usual tests to compare distribution functions proposed by Martínez-Camblor et al. (2011) and
Martínez-Camblor et al. (2013) stand out. Not only the usual tests can be performed, but the
user can define any other by the input parameters in the compareROCdep and compareROCindep
functions.
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In spite of the popularity of R packages about ROC curves dealing with some of the most important
analyses related to this tool, nsROC includes some algorithms which had not been computed to date in
order to address some of those standard analyses (such as time-dependent ROC curve estimation and
comparison between curves) and others totally new such as the generalized ROC curve estimation and
non-parametric procedure for meta-analysis. Any of these particular techniques had been addressed
earlier, excluding the usual estimation of the curve, the weighted Kaplan-Meier method to deal with
the presence of censored data in time-dependent ROC curves estimation, and the Venkatraman and
DeLong approaches to compare diagnostic accuracies of two tests.

The following table indicates which functions in the package can be used for different options
of side of the ROC curve. In addition to this, it should be mentioned that cdROC function estimates a
time-dependent ROC based on cumulative sensitivity and dynamic specificity definitions, which are
ultimately related to right-sided ROC curve. On the other hand, metaROC function includes directly
the TP, FP, TN and FN as input parameters, and those may have been generated by any ROC curve
approach, but it should be the same for all studies considered.

Right Left Both

gROC gROC gROC
ROCbands ROCbands(method=="PSN") ROCbands(method=="PSN")
compareROCdep compareROCdep(method!="VK")
compareROCindep compareROCindep(statistic!="VK")

Table 7: Options of side of the ROC curve for different functions of the nsROC package
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addhaz: Contribution of Chronic Diseases
to the Disability Burden Using R
by Renata Tiene de Carvalho Yokota, Caspar WN Looman, Wilma Johanna Nusselder, Herman Van
Oyen and Geert Molenberghs

Abstract The increase in life expectancy followed by the burden of chronic diseases contributes to
disability at older ages. The estimation of how much chronic conditions contribute to disability can be
useful to develop public health strategies to reduce the burden. This paper introduces the R package
addhaz, which is based on the attribution method (Nusselder and Looman, 2004) to partition disability
into the additive contributions of diseases using cross-sectional data. The R package includes tools to
fit the additive hazard model, the core of the attribution method, to binary and multinomial outcomes.
The models are fitted by maximizing the binomial and multinomial log-likelihood functions using
constrained optimization. Wald and bootstrap confidence intervals can be obtained for the parameter
estimates. Also, the contribution of diseases to the disability prevalence and their bootstrap confidence
intervals can be estimated. An additional feature is the possibility to use parallel computing to obtain
the bootstrap confidence intervals. In this manuscript, we illustrate the use of addhaz with several
examples for the binomial and multinomial models, using the data from the Brazilian National Health
Survey, 2013.

Introduction

The increase in longevity observed worldwide is usually followed by the burden of chronic diseases,
which are among the leading causes of disability late in life (Beard et al., 2016). Disability has become
a public health priority due to its adverse effects on health outcomes and quality of life, resulting in
increased costs of health care (Yang et al., 2014). Therefore, the identification of which chronic diseases
are the main contributors to the disability burden plays an important role in the formulation of public
health response to population aging (Klijs et al., 2011).

Although prospective studies are better suited to establish the causal relationship between chronic
diseases and disability, they are costly and usually with limited sample size. Alternatively, cross-
sectional data has been widely used to investigate the association of chronic diseases and disability.
Among the methods based on cross-sectional data, the attribution method proposed by Nusselder
and Looman (2004) has the advantage of partitioning the disability prevalence into the additive
contributions of chronic diseases, taking into account multimorbidity and that disability can be present
even in the absence of chronic diseases. The method was originally proposed for binary outcomes, but
it was recently extended to multicategory response variables (Yokota et al., 2017) and it is based on
the binomial and multinomial additive hazard models, respectively. The use of non-canonical link
functions in the models imposes a constraint on the linear predictor, which limits the use of standard
statistical software to fit the models, such as glm in R or proc GLM in SAS (SAS Institute Inc., 2008).
Despite this practical difficulty, the attribution method for binary outcomes has been widely used
previously with data from the Netherlands (Nusselder and Looman, 2004; Klijs et al., 2011), Belgium
(Nusselder et al., 2005; Yokota et al., 2015b), Germany (Strobl et al., 2013), China (Chen et al., 2013), and
Brazil (Yokota et al., 2016), owing to the development of the software in R to fit the binomial model
and to estimate the contribution of diseases to the disability prevalence by Nusselder and Looman
(2010) for non-R users, which is available upon request to the authors (w.nusselder@erasmusmc.nl).

In this manuscript we present the R package addhaz, which is an extension of the R software
developed by Nusselder and Looman (2010), offering an open-source implementation of the binomial
and multinomial additive hazard models. The R functions can also be used to calculate the contribution
of chronic diseases to the disability burden for both models.

This paper is structured as follows. In Section 2, a brief description of the attribution method
is presented, followed by the definition of the binomial and multinomial additive hazard models.
Section 3 introduces some features and options of addhaz. The existing alternative software to fit the
binomial and multinomial models is discussed in Section 4. Examples of how to use the R functions to
fit the models and to estimate contributions are shown in Section 5, using the data of the 2013 Brazilian
National Health Survey (BNHS). The main advantages and disadvantages of the attribution method
and addhaz are discussed in Section 6. Finally, conclusions and recommendations for future research
are outlined in Section 7.
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Attribution method

Analogous to the mortality analysis, in which a single disease is assigned as underlying cause of death
in the death certificate, the attribution method aims to assess the probability that a single reported
disease was the cause of disability in a survey, taking into account that individuals can report more
than one disease (multimorbidity) and that disability can be present without any reported diseases
(Nusselder and Looman, 2004, 2010).

In the attribution method, the disability that is not associated with any disease included in the
analysis is attributed to “background". The background can represent the effect of age-related losses in
functioning; underreporting and underdiagnosed diseases; and other causes of disability that were not
included in the survey or analysis. More details about the attribution method can be found elsewhere
(Nusselder and Looman, 2004, 2010).

The following assumptions are required to fit the binomial and multinomial additive hazard
models to cross-sectional data: (i) disability is caused by the diseases that are still present in the
time of the survey and the background; (ii) the estimated cross-sectional cumulative rates reflect the
transition rates that would have been estimated with longitudinal data (stationarity assumption); (iii)
the recovery rate is zero; (iv) the ratio of the cause-specific cumulative rates to the overall cumulative
rate is constant over time (proportionality assumption); (v) the start of the time (age) at risk to become
disabled is the same for all diseases; (vi) individuals from the same age group are exposed to the
same cumulative rate of disability for background; (vii) diseases and background act as independent
competing causes of disability (Nusselder and Looman, 2004, 2010).

Binomial additive hazard model

For binary outcomes, the binomial additive hazard model is defined as:

yi ∼ Bernoulli(πi)
πi = 1− exp(−ηi)

ηi = αai +
m

∑
d=1

βdXdi

(1)

where yi is the binary disability outcome; πi is the disability probability for individual i; ηi is the linear
predictor representing the overall cumulative rate (or cumulative hazard) of disability for individual i;
ai denotes the age group of individual i (with f age groups, ai can only get values between 1, . . . , f ); αa
is the cumulative rate of disability for background by age group a (a = 1, . . . , f ); βd is the cumulative
rate of disability (or disabling impact) for disease d(1, . . . , m); and Xdi is the indicator variable for
disease d and individual i.

A linear inequality constraint is applied to the linear predictor (ηi ≥ 0) to ensure that πi lies
between (0, 1). The standard errors (SE) for the regression coefficients are estimated based on the
inverse of the observed information matrix. The 95% Wald confidence intervals (Wald CI) can be
obtained using the standard errors described above (Wald CI) as showed in 2 or via bootstrapping
(Efron and Tibshirani, 1994).

95% Wald CI = α̂a ± 1.96(ŜE)
95% Wald CI = β̂d ± 1.96(ŜE)

(2)

Multinomial additive hazard model

The multinomial additive hazard model is an extension of the binomial model:

yij ∼ Multinomial(1, Πi)

πij =

[
1− exp(−

c
∑

q=1
ηiq)

] ηij
c
∑

q=1
ηiq


ηij = αai j +

m

∑
d=1

βdjXdi

(3)

where yij is the multinomial response variable (disability) with one independent observation and
vector of disability probabilities Πi = (πi0, . . . , πij, . . . , πic) per individual i; πij is the probability of
disability category j for individual i; ηij is the linear predictor (overall cumulative rate) for disability
category j and individual i; ai denotes the age group of individual i (with f age groups, ai can only
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get values between 1, . . . , f ); αaj is the cumulative rate of disability category j for background by age
group a (a = 1, . . . , f ); βdj is the cumulative rate of disability category j or disabling impact for disease
d(1, . . . , m); and Xdi is the indicator variable for disease d and individual i.

Besides the inequality constraint in the linear predictor ηij ≥ 0, an additional constraint is required:
∑c

j=1 πij < 1, to ensure that all πij > 0. Similar to the binomial case, the standard errors are estimated
by the inverse of the observed information matrix and the 95% Wald CI and bootstrap percentile
confidence intervals (bootstrap CI) can be obtained using addhaz.

Contribution of chronic diseases and background to the disability prevalence

The attribution of disability to chronic diseases depends on the disease prevalence (Xd) and the
disabling impacts of the diseases (βd and βdj) (Nusselder and Looman, 2004, 2010). The contribution
of chronic diseases and background to the disability prevalence can be calculated in five steps for both
binary and multicategory response variables.

Binary case

For the binary case, the cause-specific disability probabilities for individual i and each chronic condition
(D̂di) and the background (B̂i) are estimated based on the proportionality assumption, analogous to
the competing risks setting in mortality analysis (Manton and Stallard, 1984; Chiang, 1991):

D̂di = π̂i

(
β̂d Xdi

η̂i

)

B̂i = π̂i

(
α̂ai
η̂i

) (4)

Next, the number of disabled individuals by each disease (N̂d) and background (N̂b) are estimated
as:

N̂d =
n

∑
i=1

D̂di

N̂b =
n

∑
i=1

B̂i

(5)

The absolute contribution of each disease (ÂCd) and background (ÂCb) to the total disability
prevalence is obtained by:

ÂCd = N̂d
n

ÂCb = N̂b
n

(6)

The absolute contribution of background and diseases defined above sum to the disability preva-
lence (P̂):

P̂ = ÂCb +
m

∑
d=1

ÂCd (7)

Finally, the relative contribution of diseases (R̂Cd) and background (R̂Cb) to the disability preva-
lence is estimated by:

R̂Cd = ÂCd
P̂

R̂Cb = ÂCb
P̂

(8)

The relative contributions (R̂Cd and R̂Cb) sum to 1.

Multinomial case

Analogous to the binomial case, the contribution of chronic diseases to the disability prevalence for
multinomial outcomes can be obtained in five steps for each category j of the outcome:
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1. Cause-specific disability probabilities for each disease (D̂dij) and background (B̂ij) for individual
i:

D̂dij = π̂ij

(
β̂dj Xdi

η̂ij

)

B̂ij = π̂ij

(
α̂ai j

η̂ij

) (9)

2. Number of disabled individuals by each disease (N̂dj) and background (N̂bj):

N̂dj =
n

∑
i=1

D̂dij

N̂bj =
n

∑
i=1

B̂ij

(10)

3. Absolute contribution of each disease (ÂCdj) and background (ÂCbj) to the total disability
prevalence:

ÂCdj =
N̂dj
n

ÂCbj =
N̂bj
n

(11)

4. Total disability prevalence (P̂j):

P̂j = ÂCbj +
m

∑
d=1

ÂCdj (12)

5. Relative contribution of diseases (R̂Cdj) and background (R̂Cbj) to the disability prevalence:

R̂Cdj =
ÂCdj

P̂j

R̂Cbj =
ÂCbj

P̂j

(13)

The absolute contributions defined in equations 11 sum to the prevalence of disability for each
category j and the relative contributions defined in equations 13 sum to 1 for each disability category j.
The confidence intervals for the absolute and relative contributions for the binary and multinomial
cases can be estimated via bootstrapping (Efron and Tibshirani, 1994) in addhaz.

Features of addhaz

In this section, a brief explanation about the constrained optimization, the parallel option to obtain the
bootstrap CI for the parameter estimates, and the option to perform the likelihood ratio test for model
selection is provided.

Constrained optimization

The binomial and multinomial additive hazard models are generalized linear models with non-

canonical link functions ηi = log
(

1
1−πi

)
for the binomial model and ηij = [−log(1−∑c

q=1 πiq)]

(
πij

∑c
q=1 πiq

)
for the multinomial model. For both models, the model parameters are estimated using maximum
likelihood. The use of non-canonical link functions requires a constraint in the linear predictors (ηi ≥ 0
and ηij ≥ 0) to ensure that the disability probabilities (πi and πij) are valid, i.e., the probabilities lie
between 0 and 1. In addhaz, this constraint is implemented in the optimization procedure, with an
adaptive barrier algorithm (Lange, 2010), by calling constrOptim in R.

Parallel computing for the bootstrap CI

Besides the option to estimate the confidence intervals for the parameter estimates based on the
standard errors obtained by the inverse of the information matrix for the binomial and multinomial
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models (Wald CI), addhaz also offers the user the option to obtain the bootstrap CI based on empirical
percentiles of the replicates (Efron and Tibshirani, 1994).

To reduce computation time, parallel computing can be used to obtain the bootstrap CI. By default
R does not use all the cores available on a computer. The basic idea of parallel computing is to split
the work to more than one core of the computer, to execute it in parallel, and then to collect the results.
Several R packages can be used to implement parallel computation. In addhaz it is implemented by
calling the functions boot and boot.ci in the boot package (Canty and Ripley, 2016; Davison and
Hinkley, 1997).

Likelihood ratio test

The package also includes a function to perform the likelihood ratio test to compare two binomial or
multinomial nested models that can be used for model selection.

The likelihood ratio test is defined as -2*log(likelihood model 1/likelihood model 2).The resulting
test statistic is assumed to follow a χ2 distribution, with degrees of freedom (df) equal to the difference
of the df between the models. If the test is statistically significant, the model with more variables fits
the data significantly better than the model with less variables.

Alternative software

The original software for the attribution method (Nusselder and Looman, 2004, 2010) was developed
in R, but it is not available as an R package, since it focuses on non-R users: an Excel file is used to
input the model arguments and this file is called in the R code. This software is restricted to binary
outcomes and it is freely available upon request to the authors. Different from addhaz, a penalty
term is added to the binomial likelihood function when πi ≤ 0, to ensure that valid probabilities
are obtained. The original software also allows the user to obtain the bootstrap CI for the model
parameters and contributions. Additionally, it offers the options: (i) reduced rank regression (RRR)
(Yee, 2014) to reduce the number of parameters when interactions between diseases and age groups
are of interest; and (ii) model selection, using the likelihood ratio test.

Besides the original software, the parameter estimates of the binomial additive hazard model can
be obtained using the R packages stats with glm and logbin with the function logbin (Donoghoe, 2016).
In both packages, the log-binomial model, i.e., πi = exp(ηi), used to estimate relative risks (Marschner
and Gillett, 2012), can be fitted to a transformed version of the response variable y∗ = 1− y, with the log
link function. The estimated model parameters should be multiplied by −1, since 1− πi = exp(−ηi).
However, care should be taken with glm: by specifying the option family = binomial(link = log)
to fit the log-binomial model, convergence failure may occur with the iterative weighted least squares
(IWLS) algorithm when the maximum likelihood estimates (MLE) lie on the boundary of the parameter
space. In glm, the IWLS is modified so that if constraints are violated, step-halving is used iteratively
until they are respected. Although this should not result in invalid estimates, it may cause difficulty
in convergence. An advantage of logbin is that it includes constrained optimization as an option to
optimize the binomial log-likelihood function (method = "ab"). This is done by calling constrOptim
in R to constrain the parameter space.

Since addhaz was developed with focus on the attribution method, apart from estimating the
model parameters for the binomial additive hazard model, it also gives the user the option to obtain
the contribution of diseases to the disability prevalence and to obtain bootstrap CI for the parameter
estimates and the contributions, using parallel computing to reduce computation time.

To our knowledge, there is no other package available to fit the multinomial additive hazard
model. Although it is possible to fit the log-multinomial model (Blizzard and Hosmer, 2007), i.e., πij =
exp(ηij), with the function vglm in VGAM (Yee, 2016), different from the binomial case, no simple
transformation of the outcome can be applied to obtain the parameter estimates of the multinomial
additive hazard model using the log-multinomial model.

Using the package addhaz

In this section, the use of the functions BinAddHaz, MultAddHaz, and LRTest in addhaz are illustrated
using a subset of the 2013 BNHS available in the package. A selected output of the results is shown.
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Data description

The Brazilian National Health Survey (BNHS) (“Pesquisa Nacional de Saúde") was a nationally
representative survey of the Brazilian adult population (≥ 18 years) with approximately 60,000
individuals, conducted in 2013. A multistage sampling design with simple random sampling (census
tracts) and clustering (households and adults) was used. The response rate was 77%. Survey weights
were included to take into account the complex design of the sample. Detailed information about the
BNHS can be found in previous publications (Szwarcwald et al., 2014; Yokota et al., 2016).

In addhaz, a subset of the BNHS data is available, with women aged ≥ 60 years (n = 6,294) and
the following variables: disability as binary and multinomial outcomes, survey weight, age, diabetes,
arthritis, and stroke (Table 1).

Variable name Definition Type Categories
wgt survey weight continuous -

age age group binary 0: 60-79 years
1: ≥80 years

diab diabetes binary 0: no
1: yes

arth arthritis binary 0: no
1: yes

stro stroke binary 0: no
1: yes

dis.bin binary disability outcome binary 0: no disability
1: disabled

dis.mult multinomial disability outcome categorical
0: no disability
1: mild disability
2: severe disability

Table 1: Description of the variables included in the analysis. Brazilian National Health Survey, 2013.

The binomial and multinomial disability outcomes were defined based on five instrumental
activities of daily living (IADL): shopping, handling finances, taking own medications, going to the
doctor, and using transportation. Participants were asked about the degree of difficulty in performing
IADL tasks, with possible answers: “1. Unable", “2. A lot of difficulty", “3. Some difficulty", or “4. No
difficulty". The definition of the binary and multinomial outcomes is shown in Table 2. The reference
category “No disability" represents answer “4" to all IADL questions.

Outcome Outcome category Answer to at least one IADL question
Binary Disabled 1, 2 or 3

Multinomial Mild disability 3
Severe disability 1 or 2

Table 2: Definition of the binary and multinomial disability outcomes. Brazilian National Health Survey, 2013.
“IADL" refers to instrumental activities of daily living.

A summary of the characteristics of the study population is shown in Table 3. A higher proportion
of older women (≥80 years), diabetes, arthritis, stroke, and the disease pairs was observed in women
with mild and severe disability compared to women without disability.

Examples with binary outcomes

The function BinAddHaz fits the binomial additive hazard model and estimates the contribution of
diseases to the disability burden for binary outcomes in addhaz. To illustrate the use of BinAddHaz, five
models were fitted with the binary disability outcome: model 1 - with three diseases (no background
and diseases by age); model 2 - with only background by age, with bootstrap CI; model 3 - with only
diseases by age; model 4 - with background and diseases by age, with bootstrap CI; model 5 - with
two-way interaction between diseases. To illustrate how the LRTest function can be used for model
selection, models 2 and 4 are compared.

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 81

Characteristic Total No disability Mild disability Severe disability
N % N % N % N %

Age (years)
60-79 5379 85.5 3946 93.5 642 78.3 791 63.0
≥80 915 14.5 273 6.5 178 21.7 464 37.0

Diseases
Diabetes 1243 19.7 697 16.5 190 23.2 356 28.4
Arthritis 1428 22.7 819 19.4 211 25.7 398 31.7
Stroke 286 4.5 100 2.4 41 5.0 145 11.6
Diabetes and arthritis 298 4.7 135 3.2 53 6.5 110 8.8
Diabetes and stroke 91 1.4 31 0.7 13 1.6 47 3.7
Arthritis and stroke 79 1.3 28 0.7 7 0.9 44 3.5

Table 3: Characteristics of the study population. Brazilian National Health Survey, 2013. The percentages refer
to unweighted proportions, i.e., without taking into account the survey weights.

Model 1 - Binomial model with three diseases

Before fitting model 1, addhaz and the data can be loaded and the names of the variables can be
checked using:

library("addhaz")
data("disabData")
names(disabData)

[1] "dis.bin" "dis.mult" "wgt" "age" "diab" "arth" "stro"

The first binomial model can be fitted with:

model1 <- BinAddHaz(dis.bin ~ diab + arth + stro , data = disabData, weights = wgt,
attrib = TRUE, type.attrib = "both", collapse.background = FALSE,
attrib.disease = FALSE)

Since no attribution variable such as age was included in the model, the arguments collapse.background
and attrib.disease were set to FALSE. The results of the model were stored as an object called model1,
which can be checked with the summary function:

summary(model1)

$`call`
BinAddHaz(formula = dis.bin ~ diab + arth + stro, data = disabData,

weights = wgt, attrib = TRUE, collapse.background = FALSE,
attrib.disease = FALSE, type.attrib = "both")

$bootstrap
[1] FALSE

$coefficients
Estimate StdErr t.value p.value

(Intercept) 0.2970833 0.009426403 31.516082 1.498823e-202
diab 0.1331831 0.023821666 5.590838 2.354697e-08
arth 0.1306445 0.022203662 5.883917 4.212860e-09
stro 0.5927519 0.075697633 7.830521 5.663378e-15

attr(,"class")
[1] "summary.binaddhazmod"

The first element of the output call is the formula used to fit the model. The bootstrap, indicates
if the bootstrap CI was requested. Since it was not requested, its value is FALSE.

Next, the coefficients are printed, with their estimates, standard errors (calculated based on the
inverse of the observed information matrix), the t value (value of the t statistic), and the p value.
The intercept represents the background. According to this output, all diseases were significant in
the model. To identify the most disabling diseases, i.e., the diseases with highest cumulative rate of
disability, the coefficients can be sorted in decreasing order using:
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sort(model1$coefficients, decreasing = TRUE)

stro (Intercept) diab arth
0.5927519 0.2970833 0.1331831 0.1306445

Stroke was the most disabling disease, while arthritis was the least disabling disease. The 95%
Wald CI can be obtained by:

model1$ci

CI2.5 CI97.5
(Intercept) 0.27860754 0.3155590
diab 0.08649261 0.1798735
arth 0.08712532 0.1741637
stro 0.44438455 0.7411193

Both the relative and absolute contributions were requested (attrib = TRUE,type.attrib =
"both") and can be assessed with:

model1$contribution

$`att.rel`
att.rel

(Intercept) 0.80405374
diab 0.06938567
arth 0.07451155
stro 0.05204903

$att.abs
att.abs

disab 0.30853338
(Intercept) 0.24807742
diab 0.02140780
arth 0.02298930
stro 0.01605886

In the above output, the relative contribution (att.rel: the contributions sum to 1) is shown at
the top and the absolute contribution (att.abs: the contributions sum to the disability prevalence) is
presented at the bottom. No confidence intervals are provided for the contributions, as they can only
be calculated via bootstrapping and this option was not requested.

In the output for the absolute contribution, the disability prevalence (disab) was 30.9%. The
absolute contribution can be sorted in decreasing order using:

model1$contribution$att.abs[order(model1$contribution$att.abs[, 1], decreasing = TRUE), ]

disab (Intercept) arth diab stro
0.30853338 0.24807742 0.02298930 0.02140780 0.01605886

The background (Intercept) was the main contributor to the disability burden in this population.
In this case, it can represent other causes not included in the model such as dementia or back pain,
which are important causes of disability in the older population, but were not included in the analysis.
Among the three diseases, arthritis was the main contributor to the disabilitiy burden in older Brazilian
women.

It is interesting to note that, although stroke was the most disabling disease, it showed the lowest
contribution to the total disability prevalence. This low contribution can be a consequence of the low
occurrence of stroke in this population - 4.5% (Table 3) - as the contribution of chronic conditions to
the disability prevalence depends on both, the disease occurrence and the disabling impact (Nusselder
and Looman, 2010).

Model 2 - Binomial model with only background by age, with bootstrap CI

In model 2, the background is modelled by age group, but the diseases are not. The model can be
fitted by:
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model2 <- BinAddHaz(dis.bin ~ factor(age) -1 + diab + arth + stro , data = disabData,
weights = wgt, attrib = TRUE, type.attrib = "both",
collapse.background = FALSE, attrib.disease = FALSE, seed = 111,
bootstrap = TRUE, conf.level = 0.95, nbootstrap = 1000,
parallel = TRUE, type.parallel = "snow", ncpus = 4)

Since the background is modelled by age group, factor(age) is included in the model. The
-1 is included in the model.formula to obtain the coefficients for both age groups, including the
reference category. Since the background is modelled by age, it should not be collapsed by age
(collapse.background = FALSE). As no interaction between diseases and age were included in the
model, the argument attrib.disease is FALSE. The option seed = 111 allows the user to specify a
random number to make the results of the bootstrapping reproducible. In the example above, the
random number used was 111. The bootstrap CI for the regression coefficients and the contributions
was requested (bootstrap = TRUE), with confidence level = 0.95 (conf.level = 0.95). The bootstrap
CI was based on 1000 replicates (nbootstrap = 1000) and it was obatined with parallel computing
(parallel = TRUE) on Windows (type.parallel = "snow") with 4 CPUS (ncpus = 4).

The summary of the model can be assessed with:

summary(model2)

$`call`
BinAddHaz(formula = dis.bin ~ factor(age) - 1 + diab + arth + stro, data = disabData,

weights = wgt, attrib = TRUE, type.attrib = "both",
collapse.background = FALSE, attrib.disease = FALSE, seed = 111,
bootstrap = TRUE, conf.level = 0.95, nbootstrap = 1000,
parallel = TRUE, type.parallel = "snow", ncpus = 4)

$bootstrap
[1] TRUE

$coefficients
Estimate CILow CIHigh

factor(age)0 0.22345184 0.19892365 0.2529054
factor(age)1 1.10472873 0.95279272 1.2705886
diab 0.12935797 0.06191508 0.2044457
arth 0.08531865 0.02375110 0.1513319
stro 0.52453664 0.28688675 0.8509963

$conf.level
[1] 0.95

attr(,"class")
[1] "summary.binaddhazmod"

Since the bootstrap CI was requested, bootstrap is TRUE. The coefficients show that age and all
diseases were significant (the null value, i.e. 0, is not included in the bootstrap CI). The factor(age)0
and factor(age)1 represents the background cumulative rates for age groups 0 and 1, respectively.
The contributions can be checked with:

model2$contribution

$att.rel
Contribution CILow CIHigh

factor(age)0 0.53992912 0.51937657 0.56054196
factor(age)1 0.29842186 0.27575265 0.32163433
diab 0.06702577 0.06162503 0.07256112
arth 0.04869951 0.04513817 0.05269298
stro 0.04592374 0.03666781 0.05519789

$att.abs
Contribution CILow CIHigh

disab 0.30902546 0.30227641 0.31623119
factor(age)0 0.16685185 0.16405831 0.16947954
factor(age)1 0.09221995 0.08372162 0.10131428
diab 0.02071267 0.01906935 0.02254047

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 84

arth 0.01504939 0.01396744 0.01628476
stro 0.01419161 0.01127267 0.01727091

The contributions and the 95% bootstrap CI are shown. The background is the main contributor to
the disability prevalence. Note that by allowing the background to vary by age does not change the
disability prevalence (30.9%), as compared to model 1.

Model 3 - Binomial model with only diseases by age

In Model 3, we allow only the diseases to vary by age group by including interactions between age
and diseases in the model. Before fitting model 3, a matrix with the diseases to be included in the
model can be defined by:

disease <- as.matrix(disabData[, c("diab", "arth", "stro")])

The first six elements of the matrix created can be checked using:

head(disease)

diab arth stro
36 1 0 0
98 0 0 0
113 0 1 1
347 1 0 0
352 1 0 0
436 0 0 0

The binomial additive hazard model can be fitted with the function:

model3 <- BinAddHaz(dis.bin ~ disease:factor(age), data = disabData, weights = wgt,
attrib = TRUE, attrib.var = age, type.attrib = "abs",
collapse.background = FALSE, attrib.disease = TRUE)

summary(model3)

$`call`
BinAddHaz(formula = dis.bin ~ disease:factor(age), data = disabData, weights = wgt,

attrib = TRUE, attrib.var = age, collapse.background = FALSE,
attrib.disease = TRUE, type.attrib = "abs")

$bootstrap
[1] FALSE

$coefficients
Estimate StdErr t.value p.value

(Intercept) 0.29425017 0.009339432 31.5062168 1.991333e-202
diseasediab:factor(age)0 0.07487954 0.022708458 3.2974294 9.811601e-04
diseasearth:factor(age)0 0.01218173 0.020156904 0.6043454 5.456358e-01
diseasestro:factor(age)0 0.44896271 0.072553106 6.1880563 6.474653e-10
diseasediab:factor(age)1 0.83733434 0.128901534 6.4959223 8.884711e-11
diseasearth:factor(age)1 1.32865873 0.143790133 9.2402636 3.299325e-20
diseasestro:factor(age)1 1.60530144 0.373531351 4.2976351 1.752351e-05

attr(,"class")
[1] "summary.binaddhazmod"

The (Intercept) represents the background, which was not modelled by age. The diseases with
factor(age)0 and factor(age)1 represent the regression coefficients for age 0 (60-79 years) and
age 1 (≥80 years). The output above shows that arthritis was not significant for the reference age
category (60-79years) (diseasearth:factor(age)0). Only the absolute contribution was requested
(type.attrib = "abs") and it can be assessed with:

model3$contribution

att.abs
disab.0 0.277835632
backgrnd.0 0.251005540
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diseasediab:factor(age)0.0 0.012575547
diseasearth:factor(age)0.0 0.002220039
diseasestro:factor(age)0.0 0.012034506
disab.1 0.493678649
backgrnd.1 0.206353130
diseasediab:factor(age)1.1 0.089832332
diseasearth:factor(age)1.1 0.158378063
diseasestro:factor(age)1.1 0.039115125

The attribution is presented by level of the attribution variable (attrib.var), which in this example
is age. The first five rows show the results for attribution variable level 0, which in this case represents
age group 60-79 years and the last five rows represent the results for attribution variable level 1 (≥80
years). The results indicate that the disability prevalence in the older women (49.4%) was much larger
than in the younger age group (27.8%). While the three diseases included in the model showed a low
contribution to the disability prevalence in women aged 60-79 years (<1.5%), arthritis was by far the
most important disease contributing to the disability prevalence in the oldest women (15.9%).

Model 4 - Binomial model with background and diseases by age, with bootstrap CI

The same matrix of diseases defined for model 3 will be used in model 4. This model can be fitted
with the function:

model4 <- BinAddHaz(dis.bin ~ factor(age) - 1 + disease:factor(age), data = disabData,
weights = wgt, attrib = TRUE, attrib.var = age, type.attrib = "abs",
collapse.background = FALSE, attrib.disease = TRUE, seed = 111,
bootstrap = TRUE, conf.level = 0.95, nbootstrap = 1000,
parallel = TRUE, type.parallel = "snow", ncpus = 4)

The -1 in the model.formula is used to obtain a different parameterization than the default: here
we obtain the parameter estimates for all the age groups, including the reference category. Since we
want to estimate the contributions for background by age, the argument collapse.background is set to
FALSE. If this argument would be set to TRUE, only one background, common to all age groups, would
be estimated. Since the contributions of diseases should be estimated by age group, the argument
attrib.disease was set to TRUE. The parallel option for the bootstrap CI was used (parallel = TRUE)
on a Windows computer (type.parallel = "snow") with 4 cores (ncpus = 4). The option seed = 111
allows the user to specify a random number (in this case 111) to make the results of the bootstrapping
reproducible. The summary of the model can be checked with:

summary(model4)

$call
BinAddHaz(formula = dis.bin ~ factor(age) - 1 + disease:factor(age), data = disabData,

weights = wgt, attrib = TRUE, attrib.var = age, collapse.background = FALSE,
attrib.disease = TRUE, type.attrib = "abs", seed = 111, bootstrap = TRUE,
conf.level = 0.95, nbootstrap = 1000, parallel = TRUE,
type.parallel = "snow", ncpus = 4)

$bootstrap
[1] TRUE

$coefficients
Estimate CILow CIHigh

factor(age)0 0.22661055 0.201218693 0.2568179
factor(age)1 0.94910725 0.784733478 1.1292937
factor(age)0:diseasediab 0.12749849 0.056516120 0.2036685
factor(age)1:diseasediab 0.24124648 -0.181208625 0.7471999
factor(age)0:diseasearth 0.06884402 0.009035558 0.1345238
factor(age)1:diseasearth 0.75879140 0.349882903 1.2234047
factor(age)0:diseasestro 0.48788899 0.255772550 0.8331633
factor(age)1:diseasestro 1.13333515 0.426477637 2.2240599

$conf.level
[1] 0.95
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attr(,"class")
[1] "summary.binaddhazmod"

The output with the results of the model is shown for factor(age)0, which represents the age
group of 60-79 years, and factor(age)1, representing the age group of ≥80 years. Diabetes was not
significant for age group 1, as the bootstrap CI includes the null value, i.e. 0. To identify the most
disabling diseases, two objects (coef.age0 and coef.age1) with the coefficients for each age group
can be created and sorted in decreasing order using:

coef.age0 <- model4$coefficients[seq(1, length(model4$coefficients), 2)]
coef.age1 <- model4$coefficients[seq(0, length(model4$coefficients), 2)]

sort(coef.age0, decreasing = TRUE)
factor(age)0:diseasestro factor(age)0 factor(age)0:diseasediab

0.48788899 0.22661055 0.12749849
factor(age)0:diseasearth

0.06884402

sort(coef.age1, decreasing = TRUE)
factor(age)1:diseasestro factor(age)1 factor(age)1:diseasearth

1.1333352 0.9491072 0.7587914
factor(age)1:diseasediab

0.2412465

Stroke was the most disabling disease in both age groups. Arthritis and diabetes showed the
lowest disabling impact in women aged 60-79 years and ≥80 years, respectively.

Since only the absolute contribution was requested (type.attrib = "abs"), the results for the
absolute contribution can be assessed with:

model4$contribution

att.abs CILow CIHigh
disab.0 0.24442949 0.24102940 0.24813627
backgrnd.0 0.19743946 0.19694283 0.19790210
factor(age)0:diseasediab.0 0.02141352 0.01956557 0.02342391
factor(age)0:diseasearth.0 0.01253887 0.01153068 0.01363192
factor(age)0:diseasestro.0 0.01303764 0.01003208 0.01636211
disab.1 0.69484947 0.68537515 0.70574268
backgrnd.1 0.54868976 0.53993448 0.55643174
factor(age)1:diseasediab.1 0.02637877 0.02080951 0.03249654
factor(age)1:diseasearth.1 0.09137348 0.07746954 0.10759760
factor(age)1:diseasestro.1 0.02840746 0.01932950 0.03894183

The CILow and CIHigh refers to the 2.5th and 97.5th percentiles of the 1,000 bootstrap replicates,
since the bootstrap CI was requested (bootstrap = TRUE) with conf.level = 0.95. To identify the
main contributors to the disability burden, two objects (one for each age group) can be defined with
the absolute contribution and bootstrap CI using:

cont.age0 <- model4$contribution[c(1:5), ]
cont.age1 <- model4$contribution[c(6:10), ]
cont.age0[order(cont.age0[, 1], decreasing = TRUE), ]

att.abs CILow CIHigh
disab.0 0.24442949 0.24102940 0.24813627
backgrnd.0 0.19743946 0.19694283 0.19790210
factor(age)0:diseasediab.0 0.02141352 0.01956557 0.02342391
factor(age)0:diseasestro.0 0.01303764 0.01003208 0.01636211
factor(age)0:diseasearth.0 0.01253887 0.01153068 0.01363192

cont.age1[order(cont.age1[, 1], decreasing = TRUE), ]

att.abs CILow CIHigh
disab.1 0.69484947 0.68537515 0.70574268
backgrnd.1 0.54868976 0.53993448 0.55643174
factor(age)1:diseasearth.1 0.09137348 0.07746954 0.10759760
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factor(age)1:diseasestro.1 0.02840746 0.01932950 0.03894183
factor(age)1:diseasediab.1 0.02637877 0.02080951 0.03249654

According to the results, the disability prevalence in the oldest women (69.5%) was 2.8 times larger
than in women aged 60-79 years (24.4%). The background was the main contributor to the disability
prevalence in both age groups. Among the chronic conditions, diabetes was the main contributor to
the disability prevalence in women aged 60-79 years (2.1%) while arthritis contributed most to the
disability burden in older women (9.1%).

Model 5 - Binomial model with two-way interaction between diseases

In model 5, the independence assumption (assumption vii) is violated and two-way interactions
between diseases are included in the model. In total, 6 parameters and the intercept will be estimated
in model 5. The model can be fitted by:

model5 <- BinAddHaz(dis.bin ~ (diab + arth + stro)^2, data = disabData, weights = wgt,
attrib = TRUE, collapse.background = FALSE, attrib.disease = FALSE,
type.attrib = "both")

summary(model5)

$`call`
BinAddHaz(formula = dis.bin ~ (diab + arth + stro)^2, data = disabData, weights = wgt,

attrib = TRUE, collapse.background = FALSE, attrib.disease = FALSE,
type.attrib = "both")

$bootstrap
[1] FALSE

$coefficients
Estimate StdErr t.value p.value

(Intercept) 0.2988163 0.009586541 31.1703950 1.803828e-198
diab 0.1178815 0.026104065 4.5158287 6.422107e-06
arth 0.1101293 0.023712731 4.6443118 3.481543e-06
stro 0.8145107 0.116867992 6.9694938 3.505379e-12
diab:arth 0.1563155 0.067097034 2.3296932 1.985387e-02
diab:stro -0.5072111 0.154344770 -3.2862213 1.020980e-03
arth:stro -0.1494752 0.176853232 -0.8451937 3.980349e-01

attr(,"class")
[1] "summary.binaddhazmod"

The main effects of all the diseases were significant, but only the interaction between diabetes
and arthritis and between diabetes and stroke were significant. The negative disabling impact of the
interaction term between diabetes and stroke should be carefully interpreted, as it is based on a small
sample size (n = 91) (Table 3).

Likelihood ratio test for model selection

To illustrate the use of the function LRTest to perform the likelihood ratio test (LRT) for model selection,
models 2 (model2) and 4 (model4) are compared. The LRT can be performed with:

LRTest(model4, model2)

Likelihood ratio test
Model 1:
dis.bin ~ factor(age) - 1 + disease:factor(age)
Model 2:
dis.bin ~ factor(age) - 1 + diab + arth + stro
Res.df Res.Dev df Deviance Pr(>Chi)

1 6286 6916.818
2 6289 6946.224 3 29.405 1.8407e-06

The output shows the models that are being compared: Model 1 is the model with the interactions
with diseases and age (previous model 4) and Model 2 is the model without the interactions between
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diseases and age (previous model 2). The degrees of freedom for each model (Res.df), the residual
deviance, i.e. the 2*log-likelihood of each model (Res.Dev), the difference in the degrees of freedom
between the models (df), the difference between the 2*log-likelihood of the models, i.e. the value
of the likelihood ratio test statistic (Deviance), and the p-value of the test statistic, based on the χ2

distribution (Pr(>Chi)) are presented. Since the test was statistically significant at 0.05 significance
level, model 4, which includes interaction between diseases and age, fits the data better than model 2.

Examples with multinomial outcomes

To fit the multinomial additive hazard model and to estimate the contribution of chronic conditions
to the disability burden for multinomial outcomes, the function MultAddHaz can be used. As an
illustration, two models were fitted: model 6 - with only background by age; and model 7 - with
background and diseases by age, with bootstrap CI.

Model 6 - Multinomial model with only background by age

Model 6 can be fitted with the function:

model6 <- MultAddHaz(dis.mult ~ factor(age) - 1 + diab + arth + stro, data = disabData,
weights = wgt, attrib = TRUE, seed = 111, collapse.background = FALSE,
attrib.disease = FALSE, type.attrib = "both")

The results of the model can be visualized using:

summary(model6)

$`call`
MultAddHaz(formula = dis.mult ~ factor(age) - 1 + diab + arth +

stro, data = disabData, weights = wgt, attrib = TRUE, seed = 111,
collapse.background = FALSE, attrib.disease = FALSE, type.attrib = "both")

$bootstrap
[1] FALSE

$coefficients
Estimate StdErr t.value p.value

factor(age)0.y1 0.117959944 0.006083174 19.3911842 2.109290e-81
factor(age)1.y1 0.285541582 0.022330639 12.7869869 5.585601e-37
diab.y1 0.002717701 0.011329960 0.2398685 8.104400e-01
arth.y1 0.015602747 0.011534798 1.3526675 1.762105e-01
stro.y1 0.024923984 0.025498946 0.9774515 3.283833e-01
factor(age)0.y2 0.107643802 0.005969496 18.0323096 6.503330e-71
factor(age)1.y2 0.817043178 0.043161129 18.9300697 9.103853e-78
diab.y2 0.124326766 0.017245323 7.2093036 6.283854e-13
arth.y2 0.063767963 0.014095689 4.5239336 6.181719e-06
stro.y2 0.499262854 0.064799754 7.7047030 1.514581e-14

attr(,"class")
[1] "summary.multaddhazmod"

In the above output, the results identified with y1 refer to the outcome (dis.mult) = 1 (mild
disability) and the results with y2 refer to the outcome (dis.mult) = 2 (severe disability). For mild
disability only the background (factor(age)0.y1) and (factor(age)1.y1) was significant while all
the diseases and the background were signifcant for women with severe disability. Similar to the
binomial model, the most disabling diseases can be identified by:

coef.mild <- model6$coefficients[1:5, ]
coef.sev <- model6$coefficients[6:10, ]

sort(coef.mild, decreasing = TRUE)
factor(age)1.y1 factor(age)0.y1 stro.y1 arth.y1 diab.y1

0.285541582 0.117959944 0.024923984 0.015602747 0.002717701

sort(coef.sev, decreasing = TRUE)
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factor(age)1.y2 stro.y2 diab.y2 factor(age)0.y2 arth.y2
0.81704318 0.49926285 0.12432677 0.10764380 0.06376796

Background and stroke showed the highest disabling impact for mild and severe disability. The
relative and absolute contributions can be checked with:

model6$contribution

$`att.rel`
att.rel

factor(age)0.y1 0.804099194
factor(age)1.y1 0.164283693
diab.y1 0.003665546
arth.y1 0.023317949
stro.y1 0.004633619
factor(age)0.y2 0.426874738
factor(age)1.y2 0.336655536
diab.y2 0.105566151
arth.y2 0.058984332
stro.y2 0.071919244

$att.abs
att.abs

disab.y1 0.1265087428
factor(age)0.y1 0.1017255781
factor(age)1.y1 0.0207833234
diab.y1 0.0004637236
arth.y1 0.0029499244
stro.y1 0.0005861933
disab.y2 0.1901766667
factor(age)0.y2 0.0811816147
factor(age)1.y2 0.0640240276
diab.y2 0.0200762187
arth.y2 0.0112174436
stro.y2 0.0136773621

It is interesting to note that the severe disability prevalence (19.0%) was 1.5 times higher than the
mild disability prevalence (12.7%). The results for the relative contribution can be sorted in decreasing
order by:

rel.cont.mild <- model6$contribution$att.rel[1:5, ]
rel.cont.sev <- model6$contribution$att.rel[6:10, ]

sort(rel.cont.mild, decreasing = TRUE)
factor(age)0.y1 factor(age)1.y1 arth.y1 stro.y1 diab.y1

0.804099194 0.164283693 0.023317949 0.004633619 0.003665546

sort(rel.cont.sev, decreasing = TRUE)
factor(age)0.y2 factor(age)1.y2 diab.y2 stro.y2 arth.y2

0.42687474 0.33665554 0.10556615 0.07191924 0.05898433

The background was the main contributor to the disability burden, representing 96.8% (0.80 + 0.16)
and 76.4% (0.43 + 0.34) of the mild and severe disability prevalence, respectively. Arthritis (2.3%) was
the main contributor to the mild disability prevalence while diabetes (10.6%) contributed most to the
severe disability prevalence.

Model 7 - Multinomial model with background and diseases by age, with bootstrap CI

The matrix with the diseases (disease) defined for model 3 is used to fit model 7:

model7 <- MultAddHaz(dis.mult ~ factor(age) -1 + disease:factor(age),
data = disabData, weights = wgt, attrib = TRUE, attrib.var = age,
seed = 111, collapse.background = FALSE, attrib.disease = TRUE,
type.attrib = "both", bootstrap = TRUE, conf.level = 0.95,
nbootstrap = 1000, parallel = TRUE, type.parallel = "snow",
ncpus = 4)
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The -1 was added to the model.formula to obtain the parameter estimates for the background
for all age groups, including the reference category. Since the background should be estimated by
age, collapse.background is set to FALSE. Additionally, attrib.disease is set to TRUE, as interactions
between age and diseases were included in the model and the contribution of diseases should be
estimated by age. The seed argument in MultAddHaz is used to obtain reproducible results for the
starting values used in the constrained optimization, which are randomly generated, and for the
bootstrap CI. Besides the summary function, the disabling impacts and the bootstrap CI can also be
assessed with:

cbind(model7$coefficients, model7$ci)

Coefficients CILow CIHigh
factor(age)0.y1 0.117255379 0.10064630 0.13689281
factor(age)1.y1 0.277818866 0.20558349 0.37304023
factor(age)0:diseasediab.y1 0.005926107 -0.03440926 0.04770883
factor(age)1:diseasediab.y1 -0.027900849 -0.16964726 0.15898841
factor(age)0:diseasearth.y1 0.012814735 -0.02467113 0.05156243
factor(age)1:diseasearth.y1 0.110733103 -0.08447433 0.30975351
factor(age)0:diseasestro.y1 0.032163873 -0.03657685 0.14572706
factor(age)1:diseasestro.y1 -0.028504716 -0.22807053 0.22952796
factor(age)0.y2 0.109165655 0.09146724 0.13167070
factor(age)1.y2 0.672941316 0.53792263 0.83185332
factor(age)0:diseasediab.y2 0.121508443 0.06618176 0.17864913
factor(age)1:diseasediab.y2 0.282986455 -0.09742139 0.80712949
factor(age)0:diseasearth.y2 0.054335292 0.01095538 0.09957643
factor(age)1:diseasearth.y2 0.635463641 0.31671319 1.05424237
factor(age)0:diseasestro.y2 0.456594023 0.24959719 0.72863913
factor(age)1:diseasestro.y2 1.233578243 0.49988818 2.27216717

In the output, factor(age)0 and factor(age)1 refers to the age groups 60-79 years and≥ 80 years,
respectively. y1 refers to disability category 1, which here represents mild disability and y2 refers to
disability category 2, representing severe disability.

Two coefficients (for diabetes and stroke in women aged ≥ 80 years with mild disability) were
negative. This suggests a “protective" effect of these conditions. However, these results should be
carefully interpreted as they were not statistically significant.

To identify the most disabling diseases for mild and severe disability by age group, the following
code can be used:

mild.age0 <- model7$coefficients[seq(1, length(model7$coefficients), 2), ][1:4]
sev.age0 <- model7$coefficients[seq(1, length(model7$coefficients), 2), ][5:8]
mild.age1 <- model7$coefficients[seq(0, length(model7$coefficients), 2), ][1:4]
sev.age1 <- model7$coefficients[seq(0, length(model7$coefficients), 2), ][5:8]

mild.age0[order(mild.age0, decreasing = TRUE)]
factor(age)0.y1 factor(age)0:diseasestro.y1

0.117255379 0.032163873
factor(age)0:diseasearth.y1 factor(age)0:diseasediab.y1

0.012814735 0.005926107

sev.age0[order(sev.age0, decreasing = TRUE)]
factor(age)0:diseasestro.y2 factor(age)0:diseasediab.y2

0.45659402 0.12150844
factor(age)0.y2 factor(age)0:diseasearth.y2

0.10916565 0.05433529

mild.age1[order(mild.age1, decreasing = TRUE)]
factor(age)1.y1 factor(age)1:diseasearth.y1

0.27781887 0.11073310
factor(age)1:diseasediab.y1 factor(age)1:diseasestro.y1

-0.02790085 -0.02850472

sev.age1[order(sev.age1, decreasing = TRUE)]
factor(age)1:diseasestro.y2 factor(age)1.y2

1.2335782 0.6729413
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factor(age)1:diseasearth.y2 factor(age)1:diseasediab.y2
0.6354636 0.2829865

Stroke was the most disabling disease in women with severe disability in both age groups and in
women aged 60-79 years with mild disability while arthritis was the most disabling disease in women
aged ≥ 80 years with mild disability.

The main contributors to the disability burden, based on the absolute contribution can be assessed
with:

cont.mild.age0 <- model7$contribution$att.abs[1:5, ]
cont.sev.age0 <- model7$contribution$att.abs[6:10, ]
cont.mild.age1 <- model7$contribution$att.abs[11:15, ]
cont.sev.age1 <- model7$contribution$att.abs[16:20, ]

cont.mild.age0[order(cont.mild.age0[, 1], decreasing = TRUE), ]
att.abs CILow CIHigh

disab.0.y1 0.1146399721 0.1142911352 0.115027470
backgrnd.0.y1 0.1103973843 0.1103736506 0.110418787
factor(age)0:diseasearth.0.y1 0.0024598331 0.0022352202 0.002706063
factor(age)0:diseasediab.0.y1 0.0010238914 0.0009230407 0.001137036
factor(age)0:diseasestro.0.y1 0.0007588633 0.0005256459 0.001035586

cont.sev.age0[order(cont.sev.age0[, 1], decreasing = TRUE), ]
att.abs CILow CIHigh

disab.0.y2 0.137612800 0.133986991 0.14160126
backgrnd.0.y2 0.095139459 0.094884399 0.09537052
factor(age)0:diseasediab.0.y2 0.020450103 0.018538859 0.02259582
factor(age)0:diseasestro.0.y2 0.012179369 0.009234356 0.01571648
factor(age)0:diseasearth.0.y2 0.009843869 0.008984070 0.01077563

cont.mild.age1[order(cont.mild.age1[, 1], decreasing = TRUE), ]
att.abs CILow CIHigh

disab.1.y1 0.2532173709 0.248985442 0.257917633
backgrnd.1.y1 0.2408954310 0.240163632 0.241550122
factor(age)1:diseasearth.1.y1 0.0170621273 0.012596001 0.022104725
factor(age)1:diseasestro.1.y1 -0.0006391061 -0.001067613 -0.000299713
factor(age)1:diseasediab.1.y1 -0.0041010813 -0.005510841 -0.002757878

cont.sev.age1[order(cont.sev.age1[, 1], decreasing = TRUE), ]
att.abs CILow CIHigh

disab.1.y2 0.52797382 0.51474229 0.54101616
backgrnd.1.y2 0.38747404 0.38073529 0.39414511
factor(age)1:diseasearth.1.y2 0.07581147 0.06237721 0.09017923
factor(age)1:diseasestro.1.y2 0.03293044 0.02088364 0.04734430
factor(age)1:diseasediab.1.y2 0.03175788 0.02394332 0.04002170

The severe disability prevalence (60-79 years = 13.8%; ≥80 years = 52.8%) was larger than the
mild disability prevalence (60-79 years = 11.5%; ≥80 years = 25.3%) in both age groups. Arthritis was
the main contributor to the mild disability prevalence in both age groups and to the severe disability
prevalence in women aged ≥80 years, while diabetes was the main contributor to the severe disability
prevalence in women aged 60-79 years.

Discussion

In this paper we introduced the R package addhaz developed to fit the binomial and multinomial
additive hazard models to estimate the contribution of diseases to the disability prevalence using
cross-sectional data.

The R package addhaz was developed based on the R functions developed by Nusselder and
Looman (Nusselder and Looman, 2010) for binomial disability outcomes and for non-R users. The
main advantages of addhaz compared to the original R functions are: (i) option to use the attribution
method for multinomial responses using the function MultAddHaz; and (ii) option to do parallel
computing for the calculation of the bootstrap percentile confidence intervals. However, the possibility
to use reduced rank regression (Yee, 2014) to estimate the cause-specific disability rates by age group,
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for example, which is available in the original R functions (Nusselder and Looman, 2010), is not
available in addhaz. Nonetheless, in addhaz these interactions can be estimated by including full
interaction terms between chronic conditions and age groups.

Although the parameter estimates of the binomial additive hazard model can also be obtained
with the R package logbin, the contribution of diseases to the disability prevalence is not provided,
since logbin was not developed with focus on the attribution method. Therefore, for analysis aimed at
the attribution of disability to diseases, we recommend the use of addhaz. For multinomial outcomes,
no other software is available to fit the multinomial additive hazard model and to calculate the
contributions, to our knowledge.

One could argue that instead of using the multinomial model, two binomial models could be fitted:
(i) no x mild disability; and (ii) no x severe disability. Although this is indeed possible, with a minor
loss of precision (larger standard errors) for the parameter estimates when the reference category (“no
disability", in our example) is the most frequent category in the population (which is the case for
the subset of the BNHS used here, as 67% were not disabled, 13% reported mild disability, and 20%
were severely disabled) (Agresti, 2002), the prevalence of the various disability categories do not sum
to 100%, as can be observed in a previous study that assessed the difference in the mild and severe
disability burden using two binomial models (Yokota et al., 2015a).

Different models with different options were presented using addhaz, showing a wide possibility
of application to the users. One example is the investigation of the role of multimorbidity on the
disability prevalence, which was assessed by the inclusion of two-way interactions between diseases
in the model, as presented in model 2. Even though the examples only included the combination
of two diseases, higher order interactions can also be included in the models, with the sample size
being the limiting factor. In addition, since the prevalence of chronic conditions tends to increase over
age, the model parameterization to include interactions between diseases and age groups was also
shown for the binary (models 3 and 4) and multinomial disability outcomes (model 7). Although age
group was used as the stratification variable to estimate the disabling impacts of the diseases and
background, other variables can be used, such as education attainment and sex.

Furthermore, we illustrated how the likelihood ratio test (LRT) can be performed for model
selection using the function LRTest. The LRT can be also performed for model selection with the
multinomial additive hazard model.

The attribution method has some limitations that should be considered. The main limitation of the
method is the causality assumption. Although a causal relationship between diseases and disability is
plausible and has been proposed in several disability models (Verbrugge and Jette, 1994), it cannot be
assessed with cross-sectional data. As a consequence, disability is incorrectly attributed to diseases
when disability occurred before the diseases. Although the parallel option reduces significantly
computation time for calculating bootstrap confidence intervals, fitting the multinomial model to high
dimensional data can still be time-consuming. For example, the computational time to fit model 7, in a
Windows computer Intel(R) Core (TM) i7-4600 CPU with 2.1GHz and 2.7GHz, 8GB (RAM), using the
parallel option with 4 cores, was 23.04 hours.

Summary

In conclusion, addhaz is a publicly available tool to assess the contribution of chronic conditions to
the disability prevalence, using cross-sectional data. The results produced by the tool can be used by
policymakers to reduce the disability burden. Future areas of interest to improve the package include
the extension of the multinomial model to ordinal responses and alternatives to reduce computation
time for high dimensional data.
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Snowboot: Bootstrap Methods for
Network Inference
by Yuzhou Chen, Yulia R. Gel, Vyacheslav Lyubchich, and Kusha Nezafati

Abstract Complex networks are used to describe a broad range of disparate social systems and natural
phenomena, from power grids to customer segmentation to human brain connectome. Challenges
of parametric model specification and validation inspire a search for more data-driven and flexible
nonparametric approaches for inference of complex networks. In this paper we discuss methodology
and R implementation of two bootstrap procedures on random networks, that is, patchwork bootstrap
of Thompson et al. (2016) and Gel et al. (2017) and vertex bootstrap of Snijders and Borgatti (1999). To
our knowledge, the new R package snowboot is the first implementation of the vertex and patchwork
bootstrap inference on networks in R. Our new package is accompanied with a detailed user’s manual,
and is compatible with the popular R package on network studies igraph. We evaluate the patchwork
bootstrap and vertex bootstrap with extensive simulation studies and illustrate their utility in an
application to analysis of real world networks.

Introduction

Traditionally, the structural network analysis, that is, the analysis of data in the form of graphs,
has been primarily approached as a descriptive task, in contrast to an inferential task, while the
employed analytic tools have rooted mainly within research areas outside of “mainstream” statistical
methodology. In the recent years, however, there has been a flare of interest in developing new
statistical methods for inference on complex networks (see overviews by Goldenberg et al., 2010;
Kolaczyk and Csárdi, 2014; Brugere et al., 2017, and references therein). Despite the explosive growth of
statistical methods for network analysis, the developed methodology for inference on graph-structured
data remains predominantly parametric and model-based. At the same time, nonparametric bootstrap
and resampling appears as an appealing and flexible data-driven alternative for network inference,
especially, if only a single realization of a large complex network exists. That is, we can follow the
same route as the classical bootstrap of Efron (1979) which was proposed four decades ago as an
alternative to conventional parametric methods for independent and identically distributed data, and
later was extended to various weakly dependent space-time processes (Hall, 1992; Shao and Tu, 1995;
Chernick, 2008).

We attribute the first pioneering attempt to develop nonparametric bootstrap on networks to
Snijders and Borgatti (1999). The Snijders–Borgatti procedure, called vertex bootstrap, allows eval-
uating estimation uncertainty for network density and testing one- and two-sample hypotheses for
densities, under the assumption that all the network information is available upfront. Vertex bootstrap
is widely used in social studies and is implemented in such highly popular software for social network
analysis as UCINET (Borgatti et al., 2002). However, vertex bootstrap remains largely unknown in
statistics and there still exists no implementation of this procedure in R. The next attempt to draw
bootstrap inference on complex networks, with a focus on uncertainty quantification in network
degree estimation, has been suggested by Thompson et al. (2016) and Gel et al. (2017). The idea is to
borrow the “blocking” argument, developed for bootstrapping of time series and re-tiling of spatial
data, and adapt it to random networks. The resulting procedure, called patchwork bootstrap, starts
from sampling a set of multiple ego networks of varying orders and forming a patch (i.e., a network
block analogue), and then proceeds to resampling the data within patches. Patchwork bootstrap
allows to quantify estimation uncertainties for network degree distribution and its functions, and to
construct reliable and sharp confidence intervals in a fully data-driven way. Furthermore, patchwork
bootstrap is applicable to ultra-sparse and only partially observable networks.

The new R package snowboot (Ramirez-Ramirez et al., 2018) is the first to offer vertex and
patchwork bootstrap in R. Moreover, to our knowledge, there currently exist only two more R
packages implementing bootstrap analysis of networks, bootnet and sna. The package bootnet
assesses uncertainty in estimation of edge-weights and centrality indices but does not account for
network dependence structure among vertices. The package sna implements parametric bootstrapping
of edges to generate new random graphs that can be further used for hypothesis testing of matching
between the observed network and randomized baseline network as well as canonical correlation
coefficients. This paper aims to further fill the gap and showcase utility of nonparametric resampling
for network inference, with a particular focus on vertex and patchwork bootstraps. snowboot imports
the R packages graphics, igraph (Csárdi and others, 2018), parallel, Rcpp (Eddelbuettel et al., 2017),
Rdpack (Boshnakov, 2018), stats, and VGAM (Yee, 2018).
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The paper is organized as follows. In the next section, we discuss methodology and implementation
of vertex and patchwork bootstraps. In the simulation studies, we evaluate the implemented bootstrap
methods in an application to synthetic data. Our case studies illustrate application of the bootstrap to
analysis of airline networks, power grids, and the David Copperfield network. The paper is concluded
by a discussion.

Bootstrap algorithms on networks

Patchwork bootstrap

While the first results on sampling on networks go back to the 1960s (see, e.g., Goodman, 1961; Frank,
1968; Granovetter, 1976) and while nowadays there exist numerous graph sampling procedures (see
overviews by Scott and Carrington, 2011; Ahmed et al., 2014; Kolaczyk, 2009; Simpson et al., 2015;
Zhang et al., 2015, and references therein), still surprisingly little is known on how to reliably and
efficiently quantify sampling uncertainties, without imposing typically unverifiable model specifica-
tion constraints. In this section, we discuss the new method of patchwork sampling and bootstrap
(based on algorithms of Thompson et al., 2016 and Gel et al., 2017) that enables us to quantify sampling
estimation uncertainties for network degree distribution and its functions, while using only a small
proportion of network information.

Undirected Network

Use Labelled Snowball Sampling with 
Multiple Inclusions to Build Patches

Perform Bootstrap Algorithm in Patches

Cross-Validation Procedure to Choose 
an Optimal Seed-Wave Combination

Best Seed-Wave 
Combination and 

Confidence Interval

Figure 1: The workflow of the patchwork bootstrap.

Assumptions

Consider an undirected random graph G = (V, E) with a set of vertices, V(G), and a set of edges,
E(G). The order and size of G are defined as the number of vertices and edges in G, i.e., |V(G)| and
|E(G)|, respectively. We assume that G has no self-loops, i.e., u 6= v for any edge euv ∈ E. The degree
of a vertex v is the number of edges incident to v. We denote the probability that a randomly selected
vertex has a degree k by f (k), the degree distribution of G by F = { f (k), k ≥ 0}, and the mean degree
of G by µ(G).

Let graph G represent some hypothetical “true” random graph of interest that is never fully
observed, and its degree distribution F with finite mean and its order are unknown. Instead, we

observe a random graph Gn of order n with a degree distribution Fn = { fn(k), k ≥ 0}. Let N(n)
k be the

number of vertices with a degree k in Gn. Observed graph Gn can be viewed as a realization of G in a

sense that as n→ ∞, N(n)
k /n→ f (k) in probability (empirical distribution Fn converges in probability

to F) and joint degree distribution of Gn approaches that of G (see Britton et al., 2006; van der Hofstad,
2017 and references therein).

Furthermore, we assume that G is involution invariant (Lovász, 2012; Orbanz and Roy, 2015; Crane,
2018). Note that involution invariance is linked to unimodularity (Aldous and Lyons, 2007). That is,
let us select a vertex v, v ∈ V and perform a single step random walk from v to one of its neighbors
u, u ∈ V; then the distribution of the neighborhood of v will be the same as the distribution of the
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neighborhood of u. I.e., from the vantage point of any randomly selected vertex, the rest of the
connected network is probabilistically the same. The property of involution invariance can be viewed
as a network analogue of stationarity of stochastic processes (Orbanz and Roy, 2015; Crane, 2018).
Indeed, as per Aldous and Lyons (2007), unimodularity, or involution invariance, relates to “statistical
homogeneity” or “spatial stationarity” of a network. In turn, stationarity is typically an essential
condition for consistency of block bootstrap for space and time dependent data, thus, again linking
our bootstrap procedure with the “blocking” argument. However, similarly to strong stationarity in
time series analysis, involution invariance is not a formally verifiable condition. In practical terms of
network analysis, the proposed patchwork bootstrap is applicable to networks that are believed to be
“homogenous,” that is, their distributional properties are the same across the whole network, which
includes, for example, but not limited to exchangeable graphs (Crane, 2018). In turn, the patchwork
bootstrap will not be, for example, applicable to networks with community structures. Note that
in contrast to exchangeable networks which are dense, involution invariance (and the proposed
patchwork bootstrap) is also applicable to sparse networks (Orbanz, 2017).

To the best of our knowledge, there currently exists no competing bootstrap procedure for quanti-
fying uncertainty in estimators of network degree distribution. The subsampling procedure of Bhat-
tacharyya and Bickel (2015) focuses on assessment of uncertainty in motif, or subgraph counts in dense
exchangeable networks and is not feasible for inference on degree distribution. The method of Ali et al.
(2016) also targets inference on counts of small sub-graphs and is based on the notion of dependency
graphs under the network exchangeability framework. The vertex bootstrap approach of Snijders
and Borgatti (1999), implemented in our R package snowboot, does not impose density limitations
but assumes availability of the whole network upfront and is applicable to only small networks. In
turn, Lusseau et al. (2008) and Epskamp et al. (2018) propose bootstrap for edge-weights and centrality
indices without accounting for network dependence structure among vertices.

The workflow of the proposed patchwork bootstrap consists of the three key steps, that is, Labeled
Snowball Sampling with Multiple Inclusions, Resampling, and Cross-Validation (see Figure 1).

Labeled snowball sampling with multiple inclusions

The central element of our technique for network sampling and inference is a patch , which is a
structured sample of vertices and edges joining them. Patch sampling is performed in the following
three steps:

1. Sample randomly without replacement several vertices from a network (Figure 2(a)).

2. Construct a Labeled Snowball with Multiple Inclusions (LSMI) independently around each
vertex (Figure 2(b)):

(a) Label each of the sampled vertices as a seed .

(b) Select adjacent vertices by following the edges emanating from the seed and label them as
the first wave of non-seeds .

(c) Select and label neighborhoods of second and higher orders by following the edges
emanating from the first wave of non-seeds. A vertex with degree k > 1 is included
into the sample as many times as it is selected by following the previously unused edges
(multiple inclusions are allowed).

3. Join all LSMIs into one patch (Figure 2(c)).

Detailed steps of the patch formation are given in Figure 3, which is a modified version of respective
algorithms by Thompson et al. (2016) and Gel et al. (2017). The advantage of the algorithm in Figure 3
is that we explore patches with a smaller number of seeds by taking a subset from the seeds we have
sampled, rather than by sampling new seeds from a network. This further improves computational
efficiency of the algorithm and minimizes the amount of information obtained from a network.

To demonstrate the algorithm, we use one of the artificial networks stored in the R package
snowboot:

> library(snowboot)
> net <- artificial_networks[[1]]

Function lsmi allows us to create a patch with seeds being randomly sampled or pre-specified.
For example, a patch with two random seeds and one wave of neighbors around them:

> set.seed(1)
> lsmi(net, n.seed = 2, n.wave = 1)
[[1]]
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Figure 2: (a) Two seeds sampled from a network; (b) Two LSMIs grown independently, up to the third
wave; (c) A patch sample of two seeds and three waves is obtained by joining the two LSMIs together.
The waves are denoted with numbers from 0 (seed) to 3 (third wave) in each LSMI.

[[1]][[1]]
[1] 532
[[1]][[2]]
[1] 524 763

[[2]]
[[2]][[1]]
[1] 744
[[2]][[2]]
[1] 145 858

The output is structured as a list of length equal to the number of seeds sampled. Each element of this
list is a list itself, where first element contains the seed ID; second element contains IDs of vertices in
the first wave, and so on. This structure allows us to keep track of neighborhoods around each seed
separately, including the labels – waves in which the vertices appear. The above output shows that
two seeds were sampled, with IDs 532 and 744. The first-order neighbors of vertex 532 are 524 and
763; of vertex 744 – vertices 145 and 858.

Alternatively, we can specify particular seeds and select the neighborhoods around them:

> lsmi(net, seeds = c(532, 744), n.wave = 1)

This option can be used to study specific vertices in a network (e.g., select the neighborhood around
Erdös in the Erdös collaboration network of mathematical scientists; Thompson et al., 2016).

The next function, lsmi_union, records information about patches obtained by subsetting the
originally sampled seeds (Figure 3):

> patches <- lsmi_union(net, n.seeds = c(2, 5, 10), n.wave = 2)
> ls(patches)
[1] "lsmi_big" "sequence_seeds"

> patches$sequence_seeds
[[1]]
[1] 124 352 403 411 1146 1255 1319 1795 1816 1886

[[2]]
[1] 411 1146 1319 1816 1886

[[3]]
[1] 1146 1886

The output is a list of two elements: a patch with the biggest number of seeds and waves from those
specified (in the example above, patches$lsmi_big is a patch with 10 seeds and 2 waves around each
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Algorithm 1: Obtaining a set of patches with b different number of seeds, and
waves from 1 to d

Input : Graph Gn, where n is number of vertices (network order); numbers of seeds
to sample, {n.seeds}b

i=1; number of waves to select, d.

Output : patch(max(n.seeds), d) = {LSMI(d)}max(n.seeds)
i=1 , i.e., one patch sample for

the seed-wave combination with the largest number of seeds and d waves;
sequence_seeds – a list of length b comprising subsamples of seeds.

1 lsmi_union(Gn, {n.seeds}b
i=1, d)

2 {n.seeds}b
i=1 = sort n.seeds in decreasing order

3 {sequence_seeds1}n.seeds1
i=1 = sample randomly without replacement n.seeds1

vertices from Gn
4 for i = 1, . . . , n.seeds1 do
5 {LSMI(d)}i = lsmi(Gn, {sequence_seeds1}i, d)
6 end
7 for j = 2, . . . , b do

8 {sequence_seedsj}
n.seedsj
i=1 = sample randomly without replacement n.seedsj

vertices from {sequence_seedsj−1}
n.seedsj−1
i=1

9 end
10 return
1 lsmi(Gn, seed, n.wave)
2 {wave0} = seed
3 for i = 1, . . . , n.wave do
4 let {wavei} be all immediate neighbors of the vertices from the set {wavei−1}
5 eliminate all edges that were used to locate {wavei}
6 end
7 LSMI(n.wave) = {wave0} ∪ . . . ∪ {waven.wave}
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Figure 3: Obtaining a set of patches with b different number of seeds, and waves from 1 to d.

seed) and a list of seeds and their subsamples (in the example above, those are vectors of lengths 10, 5,
and 2 with IDs of the vertices) for constructing smaller patches.

The current version of the LSMI algorithm (Figure 3) pays special attention to counting the edges
to precisely record of the vertices’ degrees. In each patch, estimates of the probabilities for a vertex to
have a certain degree k (k > 0) are obtained with a modified Horvitz–Thompson estimator, whereas
f̂ (0), the probability of vertices with zero degree, is approximated by the proportion of seeds with zero
degree, p̂0. These estimates can be employed to calculate functions of the network degree distribution,
e.g., mean degree µ (Thompson et al., 2016; Gel et al., 2017):

f̂ (0) = p̂0 =
|{ds = 0}|
|{ds}|

,

f̂ (k) =
|{ds = k}|+ (1− p̂0)µ̂s|{dns = k}|k−1

|{ds}|+ µ̂s ∑k>1 |{dns = k}|k−1 , (1)

µ̂(G) = ∑
k>0

k f̂ (k),

where ds are the degrees of the sampled seeds; dns are the degrees of non-seeds; |·| denotes cardinality
of a set; µ̂s is the estimated mean degree based on {ds}:

µ̂s = ∑
k>0

k
|{ds = k}|
|{ds}|

.

Since the probability of non-seed vertices to be included into an LSMI is proportional to their degree,
the estimates f̂ (k) in (1) use information from non-seeds downweighted by k−1.

Using the lsmi_dd function, calculate f̂ (k) from the patch we obtained earlier:

> empdd <- lsmi_dd(patches$lsmi_big, net)
> empdd$mu
[1] 2.40574

> empdd$fk
0 1 2 3 4 5

0.000000000 0.369724254 0.248171075 0.207653348 0.082301632 0.040517727
6 7 8 9
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0.004220597 0.025323579 0.016460326 0.005627462

The output is an object of class 'snowboot' containing the estimates of mean degree and degree
distribution. The length of the latter vector depends on what was the maximal degree (max(k)) of the
vertices included into the current patch. In the example above, max(k) = 9.

Resampling procedure

To quantify uncertainty associated with the sample estimates (1) of network statistics, we apply a
weighted bootstrap procedure. The probability of each non-seed vertex to appear in a bootstrap
sample is assigned a weight of d−1

ns , i.e., reciprocal of the vertex’s degree. We obtain B bootstrap
samples and compute a network statistic on each of them to approximate the distribution of the
sample estimates. Each combination of the number of seeds and waves gives different estimates (1),
hence, the bootstrap procedure is applied separately to patches of different seed-wave combinations.
The bootstrap counterparts of the estimates (1) are as follows:

f̂ ∗(0) = p̂∗0 =
|{d∗s = 0}|
|{d∗s }|

,

f̂ ∗(k) =
|{d∗s = k}|+ (1− p̂∗0)|{d∗ns = k}|

|{d∗s }|+ |{d∗ns}|
, (2)

µ̂∗(G) = ∑
k>0

k f̂ ∗(k),

where {d∗s } and {d∗ns} are the respective sets of bootstrapped seeds and non-seeds.

The empirical bootstrap degree distribution can be obtained using the boot_dd function from the
snowboot package:

> B <- 50
> bootdd <- boot_dd(empdd, B)

A part of the output is a (1 + max(k)) × B matrix of bootstrap estimates f̂ ∗(k), where k =
0, 1, . . . , max(k), and a vector of length B with µ̂∗:

> dim(bootdd$fkb)
[1] 10 50

> length(bootdd$mub)
[1] 50

The bootstrap degree distributions are used to quantify estimation uncertainty. That is, let η

be the parameter of interest (i.e., the population value, µ or f (k)), η̂
j
n and η̂

j∗
n be the respective

conventional and bootstrap estimators of η based on a graph Gn (j = 1, . . . , J are the different seed-
wave combinations for constructing patches). Then the Efron’s 100(1− α)% bootstrap confidence
interval for η:

CI j
percentile =

(
η̂

j∗
n,[Bα/2], η̂

j∗
n,[B(1−α/2)]

)
, (3)

where B is the number of bootstrap samples; η̂
j∗
n,[Bα/2] and η̂

j∗
n,[B(1−α/2)] are the empirical quantiles

from the bootstrap distribution.

Having all bootstrapped values available from the output of boot_dd, we can employ a variety of
methods for calculating bootstrap intervals alternative to the percentile method (3). At this time, the
function boot_ci can be switched to compute “basic” bootstrap intervals (see Equation 5.6 by Davison
and Hinkley, 1997):

CI j
basic =

(
2η̂

j
n − η̂

j∗
n,[B(1−α/2)], 2η̂

j
n − η̂

j∗
n,[Bα/2]

)
. (4)

In our synthetic network example, f̂ (3) = 0.208, and its 95% bootstrap confidence interval (3),
based on the 50 bootstrap samples, is

> CIpercentile <- boot_ci(bootdd)
> CIpercentile$fk_ci[,"3"]

2.5% 97.5%
0.1286842 0.2631579

The outputs of the functions lsmi_dd, boot_dd, and boot_ci are estimates of the network degree
distribution f (k) and mean degree µ based on a single patch. They are recognized as objects of class
'snowboot' and can be plotted with the S3 method plot for this class (Figure 4).
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Figure 4: Results of plotting three different objects of class ‘snowboot’.

Cross-validation with LSMI

Growing snowball samples to higher waves is used in sampling surveys when obtaining new seeds is
prohibitively expensive, for example, in hard-to-reach and “hidden” subpopulations of HIV high risk
individuals. Even if no more new seeds can be obtained, varying the number of seeds in a patch offers
an additional flexibility, so that multiple seed-wave combinations can be evaluated and an optimal
seed-wave combination is selected for a given observed network.

Given bootstrap confidence intervals from patches for each jth seed-wave combination (j =
1, . . . , J), we use Algorithm 2 of Gel et al. (2017) to decide which patch provides confidence intervals
of the best coverage for our statistic η. We approximate the ground truth using proxy samples. A
proxy sample is obtained by resampling (with or without replacement) vertices already used in the
LSMIs, so no new information is needed from the network. From multiple such samples, proxy
statistics η̂proxy are estimated, and then for each j a proportion of proxy statistics within the interval
CI j is calculated. This proportion aims to approximate the true coverage probability of the bootstrap
confidence intervals, so an interval CI jopt with the coverage closer to the nominal level 1− α can be
selected.

Cross-validation is performed automatically by an upper-level function lsmi_cv in the snowboot
package. This function obtains multiple patches for each of the specified seed-wave combinations and
runs cross-validation to select the optimal bootstrap confidence interval based on proxy values for the
mean (by default, 19 proxy samples are obtained, each comprising 30 vertices):

> cv <- lsmi_cv(net, n.seeds = c(10, 20, 30), n.wave = 5, B = 100)
> cv
$`bci`

2.5% 97.5%
1.749167 2.952500

$estimate
[1] 2.387042

$best_combination
n.seed n.wave

10 2

$seeds
[1] 218 323 851 1003 1039 1097 1410 1624 1723 1756

The output of lsmi_cv contains the optimal seed-wave combination (best_combination), the corre-
sponding point estimate (estimate) and bootstrap confidence interval (bci), and, for information
purposes, the IDs of the actual seeds that were used in the patch with the selected seed-wave combi-
nation (seeds). In this example, a fixed increment grid is used for the number of seeds and waves,
however, a user may choose to do a stochastic search in the parameter space.

Why does patchwork bootstrap work and its areas of limitations

Bias vs. variance Many estimators of graph totals based solely on seeds are known to be unbiased
(Frank, 1977). However, variance of such seed-based estimator might be high if the number of seeds is
low. In turn, in many applications sampling more seeds might be prohibitively expensive, e.g., due
to data privacy and cost restrictions (see overview by Illenberger and Flötteröd, 2012 and references
therein). Adding information from non-seeds into the degree estimator increases bias but reduces
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variance. Hence, the choice of optimal number of seeds (egos) and waves of non-seeds in LSMI implies
a classical bias vs. variance trade-off, and we address it using the cross-validation procedure described
above.

Network properties Furthermore, as in many non-network settings, in order to ensure consis-
tency of the bootstrap estimator η̂∗n of the statistic of interest ηn, based on a degree distribution
Fn = { fn(k), k ≥ 0} of a random graph Gn, we typically need to ensure that Fn is a satisfactory
approximation of F as n → ∞. That is, we need to ensure that the empirical degree distribution
Fn cannot be drastically different from the population degree distribution F and shall approach the
population degree distribution F with increasing n, which in turn is a necessary condition for ηn → η
as n → ∞. In addition, F needs to satisfy some invariance properties. Those conditions give rise to
the assumptions for patchwork bootstrap on page 96. Note that while nowadays there are no formal
tests for assessing involution invariance, similarly as there exists no test to assess strong stationarity
in time series, a class of involution invariant graphs includes, for example, such a large subclass as
exchangeable graphs (Lovász, 2012; Orbanz and Roy, 2015). Asymptotic properties of patchwork
bootstrap for η̂∗n for involution invariant graphs are discussed in more details in Gel et al. (2017). In
addition, Thompson et al. (2016) consider the two-phase conditional inference framework to derive
asymptotic properties for patchwork bootstrap estimator of mean degree µ.

Sampling design Finally, we would like to emphasize that properties of bootstrap on networks
largely depend not only on the underlying network topology but on the closely linked question on how
sampling is performed. In this section we focus only on properties of a network degree distribution
and argue that LSMI appears to be a suitable choice (see more discussion in Illenberger and Flötteröd,
2012; Gel et al., 2017). In turn, bootstrap and, generally, finite-sample inference for other network
statistics will typically require adjustment of a sampling design (Kolaczyk, 2009).

Hence, the algorithms of LSMI sampling and estimation realized in the snowboot package target
such network statistics as network degree distribution (probabilities of observing vertices with a
specific degree) and its functions (e.g., mean degree and network density). In turn, the algorithm of
patchwork bootstrap aims to quantify the uncertainty of those estimates.

Switching to other network statistics, such as clustering coefficient or motifs, requires imple-
mentation of different sampling and bootstrap schemes, for example, via combination of patchwork
bootstrap with the algorithm of Ali et al. (2016) (see Orbanz, 2017, for discussion on sampling and
subsampling designs). Hence, this extension constitutes a natural direction for future methodological
research and R code implementation.

Vertex bootstrap

Vertex bootstrap (Figure 5), or the Snijders–Borgatti procedure, is the pioneering approach to non-
parametric bootstrap inference on graphs. Nevertheless, despite its high popularity in social sciences,
vertex bootstrap remains largely unknown in statistics. Vertex bootstrap employs an induced graph
sampling for quantification of standard errors in network density estimation and allows hypothesis
testing on density of two networks. The algorithm assumes availability of the entire network data
upfront and requires resampling of the entire data set and, hence, is limited to relatively small networks
due to computational costs. To the best of our knowledge, there exists no analysis of asymptotic
properties and theoretical guarantees for the Snijders–Borgatti procedure.

We implement vertex bootstrap in the R package snowboot in a function vertboot, which resem-
bles calculations under the option “Network→ Compare densities” of the UCINET software (Borgatti
et al., 2002).

The vertboot function not only generates similar results compared with UCINET, but also returns
results with higher precision and faster run times. In snowboot, the algorithm is written in C++.

Another important improvement is that vertboot allows users to compare statistics of interest for
multiple networks, whereas the number of different networks, T (Figure 5), in UCINET is limited to 1
or 2. Finally, the output of vertboot (Figure 5) is a bootstrapped network, which implies that users
can analyze various network statistics besides the network density.

We demonstrate the vertboot function using prison network data. The data were collected from
67 prison inmates; each inmate could choose as few or as many “friends” as he desired. A direct factor
analysis of these sociometric data was performed by MacRae (1960).

• Get the observed adjacency matrix for the prison network:

> a <- scan("http://vlado.fmf.uni-lj.si/pub/networks/data/ucinet/prison.dat",
+ skip = 4)
> A <- matrix(a, sqrt(length(a)), byrow = TRUE)
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Algorithm 2: Vertex bootstrap
Input : T observed adjacency matrices At (t = 1, . . . , T).
Output : T bootstrapped adjacency matrices A∗t .

1 for t in 1, . . . , T do
2 list = {1, . . . , nrow(At)}
3 list∗ = sample with replacement elements o f list
4 for i in 1, . . . , length(list∗) do
5 ii = list∗[i]
6 for j in 1, . . . , length(list∗) do
7 jj = list∗[j]
8 if ii 6= jj then
9 A∗t [i, j] = At[ii, jj]

10 end
11 else
12 ii = random sample f rom list
13 jj = random sample f rom list
14 while ii = jj do
15 jj = random sample f rom list
16 end
17 A∗t [i, j] = At[ii, jj]
18 A∗t [j, i] = At[ii, jj]
19 end
20 end
21 end
22 end

> density_obs <- graph.density(graph_from_adjacency_matrix(A))
> densities_se <- sd(densities)

• Obtain a 95% bootstrap confidence interval for the population density:

> boot_ci <- quantile(densities, c(0.025, 0.975))
> boot_ci

2.5% 97.5%
0.03301673 0.05178652

We can use the outputs of Algorithm 2 to build bootstrap confidence intervals for other statistics:

• Mean degree:

> mu_star <- sapply(1:B, function(x)
+ mean(degree(graph_from_adjacency_matrix(Astar[[x]]), mode = "in")))
> quantile(mu_star, c(0.025, 0.975))

2.5% 97.5%
2.179104 3.417910

• Transitivity:

> net_transitivity <- sapply(1:B, function(x)
+ transitivity(graph_from_adjacency_matrix(Astar[[x]]), type = "undirected"))
> quantile(net_transitivity, c(0.025, 0.975))

2.5% 97.5%
0.08890533 0.21852252

Simulation studies

Light- and heavy-tailed degree distributions

In this section, we demonstrate the performance of the patchwork bootstrap algorithm for inference
on mean degree of simulated graphs. We consider random graphs of orders 1000, 5000, and 10000 that
are constructed from two polylogarithmic distributions of the same mean (population mean degree
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Figure 5: Vertex bootstrap.

• Apply vertex bootstrap (Figure 5) B times to generate B bootstrapped adjacency matrices
(networks):

> set.seed(1)
> B <- 500
> Astar <- vertboot(A, B)

• Get the densities of B bootstrapped networks:

> library(igraph)
> densities <- sapply(1:B, function(x)
+ graph.density(graph_from_adjacency_matrix(Astar[[x]])))

• Estimate density of the observed network and bootstrap standard error of the estimates:

> density_obs <- graph.density(graph_from_adjacency_matrix(A))
> densities_se <- sd(densities)

• Obtain a 95% bootstrap confidence interval for the population density:

> quantile(densities, c(0.025, 0.975))
2.5% 97.5%

0.03301673 0.05178652

We can use the outputs of the vertex bootstrap (Figure 5) to build bootstrap confidence intervals
for other statistics:

• Mean degree:

> mu_star <- sapply(1:B, function(x)
+ mean(degree(graph_from_adjacency_matrix(Astar[[x]]), mode = "in")))
> quantile(mu_star, c(0.025, 0.975))

2.5% 97.5%
2.179104 3.417910

• Transitivity:

> net_transitivity <- sapply(1:B, function(x)
+ transitivity(graph_from_adjacency_matrix(Astar[[x]]), type = "undirected"))
> quantile(net_transitivity, c(0.025, 0.975))

2.5% 97.5%
0.08890533 0.21852252
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Simulation studies

Light- and heavy-tailed degree distributions

In this section, we demonstrate the performance of the patchwork bootstrap algorithm for inference
on mean degree of simulated graphs. We consider random graphs of orders 1000, 5000, and 10000 that
are constructed from two polylogarithmic distributions of the same mean (population mean degree
µ(G) = 2.67 for all simulated networks), but with different tail behavior. Particularly, polylogarithmic
distribution with parameters δ = 0.001, λ = 2.13 has a light tail, whereas polylogarithmic distribution
with parameters δ = 0.987, λ = 5 has a heavy tail (Figure 6).10−3
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Figure 6: Polylogarithmic distributions with the same mean (µ = 2.67), but different thickness of tails.
The graphs are log-log graphs, where both axes use a logarithmic scale.

The results of our simulation study (Table 1) show a good performance of the patchwork bootstrap
approach with automatic selection of patch sizes (i.e., seed-wave combinations) using the cross-
validation procedure. Thus, the observed coverage probabilities of the confidence intervals are close
to the nominal level 95% for both light- and heavy-tailed networks. At the same time, confidence
intervals in the considered light-tailed networks are approximately 25% narrower. Time complexity of
the patchwork procedure on any random graph is O([|ds| · µ̂s]|dns |).

Network order n

Distribution Mean degree µ(G) 1000 5000 10000

polylog(δ = 0.001, λ = 2.13) 2.67 97.7% (0.794) 96.4% (0.812) 97.7% (0.805)
polylog(δ = 0.987, λ = 5) 2.67 98.6% (1.051) 98.7% (1.078) 97.7% (1.069)

Table 1: Observed coverage probabilities of 95% patchwork bootstrap confidence intervals for the
mean degree (average interval width is in parentheses). These intervals come from the optimal
seed-wave combination (one for each random graph) defined via a cross-validation over a grid of 20
combinations: waves from 1 to 5; and number of seeds 20, 30, 40, and 50. In cross-validation, proxy
mean degrees are estimated 13 times from 100 vertices sampled without replacement from the patch
data. The number of bootstrap samples, B, is 500. The experiment uses 1000 Monte Carlo simulations,
carried out as parallel processes on a distributed computing cluster.

Vertex removal

In this section, we randomly remove vertices (and edges emanating from those vertices) from the
simulated networks prior to applying the patchwork and vertex bootstrap methods for the inference
on mean degree. This allows us to assess the methods’ robustness and capabilities of providing reliable
inference when part of the network information is missing. Our goal is to estimate when performance
of the methods decreases significantly.

As Table 2 shows, when only 1% of the vertices are removed, both methods deliver confidence
intervals with coverage close to the declared 95% level. When 2% of network vertices are removed,
coverage probabilities of vertex bootstrap intervals decline to 81.8% and 89.8% for light- and heavy-
tailed networks, respectively. The performance of vertex bootstrap further rapidly declines as more
vertices are removed, and the decline is more severe for the light-tailed polylogarithmic distribution.
Remarkably, patchwork bootstrap performs consistently well on both distributions (observed coverage
probabilities are close to the nominal level), even when 5% of the vertices are removed (Table 2). Using
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the example of the light-tailed polylogarithmic distribution, we show that coverage of vertex bootstrap
declines to zero when 10% or 15% of vertices are removed, while respective coverage of the patchwork
bootstrap intervals is 93.9% and 85.1%, respectively (Figure 7).

Mean Number of vertices removed

Distribution degree µ(G) Method 1% 2% 3% 5%

polylog(δ = 0.001, λ = 2.13) 2.67 Patchwork 96.0% 97.8% 97.6% 97.5%
(0.807) (0.801) (0.806) (0.795)
[0.187] [0.194] [0.191] [0.196]

Vertex bootstrap 96.3% 81.8% 54.7% 5.8%
(0.170) (0.170) (0.169) (0.169)
[0.090] [0.091] [0.090] [0.090]

polylog(δ = 0.987, λ = 5) 2.67 Patchwork 99.4% 99.0% 98.9% 99.4%
(1.072) (1.062) (1.062) (1.032)
[0.230] [0.239] [0.249] [0.237]

Vertex bootstrap 96.3% 89.8% 74.0% 25.7%
(0.212) (0.211) (0.211) (0.209)
[0.113] [0.113] [0.113] [0.112]

Table 2: Observed coverage probabilities of 95% nonparametric bootstrap confidence intervals. Aver-
age interval width is in parentheses, standard errors are in square brackets. Network order n = 5000;
number of bootstrap samples B = 500; 1000 Monte Carlo simulations. For the patchwork method,
J = 20 seed-wave combinations: number of seeds 20, 30, 40, and 50; number of neighbors from 1 to 5.
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Figure 7: Observed coverage probabilities for 95% confidence intervals for network mean degree,
delivered by the two bootstrap methods when different numbers of vertices are removed from the
network. Network order n = 5000; degree distribution polylog(δ = 0.001, λ = 2.13); B = 500; 1000
Monte Carlo simulations.

Hence, the patchwork bootstrap approach is a competitive alternative when analyzing large
complex networks, both in terms of computational speed and reliability of inference when a part of the
network information is missing. Moreover, the patchwork method is both computationally efficient
and information-greedy, i.e., only a small proportion of the network data is required, the procedure
subsets the sampled seeds to consider patches of different sizes and re-uses information from the
patches in the cross-validation procedure. In contrast, the vertex bootstrap employs information of the
whole target network so that its time complexity is O(n2). At the same time, for small networks with
all the network information being available upfront, the vertex bootstrap is the preferred method as it
provides noticeably sharper confidence intervals under the same level of calibration.

Case studies

In this section, we illustrate utility of the snowboot package for analysis of airline networks, power
grids, and the David Copperfield network.
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The David Copperfield network

We start from a smaller network, namely, the David Copperfield network collected by Newman (2006).
It examines the lexicon of Charles Dickens’s classic 19th century novel. The network vertices are
common nouns and adjectives; undirected edges connect adjacent words (Figure 8).
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Figure 8: Lexical network: graph of nouns and adjectives found in the novel David Copperfield.

The number of vertices and edges in the David Copperfield network are 112 and 425, respectively.
This is a relatively small network, so the vertex bootstrap algorithm is suitable for analysis. Some basic
network statistics of the David Copperfield network are presented in Table 3.

Order Density Number of edges Mean degree Clustering coefficient

112 0.068 425 7.589 0.157

Table 3: Parameters of the David Copperfield network.

Perform the vertex bootstrap in the following steps:

• Load the network data and obtain an adjacency matrix:

> library(igraph)
> graph_david <- read.graph(
+ "http://networkdata.ics.uci.edu/data/adjnoun/adjnoun.gml", format = "gml")
> A <- as.matrix(as_adjacency_matrix(graph_david))

• Use vertex bootstrap (Figure 5) to obtain bootstrapped adjacency matrices:

> library(snowboot)
> B <- 500
> set.seed(1)
> Astar <- vertboot(A, B)

• Use these bootstrapped networks to calculate 95% bootstrap confidence intervals for the density
and bootstrap standard error:

> boot_density <- sapply(1:B, function(x)
+ graph.density(graph_from_adjacency_matrix(Astar[[x]])))
> CIvertboot <- quantile(boot_density, c(0.025, 0.975))
> CIvertboot

2.5% 97.5%
0.05473174 0.08579271

> bootstrap_standard_error <- sd(boot_density)
> bootstrap_standard_error
[1] 0.007681788
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That is, we find that the resulting 95% confidence interval from the vertex bootstrap is (0.055,
0.086); the interval contains the observed density of 0.068. Now let us apply the patchwork
bootstrap to the David Copperfield network.

• Use the patchwork bootstrap to calculate 95% bootstrap confidence intervals for the density:

> set.seed(5)
> igraph_david <- igraph_to_network(graph_david)
> CIpatchwork <- lsmi_cv(igraph_david, n.seeds = c(3:5), n.wave = 1, B = B)
> CIpatchwork$bci/(igraph_david$n - 1)

2.5% 97.5%
0.04305405 0.08957658

We find that the 95% confidence interval from the patchwork bootstrap also contains the observed
density of 0.068. However, the patchwork bootstrap CI is wider than the vertex bootstrap CI (i.e., 0.047
for patchwork vs. 0.031 for vertex procedure). At the same time, the patchwork bootstrap used only
about 31.4% of the available vertices.

Larger networks

Flight networks of the airline alliances

With constantly increasing costs of operation and rigid legal restrictions on ownership of national flag
carriers, no single airline can provide a comprehensive global network, which is vital to its success. An
urgent need for expansion propels airlines to effectively cooperate on multiple levels: from interlining
(combining flights from different airlines in one travel itinerary) to joint frequent flyer programs, to
sharing revenue, costs, and benefits (Pearce and Doernhoefer, 2011).

Nowadays, three major passenger airline alliances (Star Alliance, Oneworld, and SkyTeam) share
more than 70% of the world market. There exists a constant, fierce competition in customer acquisition
and retention among these three alliances, and one of its key factors is claimed to be a route map
(number of served destinations and better connections). Traditional indicators, such as total passenger
enplanements or number of aircraft movements, fail to capture the competitiveness of airline networks
(Burghouwt and Redondi, 2013). However, for a fixed network structure, e.g., with hubs and spokes,
dense air flight networks (with a high mean degree) are more convenient, since they further minimize
the required number of connections. The International Air Transport Association (IATA) study of
European Union countries showed that a 10% rise of the number of destinations served and/or the
frequency of service can increase long-run gross domestic product by 1.1% (Smyth and Pearce, 2006).

We then evaluate densities of the three flight networks (Star Alliance, SkyTeam, and Oneworld)
to assess which alliance offers the most convenient travel network to its passengers. Since flight
connections are easier if a transfer occurs within one airport, we focus on airport networks. This
approach treats all airports as separate vertices even some of them have the same service area (for
example, Toronto Pearson International Airport and Billy Bishop Toronto City Airport).

To construct the networks, we obtained the crowdsourced air flights data from OpenFlights.org
on October 23, 2013. At the time of analysis, Star Alliance, Oneworld, and SkyTeam included 28, 13,
and 19 members, respectively. We used the airline codes to select all flights for each airline alliance,
but removed self-loops and the cases with missing airport identifications (up to 0.4% of the records).
To eliminate the repeated entries, including the codeshare flights within each alliance, we kept only
unique links between airports. About 11.0% of all remaining vertices had different in-degree and
out-degree, but we neglected the directions for simplicity. Thus, for each airline alliance, we obtained
a network where the vertices stand for airports, and each unweighted undirected edge represents
existing flight connection at least in one direction (Figure 9).

Table 4 reports the networks orders n and network densities d̂(Gn) estimated on all observed
data along with the results of the patchwork bootstrap. The network order (i.e., number of served
airports) is close to 1,000 for all three alliances. (Given a relatively high order of the airline networks,
we do not consider the vertex bootstrap in this case study.) The optimal seed-wave combinations
suggested by the cross-validation procedure differ among the networks: 20 seeds and 1 wave for
SkyTeam, 30 seeds and 1 wave for Star Alliance, and 40 seeds and 1 wave for Oneworld. The width
of the confidence interval for Star Alliance and Oneworld is only 0.00296 and 0.00321, respectively,
compared with 0.00497 for SkyTeam. Since all three confidence intervals overlap with each other,
we conclude that currently there exists no significant difference in flight connections offered by the
three major airline alliances. Thus, the loyalty of frequent fliers and acquisition of new customers are
likely to be attributed to other factors, such as customer service, loyalty program benefits, ticket prices,
and availability of flights in particular regions (e.g., Figure 9 shows that Oneworld network provides
almost no service in African airports).
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(a) Star Alliance

(b) SkyTeam

(c) Oneworld

Figure 9: Airport networks of the airline alliances.

United States and Germany power grids

The power grid serves as the backbone of the critical infrastructure sector and is essential for today’s
society as an enabling infrastructure. A combination of three substations, i.e., generator, transmission,
and distribution, connected by high voltage transmission lines, provide the United States and Germany
with electrical power people so heavily rely on. As with many other large scale infrastructures, the
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Optimal 95% confidence bounds
combination for the density d(G)

Network n d̂(Gn) Seeds Waves Lower Upper

Star Alliance 1289 0.00621 30 1 0.00492 0.00788
SkyTeam 1040 0.00736 20 1 0.00561 0.01058

Oneworld 914 0.00655 40 1 0.00533 0.00854

Table 4: The 95% bootstrap confidence intervals for the density of airline alliance networks, replicating
connections of the airports (vertices) with the flights of member airlines (edges). Considered 12
seed-wave combinations: waves from 1 to 3, seeds 20, 30, 40, and 50. Number of bootstrap resamples
is 500 per each combination. Cross-validation is based on a random selection of 100 vertices 10 times.

power grid serves users who may notice its presence and realize its importance only when the system
fails in some way. One of the main issues with the system is that failures or disruptive events like
hurricanes, earthquakes, and attacks, can cause cascading failures in a power grid. As the power grids
increase in size and complexity, it is of a paramount importance to study their vulnerability.

To better understand the effects of power system failures, the power grids can be analyzed from the
perspective of random networks. In this case study, we consider two power grids that are represented
as undirected networks, that is, the power grids of the western states of the United States (Watts and
Strogatz, 1998) and Germany (Matke et al., 2016). Each edge represents a power supply line and vertex
is a generator, a transformer, or a substation (Figure 10).

(a) USA (b) Germany

Figure 10: Power grids of the western states of the United States and Germany. The colors show
network modules; connections between the vertices within modules are denser than between vertices
from different modules.

Centrality statistics are one of the most widely explored attributes of a power grid network. Some
studies focus on the relationship between various centrality statistics and resilience of the power grid
networks (Pagani and Aiello, 2013). Another potential indicator of power system robustness and
resilience is network density (Cuadra et al., 2015). In addition, Sóle et al. (2008) and Rosas-Casals and
Corominas-Murtra (2009) propose to use a characteristic parameter γ, based on fitting an exponential
distribution to an empirical cumulative distribution of each grid as a classifier of grid fragility. That
is, the network is robust if γ < 1.5 and is fragile otherwise. In this study, we would like to examine
the difference in fragility properties of the power grids in Germany and the western states of the
United States, in terms of the γ parameter and the proportion of distribution stations in high-voltage
networks. Given a relatively high order of the networks, the vertex bootstrap is not feasible, and we
apply the patchwork bootstrap to compare the two power grids (see Table 5). We find that both power
grids deliver the characteristic parameter γ̂ of higher than 1.5, that is, 2.09 and 2.62 for the US and
Germany, respectively, and hence both grids shall be classified as fragile. However, the respective 90%
patchwork bootstrap confidence intervals do not overlap, and we can conclude that the US power
grid in the western states tends to be less fragile than the German power grid. Remarkably, the 90%
confidence intervals for densities of the two networks also do not overlap, hence, indicating that there
likely exists a significant difference in connectivity of the two power grid networks.
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While it is premature to conclude that the Western US power grid system is more robust than the
German power system due to its higher sparsity, especially given the lack of a uniformly accepted
notion of power system fragility and robustness (Pagani and Aiello, 2013; Cuadra et al., 2015; Dey
et al., 2017; Islambekov et al., 2018), it is reasonable to conclude that the two systems exhibit significant
differences in their structure. In turn, the bootstrap methodology provides a route how power grids
and their network properties can be systematically evaluated and compared in a framework of
statistical hypothesis testing.

90% confidence bounds
γ d(G)

Power grid network n γ̂ d̂(Gn) Lower Upper Lower Upper

United States 4941 2.08943 0.00054 1.75241 2.12021 0.00048 0.00056
Germany 523 2.62055 0.00642 2.20408 2.78395 0.00586 0.00692

Table 5: The 90% bootstrap confidence intervals for the fragility parameter γ and density d(G) of two
power grid networks. Considered 20 seed-wave combinations: waves from 1 to 5, seeds 20, 30, 40,
and 50. Number of bootstrap resamples is 500 per each combination. Cross-validation is based on a
random selection of 100 vertices 13 times.

Conclusion

In this paper we discuss utility and implementation of the two bootstrap methods for nonparametric
inference on complex networks, that is, patchwork bootstrap of Thompson et al. (2016) and Gel et al.
(2017) and vertex bootstrap of Snijders and Borgatti (1999). We primarily focus on developing inference
on network degree distribution and its functions, e.g., mean and density. Furthermore, we perceive the
observed network data as a single realization of some “true” unobserved network, and our target is to
draw statistical inference in a model-free data-driven way, given only this single network realization.
While there is an ever increasing interest in nonparametric inference on complex networks and despite
the fact that the vertex bootstrap has been implemented in UCINET software for social network
analysis for more than a decade, to our knowledge, there exists no single implementation of bootstrap
methods on graphs in R. Our new package snowboot fills this gap and offers a flexible data-driven
alternative for parametric analysis of complex networks. Furthermore, snowboot is fully compatible
with igraph, and provides a number of options, such as Labeled Snowball Sampling with Multiple
Inclusions and cross-validation on graphs – the functionality of standalone interest for graph mining
and network analysis.
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revengc: An R package to Reverse
Engineer Summarized Data
by Samantha Duchscherer, Robert Stewart, and Marie Urban

Abstract Decoupled (e.g. separate averages) and censored (e.g. > 100 species) variables are continually
reported by many well-established organizations, such as the World Health Organization (WHO),
Centers for Disease Control and Prevention (CDC), and World Bank. The challenge therefore is to infer
what the original data could have been given summarized information. We present an R package that
reverse engineers censored and/or decoupled data with two main functions. The cnbinom.pars()
function estimates the average and dispersion parameter of a censored univariate frequency table. The
rec() function reverse engineers summarized data into an uncensored bivariate table of probabilities.

Introduction

The revengc R package was originally developed to help model building occupancy (Stewart et al.,
2016). Household size and area of residential structures are typically found in any given national
census. If a census revealed the raw data or provided a full uncensored contingency table (household
size × area), computing interior density as people per area would be straightforward. However,
household size and area are often reported as decoupled variables (separate univariate frequency
tables, average values, or a combination of the two). Furthermore, if a contingency table is provided,
it typically left (<, ≤), right (>, ≥, +), and interval (−) censored. This summarized information is
problematic for numerous reasons. How can a people per area ratio be calculated when no affiliation
between the variables exist? If a census reports a household size average of 5.3, then how many houses
are there with 1 person, 2 people, . . . , 10 people? If a census reports that there are 100 houses in an
area of 26−50 square meters, then how many houses are in 26, 27, . . . , 50 square meters?

A tool that approximates negative binomial parameters from a censored univariate frequency table
as well as estimates interior cells of a contingency table governed by negative binomial and/or Poisson
marginals can also be useful for other areas ranging from demographic and epidemiological data
to ecological inference problems. For example, population and community ecologists could unpack
censored organism counts or average life expectancy values. Moreover, other summarized examples
include the average number of births, the number of new disease cases, the number of mutations in a
gene or average mutation rate, etc. We attempt to accommodate for various application of count data
by offering five scenarios that can be reverse engineered:

1. cnbinom.pars() - An univariate frequency table estimates an average and dispersion parameter

2. rec() - Decoupled averages estimates an uncensored contingency table of probabilities

3. rec() - Decoupled frequency tables estimates an uncensored contingency table of probabilities

4. rec() - An average and frequency table estimates an uncensored contingency table of probabili-
ties

5. rec() - A censored contingency table estimates an uncensored contingency table of probabilities

This paper proceeds with our reverse engineering methodology for the two main functions,
cnbinom.pars() and rec(). We provide an in-depth analysis of how we implemented both the
negative binomial and Poisson distribution as well as the truncdist (Nadarajah and Kotz, 2006;
Novomestky and Nadarajah, 2016) and mipfp R package (Barthélemy and Suesse, 2018a,b). Since the
revengc package has specific input requirements for both cnbinom.pars() and rec(), we continue
with an explanation of how to format the input tables properly. We then provide coded examples
that implements revengc on national census data (household size and area) and end with concluding
remarks.

Methodology: cnbinom.pars()

The methodology for the cnbinom.pars() function is relatively straightforward. To estimate an average
µ and dispersion r parameter, a censored frequency table is fit to a negative binomial distribution using
a maximum log-likelihood function customized to handle left (<, ≤), right (>, ≥, +), and interval
(−) censored data. To show an example, first recall the negative binomial distribution P(X = x | µ, r)
parameterized as a distribution of the number of failures X before the rth success in independent trials
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(1). With success probability p in each trail, r ≥ 0 and 0 ≤ p ≤ 1 (Lindén and Mäntyniemi, 2011).

P(X = x|r, p) =
(

x + r− 1
x

)
pr(1− p)y ≡ P(X = x|r, µ)

(
x + r− 1

x

)(
r

µ + r

)r ( µ

µ + r

)y

E(X) =
r(1− p)

p
= µ

V(X) =
r(1− p)

p2 = µ +
µ2

r

(1)

Now consider an arbitrary censored frequency table x that has a combination of left censored (x < c),
interval censored (a ≤ x ≤ b), and right censored (x > d) data (i.e. a, b, c, and d represent the censoring
limits). The optimal µ and r parameter for x maximizes its custom log-likelihood function (2).

L (µ, r|x)log =

+ ∑
x<c

log (P (x < c|µ, r))

+ ∑
a≤x≤b

log (P (a ≤ x ≤ b|µ, r))

+ ∑
x>d

log (P (x > d|µ, r))

(2)

Methodology: rec()

Overview

rec() is a statistical approach that estimates the probabilities of a ’true’ contingency table given
summarized information: two averages, two univariate frequency tables, a combination of an average
and univariate frequency table, and a censored contingency table. Figure 1 presents a methodology
workflow.

Negative Binomial and Poisson Distribution

When only an average is provided, we assume the average and variance are equal and rely on a
Poisson distribution (i.e. the probability of observing x events in a given interval is given by Equation
3). We understand that there are many cases where data has more variation than what is indicated by
the Poisson distribution (e.g. overdispersion). However, with limited data, the Poisson distribution
is implemented due to its convenient property of having only one parameter, λ = average. For the
cases with more data (e.g. univariate frequency table(s) or censored contingency table), we account for
dispersion by relying on the more flexible negative binomial distribution (1). Hence, in these cases, the
cnbinom.pars() function estimates the optimal average µ and dispersion r parameters.

P (X = x) = e−λ λx

x!
E(X) = λ

V(X) = λ

(3)

The truncdist R package

With the negative binomial (µ and r) and/or Poisson (λ) parameters, rec() calculates truncated distri-
butions to represent uncensored row (Xlowerbound:Xupperbound) and column (Ylowerbound:Yupperbound)
margins. Calculations use the truncdist R package, and to provide a reference, Equation 4 gives the
probability density function of a truncated X distribution over the interval (a,b] (i.e. the negative
binomial and/or Poisson probability density function is represented by g(·) and their corresponding
cumulative distribution function is denoted by G(·)). Note, truncated distributions are very practical
in this context because the distributions (margins) are restricted to a desired row and column length.

fX(x) =

{
g(x)

G(b)−G(a) , if a < x ≤ b
0, otherwise

(4)

The (a, b] interval needed for both X (row of contingency table) and Y (column of contingency
table) can be selected intuitively or with a brute force method. If rec() outputs a final contingency
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Figure 1: Workflow of rec() function.
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table with higher probabilities near the edge(s) of the table, then it would make sense to increase
the range of the bound(s). For both variables, this would just involve making the lower bound less,
making the upper bound more, or doing a combination of the two. The opposite holds true as well. If
the final contingency table in rec() has very low probabilities near the edge(s) of the table, the range
of the particular bound(s) should be decreased.

The mipfp R package

rec() utilizing the mipfp R package to calculate cross tabulation probability estimates, and mipfp
requires fixed marginals, a seed estimation method, and a seed matrix. The row and column marginals
are uncensored truncated distributions (see The truncdist R package section) while opportunities for
sensitivity analysis are presented with the seed estimation method and seed matrix. For example,
mipfp offers four seed estimation methods (Table 1); the default method in rec() is the iterative
proportional fitting procedure. Although the algorithms vary, they all adjust cell proportions pxy in a
X×Y contingency table to known marginal probabilities, πx+ and π+y (i.e. all interior cell estimates
π̂xy are subject to marginal constraints (5)). For an expanded explanation of these methods, please
refer to Little and Wu (1991) and Suesse et al. (2017).

∑
y

π̂x+ (x = 1, ..., X)

∑
x

π̂+y (y = 1, ..., Y)
(5)

Method Calculate π̂xy by

Iterative proportional fitting procedure - ipfp Minimizing ∑x ∑y π̂xyln(π̂xy/pxy)
Maximum likelihood method - ml Maximizing ∑x ∑y pxyln(π̂xy)

Minimum chi-squared - chi2 Minimizing ∑x ∑j(π̂xy − pxy)2/π̂xy
Weighted least squares - lsq Minimizing ∑x ∑y(pxy − π̂xy)2/pxy

Table 1: Algorithms to generate estimated cross tabulations.

The seed matrix input can be arbitrary, but rec() provides reasonable defaults. For the decoupled
cases (two averages, two tables, or a combination of a table and average), the absence of additional
information makes it difficult to say much about the joint distribution. Therefore, rec() assumes
independence between the variables, which is equivalent in making the X×Y seed a matrix of ones;
rec() converts the matrix of ones to probabilities. When a censored contingency table is provided,
independence does not have to be assumed and the interior cells can be weighted. rec() creates the
default seed matrix by first repeating probability cells, which correspond to the censored contingency
table, for the newly created and compatible uncensored cross tabulations. Just as in the decoupled
cases, the cell values in this matrix are also changed to probabilities. To see an example of the default
seed for a censored contingency table, see Worked examples section.

Usage

cnbinom.pars()

The cnbinom.pars() function has the following format:

cnbinom.pars(censoredtable)

where censoredtable is a frequency table (censored and/or uncensored). A data.frame and matrix are
acceptable classes. See Data entry section for formatting. The output is a list consisting of an estimated
average µ and dispersion parameter r.

rec()

The rec() function has the following format:

rec(X, Y, Xlowerbound, Xupperbound, Ylowerbound, Yupperbound,
seed.matrix, seed.estimation.method)
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where

• X: Argument can be an average, a univariate frequency table, or a censored contingency table.
The average value should be a numeric class while a data.frame or matrix are acceptable table
classes. Y defaults to NULL if X argument is a censored contingency table. See Data entry section
for formatting.

• Y: Same description as X but this argument is for the Y variable. X defaults to NULL if Y argument
is a censored contingency table.

• Xlowerbound: A numeric class value to represent the left bound for X (row in contingency
table). The value must strictly be a non-negative integer and cannot be greater than the lowest
category/average value provided for X (e.g. the lower bound cannot be 6 if a table has ’< 5’ as a
X or row category).

• Xupperbound: A numeric class value to represent the right bound for X (row in contingency
table). The value must strictly be a non-negative integer and cannot be less than the highest
category/average value provided for X (e.g. the upper bound cannot be 90 if a table has ’> 100’
as a X or row category).

• Ylowerbound: Same description as Xlowerbound but this argument is for Y (column in contin-
gency table).

• Yupperbound: Same description as Xupperbound but this argument is for Y (column in contin-
gency table).

• seed.matrix: An initial probability matrix to be updated. If decoupled variables is provided
the default is a Xlowerbound:Xupperbound by Ylowerbound:Yupperbound matrix with interior
cells of 1, which are then converted to probabilities. If a censored contingency table is provided
the default is the seedmatrix()$Probabilities output.

• seed.estimation.method: A character string indicating which method is used for updating the
seed.matrix. The choices are: "ipfp", "ml", "chi2", or "lsq". Default is "ipfp".

The output is a list containing an uncensored contingency table of probabilities (rows range from
Xlowerbound:Xupperbound and the columns range from Ylowerbound:Yupperbound) as well as the row
and column parameters used in making the margins for the mipfp R package.

Data entry

The input tables are formatted to accommodate most open source data. The univariate frequency table
used in cnbinom.pars() and/or rec() needs to be a data.frame or matrix class with two columns and
n rows. The categories must be in the first column with the frequencies or probabilities in the second
column. Row names should never be placed in this table (the default row names should always be
1:n). Column names can be any character string. The only symbols accepted for censored data are
listed below.

• Left censored symbols: <, ≤, L, and LE

• Interval censored symbols: − and I (symbol has to be placed in the middle of the two category
values)

• Right censored symbols: >, ≥, +, G, and GE

• Uncensored symbol: no symbol (only provide category value)

Note, less than or equal to (≤ and LE) is not equivalent to less than (< and L) and greater than or
equal to (≥, +, and GE) is not equivalent to greater than (> and G). revengc also uses closed intervals.
Table 2 shows three different examples that all give the same cnbinom.pars() output.

The censored contingency table for rec() has a similar format. The censored symbols should
follow the requirements listed above. The table’s class can be a data.frame or a matrix. The column
names should be the Y category values. The first column should be the X category values and
the row names can be arbitrary. The inside of the table are X × Y frequencies or probabilities; the
tabulations must be non-negative if the seed.estimation.method = "ipfp" or strictly positive if the
seed.estimation.method is "ml", "lsq", or "chi2". The row X and column Y marginal totals need to
be placed in this table. The top left, top right, and bottom left corners of the table should be NA or
blank. The bottom right corner can be a total cross tabulation sum value, NA, or blank. Table 3 is a
formatted example.
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Category Frequency

≤ 6 11800
7-12 57100
13-19 14800
20+ 3900

Category Frequency

LE 6 11800
7 I 12 57100
13 I 19 14800
GE 20 3900

Category Frequency

< 7 11800
7 I 12 57100
13-19 14800
≥ 20 3900

Table 2: Examples of correctly formatted univariate tables.

NA <20 20-30 >30 NA
<5 18 19 8 45
5-9 13 8 12 33
≥10 7 5 10 21
NA 38 32 31 NA

Table 3: Example of a correctly formatted bivariate table.

Formatting tables in R

The code below shows how to format these tables properly in R.

# create univariate table
# note univariatetable.csv is a preloaded example that provides the same table
univariatetable <- cbind(as.character(c("1-2", "3-4", "5-6", "7-8", ">=9")),
c(16.2, 41.7, 29.0, 9.0, 4.1))

# create contingency table
# note contingencytable.csv is a preloaded example that provides the same table
# fill a matrix
contingencytable <- matrix(c(
6185, 9797, 16809, 11126, 6156, 3637, 908, 147, 69, 4,
5408, 12748, 26506, 21486, 14018, 9165, 2658, 567, 196, 78,
7403, 20444, 44370, 36285, 23576, 15750, 4715, 994, 364, 136,
4793, 17376, 44065, 40751, 28900, 20404, 6557, 1296, 555, 228,
2354, 11143, 32837, 33910, 26203, 19301, 6835, 1438, 618, 245,
1060, 6038, 19256, 21298, 17774, 13864, 4656, 1039, 430, 178,
273, 2521, 9110, 11188, 9626, 7433, 2608, 578, 196, 112,
119, 1130, 4183, 5566, 5053, 3938, 1367, 318, 119, 66,
33, 388, 1707, 2367, 2328, 1972, 719, 171, 68, 37,
38, 178, 1047, 1672, 1740, 1666, 757, 193, 158, 164),
nrow = 10, ncol = 10, byrow = TRUE)

# calculate row marginal
rowmarginal <- apply(contingencytable, 1, sum)

# add row marginal to matrix
contingencytable <- cbind(contingencytable, rowmarginal)

# calculate column marginal
colmarginal <- apply(contingencytable, 2, sum)

# add column marginal to matrix
contingencytable <- rbind(contingencytable, colmarginal)

# remove row names
row.names(contingencytable)[row.names(contingencytable) == "colmarginal"]<-""

# add row names as first column
contingencytable <- data.frame(c("1", "2", "3", "4", "5", "6", "7", "8", "9",
"10+", NA), contingencytable)
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# add column names
colnames(contingencytable) <- c(NA, "<20", "20-29", "30-39", "40-49",
"50-69", "70-99", "100-149", "150-199", "200-299", "300+", NA)

Worked examples

Nepal

A Nepal Living Standards Survey (Government of Nepal, National Planning Commission Secretariat,
2011) provides both a censored table and average for urban household size. We use the censored table
to show that the cnbinom.pars() function calculates a close approximation to the provided average
household size (4.4 people). Note, there is overdispersion in the data.

# revengc has the Nepal household table preloaded as univariatetable.csv
cnbinom.pars(censoredtable = univariatetable.csv)

Indonesia

In 2010, the Population Census Data - Statistics Indonesia provided over 60 censored contingency
tables containing household member size by floor area of dwelling unit (square meter) (Statistics
Indonesia, 2010). The tables are separated by province, urban, and rural. Here we use the rural Aceh
Province table to show the multiple coding steps and functions implemented inside rec(). This allows
the user to see a methodology workflow in code form. The final uncensored household size by area
estimated probability table, which implemented the "ipfp" seed estimation method and default seed
matrix, has rows ranging from 1 (Xlowerbound) to 15 (Xupperbound) people and columns ranging from
10 (Ylowerbound) to 310 (Yupperbound) square meters.

# Packages needed if doing workflow of rec() step by step
library(stringr)
library(dplyr)
library(mipfp)
library(truncdist)
library(revengc)

# data = Indonesia's rural Aceh Province censored contingency table
# preloaded in revengc as 'contingencytable.csv'
contingencytable.csv

# provided upper and lower bound values for table
# X = row and Y = column
Xlowerbound = 1
Xupperbound = 15
Ylowerbound = 10
Yupperbound = 310

# table of row marginals provides average and dispersion for x
row.marginal.table <- row.marginal(contingencytable.csv)
x <- cnbinom.pars(row.marginal.table)
# table of column marginals provides average and dispersion for y
column.marginal.table <- column.marginal(contingencytable.csv)
y <- cnbinom.pars(column.marginal.table)

# create uncensored row and column ranges
rowrange <- Xlowerbound:Xupperbound
colrange <- Ylowerbound:Yupperbound

# new uncensored row marginal table = truncated negative binomial distribution
uncensored.row.margin <- dtrunc(rowrange, mu=x$Average, size = x$Dispersion,
a = Xlowerbound-1, b = Xupperbound, spec = "nbinom")

# new uncensored column margin table = truncated negative binomial distribution
uncensored.column.margin <- dtrunc(colrange, mu=y$Average, size = y$Dispersion,
a = Ylowerbound-1, b = Yupperbound, spec = "nbinom")
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# sum of truncated distributions equal 1
# margins need to be equal for mipfp
sum(uncensored.row.margin)
sum(uncensored.column.margin)

# create seed of probabilities (rec() default)
seed.output <- seedmatrix(contingencytable.csv, Xlowerbound,
Xupperbound, Ylowerbound, Yupperbound)$Probabilities

# run mipfp
# store the new margins in a list
tgt.data <- list(uncensored.row.margin, uncensored.column.margin)
# list of dimensions of each marginal constrain
tgt.list <- list(1,2)
# calling the estimated function
## seed has to be in array format for mipfp package
## ipfp is the selected seed.estimation.method
final1 <- Estimate(array(seed.output, dim=c(length(Xlowerbound:Xupperbound),
length(Ylowerbound:Yupperbound))), tgt.list, tgt.data, method="ipfp")$x.hat

# filling in names of updated seed
final1 <- data.frame(final1)
row.names(final1) <- Xlowerbound:Xupperbound
names(final1) <- Ylowerbound:Yupperbound

# reweight estimates to known censored interior cells
final1 <- reweight.contingencytable(observed.table = contingencytable.csv,
estimated.table = final1)

# final results are probabilities
sum(final1)

# rec() function outputs the same table
# default of rec() seed.estimation.method is ipfp
# default of rec() seed.matrix is the output of seedmatrix()$Probabilities
final2<-rec(
X = contingencytable.csv,
Xlowerbound = 1,
Xupperbound = 15,
Ylowerbound = 10,
Yupperbound = 310)

# check that final1 and final2 have the same results
all(final1 == final2$Probability.Estimates)

Conclusion

revengc was designed to reverse engineer summarized and decoupled variables with two main
functions: cnbinom.pars() and rec(). Relying on a negative binomial distribution, cnbinom.pars()
approximates the average and dispersion parameter of a censored univariate frequency table. rec()
fills in missing interior cell values from observed aggregated data (e.g. decoupled average(s) and/or
censored frequency table(s) or a censored contingency table). It is worth noting the required assump-
tions in rec(). For instance, rec() relies on a Poisson distribution when only an average is provided,
which is assuming the variance and average are equal. More descriptive input variables, such as
univariate frequency tables or contingency tables, can account for dispersion found in data. However,
independence between decoupled variables still has to be assumed when there is no external infor-
mation about the joint distribution. For these reasons, revengc provides two options for sensitivity
analysis: the seed matrix and the method used in updating the seed matrix are both arbitrary inputs.
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Basis-Adaptive Selection Algorithm in
dr-package
by Jae Keun Yoo

Abstract Sufficient dimension reduction (SDR) turns out to be a useful dimension reduction tool in
high-dimensional regression analysis. Weisberg (2002) developed the dr-package to implement the
four most popular SDR methods. However, the package does not provide any clear guidelines as
to which method should be used given a data. Since the four methods may provide dramatically
different dimension reduction results, the selection in the dr-package is problematic for statistical
practitioners. In this paper, a basis-adaptive selection algorithm is developed in order to relieve this
issue. The basic idea is to select an SDR method that provides the highest correlation between the basis
estimates obtained by the four classical SDR methods. A real data example and numerical studies
confirm the practical usefulness of the developed algorithm.

Introduction

Sufficient dimension reduction (SDR) in the regression of y ∈ R1|X ∈ Rp = (x1, . . . , xp)T replaces the
original p-dimensional predictors X with its lower-dimensional linearly transformed predictors MTX
without any loss of information on y|X, which is equivalently expressed:

yq X|MTX, (1)

where q stands for independence, M is a p× q matrix and q ≤ p.

A space spanned by the columns of M to satisfy (1) is called a dimension reduction subspace.
Hereafter, S(M) denotes the column subspace of a p× q matrix M, and MTX is called a sufficient
predictor. The intersection of all possible dimension reduction subspaces is called the central subspace
Sy|X, if it exists. The main goal of SDR is to infer Sy|X, which is done through the estimations of its
true structural dimension d and orthonormal basis matrix.

According to Cook (1998a), for a non-singular transformation of X such that Z = ATX, the
following relation holds: Sy|X = ASy|Z. Considering a standardized predictor Z = Σ−1/2{X− E(X)},
we have that Sy|X = Σ−1/2Sy|Z, where Σ = cov(X) and Σ−1/2Σ−1/2 = Σ−1. Typically, SDR methods
estimate Sy|Z first, then back-transform it to Sy|X. Hereafter kernel matrices to restore Sy|Z for each
method will be denoted as M•, and it will be assumed that M• is exhaustively informative to Sy|Z so
that S(M•) = Sy|Z. With Z-scale predictors, the classical but most popularly used SDR methodologies
include:

(i) sliced inverse regression (SIR; Li, 1991):
MSIR = cov{E(Z|y)}. If y is categorical, a sample version of E(Z|y) is straightforward. If y is
many-valued or continuous, y is categorized by dividing its range into h slices.

(ii) sliced average variance estimation (SAVE; Cook and Weisberg, 1991):
MSAVE = E[{Ip − cov(Z|y)}{Ip − cov(Z|y)}T]. The sample version of cov(Z|y) is constructed
in the same way as SIR.

(iii) principal Hessian directions (pHd; Li, 1992; Cook, 1998b):
MpHd = Σrzz = E[{y− E(y)− βTZ}ZZT], where β is the ordinary least squares on the regres-
sion of y|Z. The sample version of MpHd is constructed by replacing the population quantities
with their usual moment estimators.

(iv) covariance method (covk Yin and Cook, 2002):
Mcovk = {E(Zw), E(Zw2), . . . , E(Zwk)}, where w = {y − E(y)}/

√
var(y). As can be easily

seen, E(Zwj) in Mcovk is the covariance between wj and Z as well as the ordinary least squares
coefficient of wj|Z for j = 1, . . . , k.

These four SDR methods can be implemented in the dr-package. The package provides the basis
estimates and dimension test results. A detailed review on the dr-package is given in Weisberg (2002).
The following question is a critical issue in using dr: which one among the four methods has to be used?
Even with the same data, one can obtain dramatically different dimension reduction results from the
four methods in dr, yet there is no clear and up-to-date guideline on method selection. It is known that
SIR and covk work better when a linear trend exists in regression, while SAVE and pHd are effective
under a nonlinear trend, particularly in the case of a quadratic relationship. However, in practice,
these may not be useful guidelines for choosing an SDR method, because it is not easy to check the
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existence of non/linear trends in regression. Even in the case that a linear trend exists, it is still not
clear which of SIR and covk should be used, as they yield different dimension test results.

The purpose of the paper is to develop a basis-adaptive selection algorithm for selecting an SDR
method. The basic idea is to select the one that gives the highest correlation between the basis estimates
obtained by all possible pairs of the four SDR methods. To measure the correlation, a trace correlation r
(Hooper, 1959) will be used. The algorithm is data-driven and can be enhanced to other SDR methods,
although it is highlighted with the use of the dr-package in this paper.

The organization of this article is as follows. We develop the idea of a basis-adaptive selection
algorithm, and discuss its selection criteria. Next, we present a real data example and simulation
studies. Finally, we summarize our work.

Basis-adaptive selection

Development of algorithm

We begin this section with soil evaporation data in Section 6 of Yin and Cook (2002). The data contains
46 observations of daily soil evaporation, daily air and soil temperature curves, daily humidity curves
and wind speed. For illustration purposes, we consider a regression analysis of daily soil evaporation
given the integrated area of and the range of the daily air and soil temperatures. We will revisit the
data in a later section.

## loading data
evaporat <- read.table("evaporat.txt", header=T); attach(evaporat)
Rat <- Maxat-Minat; Rvh <- Maxh-Minh; Rst <- Maxst-Minst
w <- c(scale(evaporat$Evap,center=TRUE,scale=TRUE)); detach(evaporat)
evaporat <- data.frame(evaporat, Rat, Rvh, Rst)
w2 <- cbind(w, w^2); w3 <- cbind(w2, w^3); w4 <- cbind(w3, w^4)

## dr-package fitting
library(dr)
sir5 <- dr(Evap~Avat+Rat+Avst+Rst, data=evaporat, method="sir", nslice=5)
save5 <- update(sir5, method="save"); phdres <- update(sir5, method="phdres")
cov2 <- dr(w2~Avat+Rat+Avst+Rst,data=evaporat, method="ols")
cov3 <- dr(w3~Avat+Rat+Avst+Rst,data=evaporat, method="ols")
cov4 <- dr(w4~Avat+Rat+Avst+Rst,data=evaporat, method="ols")

## dimension test
round(dr.test(sir5),3)
round(dr.test(save5),3)
round(dr.test(phdres, numdir=4),3)
set.seed(100);round(dr.permutation.test(cov2,npermute=1000)$summary,3)
set.seed(100);round(dr.permutation.test(cov3,npermute=1000)$summary,3)
set.seed(100);round(dr.permutation.test(cov4,npermute=1000)$summary,3)

Table 1: Dimension test results for soil evaporation data

SIR with 5 slices SAVE with 5 slices pHd cov2 cov3 cov4
H0 : d = 0 0.000 0.048 0.698 0.000 0.000 0.002
H0 : d = 1 0.022 0.261 0.723 0.007 0.001 0.001
H0 : d = 2 0.202 0.546 0.751 N/A 0.011 0.001
H0 : d = 3 0.814 0.755 0.452 N/A N/A 0.004

The p-values for the dimension estimation by the four methods in dr are reported in Table 1. For SAVE
and pHd, the p-values under normal distributions are reported. Since a permutation test should be
used for covk, set.seed(100) was used to have reproducible results. According to Table 1, with level
5%, the SIR and the SAVE determine that d̂ = 2 and d̂ = 1, respectively. The pHd estimates that d̂ = 0,
while the covk estimates that d̂ ≥ 4. In the evaporation data, the dimension estimation results are
completely different for each of the four methods. Then, what methodological result should we use
for the dimension reduction of the data? Unfortunately, there is no clear guidance for this issue.

Before developing selection criteria among the four SDR methods, there are some aspects that
must be considered first. A selection based on the criteria should be data-driven, unless it is purposely
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pre-selected. In addition, the criteria should be generally extended to the other SDR methods, although
the four methods in dr are highlighted in this paper.

In order to have some idea of how to select a method, consider a simulated example of y|X =
(x1, . . . , x10)

T = x1 + ε. The column of η = (1, 0, . . . , 0)T spans Sy|Z, and the sufficient predictor of x1
is well estimated not only by SIR but also by cov2. Therefore, it is expected that the estimates by SIR
and cov2 will be more highly correlated than those of any other pairs of the four methods. Assuming
that X and ε are independently normally-distributed with µ = 0 and σ2 = 0.12, the averages of the
absolute correlations between the pairs of the estimates from the four methods as well as between x1
and the estimate from each method are computed through 500 iterations.

sir.cov <- sir.save <- sir.phd <- save.cov <- save.phd <- phd.cov <- NULL
sir.eta <- save.eta <- phd.eta <- cov.eta <- NULL

set.seed(1)

## starting loop
for (i in 1:500){

## model construction
X <- matrix(rnorm(100*10), c(100,10)); y <- X[,1] + rnorm(100)
w <- c(scale(y,center=TRUE,scale=TRUE)); w2 <- cbind(w, w^2)

## obtaining basis estimates from the SDR methods
dir.sir5<-dr.direction(dr(y~X, method="sir", nslice=5))[,1]
dir.cov2<-dr.direction(dr(w2~X, method="ols"))[,1]
dir.save5<-dr.direction(dr(y~X, method="save", nslice=5))[,1]
dir.phd <-dr.direction(dr(y~X, method="phdres"))[,1]

## computing the absolute correlation between the pairs of the estimates from the four methods
sir.cov[i]<-abs(cor(dir.sir5, dir.cov2)); sir.save[i]<-abs(cor(dir.sir5, dir.save5))
sir.phd[i]<-abs(cor(dir.sir5, dir.phd)); save.cov[i]<-abs(cor(dir.save5, dir.cov2))
save.phd[i]<-abs(cor(dir.save5, dir.phd)); phd.cov[i]<-abs(cor(dir.phd, dir.cov2))

## computing the absolute correlation between the estimate from each method and x1
sir.eta[i]<-abs(cor(dir.sir5, X[,1])); cov.eta[i]<-abs(cor(dir.cov2, X[,1]))
save.eta[i]<-abs(cor(dir.save5, X[,1])); phd.eta[i]<-abs(cor(dir.phd, X[,1]))

}

## the averages of the absolute correlations by each pair of the methods
round(apply(cbind(sir.cov, sir.save, sir.phd, save.cov, save.phd, phd.cov), 2,mean),3)
sir.cov sir.save sir.phd save.cov save.phd phd.cov
0.966 0.208 0.257 0.214 0.348 0.288

## the averages of the absolute correlations by each method and x1
round(apply(cbind(sir.eta, cov.eta, save.eta, phd.eta), 2, mean), 3)
sir.eta cov.eta save.eta phd.eta

0.941 0.939 0.215 0.267

The highest average of the six pairwise absolute correlations is highest between SIR and covk; in
addition, either of SIR or covk estimates x1 well. If the regression model is changed to y|X = x2

1 + ε,
the pair of SAVE and pHd yield the highest averages in the absolute correlations among the six pairs,
and both SAVE and pHd are good SDR methods for the regression.

Let us think about this in a reverse manner. Suppose that the estimates of sufficient predictors by a
pair of SAVE and pHd are more highly correlated than those of any other pairs of the SDR methods.
Then, it would be not bad reasoning to believe that SAVE or pHd should be preferable to the data,
although we do not know what the true model is. That is, the pair of the two methods that gives the
highest correlation would be not a bad choice for estimating Sy|X, although it is not guaranteed to be
the best. We will formalize this idea.

First, we list all six possible pairs of the four methods in the dr-package: (1) (SIR, SAVE); (2) (SIR,
pHd); (3) (SIR, covk); (4) (SAVE, pHd); (5) (SAVE, covk); (6) (pHd, covk). Let η̂a and η̂b be orthonormal
basis estimates of Sy|Z by any pair among the six under d = m. If d = 1, the correlation between
η̂T

a Z and η̂T
b Z can be simply computed using the usual Pearson correlation coefficient. However, if

d ≥ 2, the correlation between η̂T
a Z and η̂T

b Z is not straightforward. Now it should be noted that the
correlation between η̂T

a Z and η̂T
b Z depends on the similarity between η̂a and η̂b regardless of the value
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of d. The similarity of two matrices with the same column rank is equivalent to the distance between
their column subspaces. Finally, a correlation between of η̂T

a Z and η̂T
b Z can be alternatively measured

by a trace correlation rtr (Hooper, 1959) between S(η̂a) and S(η̂b):

rtr =

√
1
m

trace{η̂aη̂T
a η̂bη̂T

b }.

The trace correlation rtr varies between 0 and 1, and higher values indicate that S(η̂a) and S(η̂b) are
closer. If the two subspaces coincide, then we have rtr = 1.

The trace correlation is expected to be maximized under the true dimension of d, which is usually
unknown. For a smaller choice of d, the true basis are underestimated, so each method will not
normally estimate the same parts of Sy|X. This implies that rtr will be smaller compared to it under
the true dimension. In contrast, in the case of a larger selection of d, the true basis are overestimated.
Then, there is redundancy in the estimates, and the redundancy will be random for each method.
This indicates that smaller correlations should be expected. This discussion is confirmed through the
following simulation example.

sir.cov <- sir.save <- sir.phd <- save.cov <- save.phd <- phd.cov <- NULL
sir.cov2 <- sir.save2 <- sir.phd2 <- save.cov2 <- save.phd2 <- phd.cov2 <- NULL
sir.cov3 <- sir.save3 <- sir.phd3 <- save.cov3 <- save.phd3 <- phd.cov3 <- NULL
sir.eta2 <- save.eta2 <- phd.eta2 <- cov.eta2 <- NULL

set.seed(1)

## true basis matrix of the central subspace
eta <- cbind(c(1, rep(0,9)), c(0, 1, rep(0,8)) )

## starting loop
for (i in 1:500){

## model construction
X <- matrix(rnorm(100*10), c(100,10)); y <- X[,1] + X[,1]*X[,2]+ rnorm(100)
w <- c(scale(y,center=TRUE, scale=TRUE)); w2 <- cbind(w, w^2); w3<- cbind(w2, w^3)

## obtaining basis estimates from the four methods
sir5b <- dr(y~X, method="sir", nslice=5)$raw.evectors
cov2b <- dr(w2~X, method="ols")$raw.evectors
cov3b <- dr(w3~X, method="ols")$raw.evectors
save5b <- dr(y~X, method="save", nslice=5)$raw.evectors
phdb <- dr(y~X, method="phdres")$raw.evectors

## computing trace correlations under d=1 for the six pairs
sir.cov[i] <- tr.cor(sir5b[,1], cov2b[,1], 1)
sir.save[i] <- tr.cor(sir5b[,1], save5b[,1], 1)
sir.phd[i] <- tr.cor(sir5b[,1], phdb[,1], 1)
save.cov[i] <- tr.cor(save5b[,1], cov2b[,1], 1)
save.phd[i] <- tr.cor(save5b[,1], phdb[,1], 1)
phd.cov[i] <- tr.cor(phdb[,1], cov2b[,1], 1)

## computing trace correlations under d=2 for the six pairs
sir.cov2[i] <- tr.cor(sir5b[,1:2], cov2b[,1:2], 2)
sir.save2[i] <- tr.cor(sir5b[,1:2], save5b[,1:2], 2)
sir.phd2[i] <- tr.cor(sir5b[,1:2], phdb[,1:2], 2)
save.cov2[i] <- tr.cor(save5b[,1:2], cov2b[,1:2], 2)
save.phd2[i] <- tr.cor(save5b[,1:2], phdb[,1:2], 2)
phd.cov2[i] <- tr.cor(phdb[,1:2], cov2b[,1:2], 2)
sir.cov3[i] <- tr.cor(sir5b[,1:3], cov3b[,1:3], 3)

## computing trace correlations under d=3 for the six pairs
sir.save3[i] <- tr.cor(sir5b[,1:3], save5b[,1:3], 3)
sir.phd3[i] <- tr.cor(sir5b[,1:3], phdb[,1:3], 3)
save.cov3[i] <- tr.cor(save5b[,1:3], cov3b[,1:3], 3)
save.phd3[i] <- tr.cor(save5b[,1:3], phdb[,1:3], 3)
phd.cov3[i] <- tr.cor(phdb[,1:3], cov3b[,1:3], 3)

}
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## averages of the trace correlations for each pair under d=1,2,3
round(apply(cbind(sir.cov, sir.save, sir.phd, save.cov, save.phd, phd.cov),

2, mean), 3)
round(apply(cbind(sir.cov2, sir.save2, sir.phd2, save.cov2, save.phd2, phd.cov2),

2, mean), 3)
round(apply(cbind(sir.cov3, sir.save3, sir.phd3, save.cov3, save.phd3, phd.cov3),

2, mean), 3)

sir.cov sir.save sir.phd save.cov save.phd phd.cov
0.580 0.224 0.476 0.317 0.451 0.616

sir.cov2 sir.save2 sir.phd2 save.cov2 save.phd2 phd.cov2
0.822 0.397 0.656 0.486 0.606 0.801

sir.cov3 sir.save3 sir.phd3 save.cov3 save.phd3 phd.cov3
0.773 0.517 0.665 0.577 0.679 0.753

In the model, the true structural dimension is equal to two, and Sy|Z is spanned by the columns of
η = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0)}T. For d = 1, 2, 3, the averages of the trace correlations are computed
for the six pairs. According to the results, the averages are maximized under the true structural
dimension d = 2 for each pair, as expected. In addition, the maximum trace correlation is attained at
the pair of SIR and cov2 under d = 2.

Based on this discussion, the selection algorithm can be developed as follows:

Algorithm

1. Fix the maximum value dmax of d. The value should be less than or equal to min{k, (hSIR −
1), (p− 1)}, where k stands for the maximum polynomial in covk and hSIR is the number slices
in SIR.

2. Compute rtr between the basis estimates from each pair for m = 1, . . . , dmax. For d = 1 or 2, the
cov2 is commonly used, and the covd is employed for d ≥ 3.

3. Choose a pair of the methods to provide the maximum rtr in Step 2. The pair chosen in this step
will be called the initial pair.

4. Remove the initial pair and all of the other pairs not containing one of the methods of the initial
pair for all values of d. After completing this step, the surviving pairs must contain one method
of the initial pair.

5. Search a second pair that has the highest rtr among all of the remaining pairs. This pair will be
called the final pair.

6. The common method in the initial and final pairs is the representative SDR method to the data.

Steps 4–5 are required to select one of the methods of the initial pair in Step 2. This approach of
selecting SDR methods through the proposed algorithm is called basis-adaptive selection (BAS). The
BAS is data-driven and not necessarily limited in the four SDR methods of SIR, SAVE, pHd and covk,
as one can extend it to other SDR methods.

The bas1 function

The bas1 function runs the BAS algorithm for SIR, SAVE, pHd and covk. The function requires dr and
has the following arguments:

bas1(formula, data, nsir=5, nsave=4, k=4, plot=TRUE)

The arguments of nsir, nsave and k determine the numbers of slices for SIR and SAVE as well as the
moment for covk, respectively. The default values are 5, 4 and 4, in order. If plot=TRUE, the function
bas1 returns a scatter plot of the trace correlations against the various choices of d, up to min(nsir-1,
k) for the six pairs of the four methods in dr.

The values returned by the bas1 function are selection, sir, save, phd and covk. Their descrip-
tions are as follows:

• selection: a selected method among SIR, SAVE, pHd and covk by the BAS algorithm

• sir: the SIR application object with the number of slices equal to nsir

• save: the SAVE application object with the number of slices equal to nsave

• pHd: the pHd application object

• covk: a list type object by the covk application objects with the kth polynomial
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Soil evaporation data: Revisited

We revisit the soil evaporation data. Here, the application of the BAS is more extensively studied
under the cross-combinations of four or five numbers of slices for SIR and SAVE and the third or forth
order of polynomials for covk. We define “BASijk” for i = 3, 4, 5, j = 4, 5 and k = 2, . . . , i. For example,
in BAS453, the numbers of slice for SIR and SAVE are four and five, respectively, and the order of
polynomial for covk is three.

## BAS application
BAS342 <- bas1(Evap~Avat+Rat+Avst+Rst, data=evaporat, nsir=3, nsave=4, k=2, plot=FALSE)
BAS343 <- bas1(Evap~Avat+Rat+Avst+Rst, data=evaporat, nsir=3, nsave=4, k=3, plot=FALSE)
BAS352 <- bas1(Evap~Avat+Rat+Avst+Rst, data=evaporat, nsir=3, nsave=5, k=2, plot=FALSE)
BAS353 <- bas1(Evap~Avat+Rat+Avst+Rst, data=evaporat, nsir=3, nsave=5, k=3, plot=FALSE)

BAS443 <- bas1(Evap~Avat+Rat+Avst+Rst, data=evaporat, nsir=4, nsave=4, k=3, plot=FALSE)
BAS444 <- bas1(Evap~Avat+Rat+Avst+Rst, data=evaporat, nsir=4, nsave=4, k=4, plot=FALSE)
BAS453 <- bas1(Evap~Avat+Rat+Avst+Rst, data=evaporat, nsir=4, nsave=5, k=3, plot=FALSE)
BAS454 <- bas1(Evap~Avat+Rat+Avst+Rst, data=evaporat, nsir=4, nsave=5, k=4, plot=FALSE)

BAS544 <- bas1(Evap~Avat+Rat+Avst+Rst, data=evaporat, nsir=5, nsave=4, k=4, plot=FALSE)
BAS545 <- bas1(Evap~Avat+Rat+Avst+Rst, data=evaporat, nsir=5, nsave=4, k=5, plot=FALSE)
BAS554 <- bas1(Evap~Avat+Rat+Avst+Rst, data=evaporat, nsir=5, nsave=5, k=4, plot=FALSE)
BAS555 <- bas1(Evap~Avat+Rat+Avst+Rst, data=evaporat, nsir=5, nsave=5, k=5, plot=FALSE)

## Selection results
BAS342$selection; BAS343$selection; BAS352$selection; BAS353$selection
BAS443$selection; BAS444$selection; BAS453$selection; BAS454$selection
BAS544$selection; BAS545$selection; BAS554$selection; BAS555$selection

## dimension test
set.seed(100); round(dr.permutation.test(BAS342$covk$cov2, npermute=1000)$summary, 3)
set.seed(100); round(dr.permutation.test(BAS343$covk$cov3, npermute=1000)$summary, 3)
round(dr.test(BAS443$phd, numdir=4), 3)
round(dr.test(BAS544$sir), 3)

Both BAS342 and BAS352 recommended cov2, and cov3 was the selection of BAS343 and BAS353. For
the cases of BAS4jk and BAS5jk, pHd and SIR were recommended regardless of the values of j and
k. These selection results are summarized in Table 2. From Table 2, it can be seen that the selection
results are different from the numbers of slices in SIR. For example, if the numbers of slices in SIR was
3, BAS recommended covk. For i = 4 and 5, BAS chose pHd and SIR, respectively. Thus, additional
work needs to be done in order to choose between covk, pHd and SIR in the soil evaporation data.

For this purpose, we considered how reasonably the methods recommended in Table 2 estimated
the true dimension of the central subspace. The dimension estimation results are already summarized
in Table 1, and the nominal level 5% was used. First, the two methods of cov2 and cov3 were inspected.
According to Table 1, cov2 and cov3 determine that d ≥ 2 and d ≥ 3, respectively. This indicates that
the order of polynomial in covk should be bigger than or equal to 4 for further dimension determination.
However, in the case k = 4, covk yields d̂ ≥ 4, so the dimension reduction is meaningless because
p = 4. Therefore, we conclude that covk would not be recommended one for this data. Next we
consider pHd, which infers that d̂ = 0 according to Table 1. Therefore, the pHd should also be ruled
out for the final choice. In Table 1, the SIR with 5 slices determines that d̂ = 2, which is the most
reasonable among the three recommendations. Thus, one may continue the regression analysis with
the two-dimensional sufficient predictors from the SIR results.

Table 2: Method selection results by BAS in soil evaporate data

BAS3•2 BAS3•3 BAS4•• BAS5••
Recommendation cov2 cov3 pHd SIR
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Numerical studies

Predictors X = (x1, . . . , x10)
T and a random error ε were independently generated from N(0, 1). Under

these variable configurations, the following four models were considered:

• Model 1: y = x1 + ε

• Model 2: y = x2
1 + ε

• Model 3: y = x1 + x1x2 + ε

• Model 4: y = 1 + x1 + exp(x2)ε

In Models 1 and 2, the column of η = (1, 0, . . . , 0)T spans Sy|X, so d = 1. The structural dimension of
Models 3 and 4 is two, and Sy|X is spanned by the columns of η = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0)}T. The
four models are commonly used in Cook and Weisberg (1991); Li (1991, 1992); Yin and Cook (2002).
The desired SDR methods for each model are as follows: Model 1: SIR and covk; Model 2: SAVE and
pHd; Model 3: covk and pHd; Model 4: SIR and covk.

Each model was iterated 500 times with n = 100 and n = 200. Throughout all numerical studies,
five slices were commonly used for SIR and SAVE, and four was the maximum polynomial in covk.

As a summary, the selection percentages of the methods by BAS are reported in Table 3.

Table 3: Percentages of the selection of a method among SIR, SAVE, pHd, and covk by BAS

n = 100 n = 200
SIR SAVE pHd covk SIR SAVE pHd covk

Model 1 41.2 0.6 0.2 58.0 49.4 0.0 0.0 50.6
Model 2 1.0 17.8 78.4 2.8 0.0 22.8 77.2 0.0
Model 3 6.4 2.0 25.6 66.0 3.6 1.2 25.0 70.2
Model 4 6.4 0.6 6.4 86.6 26.8 1.2 1.4 70.6

According to Table 3, the BAS selects SIR and covk 99.8% of the time for Model 1 and SAVE and
pHd 97.8% of the time for Model 2 with n = 100, respectively. These results are consistent with the
discussion given in the previous section regarding the development of the algorithm. In Model 1, covk
is preferred to SIR with n = 100, but the two are almost equally selected with n = 200. For Model 2,
the pHd is recommended more than SAVE with n = 100 and n = 200. In Model 3, the pHd and the
covk are two dominant methods according to BAS, although the covk is selected more frequently with
n = 100. For Model 4, the covk is recommended most frequently, but the selection percentages of SIR
rapidly grow with n = 200.

set.seed(5); sel1 <- sel2 <- sel3 <- sel4 <- sel12 <- sel22 <- sel32 <- sel42 <- NULL

## starting loop
for (i in 1:500){

## model construction for n=100
X <- matrix(rnorm(100 * 10), c(100, 10))
y1 <- X[,1] + rnorm(100)
y2 <- X[,1]^2 + rnorm(100)
y3 <- X[,1] + X[,1] * X[,2] + rnorm(100)
y4 <- 1 + X[,1] + exp(X[,2]) * rnorm(100)

## model construction for n=200
X2 <- matrix(rnorm(200 * 10), c(200,10))
y12 <- X2[,1] + rnorm(200)
y22 <- X2[,1]^2 + rnorm(200)
y32 <- X2[,1] + X2[,1] * X2[,2] + rnorm(200)
y42 <- 1 + X2[,1] + exp(X2[,2]) * rnorm(200)

## selection by BAS
sel1[i] <- bas1(y1~X, plot=FALSE)$selection
sel2[i]<-bas1(y2~X, plot=FALSE)$selection
sel3[i] <- bas1(y3~X, plot=FALSE)$selection
sel4[i]<-bas1(y4~X, plot=FALSE)$selection
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sel12[i] <- bas1(y12~X2, plot=FALSE)$selection
sel22[i]<-bas1(y22~X2, plot=FALSE)$selection
sel32[i] <- bas1(y32~X2, plot=FALSE)$selection
sel42[i]<-bas1(y42~X2, plot=FALSE)$selection

}

## computing the selection percentages for model 1
# n=100
c(length(which(sel1=="sir")), length(which(sel1=="save")),
length(which(sel1=="phd")), length(which(sel1=="covk"))) / 500

# n=200
c(length(which(sel12=="sir")), length(which(sel12=="save")),
length(which(sel12=="phd")), length(which(sel12=="covk"))) / 500

## computing the selection percentages for model 2
# n=100
c(length(which(sel2=="sir")), length(which(sel2=="save")),
length(which(sel2=="phd")), length(which(sel2=="covk"))) / 500

# n=200
c(length(which(sel22=="sir")), length(which(sel22=="save")),
length(which(sel22=="phd")), length(which(sel22=="covk"))) / 500

## computing the selection percentages for model 3
# n=100
c(length(which(sel3=="sir")), length(which(sel3=="save")),
length(which(sel3=="phd")), length(which(sel3=="covk"))) / 500

# n=200
c(length(which(sel32=="sir")), length(which(sel32=="save")),
length(which(sel32=="phd")), length(which(sel32=="covk"))) / 500

## computing the selection percentages for model 4
# n=100
c(length(which(sel4=="sir")), length(which(sel4=="save")),
length(which(sel4=="phd")), length(which(sel4=="covk"))) / 500

# n=200
c(length(which(sel42=="sir")), length(which(sel42=="save")),
length(which(sel42=="phd")), length(which(sel42=="covk"))) / 500

Summary

Sufficient dimension reduction (SDR) is a useful dimension reduction method in regression. The
popularly used SDR methods among the others include sliced inverse regression (Li, 1991), sliced
average variance estimation (Cook and Weisberg, 1991), principal Hessian directions (Li, 1992) and
covariance method (Yin and Cook, 2002). Currently, the dr-package is the only one to cover the four
sufficient dimension reduction methods in R. However, users were left without practical guidelines as
to which SDR method should be chosen. To remedy this, we developed the basis-adaptive selection
(BAS) algorithm to recommend a SDR method in dr by maximizing a trace correlation (Hooper, 1959).
A real data example and numerical studies confirm its potential usefulness in practice.

The BAS algorithm requires the two parts. The first is the basis estimates of the dimension
reduction subspace, and the second is a quantity to measure the distances between the subspaces
spanned by the columns of the estimates. For non-linear feature extractions through different kernel
methods, there is no reason why the BAS algorithm cannot be applied if some quantity to measure the
distance between the non-linear subspaces defined in different kernels is feasible.

If the sliced inverse regression applications with various numbers of slices replaces the other three
methods in the BAS, the BAS algorithm can be utilized to find a good number of slices for this method.

The code for BAS is available through the personal webpage of the author: http://home.ewha.ac.
kr/~yjkstat/bas.R.
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SARIMA Analysis and Automated Model
Reports with BETS, an R Package
by Talitha F. Speranza, Pedro C. Ferreira, and Jonatha A. da Costa

Abstract This article aims to demonstrate how the powerful features of the R package BETS can be
applied to SARIMA time series analysis. BETS provides not only thousands of Brazilian economic
time series from different institutions, but also a range of analytical tools, and educational resources.
In particular, BETS is capable of generating automated model reports for any given time series. These
reports rely on a single function call and are able to build three types of models (SARIMA being one of
them). The functions need few inputs and output rich content. The output varies according to the
inputs and usually consists of a summary of the series properties, step-by-step explanations on how
the model was developed, predictions made by the model, and a file containing these predictions. This
work focuses on this feature and several other BETS functions that are designed to help in modeling
time series. We present them in a thorough case study: the SARIMA approach to model and forecast
the Brazilian production of intermediate goods index series.

Introduction

The BETS (Ferreira et al., 2017) package (an abbreviation for Brazilian Economic Time Series) for R
(R Core Team, 2017) allows easy access to the most important Brazilian economic time series and a
range of powerful tools for analyzing and visualizing not only these data, but also external series. It
provides a much-needed single access point to the many Brazilian series through a simple, flexible and
robust interface. The package now contains more than 18,000 Brazilian economic series and contains
an integrated modelling and learning environment. In addition, some functions include the option of
generating explanatory outputs that encourage and help users to expand their knowledge.

BETS relies on several well-established R packages. In order to work with time series, BETS
functions build upon packages such as forecast (Hyndman, 2015), mFilter (Balcilar, 2016), urca (Pfaff
et al., 2016) and seasonal (Sax, 2016). Access to external APIs to obtain data is handled by the web
scraping and HTTP tools available through the httr (Wickham, 2017) and rvest (Wickham, 2016)
packages, whereas BETS own databases are queried using the package RMySQL (Ooms et al., 2016).

This article seeks to demonstrate many of these features through a practical case. We create a
SARIMA model (Box and Jenkins, 1970) for the Brazilian production of intermediate goods index
(BPIGI) series, step by step, using mostly functions from BETS. Then, we show that BETS is capable
of using rmarkdown (Allaire, 2017) to generate a fully automated report that includes a virtually
identical SARIMA analysis. The report needs few inputs, runs for any given time series and has
the advantage of outputting several informative comments, explaining to the user how and why it
achieved the given results. The outputs, of course, vary according to the inputs. Reports provide a link
to a file containing the series under analysis and the predictions calculated by the automated model.

Automated reports can also produce GRNN1 and exponential smoothing models, but here we
focus on the previously specified methodology2. In the next section, we briefly present the SARIMA
approach and show how to use BETS functions to conduct such an analysis in a typical case: predicting
the future levels of the BPIGI. Then, in Section 3, we introduce the automated model reports and
illustrate its capabilities by applying it to the series under study using a range of other inputs. Section
4 concludes this article.

SARIMA Analysis: A Case Study

In this section we develop a case study in which we use a handful of BETS functions to model and
forecast values of the Brazilian production of intemediate goods index, following the SARIMA (Box &
Jenkins) approach. Before starting the analysis we will briefly look at the methodology to be used. For
a more comprehensive treatment of the topic, see Box and Jenkins (1970) and Ferreira et al. (2016)3.

1General Regression Neural Network, as proposed by Specht (1991)
2Examples on how to use GRNN and exponential smoothing reports are available in the documentation for the

function report().
3For a hands-on introduction, see the tutorial of Arima models offered by Duke university at https://people.

duke.edu/~rnau/411arim.htm
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Box & Jenkins Methodology

The Box & Jenkins methodology allows the prediction of future values of a series based only on past
and present values of the same series. These univariate models are known as SARIMA, an abbreviation
for Seasonal Autoregressive Integrated Moving Average, and have the following form:

ΦP(B)φp(B)∇d∇DZt = ΘQ(B)θq(B)at, (1)

where

• B is the lag operator, i.e., for all t > 1, BZt = Zt−1

• P, Q, p and q are the orders of the polynomials

• ΦP(B) is the seasonal autoregressive polynomial

• φp(B) is the autoregressive polynomial

• ∇d = (1− B)d is the difference operator and d is the number of unit roots

• ∇D = (1− Bs)D is the difference operator at the seasonal frequency s and D is the number of
seasonal unit roots

• Zt is the series being studied

• ΘQ(B) is the seasonal moving average polynomial

• θq(B) is the moving average polynomial

• at is the random error.

In its original form, which will be used here, the Box & Jenkins methodology consists of three
iterative stages:

(i) Identification and selection of the models: the series is checked for stationarity and the appro-
priate corrections are made for non-stationary cases, by differencing the series d times in its own
frequency and D times in the seasonal frequency. The orders of the polynomials φ, Φ, θ, and
Θ are identified using the autocorrelation function (ACF) and partial autocorrelation function
(PACF) of the series.

(ii) Estimation of the model’s parameters using maximum likelihood or dynamic regression.

(iii) Confirmation of model compliance using statistical tests.

The ACF, used in stage (i), can be defined as the correlation of a series with a lagged copy of itself
as a function of lags. Formally, we can write the ACF of a time series s with realizations si for i ∈ [1, N]
and mean s̄ as

ACF(s, l) =
∑N−l

i=1 (si − s̄)(si+l − s̄)

∑N
i=1(si − s̄)2

. (2)

Another tool for phase (i), the PACF also gives the correlation of a series with its own lagged
values, but controlling for all lower lags. Let Pt,l(x) denote the projection of xt onto the space spanned
by xt+1, . . . , xt+l−1. We can define the PACF as

PACF(s, l) =

{
Cor(si, si+1) if l = 1,
Cor(st+l − Pt,l(st+l), ... ,st − Pt,l(st)) if l ≥ 1.

(3)

The PACF is used to find p (the lag beyond which the PACF becomes zero is the indicated number
of autoregressive terms), while the ACF is used to find q (the cut in the ACF points to the number of
moving average terms). Seasonal polynomial orders, P and Q, are identified in a similar fashion, but by
inspecting high values at fixed intervals. In this case, the intervals become the orders.

If the model does not pass phase (iii), the procedure starts again at step (i). Otherwise, the model
is ready to be used to make forecasts. In the next section we will look at each of these stages in more
detail and say more about the methodology as we go through the case study.

Some preliminary topics

The first step is to find the series in the BETS database. This can be done with the BETSsearch()
function. It performs flexible searches on the metadata table that stores series characteristics. Since
metadata is accessed through SQL queries, searchers are fast and the package performs well in any
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environment. BETSsearch() is a crucial feature of BETS, so we provide a thorough description in this
section.

Accepted parameters, expected data types, and definitions are the following:

• description - A character. A search string to look for matching series descriptions.

• src - A character. The source of the data.

• periodicity - A character. The frequency with which the series is observed.

• unit - A character. The unit in which the data were measured.

• code - An integer. The unique code for the series in the BETS database.

• view - A boolean. By default, TRUE. If FALSE, the results will be shown directly on the R console.

• lang - A character. Search language. By default, ’pt’, for Portuguese. A search can also be
performed in English by changing the value to ’en’.

To refine the search, there are syntax rules for the parameter description:

1. To look for alternative words, separate them by blank spaces. Example: description = 'core
ipca' means that the description of the series should contain the words core and ipca.

2. To search for complete expressions, put them inside single quotes (’ ’). Example: description =
"index and 'core ipca'" means that the description of the series should contain the expression
core ipca and the word index.

3. To exclude words from the search, insert a ∼ before each word. Example: description = "ipca
∼ core" means that the description of the series should contain the word ipca and should not
contain the word core.

4. To exclude a whole expression from a search, place them inside single quotes (’ ’) and insert
a ∼ before each of them. Example: description = "index ∼ 'core ipca'" means that the
description of the series should contain index and should not contain core ipca.

5. It is possible to search for or exclude certain words as long as these rules are obeyed.

6. No blank space is required after the exclusion sign (∼), but it is required after each expression
or word.

Finally, the command to find information about the series, which we will use throughout this
article, is shown below, along with the corresponding output.

# Searching for the production of intermediate goods index series
# excluding the term 'imports' from the search

results <- BETSsearch(description = "'intermediate goods' ~ imports", view = F, lang = "en")
results

#> # A tibble: 3 x 7
#> code description unit periodicity start
#> <chr> <chr> <chr> <chr> <chr>
#> 1 11068 Intermediate go? Index M 31/0?
#> 2 1334 Production indi? Index M 31/0?
#> 3 21864 Physical Produc? Index M 01/0?
#> # ... with 2 more variables: last_value <chr>,
#> source <chr>

The series we are looking for is the third (code 21864). We now load it using the function BETSget()
and store some values for later comparison with the model’s forecasts. We will also produce a graph
(Figure 1) to help formulate hypotheses about the behavior of the underlying stochastic process. The
professional looking chart is created with chart(), which has the nice property of displaying useful
information about the series, such as the last value and monthly/interannual variations.

# Get the series with code 21864 (BPIGI, IBGE)
data <- BETSget(21864)

# Keep last values for comparison with the forecasts
data_test <- window(data, start = c(2015,11), end = c(2016,4), frequency = 12)
data <- window(data, start = c(2002,1), end = c(2015,10), frequency = 12)

# Graph of the series
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params <- list(
title = "Intermediate Goods Production",
subtitle = "Index",
colors = "royalblue")

chart(ts = data, style = "normal", open = T, params = params, file = "igp.png")

Figure 1: Graph of the BPIGI, made with function chart(). Indicators below the x coordinates
represent index variation over a month and over 12 months, respectively.

Four characteristics can be observed. First, the series is homoskedastic, with monthly seasonality.
A further striking feature is the structural break in November 2008, when the international financial
crisis occurred and investor confidence plummeted. This break had a direct impact on the next
important characteristic of the series, the trend, which was initially clearly one of growth, albeit not at
explosive rates. From November 2008 onward, however, production appeared to remain unchanged
or even to fall. Since the main goal of this article is to present BETS’ features, rather than performing
an overcautious time series analysis, we decided to work with fewer observations, thus avoiding
problems with the structural break. Only the values from January 2009 on were used. This did not
imply poorer results. In fact, discarding older values yields better predictions, at least within the
SARIMA framework.

data <- window(data, start = c(2009,1), end = c(2015,10), frequency = 12)

In the following sections we create a model for the chosen series following the previously defined
modelling steps.

I. Identification

Stationarity Tests

This subsection covers a crucial step in the Box & Jenkins approach: checking if there are unit roots
in the seasonal and non-seasonal autoregressive model polynomials and determining how many of
these roots there are. If there are no unit roots, the series is stationary. In case we find unit roots, it is
possible to obtain stationarity by differencing the original series. Then, the order of the polynomials
can be identified using the ACF and the PACF funcitons.

The ur_test() function performs unit root tests. The user can choose among Augmented Dickey
Fuller (ADF, Dickey and Fuller (1979)), Phillips-Perron (PP, Phillips and Perron (1988)), and KPSS
(Kwiatkowski et al., 1992) tests. The ur_test() function was built around functions from the urca
package. Relative to those, the advantage of ur_test() is the output, which is designed to quickly see
the test’s results and all the needed information. The output is an object with two fields: (i) a table
showing test statistics, critical values and whether the null hypothesis is rejected or not, and (ii) a
vector containing the residuals of the test’s equation. This equation is shown below.

∆yt = φ1 + τ1t + τ2yt−1 + δ1∆yt−1 + · · ·+ δp−1∆yt−p+1 + εt (4)

The test statistics in the output table refer to the coefficients φ (drift), τ1 (deterministic trend) and
τ2 (unit root). Inclusion of the constant (drift) and deterministic trend is optional. To control the
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test parameters, ur_test() accepts the same parameters as urca’s ur.df(), as well as the desired
significance level.

df <- ur_test(y = data, type = "drift", lags = 12,
selectlags = "BIC", level = "5pct")

# Show the result of the tests
df$results

## statistic crit.val rej.H0
## tau2 -0.9673939 -2.89 no
## phi1 0.7526983 4.71 yes

Therefore, for the series in levels, the null hypothesis that there is a unit root cannot be rejected at
a 95% confidence level, as the test statistic tau2 is greater than the critical value. We will now apply
the diff function to the series repeatedly, to determine whether the differenced series has a unit root.
This way we find out how many unit roots there are.

ns_roots <- 0
d_ts <- data

# Dickey-Fuller tests loop
# Execution is interrupted when the null hypothesis cannot be rejected
while(df$results[1,"statistic"] > df$results[1,"crit.val"]) {

ns_roots <- ns_roots + 1
d_ts <- diff(d_ts)
df <- ur_test(y = d_ts, type = "none", lags = 12,

selectlags = "BIC", level = "5pct")
}
ns_roots
#> [1] 1

Hence, for the series in first differences, the hypothesis that there is a unit root is rejected at
the 5% significance level. We now use the nsdiffs function from the forecast package to perform
the Osborn-Chui-Smith-Birchenhall test (Osborn et al., 1988) and identify unit roots at the seasonal
frequency (in our case, monthly).

library(forecast)

# OCSB tests for unit roots at the seasonal frequency
nsdiffs(data, test = "ocsb")

#> [1] 1

The results indicate that there is a seasonal unit root and that seasonal differencing is therefore
required:

d.data <- diff(diff(data), lag = 12, differences = 1)

Autocorrelation Functions

The previous conclusions are corroborated by the autocorrelation function of the series in differences
(from now on, ∇∇12Zt). It shows that statistically significant correlations, i.e., correlations outside the
confidence interval, are not persistent for lags corresponding to multiples of 12 or values close to these
multiples. This indicates the absence of a seasonal unit root.

The BETS function that we use to draw the correlograms is corrgram(). Unlike its main alternative,
the forecast package’s Acf() function, corrgram() returns an attractive graph and provides the option
of calculating the confidence intervals using the method proposed by Bartlett (Bartlett, 1946). The
greatest advantage it offers, however, cannot be shown here as it depends on Javascript. If the style
parameter is set to 'plotly', an interactive graph is produced, displaying all the values of interest
(autocorrelations, lags and confidence intervals) on mouse hover, as well as providing zooming,
panning, and the option to save the graph in png format.

# Correlogram of differenced series
corrgram(d.data, lag.max = 48, mode = "bartlett", style="normal")
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Figure 2: Autocorrelation function of ∇∇12Zt

This correlogram, however, is not sufficient for us to propose a model for the series. We will
therefore produce a graph of the partial autocorrelation function (PACF) of ∇∇12Zt. corrgram() can
also be used for this purpose.

# Partial autocorrelation function of diff(data)
corrgram(d.data, lag.max = 48, type = "partial", style="normal")

Figure 3: Partial autocorrelation function of ∇∇12Zt

The ACF in Figure 2 and PACF in Figure 3 could have been generated by a SARIMA(1,0,0)(0,0,0)
process. The explanation is straightforward: the ACF exhibits exponential decay and the PACF has
a sharp cutoff after the first lag. This is a textbook example of an AR(1) process. Therefore, the first
model proposed for Zt will be a SARIMA(1,1,0)(0,1,0)[12] model.

II. Estimation

To estimate the coefficients of the SARIMA(1,1,0)(0,1,0)[12] model, we will use the Arima() function
from the forecast package. The t tests will be performed using the t_test() function, which receives
an object of type "arima" or "Arima", an integer representing the number of exogenous variables in the
model and an integer for the desired significance level. It returns a data frame containing information
related to the test (estimated coefficients, standard errors, test statistics, critical values and the results
of the test).

# Estimation of the model parameters
model1 <- Arima(data, order = c(1,1,0),

seasonal = list(order = c(0,1,0), period = 12))

# t-test with the estimated coefficients
# 1% significance level
t_test(model1, alpha = 0.01)

#> Coeffs Std.Errors t Crit.Values Rej.H0
#> ar1 -0.386501 0.1099599 3.514925 2.639505 TRUE
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We conclude from column Rej.H0 that the AR(1) coefficient, when estimated by maximum likeli-
hood, is statistically significant at a 99% confidence level .

III. Diagnostic Tests

The aim of the diagnostic tests is to determine whether the chosen model is suitable. Here, two
well-known tools will be used: analysis of standardized residuals and the Llung-Box test (Ljung and
Box, 1978).

The graph of the standardized residuals will be produced with the std_resid() function, which
was implemented specifically for this purpose.

# Graph of the standardized residuals
resids <- std_resid(model1, alpha = 0.01)

# Highlight outlier
points(2013 + 1/4, resids[52], col = "red")

Figure 4: Standard residuals from the first proposed model.

We can see that there is a prominent and statistically significant outlier in April 2013. A second
model including a dummy (a time series whose values can be either 0 or 1, to control for the structural
break) is therefore proposed. The dummy is defined as follows:

D1t =

{
1, t = April 2013
0, otherwise

(5)

This dummy can be created using the dummy() function, as shown below. The start and end
parameters indicate time period covered by the dummy. The from and to fields indicate the interval
within which the dummy should take a value of 1.

dummy1 <- dummy(start = c(2009,1), end = c(2015,10),
year = 2013, month = 4)

Estimation of this model by maximum likelihood resulted in coefficients that are statistically
different from 0 at a 1% significance level. The graph of the standardized residuals of the new model
(Figure 5) also shows that the decision to include Dt was correct as there is no more evidence of a
structural break.

# Estimation of the parameters of the model with a dummy
model2 <- Arima(data, order = c(1,1,0),

seasonal = list(order = c(0,1,0), period = 12), xreg = dummy1)

# t-test with the estimated coefficients
# 1% significance level
t_test(model2, alpha = 0.01)

#> Coeffs Std.Errors t Crit.Values Rej.H0
#> ar1 -0.4063976 0.1095272 3.710472 2.639505 TRUE
#> dummy 5.2072304 1.3552891 3.842155 2.639505 TRUE
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resids <- std_resid(model2, alpha = 0.01)

# Highlight November 2008
points(2013 + 1/4, resids[52], col = "red")

Figure 5: Standard residuals of the model proposed after the detection of a structural break

We spotted some other possible outliers in the standard residuals graph. Hence we introduce two
more dummies to improve the model and then estimate a third set of coefficients.

D2t =

{
1, t = December 2012
0, otherwise

(6)

D3t =

{
1, t = January 2013 or February 2013
0, otherwise

(7)

dummy2 <- dummy(start = c(2009,1), end = c(2015,10), year = 2012, month = 12)
dummy3 <- dummy(start = c(2009,1), end = c(2015,10), year = 2013, month = c(1,2))
dummy <- cbind(dummy1,dummy2,dummy3)

model3 <- Arima(data, order = c(1,1,0),
seasonal = list(order = c(0,1,0), period = 12), xreg = dummy)

One possible way of evaluating the quality of the models is to calculate the value of an information
criterion. This is already contained in the object returned by Arima().

# Show BIC for the two estimated models
model1$bic
#> [1] 335.7308
model3$bic
#> [1] 334.3813

Note also that the Bayesian Information Criterion (BIC, Schwarz (1978)) for the model with the
dummies is smaller. Hence, based on this criterion as well, the model with the dummy should be
preferred over the previous one.

The Ljung-Box test for the chosen model can be performed with the Box.test() function in the
stats package. We will follow Rob Hyndman’s suggestion4 and use min(2m, T/5) lags, where m is the
period of seasonality (12 here) and T is the length of the time series (82), which yields 16 in our case.

# Ljung-Box test on the residuals of the model with a dummy
Box.test(resid(model3), type = "Ljung-Box",lag = 16)

#> Box-Ljung test

#> data: resid(model2)
#> X-squared = 27.073, df = 16,
#> p-value = 0.04067

4The discussion can be found at https://robjhyndman.com/hyndsight/ljung-box-test/.
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The p-value of 0.041 is low and indicates there is no statistical evidence to reject the null hypothesis
of no autocorrelation in the residuals. We could have added one MA term to double the p-value and
generate such evidence, but we decided not to, for two reasons: (i) the law of parsimony; (ii) adding
an extra term would be an ad hoc solution - we have no indication from the ACF and PACF that this
term should exist; and (iii) there is no reason to be overcautious and present an extensive analysis,
because our intention is to exhibit BETS’ features.

IV. Forecasts

BETS provides a convenient way of making forecasts with SARIMA, GRNN, and exponential smooth-
ing models. The predict() function receives the parameters from the forecast() function (from the
package of the same name) and returns not only the objects containing the information related to
the forecasts, but also produces a graph of the series including the predicted values. Displaying the
information in this way is important to get a better idea of how suitable the model is. The actual values
for the forecasting period can also be shown if desired.

We now call predict() to generate the forecasts for the proposed model. The parameters object
(object of type arima or Arima), h (forecast horizon), and xreg (the dummy for the forecasting period)
are inherited from the forecast() function. The others are from predict() itself and control features of
the graph, except for actual, which is the the series of effective values observed during the forecasting
period.

new_dummy <- dummy(start = start(data_test), end = end(data_test))
new_dummy <- cbind(new_dummy, new_dummy, new_dummy)

preds <- predict(object = model3, xreg = new_dummy,
actual = data_test, xlim = c(2010, 2016.2),
ylab = "R$ Millions",
style = "normal", legend.pos = "bottomleft")

Figure 6: Graph of the proposed SARIMA model forecasts, an output of predict

The areas in dark blue and light blue around the forecasts are the 85% and 95% confidence intervals,
respectively. It appears that the forecasts were satisfactory, since in general the actual values are inside
the confidence interval.

To make this statement more meaningful, we can check various measures of fit by consulting the
accuracy field contained within the predictions object (preds).

preds$accuracy

#> ME RMSE MAE MPE MAPE ACF1
#> Test set -0.08333333 2.252776 1.85 -0.2144377 2.14463 0.3403901
#> Theil's U
#> Test set 0.5675735

The other field in this object, predictions, contains the object returned by forecast() (or by
another forecasting function, such as grnn.test() or predict(), depending on the model).
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Using the automated report for SARIMA modeling

The report() function performs the Box & Jenkins modeling for any series chosen by the user and
generates reports with the results and explanatory comments. Besides, it allows the forecasts of the
model to be saved in a data file and accepts parameters in order to increase model flexibility. Each
input series produce a different output, as expected. The report() prototype is as follows:

report(mode = "SARIMA", ts = 21864, parameters = NULL,
report.file = NA, series.saveas = "none")

If the user changes the value of the parameter series.saveas() from ‘none’ to a valid format,
the series and the model forecasts are saved in a file. series.saveas accepts all the formats save()
functions can handle (namely, ‘.sas’, ‘.dta’ and ‘.spss’) plus ‘.csv’, which is very convenient. The
argument ts is just as flexible, and is capable of receiving a list containing ts objects, codes of series
within the BETS database, or a combination of both. A report is generated for each element on this
list. For instance, the following piece of code would work:

series <- list(21863, BETSget(21864))

parameters <- list(cf.lags= 25, n.ahead = 15 )

report(ts = series, parameters = parameters)

The list of reports’ specific arguments are passed through parameters, whose accepted fields vary
according to the type of report (defined via mode). In the case of SARIMA models, these fields are
presented in table 1, all of them being optional.

Name Type Description

cf.lags integer Maximum number of lags to show on the ACFs and
PACFs

n.ahead integer Prevision horizon (number of steps ahead)
inf.crit character Information criterion to be used in model selection (BIC

or AIC).
dummy ts object A dummy regressor. Must also cover the forecasting

period.
ur.test list Parameters of ur_test
arch.test list Parameters of arch_test
box.test list Parameters of Box.test, from package stats

Table 1: Possible fields of parameters, an argument of report function, when mode is set to SARIMA

To model the BPIGI series in a similar way to what we modeled in the last section, we resort to the
call below:

params = list(
cf.lags = 48,
n.ahead = 12,
box.test = list(lag = 16),
dummy = dummy(start= c(2009,1) , end = c(2016,4) , year = 2013, month = 4),
ur.test = list(mode = "ADF", type = "none", lags = 12,

selectlags = "BIC", level = "5pct")
)

report(ts = window(BETSget(21864), start= c(2009,1) , end = c(2015,10)),
parameters = params,
series.saveas = "csv")

The report is rendered in the form of an html file, which opens automatically in the user’s default
internet browser. This whole file is shown in Figure 7. It consists of the following:

1. The information about the series as it is found in the BETS metadata table. In our example call,
we use a custom series, so it exhibits more general information.
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Figure 7: The output file of report() function for the series under study.
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2. The graph of the series along with its trend, which is extracted with an HP Filter (Hodrick and
Prescott, 1997). The graph is produced with the dygraphs package (Vanderkam et al., 2016) and
enables the user to define windows and examine the series’ values.

3. The steps involved in the identification of a possible model: unit root tests (at the moment, ACF
(Dickey and Fuller, 1979), PP (Phillips and Perron, 1988) or KPSS (Kwiatkowski et al., 1992)
for non-seasonal unit roots, and OCSB (Osborn et al., 1988) test for seasonal unit roots) and
correlograms of the original series (if no unit root is found), or the differenced series (if one or
more unit roots are found).

4. Estimation of the parameters and display of the result from the automatic model selection
performed by the auto.arima() function (from the forecast package).

5. The ARCH test (Engle, 1982) for heteroskedasticity in the residuals. If residuals are found to be
heteroskedastic, the report performs a log transformation on the original series and run steps 3
and 4 again for the transformed series.

6. The graph of the standard residuals.

7. The Ljung-Box (Ljung and Box, 1978) test for autocorrelation in the residuals. If the null
hypothesis of no autocorrelation is rejected, the user will be advised to use a dummy or another
type of model.

8. The n-steps-ahead forecasts and a graph of the original series with the forecasted values and
confidence intervals, also produced with dygraphs (this output is an option of predict()).

9. A link to the file containing the original data and the forecasts.

One example of how the output could change in response to different inputs is obtained by
removing the dummy from the last example. The call without a dummy renders a report that, after
detecting autocorrelation in the residuals, suggests the usage of a dummy to solve the problem (Figure
8). It does indeed solve it, as we demonstrated.

Figure 8: Snippet of the report generated without a dummy.

We now provide one more call and output snippets from the report() function, aiming at illustrat-
ing its capabilities. First, suppose we need to model the Brazilian production of capital goods (BPCG)
series. Its unique identifier in the BETS database is 21863, so this will be the value of parameter ts.
The next piece of code builds a SARIMA report using the same dummy we needed in the case study,
but ARCH test and Box test parameters are different.5

dum <- dummy(start= c(2002,1) , end = c(2017,12) , from = c(2008,7) , to = c(2008,11))
series <- window(BETSget(21863), start = c(2002,1), end = c(2017,6))

params <- list(
cf.lags = 36,
n.ahead = 6,
dummy = dum,
arch.test = list(lags = 12, alpha = 0.03),
box.test = list(type = "Box-Pierce")

)
report(ts = series, parameters = params)

Figures 9 to 11 show snippets of the report that was generated by the last call and demonstrate that
it presents different results when compared to the one produced previously. OCSB test, for instance,
did not find any seasonal unit root, thereby displaying a different comment (Figure 9).

5This time, we employ the Box-Pierce test (Box and Pierce, 1970)

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://CRAN.R-project.org/package=dygraphs


CONTRIBUTED RESEARCH ARTICLES 145

Figure 9: First snippet of the example report with the BPCG series

In addition, residuals were found to be heteroskedastic, which forced the model to be estimated a
second time, using the log transformation of the original series (Figure 10).

Figure 10: Second snippet of the example report with the BPCG series

Finally, the second model was tested and considered better than the first (Figure 11) and no
autocorrelation in the residuals were found.

Figure 11: Third snippet of the example report with the BPCG series

Note that running a report saves a lot of time and might be insightful. However, performing
the analysis in detail, using individual BETS functions rather than the batch of functions included
in the reports, may provide more flexibility. Since reports use auto.arima(), they might not find
models that are in line with a more sofisticated analysis. For example, the SARIMA model calculated
by auto.arima() in the first example (Figure 7) is not the one we proposed in the case study. This
happened because the function did not find a non-seasonal unit root, since it does not test for more
than 2 lags, and we tested for 6. For now, we cannot include the option of testing for more lags, the
reason being that auto.arima() does not accept it.

Conclusion

We have shown in this article that the approach adopted in BETS is a novel one as it allows users
not only to quickly and easily access thousands of Brazilian economic time series, but also to use
and analyze these series in many different ways. Its automated reports are comprehensive, fully
customizable and three methods can be readily applied: SARIMA models, GRNNs and exponential
smoothing models. We showed case studies to examine the use of the first, but only mentioned the
latter two. Nevertheless, the user can benefit from the extensive documentation shipped with the
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package, where example code to generate GRNN and exponential smoothing reports are exhibited
and discussed.

In the future we hope to expand these dynamic reports and provide new options for users. One
such option has already been taken into account in the design of the package: a display mode that
does not include explanations about the methodology, so that the information is provided in a more
technical, succinct manner. In addition to developing new modeling methods, such as Multi-Layer
Perceptrons, fuzzy logic, Box & Jenkins with transfer functions, and multivariate models, we plan to
refine the analyses themselves.
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fICA: FastICA Algorithms and Their
Improved Variants
by Jari Miettinen, Klaus Nordhausen, and Sara Taskinen

Abstract In independent component analysis (ICA) one searches for mutually independent non-
gaussian latent variables when the components of the multivariate data are assumed to be linear
combinations of them. Arguably, the most popular method to perform ICA is FastICA. There are
two classical versions, the deflation-based FastICA where the components are found one by one, and
the symmetric FastICA where the components are found simultaneously. These methods have been
implemented previously in two R packages, fastICA and ica. We present the R package fICA and
compare it to the other packages. Additional features in fICA include optimization of the extraction
order in the deflation-based version, possibility to use any nonlinearity function, and improvement to
convergence of the deflation-based algorithm. The usage of the package is demonstrated by applying
it to the real ECG data of a pregnant woman.

Introduction

The goal of independent component analysis is to transform a multivariate dataset so that the resulting
components are as independent as possible. The idea is to separate latent components from the dataset
which is assumed to consist of linear mixtures of them.

The basic independent component (IC) model is thus written as

xi = Azi, i = 1, . . . , n, (1)

where X = (x1, . . . , xn) is a centered p× n data matrix, A is a p× p mixing matrix, and z1, . . . , zn are
realizations of a zero mean random p-vector z = (z1, . . . , zp)T with mutually independent components
and at most one Gaussian component. The aim of ICA is then to estimate the unmixing matrix
W = A−1 and/or Z from the data matrix X alone (Hyvärinen et al., 2001; Cichocki and Amari,
2002; Comon and Jutten, 2010; Nordhausen and Oja, 2018). Indeed, ensuring independence and
nongaussianity of the components of z is sufficient for their consistent estimation, but only up to
signs and scales (Comon, 1994). The scales of the independent components are often fixed by the
assumption Cov(z) = Ip, and we may proceed from Model 1 to

xst = UTz, (2)

where xst = Cov(x)−1/2(x− IE(x)) and U is an orthogonal p× p matrix. This means the problem can
be reduced to that of finding an orthogonal matrix and the final unmixing matrix estimate is then
W = UCov(x)−1/2.

ICA has become a widely used tool in various fields, including brain imaging, image and audio
signal processing, and financial time series analysis. Despite the vast amount of literature on ICA
methodology, the classical FastICA (Hyvärinen and Oja, 1997; Hyvärinen, 1999) methods are still
the most popular tools with which to estimate the independent components. FastICA functions
are available for several programming languages such as Matlab, in package FastICA (Gävert et al.,
2005); R, in packages fastICA (Marchini et al., 2013) and ica (Helwig, 2015); C++, as part of package
IT++ (Cayre and Furon, 2004); and Python, as part of packages MDP (Zito et al., 2008) and Scikit-
learn (Pedregosa et al., 2011).

Here we introduce the R package fICA (Miettinen et al., 2017b). In addition to the classical FastICA
methods, fICA includes functions for three recently proposed improved variants of FastICA, which are
presented in the following section. Then we discuss how the fICA package differs from the packages
fastICA and ica, and finally, we give some examples on the usage of the fICA package.

FastICA estimators in the fICA package

The fICA package includes implementations of the classical FastICA estimators as well as three
improved variants, which we will now describe in detail. For other variants of FastICA, see Koldovský
and Tichavský (2015).

All the methods maximize the nongaussianity of the components of Uxst, when the nongaus-
sianity of a univariate random variable x is measured by | IE[G(x)]| with some twice continuously
differentiable and nonquadratic function G which satisfies IE[G(y)] = 0 for the standard Gaussian
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random variable y. The established and most popular options for G are

pow3: G(x) = (x4 − 3)/4,

tanh: G(x) = log(cosh(x))− ct ,

gaus: G(x) = − exp(−x2/2)− cg ,

where ct = IE[log(cosh(y))] ≈ 0.375 and cg = IE[− exp(−y2/2)] ≈ −0.707. The names pow3, tanh,
and gaus originate from the first derivatives of the functions, the so called nonlinearities, g(x) = x3,
g(x) = tanh(x), and g(x) = x exp(−x2/2). The choice pow3 always yields consistent estimates,
whereas tanh and gaus do not. However, the examples (Miettinen et al., 2017c; Wei, 2014) of such
distributions of the independent components where tanh and gaus fail are quite artificial, and we agree
with Hyvärinen (1999) stating that tanh and gaus work with most of the reasonable distributions. For
further discussions concerning possible nonlinearities and their properties, see Dermoune and Wei
(2013) and Virta and Nordhausen (2017).

Deflation-based FastICA and its variants

The first FastICA paper (Hyvärinen and Oja, 1997) used pow3 to find the independent components one
after the other. In this deflation-based FastICA, the kth row of U = (u1, . . . , up)T maximizes

| IE[G(uT
k xst)]|

under the constraints uT
k uk = 1 and uT

j uk = 0 for j = 1, . . . , k − 1. A modified Newton-Raphson
algorithm iterates the following steps until convergence:

uk ← IE[g(uT
k xst)xst]− IE[g′(uT

k xst)]uk

uk ←
(

Ip −
k−1

∑
l=1

ulu
T
l

)
uk

uk ← ||uk||−1uk

where the last two steps perform the Gram-Schmidt orthonormalization.

In addition to the global maximum, the objective function has several local maxima to which the
FastICA algorithm may converge. The order in which the rows of U are found depends on their initial
values. The extraction order affects the estimation performance, and to our knowledge, fICA is the
only R package which provides a function to estimate the rows of U in such order that the objective
function is maximized globally at each stage. This extraction order is usually better than a random
order, even though not always optimal.

The statistical properties including asymptotic normality of the deflation-based FastICA estimator
were studied rigorously in Ollila (2009, 2010); Nordhausen et al. (2011). The derivation of the asymp-
totic variances of the unmixing matrix estimate lead to reloaded FastICA (Nordhausen et al., 2011)
which first computes an initial estimate Ẑ of the sources applying some simple IC method such as
FOBI (Cardoso, 1989) or k-JADE (Miettinen et al., 2013). For all components of Ẑ, one then computes
certain quantities from which the optimal extraction order can be deduced.

The adaptive deflation-based FastICA (Miettinen et al., 2014) differs from the other estimators here,
as instead of one nonlinearity it uses a candidate set of multiple nonlinearities, from which the best
one is chosen for each component. Again, an initial estimate of the sources is computed and then
the same quantities as in reloaded FastICA are obtained, but now for for each candidate in the set of
nonlinearities. In addition to identifying the optimal extraction order, the optimal nonlinearity for each
independent component is also chosen separately. The default set of nonlinearities for the function
adapt_fICA in the R package fICA includes pow3, tanh, gaus, and the following eleven options:

g(x) = x3 g(x) = (x− 0.2)2
+ + (x + 0.2)2

−
g(x) = tanh(x) g(x) = (x− 0.4)2

+ + (x + 0.4)2
−

g(x) = xexp(−x2/2) g(x) = (x− 0.6)2
+ + (x + 0.6)2

−
g(x) = (x + 0.6)2

− g(x) = (x− 0.8)2
+ + (x + 0.8)2

−
g(x) = (x− 0.6)2

+ g(x) = (x− 1.2)2
+ + (x + 1.2)2

−
g(x) = (x)2

+ + (x)2
− g(x) = (x− 1.4)2

+ + (x + 1.4)2
−

g(x) = (x− 1)2
+ + (x + 1)2

− g(x) = (x− 1.6)2
+ + (x + 1.6)2

−

where (x)+ = x if x > 0 and 0 otherwise, and (x)− = x if x < 0 and 0 otherwise.

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 150

Symmetric and squared symmetric FastICA

The symmetric FastICA (Hyvärinen, 1999) estimator maximizes

p

∑
j=1
| IE[G(uT

j xst]|

under the orthogonality constraint UUT = Ip. Now the rows of U = (u1, . . . , up)T are estimated in
parallel, and the steps of the iterative algorithm are

uk ← IE[g(uT
k xst)xst]− IE[g′(uT

k xst)]uk, k = 1, . . . , p

U ← (UUT)−1/2U.

The first update step is similar to that of the deflation-based version. In a way, the orthogonalization
step can be seen as taking an average over the vectors of the first step, while in the Gram-Schmidt
orthogonalization the errors in estimating the first rows of U will remain throughout the estimation. It
is said that the error accumulates in the deflation-based approach. The symmetric FastICA is usually
considered superior to the deflation-based FastICA, but there are also cases where the accumulation is
preferable to the averaging. This occurs when some independent components are easier to find than
the others. Statistical properties of symmetric FastICA are given in Miettinen et al. (2015); Wei (2015);
Miettinen et al. (2017c).

The squared symmetric FastICA (Miettinen et al., 2017c) estimator maximizes

p

∑
j=1

(IE[G(uT
j xst])

2

under the orthogonality constraint UUT = Ip. The first step of the algorithm

uk ← IE[G(uT
k xst)](IE[g(uT

k xst)xst]− IE[g′(uT
k xst)]uk), k = 1, . . . , p,

U ← (UUT)−1/2U

is that of the classical symmetric version multiplied by IE[G(uT
k xst)]. Hence, the squared symmetric

version puts more weight on the rows which correspond to more nongaussian components, which
most often, but not always, is advantageous.

For both of the symmetric versions, the initial value of U is not important when the sample size is
large, as the algorithms converge always to the global maxima. With small sample sizes the initial
value plays a role.

Comparison of the packages

The FastICA algorithms sometimes fail to converge when the sample size is small. However, this is
not obvious if one uses the R package fastICA or ica since they do not give errors or warnings if the
algorithm does not converge, but simply return the estimate after the maximum number of iterations
has been reached. In the fastICA package, the information about convergence can be obtained, but
since it is not given in the default setup, many of the users will not notice it. Similarly, in the ica
package the number of iterations is included in the output and could be used as an indicator for
convergence, but convergence problems might still go unnoticed. Growing the number of iterations
does usually not help because if the algorithm has not converged after 2000 iterations, it is often
repeating a loop of values. In contrast, the functions in the R package fICA give an error message if
the algorithm does not converge. When computing the symmetric estimators, the user can choose the
number of random orthogonal matrices which are generated for the initial values of the algorithms.
If this number is at least two, the function returns the estimate which yields the highest value of the
objective function and gives a warning if none of the algorithm runs converge. To avoid the repeating
loop in the deflation-based case, fICA alternates the step size. The update of the vector uk is of the
form

uk ← wuk + (1− w)
(

IE[g(uT
k xst)xst]− IE[g′(uT

k xst)]uk

)
,

where w is zero for most iterations and takes small nonzero values with some selected iteration
numbers with an irregular pattern.

To sum up the key differences of fICA to the fastICA and ica packages, we present Table 1.

The number of nonlinearities in fICA is basically unlimited. In addition to the already implemented
suggestions, the user can provide their own functions by specifying g and its derivative. We provide
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Table 1: The properties of the three R packages which include the FastICA algorithm.

fICA fastICA ica

Symmetric FastICA YES YES YES
Squared symm. FastICA YES NO NO
Deflation-based FastICA YES YES YES
Optimized extraction order YES NO NO
Adaptive defl. FastICA YES NO NO
Error if no convergence YES NO NO
Number of nonlinearities ∞ 2 3

an example of the user-specified option in the next section.

Examples

To illustrate the use of the fICA package, we give the following two examples.

Electrocardiography data

First, we analyze an electrocardiography recording (ECG) dataset foetal_ecg.dat (de Lathauwer
et al., 2000), which can be downloaded from the supplementary files of Miettinen et al. (2017d). An
ECG measures the electrical potential on the body surface. This recording is from a pregnant woman
and consists of eight signals from five sensors on the stomach and three on the chest. The lengths of
the signals are 2500 time points.

The signals are mixtures of fetus’ and mother’s heart beats and possibly some artifacts. The goal is
to separate these sources using independent component analysis.

> library(fICA)
> library(JADE)
> options(digits = 4)
>
> dataset <- matrix(scan("https://www.jstatsoft.org/index.php/jss/article/
+ downloadSuppFile/v076i02/foetal_ecg.dat"), 2500, 9, byrow = TRUE)
> X <- dataset[ , 2:9]
> plot.ts(X, nc = 1, main = "Data")

After downloading the data and plotting it in Figure 1, we see that the main feature in each
signal are 14 peaks, which are presumably produced by mother’s heart beats. Next, we show how
to apply the function adapt_fICA with a modified set of nonlinearities. We demonstrate how to use
the pre-programmed pow3 , tanh, and gaus options in the packages, and demonstrate how to use a
user-specified function by providing g and its derivative for another classical nonlinearity called skew
given by g(x) = x2.

> g <- function(x){ x^2 }
> dg <- function(x){ 2*x }
> gf_new <- c(gf[1:3], g)
> dgf_new <- c(dgf[1:3], dg)
> gnames_new <- c(gnames[1:3], "skew")
>
> res <- adapt_fICA(X, gs = gf_new, dgs = dgf_new, name = gnames_new, kj = 1)
>
> res
W :

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] -0.04135 0.059521 0.004006 0.001754 -0.010123 0.0076023 0.0001551
[2,] 0.01731 -0.023294 0.002298 0.002663 0.008367 0.0022727 -0.0075911
[3,] 0.09352 0.071699 -0.106091 -0.004342 0.175369 -0.0030657 -0.0063677
[4,] -0.05358 0.106633 0.076979 0.044062 -0.024241 -0.0261067 -0.0522030
[5,] 0.15805 0.039095 0.233377 -0.041272 -0.169486 0.0104065 -0.0116267
[6,] -0.06605 0.114817 0.201392 -0.021387 0.234210 -0.0106505 0.0254791
[7,] 0.07817 -0.001272 0.146718 0.220175 -0.180189 -0.0008764 0.0035999
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Figure 1: The ECG signals of a pregnant woman.
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[8,] -0.25492 0.313232 0.049493 0.089799 0.028816 0.0232881 -0.0535985
[,8]

[1,] -0.009234
[2,] 0.009301
[3,] 0.013034
[4,] 0.022396
[5,] 0.028662
[6,] -0.010261
[7,] -0.009922
[8,] 0.034743

gs :
[1] "pow3" "tanh" "gaus" "skew"

used_gs :
[1] "gaus" "gaus" "gaus" "tanh" "tanh" "tanh" "tanh"

alphas :
comp 1 comp 2 comp 3 comp 4 comp 5 comp 6 comp 7 comp 8

pow3 0.7445 0.6119 1.4060 1.994 5.014 9.628 23.28 50087.8
tanh 0.2433 0.2569 0.7769 1.374 3.189 8.400 21.53 343.3
gaus 0.2058 0.2336 0.7336 1.458 3.351 10.829 22.87 215.1
skew 0.5457 0.4126 11.8980 7.091 12.867 9.118 25.00 108.7

init_est :
[1] "1-JADE"

In the output, we have the 8× 8 unmixing matrix, the names of the available nonlinearities, the
nonlinearities used, the criterion values for the selection of the extraction order and the nonlinearities,
and the name of the initial estimator. Note that the used_gs output does not give a nonlinearity for
the last component since the last component is fixed by the seven previous components due to the
orthogonality constraint.

> plot.ts(bss.components(res), nc=1, main="Estimated components")

Figure 2 plots the estimated independent components. Clearly, the first two components are related to
mother’s heart beat and the third one is related to fetus’ heart beat. The third row of the unmixing
matrix estimate shows which data signals contribute to the estimate of the fetal heart beat. Not
surprisingly, the nonzero coefficients correspond to sensors 1, 2, 3, and 5, which are located on the
stomach area.

Simulations

In this simulation example, we also take a look at the related R package BSSasymp (Miettinen et al.,
2017a), which computes asymptotic covariance matrices of several mixing and unmixing matrix
estimates, including the FastICA variants discussed in this paper and implemented in fICA. The
p = 3 independent components in the simulation setup are generated from a t9-distribution, an
exponential distribution with rate 1, and the normal distribution. Each density is standardized so that
the expected value is 0 and the variance is 1. In each of the 1000 repetitions, the sample size is 5000,
the mixing matrix is the same randomly generated 3× 3 matrix, and we collect the unmixing matrix
estimates given by (1) the reloaded deflation-based FastICA using tanh from fICA; (2) deflation-based
FastICA using tanh from fastICA; and (3) deflation-based FastICA using tanh from ica. The goal of the
simulation is to show that the extraction order of the components indeed matters.

> library(fICA)
> library(fastICA)
> library(ica)
> library(BSSasymp)
> library(JADE)
>
> options(digits = 4)
> set.seed(1145)
>
> rort <- function(p){qr.Q(qr(matrix(rnorm(p * p), p)))}
>
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Figure 2: The estimated independent components from the ECG data.
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>
> n <- 5000
> p <- 3
> A <- matrix(rnorm(p^2), p, p)
>
> Ws1 <- Ws2 <- Ws3 <- vector("list", 1000)
>
> for(i in 1:1000){
+ Z <- cbind(rt(n, 9) / sqrt(9/7), rexp(n, 1) - 1, rnorm(n))
+
+ X <- tcrossprod(Z,A)
+
+ init = rort(p)
+
+ Ws1[[i]] <- reloaded_fICA(X, g = "tanh")$W
+ res <- fastICA(X, n.comp = 3, alg.typ = "deflation" )
+ Ws2[[i]] <- t(res$W) %*% t(res$K)
+ Ws3[[i]] <- icafast(X, nc = 3, alg = "def", Rmat = init)$W
+ }

To obtain the theoretical asymptotic variances, the density functions of the independent com-
ponents and their supports are required. Function ASCOV_FastICAdefl computes the values for
deflation-based variants of FastICA. However, when the initial matrix is random as it is in fastICA
and ica, there are no asymptotic results. Therefore, we only consider the reloaded FastICA for which
the asymptotic variances are derived using ASCOV_FastICAdefl with method = "adapt" and only one
nonlinearity. The output component $COV_W gives the asymptotic covariance matrix of the unmixing
matrix estimate with the variances on the diagonal. The variances can be estimated using the function
ASCOV_FastICAdefl_est and the data matrix. Here we estimate the variances from the last dataset
generated above. In this case, the estimated variances are slightly higher than the theoretical values.
Finally, we compute the variances from the simulations, and notice that they are quite close to the
theoretical and the estimated variances.

> f1 <- function(x){ dt(x*sqrt(9/7),9)*sqrt(9/7) }
> f2 <- function(x){ dexp(x+1,1) }
> f3 <- function(x){ dnorm(x) }
> supp <- matrix(c(-Inf, -1, -Inf, Inf, Inf, Inf), p, 2)
>
> COV <- ASCOV_FastICAdefl(c(f1,f2,f3), gf[2], dgf[2], Gf[2],
+ method = "adapt", name = c("tanh"), supp = supp, A = A)$COV_W
> matrix(diag(COV), p, p)

[,1] [,2] [,3]
[1,] 6.974 1.486 4.157
[2,] 27.813 5.163 10.895
[3,] 4.703 1.533 9.879
> COV_est <- ASCOV_FastICAdefl_est(X, gf[2], dgf[2], Gf[2],
+ method="adapt", name=c("tanh"))$COV_W
> matrix(diag(COV_est), p, p)*n

[,1] [,2] [,3]
[1,] 7.219 1.369 4.356
[2,] 39.321 6.399 12.983
[3,] 5.714 1.552 16.177
> apply(simplify2array(Ws1), c(1,2), var)*n

[,1] [,2] [,3]
[1,] 7.128 1.582 4.132
[2,] 29.009 5.334 11.498
[3,] 4.939 1.528 10.639

The minimum distance index (Ilmonen et al., 2010) can be used to quantify the separation perfor-
mance of an unmixing matrix Ŵ in a simulation study where the mixing matrix is known. It is defined
as

D̂ =
1√

p− 1
inf
C∈C
‖CŴA− Ip‖,

where ‖ · ‖ is the Frobenius norm and

C = {C : each row and column of C has exactly one non-zero element}.
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The minimum distance index takes values between 0 and 1, where zero means perfect separation. The
function ASCOV_FastICAdefl gives the limiting expected value of D̂2n(p− 1), which is independent of
the mixing matrix A. Below, the expected value is computed for the optimal extraction order (first the
exponential, then the t9-distribution, and the Gaussian component last), and for the other reasonable
order (first the t9-distribution, then exponential, and the Gaussian last). If the Gaussian component is
found first or second, the limiting expected value goes to infinity. We also compute the averages of
D̂2n(p− 1) over the 1000 repetitions for the three estimates. The average of the reloaded FastICA is
close to the expected value of the optimal order, while the other two estimates with a random initial
value have larger averages, indicating that the components are often found in non-optimal order.

> EMD_opt <- ASCOV_FastICAdefl(c(f1,f2,f3), gf[2], dgf[2], Gf[2],
+ method = "adapt", name = c("tanh"), supp = supp, A = A)$EMD
> EMD_opt
[1] 44.74
> EMD2 <- ASCOV_FastICAdefl(c(f1,f2,f3), gf[2], dgf[2], Gf[2],
+ method = "regular", name = c("tanh"), supp = supp, A = A)$EMD
> EMD2
[1] 67.66
> MD1 <- unlist(lapply(Ws1, MD, A=A))
> MD2 <- unlist(lapply(Ws2, MD, A=A))
> MD3 <- unlist(lapply(Ws3, MD, A=A))
>
> mean(MD1^2)*n*(p-1) # fICA
[1] 46.74
> mean(MD2^2)*n*(p-1) # fastICA
[1] 67.87
> mean(MD3^2)*n*(p-1) # ica
[1] 69.34

This simulation shows the effect of the extraction order in deflation-based fastICA. To date, only fICA
has offered tools to find the optimal extraction order.

Summary

FastICA is the most widely used method to carry out independent component analysis. The R package
fICA contributes to existing methods in two ways. First, it introduces the reloaded and adaptive
deflation-based FastICA and the squared symmetric FastICA. Second, it improves on the existing R
functions for classical FastICA algorithms by allowing user-specified nonlinearities and enhancing the
convergence of the deflation-based FastICA. We gave a short review of the FastICA estimators, and
examples on how to use them with the fICA package.
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Profile Likelihood Estimation of the
Correlation Coefficient in the Presence of
Left, Right or Interval Censoring and
Missing Data
by Yanming Li, Brenda W. Gillespie, Kerby Shedden, John A. Gillespie

Abstract We discuss implementation of a profile likelihood method for estimating a Pearson correla-
tion coefficient from bivariate data with censoring and/or missing values. The method is implemented
in an R package clikcorr which calculates maximum likelihood estimates of the correlation coefficient
when the data are modeled with either a Gaussian or a Student t-distribution, in the presence of left,
right, or interval censored and/or missing data. The R package includes functions for conducting
inference and also provides graphical functions for visualizing the censored data scatter plot and
profile log likelihood function. The performance of clikcorr in a variety of circumstances is evaluated
through extensive simulation studies. We illustrate the package using two dioxin exposure datasets.

Introduction

Partially observed data present a challenge in statistical estimation. Simple approaches like complete
case analysis allow traditional estimators to be used, but sacrifice precision and may introduce bias.
More sophisticated approaches that incorporate information from partially observed cases have the
potential to achieve greater power, but can be much more difficult to implement. As a case in point,
the Pearson correlation coefficient is easily estimated by the familiar moment-based formula,

r =
Σn

i=1(xi − x̄)(yi − ȳ)
[Σn

i=1(xi − x̄)2 Σn
i=1(yi − ȳ)2]1/2 (1)

and under certain conditions, uncertainty in the estimate can be assessed using Fisher’s variance
stabilizing transformation (Fisher, 1915). However, it is not obvious how this approach can be extended
to accommodate partially observed data.

Partially observed bivariate data (x, y) can take several forms. If either x or y is completely missing,
the observation provides no direct information about the correlation coefficient, but is informative
about the marginal distributions. If x and/or y is censored, but neither is completely missing, then
the observation provides information about the correlation parameter as well as about the marginal
distributions.

Here we discuss a likelihood-based method for estimating the correlation coefficient from partially-
observed bivariate data, and present an R package implementing the method, clikcorr (“Censored
data likelihood based correlation estimation") (Li et al., 2016). clikcorr calculates maximum likelihood
estimates of the parameters in a model, in particular the correlation coefficient, in the presence of left,
right, and interval censored data and missing values. clikcorr also has functions to help visualize
bivariate datasets that contain censored and/or missing values.

The package emphasizes the role of the profile likelihood function for the correlation parameter. It
provides functions to visualize the profile likelihood function, and uses likelihood ratio test inversion
to provide confidence intervals for the correlation coefficient. This circumvents difficulties that arise
when using Wald-type confidence intervals for a parameter that lies in a bounded domain, and that
may have an asymmetric sampling distribution.

This project was motivated by the need to calculate correlation coefficients with left-censored
chemical assay data. Such data often arise in the context of toxicology, chemistry, environmental
science and medical laboratory applications, where some measurements fall below a limit of detection
(LOD) (Jaspers et al., 2013). The limit of detection must be known or approximated. Estimating the
correlation coefficient from bivariate censored data has been studied (Li et al., 2005), but issues in both
methodology and software remain.

The paper is organized as follows. Section 24.1 develops model-based frameworks for correlation
estimation based on Gaussian and Student-t models. Section 24.2 describes clikcorr, including the
data input format, the output format, and program features such as the plotting functions. Section
24.3 presents simulations to address the performance of clikcorr under a range of scenarios, focusing
on run time and coverage probability of the confidence intervals. In Section 24.4 we use clikcorr to
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analyze dioxin data from both Jaspers et al. (2013) and the National Health and Nutrition Examination
Survey (NHANES). Some further details on using the R package clikcorr are provided in Section 24.5

Models for correlation parameter estimation

Working in a model-based framework of a bivariate distribution with a correlation parameter opens
up several paths for handling partially observed data. A likelihood for the observed data can be
calculated by integrating a “complete data” likelihood over all data configurations that are consistent
with the observed data. The resulting “observed data likelihood” is seen as preserving full information
from the data, and can be used with any standard likelihood-based inference approach, including
maximum likelihood (ML) estimation, Wald-type inference, likelihood ratio testing, and profile
likelihood analysis.

The bivariate Gaussian distribution is a natural starting point for model-based estimation of
a correlation coefficient. The distribution has five parameters: two marginal means (µX , µY), two
marginal standard deviations (σX , σY), and the correlation coefficient ρXY . The joint density function
of the bivariate Gaussian distribution for standardized data (µx = µy = 0, σx = σy = 1) is

f0(x, y) =
1

2π
√

1− ρ2
XY

exp

(
− x2 + y2 − 2ρXYxy

2(1− ρ2
XY)

)
. (2)

When the data are complete, the maximum likelihood estimates of the parameters in the bivariate
Gaussian distribution are the sample means (x̄ and ȳ), the sample standard deviations (scaled by√
(n− 1)/n), and the sample correlation coefficient, respectively. These are all closed-form estimators,

with the correlation coefficient estimator r given by (1).

The fact that the Gaussian distribution maximum likelihood estimates coincide with the standard
method of moments estimates implies some desirable properties. In particular, in the complete data
setting, the Gaussian ML estimates will be consistent whenever the law of large numbers can be
invoked to give consistency of the sample moments, regardless of whether the data are actually
Gaussian. This makes it an appealing foundation for developing an approach that accommodates
partially observed cases.

However, inference based on the Gaussian distribution may be misleading if the true distribution
is far from Gaussian. In the complete data setting, traditional maximum likelihood (ML) techniques
such as likelihood ratio testing and Wald-type inference are seldom performed, with approaches based
on Fisher’s (Fisher, 1915) variance stabilizing transformation being much more common. An approach
to estimation and inference for the correlation parameter in the setting of partially observed data based
on Fisher’s transformation has been developed (Li et al., 2005). All these approaches may produce
misleading results if the data are strongly non-Gaussian, or if the conditions under which Fisher’s
transformation actually stabilizes the variance do not hold.

The approach we implement here is fully model-based and does not rely on variance stabilizing
transformations. Instead, we use standard maximum-likelihood approaches for estimation and
inference. The model-based framework discussed here can be used with any model for bivariate data
that includes an explicit correlation parameter (including any “elliptic distribution” with density of
the form c · φ((z− µ)′Σ−1(z− µ))). Most such models will involve additional nuisance parameters
describing the marginal distributions. Likelihood ratio testing and profile likelihood analysis are
especially useful in settings where several nuisance parameters must be estimated along with the
parameter of interest.

To explore the sensitivity of the estimates and inferences to the model specification, we also
implemented our approach for the setting where the data follow a bivariate Student-t distribution.
The density for this distribution when x and y have zero mean, unit variance and degree of freedom d
is

f0(x, y; d) =
1

2π
√

1− ρ2
XY

(
1 +

x2 + y2 − 2ρXYxy
d(1− ρ2

XY)

)(d/2+1)

. (3)

Note that the parameter ρXY retains the “product moment” interpretation of the Pearson correlation
coefficient – that is, ρXY = E[xy]/(SD(x) · SD(y)).

Partially observed data

Our main goal here is to accommodate partially observed data. In the presence of left-, right-, and/or
interval-censored data, the univariate likelihood function can be written in terms of density functions
(for exact observed values), cumulative distribution functions (CDF, Fθ(x) = P(X ≤ x), for left-
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censored values), survival functions (Sθ(x) = P(X > x), for right-censored values) and differences
between cumulative distribution functions (Fθ(b)− Fθ(a), for interval-censored values in an interval
(a, b]). Here θ represents a generic vector of parameters including the correlation coefficient of interest
along with any nuisance parameters.

We adopt a convention to treat all three censoring types and exact observed values in a unified
representation, with all being special cases of interval censoring. Specifically, every case is known
to lie in an interval (xlower

i , xupper
i ], with −∞ < xlower

i = xi = xupper
i < ∞ for exact observed cases,

−∞ = xlower
i < xupper

i < ∞ for left censored cases, −∞ < xlower
i < xupper

i < ∞ for interval censored
cases, and −∞ < xlower

i < xupper
i = ∞ for right censored cases. In addition, we define −∞ = xlower

i <

xupper
i = ∞ for missing cases; in this case the likelihood contribution is F(∞)− F(−∞) = 1− 0 = 1,

equivalent to omitting the missing values. However, this convention will be useful to handle missing x
or y in the bivariate case. Similar unified representations can be also found in Allison (2010) and Giolo
(2004). For example, for k1 left-censored values with LODs xupper

i , i = 1, ..., k1; followed by k2 − k1

interval-censored values with censoring interval bounds (xlower
i , xupper

i ], i = k1 + 1, ..., k2; k3 − k2 right-
censored at values xlower

i , i = k2 + 1, ..., k3; and n− k3 exact values xi, i = k3 + 1, ..., n, the univariate
likelihood function would be

L(θ) =
k1

∏
i=1

Fθ(xupper
i ) ·

k2

∏
i=k1+1

[Fθ(xupper
i )− Fθ(xlower

i )] ·
k3

∏
i=k2+1

[1− Fθ(xlower
i )] ·

n

∏
i=k3+1

fθ(xi). (4)

For the bivariate setting of (X, Y), extending the likelihood function to accommodate censored
data is complicated by the number of types of data pairs to consider. Each of the X and Y variables can
be one of the following cases: completely observed, left censored, interval censored, right censored
and missing. This yields 52 = 25 types of data pairs. For example, when there are only left-censored
and complete data, four cases must be considered: (1) x and y both complete, (2) x left-censored and
y complete, (3) x complete and y left-censored, and (4) both x and y left-censored. Each factor in
the likelihood (4) is one of these four cases. For case 1, the factor is f (xi, yi), as in the complete data
situation. For case 2, the factor is FX|Y(xi|yi) · f (yi), where FX|Y(x|yi) is the conditional distribution
function of X, given yi. For case 3, the factor is FY|X(yi|xi) · f (xi), where FY|X(y|xi) is the conditional
distribution function of Y, given xi. For case 4, the factor is F(xi, yi) = P(X ≤ xi, Y ≤ yi), i.e., the
bivariate cumulative distribution function evaluated at (xi, yi).

In the Gaussian model, for cases 2 and 3 we can take advantage of the fact that the conditional
distributions are also Gaussian, with means and variances that are easily calculated (Rao, 1973). Thus
we calculate FX|Y(xi|yi) · f (yi) rather than P(X ≤ xi, Y = yi), because the former eases the calculation
by reducing the dimension of the distribution functions from bivariate to univariate. This method can
be applied to right-censored data in a similar way. In case 4, because F(xi, yi) does not have a closed
form expression, it must be evaluated by integration of the joint density over a 2-dimensional region
in the bivariate domain. Efficient methods for this calculation are provided by the mvtnorm R package.

Besides censoring, missing data can also be present in bivariate data (Little and Rubin, 2002). When
both members of a pair are missing, the likelihood contribution factor is 1, and these observations can
be omitted from the analysis. When one member of a pair is missing, the observed member of the pair
can be used to improve estimation of parameters describing its marginal distribution.

The likelihood function L(θ) is the product of n factors, one per observation pair, with the form
of each term depending on whether members of the pair are observed, censored or missing. Table 1
lists all the possible cases of such pairs and the corresponding factor of the likelihood function in the
bivariate normal case. We use the conditional distribution whenever possible to make the calculations
easier.

Alternative models

When data arise from an underlying heavy tailed bivariate distribution, estimates based on the
bivariate normal model may yield confidence intervals with poor coverage probabilities. This is
especially a concern when partially observed data are present. We provide the bivariate Student-t
model as an alternative approach to estimation in this setting.

The bivariate t distribution does not have the useful property held by the bivariate normal
distribution that the conditional distributions have the same distributional form as the marginal
distributions. Consequently, we do not have a simple expression for the conditional distributions of
the bivariate t distribution. Instead, we construct the likelihood through numerical integration over
certain regions of the bivariate domain for each likelihood factor. Specifically, the likelihood factors
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Pair type Factor to the likelihood Pair type Factor to the likelihood

X o., Y o. f (xi, yi) X o., Y lc. FY|X(yu
i |xi) ∗ fX(xi)

X o., Y rc. [1− FY|X(yl
i |xi)] ∗ fX(xi) X o., Y ic. [FY|X(yu

i |xi)− FY|X(yl
i |xi)] ∗ fX(xi)

X o., Y m. fX(xi) X lc., Y o. FX|Y(xu
i |yi) ∗ fY(yi)

X lc., Y lc. F(xu
i , yu

i ) X lc., Y rc. P(X ≤ xu
i , Y > yl

i)
X lc., Y ic. P(X ≤ xu

i , yl
i < Y ≤ yu

i ) X lc., Y m. FX(xu
i )

X rc., Y o. [1− FX|Y(xl
i |yi)] ∗ fY(yi) X rc., Y lc. P(X > xl

i , Y ≤ yu
i )

X rc., Y rc. P(X > xl
i , Y > yl

i) X rc., Y ic. P(X > xl
i , yl

i < Y ≤ yu
i )

X rc., Y m. 1− FX(xl
i) X ic., Y o. [FX|Y(xu

i |yi)− FX|Y(xl
i |yi)] ∗ fY(yi)

X ic., Y lc. P(xl
i < X ≤ xu

i , Y ≤ yu
i ) X ic., Y rc. P(xl

i < X ≤ xu
i , Y > yl

i)
X ic., Y ic. P(xl

i < X ≤ xu
i , yl

i < Y ≤ yu
i ) X ic., Y m. FX(xu

i )− FX(xl
i)

X m., Y o. fY(yi) X m., Y lc. FY(yu
i )

X m., Y rc. 1− FY(yl
i) X m., Y ic. FY(yu

i )− FY(yl
i)

X m., Y m. 1

Table 1: Contributing factors to the likelihood function for each case of observed, censored or missing
values in pairs from the bivariate normal distribution. “o." = observed; “lc." = left censored; “rc." =right
censored; “ic." = interval censored; “m." = missing. xl

i = xlower
i ; xu

i = xupper
i ; yl

i = ylower
i ; yu

i = yupper
i .

are given by

∫ xupper
i

xlower
i

∫ yupper
i

ylower
i

f (µ, ν)dµdν, (5)

where f (x, y) is the bivariate t density, and (xlower
i , xupper

i ) are the censoring intervals as defined in
Section 24.1.2. Table 2 lists the likelihood contribution for each case. We use the mvtnorm package in R
to approximate these values.

Pair type Factor to the likelihood Pair type Factor to the likelihood

X o., Y o. f (xi, yi) X o., Y lc.
∫ yu

i
−∞ f (xi, ν)dν

X o., Y rc.
∫ ∞

yl
i

f (xi, ν)dν X o., Y ic.
∫ yu

i
yl

i
f (xi, ν)dν

X o., Y m. fX(xi) X lc., Y o.
∫ xu

i
−∞ f (µ, yi)dµ

X lc., Y lc.
∫ yu

i
−∞
∫ xu

i
−∞ f (µ, ν)dµdν X lc., Y rc.

∫ ∞
yl

i

∫ xu
i
−∞ f (µ, ν)dµdν

X lc., Y ic.
∫ yu

i
yl

i

∫ xu
i
−∞ f (µ, ν)dµdν X lc., Y m. FX(xu

i )

X rc., Y o.
∫ ∞

xl
i

f (µ, yi)dµ X rc., Y lc.
∫ yu

i
−∞
∫ ∞

xl
i

f (µ, ν)dµdν

X rc., Y rc.
∫ ∞

yl
i

∫ ∞
xu

i
f (µ, ν)dµdν X rc., Y ic.

∫ yu
i

yl
i

∫ ∞
xl

i
f (µ, ν)dµdν

X rc., Y m. 1− FX(xl
i) X ic., Y o.

∫ xu
i

xl
i

f (µ, yi)dµ

X ic., Y lc.
∫ yu

i
−∞
∫ xu

i
xl

i
f (µ, ν)dµdν X ic., Y rc.

∫ ∞
yl

i

∫ xu
i

xl
i

f (µ, ν)dµdν

X ic., Y ic.
∫ yu

i
yl

i

∫ xu
i

xl
i

f (µ, ν)dµdν X ic., Y m. FX(xu
i )− FX(xl

i)

X m., Y o. fY(yi) X m., Y lc. FY(yu
i )

X m., Y rc. 1− FY(yl
i) X m., Y ic. FY(yu

i )− FY(yl
i)

X m., Y m. 1

Table 2: Contributing factors to the likelihood function for each case of observed, censored or missing
values in pairs from the bivariate t-distribution. “o." = observed; “lc." = left censored; “rc." =right
censored; “ic." = interval censored; “m." = missing. xl

i = xlower
i ; xu

i = xupper
i ; yl

i = ylower
i ; yu

i = yupper
i .

Inference

For large n, the likelihood ratio (LR) test for the null hypothesis ρXY = ρ0 is obtained by evaluating
the log profile likelihood function at the maximum likelihood estimator (MLE) and at a given value
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ρ0, taking twice the (positive) difference between them, and comparing to a chi-squared distribution
with 1 degree of freedom (Murphy and van der Vaart, 2000). The p-value for the test is the chi-squared
probability of a value as or more extreme as the one obtained. A profile likelihood-based confidence
interval for ρXY is obtained by inverting the likelihood ratio test, i.e., by finding the values (ρL, ρU)
above and below the profile MLE for which the LR test would first reject (at significance level α) the
null hypothesis that ρXY = ρL, and similarly ρU . Specifically, the confidence interval with coverage
probability 1− α is constructed to be the set{

ρ : −2[`(ρ)−max
ρ

`(ρ)] < qχ2
1
(1− α)

}
,

where `(ρ) = maxµX ,µY ,σX ,σY `(µX , µY , σX , σY , ρ) is the profile log likelihood for ρ and qχ2
1
(1− α) is

the 1− α upper critical value of the chi-squared distribution with 1 degree of freedom (Venzon and
Moolgavkar, 1988; Stryhn and Christensen, 2003).

Profile likelihood based confidence intervals have some advantages over other methods such as
the commonly used Wald-type confidence intervals obtained from the limiting distribution of the MLE.
Wald-type intervals may give poor performance when the parameter is close to the boundary of its
domain, in which case the parameter estimate assumes a skewed distribution (Stryhn and Christensen,
2003). The profile likelihood based approach is robust to this skewness by providing an asymmetric
confidence interval estimate. Zhou et al. (2012) compared confidence interval estimates for a logistic
regression setting using (1) the Wald method, (2) the Bootstrap method and (3) the profile likelihood
based method. In our setting, the profile likelihood based method is more computationally efficient
than the bootstrap method and is more robust to cases of parameter estimates with markedly skewed
distributions than the Wald method.

An R package, clikcorr

We implemented an R package clikcorr (Li et al., 2016) to facilitate inference on the correlation
coefficient from bivariate data in the presence of censored and/or missing values. The package is able
to handle all combinations of observed, censored (left-, right-, or interval-censored) or missing data on
each of the bivariate components. Most of the currently available software for estimating correlation
coefficient between bivariate censored data focus on the left-truncated and right-censored data (Li
et al., 2005; Schemper et al., 2013). To the best of our knowledge, clikcorr is the first available software
that can handle data with a complex mixture types of censoring and missing. The package also has
graphical functions to help visualize bivariate censored data and the shape of the profile log likelihood
function.

We note the large set of routines for left-censored data given in the NADA (Non-detects and
Data Analysis) package (Helsel, 2012, 2005). NADA currently has no function for the Pearson cor-
relation coefficient with left-censored data, although it does include a function for Kendall’s τ. The
implementation described here is not currently included in NADA.

clikcorr requires a special input data format. Each input variable is represented by two columns
for the interval bounds discussed in section 24.1.3, with ±∞ replaced by “NA” values. The same input
data format is also adopted in the LIFEREG procedure of SAS software (Allison, 2010) and in the “Surv"
class of the survival package (Therneau, 2015) in R when type=interval2. Table 3 gives an example
dataset formatted for input into clikcorr, with a pair of variables, Variable1 and Variable2, each given
with lower and upper interval endpoints. For the first sample ID, both variables are exactly observed
at values 10.9 and 37.6 respectively. For the second to the fifth samples, Variable1 is exactly observed
but Variable2 is, in order, left-censored at 7.6, right censored at 26.7, interval-censored at (11.7, 20.9)
and missing. For sample ID 6, both variables are left censored, and for sample ID 7, both variables are
interval censored. clikcorr functions rightLeftC2DF and intervalC2DF can transform input data from
“Surv" class formats into the clikcorr required input format. rightLeftC2DF transforms the right- or
left- censored data in the “Surv" class and “intervalC2DF" transforms interval-censored data (either
interval or interval2) in the “Surv" class.

clikcorr has three main functions, one estimating function and two graphical functions. The
estimating function calculates the correlation coefficient estimate, its confidence interval and the p-
value from the likelihood ratio test of the null hypothesis that the underlying true correlation coefficient
is zero. The user can specify either a bivariate normal (the default) or a bivariate t distribution to use
for inference.

Below is an example of calling the estimation function and the output assuming (by default)
the bivariate normal distribution. Here ND is an example dataset contained in the clikcorr package.
See Li et al. (2016) for details about the ND dataset. ("t1_OCDD", "t1_HxCDF_234678") and ("t2_OCDD",
"t2_HxCDF_234678") are column names for the lower and upper interval bounds for input variables
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Sample ID Lower bound of Upper bound of Lower bound of Upper bound of
the 1st variable the 1st variable the 2nd variable the 2nd variable

1 10.9 10.9 37.6 37.6
2 12.8 12.8 NA 7.6
3 8.7 8.7 26.7 NA
4 13.2 13.2 11.7 20.9
5 9.8 9.8 NA NA
6 NA 10.0 NA 6.9
7 11.4 16.3 10.8 18.7

Table 3: An example input data frame for clikcorr with two input variables.

“OCDD" and “HxCDF_234678", respectively . cp is the user specified coverage probability (confidence
level) of the confidence interval, with the default set to 0.95. The print method of “clikcorr" class
outputs the coefficients matrix, which contains the estimated correlation coefficient coefficients,
the lower and upper bounds for the confidence interval CI.lower and CI.upper, and the p-value,
p.value, from the likelihood ratio test of the null hypothesis that ρXY = 0.

R> data(ND)
R> logND <- log(ND)
R> clikcorr(data = logND, lower1 = "t1_OCDD", upper1 = "t2_OCDD",

+ lower2 = "t1_HxCDF_234678", upper2 = "t2_HxCDF_234678", cp=.95)

Call:
clikcorr.default(data = logND, lower1 = "t1_OCDD", upper1 = "t2_OCDD",
lower2 = "t1_HxCDF_234678", upper2 = "t2_HxCDF_234678", cp = 0.95)

coefficients 95%CI.lower 95 %CI.upper p.value
0.472657898 -0.006538307 0.769620179 0.053083585

The summary method further outputs the vector of estimated means $Mean, the estimated variance-
covariance matrix $Cov and the log likelihood value at the MLE $Loglike.

R> obj <- clikcorr(data=logND, lower1="t1_OCDD", upper1="t2_OCDD",
+ lower2="t1_HxCDF_234678", upper2="t2_HxCDF_234678", cp=.95)

R> summary(obj)

$call
clikcorr.default(data = logND, lower1 = "t1_OCDD", upper1 = "t2_OCDD",

lower2 = "t1_HxCDF_234678", upper2 = "t2_HxCDF_234678", cp = 0.95)

$coefficients
coefficients 95%CI.lower 95%CI.upper p.value
0.472657898 -0.006538307 0.769620179 0.053083585

$mean
[1] 5.3706036 -0.4655811

$Cov
[,1] [,2]

[1,] 0.5938656 0.3100190
[2,] 0.3100190 0.7244269

$loglik
[1] -37.97112

attr(,"class")
[1] "summary.clikcorr"

As we will illustrate in a later section, when data are generated from a heavy tailed distribution,
inference assuming the bivariate normal distribution can result in poor performance. The option
“dist=t" can be used to specify a bivariate t distribution. The option “df" specifies the degrees of
freedom (d.f.) of the bivariate t distribution and by default is set to 4. Smaller d.f. give t distributions
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with heavier tails; larger d.f. (e.g., >30) give t distributions that are similar to the normal distribution.
Below is an example of calling the estimation function using dataset ND, and the output assuming the
bivariate t distribution. The variable names are the same as given above.

R> obj <- clikcorr(ND, lower1="t1_OCDD", upper1="t2_OCDD", lower2="t1_HxCDF_234678",
+ upper2="t2_HxCDF_234678", dist="t", df=10)

R> summary(obj)

$call
clikcorr.default(data = logND, lower1 = "t1_OCDD", upper1 = "t2_OCDD",

lower2 = "t1_HxCDF_234678", upper2 = "t2_HxCDF_234678", dist = "t",
df = 10, nlm = TRUE)

$coefficients
coefficients 95%CI.lower 95%CI.upper p.value
0.77229746 -0.09201948 0.72893732 0.10812589

$mean
[1] 5.5240929 -0.3338772

$Cov
[,1] [,2]

[1,] 0.5996139 0.4886447
[2,] 0.4886447 0.6676448

$loglik
[1] -104.0848

attr(,"class")
[1] "summary.clikcorr"

clikcorr also provides two graphical functions. Visualizing the data and the analytic outputs
is often useful, and is sometimes invaluable for understanding the results. A barrier to graphing
censored data is finding a way to plot the range of possible data values. The function splot provides
an effective way of visualizing bivariate censored and/or missing data. With splot, censored values
can be identified with different colors or plotting symbols, depending on the data types, as described
in sections 24.1.2 and 24.1.3. For example, the plotting symbol could be an arrow showing the direction
of uncertainty. Since the ND dataset in clikcorr package only contains right censored data points, to
demonstrate the fact that clikcorr can provide a visual representation for all types of censored and/or
missing data, in the following examples, we illustrate the clikcorr plotting functions using a simulated
dataset. Denote by SimDat an input data matrix, generated from a tri-variate normal distribution
with pairwise correlation coefficient 0.5 and with missing values and all types of censoring randomly
introduced. Let "L1" and "U1" be column names for the lower and upper interval bounds for input
variable 1. Similar notations are also adopted for variable 2 and variable 3. A single scatterplot
of Variable 2 versus Variable 1, or ("L2", "U2") versus ("L1", "U1"), would be plotted by calling
splot2(SimDat, c("L1","L2"), c("U1","U2"). The following syntax calls splot and produces a
scatterplot matrix with all combinations of three input variables, as shown in Figure 1. Note that a
censored observation has its position indicated by the tail of an arrow and the head of the arrow is
pointed to the censoring direction.

R> splot(SimDat, c("L1", "L2", "L3"), c("U1", "U2", "U3"))

The S3 function plot of the clikcorr class produces a plot of the profile log likelihood function. The
following syntax calls the plot function using the bivariate normal and the bivariate t−distributions
respectively. The output profile plots are given in Figure 2, and illustrate that specifying the appropriate
distribution is important for both optimum point and confidence interval estimation.

R> modN <- clikcorr(SimDat, "L1", "U1", "L2", "U2", cp=.95)
R> plot(modN)
R> modT <- clikcorr(SimDat, "L1", "U1", "L2", "U2", dist="t", df=3)
R> plot(modT)

The clikcorr main estimating function requires that the following other R functions be loaded: the
R package mvtnorm (Genz and Bretz, 2009; Genz et al., 2012; Hothorn et al., 2013), as well as function
“optim", and function “integrate" when using the bivariate t−distribution.
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Figure 1: Example scatter plots from a simulated data frame.

Simulation studies

Extensive simulations have been done to demonstrate different aspects of the performance of clikcorr
under various settings of sample size, percent censoring, and underlying distribution. We show these
results in the following subsections.

Coverage probability of the confidence interval

First, we investigate the coverage probability of the confidence intervals with two types of right
censoring, termed “fixed point” and “random”, as described further below. Data were generated from
the bivariate normal distribution, and inference assumed the same distribution.

In the fixed point right censoring setting, all observations were censored at the same value.
Different fixed points were calculated to give expected censoring rates of 0%, 25% and 75%. For the
random right censoring setting, values were censored at randomly generated thresholds, which were
generated from normal distributions with means set at different values to produce data with specific
expected censoring proportions. Tables 4 and 5 give the simulated coverage probabilities for different
settings of sample sizes and censoring rates. In the completely observed cases in Table 4, coverage
probabilities calculated using the Fisher transformation rather than the profile likelihood approach are
given in parentheses for comparison.

It can be seen from Tables 4 and 5 that clikcorr gives satisfying confidence interval coverage
probabilities in both the fixed and random censoring settings. In the completely observed cases,
coverage probabilities for both profile likelihood and Fisher transformation based confidence intervals

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 167

0.1 0.2 0.3 0.4 0.5 0.6

−
21

5
−

21
0

−
20

5

Correlation

Lo
g 

lik
el

ih
oo

d

maxlogL= −202.587 
r0= 0.466 

CI_LB= 0.342 
CI_UB= 0.574

Profile plot of L1 and L2

0.0 0.1 0.2 0.3 0.4 0.5 0.6

−
43

8
−

43
6

−
43

4
−

43
2

−
43

0
−

42
8

−
42

6

Correlation

Lo
g 

lik
el

ih
oo

d

maxlogL= −425.446 
r0= 0.414 

CI_LB= 0.246 
CI_UB= 0.572

Profile plot of L1 and L2

Figure 2: Example of profile likelihood plots. Input data are simulated from the bivariate normal
distribution with true ρXY = 0.5. The upper panel shows the profile likelihood using the bivariate
normal distribution; the lower panel shows the profile likelihood using the bivariate t−distribution.

are very close to the nominal level of 0.95

Run time, bias and mean squared error (MSE)

Table 6 shows the run time of clikcorr under different settings of sample sizes and censoring proportion
configurations, using the bivariate normal distribution for both data generation and inference. The
censoring proportion configurations, for example “X15%, XY15%, Y15%" means that 15% of the
observations are censored only for X, 15% are censored for both X and Y, and 15% are censored only
for Y. It can be seen that longer run time is needed for larger sample size, larger proportion with both
X and Y being censored, or larger magnitude of the correlation. A typical run time ranges from a few
seconds to a few minutes.

For the bivariate t distributions, the run time is generally slower than for the bivariate normal
distributions in the same setting. The reason for this is that the bivariate t setting requires numerical
integration to calculate the joint distribution over a 2-dimensional domain as illustrated in (5) in the
case of either X or Y censored, whereas the analogous calculation for the bivariate normal setting has
a closed form.

Table 7 shows the estimates of the bias and MSE for inference on ρ using the bivariate normal
distribution for data generation and inference, and with random right censoring. Essentially, clikcorr
provides an unbiased estimator of the correlation coefficient.
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Gaussian versus Student t models

When the underlying marginal distributions are heavy tailed rather than normal, basing inference on
the bivariate normal can result in poor confidence interval coverage probabilities. This is illustrated in
Table 8, where the data were generated from correlated marginal t distributions and the correlation
coefficients were estimated using the bivariate normal distribution. When the degrees of freedom
of the underlying marginal t distributions are small (∼ 3 to 5) or the true underlying correlation
coefficient is very high (∼ 0.9), the confidence intervals have poor coverage probabilities (∼ 60% to
80%).

The coverage probabilities within the parentheses in Table 8 are for confidence intervals constructed
using the bivariate t distributions. Compared to inference based on the bivariate normal distribution,
using the bivariate t distribution provides much better coverage probabilities in settings with very
heavy-tailed distributions and high correlations.

The clikcorr package does not provide a way to test whether the data are drawn from a heavy
tailed distribution or not, nor does it estimate the best value of d.f. to use. The users could refer to
Bryson (1974); Resnick (2007) or use QQ plots to guide their decision on which model to use.

Dioxin exposure datasets

In this section, we used clikcorr to analyze two real world datasets and compared the results to
conventional approaches.

Owl feather data

The first dataset was analyzed in (Jaspers et al., 2013) which used an early version of clikcorr to
estimate correlations for left-censored (below detection) data. The data contain Perfluorooctane
sulfonate (PFOS) substances in feathers and soft tissues (liver, muscle, adipose tissue and preen glands)
of barn owl road-kill victims collected in the province of Antwerp, Belgium. Figure 3 gives an example
scatter plot (upper panel) and an example plot of the profile log likelihood of the correlation between
PFOS in liver tissue and feathers using clikcorr. Figure 4 shows the scatter plot matrix across tail
feather and the tissues generated by clikcorr. The asymmetrical shape of the profile likelihood reflects
the asymmetrical sampling distribution, and leads to a confidence interval that is longer to the left
than to the right of the point estimate.

NHANES data

In the second analysis using clikcorr, we analyzed dioxin data from the 2002-2003 National Health
and Nutrition Examination Survey (NHANES). NHANES is one of the most widely-used datasets
describing the health and nutritional status of people residing in the US. The data we analyzed
contained 22 chemicals, including 7 dioxins, 9 furans and 6 polychlorinated biphenyls (PCBs) across
1643 individuals. Correlations between these chemicals are common, and are of interest for several
reasons. First, dioxins with high correlations measured in the environment may arise from the same or
similar sources. In addition, levels of two chemicals in the body that have high correlations may have
similar pathways for entering the body. For two chemicals with high correlations, it may be sufficient
to monitor one of them (to reduce cost), as was the goal in Jaspers’ barn owl example. Finally, exposure
to pairs of correlated chemicals may confound an investigation of health effects, since distinguishing
the individual effects of each chemical would be difficult. Therefore estimating correlations between
those compounds is of scientific interest. The chemicals in our dioxin data are all subject to detection
limits, and have a wide range of percentage of left-censored values. It is important to incorporate
information from partially observed cases in the data to provide accurate estimation and inference
results on the correlations between the compounds.

The pairwise correlation coefficients calculated from clikcorr are given in upper-right trian-
gle of Table 9. For each pair, the MLE of the correlation coefficient and associated LRT p-value
(in parentheses) are calculated assuming the bivariate normal distribution. The highly correlated
pairs (with estimated correlation coefficient ≥ .80) are in boldface type. Chemicals within each
group (dioxin, furan or PCB) tend to be more highly correlated than chemicals from different
groups. Abbreviated names of each chemical were used in Table 9. The full names and the de-
tail information about each chemical can be found at Agency for Toxic Substances and Disease
Registry (ATSDR) (http://www.atsdr.cdc.gov/substances), which is part of the U.S. Centers for
Disease Control and Prevention. The chemical indices and names are corresponding as follow-
ing: for dioxind, d1=TCDD; d2=PeCDD; d3=HxCDD123478; d4=HxCDD123678; d5=HxCDD123789;
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Figure 3: Output graphics from analyzing the owl feather data using clikcorr. Upper panel: scatter
plot of PFOS in liver tissue vs. feathers; Lower panel: profile log likelihood plot for the correlation
coefficient between PFOS concentration in liver and in feathers.

d6=HpCDD; d7=OCDD. For furan, f1=TCDF; f2=PeCDF12378; f3=PeCDF23478; f4=HxCDF123478;
f5=HxCDF123678; f6=HxCDF234678; f7=HpCDF1234678; f8=HpCDF1234789; f9=OCDF. For PCB,
p1=PCB105; p2=PCB118; p3=PCB156; p4=PCB157; p5=PCB167; p6=PCB189. p-values less than 0.01 are
recoded as 0’s in Table 9.

The pairs of chemicals with the highest correlation in each group are shown in Figure 6. Both
the MLE of the correlation coefficient calculated from clikcorr ρ̂clikcorr, and the Pearson correlation
coefficients calculated from only the complete cases ρ̂complete, are given, along with the complete case
sample size, ncomplete. When the proportion of pairs with censored values is low, ρ̂clikcorr and ρ̂complete
are very similar; on the other hand, when the proportion of pairs with censored values (in either or
both variables) is high, the two correlation coefficients are different since ρ̂clikcorr can utilize the extra
information from the censored data.

Some chemicals in the dataset appear to have highly skewed marginal distributions. It is common
to apply a symmetrization transformation in such a setting. The correlation coefficient between
transformed values estimates a different population parameter, but this parameter may be of as
much or greater inference than the correlation computed on the original scale. To demonstrate the
effect of such a transformation, we log-transformed the data for each chemical and recalculated the
correlation coefficient using the bivariate normal model. The estimation and inference results from the
transformed data are given in the lower-left triangle in Table 9.

Using the bivariate normal model for transformed data is an example of using bivariate Gaussian
copulas to allow a wide range of distributions to be analyzed using software developed for Gaussian
models. A general approach of this type would be to transform X using F−1 ◦ F̂x, where F̂x is the
empirical CDF of X and F is the standard Gaussian CDF (Y would be transformed analogously). This
approach is quiet flexible, and would allow clikcorr to be used for correlation parameter inference
in a wide range of settings. One limitation of this approach is that the marginal transformations
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Figure 4: Scatter plot matrix from analyzing the owl feather data using clikcorr.

are estimated from the data, but the uncertainty in this estimation is not propagated through to the
estimation of the correlation parameter. This would mainly be a concern with small datasets.

Figure 5 demonstrates the difference between using data on the original and the log-transformed
scales. When the observed marginal distributions are highly skewed, assuming a bivariate normal
true distribution could lead to false results. For example, the correlation effect could be leveraged
away by the “outlier" points on tail of either marginal distributions. As in Figure 5 (c), the original
values between chemicals OCDD(d7) and HxCDF234678 (f6) were not significantly correlated due to
the divergent effect of the points on the marginal tails. While after the log transformation, the marginal
sample distributions are more normally shaped and thus make the bivariate normal assumption
more likely to be true, and the two chemicals are significantly correlated with a moderate correlation
coefficient.

Further details on clikcorr

This section gives technical details regarding function maximization and gives some examples of
additional plotting options.

We note that clikcorr depends on the R function optim, which is used to find the maximum of
the log likelihood, or profile log likelihood. For some starting values of µX , µY , σX , σY and ρXY , the
procedure gives an error message “function cannot be evaluated at initial parameters". In
such cases, manually adjusting the initial parameter values is recommended.

Figure 7 illustrates two example profile log likelihood functions for parameters of the bivariate
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distribution of PFOS in Tail feather and Adipose tissue in the owl feather dataset. Each plot shows
the log likelihood for certain parameters with the other parameters fixed. In the upper panel, the
log likelihood of (log(σ2

X), log(σ2
Y)) remains at −∞ over the lower left triangular region of the plot.

So if the starting values of σX and σY are set such that the pair (log(σ2
X), log(σ2

Y)) falls in that region,
then the value of the joint log likelihood will be trapped in the region and the above error message
will show up. In the lower panel graph, the log likelihood of the covariance drops steeply when the
covariance parameter value is greater than 2000. Therefore, if the starting value of ρXY is set such
that the starting covariance is much larger than 2000, say 5000, then the profile log likelihood might
underflow the limit of a floating number adopted in the “optim" function and give the above error
message.

It is worth the effort to make the input starting parameter values as close to the true parameters as
possible, if these are known. By default, clikcorr uses the sample means, the log transform of sample
variances and the sample correlation based on the complete observations as the starting values. It also
allows the user to specify the starting values and pass them to the “optim" function by using the option
sv. This option is especially useful when the number of exact observations is small. For example, if
a dataset contains only one complete observation, then the starting values of (log(σ2

X), log(σ2
Y)) can

not be effectively estimated (both will be estimated as −∞). In such cases, it is suggested that users
make their own reasonable guesses on the starting parameter values rather than using the default. An
example is given in the following syntax:

R> clikcorr(owlData, "feather_L", "feather_U", "AT_L", "AT_U", cp=.95, dist=t,
+ df=5, sv=c(23, 240, 6, 1300, 12))

The default optimization method for searching for the MLE in clikcorr is the default method used
in “optim", which is the Nelder-Mead method (R Core Team, 2013b). clikcorr also allows the user to
use other optimization methods implemented in “optim" or use the non-linear minimization function
“nlm" (R Core Team, 2013a). For example:

R> clikcorr(owlData, "feather_L", "feather_U", "AT_L", "AT_U", cp=.95, dist="t",
+ df=3, method="BFGS")

R> clikcorr(owlData, "feather_L", "feather_U", "AT_L", "AT_U", cp=.95, dist="t",
+ df=3, nlm=TRUE)

We note here that the default optimization method in “optim" function does not use derivative (or
gradient) information but rather does a greedy simplex search on the function values, which makes it
work relatively slowly. In future work, we plan to implement some independent gradient-directed
types of optimization algorithms into clikcorr to hasten the convergence speed. It would be especially
helpful in searching for the confidence interval bounds of the correlation coefficient.

clikcorr also allows R plotting options such as “xlab", “xlim", “bg" etc., in the “splot" and “plot"
functions. For example, in Figure 6 the individual panels are generated respectively by

R> splot2(NHANESD, "t1_TCDD", "t2_TCDD", "t1_PeCDD", "t2_PeCDD", xlab="d1=TCDD",
+ ylab="d2=PeCDD", bg="#FFB90F", cex.lab=2.0)

R> splot2(NHANESD, "t1_HxCDF_123478", "t2_HxCDF_123478", "t1_HxCDF_123678",
+ "t2_HxCDF_123678", xlab="f4=HxCDF123478", ylab="f5=HxCDF123678", bg="#FFB90F",
+ cex.lab=2.0)

R> splot2(NHANESD, "t1_PCB_156", "t2_PCB_156", "t1_PCB_157", "t2_PCB_157",
+ xlab="p3=PCB156", ylab="p4=PCB157", bg="#FFB90F", cex.lab=2.0)

R> splot2(NHANESD, "t1_PCB_105", "t2_PCB_105", "t1_PCB_118", "t2_PCB_118",
+ xlab="p1=PCB105", ylab="p2=PCB106", bg="#FFB90F", cex.lab=2.0).
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Figure 5: Example scatter plots between compound pairs with and without log transformation.
Between TCDD(d1) and ODD(d7): (a) d1-d7 without log transformation, ρ̂ = 0.22, p ≈ 0; (b) d1-d7
with log transformation, ρ̂ = 0.60, p ≈ 0. Between OCDD(d7) and HxCDF234678(f6): (c) d7-f6 without
log transformation, ρ̂ = −0.05, p ≈ 1; (d) d7-f6 with log transformation, ρ̂ = 0.38, p ≈ 0. The
histograms on top and right of each plot are marginal sample distributions from observed data.
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Figure 7: Illustration of effects of starting values on parameter estimates from profile log likelihood
surfaces or curves. Upper panel: the profile joint log likelihood of parameters (log(σ2

X), log(σ2
Y)) with

the mean and correlation parameters set at certain starting values. Values from highest to lowest are
colored in order of white, yellow and red; Lower panel: the profile likelihood of covariance parameter
with mean and variance parameters fixed at certain starting values.
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Spatial Uncertainty Propagation Analysis
with the spup R Package
by Kasia Sawicka, Gerard B.M. Heuvelink and Dennis J.J. Walvoort

Abstract Many environmental and geographical models, such as those used in land degradation, agro-
ecological and climate studies, make use of spatially distributed inputs that are known imperfectly.
The R package spup provides functions for examining the uncertainty propagation from input data
and model parameters onto model outputs via the environmental model. The functions include
uncertainty model specification, stochastic simulation and propagation of uncertainty using Monte
Carlo (MC) techniques. Uncertain variables are described by probability distributions. Both numerical
and categorical data types are handled. The package also accommodates spatial auto-correlation
within a variable and cross-correlation between variables. The MC realizations may be used as input
to the environmental models written in or called from R. This article provides theoretical background
and three worked examples that guide users through the application of spup.

Introduction and motivation

Environmental models that are used to understand and manage natural systems often rely on spatial
data as input. Uncertainty in the input data propagates into model predictions. There is a need for
systematic analysis of spatial uncertainty propagation in all major inputs and an accounting of spatial
auto- and cross-correlation between input uncertainties. Spatial uncertainty propagation analysis has
been widely recommended and practised across environmental disciplines, for example, hydrology
and water quality (e.g. Hengl et al., 2010; Hamel and Guswa, 2015; Muthusamy et al., 2016; Nijhof
et al., 2016; Yu et al., 2016), biogeochemistry (e.g. Boyer et al., 2006; Nol et al., 2010; Pennock et al., 2010;
Hugelius, 2012; Vanguelova et al., 2016), or ecology and conservation planning (e.g. Jager et al., 2005;
Fisher et al., 2010; Lechner et al., 2014). However, as far as we know, there is no widely applicable
software that facilitates such analysis.

Currently, a growing number of software tools are available for uncertainty propagation and
uncertainty assessment, some of which have functionality for dealing with spatial uncertainties.
These include both free software, like OpenTURNS (Andrianov et al., 2007), Dacota (Adams et al.,
2009) and DUE (Brown and Heuvelink, 2007); commercial options, like COSSAN (Schueller and
Pradlwarter, 2006); or free packages for licenced software, like the SAFE (Pianosi et al., 2015) or UQLab
(Marelli and Sudret, 2014) toolboxes for MATLAB. A broad review of existing software packages
are available in Bastin et al. (2013). The use of powerful but complex languages like C++ in Dakota,
Python in OpenTURNS or Java in DUE often discourage relevant portions of the scientific community
without formal programming skills from the adoption of otherwise powerful tools. There are a
number of R packages relating to uncertainty analysis through sensitivity analysis or use of Bayesian
frameworks for model calibration. We have found only three packages: propagate (Spiess, 2014),
errors (Ucar, 2017) and metRology (Ellison, 2017) that deal with uncertainty propagation explicitly.
However, none of these packages provides functionality for spatial models and variables. Therefore,
we undertook a project to develop an R package that facilitates uncertainty propagation analysis in
spatial environmental and geographical modelling.

In this article, we present the spup package for R (Sawicka et al., 2017), which implements a
methodology for spatial uncertainty propagation analysis using Monte Carlo (MC) methods. The spup
package includes functions for uncertainty model specification, sampling, propagation of uncertainty
using MC techniques and examples of results visualization. In this way, it provides support for the
entire chain from uncertainty model definition, simulation and propagation to visualization. It is also
a generic tool that can handle a great variety of cases. It is suitable for models that consider spatial
variables saved in a spatial data frame or raster, as well as non-spatial variables, both continuous
and categorical. It works with models written in R or other programming languages that can be
called from R. The spup package is intended for researchers and practitioners who recognise the
problems of uncertainty in data and models, and are looking for a simple, accessible implementation
of a methodology for uncertainty propagation assessment and visualization. At the same time, it
is designed to enable more experienced users to easily understand, customise, and possibly further
develop the code.

Here, we provide a description of the implemented methodology, describe the package design
and illustrate the usage with three simple examples. We demonstrate that the spup package is an
effective and easy tool that can be used for multi-disciplinary research, model-based decision support
and educational purposes.
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Methodology implemented in spup

Uncertainty propagation aims to analyse how uncertainty (e.g. from measurement error, sampling,
or interpolation) in spatial data, combined with modeling uncertainty (e.g. in model parameters
and structure) propagate through the model (Heuvelink et al., 2007). Many environmental and
geographical phenomena of interest are spatial in nature and often have strong spatial correlations
imposed by the physics and dynamics of the natural systems, making uncertainty evaluation difficult.

A common approach to uncertainty propagation analysis makes use of MC stochastic simulation
(Hammersley and Handscomb, 1979; Lewis and Orav, 1989). The MC approach is very flexible and
can reach an arbitrary level of accuracy, and is therefore generally preferred over analytical methods
such as the Taylor series method (Heuvelink et al., 1989). The MC method for uncertainty propagation
analysis consists of the following main steps: (i) uncertainty about the variables is expressed by
probability distribution functions (pdfs); (ii) many sets of possible uncertain inputs are generated from
their marginal or joint probability distribution using a pseudo-random number generator; (iii) the
model is run for each of the simulated input sets; (iv) the set of model outputs forms a random sample
from the output pdf, so that the parameters of the output distribution, such as the mean, standard
deviation and quantiles, can be estimated from the sample. In other words, the spread in the model
outputs characterises how uncertainty about the model inputs has propagated to the model output.
Note that the above ignores uncertainty in model parameters and model structure, but these can
easily be included if available as pdfs. For example, these might have been obtained through Bayesian
calibration (Van Oijen et al., 2005). The above four steps are described in detail further below.

Step 1 – Characterise uncertain model inputs with pdfs

The most frequently used uncertainty quantification approach represents uncertainty with probability
distribution functions (pdfs). In order to represent input uncertainty with a pdf we have to define, for
each possible input value, the corresponding probability or probability density. Probability distribution
functions can be very complex and can have many parameters. In practice, when information and data
from which to derive the pdf are limited, assumptions and simplifications have to be made to obtain
reliable estimates of the pdf. In order to reduce the complexity of a pdf for a continuous variable,
the distribution function may be described with a simple parametric shape, such as the normal,
uniform or lognormal distribution (Bertsekas and Tsitsiklis, 2008). Categorical uncertain variables
can be represented by non-parametric distribution, comprising a set of possible outcomes and their
probabilities. The probabilities should be non-negative and the sum of the outcome probabilities
should equal 1 (Heuvelink, 2007).

Individual variables and the uncertainties associated with them may also be statistically dependent
on other variables and their uncertainties. For example, visibility and water vapour in the atmosphere
are correlated, and so is the uncertainty between these two properties. Note that correlation between
variables as derived from pair observations need not be the same as the correlation between measure-
ment or interpolation errors associated with these variables. For example, elevation and temperature
in mountainous area are negatively correlated, while the associated uncertainties may not be correlated
at all because of independent measurements methods. Thus, when multiple inputs are uncertain,
cross-correlations in their uncertainties must be addressed. In that case, the uncertainty model is
described using a joint probability distribution function (jpdf). If the uncertainties are independent,
the jpdf is the product of the univariate pdfs and can be estimated by estimating each pdf separately. If
the uncertainties are statistically dependent, these dependencies must be estimated alongside the pdfs.
In practice, few parametric shapes are available to describe the jpdf of variables that are statistically
dependent. For continuous numerical variables, a common assumption is that the multivariate uncer-
tainty model follows a joint-normal distribution with a vector of means µ and variance-covariance
matrix Σ, where the latter must be square, symmetric and positive-semidefinite.

In different environmental or geographical studies, many variables are spatially distributed and it
is likely that there is a relationship between nearby values (i.e. they are auto-correlated). Uncertainty
in such cases may be described by the following geostatistical model:

Z(x) = µ(x) + σ(x)ε(x) (1)

where µ(x) is the mean of the variable Z(x) at any location x ∈ D, D is the geographic domain of
interest, σ(x) is a spatially variable standard deviation associated with µ(x) (i.e. σ parameterises uncer-
tainty such that it may be greater in some regions than in others), and ε is a zero-mean, unit-variance,
second-order stationary residual (i.e. spatial auto-correlation depends only on a distance vector),
modelled with a semivariogram or a correlogram (Diggle and Ribeiro, 2007; Webster and Oliver,
2007; Plant, 2012). For defining spatial correlation, spup supports a wide range of positive-definite
functions implemented in the gstat package (Pebesma, 2004; Gräler et al., 2016). The mathematical
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background for these calculations is presented in Brown and Heuvelink (2007) and Heuvelink (2007).
In case of spatial variables that are cross-correlated with other spatial variables, the linear model of
coregionalization (Goovaerts, 1997) is assumed.

Table 1 summarises common assumptions and simplifications in uncertainty propagation analysis
for three categories of data: continuous, discrete and categorical. These assumptions are included in
the implementation of spup.

Step 2 – Repeatedly sample from spatial pdfs for uncertain inputs

When an uncertain variable is characterised by a pdf, simulation relies on a pseudo-random number
generator. The most common sampling method is independent identically distributed (IID) sampling,
in which case each realization is generated as independent draws from the same pdf. In case of
a single parameter or univariate distribution, a realization can be easily drawn from various pdfs
using algorithms implemented in the stats package in R (see https://cran.r-project.org/web/
views/Distributions.html for details). For a spatially distributed variable (e.g. a DEM) that has a
multivariate normal distribution, spup relies on the unconditional Gaussian simulation algorithm
implemented in the gstat package (Pebesma, 2004). For simulation from multivariate normal pdfs of
non-spatial variables, spup uses the mvtnorm package (Genz et al., 2017; Genz and Bretz, 2009).

In case the input is high-dimensional, straightforward random drawing from the jpdf may not
yield a sample that is representative across the whole range of allowable values for each variable,
unless the sample size is extremely large. Therefore stratified sampling methods, where values are
selected for each variable from each of a pre-specified number of intervals with equal probability mass
(Iman and Conover, 1982), are also implemented in spup. The latter can also be done in a spatial
context (Pebesma and Heuvelink, 1999).

Step 3 – Run a model with sampled inputs and store model outputs

Step 3 consists of running a model (e.g. an environmental model) for all sample elements (“simulated
realities”) generated in Step 2. It is crucial that all models are automated and can be run in batch mode,
as in many practical cases, the number of model runs for a Monte Carlo analysis should be at least
100, and often many more (Heuvelink, 1998). In general, the MC sample size must be large enough to
guarantee that the outcome of the uncertainty propagation analysis is sufficiently accurate (Heuvelink,
2006). The limitation here is that the required sample size cannot be calculated beforehand because it
is derived from the MC output.

It is important to plan what information one needs to retrieve from the set of model outputs.
Strategies will vary if the user is interested in the combined or separate effect of uncertain input data
or parameters. The simplest approach to estimating the uncertainty contribution of a single uncertain
input or parameter is to perform the uncertainty propagation analysis with only the input or, one
or more parameters made uncertain. The remaining uncertain parameters are then assumed certain
and fixed on their central value. Comparison of the output uncertainties of different inputs (e.g. ratio
of variances) provides a measure of the relative contribution. More details on stochastic sensitivity
analysis can be found in Saltelli et al. (2000).

Running the model for multiple simulated realities resulting from step 2 may be computationally
demanding, particularly when the model is complex and requires much computing time. The compu-
tation time can be reduced, as the MC method is very suited for parallel computing with multi-core ma-
chines and for grid computing technology (Leyva-Suarez et al., 2015). In this way, computation times
can be dramatically reduced. Numerous high-performance and parallel computing packages have
been developed in R suiting various approaches. A continuously maintained descriptive list of these is
available online at https://cran.r-project.org/web/views/HighPerformanceComputing.html (Ed-
delbuettel, 2017).

Step 4 – Compute and visualise summary statistics of model outputs

The resulting set of model outputs forms a random sample from the model output probability distribu-
tion. This means that output pdf parameters, such as the mean, median, variance, standard deviation,
interquartile range, percentiles, coefficient of variation and threshold exceedance probabilities can
be estimated from the sample. For example, the percentiles of the sample can be computed by the
quantile() function in R. The accuracy of the sample estimates can also be computed (de Gruijter
et al., 2006), although this is currently not implemented in spup. The sample of output values should
be stored in case the model output is used as uncertain input for a next model.
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It is important that the uncertainty statistics are communicated in an efficient way that is simulta-
neously informative and understandable to users that have varied backgrounds in statistics. There
should be ample explanation of the results and a visual representation of the uncertainty (MacEachren,
1992; Hengl et al., 2004). For non-spatial and non-temporal data, a number of simple statistical plots
can be used to visualise uncertainty represented by probability distributions. If the full probability
distribution function is known, this can be visualised in pdf or cumulative distribution function (cdf)
plots. Error bars, interquartile range and box plots can be used to show the distribution of values.
Uncertainties about categorical data can be shown using stacked bars for the probability for each of
the categories, or entropy that provides a summary measure of the spread of probabilities over the
categories.

It is important to distinguish between presentation techniques and presentation modes for un-
certaintly visualisation of spatial data. General presentation techniques are (i) adjacent maps, (ii)
sequential presentation and (iii) bi-variate maps (MacEachren et al., 2005). These techniques can be
presented in three modes: static, dynamic and interactive (Kinkeldey et al., 2014). A common example
of adjacent maps for continuous variables is to put maps of the mean and standard deviation next
to each other. For visualising categorical attribute uncertainty, the simplest method is also using
adjacent maps, for example by showing a map of the the most probable category next to a map of the
probability of that category. Sequential presentation may be shown in dynamic mode.

The spup package

The spup package is developed in R to provide a simple solution for those who wish to include
uncertainty analysis in their studies, with emphasises on studies including spatial variables. The spup
package implements the methodology described in Section Methodology implemented in spup. We
describe spup version 1.3-1 available on CRAN. The development version is available on gitHub at
https://github.com/ksawicka/spup. The package is freely available under the GPL3.

Three example datasets are provided with the spup package:

1. Digital Elevation Model of Zlatibor region in Serbia (3x4.5km, 30m resolution) (Hengl et al.,
2008)

2. Soil organic carbon and total nitrogen content of the south region of Lake Alaotra in Madagascar
(33x33km, 250m resolution) (Hengl et al., 2017)

3. Rotterdam neighbourhood buildings distribution (Kadaster, The Netherlands).

These datasets are used in Section Application examples and in the vignettes included in the package.
Additionally, the package includes simple R and C functions that represent environmental models
used in examples.

Define 
uncertainty 

model 
(UM)

Realiza-
tions

(model 
inputs)

Propag-
ation

Realiza-
tions

(model 
output)

makeCRM()
defineUM()
defineMUM()

genSample() propagate()

template() render() executable()

Workflow:

Case: model inputs as objects in R and a model written in R

Case: model inputs saved in files on disk and a model 
written in a language callable from R

Visualization

The package provides 
extensive vignettes that 
include guidance on 
uncertainty 
visualization using 
existing R functions.

Figure 1: Flowchart presenting workflow with functions implemented in spup.

Figure 1 presents a flowchart with the workflow and key functions implemented in spup. The
package is designed in a way that the key functions correspond with the steps presented in Sec-
tion Methodology implemented in spup. The output of functions for defining the uncertainty model
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becomes an input to functions for generating a MC sample. The generated MC sample in turn is
used as input to functions facilitating propagation of uncertainty. Qualitative descriptions of the key
functions are given in Table 2. More details about functions arguments and output can be found in the
package manual (Sawicka et al., 2017) and in the examples below.

Table 2: Key functions in package spup.

Function Description

makeCRM() Define a spatial correlogram model.
defineUM() Define marginal uncertainty distributions for model input-

s/parameters for subsequent Monte Carlo analysis. Output
class depends on the arguments provided.

defineMUM() Allows the user to define joint uncertainty distributions for
continuous model inputs/parameters for subsequent Monte
Carlo analysis.

genSample() Methods for generating a Monte Carlo sample of uncertain
variables.

template() Defines a "container" class to store all templates with model
inputs.

executable() Produces an R function wrapper around a model that can be
called using system2() from R.

render() Replaces the tags in moustaches in template file or character
object by text.

propagate() Runs the model repeatedly with Monte Carlo realizations of
the uncertain input/parameters.

Application examples

Example 1 - Uncertainty propagation analysis with auto- and cross- correlated variables

In many geographical studies, variables are cross-correlated. As a result, uncertainty in one variable
may be statistically dependent on uncertainty in the other. For example, soil properties such as organic
carbon (OC) and total nitrogen (TN) content are cross-correlated. These variables are used to derive the
C/N ratio, which is important information to evaluate soil management and increase crop productivity.
Errors in OC and TN maps will propagate into the C/N ratio map. The cross-correlation between the
uncertainties in OC and TN will affect the degree of uncertainty in the C/N ratio.

The example data for C/N calculations are a 250m resolution mean OC and TN of a 33km x 33km
area adjacent to lake Alaotra in Madagascar (Figure 2) (Hengl et al., 2017). The datasets include four
spatial objects: a mean OC and TN of the area, with their standard deviations assumed to be equal to
10% of the mean.

# load packages
library(spup)
library(raster)
library(purrr)

# set seed
set.seed(12345)

# load and view the data
data(OC, OC_sd, TN, TN_sd)
class(OC); class(TN)

par(mfrow = c(1, 2), mar = c(1, 1, 2, 2), mgp = c(1.7, 0.5, 0), oma = c(0, 0, 0, 1),
las = 1, cex.main = 1, tcl = -0.2, cex.axis = 0.8, cex.lab = 0.8)

plot(OC, main = "Mean of Organic Carbon", xaxt = "n", yaxt = "n")
plot(TN, main = "Mean of Total Nitrogen", xaxt = "n", yaxt = "n")

The first step in uncertainty propagation analysis is to define an uncertainty model for the uncertain
input variables, here OC and TN. First, the marginal uncertainty model is defined for each variable
separately, and next the joint uncertainty model is defined for the variables together. In case of OC
and TN, the ε (Eq. 1) are spatially correlated. For each of the variables, the makeCRM() function collates
all necessary information into a list. We assume that the spatial autocorrelation of the OC and TN
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Figure 2: Maps of means of soil organic carbon and soil total nitrogen near lake Alaotra in Madagascar.

errors are both described by a spherical correlation function with a short-distance correlation of 0.6
for OC and 0.4 for TN, with a range parameter of 1000m (Figure 3). It is important at this step to
ensure that the correlation function types as well as the ranges are the same for each variable. This
is a requirement for further analysis, because spup employs the linear model of co-regionalization
(Wackernagel, 2003).

# define spatial correlogram models
OC_crm <- makeCRM(acf0 = 0.6, range = 1000, model = "Sph")
TN_crm <- makeCRM(acf0 = 0.4, range = 1000, model = "Sph")

par(mfrow = c(1, 2), mar = c(3, 2.5, 2, 1), mgp = c(1.7, 0.5, 0), oma = c(0, 0, 0, 0),
las = 1, cex.main = 1, tcl = -0.2, cex.axis = 0.8, cex.lab = 0.8)

plot(OC_crm, main = "OC correlogram")
plot(TN_crm, main = "TN correlogram")
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Figure 3: Spatial correlograms of soil OC and TN in the study area.

Spatial correlograms summarise patterns of spatial autocorrelation in data and model residuals.
They show the degree of correlation between values at two locations as a function of the separation
distance between the locations. In the case above, as is usually the case, the correlation declines with
distance. Here, the correlation is zero for distances greater than 1000m. More information about
correlograms is included in the spup DEM vignette. In order to complete the description of each
individual uncertain variable, the defineUM() function collates all information about the OC and TN
uncertainty.

# define uncertainty model for the OC and TN
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OC_UM <- defineUM(distribution = "norm", distr_param = c(OC, OC_sd),
crm = OC_crm, id = "OC")

TN_UM <- defineUM(distribution = "norm", distr_param = c(TN, TN_sd),
crm = TN_crm, id = "TN")

class(OC_UM)
[1] "MarginalNumericSpatial"
class(TN_UM)
[1] "MarginalNumericSpatial"

Both variables are of the same class "MarginalNumericSpatial". This is one of the requirements
for defining a multivariate uncertainty model. The defineMUM() function collates information about
uncertainty in each variable, and information about their cross-correlation.

# define multivariate uncertainty model
mySpatialMUM <- defineMUM(UMlist = list(OC_UM, TN_UM),

cormatrix = matrix(c(1, 0.7, 0.7, 1),
nrow = 2, ncol = 2))

class(mySpatialMUM)
[1] "JointNumericSpatial"

In this example, a geostatistical model for OC and TN is defined that assumes multivariate normality
and has spatial correlation functions as follows:

ρOC(h) = 1 for h = 0

ρOC(h) = 0.6 · {1− 3
2

h
1000

+
1
2
(

h
1000

)3} for 0 < h < 1000

ρOC(h) = 0 for h ≥ 1000

(2)

ρTN(h) = 1 for h = 0

ρTN(h) = 0.4 · {1− 3
2

h
1000

+
1
2
(

h
1000

)3} for 0 < h < 1000

ρTN(h) = 0 for h ≥ 1000

(3)

ρOC,TN(h) = 0.7 for h = 0

ρOC,TN(h) = 0.7 ·
√

0.6 · 0.4 · {1− 3
2

h
1000

+
1
2
(

h
1000

)3} for 0 < h < 1000

ρOC,TN(h) = 0 for h ≥ 1000

(4)

where h is Euclidean distance and where the mathematical definition of the spherical correlation
function (i.e., the semivariogram) has been used (Webster and Oliver, 2007).

Generating possible realities of the selected variables is completed by using the genSample()
function:

# create possible realizations from the joint distribution of OC and TN
MC <- 100
OCTN_sample <- genSample(UMobject = mySpatialMUM, n = MC, samplemethod = "ugs",

nmax = 20, asList = FALSE)

Note the argument asList has been set to FALSE. This indicates that the sampling function will
return an object of a class of the distribution parameters class. This is useful if there is a need to
visualise the sample or compute summary statistics quickly.

A first assessment of uncertainty is done by plotting the means and standard deviations of the
sampled OC and TN. Note that if the sample size is very large, then the sample mean and standard
deviation would approximate the mean and standard deviation (Figure 4).

# compute and plot OC and TN sample statistics
# e.g. mean and standard deviation
OC_sample <- OCTN_sample[[1:MC]]
TN_sample <- OCTN_sample[[(MC+1):(2*MC)]]
OC_sample_mean <- mean(OC_sample)
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TN_sample_mean <- mean(TN_sample)
OC_sample_sd <- calc(OC_sample, fun = sd)
TN_sample_sd <- calc(TN_sample, fun = sd)

par(mfrow = c(1, 2), mar = c(1, 1, 2, 2), mgp = c(1.7, 0.5, 0), oma = c(0, 0, 0, 1),
las = 1, cex.main = 1, tcl = -0.2, cex.axis = 0.8, cex.lab = 0.8)

plot(OC_sample_mean, main = "Mean of OC realizations", xaxt = "n", yaxt = "n")
plot(TN_sample_mean, main = "Mean of TN realizations", xaxt = "n", yaxt = "n")
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Figure 4: Maps of means of sampled realizations of OC and TN.

In order to perform uncertainty propagation analysis using spup, the model through which
uncertainty is propagated needs to be defined as an R function:

# C/N model
C_N_model_raster <- function (OC, TN) OC/TN

The propagation of uncertainty occurs when the model is run with uncertain inputs. Running the
model with a sample of realizations of uncertain input variable(s) yields an equally large sample of
model outputs that can be further analysed. We use the propagate() function to run the C/N ratio
model with the OC and TN realizations. To run propagate(), the samples of the uncertain input
variables must be saved in lists and then collated into a list of lists. The existing OCTN_sample object
can be coerced or generated automatically by setting asList = TRUE in genSample().

# coerce a raster stack to a list
l <- list()
l[[1]] <- map(1:100, function(x){OCTN_sample[[x]]})
l[[2]] <- map(101:200, function(x){OCTN_sample[[x]]})
OCTN_sample <- l

# run uncertainty propagation
CN_sample <- propagate(realizations = OCTN_sample, model = C_N_model_raster, n = MC)

Uncertainty in C/N predictions can be visualised by calculating and plotting the relative error
(Figure 5). The relative error gives an indication of the accuracy relative to its size.

# coerce C/Ns list to a raster stack
CN_sample <- stack(CN_sample)
names(CN_sample) <- paste("CN.", c(1:nlayers(CN_sample)), sep = "")

# compute and plot the slope sample statistics
CN_mean <- mean(CN_sample)
CN_sd <- calc(CN_sample, fun = sd)

par(mfrow = c(1, 2), mar = c(1, 1, 2, 2), mgp = c(1.7, 0.5, 0), oma = c(0, 0, 0, 1),
las = 1, cex.main = 1, tcl = -0.2, cex.axis = 0.8, cex.lab = 0.8)

plot(CN_mean, main = "Mean of C/N", xaxt = "n", yaxt = "n")
plot((CN_sd/CN_mean)*100, main = "Relative error of C/N [\%]", xaxt = "n", yaxt = "n")
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Figure 5: Maps of standard deviation and relative error of C/N ratio sample in the study area.

Further analysis may include identification of all locations where the C/N ratio is in a specific
range with decreasing probability. For example identifying areas where the C/N ratio is higher than
20 might help farmers to identify which plots require action to improve soil quality (Figure 6).

# calculate quantiles
CN_sample_df <- as(CN_sample, "SpatialGridDataFrame")
CN_q <- quantile_MC_sgdf(CN_sample_df, probs = c(0.01, 0.1, 0.5, 0.9), na.rm = TRUE)

CN_q$good4crops99perc <- ifelse(CN_q$prob1perc > 20, 1, 0)
CN_q$good4crops90perc <- ifelse(CN_q$prob10perc > 20, 1, 0)
CN_q$good4crops50perc <- ifelse(CN_q$prob50perc > 20, 1, 0)
CN_q$good4crops10perc <- ifelse(CN_q$prob90perc > 20, 1, 0)

CN_q$good4crops <- CN_q$good4crops99perc + CN_q$good4crops90perc +
CN_q$good4crops50perc + CN_q$good4crops10perc

CN_q$good4crops[CN_q$good4crops == 4] <- "No improvement needed"
CN_q$good4crops[CN_q$good4crops == 3] <- "Possibly improvement needed"
CN_q$good4crops[CN_q$good4crops == 2] <- "Likely improvement needed"
CN_q$good4crops[CN_q$good4crops == 1] <- "Definitely improvement needed"
CN_q$good4crops[CN_q$good4crops == 0] <- "Definitely improvement needed"

CN_q$good4crops <- factor(CN_q$good4crops,
levels = c("Definitely improvement needed",

"Likely improvement needed",
"Possibly improvement needed",
"No improvement needed"))

spplot(CN_q, "good4crops", col.regions = c("red3", "sandybrown", "greenyellow",
"forestgreen"), main = "Areas with sufficient C/N for cropping")

Example 2 - Uncertainty propagation analysis with categorical data

In many aspects of life, information take the form of categorical data. For example, in a city neigh-
bourhood or a district, each building may be assigned a function such as housing, office, recreation, or
other. The city council may impose different tax levels depending on the building function. Suppose
that the function of a building is assigned depending on the percentage of the building used for living
(i.e., the residential use) and number of addresses in the building. If the residential area is greater
than 80% and has at least one address registered, then the building is classified as “residential”. If the
residential area is smaller than 80% and at least one address is present, then the building is classified as
“office”. If no address is present, the building function is classified as “other”. The city council imposes
annual tax of €1000 for residential buidings, €10000 for office buildlings, and €10 for other buildings.
The 80% threshold is approximate, and some buildings classified as “other” could have an assigned
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Figure 6: Map of soil quality classification (depending on C/N ratio) for crop production.

address that has not yet been entered into the tax system. Therefore, the council wishes to calculate
the uncertainty in tax revenue introduced by erroneous building classification. For this example, we
will use the spatial distribution of buildings in a neighborhood of Rotterdam, NL (Figure 7).

# load packages
library(sp)
library(spup)
library(purrr)
library(png)

set.seed(12345)

# load data
data(woon)

# Netherlands contour and Rotterdam location
NL <- readPNG("RotterdamNL.png")
# collate info about figure size and type
NL_map <- list("grid.raster", NL, x = 89987, y = 436047, width = 120, height = 152,

default.units = "native")
# collate info about a scale bar location in the figure, type and colour
scale <- list("SpatialPolygonsRescale", layout.scale.bar(),

offset = c(90000, 435600), scale = 100,
fill = c("transparent", "black"))

# collate info about minimum value on a scale bar
text1 <- list("sp.text", c(89990, 435600), "0", cex = 0.8)
# collate info about maximum value on a scale bar
text2 <- list("sp.text", c(90130, 435600), "500 m", cex = 0.8)
# collate info about North arrow
arrow <- list("SpatialPolygonsRescale", layout.north.arrow(),

offset = c(89990, 435630), scale = 50)
# plot "woon" object with a location miniature,
# North arrow and scale bar defined above
spplot(woon, "check", do.log = TRUE, col.regions = "transparent",
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colorkey = FALSE, key.space = list(x = 0.1, y = 0.93, corner = c(0,1)),
sp.layout = list(scale, text1, text2, arrow, NL_map),
main = "Neighbourhood in Rotterdam, NL")

Neighbourhood in Rotterdam, NL

0 500 m

Figure 7: Map of a neighbourhood of Rotterdam used as study area. Contours represent buildings.

The woon object is a SpatialPolygonDataFrame where each building is represented by one polygon
(Figure 7). The attributes include:

• vbos: The number of addresses present in the building

• woonareash: The percentage residential area

• Function: The assigned category depending on vbos and woonareash, where 1 represents
residental; 2, office, and 3, other.

• residential: Probability that the building is residential

• office: Probability that the building is an office buildling

• other: Probability that the building has another function

Figure 8 illustrates the probabilities associated with each building for the three possible categories.

# plot probabilities for each polygon
spplot(woon[c(4,5,6)])
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Figure 8: Probabilities of correct classification of each building.
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In case of categorical variables, the uncertainty is described by a non-parametric pdf. In this case, it
is a vector of probabilities that a building belongs to a certain category. In case of spatially distributed
variables, this must be done for each polygon, hence the dataset has maps of these probabilities saved
in the same object. We further assume that uncertainties are spatially independent, implying that the
joint pdf of all buildings in the neighbourhood is the product of the marginal pdfs for all buildings.
Thus, we can generate possible realities for all buildings independently. To unite all information
of the uncertainty model for the building function, we use the defineUM() function that collates all
information into one object.

# define uncertainty model for the building function
woonUM <- defineUM(TRUE, categories = c("residential", "office", "other"),

cat_prob = woon[, c(4:6)])

# create possible realizations of the building function
woon_sample <- genSample(woonUM, 100, asList = FALSE)

# view several realizations
woon_s <- woon_sample@data
woon_s <- lapply(woon_sample@data, as.factor)
woon_sample@data <- as.data.frame(woon_s)
rm(woon_s)

spplot(woon_sample[c(3,4,1,2)], col.regions = c("#5ab4ac", "#f5f5f5", "#d8b365"),
main = list(label = "Examples of building function realizations", cex = 1))

Examples of building function realizations
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sim1 sim2

office

other

residential

Figure 9: Examples of Monte Carlo realizations of possible classifications for each building.

Examples of building functions Monte Carlo realizations are shown in Figure 9.

To propagate uncertainty, we run the model repeatedly with the sample created above. The tax
model is defined as:

# define tax model
tax <- function (building_Function)
{
building_Function$tax2pay <- NA
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building_Function$tax2pay[building_Function$Function == "residential"] <- 1000
building_Function$tax2pay[building_Function$Function == "office"] <- 10000
building_Function$tax2pay[building_Function$Function == "other"] <- 10
total_tax <- sum(building_Function$tax2pay)
total_tax

}

As in the previous C/N ratio example, in order to run the propagation function, the sample of an
uncertain input variable must be saved in a list. We must either coerce the existing woon_sample object
or get it automatically by setting up asList = TRUE argument in genSample().

# coerce SpatialPolygonDataFrame to a list of individual SpatialPolygonDataFrames
woon_sample <- map(1:ncol(woon_sample), function(x){woon_sample[x]})
for (i in 1:100) names(woon_sample[[i]]) <- "Function"

# run uncertainty propagation
tax_sample <- propagate(woon_sample, model = tax, n = 100)

tax_sample <- unlist(tax_sample)
ci95perc <- c(mean(tax_sample) - 1.96*(sd(tax_sample)/10),
mean(tax_sample) + 1.96*(sd(tax_sample)/10))
ci95perc
[1] 2281978 2312449

The result of the uncertainty propagation shows that on average, the city council should obtain a
tax revenue of approximately €2,300,000 and that the associated 95% confidence interval is (€2,281,978,
€2,312,449).

Example 3 - Uncertainty propagation analysis with a model written in C

Environmental models are often developed in languages other than R, such as C or FORTRAN, that
can significantly speed up processing. In this example, we demonstrate how to perform uncertainty
analysis with a basic model written in C.

We begin by showcasing functions to manipulate model inputs stored in ASCII files. For external
models, this additional code is needed to (i) modify ASCII input files, and (ii) run the external
model. For rendering ASCII input files, the mustache templating framework is available on GitHub at
https://mustache.github.io, and in the R package whisker.

Suppose we have a simple linear regression model: Y = b0 + b1 ∗ X that requires an input file
input.txt. The file contains values for the two parameters b0 and b1 as follows:

library(spup)
library(dplyr)
library(readr)
library(whisker)
library(purrr)

set.seed(12345)

read_lines("input.txt")
[1] "-0.789 0.016"

Function template() allow user to define a "container" class to store templates with model inputs.
The aim of this class is to organise model input files and perform necessary checks. A print() method
is available for the class "template". A template is simply an ASCII file with:

1. The additional extension .template.

2. Input that needs to be modified is replaced by mustache-style tags.

The corresponding template file should be named input.txt.template and should replace the original
numbers with b0 and b1 placed in moustaches: {{...}}.

# function template() reads the file into R as an object of class "template"
my_template <- template("input.txt.template")
my_template %>%
read_lines
[1] "{{b0}} {{b1}}"
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Rendering is the process of replacing the tags in moustaches with text. Rendering creates a new file,
called input.txt.

my_template %>%
render(b0 = 3, b1 = 4)
[1] "input.txt"

Below is an example external model written in the C language. This code can be saved in a file with
the .c extension, for example, ‘dummy_model.c’. The model below calculates a value of a simple linear
regression:

#include <stdio.h>
int main() {

FILE *fp;
double x[9] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0};
double y;
double b0;
double b1;
int i;

fp = fopen("input.txt", "r");
if (fp == NULL) {

printf("Can't read input.txt\n");
return 1;

}
fscanf(fp, "%lf %lf\n", &b0, &b1);
fclose(fp);

fp = fopen("output.txt", "w");
if (fp == NULL) {

printf("Can't create output.txt\n");
return 1;

}
else {

for (i=0; i<9; i++) {
y = b0 + b1 * x[i];
fprintf(fp, "%10.2f\n", y);

}
fclose(fp);

}
return 0;

}

To compile this code to a MS-Windows executable one can use GCC at the DOS command prompt
as follows: gcc dummy_model.c -o dummy_model. This creates a file dummy_model.exe, which can be
wrapped in R as follows:

dummy_model <- executable("dummy_model.exe")

Running the rendering procedure passes values for b0 and b1 to the model, which gives:

# render the template
render(my_template, b0 = 3.1, b1 = 4.2)

# run external model
dummy_model()

# read output (output file of dummy_model is "output.txt")
scan(file = "output.txt", quiet = TRUE)
[1] 7.3 11.5 15.7 19.9 24.1 28.3 32.5 36.7 40.9

To perform the uncertainty propagation analysis, we derive multiple realizations of the model
output in steps as follows: (i) render the template, (ii) run the model, (iii) read the results, and (iv)
process the results. For example:

# number of Monte Carlo runs
n_realizations <- 100
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n_realizations %>%
purrr::rerun({

# render template
render(my_template, b0 = rnorm(n = 1), b1 = runif(n = 1))

# run model
dummy_model()

# read output
scan("examples/output.txt", quiet = TRUE)

}) %>%
set_names(paste0("r", 1:n_realizations)) %>%
as_data_frame %>%
apply(MARGIN = 1, FUN = quantile)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
0% -1.660 -0.9300 -0.7400 -0.730 -0.710 -0.700 -0.680 -0.660 -0.650
25% -0.060 0.4775 0.8625 1.203 1.720 1.970 2.345 2.607 2.848
50% 0.745 1.2400 1.7200 2.310 2.965 3.375 3.910 4.405 4.850
75% 1.518 2.1425 2.7725 3.453 4.147 4.832 5.453 6.135 6.947
100% 2.990 3.3800 4.2700 5.170 6.080 6.990 7.890 8.800 9.710

Summary and future directions

In this paper, we presented the R package spup which implements methodologies for spatial uncer-
tainty propagation analysis. The package architecture and its core components were described and
three examples were presented. We explained the package functions for examining the uncertainty
propagation, starting from input data and model parameters via the environmental model to model
predictions. Sources of uncertainty include model specification, stochastic simulation and propagation
of uncertainty using MC techniques. We include recommendations for visualizing results. We also
explained how numerical and categorical data types are handled, and how we accomodate spatial
auto-correlation within an attribute and cross-correlation between attributes. The MC realizations may
be used as an input to environmental models written in R or other programming languages that can
be called from R. The presented examples and the vignettes included in the spup package provide
insight into the selection of appropriate static uncertainty visualizations that are understandable to
audiences of differing levels of statistical literacy. As an effective and easy tool, spup has potential to
be used for multi-disciplinary research, model-based decision support and educational purposes.

The package could benefit from further development including facilitating uncertainty analysis
with time series, one of the most common types of data in environmental studies. For uncertainty
propagation, the package has implemented the MC approach with efficient sampling algorithms such
as stratified random sampling; implementing Latin Hypercube sampling would complement this
approach. Further direction may include interactive visualization methods could be developed via the
shiny package (Chang et al., 2017). As it is based on MC methodology, spup is suitable to be used
with parallel computing.
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clustMixType: User-Friendly Clustering
of Mixed-Type Data in R
by Gero Szepannek

Abstract Clustering algorithms are designed to identify groups in data where the traditional emphasis
has been on numeric data. In consequence, many existing algorithms are devoted to this kind of
data even though a combination of numeric and categorical data is more common in most business
applications. Recently, new algorithms for clustering mixed-type data have been proposed based on
Huang’s k-prototypes algorithm. This paper describes the R package clustMixType which provides
an implementation of k-prototypes in R.

Introduction

Clustering algorithms are designed to identify groups in data where the traditional emphasis has been
on numeric data. In consequence, many existing algorithms are devoted to this kind of data even
though a combination of numeric and categorical data is more common in most business applications.
For an example in the context of credit scoring, see, e.g. Szepannek (2017). The standard way to
tackle mixed-type data clustering problems in R is to use either (1) Gower distance (Gower, 1971)
via the gower package (van der Loo, 2017) or the daisy(method = "gower") in the cluster package
(Maechler et al., 2018); or (2) Hierarchical clustering through hclust() or the agnes() function in
cluster. Recent innovations include the package CluMix (Hummel et al., 2017), which combines both
Gower distance and hierarchical clustering with some functions for visualization. As this approach
requires computation of distances between any two observations, it is not feasible for large data sets.
The package flexclust (Leisch, 2006) offers a flexible framework for k-centroids clustering through the
function kcca() which allows for arbitrary distance functions. Among the currently pre-implemented
kccaFamilies, there is no distance measure for mixed-type data. Alternative approaches based on
expectation-maximization are given by the function flexmixedruns() in the fpc package (Hennig,
2018) and the package clustMD (McParland, 2017). Both require the variables in the data set to be
ordered according to their data type, and that categorical variables to be preprocessed into integers.
The clustMD algorithm (McParland and Gormley, 2016) also allows ordinal variables but is quite
computationally intensive. The kamila package (Foss and Markatou, 2018) implements the KAMILA
clustering algorithm which uses a kernel density estimation technique in the continuous domain, a
multinomial model in the categorical domain, and the Modha-Spangler weighting of variables in
which categorical variables have to be transformed into indicator variables in advance (Modha and
Spangler, 2003).

Recently, more algorithms for clustering mixed-type data have been proposed in the literature
(Amir and Dey, 2007; Dutta et al., 2012; Foss et al., 2016; He et al., 2005; HajKacem et al., 2016; Ji
et al., 2012, 2013, 2015; Lim et al., 2012; Liu et al., 2017; Pham et al., 2011). Many of these are based
on the idea of Huang’s k-prototypes algorithm (Huang, 1998). The rest of this paper describes the
R package clustMixType (Szepannek, 2018), which provides up to the author’s knowledge the first
implementation of this algorithm in R. The k-modes algorithm (Huang, 1997a) has been implemented
in the package klaR (Weihs et al., 2005; Roever et al., 2018) for purely categorical data, but not for the
mixed-data case. The rest of the paper is organized as follows: A brief description of the algorithm is
followed by the functions in the clustMixType package. Some extensions to the original algorithm are
discussed and as well as a worked example application.

k-prototypes clustering

The k-prototypes algorithm belongs to the family of partitional cluster algorithms. Its objective
function is given by:

E =
n

∑
i=1

k

∑
j=1

uijd
(

xi, µj

)
, (1)

where xi, i = 1, . . . , n are the observations in the sample, µj, j = 1, . . . , k are the cluster prototype
observations, and uij are the elements of the binary partition matrix Un×k satisfying ∑k

j=1 uij = 1, ∀ i.
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The distance function is given by:

d(xi, µj) =
q

∑
m=1

(
xm

i − µm
j

)2
+ λ

p

∑
m=q+1

δ
(

xm
i , µm

j

)
. (2)

where m is an index over all variables in the data set where the first q variables are numeric and the
remaining p− q variables are categorical. Note that δ(a, b) = 0 for a = b and δ(a, b) = 1 for a 6= b,
and d() corresponds to weighted sum of Euclidean distance between two points in the metric space
and simple matching distance for categorical variables (i.e. the count of mismatches). The trade off
between both terms can be controlled by the parameter λ which has to be specified in advance as well
as the number of clusters k. For larger values of λ, the impact of the categorical variables increases.
For λ = 0, the impact of the categorical variables vanishes and only numeric variables are taken into
account, just as in traditional k-means clustering.

The algorithm iterates in a manner similar to the k-means algorithm (MacQueen, 1967) where for
the numeric variables the mean and the categorical variables the mode minimizes the total within
cluster distance. The steps of the algorithm are:

1. Initialization with random cluster prototypes.

2. For each observation do:

(a) Assign observations to its closest prototype according to d().

(b) Update cluster prototypes by cluster-specific means/modes for all variables.

3. As long as any observations have swapped their cluster assignment in 2 or the maximum
number of iterations has not been reached: repeat from 2.

k-prototypes in R

An implementation of the k-prototypes algorithm is given by the function

kproto(x, k, lambda = NULL, iter.max = 100, nstart = 1, na.rm = TRUE)

where

• x is a data frame with both numeric and factor variables. As opposed to other existing R
packages, the factor variables do not need to be preprocessed in advance and the order of the
variables does not matter.

• k is the number of clusters which has to be pre-specified. Alternatively, it can also be a vector
of observation indices or a data frame of prototypes with the same columns as x. If ever at
the initialization or during the iteration process identical prototypes do occur, the number of
clusters will be reduced accordingly.

• lambda > 0 is a real valued parameter that controls the trade off between Euclidean distance
for numeric variables and simple matching distance for factor variables for cluster assignment.
If no λ is specified the parameter is set automatically based on the data and a heuristic using
the function lambdaest(). Alternatively, a vector of length ncol(x) can be passed to lambda (cf.
Section on Extensions to the original algorithm).

• iter.max sets the maximum number of iterations, just as in kmeans(). The algorithm may stop
prior to iter.max if no observations swap clusters.

• nstart may be set to a value > 1 to run k-prototypes multiple times. Similar to k-means, the
result of k-prototypes depends on its initialization. If nstart > 1, the best solution (i.e. the one
that minimizes E) is returned.

• Generally, the algorithm can deal with missing data but as a default NAs are removed by na.rm
= TRUE.

Two additional arguments, verbose and keep.data, can control whether information on missing
values should be printed and whether the original data should be stored in the output object. The
keep.data=TRUE option is required for the default call to the summary() function, but in case of large x,
it can be set to FALSE to save memory.

The output is an object of class "kproto". For convenience, the elements are designed to be
compatible with those of class "kmeans":

• cluster is an integer vector of cluster assignments

• centers stores the prototypes in a data frame
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• size is a vector of corresponding cluster sizes

• withinss returns the sum over all within cluster distances to the prototype for each cluster

• tot.withinss is their sum over all clusters which corresponds to the objective function E

• dists returns a matrix of all observations’ distances to all prototypes in order to investigate the
crispness of the clustering

• lambda and iter store the specified arguments of the function call

• trace lists the objective function E as well as the number of swapped observations during the
iteration process

Unlike "kmeans", the "kproto" class is accompanied corresponding predict() and summary() meth-
ods. The predict.kproto() method can be used to assign clusters to new data. Like many of its
cousins, it is called by

predict(object, newdata)

The output again consists of two elements: a vector cluster of cluster assignments and a matrix dists
of all observations’ distances to all prototypes.

The investigation resulting from a cluster analysis typically consists of identifying the differences
between the clusters, or in this specific case, those of the k prototypes. For practical applications
besides the cluster sizes, it is of further interest to take into account the homogeneity of the clusters.
For numeric variables, this can be done by calling the R function summary(). For categorical variables
the representativity of the prototypes is given their frequency distribution obtained by prop.table().
The summary.kproto() method applies these methods to the variables conditional to the resulting
clusters and returns a comparative results table of the clusters for each variable.

The summary is not restricted to the training data but it can further be applied to new data by
calling summary(object,data) where data are new data that will be internally passed to the predict()
method on the object of class "kproto". If no new data is specified (default: data = NULL), the function
requires object to contain the original data (argument keep.data = TRUE). In addition, a function

clprofiles(object, x, vars = NULL)

supports the analysis of the clusters by visualization of cluster profiles based on an object of class
"kproto" and data x. Note that the latter may also have different variables compared to the original
data, such as for profiling variables that were not used for clustering. As opposed to summary.kproto(),
no new prediction is done but the cluster assignments of the "kproto" object given by object$cluster
are used. For this reason, the observations in x must be the same as in the original data. Via the vars
argument, a subset of variables can be specified either by a vector of indices or variable names. Note
that clprofiles() is not restricted to objects of class "kproto" but can also be applied to other cluster
objects as long as they are of a "kmeans"-like structure with elements cluster and size.

Extensions to the original algorithm

For unsupervised clustering problems, the user typically has to specify the impact of the specific
variables on the desired cluster solution which is controlled by the parameter λ. Generally, small
values λ ∼ 0 emphasize numeric variables and will lead to results similar to standard k-means
whereas larger values of λ lead to an increased influence of categorical variables. In Huang (1997b),
the average standard deviation σ of the numeric variables is the suggested choice for λ and in some
practical applications in the paper values of 1

3 σ ≤ λ ≤ 2
3 σ are used. The function

lambdaest(x, num.method = 1, fac.method = 1, outtype = "numeric")

provides different data based heuristics for the choice of λ: The average variance σ2 (num.method
= 1) or standard deviation σ (num.method = 2) over all numeric variables is related to the average
concentration hcat of all categorical variables. We compute hcat by averaging either hm = 1−∑c p2

mc
(fac.method = 1) or hm = 1 −maxc pmc (fac.method = 2) over all variables m where c are the
categories of the factor variables. We set λ = σt

hcat
, t ∈ {1, 2} as a user-friendly default choice to prevent

over-emphasizing either numeric or categorical variables. If kproto() is called without specifying
lambda, the parameter is automatically set using num.method = fac.method = 1. Note that this should
be considered a starting point for further analysis; the explicit choice of λ should be done carefully
based on the application context.

Originally, λ is real-valued, but in order to up- or downweight the relevance of single variables in
a specific application context, the function kproto() is extended to accept vectors as input where each
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cluster numeric categorical

1 + +
2 + -
3 - +
4 - -

Table 1: Separation of clusters in the example.

element corresponds to a variable specific weight, λm. The formula for distance computation changes
to:

d(xi, pj) =
q

∑
m=1

λm

(
xm

i − µm
j

)2
+

p

∑
m=q+1

λmδ
(

xm
i , µm

j

)
. (3)

Note that the choice of λ only affects the assignment step for the observations but not the computation
of the prototype given a cluster of observations. By changing the outtype argument into a vector, the
function lambdaest() returns a vector of λms. In order to support a user-specific definition of λ based
on the variables’ variabilities, outtype = "variation" returns a vector of original values of variability
for all variables in terms of the quantities described above.

An issue of great practical relevance is the ability of an algorithm to deal with missing values
which can be solved by an intuitive extension of k-prototypes. During the iterations, cluster prototypes
can be updated by ignoring NAs: Both means for numeric variables as well as modes for factors can be
computed based on the available data. Similarly, distances for cluster assignment can be computed for
each observation based on the available variables only. This not only allows cluster assignment for
observations with missing values, but already takes these observations into account when the clusters
are formed. By using kproto(), this can be obtained by setting the argument na.rm = FALSE. Note
that in practice, this option should be handled with care unless the number of missing values is very
small. The representativeness of a prototype might become questionable if its means and modes do
not represent the major part of the cluster’s observations.

Finally, a modification of the original algorithm presented in Section k-prototypes clustering allows
for vector-wise computation of the iteration steps, reducing computation time. The update of the
prototypes is not done after each new cluster assignment, but once each time the whole data set has
been reassigned. The modified k-prototypes algorithm consists of the following steps:

1. Initialization with random cluster prototypes.

2. Assign all observations to its closest prototype according to d().

3. Update cluster prototypes.

4. As long as any observations have swapped their cluster assignment in 2 or the maximum
number of iterations has not been reached: repeat from 2.

Example

As an example, data x with two numeric and two categorical variables are simulated according to the
documentation in ?kproto: Using set.seed(42), four clusters j = 1, . . . , 4 are designed such that two
pairs can be separated only by their numeric variables and the other two pairs only by their categorical
variables. The numeric variables are generated as normally distributed random variables with cluster
specific means µ1 = µ2 = −µ3 = −µ4 = Φ−1(0.9) and the categorical variables have two levels (A
and B) each with a cluster specific probability p1(A) = p3(A) = 1− p2(A) = 1− p4(A) = 0.9. Table 1
summarizes the clusters. It can be seen that both numeric and categorical variables are needed in
order to identify all four clusters.

Given the knowledge that there are four clusters in the data, a straightforward call for k-prototypes
clustering of the data will be:

kpres <- kproto(x = x, k = 4)
kpres # output 1
summary(kpres) # output 2
library(wesanderson)
par(mfrow=c(2,2))
clprofiles(kpres, x, col = wes_palette("Royal1", 4, type = "continuous")) # figure 1

The resulting output is of the form:
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# Output 1:

Numeric predictors: 2
Categorical predictors: 2
Lambda: 5.52477

Number of Clusters: 4
Cluster sizes: 100 95 101 104
Within cluster error: 332.909 267.1121 279.2863 312.7261

Cluster prototypes:
x1 x2 x3 x4

92 A A 1.4283725 1.585553
54 A A -1.3067973 -1.091794
205 B B -1.4912422 -1.654389
272 B B 0.9112826 1.133724

# Output 2 (only for variable x1 and x3):

x1

cluster A B
1 0.890 0.110
2 0.905 0.095
3 0.069 0.931
4 0.144 0.856

-----------------------------------------------------------------

x3
Min. 1st Qu. Median Mean 3rd Qu. Max.

1 -0.7263 0.9314 1.4080 1.4280 2.1280 4.5110
2 -3.4200 -1.9480 -1.3170 -1.3070 -0.6157 2.2450
3 -4.2990 -2.0820 -1.4600 -1.4910 -0.7178 0.2825
4 -1.5300 0.2788 0.9296 0.9113 1.5000 3.1480

-----------------------------------------------------------------

The first two as well as the last two cluster prototypes share the same mode in the factor variables but
they can be distinguished by their location with respect to the numeric variables. For clusters 1 & 4
(as opposed to 2 & 3), it is vice versa. Note that the order of the identified clusters is not necessarily
the same as in cluster generation. Calling summary() and clprofiles() provides further information
on the homogeneity of the clusters. A color palette can be passed to represent the clusters across the
different variables for the plot; here it is taken from the package wesanderson (Ram and Wickham,
2018).

By construction, taking into account either only numeric (k-means) or only factor variables (k-
modes) will not be able to identify the underlying cluster structure without further preprocessing of
the data in this example. A performance comparison using the Rand index (Rand, 1971) as computed
by the package clusteval (Ramey, 2012) results in rand indices of 0.728 (k-means) and 0.733 (k-modes).
As already seen above, the prototypes as identified by clustMixType do represent the true clusters
quite well, as the corresponding Rand index improves to 0.870.

library(klaR)
library(clusteval)

kmres <- kmeans(x[,3:4], 4) # kmeans using numerics only
kmores <- kmodes(x[,1:2], 4) # kmodes using factors only

cluster_similarity(kpres$cluster, clusid, similarity = "rand")
cluster_similarity(kmres$cluster, clusid, similarity = "rand")
cluster_similarity(kmores$cluster, clusid, similarity = "rand")

The runtime of kproto() is linear in the number of observations (Huang, 1997b) and thus it is also
applicable to large data sets. Figure 2 (left) shows the behaviour of the runtime for 50 repeated
simulations of the example data with an increased number of variables (half of them numeric and
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Figure 1: Cluster profiles for variables x1 and x3.

half of them categorical). It is possible to run kproto() for more than hundred variables which is far
beyond most practical applications where human interpretation of the resulting clusters is desired.
Note that clustMixType is written in R and currently no C++ code is used to speed up computations
which could be a subject of future work.

In order to determine the appropriate number of clusters for a data set, we can use the standard
scree test. In this case, the objective function E is given by the output’s tot.withinss element. The
kproto() function is run multiple times for varying numbers of clusters (but fixed λ) and the number
of clusters is chosen as the minimum k from whereon no strong improvements of E are possible.
In Figure 2 (right), an elbow is visible at the correct number of clusters in the sample data; recall
that we simulatd from four clusters. Note that from a practitioner’s point of view, an appropriate
solution requires clusters that are well represented by their prototypes. For this reason, the choice
of the number of clusters should further take into account a homogeneity analysis of the clusters as
returned by summary(), clprofiles() or the withinss element of the "kproto" output.

Es <- numeric(10)
for(i in 1:10){

kpres <- kproto(x, k = i, nstart = 5)
Es[i] <- kpres$tot.withinss

}
plot(1:10, Es, type = "b", ylab = "Objective Function", xlab = "# Clusters",

main = "Scree Plot") # figure 2

Figure 2: Runtime for increasing number of variables (left) and screeplot (right).
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Summary

The clustMixType package provides a user-friendly way for clustering mixed-type data in R given by
the k-prototypes algorithm. As opposed to other packages, no preprocessing of the data is necessary,
and in contrast to standard hierarchical approaches, it is not restricted to moderate data sizes. Its
application requires the specification of two hyperparameters: the number of clusters k as well as a
second parameter λ that controls the interplay of the different data types for distance computation. As
an extension to the original algorithm, the presented implementation allows for a variable-specific
choice of λ and can deal with missing data. Furthermore, with regard to business purposes, functions
for profiling a cluster solution are presented.

This paper is based on clustMixType version 0.1-36. Future work may focus on the development
of further guidance regarding the choice of the parameter λ, such as using stability considerations
(cf. Hennig, 2007), or the investigation of possible improvements in computation time by integrating
Rcpp (Eddelbuettel et al., 2018; Eddelbuettel and François, 2011).
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Stilt: Easy Emulation of Time Series AR(1)
Computer Model Output in
Multidimensional Parameter Space
by Roman Olson, Kelsey L. Ruckert, Won Chang, Klaus Keller, Murali Haran, and Soon-Il An

Abstract Statistically approximating or “emulating” time series model output in parameter space is a
common problem in climate science and other fields. There are many packages for spatio-temporal
modeling. However, they often lack focus on time series, and exhibit statistical complexity. Here, we
present the R package stilt designed for simplified AR(1) time series Gaussian process emulation,
and provide examples relevant to climate modelling. Notably absent is Markov chain Monte Carlo
estimation – a challenging concept to many scientists. We keep the number of user choices to a
minimum. Hence, the package can be useful pedagogically, while still applicable to real life emulation
problems. We provide functions for emulator cross-validation, empirical coverage, prediction, as well
as response surface plotting. While the examples focus on climate model emulation, the emulator is
general and can be also used for kriging spatio-temporal data.

Introduction

Emulation of computer model behavior in parameter space is a challenging problem (Drignei et al.,
2008; Higdon et al., 2008; Holden et al., 2010; Bhat et al., 2012; Olson et al., 2012; Sexton et al., 2012;
Olson et al., 2013; Chang et al., 2014a,b). Often a limited number of runs are available and we desire
to estimate model output at a variety of new parameter settings (Drignei et al., 2008; Holden et al.,
2010; Bhat et al., 2012; Olson et al., 2012; Sexton et al., 2012; Olson et al., 2013; Chang et al., 2014b).
Emulation is often used in the context of another common problem, input parameter estimation. Here,
we desire to find probability distribution functions for model input parameters given observational
data (e.g., Olson et al., 2012; Chang et al., 2014b). While model output is often multi-dimensional,
we restrict the discussion here to time series although our approach can apply to vector output more
generally.

Gaussian processes (Kennedy and O’Hagan, 2001; Rasmussen and Williams, 2006; Higdon et al.,
2008; Rougier, 2008) are a very useful methodology for such emulation. Gaussian processes provide
the best linear unbiased prediction under highly general conditions (Stein, 1999). This methodology
assumes that model response is a smooth function of parameter settings. Central to the method is
formulation of the covariance function, which quantifies the covariance between model output as
a function of distance in each model input parameter. This covariance is typically parametrized by
parameters controlling, for example, magnitude or the correlation ranges in each coordinate dimension.
Associated with emulator parameters is a likelihood function given the model output. There are two
main approaches: (i) find the “best” parameter setting that maximizes this likelihood, or (ii) find the
full probability distribution of the parameters. The next step is prediction at new parameter settings.
The former approach ignores the uncertainty in emulator parameters during the prediction, while the
latter approach accounts for it. The prediction is probabilistic as it includes the predictive mean and
the uncertainty around it.

There are many existing R packages to perform Gaussian process emulation for vector and time
series output. In particular, they include gstat (Gräler et al., 2016), mlegp (Dancik and Dorman, 2008;
Dancik, 2013), spBayes (Finley et al., 2015), ramps (Smith et al., 2008), spTimer (Bakar and Sahu,
2015a,b), and RandomFields (Schlather et al., 2015). These spatio-temporal packages are usually
general and do not focus on time series specifically. Moreover, they are usually presented in context
of spatial interpolation (“kriging”) rather than emulation. They may provide flexible functionality
in terms of covariance functions (RandomFields), handling replicates (mlegp), dealing with missing
observations (spTimer), or considering both areal as well as point observations (ramps). The procedure
for fitting emulator parameters differs between packages. Some packages use maximum likelihood or
another form of optimization to find the best parameters, while others use Bayesian analysis.

Due to their statistical complexity, the broad scientific community may find it challenging to use
existing software. Particularly, the concept of Markov chain Monte Carlo (MCMC) employed in some
work may be unfamiliar to some scientists. In addition, a large variety of modeling or prior choices
may leave a user struggling with which model or prior they should employ and why. Many packages
appear to be tailored to a statistical audience, and elaborate statistical terminology may be beyond the
grasp for some scientists. Second, the packages do not usually focus on the spatio-temporal output
ubiquitous in computer modelling. Thus, scientists may invest substantial time in finding the right
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function among the plethora available. Finally, there is an issue of terminology: many scientists may
not realize that “spatio-temporal modeling” may disguise the same technique as “emulation” and
hence, may be oblivious to the applicability of these packages.

We introduce the R package stilt version 1.3.0 for simplified Gaussian Process AR(1) time series
emulation with a focus on climate modeling (Olson et al., 2017). The package is available on Compre-
hensive R Archive Network (CRAN). The main differences from prior approaches are: (i) a simplified
framework with fewer modeling choices and no MCMC that is still applicable to real-life problems,
and (ii) a focus on emulation of time-series in parameter space. Specifically, there is only one function
to fit the emulator to model output and only one function for prediction. Statistical modeling accounts
for random noise in the model output through the nugget term, and also allows for user-chosen linear
terms in model parameters and/or time. Mathematically, this is the first public implementation of
a separable covariance model of Rougier (2008). In this model, space-time covariance between two
locations is a product of a space covariance and a time covariance term. This allows the use of matrix
algebra to achieve considerable computational gains. We include useful utility functions for extensive
cross-validation, 2D response surface plotting, and empirical 95% prediction interval coverage. In
three examples, we apply stilt to emulation in spaces ranging from one- to five-dimensional. Note that
whilst the software is for emulation of time series output in parameter space, the package is general
and can be used for interpolation of observations (or model output) in geographical coordinates (e.g.,
Cressie and Johannesson, 2008; Jones et al., 2009; Hansen et al., 2010; Bhat et al., 2012; Hirahara et al.,
2014).

In the rest of the paper we first outline the statistical approach, then give three examples in 1D,
2D, and 5D parameter space, then present some concluding remarks. We provide technical details in
the Appendix.

Statistical approach

Overview of Approach

Here, we briefly describe our statistical approach. Our statistical model includes optional linear terms
in parameters and/or time, a smooth Gaussian process, and a purely random nugget term. The
Gaussian process represents smooth non-linear effects of parameters or time on the model output. The
nugget term represents purely random effects. For climate model output, this corresponds to internal
climate variability.

The first step is fitting the Gaussian process statistical model to the computer model output. Specif-
ically, the statistical model has several parameters. They control the linear slopes in parameters and
time, the correlation ranges of the field in each of the input parameters, the temporal autocorrelation,
the overall magnitude of the covariance, and the nugget strength. Associated with the emulator
parameters is the likelihood which quantifies how likely the emulator parameter values are given
the model output. During the emulator fitting, we vary the parameters so that this likelihood is
maximized to obtain the optimized emulator. We use this optimized emulator for prediction. The
prediction follows the standard Gaussian process theory. The rest of the section describes the details
of the statistical methodology.

Statistical model

We base our implementation on standard Gaussian process theory (Cressie, 1993; Stein, 1999; Ras-
mussen and Williams, 2006). Consider the case of interpolating spatio-temporal model output of
a perturbed parameter model ensemble in parameter space. Let yi,j ∈ R be physical model output
at a parameter setting θi and a time tj. Time values form an n-dimensional regularly spaced vector
t = (t1, . . . , tn)T .

Each parameter setting is an m-dimensional vector: θi = (θ1,i, . . . , θm,i). For all p model runs, the
parameter settings θi form a p×m parameter matrix Θ. Let yj = (y1,j, . . . , yp,j)

T be a p-dimensional
vector of model outputs for all p parameters for time tj. Consecutively, the stacked pn× 1 column
matrix of all model output for times from 1 through n is Y = (y1

T , . . . , yn
T)T . Associated with Y is the

pn× (m + 1) design matrix D. Its columns represent parameters and time, whereas rows correspond
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to elements of Y. We calculate the design matrix D as:

D =




1
1
...
1


n×1

⊗ Θ t⊗


1
1
...
1


p×1

 , (1)

where ⊗ is the Kronecker product. We model the output as a Gaussian process such that

Y ∼ N(µβ, Σ(ξy)), (2)

where µβ is a mean function that is either constant or linear in any combination of parameters and/or
time, and ξy is a vector of covariance matrix parameters. We assume that µβ = Xβ, where β is a
column vector of regression coefficients, and X is a matrix of covariates. It always includes a column
of ones as its first column to represent the intercept. Depending on the number of regressors, it can
additionally have corresponding columns of the design matrix D. As an example, for a mean function
that is linear in time, β has dimensions of 2× 1, and X is pn× 2:

X =


1 t1
1 t2
...

...
1 tn


n×2

⊗


1
1
...
1


p×1.

(3)

Under the assumption of separability (see Rougier, 2008), we can represent the covariance matrix
Σ as a Kronecker product of a separate covariance matrix in time Σt and in parameters Σθ :

Σ = Σt ⊗ Σθ . (4)

This means that the covariance between any two locations in time and parameter space is a product
of the time covariance term, and the parameter covariance term. This is a different approach to speed
up the computation, compared to performing singular value decomposition (SVD) of model output
(Dancik and Dorman, 2008; Dancik, 2013; Higdon et al., 2008; Chang et al., 2014b). We assume that
the time covariance matrix Σt (n× n) has an AR(1) structure. AR(1) dependence in time is a feature
of many environmental processes (e.g., Hasselmann, 1976; Keller and McInerney, 2008; Olson et al.,
2013). To avoid identifiability issues, we do not use any multipliers for this matrix. Specifically, its
(j, k) element is:

ςt,jk =
ρ|tj−tk |

1− ρ2 , (5)

where ρ is the lag-1 autocorrelation parameter. We assume that the parameter covariance Σθ (p× p) is
squared exponential, as in the package mlegp (Dancik and Dorman, 2008; Dancik, 2013). The squared
exponential covariance function is frequently used in computer model emulation, as computer model
outputs can be often represented using a highly smooth Gaussian process. The (i, j) element of Σθ is:

ςθ,ij = κ exp(−
m

∑
k=1

|θk,i − θk,j|2
φ2

k
) + ζ1(i = j) (6)

where κ is the partial sill, ζ is the nugget, and φk is the range parameter for the kth model input
parameter. The range parameters form a vector φ = φ1, . . . , φm. We construct the total covariance
matrix (np× np) as:

Σ =

ςt,11Σθ · · · ςt,1nΣθ
...

. . .
...

ςt,n1Σθ · · · ςt,nnΣθ

 . (7)

Hence, the covariance parameters are ξy = (ρ, κ, φ, ζ)T . The emulator parameters are ψ =

(βT , ξy
T)T . The actual number of emulator parameters will be different depending on the number of

model parameters that the ensemble varies and on the number of covariates.

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 212

Estimating emulator parameters

We can write the log-likelihood for the model output Y given the emulator parameters ψ as (see, e.g.,
Rasmussen and Williams, 2006):

ln L(Y|ψ) = −1
2
(Y− µβ)

TΣ−1(Y− µβ)−
1
2

ln |Σ| − np
2

ln 2π. (8)

Under the uniform priors for the emulator parameters,

L(ψ|Y) ∝ L(Y|ψ). (9)

Consequently, maximizing the log-likelihood for the model output also maximizes the likelihood for
the parameters. Note that this likelihood evaluation involves a computationally expensive inverse of
an np× np matrix. However, we can reduce the dimension of the inverted matrices to p× p and n× n,
and speed up the computation (see Appendix). Thus, the computational cost of inversion becomes
O(p3) or O(n3), as opposed to O([pn]3). Further computational savings accrue when calculating |Σ|,
considering that Σ is a Kronecker product of two positive definite matrices (see Appendix).

We optimize the emulator parameters ψ by maximizing the likelihood function over a reasonable
parameter range using a local optimization routine. Specifically, stilt uses the nlminb function which
calls FORTRAN code (Gay, 1990). In the package, there is an option to either fix β parameters at their
multiple linear regression estimates or to optimize them along with other emulator parameters.

Prediction

We are interested in predicting model output for all times for a new parameter setting θ∗. We denote
the n-dimensional vector output as y∗ = (yθ∗ ,1, . . . , yθ∗ ,n)

T . Associated with the prediction parameter
setting is an n× 1 prediction design matrix D∗ and a matrix of covariates X∗ evaluated at predictions
points. It is constructed similarly to X. For a mean function that is linear in time, X∗ is:

X∗ =


1 t1
1 t2
...

...
1 tn


n×2

. (10)

The prediction is given by the following multivariate normal distribution (Rasmussen and Williams,
2006):

y∗ ∼ N(µ∗β, Σ∗). (11)

Here,
µ∗β = X∗β + (Σt ⊗ Σθ∗θ)Σ

−1(Y− µβ), (12)

where Σθ∗θ is a 1× p cross-covariance matrix between the prediction parameter setting and all the
ensemble parameters settings. For this matrix, we use the same covariance function as for Σθ . To
evaluate the mean function, we need the inverse of the Σ matrix (np× np). However, using matrix
algebra (Golub and Van Loan, 1996; Rougier, 2008), we can reduce the dimension to p× p by writing
µ∗β in the following way:

µ∗β = X∗β + (In×n ⊗ Σθ∗θΣ−1
θ )(Y− µβ). (13)

The predictive covariance also requires an inversion of a p× p matrix only:

Σ∗ = (κ + ζ)Σt − Σt ⊗ Σθ∗θΣ−1
θ ΣT

θ∗θ . (14)

Prediction for many points uses the same inverse parameter covariance. Hence, we can calculate
the inverse once and recycle it for prediction at many points. This further enhances computational
savings.

Examples using stilt

Preparing model output

Here, we describe how to prepare model output for use with the stilt emulator. Two R list objects are
required. These objects can be easily prepared by the user before the start of the analysis. The first,
mpars, contains information on parameter settings in the ensemble. It has the following components:
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• par is the actual matrix of parameter settings, with rows corresponding to parameter index, and
columns to the model run index.

• parnames is a vector of parameter names corresponding to the rows of par,

• parunits is a vector of units.

The second object, moutput has information on model output. It also has several components, the
most important being out which is the output model matrix with rows referencing time and columns
referencing model run. Other elements contain metadata: t is the corresponding time vector, tunuts
are time units, outname is the name of the modeled variable, and outunits are the corresponding units.

Simple 1D example

This and the following examples are based on running stilt version 1.3.0 on R version 3.3.3 using a 3
Ghz Intel core i5 16GB 2400 MHz DDR4 Macintosh 10.13.6 computer. The following versions were
used for other required packages: fields (9.0), maps (3.3.0), spam (2.1-2), and dotCall64 (0.9-5). The
results were observed to differ slightly according to the programming environment and the operating
system.

We first consider interpolating a toy model dataset consisting of a simple time-series output for
one parameter with a total of 21 parameter settings and 11 time points. The output of this simple
model as a function of time t and parameter θ is: y = sin(θ)(1 + 2t + t2). The model is evaluated for
θ = (0, 1, . . . , 20), and each run produces a time series for times t = (0, 1, . . . , 10). First, we can plot
model output for all parameters:

R> data("Data.1D.model")
R> data("Data.1D.par")
R> plot(NA, xlim=c(0, 11), ylim=c(-150, 150), xlab="Time", ylab="Model output")
R> for (c in 1:21) {lines(Data.1D.model$t, Data.1D.model$out[,c])}

The output of this code is shown in Figure 1.

Now, we fit a Gaussian process emulator to these data. While we do not use any parameter
covariances (par.reg=FALSE), we do use a linear time covariate (time.reg=TRUE). The optimization
follows the default behavior of fixing the linear regressors at the multiple linear regression estimates.
We select 100 as the starting values for both κ and ζ because this leads to reasonable optimization
results.

R> emul1D = emulator(Data.1D.par, Data.1D.model, par.reg=FALSE, time.reg=TRUE,
kappa0=100, zeta0=100)
Initializing the emulator...

Initial regression parameters:
-0.665481 0.570413

Initial emulator likelihood is: -960.2755

Optimizing the emulator...
Obtaining emulator parameter ranges for optimization...

Relative tolerance to be used in optimization: 1e-10

Option 'fix.betas': during optimization beta parameters are going to be
fixed at the following values:
-0.665481 0.570413

------------------------------------
Starting parameter optimization...
-------------------------------------
0: 960.27550: 0.900000 100.000 100.000 10.0000
1: 947.88498: 0.903188 72.2395 233.781 10.1709
2: 898.20175: 0.957801 0.00240862 151.661 13.5627
3: 889.24528: 0.977342 0.00240862 131.201 13.4426

48: 464.48240: 0.982420 1076.06 0.00240862 3.93464
Optimization SUCCESSFUL! Optimization message below:
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Figure 1: Sample time series output of the toy model for different parameter settings

relative convergence (4)

Final parameterss
rho kappa zeta phi
0.98242004 1076.05714589 0.00240862 3.93464218

48 iterations were performed
Final likelihood = -464.4824

CAUTION! The optimization might only find a local minimum.

The package informs us of key emulator parameter settings, and of optimization results. (For
brevity, only the start and the end of optimization process are shown above.) The list of parameters to
be optimized is ρ, κ, ζ, and φ1 in this case. The final emulator is a highly autocorrelated process with a
large partial sill, but a very low nugget. The emulator object emul1D is a list with many components,
with a secondary custom "emul" class. The components include information on the data used to fit
the emulator, optimized emulator parameters, some settings used during optimization, time and
parameter covariance matrices, and the inverse of the parameter covariance matrix. Now, we validate
the emulator using one-at-a-time cross-validation for time index 9 (close to the end of the time series).
Specifically, we remove each parameter setting from the ensemble one at a time, and use the emulator
to predict the output at the excluded parameter setting, given the output at other parameter settings.

R> test.all(emul1D, 9)

The emulator mean prediction shows a remarkable accuracy at predicting actual model response:
the two fall almost perfectly on the 1:1 line of a reliability diagram (Figure 2). The emulator prediction
error is much less than 1% for almost all runs (Figure 2). Note that the emulator does not extrapolate
beyond the ensemble parameter range.

The emulator predicts at new parameter settings using the function predict.emul. This is im-
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Figure 2: Toy example emulator one-at-a-time cross-validation results: (left) predicted vs. actual
model output (black dots) and a 1:1 line; (right) relative prediction error as a function of the excluded
model run number.

plemented using the generic S3 predict function that dispatches to the predict.emul() method
for objects of class "emul". This function returns an object with components mean and covariance
representing the mean and the covariance of the prediction.

A more challenging test case: 2D Korean summer mean maximum temperature variabil-
ity and change

Next, we consider Korean summer mean maximum temperature output from 29 Coupled Model
Intercomparison Project phase 5 (CMIP5) climate models (Taylor et al., 2012) for years 2081-2100 for
the RCP8.5 forcing scenario (Moss et al., 2010). All of the models and calculations used here follow
Shin et al. (2018), however here we exclude the model IPSL_CM5A_LR from the analysis. Of interest
is the relationship between the present-day (years 1973-2005) sample red noise properties for annual
temperature time-series, and the future mean maximum summer temperature changes in these climate
models. Hence, each model i is associated with θi = (σi, ρi), where σi is sample innovation standard
deviation, and ρi is sample first-order autocorrelation. In this case, m = 2, p = 29, and n = 20.

First, we load the relevant datasets and plot the temperature time series for all models.

R> data("Data.AR1Korea.model")
R> data("Data.AR1Korea.par")
R> mycolors = rainbow(29)
R> plot.default(NA, xlim=c(2081, 2100), ylim=c(0,10), xlab="Year",

ylab="JJA Mean Max Temp Anomaly wrt. 1973-2005 [K]")
R> for (c in 1:29) {lines(Data.AR1Korea.model$t, Data.AR1Korea.model$out[,c],

col=mycolors[c])}

We note that the models show a considerable internal variability superimposed on a trend of slow
warming (Figure 3). Next, we fit an emulator while also allowing for optimization of regression slopes
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Figure 3: Korean summer mean maximum temperature change in years 2081-2100 with respect to
period 1973-2005 for 29 CMIP5 climate models.

in innovation standard deviation and time. We also use a custom relative tolerance to illustrate how
this parameter may be changed to fit user needs.

R> emul = emulator(Data.AR1Korea.par, Data.AR1Korea.model, par.reg=c(TRUE,
FALSE), time.reg=TRUE, kappa0=1, zeta0=1, myrel.tol=1E-9, fix.betas=FALSE)

Initializing the emulator...

Initial regression parameters:
-116.0626827 3.8544881 0.0563853

Initial emulator likelihood is: -937.479

Optimizing the emulator...
Obtaining emulator parameter ranges for optimization...

Relative tolerance to be used in optimization: 1e-09
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------------------------------------
Starting parameter optimization...
-------------------------------------
0: 937.479: 0.900000 1.00000 1.00000 -116.063 3.85449 0.0563853 0.322532 0.257
1: 923.956: 0.899929 0.468880 1.36686 -116.087 3.85444 0.0563734 0.322768 0.257
2: 901.460: 0.899874 9.24879e-05 1.05990 -116.096 3.85442 0.0563689 0.322900 0.257
3: 900.363: 0.899860 0.0377996 1.17131 -116.068 3.85445 0.0563831 0.322900 0.257

54: 858.446: 0.616698 9.24879e-05 1.10326 -123.432 3.86546 0.0599039 6.45065 4.396
Optimization SUCCESSFUL! Optimization message below:

relative convergence (4)

Final parameterss
rho kappa zeta beta beta beta phi phi
0.616698 9.24879e-05 1.10326 -123.432 3.86546 0.0599039 6.45065 4.396

54 iterations were performed
Final likelihood = -858.4463

CAUTION! The optimization might only find a local minimum.

Note that we have formatted the output slightly to fit the page width.

We see that the initial multiple regression provides reasonable mean and parameter slopes. They
are close to the final optimized results (fourth through sixth elements of the optimized parameter
vector called "Final parameters" above). There is a considerable linear dependence on both time and
innovation standard deviation. The non-linear part of the emulator has a strong random component,
and a very weak Gaussian process component. This suggests no systematic dependence of the model
output on the present-day autocorrelation. We can predict the temperature response at an arbitrary
setting of the parameters using the predict function. We do this for σ = 1 and ρ = 0:

R> pred = predict(emul, c(1, 0))
R> plot.default(NA, xlim=c(2081, 2100), ylim=c(3.5,7.5), xlab="Year",

ylab="JJA Mean Max Temp Anomaly wrt. 1973-2005 [K]")
R> lines(emul$t.vec, pred$mean)
R> lines(emul$t.vec, pred$mean + sqrt(diag(pred$covariance)), col="brown")
R> lines(emul$t.vec, pred$mean - sqrt(diag(pred$covariance)), col="brown")

The mean vector of the prediction is the mean component of pred, and the variance vector is
composed of the diagonal entries of covariance. Figure 4 shows the predicted response, with the
associated 1-std uncertainty. We note the linearity of the warming in time. This illustrates the ability of
the emulator to identify fluctuations of temperature in the models around the linear trend as random,
and not to include them into the emulated response.

An even more challenging test case: Five-dimensional ice sheet model output

Next, we consider a 5D emulator for the SICOPOLIS ice sheet model output (Greve, 1997; Greve
et al., 2011) for Greenland ice mass loss relative to the year 2003. This is a perturbed parameter
100-member ensemble which varies five model parameters: flow enhancement factor, basal sliding
factor, geothermal heat flux, snow positive degree-day (PDD) factor, and ice PDD factor. The future
forcing scenario is that of a gradual temperature increase stabilizing at approximately 5 K warmer
than present (Applegate et al., 2012). Output is available annually between years 1840 and 2500.

We load relevant data and fit an emulator to the ensemble using all five parameters and time
as covariates. For computational expediency, we fix slope parameters at their multiple regression
estimates.

R> data(Data.Sicopolis.par)
R> data(Data.Sicopolis.model)
R> emul.Sicopolis = emulator(Data.Sicopolis.par, Data.Sicopolis.model,

par.reg=c(TRUE, TRUE, TRUE, TRUE, TRUE),
time.reg=TRUE, kappa0=1000000, zeta0=50000)

Initializing the emulator...

Initial regression parameters:
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Figure 4: Emulated Korean summer mean maximum temperature change projections with respect to
1973-2005 at σ = 1 K and ρ = 0. Solid and dashed lines: mean response ± standard errors.

5154878.375 171.401 8590.267 -182.659 49920.313 1300.488 -2725.378

Initial emulator likelihood is: -10782007

Optimizing the emulator...
Obtaining emulator parameter ranges for optimization...

Relative tolerance to be used in optimization: 1e-10

Option 'fix.betas': during optimization beta parameters are going to be
fixed at the following values:
5154878.375 171.401 8590.267 -182.659 49920.313 1300.488 -2725.378

------------------------------------
Starting parameter optimization...
-------------------------------------
0: 10782007.: 0.900 1.00e+06 50000.0 1.97305 9.84502 19.9205 1.98380 7.45
1: 672836.29: 1.00 3.29e+07 7.05408e+07 2.83691 8.68834 27.1292 2.24728 0.00149
2: 672613.27: 0.999 3.29e+07 7.05341e+07 2.83691 8.68834 27.1292 2.24728 0.0537
3: 667210.63: 0.997 3.20e+07 7.08502e+07 2.86488 8.69561 27.3808 2.26410 14.54

79: 485611.17: 0.999989 5.83e+06 41529.0 13.4764 20.1003 199.578 5.72313 10.9
Optimization SUCCESSFUL! Optimization message below:

relative convergence (4)

Final parameters
rho kappa zeta phi phi phi phi phi
0.999989 5829746.770135 41528.993339 13.476403 20.100261 199.578404 5.723128 10.901509
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79 iterations were performed
Final likelihood = -485611.2

CAUTION! The optimization might only find a local minimum.

The emulator takes roughly 3 minutes to fit on a 3 Ghz Intel core i5 16GB 2400 MHz DDR4
Macintosh computer. The final emulator is very smooth as evidenced by the relatively high range
parameters compared to the ensemble parameter range, and has an extremely low nugget compared
to the partial sill parameter.

Next, we perform cross-validation of the emulator for the entire time series. We withhold three
ensemble members, and predict at withheld parameters using the model output at the remaining 97
parameter settings.

R> test.csv(emul.Sicopolis, num.test=3, plot.std=TRUE, theseed=13241240)
Predicting for run number: 3
Predicting for run number: 26
Predicting for run number: 93

Here, we have specified a random seed, and the output tells us which model runs were excluded.
Alternatively, we can select the runs to withhold via the test.runind argument. We present the results
in Figure 5. The emulator has remarkable skill at recovering the output of the withheld models.

Now, we withhold more runs and perform a more systematic analysis of emulator behavior:

R> mytest = test.csv(emul.Sicopolis, num.test=10, plot.std=FALSE, theseed=13241240,
make.plot=FALSE)

Predicting for run number: 3
Predicting for run number: 7
Predicting for run number: 26
Predicting for run number: 34
Predicting for run number: 37
Predicting for run number: 43
...Prediction error. Likely because prediction parameters are out of bounds

Predicting for run number: 91
Predicting for run number: 93
Predicting for run number: 99
Predicting for run number: 100
NOTE: 1 prediction points were omitted

R> cat("95% CI coverage:", mytest$coverage, "\n")
95% CI coverage: 0.9768028

Note that stilt does not extrapolate beyond the parameter range of the ensemble. Since one of the
parameters is at its maximum among the ensemble for the 43rd run, this run is skipped during the
cross-validation. We disable the plotting since our main interest here is empirical coverage of the 95%
prediction interval. The coverage (0.977) is relatively close to the ideal theoretical value of 0.95, which
suggests that the emulator is relatively well calibrated.

We finish by plotting the response surface of the emulator for parameters 4 (snow PDD factor),
and 5 (ice PDD factor). We fix flow enhancement factor, basal sliding factor, and geothermal heat flux
at values of 3.0, 10.0 m y−1 Pa−1, and 45.0 m W m−2, respectively.

R> rsurface.plot(emul.Sicopolis, parind=c(4,5), parvals=c(3, 10, 45, NA, NA),
tind=600, n1=10, n2=10)

We look at the 600th time index (year 2439), where n1 and n2 are the number of grid points to use
in the x and y directions, respectively. Figure 6 shows the response surface. A monotonic positive
relationship exists between the ice mass anomaly as a function of the snow PDD factor across most of
the ice PDD factor range. However, the relationship between the ice mass loss and the ice PDD factor
appears to be non-monotonic.

Concluding remarks

Here, we present stilt - a package for simplified Gaussian process emulation. The package is designed
for emulation of time series model output in parameter space, although it can be applied for kriging
more generally. The focus is on simplicity, so the package could be easily applied to many challenging
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Figure 5: Cross-validation of Greenland Ice Sheet anomaly with respect to year 2003 [Gt] from the
SICOPOLIS ensemble. Thick beige lines: actual model output. Brown lines: emulator predictions with
standard error confidence intervals.

problems by users outside of the statistics research community. The streamlined emulator fitting and
prediction means the package is also useful pedagogically in demonstrating the Gaussian process
emulation. We assume separability in space and time for the Gaussian process. This allows us to
reduce computational burden using matrix algebra, and makes it possible to apply the package to
moderately large datasets, especially in the time dimension. We showcase package capabilities on
three examples which differ in the amount of parameters in the model ensemble. Specifically, we
use a 1D toy dataset, a 2D dataset of Korean summer mean maximum temperatures, and the 5D
SICOPOLIS ice sheet model output. Using cross-validation functions, we show the capability of
the emulator to predict model response at excluded parameter values in up to five dimensions. We
demonstrate the capacity to visualize estimated 2D model response surfaces. The package can be
useful when computational resources are limited, and a relatively fast statistical approximator is
required for a complex model across a range of parameter space. Some limitations of the package
are homoskedasticity, separability, and the fixed covariance structure (e.g., AR(1) and the squared
exponential function). We choose the AR(1) model because it is applicable to data in diverse scientific
fields (Hasselmann, 1976; Keller and McInerney, 2008; Li, 2011; Olson et al., 2013). The disadvantage
is that such an emulator may not handle seasonal or periodic effects that may be present in computer
model output. Extending the package to account for heteroskedasticity (e.g., hetGP package, Binois
and Gramacy, 2017) should be considered in future work.
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Appendix

This Appendix describes the technique to reduce computational cost when evaluating the likelihood
(Equation 8). In its original form, it involves a computationally expensive inverse of an np× np matrix.
Consider a p× n matrix C, where Y− µβ = vec(C), and the vec operation stacks columns of a matrix
into a column vector, from left to right (Rougier, 2008). Using properties of Kronecker products (Golub
and Van Loan, 1996), of the vec operator (Magnus and Neudecker, 2007), and other matrix algebra:

(Y− µβ)
TΣ−1(Y− µβ) = (vec(C))T [Σ−1

t ⊗ Σ−1
θ ]vec(C)

= (vec(C))T [(Σ−1
t )T ⊗ Σ−1

θ ]vec(C)

= (vec(C))Tvec(Σ−1
θ CΣ−1

t )

= sum
[
C ∗ (Σ−1

θ CΣ−1
t )
]

,

(15)

where ∗ is the Hadamard product. This reduces the dimension of matrices that are inverted to p× p
and n× n, thus substantially reducing computational burden. We further note that both matrices
Σθ and Σt are positive definite (Wicklin, 2013, and others). Thus, the inverses can be found through
the Cholesky decomposition of Σθ = RT

θ Rθ , where Rθ (called Cholesky factor) is an upper triangular
matrix; and similarly for Σt.

Additionally, determinant computations can be simplified considerably (Gentle, 2007):

|Σ| = |Σt ⊗ Σθ | = |Σt|p|Σθ |n. (16)

Thus, we only need to evaluate the determinants of the individual covariance matrices. Moreover,
since Σθ and Σt are positive definite, |Σθ | = ∏

p
i=1 r2

θ,ii, where rθ,ii are diagonal elements of the Cholesky
factor Rθ . Similar calculations can be performed for |Σt|.
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SMM: An R Package for Estimation and
Simulation of Discrete-time semi-Markov
Models
by Vlad Stefan Barbu, Caroline Bérard, Dominique Cellier, Mathilde Sautreuil and Nicolas Vergne

Abstract Semi-Markov models, independently introduced by Lévy (1954), Smith (1955) and Takacs
(1954), are a generalization of the well-known Markov models. For semi-Markov models, sojourn
times can be arbitrarily distributed, while sojourn times of Markov models are constrained to be
exponentially distributed (in continuous time) or geometrically distributed (in discrete time). The aim
of this paper is to present the R package SMM, devoted to the simulation and estimation of discrete-
time multi-state semi-Markov and Markov models. For the semi-Markov case we have considered:
parametric and non-parametric estimation; with and without censoring at the beginning and/or at the
end of sample paths; one or several independent sample paths. Several discrete-time distributions
are considered for the parametric estimation of sojourn time distributions of semi-Markov chains:
Uniform, Geometric, Poisson, Discrete Weibull and Binomial Negative.

Introduction

Semi-Markov models, independently introduced by Lévy (1954), Smith (1955) and Takacs (1954), are a
generalization of the well-known Markov models. For semi-Markov models, sojourn times can be
arbitrarily distributed, while sojourn times of Markov models are constrained to be exponentially
distributed (in continuous time) or geometrically distributed (in discrete time). For this reason, semi-
Markov processes are more general and more adapted for applications than the Markov processes.

Semi-Markov processes have become important tools in probability and statistical modeling with
applications in various domains like survival analysis, biology, reliability, DNA analysis, insurance
and finance, earthquake modeling, meteorology studies, etc.; see, e.g., Heutte and Huber-Carol
(2002), Ouhbi and Limnios (2003), Chryssaphinou et al. (2008), Janssen and Manca (2006), Votsi et al.
(2012), D’Amico et al. (2013), Votsi et al. (2014), D’Amico et al. (2016b), Barbu et al. (2016), D’Amico
et al. (2016a) for semi-Markov processes in continuous or discrete time with various applications
and Sansom and Thomson (2001), Bulla and Bulla (2006), Barbu and Limnios (2008), for hidden
semi-Markov models and applications in climatology, finance and DNA analysis.

Note that the semi-Markov theory is developed mainly in a continuous-time setting, while utterly
less works address the discrete-time case. We refer the reader to Limnios and Oprisan (2001) for
continuous-time framework and to Barbu and Limnios (2008) and references therein for discrete-time
framework. The R package SMM that we present in this paper is developed in discrete time. Note that
undertaking works also in discrete time (modeling stochastic tools, associated estimation procedures,
corresponding software, etc.) is an important issue for several reasons. In our opinion, the most
relevant of these reasons is that the time scale is intrinsically discrete in several applications. For
instance, in DNA studies, when modeling a nucleotide or protein sequence by means of a stochastic
process, the “time” of that process is in fact the position along the sequence, so it is discrete. Other
examples can be found in some reliability/survival analysis applications where the time represents
the number of cycles of a system or the counting of days/hours/etc. We can argue further for the
importance of developing works also in discrete time, in parallel to their analogous ones developed in
continuous time. For instance, we can mention the simplicity of computations in discrete time, the fact
that a discrete-time stochastic process does not explode, the potential use of discrete processes after
the discretization of continuous ones, etc.

Few R packages have been developed to handle semi-Markov models or hidden semi-Markov
models. For semi-Markov models we have the recent semiMarkov R package (Król and Saint-Pierre,
2015) that performs maximum likelihood estimation for parametric continuous-time semi-Markov
processes, where the distribution can be chosen between Exponential, Weibull or exponentiated
Weibull. That package computes associated hazard rates; covariates can also be taken into account
through the Cox proportional hazard model. Two R packages are also dedicated to hidden semi-
Markov models, implementing estimation and prediction methods: the hsmm R package (Bulla et al.,
2010) and the mhsmm R package (O’Connell and Højsgaard, 2011).

Note that there is no R package developed for discrete-time multi-state semi-Markov models. Thus
the purpose of this paper is to present an R package that we have developed, called SMM, which
performs parametric and non-parametric estimation and simulation for multi-state discrete-time
semi-Markov processes. For the parametric estimation, several discrete distributions are considered
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for the sojourn times: Uniform, Geometric, Poisson, Discrete Weibull and Negative Binomial. The
non-parametric estimation concerns the sojourn time distributions, where no assumptions are made
on the shape of distributions. Moreover, the estimation can be done on the basis of one or several
trajectories, with or without censoring. The aim of this paper is to describe the different possibilities of
this package. To summarize, the package SMM that we present deals with different problems:

• Parametric estimation for sojourn time distributions (Uniform, Geometric, Poisson, Discrete
Weibull and Negative Binomial) or non-parametric estimation;

• One or several sample paths;

• Four different types of sojourn times: a general one depending on the current state and on the
next state to be visited, one depending only on the next state, one depending only on the current
state, and one depending neither on the current state nor on the next state;

• Four different types of censoring: censoring at the beginning of sample paths, censoring at the
end of sample paths, censoring at the beginning and at the end of sample paths or no censoring
at all.

Let us make some remarks about these points.

First, concerning the censoring, the simplest situation is the one when all the sojourn times are
completely observed (non censored). A more complicated and realistic framework is when the last
sojourn time is not completely observed, thus being right censored; in most practical situations this
case occurs. An analogous situation is when the first sojourn time is not completely observed, thus
being also right censored. In practice, this last case occurs when one does not know the beginning
of a phenomenon modeled by a semi-Markov chain. Note that this censoring at the beginning of the
sample path is a right censoring (not a left censoring); indeed, when the first sojourn time is censored
as in our paper, the available information is that the real sojourn time (that is not observed) is greater
than this censored observed time. Thus we are clearly in a right censoring framework, although this
happens at the beginning (i.e., left) of the trajectory, which could seem confusing. The most complete
framework is when both the first and the last sojourn times are right censored.

Second, when considering estimation starting from several independent sample paths of a semi-
Markov chain, it is assumed that all the trajectories are censored in the same way; note that this is not
a real constraint, but we imposed this condition only in order to avoid useless technical notations that
would make the comprehension more difficult.

Third, note that it is important for the four types of models (of sojourn times) to be considered
separately because: (i) in practical situations, one model could be more adapted than some other; (ii)
different models will yield specific parameter estimators, so it is important to study them separately.

The paper is organized as follows. The next section Semi-Markov models describes the semi-
Markov models used in this package. Section The SMM package illustrates the different functions of
the SMM package. We end the paper by presenting some concluding remarks on this R package.

Semi-Markov models

Let us consider a random system with finite state space E = {1, . . . , s}, s < ∞. Let (Ω,A, P) be a
probability space and assume that the time evolution of the system is governed by a stochastic process
Y = (Yk)k∈N∗ , defined on (Ω,A, P) with values in E; that is to say that Yk gives the state of the system
at time k. Let T = (Tm)m∈N∗ , defined on (Ω,A, P) with values in N, be the successive time points
when state changes in (Yk)k∈N∗ occur (the jump times) and let also J = (Jm)m∈N∗ , defined on (Ω,A, P)
with values in E, be the successively visited states at these time points. The relation between the
process Y and the process J of the successively visited states is given by Yk = JN(k), or, equivalently,
Jm = YTm , m, k ∈ N, where N(k) := max{m ∈ N | Tm ≤ k} is the discrete-time counting process of
the number of jumps in [1, k] ⊂N.

In this paper we consider four different semi-Markov models corresponding to the following four
types of sojourn times.

• Sojourn times depending on the current state and on the next state:

fij(k) = P(Tm+1 − Tm = k|Jm = i, Jm+1 = j);

• Sojourn times depending only on the current state:

fi•(k) = P(Tm+1 − Tm = k|Jm = i);
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• Sojourn times depending only on the next state to be visited:

f•j(k) = P(Tm+1 − Tm = k|Jm+1 = j);

• Sojourn times depending neither on the current state nor on the next state:

f (k) = P(Tm+1 − Tm = k).

Note that the sojourn times of the type fi•(·), f•j(·) or f (·) are particular cases of the general type
fij(·). Nonetheless, in some specific applications, particular cases can be important because they are
adapted to the phenomenon under study; that is the reason why we investigate these cases separately.

General case: sojourn times of the type fij(.)

Definition 1 (semi-Markov chain SMC and Markov renewal chain MRC). If we have

P(Jm+1 = j, Tm+1 − Tm = k|Jm = i, Jm−1, . . . , J1, Tm, . . . , T1) = P(Jm+1 = j, Tm+1 − Tm = k|Jm = i),

(1)

then Y = (Yk)k is called a semi-Markov chain (SMC) and (J, T) = (Jm, Tm)m is called a Markov renewal
chain (MRC).

All along this paper we assume that the MRC or SMC are homogeneous with respect to the time
in the sense that Equation (1) is independent of m.

Note that if (J, T) is a MRC, then it can be proved that J = (Jm)m∈N∗ is a Markov chain with state
space E, called the embedded Markov chain of the MRC (J, T) (or of the SMC Y).

Definition 2. For a semi-Markov chain we define:

• the semi-Markov kernel (qij(k))i,j∈E,k∈N,

qij(k) = P(Jm+1 = j, Tm+1 − Tm = k|Jm = i);

• the initial distribution (µi)i∈E,

µi = P(J1 = i) = P(Y1 = i);

• the transition matrix (pij)i,j∈E of the embedded Markov chain J = (Jm)m,

pij = P(Jm+1 = j|Jm = i);

• the conditional sojourn time distributions ( fij(k))i,j∈E,k∈N,

fij(k) = P(Tm+1 − Tm = k|Jm = i, Jm+1 = j).

Note that

qij(k) = pij fij(k). (2)

Clearly, a semi-Markov chain is uniquely determined a.s. by an initial distribution (µi)i∈E and
a semi-Markov kernel (qij(k))i,j∈E,k∈N or, equivalently, by an initial distribution (µi)i∈E, a Markov
transition matrix (pij)i,j∈E and conditional sojourn time distributions ( fij(k))i,j∈E,k∈N.

Other assumptions we make are: (i) We do not allow transitions to the same state, i.e., pii = 0 for
all i ∈ E, or equivalently qii(k) = 0, for all i ∈ E, k ∈N; (ii) We assume that there are not instantaneous
transitions, that is qij(0) ≡ 0 or equivalently fij(0) ≡ 0 for all i, j ∈ E; note that this implies that T is a
strictly increasing sequence.

For the conditional sojourn time distributions, one can consider the associated cumulative distri-
bution function defined by

Fij(k) := P(Tm+1 − Tm ≤ k|Jm = i, Jm+1 = j) =
k

∑
t=1

fij(t).

For any distribution function F(·) we can consider the associated survival/reliability function defined
by

F(k) := 1− F(t).
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Consequently we have

Fij(k) := P(Tm+1 − Tm > k|Jm = i, Jm+1 = j) = 1−
k

∑
t=1

fij(t) =
∞

∑
t=k+1

fij(t).

Particular cases: sojourn times of the type fi.(.), f.j(.) and f (.)

We have considered up to here general semi-Markov models with the semi-Markov kernel of the type
given in (2). Particular types of this semi-Markov model can be taken into account, by considering
particular cases of holding time distributions fij(k), where these distributions depend only on the
current state i, or only on the next state j, or neither on i nor on j. For each case, let us define the
semi-Markov kernel and the distribution function associated to the sojourn time distribution.

• Sojourn times depending only on the current state:

qij(k) := pij fi•(k), where (3)

fi•(k) = P(Tm+1 − Tm = k|Jm = i) = ∑
v∈E

piv fiv(k),

Fi•(k) := P(Tm+1 − Tm ≤ k|Jm = i) =
k

∑
t=1

fi•(t) =
k

∑
t=1

∑
v∈E

piv fiv(t).

• Sojourn times depending only on the next state:

qij(k) := pij f•j(k), where (4)

f•j(k) = P(Tm+1 − Tm = k|Jm+1 = j),

F•j(k) := P(Tm+1 − Tm ≤ k|Jm+1 = j) =
k

∑
t=1

f•j(t).

• Sojourn times depending neither on the current state nor on the next state:

qij(k) := pij f (k), where (5)

f (k) = P(Tm+1 − Tm = k).

F(k) := P(Tm+1 − Tm ≤ k) =
k

∑
t=1

f (t).

We also denote the associated survival/reliability functions respectively by Fi•(k), F•j(k), F(k).

The SMM package

The SMM R package is mainly devoted to the simulation and estimation of discrete-time semi-Markov
models in different cases by the two following functions:

� simulSM() for the simulation of sequences from a semi-Markov model:

– One or several trajectories

– According to classical distributions for the sojourn times (Uniform, Geometric, Poisson,
Discrete Weibull and Negative Binomial) or according to distributions given by the user

– Four different types of censoring mechanisms: censoring at the beginning of sample paths,
censoring at the end, censoring at the beginning and at the end, no censoring

– Four different types of sojourn times: depending on the current state and on the next state,
depending only on the current state, depending only on the next state, depending neither
on the current state nor on the next state

� estimSM() for the estimation of model parameters:

– One or several trajectories

– Parametric (Uniform, Geometric, Poisson, Discrete Weibull and Negative Binomial) or
non-parametric distributions for the sojourn times

– Four different types of censoring mechanisms: censoring at the beginning of sample paths,
censoring at the end, censoring at the beginning and at the end, no censoring
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– Four different types of sojourn times: depending on the current state and on the next state,
depending only on the current state, depending only on the next state, depending neither
on the current state nor on the next state

As the Negative Binomial distribution and the Discrete Weibull distribution can have several
different parameterizations, note that we have considered the following ones in our package:

– Discrete Weibull of type I with the density f (x) = q(x−1)β − qxβ
for x = 1, 2, . . . , n with

n > 0, q is the first parameter, 0 < q < 1, and β is the second parameter, β > 0;

– Negative Binomial with the density f (x) =
Γ(x + α)

Γ(α)x!

(
α

α + µ

)α ( µ

α + µ

)x
for x =

0, 1, . . . , n with n > 0, Γ is the Gamma function, α is the parameter of overdispersion,
α > 0, and µ is the mean, µ ∈ R.

In order to avoid any confusion, note also that the expressions of the different densities consid-
ered in this package are also provided in the corresponding manual.

The SMM R package is also devoted to the simulation and estimation of discrete-time Markov models
by the two following functions:

� simulMk() for the simulation of sequences from a kth order Markov model;

� estimMk() for the estimation of the parameters of the model.

All the different possibilities of the package are illustrated in Figure 1.

  

R Package - SMM

Markov Models Semi-Markov Models

Estimation Simulation

fij, fi, fj, f

Parametric Non-parametric

Begin censored End censored Begin/End censored Uncensored

Estimation Simulation

Several trajectories
Several trajectories

Uniform Geometric Poisson Negative Binomial Weibull

Figure 1: Schema of the SMM package.

Simulation of semi-Markov models

Parametric simulation: according to classical distributions

In this part, we will consider the simulation according to classical distributions.

Parameters: This simulation is carried out by the function simulSM(). The different parameters of
the function are:

• E: Vector of state space of length S

• NbSeq: Number of simulated sequences
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• lengthSeq: Vector containing the lengths of each simulated sequence

• TypeSojournTime: Type of sojourn time; it can be "fij", "fi", "fj" or "f" according to the four
cases previously discussed

• init: Vector of initial distribution of length S

• Ptrans: Matrix of transition probabilities of the embedded Markov chain J = (Jm)m of size
S× S

• distr: Sojourn time distributions:

– is a matrix of distributions of size S× S if TypeSojournTime is equal to "fij",

– is a vector of distributions of size S if TypeSojournTime is equal to "fi" or "fj",

– is a distribution if TypeSojournTime is equal to "f",

where the distributions to be used can be one of "uniform", "geom", "pois", "weibull" or
"nbinom".

• param: Parameters of sojourn time distributions:

– is an array of parameters of size S× S× 2 if TypeSojournTime is equal to "fij"

– is a matrix of parameters of size S× 2 if TypeSojournTime is equal to "fi" or "fj"

– is a vector of parameters if TypeSojournTime is equal to "f"

• cens.beg: Type of censoring at the beginning of sample paths; 1 (if the first sojourn time is
censored) or 0 (if not). All the sequences must be censored in the same way.

• cens.end: Type of censoring at the end of sample paths; 1 (if the last sojourn time is censored)
or 0 (if not). All the sequences must be censored in the same way.

• File.out: Name of fasta file for saving the sequences; if File.out = NULL, no file is created.
A fasta file is a simple text file containing sequences only described by one description line
beginning by a ">": an example is given in Figure 2.

> sequence 1
aaacgtacgagtcgatcgatcgactcgatcgtacgtacggt
> sequence 2
acgtattacgatgctagctaggttggggactgcatgcatgaatgagcgatc

Figure 2: Example of a fasta file.

The R commands below generate three sequences of size 1000, 10000 and 2000 respectively with
the finite state space E = {a, c, g, t}, where the sojourn times depend on the current state and on the
next state.

## state space
E = c("a","c","g","t")
S = length(E)
## sequence sizes
lengthSeq3 = c(1000, 10000, 2000)
## creation of the initial distribution
vect.init = c(1/4,1/4,1/4,1/4)
## creation of transition matrix
Pij = matrix(c(0,0.2,0.3,0.4,0.2,0,0.5,0.2,0.5,0.3,0,0.4,0.3,0.5,0.2,0),

ncol=4)
## creation of the distribution matrix
distr.matrix = matrix(c("dweibull", "pois", "geom", "nbinom",

"geom", "nbinom", "pois", "dweibull",
"pois", "pois", "dweibull", "geom",
"pois","geom", "geom", "nbinom"),

nrow = S, ncol = S, byrow = TRUE)
## creation of an array containing the parameters
param1.matrix = matrix(c(0.6,2,0.4,4,0.7,2,5,0.6,

2,3,0.6,0.6,4,0.3,0.4,4),
nrow = S, ncol = S, byrow = TRUE)

param2.matrix = matrix(c(0.8,0,0,2,0,5,0,0.8,
0,0,0.8,0,4,0,0,4),
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nrow = S, ncol = S, byrow = TRUE)
param.array = array(c(param1.matrix, param2.matrix), c(S,S,2))
## for the reproducibility of the results
set.seed(1)
## simulation of 3 sequences
seq3 = simulSM(E = E, NbSeq = 3, lengthSeq = lengthSeq3,

TypeSojournTime = "fij", init = vect.init,
Ptrans = Pij, distr = distr.matrix, param = param.array,
File.out = "seq3.txt")

First, note that in this simulation, the parameters cens.beg and cens.end are equal to 0, that is to
say the simulated sequences are not censored.

Second, note also that the parameters of the distributions are given in the following way: for
example, f13(·) is Geometric distribution with parameter 0.4, while f14(·) is Negative Binomial with
parameters 4 and 2. In other words, the parameters of f13(·) are given in the vector param.array[1,3,]
that is equal to (0.4, 0) and the parameters of f14(·) are given in the vector param.array[1,4,] that
is equal to (4, 2); that means that if a distribution has only 1 parameter, the corresponding vector of
parameters will have 0 on the second position.

Values: The function simulSM() returns a list of simulated sequences. These sequences can be saved
in a fasta file by using the parameter File.out.

seq3[[1]][1:15]
[1] "g" "g" "g" "g" "c" "c" "c" "a" "a" "a" "c" "c" "c" "g" "g"

Non-parametric simulation: according to distributions given by the user

Now we will consider the simulation according to distributions given by the user.

Parameters: This simulation is carried out by the function simulSM(). The different parameters of
the function are:

• E: Vector of state space of length S

• NbSeq: Number of simulated sequences

• lengthSeq: Vector containing the lengths of each simulated sequence

• TypeSojournTime: Type of sojourn time; it can be "fij", "fi", "fj" or "f" according to the four
cases previously discussed

• init: Vector of initial distribution of length S

• Ptrans: Matrix of transition probabilities of the embedded Markov chain J = (Jm)m of size
S× S

• laws: Sojourn time distributions introduced by the user:

– is an array of size S× S× Kmax if TypeSojournTime is equal to "fij",

– is a matrix of size S× Kmax if TypeSojournTime is equal to "fi" or "fj",

– is a vector of length Kmax if TypeSojournTime is equal to "f",

where Kmax is the maximum length for the sojourn times.

• cens.beg: Type of censoring at the beginning of sample paths; 1 (if the first sojourn time is
censored) or 0 (if not). All the sequences must be censored in the same way.

• cens.end: Type of censoring at the end of sample paths; 1 (if the last sojourn time is censored)
or 0 (if not). All the sequences must be censored in the same way.

• File.out: Name of fasta file for saving the sequences; if File.out = NULL, no file is created.

The R commands below generate three sequences of size 1000, 10000 and 2000 respectively with
the finite state space E = {a, c, g, t}, where the sojourn times depend only on the next state.

## state space
E = c("a","c","g","t")
S = length(E)
## sequence sizes
lengthSeq3 = c(1000, 10000, 2000)
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## creation of the initial distribution
vect.init = c(1/4,1/4,1/4,1/4)
## creation of transition matrix
Pij = matrix(c(0,0.2,0.3,0.4,0.2,0,0.5,0.2,0.5,0.3,0,0.4,0.3,0.5,0.2,0),

ncol=4)
## creation of a matrix corresponding to the conditional
## sojourn time distributions
Kmax = 6
nparam.matrix = matrix(c(0.2,0.1,0.3,0.2,0.2,0,0.4,0.2,0.1,

0,0.2,0.1,0.5,0.3,0.15,0.05,0,0,
0.3,0.2,0.1,0.2,0.2,0),

nrow = S, ncol = Kmax, byrow = TRUE)
## for the reproducibility of the results
set.seed(2)
## simulation of 3 sequences with censoring at the beginning
seqNP3_begin = simulSM(E = E, NbSeq = 3, lengthSeq = lengthSeq3,
TypeSojournTime = "fj", init = vect.init, Ptrans = Pij,

laws = nparam.matrix, File.out = "seqNP3_begin.txt",
cens.beg = 1, cens.end = 0)

## simulation of 3 sequences with censoring at the end
seqNP3_end = simulSM(E = E, NbSeq = 3, lengthSeq = lengthSeq3,

TypeSojournTime = "fj", init = vect.init, Ptrans = Pij,
laws = nparam.matrix, File.out = "seqNP3_end.txt",
cens.beg = 0, cens.end = 1)

## simulation of 3 sequences censored at the beginning and at the end
seqNP3_begin_end = simulSM(E = E, NbSeq = 3, lengthSeq = lengthSeq3,

TypeSojournTime = "fj", init = vect.init, Ptrans = Pij,
laws = nparam.matrix, File.out = "seqNP3_begin_end.txt",
cens.beg = 1, cens.end = 1)

## simulation of 3 sequences without censoring
seqNP3_no = simulSM(E = E, NbSeq = 3, lengthSeq = lengthSeq3,

TypeSojournTime = "fj", init = vect.init, Ptrans = Pij,
laws = nparam.matrix, File.out = "seqNP3_no.txt")

## for the reproducibility of the results
seqNP3_begin = read.fasta("seqNP3_begin.txt")
seqNP3_end = read.fasta("seqNP3_end.txt")
seqNP3_begin_end = read.fasta("seqNP3_begin_end.txt")
seqNP3_no = read.fasta("seqNP3_no.txt")
seqNP3_begin[[1]][1:15]

Note that in this simulation all the different censoring mechanisms are considered.

Values: The function simulSM() returns a list of simulated sequences. These sequences can be saved
in a fasta file by using the parameter File.out.

seqNP3_begin[[1]][1:15]
[1] "c" "g" "g" "g" "g" "g" "g" "c" "c" "c" "a" "a" "a" "a" "a"

Estimation of semi-Markov models

In this subsection we explain and illustrate the estimation of a semi-Markov model in the parametric
and non-parametric cases.

Parametric estimation of semi-Markov models
We will consider the distributions fij(k) = fij(k; θij) depending on unknown parameters θij ∈ Rmij ,

where the dimension of parameters set mij is known; no assumptions are made on
(

pij

)
ij

. From the

data, we want to estimate pij and θij, i, j ∈ E. Let us assume that we have at our disposal several
independent sample paths of a semi-Markov chain, say L, each of them of length nl , l = 1, . . . , L,
censored at the beginning and at the end of the trajectory, i.e.,

yl
1, yl

2, . . . , yl
nl

,

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 234

or, equivalently,
jl0, kl

0, jl1, kl
1, jl2, kl

2, . . . , jltl , kl
tl , jltl+1, kl

tl+1

with ∑tl+1
i=0 kl

i = nl , where jl0, . . . , jltl+1 are the successive distinct visited states, kl
0 is the first sojourn

time, assumed to be right censored, kl
tl+1 is the last sojourn time, assumed also to be right censored,

while kl
1, . . . , kl

tl are the other successive sojourn times, assumed to be complete (observed, non
censored).

To estimate the parameters of model, we use the maximum likelihood estimation:

argmax
puv ,θuv ;u,v∈E

(l(puv, θuv; u, v ∈ E)) (6)

=

(
argmax

puv ,θuv ;v∈E

(
∑
v∈E

Nuv(L, n1:L) log(puv) + ∑
v∈E

maxl(nl)

∑
k=1

Nuv(k; L, n1:L) log( fuv(k; θuv))

+ ∑
v∈E

maxl(nl)

∑
k=1

Nb
uv(k; L) log(Fuv(k; θuv))

+
maxl(nl)

∑
k=1

Ne
u•(k; L) log

(
1−

k

∑
m=1

∑
v∈E

puv fuv(m; θuv)

))
u∈E

)
,

where we introduced the following counting processes

Nij(L, n1:L) =
L

∑
l=1

Nl(nl)−1

∑
m=1

1{Jl
m=i;Jl

m+1=j},

Nij(k; L, n1:L) =
Nl(nl)−1

∑
m=1

1{Jl
m=i;Jl

m+1=j;Tl
m+1−Tl

m=k},

Nb
ij(k; L) =

L

∑
l=1

1{Jl
0=i;Jl

1=j;Tl
1−Tl

0>k},

Ne
i•(k; L) =

L

∑
l=1

1{Jl
Tl

Nl (nl )

=i,Xl
Tl

Nl (nl )+1

>k},

where
Nl(nl) = max{m ∈N | Tl

m ≤ nl}
is the counting process of jump number in [1; nl ] of the trajectory l.

Note that:

- Nij(L, n1:L) represents the number of transitions from state i to state j along the L sample paths;

- Nij(k; L, n1:L) represents the number of transitions from state i to state j along the L sample paths,
with sojourn time of length k in state i;

- Nb
ij(k; L) represents the number of trajectories starting in state i, with a next transition to state j

and censored sojourn time in state i greater than k;

- Ne
i•(k; L) represents the number of trajectories ending in state i with a censored sojourn time in

state i greater than k.

Note also that in the expression (6) of the log-likelihood, the first two terms correspond to the tran-
sition probabilities and the observed (non censored) sojourn times, the third term is the contribution
to the likelihood of the first sojourn times, assumed to be right censored, while the last term is the
contribution to the likelihood of the last sojourn times, assumed to be right censored.

Up to here we presented the estimation for the general case, taking into account the censoring
at the beginning and at the end and the sojourn times depending on the current state and on the
next state. Thus the maximization problem (6) is written with the sojourn times depending on the
current state and on the next state (the general model of the type qij(k) = pij fij(k) given in (2)), but the
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different cases of sojourn times are written and coded in the package. Note also that different types of
censoring are also written and coded in the package.

Parameters: The estimation is carried out by the function estimSM(). The different parameters of
the function are:

• file: Path of the fasta file which contains the sequences from which to estimate

• seq: List of the sequence(s) from which to estimate

• E: Vector of state space of length S

• TypeSojournTime: Type of sojourn time; it can be "fij", "fi", "fj" or "f" according to the four
cases previously discussed

• distr: Sojourn time distributions:

– is a matrix of distributions of size S× S if TypeSojournTime is equal to "fij",

– is a vector of distributions of size S if TypeSojournTime is equal to "fi" or "fj",

– is a distribution if TypeSojournTime is equal to "f",

where the distributions to be used can be one of "uniform", "geom", "pois", "weibull" or
"nbinom".

• cens.beg: Type of censoring at the beginning of sample paths; 1 (if the first sojourn time is
censored) or 0 (if not). All the sequences must be censored in the same way.

• cens.end: Type of censoring at the end of sample paths; 1 (if the last sojourn time is censored)
or 0 (if not). All the sequences must be censored in the same way.

Note that the sequences from which we estimate can be given either as an R list (seq argument) or as a
file in fasta format (file argument).

## data
seq3 = read.fasta("seq3.txt")
E = c("a","c","g","t")
## creation of the distribution matrix
distr.matrix = matrix(c("dweibull", "pois", "geom", "nbinom",

"geom", "nbinom", "pois", "dweibull",
"pois", "pois", "dweibull", "geom",
"pois","geom", "geom", "nbinom"),

nrow = S, ncol = S, byrow = TRUE)
## estimation of simulated sequences
estSeq3 = estimSM(seq = seq3, E = E, TypeSojournTime = "fij",
distr = distr.matrix, cens.end = 0, cens.beg = 0)

Here, we estimate simulated sequences with no censoring. The estimation performed will correspond
to the likelihood given in (6), without the third and forth terms.

Values: The function estimSM() returns a list containing:

• init: Vector of size S with estimated initial probabilities of the semi-Markov chain

estSeq3$init
[1] 0.0000000 0.0000000 0.3333333 0.6666667

• Ptrans: Matrix of size S× S with estimated transition probabilities of the embedded Markov
chain J = (Jm)m

estSeq3$Ptrans
[,1] [,2] [,3] [,4]

[1,] 0.0000000 0.2263948 0.4957082 0.2778970
[2,] 0.2134472 0.0000000 0.2892209 0.4973319
[3,] 0.2900627 0.4709042 0.0000000 0.2390331
[4,] 0.4108761 0.2024169 0.3867069 0.0000000

• param: Array with estimated parameters of the sojourn time distributions
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estSeq3$param
, , 1

[,1] [,2] [,3] [,4]
[1,] 0.0000000 1.7867299 0.411398 4.1358797
[2,] 0.6920415 0.0000000 4.745387 0.6131806
[3,] 2.0123457 3.0722433 0.000000 0.5729614
[4,] 3.8088235 0.3068702 0.392237 0.0000000

, , 2

[,1] [,2] [,3] [,4]
[1,] 0 0 0 2.1043710
[2,] 0 0 0 0.8425902
[3,] 0 0 0 0.0000000
[4,] 0 0 0 0.0000000

Note that, for example, estSeq3$param[1,3,] is the vector containing the parameters of the
distribution f13(·).

• q: Array of size S× S× Kmax with estimated semi-Markov kernel

estSeq3$q[,,1:3]
, , 1

[,1] [,2] [,3] [,4]
[1,] 0.00000000 0.03792273 0.20393336 0.05070777
[2,] 0.14771431 0.00000000 0.00251382 0.19237763
[3,] 0.03877405 0.02181093 0.00000000 0.13695675
[4,] 0.00911087 0.06211573 0.15168076 0.00000000

, , 2

[,1] [,2] [,3] [,4]
[1,] 0.00000000 0.06775768 0.12003558 0.07072333
[2,] 0.04548987 0.00000000 0.01192905 0.09806611
[3,] 0.07802680 0.06700849 0.00000000 0.05848582
[4,] 0.03470170 0.04305426 0.09218596 0.00000000

, , 3

[,1] [,2] [,3] [,4]
[1,] 0.00000000 0.06053233 0.07065318 0.06124460
[2,] 0.01400899 0.00000000 0.02830398 0.06214172
[3,] 0.07850845 0.10293320 0.00000000 0.02497570
[4,] 0.06608632 0.02984219 0.05602722 0.00000000

Note that, for example, q13(2) = P(Jm+1 = 3, Tm+1 − Tm = 2|Jm = 1) = 0.12192187.

Non-parametric estimation of semi-Markov models
Here we will consider two types of estimation for semi-Markov chains: a direct estimation, obtaining
thus empirical estimators (in fact, approached MLEs), cf. Barbu and Limnios (2006), Barbu and Limnios
(2008) and an estimation based on a couple Markov chain associated to the semi-Markov chain (see
Trevezas and Limnios, 2011).

No censoring: direct estimation
Let {Y1, Y2, . . . , Yn} be a trajectory of a semi-Markov chain Y = (Yn)n∈N, censored at an arbitrary
fixed time n.

• The case qij(k) = pij fij(k): The maximum likelihood estimators are

p̂ij(n) =
Nij(n)
Ni•(n)

, f̂ij(k; n) =
Nij(k; n)
Nij(n)

, q̂ij(k; n) =
Nij(k; n)
Ni•(n)

.
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where Nij(n) = ∑
N(n)−1
m=1 1{Jm=i;Jm+1=j}, Ni•(n) = ∑

N(n)−1
m=1 1{Jm=i},

Nij(k; n) = ∑
N(n)−1
m=1 1{Jm=i;Jm+1=j;Tm+1−Tm=k}.

• The case qij(k) = pij fi•(k): The maximum likelihood estimators are

p̂ij(n) =
Nij(n)
Ni•(n)

, f̂i•(k; n) =
Ni•(k; n)

Nij(n)
, q̂ij(k; n) =

Ni•(k; n)
Ni•(n)

,

where Ni•(k; n) = ∑
N(n)−1
m=1 1{Jm=i;Tm+1−Tm=k}.

• The case qij(k) = pij f•j(k): The maximum likelihood estimators are

p̂ij(n) =
Nij(n)
Ni•(n)

, f̂•j(k; n) =
N•j(k; n)

Nij(n)
, q̂ij(k; n) =

N•j(k; n)
Ni•(n)

,

where N•j(k; n) = ∑
N(n)−1
m=1 1{Jm+1=j;Tm+1−Tm=k}.

• The case qij(k) = pij f (k): The maximum likelihood estimators are

p̂ij(n) =
Nij(n)
Ni•(n)

, f̂ (k; n) =
N(k; n)
Nij(n)

, q̂ij(k; n) =
N(k; n)
Ni•(n)

,

where N(k; n) = ∑
N(n)−1
m=1 1{Tm+1−Tm=k}.

Censoring: couple Markov chain For a semi-Markov chain Y = (Yn)n∈N, let U = (Un)n∈N be the
backward recurrence time of the SMC, defined by

Un := n− TN(n). (7)

We can show (cf. Limnios and Oprisan, 2001) that the chain (Y, U) = (Yn, Un)n∈N is a Markov chain
with state space E×N. We will denote its transition matrix by p̃ := (p(i,t1)(j,t2))i,j∈E,t1,t2∈N.

The maximum likelihood estimators of qij(k) (Trevezas and Limnios, 2011) are given by

q̂ij(k; n) = p̂(i,k−1)(j,0)(n)
k−2

∏
t=0

p̂(i,t)(i,t+1)(n), (8)

where p̂(i,t1)(j,t2)(n) represents the classical MLE of the transition probability p(i,t1)(j,t2). Thus we obtain
the corresponding estimator of pij

p̂ij =
∞

∑
k=0

q̂ij(k). (9)

In order to compute the estimators of the sojourn times, we consider the four different types of
semi-Markov kernels defined in Equations (2), (3), (4) and (5).

Parameters: The estimation is carried out by the function estimSM() and several parameters must
be given.

• file: Path of the fasta file which contains the sequences from which to estimate

• seq: List of the sequence(s) from which to estimate

• E: Vector of state space of length S

• TypeSojournTime: Type of sojourn time; always equal to "NP" for the non-parametric estimation

• cens.beg: Type of censoring at the beginning of sample paths; 1 (if the first sojourn time is
censored) or 0 (if not). All the sequences must be censored in the same way.

• cens.end: Type of censoring at the end of sample paths; 1 (if the last sojourn time is censored)
or 0 (if not). All the sequences must be censored in the same way.

Note that the sequences from which we estimate can be given either as an R list (seq argument) or
as a file in fasta format (file argument). The parameter distr is always equal to "NP".

## data
seqNP3_no = read.fasta("seqNP3_no.txt")
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E = c("a","c","g","t")
## estimation of simulated sequences
estSeqNP3= estimSM(seq = seqNP3_no, E = E, TypeSojournTime = "fj",

distr = "NP", cens.end = 0, cens.beg = 0)

Here, we estimate simulated sequences with no censoring.

Values: The function estimSM() returns a list containing:

• init: Vector of size S with estimated initial probabilities of the semi-Markov chain

estSeqNP3$init
[1] 0.0000000 0.6666667 0.3333333 0.0000000

• Ptrans: Matrix of size S× S with estimated transition probabilities of the embedded Markov
chain J = (Jm)m

estSeqNP3$Ptrans
[,1] [,2] [,3] [,4]

[1,] 0.0000000 0.2051948 0.5090909 0.2857143
[2,] 0.1938179 0.0000000 0.3107769 0.4954052
[3,] 0.3010169 0.4874576 0.0000000 0.2115254
[4,] 0.3881686 0.1936791 0.4181524 0.0000000

• laws: Array of size S× S× Kmax with estimated values of the sojourn time distributions

estSeqNP3$laws[,,1:2]
, , 1

[,1] [,2] [,3] [,4]
[1,] 0.0000000 0.3941423 0.4728997 0.2939271
[2,] 0.1896104 0.0000000 0.4728997 0.2939271
[3,] 0.1896104 0.3941423 0.0000000 0.2939271
[4,] 0.1896104 0.3941423 0.4728997 0.0000000

, , 2

[,1] [,2] [,3] [,4]
[1,] 0.0000000 0.1949791 0.3089431 0.1959514
[2,] 0.1073593 0.0000000 0.3089431 0.1959514
[3,] 0.1073593 0.1949791 0.0000000 0.1959514
[4,] 0.1073593 0.1949791 0.3089431 0.0000000

• q: Array of size S× S× Kmax with estimated semi-Markov kernel

estSeqNP3$q[,,1:3]
, , 1

[,1] [,2] [,3] [,4]
[1,] 0.00000000 0.07792208 0.2562771 0.06753247
[2,] 0.03508772 0.00000000 0.1378446 0.15956558
[3,] 0.05559322 0.18576271 0.0000000 0.06372881
[4,] 0.07698541 0.08670989 0.1920583 0.00000000

, , 2

[,1] [,2] [,3] [,4]
[1,] 0.00000000 0.04329004 0.1411255 0.05627706
[2,] 0.01670844 0.00000000 0.1019215 0.10025063
[3,] 0.03796610 0.09762712 0.0000000 0.03864407
[4,] 0.03889789 0.03160454 0.1385737 0.00000000

, , 3

[,1] [,2] [,3] [,4]
[1,] 0.00000000 0.02770563 0.07965368 0.04069264
[2,] 0.07101086 0.00000000 0.05179616 0.03926483
[3,] 0.09152542 0.05423729 0.00000000 0.02440678
[4,] 0.10940032 0.01782820 0.05591572 0.00000000
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Supplementary functions

In this package, others functions are available. These functions enable to compute the initial distribu-
tion for a semi-Markov model, the log-likelihood of a semi-Markov model and the AIC and BIC of a
semi-Markov model.

� InitialLawSM(): Estimation of initial distribution for a semi-Markov model

Parameters:

• q: Array of size S× S× Kmax with estimated semi-Markov kernel

seq = list(c("a","c","c","g","t","a","a","a","a",
"g","c","t","t","t","g"))

res = estimSM(seq = seq, E = c("a","c","g","t"), distr = "NP")
Warning message:
In .comptage(J, L, S, Kmax): Warning: missing transitions
q = res$q
p = res$Ptrans

InitialLawSM(E = c("a","c","g","t"), seq = seq, q = q)
$init
[1] 0.2205882 0.2205882 0.2058824 0.3529412

Values: The function InitialLawSM() returns a list containing a vector of the initial distribution.

� LoglikelihoodSM (): Computation of the log-likelihood

Parameters:

• E: Vector of state space of length S

• seq: List of the sequence(s) from which to estimate

• mu: Vector of initial distribution of length S

• Ptrans: Matrix of transition probabilities of the embedded Markov chain J = (Jm)m of size
S× S

• TypeSojournTime: Type of sojourn time; it can be "fij", "fi", "fj" or "f" according to the four
cases previously discussed

• distr: Sojourn time distributions:

– is a matrix of distributions of size S× S if TypeSojournTime is equal to "fij",

– is a vector of distributions of size S if TypeSojournTime is equal to "fi" or "fj",

– is a distribution if TypeSojournTime is equal to "f",

where the distributions to be used can be one of "uniform", "geom", "pois", "weibull" or
"nbinom".

• param: Parameters of sojourn time distributions:

– is an array of parameters of size S× S× 2 if TypeSojournTime is equal to "fij"

– is a matrix of parameters of size S× 2 if TypeSojournTime is equal to "fi" or "fj"

– is a vector of parameters if TypeSojournTime is equal to "f"

• laws: Sojourn time distributions introduced by the user:

– is an array of size S× S× Kmax if TypeSojournTime is equal to "fij",

– is a matrix of size S× Kmax if TypeSojournTime is equal to "fi" or "fj",

– is a vector of length Kmax if TypeSojournTime is equal to "f",

where Kmax is the maximum length for the sojourn times.
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## state space
E = c("a","c","g","t")
S = length(E)
## creation of transition matrix
Pij = matrix( c(0,0.2,0.3,0.4,0.2,0,0.5,0.2,0.5,0.3,0,0.4,0.3,0.5,0.2,0),ncol=4)
## for the reproducibility of the results
set.seed(3)
## simulation
seq5000 = simulSM(E = E, NbSeq = 1, lengthSeq = 5000,

TypeSojournTime = "f", init = c(1/4,1/4,1/4,1/4),
Ptrans = Pij, distr = "pois", param = 2, File.out =

"seq5000.txt")
## computation of the log-likelihood
LoglikelihoodSM(seq = seq5000, E = E, mu = rep(1/4,4),

Ptrans = Pij, distr = "pois", param = 2,
TypeSojournTime = "f")

$L
$L[[1]]
[1] -1748.431

$Kmax
[1] 10

Values: The function likelihoodSM() returns a list containing:

• L: List with the value of the likelihood for each sequence

• Kmax: Maximal sojourn time

We also consider model selection criteria in order to evaluate and choose among candidate models;
the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) are considered.

� AIC_SM(): computation of the AIC

AIC(M) = −2 logL+ 2M,

where L is the log-likelihood, M is the number of parameters involved in the model

Parameters:

• E: Vector of state space of length S

• seq: List of the sequence(s) from which to estimate

• mu: Vector of initial distribution of length S

• Ptrans: Matrix of transition probabilities of the embedded Markov chain J = (Jm)m of size
S× S

• TypeSojournTime: Type of sojourn time; it can be "fij", "fi", "fj" or "f" according to the four
cases previously discussed

• distr: Sojourn time distributions:

– is a matrix of distributions of size S× S if TypeSojournTime is equal to "fij",

– is a vector of distributions of size S if TypeSojournTime is equal to "fi" or "fj",

– is a distribution if TypeSojournTime is equal to "f",

where the distributions to be used can be one of "uniform", "geom", "pois", "weibull" or
"nbinom".

• param: Parameters of sojourn time distributions:

– is an array of parameters of size S× S× 2 if TypeSojournTime is equal to "fij"

– is a matrix of parameters of size S× 2 if TypeSojournTime is equal to "fi" or "fj"

– is a vector of parameters if TypeSojournTime is equal to "f"

• laws: Sojourn time distributions introduced by the user:

– is an array of size S× S× Kmax if TypeSojournTime is equal to "fij",

– is a matrix of size S× Kmax if TypeSojournTime is equal to "fi" or "fj",
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– is a vector of length Kmax if TypeSojournTime is equal to "f",

where Kmax is the maximum length for the sojourn times.

## state space
E = c("a","c","g","t")
S = length(E)
lengthSeq3 = c(1000, 10000, 2000)
## creation of the initial distribution
vect.init = c(1/4,1/4,1/4,1/4)
## creation of transition matrix
Pij = matrix( c(0,0.2,0.3,0.4,0.2,0,0.5,0.2,0.5,0.3,0,0.4,0.3,0.5,0.2,0),ncol=4)
## creation of the distribution matrix
distr.matrix = matrix(c("dweibull", "pois", "geom", "nbinom",

"geom", "nbinom", "pois", "dweibull",
"pois", "pois", "dweibull", "geom",
"pois","geom", "geom", "nbinom"),
nrow = S, ncol = S, byrow = TRUE)

## creation of an array containing the parameters
param1.matrix = matrix(c(0.6,2,0.4,4,0.7,2,5,0.6,2,3,0.6,

0.6,4,0.3,0.4,4), nrow = S,
ncol = S, byrow = TRUE)

param2.matrix = matrix(c(0.8,0,0,2,0,5,0,0.8,0,0,0.8,
0,4,0,0,4), nrow = S, ncol = S,

byrow = TRUE)
param.array = array(c(param1.matrix, param2.matrix), c(S,S,2))
## for the reproducibility of the results
set.seed(4)
## simulation of 3 sequences
seq.crit = simulSM(E = E, NbSeq = 3, lengthSeq = lengthSeq3,

TypeSojournTime = "fij", init = vect.init,
Ptrans = Pij, distr = distr.matrix,
param = param.array, File.out = "seq.crit.txt")

## computation of the AIC
AIC_SM(seq = seq.crit, E = E, mu = rep(1/4,4), Ptrans = Pij,

distr = distr.matrix, param = param.array,
TypeSojournTime = "fij")

[[1]]
[1] 1692.061

[[2]]
[1] 16826.28

[[3]]
[1] 3334.314

Values: The function AIC_SM() returns a list with the value of AIC for each sequence.

� BIC_SM(): computation of the BIC

BIC(M) = −2 logL+ log(n)M

where L is the log-likelihood, M is the number of parameters involved in the model and n is the
sample size.

Parameters:

• E: Vector of state space of length S
• seq: List of the sequence(s) from which to estimate

• mu: Vector of initial distribution of length S
• Ptrans: Matrix of transition probabilities of the embedded Markov chain J = (Jm)m of size

S× S
• TypeSojournTime: Type of sojourn time; it can be "fij", "fi", "fj" or "f" according to the four

cases previously discussed
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• distr: Sojourn time distributions:

– is a matrix of distributions of size S× S if TypeSojournTime is equal to "fij",

– is a vector of distributions of size S if TypeSojournTime is equal to "fi" or "fj",

– is a distribution if TypeSojournTime is equal to "f",

where the distributions to be used can be one of "uniform", "geom", "pois", "weibull" or
"nbinom".

• param: Parameters of sojourn time distributions:

– is an array of parameters of size S× S× 2 if TypeSojournTime is equal to "fij"

– is a matrix of parameters of size S× 2 if TypeSojournTime is equal to "fi" or "fj"

– is a vector of parameters if TypeSojournTime is equal to "f"

• laws: Sojourn time distributions introduced by the user:

– is an array of size S× S× Kmax if TypeSojournTime is equal to "fij",

– is a matrix of size S× Kmax if TypeSojournTime is equal to "fi" or "fj",

– is a vector of length Kmax if TypeSojournTime is equal to "f",

where Kmax is the maximum length for the sojourn times.

## computation of the BIC
BIC_SM(seq = seq3, E = E, mu = rep(1/4,4), Ptrans = Pij,

distr = distr.matrix, param = param.array,
TypeSojournTime = "fij")

[[1]]
[1] 1760.811

[[2]]
[1] 16927.22

[[3]]
[1] 3412.733

Values: The function BIC_SM() returns a list with the value of BIC for each sequence.

The Markov case

In the SMM R package, we have also implemented the estimation and the simulation of discrete-time
multi-state Markov models. As in the semi-Markov case, other functions are available, enabling to
estimate the initial distribution, to compute the log-likelihood and also the AIC and BIC of a Markov
model.

� simulMk(): Simulation of a Markov chain of order k

## state space
E <- c("a","c","g","t")
S = length(E)
vect.init <- c(1/4,1/4,1/4,1/4)
k<-2
p <- matrix(0.25, nrow = S^k, ncol = S)
## for the reproducibility of the results
set.seed(5)
## simulation of 3 sequences with the simulMk function
seq.markov = simulMk(E = E, nbSeq = 3, lengthSeq = c(1000, 10000, 2000),

Ptrans = p, init = vect.init, k = 2, File.out= "seq.markov.txt")

seq.markov[[1]][1:25]
[1] "g" "g" "g" "g" "c" "c" "c" "a" "a" "a" "c" "c" "c" "g" "g" "c" "c" "c" "c"
"c" "g" "g" "g" "a" "a"

� estimMk(): Estimation of a Markov chain of order k
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## state space
E <- c("a","c","g","t")
## for the reproducibility of the results
seq.markov = read.fasta("seq.markov.txt")
## estimation of simulated sequences
res.markov = estimMk(seq = seq.markov, E = E, k = 2)

Values: The function estimMk() returns a list containing:

• init: Vector of initial probabilities of the Markov chain

res.markov$init
[1] 0.2513810 0.2491905 0.2519048 0.2475238

• Ptrans: Matrix of transition probabilities of the Markov chain

res.markov$Ptrans
[,1] [,2] [,3] [,4]

[1,] 0.2845283 0.2498113 0.2188679 0.2467925
[2,] 0.2479645 0.2361214 0.2709104 0.2450037
[3,] 0.2640625 0.2507813 0.2515625 0.2335937
[4,] 0.2577475 0.2448980 0.2433862 0.2539683
[5,] 0.2371988 0.2454819 0.2402108 0.2771084
[6,] 0.2458629 0.2584712 0.2450749 0.2513790
[7,] 0.2435897 0.2533937 0.2624434 0.2420814
[8,] 0.2457887 0.2258806 0.2710567 0.2572741
[9,] 0.2300296 0.2692308 0.2684911 0.2322485

[10,] 0.2767584 0.2194190 0.2484709 0.2553517
[11,] 0.2542248 0.2578986 0.2549596 0.2329170
[12,] 0.2377567 0.2535545 0.2440758 0.2646130
[13,] 0.2527473 0.2590267 0.2417582 0.2464678
[14,] 0.2448196 0.2578665 0.2509593 0.2463546
[15,] 0.2617602 0.2276176 0.2594841 0.2511381
[16,] 0.2390469 0.2790161 0.2559570 0.2259800

� InitialLawMk(): Estimation of the initial distribution of a Markov chain of order k

seq = list(c("a","c","c","g","t","a","a","a","a","g","c","t","t","t","g"))
res = estimMk(seq = seq, E = c("a","c","g","t"), k = 1)
Warning message:
In estimMk(seq = seq, E = c("a", "c", "g", "t"), k = 1):
missing transitions

p = res$Ptrans

InitialLawMk(E = c("a","c","g","t"), seq = seq, Ptrans = p, k = 1)
$init
[1] 0.2205882 0.2205882 0.2058824 0.3529412

� LoglikelihoodMk(): Computation of the log-likelihood

Parameters:

• mu: Initial distribution

• Ptrans: Probability transition matrix

• k: Order of the Markov chain

## state space
E = c("a","c","g","t")
S = length(E)
## creation of transition matrix
p = matrix(rep(1/4,S*S),ncol=4)
## for the reproducibility of the results
set.seed(6)
## simulation of two sequences of length 20 and 50 respectively
seq.markov2 = simulMk(E = E, nbSeq = 2, lengthSeq = c(20,50),
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Ptrans = p, init = rep(1/4,4), k = 1,
File.out = "seq.markov2.txt")

## computation of the log-likelihood
LoglikelihoodMk(seq = seq.markov2, E = E, mu = rep(1/4,4), Ptrans = p, k = 1)
$L
$L[[1]]
[1] -27.72589

$L[[2]]
[1] -69.31472

Values: The function likelihoodSM() returns a list containing the value of the likelihood for each
sequence.

� AIC_Mk(): Computation of the AIC for a Markov chain of order k

Parameters:

• mu: Initial distribution

• Ptrans: Probability transition matrix

• k: Order of the Markov chain

## for the reproducibility of the results
seq.markov2 = read.fasta("seq.markov2.txt")

## computation of the AIC
AIC_Mk(seq = seq.markov2, E = E, mu = rep(1/4,4), Ptrans = p, k = 1)
[[1]]
[1] 79.45177

[[2]]
[1] 162.6294

Values: The function AIC_Mk() returns a list containing the value of the AIC for each sequence.

� BIC_Mk(): Computation of the BIC for a Markov chain of order k

Parameters:

• mu: Initial distribution

• Ptrans: Probability transition matrix

• k: Order of the Markov chain

## for the reproducibility of the results
seq.markov2 = read.fasta("seq.markov2.txt")

## computation of the AIC
BIC_Mk(seq = seq.markov2, E = E, mu = rep(1/4,4), Ptrans = p, k = 1)
[[1]]
[1] 91.40056

[[2]]
[1] 185.5737

Values: The function BIC_Mk() returns a list containing the value of the BIC for each sequence.

Concluding remarks

In this paper we have presented the SMM, an R package for the simulation and the estimation of
discrete-time multi-state semi-Markov models.The conditional sojourn time can be modeled by an
arbitrary distribution for a semi-Markov model, which enables a generalization with respect to Markov
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models, where the sojourn time is only modelled by a Geometric distribution (in discrete time) or
an Exponential distribution (in continuous time). The SMM package offers a variety of conditional
sojourn time distributions (Poisson, Uniform, Negative Binomial, Geometric and Discrete Weibull).
This package provides also non-parametric estimation and simulation and takes into account censored
data of several types.

To summarize, the importance and interest of the R package SMM that we have developed come
from:

- considering versatile tools, namely discrete-time multi-state semi-Markov processes, that are of
use in a variety of applied fields, like survival analysis, biology, reliability, DNA analysis, insurance
and finance, earthquake modeling, meteorology studies, etc. An example of application can be the
description of DNA sequences by using a 2-state process to distinguish between coding and non-
coding regions in DNA sequences. It is well known that the length of such regions generally does not
follow a Geometric distribution. Thus semi-Markov chains can represent adapted tools for this type of
modeling.

- implementing parametric and non-parametric estimation/simulation;

- considering several censoring schemes, that important in various applications;

- taking into account one or several independent sample paths;

- considering different types of semi-Markov kernels: either of the general type qij(k) = pij fij(k)
with the holding time distributions fij(k) depending on the current state and on the next state to be vis-
ited, or with the holding time distributions depending only on the current state, qij(k) := pij fi•(k), or
with the holding time distributions depending only on the next state to be visited, qij(k) := pij f•j(k),
or with the holding time distributions depending neither on the current, nor on the future state,
qij(k) := pij f (k). As already mentioned, it is important that these four types of models be considered
separately.

In conclusion, the R package SMM that we have developed deals with an important and versatile
tool, useful for researchers, practitioners and engineers in various fields.
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ggplot2 Compatible Quantile-Quantile
Plots in R
by Alexandre Almeida, Adam Loy, Heike Hofmann

Abstract Q-Q plots allow us to assess univariate distributional assumptions by comparing a set of
quantiles from the empirical and the theoretical distributions in the form of a scatterplot. To aid in
the interpretation of Q-Q plots, reference lines and confidence bands are often added. We can also
detrend the Q-Q plot so the vertical comparisons of interest come into focus. Various implementations
of Q-Q plots exist in R, but none implements all of these features. qqplotr extends ggplot2 to provide
a complete implementation of Q-Q plots. This paper introduces the plotting framework provided by
qqplotr and provides multiple examples of how it can be used.

Background

Univariate distributional assessment is a common thread throughout statistical analyses during both
the exploratory and confirmatory stages. When we begin exploring a new data set we often consider
the distribution of individual variables before moving on to explore multivariate relationships. After
a model has been fit to a data set, we must assess whether the distributional assumptions made are
reasonable, and if they are not, then we must understand the impact this has on the conclusions of the
model. Graphics provide arguably the most common way to carry out these univariate assessments.
While there are many plots that can be used for distributional exploration and assessment, a quantile-
quantile (Q-Q) plot (Wilk and Gnanadesikan, 1968) is one of the most common plots used.

Q-Q plots compare two distributions by matching a common set of quantiles. To compare a
sample, y1, y2, . . . , yn, to a theoretical distribution, a Q-Q plot is simply a scatterplot of the sample
quantiles, y(i), against the corresponding quantiles from the theoretical distribution, F−1(Fn(y(i))). If
the empirical distribution is consistent with the theoretical distribution, then the points will fall on
a line. For example, Figure 1 shows two Q-Q plots: the left plot compares a sample drawn from a
lognormal distribution to a lognormal distribution, while the right plot compares a sample drawn
from a lognormal distribution to a normal distribution. As expected, the lognormal Q-Q plot is
approximately linear, as the data and model are in agreement, while the normal Q-Q plot is curved,
indicating disagreement between the data and the model.

Additional graphical elements are often added to Q-Q plots in order to aid in distributional
assessment. A reference line is often added to a Q-Q plot to help detection of departures from the
proposed model. This line is often drawn either by tracing the identity line or by connecting two
pairs of quantiles, such as the first and third quartiles, which is known as the Q-Q line . Pointwise or
simultaneous confidence bands can be built around the reference line to display the expected degree
of sampling error for the proposed model. Such bands help gauge how troubling a departure from
the proposed model may be. Figure 2 adds Q-Q lines and 95% pointwise confidence bands to the
Q-Q plots in Figure 1. While confidence bands help analysts interpret Q-Q plots, this practice is less
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Figure 1: The left plot compares a sample of size n = 35 drawn from a lognormal distribution to
a lognormal distribution, while the right plot compares this sample to a normal distribution. The
curvature in the normal Q-Q plot highlights the disagreement between the data and the model.
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Figure 2: Adding reference lines and 95% pointwise confidence bands to the Q-Q plots in Figure 1.
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Figure 3: The left plot displays a traditional normal Q-Q plot for data simulated from a lognormal
distribution. The right plot displays an adjusted detrended Q-Q plot of the same data, created by
plotting the differences between the sample quantiles and the proposed model on the y-axis.

commonplace than it ought to be. One possible cause is that confidence bands are not implemented
in all statistical software packages. Further, manual implementation can be tedious for the analyst,
breaking the data-analytic flow—for example, a common simultaneous confidence band relies on an
inversion of the Kolmogorov-Smirnov test.

Different orientations of Q-Q plots have also been proposed, most notably the detrended Q-Q plot .
To detrend a Q-Q plot, the y-axis is changed to show the difference between the observed quantile
and the reference line. Consequently, the y-axis represents agreement with the theoretical distribution.
This makes the de-trended version of a Q-Q plot easier to process: cognitive research (Vander Plas and
Hofmann, 2015; Robbins, 2005; Cleveland and McGill, 1984) suggests that onlookers have a tendency
to intuitively assess the distance between points and lines based on the shortest distance (i.e., the
orthogonal distance) rather than the vertical distance appropriate for the situation. In the de-trended
Q-Q plot, the line to compare to points is rotated parallel to the x-axis, which makes assessing the
vertical distance equal to assessing orthogonal distance. This is further investigated in Loy et al. (2016),
who find that detrended Q-Q plots are more powerful than other designs as long as the x- and y-axes
are adjusted to ensure that distances in the x- and y-directions are on the same scale. This Q-Q plot
design is called an adjusted detrended Q-Q plot . Without this adjustment to the range of the axes,
ordinary detrended Q-Q plots are produced, which were found to have lower power than the standard
Q-Q plot in some situations (Loy et al., 2016), while the adjusted detrended Q-Q plots were found to
be consistently more powerful. Figure 3 displays the normal Q-Q plot from Figure 2 along with its
adjusted detrended version.

Various implementations of Q-Q plots exist in R. Normal Q-Q plots, where a sample is compared
to the Standard Normal Distribution, are implemented using qqnorm and qqline in base graphics.
qqplot provides a more general approach in base R that allows a specification of a second vector of
quantiles, enabling comparisons to distributions other than a Normal. Similarly, the lattice package
provides a general framework for Q-Q plots in the qqmath function, allowing comparison between
a sample and any theoretical distribution by specifying the appropriate quantile function (Sarkar,
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2008). qqPlot in the car package also allows for the assessment of non-normal distributions and adds
pointwise confidence bands via normal theory or the parametric bootstrap (Fox and Weisberg, 2011).
The ggplot2 package provides geom_qq and geom_qq_line, enabling the creation of Q-Q plots with
a reference line, much like those created using qqmath (Wickham, 2016). None of these general-use
packages allow for easy construction of detrended Q-Q plots.

The qqplotr package extends ggplot2 to provide a complete implementation of Q-Q plots. The
package allows for quick construction of all Q-Q plot designs without sacrificing the flexibility of the
ggplot2 framework. In the remainder of this paper, we introduce the plotting framework provided by
qqplotr and provide multiple examples of how it can be used.

Implementing Q-Q plots in the ggplot2 framework

qqplotr provides a ggplot2 layering mechanism for Q-Q points, reference lines, and confidence
bands by implementing separate statistical transformations (stats). In this section, we describe each
transformation.

stat_qq_point

This modified version of stat_qq / geom_qq (from ggplot2) plots the sample quantiles against the
theoretical quantiles (as in Figure 1). The novelty of this implementation is the ability to create a
detrended version of the plotted points. All other transformations in qqplotr also allow for the
detrend option. Below, we present a complete call to stat_qq_point and highlight the default values
of its parameters:

stat_qq_point(data = NULL,
mapping = NULL,
geom = "point",
position = "identity",
na.rm = TRUE,
show.legend = NA,
inherit.aes = TRUE,
distribution = "norm",
dparams = list(),
detrend = FALSE,
identity = FALSE,
qtype = 7,
qprobs = c(0.25, 0.75),
...)

• Parameters such as data, mapping, geom, position, na.rm, show.legend, and inherit.aes are
commonly found among several ggplot2 transformations.

• distribution is a character string that sets the theoretical probability distribution. Here, we
followed the nomenclature from the stats package, but rather than requiring the full function
name for a distribution (e.g., "dnorm"), only the suffix is required (e.g., "norm"). If you wish to
provide a custom distribution, then you must first create its density (PDF), distribution (CDF),
quantile, and simulation functions, following the nomenclature outlined in stats. For example, to
create the "custom" distribution, you must provide the appropriate dcustom, pcustom, qcustom,
and rcustom functions. A detailed example is given in the User-provided distributions section.

• dparams is a named list specifying the parameters of the proposed distribution. By default,
maximum likelihood etimates (MLEs) are used, so specifying this argument overrides the MLEs.
Please note that MLEs are currently only supported for distributions available in stats, so if a
custom distribution is provided to distribution, then all of its parameters must be estimated
and passed as a named list to dparams.

• detrend is a logical that controls whether the points should be detrended (as in Figure 3),
producing ordinary detrended Q-Q plots. For additional details on how to use this parameter
and produce the more powerful adjusted detrended Q-Q plots, see the Detrending Q-Q plots
section.

• identity is a logical value only used in the case of detrending (i.e., if detrend = TRUE). If
identity = FALSE (default), then the points will be detrended according to the traditional Q-Q
line that intersects the two data quantiles specified by qprobs (see below). If identity = TRUE,
the identity line will be used instead as the reference line when constructing the detrended Q-Q
plot.
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• qtype and qprobs are only used when detrend = TRUE and identity = FALSE. These parameters
are passed on to the type and probs parameters of the quantile function from stats, both of
which are used to specify which quantiles are used to form the Q-Q line.

stat_qq_line

The stat_qq_line statistical transformation draws a reference line in a Q-Q plot.

stat_qq_line(data = NULL,
mapping = NULL,
geom = "path",
position = "identity",
na.rm = TRUE,
show.legend = NA,
inherit.aes = TRUE,
distribution = "norm",
dparams = list(),
detrend = FALSE,
identity = FALSE,
qtype = 7,
qprobs = c(0.25, 0.75),
...)

Nearly all of the parameters for stat_qq_line are identical to those for stat_qq_point. Hence,
with the exception of identity, all other parameters have the same interpretation. For stat_qq_line,
the identity parameter is always used, regardless of the value of detrend. This parameter controls
which reference line is drawn:

a) When identity = FALSE (default), the Q-Q line is drawn. By default the Q-Q line is drawn
through two points, the .25 and .75 quantiles of the theoretical and empirical distributions. This
line provides a robust estimate of the empirical distribution, which is of particular advantage
for small samples (Loy et al., 2016).

b) When identity = TRUE, the identity line is drawn. By definition of a Q-Q plot the identity line
represents the theoretical distribution.

Both of these reference lines have a special meaning in the context of Q-Q plots. By comparing these
two lines we learn about how well the parameters estimated from the sample match the theoretical
parameters. For a distributional family that is invariant to linear transformations, the parameters
specified in the theoretical distribution only have an effect on the Q-Q line and the Q-Q points. That is,
the parameters get shifted and scaled in the plot, but relative relationships do not change aside from a
change of scale on the x-axis. For other distributions, such as a lognormal distribution, re-specifications
of the parameters result in non-linear transformations of the Q-Q line and Q-Q points (see Figure 4 for
an example).

stat_qq_band

Confidence bands can be drawn around the reference line using one of four methods: simultaneous
Kolmogorov-type bounds, a pointwise normal approximation, the parametric bootstrap (Davison and
Hinkley, 1997), or the tail-sensitive procedure (Aldor-Noiman et al., 2013).

stat_qq_band(data = NULL,
mapping = NULL,
geom = "qq_band",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
na.rm = TRUE,
distribution = "norm",
dparams = list(),
detrend = FALSE,
identity = FALSE,
qtype = 7,
qprobs = c(0.25, 0.75),
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bandType = "pointwise",
B = 1000,
conf = 0.95,
mu = NULL,
sigma = NULL,
...)
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Figure 4: Q-Q plots of a sample of size n = 50 drawn from a normal distribution setting as theoretical
the Standard Normal distribution (top-left) and a normal distribution with ML parameter estimates
(top-right). Note how only the scales on the axes change between those plots. The bottom two plots
show Q-Q plots of a sample of size n = 50 drawn from a lognormal distribution. On the left, the mean
and variance of the theoretical are 0 and 1, respectively, on the log scale. On the right, ML estimates
for mean and variance are used. 95% pointwise confidence bands are displayed on all Q-Q plots.

• bandType is a character string controlling the method used to construct the confidence bands:

– Simultaneous: Specifying bandType = "ks" constructs simultaneous confidence bands
based on an inversion of the Kolmogorov-Smirnov test. For an i.i.d. sample from CDF
F, the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality (Dvoretzky et al., 1956; Massart
et al., 1990) states that P(supx |F(x) − F̂(x)| ≥ ε) ≤ 2 exp

(
−2nε2). Thus, lower and

upper (1− α)100% confidence bounds for F̂(n) are given by L(x) = max{F̂(n)− ε, 0} and
U(x) = min{F̂(n) + ε, 1}, respectively. Confidence bounds for the points on a Q-Q plot
are then given by F−1 (L(x)) and F−1 (U(x)).

– Pointwise: Specifying bandType = "pointwise" constructs pointwise confidence bands
based on a normal approximation to the distribution of the order statistics. An approximate
95% confidence interval for the ith order statistic is X̂(i) ± Φ−1(.975) · SE(X(i)), where
X̂(i) denotes the value along the fitted reference line, Φ−1(·) denotes the quantile function
for the Standard Normal Distribution, and SE(X(i)) is the standard error of the ith order
statistic.

– Bootstrap: Specifying bandType = "boot" constructs pointwise confidence bands using
percentile confidence intervals from the parametric bootstrap.
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– Tail-sensitive: Specifying bandType = "ts" constructs the simulation-based tail-sensitive
simultaneous confidence bands proposed by Aldor-Noiman et al. (2013). Currently, tail-
sensitive bands are only implemented for distribution = "norm".

• B is a dual-purpose integer parameter. If bandType = "boot", it specifies the number of
bootstrap replicates. If bandType = "ts", it specifies the number of simulated samples necessary
to construct the tail-sensitive bands.

• conf is a numerical variable bound between 0 and 1 that sets the confidence level of the bands.

• mu and sigma are only used when bandType = "ts". They represent the center and scale param-
eters, respectively, used to construct the simulated tail-sensitive confidence bands. If either is
NULL, then both of the parameters are estimated using robust estimates via the robustbase pack-
age (Maechler et al., 2016). Currently, bandType = "ts" is only implemented for distribution
= "norm", which is the only distribution discussed by Aldor-Noiman et al. (2013).

Groups in qqplotr

qqplotr is implemented in accordance with the ggplot2 concept of groups. When the user maps
values to aesthetics that explicitly (by using group) or implicitly (such as shape or discrete values of
colour, size etc.) introduce groups, the corresponding calculations respect the grouping in the data.
All groups are compared to the same distributional family, but the parameters are estimated separately
for each of the groups if dparams is not specified (which is the default for all transformations). If the
user wants to fit the same distribution (i.e., the same parameter estimates) to each group, then the
estimates must be manually calculated and passed to dparams as a named list for each of the desired
qqplotr transformations. The use of groups is illustrated in more detail in the BRFSS example section.

Examples

In this section, we demonstrate the capabilities of qqplotr by providing multiple examples of how the
package can be used. We start by loading the package:

library(qqplotr)

Constructing Q-Q plots with qqplotr

To give a brief introduction on how to use qqplotr and its transformations, consider the urine dataset
from the boot package. This small dataset consists of 79 urine specimens that were analyzed to
determine if certain physical characteristics of urine (e.g., pH or urea concentration) might be related
to the formation of calcium oxalate crystals. In this example, we focus on the distributional assessment
of pH measurements made on the samples.

We start by creating a normal Q-Q plot of the data. The top-left plot in Figure 5 shows a Q-Q plot
comparing the pH measurements to the normal distribution. The code used to create this plot is shown
below. As previously noted, the parameters of the normal distribution are automatically estimated
using the MLEs when the parameters are not otherwise specified in dparams. The shaded region
represents the area between the normal pointwise confidence bands. As we can see, the distribution of
urine pH measurements is somewhat right-skewed.

library(dplyr) # for using `%>%` and later data transformation
data(urine, package = "boot")
urine %>%
ggplot(aes(sample = ph)) +
stat_qq_band(bandType = "pointwise", fill = "#8DA0CB", alpha = 0.4) +
stat_qq_line(colour = "#8DA0CB") +
stat_qq_point() +
ggtitle("Normal") +
xlab("Normal quantiles") +
ylab("pH measurements quantiles") +
theme_light() +
ylim(3.2, 8.7)

Figure 5 also provides an overview of qqplotr’s capabilities:

• The left column displays Q-Q plots with 95% pointwise confidence bands obtained from a
normal approximation.
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Figure 5: Normal Q-Q plots of pH measurements from urine samples using different confidence bands.
Depending on the type of confidence band used, we come to different conclusions.

• The center column displays Q-Q plots with 95% Kolmogorov-type simultaneous confidence
bands.

• The right column displays Q-Q plots with 95% tail-sensitive simultaneous confidence bands.
Notice that these are substantially narrower in the tails than the Kolmogorov-type bands.

• The bottom row shows the detrended versions of the Q-Q plots in the top row.

User-provided distributions

Using the capabilities of qqplotr with the distributions implemented in stats is relatively straight-
foward, since the implementation allows you to specify the suffix (i.e., distribution or abbreviation)
via the distribution argument and the parameter estimates via the dparams argument. However,
there are times when the distributions in stats are not sufficient for the demands of the analysis. For
example, there is no left-skewed distribution listed aside from the beta distribution, which has a
restrictive support. User-coded distributions, or distributions from other packages, can be used with
qqplotr as long as the distributions are defined following the conventions laid out in stats. Specfically,
for some distribution there must be density/mass (d prefix), CDF (p prefix), quantile (q prefix), and
simulation (r prefix) functions. In this section, we illustrate the use of the smallest extreme value
distribution (SEV).

To qualify for the 2012 Olympics in the men’s long jump, athletes had to meet/exceed the 8.1
meter standard or place in the top twelve. During the qualification events, each athlete was able to
jump up to three times, using their best (i.e., longest) jump as the result. Figure 6 shows a density plot
of the results, which is clearly left skewed.

We start by loading the longjump dataset included in qqplotr and removing any NAs:

data("longjump", package = "qqplotr")
longjump <- na.omit(longjump)

Next, we define the suite of distributional functions necessary to utilize the SEV distribution.

# CDF
psev <- function(q, mu = 0, sigma = 1) {
z <- (q - mu) / sigma
1 - exp(-exp(z))
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Figure 6: Density and rug plot of the 2012 men’s long jump qualifying round. The distances are clearly
left skewed.

}

# PDF
dsev <- function(x, mu = 0, sigma = 1) {
z <- (x - mu) / sigma
(1 / sigma) * exp(z - exp(z))

}

# Quantile function
qsev <- function(p, mu = 0, sigma = 1) {
mu + log(-log(1 - p)) * sigma

}

# Simulation function
rsev <- function(n, mu = 0, sigma = 1) {
qsev(runif(n), mu, sigma)

}

With the *sev distribution functions in hand, we can create a Q-Q plot to assess the appropriateness
of the SEV model (Figure 7). The Q-Q plot shows that the distances do not substantially deviate from
the SEV model, so we have found an adequate representation of the distances. The code used to create
Figure 7 is given below:

ggplot(longjump, aes(sample = distance)) +
stat_qq_band(distribution = "sev",

bandType = "ks",
dparams = list(mu = 0, sigma = 1),
fill = "#8DA0CB",
alpha = 0.4) +

stat_qq_line(distribution = "sev",
colour = "#8DA0CB",
dparams = list(mu = 0, sigma = 1)) +

stat_qq_point(distribution = "sev",
dparams = list(mu = 0, sigma = 1)) +

xlab("SEV quantiles") +
ylab("Jump distance (in m)") +
theme_light()

Detrending Q-Q plots

To illustrate how to construct an adjusted detrended Q-Q plot using qqplotr, consider detrending
Figure 7. This is done by adding the argument detrend = TRUE to stat_qq_point, stat_qq_line, and
stat_qq_band. To adjust the aspect ratio to ensure that vertical and horizontal distances are on the
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Figure 7: Q-Q plot comparing the long jump distances to the standard SEV distribution with 95%
simultaneous confidence bands. The SEV distribution appears to adequately model the distances.
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Figure 8: An adjusted detrended Q-Q plot assessing the appropriateness of the SEV distribution for
the long jump data.

same scale we further add coord_fixed(ratio = 1). We leave it to the user to adjust the y-axis limits
on a case-by-case basis. The full command to construct Figure 8 is given below:

ggplot(longjump, aes(sample = distance)) +
stat_qq_band(distribution = "sev",

bandType = "ks",
detrend = TRUE,
dparams = list(mu = 0, sigma = 1),
fill = "#8DA0CB",
alpha = 0.4) +

stat_qq_line(distribution = "sev",
detrend = TRUE,
dparams = list(mu = 0, sigma = 1),
colour = "#8DA0CB") +

stat_qq_point(distribution = "sev",
detrend = TRUE,
dparams = list(mu = 0, sigma = 1)) +

xlab("SEV quantiles") +
ylab("Differences") +
theme_light() +
coord_fixed(ratio = 1, ylim = c(-2, 2))

BRFSS example

The Center for Disease Control and Prevention runs an annual telephone survey, the Behavioral Risk
Factor Surveillance System (BRFSS), to track “health-related risk behaviors, chronic health conditions,
and use of preventive services” (Centers for Disease Control and Prevention, 2014). Close to half a
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million interviews are conducted each year. In this example, we focus on the responses for Iowa in
2012. The data set consists of 7166 responses across 359 questions and derived variables. To further
illustrate the functionality of qqplotr, we focus on assessing the distributions of Iowan’s heights and
weights.

Figure 9 shows two Q-Q plots constructed from a sample of 200 men and 200 women drawn from
the overall number of responses. On the left-hand side, individuals’ heights are displayed in a Q-Q
plot comparing raw heights to a normal distribution. We see that the distributions for both men and
women show horizontal steps: this indicates that the distributional assessement is heavily dominated
by the discreteness in the data, as most respondents provided their height to the nearest inch. On
the right-hand side of Figure 9, we use jittering to remedy this situation. That is, we add a random
number generated from a random uniform distribution on ±0.5 inch to the reported height, as shown
in the code below:

data("iowa", package = "qqplotr")
set.seed(3145)

sample_ia <- iowa %>%
tidyr::nest(-SEX) %>%
mutate(
data = data %>%
purrr::map(.f = function(x) sample_n(x, size = 200))
) %>%

tidyr::unnest(data) %>%
dplyr::select(SEX, WTKG3, HTIN4) %>%
mutate(Gender = c("Male", "Female")[SEX])

params <- iowa %>%
filter(!is.na(HTIN4)) %>%
summarize(m = mean(HTIN4), s = sd(HTIN4))

customization <- list(scale_fill_brewer(palette = "Set2"),
scale_colour_brewer(palette = "Set2"),
xlab("Normal quantiles"),
ylab("Height (in.)"),
coord_equal(),
theme_light(),
theme(legend.position = c(0.8, 0.2), aspect.ratio = 1))

sample_ia %>%
ggplot(aes(sample = HTIN4, colour=Gender, fill=Gender)) +
stat_qq_band(bandType = "ts",

alpha = 0.4,
dparams = list(mean = params$m, sd = params$s)) +

stat_qq_point(dparams = list(mean = params$m, sd = params$s)) +
customization

sample_ia %>%
mutate(HTIN4.jitter = jitter(HTIN4, factor = 2)) %>%
ggplot(aes(sample = HTIN4.jitter, colour = Gender, fill = Gender)) +
stat_qq_band(bandType = "ts",

alpha = 0.4,
dparams = list(mean = params$m, sd = params$s)) +

stat_qq_line(dparams = list(mean = params$m, sd = params$s)) +
stat_qq_point(dparams = list(mean = params$m, sd = params$s)) +
customization +
ylab("Jittered Height (in.)")

Notice that the same theoretical normal distribution was fit to both genders as specified in dparams.
If we had used the default, then the MLEs for each gender would be used. As a result, we would
be comparing the two genders over a different range of theoretical quantiles. By explicity providing
parameter estimates for the mean and standard deviation via dparams, we force the Q-Q plots to use
the same x-coordinates (theoretical quantiles), which is more useful when comparing the distribution
of these groups.

As seen in Figure 9, by using jittering we diminish the effect that discreteness has on the distribution
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Figure 9: Q-Q plots comparing the raw (left) and jittered (right) heights to a normal distribution for a
sample of 200 men and 200 women. The distribution on the left is dominated by the discreteness of
the data. On the right, using a normal distribution to model people’s height is not completely absurd,
except for a few extreme outliers.

Table 1: Summary of Iowa residents’ heights and weights with corresponding standard deviations by
gender and for the total population.

SEX mean height (in) sd (in) mean log weight (kg) sd (kg)

Male 70.55 2.97 9.10 0.20
Female 64.51 2.91 8.89 0.23
Total 66.99 4.18 8.98 0.24

and brings the observed distribution much closer to a normal distribution. Unsurprisingly, the
resulting distributions have different means (women are, on average, 6 inches shorter than men in this
data set). Interestingly, the slope of the two genders is similar, indicating that the same scale parameter
fits both genders’ distributions (the standard deviation of height in the data set is 2.97 inch for men
and 2.91 inch for women, see Table 1).

Unlike respondents’ heights, their weights do not seem to be normally distributed. Figure 10
shows two Q-Q plots of these data. For both, distributional parameters are estimated separately for
each group. This means that for each group we compare against its theoretical distribution shown as
the identity line. The Q-Q plot on the left compares raw weights to a normal distribution. We see that
tails of the observed distribution are heavier than expected under a normal distribution. On the right,
weights are log-transformed. We see that using a normal distribution for each gender appears to be
reasonable, with the exception of a few extreme outliers. The code used to create Figure 10 is shown
below:

sample_ia %>%
ggplot(aes(sample = WTKG3 / 100, colour = Gender, fill = Gender)) +
geom_abline(colour = "grey40") +
stat_qq_band(bandType = "ts", alpha = 0.4) +
stat_qq_line() +
stat_qq_point() +
customization +
ylab("Weight (kg.)")

sample_ia %>%
ggplot(aes(sample = log(WTKG3/100), colour=Gender, fill=Gender)) +
geom_abline(colour = "grey40") +
stat_qq_band(bandType = "ts", alpha = 0.4) +
stat_qq_line() +
stat_qq_point() +
customization +
ylab("log Weight (kg.)")

Instead of log-transforming the observed weights, we can change the theoretical distribution to a
lognormal. Figure 11 shows two lognormal Q-Q plots, one for each gender. Note the MLEs are used to
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Figure 10: Q-Q plots comparing weights to a normal distribution for a sample of 200 men and 200
women. Unlike people’s height, weight seems to be right skewed with some additional outliers in the
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Figure 11: Q-Q plots comparing weights to a lognormal distribution for a sample of 200 men and 200
women. The parameters are estimated separately for each gender to specify the lognormal reference
distribution for each gender.

parameterize the lognormal distribution for each group since dparams is not specified:

sample_ia %>%
ggplot(aes(sample = WTKG3 / 100, colour = Gender, fill = Gender)) +
geom_abline(colour = "grey40") +
stat_qq_band(bandType = "ks", distribution = "lnorm", alpha = 0.4) +
stat_qq_line(distribution = "lnorm") +
stat_qq_point(distribution = "lnorm") +
customization +
facet_grid(. ~ Gender) +
xlab("Lognormal quantiles") +
ylab("Weight (kg.)") +
theme(legend.position = c(0.9, 0.2))

Discussion

This paper presented the qqplotr package, an extension of ggplot2 that implements Q-Q plots in
both the standard and detrended orientations, along with reference lines and confidence bands. The
examples illustrated how to create Q-Q plots for non-standard distributions found outside of the stats
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package, how to create detrended Q-Q plots, and how to create Q-Q plots when data are grouped.
Further, in the BRFSS example, we illustrated how jittering can be used in Q-Q plots to better compare
discretized data to a continuous distribution.

While qqplotr provides a complete implementation of the Q-Q plot, there is room for development
in future versions. For example, Q-Q plots are members of the larger probability plotting family, so
future versions of qqplotr will likely include additional members of that family.

Finally, we have made design choices in qqplotr that we believe are in line with best practices for
distributional assessment, but the implementation is flexible enough to allow for easy customization.
For example, maximum likelihood is used to estimate the parameters of the proposed model, but
if outliers are present robust estimators may be desirable, such as when comparing the empirical
distribution to a normal distribution. In this scenario, robust estimates of the location and scale can
be obtained using the robustbase package (Maechler et al., 2016), and specified using the dparams
parameter directly. This is especially useful if you wish to use the parametric bootstrap to build
confidence bands. Similarly, stat_qq_line implements two types of reference lines: the identity line,
and the traditional Q-Q line that passes through two quantiles of the distributions, such as the first
and third quartiles. While those are the most conventionally used reference lines, alternative ones
can be quickly implemented using ggplot2::geom_abline by specifying the slope and intercept. By
default, the Q-Q line is used; however, this is not always the most appropriate choice. In order to test
whether the data follow a specific distribution, the reference line should be used rather than using the
data twice: once to estimate the parameters, and once for comparison.
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Forecast Combinations in R using the
ForecastComb Package
by Christoph E. Weiss and Eran Raviv and Gernot Roetzer

Abstract This paper introduces the R package ForecastComb. The aim is to provide researchers and
practitioners with a comprehensive implementation of the most common ways in which forecasts can
be combined. The package in its current version covers 15 popular estimation methods for creating a
combined forecasts – including simple methods, regression-based methods, and eigenvector-based
methods. It also includes useful tools to deal with common challenges of forecast combination (e.g.,
missing values in component forecasts, or multicollinearity), and to rationalize and visualize the
combination results.

Introduction

Model uncertainties and/or model instabilities are deeply-rooted in real-life forecasting challenges.
More often than not, and particularly in soft sciences including econometrics, the underlying data-
generating process is not well understood.

In the business of time series forecasting, accuracy is key. The advent of “black-box” statistical
learning methods (such as Artificial Neural Networks) testifies to the fact that forecasting practitioners
and researchers alike tend to favor accuracy over explainability of a forecast model. There is a strong
consensus in the social sciences that the observed processes are too complex to be modelled perfectly.
Excluding some natural sciences, it is generally undisputed that the underlying data-generating
process is unknown1. Even in the unrealistic case where the structural form of a data-generating
process is more or less known, except for the parameter values that has to be estimated, a misspecified
model can produce better forecasts than a correctly specified model due to parameters’ estimation
uncertainty2.

Hence, statistical models are habitually too simple, misspecified, and/or incomplete; a fact that is
widely accepted in theory, but less widely applied in practice, in the field of econometrics, in which
researchers often still hang on to the conceptual error of assuming one true data-generating process
and putting too much focus on model selection to find the one true model. Hansen (2005) takes note
of this and related misconceptions of econometric forecasting practice in his essay on the challenges
for econometric model selection: “models should be viewed as approximations, and econometric
theory should take this seriously”. An obvious alternative to choosing a single ‘best’ forecasting
method is to combine forecasts from different models. A combined forecast can also be thought of as
one which originates from a very complex model, an overarching model with different underlying
simpler models in order to achieve a better data-generating process approximation. By now it is well
established, empirically but in many different settings, that combining different forecasts delivers
results which are “better than the best”.

Following the advice in Hansen (2005), we abandon the quest for the one true correctly specified
model, so that we are free to include information from different models. While this freedom, as seen
empirically, improve forecast accuracy it is generally more intricate to interpret a forecast combined
from different models compared to a forecast generated from a single model. In the context of forecast-
ing, this means combining forecasts from different sources (models, experts). This emphasizes the
aforementioned shift in approaching practical econometric forecasting problems: model misspecifi-
cation cannot be fully rectified, but strategies can be found to mitigate its adverse effects on forecast
quality. Selecting a single “best” forecasting model bears the risk of ending up with a model which is
only accurate when evaluated using some validation sample, yet might prove unreliable when applied
to new data. In the past decades, ample empirical evidence on the merits of combining forecasts
has piled up; it is generally accepted that the (mostly linear) combination of forecasts from different
models is an appealing strategy to hedge against forecast risk. Even though reduction of forecast risk
is the main argument for using combined forecasts, it should also be noted that there are cases when
combined forecasts are more accurate than even its best component (e.g. Graefe et al., 2014). While
this is not theoretically sound, it is somewhat intuitive that in a continuously changing environment
different forecasting models deliver different results at different time periods. For example, it is
reasonable for one method to perform well in a low-volatility regime, and for another method to
perform poorly in that regime, but perform well in a high-volatility regime. Strong empirical support
for this argument of change in relative performance of different methods over time is found among

1Referring for example to George’s Box well rehearsed aphorism: “All models are wrong but some are useful”.
2We thank an anonymous referee for pointing this out.
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others by Elliott and Timmermann (2005).

“Hedging” against model risk by combining different forecasts is intuitive and appealing. Joined
with accuracy gains, the idea is widely adopted in macroeconomics and finance, with application
abound. Magnus and Wang (2014) explore growth determinants, Stock and Watson (2004) use forecast
combination for output forecasting, Wright (2009) and Kapetanios et al. (2008) for inflation forecasting,
Avramov (2002), Rapach et al. (2010) and Ravazzolo et al. (2007) for forecasting stock returns, Wright
(2008) for exchange rate forecasts, Andrawis et al. (2011) for forecasting inbound tourism figures,
Nowotarski et al. (2014) and Raviv et al. (2015) for electricity price forecasting, and Weiss (2017) for
healthcare demand forecasting. More recently, forecast combinations have been applied not only in
“first moment” applications, but for higher moments as well. For example in Christiansen et al. (2012)
for volatility forecasting, and Opschoor et al. (2014) for Value-at-Risk forecasting.

The theoretical foundations of forecast combination date back five decades to the seminal papers of
Crane and Crotty (1967) and Bates and Granger (1969). Yet even in the recent past, papers discussing
new combination techniques are published in reputable journals and stimulate further research still
(Hansen, 2007, 2008; Hansen and Racine, 2012; Elliott et al., 2013; Morana, 2015; Cheng and Yang,
2015). Two extensive reviews of the literature, techniques and applications of forecast combinations
are Clemen (1989) and Timmermann (2006).

Given the topic’s popularity in both theoretical and empirical research, it is somewhat surprising
that very few combination techniques are readily available in R: There are some packages that cover
specialized specific topics related to combination methods, e.g. the BMA package by Raftery and
Painter (2005) for Bayesian model averaging, as well as the opera package by Gaillard and Goude
(2016) and the forecastHybrid package by Shaub and Ellis (2017). However, as of now the only two R
packages that are entirely devoted to forecast combination are the ForecastCombinations package by
Raviv (2015), which focuses on regression-based combination methods, and the GeomComb package
by Weiss and Roetzer (2016), which focuses on geometric, eigenvector-based combination methods.

Aiming to improve user experience, we have merged these last two aforementioned packages,
providing one unified package for the widest range of forecast combination approaches available
today in R. The package is flexible and provides enough guidance for users familiar or unfamiliar with
the world of forecasting. We have made both regression-based and eigenvector-based combination
methods available to users in a single standardized framework based on S3 classes and methods.
The logic behind this choice is that comparing regression-based and eigenvector-based combination
methods is often insightful – as pointed out by Hsiao and Wan (2014), the conditions under which
these two approaches perform well differ from each other: regression-based methods tend to produce
more accurate forecasts when one or a few of the individual forecasts are considerably better than the
rest, while eigenvector-based methods perform better when the individual forecasts are in the same
ballpark. This paper presents the functionalities made available in the package and demonstrates how
to implement them in an empirical exercise.

In the following section we review the forecast combination methods that are available in the
ForecastComb package. We then provides a detailed implementation description using the package,
with a specific empirical example – we combine univariate time series forecasts for UK energy supply.

Forecast combinations

Since the seminal paper by Bates and Granger (1969), myriad combination strategies have been put
forward in theoretical and empirical literature. The best way to combine different forecasts has no
theoretical underpinnings, a lot depends on the specifics of the data at hand. Andrawis et al. (2011)
even suggest to use hierarchical forecast combinations, i.e. combining combined forecasts. The
purpose here is not to investigate which combination method is suitable in which context. Rather, we
provide a broad range of options for the user to explore and experiment with. Again, owing to a lack
of theoretical foundation or the empirical lack of evidence for a one dominant way in which forecasts
should be combined.

To fix notations, denote FT×P as the matrix of forecast with dimension T× P where T is the number
of rows and P is the number of columns (so we have P forecasts at each point in time). Denote fi as
the forecast obtained using model i, i ∈ {1 . . . P}. When there is no danger of confusion, we omit the
additional subscript t which denotes the time dimension of the forecast. Some combination methods
require an ordering of the component forecasts. When this is the case, f(i) denotes the ith order statistic
of the cross-section of component forecasts. Finally, the weight given to that forecast in the overall
combined forecast is denoted as wi, and the combined forecast as f c.
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Frequently used schemes for forecast combinations

Simple Combination Methods

We now present few simple ways in which forecasts can be combined. They are simple in that there
is no need to exactly estimate the weight each forecast should be given in the overall combination.
We just use some location measure (for example the average) of the cross-sectional distribution of the
individual forecasts. In theory some location measures are the same if the cross-sectional distribution
is symmetric, but if the distribution is asymmetric, and/or if there is one method which produces
extreme forecasts then the following few combination methods become pertinent.

1. Simple Average. The most intuitive approach to combine forecasts is using the average of all
those forecasts. Over the years this innocent approach has established itself as an excellent
benchmark, despite or perhaps because of its simplicity (e.g. Genre et al., 2013). The combined
forecast is straightforwardly given by

f c =
1
P

P

∑
i=1

fi. (1)

Clemen (1989) argues that this equal weighting of component forecasts is often the best strategy
in this context. This is still true almost thirty years later and called the “forecast combination
puzzle”, a term coined by Stock and Watson (2004). A rigorous attempt to explain why simple
average weights often outperform more sophisticated forecast combination techniques is pro-
vided in a simulation study by Smith and Wallis (2009), who ascribe this surprising empirical
finding to the effect of finite-sample error in estimating the combination weights. Recently,
Claeskens et al. (2016) provide a theoretical argumentation to these empirical findings. The
authors make the case that lower estimation noise, when the weights are determined rather than
estimated, goes a long way in explaning the puzzle. A more detailed overview of the empirical
support for the “forecast combination puzzle” can be found in Graefe et al. (2014).

2. Median. Another fairly simple and appealing combination method is using the median of the
component forecasts. The median is insensitive to outliers, which can be relevant for some
applications. Palm and Zellner (1992) suggest that simple averaging may not be a suitable
combination method when some of the component forecasts are biased. This calls for the use
of another location measures which is robust to outliers. The median method is an appealing,
rank-based combination method that has been used in a wide range of empirical studies
(e.g. Armstrong, 1989; McNees, 1992; Hendry and Clements, 2004; Stock and Watson, 2004;
Timmermann, 2006).
For the median method, the combined forecast is given by:

• For odd P:

f c = f( P
2 +0.5) (2)

• For even P:

f c =
1
2

(
f( P

2 )
+ f( P

2 +1)

)
(3)

3. Trimmed Mean. Another outlier-robust location measure that is commonly used is the trimmed
mean (e.g. Armstrong, 2001; Stock and Watson, 2004; Jose and Winkler, 2008).
Using a trim factor λ (i.e. the top/bottom 100× λ% are trimmed) the combined forecast is
calculated as:

f c =
1

P(1− 2λ)

(1−λ)P

∑
i=λP+1

f(i) (4)

Typically, we use λ = 0.1 indicating we trim the top and bottom 10% of the most extreme
component forecasts, excluding those from the computation of the combined forecast. The
trimmed mean is an interpolation between the simple average (λ = 0) and the median (λ = 0.5).

4. Winsorized Mean. Like the trimmed mean, the winsorized mean is a robust statistic that is
less sensitive to outliers than the simple average. It takes a softer line when handling outliers:
Instead of altogether removing them as in the trimmed mean approach, it caps outliers at a
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certain level. By capping outliers rather than removing them, we allow for at least some degree
of influence. For this reason, the measure is sometimes preferred, for example by Jose and
Winkler (2008).
Let λ be the trim factor (i.e. the top/bottom 100 × λ% are winsorized) and K = λP. The
combined forecast is then calculated as:

f c =
1
P

[
K f(K+1) +

P−K

∑
i=K+1

K f(P−K)

]
(5)

5. Bates/Granger (1969). In their seminal paper, Bates and Granger (1969) introduced the idea of
combining forecasts. Their approach builds on portfolio diversification theory and uses the
diagonal elements of the estimated mean squared prediction error matrix in order to compute
combination weights:

f c =
P

∑
i=1

f ′i ×
σ̂−2(i)

∑P
j=1 σ̂−2(j)

(6)

where σ̂2(i) is the estimated mean squared prediction error of model i.
The approach ignores correlation between component forecasts due to difficulties in precisely
estimating the covariance matrix.

6. Newbold/Granger (1974). Building on the earlier research by Bates and Granger (1969), the
methodology of Newbold and Granger (1974) also extracts the combination weights from the
estimated mean squared prediction error matrix.
Let Σ be the mean squared prediction error matrix of FN×P and e be a P× 1 vector of (1, 1, ..., 1)′.
Newbold and Granger (1974)’s method is a constrained minimization of the mean squared
prediction error using the normalization condition e′w = 1. This yields the following combined
forecast:

f c = FN×P ×
Σ−1e

e′Σ−1e
(7)

While the method dates back to Newbold and Granger (1974), the variant of the method we
use in the ForecastComb package does not impose the prior restriction that Σ is diagonal. This
approach, used by Hsiao and Wan (2014), is a generalization of the original method.

7. Inverse Rank. The inverse rank approach, suggested by Aiolfi and Timmermann (2006), ranks
the forecast models based on their performance up to time N. The model with the lowest mean
squared prediction error is assigned the rank 1, the model with the second lowest mean squared
prediction error is assigned the rank 2, etc. The combined forecast is then calculated as follows:

f c =
P

∑
i=1

f ′i ×
Rank−1

i

∑P
j=1 Rank−1

j

(8)

Timmermann (2006) points out that this method, just like Bates and Granger (1969), also ignores
correlations across forecast errors. However, the method is more robust to outliers, since total
rankings are not likely to change dramatically by the presence of extreme forecasts.

Regression-based Combination Methods

8. Ordinary Least Squares (OLS) regression. The idea to use regression for combining forecasts was
put forward by Crane and Crotty (1967) and successfully driven to the forefront by Granger
and Ramanathan (1984). Using this approach, the combined forecast is a linear function of the
individual forecasts where the weights are determined using a regression of the individual
forecasts on the target itself:

y = α +
P

∑
i=1

wi fi + ε, (9)

Using a portion of the forecasts to train the regression model, the OLS coefficients can be
estimated by way of minimizing the sum of squared errors in equation(8). The combined
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forecast is then given by:

f c = α̂ +
P

∑
i=1

ŵi fi, (10)

An advantage of the OLS forecast combinations is that the combined forecast is unbiased due to
the intercept in the equation, even if one of the individual forecasts is biased. A disadvantage
is that the method places no restriction on the combination weights (i.e. they do not add up
to 1 and can be negative), which complicatesinterpretation, especially if the coefficients are
non-convex.3

9. Least Absolute Deviation (LAD) regression. While the OLS regression estimates the coefficients
in equation (10) by minimizing the sum of squared errors, we may want to estimate those
coefficients differently, minimizing a different loss function4, for example the absolute sum of
squares. The reason is best explained using an example: Assume we have a model that performs
well in general, yet every now and then misses the target by a very large margin. Such a model
would be weighted more heavily under the LAD scheme than under the OLS scheme since
those large but infrequent errors will be more heavily penalized using OLS. Whether this is
beneficial depends on the user’s preference and/or the cost of missing the target given the
problem at hand. It should be noted that this lower sensitivity to outliers has another advantage:
OLS weights can be unstable when predictors are highly correlated, which is the norm in
forecast combination. Minor fluctuations in the sample can cause major shifts in the coefficient
vector (‘bouncing betas’), often leading to poor out-of-sample performance. This suggests that
LAD combination should be favored in the presence of highly correlated component forecasts
(Nowotarski et al., 2014).

10. Constrained Least Squares (CLS) regression. Like the LAD approach, CLS addresses the issue of
‘bounding betas’. It does so by minimizing the sum of squared errors under some additional
constraints. Specifically, we constrain the estimated coefficients {wi}, allowing only for positive
solutions: wi ≥ 0 ∀i, and to sum up to one: ∑P

i=1 wi = 1. The solution requires numerical
minimization, but good optimization algorithms are readily available: The ForecastComb
package relies on the function solve.QP available from the quadprog package (Turlach and
Weingessel, 2013). To tackle problems with high (but imperfect) collinearity that can cause errors
in the CLS estimation, we also implement a revised Cholesky decomposition based on Ridge
regression which has been propsed by Babaie-Kafaki and Roozbeh (2017) and can mitigate
issues with multicollinearity.
Theoretically, the additional constraints set CLS sub-optimally compared to the OLS. It lacks the
good asymptotic properties admitted by OLS. However, in practice it is often found to perform
better, especially so when the individual forecasts are highly correlated. In addition, the CLS
weights are more easily interpretable. It is hard to justify a non-convex linear combination of
two forecasts, while CLS weights can be conveniently interpreted for example as percentages
devoted to each of the individual forecasts.

11. Complete subset regression. The ForecastComb package allows the relatively new idea of com-
puting forecast combination weights using complete subset regression. The underlying idea
is relatively straightforward: With P component forecasts that can serve as predictors in the
regression model, we can form n regression models, each with a unique subset of predictors. n,
the total number of combined forecasts from regression models is given by

n =
P

∑
i=1

(
P
i

)
=

P

∑
i=1

P!
i!(P− i)!

= 2P − 1 (11)

In the most basic variant, the final combined forecast is obtained by taking the simple average
over the cross-section of these n combined forecasts from complete subset regressions. The
method is proposed by Elliott et al. (2013) who develop the theory behind this estimator and
present favourable results from simulations and empirical application for US stock returns.
Admittedly, the scheme is computationally expensive, and thus additional computational
resources may be required if P is in the dozens (Elliott et al. (2013), Section 2.5.1 proposes a
workaround based on random sampling from P). Additionally, since all n forecasts are returned,

3if the combination of two individual forecasts is not convex, the resulting combined forecast will not necessarily
lie between those individual forecasts. As an example, we can look at the first quarter (2014 or 2015) GDPplus
series estimate, published by the Federal Reserve Bank of Philadelphia. The combined prediction of two individual
estimates of the US GDP; one based on the expenditure-side and one based on the income-side, lied above the sum
of those two estimate. Intuitively, this is hard to communicate (https://www.philadelphiafed.org/research-
and-data/real-time-center/gdpplus).

4For a discussion of optimal forecast combinations under general loss functions, see Elliott and Timmermann
(2004)
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the user can freely refine the technique further – for example by choosing not to average over all
n forecasts, but some partial subset. Using the median instead of the mean is another option
that comes to mind.
Obtaining n combined forecasts from the complete subset regression also allows us to use a
frequentist approach to forecast combination, also known as information-theoretic forecast
combinations. In the ForecastComb package, several information criteria are available in the
complete subset regression method, each with its own merits and weaknesses: By far the
most common are the AIC (Akaike’s information criterion) and the BIC (Bayesian information
criterion, also known as the Schwarz information criterion). Both are supplied in addition to the
corrected AIC (Hurvich and Tsai, 1989) and the Hannan Quinn information criterion (Hannan
and Quinn, 1979).
Formally, the weight given to each forecast based on the information-theoretic forecast combina-
tions is the following:

wi =
exp(−1/2$i)

∑n
j=1 exp(−1/2$j)

, (12)

where $i is the information criterion for forecast i obtained using a regression with a specific
combination of forecasts. The value of n is fixed as the number of possible combinations, and
the combined forecast is given by:

f c =
n

∑
i=1

wi f̃i. (13)

It is worth noting that this is a two-step combination method. The first step is the computation
of n combined forecasts f̃i using the complete subset regression method with the original P
forecasts as predictors; the second step is the combination of these combined forecasts using the
weights based on information criteria.
One advantage of this frequentist approach to model averaging is that the amount of shrinkage
enforced on each individual forecast is data driven. The specification of a shrinkage hyper-
parameter, which is required in the corresponding Bayesian framework (e.g. Raftery and Painter,
2005) is spared from the user in this case.

Eigenvector-based Combination Methods

The eigenvector-based forecast combination methods, proposed by Hsiao and Wan (2014), are based
on the idea of minimizing the mean squared prediction error subject to a normalization condition.

The most commonly used normalization condition for this purpose is to require the combination
weights to add up to one, i.e. ∑P

i=1 wi = 1 (e.g. Newbold and Granger, 1974; Timmermann, 2006).
Hsiao and Wan (2014) show that this normalization condition leads to a constrained minimum of
the mean squared prediction error (MSPE), and propose a normalization condition that leads to an
unconstrained minimum of the MSPE:

P

∑
i=1

w2
i = 1 (14)

This unconstrained minimum of the MSPE is the basis of the four eigenvector-based approaches in
the ForecastComb package.

12. Standard Eigenvector Approach. The standard eigenvector approach retrieves combination weights
from the estimated MSPE matrix as follows: The P positive eigenvalues of the MSPE matrix
are arranged in increasing order (Φ1 = Φmin, Φ2, ..., ΦP), and κi denotes the eigenvector corre-
sponding to Φi. Let di = e′κi with e being a P× 1 vector of (1, 1, ...1)′. The combination weights
w are then chosen corresponding to the minimum of (Φ1

d2
1

, Φ2
d2

2
, ..., ΦP

d2
P
), denoted as κl , as:

w =
1
dl

κl (15)

The combined forecast is then obtained as usual:

f c =
P

∑
i=1

f ′i wi (16)

13. Bias-Corrected Eigenvector Approach. The bias-corrected eigenvector approach builds on the
idea that if one or more of the component models yield biased forecasts, the accuracy of the
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standard eigenvector approach can be improved by eliminating the bias. It modifies the standard
approach by decomposing forecast errors into three parts: model-specific bias, omitted common
factors of all component models, as well as an idiosyncratic part that is uncorrelated across the
component models.
The optimization procedure to obtain combination weights coincides with the standard ap-
proach, except that we use as an input the centered MSPE matrix, i.e. after extracting the bias by
subtracting the column means of the MSPE:

w =
1
d̃l

κ̃l (17)

where d̃i and κ̃i are defined analogously to di and κi in the standard eigenvector approach with
the only difference that they correspond to the spectral decomposition of the centered MSPE
matrix rather than the original (uncentered) MSPE matrix.
The combined forecast is then obtained by:

f c = α +
P

∑
i=1

f ′i wi (18)

where the intercept α corrects for the potential bias.

14. Trimmed Eigenvector Approach.
The standard approach is highly sensitive to the disparities in performance of different predictive
models, i.e. the standard eigenvector approach’s performance could be severely impaired by
one or more component models that produce poor forecasts. This is due to treating uncertainties
in the actual series, y, and the uncertainties of the component models, FN×P, symmetrically. For
a detailed discussion of this so-called orthogonality principle, see Section 3 in Hsiao and Wan
(2014). The trimmed eigenvector approach takes note of this issue.
The idea of trimming the pool of input forecasts has been used by Aiolfi and Timmermann
(2006) and is picked up by Hsiao and Wan (2014) using the eigenvector framework – the weights
are computed exactly as in the standard eigenvector approach, but based on the MSPE matrix
of the trimmed forecasts, after discarding particularly bad component models.

15. Trimmed Bias-Corrected Eigenvector Approach. The underlying methodology of the trimmed bias-
corrected eigenvector approach is the same as the bias-corrected eigenvector approach: The
weights are retrieved through the spectral decomposition of the centered MSPE matrix.
The only difference to the bias-corrected eigenvector approach is that this method, like the
trimmed eigenvector approach, pre-selects component models that serve as input for the forecast
combination; only a subset of the available forecast models is retained, while the models with
the worst performance are discarded, thereby combining the favourable modifications of the
previous two methods.

There are three more related functions. The function auto_combine computes the fit for all the
available forecast combination methods and is based on a grid-search optimization. It returns the
combined forecast with the best in-sample accuracy. The default accuracy metric is the RMSE and
MAE or MAPE are also available. The function rolling_combine is simply a dynamic variant, where
the computation is done in an expanding window fashion rather than a single in- and out-of-sample
split. Finally, the function predict.foreccomb_res allows to obtain the forecasts using previously
trained forecast combination model. It is a simple utility function to quickly get the forecasts in an
uncomplicated manner.

Implementation

The main functions provided in the ForecastComb package can be classified in 3 categories:

• Data Preparation

• Estimation of Forecast Combination

• Post-Fit Presentation of Results

In addition, some auxiliary functions are provided. Table 1 gives the list of the main functions.
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Function Description

Data Preparation Functions

foreccomb Transform raw input data for forecast combination

cs_dispersion Compute cross-sectional dispersion

Forecast Combination Functions

Simple Forecast Combination Functions

comb_BG Bates/Granger (1969) forecast combination

comb_InvW Inverse Rank forecast combination

comb_MED Median Forecast Combination

comb_NG Newbold/Granger (1974) forecast combination

comb_SA Simple Average forecast combination

comb_TA Trimmed Mean forecast combination

comb_WA Winsorized Mean forecast combination

Regression-Based Forecast Combination Functions

comb_CLS Constrained Least Squares (CLS) forecast combination

comb_CSR Complete Subset Regression forecast combination

comb_LAD Least Absolute Deviation (LAD) forecast combination

comb_OLS Ordinary Least Squares (OLS) forecast combination

Eigenvector-Based Forecast Combination Functions

comb_EIG1 Standard Eigenvector forecast combination

comb_EIG2 Bias-Corrected Eigenvector forecast combination

comb_EIG3 Trimmed Eigenvector forecast combination

comb_EIG4 Trimmed Bias-Corrected Eigenvector forecast combination

Other Forecast Combination Functions

auto_combine Automated grid-search forecast combination

rolling_combine Rolling forecast combination (time-varying
combination weights)

Post-Fit Functions

plot.foreccomb_res S3 method to plot results from a forecast combination
model

summary.foreccomb_res S3 method – summary of the forecast combination
estimation

predict.foreccomb_res S3 method to create forecasts using weights from previously
trained forecast combination model

Table 1: Brief description of main functions available in the ForecastComb package
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Data Preparation

The ForecastComb package considers as a starting point that the user has already obtained a set
of component forecasts, either from survey data or using statistical techniques, and now seeks to
improve accuracy by combining those component forecasts into one. If the user only has the actual
time series data, other packages in R can be used to create a set of component models. For instance,
the forecastHybrid package by Shaub and Ellis (2017) which creates several univariate forecasts using
methods available in the mature and popular forecast package (Hyndman, 2017).

The method foreccomb is the workhorse in the data preparation step. It supports the user with
transforming the raw input data to make sure that the estimation of the forecast combinations will run
smoothly.

The call of foreccomb is:

foreccomb(observed_vector, prediction_matrix, newobs = NULL,
newpreds = NULL, byrow = FALSE, na.impute = TRUE, criterion = "RMSE")

The function requires user input for the parameters observed_vector (a vector, the actual data)
and prediction_matrix (a matrix, the set of component forecasts to be combined). The format of
the input matrix is as follows: Each column contains the forecasts from one of the P component
models. Each row corresponds to the cross-section of component forecasts at a specific point in time.
A situation where the format of the data is reversed, meaning that rows correspond to forecast models
and columns correspond to the time index, is handled by setting the argument byrow = TRUE.

The foreccomb function includes some convenient features that take note of the fact that in many
cases combination methods are applied to survey forecasts and the challenges that come along with
this:

• Split into Training Set and Test Set. The function allows the user to specify a training set
(observed_vector and prediction_matrix)and a test set (newobs and newpreds) separately.
This is useful since most combination functions have to estimate the weights (requiring part of
the sample to be dedicated to that task), while it is recommended that a test set is available to
evaluate the model’s performance on “new” data.

• Missing Value Imputation. Survey forecasts usually include missing values. This can be either
because some of the survey participants did not respond or because the set of survey participants
is changed. The foreccomb function provides two alternatives to deal with missing values: The
default option (na.impute = TRUE) uses the missing value imputation algorithm from the mtsdi
by Junger and de Leon (2012). It is a modified version of the EM algorithm for imputation that
is specifically adjusted for multivariate time series data, accounting for correlation between the
forecasting models and the time structure of the series itself. A smoothing spline is fitted to
each of the time series at every iteration and the degrees of freedom of each spline are chosen by
cross-validation. Alternatively, the argument can be set to na.impute = FALSE, which means
the component forecast models that include any missing values are dropped prior to estimating
forecast combinations, and the user is notified in the console if so relevant.

• Handling Multicollinearity. More often than not component forecasts that are used in the forecast
combination are highly correlated. This can trouble the estimation process which does not
handle well perfect collinearity. The foreccomb function has an inherent algorithm that checks
the set of component forecasts for perfect multicollinearity, and if detected, drops one of the
component models from the input data. The algorithm is designed to minimize the cost of
dropping one or more models from the input data, in the sense that out of the models that cause
perfect multicollinearity, it drops the least accurate forecast model. Only perfect multicollinearity
is handled. By default, Root Mean Squared Error (RMSE) is used as the accuracy metric, but
alternatively the user may choose the Mean Absolute Error (MAE) or the Mean Absolute
Percentage Error (MAPE) by changing the argument criterion.

The output of the foreccomb function is an object of S3 class foreccomb that can be passed on to the
estimation functions or the other auxiliary functions, for instance the function cs_dispersion which
computes the cross-sectional dispersion of the set of component forecasts.

This is often helpful for selecting a suitable combination method: One of the main findings of
Hsiao and Wan (2014) is that regression-based methods produce more accurate forecasts when one
or a few of the component forecasts are much better than the rest, while eigenvector-based methods
perform better when there is low dispersion among the component forecasts. The cs_dispersion
function can be used to compute and plot this cross-sectional dispersion using standard deviation
(default), interquartile range, or range.

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://CRAN.R-project.org/package=mtsdi


CONTRIBUTED RESEARCH ARTICLES 271

Estimation of Forecast Combination

The package provides the user with functions for the 15 estimation techniques for combined forecasts,
which were described in previous Section. The estimation functions require an object of S3 class
foreccomb as input, which is obtained using the methods from the previous subsection.

Four of the methods include trimming, i.e. a pre-selected subset of the full set of component
models that should be used in the estimation of combination weights. These are:

• Trimmed Mean (comb_TA)

• Winsorized Mean (comb_WA)

• Trimmed Eigenvector Approach (comb_EIG3)

• Trimmed Bias-Corrected Eigenvector Approach (comb_EIG4)

For these methods, the user has some flexibility. The package provides the option to set the
trimming factor (or, for the eigenvector methods, the number of retained component models) manually.
Otherwise, an inbuilt optimization algorithm is used for choosing the trimming factor such that the
combined forecast has the best possible fit. Again, this optimization can be based on either RMSE,
MAE, or MAPE, which are controlled by the argument criterion.

A simple simulation example:

R> actual <- rnorm(100)
R> forecasts <- matrix(rnorm(1000, 1), 100, 10)

R> input_data <- foreccomb(actual, forecasts)

R> # Manual Selection of Trimming Factor:
R> model1 <- comb_TA(input_data, trim_factor = 0.3)

R> # Assess accuracy of the combined forecast:
R> model1$AccuracyTrain

ME RMSE MAE MPE MAPE ACF1 Theil's U
Training Set -1.07312 1.520668 1.274116 146.411 486.3501 -0.0480562 1.698456

R> # Algorithm-Optimized Selection of Trimming Factor:
R> model2 <- comb_TA(input_data, criterion = "RMSE")

Optimization algorithm chooses trim factor for trimmed mean approach...
Algorithm finished. Optimized trim factor: 0.1

R> # Assess accuracy of the combined forecast:
R> model2$AccuracyTrain

ME RMSE MAE MPE MAPE ACF1 Theil's U
Training Set -1.063363 1.515091 1.27304 134.7211 489.4353 -0.03678255 1.692617

As can be seen, the automated selection of the trimming factor leads to an improved accuracy of
the combined forecast.

The 15 methods included in the package all produce static combination weights, i.e. the models
use the training set data to estimate combination weights, which will in turn be applied to all periods
of the test set. The research community in the forecasting field is strongly divided in the assessment
of the value of time-varying combination weights, since putting higher weights on more recent data
tends to increase the parameter variance. Section 4.1 in Timmermann (2006) reviews the advantages
and challenges of allowing for time-varying weights.

While the ForecastComb mainly uses time-invariant combination weights, the user is provided
with some flexibility. The rolling_combine function allows for the estimation of each of the methods
with time-varying weights. The approach builds on the idea of time series cross-validation (Bergmeir
et al., 2015), using the provided training set as a departure point to estimate starting weights, and then
increasing the training set one step at a time and re-estimating the weights for the remaining test set.
However, this approach requires that the user provides a full test set, i.e. also providing observed
values for the test set.

The function auto_combine provides a quick and painless alternative. The function is based on a
grid-search optimization that returns the combined forecast with the best in-sample accuracy (using
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RMSE as accuracy metric in the default setting).

All of the estimation methods return an object of S3 class foreccomb_res with the components
presented in Table 2. The object can subsequently be passed on to post-fit functions.

Return Values Description

For all methods

Method Returns the used forecast combination method

Models Returns the individual input models that were used for the forecast combinations

Weights Returns the combination weights obtained by applying the combination method
to the training set

Fitted Returns the fitted values of the combination method for the training set

Accuracy_Train Returns a range of accuracy measures for the training set

Forecasts_Test Returns forecasts produced by the combination method for the test set. Only
returned if input included a forecast matrix for the test set

Accuracy_Test Returs a range of accuracy measures for the test set. Only returned if input
included a forecast matrix and a vector of actual values for the test set

Input_Data Returns the data forwarded to the method

Only for comb_TA and comb_WA

Trim Factor Returns the trim factor, λ

Only for comb_OLS, comb_LAD, comb_EIG3 and comb_EIG4

Intercept Returns the intercept (bias correction)

Only for comb_EIG3 and comb_EIG4

Top_Predictors Number of retained predictors

Ranking Ranking of predictors that determines which models are removed in the trimming
step

Table 2: Output Components of the Forecast Combination Estimation Metods

Post-Fit Functions

Results from the estimation of combined forecasts can be passed on to two post-fit convenience
functions: summary and plot, which are S3 methods specific to the class foreccomb_res.

The summary function displays the output of the respective forecast combination in concise form,
it displays the estimated combination weights (and the intercept, if the combination method includes
one), as well as accuracy statistics for the training set and the test set.

The plot function will produce different plots based on the input data. If only a training set
was provided, it plots the actual versus the fitted values; if a test set was also provided, it plots the
combined forecasts as well. Another option for the user is a plot of the combination weights5, obtained
by setting which = 2 in the function call.

5In case the combined forecast is produced using time-varying combination weights, the weights plot displays
only the average weight of the respective component model over the test set period.
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UK Electricity Supply: An Empirical Example

The ForecastComb package includes the dataset electricity, which is a multivariate time series of
monthly UK electricity supply (in GWh) from January 2007 to March 2017, and 5 univariate time series
forecasts for the same series and period. The observed data series is sourced from the International
Energy Agency (IEA, 2017). The component models to be combined are the following cross-validated
one-month univariate forecasts in the dataset:

• ARIMA (produced using the auto.arima function in the forecast package),

• ETS (produced using the ets function in the forecast package),

• Neural Network (produced using the nnetar function in the forecast package),

• Damped Trend (produced using the ets function in the forecast package),

• Dynamic Optimized Theta Model (produced using the dotm function in the forecTheta package
by Fiorucci et al. (2016)).

To illustrate the functionalities of the package, we apply 4 combination techniques: the simple
average (comb_SA), the OLS regression (comb_OLS), the standard eigenvector approach (comb_EIG1) and
the trimmed bias-corrected eigenvector approach (comb_EIG4). The selected methods span all three
categories of combination techniques (statistics-based, regression-based, and eigenvector-based) and
includes trimmed and bias-corrected methods and are therefore suitable to show the full functionality
of the ForecastComb package in this empirical context. using both the static and dynamic version of
each. For the selected combination methods, we produce both static and dynamic forecasts, which
gives us a total of 7 different time series of combined forecasts (not 8, since the static and dynamic
versions of the simple average combination are identical).

UK Electricity Supply, 2007 − 2017
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Figure 1: UK Electricity Supply, 2007 - 2017: Actual Value and Forecasts.

For the purpose of this exercise, we use the first 84 months as training set, which leaves us with a
test set size of 39. Figure 1 plots the actual series and the univariate forecasts. The forecasts (which are
1-month forecasts obtained via time series cross-validation) track the actual series very well. None of
them performs exceptionally poorly compared with the rest, which are conditions that tend to favour
eigenvector approaches (Hsiao and Wan, 2014). As it is with most electricity data, the main difference
between the individual models is in their ability to quickly recognize and adjust for turning points.
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For example, the neural nets model handles turning points well, but sometimes also overshoots, while
the ARIMA model has a smoother behaviour around turning points.

First, we format the data correctly for the estimation of combination weights. This step ensures
later operations would proceed smoothly. Since there are no missing values and no perfectly collinear
columns in our dataset, this is relatively straightforward:

R> data(electricity)
R> train.obs <- electricity[1:84, 6]
R> train.pred <- electricity[1:84, 1:5]
R> test.obs <- electricity[85:123, 6]
R> test.pred <- electricity[85:123, 1:5]
R> input_data <- foreccomb(train.obs, train.pred, test.obs, test.pred)

Once the object of S3 class foreccomb is created, it can be fed into the estimation functions. We can
look at the cross-sectional dispersion, to get a better idea of variability in the univariate forecasts.

R> cs_dispersion(input_data, measure = "SD", plot = TRUE)
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Figure 2: Cross-Sectional Standard Deviation of the Component Forecasts.

Figure 2 shows that apart from a brief period of increased dispersion around the end of 2009, the
cross-sectional standard deviation of the component forecasts is rather stable and low given the level
of around 25,000 to 35,000 GWh. This begs the question whether conditions have fluctuated enough
during the test set so that estimation of time-varying weights is beneficial, yet we proceed with it for
this demonstration.

R> ####### ESTIMATION OF STATIC FORECAST COMBINATIONS ########
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R> SA <- comb_SA(input_data)
R> OLS_static <- comb_OLS(input_data)
R> EIG1_static <- comb_EIG1(input_data)
R> EIG4_static <- comb_EIG4(input_data, criterion = "MAE")

R> ###### ESTIMATION OF DYNAMIC FORECAST COMBINATIONS
R> OLS_dyn <- rolling_combine(input_data, "comb_OLS")
R> EIG1_dyn <- rolling_combine(input_data, "comb_EIG1")
R> EIG4_dyn <- rolling_combine(input_data, "comb_EIG4", criterion = "MAE")

The 7 combined forecasts can be evaluated separately by looking at their summary measures,
which we present here for the static Ordinary Least Squares approach:

R> summary(OLS_static)

Summary of Forecast Combination
-------------------------------
Method: Ordinary Least Squares Regression
Individual Forecasts & Combination Weights:

Combination Weight
arima 0.02152869
ets -0.20646266
nnet 0.20992792
dampedt -1.04349858
dotm 1.97991049

Intercept (Bias-Correction): 962.3229

Accuracy of Combined Forecast:

ME RMSE MAE MPE MAPE
Training Set -4.417560e-12 888.1433 697.8645 -0.08262472 2.254470
Test Set -4.007742e+01 671.5214 536.0331 -0.24705122 1.841961

Additional information can be extracted from the combination object:
For fitted values (training set): OLS_static$Fitted
For forecasts (test set): OLS_static$Forecasts_Test
See str(OLS_static) for full list.

The output shows that the OLS combination puts an extremely high relative weight on the forecast
from the Dynamic Optimized Theta model, which seems to be the best component forecast, which is
rather surprising given that seasonality is an important feature in the analyzed series and Theta models
cannot incorporate seasonality into the estimation so far, relying on pre-estimation deseasonalizing
and post-estimation reseasonalizing. Table 3 shows a comparison of the accuracies achieved by the
combined forecasts. Since all forecasts are for the same series, it is reasonable to use MAE as accuracy
metric.

Method MAE Training Set MAE Test Set
Simple Average 819.28 573.39
Ordinary Least Squares (static) 697.86 536.03
Ordinary Least Squares (dynamic) 697.86 533.47
Standard Eigenvector (static) 821.60 573.84
Standard Eigenvector (dynamic) 821.60 572.99
Trimmed Bias-Corrected Eigenvector (static) 785.30 540.18
Trimmed Bias-Corrected Eigenvector (dynamic) 785.30 541.98

Table 3: Mean Absolute Errors of Combined Forecasts

The evaluation of accuracy delivers some interesting insight: All of the combination models
perform better in the test set than in the training set, which is counter-intuitive, but is likely due to
the increased dispersion among the component forecasts in the early period. The results also clearly
suggest that one or more of the component forecasts were biased. The two methods with an intercept
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(i.e. bias correction) perform best. Finally, allowing for time-varying combination weights does not
seem to change test-set accuracy much compared with the models’ static counterparts, suggesting
that the estimated combination weights did not fluctuate a lot over time. There are some potential
explanations why the OLS method performed extremely well in this case:

• With such stable conditions the risk of ‘bouncing betas’ (described in the previous section) is
low,

• The OLS method produces unbiased forecasts even if one or more of the component forecasts are
biased (which is why the trimmed bias-corrected eigenvector approach performed reasonably
well too),

• One of the component forecasts is much better than the rest, a situation that is favorable
for regression-based approaches, as pointed out by Hsiao and Wan (2014). These are also
conditions under which sophisticated methods actually can largely improve upon a simple
average combination.

Now that we learned that some of the combination models produced more accurate forecasts
than the simple average, we address the next, very natural question: How well did the combination
methods perform compared to the univariate component forecasts themselves? To shed more light on
this question, Table 4 shows the MAE values for the univariate models during the test set period.

Method MAE Test Set
ARIMA 770.32
ETS 615.88
Neural Network 730.35
Damped Trend 660.08
DOTM 540.24

Table 4: Mean Absolute Errors of Univariate Component Forecasts

The results of the accuracy evaluation speak for themselves. Not only did two of the combined
forecasts perform better or equally well as the best univariate forecast over the test set period, but
also the forecast risk is considerably lower indeed. In the test set the range of MAEs of the different
combined forecast methods is only 40, while the corresponding value for the univariate forecasting
methods is 230. It is worth noting that all of the combined forecasts perform considerably better than
even the second-best univariate forecast, emphasizing the appeal of forecast combination: In the ideal
case, it is possible to end up with a forecast that is better than the best univariate forecast. Even if this
is not the case, using forecast combination considerably decreases the risk of ending up with a poorly
performing model.

Finally, we take a closer look at the results from the best combined forecast, which is the dynamic
OLS combination method in this exercise.

R> ##### ACTUAL VS FITTED PLOT #####
R> plot(OLS_dyn)

R> ##### COMBINATION WEIGHTS #####
R> OLS_static$Weights
fhatarima fhatets fhatnnet fhatdampedt fhatdotm
0.02152869 -0.20646266 0.20992792 -1.04349858 1.97991049
R> colMeans(OLS_dyn$Weights)

fhatarima fhatets fhatnnet fhatdampedt fhatdotm
0.002750948 -0.123811218 0.184846358 -1.098381593 2.001988985

Figures 3 shows how well the combined forecast obtained from the dynamic OLS method predicts
the monthly electricity supply series. Results confirm the conjecture that the stable conditions (low
cross-sectional dispersion and one very dominant univariate component forecast) do not cause a lot of
fluctuation in the combination weights even when allowing for time-varying weights.

The weights presented also confirms another thing: that weights obtained using the OLS combina-
tion methods can be hard to interpret. It seems obvious that the method should put a high weight on
the DOTM forecast, since it is the best univariate forecast by far. However, the reason why it assigns
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Figure 3: Static OLS Forecast Combination: Actual vs Fitted Plot.

negative weights to the ETS and Damped Trend forecasts (the second- and third-best univariate
forecasts) is not very intuitive. A possible explanation might be that all three of these are exponential
smoothing-type models, suggesting that the information obtained from the ETS and Damped Trend
models is better captured by the DOTM model, while ARIMA and Neural Networks are not closely
related modelling approaches to the Theta model, so that even though these models perform far worse
on average, they capture information differently and might outperform the DOTM forecast in some
periods for that reason, justifying their positive weights (however small) and explaining how the
combined forecast can slightly outperform the best component forecast.

Discussion and Conclusions

Forecast combination is a useful strategy to hedge against model risk. Even if combined forecasts
do not win over the most accurate component forecast, they generally avoid poor performance by
circumventing the choice between individual methods (Timmermann, 2006). Instead of putting all
eggs into one basket using model selection, these model averaging techniques are motivated by
portfolio theory and diversify across component forecasts.

The ForecastComb package categorizes some of the most popular approaches into 3 groups: (a)
simple statistics-based methods, (b) regression-based methods, and (c) eigenvector-based methods.
Providing both regression-based combinations and eigenvector-based combinations to the users is
considered useful, since the former tend to perform relatively better when one or a few component
forecasts are much better than the rest, while the latter perform relatively better when all forecasts are
in the same ballpark (Hsiao and Wan, 2014).

The package is designed to support users along the entire modelling process: data preparation,
model estimation, and interpretation of results using summaries and plotting functionalities. It in-
cludes tools for data transformation that are designed to deal with two common issues in forecast
combination prior to estimation – missing values and multicollinearity. The 15 combination methods
are available in both static and dynamic variants, and users have the option to automate the selection
algorithm so that a good combination method is found based on training set fit. Finally, the package
offers specialized functions for summarizing and visualizing the combination results.
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While the current version of the package already provides a comprehensive set of tools for forecast
combination, there is scope for further extensions in future updates. First, additional combination
methods that showed promising results recently can be added, for instance the factor-augmented
regression approach by Cheng and Hansen (2015) and the AdaBoost algorithms reviewed by Barrow
and Crone (2016). Second, additional algorithms for adaptive combination weights (cf. Timmermann,
2006) can be implemented to provide even more flexibility with dynamic estimation. There are few
other possible extensions which are not handled here. For example the adaptation for a forecast
combination context of the mean absolute scaled error (Hyndman and Koehler, 2006) – the current
gold standard for accuracy evaluation – using the in-sample MAE of the best component forecast as
scaling factor. Another extension is of course the combination of forecast densities, while in this paper
the scope was limited to point-forecasts only.
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testforDEP: An R Package for Modern
Distribution-free Tests and Visualization
Tools for Independence
by Jeffrey C. Miecznikowski, En-shuo Hsu, Yanhua Chen, Albert Vexler

Abstract This article introduces testforDEP, a portmanteau R package implementing for the first
time several modern tests and visualization tools for independence between two variables. While
classical tests for independence are in the base R packages, there have been several recently developed
tests for independence that are not available in R. This new package combines the classical tests
including Pearson’s product moment correlation coefficient method, Kendall’s τ rank correlation
coefficient method and Spearman’s ρ rank correlation coefficient method with modern tests consisting
of an empirical likelihood based test, a density-based empirical likelihood ratio test, Kallenberg data-
driven test, maximal information coefficient test, Hoeffding’s independence test and the continuous
analysis of variance test. For two input vectors of observations, the function testforDEP provides a
common interface for each of the tests and returns test statistics, corresponding p values and bootstrap
confidence intervals as output. The function AUK provides an interface to visualize Kendall plots and
computes the area under the Kendall plot similar to computing the area under a receiver operating
characteristic (ROC) curve.

Introduction

In this article, we present the testforDEP R package, a package for testing dependence between
variables. Since in nonparametric settings there are no most powerful tests for independence, it is
important to be able to implement various reasonable independence tests tuned for different classes
of alternatives. This package addresses a need for implementing both classical and novel tests of
independence in a single easy to use function. The function cor.test offered in the base R package
gives classical tests for association/correlation between two samples, using the Pearson product
moment correlation coefficient (Pearson, 1920), Kendall τ rank correlation coefficient (Kendall, 1938)
and Spearman ρ rank correlation coefficient (Spearman, 1904). The function cor.test is helpful to test
for independence between two samples when the samples are linearly dependent or monotonically
associated. However the function cor.test is less powerful to detect general structures of dependence
between two random variables, including non-linear and/or random-effect dependence structures.
Many modern statistical methodologies have been proposed to detect these general structures of
dependence. These methods include an empirical likelihood based test (Einmahl and McKeague,
2003), a density-based empirical likelihood ratio test for independence (Vexler et al., 2014), data-driven
rank test for independence (Kallenberg and Ledwina, 1999), maximal information coefficient (Reshef
et al., 2011) and a continuous analysis of variance test (Wang et al., 2015). These methods are useful
to detect complex structures of dependence and until now there were no R packages available that
implement these modern tests.

We propose the new package testforDEP, combining both classical and modern tests. The package
testforDEP also provides dependence visualization tools such as the Kendall plot with the area under
Kendall plot (Vexler et al., 2017) which previously has not been available in R packages. Moreover, we
develop an exact test based on the maximal information coefficient to detect dependence between two
random variable and we perform a power analysis for these different tests. The testforDEP package is
available from the Comprehensive R Archive Network and also available for download at the author’s
department webpage.

We will focus on tests of bivariate independence of two random variables X and Y where we have
n sample measurements or observations (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn), respectively. If X and
Y have cumulative distribution functions FX(x) and FY(y) and probability density functions fX(x)
and fY(y) we say X and Y are independent if and only if the combined random variable (X, Y) has a
joint cumulative distribution function F(x, y) = FX(x)FY(y) or equivalently, if the joint density exists,
f (x, y) = fX(x) fY(y) for all x, y ∈ R. We are interested in testing the null hypothesis:

H0 : X and Y are independent, (1)

which is equivalent to
H0 : F(x, y) = FX(x)FY(y) for all x, y ∈ R. (2)

We note there are no most powerful testing strategies in this setting. Thus a strategy for choosing a
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test depends on the type of correlation that a user is trying to detect. The following sections detail
the different tests for independence, outline the components of the testforDEP package and provides
real data examples demonstrating the power of the modern methods to detect nonlinear dependence.
Finally, we conclude with a brief summary and future directions.

Classical tests of independence

In the following subsections we outline the classical tests of independence.

Pearson product moment correlation coefficient

The Pearson product-moment correlation coefficient γ is a well known measure of linear correlation (or
dependence) between two random variables with a full presentation in Pearson (1920) and Hauke and
Kossowski (2011). Using the standard Pearson estimator (denoted γ̂ we have that Tγ̂ asymptotically
follows a t distribution with n− 2 degrees of freedom under independence. Accordingly, a size α
rejection rule is:

|Tγ̂| > t1−α/2, (3)

where t1−α/2, is the 1− α/2 quantile for the t distribution with n− 2 degree of freedom. Advantages
of the Pearson test are that it is simple to execute, has high power to detect linear dependency
and also when the underlying data are normally distributed in which it also has the form of a
maximum likelihood estimator. A weakness of the Pearson test is that it has very weak power to
detect dependency that is not characterized by first moments and is often not powerful in many
nonparametric settings. For example, if Xi is a normally distributed random variable and Yi = 1/Xi
then the Pearson test will have very lower power to detect this structure (see, Miecznikowski et al.
(2017)).

Kendall rank correlation coefficient

The Kendall rank correlation coefficient τ is a well known method proposed in Kendall (1938) as a
nonparametric measure of monotonic association between two variables. Using the standard estimator
τ̂, the test statistic Zτ is given by:

Zτ =
3τ
√

n(n− 1)√
2(2n + 5)

, (4)

where Zτ approximately follows a standard normal distribution under independence. A level α
rejection rule for the null hypothesis is as follows:

|Zτ | > z1−α/2 (5)

where z1−α/2 is 1− α/2 quantile for a standard normal distribution. A weakness of the Kendall rank
correlation coefficient test is that it has low power to detect non-monotonic dependency structures.

Spearman rank correlation coefficient

Spearman’s rank correlation coefficient ρ proposed by Spearman (1904) is a nonparametric measure of
statistical dependence between two variables. Spearman’s rank correlation measures the monotonic
association between two variables (Spearman, 1904; Hauke and Kossowski, 2011). The statistic ρ is
defined as:

ρ = 1− 6 ∑n
i=1 di

2

n(n2 − 1)
, di = Ri − Si, (6)

where Ri, Si are the ranks of Xi and Yi, respectively. Note ρ = 0 suggests X and Y are independent.
To conduct a test for statistical independence under the null hypothesis, we use the test statistic Tρ

defined as:

Tρ = ρ

√
n− 2
1− ρ2 , (7)

which is distributed approximately as a Student’s t distribution with n− 2 degrees of freedom under
null hypothesis. Accordingly, a level α rejection rule is:

|Tρ| > t1−α/2. (8)
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Similar to the Kendall rank correlation coefficient, a weakness of the Spearman rank correlation
coefficient test is that it has low power to detect non-monotonic dependency structures.

Hoeffding’s test for independence

Hoeffding’s test for dependence is proposed in Hoeffding (1948) as a test for two random variables
with continuous distribution functions. Hoeffding’s D is a nonparametric measure of the distance
between joint distribution, F(x, y) and product of marginal distributions, FX(x)FY(y) (Harrell Jr and
Dupont, 2006). The coefficient D is defined as:

D(x, y) = F(x, y)− FX(x)FY(y). (9)

We can also define ∆ as:
∆ = ∆(F) =

∫
D2(x, y)dF(x, y), (10)

where F is the joint distribution of X and Y and the integral is over R2.

We denote Ω′ as the class of X, Y’s such that their joint density function F(x, y) is continuous.
Denote Ω′′ as the class of X, Y’s such that their joint and marginal probability density functions are
continuous. It has been shown that if F(x, y) belongs to Ω′′, ∆(F) = 0 ⇐⇒ D(x, y) = 0. The random
variables X and Y are independent if and only if D(x, y) = 0.

It can be shown that D ranges between − 1
60 and 1

30 where larger values of D suggest dependence.
An estimator of D, D̂ is defined as:

D̂(x, y) = F̂(x, y)− F̂X(x)F̂Y(y). (11)

We use D̂ as the test statistic and note that it only depends on the rank order of observations (Hoeffding,
1948). For computing the test statistic D̂, we use the R package Hmisc (Harrell Jr et al., 2017). Note the
returned test statistic D̂′ is 30 times the original D̂ in Hoeffding (1948). A size α test can be given by:

D̂′ > Cα, (12)

where Cα is a size α critical value.

Due to the limiting computing tools available for the original publication in 1948, the author only
provided cutoff tables for small sample sizes. With advanced computing power, we compute the Cα

cutoffs for n = 10, 20, 50, 100, 200, 500 in Table 1.

n = 10 n = 20 n = 50 n = 100 n = 200 n = 500

α = 0.01 0.2976 0.1145 0.0377 0.0191 0.0086 0.0037
α = 0.05 0.1548 0.0589 0.0209 0.0098 0.0045 0.0020
α = 0.1 0.0952 0.0378 0.0131 0.0061 0.0028 0.0013
α = 0.2 0.0437 0.0184 0.0060 0.0028 0.0011 0.0006
α = 0.8 -0.0635 -0.0232 -0.0078 -0.0037 -0.0018 -0.0007
α = 0.9 -0.0794 -0.0294 -0.0097 -0.0045 -0.0021 -0.0008

Table 1: Hoeffding cutoff values for D̂′ based on 5000 Monte Carlo simulations.

We note this test is not as powerful as Pearson’s test when the dependency is linear.

Modern tests of independence

In the following subsections we outline the modern tests of independence.

Density-based empirical likelihood ratio test for independence

A density-based empirical likelihood ratio test is proposed in Vexler et al. (2014) as a nonparametric
test of dependence for two variables. Following Vexler et al. (2014), to test the null hypothesis we use
the test statistic VTn defined as:

VTn = max
0.5nβ2≤m≤γn

max
0.5nβ2≤r≤γn

n

∏
i=1

n∆̃i(m, r)
2m

, (13)
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where γn = min(n0.9, n/2), 0.75 < β2 < 0.9 and ∆̃i(m, r) is defined as,

∆̃i(m, r) ≡ F̂(X(si+r) ,Y(i+m))−F̂(X(si−r) ,Y(i+m))−F̂(X(si+r) ,Y(i−m))+F̂(X(si−r) ,Y(i−m))+n−β1

F̂X(X(si+r))−F̂X(X(si−r))
, (14)

where F̂ is the empirical joint distribution of X, Y and Y(1) ≤ Y(2), . . . ,≤ Y(n) are the order statistics
of Y1, Y2, . . . Yn and Xt(i) is the concomitant of the ith order statistic defined in David and Nagaraja
(1970). F̂X is the empirical marginal distribution of X, si is the integer number such that X(s) = Xt(i),
β1 ∈ (0, 0.5).

The statistic VTn reaches its maximum with respect to m ≥ 0.5nβ2 and r ≥ 0.5nβ2 at m = 0.5nβ2

and r = 0.5nβ2 (Vexler et al., 2014). Thus, we simplify (13) to

VTn =
n

∏
i=1

n1−β2 ∆̃i

(
[0.5nβ2 ], [0.5nβ2 ]

)
, (15)

where the function [x] denotes the nearest integer to x. Accordingly, a size α rejection rule of the test is
given by:

log(VTn) > Cα, (16)

where Cα is an α-level test threshold. It is established in Vexler et al. (2014) that VTn is distribution
free under (1) and the critical values Cα are estimated by 50,000 Monte Carlo simulations from
X1, . . . , Xn ∼ Uni f orm[0, 1] and Y1, . . . , Yn ∼ Uni f orm[0, 1].

This test is very powerful for many nonparametric alternatives as it is designed to approximate
corresponding nonparametric likelihood ratios, however, when the dependency is linear with normal
data other methods such as Pearson and Spearman tests will outperform this method.

Kallenberg data-driven test for independence

Kallenberg and Ledwina (1999) propose two data-driven rank tests for independence, TS2 and V. The
TS2 statistic uses the intermediate statistic Tk defined as:

Tk =
k

∑
j=1

{
1√
n

n

∑
i=1

bj

(
Ri − 1

2
n

)
bj

(
Si − 1

2
n

)}2

, (17)

where bj denotes the jth orthonormal Legendre polynomial. The selection of the order k in Tk is done
by the modified Schwarz’s rule, given by

S2 = min{1 ≤ k ≤ d(n), Tk − k log n ≥ Tj − j log n, j = 1, . . . , d(n)}, (18)

where d(n) is a sequence of numbers tending to infinity as n→ ∞. The test statistic is,

TS2 =
S2

∑
j=1

{
1√
n

n

∑
i=1

bj

(
Ri − 1

2
n

)
bj

(
Si − 1

2
n

)}2

. (19)

It is reported in Kallenberg and Ledwina (1999) that there is almost no change in the critical value of
TS2 for d(n) > 2. By default, we choose d(n) = 4. The decision rule to reject the null hypothesis in (2)
is

TS2 > Cα, (20)

where Cα is an α-level test threshold.

In Kallenberg and Ledwina (1999) the TS2 test statistic in (19) is called the "diagonal" test statistic
and the other test statistic, V is called the "mixed" statistic due to the fact that it involves "mixed"
products. To derive the V statistic, we only consider the case d(n) = 2 and have sets of indexes
{(1, 1)}, {(1, 1), (i, j)}, where (i, j) 6= (1, 1). Let Λ be one of these sets and define

TΛ = ∑
(r,s)∈Λ

V(r, s), (21)

where

V(r, s) =

{
1√
n

n

∑
i=1

br

(
Ri − 1

2
n

)
bs

(
Si − 1

2
n

)}2

. (22)

Letting |Λ| denote the cardinality of Λ, we now search for a model, say Λ(max), for which TΛ−|Λ| log n
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is maximized. Having obtained Λ(max), the second test statistic of (2) is

V = TΛ(max) . (23)

It can be easily seen that the test statistic V can be rewritten (for d(n) = 2) in the simple form,

V =

 V(1, 1) , if max
{

V(1, 2), V(2, 1), V(2, 2)
}
< log n

V(1, 1) + max
{

V(1, 2), V(2, 1), V(2, 2)
}

, otherwise.

A size α rejection rule for the test is given by

V > Cα, (24)

where Cα is a size α critical value.

This test is very powerful when data are from an exponential family, however the statistic is rather
complicated and a required assumption is that the data distributions belong to semiparametrically
defined families.

Maximal information coefficient

The maximal information coefficient (MIC) proposed in Reshef et al. (2011) is a measure of strength
of the linear and non-linear association between two variables X and Y. The maximal information
coefficient uses binning as a means to apply mutual information on continuous random variables.
Defining D as a finite set of ordered pairs, we can partition the x-values of D into x bins and the
y-values of D into y bins, allowing empty bins. We call such partition an x-by-y grid, denoted G. For a
fixed D, different grids G results in different distributions D|G. The MIC of a set D of two-variable
data with sample size n and grid size less than B(n) is defined as:

MIC(D) = max
xy<B(n)

{M(D)x,y}, (25)

where x and y are observed values of variables X and Y, ω(1) < B(n) ≤ o(n1−ε) for some 0 < ε < 1.
Note M(D)x,y is called the characteristic matrix of a set D of two-variable data x, y and defined as:

M(D)x,y =
I∗(D, x, y)

log min{x, y} , (26)

where I∗(D, x, y) is defined as:
I∗(D, x, y) = max I(D|G), (27)

for a finite set D ⊂ R2 and positive integers x, y. We define the mutual information of two discrete
random variables X and Y as:

I(D|G) = ∑
y∈Y

∑
x∈X

F̂(x, y) log
(

F̂(x, y)
F̂X(x)F̂Y(y)

)
, (28)

The MIC statistic in (25) is computed using the R package minerva (see Albanese et al. (2013)). To our
knowledge there is no hypothesis tests published to detect general structures of dependence based on
MIC. We use an approach similar to the one in Simon and Tibshirani (2014) to develop an exact test
based on the MIC statistic. A size α MIC test can be given by,

MIC(D) > Cα (29)

where Cα is a size α critical value. To evaluate our approach, we simulated 5000 Monte Carlo sets
of independent random variables X and Y of size n from standard normal distribution, exponential
distribution and reverse of the standard normal distribution. The cutoff results are shown in Table 2.
Regardless of the data distribution, the cutoff values for a given sample size are very similar.

It has been noted in Simon and Tibshirani (2014) that the MIC approach has serious power
deficiencies and when used for large-scale exploratory analysis will result in too many false positives.

Empirical likelihood based test for independence

An empirical likelihood based test is proposed by Einmahl and McKeague (2003). The approach is
via localizing the empirical likelihood with one or more "time" variables implicit in the given null
hypothesis and then constructing an omnibus test statistic by integrating the log-likelihood ratio over
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n = 10 n = 35 n = 75 n = 100

N | E | RN N | E | RN N | E | RN N | E | RN

α = 0.01 0.61|0.61|0.61 0.50|0.52|0.50 0.38|0.37|0.38 0.33|0.33|0.33
α = 0.05 0.61|0.61|0.61 0.43|0.43|0.43 0.33|0.33|0.33 0.30|0.30|0.30
α = 0.1 0.61|0.61|0.61 0.41|0.40|0.41 0.31|0.31|0.31 0.28|0.28|0.28
α = 0.5 0.24|0.24|0.24 0.31|0.30|0.31 0.25|0.25|0.25 0.23|0.24|0.23
α = 0.75 0.24|0.24|0.24 0.27|0.26|0.27 0.23|0.23|0.23 0.21|0.21|0.21
α = 0.9 0.12|0.12|0.12 0.24|0.23|0.24 0.21|0.21|0.21 0.20|0.20|0.20
α = 0.95 0.12|0.12|0.12 0.23|0.22|0.23 0.20|0.20|0.20 0.19|0.19|0.19
α = 0.99 0.11|0.11|0.11 0.20|0.20|0.20 0.18|0.18|0.18 0.17|0.17|0.17

Table 2: Cutoff values from 5000 Monte Carlo simulations for a normal distribution (N), exponential
distribution (E) and reverse normal distribution (RN).

those variables. We first consider a null hypothesis,

H0 : FX = F0, (30)

where F0 is a fully specified distribution function. We define the localized empirical likelihood ratio
R(x) as:

R(x) =
sup{L(F̃X) : F̃X(x) = F0(x)}

sup{L(F̃X)}
, (31)

where F̃ is an arbitrary distribution function, L(F̃X) = ∏n
i=1(F̃X(Xi)− F̃X(Xi−)). The supremum in

the denominator is achieved when F̃ = F̂, the empirical distribution function. While the supremum in
the numerator is attained by putting mass F0/(nF̂(x)) on each observation up to and including x and
mass (1− F0(x))/(n(1− F̂(x))) on each observation beyond x (Einmahl and McKeague, 2003). This
gives the log localized empirical likelihood ratio:

log R(x) = nF(x) log
F0(x)
F̂(x)

+ n(1− F̂(x)) log
1− F0(x)
1− F̂(x)

. (32)

Note that 0 log(a/0) is defined as 0. For an independence test, the local likelihood ratio test statistic is:

R(x, y) =
sup{L(F̃) : F̃(x, y) = F̃X(x)F̃Y(y)}

sup{L(F̃)} , (33)

for (x, y) ∈ R2, with L(F̃) = ∏n
i=1 P̃({Xi}), where P̃ is the probability measure corresponding to F̃.

The log local likelihood ratio test statistic is then:

log R(x, y) =nP̂(A11) log
F̂X(x)F̂Y(y)

P̂(A11)

+ nP̂(A12) log
F̂X(x)(1− F̂Y(y))

P̂(A12)

+ nP̂(A21) log
(1− F̂X(x))F̂Y(y)

P̂(A21)

+ nP̂(A22) log
(1− F̂X(x))(1− F̂Y(y))

P̂(A22)
,

(34)

where P̂ is the empirical measure of joint probability and

A11 = (−∞, x]× (−∞, y],
A12 = (−∞, x]× (y, ∞),

A21 = (x, ∞)× (−∞, y],
A22 = (x, ∞)× (y, ∞).

(35)

The test statistic Tel is defined as:

Tel = −2
∫ ∞

−∞

∫ ∞

−∞
log R(x, y)dF̂X(x)F̂Y(y), (36)
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where Tel is distribution-free. We reject H0 when

Tel > Cα, (37)

where Cα is a size α critical value.

This test is characterized by moments and is very powerful for many nonparametric alternatives.
However, when the dependency is linear with normally distributed data, this test is outperformed by
Pearson and Spearman tests.

Kendall plot and area under Kendall plot

The Kendall plot, also called K-plot, is a visualization of dependence in a bivariate random sample.
It is proposed in Genest and Boies (2012). Similar to a Chi-plot which detects association in random
samples from continuous bivariate distributions, the K-plot adapts the concept of a probability plot to
detect dependence.

The horizontal axis in a K-plot, Wi:n is the expectation of the ith order statistics in a random sample
of size n from the distribution K0 of the Hi (defined below) under the null hypothesis of independence.
(Genest and Boies, 2012). Wi:n can be computed as:

Wi:n = n
(

n− 1
i− 1

) ∫ 1

0
w{K0(w)}i−1 × {1− K0(w)}n−idK0(w), (38)

for all 1 ≤ i ≤ n. Note K0 is given as:

K0(w) = w− w log(w), 0 ≤ w ≤ 1. (39)

The vertical axis is the sorted Hi. Unlike Wi:n, Hi is computed base on information provided by data.

Note Hi is defined as:

Hi =
1

n− 1

n

∑
i=1

Ind(X ≤ Xi, Y ≤ Yi), (40)

where Ind is indicator function.

Let 0 ≤ p ≤ 1 then some properties of the K-plot are:

1. when Y = X, all points fall on curve K−1(p),

2. when Y = −X, all points fall on a horizontal line,

3. when X and Y are independent, the graph is linear.

The area under the Kendall plot (AUK) is proposed in Vexler et al. (2017) as an index to indepen-
dence. It applies area-under-curve analysis and computes the area under the Kendall plot. Some
properties are listed below:

1. when Y = X, AUK = 0.75,

2. when Y = −X, AUK = 0,

3. when X and Y are independent, AUK = 0.

Note AUK = 0 does not imply independence. The AUK is similar to computing the area under the
curve (AUC) for a receiver operating curve (ROC). In an ROC curve the true positive rate (sensitivity)
is plotted as a function of the false positive rate for different cut-off points. A large AUC (near 1)
suggests a good prediction model whereas a small AUC (near 0.5) suggests a model that is no better
than chance. Similarly, a large AUK suggests dependence while an AUK near 0 may be suggestive
of independence and should be further examined using one of the proposed tests. Further, more
complicated correlation patterns such as a mixture of positive and negative correlations as in Example
2 (see Data analysis examples) can be detected with the K-plot.

What is the package testforDEP

The R Package testforDEP includes two functions, testforDEP(), AUK() and one data frame, LSAT.

testforDEP

The function testforDEP() is the interface for the tests. The function testforDEP() takes two vectors
X, Y as inputs and returns an S4 object containing the
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1. test statistic,

2. p-value,

3. bootstrap confidence intervals.

The interface of testforDEP() is:

testforDEP(x, y, data, test = c("PEARSON", "KENDALL", "SPEARMAN",
"VEXLER", "TS2", "V", "MIC", "HOEFFD", "EL"),
p.opt = c("dist", "MC", "table"), num.MC = 10000,
BS.CI = 0, rm.na = FALSE, set.seed = FALSE)

where x and y are two equal-length numeric vectors of input data. The parameter data is an alternative
input that takes a data frame with two columns representing X and Y. When x or y are not provided,
parameter data is taken as input. The parameter test specifies the hypothesis test to implement. A
summary of the test options with the associated statistic returned is given below,

• "PEARSON", Tγ̂,

• "KENDALL", Zτ ,

• "SPEARMAN", Tρ,

• "VEXLER", log(VTn),

• "TS2", TS2,

• "V", V,

• "MIC", MIC(D),
• "HOEFFD", D̂,

• "EL", Tel .

Parameter p.opt is the option for computing p-values in which p-values can be computed by the
asymptotic null distribution of the test statistic (applicable for Pearson, Kendall and Spearman only),
by an exact method (applicable for all tests) or by pre stored simulated tables based on an exact
method. By default, p.opt = "MC". The parameter num.MC gives the Monte Carlo simulation number
and will only be used when p.opt = "MC". When p.opt = "dist" or p.opt = "table", num.MC will
be ignored. To balance accuracy and computation time, num.MC must ∈ [100, 10000], with num.MC =
10000 as default. The parameter BS.CI specifies a 1− α for bootstrap confidence intervals. When
BS.CI = 0, the confidence intervals will not be computed. Parameter rm.na is a flag for removing
rows with missing data. Parameter set.seed is a flag for setting the random number generator seed.

AUK

The function AUK() provides an interface for Kendall plots and AUK. It takes two vectors X, Y and
returns a list containing:

1. AUK,

2. Wi:n,

3. sorted Hi,

4. bootstrap confidence intervals.

The interface of AUK() is:

AUK(x, y, plot = FALSE, main = "Kendall plot", Auxiliary.line = TRUE,
BS.CI = 0, set.seed = FALSE)

where x and y are two equal-length numeric vectors of input data. Parameter plot is a flag for drawing
the Kendall plot. Parameter main determines the title of the plot. If plot = FALSE, main will be ignored.
Parameter Auxiliary.lie is a flag for auxiliary line. Parameter BS.CI specifies a 1− α for bootstrap
confidence intervals. The bootstrap confidence intervals were produced using a non-parametric
bootstrap procedure with a normal, pivotal and percentile based confidence interval obtained as
described in Wasserman (2013). The bootstrap confidence intervals are on the scale of the test statistics
that are returned from each test in testforDEP. When BS.CI = 0, confidence intervals will not be
computed. Parameter set.seed is a flag for setting seed.

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 290

School LSAT GPA School LSAT GPA School LSAT GPA

1 622 3.23 28 632 3.29 56 641 3.28
2 542 2.83 29 587 3.16 57 512 3.01
3 579 3.24 30 581 3.17 58 631 3.21
4 653 3.12 31 605 3.13 59 597 3.32
5 606 3.09 32 704 3.36 60 621 3.24
6 576 3.39 33 477 2.57 61 617 3.03
7 620 3.10 34 591 3.02 62 637 3.33
8 615 3.40 35 578 3.03 63 572 3.08
9 553 2.97 36 572 2.88 64 610 3.13
10 607 2.91 37 615 3.37 65 562 3.01
11 558 3.11 38 606 3.20 66 635 3.30
12 596 3.24 39 603 3.23 67 614 3.15
13 635 3.30 40 535 2.98 68 546 2.82
14 581 3.22 41 595 3.11 69 598 3.20
15 661 3.43 42 575 2.92 70 666 3.44
16 547 2.91 43 573 2.85 71 570 3.01
17 599 3.23 44 644 3.38 72 570 2.92
18 646 3.47 45 545 2.76 73 605 3.45
19 622 3.15 46 645 3.27 74 565 3.15
20 611 3.33 47 651 3.36 75 686 3.50
21 546 2.99 48 562 3.19 76 608 3.16
22 614 3.19 49 609 3.17 77 595 3.19
23 628 3.03 50 555 3.00 78 590 3.15
24 575c 3.01 51 586 3.11 79 558 2.81
25 662 3.39 52 580 3.07 80 611 3.16
26 627 3.41 53 594 2.96 81 564 3.02
27 608 3.04 54 594 3.05 82 575 2.74

55 560 2.93

Table 3: LSAT data from Efron and Tibshirani (1994).

Data analysis examples

Here we present two data analysis example to demonstrate the utility of the testforDEP package. In
the first example, the data are average law school admission test (LSAT) and grade point average
(GPA) from 82 law schools (details described in Efron and Tibshirani (1994)). The data frame "LSAT"
is available in testforDEP package. The aim is to determine the dependence between LSAT and GPA.
Table 3 gives the data and a scatter plot is shown in Figure 1 (Top Left).

Figure 1 (Top Left) suggests a linear positive relationship between LSAT and GPA. To confirm this,
we draw the Kendall plot and compute AUK (see Figure 1 (Top Right)). Figure 1 (Top Right) shows a
curve above the diagonal and AUK of 0.665, both of which suggest a positive dependence.

Now consider the dependence tests provided in package testforDEP. Table 4 shows the test
statistics and p-values. All tests, classical and modern, suggest dependence between LSAT and GPA.
From this analysis, it is clear that LSAT and GPA variables are dependent.

To further examine this data and explore the comparable power of the modern methods, we also
examine a subset of 15 randomly chosen points from the full dataset as shown in Figure 1 (Bottom
Left). An analysis of this subset reveals significant p-values for the empirical likelihood, density
based empirical likelihood and Kallenberg tests (see Table 4). The small p-values, especially for the
density-based empirical likelihood method, indicate the power of modern methods to detect non
linear dependence in small sample sizes. We further explore this point in the next example.

In the second example, we demonstrate the power of the modern methods to detect non-linear
dependence. This example was originally published in Rohrer et al. (2004) and re-examined in Chen
et al. (2010). It involves analyzing microarray expression data collected to identify critical genes
in photoreceptor degeneration. The data in Figure 2 are from 2 genes (Pcp2 and Pla2g7) with each
point representing another gene with its x-coordinate being the Euclidean distance from Pla2g7 and
the y-coordinate as the Euclidean distance from Pcp2. The Euclidean distance is calculated from
expression profiles between wild type (wt) and rod degeneration (rd) mice. The correlation shown
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Figure 1: Top Left: Scatter plot based on data in Table 3. Top Right: Kendall plot of the full dataset.
Bottom Left: A scatter plot of a subset of the LSAT/GPA data. Bottom Right: A Kendall plot of the
subset of data.
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Full Data Subset Data

test statistic p-value statistic p-value

Pearson 10.46 < 0.0001 1.77 0.1074
Kendall 7.46 < 0.0001 69.00 0.0990
log(VTn) 65.70 < 0.0001 12.05 0.0067
TS2 80.76 < 0.0001 3.16 0.2003
V 69.04 < 0.0001 8.51 0.0146
MIC 0.53 < 0.0001 0.38 0.0993
Hoeffding 0.22 < 0.0001 0.08 0.0658
Tel 13.64 < 0.0001 2.15 0.0238

Table 4: Example 1: Test results for the full LSAT/GPA data and for a randomly chosen subset of 15
data points.

test statistic p-value

Pearson -1.015 0.3156
Kendall -2.321 0.0196
Spearman -2.900 0.0050
log(VTn) 140.554 < 0.0001
TS2 13.347 0.0042
V 82.712 < 0.0001
MIC 0.666 < 0.0001
Hoeffding 0.085 < 0.0001
Tel 12.254 < 0.0001

Table 5: Example 2: Dependence test results for the microarray study with genes Pla2g7 and Pcp2
displayed in Figure 2 and published in Rohrer et al. (2004) with re-examination in Chen et al. (2010).

in Figure 2 measures the relationship between how the Pla2g7 gene interacts with all the other
genes vs. how the Pcp2 gene interacts with all the other genes. From Figure 2 we see the genes are
negatively correlated when their transformed levels are both less than 5. Otherwise, these genes are
positively correlated. We proceed to analyze the data using the testforDEP package. The results are
presented in Table 5. From this analysis, we see a large gain in power using the modern methods
such as log(VTn), TS2, V, MIC, Hoe f f ding, Tel compared to the traditional methods (Pearson, Kendall,
Spearman). Taken together, these examples demonstrate the power advantage of using modern
methods to detect nonlinear dependence while still maintaining comparable power to traditional
methods in detecting linear dependence.

Conclusion

The R package testforDEP is a new package that allows users for the first time to analyze complex
structures of dependence via modern test statistics and visualization tools. Moreover, a novel exact
method based on the MIC measurement have been proposed in the package testforDEP. Future work
is necessary to further develop a formal testing structure based on the MIC statistic. We note that
users of this package should carefully consider the strengths and weaknesses of the proposed tests
as outlined in each section when deciding what test to apply. Further, a topic for future work is to
develop a complete set of consistent criteria to determine which test is most appropriate for a specific
setting. We note extensive simulations comparing each of the tests is provided in Miecznikowski et al.
(2017) which may help guide users to choose among the tests. Ultimately, we believe that the package
testforDEP will help investigators identify dependence using the cadre of modern tests implemented
to detect dependency.
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Figure 2: Left: Scatter plot of the transformed expression levels of Pla2g7 and Pcp2 genes studied
in Chen et al. (2010). Right: Kendall plot of the dataset highlighting the negative correlation (points
below y = x line) for smaller expression values and positive dependence (points above y = x line) for
larger values.
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rFSA: An R Package for Finding Best
Subsets and Interactions
by Joshua Lambert, Liyu Gong, Corrine F. Elliott, Katherine Thompson and Arnold Stromberg

Abstract Herein we present the R package rFSA, which implements an algorithm for improved
variable selection. The algorithm searches a data space for models of a user-specified form that are
statistically optimal under a measure of model quality. Many iterations afford a set of feasible solutions
(or candidate models) that the researcher can evaluate for relevance to his or her questions of interest.
The algorithm can be used to formulate new or to improve upon existing models in bioinformatics,
health care, and myriad other fields in which the volume of available data has outstripped researchers’
practical and computational ability to explore larger subsets or higher-order interaction terms. The
package accommodates linear and generalized linear models, as well as a variety of criterion functions
such as Allen’s PRESS and AIC. New modeling strategies and criterion functions can be adapted easily
to work with rFSA.

Introduction

In recent years, novel statistical modeling techniques have become more computationally intensive in
an effort to accommodate the massive datasets afforded by advances in fields such as data mining and
genetic sequencing. The volume and complexity of available data continue to grow, overwhelming
even the fastest modern computers (Goudey, 2015). Efforts to analyze such complex data usually
involve some level of data reduction (e.g., Principle Component Analysis, Partial Least Squares,
Sufficient Dimension Reduction), which can yield convoluted statistical models whose parameters
researchers and statisticians alike struggle to interpret. Furthermore, many of these strategies are
limited to specific model forms and lack the flexibility to explore higher-order interactions. Herein we
present an alternative to data reduction that accommodates a variety of modeling strategies, including
large-subset selection and identification of higher-order interaction terms. The resulting models,
coefficient estimates, and predictions remain easily interpretable and flexible to traditional modes of
statistical inference.

The Feasible Solutions Algorithm (FSA) overcomes the problems described above by searching a re-
duced data space to produce feasible solutions (Hawkins, 1994; Miller, 1984). Feasible models (Hawkins,
1994) are optimal under a given criterion function in the sense that no single exchange of an explana-
tory variable contained in the model for a variable outside the model will yield an improvement to
the criterion. Miller (1984) first introduced the idea of a sequential-replacement algorithm such as
the FSA. According to Miller, this computationally "cheap" method boasts rapid convergence; flexible
implementation; and improved results compared to forward or backward selection. Miller also noted
that the replacement algorithm could give too many solutions if repeated. However, Hawkins (1994)
applied a similar exchange algorithm to the problem of finding robust regression estimators and
minimum-volume ellipsoid estimators in multivariate data, demonstrating that with a sufficient num-
ber of random starts, the algorithm could find the optimal solution with arbitrarily high probability.
Upon testing the algorithm, Hawkins also exhibited its superior performance relative to exhaustive
search.

Exhaustively searching for an optimal model containing interactions is particularly demanding,
computationally speaking, and not always reasonable or even attainable. For this reason, many
published analyses do not even attempt to explore interactions. In other cases, interaction terms are
identified by a primary investigator on the basis of his or her prior knowledge of the field, and then
screened on an individual level by a statistician or data scientist. Such a process is tedious and time-
consuming, and usually results in interactions being ignored or overlooked due to the sheer number of
possibilities. These factors unite to afford a widespread lack of consideration for interactions, thereby
undermining the predictive power of models attempting to capture complex relationships (Foster
and Stine, 2004). We address these limitations by implementing an FSA with the capacity to explore
higher-order terms, combined with the accessibility and ease of use associated with an R package.

The R implementation of our Feasible Solution Algorithm, rFSA 0.9.1, is now accessible via GitHub
and CRAN.
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Feasible Solutions Algorithm

Statisticians are often faced with the problem of identifying an informative subset of m explanatory
variables from a set of p predictor terms, which we will denote Xp. Consider selecting p+ ≥ 0
explanatory variables, denoted Xp+ , to compose a preliminary model. Let g(Y, X) be an objective
(criterion) function, generally a measure of model quality such as R2, AIC, or PRESS. We wish to
identify the m additional variables, Xm, that when added to the existing model serve to optimize the
objective function g(Y, X(p++m)).

The Feasible Solution Algorithm implements the following strategy, where we initially consider
only first-order predictor terms:

1. Randomly select m variables to compose Xm, and compute the objective function g(Y, X(p++m)).
2. Under each possible exchange of one of the m variables in the working model for a variable not

contained in the model, compute the new value of the objective function.
3. Make the single exchange of variables from Step 2 that most improves the objective function.
4. Continue making exchanges until no single additional exchange improves the objective function.

The variables Xp+, Xm∗ composing the final model constitute a single feasible solution.
5. Return to (1) to search for another feasible solution.

Miller (1984) illustrates the general procedure as follows: Suppose you have a dataset containing 26
predictor variables labeled A through Z, and imagine you wish to find the best subset of four predictor
variables. Randomly select four initial predictors; suppose these are ABCD. Consider exchanging
one of A, B, C, or D with each of the 22 remaining variables. Make the change that most improves
the objective function; suppose we swap C for X, so that the working subset becomes ABXD. Next
consider exchanging one of A, B, X, or D. (In point of fact, considering an exchange involving X is
here redundant and unnecessary.) Repeat this process until no additional exchange of variables yields
further improvement to the objective function.

If instead a user requests interaction terms of mth order, our FSA randomly selects m effects to
compose an initial interaction term in step (1). In step (2), the algorithm considers exchanging any
one of the m variables involved in the interaction term. In accordance with the hierarchical paradigm,
all associated lower-order interactions and main effects are exchanged as well, prior to calculating
the associated objective function; no linear or lower-order terms are included in the model beyond
those required to complete the hierarchy unless the user requests a variable be fixed in the model.
The sequential-replacement procedure otherwise operates as described above, but this extension
permits optimization with respect to the p-value of an interaction term as an alternative to standard
model-building criteria.

Each iteration of the FSA yields a single feasible solution, which is the most-optimal model under
a given criterion that can be reached from the (random) starting configuration by means of sequential
replacement. Of course, depending on the initialized model, the algorithm may not converge to
the global optimum with respect to the specified objective function. However, if a truly correct
model exists and consists of explanatory variables present in the dataset, then under an appropriate
objective function and with many iterations, rFSA is increasingly likely to discover it: A model
containing correct explanatory variables should yield a value for the criterion superior to that of a
model containing explanatory variables unrelated to the response. In our experience with rFSA, the
models best supported by the data tend to manifest more often than inferior models, but it can be
shown that with many random starts even relatively rare (locally or globally) optimal configurations
may be identified (Hawkins, 1994). Thus, with multiple random starts, the FSA is likely to discover
the optimal model, as well as additional models that would be overlooked if one considered only the
‘best’ model under a specified criterion, but which may contain additional information of interest from
a clinical or scientific viewpoint.

Other algorithms for subset selection

Many existing methods attempt to identify the best subset of predictors that adequately explains
a response variable. Common automatic variable-selection techniques include forward selection,
backward elimination, and step-wise regression methods, while penalized regression techniques, such
as LASSO, are commonly used for subset selection with many variables. Exhaustive search procedures
simply examine all possible combinations of predictors under a viable model structure — but even
on the most-powerful computers, this approach becomes impracticable for datasets containing many
explanatory variables (Goudey, 2015). Algorithms implementing these procedures in the context of
linear or generalized linear models, respectively, are currently available in the form of R packages
leaps (Lumley and Miller, 2009), glmulti (Calcagno, 2013), and glmnet (Friedman, 2008).
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Other algorithms for finding interactions

Computational methods for exploring potential interactions include Random Forest (Jiang, 2009)
and Boosting (Lampa, 2014) methods. In the former approach, researchers examine branches of a
regression tree to identify splits that contribute downstream to alternative classifications of the response
variable. Bayesian methods also exist for identifying interactions, although they tend to specialize in
exploration of large genetic datasets (Zhang and Liu, 2007). LASSO can be used to identify interactions
by selecting informative variables from an initial pool containing all possible interactions as well as
first-order terms (Bien et al., 2013), and LASSO for Hierarchical Interactions has been implemented in
the R package hierNet (Bien and Tibshirani, 2014). Although all of these methods have been used
previously for identifying interactions, the software for implementing them are limited with respect
to the statistical methods they utilize and criterion functions they oblige. The statistical community
would therefore benefit from a robust algorithm whose package can accommodate multiple statistical
methods and criterion functions.

rFSA

Our R package rFSA implements the FSA described above for use in subset selection and identification
of interaction terms. The primary function, FSA, accepts as two of its arguments any user-specified
R functions for use in fitting models (e.g., lm, glm) and calculating the model criterion (e.g., AIC, BIC,
r.squared), with only the restrictions that the criterion function must (1) accept as its argument the
model object returned by the specified model-fitting function and (2) return a single numeric value.
Additional arguments to FSA include the number of parameters to consider, whether to investigate
interactions with or without quadratic terms, and whether to minimize or maximize the criterion
function.

Architecture

Within the R package rFSA, the function FSA is used to identify feasible models. A full list of the
parameters belonging to FSA are described below, for reference in illustrating the architecture of the
package:

Parameters:

formula symbolic description of the functional model form to be fitted. All subsequent
analysis will model the response variable designated by this parameter.

data data frame containing the set of predictor variables of interest.
fitfunc function to fit the model. Defaults to lm.
fixvar vector of one or more variable names to be fixed in the model as main effects.

Defaults to NULL.
quad logical: whether to consider higher-order interactions containing two instances of

the same variable. Defaults to FALSE.
m number of predictors to compose a model. If interactions is TRUE then m is the

order of interactions to consider.
numrs number of random starts to perform.
cores number of cores to use while running. Restricted to 1 for a Windows machine.
interactions logical: whether to include interactions in model. Defaults to TRUE.
criterion vector of criterion function(s) to maximize or minimize. Defaults to AIC.
minmax vector of strings "min" or "max" specifying whether to minimize or maximize each

criterion function. Defaults to "min".
checkfeas vector of variable names composing a model to test for feasibility. If multiple

random starts specified, test of feasibility will occupy the final random start.
Defaults to NULL.

var4int variable to be fixed in the model as one component of the interaction term. Defaults
to NULL.

min.nonmissing minimum threshold for observations required to fit a model. Defaults to 1.
return.models logical: whether to return fitted model objects. Defaults to FALSE.
... additional arguments to be passed to the model-fitting function.

Assume we wish to discover the first-order linear model containing three predictors, chosen from
a pool of eight predictors, with maximal R2. To increase our probability of discovering the global
optimum with respect to our chosen criterion, we choose to execute ten random starts. To decrease
the time until completion, we run the algorithm on five cores. Let dat.all denote the data frame

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://CRAN.R-project.org/package=hierNet


CONTRIBUTED RESEARCH ARTICLES 298

containing the response variable, denoted Y, and all eight predictors. Then the code required to execute
this search is provided below, acting on a simulated response variable and eight continuous predictors.

set.seed(40508)

# simulate explanatory variables, response, and uninformative variables
x1 <- rnorm(100)
x2 <- rnorm(100)
x3 <- rnorm(100)
dat.all <- data.frame(Y = 2 + 3*x1 - 4*x2 + 0.5*x3 + rnorm(100),

X1 = x1, X2 = x2, X3 = x3,
X4 = rnorm(100), X5 = rnorm(100), X6 = rnorm(100),
X7 = rnorm(100), X8 = rnorm(100))

# load package and execute rFSA
library(rFSA)
fsa.fit <- FSA(formula = 'Y~1', data = dat.all, fitfunc = lm, quad = FALSE, m = 3,

numrs = 10, cores = 5, interactions = FALSE, criterion = r.squared,
minmax = "max", return.models = FALSE)

print(fsa.fit)

rFSA first generates the ten random starts, each of which consists of three indices: one correspond-
ing to each predictor in the initial model. For each random start, the algorithm generates every unique
exchange of variables that can be achieved from the initial model. Corresponding models are fitted
by calling the fitfunc, in this case lm, and the criterion function calculated for each of the resulting
models. If the user specifies multiple cores, then the mcapply function from R package parallel is
employed to fit multiple models simultaneously. Criterion values, here R2 values, are stored in a hash
table to prevent having to fit the same model multiple times across different random starts, thereby
achieving an additional gain in computational efficiency as well as reducing the memory requirement.
(If return.models is TRUE, then the model objects themselves are stored in a separate list.) rFSA makes
the exchange that achieves the greatest improvement in model criterion, and then repeats the process
of generating and making exchanges. The algorithm ceases iterating on a single random start when
the best exchange yields no change in the model, or when the working model converges to a feasible
solution discovered previously.

The FSA function is written as an S3 object. Returned results assume class definition FSA and can be
used in conjunction with standard S3 functions print, summary, predict, fitted, and plot, described
in greater detail below.

Implementation

The core of the package is the FSA optimization procedure, which is depicted as a flowchart in Figure
(1). As this figure illustrates, the procedure can be divided into several sub-procedures as follows:

• The algorithm first generates a number (specified by user, here denoted M) of random starts
P1, P2 · · · PM. Each member Pi is a random combination of variables from the predictor set.

• For each random start Pi, rFSA then generates all possible variable exchanges Qi1, Qi2 · · ·QiN .
Similar to a random start, each Qij is also a combination of variables, but differs from its corre-
sponding start position Pi by precisely one variable. As a result, we obtain M× N combinations.

• Next, for each combination Qij, rFSA fits the model using the function specified by the input
argument fitfunc and calculates the corresponding criterion value using the function specified
by criterion. Thus we obtain a criterion value Cij for each combination Qij.

• The criterion values Ci1, Ci2 · · ·CiN are used to identify the optimal exchange among
Qi1, Qi2, · · · , QiN from the starting configuration Pi. The best swap combination, denoted P′i , is
that with the smallest or largest criterion depending on the user-specified argument minmax.

• Finally, the algorithm decides whether to continue iterating by comparing the best swap P′i and
initial combination Pi. If they are equal, then the algorithm stops processing and stores Pi as a
feasible solution. Otherwise, it updates Pi to P′i and continues iterating until a feasible solution
is found.

Note that the computationally most-intensive stage of the algorithm occurs when obtaining the
model fit and criterion values for combinations Q11 · · ·Q1N , · · · , QM1 · · ·QMN . Moreover, some of
this work is redundant, as the same model fit may be required as many as M times. We therefore elect
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Figure 1: Overview of our implementation of the FSA optimization algorithm. A number of random
starts are generated, followed by candidate variable exchanges and the criterion value associated
with each new model. The best swap candidate is chosen according to the criterion values and then
compared with the starting configuration. If they are equal, then they constitute a feasible solution.
Otherwise, the starting configuration is updated by assuming the value of the best swap, and the
procedure iterates until a feasible solution is found.

2/6/2018 rFSA-flowchart2.xml

1/2

⋯ , ⋯ , ⋯Q11 Q1N QM1 QMN

Lookup Criterion Table Criterion
Table

⋯ , ⋯ , ⋯C11 C1N CM1 CMN

Exist in
Table?

Fit model, Calculate Criterion
and Update Table

YES
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Figure 2: Illustration of storing and referencing criterion values using a global table. For each
combination of variables, we first check for the model criterion in the table and return it if found.
Otherwise, we fit the model, calculate the criterion, and add the calculated value to the table. To
further speed execution, model fitting for different combinations of variables is processed in parallel
using multiple cores.
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to store criterion values upon calculation, thereby reducing the computational burden and improving
execution efficiency. A detailed schematic of this implementation is provided in Figure (2).

The FSA function implements the procedure depicted in Figure (2) to maintain a global table of
criterion values for easy reference. Prior to calculating a model criterion, rFSA first checks whether
the model has been fitted previously and, if so, uses the stored criterion value rather than refitting
the model. If the model’s criterion is not represented in the existing table, then rFSA fits the model,
calculates the criterion value, and stores that value in the table. Specifically, we adopt following
techniques to optimize our implementation of the algorithm:

• By maintaining a look-up table, we avoid redundant computations to fit the same model
multiple times.

• We implement the look-up table as a hash table, which achieves constant-time insertion and
querying.

• We use the R package hashmap (Russell, 2017) to implement the criterion table. hashmap is
written in C++, yielding further improvement to the execution speed of rFSA.

• We fit models in parallel on multiple computation cores using the mclapply function of the
parallel package. Because model fitting is independent across different sets of variables, the
task is appropriate for multi-thread or multi-process parallelization.

Usage

In this section, we consider some nuances related to the arguments of the function FSA, and end with
details of the results returned by the same function.

The formula parameter allows users to specify an initial fit. Because initial models are randomly
generated, it is sufficient to specify a null model containing solely the desired response variable and
an intercept term, e.g., Y ∼ 1. Variables to be fixed in the model should be provided in the form of a
vector of character strings representing the variable names, provided to FSA as the argument fixvar.

The data structure should contain only the target response variable and predictor variables of
interest, with each variable occupying a distinct column of the data structure. Variables known to be
superfluous should be omitted from the data structure prior to executing FSA. Furthermore, categorical
variables should be denoted in quotes or stored as factors to distinguish from quantitative variables,
and should assume at least two levels to avoid complications due to invariance.

Models will be fitted using the user-specified fitfunc, to which the formula, data, and any
additional arguments will be passed. The objective function criterion may be any user-specified R
function that accepts as its argument the model object returned by fitfunc, provided the criterion
function returns a single numeric value (or NA) that can be minimized or maximized. If users intend to
write their own criterion functions, we recommend that they protect against errors by enshrouding
the functions in tryCatch statements, available in base R. As an alternative, users may specify one of
the criterion functions built into rFSA, which are detailed below. In either case, the specified criterion
function will be maximized or minimized in accordance with the value of minmax.

The mclapply function used to support parallel processing in rFSA accommodates the use of
multiple cores for Unix environments only. For this reason, rFSA automatically instantiates the cores
parameter to 1 for Windows users, regardless of the user-specified value. For Unix machines with
multiple cores, we recommend a maximum threshold for cores of one fewer than the number of cores
available on the machine. Users can execute parallel::detectCores() to determine the number of
cores on their computers.

To request subset selection without interactions, interaction must be set to FALSE. (In this case,
the quad parameter will be ignored.) In this scenario, m denotes the number of predictors to compose
each resulting subset. In the case of interactions = TRUE, the meaning of m changes to represent the
desired interaction order. (During model fitting, all lower-order terms associated with the interactions
are also included). In such an instance, the parameter var4int can be used to fix a variable as one
member of the interaction term, thereby restricting the FSA function to identify m-way interactions
containing the specified predictor along with any other m− 1 variables. The quad parameter specifies
whether higher-order interactions should be permitted to contain the same variable twice. Regardless
of these parameters, the FSA function yields feasible solutions equal in number to numrs. However,
these models may not be unique if a feasible solution is accessible from multiple random starting
positions. In order to provide cleaner results, rFSA produces a table summarizing these results (see
Function Outputs, below).
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Finally, the FSA function accommodates testing for the feasibility of a model, where the desired
predictors may be provided as the argument checkfeas. If the model is feasible, then the resulting
feasible solution will contain the same variables as checkfeas; otherwise, the FSA function returns the
feasible model accessible from the initial model specified in checkfeas. If the user specifies multiple
random starts, then the test of feasibility occupies the final random start.

Criterion Functions

Criterion functions built into rFSA include R2 (r.squared) and adjusted R2 (adj.r.squared),
Allen’s PRESS statistic (apress), interaction p-values (int.p.val), Akaike’s Information Criterion (AIC)
and the Bayesian Information Criterion (BIC), penalized Quasi-likelihood under the Independence
model Criterion (QICu.geeglm), and Bhattacharyya Distance (bdist). These functions may not be
appropriate for all functions provided to fitfunc as, for example, r.squared does not accommodate
generalized linear models.

Most of the above metrics are well known and thus do not require introduction, but we sum-
marize briefly two of the less-common statistics. The Bhattacharyya Distance (Bhattacharyya, 1946)
is a distance measure that quantifies the disparity between two distributions. The Bhattacharyya
Distance is particularly useful for a binary response when the user’s interest lies in exploring two-way
interactions between continuous explanatory variables (Janse, 2017). This is a common problem in
large genetic datasets, in which context bdist is doubly useful because it converges faster than the
other criterion functions. The Quasi-likelihood under the Independence model Criterion (QIC) (Pan,
2001) is a goodness-of-fit statistic for generalized estimating equations, analogous to AIC. The function
built into rFSA accepts an object of class geeglm, fitted with geepack (Højsgaard et al., 2006; Yan and
Fine, 2004; Yan, 2002), and returns the penalized QIC, denoted QICu, which is preferred for subset
selection.

Function Outputs

A successful run of the FSA function returns a list with seven elements, described below:

Returned Values:

$originalfit model object representing the fit of the user-specified original model.
$call list of FSA function parameters and their actualized values.
$solutions list of initial and final (i.e., feasible) predictors contained in each model; crite-

rion function values for feasible models; and number of exchanges made. If
return.models=TRUE then solutions will contain an object of all fitted models
called checked.model.

$table data frame of unique feasible solutions; corresponding criterion values; and the
number of random starts that converged to each solution.

$efficiency character string contrasting the total number of fitted models and criterion values
calculated using rFSA against those required for exhaustive search on the same
dataset.

$nfits integer representing the total number of fitted models.

Given an FSA object as its argument, the print command will display a table containing the original
user-specified model and all feasible solutions that the algorithm found over numrs random starts. The
table also contains criterion values for each model, and the number of random starts that converged
to each feasible solution. Generally speaking, the original fit is not a feasible solution, and thus the
number of random starts for that model will be listed as NA. The summary command acting on an object
of class FSA will display a list containing as its elements the summary output of each fitted model;
the format therefore depends on the chosen fitfunc. The predict and fitted functions operate in a
similar fashion to summary, returning a list of predicted or fitted values, respectively, for each model.
Finally, the plot function generates a Q-Q plot and a plot of residuals against fitted values for each
model, displayed in a compact manner.

Availability

Currently, rFSA version 0.9.1 is available to download from the Comprehensive R Archive Network at
https://cran.r-project.org/web/packages/rFSA. To install the newest beta version of rFSA, first in-
stall the devtools package in R, and then run devtools::install_github("joshuawlambert/rFSA").

Shiny App

An easy-to-use Shiny Application is also available to facilitate the basic functions of the package. We
believe this application will serve an important role for researchers unfamiliar with R, who would
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nonetheless benefit from the ability to describe and/or make predictions from large datasets. Our
Shiny Application allows users to upload their own data and specify parameter values via radio
buttons and drop-down boxes, as well as to visualize fundamental elements of the resulting models.
The application currently subsists on a server hosted by the University of Kentucky, accessible from
https://shiny.as.uky.edu/mcfsa/. Important: Users should not upload sensitive data to our FSA
Shiny Application. To accommodate protected data, a future version of rFSA will permit users to run
local instances of the Shiny Application.

Comparison to other packages

Several R packages exist already for finding best subsets and exploring pairwise interactions. Two
of the most-popular packages in current use are the leaps (Lumley and Miller, 2009) package and
glmulti (Calcagno, 2013). These packages use criterion functions such as R2, adjusted R2, Mallow’s Cp,
residual sum of squares, and AIC/BIC to identify the best subset of predictor variables to describe a
given response variable. Although these packages are useful, they offer a limited selection of statistical
models and criterion functions. In this section, we describe these and other limitations on existing
packages, and explain how rFSA seeks to overcome them.

The leaps package leverages exhaustive search, forward or backward selection, or a sequential-
replacement algorithm to find the best subset of predictors to compose a model. This sequential-
replacement algorithm is a variation on the FSA introduced by Miller (1984) and described above,
and therefore serves as a relatively efficient option for analyzing large datasets. Although the leaps
package is flexible and robust, at present it does not accommodate interaction terms, model forms
other than first-order linear, or the use of alternative criterion functions to the aforementioned five. The
bestglm (McLeod and Xu, 2017) package seeks to extend best-subset model selection to generalized
linear models but is not natively capable of looking for higher-order interactions, using external
criterion functions, or accommodating other statistical methods. It also makes no special consideration
for large problems, rendering it unsuitable for datasets with more than 100 predictors. glmulti
improves on the aforementioned packages in that it is capable of incorporating pairwise interaction
terms into exhaustive search or a genetic algorithm, but it does not support other statistical methods,
higher-order interactions, or flexible criterion functions.

Timing comparisons

We now present the results of a simulation conducted to compare the performance of rFSA against
that of of exhaustive search with leaps. We include neither glmulti nor bestglm in the comparison
because neither package was able to accommodate the high-dimensional datasets of interest (p > 100).

Simulations were conducted on twenty-five datasets of N = 250 observations for various numbers
of predictors, again denoted by p. In each dataset, a continuous response was generated randomly
from a standard normal distribution. Half of the predictors were generated randomly from a standard
normal distribution, and the other half, from a Bernoulli distribution with P(X = 1) = 0.50.

The execution speed of each package was measured individually for each dataset. Simulations
were conducted in R version 3.4.1 on a Linux machine with Intel(R) Xeon E5-2698 v4 @ 2.20GHz with
128.00 GB of memory. A single core was allocated for each of regsubsets and the FSA function. Code
follows for calling the relevant function in each of packages leaps (version 3.0) and rFSA (version
0.9.1) to search for best subsets of size three:

leaps::regsubsets(x = ..., y = ..., nbest = 1, nvmax = 3, really.big = T,
method = "exhaustive")

rFSA::FSA(X1 $\sim$ 1, data = ..., interactions = F, m = 3, numrs = 1, criterion = AIC,
minmax = "min")

Figure 3 compares the run-time in log(seconds) for these commands over twenty-five simulations
and p = (150, 250, 350, 450, 650, 750, 850) when searching for best subsets of size three. Exhaustive
search with leaps exhibits a superior run-time on average for p ≤ 350, while rFSA is more efficient
when p > 350. rFSA was approximately 13 minutes faster for p = 750. The growth in execution time
for rFSA slows relative to that of leaps as the number of variables increases: Although the overhead is
higher for FSA, the costs associated with analyzing incrementally larger volumes of data are lower.

Figure 4 depicts run-times for twenty-five simulations of p = (50, 100, 150, 200, 250, 300, 350) when
searching for best subsets of size five. In this scenario, exhaustive search with leaps evinces a faster

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://shiny.as.uky.edu/mcfsa/


CONTRIBUTED RESEARCH ARTICLES 303

Figure 3: Timing comparison of exhaustive search with leaps versus rFSA with one random start. Each
package was assigned to identify best subsets of size three from datasets of size n = 250 and various p.

Figure 4: Timing comparison of exhaustive search with leaps versus rFSA with one random start. Each
package was assigned to identify best subsets of size five from datasets of size N = 250 and various p.
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time for p = 50, while rFSA exhibits a superior run-time for all other datasets (p > 50). The largest
difference in time between leaps::regsubsets and rFSA::FSA for best subsets of size five and a fixed
p was 89, 815 seconds (or 24.9 hours) for p = 350. Figures 3 and 4 both illustrate that the growth in
run-time of our implemented FSA algorithm is much slower than leaps, which confirms the better
time complexity of rFSA. As a result, our implemented algorithm is able to analyze datasets with large
p at a much faster rate than the conventional alternative package.

Across the 175 simulations for best subsets of size three, rFSA identified the optimal solution in 158
of the simulations. When searching for best subsets of size five, rFSA discovered the optimal solution in
144 simulations and afforded gains in run-time of up to 24 hours. Although rFSA does not implement
an exhaustive search, execution with many random starts often requires fewer computations while yet
producing the optimal solution with arbitrarily high probability (Hawkins, 1994). Thus for large p, we
argue that rFSA is a practical solution for researchers who wish to consider high-dimensional data,
higher-order terms, generalized linear or mixed models, or other non-traditional statistical methods
and criterion functions.

Example

Two- and three-way interactions in Census Data

The 2014 Planning Database Block Group Data (PDB) from the Census Bureau is publicly available
at http://www.census.gov/research/data/planning_database/2014/. Descriptions of the variables
can be found from PDB documentation on the aforementioned website. Herein we examine only
the census blocks associated with Kentucky, with several variables removed because they were
transformations of other variables. The final dataset contained 3285 observations and 67 quantitative
explanatory variables in addition to the quantitative response variable, mail response rate. The revised
dataset can be downloaded from https://github.com/joshuawlambert/data/raw/master/census_
data_nopct.csv.

In this example, we search for the best linear model containing (a) two main effects and their
interaction, or (b) three main effects, as well as their pairwise and three-way interactions. To fit
linear models using the FSA function, we set fitfunc equal to lm. For simplicity, we choose not
to fix any variables in the models, which we achieve by setting fixvar equal to NULL. We provide
a null model regressing the response variable y (Mail Response Rate) solely on an intercept term,
thereby restricting rFSA to use y as the response variable throughout the procedure. The criterion
function is taken to be int.p.val (interaction p-value) and minimized on each iteration. To specify a
desire for two-way interactions, we set parameters interactions = TRUE and m = 2; for three-way
interactions, interactions = TRUE and m = 3. We request 50 random starts, which rFSA completed in
approximately one minute for m = 2 or five minutes for m = 3 on a Windows 7 machine with Intel(R)
Core(TM) i7-4790 CPU @ 3.60GHz and 24.00 GB of memory.

R Code follows for reproduction of these results:

install.packages("rFSA")
library(rFSA)
download.file("http://raw.githubusercontent.com/joshuawlambert/data/master/

census_data_nopct.csv",destfile = "tmp.csv")
census_data_nopct <- read.csv(file = "tmp.csv")

# find two-way interactions
set.seed(123)
fit_2_way <- FSA(formula = "y~1", data = census_data_nopct, fitfunc = lm,

fixvar = NULL, quad = F, m = 2, numrs = 50, cores = 1,
interactions = T, criterion = int.p.val, minmax = "min")

print(fit_2_way) # summary of solutions found
summary(fit_2_way) # list of summaries from each lm fit
plot(fit_2_way) # diagnostic plots

# find three-way interactions
set.seed(1234)
fit_3_way <- FSA(formula = "y~1", data = census_data_nopct, fitfunc = lm,

fixvar = NULL, quad = F, m = 3, numrs = 50, cores = 1,
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interactions = T, criterion = int.p.val, minmax = "min")

print(fit_3_way) # summary of solutions found
summary(fit_3_way) # list of summaries from each lm fit
plot(fit_3_way) # diagnostic plots

Two-way interactions

Across 50 random starts seeking two-way interactions, rFSA discovered three unique feasible solutions.
The solution with the smallest two-way interaction p-value occurred 24 times, ranking second in
prevalence. The three interactions suggest relationships between (a) number of households with both
spouses as members, and number of persons aged 18 to 24 (p = 6.19× 10−38); (b) average household
income and average aggregate house value in dollars (p = 1.68× 10−43); and (c) number of mobile
homes and total vacant housing units (p = 7.26× 10−19). All three interaction p-values are significant
using a Bonferroni-adjusted cutoff of 0.05

(67
2 )
≈ 0.00045.

Having identified a set of feasible solutions, an investigator generally wishes to examine a summary
of each model fit. Given an object, fit, returned by FSA, the function call summary(fit) returns a list
of summaries for each model fit (including the original). Assessing the fit of each feasible solution can
be facilitated with plot(fit) to display diagnostic plots for the original and feasible models. Each
solution should be considered in a practical manner, with reasonable interpretations of the interaction
term being considered prior to its inclusion in a final model.

The three interactions listed above are informative for understanding the types of results returned
by the algorithm. For example, one might expect that a larger average household income would
be correlated positively with the average value of houses in a census block. Thus, as in any linear
regression setting, multicollinearity may account for apparent relationships in the data. The second
interaction, between number of households with both spouses as members and the number of persons
aged 18 to 24, may be more meaningful in the description of mail response rate (y). Because this
interaction is both justifiable and statistically significant, an investigator would have considerable
evidence to warrant its inclusion in a final model.

Three-way interactions

Across 50 random starts seeking three-way interactions, rFSA identified 14 feasible solutions. The
most-frequently observed feasible solution occurred 13 times and boasted the smallest three-way
interaction p-value. This interaction contains two variables identified previously in our search for
two-way interactions. The three-way interaction among the number of households in which both
spouses are members, the number of persons aged 18 to 24, and the number of people who indicate
no Hispanic origin and their sole race as "White," affords an interaction p-value of 7.62× 10−24 and
remains significant under a Bonferroni correction. This interaction suggests that the combined effect
of married couples and young adults is further modified by the number of people who identify as
"White." That is, in locations with a larger population of whites, the effect on mail response rate of
having more married couples changes depending on the prevalence of young adults aged 18 and
24. The interaction is reasonably easy both to interpret and to justify, as well as being statistically
significant, and thus would warrant additional investigation by an interested researcher.

In sum, leveraging rFSA can highlight associations and interactions underlying a dataset that may
not be immediately apparent to the researcher. The package is easy to manipulate (as demonstrated by
the sparseness of the code provided in this example) as well as highly efficient, and generally returns
multiple subsets of variables to permit flexible exploration and validation.

Conclusion

In this paper, we discuss the implementation in R of a complex algorithm originally proposed by
Miller (1984) and Hawkins (1994). We further demonstrate its versatility and computational efficiency
by comparison with existing subset-selection packages and by execution on a real-life census dataset.
Our package, rFSA, is available on CRAN and GitHub. Additionally, a light version of the algorithm
is available as a Shiny Application for the convenience of users with limited familiarity with R.

rFSA boasts several improvements over existing R packages for finding best subsets, some of the
most popular of which include leaps, bestglm, and glmulti. Although these packages all perform
well in implementing exhaustive searches without interactions, they offer a limited choice of statistical
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technique, and often struggle when confronted with high-dimensional datasets. By contrast, rFSA
accommodates large datasets, higher-order interaction terms, and a variety of model forms and
criterion functions, and can be adapted to work with less-traditional statistical methods such as survey-
weighted, penalized, hierarchical, zero-inflated, survival, and many other regression techniques. The
results permit facile interpretation and remain flexible to conventional modes of statistical inference.
Finally, the algorithm exhibits a considerable speedup on single-core operations for large subsets, and
large p, relative to variable-selection packages in common use.

To improve the accessibility and convenience of the FSA for use by the general research community,
we plan to incorporate more features of rFSA into the existing Shiny Application. Moreover, we intend
to improve the data-visualization features of both App and package, and to build an off-line version
of the Shiny App for users with secure data. We will seek further improvements to execution speed
and resource management to encourage analysis of yet-larger datasets, and incorporate additional
model forms and criterion functions to permit efficient analysis by non-traditional methods.

Through its versatility and flexibility, rFSA provides an alternative algorithm for model selection
that allows users to find statistically optimal subsets and interaction effects in a variety of datasets. Im-
proved model selection may afford better predictive power, which can in turn illuminate relationships
underlying large datasets in a variety of research fields.

Summary

This paper outlines an R package, named rFSA, for subset selection and discovery of higher-order
interactions. rFSA is flexible to a variety of statistical models and criterion functions, including those
implemented by the user, and boasts execution speeds superior to existing subset-selection packages in
context of large datasets. The release version of rFSA is hosted on CRAN, and the development version
can be accessed from GitHub by calling devtools::install_github("joshuawlambert/rFSA").
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Dot-Pipe: an S3 Extensible Pipe for R
by John Mount and Nina Zumel

Abstract Pipe notation is popular with a large league of R users, with magrittr being the dominant
realization. However, this should not be enough to consider piping in R as a settled topic that is not
subject to further discussion, experimentation, or possibility for improvement. To promote innovation
opportunities, we describe the wrapr R package and “dot-pipe” notation, a well behaved sequencing
operator with S3 extensibility. We include a number of examples of using this pipe to interact with
and extend other R packages.

Introduction

Using pipes to sequence operations has a number of advantages. Piping is analogous to representing
function composition as a left to right flow of values, which is a natural direction for Western readers,
and is much more legible than composition represented as nesting.

Pipe notation is a popular topic in the R community. Related work includes:

• data.table: Dowle and Srinivasan (2017) use the open and closed square bracket in data.table
][, which is essentially as an example of piping or method chaining.

• magrittr: Bache and Wickham (2014) popularized pipe used in dplyr (Wickham et al., 2017).

• future: Bengtsson (2017) offers a powerful distributed processing package with pipe notation.

• rmonad: Arendsee (2017) created a monadic operator package, capturing exceptions in addition
to managing composition and values.

• pipeR: Ren (2016) contains a collection of sequencing methods including pipes and method
chaining.

• backpipe: Brown (2016) introduces a right to left pipe operator.

• drake: Landau (2018) contains a work-flow/graph toolkit for reproducible code and high-
performance computing.

This article will discuss using the operator %.>% from the package wrapr (Mount and Zumel,
2018) (colloquially called “dot-pipe” or “dot-arrow”). Dot-pipe is compatible with many other meta-
programming paradigms, and is directly S3 extensible.

Pipe notations

There are a number of important pipe notations in and out of R:

• In mathematical function composition or application, one can write a ◦ b to denote a(b).

• In Unix, process1 | process2 streams results from process1 as input to process2.

• In APL’s reduce/apply slash notations.

• In F#’s forward pipe operator, a |> b means b a, using F#’s partial application feature.

• In magrittr pipes, a %>% b(...) is most commonly used to denote {. <- a; b(., ...)}
(with dot side effects hidden).

• With the dot-pipe %.>% (the topic of this article), where a %.>% b is intended to approximately
mean {. <- a; b}.

Using %.>% to sequence operations

In this section, we demonstrate the use of “dot-pipe” %.>% from wrapr and some of its merits. The
intended semantics of %.>% are:

a %.>% b is nearly equivalent to {. <- a; b}

where a and b are taken to be R expressions, presumably with the dot occurring as a unbound (or free)
symbol in b. For example:
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> library("wrapr")
> 5 %.>% sin(.)
[1] -0.9589243

> print(.)
[1] 5

Notice the wrapr dot-pipe leaves the most recent left-hand side value in the variable named dot.
While this is a visible side-effect of the pipe which can conflict with other uses of dot, we feel these
explicit semantics are sensible, easy to teach, and easy to work with.

We can also write 5 %.>% sin, as the dot-pipe looks up functions by name (even for qualified names
such as base::sin) as a user convenience. This function lookup is a non referentially transparent
special case, as names are deliberately treated differently than values. However, it is an important
capability that we will discuss later and greatly expand using S3 object oriented dispatch. Dot-pipe’s
default service does not work with the expression 5 %.>% sin() and throws an informative error
message. Maintaining an explicit distinction between sin (a name), sin() (an expression with no
free-use of dot), and sin(.) (an expression with free-use of dot) has benefits, some of which we
will demonstrate in the Extending the sequencer section. For dot-pipe usage in general, the explicit
expression sin(.) is preferred to sin under the rubric “dot-pipe has lots of dots.”

Additional dot-pipe examples include:

> 5 %.>% {1 + .}
[1] 6

> 5 %.>% (1 + .)
[1] 6

Notice dot-pipe treated the last two statements similarly. We warn the reader that in R the
expression 5 %.>% 1 + . is read as (5 %.>% 1) + ., since special operators (those using %) have
higher operator precedence than binary arithmetic operators.

The dot-pipe works well with many packages, including dplyr:1

> library("dplyr")
> disp <- 4
> mtcars %.>%
+ filter(., .data$cyl == .env$disp) %.>%
+ nrow(.)
[1] 11

Extending the sequencer

Dot-pipe’s primary dispatch is user extensible; by default, it treats a %.>% b as {. <- a; b}.
However, it does this via S3 dispatch through a method of signature apply_left(a,b,--more--). User
or package code can override this method to add custom effects. For example, one can extend dot-pipe
to be a ggplot2 Wickham et al. (2018) layer compositor as we show below.

> library("ggplot2")
> apply_left.gg <- function(pipe_left_arg,
+ pipe_right_arg,
+ pipe_environment,
+ left_arg_name,
+ pipe_string,
+ right_arg_name) {
+ pipe_right_arg <- eval(pipe_right_arg,
+ envir = pipe_environment,
+ enclos = pipe_environment)
+ pipe_left_arg + pipe_right_arg
+ }

We have defined an implementation of apply_left.gg, as this is the class used by ggplot2 to
recognize its own objects (i.e., ggplot2 works by defining `+`.gg). Essentially apply_left.gg(a,b)
is implemented as a + b, the only detail being b is passed as a un-evaluated language argument,

1Example adapted from https://github.com/tidyverse/dplyr/issues/3286.
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so it must be evaluated before being used as a regular value, a detail discussed in the package
documentation.

We can now easily write a pipeline that combines sequencing dplyr transformation steps and
combining ggplot2 geom objects, producing figure 1.

> data.frame(x = 1:20) %.>%
+ mutate(., y = cos(3*x)) %.>%
+ ggplot(., aes(x = x, y = y)) %.>%
+ geom_point() %.>%
+ geom_line() %.>%
+ ggtitle("piped ggplot2",
+ subtitle = "wrapr")
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Figure 1: Example plot produced by a pipeline.

Notice how we can use the same pipe notation for both the initial dplyr data processing steps and
for the later ggplot2 layer aggregation steps. As before, the data processing steps (e.g., mutate) require
dot as a free symbol to specify where the piped values go. However, the ggplot2 steps do not use such
a dot argument, as these functions do not expect previous steps as arguments.

Dot-pipe was able to add capabilities to the ggplot2 package without requiring any changes to the
ggplot2 package. This extension capability is important.

Treating names as functions

If an object on the right hand side of a dot-pipe stage is an R language name (or a qualified name such
as base::sin), then that object is retrieved. If the result is a function, the function is applied. If the
result is a more general object, then S3 dispatch is used on the class of this second or right hand side
argument. That is, a %.>% b is treated as b(a) or fclass(b)(a,b).

A good example using this capability is extending the rquery package (Mount, 2018) to allow
relational operator trees to be used both as inspectable objects and as functions that can be applied
directly to data. In the following example, we create an operator tree that adds the column y to a data
frame, d.

> library("rquery")
> optree <- mk_td(table_name = "d", columns = "x") %.>%
+ extend_nse(., y = cos(2*x))

We can treat optree as an object as we show below.

> class(optree)
[1] "relop_extend" "relop"

> print(optree)
[1] "table(d; x) %.>% extend(., y := cos(2 * x))"

> column_names(optree)
[1] "x" "y"
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> columns_used(optree)
$d
[1] "x"

Or we can pipe into it, as we now demonstrate.

> # get a database connection
> db = DBI::dbConnect(RSQLite::SQLite(),
+ ":memory:")
> # make our db connection available to rquery package
> options(list("rquery.rquery_db_executor" = list(db = db)))
> data.frame(x = 1:3) %.>% optree # apply optree to d
x y

1 1 -0.4161468
2 2 -0.6536436
3 3 0.9601703

In this example, the rquery package defined a surrogate S3 method for the right hand side pipe
argument: apply_right.relop. Any user or package can extend the dot-pipe to suit their needs, just
as we have shown here. The rquery package defines apply_right.relop allowing new data to be
applied to existing pipelines as we saw above.

We provide wrapr::apply_right_S4() as an S4 dispatch interface. This flexibility can be used to
define special effects such as “same class to same class” ideas. For example, we can arrange for data
frames to automatically call rbind when piped into each other. Note that it usually does not make
sense to pipe into a non-expression or non-function object.

> d1 <- data.frame(x = 1)
> d2 <- data.frame(x = 2)
> tryCatch(
+ d1 %.>% d2,
+ error = function(e) { invisible(cat(format(e))) })
wrapr::apply_right_S4 default called with classes:
d1 data.frame
d2 data.frame
must have a more specific S4 method defined to dispatch

NULL

If one sets a generic signature for apply_right_S4 this can be made a sensible and useful operation.

> setMethod(
+ "apply_right_S4",
+ signature = c("data.frame", "data.frame"),
+ definition = function(pipe_left_arg,
+ pipe_right_arg,
+ pipe_environment,
+ left_arg_name,
+ pipe_string,
+ right_arg_name) {
+ rbind(pipe_left_arg, pipe_right_arg)
+ })
> d1 %.>% d2
x

1 1
2 2

However, the apply_right execution path is only active when the right pipe argument is a name. The
rbind effect would not work if piped directly into a value. The default apply_right implementation
is an S3 dispatch on the right pipe argument.

> d1 %.>% data.frame(x = 2)
x

1 2

In this case data.frame(x = 2) was evaluated an an expression where the dot had the value
data.frame(x = 1), which was in turn ignored.
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Dot-pipe semantics

We have been describing dot-pipe semantics by introducing transformed code that we consider
equivalent to the dot-pipe pipeline. Think of that as the specification. Dot-pipe’s implementation is
not by code substitution but through execution rules we outline here.

In R, special operators (those written with %) are left to right associative (meaning a %.>% b %.>% c
is taken to mean (a %.>% b) %.>% c) with fairly high operator precedence (meaning they are applied
earlier than some other operators).

The dot-pipe semantics are realized by the following processing rules. a %.>% b is processed as
follows:

Def. We choose the default “control on the left case” (or “L case”) if the second or right hand side
argument b is not a R language name or other dereferencable entity, otherwise we take the
“control on right case” (or “R case”). We then continue with one of these two cases.

L case. S3 dispatch is performed on apply_left(a,b,env,nm), with class(a) being the method-
determining argument, and b an un-evaluated R language object. The default imple-
mentation of apply_left(a,b,env,nm) is . <-a ; eval(b) (performed in the calling
environment).

R case. We look-up the second or right hand side argument b and then branch as follows.

i. If b is now a function, the value b(a) is returned.
ii. Otherwise, S3 dispatch is performed on apply_right(a,b,env,nm) with class(b) as

the method determining argument. If b is an S4 object, apply_right.default(a,b,env,nm)
in turn dispatches to apply_right_S4(a,b,env,nm).

This may seem involved, but it is in fact quite regular with only one exception: a dereference
triggers right-dispatch. Roughly, the rule is: “treat the second or right hand side argument as an
expression, unless it is a name.” The intent is for dot-pipe to have simple semantics that are capable of
being combined many ways to allow rich emergent behavior.

Comparison with magrittr

The magrittr package supplies a very popular R pipe operators, so it is worth a bit of discussion.

The magrittr package works by capturing entire (possibly more than one step) pipelines un-
evaluated and then inspecting the captured code for its own piping symbols. This can be confirmed
by looking at the implementation and also by attempting to re-name the magrittr pipe.

> library("magrittr")
> 5 %>% sin
[1] -0.9589243

> `%userpipe%` <- magrittr::`%>%`
> tryCatch(
+ 5 %userpipe% sin,
+ error = function(e) {e})
<simpleError in pipes[[i]]: subscript out of bounds>

The wrapr pipe executes by looking only at the arguments it is given, holding the right argument
un-evaluated until the left value is available. Multiple stage wrapr pipes are just an effect of running
stages one after the other.

> `%userpipe%` <- wrapr::`%.>%`
> 5 %userpipe% sin
[1] -0.9589243

There are also differences in how magittr and wrapr handle functions and function arguments.
With magittr, one can not reliably pipe into substitute with %>%. Note that the word value below is
the result, not an input.

> library("magrittr")
> 5 %>% substitute
value

Also, %>% does not work with qualified names unless one uses the more general expression notation
base::sin(.).
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> tryCatch(
+ 5 %>% base::sin,
+ error = function(e) {e})
<simpleError in .::base: unused argument (sin)>

In contrast, %.>% behaves closer to common user expectations.

> library("wrapr")
> 5 %.>% substitute
[1] 5

> 5 %.>% base::sin
[1] -0.9589243

Note that the magrittr package can in fact trigger S3 dispatch through its exposition pipe operator,
%$% pipe, but this is only because this operator calls the method with(), which is itself S3 overridable.
This should not be treated as an intended feature of the magrittr.

Example applications

Both R users and package developers can achieve a great number of useful effects by adding S3
implementations for apply_left() or for apply_right(). Some possibilities include:

• Enabling %.>% as a layering function for ggplot2 (as a replacement for +, as we demonstrated).

• Enabling auto-application of rquery operation trees to data frames (as we demonstrated).

• Enabling auto-application of models by mapping apply_right.model_class to the appropriate
predict method.

> d <- data.frame(x = 1:5, y = c(1, 1, 0, 1, 0))
> model <- glm(y~x, family = binomial, data = d)
> apply_right.glm <-
+ function(pipe_left_arg,
+ pipe_right_arg,
+ pipe_environment,
+ left_arg_name,
+ pipe_string,
+ right_arg_name) {
+ predict(pipe_right_arg,
+ newdata = pipe_left_arg,
+ type = 'response')
+ }
> data.frame(x = c(1, 3)) %.>% model

1 2
0.9428669 0.6508301

Notice we can pipe new data directly into the model for prediction. The S3 apply_right
extensions give us a good opportunity to regularize model predictions functions to take the
same arguments and have the desired default behaviors.

• Enabling pipe notation for SQL.

> # get a database connection
> db = DBI::dbConnect(RSQLite::SQLite(),
+ ":memory:")
> apply_right.SQLiteConnection <-
+ function(pipe_left_arg,
+ pipe_right_arg,
+ pipe_environment,
+ left_arg_name,
+ pipe_string,
+ right_arg_name) {
+ DBI::dbGetQuery(pipe_right_arg, pipe_left_arg)
+ }
> "SELECT * FROM sqlite_temp_master" %.>% db
[1] type name tbl_name rootpage sql
<0 rows> (or 0-length row.names)
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Here we piped SQL code directly into the database connection.

• A string concatenation operator.

> apply_left.character <- function(pipe_left_arg,
+ pipe_right_arg,
+ pipe_environment,
+ left_arg_name,
+ pipe_string,
+ right_arg_name) {
+ pipe_right_arg <- eval(pipe_right_arg,
+ envir = pipe_environment,
+ enclos = pipe_environment)
+ paste0(pipe_left_arg, pipe_right_arg)
+ }
> "a" %.>% "b" %.>% "c"
[1] "abc"

One can, of course, define a string concatenation operator directly, but this is a good example of
the use of the dot-pipe as a sort of compound constructor.

• A formula term collector.

> apply_left.formula <- function(pipe_left_arg,
+ pipe_right_arg,
+ pipe_environment,
+ left_arg_name,
+ pipe_string,
+ right_arg_name) {
+ pipe_right_arg <- eval(pipe_right_arg,
+ envir = pipe_environment,
+ enclos = pipe_environment)
+ pipe_right_arg <- paste(pipe_right_arg, collapse = " + ")
+ update(pipe_left_arg, paste(" ~ . +", pipe_right_arg))
+ }
> (y~a) %.>% c("b", "c", "d") %.>% "e"
y ~ a + b + c + d + e

We anticipate motivated package authors can find many special cases that the dot-pipe can
streamline for their users. The value will be when many packages add effects on the same pipe, so
users know by using that pipe they will simultaneously have many powerful features made available.

We have found it profitable to roughly think of apply_left() as a “programmable comma” and
apply_right() as “automatic execution” (usually achieved by overriding print()).

Limitations

There are limitations to the class-driven pipe dispatch approach. The class of the left item (driving
apply_left()) is often uninformative, as in R it will very often be a data frame. The class of the right
item (used by apply_right()) is not available until the right item has been evaluated, which is too late
for the most common pipe effect (evaluating the right item with the left available as a dot). However,
the authors feel this system is more R like as it leaves more of the execution to the R interpreter and
tries to minimize the pipe operator itself being a type of replacement interpreter implementation.

Conclusion

We have demonstrated a predictable, well-behaved, S3-extensible tool for sequencing or pipe-lining
operations in R. The left-dispatch of apply_left() method is useful in assembling composite structures
such as building a ggplot2 plot up from pieces. The right-dispatch apply_right() is unusual, but a
natural extension of the “pipes write functions on the right” idea. The goal of dot-pipe is to supply
simple semantics that can be composed into powerful specific applications. The dot-pipe can be used
to extend packages, or to add user desired effects. We would like the wrapr dot-pipe to be a testing
ground both for pipe-aware package extensions and for experimenting with the nature of piping in R
itself.
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idmTPreg: Regression Model for
Progressive Illness Death Data
by Leyla Azarang and Manuel Oviedo de la Fuente

Abstract The progressive illness-death model is frequently used in medical applications. For example,
the model may be used to describe the disease process in cancer studies. We have developed a
new R package called idmTPreg to estimate regression coefficients in datasets that can be described
by the progressive illness-death model. The motivation for the development of the package is a
recent contribution that enables the estimation of possibly time-varying covariate effects on the
transition probabilities for a progressive illness-death data. The main feature of the package is that
it befits both non-Markov and Markov progressive illness-death data. The package implements the
introduced estimators obtained using a direct binomial regression approach. Also, variance estimates
and confidence bands are implemented in the package. This article presents guidelines for the use of
the package.

Introduction

In a classical survival study, patients start from an initial state "alive" and are followed up until the
end of the study. They make a transition to the absorbing state "dead", unless they drop out of the
study. In many medical studies, state "alive" includes two or more transient states. For example, in the
illness trajectory of a cancer, a particular stage of the illness as a transient state is usually observed
over time (e.g. cancer recurrence). Multi-state models are particularly useful for modeling the overall
process of survival Hougaard (2000), Andersen and Keiding (2002). A multi-state model is a model for
a continuous-time stochastic process allowing individuals to move among a finite number of states. A
transition from one state to another one is the occurrence of one event of interest. The progressive
illness-death model depicted in Figure 1 is a three-state multi-state model used in the medical literature
to describe disease progression (Meira-Machado et al., 2008). It consists of three states: "Healthy" (state
1), "Diseased" (state 2) and "Dead" (state 3). All patients start in healthy state, then each patient can
either have a transition directly to the dead state or they can be diseased before moving to the dead
state. That means, the trajectory for a patient will be 1 −→ 3 or 1 −→ 2 −→ 3, but the entire trajectory
might not be observed due to censoring.

Often, in the presence of censoring, estimating the effect of a set of prognostic factors on the
course of the disease is an important target for the progressive illness-death model. The effect of
prognostic factors for the Markov progressive illness-death model is generally modeled by Aalen´s
additive model, Aalen et al. (2001). According to their model, the effects on transition intensities are
estimated and, from them, the effects on transition probabilities (therefore, the conditional transition
probabilities) can be calculated by solving the so-called forward Kolmogorov differential equation.
But the violation of Markov condition does not allow such a calculation. To this end, Meira-Machado´s
approach (Meira-Machado et al., 2014) based on kernel smoothing is an alternative to the Aalen
model. The method considers the nonparametric estimation of conditional transition probabilities
in a non-Markov illness-death Model that allows only conditioning on continuous covariates in low
dimension. Azarang et al. (2017) proposed the direct binomial regression method for the transition
probabilities in the right-censored progressive illness-death model. By applying this method, one
can estimate the possibly time-varying regression coefficients as covariate effects on the transition
probabilities. The method does not require the Markov assumption and has no restriction on the
dimension of covariates. In addition, it can be applied for both continuous and categorical covariates.
Based on this method, we have developed a software package in R, called idmTPreg (available from
the Comprehensive R Archive Network at https://cran.r-project.org/web/packages/idmTPreg/).
The progressive illness-death model illustrated in Figure 1 is the only progressive disease model
supported by the idmTPreg package.

Furthermore, several packages to analyse multi-state survival data like the progressive illness-
death data are available on the Comprehensive R Archive Network (CRAN). For example, the mstate
de Wreede et al. (2010), provides estimation of the transition probabilities possibly depending on
covariates, the implemented technique assumes proportional transition intensities. The package can
be applied to right censored and left truncated multi-state data. The msm package Jackson (2011),
in terms of covariates, can be used to obtain conditional transition probabilities in continuous-time
Markov and hidden-Markov multistate models for longitudinal data. In the p3state.msm package
Meira-Machado and Roca-Pardiñas (2011), estimates of regression parameters can be obtained by
assuming that each transition may be specified by a Cox-type model. To this end, one of the three
possible options for the model can be chosen; TDCM, CMM or CSMM. TDCM (time dependent
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Cox model) associates a time dependent covariate with the occurrence of disease, in CMM (Cox
Markov model) it is assumed that the future is independent of the past given the present state, and the
CSMM model (Cox semi-Markov model) emphasizes the importance of time spent in the current state,
Survival.

This paper describes idmTPreg package and its capabilities through the following sections. In
the next section, we outline the methodology of the direct modeling approach in the progressive
illness-death model, the detailed mathematics underlying the package have been discussed in our
previous paper. Then, we describe the package in full detail, and demonstrate how to apply the
functions provided by the package through the analysis of a real dataset. Ultimately, the last section
gives a summary of the work.

Figure 1: Progressive illness-death model.

An overview of the methodology

In this section we briefly review the methodological background behind the idmTPreg package. As
mentioned before, the progressive illness-death model presents two transient states (state 1 and state
2) and an absorbing state (state 3). The three possible transitions are shown by forward arrows in
Figure 1. We assume here that recovery (transition from 2 to 1) is not possible. Five different transition
probabilities of the model are: p11(s, t), p12(s, t), p13(s, t), p22(s, t) and p23(s, t); s and t (s < t) are times.
Among the transition probabilities the following relations hold: p11(s, t) + p12(s, t) + p13(s, t) = 1 and
p22(s, t) + p23(s, t) = 1. The transition probabilities pkl(s, t)´s, where k = 1, 2; l = 1, 2, 3 and k ≤ l, are
defined as:

pkl(s, t) = Pr(patient is at state l at time t | patient was at state k at time s.)

Likewise, in the presence of covariates (XXX) the conditional transition probabilities denoted by
pkl(s, t|X) are defined. Let Z be the sojourn time in state 1, T be the total survival time, and C be the
censoring time of the model. The observed information is (Z̃, ∆1, T̃, ∆, XXX), where ∆1 and ∆ are the
censoring indicator of Z and T respectively; Z̃ = min(Z, C) and T̃ = min(T, C); and XXX is the vector of
time-independent covariates. In order to correct for estimation bias due to censoring, we update ∆1
and ∆ with time t and define ∆t

1 and ∆t as follows:

∆t = 1{min(T,t)≤C} =
{

∆ if T̃ ≤ t
1 if T̃ > t

and

∆t
1 = 1{min(Z,t)≤C} =

{
∆ if Z̃ ≤ t
1 if Z̃ > t

Azarang et al. (2017) introduced regression modeling to estimate the possibly time-varying co-
efficients for the conditional transition probabilities (pkl(s, t|XXX), k = 1, 2; l = 1, 2, 3; k ≤ l) in the
progressive illness-death model via defining binomial time-varying response variables (Ykl(t)’s), and
time-varying random weights Ws

kl(t) (depending on transition from k to l the weights are either a
function of ∆t

1 or a function of ∆t and are estimated by Ŵs
kl(t), see Azarang et al. (2017) for more

details). The response variables and weights for each transition probability are well defined so that:

pkl(s, t|XXX) = Es[Ws
kl(t)Ykl(t)|XXX] k = 1, 2; l = 1, 2, 3; k ≤ l,

where Es for k = 1 is the expectation value conditioned on the event of being observed at the initial
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state by a given time s (Z > s) and for k = 2 it is the expectation value conditioned on being observed

at the intermediate state by time s (Z ≤ s < T). Then for a fixed time s, the linear predictor XβXβXβ
(s)
kl (t) is

linked to the transition probability pkl(s, t|X) via an allowable link function for the binomial family.
Without the loss of generality, we consider logit link function:

pkl(s, t|XXX) =
exp(XβXβXβ

(s)
kl (t))

1 + exp(XβXβXβ
(s)
kl (t))

.

As mentioned before, we consider s to be fixed and t ∈ [a, τ], where t is the last event time point,

and pkl(s, a|xxx) > 0. Then, βββ
(s)
kl (t), which is a vector of possibly time-varying coefficients, can be

estimated by solving the following score equations:

∑
Ik

∂pkl(s, t|XXXi)

∂βββ
(s)
kl (t)

Ŵs
kl(t)[Ykl(t)− pkl(s, t|XXXi)] ≡ 0,

where I1 = {i : Z̃i > s} and I2 = {i : Z̃i ≤ s < T̃i}. Note that the expected value of the above

score functions equals zero. Since the estimates of the coefficients, β̂ββ
(s)
kl (t), are piecewise constant

between the jump times of Ykl (that are the jump times of Ws
kl too) we can fit the standard approach

for generalised linear models at each jump time of the corresponding response variable. Therefore, for

each t between a and τ, β̂ββ
(s)
kl (t) are given.

Package description

The idmTPreg package provides estimates of the coefficients on transition probabilities for a progres-
sive illness-death dataset. The package consists of 6 user-visible functions described in Table 1. In
addition, there is an invisible function called mod.glm.fit that is contained inside the main function
to fit generalized linear type models. This function is a modified version of glm.fit available in the R
Stats Package. The modification was done to give special weights to the binary responses discussed in
the previous section. The modified function mod.glm.fit gives the estimated vector of coefficients.
Also, the call to mod.glm.fit has been programmed in parallel to obtain 95% pointwise bootstrap
confidence bands. The number of cores for parallel execution is set to the number of CPU cores on the
current host by default unless it is specified by the user. Then, registerDoParallel of the doParallel
package is used to register the parallel backend. The parallel computation is performed by the foreach
function of foreach package.

The main function, intended to be called by the user, is TPreg(). The data frame to be passed
into the main function of the package, other than covariates, must contain Zt, Tt, delta1, and delta
variables (denoted by Z̃, T̃, ∆1 and ∆ in the previous section). Assessing these variables for a non-
statistician might be challenging, so iddata function is used to convert simple records of progressive
illness-death data to the proper format. To this end, one may ask clinicians to give them the total
survival time (Stime), the indicator of uncensored total survival time (Sind), the arrival time to the
diseased state (Iltime), the indicator of visiting diseased state (Ilind) and a vector of covariates (cov).
By convention for patients who have not been diseased (Ilind=0), their arrival time to the diseased
state is recorded equal to their total survival time.

Example of application

To illustrate our method with the capability of our package, we consider the colon cancer dataset
which is freely available as a part of the survival package. In this study, from 929 patients who had
curative-intent resections of stage III colon cancer, 315 were randomly assigned to observation only,
310 to levamisole alone (Lev), and 304 to levamisole plus fluorouracil (Lev+5FU). See Moertel et al.
(1990) for details. By the end of the study, 477 patients remained alive, 468 developed a recurrence,
and 452 died and among these, 38 died without recurrence. The possible events for a patient may
be described by the progressive illness-death model with states 1, 2 and 3 corresponding to "Alive
and disease-free", "Alive with recurrence", and "Dead" respectively. A subset of colon cancer dataset
called colonTPreg is available in the idmTPreg package, but just three risk factors were included in
the dataset : Age (in years) and Nodes (number of lymph nodes with detectable cancer), and treatment.
We use the colonTPreg dataset to demonstrate the functionality of the package.

> library(idmTPreg)
> data(colonTPreg)
> head(colonTPreg)
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Function Description

TPreg Fits the semi-parametric regression model to estimate the effects on transition

probabilities for a sequence of time.

summary Gives details about the estimated effects of pre-specified transition probabilities

for a sequence from a given s to a given t.

plot Makes a plot for the estimated effect of pre-specified transition probabilities

along time, from time s to time t.

print Provides the details about the estimated effects of pre-specified transition

probabilities for given s and t.

iddata Converts a raw illness-death data to a data frame which can be passed into

TPreg function (described before) .

Table 1: Functions and summary of their descriptions in the idmTPreg package.

id Zt Tt delta1 delta Nodes Age treatment
1 1 968 1521 1 1 5 43 Lev+5FU
2 2 3087 3087 0 0 1 63 Lev+5FU
3 3 542 963 1 1 7 71 Obs
4 4 245 293 1 1 6 66 Lev+5FU
5 5 523 659 1 1 22 69 Obs
6 6 904 1767 1 1 9 57 Lev+5FU

Each row in the data corresponds to a single individual. The columns Zt, and Tt are time variables,
measured in days. For instance, patient 1 experienced a recurrence after 968 days (transition from
state 1 to state 2), and died after 1521 days. Patient 2 was censored after 3087 days without having the
recurrence. These data have a suitable format for the analysis.

Estimates for the effect of covariates on transition probabilities are obtained using function TPreg().
The first argument of this function is an object of class "formula" which specifies the covariates on the
right-hand side of the ∼ operator, that are separated by + operators. The left side of the ∼ operator is
left empty because the time-dependent binary responses corresponding to each transition are defined
in the main function. The data argument must be a data frame of "iddata" class or a data frame
similar to colonTPreg format described previously. The link argument is a suitable link function
for binomial family (logit, probit and cauchit). Argument s is the current time for the transition
probabilities; default is zero which reports the occupation probabilities. Argument t is the Future time
for the transition probabilities; default is NULL which is the largest uncensored sojourn time in the
initial state. The R argument specifies the number of bootstrap replicates, default is 199. The argument
trans indicates the possible transition(s) for a progressive illness-death model. The output is an object
of class "TPreg". This object has its own print(), summary() and plot() methods.

We apply the method described in the previous section to estimate the effect of the risk factors
on transition "Alive and disease-free"−→"Dead". To see the result for each time of the sequence from
time s = 0 to 7 years with the default increment, we use the following input command:

> co13 <- TPreg( ~ Age + Nodes + treatment, colonTPreg,
+ link = "logit", s = 0, R = 99,
+ t = 365.24*7, trans = "13")
> co13
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Call:
TPreg(formula = ~Age + Nodes + treatment, data = colonTPreg,
link = "logit", s = 0, t = 365.24 * 7, R = 99, trans = "13")

Transition:
[1] "13"

(s,t):
[1] 0.00 2556.68

Coefficients:
Estimate St.Err LW.L UP.L P.value

X.Intercept. -1.5899472 0.588179192 -2.742778368 -0.43711594 6.868203e-03
Age 0.0162786 0.008990345 -0.001342478 0.03389967 7.019108e-02
Nodes 0.2773286 0.066204572 0.147567677 0.40708960 2.802296e-05
treatmentLev -0.2360843 0.209801808 -0.647295861 0.17512722 2.604733e-01
treatmentLev.5FU -0.6222765 0.281455569 -1.173929431 -0.07062360 2.704119e-02

[1] "18 observations deleted due to missingness from 'data'"

The print() method returns the results for s=0 and t= 2556.68 days; and provides 95% point-
wise bootstrap confidence bands based on nonparametric resampling and normal method (normal
approximation of two-sided nonparametric confidence interval). Then, using the summary() function
one can obtain estimated values at each especified time between s=0 and t=2556.68. The estimates
between the jump times of Y13 in the time interval [s,t] are piecewise constant, and one can choose
a vector of times from the jump times via argument by. Then, at the selected times the values are
estimated. This argument gives the increment of the sequence from time s to time t. The default is

bmax(Z̃)−min(Z̃)
q0.01(Z̃)

c, where q0.01(.) is the sample quantile corresponding to 0.01 probability and bxc
gives the largest integer less than or equal to x.

> summary(co13)

Call:
TPreg(formula = ~Age + Nodes + treatment, data = colonTPreg,

link = "logit", s = 0, t = 365.24 * 7, R = 99, trans = "13")
(s,t):
[1] 0.00 2556.68

Transition 13 :

Coefficients:
time X.Intercept. Age Nodes treatmentLev treatmentLev.5FU

1 23.00 -28.325534 -0.024555212 -0.03918837 3.388159555 24.27533991
2 402.00 -4.092865 0.025096305 0.08050421 0.156140164 -0.07222873
3 659.00 -2.220785 0.003369437 0.16278647 0.001584098 -0.22781061
4 938.00 -2.003750 0.007666566 0.19530069 -0.009332136 -0.35912373
5 1313.00 -1.599525 0.008508928 0.20271435 0.068328191 -0.54960487
6 1891.00 -1.438688 0.009063383 0.24205416 -0.035327744 -0.48638357
7 2122.00 -1.623667 0.013412336 0.25594531 -0.124328431 -0.52617865
8 2221.00 -1.296856 0.010038380 0.25308608 -0.202232077 -0.59947602
9 2385.00 -1.488674 0.014490552 0.26120609 -0.295496733 -0.67206843
10 2556.68 -1.589947 0.016278598 0.27732864 -0.236084318 -0.62227652

Standard Errors:
time X.Intercept. Age Nodes treatmentLev treatmentLev.5FU

1 23.00 6951.8911865 0.012738568 0.02106333 6951.7974079 7332.1281285
2 402.00 0.7536143 0.012812950 0.02905815 0.3390078 0.3389652
3 659.00 0.5991375 0.009148785 0.03054517 0.2120707 0.2345916
4 938.00 0.4703039 0.006894272 0.03200788 0.1997101 0.2180372
5 1313.00 0.4797216 0.007066202 0.03454175 0.1730820 0.1684948
6 1891.00 0.4183546 0.006680265 0.03836143 0.1509584 0.1735455
7 2122.00 0.5117859 0.007847209 0.03600325 0.1715612 0.2003901
8 2221.00 0.4941523 0.007429709 0.03879966 0.2166193 0.1933320
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9 2385.00 0.4466957 0.007199118 0.04701630 0.1918290 0.2106014
10 2556.68 0.5881792 0.008990345 0.06620457 0.2098018 0.2814556

Lower limit:
time X.Intercept. Age Nodes treatmentLev treatmentLev.5FU

1 23.00 -13654.032259 -4.952281e-02 -0.08047250 -1.362213e+04 -1.434670e+04
2 402.00 -5.569949 -1.707772e-05 0.02355023 -5.083151e-01 -7.366005e-01
3 659.00 -3.395094 -1.456218e-02 0.10291793 -4.140744e-01 -6.876100e-01
4 938.00 -2.925546 -5.846207e-03 0.13256524 -4.007639e-01 -7.864766e-01
5 1313.00 -2.539779 -5.340829e-03 0.13501253 -2.709125e-01 -8.798548e-01
6 1891.00 -2.258663 -4.029937e-03 0.16686576 -3.312062e-01 -8.265328e-01
7 2122.00 -2.626767 -1.968194e-03 0.18537895 -4.605884e-01 -9.189432e-01
8 2221.00 -2.265394 -4.523850e-03 0.17703874 -6.268059e-01 -9.784067e-01
9 2385.00 -2.364197 3.802815e-04 0.16905414 -6.714816e-01 -1.084847e+00
10 2556.68 -2.742778 -1.342478e-03 0.14756768 -6.472959e-01 -1.173929e+00

Upper limit:
time X.Intercept. Age Nodes treatmentLev treatmentLev.5FU

1 23.00 13597.3811919 0.0004123815 0.002095746 1.362891e+04 1.439525e+04
2 402.00 -2.6157811 0.0502096878 0.137458182 8.205954e-01 5.921430e-01
3 659.00 -1.0464752 0.0213010553 0.222655003 4.172426e-01 2.319888e-01
4 938.00 -1.0819546 0.0211793383 0.258036135 3.820996e-01 6.822917e-02
5 1313.00 -0.6592702 0.0223586842 0.270416172 4.075688e-01 -2.193550e-01
6 1891.00 -0.6187126 0.0221567029 0.317242567 2.605507e-01 -1.462343e-01
7 2122.00 -0.6205667 0.0287928650 0.326511677 2.119315e-01 -1.334141e-01
8 2221.00 -0.3283172 0.0246006100 0.329133417 2.223417e-01 -2.205453e-01
9 2385.00 -0.6131503 0.0286008224 0.353358041 8.048813e-02 -2.592898e-01
10 2556.68 -0.4371159 0.0338996729 0.407089599 1.751272e-01 -7.062360e-02

p.value:
time X.Intercept. Age Nodes treatmentLev treatmentLev.5FU

1 23.00 9.967490e-01 0.05390150 6.281445e-02 0.9996111 0.997358354
2 402.00 5.604497e-08 0.05015178 5.597856e-03 0.6451000 0.831259885
3 659.00 2.100303e-04 0.71265448 9.855485e-08 0.9940401 0.331501133
4 938.00 2.039302e-05 0.26612969 1.049831e-09 0.9627297 0.099542518
5 1313.00 8.552157e-04 0.22852284 4.392863e-09 0.6930100 0.001106878
6 1891.00 5.840419e-04 0.17486385 2.793398e-10 0.8149671 0.005068814
7 2122.00 1.511058e-03 0.08741659 1.169284e-12 0.4686432 0.008645272
8 2221.00 8.680053e-03 0.17665908 6.896373e-11 0.3505190 0.001930250
9 2385.00 8.602758e-04 0.04413322 2.765814e-08 0.1234587 0.001416893
10 2556.68 6.868203e-03 0.07019108 2.802296e-05 0.2604733 0.027041188

[1] "18 observation(s) deleted due to missingness from 'data'"

The plot() method is used to plot estimated regression coefficients with 95% confidence bands
to visualize possible time-varying effects of covariates along time. Argument covar of plot.Tpreg()
function indicates the covariates for which their effects are to be plotted. The argument rug ((TRUE)
by default) adds a rug representation of times between time s and time t. And argument Ylim gives
the list of limits for the y axes.

> plot(co13, covar = c("Age", "Nodes", "treatmentLev", "treatmentLev.5FU"),
Ylim = list(c(-0.1,0.1), c(-0.5,0.5), c(-2,2), c(-2,2)))

Figure 2 shows the plot corresponding the adjusted effects of Age, Nodes, Lev and Lev+5FU on
transition probability p13. The covariate age, shows no significant effect of age on p13 along time. The
increasing number of nodes with detectable cancer significantly increases the probability of dying
steadily over time. As for the effect of treatment, after 1000 days the Lev+5FU decreases the transition
probability to the death state (in the long run), while no effect of Lev on p13 is appreciated. By
setting trans = all inside TPreg() function, plot() simultaneously displays the effect of prespesified
covariate(s) on all transition probabilities.

We set by=1 and trans=11 to calculate all regression results on transition probability p11 for all
times between 0 and 7 years. Compared with a larger by, by=1 results in a longer time for R to run the
code.
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Figure 2: Estimated effects of the Age (upper left corner), Nodes (upper right corner), Lev (lower left
corner), and Lev+5FU (lower right corner) on the probability of transition from "Alive and disease-free"
to "Dead" along time.

> co11 <- TPreg( ~ Age + Nodes + treatment, colonTPreg, link = "logit", s = 0,
R = 199, by = 1, t = 365.24*7, trans = "11")

> co11

Call:
TPreg(formula = ~Age + Nodes + treatment, data = colonTPreg,
link = "logit", s = 0, t = 365.24 * 7, R = 199, by = 1, trans = "11")

Transition:
[1] "11"

(s,t):
[1] 0.00 2556.68

Coefficients:
Estimate St.Err LW.L UP.L P.value

X.Intercept. 0.909156911 0.585357182 -0.23814317 2.056456987 0.1203834661
Age -0.009283428 0.009090987 -0.02710176 0.008534907 0.3071746946
Nodes -0.260231227 0.068103658 -0.39371440 -0.126748057 0.0001328551
treatmentLev 0.099705824 0.279628624 -0.44836628 0.647777927 0.7214173649
treatmentLev.5FU 0.743733904 0.253849957 0.24618799 1.241279820 0.0033916175

[1] "18 observations deleted due to missingness from 'data'"

> plot(co11, covar = c("Age", "Nodes", "treatmentLev", "treatmentLev.5FU"),
Ylim = list(c(-0.1,0.1), c(-0.5,0.5), c(-2,2), c(-2,2)))

The rugs on x axis are all jump times of the response variable corresponding to transition (i.e.
Y11(t)). As mentioned in the second section, the estimates of the coefficients are piecewise constant
between the jump times. Therefore, Figure 3 depicts all the estimates, for every time between 0 and
7 years. From the figure, we see that the number of nodes significantly reduces the probability of
consistently staying healthy and treatment Lev+5FU significantly increases this probability at each
time point.
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Figure 3: Estimated effects of the Age (upper left corner), Nodes (upper right corner), Lev (lower left
-corner), and Lev+5FU (lower right corner) on disease-free survival along time.

Summary

This paper describes the implementation of a flexible method in R for fitting a regression model
to possibly non-Markov progressive illness-death data. The idmTPreg package offers the user the
opportunity to estimate possibly time-varying effect of covariates on the transition probabilities for
the progressive illness-death model. We have explained the use of the idmTPreg package by applying
the method to a colon cancer dataset. The results in this paper were obtained using R 3.4.2. In a future
version of the package, we plan to implement a similar method to estimate coefficients on net survivals
for a progressive illness-death in a relative survival setting.
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lmridge: A Comprehensive R Package for
Ridge Regression
by Muhammad Imdad Ullah, Muhammad Aslam, and Saima Altaf

Abstract The ridge regression estimator, one of the commonly used alternatives to the conventional
ordinary least squares estimator, avoids the adverse effects in the situations when there exists some
considerable degree of multicollinearity among the regressors. There are many software packages
available for estimation of ridge regression coefficients. However, most of them display limited
methods to estimate the ridge biasing parameters without testing procedures. Our developed package,
lmridge can be used to estimate ridge coefficients considering a range of different existing biasing
parameters, to test these coefficients with more than 25 ridge related statistics, and to present different
graphical displays of these statistics.

Introduction

For data collected either from a designed experiment or from an observational study, the ordinary
least squares (OLS) method does not provide precise estimates of the effect of any explanatory variable
(regressor) when regressors are interdependent (collinear with each other). Consider a multiple linear
regression (MLR) model,

y = Xβ + ε, (1)

where y is an n× 1 vector of observation on dependent variable, X is known design matrix of order
n× p, β is a p× 1 vector of unknown parameters and ε is an n× 1 vector of random errors with mean
zero and variance σ2 In, where In is an identity matrix of order n.

The OLS estimator (OLSE) of β is given by

β̂ = (X′X)−1X′y, (2)

which depends on characteristics of the matrix X′X. If X′X is ill-conditioned (near dependencies
among various columns (regressors) of X′X exist) or det(X′X) ≈ 0, then the OLS estimates are
sensitive to a number of errors, such as non-significant or imprecise regression coefficients (Kmenta,
1980) with wrong sign and non-uniform eigenvalues spectrum. Moreover, the OLS method, can yield
high variances of estimates, large standard errors, and wide confidence intervals. Quality and stability
of the fitted model may be questionable due to erratic behaviour of the OLSE in case when regressors
are collinear.

Researchers may tempt to eliminate regressor(s) causing the problem by consciously removing
regressors from the model. However, this method may destroy the usefulness of the model by
removing relevant regressor(s) from the model. To control variance and instability of the OLS estimates,
one may regularize the coefficients, with some regularization methods such as ridge regression
(RR), Liu regression, and Lasso regression methods etc., as alternative to OLS. Computationally, RR
suppresses the effects of collinearity and reduces the apparent magnitude of the correlation among
regressors in order to obtain more stable estimates of the coefficients than the OLS estimates and it
also improves accuracy of prediction (see Hoerl and Kennard, 1970a; Montgomery and Peck, 1982;
Myers, 1986; Rawlings et al., 1998; Seber and Lee, 2003; Tripp, 1983, etc.).

There are only a few software programs and R packages capable of estimating and/ or testing
of ridge coefficients. The design goal of our lmridge (Imdad and Aslam, 2018b) is primarily to
provide functionality of all possible ridge related computations. The output of our developed package
(lmridge) is consistent with output of existing software/ R packages. The package, lmridge also
provides the most complete suite of tools for ordinary RR, comparable to those listed in Table 1. For
package development and R documentation, we followed Hadley (2015), Leisch (2008) and R Core
Team (2015). The ridge package by Moritz and Cule (2017) and lm.ridge() from the MASS (Venables
and Ripley, 2002) also provided guidance in coding.

All available software and R packages mentioned in Table 1 are compared with our lmridge
package. For multicollinearity detection, NCSS statistical software (NCSS 11 Statistical Software,
2016) computes VIF/TOL, R2, eigenvalue, eigenvector, incremental and cumulative percentage of
eigenvalues and CN. For RR, ANOVA table, coefficient of variation, plot of residuals vs predicted,
histogram and density trace of residuals are also available in NCSS. In SAS (Inc., 2011), collin option
in the model statement is used to perform collinearity diagnostics while for remedy of multicollinearity,
RR can be performed using a ridge option in proc reg statement. The outVIF option results in
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NCSS SAS Stata StatGraphics lrmest ltsbase penalized glmnet ridge lmridge

Standardization of regressors
X X X X X X X X X

Estimation and testing of ridge coefficient
Estimation X X X X X X X X X X
Testing X X X X
SE of coef X X X X X

Ridge related statistics
R2 X X X X
adj-R2 X X X
m-scale & ISRM X
Variance X
Bias2 X
MSE X X X
F-test X X
Shrinkage factor X
CN X
σ2 X
Ck X
DF X
EDF X
Eft X
Hat matrix X
Var-Cov matrix X
VIF X X X X
Residuals X X X X X X
Ridge fitted X X X
Predict X X X X X X X

Ridge model selection
CV & GCV X X X X
AIC & BIC X
PRESS X

Ridge related graphs
Ridge trace X X X X X
VIF trace X X X X
Bias, var, MSE X
CV, GCV X
AIC & BIC X
m-scale, ISRM X
DF, RSS, PRESS X

Table 1: Comparison of ridge related software and R packages.

VIF values. For RR, Stata (StataCorp, 2014) has no built-in command, however ridgereg add-on is
available that performs calculation on scalar k. The lrmest package (Dissanayake et al., 2016) computes
estimators such as OLS, ordinary RR (ORR), Liu estimator (LE), LE type-1,2,3, Adjusted Liu Estimator
(ALTE), and their type-1,2,3 etc. Moreover, lrmest provides scalar mean square error (MSE), prediction
residual error sum of squares (PRESS) values of some of the estimators. The testing of ridge coefficient
is performed only on scalar k, however, for vector of k, function rid() of lrmest package returns only
MSE along with value of biasing parameter used. The function optimum() of lrmest package can be
used to get the optimal scalar MSE and PRESS values (Arumairajan and Wijekoon, 2015). Statgraphics
standardizes the dependent variable and computes some statistics for detection of collinearity such
as R2, adj-R2, and VIF. Statgraphics also facilitates to perform RR and computes different RR related
statistics such as VIF and ridge trace for different biasing parameter used, R2, adj-R2 and standard
error of estimates etc. The ltsbase package (Kan-Kilinc and Alpu, 2013, 2015) computes ridge and
Liu estimates based on the least trimmed squares (LTS) method. The MSE value from four regression
models can be compared graphically if the argument plot=TRUE is passed to the ltsbase() function.
There are three main functions (i) ltsbase() computes the minimum MSE values for six models:
OLS, ridge, ridge based on LTS, LTS, Liu, and Liu based on LTS method for sequences of biasing
parameters ranging from 0 to 1. If print=TRUE, ltsbase() prints all the MSEs (along with minimum
MSE) for ridge, Liu, and ridge & Liu based on LTS method for the sequence of biasing parameters
given by the user, (ii) the ltsbaseDefault() function returns the fitted values and residual of the
six models (OLS, ridge, Liu, LTS, and ridge & Liu based LTS methods) having minimum MSE, and
(iii) the ltsbaseSummary() function returns the coefficients and the biasing parameter for the best
MSE among the four regression models. The penalized package (Goeman et al., 2017) is designed for
penalized estimation in generalized linear models. The supported models are linear regression, logistic
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regression, Poisson regression and the Cox proportional hazard models. The penalized package allows
an L1 absolute value ("LASSO") penalty, and L2 quadratic ("ridge") penalty or a combination of the two.
It is also possible to have a fused LASSO penalty with L1 absolute value penalty on the coefficients
and their differences. The penalized package also includes facilities for likelihood, cross-validation
and for optimization of the tuning parameter. The glmnet package (Friedman et al., 2010) has some
efficient procedures for fitting the entire LASSO or elastic-net regularization path for linear regression,
logistic and multinomial regression model, Poisson regression and Cox model. The glmnet can also
be used to fit the RR model by setting alpha argument to zero. The ridge package fits linear and also
logistic RR models, including functions for fitting linear and logistic RR models for genome-wide
SNP data supplied as files names when the data are too big to read into R. The RR biasing parameter
is chosen automatically using the method proposed by Cule and De Iorio (2012), however value of
biasing parameter can also be specified for estimation and testing of ridge coefficients. The function,
lm.ridge() from MASS only fits linear RR model and returns ridge biasing parameters given by
Hoerl and Kennard (1970a) and Venables and Ripley (2002) and vector GCV criterion, given by Golub
et al. (1979).

There are other software and R packages that can be used to perform RR analysis such as S-
PLUS (S-PLUS, 2008), Shazam (Shazam, 2011) and R packages such as RXshrink (Obenchain, 2014),
rrBLUP (Endelman, 2011), RidgeFusion (Price, 2014), bigRR (Shen et al., 2013), lpridge (Seifert, 2013),
genridge (Friendly, 2017) and CoxRidge (Perperoglou, 2015) etc.

This paper outlines the collinearity detection methods available in the existing literature and uses
the mctest (Imdad and Aslam, 2018a) package through an illustrative example. To overcome the issues
of the collinearity effect on regressors a thorough introduction to ridge regression, properties of the
ridge estimator, different methods for selecting values of k, and testing of the ridge coefficients are
presented. Finally, estimation of the ridge coefficients, methods of selecting a ridge biasing parameter,
testing of the ridge coefficients, and different ridge related statistics are implemented in R within the
lmridge.

Collinearity detection

Diagnosing collinearity is important to many researchers. It consists of two related but separate
elements: (1) detecting the existence of collinear relationship among regressors and (2) assessing the
extent to which this relationship has degraded the parameter estimates. There are many diagnostic
measures used for detection of collinearity in the existing literature provided by various authors
(Belsley et al., 1980; Curto and Pinto, 2011; Farrar and Glauber, 1967; Fox and Weisberg, 2011; Gunst and
Mason, 1977; Imdadullah et al., 2016; Klein, 1962; Koutsoyiannis, 1977; Kovács et al., 2005; Marquardt,
1970; Theil, 1971). These diagnostics methods assist in determining whether and where some corrective
action is necessary (Belsley et al., 1980). Widely used, and the most suggested diagnostics, are value of
pair-wise correlations, variance inflation factor (VIF)/ tolerance (TOL) (Marquardt, 1970), eigenvalues
and eigenvectors (Kendall, 1957), CN & CI (Belsley et al., 1980; Chatterjee and Hadi, 2006; Maddala,
1988), Leamer’s method (Greene, 2002), Klein’s rule (Klein, 1962), the tests proposed by Farrar and
Glauber (Farrar and Glauber, 1967), Red indicator (Kovács et al., 2005), corrected VIF (Curto and Pinto,
2011) and Theil’s measures (Theil, 1971), (see also Imdadullah et al. (2016)). All of these diagnostic
measures are implemented in the R package, mctest. Below, we use the Hald dataset (Hald, 1952),
for testing collinearity among regressors. We then use the lmridge package to compute the ridge
coefficients for different ridge related statistics and methods of selection of ridge biasing parameter is
also performed. For optimal choice of ridge biasing parameter, graphical representations of the ridge
coefficients, vif values, cross validation criteria (CV & GCV), ridge DF, RSS, PRESS, ISRM and m-scale
versus used ridge biasing parameter are considered. In addition graphical representation of model
selection criteria (AIC & BIC) of ridge regression versus ridge DF is also performed. The Hald data are
about heat generated during setting of 13 cement mixtures of 4 basic ingredients and used by Hoerl
et al. (1975). Each ingredient percentage appears to be rounded down to a full integer. The data set is
already bundled in mctest and lmridge packages.

Collinearity detection: Illustrative example

> library("mctest")
> x <- Hald[, -1]
> y <- Hald[, 1]
> mctest (x, y)
Call:
omcdiag(x = x, y = y, Inter = TRUE, detr = detr, red = red, conf = conf,

theil = theil, cn = cn)
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Overall Multicollinearity Diagnostics

MC Results detection
Determinant |X'X|: 0.0011 1
Farrar Chi-Square: 59.8700 1
Red Indicator: 0.5414 1
Sum of Lambda Inverse: 622.3006 1
Theil's Method: 0.9981 1
Condition Number: 249.5783 1

1 --> COLLINEARITY is detected
0 --> COLLINEARITY is not detected by the test

The results from all overall collinearity diagnostic measures indicate the existence of collinearity among
regressor(s). These results do not tell which regressor(s) are reasons of collinearity. The individual
collinearity diagnostic measures can be obtained through:

> imcdiag(x = x, y, all = TRUE)
Call:
imcdiag(x = x, y = y, method = method, corr = FALSE, vif = vif,

tol = tol, conf = conf, cvif = cvif, leamer = leamer, all = all)

Individual Multicollinearity Diagnostics

VIF TOL Wi Fi Leamer CVIF Klein
X1 1 1 1 1 0 0 0
X2 1 1 1 1 1 0 1
X3 1 1 1 1 1 0 0
X4 1 1 1 1 0 0 1

1 --> COLLINEARITY is detected
0 --> COLLINEARITY is not detected by the test

X1, X2, X3, X4, coefficient(s) are non-significant may be due to multicollinearity

R-square of y on all x: 0.9824

* use method argument to check which regressors may be the reason of collinearity

Results from the most of individual collinearity diagnostics suggest that all of the regressors are
the reason for collinearity among regressors. The last line of imcdiag() function’s output suggests that
method argument should be used to check which regressors may be the reason of collinearity among
different regressors. For further information about method argument, see the help file of imcdiag()
function.

Ridge regression analysis

In the seminal work by Hoerl (1959, 1962, 1964) and Hoerl and Kennard (1970b,a) have developed
ridge analysis technique that purports the departure of the data from orthogonality. Hoerl (1962)
introduced the RR, based on the James-Stein estimator by stating that existence of correlation among
regressors can cause errors in estimating regression coefficients when applying the OLS method. The
RR is similar to the OLS method however, it shrinks the coefficients towards zero by minimizing the
MSE of the estimates, making the RR technique better than the OLSE with respect to MSE, when
regressors are collinear with each other. A penalty (degree of bias) is imposed on the size of coefficients
in the RR to reduce their variances. However, the expected values of these estimates are not equal to
the true values and tend to under estimate the true parameter. Though the ridge estimators are biased
but have lower MSE (more precision) than the OLSEs have, less sensitive to sampling fluctuations or
model misspecification if number of regressors is more than the number of observations in a data set
(i.e., p > n), and omitted variables specification bias (Theil, 1957). In summary, the RR procedure is
intended to overcome the ill-conditioned situation, and is used to improve the estimation of regression
coefficients when regressors are correlated and it also improves the accuracy of prediction (Seber and
Lee, 2003). Obtaining the ridge model coefficients (β̂R) is relatively straight forward, because the ridge
coefficients are obtained by solving a slightly modified form of the OLS method.

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 330

The design matrix X in Eq. (1) can be standardized, scaled or centered. Usually, standardization
of X matrix is done as described by Belsley et al. (1980) and Draper and Smith (1998), that is, Xj =

xij−xj√
∑(xij−xj)2

; where j = 1, 2, · · · , p such that X j = 0 and X′jXj = 1, where Xj is the jth column of the

matrix X. In this way, the new design matrix (say X̃) that contains the standardized p columns and
the matrix X̃′X̃ will be correlation matrix of regressors. To avoid complexity of different notations
and terms, the centered and scaled design matrix X̃ will be represented by X and centered response
variable as y.

The ridge model coefficients are estimated as,

β̂Rk = (X′X + kIp)
−1X′y, (3)

where β̂Rk is the vector of standardized RR coefficients of order p× 1 and kIp is a positive semi-definite
matrix added to the X′X matrix. Note that for k = 0, β̂Rk = β̂ols.

The addition of constant term k to diagonal element of X′X (in other words addition of kIp to
X′X) in Eq. (3) is known as penalty and k is called the biasing or shrinkage parameter. Addition of
this biasing parameter guarantees the invertibility of X′X matrix, such that there is always a unique
solution β̂Rk exists (Draper and Smith, 1998; Hoerl and Kennard, 1970a; McCallum, 1970) and the

condition number (CN) of X′X + kI (CNk =
√

λ1+kI
λp+kI ) also becomes smaller as compared to that of

X′X, where λ1 is the largest and λp is the smallest eigenvalues of the correlation matrix X′X. Therefore,
the ridge estimator (RE) is an improvement over the OLSE for collinear data.

It is desirable to select the smallest value of k for which stabilized regression coefficients occur
and there always exists a particular value of k for which the total MSE of the REs is less than the
MSE of the OLSE, however, the optimum value of k (which produces minimum MSE as compared to
other values of ks) varies from one application to another and hence optimal value of k is unknown.
Any estimator that has a small amount of bias, less variance and substantially more precise than an
unbiased estimator may be preferred since it will have larger probability of being close to the true
parameter being estimated. Therefore, criterion of goodness of estimation considered in the RR is the
minimum total MSE.

Properties of the ridge estimator

Let Xj denotes the jth column of X (1, 2, · · · , p), where Xj = (x1j, x2j, · · · , xnj)
′. As already discussed,

assume that the regressors are centered such that
n
∑

i=1
xij = 0 and

n
∑

i=1
x2

ij = 1 and the response variable

y is centered.

The RR is the most popular among biased methods, because of its relationship to the OLS method
and statistical properties of the RE are also well defined. Most of the RR properties have been discussed,
proved and extended by many researchers such as Allen (1974); Hemmerle (1975); Hoerl and Kennard
(1970b,a); Marquardt (1970); McDonald and Galarneau (1975); Newhouse and Oman (1971). Table 2
lists the RR properties.

Theoretically and practically, the RR is used to propose some new methods for the choice of the
biasing parameter k to investigate the properties of RE, since biasing parameter plays a key role while
the optimal choice of k is the main issue in this context. In the literature, there are many methods
for estimating the biasing parameter k (see Allen, 1974; Guilkey and Murphy, 1975; Hemmerle, 1975;
Hoerl and Kennard, 1970b,a; McDonald and Galarneau, 1975; Obenchain, 1977; Hocking et al., 1976;
Lawless and Wang, 1976; Vinod, 1976; Kasarda and Shih, 1977; Hemmerle and Brantle, 1978; Wichern
and Churchill, 1978; Nordberg, 1982; Saleh and Kibria, 1993; Singh and Tracy, 1999; Wencheko, 2000;
Kibria, 2003; Khalaf and Shukur, 2005; Alkhamisi et al., 2006; Alkhamisi and Shukur, 2007; Khalaf,
2013, among many more), however, there is no consensus about which method is preferable (Chatterjee
and Hadi, 2006). Similarly, each of the estimation method of biasing parameter cannot guarantee to
give a better k or even cannot give a smaller MSE as compared to that for the OLS.

Methods of selecting values of k

The optimal value of k is one which gives minimum MSE. There is one optimal k for any problem,
while a wide range of k (0 < k < kopt) give smaller MSE as compared to that of the OLS. For collinear
data, a small change in k varies the RR coefficients rapidly. At some values of k, the ridge coefficients
get stabilized and the rate of change slow down gradually to almost zero. Therefore, a disciplined
way of selecting the shrinkage parameter is required that minimizes the MSE. The biasing parameter
k depends on the true regression coefficients (β) and the variance of the residuals σ2, unfortunately
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sr.# Property Formula

1) Mean E(β̂R) = (X′X + kIp)−1X′Xβ

2) Shorter regression coeffs. β̂′R β̂R ≤ β̂′ β̂
3) Linear transformation β̂R = Zβ̂ ,where Z = (X′X + kI)−1X′X

4) Variance Var(β̂R) = σ2
p
∑

j=1

λj
(λj+k)2

5) Var-Cov matrix

Cov(β̂R) = Cov(Zβ̂)

= σ2(X′X + kI)−1X′X(X′X + kI)−1

= σ2[VIF]

6) Bias

Bias(β̂R) = −k(X′X + kI)−1β

= −k P diag

(
1

λj + k

)
P′β

7) MSE MSE = σ2
p
∑

j=1

λj
(λj+k)2 +

p
∑

j=1

k2α2
j

(λj+k)2

8) Distance between β̂R and β β̂R and the true vector of β have minimum distance
9) Inflated RSS φ0 = k2 β̂′R(X′X)−1 β̂R

10) R2
R R2

R =
β̂′RX′y−kβ̂′R β̂R

y′y
11) Sampling fluctuations The β̂R is less sensitive to the sampling fluctuation

12) Accurate prediction σ2
fR

= σ2
[
1 + x′ P diag

(
λj

(λ+k)2

)
P′x
]
+ (Bias(β̂R))

2

13) Wide range of k 0 < k < kmax, have smaller set of MSE than OLSE
14) Optimal k An optimal k always exists that gives minimum MSE

15) DF Ridge d fRk = EDF =
p
∑

j=1

λj
λj+k = trace

[
HRk

]
,

where HRk = X (X′X + kI)−1 X′

16 Effective no. of parameters EP = trace[2HRk − HRk H′Rk
]

17 Residual EDF REDF = n− trace[2HRk − HRk H′Rk
] = n− EP

Table 2: Properties of the ridge estimator.

these are unknown, but they can be estimated from the sample data.

We classified these estimation method as (i) Subjective or (ii) Objective

Subjective methods

In all these methods, the selection of k is subjective or of judgmental nature and provides graphical
evidence of the effect of collinearity on the regression coefficient estimates and also accounts for
variation by the RE as compared to the OLSE. In these methods, the reasonable choice of k is done
using the ridge trace, df trace, VIF trace and plotting of bias, variance, and MSE. The ridge trace is a
graphical representation of regression coefficients β̂R, as a function of k over the interval [0, 1]. The
df trace and VIF trace are like the ridge trace plot in which EDF and VIF values are plotted against
k. Similarly, plotting of bias, variance, and MSE from the RE may also be helpful in selecting an
appropriate value of k. All these graphs can be used for selection of optimal (but judgmental) value
of k from horizontal axis to assess the effect of collinearity on each of the coefficients. The effect of
collinearity is depressed when value of k increases and all the values of the ridge coefficients, EDF and
VIF values decrease and/ or may stabilize after certain value of k. These graphical representations
do not provide a unique solution, rather they render a vaguely defined class of acceptable solutions.
However, these traces are still useful graphical representations to check for some optimal k.

Objective methods

Suppose, we have set of observations (x1, y1), (x2, y2), · · · , (xn, yn) and the RR model as given in Eq.
(3). Objective methods, to some extent, are similar to judgmental methods for selection of biasing
parameter k, but they require some calculations to obtain these biasing parameters. Table 3 lists widely
used methods to estimate the biasing parameter k already available in the existing literature. Table 3
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also lists other statistics that can be used for the selection of the biasing parameter k. There are other

method formula reference

Ck

Ck =
SSRk

s2 − n + 2 + 2 trace(HRk )

=
SSRk

s2 + 2(1 + trace(HRk ))− n Kennard (1971); Mallows
(1973)

PRESSk

PRESSk =
n

∑
i=1

(yi − ŷ(i,−i)k
)2

=
n

∑
i=1

e2
(i,−i)k

Allen (1971, 1974)

CV CVk = n−1
n
∑

i=1
(yi − Xj β̂ jRk

)2

Delaney and Chatterjee
(1986)

GCV GCVk =
SRRk

n−(1+trace(HRk
))2

Golub et al. (1979)

ISRM ISRMk =
p
∑

j=1

 p
(

λj
λj+k

)2

∑
p
j=1

λj
(λj+k)2

λj

− 1


2

Vinod (1976)

m-scale m = p−
p
∑

j=1

λj
λj+k Vinod (1976)

Information criteria
AIC = n · log(RSS/n) + 2 · d fRk

BIC = n · log(RSS) + 2 · d fRk Akaike (1973); Schwarz
(1978)

Effectiveness index (Eft) EF = σ2 trace(X′X)−1−σ2 trace(VIF)
(Bias(β̂R))2 Lee (1979)

Table 3: Objective methods for selection of biasing parameter k.

methods to estimate biasing parameter k. Table 4 lists various methods for the selection of biasing
parameter k, proposed by different researchers.

Testing of the ridge coefficients

Investigating of the individual coefficients in a linear but biased regression models such as ridge based,
exact and non-exact t type and F test can be used. Exact t-statistics derived by Obenchain (1977) based
on the RR for matrix G whose columns are the normalized eigenvectors of X′X, is,

t∗ =
β̂Rj − β j√
ˆvar(β̂Rj − β j)

, (4)

where j = 1, 2, · · · , p, ˆvar(β̂Rj − β j) is an unbiased estimator of the variance of the numerator in Eq.
(4), and

β j = g′i∆G′[I − (X′X)−1e′i(ei(X′X)−1e′i)
−1]β̂(0),

where g′i is the ith row of G, ∆ is the (p × p) diagonal matrix with ith diagonal element given by
δi =

λi
λi+k and ei is the ith row of the identity matrix.

It has been established that βR ∼ N(ZXβ, φ = ZΩZ′), where Z = (X′X + kIp)−1X′. Therefore,
for jth ridge coefficient βR ∼ N(ZjXβ, φjj = ZjΩZ′j) (see Aslam, 2014; Halawa and El-Bassiouni,
2000). Halawa and El-Bassiouni (2000) presented to tackle the problem of testing H0 : β j = 0 by
considering a non-exact t type test of the form,

tRj =
β̂Rj√

S2(β̂Rj )
,

where β̂Rj is the jth element of RE and S2(β̂Rj ) is an estimate of the variance of β̂Rj given by the ith
diagonal element of the matrix σ2(X′X + kIp)−1X′X(X′X + kIp)−1.
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Sr. # Formula Reference

1) KHKB = pσ̂2

β̂′ β̂
Hoerl and Kennard (1970a)

2) KTH = (p−2)σ̂2
β̂′ β̂

Thisted (1976)

3) KLW = pσ̂2

∑
p
j=1 λj α̂

2
j

Lawless and Wang (1976)

4) KDS = σ̂2

β̂′ β̂
Dwividi and Shrivastava (1978)

5) KLW = (p−2)σ̂2×n
β̂′X′Xβ̂

Venables and Ripley (2002)

6) KAM = 1
p

p
∑

j=1

σ̂2

α̂ j Kibria (2003)

7) K̂GM = σ̂2(
p

∏
j=1

α̂2
j

) 1
p

Kibria (2003)

8) K̂MED = Median{ σ̂2

α̂2
j
} Kibria (2003)

9) KKM2 = max

 1√
σ̂2

α̂2
j

 Muniz and Kibria (2009)

10) KKM3 = max

(√
σ̂2

j

α̂2
j

)
Muniz and Kibria (2009)

11) KKM4 =

 p
∏
j=1

1√√√√ σ̂2
j

α̂2
j


1
p

Muniz and Kibria (2009)

12) KKM5 =

(
p

∏
j=1

√
σ̂2

j

α̂2
j

) 1
p

Muniz and Kibria (2009)

13) KKM6 = Median

 1√√√√ σ̂2
j

α̂2
j

 Muniz and Kibria (2009)

14) KKM8 = max

 1√
λmax σ̂2

(n−p)σ̂2+λmax α̂2
j

 Muniz et al. (2012)

15) KKM9 = max

(√
λmax σ̂2

(n−p)σ̂2+λmax α̂2
j

)
Muniz et al. (2012)

16) KKM10 =

 p
∏
j=1

1√
λmax σ̂2

(n−p)σ̂2+λmax α̂2
j


1
p

Muniz et al. (2012)

17) KKM11 =

(
p

∏
j=1

√
λmax σ̂2

(n−p)σ̂2+λmax α̂2
j

) 1
p

Muniz et al. (2012)

18) KKM12 = Median

 1√
λmax σ̂2

(n−p)σ̂2+λmax α̂2
j

 Muniz et al. (2012)

19) KKD = max
(

0, pσ̂2

α̂′ α̂ − 1
n(VIFj)max

)
Dorugade and Kashid (2010)

20) K4(AD) = Harmonic Mean[Ki(AD)]

=
2p

λmax

p

∑
j=1

σ̂2

α̂2
j

Dorugade (2014)

Table 4: Different available methods to estimate k.
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The statistic tRj is assumed to follow a Student’s t distribution with (n − p) d.f. (Halawa and
El-Bassiouni, 2000). Hastie and Tibshirani (1990); Cule and De Iorio (2012) suggested to use [n −
trace(HRk)] d.f. For large sample size, the asymptotic distribution of this statistic is normal (Halawa
and El-Bassiouni, 2000). Thus, H0 is rejected when |T| > Z1− α

2
.

Similarly, for testing the hypothesis H0 : β 6= β0, where β0 is vector of fixed values. The F statis-
tic for significance testing of the ORR estimator βR with E(β̂R) = ZXβ and estimate of Cov(βR)
distributed as F(DFridge, REDF) is

F =
1
p
(β̂R − ZXβ)′

(
Cov(β̂R)

)−1
(β̂R − ZXβ)

The R package lmridge

Our R package lmridge contains functions related to fitting of the RR model and provides a simple
way of obtaining the estimates of RR coefficients, testing of the ridge coefficients, and computation of
different ridge related statistics, which prove helpful for selection of optimal biasing parameter k. The
package computes different ridge related measures available for the selection of biasing parameter
k, and also computes value of different biasing parameters proposed by some researchers in the
literature.

The lmridge objects contain a set of standard methods such as print(),summary(),plot() and
predict(). Therefore, inferences can be made easily using summary() method for assessing the
estimates of regression coefficients, their standard errors, t values and their respective p values. The
default function lmridge which calls lmridgeEst() to perform required computations and estimation
for given values of non-stochastic biasing parameter k. The syntax of default function is,

lmridge (formula,data,scaling = ("sc","scaled","centered"),K,...)

The four arguments of lmridge() are described in Table 5:

Argument Description

formula Symbolic representation for RR model of the form, response ∼ predictors.
data Contains the variables that have to be used in RR model.
K The biasing parameter, may be a scalar or vector. If a K value is not pro-

vided, K = 0 will be used as the default value, i.e., the OLS results will be
produced.

scaling The methods for scaling the predictors. The sc option uses the default
scaling of the predictors in correlation form as described in (Belsley, 1991;
Draper and Smith, 1998); the scaled option standardizes the predictors
having zero mean and unit variance; and the centered option centers the
predictors.

Table 5: Description of lmridge() function arguments.

The lmridge() function returns an object of class "lmridge". The function summary(),kest(), and
kstats1() etc., are used to compute and print a summary of the RR results, list of biasing parameter
given in Table 4, and ridge related statistics such as estimated squared bias, R2 and variance etc., after
addition of k to diagonal of X′X matrix. An object of class "lmridge" is a list, the components of which
are described in Table 6:

Table 7 lists the functions and methods available in lmridge package:

The lmridge package implementation in R

The use of lmridge is explained through examples by using the Hald dataset.

> library("lmridge")
> mod <- lmridge(y ~ X1 + X2 + X3 + X4, data = as.data.frame(Hald),
+ scaling = "sc", K = seq(0, 1, 0.001))

The output of linear RR from lmridge() function is assigned to an object mod. The first argument of the
function is formula, which is used to specify the required linear RR model for the data provided as
second argument. The print method for mod, an object of class "lmridge", will display the de-scaled
coefficients. The output (de-scaled coefficients) from the above command is only for a few selected
biasing parameter values.
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Object Description

coef A named vector of fitted ridge coefficients.
xscale The scales used to standardize the predictors.
xs The scaled matrix of predictors.
y The centered response variable.
Inter Whether an intercept is included in the model or not.
K The RR biasing parameter(s).
xm A vector of means of design matrix X.
rfit Matrix of ridge fitted values for each biasing parameter k.
d Singular values of the SVD of the scaled predictors.
div Eigenvalues of scaled regressors for each biasing parameter k.
scaling The method of scaling used to standardized the predictors.
call The matched call.
terms The terms object used.
Z A matrix (X′X + kIp)−1X′ for each biasing parameter.

Table 6: Objects from "lmridge" class.

Call:
lmridge.default(formula = y ~ ., data = as.data.frame(Hald),
K = seq(0, 1, 0.001))

Intercept X1 X2 X3 X4
K=0.01 82.67556 1.31521 0.30612 -0.12902 -0.34294
K=0.05 85.83062 1.19172 0.28850 -0.21796 -0.35423
K=0.5 89.19604 0.78822 0.27096 -0.36391 -0.28064
K=0.9 90.22732 0.65351 0.24208 -0.34769 -0.24152
K=1 90.42083 0.62855 0.23540 -0.34119 -0.23358

To get the ridge scaled coefficients mod$coef can be used,

> mod$coef
K=0.01 K=0.05 K=0.5 K=0.9 K=1

X1 26.800306 24.28399 16.061814 13.316802 12.808065
X2 16.500987 15.55166 14.606166 13.049400 12.689060
X3 -2.862655 -4.83610 -8.074509 -7.714626 -7.570415
X4 -19.884534 -20.53939 -16.272482 -14.004088 -13.543744

Objects of class "lmridge" contain components such as rfit, K and coef etc. For fitted ridge model, the
generic method summary() is used to investigate the ridge coefficients. The parameter estimates of
ridge model are summarized using a matrix of 5 columns namely estimates, estimates (Sc), StdErr (Sc),
t values (Sc) and P(>|t|) for ridge coefficients. The following results are shown only for K = 0.012
which produces minimum MSE as compared to others values specified in the argument.

> summary(mod)
Call:
lmridge.default(formula = y ~ ., data = as.data.frame(Hald), K = 0.012)

Coefficients: for Ridge parameter K= 0.012
Estimate Estimate (Sc) StdErr (Sc) t-value (Sc) Pr(>|t|)

Intercept 83.1906 -246.5951 269.2195 -0.916 0.3837
X1 1.3046 26.5843 3.8162 6.966 0.0001 ***
X2 0.3017 16.2649 4.6337 3.510 0.0067 ***
X3 -0.1378 -3.0585 3.7655 -0.812 0.4377
X4 -0.3470 -20.1188 4.7023 -4.279 0.0021 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Ridge Summary
R2 adj-R2 DF ridge F AIC BIC

0.96990 0.95980 3.04587 134.14893 23.24068 58.30578
Ridge minimum MSE= 390.5195 at K= 0.012
P-value for F-test ( 3.04587 , 9.779581 ) = 2.914733e-08
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Functions Description

Ridge coefficient estimation and testing
lmridgeEst() The main model fitting function for implementation of RR models in R.
coef() Display de-scaled ridge coefficients.
lmridge() Generic function and default method that calls lmridgeEst() and returns

an object of S3 class "lmridge" with different set of methods to standard
generics. It has a print method for display of ridge de-scaled coefficients.

summary() Standard RR output (coefficient estimates, scaled coefficients estimates,
standard errors, t values and p values); returns an object of class "sum-
maryridge" containing the relative summary statistics and has a print
method.

Residuals, fitted values and prediction
predict() Produces predicted value(s) by evaluating lmridgeEst() in the frame

newdata.
fitted() Displays ridge fitted values for observed data.
residuals() Displays ridge residuals values.
press() Generic function that computes prediction residual error sum of squares

(PRESS) for ridge coefficients.

Methods to estimate k
kest() Displays various k (biasing parameter) values from different authors

available in literature and have a print method.

Ridge statistics
vcov() Displays associated Var-Cov matrix with matching ridge parameter k

values
hatr() Generic function that displays hat matrix from RR.
infocr() Generic function that compute information criteria AIC and BIC.
vif() Generic function that computes VIF values.
rstats1() Generic function that displays different statistics of RR such as MSE,

squared bias and R2 etc., and have print method.
rstats2() Generic function that displays different statistics of RR such as df, m-scale

and LSRM etc., and have print method.

Ridge plots
plot() Ridge and VIF trace plot against biasing parameter k.
bias.plot() Bias-Variance tradeoff plot. Plot of ridge MSE, bias and variance against k
cv.plot() Cross validation plots of CV and GCV against biasing parameter k.
info.plot() Plot of AIC and BIC against k.
isrm.plot() Plots ISRM and m-scale measure.
rplots.plot() Miscellaneous ridge related plots such as df-trace, RSS and PRESS plots.

Table 7: Functions and methods in lmridge package.

The summary() function also displays ridge related R2, adjusted-R2, df, F statistics, AIC, BIC and
minimum MSE at certain k given in lmridge().

The kest() function, which works with ridge fitted model, computes different biasing parameters
developed by researchers, see Table 4. The list of different k values (22 in numbers) may help in
deciding the amount of bias needs to be introduced in RR.

> kest(mod)

Ridge k from different Authors
k values

Thisted (1976): 0.00581
Dwividi & Srivastava (1978): 0.00291
LW (lm.ridge) 0.05183
LW (1976) 0.00797
HKB (1975) 0.01162
Kibria (2003) (AM) 0.28218
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Minimum GCV at 0.01320
Minimum CV at 0.01320
Kibria 2003 (GM): 0.07733
Kibria 2003 (MED): 0.01718
Muniz et al. 2009 (KM2): 14.84574
Muniz et al. 2009 (KM3): 5.32606
Muniz et al. 2009 (KM4): 3.59606
Muniz et al. 2009 (KM5): 0.27808
Muniz et al. 2009 (KM6): 7.80532
Mansson et al. 2012 (KMN8): 14.98071
Mansson et al. 2012 (KMN9): 0.49624
Mansson et al. 2012 (KMN10): 6.63342
Mansson et al. 2012 (KMN11): 0.15075
Mansson et al. 2012 (KMN12): 8.06268
Dorugade et al. 2010: 0.00000
Dorugade et al. 2014: 0.00000

The rstats1() and rstats2() functions can be used to compute different statistics for a given
ridge biasing parameter specified in a call to lmridge. The ridge statistics are MSE, squared bias,
F statistics, ridge variance, degrees of freedom by Hastie and Tibshirani (1990), condition numbers,
PRESS, R2, and ISRM etc. Following are the results using rstats1() and rstats2() functions, for
some (K = 0, 0.012, 0.1, 0.2).

> rstats1(mod)
Ridge Regression Statistics 1:

Variance Bias^2 MSE rsigma2 F R2 adj-R2 CN
K=0 3309.5049 0.0000 3309.5049 5.3182 125.4142 0.9824 0.9765 1376.8806
K=0.012 72.3245 318.1951 390.5195 4.9719 134.1489 0.9699 0.9598 164.9843
K=0.1 19.8579 428.4112 448.2692 5.8409 114.1900 0.8914 0.8552 22.9838
K=0.2 16.5720 476.8887 493.4606 7.6547 87.1322 0.8170 0.7560 12.0804

> rstats2(mod)
Ridge Regression Statistics 2:

CK DF ridge EP REDF EF ISRM m scale PRESS
K= 0 6.0000 4.0000 4.0000 9.0000 0.0000 3.9872 0.0000 110.3470
K= 0.012 4.8713 3.0459 3.2204 9.7796 10.1578 3.6181 0.9541 92.8977
K= 0.1 4.2246 2.5646 2.9046 10.0954 7.6829 2.8471 1.4354 121.2892
K= 0.2 3.8630 2.2960 2.7290 10.2710 6.9156 2.5742 1.7040 162.2832

The residuals, fitted values from the RR and predicted values of the response variable y can be
computed using functions residual(), fitted() and predict(), respectively. To obtain the Var-Cov
matrix, VIF and Hat matrix, the function vcov(), vif() and hatr() can be used. The df are computed
by following Hastie and Tibshirani (1990). The results for VIF, Var-Cov and diagonal elements of the
hat matrix from vif(), vcov() and hatr() functions are given below for K = 0.012.

> hatr(mod)
> hatr(mod)[[2]]
> diag(hatr(mod)[[2]])
> diag(hatr(lmridge(y ~ ., as.data.frame(Hald), K = c(0, 0.012)))[[2]])

1 2 3 4 5 6 7 8 9 10 11
0.39680 0.21288 0.10286 0.16679 0.24914 0.04015 0.28424 0.30163 0.12502 0.58426 0.29625

12 13
0.12291 0.16294

> vif(mod)
X1 X2 X3 X4

k=0 38.49621 254.42317 46.86839 282.51286
k=0.012 2.92917 4.31848 2.85177 4.44723
k=0.1 1.28390 0.51576 1.20410 0.39603
k=0.2 0.78682 0.34530 0.75196 0.28085

R> vcov(mod)
$`K=0.012`
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X1 X2 X3 X4
X1 14.563539 1.668783 11.577483 4.130232
X2 1.668783 21.471027 3.066958 19.075274
X3 11.577483 3.066958 14.178720 4.598000
X4 4.130232 19.075274 4.598000 22.111196

Following are possible uses of some functions to compute different ridge related statistics. For
detail description of these functions/ commands, see the lmridge package documentation.

> mod$rfit
> resid(mod)
> fitted(mod)
> infocr(mod)
> press(mod)

For given values of X, such as for first five rows of X matrix, the predicted values for some K =
0, 0.012, 0.1, and 0.2 will be computed by predict():

> predict(mod, newdata = as.data.frame(Hald[1 : 5, -1]))
K=0 K=0.012 K=0.1 K=0.2

1 78.49535 78.52225 79.75110 80.73843
2 72.78893 73.13500 74.32678 75.38191
3 105.97107 106.39639 106.04958 105.62451
4 89.32720 89.48443 89.52343 89.65432
5 95.64939 95.73595 96.56710 96.99781

The model selection criteria’s of AIC and BIC can be computed using infocr() function for each
value of K used in argument of ridge(). For some K = 0, 0.012, 0.1, and 0.2, the AIC and BIC values
are:

> infocr(mod)
AIC BIC

K=0 24.94429 60.54843
K=0.012 23.24068 58.30578
K=0.1 24.78545 59.57865
K=0.2 27.98813 62.62961

The effect of multicollinearity on the coefficient estimates can be identified by using different graphical
displays such as ridge, VIF and df traces, plotting of RSS against df, PRESS vs k, and the plotting of bias,
variance, and MSE against K etc. Therefore, for selection of optimal k using subjective (judgmental)
methods, different plot functions are also available in lmridge package. For example, the ridge
(Figure 1) or vif trace (Figure 2) can be plotted using plot() function. The argument to plot functions
are abline = TRUE, and type = c("ridge","vif"). By default, ridge trace will be plotted having
horizontal line parallel to horizontal axis at y = 0 and vertical line on x-axis at k having minimum
GCV.

> mod <- lmridge(y ~ ., data = as.data.frame(Hald), K = seq(0, 0.5, 0.001))
> plot(mod)
> plot(mod, type = "vif", abline = FALSE)
> plot(mod, type = "ridge", abline = TRUE)

> bias.plot(mod, abline = TRUE)
> info.plot(mod, abline = TRUE)

> cv.plot(mod, abline = TRUE)

The vertical lines in ridge trace and VIF trace suggest the optimal value of biasing parameter k
selected at which GCV is minimum. The horizontal line in ridge trace is reference line at y = 0 for
ridge coefficient against vertical axis .

The bias-variance tradeoff plot (Figure 3) may be used to select optimal k using bias.plot()
function. The vertical line in bias-variance tradeoff plot shows the value of biasing parameter k and
horizontal line shows minimum MSE for ridge.

The plot of model selection criteria AIC and BIC for choosing optimal k (Figure 4), info.plot()
function may be used,

Function cv.plot() plots the CV and GCV cross validation against biasing parameter k for the
optimal selection of k (see Figure 5), that is,
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Figure 1: Ridge trace plot.

Figure 2: VIF trace.

> isrm.plot(mod)

The m-scale and ISRM (Figure 6) measures by Vinod (1976) can also be plotted from function of
isrm.plot() and can be used to judge the optimal value of k.

Function rplots.plot() plots the panel of three plots namely (i) df trace, (ii) RSS vs k and (iii)
PRESS vs k and may be used to judge the optimal value of k, see Figure 7.

> rplots.plot(mod)
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Figure 3: Bias-variance trade-off.

Figure 4: Information criteria plot (AIC and BIC).

Summary

Our developed lmridge package provides the most complete suite of tools for RR available in R,
comparable to those available as listed in Table 1. We have implemented functions to compute the
ridge coefficients, testing of these coefficients, computation of different ridge related statistics and
computation of the biasing parameter for different existing methods by various authors (see Table 4).

We have greatly increased the ridge related statistics and different graphical methods for the
selection of biasing parameter k through lmridge package in R.

Up to now, a complete suite of tools for RR was not available for an open source or paid version
of statistical software packages, resulting in reduced awareness and use of developed ridge related
statistics. The package lmridge provides a complete open source suite of tools for the computation of
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Figure 5: Cross-validation plots (CV and GCV).

Figure 6: m-scale and ISRM plot.

ridge coefficients estimation, testing and computation of different statistics. We believe the availability
of these tools will lead to increase utilization and better ridge related practices.
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Geospatial Point Density
by Paul F. Evangelista and David Beskow

Abstract This paper introduces a spatial point density algorithm designed to be explainable, meaning-
ful, and efficient. Originally designed for military applications, this technique applies to any spatial
point process where there is a desire to clearly understand the measurement of density and maintain
fidelity of the point locations. Typical spatial density plotting algorithms, such as kernel density
estimation, implement some type of smoothing function that often results in a density value that is
difficult to interpret. The purpose of the visualization method in this paper is to understand spatial
point activity density with precision and meaning. The temporal tendency of the point process as an
extension of the point density methodology is also discussed and displayed. Applications include
visualization and measurement of any type of spatial point process. Visualization techniques integrate
ggmap with examples from San Diego crime data.

Introduction

The pointdensityP package is an example of a tailored package that was created to visualize and
quantify spatiotemporal point data (Evangelista and Beskow, 2018). The innovation in the presented
methods lies in the implementation, simplification, and general improvements over other methods.
Although designed for military analysis, the presented analysis and visualization methods work
for any discrete point process that contains a spatial dimension. The point density method in this
paper calculates event frequency intensity, or density, within the neighborhood of a given point,
accounting for geospatial projection. Additionally, if the point process includes a temporal dimension,
the temporal tendency can also be calculated. The temporal tendency is the average age of events
within the neighborhood of each point, providing perspective on density trends over time.

The purpose of any type of map projection is simple—to understand a phenomenon within
the context of our physical environment. The impetus of the work within this paper resulted from
difficult-to-explain output from common spatial density or “hot spot” visualization techniques. Many
of these spatial density approaches use a methodology that would be appropriate for a continuous
valued phenomenon but does not apply well to discrete phenomenon. Many of the existing density
visualization techniques apply a smoothing function that depicts activity where there should be
no activity, essentially spreading the density across the area of interest without spatial specificity.
Furthermore, many of the density approximation techniques, such as kernel density estimation, create
an output value that is not easily interpreted. All too often the output simply provides a relative
comparison, with colors representing values that indicate a higher or lower density without providing
meaningful quantification of the measured phenomenon.

Related work

Spatial density measurement or “hot spot” analysis is widespread in geospatial literature. Baddeley
et al. provide an authoritative overview of numerous spatial point pattern computational methods,
to include density methods using spatstat (Baddeley et al., 2015). Within R, kde2d is probably the
most commonly used spatial density function (Ripley et al., 2015; Venables and Ripley, 2002). This
function creates a gaussian kernel density estimate for two-dimensional data. Wand and Jones discuss
computing techniques for kernel estimators in Wand and Jones (1995) and Wand (1994), describing the
technique of binning data prior to estimating the kernel density. The function bkde2D implements
Wand’s binned kernel density estimation technique (Wand and Ripley, 2014). The binning approach
reduces the computing cost significantly. Assuming n data points that will create a density estimate
for m points, the direct computation of the kernel estimate will be O(nm). Binning maps n points to G
grid points, where G � n, and reduces complexity to O(Gm).

There are several problems related to kernel-based smoothing when applied to discrete spatio-
temporal events. Ease of interpretation and outputs designed for a continuous valued process have
already been mentioned. For the binned kernel density estimation, granularity of the mesh also quickly
increases computational requirements. Kernel based smoothing calculates and returns density for
every point in the mesh. Discrete event spatio-temporal phenomenon, especially social phenomenon,
only apply to regions of space where people are active. For example, in the San Diego data analyzed
in this paper, there is no need to calculate crime density tens of miles into the Pacific Ocean. However,
the square mesh approach used in the kernel smoothing algorithms forces this calculation. The
pointdensity() algorithm presented in this paper returns values only for event locations, improving
clarity on both the location and density of event behavior. The following code creates an example
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of binned kernel density estimation, using bkde2D, applied to the San Diego crime data (San Diego
Regional Data Library, 2015). Figure 1 contains the visual results.

SD <- read.table("incidents-5y.csv", sep = ",", header = TRUE)
x <- cbind(SD$lon, SD$lat)
est <- bkde2D(x, bandwidth = c(.01, .01), gridsize = c(750, 800),
range.x = list(c(-117.45, -116.66), c(32.52, 33.26)))

BKD_df <- data.frame(lat = rep(est$x2, each = 750), lon = rep(est$x1, 800),
count = c(est$fhat))

map_base <- qmap(location = "32.9,-117.1", zoom = 10, darken = 0.3)
map_base + stat_contour(bins = 150, geom = "polygon", aes(x = lon, y = lat, z = count,
fill = ..level..), data = BKD_df, alpha = 0.15)
+ scale_fill_continuous(name = "density", low = "green", high = "red")

Figure 1: Two-dimensional binned kernel density estimation applied to San Diego crime data.

The method proposed in this paper requires two parameters:

• g, a grid size that represents the fraction of latitude and longitude degree separation in the grid
or binning system that will be used for aggregation, and

• r, a positive integer value that represents the radius in grid steps for the neighborhood of
interest, which yields a complexity of O(n(2r)2).

Typically, (2r)2 � G. As a comparison, Figure 1 resulted from bkde2D and compared 800,000 crime
locations across a mesh that measured 800 x 750 = 600,000 = G, creating a mesh of points separated by
approximately 0.1 km. In comparison, Figure 4 resulted from pointdensity() and uses a radius of
10 steps (1 kilometer total) and the same grid size of 0.1 km, comparing 800,000 crime locations each
against a local neighborhood of (2r)2 = 400 points. This reduced computational complexity achieved
by the pointdensity() algorithm largely results from the advantage of assuming and managing an
unbounded spatial extent.

Both bkde2D and geom_bin2d() from ggplot2 require a bounded spatial extent. Density al-
gorithms with a bounded spatial extent have two common disadvantages: they usually include
unnecessary computations, and they always require pre-existing knowledge regarding the spatial
extent. While this advantage is not completely analogous to the concept of unbounded data processing,
there are similarities. Akidau et al. (2015) describe the fundamental aspects of unbounded data and
the need for modern computing methods to accomodate this growing field. Since the pointdensity()
algorithm processes data without the requirement for a spatial extent, it is possible to efficiently
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process data that includes significant spatial separation, a potentially useful trait depending upon the
nature of the data under consideration.

The techniques discussed in this paper have been under development for several years and
employed in several studies. Previous implementations involved other programming languages
(Perl, Python) and leveraged ESRI’s ArcMap to visualize results (Environmental Systems Research
Institute (ESRI), 2018). Although plotting and graphics have long been a strong suit of R, geospatial
visualization lagged behind many commercial geospatial information systems until the release of
ggmap in 2011. ggmap is an R package where the authors present methods for plotting geospatial
information by leveraging existing online map sources through their APIs and plotting the map as an
image in R (Kahle and Wickham, 2013a,b). Similar to ArcMap, ggmap enables layers of geospatial data
to be plotted over a georectified image for the sake of analysis and visualization. The aesthetic appeal
of these downloaded images coupled with the capability to overlay sophisticated graphics motivated
the creation of the techniques discussed in this paper.

Methodology

Although the claimed merits of the methods in this paper include simplicity and ease of understanding,
there are two aspects of this algorithm that may not be immediately apparent without describing in
detail. The first involves the method of discretization and geospatial projection used to manage and
measure the density. And the second aspect involves the data management necessary to implement this
discretization and efficiently calculate the density. Two data management practices will be discussed:
the original use of hash data structures and the recent use of matrix-based data structures.

The pointdensity() algorithm

The pointdensity() algorithm applies elementary geometry with a geospatial projection in order to
build the point density measurements. Figure 2 shows how the neighborhood radius, r, is projected
across a square grid. Geographers refer to this as a cylindrical or mercator projection where longi-
tudinal lines appear to remain equidistant. The mercator projection has been used for the sake of
illustration, however the algorithm uses a spherical projection and great circle distances to achieve
maximal accuracy. As previously mentioned, the algorithm applies a simple binning rule that signifi-
cantly reduces computations. Density is only collected at the intersection of the grid lines shown in
the figure, referred to as grid points. Assume that the center of the circle represents the grid point
closest to an event or binned collection of events. The density of every grid point within r will increase
by the amount of density associated with the center grid point. The algorithm iterates north and south
within r along the latitudes of the grid and calculates the tolerance, t, of longitudinal grid lines that are
within r. The spherical Pythagorean theorem is used to find t, providing an accurate binning tolerance
irrespective of location on the globe (Veljan, 2018). This binning tolerance ensures that only grid points
within r increase in density.

Figure 2: Calculating the longitudinal tolerance.

Figure 3 shows a toy example of the point density method examining only three points. This image
shows points A, B, and C, and the radius is four grid steps. Assume that these three points are near the
equator and the mercator projection is a reasonable representation of true distance to scale. This figure
shows the final density count for every point within the neighborhood radius of the three events.

The original hash-based data structure approach is shown with pseudo-code in algorithm 1. The
interested reader can find the implementation of the hash-based algorithm in pointdensityP version
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1: Store n points and let lati, loni, and datei represent the latitude, longitude, and date of
each point, respectively. Let g represent the grid size measured in degrees latitude, and
r represent the radius measured in grid steps. For each lati and loni, round each to the
nearest grid point, and store the rounded points as tlati and tloni. Set m = 0.

2: for i = 1 to n do
3: if bin_density_hash(tlati, tloni) exists then
4: bin_density_hash(tlati, tloni) + +
5: bin_temporal_hash(tlati, tloni)+ = datei
6: else
7: bin_density_hash(tlati, tloni) = 1
8: bin_temporal_hash(tlati, tloni) = datei
9: active_grid_hash(m) = (tlati, tloni)

10: m ++
11: end if
12: end for
13: for j = 1 to m do
14: retrieve tlatj and tlonj from active_grid_hash(j)
15: for latt = tlatj − rg to tlatj + rg do
16: t = arccos(cos(rg)/ cos(latt − tlatj))/g
17: round t to the nearest integer
18: t = t ∗ g
19: for lont = tlonj − t to tlonj + t do
20: density_hash (latt, lont) + +
21: temporal_hash(latt, lont)+ = temporal_hash(tlatj, tlonj)
22: lont = lont + g
23: end for
24: latt = latt + g
25: end for
26: end for
27: for i = 1 to n do
28: round (latt = lati/g) to the nearest integer
29: latt = latt ∗ g
30: round (lont = loni/g) to the nearest integer
31: lont = lont ∗ g
32: temporal_hash(latt, lont) = temporal_hash(latt, lont)/density_hash(latt, lont)
33: print lati, loni, density_hash(latt, lont), temporal_hash(latt, lont)
34: end for

Algorithm 1: Hash-based point density algorithm

0.2.1. Discussing the original use of hash data structures for the pointdensity() algorithm provides
two insights: the hash-based approach provides an accessible explanation of the pointdensity()
computational approach; and secondly, a comparison of the hash-based method to the matrix-based
method illustrates a significant difference in computing time when using hash-based data retrieval
compared to matrix-based data retrieval. Hash data structures, or associative arrays, are ubiquitous
in programming, but considered somewhat of a late arrival to R from a programming standpoint.
However, many have pointed out that R’s native environment data structures are inherently a hash
data structure and can be leveraged as such. Brown (2013) wrote an R package specifically designed to
“fully implement” hash data structures in R. The use of hash data structures for the pointdensity()
algorithm reduced unneeded computations and stored geographic data only within the neighborhood
radius of event points. While the use of hash data structures improved the computational complexity
from O(Gm) to O(n(2r)2), the use of matrices and carefully indexed data proved to be an even faster
solution. Both computing methods are explained in this paper.

Use of the hash-based data structure achieved desired results, reducing computational complexity
while returning an adequate approximation of density. However, the speed of the computation was
not satisfactory for larger datasets. While retaining the binned density concept, the algorithm was
reduced to one loop of length = n event points using matrix and array facilities. This latter approach
will be referred to as the matrix-based approach. The implementation of the matrix-based approach
can be found in pointdensityP version 0.3.4.

The general process of the pointdensity() algorithm reduces a list of n points to a list of m grid
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Figure 3: Visualizing the point density algorithm.

points on a mesh. The calculation of density and temporal tendency remains relative to the mesh. Once
the overall pointdensity() algorithm is complete, it is necessary to assign the density and temporal
tendency back to the original list of data. The hash-based algorithm creates intuitive data structures
and data retrieval to relate the list of n points to the list of m grid points. Unfortunately, the retrieval of
information from the hash tables proved increasingly time consuming as the datasets grew. In order
to overcome this problem while continuing to manage the requirement to relate n original points
to m grid points, a careful sort and index process, using matrix-based facilities and the data.table
package, replaced the hash-based storage and retrieval method (Dowle and Srinivasan, 2017). A brief
explanation of the improved computing approach follows.

The original list of n points, sorted by their latitude and longitude, reduces to m points once
every point is rounded to the nearest point on the mesh. All of the aggregation and sorting leverages
functions from the data.table package. For each of the m points on the mesh, an initial density of one
or greater exists. This initial density is retained through the algorithm. After calculating the final
density for each point, this initial density is used to re-expand the list to the original size of n points,
in the original order, to return the final density count and temporal tendency.

Each of the m points processes through a density calculation function. The function to calculate
the local density surrounding an event point is named calc_density() in the pointdensityP package.
The function starts with enumeration of all latitudes within the radius of the event point, annotated as
lati and loni. These latitudes are stored in a vector:

lat.vec <- seq(lati - radius * grid_size, lati + radius * grid_size, grid_size)

The variable radius represents the radius measured in grid steps, and grid_size represents the
size of the grid measured in degrees latitude. lati is the latitude of the grid point located closest to
the event point. lat.vec is now an array of each latitude contained in the neighborhood. For each
latitude, there is a longitudinal distance that represents the tolerance of the radius. This tolerance is
computed using the spherical Pythagorean theorem, as previously discussed. lat.vec.t will contain
the longitudinal tolerance for each latitude:

lat.vec.t <- acos(cos(radius * grid_size) / cos(lat.vec - lati))
lat.vec.t <- lat.vec.t / cos(lat.vec * 2 * pi / 360)
lat.vec.t <- round(lat.vec.t / grid_size, 0) * grid_size

The final line of code above rounds the tolerance to the nearest longitude grid line on the mesh.
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Figure 4: Point density visualization of San Diego crime.

The calculation of lon.vec occurs in the same manner as lat.vec, which is then further expanded to
a matrix, lon.mat. This matrix contains the longitudinal value of every point within a square mesh
that includes (2 * radius + 1)^2 points, with the event point at the center. After subtracting lati
from this matrix, the absolute value of the matrix then contains the distance between the longitude of
the event point and the longitude of every point in the mesh. The final subtraction of lat.vec.t then
returns a matrix that indicates all points outside of the radius as a negative value. After setting all
negative elements to zero and all positive values to 1, the Hadamard product of this binary matrix
and the original matrix of longitudinal values contained in lon.mat returns a matrix that contains a
longitudinal value for every point within the radius and a value of 0 for every grid point outside of
the radius. Combining these non-zero longitudinal values with the latitude vector returns a list of
points within the radius of the event grid point. The final step of the local density calculation involves
assigning the temporal value, or sum of temporal values if there is more than one event that rounds to
the event grid point, and assigning the original density of the event point to every grid point in the
neighborhood. These steps distribute the density and the temporal value of the event point across
the neighborhood, completing function calc_density() and creating a list of grid points prepared for
aggregation without processing a for-loop in R.

As each of the m points processes through calc_density(), the list of returned points adds to a
data.table object which is then aggregated, summing both the density and temporal value for each
unique grid point in the data.table object. After processing each of the m points and aggregating the
returned results, every grid point with a positive density exists in the data.table object. The m grid
points associated with one of the original n points are retained and re-sorted into their original order,
and all other points are discarded. The initial density of every grid point is then added as an additional
column to the data.table, which is then expanded to length n with the following command:

nfinal <- final.1[rep(seq(1, nrow(final.1)), final.1$yy_count)]

The data.table final.1 contains the grid point location, density, and sum of temporal values. The
field yy_count contains the number of original points that were associated with the event’s grid point
location. After this expansion, a sorted list of n events exists that includes the density and temporal
sum of every original point. The temporal sum is then divided by the density. The pointdensity
algorithm finally returns every original point location, a density value, and the temporal tendency of
the point.

Figure 4 displays the calculated density for the San Diego crime data (San Diego Regional Data
Library, 2015). Visualizing only the points in the location where the crime occurred provides spatial
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specificity, and the coloring provides an explainable measure of the density. Figure 4 results from the
following commands:

SD_density <- pointdensity(df = SD_sub, lat_col = "lat", lon_col = "lon",
date_col = "date", grid_size = 0.1, radius = 1)

SD_density$count[SD_density$count > 10000] <- 10000
## creates discriminating color scale

map_base + geom_point(aes(x = lon, y = lat, colour = count), shape = 16, size = 2,
data = SD_density) + scale_colour_gradient(low = "green", high = "red")

The difference in speed between the hash-based approach and the newer matrix-based approach
was significant. The matrix-based approach eliminates the need for information retrieval from large
hash tables, the most expensive aspect of the hash-based approach. Table 1 compares pointdensityP
version 0.2.1 (hash-based) against version 0.3.2 (matrix-based).

data records 10 102 103 104 105 106

hash-based time (s) 0.06 0.14 1.19 10.60 265.65 857.15
matrix-based time (s) 0.03 0.15 1.19 7.97 33.35 74.88

Table 1: Time comparison between hash-based algorithm and matrix-based algorithm.

Temporal tendency of event data

A byproduct of the original pointdensity() algorithm was the concept of computing the temporal
tendency for the events in the neighborhood of every event. Given a set of n events with a spatial
and temporal dimension, it is possible to calculate an average event date for the entire dataset or any
subset of the data. This is an elementary calculation, however when combined with the neighborhood
aggregation approach used in the pointdensity() algorithm, it is possible to expose previously
undetected trends and patterns.

Figure 5 shows a toy example of two time series plots that span an equivalent period. Clearly the
plot on the left will have a smaller temporal tendency due to the heavier density in the earlier periods.
This is unarguably a simplistic measure for detecting differences in trends, however it has proven to
be a reliable technique in practice.
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Figure 5: A toy example of the temporal tendency discriminating between an increasing and decreasing
trend.

The temporal tendency represents the average age of all events within the neighborhood. This
measurement also creates a naive measurement for the relative temporal trend, increasing or decreas-
ing, in the neighborhood. A neighborhood with an increasing trend will have a more recent temporal
tendency since a higher density of events occurred more recently. A neighborhood with a decreasing
trend will have an older temporal tendency, representing a higher density of events occurring earlier
in the time period.

The spatial patterns that emerge from the temporal tendency projection provide the most com-
pelling aspect of the temporal tendency calculation. Some tuning of the color scale is necessary to
create visual discrimination. The following lines of code create the underlying temporal tendency plot
and histograms shown in Figure 6:

SD_temp_tend <- SD_density[SD_density$date_avg > 0]
SD_temp_tend$dateavg[SD_temp_tend$dateavg < 14711] <- 14711
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SD_temp_tend$dateavg[SD_temp_tend$dateavg > 14794] <- 14794
map_base + geom_point(aes(x = lon, y = lat, colour = dateavg), shape = 16, size = 2,
data = SD_temp_tend) + scale_colour_gradient(low = "green", high = "red")

Histograms result from the following:

x <- as.Date(SD$date)
hist(x, "weeks", format = "%d %b %y", freq = TRUE)
mid_city <- subset(SD, lat > 32.69 & lon > -117.14 & lat < 32.79 & lon < -117.08)
x <- as.Date(mid_city$date)
hist(x, "weeks", format = "%d %b %y", freq = TRUE)
encinitas <- subset(SD, lat > 33 & lon > -117.32 & lat < 33.09 & lon < -117.27)
x <- as.Date(encinitas$date)
hist(x, "weeks", format = "%d %b %y", freq = TRUE)

Figure 6 shows the results of temporal tendency projection for the San Diego crime data. Regions
of disparate activity become apparent with this projection, providing an opportunity to detect areas
that are “heating up” compared to areas that are “cooling down”. The overall San Diego crime dataset
shows an aggregate decreasing trend for 2007 - 2012. Box 1, Encinitas, shows a slightly increasing
trend. Mid-City is a region with one of the strongest decreasing trends.
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Figure 6: Temporal tendency projection of San Diego crime data.

Simple linear regression is a common method to detect trends. The following code creates a linear
model and summary of the model’s utility for any of the histograms discussed above:

res <- hist(x, "weeks", format = "%d %b %y", freq = TRUE)
xres <- res$breaks[1:(length(res$breaks) - 1)]
summary(lm(res$counts ~ xres))

The simple linear regression estimate for the slope coefficient parameter was significant for each
of the three regions explored. The map and histograms in Figure 6 highlight the two sub-regions
analyzed, Encinitas and Mid-City, as well as the San Diego super-set region that includes all of the
data. The trends for each of these regions are apparent from the histograms, and the model utility test
results shown in Table 2 for each of these regions shows that there is statistically significant evidence
that the slope coefficients are not zero, indicating that a trend exists. This test provides both evidence
of the existence of a trend and also quantifies the expected rate of change. The San Diego crime rate in
its entirety is dropping by about one crime every two days during this period. Encinitas, lit up in red
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on the map, shows a relatively more recent temporal tendency when compared to crime across the
entire San Diego region, indicating that the rate of crime change in Encinitas will be increasing at a
greater rate when compared to the entire San Diego region. The Encinitas histogram shows evidence
of a slight increase, and the model utility test for the slope coefficient provides evidence that the slope
is greater than zero. On the opposite end of the spectrum, Mid-City averages a crime rate decrease that
drops by 1 crime every 10 days. The green coloring on the map clearly highlights an older temporal
tendency in this region, which is reinforced by the histogram and regression analysis.

Estimate Std. Error t statistic Pr(>|t|)
San Diego Total -0.5077 0.0204 -24.89 <2e-16
Encinitas 0.0023 0.0008 2.88 0.00435
Mid-City -0.0958 0.0037 -25.81 <2e-16

Table 2: Simple linear regression slope coefficient estimates for weekly crime frequencies shown in
Figure 6.

Realize that the temporal tendency calculation is sensitive in areas with a low density. When
visualizing the map-based plot, it is possible to compare regions with minimal density with regions
that have a much more significant density. For this reason, it is often advisable to use the temporal
tendency visualization alongside the point density visualization and possibly restrict the temporal
tendency to areas with a minimum density threshold.

Conclusion

Both the temporal tendency projection and point density projection help illustrate regions of disparate
activity. These are regions where event behavior is significantly different, oftentimes warranting
investigation into underlying causes. The temporal tendency analysis provides a useful perspective
on a commonly elusive dimension of spatio-temporal data: change. The most important insights
involving spatio-temporal phenomenon commonly relate to change over time.

Future directions for this work include the calculation, exploration, and visualization of other
summary statistics that summarize spatio-temporal behavior. For example, estimates for the variance
and skew of the temporal behavior readily extends from the aggregation of the squared and cubed
temporal values. Analysis of these measurements could provide better fidelity on trends. Lastly,
automating the detection of boundaries of regions of disparate activity could provide significant
contributions in identifying cause and effect of spatio-temporal behavior.
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Consistency Cubes: a fast, efficient
method for exact Boolean minimization.
by Adrian Dusa

Abstract A lot of effort has been spent over the past few decades in the QCA methodology field, to
develop efficient Boolean minimization algorithms to derive an exact, and more importantly complete
list of minimal prime implicants that explain the initial, observed positive configurations.

As the complexity grows exponentially with every new condition, the required computer memory
goes past the current computer resources and the polynomial time required to solve this problem
quickly grows towards infinity.

This paper introduces a new alternative to the existing non-polynomial attempts. It completely
solves the memory problem, and preliminary tests show it is exponentially hundreds of time faster
than eQMC, the current “best” algorithm for QCA in R, and probes into a territory where it competes
and even outperforms engineering algorithms such as Espresso, for exact minimizations.

While speed is not much of an issue now (eQMC is fast enough for simple data), it might prove to be
essential when further developing towards all possible temporal orders, or searching for configurations
in panel data over time, combined with / or automatic detection of difficult counterfactuals etc.

Context

QCA (Qualitative Comparative Analysis) is a Boolean minimization method that seeks to find the
smallest causal configuration that is associated with (sufficient for) the presence of an outcome of
interest. It has been introduced in the social sciences literature by Ragin (1987), and applies an
algorithm firmly introduced in the engineering field by McCluskey (1956), building on the previous
work of Quine (1952, 1955).

The input for such a procedure is a truth table, which presents all possible combinations of presence
(coded with 1) and absence (coded with 0) for all causal conditions, plus an additional column to
specify in which cases the output is present and respectively absent.

With four causal conditions, a complete matrix with all their possible combinations could be
generated using these commands:

> library(QCA)
> createMatrix(rep(2, 4))

[,1] [,2] [,3] [,4]
[1,] 0 0 0 0
[2,] 0 0 0 1
[3,] 0 0 1 0
[4,] 0 0 1 1
[5,] 0 1 0 0
[6,] 0 1 0 1
[7,] 0 1 1 0
[8,] 0 1 1 1
[9,] 1 0 0 0
[10,] 1 0 0 1
[11,] 1 0 1 0
[12,] 1 0 1 1
[13,] 1 1 0 0
[14,] 1 1 0 1
[15,] 1 1 1 0
[16,] 1 1 1 1

For all rows / combinations of causal conditions that enter the analysis (that is, where an additional
column with the output coded as 1), the task is to:

• compare all possible pairs to determine if they can be minimized (only those which differ by
exactly one literal)

• compile a list of implicants as the result of minimizing pairs of rows

• iteratively compare all pairs of the surviving implicants and minimize further

• until nothing more can be minimized, thus obtaining the so-called “prime implicants”
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In this example, the last two rows can be minimized (they differ only in the fourth column), with
the following result:

1 1 1 0
1 1 1 1

1 1 1 x

A computer intensive, iterative process can determine a final solution in a polynomial time for a
relatively small number of conditions. But each new condition included in the analysis exponentially
increases the complexity of the problem to at least the powers of 3, and even more for multi-value
conditions.

Although the initial truth table is specified in base 2, the calculations are in fact done in base
3 because an additional bit of information is needed to specify which column has been minimized
(coded “x” in the example above).

All solutions are found in the so-called “implicant matrix”, which for binary crisp conditions has
3k rows and k columns, where k is the number of conditions. Solving time increases exponentially
with each new condition added in the analysis, and quickly grows towards infinity when k reaches a
certain value.

Memory consumption is obviously a big issue, as generating the entire implicant matrix quickly
depletes all available memory and make the computer stop because of lack of resources. Such an
approach is bound to be inefficient even for moderately sized situations (11 or 12 causal conditions),
after which finding a solution in polynomial time becomes impossible.

Previous attempts

A first attempt to find a non-polynomial complete solution was presented in “A mathematical approach
to the Boolean minimization problem” (Dus, a, 2010). The basic novelty of that approach was the use of
a vector of decimal row numbers instead of the entire implicant matrix. This shortcut partially solved
the memory use (k times lower than a complete matrix), while the solving time was significantly
reduced by using a basic mathematical operation 2x - y to minimize two rows using their decimal
representations:

79 2 2 2 1
80 2 2 2 2

78 2 2 2 0

In this example, the original binary number 0 for the absence is changed to 1 in the base 3 implicant
matrix, the original binary number 1 for the presence is changed to the number 2, while the number 0
is reserved to signal a minimized condition. Applying the 2x - y operation, the minimized implicant
is found on the line 158 - 80 = 78.

These kinds of improvements helped a lot, at that time obtaining a solution in a significantly lower
time and probing into a previously unexplored space of 14 to 15 causal conditions with exact results,
the complexity growing three times with each new condition.

However, it was still a problem finding and comparing all possible pairs of minimizable row
numbers (not all pairs of numbers can be minimized, because as not all pairs of rows in the implicant
matrix differ by exactly one column). A mathematical shortcut was used to find minimizable pairs
using the powers of 3 after transforming the row into base 3, at the cost of more computing time.

Even if using vectors of row numbers instead of matrices, after the ceiling of 14 to 15 causal
conditions the memory was still an issue and solving time also progressed towards infinity. In addition,
this method was restricted to binary data only, whereas QCA also needed to use multi-valued data.

The next attempt to solve this problem was represented by the so-called “enhanced Quine-
McCluskey" procedure (Dus, a and Thiem, 2015), which improved on the classical minimization
algorithm on both speed and memory, and this algorithm is the current “best” workhorse for QCA
family of R packages.

The foundation of the second attempt is represented by an important observation which is also
valid for the algorithm to be presented in this paper: the final list of prime implicants are supersets of
those cases with a positive output, and at the same time they cannot be supersets of the cases with
a negative output. To better understand this concept, the entire truth table can be generated and
presented as below:
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> set.seed(1234)
> tt <- data.frame(createMatrix(rep(2, 4)), stringsAsFactors = FALSE,

OUT = sample(c(1, 0, "?"), 16, replace = TRUE, prob = c(.19, .18, .63)))
> colnames(tt)[1:4] = LETTERS[1:4]
> tt

A B C D OUT
1 0 0 0 0 ?
2 0 0 0 1 ?
3 0 0 1 0 ?
4 0 0 1 1 ?
5 0 1 0 0 0
6 0 1 0 1 1
7 0 1 1 0 ?
8 0 1 1 1 ?
9 1 0 0 0 1
10 1 0 0 1 ?
11 1 0 1 0 1
12 1 0 1 1 ?
13 1 1 0 0 ?
14 1 1 0 1 0
15 1 1 1 0 ?
16 1 1 1 1 0

For some rows, the output is positive (coded with “1”), for other rows it is absent (coded with “0”)
while for the rest of the truth table the output is unknown (and coded with “?”). That happens because
the number of all possible combinations (especially when the number of causal conditions k increases),
is far greater than what we can observe in reality. In other words, as Ragin and Sonnett (2005) put it,
the diversity is limited and it can be reduced to this part of the truth table (sorted decreasingly by the
output):

> tt <- tt[tt$OUT != "?", ]
> (tt <- tt[order(tt$OUT, decreasing = TRUE), ])

A B C D OUT
6 0 1 0 1 1
9 1 0 0 0 1
11 1 0 1 0 1
5 0 1 0 0 0
14 1 1 0 1 0
16 1 1 1 1 0

Minimizing the three rows with a positive output is a trivial task and doesn’t require a special
computer program. The difficulty starts when employing the so-called “counterfactual analysis” to de-
termine the most parsimonious solution, by assuming the output is also positive for the configurations
with no empirical information (called “remainders” in QCA, also known as “don’t cares”).

But instead of calculating all possible pairs of minimizable configurations where the output is not
negative (either positive, or unknown, as in the previous attempt), the eQMC algorithm focuses only
on the known sub-matrix and applies the following procedure:

• find all possible superset implicants of the rows with a positive output

• find all possible superset implicants of the rows with a negative output

• calculate the differences, preserving those implicants where the output is positive

• remove the redundant implicants: those which already have supersets in the surviving vector
of differences

A superset is a simpler, less complex logical expression that covers a specific conjunction. For
example, the causal condition A is a superset of the intersection A*B. In the implicant matrix, this
would be:

A B C D
54 2 0 0 0 A
72 2 2 0 0 A*B

Determining specific supersets of specific row numbers (in this case, that row number 54 is a
superset of row number 72) uses the same mathematical tricks as in the previous attempt, employing
a vector with the powers of 3 for binary data: 33, 32, 31, 30.
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This new procedure brought a great deal of speed compared with the previous one, consuming a
lot less memory (for 15 causal conditions, about 15 MB compared to 1.4 GB). It also made it possible to
explore up to 18 conditions at once, therefore additional three conditions meaning 33 = 27 times more
complex situations than before.

Past that threshold, the eQMC algorithm reaches its maximum possibilities. The culprit is less
represented by memory consumption, although at an extremely high number of causal conditions
the generated vectors of row numbers for the supersets can potentially grow larger than available
memory. Possibly problematic, after 19 causal conditions the row numbers cannot even be represented
in 32 bit computers, which have an upper representation limit of 231, that is still higher than 319 but
not enough compared to 320 for the implicant matrix with 20 causal conditions.

The more serious issue was the calculation time, especially at the final step to remove the redundant
implicants from the surviving differences: having that vector sorted in increasing order, the procedure
involved an inverse process of finding all subsets for each surviving implicant, starting from the
lowest, and iteratively remove those which are found in the rest of the vector.

That process involved a backward transformation from the base 10 row numbers to their base 3
equivalent then applying specific mathematical operations to find all their subsets. For millions or
tens of millions of implicants, even this “quick” process can take a lot more time than expected.

Consistency Cubes: the newest approach

Compared to the first attempt, eQMC excelled because it focused on the observed data only. Indirectly,
it probes into the implicants’ space during the calculation of supersets and subsets, which requires
some memory and costs a lot of time. But the focus on the observed data (ignoring the remainders but
obtaining exactly the same solutions), has to be the right approach and still stays at the foundation of
the new consistency cubes (CCubes) method, which starts with a simple observation:

Definition 3. A prime implicant is the simplest possible, non-redundant, fully consistent superset of any
positive output configuration.

Fully consistent also means that it can never be a superset of any observed negative configuration.
The simplest possible superset expression is a single condition (either its presence, or its absence).
Figure 1 presents the graphical representation of the generated truth table tt above, and shows that
no single condition qualify as a prime implicant in its presence (lit cubes above and below the middle
separator). The only condition that is fully consistent in its absence is B, but since it does not cover all
observed positive configurations, the search must be continued at the next level of complexity.

~

Figure 1: Individual presence inconsistencies, absence of B consistent

The next simplest superset expressions can be found in all combinations of 2 conditions out of 4,
and for each such combination a normal computer program would search within all pairs of their
respective levels. If conjunctions of two conditions will not prove to be sufficient, the next simplest are
superset expressions formed with 3 conditions out of 4, and so on.

For any general case involving multi-value causal conditions, the complete search space S (con-
taining the total number of possibilities to check using a polynomial approach) is equal to the sum
of all combinations of c selected conditions out of k, times the product of their respective number of
levels ls for each such selected combination:

SMV =
k

∑
c=1

(
k
c

) c

∏
s=1

ls (1)
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The CS (crisp sets) space is just a special case with all binary causal conditions having two
levels each, 0 and 1, where this equation gives the same result as 3k − 1 that describes the implicant
matrix having exactly this number of all possible expressions which Ragin (2000, pp.132-136) calls
“groupings”. These are all rows from the entire 3k implicant matrix, minus the first one which indicates
a situation when all causal conditions are minimized:

SCS =
k

∑
c=1

(
k
c

)
2c = 3k − 1 (2)

Ragin uses a similar technique and lists all possible combinations of causal conditions and their
levels in Table 5.4 (p.134). But he applied his calculation backwards, starting from the most complex
expressions of four conditions out of four, towards all combinations of levels from the most simple
situations with one separate condition at a time.

As it will be shown in the next section, starting from the simplest expression towards the most
complex, has a direct consequence over the performance of this algorithm. Fast forward, the properties
of Equation 1, combined with the requirements from Definition 3 that describe a minimal prime
implicant, are key ingredients behind the speed of the new CCubes algorithm.

Figure 2: Conjunctive prime implicants

Increasing the complexity to level c = 2, Figure 2 above shows all possible combinations of levels
for the pair of conditions A and D, out of which two qualify as prime implicants: ∼A*D and A*∼D are
both associated with a positive output above the middle grey separator, and at the same time not
associated with a negative output below the separator.

Search space

An exhaustive exploration of the entire search space, through all possible combinations of columns,
and all their subsequent combinations of levels, is a polynomial approach which is bound to consume
time. Figure 2 displays all combinations of levels from columns A and D, but there are 6 such pairs
of columns, each having 4 pairs of levels. For each pair of columns, a basic program would have to
spend time comparing 2 columns, times 4 pairs of levels, times 6 rows which gives 48 computer cycles.

The search space described in Equation 1 can be partitioned into successive layers of complexity,
from a single condition for c = 1 to the most complex conjunctions for c = k. Within each layer, it
is not necessary to search within all possible combination of levels, because the relevant ones can
already be found in the observed data. This is a fortunate situation that alleviates the memory problem
because, unlike the previous two attempts, no other memory needs to be used in the process.

The particular arrangement of the cube components in Figure 2 offers a first hint: out of the four
pairs, only two are meaningful, and they need not be displayed into separate combinations of levels,
as they can already be detected in the original structure of the observed data.

> tt[, c("A", "D", "OUT")]
A D OUT

6 0 1 1
9 1 0 1
11 1 0 1
5 0 0 0
14 1 1 0
16 1 1 0

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 362

The conjunction ∼A*D (which is the binary combination ‘01’, on the first line number 6), and the
conjunction A*∼D (binary combination ‘10’ on the second and third lines, numbers 9 and 11) are both
prime implicants because they are found in the observed positive cases and not in the negative ones.

In this example, the search space can be shortened to only two columns times 6 rows, already four
times quicker than a polynomial approach. But as it turns out, the search space can be shortened even
further using the mathematical tricks from the previous approaches, transforming from any (multiple)
base (in this example with all conditions in base 2) to their decimal representation:

> data.frame(AD = as.matrix(tt[, c("A", "D")]) %*% c(2^1, 2^0), OUT = tt$OUT)
AD OUT

6 1 1
9 2 1
11 2 1
5 0 0
14 3 0
16 3 0

Instead of the exhaustive 48 computer cycles, the same conclusion can be derived by examining
only these 6 rows, where decimal numbers 1 and 2 (corresponding to the binary combinations 01
and 10) are not found among the observed negative cases. In this simple example, the gain might be
minimal, but for more complex datasets with conjunctions of 5 or 6 causal conditions, these sort of
transformations dramatically reduce the search space, with a significant boost of the overall speed.

This technique of partitioning the search space is fundamentally different from the previous two
attempts, which approached the implicant matrix in the increasing order of its decimal row numbers.
The implicant matrix is by definition unpartitioned, and the example below display all levels for each
individual condition, equivalent to the simplest level of complexity in Figure 1:

> IM <- createMatrix(rep(3, 4)) # base 3 for 4 causal conditions
> rownames(IM) <- seq(nrow(IM))
> colnames(IM) <- LETTERS[1:4]
> IM[apply(IM, 1, function(x) sum(x > 0) == 1), ]

A B C D
2 0 0 0 1
3 0 0 0 2
4 0 0 1 0
7 0 0 2 0
10 0 1 0 0
19 0 2 0 0
28 1 0 0 0
55 2 0 0 0

The presence of a single condition A is found all the way on the decimal row number 55, therefore
the entire implicant matrix has to be scanned to find even the most simple conjunctions, and that takes
a lot of time. By contrast, and in line with Definition 3, the same search space can be partitioned in
successive layers of complexity before starting the search process, as shown in Equation 1.

This is one of the key novelties of the CCubes algorithm, that boosts its speed to unprecedented
levels while maintaining the same overall requirement to arrive at exact and complete solutions. It
does that by exploring the same space (the implicant matrix), but using a different method. As an
added bonus, the new algorithm uses the best features from all attempts, by partitioning the search
space and at the same time using the decimal representation from eQMC, when comparing which
numbers are found in the positive part and (not) in the negative part of the truth table.

Search depth

Another factor that can increase the speed of the CCubes algorithm is the search depth, which seeks to
terminate the partitioned search space as soon as possible. To satisfy Definition 3, the algorithm has to
search through all possible combinations of c selected conditions out of the total k, starting from a
single condition with c = 1 up to the most complex conjunctions with c = k.

But parsimonious prime implicants are never found among the most complex expressions, instead
they are always found among the simplest possible ones. A “simple” expression, for say 4 or 5 initial
causal conditions is a single condition or a conjunction of two conditions. For a more complex dataset
with 20 causal conditions, the word “simple” has a different meaning, with possible conjunctions of
up to 4 or 5 conditions each.
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More complex expressions are either not contributing to the minimization, or they are subsets of
other, less complex expressions which have already been found in the previous iterations of c selected
conditions. As the redundant prime implicants are to be removed anyways (a key part of the current
eQMC procedure), they will never qualify as “minimal” prime implicant expressions. This is why
Definition 3 explicitly mentions “non-redundant” expressions that do qualify as prime implicants.

To maximise speed, the search depth has to be stopped as soon as there is proof that no more prime
implicants will be found at more complex expressions. A brute force traditional algorithm searches
the entire search space from equation 1. In the binary crisp sets analysis, it involves an exhaustive
search of all 3k possible combinations in the implicants matrix. But that is a huge space, especially at a
large number of causal conditions, and most of the verifications are void. It is one of the reasons why
the traditional algorithms are inherently slow.

A brute force, exhaustive search will always find all non-redundant prime implicants, at the cost
of a larger search time. The task is to find those prime implicants without spending additional time for
unnecessary, void verifications. As it turns out, the design of the equation 1 is also the answer for this
task.

Using the truth table tt presented in this paper, any minimization algorithm will find exactly four
prime implicants: ∼B, ∼A*D, A*∼D and C*∼D, extracted from an implicants matrix with 34 − 1 = 80
rows.

The simplest prime implicant is ∼B, which has the biggest number of subsets in the implicants
matrix. More complex prime implicants have fewer subsets, and there is a method to determine the
exact number of subsets for any given prime implicant.

The prime implicant ∼B can be written as 0100 (where 1 means absence of B, and 0 means all other
conditions are minimized), and using a similar product formula as that from equation 1 it can be
determined it has 27− 1 = 26 subsets. There are three minimized conditions in this prime implicant (A,
C and D), each having 2 + 1 levels in the implicants matrix, and the number of subsets can be obtained
with the product of the number of levels for the minimized conditions:

3

∏
c=1

(lc + 1) = 33 = 27 (3)

27 rows from the implicant matrix contain ∼B, out of which 26 are subsets for which further
verifications would consume unnecessary time. The second prime implicant ∼A*D has 8 subsets, out
of which 3 are already covered by ∼B, making 31 unique subsets. The third has 8 subsets as well, out
of which 3 are already covered by the first two, making 36 unique subsets, and the fourth has 8 subsets
out of which 5 are already covered by the first three, making a grand total of 39 unique subsets for all
found prime implicants.

Out of the 80 rows of the implicants matrix to verify, it is certain that 39 will turn void results, which
means the search could have been terminated after about half of the search space. This procedure
is valid for any number of input causal conditions and for any number of non-redundant prime
implicants, leading to the general formula:

SMV =
k

∑
c=1

(
k
c

) c

∏
s=1

ls = P + U + N (4)

Here P is the number of prime implicants, U is the total number of unique subsets (of all found P
prime implicants), and N is the number of non (prime) implicants. The new algorithm verifies all P
rows, most of the N rows, and a small percentage of the U unique subsets. It stops when there is proof
that all remaining rows are either U or N: when the prime implicants chart can be solved at a certain
complexity level c, and no more prime implicants are identified at complexity level c + 1.

This is a crude, but very effective rule to make sure the search is exhaustive, although only
a fraction of the entire implicants matrix is actually verified. U represents the largest part of the
implicants matrix, and is not necessary to be verified. Avoiding the search through this void part of
the implicants matrix dramatically increases the speed of the CCubes algorithm.

To find all possible P prime implicants in a shorter time is already a major achievement, but the
next section presents a method to stop the search even sooner, for the default option of an absolute
minimal solution corresponding to the setting min.pin = TRUE in function minimize().

The prime implicants chart gives a better understanding of how many prime implicants are needed
to cover all observed positive cases. By iteratively solving this chart after each partition of complexity,
the search space can be terminated as soon as the number of prime implicants needed to solve the
chart reaches a minimum.
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Solving the prime implicants chart

Once the prime implicants are found, the next and final step of the Quine-McCluskey procedure is
to find the minimal disjunctions of expressions (sums of products) that cover all the initial positive
configurations in the observed data. The hypothetical example above generates four prime implicants:

> PIs <- translate("~B + ~A*D + A*~D + C*~D")
> PIs

A B C D
~B 0
~A*D 0 1
A*~D 1 0
C*~D 1 0

The PI chart is obtained by distributing these four prime implicants on each of the three observed,
positive configurations. In this chart representation, the symbol x indicates the prime implicant is a
superset of a specific initial configuration (it covers a specific column) and the symbol - indicates the
prime implicant is not a superset of (does not cover) that specific configuration:

> pic <- makeChart(rownames(PIs), c("~A*B*~C*D", "A*~B*~C*~D", "A*~B*C*~D"))
> pic

~A*B*~C*D A*~B*~C*~D A*~B*C*~D
~B - x x
~A*D x - -
A*~D - x x
C*~D - - x

None of the generated prime implicants is able to explain all three initial configurations, because
none is covering all three columns. The final solution will be a disjunction of at least 2 prime implicant
expressions, where ∼A*D is an essential part of the solution because it is the only one which covers the
first column.

The expression C*∼D, although minimal and non-redundant, is found to be irrelevant because it
covers a column which is already covered by two other prime implicants (the so called principle of
“row dominance”): both ∼B and A*∼D dominate C*∼D because they cover more columns.

The final solution is a disjunction of exactly 2 prime implicants, and there are two alternative such
solutions:

> minimize(tt, "OUT", include = "?", use.tilde = TRUE)

M1: ~A*D + (~B) <=> OUT
M2: ~A*D + (A*~D) <=> OUT

The package QCA (Dus, a, 2019; Thiem and Dus, a, 2012) in R (R Core Team, 2017) used to have a
dependency on package lpSolve, to determine the minimum number of prime implicants through
linear programming. There is, however, another direct method of determining this minimum number,
involving a two phase procedure:

1. iteratively simplify the chart, by:

• eliminating dominated rows

• eliminating dominating columns

2. iteratively find all sets of (the rest of the) rows that maximally cover the (rest of the) columns

On each iteration in the first phase, the chart is progressively simplified, and on each iteration
in the second phase, a new prime implicant is introduced to each previous maximal set, and the
procedure stops with the first set to win and cover all columns. There is a dedicated function to find
this minimum number m, equal to the output of the previous linear programming:

> findmin(pic)
[1] 2

For this particular purpose, the new procedure is faster than linear programming but the gain is
negligible. The real purpose is to solve the prime implicants chart from within the CCubes algorithm
after each partition of complexity c out of k from Equation 1, to determine:
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• if the generated prime implicants can explain all initial positive configurations (all columns in
the prime implicants chart are covered by at least one row)

• more importantly, if the number of prime implicants necessary to explain all positive configura-
tions reaches a minimum (when at complexity c + 1 the number m remains the same).

These factors terminate the search space at the depth where the new prime implicants do not
contribute to minimally solving the PI chart, thus demonstrating that not all prime implicants are
relevant. Only those which are found at the lowest levels of complexity from the search space matter.

This is rather easy to explain: the more complex a prime implicants is, the more specific it
becomes and covers fewer columns from the PI chart (initial combinations). A more and more specific
conjunction is a smaller and smaller intersection that covers less and less from the Universe, as shown
in the following Venn diagram using the package venn (Dus, a, 2018):

> library(venn)
> venn("~A*D + ~B", snames = "A, B, C, D", zcolor = "red, #008833")

Figure 3: Venn diagram with coverage of ∼A*D compared to ∼B

Figure 3 above shows the green area corresponding to∼B of complexity level 1, is much larger than
the red area corresponding to ∼A*D of complexity level 2. A more specific intersection, for example
∼A*C*D at complexity level 3, covers an even smaller area (it is actually a subset of ∼A*D).

Less complex prime implicants have a much higher chance of covering more columns from the
prime implicants chart, which explains why the most complex PIs are almost never part of the minimal
solution. For 20 causal conditions, tests have revealed that prime implicants are found up to the
complexity level 7, while the minimal solutions don’t use prime implicants from a complexity level
more than 4.

This is an important observation: although non redundant PIs can be found at higher complexity
levels, the search can be stopped at lower complexities, as soon as there is proof the prime implicants
chart is solved using a minimal number of prime implicants. Terminating the search space at lower
complexity levels dramatically shortens the time necessary to find all possible minimal solutions.

Performance benchmark

All three algorithms (QMC, eQMC and CCubes) are now available in function minimize() via the new
argument method. The motivation is partly due to the existence of multiple competing algorithms and
users should choose which one to use, but more importantly to allow for testing and benchmarking,
controlling for input and return exactly the same output. The main difference maker is the speed.

In the world of Boolean minimization, the acknowledged champion software is Espresso (Brayton
et al., 1984), built more than three decades ago at the University of California, Berkeley. It is a heuristic
algorithm that finds a minimal solution with record speed, but unsuitable for social science research.
While in circuit design the goal is to find one minimal solution, QCA needs to find all possible causal
paths that are sufficient for an outcome, thus involving all possible prime implicants that form a PI
chart.
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There is an R package on CRAN that implements Espresso version 2.3, called LogicOpt (Stiehl,
2016), a perfect opportunity to test the performance of CCubes in terms of speed and solutions found.
First of all, a data generation function is needed to make sure all algorithms receive the same input:

> gendat <- function(ncols, nrows, seed = 12345) {
set.seed(seed)
dat <- unique(matrix(sample(0:1, ncols*nrows, replace = TRUE), ncol = ncols))
colnames(dat) <- LETTERS[seq(ncols)]
return(as.data.frame(dat[order(dat[, ncols], decreasing = TRUE), ]))

}

For simplicity, all datasets are restricted to binary crisp having 10 unique configurations (a usual
number in QCA research, given the known limited diversity problem), and the number of columns
are given by argument ncols out of which the last column will play the role of the output. For a small
number of say 10 conditions all three algorithms can be tested, for a large number of 16 conditions
QMC is unable to perform, and above 20 conditions CCubes is the only algorithm left.

> dat <- gendat(ncols = 11, nrows = 10)
> minimize(dat, outcome = "K", include = "?", method = "QMC")
M1: C + (g) <=> K
M2: C + (b*d) <=> K
M3: C + (d*e) <=> K
M4: C + (d*H) <=> K
M5: C + (d*J) <=> K
M6: C + (e*J) <=> K

> all.equal(
capture.output(minimize(dat, outcome = "K", include = "?", method = "QMC")),
capture.output(minimize(dat, outcome = "K", include = "?", method = "eQMC"))

)
[1] TRUE

> all.equal(
capture.output(minimize(dat, outcome = "K", include = "?", method = "eQMC")),
capture.output(minimize(dat, outcome = "K", include = "?", method = "CCubes"))

)
[1] TRUE

The examples above show the solutions are identical for all three algorithms. But function
minimize() does many other things besides the logical minimization: calculating parameters of fit,
deriving simplifying assumptions, easy and difficult counterfactuals etc. To compare the speed of the
algorithms themselves, another function is needed, that arranges the input for the specificities of each.

> test <- function(dat, method = "", min.pin = FALSE) {
dat <- as.matrix(dat)
nconds <- ncol(dat) - 1
noflevels <- rep(2, nconds)
output <- dat[, nconds + 1]
switch(method,
"QMC" = {

mbase <- rev(c(1, cumprod(rev(noflevels))))[-1]
neg <- drop(dat[output == 0, seq(nconds)] %*% mbase) + 1
.Call("QMC", createMatrix(noflevels)[-neg, ] + 1, noflevels, PACKAGE = "QCA")

},
"eQMC" = {

mbase <- rev(c(1, cumprod(rev(noflevels + 1))))[-1]
pos <- dat[output == 1, seq(nconds)]
neg <- dat[output == 0, seq(nconds)]
rows <- sort.int(setdiff(findSupersets(input = pos + 1, noflevels + 1),

findSupersets(input = neg + 1, noflevels + 1)))
.Call("removeRedundants", rows, noflevels, mbase, PACKAGE = "QCA")

},
"CCubes" = {

.Call("ccubes", list(dat, min.pin), PACKAGE = "QCA")
})

}
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The output of interest for all three algorithms is the list of prime implicants, either as a matrix for
QMC and CCubes, or as a numerical vector of corresponding row numbers for eQMC. The output
itself is therefore not identical, but the final solutions are. What matters here is the timings, on a
MacBook Pro with an Intel Core i7 processor at 2.7 GHz with 16GB of RAM, at 1600 MHz DDR3.

> system.time(test(dat, method = "QMC"))
user system elapsed

4.438 0.010 4.448
> system.time(test(dat, method = "eQMC"))

user system elapsed
0.013 0.000 0.031

> system.time(test(dat, method = "CCubes"))
user system elapsed

0.000 0.000 0.001

For as little as 10 causal conditions, the classical Quine-McCluskey algorithm is already the slowest,
while eQMC performs very decent. The real test begins 16 conditions and above:

> dat <- gendat(ncols = 17, nrows = 10)
> system.time(test(dat, method = "eQMC"))

user system elapsed
6.735 0.996 7.676

> system.time(test(dat, method = "CCubes"))
user system elapsed

0.010 0.000 0.011

Past 18 causal conditions, the eQMC algorithm reaches its upper limit, while the CCubes algorithm
performs effortlessly:

> dat <- gendat(ncols = 26, nrows = 10)
> system.time(test(dat, method = "CCubes"))

user system elapsed
0.482 0.001 0.489

Obviously, some truth tables are more complex, the speed depending not only on the number of
causal conditions but also on the number of input configurations and their complexity. In this example,
the truth table is a very simple one with 5 positive and 5 negative configurations, but more unique
configurations added to the truth table have an obvious impact, even with fewer causal conditions:

> dat <- gendat(ncols = 21, nrows = 20)
> system.time(cc <- test(dat, method = "CCubes"))

user system elapsed
0.930 0.003 0.946

Comparing with Espresso is the more serious challenge. Despite its heuristic nature, it also has a
particular implementation that can find all relevant prime implicants, known in the literature under
the name of “Espresso-exact” and adapted in the package LogicOpt for comparison with package
QCA. Due to historical reasons, Espresso-exact generates not one set of prime implicants, but three:
EPs - essential prime implicants, PRPs - partially redundant prime implicants and TRPs - totally
redundant prime implicants.

The relevant function in package LogicOpt is called logicopt(), with a control argument named
mode that can take three values: "primes" (which leverages the PI generation C-code that is a part of
“Espresso-exact”), "multi-min" (which finds the minimum set of non-redundant solutions that cover
all the EPs and the minimal set of PRPs) and "multi-full" (that finds additional coverings of prime
implicants beyond what is found in multi-min, and an exhaustive covering of all PRPs). However,
since the number of coverings (solutions) is potentially very large, the package LogicOpt employs
an arbitrary upper limit of 50 coverings, therefore the output of these two arguments is not directly
comparable with the exhaustive number of solutions found by package QCA.

The only way to compare with Espresso-exact is to employ the argument mode = "primes" and
measure the time taken to identify the prime implicants.

Out of the three sets of prime implicants from Espresso-exact, only the EPs and PRPs play an active
role in finding the minimal solutions when solving the PI chart, however it’s implementation spends
additional time to find the set of TRPs. On the other hand, CCubes does not bother with the TRPs and
finds only the relevant set of PRPs (the essential PIs are identified when solving the PI chart).
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> library(LogicOpt)
> system.time(lo <- logicopt(dat, 20, 1, find_dc = TRUE, mode = "primes"))

user system elapsed
3.030 0.012 3.034

> nrow(cc)
[1] 1931
> lo[[2]][2]
[1] 1931

There are exactly 1931 prime implicants identified by both Espresso and CCubes, which is a
cross-validation proof between these two algorithms. In terms of speed, CCubes seems to be faster
and it can be faster still, by choosing to stop the search when the PI chart can be solved with a minimal
number of PIs, using the argument min.pin:

> system.time(cc <- test(dat, method = "CCubes", min.pin = TRUE))
user system elapsed
0.045 0.000 0.045

> nrow(cc)
[1] 687

Out of the 1931 prime implicants, only 687 really contribute to minimally solving the PI chart, with
the search being terminated a lot sooner with the same final solutions. A more intensive test of speed
was carried by generating 1000 random datasets changing the seed in function gendat():

> set.seed(12345)
> seeds <- sample(1000000000, 1000)
> result <- matrix(NA, nrow = length(seeds), ncol = 3)
> for (i in seq(length(seeds))) {

dat <- gendat(21, 20, seeds[i])
result[i, ] <- c(system.time(test(dat, method = "CCubes"))[[3]],

system.time(logicopt(dat, 20, 1, find_dc = TRUE, mode = "primes"))[[3]],
system.time(test(dat, method = "CCubes", min.pin = TRUE))[[3]])

}

On average, CCubes spends 0.941 seconds per dataset, while Espresso-exact spends 2.017 seconds.
The timings are more homogeneous for CCubes, with a standard deviation of 0.550 seconds, compared
to 1.727 seconds for Espresso-exact. Using the argument min.pin, CCubes spends an impressive
average of 0.571 seconds (over 3.5 times faster than Espresso-exact). In some cases it can be thousands
of times faster, while slower in only 5.7% of cases, depending on how many complex PIs contribute to
solving the PI chart (more time spent when approaching the total number of PIs).

While the cross-validation between Espresso-exact and CCubes lies in the number of found PIs,
the purpose of the QCA minimization is to make sure all possible (minimal) solutions are found. From
this perspective, CCubes is the only algorithm in R that can do that out of the box, but it is not the only
one to operate with a high number of causal conditions.

Another software that is capable to output complete and exhaustive solutions is called Tosmana
(Cronqvist, 2017), that implements another very different algorithm called GBA - Graph Based Agent.
A direct comparison is not possible in this paper because Tosmana does not operate in R, but according
to all tests the solutions are identical, with a superior speed for CCubes.

A cross-validation with QMC (up to 10-11 conditions), eQMC (up to 16-18 conditions), Tosmana
(around 20 conditions) and Espresso-exact (up to 30 conditions but indirectly via the number of prime
implicants) should be sufficient for any QCA researcher seeking a confirmation that CCubes and the
other algorithms used in package QCA are exact and exhaustive.

Summary

A cube is understood as a multi-dimensional matrix. Just as sets can be either subsets or supersets
of other sets, cubes can sometimes be formed with more complex, and sometimes with less complex
cubes. The cube should be defined and interpreted relative to a certain context: it can be either a
single condition, or a conjunction of causal conditions, or the entire dataset where that conjunction
was extracted from. Figure 2 offers a graphical exemplification of a “cube”: the simplest structure
can be one single red colored component, but if thinking about an entire conjunction as a “single”
component, then ∼A*D can be considered a cube as well, and the entire structure where this particular
conjunction resides can also be considered a cube.
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Such a conceptualization of a cube is important for the social sciences and it can be even better
understood by noting that, at its heart, the CCubes algorithm is only an extension of Mill’s joint
method of agreement and difference:

If two or more instances in which the phenomenon occurs have only one circumstance in
common, while two or more instances in which it does not occur have nothing in common
save the absence of that circumstance; the circumstance in which alone the two sets of
instances differ, is the effect, or cause, or a necessary part of the cause, of the phenomenon.
John Stuart Mill (1843) A System of Logic, vol. 1, pp. 463.

Usually, researchers think about a “circumstance” as a single causal condition, but a conjunction
of causal conditions can also be considered a circumstance, or in this case a “cube”. Instead of
highly expensive, base to base mathematical transformations, this new algorithm merely applies the
fundamentals of the comparative method.

It seems that, after all, simple is better. And a whole lot quicker.
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sdpt3r: Semidefinite Quadratic Linear
Programming in R
by Adam Rahman

Abstract We present the package sdpt3r, an R implementation of the Matlab package SDPT3 (Toh
et al., 1999). The purpose of the software is to solve semidefinite quadratic linear programming
(SQLP) problems, which encompasses problems such as D-optimal experimental design, the nearest
correlation matrix problem, and distance weighted discrimination, as well as problems in graph theory
such as finding the maximum cut or Lovasz number of a graph.

Current optimization packages in R include Rdsdp, Rcsdp, scs, cccp, and Rmosek. Of these, scs
and Rmosek solve a similar suite of problems. In addition to these solvers, the R packages CXVR
and ROI provide sophisticated modelling interfaces to these solvers. As a point of difference from
the current solvers in R, sdpt3r allows for log-barrier terms in the objective function, which allows
for problems such as the D-optimal design of experiments to be solved with minimal modifications.
The sdpt3r package also provides helper functions, which formulate the required input for several
well-known problems, an additional perk not present in the other R packages.

Introduction

Convex optimization is a well traversed field with far reaching applications. While perhaps unfamiliar
to those in the statistical sciences, many problems important to statisticians can be formulated as a
convex optimization, perhaps the most well known of which would be the least squares problem. More
specifically, many problems in statistics can be formulated as a subset of these convex optimization
problems, known as conic linear optimization problems.

One such example would be the nearest correlation matrix problem (Higham, 2002), which was
first considered when attempting to find correlations between stocks, where incomplete data on daily
stock returns are not unusual. Pairwise correlations are only computed when data is available for both
pairs of stocks under consideration, resulting in a correlation matrix that contains pairwise correlations,
but is not necessarily positive semidefinite - an approximate correlation matrix. The goal is to then find
the correlation matrix that is nearest to the approximate correlation matrix in some way.

Other examples of problems that can be formulated in terms of a conic linear optimization
problem include D-optimal experimental design (Smith, 1918), classification using distance weighted
discrimination (Marron et al., 2007), minimum volume ellipsoids (John, 2014), and problems in
educational testing (Chu and Wright, 1995).

Problems in related fields can also be solved, including finding the maximum cut (or maximum
k-cut) of a graph, finding the upper bound of the Shannon entropy of a graph, also known as the
Lovasz number (Vandenberghe et al., 1998), as well as problems in control theory, Toeplitz matrix
approximation, and Chebyshev approximation.

For the purpose of solving these conic linear optimization problems, we introduce the R package
sdpt3r, an implementation of the Matlab package SDPT3 by Toh et al. (1999). Of the R packages
available to perform conic optimization, sdpt3r is among the most general. Rdsdp (Zhu and Ye, 2016)
& Rcsdp (Bravo, 2016) are capable of solving semidefinite conic optimization problems, while cccp
(Pfaff, 2015) solves linear and quadratic conic optimization problems. The sdpt3r package allows for
all of linear, quadratic, and semidefinite conic optimization to be solved simultaneously (i.e., a problem
with any combination of semidefinite, quadratic, or linear cones can be solved). Two comparable
packages, scs (O’Donoghue et al., 2017) and Rmosek (Friberg, 2012), solve a similar suite of problems.
Additionally, the R packages CXVR (Fu et al., 2017) and ROI (Theußl et al., 2017) provide sophisticated
modelling interfaces to these solvers.

As a point of difference, scs and Rmosek allow for the exponential and power cones to be included
in the constraints, while sdpt3r handles log-barrier terms in the objective function directly. The
inclusion of log-barrier terms allows for the D-optimal design of experiments and minimum volume
ellipsoid problems to be solved with minimal modifications. In addition, sdpt3r provides helper
functions which directly solve a number of well known problems (such as the “max cut” or nearest
correlation matrix problems) with minimal input burden on the user. This additional functionality is
not found in either scs or Rmosek (although scs can be used with the CVXR package).

This paper is structured as follows. In Section 52.2 we discuss in greater detail the mathematical
formulation of the linear conic optimization problem, and introduce three examples to explore the
increasing generality of the problem to be solved. Section 52.3 discusses the R implementation of
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sdpt3r, and the main function by which conic linear optimization problems are solved, sqlp, including
the required input, and the output generated. The same examples used in Section 52.2 will be used to
demonstrate how a standard conic linear optimization problem can be converted to a form solvable by
sqlp. Section 52.4 presents the classic form of several other well known problems that can be solved
using sdpt3r, as well as the helper functions available to convert them to the appropriate form. Finally
Section 52.5 provides some closing remarks.

Conic linear optimization

At its simplest, a conic linear optimization problem has the following standard form (Tütüncü et al.,
2003):

minimize
X

〈C, X〉
subject to

〈Ak, X〉 = bk, k = 1, ..., m
X ∈ K

(1)

where K is a cone. Generally, K is either a

• Semidefinite Cone - Sn = {X ∈ Rn×n : X � 0, Xij = Xji ∀ i 6= j}
• Quadratic Cone - Qn = {x = [x0; x̃] ∈ Rn : x0 ≥

√
x̃Tx̃}

• Linear Cone - Ln - non-negative orthant ofRn

Here, x̃ = [x1, . . . , xn−1], and 〈·,·〉 represents the standard inner product in the appropriate space.
In the semidefinite cone the inner product is 〈X, Y〉 = vec(X)Tvec(Y), where the operator vec is the
by-column vector version of the matrix X, that is, for the n× n matrix X = [xij], vec(X) is the n2 × 1

vector [x11, x12, x13, . . . , x(n−1)n, xnn]
T. Note that vec does not require a square matrix in general.

One of the simplest problems that can be formulated in terms of a conic linear optimization
problem is finding the maximum cut of a graph. Let G = [V, E] be a graph with vertices V and edges
E. A cut of the graph G is a partition of the vertices of G into two disjoint subsets G1 = [V1, E1],
G2 = [V2, E2], with V1 ∩V2 = ∅. The size of the cut is defined to be the number of edges connecting
the two subsets. The maximum cut is defined to be the cut of a graph G whose size is at least as large as
any other cut. For a weighted graph object, we can also define the maximum cut to be the cut with
weight at least as large as any other cut.

Finding the maximum cut is referred to as the Max-Cut Problem, and was one of the first problems
found to be NP-complete, and is also one of the 21 algorithms on Karp’s 21 NP-complete problems
(Karp, 1972). The Max-Cut problem is also known to be APX hard (Papadimitriou and Yannakakis,
1991), meaning in addition to there being no polynomial time solution, there is also no polynomial
time approximation.

Using the semidefinite programming approximation formulation of Goemans and Williamson
(1995), the Max-Cut problem can be approximated to within an approximation constant. For a weighted
adjacency matrix B, the objective function can be stated as

minimize
X

〈C, X〉
subject to

diag(X) = 1
X ∈ Sn

where Sn is the cone of symmetric positive semidefinite matrices of size n, and C = −(diag(B1)−
B)/4. Here, we define diag(a) for an n× 1 vector a to be the diagonal matrix A = [Aij] of size n× n
with Aii = ai, i = 1, . . . , n. For a matrix X, diag(X) extracts the diagonal elements from X and places
them in a column-vector.

To see that the Max-Cut problem is a conic linear optimization problem it needs to be written in the
same form as Equation 1. The objective function is already in a form identical to that of Equation 1, with
minimization occurring over X of its inner product with a constant matrix C = −(diag(B1)− B)/4.
There are n equality constraints of the form xkk = 1, k = 1, ..., n, where xkk is the kth diagonal element
of X, and bk = 1 in Equation 1. To represent this in the form 〈Ak, X〉 = xkk, take Ak to be

Ak = [aij] =

{
1, i = j = k
0, otherwise
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Now 〈Ak, X〉 = vec(Ak)
Tvec(X) = xkk as required, and the Max-Cut problem is specified as a

conic linear optimization problem.

Allowing for optimization to occur over only one variable at a time is quite restrictive, as only
a small number of problems can be formulated in this form. Allowing optimization to occur over
multiple variables simultaneously would allow for a broader range of problems to be solved.

A separable set of variables

The conic linear optimization problem actually covers a much wider class of problems than those
expressible as in Equation 1. Variables can be separated into those which are constrained to a
semidefinite cone, S , a quadratic cone, Q, or a linear cone, L. The objective function is a sum of
the corresponding inner products of each set of variables. The linear constraint is simply a sum of
variables of linear functions of each set. This more general version of the conic linear optimization
problem is

minimize
Xs ,Xq ,Xl

∑ns
j=1〈Cs

j , Xs
j 〉+ ∑

nq

i=1〈C
q
i , Xq

i 〉+ 〈Cl , Xl〉
subject to

∑ns
j=1 (A

s
j )
Tsvec(Xs

j ) + ∑
nq

i=1 (A
q
i )

T
Xq

i + (Al)
T

Xl = b

Xs
j ∈ S sj ∀ j

Xq
i ∈ Qqi ∀ i

(2)

Here, svec takes the upper triangular elements of a matrix (including the diagonal) in a column-
wise fashion and vectorizes them. In general for an n × p matrix X = [xij], svec(X) will have the

following form [x11, x12, x22, x13, ..., x(n−1)p, xnp]
T. Recall that matrices in S are symmetric, so it is

sufficient to constrain only the upper triangular elements of the matrix Xs. For this formulation, As
j ,

Aq
i and Al are the constraint matrices of the appropriate size.

Some important problems in statistics can be formulated to fit this form of the optimization
problem.

The nearest correlation matrix

First addressed by Higham (2002) in dealing with correlations between stock prices, difficulty arises
when data is not available for all stocks on each day, which is unfortunately a common occurrence. To
help address this situation, correlations are calculated for pairs of stocks only when data is available
for both stocks on any given day. The resulting correlation matrix is only approximate in that it is not
necessarily positive semidefinite.

This problem was cast by Higham (2002) as

minimize
X

||R− X||F
subject to

diag(X) = 1
X ∈ Sn

where R is the approximate correlation matrix and || · ||F denotes the Frobenius norm. Unfortunately,
the Frobenius norm in the objective function prevents the problem being formatted as a conic linear
optimization problem.

Since the matrix X is constrained to have unit diagonal and be symmetric, and the matrix R is an
approximate correlation matrix, meaning it will also have unit diagonal and be symmetric, we can
re-write the objective function as

||R− X||F = 2 ∗ ||svec(R)− svec(X)|| = 2 ∗ ||e||
Now, introduce a variable e0 such that e0 ≥ ||e||, and define e∗ = [e0; e]. The vector e∗ is now

restricted to be in the quadratic cone Qn(n+1)/2+1. This work leads to the formulation of Toh et al.
(1999)
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minimize
e∗ , X

e0

subject to
svec(R)− svec(X) = [0, In(n+1)/2] e∗

diag(X) = 1
X ∈ Sn

e∗ ∈ Qn(n+1)/2+1

Here, [X, Y] denotes column binding of the two matrices Xn×p and Yn×m to form a matrix of size
n× (p + m). By minimizing e0, we indirectly minimize e = svec(R)− svec(X), since recall we have
e0 ≥ ||e||, which is the goal of the original objective function.

To see this as a conic linear optimization problem, notice that e0 can be written as 〈Cq, Xq〉 by
letting Cq = [1; 0n(n+1)/2] and Xq = e∗. Since the matrix X (i.e., Xs) does not appear in the objective
function, the matrix Cs is an n× n matrix of zeros.

Re-writing the first constraint as

svec(X) + [0, In(n+1)/2] e∗ = svec(R)

we can easily define the constraint matrices and right hand side of the first constraint as

As
1 = In(n+1)/2

Aq
1 = [0, In(n+1)/2]

b1 = svec(R)

The second constraint is identical to the constraint from the Max-Cut problem, where each diagonal
element of X is constrained to be equal to 1. Define b2 = 1, and for the kth diagonal element of X,
define the matrix Ak as

Ak = [aij] =

{
1, i = j = k
0, otherwise

yielding 〈Ak, X〉 = xkk. To write this as (As
2)

TXs, define

As
2 = [svec(A1), ..., svec(An)]

Since e∗ does not appear in the second constraint, Aq
2 = 0n(n+1)/2+1.

The final step is to combine the individual constraint matrices from each constraint to form one
constraint matrix for each variable, which is done by defining As = [As

1, As
2], Aq = [Aq

1, Aq
2]. We also

concatenate both right hand side vectors to form a single vector by defining b = [b1; b2]. Here, the
notation [X; Y] is used to denote two matrices Xp×m and Yq×m bound vertically to form a matrix of size
(p + q)×m. With this, the nearest correlation matrix problem is written as a conic linear optimization.

Semidefinite quadratic linear programming

While Equation 2 allows for additional variables to be present, it can be made more general still to
allow even more problems to be solved. We will refer to this general form as a semidefinite quadratic
linear programming (SQLP) problem.

The first generality afforded by an SQLP is the addition of an unconstrained variable Xu, which, as
the name suggests, is not bound to a cone, but instead, it is “constrained” to the reals in the appropriate
dimension. The second generalization is to allow for what are known as log-barrier terms to exist in the
objective function. In general, a barrier function in an optimization problem is a term that approaches
infinity as the point approaches the boundary of the feasible region. As we will see, these log-barrier
terms appear as log terms in the objective function.

Recall that for any linear optimization problem, there exists two formulations - the primal formu-
lation and the dual formulation. For the purposes of a semidefinite quadratic linear programming
problem, the primal problem will always be defined as a minimization, and the associated dual
problem will therefore be a maximization
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The primal problem

The primal formulation of the SQLP problem is

minimize
Xs

j ,X
q
i ,Xl ,Xu

∑ns
j=1[〈Cs

j , Xs
j 〉 − vs

j log det Xs
j ] + ∑

nq

i=1[〈C
q
i , Xq

i 〉 − vq
i log γ(Xq

i )]

+ 〈Cl , Xl〉 − ∑nl
k=1 vl

k log Xl
k + 〈Cu, Xu〉

subject to
∑ns

j=1 As
j (X

s
j ) + ∑

nq

i=1 Aq
i Xq

i + AlXl + AuXu = b

Xs
j ∈ S sj ∀ j

Xq
i ∈ Qqi ∀ i

Xl ∈ Lnl

Xu ∈ Rnu

(3)

For each j, Cs
j and Xs

j are symmetric matrices of dimension sj, restricted to the cone of positive

semidefinite matrices of the same dimension. Similarly, for all i, Cq
i and Xq

i are real vectors of dimension
qi, restricted to the quadratic cone of dimension qi. For a vector u = [u0; ũ] in a second order cone,

define γ(u) =
√

u2
0 − ũTũ. Finally, Cl and Xl are vectors of dimension nl , restricted to linear cone of

the same dimension, and Cu and Xu are unrestricted real vectors of dimension nu.

As before, the matrices Aq
i , Al , and Au are constraint matrices in qi, nl , and nu dimensions

respectively, each corresponding to their respective quadratic, linear, or unrestricted block. As
j is

defined to be a linear map from S sj toRm defined by

A
sj

j (X
s
j ) = [〈As

j,1, Xs
j 〉; . . . ; 〈As

j,m, Xs
j 〉]

where As
j,1 . . . As

j,m ∈ S sj are constraint matrices associated with the jth semidefinite variable Xs
j .

The dual problem

The dual problem associated with the semidefinite quadratic linear programming formulation is

maximize
Zs

j ,Z
q
i ,Zl ,y

bTy + ∑ns
j=1[v

s
j log det Zs

j + sj vs
j (1− log vs

j )]

+ ∑
nq

i=1[v
q
i log γ(Zq

i ) + vq
i (1− log vq

i )]

+ ∑nl
k=1[v

l
k log Zl

k + vl
k (1− log vl

k)]
subject to

(As
j )
Ty + Zs

j = Cs
j , Zs

j ∈ S sj , j = 1, . . . , ns

(Aq
i )

T
y + Zq

i = Cq
i , Zq

i ∈ Qqi , i = 1, . . . , nq

(Al)
T

y + Zl = Cl , Zl ∈ Lnl

(Au)Ty = Cu, y ∈ Rm

(4)

where (As
j )

T is defined to be the adjoint operator of As
j , where (As

j )
Ty = ∑m

k=1 ykAs
j,k. Equations 3 and

4 represent the most general form of the linear conic optimization problem that can be solved using
sdpt3r.

Optimal design of experiments

Consider the problem of estimating a vector x from measurements y given by the relationship

y = Ax + ε, ε ∼ N (0, 1).

The variance-covariance matrix of such an estimator is proportional to (ATA)−1. A reasonable
goal during the design phase of an experiment would therefore be to minimize (ATA)−1 in some way.

There are many different ways in which (ATA)−1 might be made minimal. For example, minimiza-
tion of the trace of (ATA)−1 (A-Optimality), minimization of the maximum eigenvalue of (ATA)−1

(E-Optimality), minimization of the determinant of (ATA)−1 (D-Optimality), and maximization of the
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trace of ATA (T-Optimality) all have their merits.

Perhaps the most commonly used of these optimality criteria is D-Optimality, which is equivalent
to maximizing the determinant of ATA. Typically, the rows of A = [a1, ..., aq]T are chosen from M
possible test vectors ui ∈ Rp, i = 1, ...M, which are known in advance. That is,

ai ∈ {u1, ..., uM}, i = 1, ..., q

Given that the matrix A is made up of these test vectors ui, Vandenberghe et al. (1998) write the
matrix ATA as

ATA = q
M

∑
i=1

λiuiui
T (5)

where λi is the fraction of rows in A that are equal to the vector ui. Then, Vandenberghe et al. (1998)
write the D-optimal experimental design problem as a minimum determinant problem

minimize
λ

log det (∑M
i=1 λiuiui

T)−1

subject to
λi ≥ 0, i = 1, ..., m

∑M
i=1 λi = 1

Due to the inequality constraint, this primal formulation cannot be interpreted as an SQLP of the
form of Equation 3. By defining Z = u diag(λ) uT, the dual problem is (Toh et al., 1999)

maximize
Z, zl , λ

log det (Z)

subject to
−∑

p
i=1 λi(uiui

T) + Z = 0, Z ∈ Sn

−λ + zl = 0, zl ∈ Rp
+

1Tλ = 1, λ ∈ Rp

Keeping in mind that this is a dual configuration, and thus follows Equation 4, we proceed with
writing the D-Optimal design problem as an SQLP by first considering the objective function. The
objective function depends only on the determinant of the matrix variable Z, which is the log-barrier.
This indicates that the variable vs in Equation 4 is equal to 1 in this formulation, while vq and vl are
both zero. Since λ does not appear in the objective function, the vector b is equal to 0.

The constraint matrices A are easy to define in the case of the dual formulation, as they multiply
the vector y in Equation 4, so therefore multiply λ in our case. In the first constraint, each λi is
multiplied by the matrix formed by −uiuT

i , so define Ai to be

Ai = −uiu
T
i , i = 1, ..., p.

Then, the constraint matrix is As = [svec(A1), ..., svec(Ap)]. In the second constraint containing
the linear variable zl , the constraint matrix is Al = −Ip, and in the third constraint containing only
the unconstrained variable λ, the constraint matrix is Au = 1T. Since there is no quadratic variable,
Aq = 0.

Finally, define the right hand side of each constraint

Cs = 0n×n
Cl = 0p×1
Cu = 1

which fully specifies the D-Optimal design problem as an SQLP.

In the next section, we will demonstrate using R how these definitions can be translated for use in
the main function of sdpt3r so an SQLP problem can be solved.

Solving a conic linear optimization problem with sdpt3r

Each of the problems presented in Section 52.2 can be solved using the sdpt3r package, an R implemen-
tation of the Matlab program SDPT3. The algorithm is an infeasible primal-dual predictor-corrector
path-following method, utilizing either an HKM (Helmberg et al., 1996) or NT (Nesterov and Todd,
1997) search direction. The interested reader is directed to Tütüncü et al. (2003) for further details
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surrounding the implementation.

The main function available in sdpt3r is sqlp, which takes a number of inputs (or an sqlp_input
object) specifying the problem to be solved, and executes the optimization, returning both the primal
and dual solution to the problem. This function will be thoroughly discussed in Section 52.3.1, and
examples will be provided. In addition to sqlp, a prospective user will also have access to a number of
helper functions for well known problems that can be solved using sdpt3r. For example, the function
maxcut takes as input an adjacency matrix B, and produces an S3 object containing all the input
variables necessary to solve the problem using sqlp. These functions will be discussed in Sections
52.3.3, 52.3.4, 52.3.4, and 52.4.

For sdpt3r, each optimization variable will be referred to as a block in the space in which it is
restricted. For instance, if we have an optimization variable X ∈ Sn, we will refer to this as a
semidefinite block of size n. It is important to note that it is possible to have multiple blocks from the
same space, that is, it is possible to have both X ∈ Sn as well as Y ∈ Sm in the same problem.

Input variables

The main function call in sdpt3r is sqlp, which takes the following input variables

blk A named-list object describing the block structure of the optimization variables.
At A list object containing constraint matrices As, Aq, Al , and Au

for the primal-dual problem.
b A vector containing the right hand side of the equality constraints, b,

in the primal problem, or equivalently the constant vector in the dual.
C A list object containing the constant C matrices in the primal objective

function or equivalently the corresponding right hand side of the equality
constraints in the dual problem.

X0, y0, Z0 Matrix objects containing an initial iterate for the X, y, and Z variables for
the SQLP problem. If not provided, an initial iterate is computed internally.

control A list object providing additional parameters for use in sqlp.
If not provided, default values are used.

The input variable blk describes the block structure of the problem. Letting L be the total number
of semidefinite, quadratic, linear, and unrestricted blocks in the SQLP problem, define blk to be a
named-vector object of length L, with names describing the type of block, and values denoting the
size of the optimization variable, summarized in Table 1.

Block type Name Value
Semidefinite s sj
Quadratic q qi
Linear l nl
Unrestricted u nu

Table 1: Structure of blk.

The input variable At corresponds to the constraint matrices in Equation 3, and C the constant
matrices in the objective function. The size of these input variables depends on the block they are
representing, summarized in Table 2 for each block type.

Block type
Semidefinite Quadratic Linear Unrestricted

At s̄j ×m qj ×m nl ×m nu ×m
C sj × sj qj × 1 nl × 1 nu × 1

Table 2: Size of At and C for each block type.

Note that in Table 2, s̄j = sj(sj + 1)/2. The size of At in the semidefinite block reflects the upper-
triangular input format that has been discussed previously. In a semidefinite block, the optimization
variable X is necessarily symmetric and positive semidefinite, it is therefore more efficient to consider
only the upper-triangular portion of the corresponding constraint matrix.

It is important to note that both input variables At and C are lists containing constraint and constant
matrices for each optimization variable. In general, the user need not supply initial iterates X0, y0, and
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Z0 for a solution to be found using sqlp. The infeasible starting point generated internally by sqlp
tends to be sufficient to find a solution. If the user wishes to provide a starting point however, the size
parameters in Table 3 must be met for each block.

Block type
Semidefinite Quadratic Linear Unrestricted

X0 sj × sj qj × 1 nl × 1 nu × 1
y0 sj × 1 qj × 1 nl × 1 nu × 1
Z0 sj × sj qj × 1 nl × 1 nu × 1

Table 3: Required size for initial iterates X0, y0, and Z0.

The user may choose to depart from the default values of several parameters which could affect
the optimization by specifying alternative values in the control list. A complete list of all parameters
that can be altered can be found in Appendix 52.6.

An important example is the specification of the parbarrier parameter in control, which specifies
the presence of a log-barrier in the objective function. The default case in control assumes that the
parameters vs

j , vq
i , vl

k in Equation 3 are all 0. If this, however, is not the case, then the user must specify
an L× 1 matrix object in control$parbarrier to store the values of these parameters (including zeros).
If the jth block is a semidefinite block containing p variables, parbarrierj = [vs

j1, ..., vs
jn]. If the jth block

is a quadratic block containing p variables, parbarrierj = [vq
j1, ..., vq

jn]. If the jth block is a linear block

parbarrierj = [vl
1, ..., vl

nl
]. Finally, if the jth block is the unrestricted block, then parbarrierj = [0, ..., 0],

where 0 is repeated nu times.

When executed, sqlp simultaneously solves both the primal and dual problems, meaning solutions
for both problems are returned. The relevance of each output therefore depends on the problem being
solved. The following object of class sqlp_output is returned upon completion

pobj the value of the primary objective function
dobj the value of the dual objective function

X A list object containing the optimal matrix X for the primary problem
y A vector object containing the optimal vector y for the dual problem
Z A list object containing the optimal matrix Z for the dual problem

The examples in subsequent subsubsections will demonstrate the output provided by sqlp.

Toy Examples

Before moving on to more complex problems, consider first some very simple example to illustrate the
functionality of the sdpt3r package. First, consider the following simple linear programming problem:

Minimize x1 + x2
subject to

x1 + 4x2 = 12
3x1 − x2 = 10

This problem can be solved using sdpt3r in very straightforward fashion. First, this is a linear
programming problem with two variables, x1 and x2. This implies that blk = c("l" = 2). Next the
objective function can be written as 1 ∗ x1 + 1 ∗ x2, so C = matrix(c(1,1),nrow=1). The constraints
can be summarized in matrix form as:

A =

[
1 4
3 −1

]
so A = matrix(c(1,3,4,-1),nrow=2)) and At = t(A). Finally the right hand side can be written in
vector form as [12, 10], so b = c(12,10). Pulling these all together, the problem is solved using sqlp:

blk = c("l" = 2)
C = matrix(c(1,1),nrow=1)
A = matrix(c(1,3,4,-1), nrow=2)
At = t(A)
b = c(12,10)
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out = sqlp(blk,list(At),list(C),b)
out

$X
$X[[1]]
2 x 1 Matrix of class "dgeMatrix"

[,1]
[1,] 4
[2,] 2

$y
[,1]

[1,] 0.3076923
[2,] 0.2307692

$Z
$Z[[1]]
2 x 1 Matrix of class "dgeMatrix"

[,1]
[1,] 6.494441e-10
[2,] 1.234448e-09

$pobj
[1] 6

$dobj
[1] 6

which returns the solution x1 = 4 and x2 = 2, and the optimal primal solution of 6. Second, consider
the following simple quadratic programming problem:

Minimize 1
2 x2

1 − x2
2

subject to
2x1 − x2 = 5

x1 + x2 = 4

This problem can be solved using sdpt3r by formulating the input variables in a similar fashion as
the linear programming problem:

blk = c("q" = 2)
C = matrix(c(0.5,-1),nrow=1)
A = matrix(c(2,1,-1,1), nrow=2)
At = t(A)
b = c(5,4)

out = sqlp(blk,list(At),list(C),b)
out

$X
$X[[1]]
2 x 1 Matrix of class "dgeMatrix"

[,1]
[1,] 3
[2,] 1

$y
[,1]

[1,] 0.5
[2,] -0.5

$Z
$Z[[1]]
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2 x 1 Matrix of class "dgeMatrix"
[,1]

[1,] 2.186180e-09
[2,] -3.522956e-10

$pobj
[1] 0.5

$dobj
[1] 0.5

which returns the solution x1 = 3 and x2 = 1, with optimal primal solution of 0.5. Finally, consider
the following simple semidefinite programming problem (taken from Freund (2004)):

Minimize

 1 2 3
2 9 0
3 0 7

 ·
 x1 x2 x3

x4 x5 x6
x7 x8 x9


subject to  1 0 1

0 3 7
1 7 5

 ·
 x1 x2 x3

x4 x5 x6
x7 x8 x9

 = 11

 0 2 8
2 6 0
8 0 4

 ·
 x1 x2 x3

x4 x5 x6
x7 x8 x9

 = 9

This problem is written almost exactly in the language used by sdpt3, and so can be easily solved
by taking:

blk = c("s" = 3)
C = list(matrix(c(1,2,3,2,9,0,3,0,7), nrow=3))
A1 = matrix(c(1,0,1,0,3,7,1,7,5), nrow=3)
A2 = matrix(c(0,2,8,2,6,0,8,0,4), nrow=3)
At = svec(blk,list(A1,A2))
b = c(11,9)

out = sqlp(blk,At,C,b)
out

$X
$X[[1]]
3 x 3 Matrix of class "dgeMatrix"

[,1] [,2] [,3]
[1,] 0.08928297 0.1606827 0.2453417
[2,] 0.16068265 0.2891815 0.4415426
[3,] 0.24534167 0.4415426 0.6741785

$y
[,1]

[1,] 0.5172462
[2,] 0.4262486

$Z
$Z[[1]]
3 x 3 Matrix of class "dsyMatrix"

[,1] [,2] [,3]
[1,] 0.4827538 1.147503 -0.9272352
[2,] 1.1475028 4.890770 -3.6207235
[3,] -0.9272352 -3.620723 2.7087744

$pobj
[1] 9.525946
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$dobj
[1] 9.525946

which provides the optimal matrix solution X, and the optimal value of the objective function 9.53.
Note that the function svec is used since the problem is a semidefinite programming problem, and
thus each A matrix is necessarily symmetric.

The Max-Cut problem

Recall that the maximum cut of a graph G with adjacency matrix B can be found as the solution to

Minimize 〈C, X〉
subject to

diag(X) = 1
X ∈ Sn

where C = −(diag(B1)− B)/4. In Section 52.2, we wrote this in the form of an SQLP

Minimize 〈C, X〉
subject to

〈Ak, X〉 = 1, k = 1, . . . , n
X ∈ Sn

where we defined Ak as

Ak = [aij] =

{
1, i = j = k
0, otherwise

To convert this to a form usable by sqlp, we begin by noting that we have one optimization
variable, X, and therefore L = 1. For an adjacency matrix B of dimension n for which we would like to
determine the Max-Cut, X is constrained to the space of semidefinite matrices of size n. Therefore, for
a 10× 10 matrix B (as in Figure 1), blk is specified as

B <- rbind(c(0, 0, 0, 1, 0, 0, 1, 1, 0, 0),
c(0, 0, 0, 1, 0, 0, 1, 0, 1, 1),
c(0, 0, 0, 0, 0, 0, 0, 1, 0, 0),
c(1, 1, 0, 0, 0, 0, 0, 1, 0, 1),
c(0, 0, 0, 0, 0, 0, 1, 1, 1, 1),
c(0, 0, 0, 0, 0, 0, 0, 0, 1, 0),
c(1, 1, 0, 0, 1, 0, 0, 1, 1, 1),
c(1, 0, 1, 1, 1, 0, 1, 0, 0, 0),
c(0, 1, 0, 0, 1, 1, 1, 0, 0, 1),
c(0, 1, 0, 1, 1, 0, 1, 0, 1, 0))

n <- max(dim(B))

blk <- c("s" = n)

With the objective function in the form 〈C, X〉, we define the input C as

one <- matrix(1, nrow = n, ncol = 1)
C <- -(diag(c(B %*% one)) - B) / 4

where, again, B is the adjacency matrix for a graph on which we would like to find the maximum cut,
such as the one in Figure 1.

The matrix At is constructed using the upper triangular portion of the Ak matrices. To do this in R,
the function svec is made available in sdpt3r.

A <- list()
for(k in 1:n){
A[[k]] <- Matrix(0,n,n)
A[[k]][k,k] <- 1

}

At <- svec(blk[1],A,1)
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B =



0 0 0 1 0 0 1 1 0 0
0 0 0 1 0 0 1 0 1 1
0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 0
1 1 0 0 1 0 0 1 1 1
1 0 1 1 1 0 1 0 0 0
0 1 0 0 1 1 1 0 0 1
0 1 0 1 1 0 1 0 1 0



Figure 1: A graph object and associated adjacency matrix for which we would like to find the maximum cut.

Having each of the diagonal elements of X constrained to be 1, b is a n× 1 matrix of ones

b <- matrix(1, nrow = n, ncol = 1)

With all the input variables now defined, we can now call sqlp to solve the Max-Cut problem

sqlp(blk, At, list(C), b)

A numerical example and the maxcut function

The built-in function maxcut takes as input a (weighted) adjacency matrix B and returns the optimal
solution directly. If we wish to find to the maximum cut of the graph in Figure 1, given the adjacency
matrix B we can compute using maxcut as

out <- maxcut(B)
out

$pobj

[1] -14.67622

$X

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
V1 1.000 0.987 -0.136 -0.858 0.480 0.857 -0.879 0.136 -0.857 0.597
V2 0.987 1.000 0.026 -0.763 0.616 0.929 -0.791 -0.026 -0.929 0.459
V3 -0.136 0.026 1.000 0.626 0.804 0.394 0.592 -1.000 -0.394 -0.876
V4 -0.858 -0.763 0.626 1.000 0.039 -0.469 0.999 -0.626 0.470 -0.925
V5 0.480 0.616 0.804 0.039 1.000 0.864 -0.004 -0.804 -0.864 -0.417
V6 0.857 0.929 0.394 -0.469 0.864 1.000 -0.508 -0.394 -1.000 0.098
V7 -0.879 -0.791 0.592 0.999 -0.004 -0.508 1.000 -0.592 0.508 -0.907
V8 0.136 -0.026 -1.000 -0.626 -0.804 -0.394 -0.592 1.000 0.394 0.876
V9 -0.857 -0.929 -0.394 0.470 -0.864 -1.000 0.508 0.394 1.000 -0.098
V10 0.597 0.459 -0.876 -0.925 -0.417 0.098 -0.907 0.876 -0.098 1.000

Note that the value of the primary objective function is negative as we have defined C =
−(diag(B1) − B)/4 since we require the primal formulation to be a minimization problem. The
original formulation given in Goemans and Williamson (1995) frames the Max-Cut problem as a maxi-
mization problem with C = (diag(B1)− B)/4. Therefore, the approximate value of the maximum cut
for the graph in Figure 1 is 14.68 (recall we are solving a relaxation).

As an interesting aside, we can show that the matrix X is actually a correlation matrix by con-
sidering its eigenvalues - we can see it clearly is symmetric, with unit diagonal and all elements in
[-1,1].

eigen(out$X[[1]])

$values
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[1] 5.59e+00 4.41e+00 2.07e-07 1.08e-07 4.92e-08 3.62e-08 3.22e-08
[8] 1.90e-08 1.66e-08 9.38e-09

The fact that X is indeed a correlation matrix comes as no surprise. Goemans and Williamson
(1995) show that the set of feasible solutions for the Max-Cut problem is in fact the set of correlation
matrices. So while we may not be interested in X as an output for solving the Max-Cut problem, it is
nonetheless interesting to see that it is in fact in the set of feasible solutions.

Nearest correlation matrix

Recall that the nearest correlation matrix is found as the solution to

minimize
e∗ , X

e0

subject to
svec(R)− svec(X) = [0, In(n+1)/2] e∗

diag(X) = 1
X ∈ Sn

e∗ ∈ Qn(n+1)/2+1

In Section 52.2.1 we wrote this as the following SQLP

minimize
e∗ , X

〈C, e∗〉
subject to

(As)Tsvec(X) + (Aq)Te∗ = b
X ∈ Sn

e∗ ∈ Qn(n+1)/2+1

for C = [1, 0n(n+1)/2], and

As = [As
1, As

2]
Aq = [Aq

1, Aq
2]

b = [b1; b2]

where

As
1 = In2

Aq
1 = [0, In2 ]

As
2 = [svec(A1), . . . , svec(An)]

Aq
2 = 0n2

b1 = svec(R)
b2 = 1T

and A1, . . . , An are given by

Ak = [aij] =

{
1, i = j = k
0, otherwise

To be solved using sqlp, we first define blk. There are two optimization variables in the formula-
tion of the nearest correlation matrix - X is an n× n matrix constrained to be in a semidefinite cone,
and y is an n(n + 1)/2 + 1 length vector constrained to be in a quadratic cone, so

data(Hnearcorr)

X = Hnearcorr
n = max(dim(X))
n2 = n * (n + 1) / 2

blk <- c("s" = n, "q" = n2+1)

Note that X does not appear in the objective function, so the C entry corresponding to the block
variable X is an n× n matrix of zeros, which defines C as

C1 <- matrix(0, nrow = n, ncol = n)
C2 <- rbind(1, matrix(0, nrow = n2, ncol = 1))
C <- list(C1,C2)
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Next comes the constraint matrix for X

Aks <- matrix(list(), nrow = 1, ncol = n)
for(k in 1:n){
Aks[[k]] <- matrix(0, nrow = n, ncol = n)
diag(Aks[[k]])[k] <- 1

}

A1s <- svec(blk[1], Aks)[[1]]
A2s <- diag(1, nrow = n2, ncol = n2)

At1 <- cbind(A1s,A2s)

then the constraint matrix for e∗.

A1q <- matrix(0, nrow = n, ncol = n2 + 1)

A2q1 <- matrix(0, nrow = n2, ncol = 1)
A2q2 <- diag(1, nrow = n2, ncol = n2)
A2q <- cbind(A2q1, A2q2)

At2 <- rbind(A1q, A2q)

and the right hand side vector b

b <- rbind(matrix(1, n, 1),svec(blk[1], X))

The nearest correlation matrix problem is now solved by

sqlp(blk, list(At1,At2), C, b)

A numerical example and the nearcorr function

To demonstrate the nearest correlation matrix problem, we will modify an existing correlation matrix
by exploring the effect of changing the sign of just one of the pairwise correlations. In the context
of stock correlations, we make use of tools available in the R package quantmod (Ryan and Ulrich,
2017) to access stock data from five tech firms (Microsoft, Apple, Amazon, Alphabet/Google, and
IBM) beginning in 2007.

library("quantmod")

getSymbols(c("MSFT", "AAPL", "AMZN", "GOOGL", "IBM"))
stock.close <- as.xts(merge(MSFT, AAPL, AMZN,

GOOGL, IBM))[, c(4, 10, 16, 22, 28)]

The correlation matrix for these five stocks is

stock.corr <- cor(stock.close)
stock.corr

MSFT.Close AAPL.Close AMZN.Close GOOGL.Close IBM.Close
MSFT.Close 1.0000000 -0.2990463 0.9301085 0.5480033 0.2825698
AAPL.Close -0.2990463 1.0000000 -0.1514348 0.3908624 0.6887127
AMZN.Close 0.9301085 -0.1514348 1.0000000 0.6228299 0.3870390
GOOGL.Close 0.5480033 0.3908624 0.6228299 1.0000000 0.5885146
IBM.Close 0.2825698 0.6887127 0.3870390 0.5885146 1.0000000

Next, consider the effect of having a positive correlation between Microsoft and Apple

stock.corr[1, 2] <- -1 * stock.corr[1, 2]
stock.corr[2, 1] <- stock.corr[1, 2]
stock.corr

MSFT.Close AAPL.Close AMZN.Close GOOGL.Close IBM.Close
MSFT.Close 1.0000000 0.2990463 0.9301085 0.5480033 0.2825698
AAPL.Close 0.2990463 1.0000000 -0.1514348 0.3908624 0.6887127
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AMZN.Close 0.9301085 -0.1514348 1.0000000 0.6228299 0.3870390
GOOGL.Close 0.5480033 0.3908624 0.6228299 1.0000000 0.5885146
IBM.Close 0.2825698 0.6887127 0.3870390 0.5885146 1.0000000

Unfortunately, this correlation matrix is not positive semidefinite

eigen(stock.corr)$values

[1] 2.8850790 1.4306393 0.4902211 0.3294150 -0.1353544

Given the approximate correlation matrix stock.corr, the built-in function nearcorr solves the
nearest correlation matrix problem using sqlp

out <- nearcorr(stock.corr)

Since this is a minimization problem, and thus a primal formulation of the SQLP, the output X
from sqlp will provide the optimal solution to the problem - that is, X will be the nearest correlation
matrix to stock.corr.

out$X

[,1] [,2] [,3] [,4] [,5]
[1,] 1.0000000 0.25388359 0.86150833 0.5600734 0.3126420
[2,] 0.2538836 1.00000000 -0.09611382 0.3808981 0.6643566
[3,] 0.8615083 -0.09611382 1.00000000 0.6115212 0.3480430
[4,] 0.5600734 0.38089811 0.61152116 1.0000000 0.5935021
[5,] 0.3126420 0.66435657 0.34804303 0.5935021 1.0000000

The matrix above is symmetric with unit diagonal and all entries in [−1, 1]. By checking the
eigenvalues,

eigen(out$X)

$values

[1] 2.846016e+00 1.384062e+00 4.570408e-01 3.128807e-01 9.680507e-11

we can see that X is indeed a correlation matrix.

D-optimal experimental design

Recall from Section 52.2.2 that the D-Optimal experimental design problem was stated as the following
dual SQLP

maximize
Z, zl , λ

log det (Z)

subject to
−∑

p
i=1 λi(uiui

T) + Z = 0, Z ∈ Sn

−λ + zl = 0, zl ∈ Rp
+

1Tλ = 1, λ ∈ Rp

which we wrote as

maximize
Z, zl , λ

log det (Z)

subject to
(As)Tλ + Z = Cs, Z ∈ Sn

(Al)
T

λ + zl = Cq, zl ∈ Rp
+

(Au)Tλ = Cu, λ ∈ Rp

where b = 0, and

As = −[svec(A1), . . . , svec(Ap)]
Al = −Ip
Au = 1T

Cs = 0n×n
Cl = 0p×1
Cu = 1

Here, A1, . . . , Ap are given by

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 386

Ai = uiui
T, i = 1, . . . , p

To convert this to a form usable by sdpt3r, we first declare the three blocks in blk. For a matrix
The first block is semidefinite containing the matrix Z, the second a linear block containing zl , and the
third an unrestricted block containing λ

data(DoptDesign)
V = DoptDesign
n = nrow(V)
p = ncol(V)

blk = c("s" = n, "l" = p, "u" = 1)

Next, by noting the variable λ does not appear in the objective function, we specify b as a vector of
zeros

b <- matrix(0, nrow = p, ncol = 1)

Next, looking at the right-hand side of the constraints, we define the matrices C

C1 <- matrix(0, nrow = n, ncol = n)
C2 <- matrix(0, nrow = p, ncol = 1)
C3 <- 1

C = list(C1,C2,C3)

Finally, we construct At for each variable

A <- matrix(list(), nrow = p, ncol = 1)

for(k in 1:p){
A[[k]] <- -V[,k] %*% t(V[,k])

}

At1 <- svec(blk[1], A)[[1]]
At2 <- diag(-1, nrow = p, ncol = p)
At3 <- matrix(1, nrow = 1, ncol = p)

At = list(At1,At2,At3)

The final hurdle necessary to address in this problem is the existence of the log-barrier. Recall that
it is assumed that vs, vq, and vl in Equation 4 are all zero in control. In this case, we can see that is not
true, as we have a log term containing Z in the objective function, meaning vs is equal to one. To pass
this to sqlp, we define the control$parbarrier variable as

control <- list(parbarrier = matrix(list(),3,1))
control$parbarrier[[1]] <- 1
control$parbarrier[[2]] <- 0
control$parbarrier[[3]] <- 0

The D-Optimal experimental design problem can now be solved using sqlp

sqlp(blk, At, C, b, control)

A numerical example and the doptimal function

To demonstrate the output generated from a D-optimal experimental design problem, we consider
a simple 3× 25 matrix containing the known test vectors u1, ..., u25 (the data is available in the sqlp
package). To solve the problem usingsqlp, we use the function doptimal, which takes as input an
n× p matrix U containing the known test vectors, and returns the optimal solution. The output we
are interested in is y, corresponding to λ in our formulation, the percentage of each ui necessary to
achieve maximum information in the experiment.

data("DoptDesign")

out <- doptimal(DoptDesign)
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out$y
[,1]

[1,] 0.000
[2,] 0.000
[3,] 0.000
[4,] 0.000
[5,] 0.000
[6,] 0.000
[7,] 0.154
[8,] 0.000
[9,] 0.000
[10,] 0.000
[11,] 0.000
[12,] 0.000
[13,] 0.319
[14,] 0.000
[15,] 0.000
[16,] 0.240
[17,] 0.000
[18,] 0.000
[19,] 0.000
[20,] 0.000
[21,] 0.000
[22,] 0.000
[23,] 0.287
[24,] 0.000
[25,] 0.000

The information matrix ATA is a linear combination of the test vectors ui, weighted by the optimal
vector y above.

Additional problems

The sdpt3r package considerably broadens the set of optimization problems that can be solved in R. In
addition to those problems presented in detail in Section 52.3, there are a large number of well known
problems that can also be formulated as an SQLP.

Each problem presented will be described briefly, with appropriate references for the interested
reader, and presented mathematically in its classical form, not as an SQLP as in Equation 3 or
4. Accompanying each problem will be an R helper function, which will solve the corresponding
problem using sqlp. Each helper function in sdpt3r (including those for the max-cut, D-optimal
experimental design, and nearest correlation matrix) is an R implementation of the helper functions
that are available to the user in the Matlab SDPT3 package (Toh et al., 1999).

Minimum volume ellipsoids

The problem of finding the ellipsoid of minimum volume containing a set of points v1, ..., vn is stated
as the following optimization problem (Vandenberghe et al., 1998)

maximize
B, d

log det(B)

subject to
||Bx + d|| ≤ 1, ∀ ]vex ∈ [v1, ..., vn]

The function minelips takes as input an n× p matrix V containing the points around which we
would like to find the minimum volume ellipsoid, and returns the optimal solution using sqlp.

data(Vminelips)
out <- minelips(Vminelips)

Distance weighted discrimination

Given two sets of points in a matrix X ∈ Rn with associated class variables [-1,1] in Y = diag(y),
distance weighted discrimination (Marron et al., 2007) seeks to classify the points into two distinct
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subsets by finding a hyperplane between the two sets of points. Mathematically, the distance weighted
discrimination problem seeks a hyperplane defined by a normal vector, ω, and position, β, such that
each element in the residual vector r̄ = YXTω + βy is positive and large. Since the class labels are
either 1 or -1, having the residuals be positive is equivalent to having the points on the proper side of
the hyperplane.

Of course, it may be impossible to have a perfect separation of points using a linear hyperplane, so
an error term ξ is introduced. Thus, the perturbed residuals are defined to be

r = YXTω + βy + ξ

Distance weighted discrimination (Marron et al., 2007) solves the following optimization problem
to find the optimal hyperplane.

minimize
r, ω, β, ξ

∑n
i=1(1/ri) + C1Tξ

subject to
r = YXTω + βy + ξ

ωTω ≤ 1
r ≥ 0
ξ ≥ 0

where C > 0 is a penalty parameter to be chosen.

The function dwd takes as input two n× p matrices X1 and X2 containing the points to be separated,
as well as a penalty term C≥ 0 penalizing the movement of a point on the wrong side of the hyperplane
to the proper side, and returns the optimal solution using sqlp.

data(Andwd)
data(Apdwd)
C <- 0.5

out <- dwd(Apdwd,Andwd,penalty)

Max-kCut

Similar to the Max-Cut problem, the Max-kCut problem asks, given a graph G = (V, E) and an integer
k, does a cut exist of at least size k. For a given (weighted) adjacency matrix B and integer k, the
Max-kCut problem is formulated as the following primal problem

minimize
X

〈C, X〉
subject to

diag(X) = 1
Xij ≥ 1/(k− 1) ∀ i 6= j

X ∈ Sn

Here, C = −(1− 1/k)/2 ∗ (diag(B1)− B). The Max-kCut problem is slightly more complex than
the Max-Cut problem due to the inequality constraint. In order to turn this into a standard SQLP, we
must replace the inequality constraints with equality constraints, which we do by introducing a slack
variable xl , allowing the problem to be restated as

minimize
X

〈C, X〉
subject to

diag(X) = 1
Xij − xl = 1/(k− 1) ∀ i 6= j

X ∈ Sn

xl ∈ Ln(n+1)/2

The function maxkcut takes as input an adjacency matrix B and an integer k, and returns the
optimal solution using sqlp.

data(Bmaxkcut)
k = 2

out <- maxkcut(Bmaxkcut,k)

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 389

Graph partitioning problem

The graph partitioning problem can be formulated as the following primal optimization problem

minimize
X

tr(CX)

subject to
tr(11TX) = α

diag(X) = 1

Here, C = −(diag(B1)− B), for an adjacency matrix B, and α is any real number.

The function gpp, takes as input a weighted adjacency matrix B and a real number alpha and
returns the optimal solution using sqlp.

data(Bgpp)
alpha <- nrow(Bgpp)

out <- gpp(Bgpp, alpha)

The Lovasz number

The Lovasz Number of a graph G, denoted ϑ(G), is the upper bound on the Shannon capacity of the
graph. For an adjacency matrix B = [Bij] the problem of finding the Lovasz number is given by the
following primal SQLP problem

minimize
X

tr(CX)

subject to
tr(X) = 1

Xij = 0 if Bij = 1
X ∈ Sn

The function lovasz takes as input an adjacency matrix B, and returns the optimal solution using
sqlp.

data(Glovasz)

out <- lovasz(Glovasz)

Toeplitz approximation

Given a symmetric matrix F, the Toeplitz approximation problem seeks to find the nearest symmetric
positive definite Toeplitz matrix. In general, a Toeplitz matrix is one with constant descending
diagonals, i.e.,

T =


a b c d e
f a b c d
g f a b c
h g f a b
i h g f a


is a general Toeplitz matrix. The problem is formulated as the following optimization problem

maximize
X

−yn+1

subject to [
I 0
0 −β

]
+ ∑n

k=1 yk

[
0 γkek

γkeT
k −2qk

]
+ yn+1B ≥ 0

[y1, ..., yn]
T + yn+1B ≥ 0

where B is an (n + 1) × (n + 1) matrix of zeros, and B(n+1)(n+1) = 1, q1 = −tr(F), qk = sum of
kth diagonal upper and lower triangular matrix, γ1 =

√
n, γk =

√
2 ∗ (n− k + 1), k = 2, ..., n, and

β = ||F||2F.

The function toep takes as input a symmetric matrix F for which we would like to find the nearest
Toeplitz matrix, and returns the optimal solution using sqlp.
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data(Ftoep)

out <- toep(Ftoep)

The educational testing problem

The educational testing problem arises in measuring the reliability of a student’s total score in an
examination consisting of a number of sub-tests (Fletcher, 1981). In terms of formulation as an
optimization problem, the problem is to determine how much can be subtracted from the diagonal of a
given symmetric positive definite matrix S such that the resulting matrix remains positive semidefinite
(Chu and Wright, 1995).

The Educational Testing Problem (ETP) is formulated as the following dual problem

maximize
d

1Td

subject to
A− diag(d) � 0

d ≥ 0

where d = [d1, d2, ..., dn] is a vector of size n and diag(d) denotes the corresponding n× n diagonal
matrix. In the second constraint, having each element in d be greater than or equal to 0 is equivalent
to having diag(d) � 0.

The corresponding primal problem is

minimize
X

tr(AX)

subject to
diag(X) ≥ 1

X � 0

The function etp takes as input an n× n positive definite matrix A, and returns the optimal solution
using sqlp.

data(Betp)

out <- etp(Betp)

Logarithmic Chebyshev approximation

For a p× n (p > n) matrix B and p× 1 vector f, the Logarithmic Chebyshev Approximation problem
is stated as the following optimization problem (Vandenberghe et al., 1998)

minimize
x, t

t

subject to
1/t ≤ (xTBi·)/fi ≤ t, i = 1, ..., p

where Bi· denotes the ith row of the matrix B. Note that we require each element of B·j/f to be greater
than or equal to 0 for all j.

The function logcheby takes as input a matrix B and vector f, and returns the optimal solution to
the Logarithmic Chebyshev Approximation problem using sqlp.

data(Blogcheby)
data(flogcheby)

out <- logcheby(Blogcheby, flogcheby)

Linear matrix inequality problems

We consider three distinct linear matrix inequality problems, all written in the form of a dual optimiza-
tion problem. The first linear matrix inequality problem we will consider is defined by the following
optimization equation for some n× p matrix B known in advance
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maximize
η, Y

−η

subject to
BY + YBT � 0

−Y � − I
Y− ηI � 0

Y11 = 1, Y ∈ Sn

The function lmi1 takes as input a matrix B, and returns the optimal solution using sqlp.

B <- matrix(c(-1,5,1,0,-2,1,0,0,-1), nrow=3)

out <- lmi1(B)

The second linear matrix inequality problem is

maximize
P, d

−tr(P)

subject to
A1P + PA1

T + B ∗ diag(d) ∗ BT � 0
A2P + PA2

T + B ∗ diag(d) ∗ BT � 0
−d � 0

∑
p
i di = 1

Here, the matrices B, A1, and A2 are known in advance.

The function lmi2 takes the matrices A1, A2, and B as input, and returns the optimal solution using
sqlp.

A1 <- matrix(c(-1,0,1,0,-2,1,0,0,-1),3,3)
A2 <- A1 + 0.1*t(A1)
B <- matrix(c(1,3,5,2,4,6),3,2)

out <- lmi2(A1,A2,B)

The final linear matrix inequality problem originates from a problem in control theory (Boyd et al.,
1994) and requires three matrices be known in advance, A, B, and G

maximize
η, P

η

subject to [
AP + PAT 0

BP 0

]
+ η

[
0 0
0 I

]
�
[ −G 0

0 0

]
The function lmi3 takes as input the matrices A, B, and G, and returns the optimal solution using

sqlp.

A <- matrix(c(-1,0,1,0,-2,1,0,0,-1),3,3)
B <- matrix(c(1,2,3,4,5,6), 2, 3)
G <- matrix(1,3,3)

out <- lmi3(A,B,G)

Summary

In Section 52.2, we introduced the problem of conic linear optimization. Using the Max-Cut, Nearest
Correlation Matrix, and D-Optimal Experimental Design problems as examples, we demonstrated the
increasing generality of the problem, culminating in a general form of the conic linear optimization
problem, known as the semidefinite quadratic linear program, in Section 52.2.2.

In Section 52.3, we introduced the R package sdpt3r, and the main function call available in the
package, sqlp. The specifics of the necessary input variables, the optional input variables, and the
output variables provided by sqlp were presented. Using the examples from Section 52.2, we showed
how a problem written as a semidefinite quadratic linear program could be solved in R using sdpt3r.

Finally, in Section 52.4, we presented a number of additional problems that can be solved using
the sdpt3r package, and presented the helper functions available so these problems could be easily
solved using sqlp.
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The sdpt3r package broadens the range of problems that can be solved using R. Here, we discussed
a number of problems that can be solved using sdpt3r, including problems in the statistical sciences,
graph theory, classification, control theory, and general matrix theory. The sqlp function in sdpt3r is
in fact even more general, and users may apply it to any other conic linear optimization problem that
can be written in the form of Equation 3 or 4 by specifying the input variables blk, At, C, and b for
their particular problem.

control

vers specifies the search direction
0, HKM if semidefinite blocks present, NT otherwise (default)
1, HKM direction
2, NT direction

predcorr TRUE, use Mehrotra prediction-correction (default)
FALSE, otherwise

gam step-length (default 0)
expon exponent used to decrease sigma (default 1)

gaptol tolerance for duality gap as a fraction of the objective function (default 1e− 8)
inftol tolerance for stopping due to infeasibility (default 1e-8)

steptol tolerance for stopping due to small steps (default 1e-6)
maxit maximum number of iterations (default 100)

stoplevel 0, continue until successful completion, maximum iteration, or numerical failure
1, automatically detect termination, restart if small steps is cause (default)
2, automatically detect termination

scale_data TRUE, scale data prior to solving
FALSE, otherwise (default)

rmdepconstr TRUE, remove nearly dependent constraints
FALSE, otherwise (default)

parbarrier declare the existence of a log barrier term
default value is 0 (i.e., no log barrier)
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Explanations of Model Predictions with
live and breakDown Packages
by Mateusz Staniak and Przemysław Biecek

Abstract Complex models are commonly used in predictive modeling. In this paper we present R
packages that can be used for explaining predictions from complex black box models and attributing
parts of these predictions to input features. We introduce two new approaches and corresponding
packages for such attribution, namely live and breakDown. We also compare their results with
existing implementations of state-of-the-art solutions, namely, lime (Pedersen and Benesty, 2018)
which implements Locally Interpretable Model-agnostic Explanations and iml (Molnar et al., 2018) which
implements Shapley values.

Introduction

Predictive modeling is a very exciting field with a wide variety of applications. Lots of algorithms have
been developed in this area. As proven in many Kaggle competitions (Fogg, 2016), winning solutions
are often obtained with the use of elastic tools like random forest, gradient boosting or neural networks.
Many of them are implemented by R packages found in the CRAN Task View MachineLearning.

These algorithms have many strengths but they also share a major weakness, which is a deficiency
in interpretability of a model structure. A single random forest, an xgboost model or a neural network
may be parameterized with thousands of parameters which make these models hard to understand.
Lack of interpretability results in the lack of trust in model predictions. Lack of trust is a major obstacle
when one thinks about applications in regulated areas such as personalized medicine or similar fields.
An interesting example of a situation in which trust issues are fully justified is presented in Ribeiro
et al. (2016). Authors compare two classifiers that were trained to recognize whether a text describes
Christianity or Atheism. After explanations were provided, it turned out that the model with superior
performance in the test set often based its prediction on irrelevant words, for example, prepositions. To
overcome this problem, the interpretability of complex machine learning models has been a subject of
much research, devoted partially also to model visualization (Štrumbelj and Kononenko, 2011; Tzeng
and Ma, 2005; Zeiler and Fergus, 2014).

The general approach to interpretability is to identify important variables (features) in the model
and then learn the expected model response for a single variable. A description of a general framework
of permutation-based variable importance rankings may be found in Altmann et al. (2010). An
interesting and widely adopted tool for estimation of marginal model response is Partial Dependency
Plot (Friedman, 2001), that presents the marginal relationship between the variable of interest and a
single variable from the model. An effective and very elastic implementation of this method is available
in the pdp package (Greenwell, 2017). This method has many extensions such as for example Individual
Conditional Expectations (Goldstein et al., 2015). The ICE method allows for tracing predictions for
individual variables and it is very useful for the identification of interactions. On the other hand, ALE
plots (Apley, 2016) were proposed as a superior tool for handling strongly correlated predictors by
describing the conditional distribution of predicted values. This method can be used to assess both
main effects and interactions between predictors. All these methods are focused on the effect of a
single variable or small set of variables within the black box model.

A different approach is presented by Ribeiro et al. (2016). While methods such as PDP and ALE
plot aim to describe model behavior globally, it is also possible to explain individual predictions as in
ICE. We will focus on such methods. The authors propose LIME (Locally Interpretable Model agnostic
Explanations) as a method for explaining black box predictions by fitting an interpretable model locally
around a prediction of interest. This methodology was illustrated with examples from image and
text classification areas. Later, it was extended by Puri et al. (2017) to MAGIX methodology (Model
Agnostic Globally Interpretable Explanations) and modified by the authors of the original article to aLIME
(anchor-LIME) by Tulio Ribeiro et al. (2016).

So far, two implementations of the method have been found. Python library was developed by the
authors of the original article and it is available on GitHub at https://github.com/marcotcr/lime. It
works for any text or image classifier as well as for tabular data. Regression models can be explained
using simple linear regression. The R package lime is a port to the original Python package. This
package works with tabular and text data and handles all models supported by either caret (Kuhn,
2018) or mlr (Bischl et al., 2016) package and it can be easily extended to work with other models. An
implementation of the sp-LIME algorithm proposed in the original article to choose representative
observations that would explain the behavior of the model globally is available for Python.
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In addition to packages that implement single methods, in R we have also two packages with a
consistent collection of explainers: DALEX (Biecek, 2018) and iml.

In this article, we give a short overview of methods for explaining predictions made by complex
models. We also introduce two new methods implemented in R packages live and breakDown.
Examples presented in this paper were recorded with the archivist package (Biecek and Kosinski,
2017). They can be accessed and restored with a single R instruction listed in footnotes.

Related work

In this section we present two of the most recognized methods for explanations of a single prediction
from a complex black box model (so-called instance-level explanations).

Locally Interpretable Model-agnostic Explanations (LIME)

Ribeiro et al. (2016) proposed LIME method for explaining prediction for a single observation. The
algorithm is designed to explain predictions of any classifier and it works primarily for image and
text data. First, original observation of interest is transformed into simplified input space of binary
vectors (for example presence or absence of words). Then a dataset of similar observations is created
by sampling features that are present in the representation of the explained instance. The closeness
of these observations to the original observations is measured via a specified similarity kernel. This
distance is taken into account while the explanation model is fitted to the new dataset. The interpretable
model can be penalized to assure that it does not become too complex itself. In mathematical terms,
LIME explanation for observation x is a model g which approximates complex model f by solving the
following optimization problem

g(·) = arg min
h∈G

[
L( f , h, πx(z)) + Ω(h)

]
,

where z is the interpretable (binary) representation of x, πx(z) is a measure of closeness of z and x
(the kernel), L is a loss function that measures local faithfulness of the explanation and Ω is a model
complexity measure, that serves as a regularization term.

Shapley values (SHAP)

In 2017 Lundberg and Lee (2017) introduced a general framework for explaining machine learning
models that encompasses LIME among other methods. The method is associated with some specific
visualization techniques that present how predictors contribute to the predicted values. In this
framework, observations are transformed into the space of binary variables called simplified inputs.
Explanation models are restricted to the so-called additive feature attributions methods, what means
that values predicted by the explanation model are linear combinations of these binary input vectors.
Formally, if z = (z1, . . . , zp) is a binary vector in simplified inputs space and g is the explanation
model, then

g(z) = φ0 +
M

∑
j=1

φjzj,

where φj, j = 0, . . . , M are weights. These weights measure how each feature contributes to the
prediction. Authors prove that in this class of explanation models Shapley values provide unique
solutions to the problem of finding optimal weights φj that assure that the model has desirable
properties of local accuracy and consistency. For formal treatment and examples, please refer to the
original article of Lundberg and Lee (2017). In particular, you will find there a proof that for certain
choices of parameters in the LIME method, coefficients of the fitted local linear model are Shapley
values. The Python implementation of this method is available at https://github.com/slundberg/
shap. In R Shapley values can be found in few packages. For tree based models they are implemented
in xgboost package (Chen et al., 2018). An independent model agnostic implementation is available in
the iml package. A development version of a package dedicated entirely to Shapley values can be
found at https://github.com/redichh/ShapleyR.

Local Interpretable Visual Explanations (LIVE)

The next two sections introduce two new approaches to explaining model prediction, implemented in
R packages live and breakDown, respectively. Both of these methods describe locally (at an instance
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level) how features contribute to a model prediction.

Motivation

live is an alternative implementation of LIME for regression problems, which emphasizes the role of
model visualization in the understanding of complex models. In comparison with the original LIME,
both the method of local exploration and handling of interpretable inputs are changed. A dataset for
local exploration is simulated by perturbing the explained instance one feature at a time. The process
is described in section 54.3.2. By default, the Gaussian kernel is used to measure distances between
simulated observation and the observation of interest, but other kernels can also be used, too. Original
variables are used as interpretable inputs, so numerical features are used in the explanation model.
Interpretability of the local explanation comes from a tractable relationship between inputs and the
predicted response. Variable selection is optional for linear regression when sparsity is required.

One of the main purposes of live is to provide tools for model visualization, which is why in this
package emphasis is put on models that are easy to visualize. For linear models, waterfall plots can be
drawn to present how predictors contribute to the overall model score for a given prediction, while
forest plots (Kennedy, 2017) can be drawn to summarize the structure of local linear approximation.
Examples clarifying both techniques are given in section 54.5. Other interpretable models that are
equipped with generic plot function can be visualized, too. In particular, decision trees which can be
plotted using party package (Strobl et al., 2008) are well suited for this task, as they can help discover
interactions. An example is given in section 54.5. The package uses the mlr interface to handle machine
learning algorithms, hence any classifier or regression method supported by mlr can be used as an
interpretable model, though in practice simple models will be preferred. The most common choice is a
sparse linear model.

Methodology

live package uses a two-step procedure to explain prediction of a selected black box model in the
point x. First, an artificial dataset X′ is created around point x. Then, the white box model is fitted to
the model predictions for points in X′.

The first step is described by the Algorithm 1.

1: p← number of predictors
2: m← number of observations to generate
3: Duplicate the given observation m times
4: for i in {1, . . . , m} do
5: Draw number k ∈ {1, . . . , p} uniformly. Replace the value of k-th variable in i-th

duplicate with a random draw from the empirical distribution of this variable in the
original dataset

6: end for
Algorithm 2: Simulating X′ - surroundings around the selected x.

In other words, the procedure amounts to iterating over the set of m observations identical to a
given instance and changing the value of one random variable at each step. Alternatively, in live
package new dataset can be sampled from a multivariate normal distribution and using permutations
of each column. Details can be found in the manual. Current implementation of this algorithm relies
on data.table package for performance (Dowle and Srinivasan, 2017). The choice of the number of
instances to sample is an open problem both in LIME and LIVE methods.

Model agnostic greedy explanations of model predictions (breakDown)

Motivation

live package approximates the local structure of the black box model around a single point in the
feature space. The idea behind the breakDown is different. In the case of that package, the main
goal is to decompose model predictions into parts that can be attributed to particular variables. It is
straightforward for linear (and more generally: additive) models. Below we present a model agnostic
approach that works also for nonlinear models.

Let us use the following notation: x = (x1, x2, ..., xp) ∈ X ⊂ Rp is a vector in feature space X.
f : X → R is a scoring function for the model under consideration, that may be used for regression of
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classification problems. Xtrain is a training dataset with n observations.

For a single observation xnew the model prediction is equal to f (xnew). Our goal is to attribute
parts of this score to variables (dimensions) in the X space.

The lm-break: version for additive models

For linear models (and also generalized linear models) the scoring function (e.g. link function) may be
expressed as a linear combination of feature vectors.

f (xnew) = (1, xnew)(µ, β)T = µ + xnew
1 β1 + . . . + xnew

p βp. (1)

In this case it is easy to attribute the impact of feature xi to prediction f (xnew). The most straightfor-
ward approach would be to use the xnew

i βi as the attribution. However, it is easier to interpret variable
attributions if they are invariant to scale-location transformations of xi, such as change of the units or
origin. Centering addresses location changes and scaling also changes the scales of β parameters. This
is why for linear models the lm-break variable attributions are defined as (xnew

i − x̄i)βi. The equation
1 may be rewritten as follows:

f (xnew) = (1, xnew)(µ, β)T = baseline + (xnew
1 − x̄1)β1 + ... + (xnew

p − x̄p)βp (2)

where
baseline = µ + x̄1β1 + ... + x̄pβp.

Components (xnew
i − x̄i)βi are all expressed in the same units. For lm and glm models these values

are calculated and plotted by the generic broken() function from the breakDown package.

The ag-break: model agnostic approach

Interpretation of lm-break attributions is straightforward but limited only to additive models. In this
section, we present an extension for non-additive models. This extension uses additive attributions
to explain predictions from non-additive models thus some information about the model structure
will be lost. Still, for many models, such attribution may be useful. For additive models the ag-break
approach gives the same results as lm-break approach.

The intuition behind ag-break approach is to identify components of xnew that cannot be changed
without a significant change in the prediction f (xnew). In order to present this approach in a more
formal way, we first need to introduce some definitions.

Definition 54.4.1 (Relaxed model prediction). Let f IndSet(xnew) denote an expected model prediction
for xnew relaxed on the set of indexes IndSet ⊂ {1, . . . , p}.

f IndSet(xnew) = E[ f (x)|xIndSet = xnew
IndSet]. (3)

Thus f IndSet(xnew) is an expected value for model response conditioned on variables from set IndSet
in such a a way, that ∀i∈IndSetxi = xnew

i .

The intuition behind relaxed prediction is that we are interested in an average model response for
observations that are equal to xnew for features from IndSetC set and follow the population distribution
for features from IndSet set. Clearly, two extreme cases are

f {1,...,p}(xnew) = f (xnew), (4)

which is the case of no relaxation, and

f∅(xnew) = E[ f (x)]. (5)

which corresponds to full relaxation. We will say that a variable was relaxed when we do not fix its
value and we let it follow the population distribution. This will play a crucial part in the algorithm
presented in this section.

Since we do not know the joint distribution of x, we will use its estimate instead.

̂f IndSet(xnew) =
1
n

n

∑
i=1

f (xi
−IndSet, xnew

IndSet). (6)

We will omit the dashes to simplify the notation.
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Definition 54.4.2 (Distance to relaxed model prediction). Let us define the distance between model
prediction and relaxed model prediction for a set of indexes IndSet.

d(xnew, IndSet) := | f IndSet(xnew)− f (xnew)|. (7)

It is the difference between model prediction for observation xnew and observation relaxed on
features indSet. The smaller the difference, the less important are variables in the indSet set.

Definition 54.4.3 (Added feature contribution). For j-th feature we define its contribution relative to a
set of indexes IndSet (added contribution) as

contributionIndSet(j) = f IndSet∪{j}(xnew)− f IndSet(xnew). (8)

It is the change in model prediction for xnew after relaxation on j.

The model agnostic feature contribution is based on distances to relaxed model predictions. In
this approach, we look for a series of variables that can be relaxed in such a way so as to move model
prediction from f (xnew) to a fully relaxed prediction E[ f (x)] (expected value for all model predictions).
The order of features in this series is important. But here we use a greedy strategy in which we add
features to the indSet iteratively (one feature per iteration) and minimize locally the distance to relaxed
model prediction.

This approach can be seen as an approximation of Shapley values where feature contribution is
linked with the average effect of a feature across all possible relaxations. These approaches are identical
for additive models. For non-additive models, the additive attribution is just an approximation in both
cases, yet the greedy strategy produces explanations that are easier to interpret. It is worth noting that
similar decomposition of predictions and measures of contribution for classifiers have been examined
in Robnik-Šikonja and Kononenko (2008).

The greedy search can start from a null set of indexes (then in each step a single feature is being
relaxed) or it can start from a full set of relaxed features (then in each step a single feature is removed
from the set). The above approaches are called step-up and step-down, respectively. They are presented
in algorithms 3 and 4.

The algorithm 3 presents the procedure that generates a sequence of variables with increasing
contributions. This sequence corresponds to variables that can be relaxed in such a way so as to
minimize the distance to the original prediction. The resulting sequence of Contributions and Variables
may be plotted with Break Down Plots, see an example in Figure 2. Figure 1 summarizes the idea
behind algorithm 3. By relaxing consecutive variables one finds a path between single prediction and
average model prediction.

One can also consider an opposite strategy - instead of starting from IndSet = {1, . . . , p} one can
start with IndSet = ∅. That strategy is called step-up approach and it is presented in Algorithm 4.

Note that the Break Down method is also available for Python in the pyBreakDown library.1

1: p← number of variables
2: IndSet← {1, . . . , p} set of indexes of all variables
3: for i in {1, . . . , p} do
4: Find new variable that can be relaxed with small loss in relaxed distance to f (xnew)
5: for j in IndSet do
6: Calculate relaxed distance with j removed
7: dist(j)← d(xnew, IndSet \ {j})
8: end for
9: Find and remove j that minimizes loss

10: jmin ← arg minj dist(j)
11: ContributionIndSet(i)← f IndSet(xnew)− f IndSet\{jmin}(xnew)
12: Variables(i)← jmin
13: IndSet← IndSet \ {jmin}
14: end for

Algorithm 3: Model agnostic break down of model predictions. The step-down approach.

1https://github.com/MI2DataLab/pyBreakDown/
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all data

+ alcohol = 9.4

+ volatile_acidity = 0.7

+ sulphates = 0.56

+ pH = 3.51

+ residual_sugar = 1.9

+ density = 0.9978

+ chlorides = 0.076

+ total_sulfur_dioxide = 34

+ free_sulfur_dioxide = 11

+ fixed_acidity = 7.4

+ citric_acid = 0

5 6 7

Figure 1: An illustration of algorithm 3. Each row in this plot correspond to a distribution of model
scores f (x)|xIndSet = xnew

IndSet for different sets of IndSet indexes. Initially IndSet = {1, . . . , p} and in
each step single variable is removed from this set. Labels on the left-hand side of the plots show which
variable is removed in a given step. Red dots stand for conditional average - an estimate of relaxed
predictions f IndSet(xnew). Violin plots summarize conditional distributions of scores while gray lines
show how model predictions change for particular observations between consecutive relaxations. This
plot is based on wine dataset described in section 54.5.
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Figure 2: Break Down Plot for decomposition identified in Figure 1. Beginning and end of each
rectangle corresponds to relaxed prediction (red dot in Figure 1) with and without a particular feature.
This plot is based on wine dataset described in section 54.5.
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1: p← number of variables
2: IndSet← ∅ empty set
3: for i in {1, . . . , p} do
4: Find new variable that can be relaxed with large distance to f∅(xnew)
5: for j in {1, . . . , p} \ IndSet do
6: Calculate relaxed distance with j added
7: dist(j)← d(xnew, IndSet ∪ {j})
8: end for
9: Find and add j that maximize distance

10: jmax ← arg maxj dist(j)
11: ContributionIndSet(i)← f IndSet∪{jmax}(xnew)− f IndSet(xnew)
12: Variables(i)← jmax
13: IndSet← IndSet ∪ {jmax}
14: end for

Algorithm 4: Model agnostic break down of model predictions. The step-up approach.

Case study: How good is this red wine?

Wine quality data (Cortez et al., 2009) is a well-known dataset which is commonly used as an example
in predictive modeling. The main objective associated with this dataset is to predict the quality of
some variants of Portuguese Vinho Verde on the basis of 11 chemical properties. A single observation
from the dataset can be found in Table 1. According to the results from the original article, the Support
Vector Machine (SVM) model performs better than other models including linear regression, neural
networks and others.

In this section we will show how live package can be used to fit linear regression model locally and
generate a visual explanation for the black box model as well as how breakDown package can be used
to attribute parts of the final prediction to particular features. This example will focus on a regression
problem, but since both methods are supposed to be model-agnostic, classification problems are
treated in the same way by using scores (probabilities) rather than predicted classes.

fixed
acidity

volatile
acidity

citric
acid

res.
sugar Cl− free

SO2

total
SO2

D pH SO2−
4 alcohol

7.40 0.70 0.00 1.90 0.08 11.00 34.00 1.00 3.51 0.56 9.40

Table 1: The fifth observation in wine quality dataset. D denotes density, Cl− stands for chlorides,
"res." for residual and SO2−

4 for sulphates.

The SVM model2 used in this example is trained with the use of e1071 package (Meyer et al., 2018).
We do not perform hyperparameter’s tuning as the model performance is not relevant in this use-case.

library("e1071")
data(wine, package = "live")
wine_svm_model <- svm(quality~., data = wine)

Different approaches for explaining single predictions are illustrated on the basis of the prediction
for the fifth wine from this dataset, the one presented in table 1. The actual quality of this wine is 5,
while the quality predicted by the SVM model is 5.03.

predict(wine_svm_model, wine[5, ])
## 1
## 5.032032

The live package

The live package approximates black box model (here SVM model) with a simpler white box model
(here linear regression model) to explain the local structure of a black box model and in consequence
to assess how features contribute to a single prediction.

To do this, we first need to generate artificial observations around the selected observation xnew

for local exploration. We use sample_locally function from live package.

2Access this model with archivist::aread("MI2DataLab/live/arepo/1025d")
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library("live")
library("mlr")
wine_sim <- sample_locally(data = wine,

explained_instance = wine[5, ],
explained_var = "quality",
size = 2000,
seed = 17)

wine_sim_svm <- add_predictions(wine_sim, wine_svm)
nc <- which(colnames(wine) == "quality")

If multiple models are to be explained, there is no need to generate multiple artificial datasets.
Predictions of each model on a single simulated dataset can be added with the use of add_predictions
function. A different object should be created for each model, but the same result of a call to
sample_locally function should be used as the to_explain argument. Black box model can be
passed as a model object or as a name of mlr learner. While the object created by sample_locally
function stores the dataset, name of the response variable and other metadata, the object returned by
add_predictions function also stores the fitted black box model. The result of applying sample_locally
functions does not contain the response but the result of add_predictions contains a column with
model predictions, which has the same name as the response in the original dataset. The seed ar-
gument is passed to set.seed function to ensure reproducibility, though our experience with this
approach shows that the results are stable.

Once the artificial data points around xnew are generated, we may fit the white box model to them.
In this example we fit a linear regression model using fit_explanation function3.

wine_expl_live <- fit_explanation(wine_sim_svm)

This function returns a native mlr object. The model object (for example, lm object) can be extracted
with the use of getLearnerModel function.

The white box model wine_expl approximates the black box model wine_svm_model around xnew.
Coefficients of this model can be presented graphically with the generic plot function for class
live_explainer. See the corresponding Forest Plot in Figure 3 and the corresponding Waterfall Plot
in Figure 4.

plot(wine_expl, type = "forest")
plot(wine_expl, type = "waterfall")

In case of datasets with larger number of variables, we could obtain sparse results by setting
selection = TRUE in the fit_explanation function. This option allows for performance of variable
selection based on LASSO implemented in glmnet (Friedman et al., 2010; Simon et al., 2011). When
using Generalized Linear Model or Elastic Net as a white box model it is possible to set family
argument to one of the distribution families available in glm and glmnet functions via response_family
argument to fit_explanation.

As mentioned, other interpretable models are suitable as local explanations, too. In particular,
decision trees can be used to visualization interactions between variables. It is enough to select a
different white box model while calling fit_explanation function.

wine_expl_tree <- fit_explanation(wine_sim_svm, "regr.ctree", kernel = identity_kernel,
hyperpars = list(maxdepth = 2))

Kernel is set to identity, because trees built by party package cannot handle non-integer weights. The
result is the following decision tree in Figure 5.

The lime package

The LIME method is implemented in the R package lime. It produces sparse explanations by default.
In the first step a lime object is created for a specified dataset and a fitted black box model.

library("lime")
set.seed(17)
wine_expl_lime <- lime(wine[5, ], wine_svm_model)

Then we use the explain function, which in case of regression takes the observation of interest, lime
object and the number of top features to be used for explanation4. In this case data is low dimensional,
hence we can use all predictors. Alternatively, we could set feature_select to none to skip the
selection part.

3Access this model with archivist::aread("MI2DataLab/live/arepo/eebe6")
4Access this object with archivist::aread("MI2DataLab/live/arepo/878d5")
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fixed_acidity
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Figure 3: Forest plot for a linear white box model that approximates the black box model.
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Figure 4: Waterfall plot for additive components of linear model that approximates the black box
model around xnew.
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Figure 5: Decision tree that approximates the black box model around xnew.
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model_type.svm <- function(x, ...) "regression"
svm_explained <- explain(wine[5, ], wine_expl_lime, n_features = 11)
plot_explanation(svm_explained)

Results produced by the plot_explanation function are presented in Figure 6.

Case: 1

Prediction: 5.03203209683436

Explanation Fit: 0.12
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7 < free_sulfur_dioxide <= 14
citric_acid <= 0.09

0.997 < density <= 0.998
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3.40 < pH
0.64 < volatile_acidity
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F
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Figure 6: Contributions of particular features to the prediction calculated with SVM model assessed
with LIME method.

Note that here, the explanation is presented in terms of discretized variables rather than original
continuous predictors.

The breakDown package

The breakDown package directly calculates variable attributions for a selected observation. It does
not use any surrogate model.

The broken() function is used to calculate feature attributions5. Generic functions print() and
plot() show feature attributions as texts or waterfall plots. The baseline argument specifies the
origin of a waterfall plot. By default, it is 0. Use baseline = "intercept" to set the origin to average
model prediction.

library("breakDown")
explain_bd <- broken(wine_svm, new_observation = wine[5, -nc],

data = wine[, -nc],
baseline = "Intercept",
keep_distributions = TRUE)

explain_bd
## contribution
## baseline 5.613
## + alcohol = 9.4 -0.318
## + volatile_acidity = 0.7 -0.193
## + sulphates = 0.56 -0.068
## + pH = 3.51 -0.083
## + residual_sugar = 1.9 -0.035
## + density = 0.9978 -0.031
## + chlorides = 0.076 -0.021
## + total_sulfur_dioxide = 34 -0.003
## + quality = 5 0.000
## + free_sulfur_dioxide = 11 0.004
## + fixed_acidity = 7.4 0.024
## + citric_acid = 0 0.144
## final_prognosis 5.032

plot(explain_bd)

Figure 7 shows variable contributions for step-up and step-down strategy. Variable ordering is
different but the contributions are consistent across both strategies.

5Access example attributions with archivist::aread("MI2DataLab/live/arepo/1f320")
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Figure 7: ag-break feature attributions for SVM model calculated for the 5th wine. The upper plot
presents feature attributions for the step-up strategy, while the bottom plot presents results for the
step-down strategy. Attributions are very similar even if the ordering is different. Vertical black line
shows the average prediction for the SVM model. The 5th wine gets final prediction of 5.032 which is
below the average for this model by 0.581 point.

Find more examples for classification and regression models created with caret, mlr, randomForest
(Liaw and Wiener, 2002) and other frameworks in package vignettes6.

6https://pbiecek.github.io/breakDown/
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Figure 8: Visualization of Shapley values.

Shapley values (SHAP)

Authors of the original article about Shapley values maintain a Python package which implements
several methods of computing these values. Also, it provides visual diagnostic tools that help
understand global behavior of the black box model such as plotting variable contributions for all
instances in the dataset.

The iml package can be used to compute Shapley values for any model. Other tools are more
restricted in this regard, for example, the shapleyR package only works with mlr models. First, we
need to create a Predictor object for the model, then it is enough to apply the Shapley function for
a specified instance. This implementation samples permutation of variables to take into account
different orders in which conditioning can be done and the number of permutations to be used is a
parameter of this function. Details can be found in the documentation for the package.

model_svm = Predictor$new(model = wine_svm, data = wine[, -nc], y = wine$quality)
set.seed(17)
shapley_iml = Shapley$new(model_svm, x.interest = wine[5, -nc])
plot(shapley_iml)

Calculated Shapley values7 are presented in Table 2 and compared to results of Break Down method.
Shapley values can be also visualized on a plot similar to waterfall plot, which can be created using
generic plot function. An example is shown in Figure 8.

feature Shapley value breakDown score
1 alcohol -0.31 -0.32
2 volatile_acidity -0.23 -0.19
3 sulphates -0.19 -0.07
4 citric_acid 0.17 0.14
5 fixed_acidity -0.06 0.02
6 pH -0.04 -0.08
7 density -0.03 -0.03
8 residual_sugar -0.01 -0.03
9 total_sulfur_dioxide 0.00 -0.00

10 chlorides -0.00 -0.02
11 free_sulfur_dioxide 0.00 0.00

Table 2: Comparison of feature attributions calculated with iml and breakDown packages.

Discussion

In this paper, we presented four approaches and four R packages that can be used for explanations of
predictions from complex black box models. Two of them have already been introduced in literature,
while live and breakDown were introduced in this article for the first time.

7Access this object with archivist::aread("MI2DataLab/live/arepo/50f5f")
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All four approaches are model agnostic in a sense that, the method does not depend on any
particular structure of black box model. Yet there are also some differences between these approaches.

1. Surrogate models vs. conditional expected responses. live and lime packages use surrogate
models (the so-called white box models) that approximate local structure of the complex black
box model. Coefficients of these surrogate models are used for explanations. Unlike them,
breakDown and shapleyR construct feature attributions on the basis of conditional responses
of a black box model.

2. live and lime packages differ in terms of the manner in which the surrounding of xnew is defined.
This task is highly non-trivial especially for mixed data with continuous and categorical features.
live does not use interpretable input space (and so does not fall under the additive feature attribution
methods category), but approximates the black box model directly in the data space, what can
be considered a more effective use of data. It comes with no theoretical guarantees that are
provided for Shapley values, but apart from being very intuitive, it offers several tools for visual
inspection of the model.

3. Computations required to obtain LIME and LIVE explanations are relatively simple. For large
datasets, sampling can be easily parallelized. Shapley values and Break Down Plots, on the other
hand, are more computationally demanding, but the current implementation of breakDown
computes additive explanations in linear time.

4. shapleyR and breakDown take conditional expectation of the predictor function with respect
to explanatory features. They differ in terms of the manner in which conditioning is applied to
calculating feature attributions. shapleyR is based on results from game theory; in this package
contribution of a single feature is averaged across all possible conditionings. breakDown uses
a greedy approach in which only a single series of nested conditionings is considered. The
greedy approach is easier to interpret and faster to compute. Moreover, exact methods of com-
puting Shapley values exist only for linear regression and tree ensemble models. Approximate
computations are also problematic, as they require the choice of the number of samples of
subsets of predictors which will be used. These two methods produce nearly identical results
for linear models (see table Table 2), but for more complex models the estimated contributions
can be very different, even pointing in opposite directions. An advantage of Shapley values are
proven theoretical properties, though they are restricted to explanation models that belong to
the additive feature attribution methods class.

5. When parameters (kernel and regularization term) are chosen as in Lundberg and Lee (2017),
lime produces estimates of Shapley values, while other choices of kernel and penalty term lead
to inconsistent results. The fact that the suggested penalty term is equal to 0 can be considered
a huge limitation of LIME and SHAP, because in this setting they will not produce sparse
explanations.

6. All presented methods decompose final prediction into additive components attributed to
particular features. This approach will not work well for models with heavy components related
to interactions between features.

7. Evaluation of human-readability of discussed methods will be a subject of future research.
It will help in making comparisons between different approaches to individual prediction
explanations.

8. Authors of SHAP and LIME proposed methods of combining explanations calculated for
different observations into global explanations. Such aggregation methods for Break Down and
LIVE will also be a subject of future research.

Comparison of the methods presented in the previous section is far from being comprehensive.
More research is needed to better understand the differences between these approaches and new
approaches are needed to overcome the constraints listed above. Nevertheless, the availability of the
mentioned packages creates an opportunity for further studies on model exploration.
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Downside Risk Evaluation with the R
Package GAS
by David Ardia, Kris Boudt, and Leopoldo Catania

Abstract Financial risk managers routinely use non–linear time series models to predict the downside
risk of the capital under management. They also need to evaluate the adequacy of their model
using so–called backtesting procedures. The latter involve hypothesis testing and evaluation of loss
functions. This paper shows how the R package GAS can be used for both the dynamic prediction and
the evaluation of downside risk. Emphasis is given to the two key financial downside risk measures:
Value-at-Risk (VaR) and Expected Shortfall (ES). High-level functions for: (i) prediction, (ii) backtesting,
and (iii) model comparison are discussed, and code examples are provided. An illustration using the
series of log–returns of the Dow Jones Industrial Average constituents is reported.

Introduction

The GAS package of Catania et al. (2016) provides a complete framework for modeling, estimating
and predicting time series processes for which the time variation in the parameters is driven by the
score of the conditional density function. This increasingly popular class of score-driven models has
been introduced by Creal et al. (2013) and Harvey (2013). Ardia et al. (2019) describe the general
functionality implemented in the GAS package, but do not cover the functionality useful for the
estimation and backtesting of Value-at-Risk (VaR) and Expected Shortfall (ES), which are the two
leading risk measures used in finance. The aim of this paper is to show how the functions available in
the GAS package can be used for VaR and ES evaluation, prediction, and backtesting.

The economic relevance of this topic follows partly from the Basel Accords (currently the Basel III
Accords), which impose that banks and financial institutions have to meet capital requirements, and
must rely on state-of-the-art risk systems. In particular, they must assess the uncertainty about the
future values of their portfolios and estimate the extent and the likelihood of potential losses using
a risk measure. Nowadays, VaR and ES risk measures are the standards (Jorion, 1997). For an asset
(or portfolio) return, the VaR at a given time horizon equals the return such that lower returns only
occur with a given probability level α (referred to as the risk level, and which is typically set to one or
five percent, that is α ∈ {0.01, 0.05}). The ES risk measure is the expectation of the asset (or portfolio)
return when the return is below the VaR level.

The estimation of the VaR and ES thus requires first to accurately estimate the conditional dis-
tribution of the future portfolios’ or assets’ returns. Formally, assuming a continuous cumulative
density function (cdf ) with time-varying parameters θt ∈ Rd and additional static parameters ψ ∈ Rq,
F(·; θt, ψ), for the log return at time t, rt ∈ R, the VaRt(α) is given by:

VaRt(α) ≡ F−1(α; θt, ψ) ,

where F−1(·) denotes the inverse of the cdf, that is, the quantile function. It follows that VaRt(α) is
nothing more than the α–quantile of the return distribution at time t.1 The ES metric measures the
expected loss after a violation of the VaR level and it is defined as:

ESt(α) ≡
1
α

∫ VaRt

−∞
z dF(z, θt, ψ) .

It follows that a crucial point for correct VaR and ES assessment is the determination of F(·) and its
parameters θt and ψ. For a general overview of existing methods, we refer the reader to Nieto and
Ruiz (2016). In this paper, we illustrate how this can be achieved using the framework of Generalized
Autoregressive Score (GAS) models introduced by Creal et al. (2013) and Harvey (2013). GAS models
are also referred to as Score Driven (SD) models and Dynamic Conditional Score (DCS) models and
have been used extensively for financial risk management purposes. For a comparison between the
accuracy of VaR and ES estimates obtained by the GAS approach against alternative volatility models,
we refer the reader to Bernardi and Catania (2016), Gao and Zhou (2016), Ardia et al. (2018) and Ardia
et al. (2019).

Formally, in GAS models the vector of time-varying parameters, θt, is updated through a dynamic

1Sometimes VaR is defined with respect to the loss variable lt = −rt. All the arguments of this paper can be
easily adapted to this case.
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equation based on the score of the conditional2 probability density function of rt, f (·; θt, ψ), that is:

θt+1 ≡ κ + Ast + Bθt , (1)

where st is the (possibly) scaled score of f (·; θt, ψ) with respect to θt, evaluated in rt; see Creal et al.
(2013) and also the Appendix for examples. The coefficients κ, A, and B control for the evolution of θt
and need to be estimated along with ψ from the data, usually by maximum likelihood.

We focus on the three major steps practitioners involved in risk management face during their job:
(i) prediction of future downside risk, (ii) backtesting, and (iii) comparison with alternative models.
The empirical part of the article deals with these three points from an applied perspective while the
computational part details the GAS functionalities devoted to downside risk.

A flexible GAS specification for modeling financial returns

Financial returns exhibit several stylized facts that need to be taken into consideration to produce
reliable risk forecasts. Empirically, the distribution of returns is (left) skewed and fat tailed, and its
variance is time varying (i.e., returns exhibit the so-called volatility clustering); see, for example, McNeil
et al. (2015).

To account for these features, we consider a very flexible specification, in which we assume that
the log return at time t, rt, is distributed conditionally on past observations as follows:

rt|It−1 ∼ SKST (rt; µ, σt, ξ, ν) ,

where It−1 is the information set up to time t − 1, and SKST (rt; ·) denotes the skew Student-t
distribution of Fernández and Steel (1998) with location µ ∈ R, time-varying scale (volatility) σt > 0,
and skewness and shape parameters ξ > 0 and ν > 2, respectively. We parametrize the SKST
distribution as in Bauwens and Laurent (2005) such that E[rt | It−1] = µ and V[rt | It−1] = σ2

t . To
ensure positivity of the volatility parameter, we set the time-varying GAS parameter θt in (1) to
θt ≡ θt ≡ log σt, and we define ψ ≡ (µ, ξ, ν). In the Appendix, we show that the corresponding score
st which enters linearly in the updating equation (1) is given by:

st ≡
(

zt (ν + 1) (zt −m)

(ξ∗t )
2 (ν− 2) + z2

t
− 1

)
,

with ξ∗t ≡ ξ I{zt≥0}−I{zt≤0}, where I{·} is the indicator function equal to one if the condition holds,

and zero otherwise, and with zt ≡
(

rt−µ
σt

)
k + m, where expressions for k and m are provided in the

Appendix. For a fixed value of the asymmetry parameter ξ, we see that the effect of shock on future
values is dampened when ν decreases. Starting from the general SKST distribution, we recover as
special cases:

(i) the Student-t distribution, ST , imposing ξ = 1;

(ii) the Normal distribution, N , imposing ν = ∞ and ξ = 1.

(See the Appendix for the score in these cases.) Given a series of T log returns, r1, . . . , rT , the
model parameters are estimated by maximizing the log-likelihood function; see Blasques et al. (2014).
Prediction with GAS models is straightforward thanks to the recursive nature of the updating equa-
tion (1). Specifically, the one-step ahead predictive distribution F(·; θ̂T+1, ψ̂) is available in closed
form whereas the h-step ahead distribution (h > 1) needs to be simulated; see Blasques et al. (2016).
VaR and ES forecasts are easily obtained from the predictive distribution.

Evaluating downside risk forecasts

The recursive method of forecasting is usually employed to backtest the adequacy of a statistical
model, as well as to perform models comparisons in terms of VaR and ES predictions (Marcellino et al.,
2006). The objective of a backtesting analysis is to verify the precision of the prediction by separating
the estimation window and the evaluation period. The objective of a model comparison analysis is
usually to order models according to a loss function.

To this end, the full sample of T returns is divided into an in-sample period of length S, and an
out-of-sample period of length H. Model parameters are first estimated over the in-sample period,

2The conditioning is intended with respect to the past observations rt−s (s > 0), however, for notational
purposes, this is not always reported.
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subsequently the h-step ahead prediction of the return distribution at time S + h is generated along
with the corresponding VaR and ES measures. These steps are repeated augmenting the in-sample
period with new observations in a recursive way until we reach the end of the series, T. If during
the data augmentation step, past observations are eliminated, we are considering a rolling window,
otherwise we have an expanding window. In this paper, we follow the standard approach in daily risk
management of a typical trading desk and use the rolling window configuration with h = 1.

VaR backtesting

Once a series of VaR predictions is available, forecasts adequacy is assessed through backtesting
procedures. VaR backtesting procedures usually check the correct coverage of the unconditional and
conditional left-tail of the log-returns distribution. Correct unconditional coverage (UC) was first
considered by Kupiec (1995), while correct conditional coverage (CC) by Christoffersen (1998). The
main difference between UC and CC concerns the distribution we are focusing on. For instance,
UC considers correct coverage of the left-tail of the unconditional log-return distribution, f (rt),
while CC deals with the conditional density f (rt|It−1). From an inferential perspective, UC looks
at the ratio between the number of realized VaR violations observed from the data and the expected
number of VaR violations implied by the chosen risk level, α, during the forecast period, that is,
αH. In order to investigate CC, Christoffersen (1998) proposed a test on the series of VaR exceedance
{dt, t = S, . . . , S+ H}, where dt ≡ I{rt < VaRt(α)}, usually referred to as the hitting series. Specifically,
if correct conditional coverage is achieved by the model, VaR exceedances should be independently
distributed over time.

The DQ test by Engle and Manganelli (2004) assesses the joint hypothesis that E[dt] = α and the
hit variables are independently distributed. The implementation of the test involves the de-meaned
process Hitα

t ≡ dt − α. Under correct model specification, unconditionally and conditionally, Hitα
t has

zero mean and is serially uncorrelated. The DQ test is then the traditional Wald test of the joint nullity
of all coefficients in the following linear regression:

Hitα
t = δ0 +

L

∑
l=1

δl Hitα
t−l + δL+1VaRt−1(α) + εt .

Under the null hypothesis of correct unconditional and conditional coverage, we have that the Wald
test statistic is asymptotically chi-square distributed with L + 2 degrees of freedom. Engle and
Manganelli (2004) set L = 4 lags, which has become the standard choice.

VaR model comparison

Real world applications consider several models for VaR prediction. If correct unconditional/condi-
tional coverage is achieved by more than one model, the practitioner faces the problem of not being
able to choose between different alternatives. In this situation, model comparison techniques are used
to choose the best performing model. Model ranking is achieved thanks to the definition of a loss
function. Among several available loss functions for quantile prediction (McAleer and Da Veiga, 2008),
the Quantile Loss (QL) used for quantile regressions (Koenker and Bassett, 1978) is one of the most
frequent choices in the VaR context; see González-Rivera et al. (2004). Formally, given a VaR prediction
at risk level α for time t, the associated quantile loss, QLt (α), is defined as:

QLt(α) ≡ (α− dt) (rt −VaRt(α)) . (2)

QL is an asymmetric loss function that penalizes more heavily with weight (1− α) the observations
for which we observe returns showing VaR exceedance. Quantile losses are then averaged over the
forecasting period, and models with lower averages are preferred. The outperformance of model A
versus model B is finally assessed looking at the ratio between the average QLs, associated with the
two models, that is, if QLA/QLB < 1 then model A outperforms model B and vice versa.

Joint VaR and ES model comparison

The quantile loss function in (2) for VaR assessment is appropriate since quantiles are elicited by it, that
is, when the conditional distribution is static over the sample, the VaR can be estimated by minimizing
the average quantile loss function. Unfortunately, there is no loss function available for which the ES
risk measure is elicitable; see, for instance, Bellini and Bignozzi (2015) and Ziegel (2016). However, it
has been recently shown by Fissler and Ziegel (2016) (FZ) that the couple (VaR, ES) is jointly elicitable,
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as the values of vt and et that minimize the sample average of the following loss function:

FZ(rt, vt, et, α, G1, G2) ≡ (dt − α)

(
G1(vt)− G1(rt) +

1
α

G2(et)vt

)
− G2(et)

(
1
α

dtrt − et

)
− G2(et) ,

where G1 is weakly increasing, G2 is strictly positive and strictly increasing, and G ′2 = G2. The GAS
package implements the FZ loss function for a specific choice of G1, G2 and G2. We set G1(x) = 0 and
G2(x) = −1/x and assume the values of VaR and ES to be strictly negative; see Patton et al. (2017)
and Ardia et al. (2018) for a similar approach. For VaR and ES predictions at risk level α for time t, the
associated joint loss function (FZL) is then given by:

FZLα
t ≡

1
α ESα

t
dt (rt −VaRα

t ) +
VaRα

t
ESα

t
+ log(−ESα

t )− 1 , (3)

for ESα
t ≤ VaRα

t < 0. As for QL, FZ losses are averaged over the forecasting period and models with
lower averages are preferred.

Summarizing, given a set of available models, a typical downside risk forecasting exercise consists
of the following three major steps:

(i) perform rolling forecast during the out-of-sample period;

(ii) perform statistical backtest of VaR predictions using UC, CC, and DQ tests;

(iii) perform VaR and joint VaR and ES model comparison looking at the average QL and FZL of
each model.

The next section is devoted to detailing the implementation of each of these steps with the GAS
package.

Empirical illustration

We first briefly review how to make predictions with GAS models using the GAS package. The main
illustration is for the last T = 2,500 observations of the daily log-returns of the General Electric stock
in the dataset dji30ret, which is a dataframe consisting of the thirty Dow Jones Industrial Average
constituents:

> library("GAS")
> data("dji30ret", package = "GAS")
> dji30ret <- tail(dji30ret, 2500)

The corresponding returns are shown as gray points in Figure 1. We see the time-variation in the
volatility of the daily return series, which we model next using the GAS specification with skewed
Student-t innovations, as previously described. Thanks to the GAS package, it is straightforward to
estimate the GAS model on rolling windows of the available data and to make one-step ahead rolling
forecasts.

Specifically, the user needs to specify the model through the UniGASSpec() function, and then
perform rolling predictions with the UniGASRoll() function. In the GAS package, models are specified
through the definition of the conditional distribution assumed for the data, Dist, and the list of
time-varying parameters, GASpar.

Dist is a character equal to the label of the distribution. For instance, SKST is identified as
"sstd", ST as "std", and N as "norm"; see Table 1 of Ardia et al. (2019) for the list of distributions
and associated labels available in the GAS package.

GASPar is a list with named boolean elements. Entries name are: location, scale, skewness,
and shape. These indicate whether the associated distribution parameters are time varying or not.
By default we have GASPar = list(location = FALSE,scale = TRUE,skewness = FALSE,shape =
FALSE), that is, only volatility is time varying. For instance, in order to specify the three GAS models:
GAS–N , GAS–ST , and GAS–SKST , we need to execute the following lines:

> GASSpec_N <- UniGASSpec(Dist = "norm", GASPar = list(scale = TRUE))
> GASSpec_ST <- UniGASSpec(Dist = "std", GASPar = list(scale = TRUE))
> GASSpec_SKST <- UniGASSpec(Dist = "sstd", GASPar = list(scale = TRUE))

UniGASSpec() delivers an object of the class "uGASSpec" which comes with several methods; see
help("UniGASSpec").

The UniGASRoll() function accepts an object of the class "uGASSpec", "GASSpec", a numeric vector
for the series of returns, data, and other arguments, such as:
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Figure 1: One-step ahead VaR forecasts for General Electric (GE) at the α = 1% risk level for the GAS–N (solid)
and GAS–ST (dotted) models. Gray points indicate realized log returns calculated as the differences between the
natural logarithm of two consecutive prices. The forecasting period ranges from February 14, 2005, to February 3,
2009, for a total of H = 1,000 out-of-sample observations.

• the length of the out-of-sample period: ForecastLength;

• the type of the rolling window used to update the data: RefitWindow;

• the number of observations within each model re-estimation: RefitEvery,

among others; see help("UniGASRoll"). ForecastLength and RefitEvery are numeric elements
while RefitWindow is a character equal to "moving" (the default) for a rolling window scheme or
"recursive" for an expanding window. As previously mentioned, in this paper we consider the case
RefitWindow = "moving". We fix the length of the out-of-sample period to H = 1000, and re-estimate
the model parameters at the weekly frequency (i.e., every 5 new observations). One-step ahead rolling
predictions for the first series of returns using the GAS–N model are then computed as:

> library("parallel")
> cluster <- makeCluster(2)
> H <- 1000
> Roll_N <- UniGASRoll(dji30ret[, "GE"], GASSpec_N, RefitEvery = 5,
cluster = cluster, ForecastLength = H)

We have also made use of parallel processing (with 2 cores) through the definition of a cluster
object exploiting the parallel package included in R since version 2.14.0.

The output of UniGASRoll() is an object of the class "uGASRoll" which comes with several methods;
see help("UniGASRoll").

VaR and ES one-step ahead rolling forecasts at the risk level α = 0.01 can be computed from Roll_N
using the quantile and ES methods, respectively:

> alpha <- 0.01
> VaR_N <- quantile(Roll_N, probs = alpha)
> ES_N <- ES(Roll_N, probs = alpha)

VaR_N and ES_N are matrices of dimension 1,000× 1 containing the VaR and ES forecasts at the 1%
risk level.3 While VaR predictions are obtaining by numerical inversion of the predicted cumulative
density function, ES predictions are computed by numerical adaptive integration of the predicted

3The probs argument in quantile and ES can also be a numeric vector of p VaR levels. In this case, VaR_N and
ES_N would be a 1000× p matrix.
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density relying on the cubature package (Narasimhan and Johnson, 2017). Multi-step ahead prediction
of VaR and ES are obtained by Monte Carlo simulation and are still computed with the quantile and
ES methods. To compute multi-step ahead predictions an object of class "uGASFor" delivered by the
function UniGASFor has to be provided; see help("UniGASFor").

Predictions for the GAS–ST and GAS–SST specifications using the GASSpec_ST and GASSpec_SKST
model definitions are computed analogously. Figure 1 reports 1% VaR predictions delivered by the
GAS–N (solid line) and the GAS–ST (dotted line). We see the impact of the recent Global Financial
Crisis on the volatility of the series. Indeed, the 2007-2008 returns of GE present much more variability
than over the period 2005-2006, which is translated into lower values for VaR. What is also clearly
evident from Figure 1, is the robustness of the GAS–ST model to extreme observations compared
with GAS–N . Indeed, on April 11, 2008, General Electric reported an unexpected net income drop of
6%, which in turn translated to a fall of about 12% of its market value. The signal captured by GAS–N
was that of an abrupt increase in volatility, with the consequence of large VaR level predictions. In
contrast, the GAS–ST model slightly increased the volatility level and continued to predict reasonable
VaR levels. What happened is that, GAS–ST treated the 12% negative return as a realization from the
fat-tailed Student-t distribution, hence tapering its impact on the conditional volatility level. On the
contrary, GAS–N treated the negative return as a realization from the Normal distribution, which is a
clear signal of increase of volatility. The same behavior of the GAS–N specification is shown in the ES
predictions (not reported to save space).

VaR backtesting

Let us now show how the accuracy of the VaR forecasts can be evaluated using the BacktestVaR()
function in the GAS package. This function accepts the following arguments:

• data, numeric containing the out-of-sample data;

• VaR, numeric containing the series of VaR forecasts;

• alpha, the VaR risk level α;

• Lags, the number of lags used in the DQ test, by default Lags = 4; see Engle and Manganelli
(2004).

The function returns a list with named entries:

• LRuc, the test statistic and associated p-value for the UC test of Kupiec (1995);

• LRcc, the test statistic and associated p-value for the CC test of Christoffersen (1998);

• DQ, the test statistic and associated p-value for the DQ test of Engle and Manganelli (2004);

• Loss, the quantile loss (QL), as defined in (2), together with the average QL used by González-
Rivera et al. (2004);

• AD, the mean and max VaR Absolute Deviation (AD) used by McAleer and Da Veiga (2008);

• AE, the Actual over Expected ratio.

For instance, in order to compute the VaR backtest measures defined above on the forecast series
VaR_N, we use:

> VaRBacktest_N <- BacktestVaR(data = tail(dji30ret[, "GE"], H), VaR = VaR_N, alpha = alpha)

Then, the DQ test statistic and its associated p-value can be extracted as:

> VaRBacktest_N$DQ
$stat

[,1]
[1,] 52.47578

$pvalue
[,1]

[1,] 4.7043e-09

which, in this case, is against the null of correct model specification for the 1% VaR level.

Now, if we evaluate VaR forecasts using the GAS–ST model, and save the results as the VaRBacktest_ST
object, then the DQ test reports:
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> VaRBacktest_ST$DQ
$stat

[,1]
[1,] 8.763418

$pvalue
[,1]

[1,] 0.270091

α = 1% α = 5%

Asset GAS–N GAS–ST GAS–SKST GAS–N GAS–ST GAS–SKST
AA 0.00 0.17 0.16 0.00 0.00 0.00
AIG 0.00 0.00 0.00 0.00 0.00 0.00
AXP 0.09 0.99 0.25 0.19 0.13 0.15
BA 0.29 0.98 0.30 0.13 0.55 0.54
BAC 0.00 0.00 0.06 0.00 0.03 0.06
C 0.00 0.00 0.00 0.01 0.00 0.00
CAT 0.00 0.22 0.22 0.00 0.38 0.51
CVX 0.00 0.02 0.00 0.02 0.03 0.01
DD 0.03 0.41 0.34 0.35 0.31 0.13
DIS 0.00 0.05 0.08 0.00 0.35 0.15
GE 0.00 0.04 0.00 0.16 0.30 0.03
GM 0.00 0.06 0.02 0.02 0.29 0.17
HD 0.01 0.01 0.10 0.09 0.63 0.57
HPQ 0.00 0.01 0.03 0.00 0.11 0.35
IBM 0.06 0.03 0.03 0.00 0.04 0.05
INTC 0.04 0.07 0.33 0.06 0.10 0.06
JNJ 0.95 1.00 0.35 0.00 0.00 0.00
JPM 0.18 0.95 0.21 0.27 0.42 0.17
KO 0.00 0.00 0.00 0.00 0.00 0.00
MCD 0.11 0.68 0.73 0.10 0.17 0.40
MMM 0.00 0.34 0.00 0.00 0.18 0.33
MRK 0.00 0.05 0.06 0.00 0.11 0.05
MSFT 0.11 0.28 0.42 0.05 0.43 0.52
PFE 0.15 0.37 0.38 0.13 0.81 0.75
PG 0.00 0.18 0.07 0.13 0.11 0.06
T 0.35 0.37 0.42 0.02 0.01 0.06
UTX 0.38 0.41 0.07 0.09 0.90 0.93
VZ 0.04 0.99 0.96 0.88 0.70 0.83
WMT 0.00 0.00 0.01 0.93 0.54 0.26
XOM 0.00 0.00 0.00 0.07 0.04 0.17

Table 1: DQ test statistic p-values for the Dow Jones Industrial Average constituents one-step ahead
VaR forecasts at the two downside risk levels α = 1% and α = 5%. Under the null hypothesis, we have
correct model specification for the chosen risk level. Light gray cells indicate p-values lower than 1%.
The forecasting period ranges from February 14, 2005, to February 3, 2009, for a total of H = 1,000
out-of-sample observations. The model parameters are re-estimated at the monthly frequency.

The large p-value indicates that the null of the correct model specification for the 1% VaR cannot
be rejected at the usual levels of significance for the GAS–ST model.

We reproduce this analysis for each of the thirty daily stock return series in the dji30ret data
set previously detailed. The out-of-sample period starts on February 14, 2005, and includes the
recent Global Financial Crisis of 2007-2008. We consider two VaR risk levels: α = 1% and α = 5%.
The code used for this application is available in the GitHub GAS repository: https://github.com/
LeopoldoCatania/GAS/wiki.

Table 1 reports the p-values of the DQ test for the three model specifications and the two VaR
risk levels. Under the null hypothesis, we have correct model specification for the α-quantile level.
Clearly, our results indicate that GAS–N is suboptimal with respect to GAS–ST and GAS–SKST
in terms of correct unconditional and conditional coverage. This result is somehow expected since
GAS–ST and GAS–SKST exhibit excess kurtosis and deliver more robust updates for the volatility
parameter than GAS–N . Moreover, we see that GAS–ST and GAS–SKST perform similarly in terms
of correct unconditional and conditional coverage. Hence, the inclusion of skewness does not seem
to increase the performance of VaR predictions for the considered series. Indeed, sometimes results
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are even worse for GAS–SKST compared with GAS–ST , indicating that the estimation error for the
additional skewness parameter could worsen VaR predictions. This is the case for example for 3M
Company (MMM) when GAS–SKST rejects the null for α = 1%, whereas GAS–ST does not.

VaR model comparison

The goal of VaR model comparison is to rank the models in terms of accuracy of their VaR forecasts.
This can be done using the average value of the quantile loss in (2), as available in the output from the
BacktestVaR() function.

In our application on the daily stock returns of General Electric, we find that the model comparison
in terms of average QL also favors GAS–ST compared with GAS–N . Indeed the ratio between the
QL of GAS–ST and GAS–N is below unity indicating a lower average quantile loss when using the
GAS–ST :

> round(VaRBacktest_ST$Loss$Loss / VaRBacktest_N$Loss$Loss, 2)
[1] 0.94

This indicates that GAS–ST outperforms GAS–N by 6% in terms of average QL.

The left part of Table 2 (QL ratios) reports the results of repeating this model comparison analysis
for all thirty daily stock return series in the dji30ret dataset.4 It shows, for both α = 1% and α = 5%,
the ratios between the average QL of the considered models over the one delivered by GAS–N . Values
greater than one indicate outperformance of GAS–N , and vice versa. Consistently with the DQ test
results, we find that GAS–ST and GAS–SKST perform similarly and are preferred to GAS–N .

QL ratios FZL ratios

α = 1% α = 5% α = 1% α = 5%

Asset GAS–ST GAS–SKST GAS–ST GAS–SKST GAS–ST GAS–SKST GAS–ST GAS–SKST
AA 0.93 0.93 0.98 0.98 0.95 0.95 0.98 0.98
AIG 1.00 1.01 1.02 1.03 0.86 0.87 0.93 0.94
AXP 0.93 0.94 0.98 0.99 0.94 0.96 0.98 1.00
BA 0.99 1.00 0.99 0.99 0.98 0.99 0.99 0.99
BAC 0.83 0.85 1.01 1.01 0.88 0.88 0.98 0.98
C 0.97 1.00 1.02 1.03 0.94 0.95 0.98 0.99
CAT 0.82 0.83 0.91 0.91 0.83 0.84 0.91 0.91
CVX 1.00 1.18 1.01 1.06 0.99 1.20 1.01 1.09
DD 0.94 0.94 0.98 0.98 0.95 0.97 0.98 0.98
DIS 0.98 0.99 1.00 1.00 0.95 0.96 0.99 1.00
GE 0.95 0.96 0.97 0.98 0.96 0.99 0.98 0.98
GM 0.87 0.88 0.93 0.94 0.91 0.93 0.96 0.97
HD 1.02 1.00 1.00 1.00 1.01 1.00 1.00 1.00
HPQ 0.95 0.95 0.94 0.94 0.95 0.95 0.95 0.95
IBM 1.00 1.00 0.94 0.94 0.92 0.93 0.93 0.93
INTC 0.97 0.97 0.96 0.96 0.94 0.94 0.96 0.96
JNJ 1.03 1.01 1.02 1.00 1.00 0.99 1.01 0.99
JPM 0.92 0.92 0.98 0.99 0.94 0.95 0.99 0.99
KO 0.97 0.96 0.96 0.96 0.97 0.96 0.93 0.92
MCD 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99
MMM 0.82 0.83 0.90 0.90 0.80 0.82 0.89 0.89
MRK 0.83 0.84 0.89 0.89 0.81 0.82 0.88 0.89
MSFT 0.86 0.87 0.90 0.90 0.87 0.90 0.91 0.91
PFE 0.83 0.84 0.91 0.91 0.83 0.83 0.90 0.91
PG 0.86 0.87 0.95 0.95 0.82 0.85 0.92 0.93
T 0.95 0.97 1.00 1.00 0.97 0.98 0.99 0.99
UTX 0.93 0.94 0.94 0.94 0.93 0.94 0.92 0.92
VZ 0.91 0.91 0.98 0.98 0.93 0.94 0.97 0.97
WMT 0.97 0.97 0.99 1.00 0.96 0.97 0.99 1.00
XOM 1.02 0.96 1.02 1.01 0.97 0.92 1.00 0.99

Table 2: QL ratios (left part) and FZL ratios (right part) for GAS–ST and GAS–SKST with respect to
GAS–N for the two risk levels α = 1% and α = 5%. Values greater than one indicate outperformance of
GAS–N and vice versa. Light gray cells indicate ratios higher than one (note that values are rounded).
The forecasting period ranges from February 14, 2005, to February 3, 2009, for a total of H = 1,000
out-of-sample observations. The model parameters are re-estimated at the monthly frequency.

Joint VaR and ES model comparison

The FZLoss function implements the FZ loss and accepts the following arguments:

4Here we re-estimate the model parameters at the monthly frequency (i.e., every 21 new observations).
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• data: vector of observations;

• VaR: vector of VaR predictions;

• ES: vector of ES predictions;

• alpha: the α risk level.

This function returns a numeric vector of the same size of data with the FZ losses computed at each
point in time. For instance, using the VaR_N and ES_N vectors previously computed we can evaluate
the associated FZ loss as:

> FZL <- FZLoss(data = tail(dji30ret[, "GE"], H), VaR = VaR_N, ES = ES_N,
alpha = alpha)

where FZL is a numeric vector of length H.

The right part of Table 2 (FZL ratios) reports the results of performing model comparison analysis
for all thirty daily stock return series in the dji30ret dataset according to the FZ loss reported in (3). It
shows, for both α = 1% and α = 5%, the ratios between the average FZ loss of the considered models
over the one delivered by GAS–N . Values greater than one indicate outperformance of GAS–N , and
vice versa. Consistently with the comparison in terms of only VaR predictions, we find that GAS–ST
and GAS–SKST perform similarly and are preferred to GAS–N .

Conclusion

Under the regulation of the Basel Accords, risk managers of financial institutions need to rely on
state-of-the-art methodologies for predicting and evaluating their downside risk (Board of Governors
of the Federal Reserve Systems, 2012). This article illustrates the usefulness of the R package GAS in
putting the theory of modern downside risk management into practice. The recommended strategy
consists of four steps: (i) model specification, (ii) downside risk predictions, (iii) backtesting, and (iv)
model comparison. We illustrate this proposed implementation in R using the package GAS applied
to the Value-at-Risk and Expected Shortfall estimation for the daily returns of the thirty Dow Jones
Industrial Average constituents.

Computational details

The results in this paper were obtained using R 3.5.0 with the package GAS version 0.2.8 available on
CRAN at https://cran.r-project.org/package=GAS. Computations were performed on Windows 7
x64 (build 7601) Service Pack 1, x86_64-w64-mingw32/x64 (64-bit) with Intel(R) Xeon(R) CPU E5-2560
v3 2.30 GHz.
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Appendix

To obtain the score of the SKST distribution, we first write its log density evaluated in rt:

log fSKST (rt; µ, σt, ξ, ν) = log g + log k + c− log σt −
ν + 1

2
log

1 +

[(
rt−µ

σt

)
k + m

]2

(ν− 2) (ξ∗t )
2

 ,
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where:

m ≡ µ1

(
ξ − 1

ξ

)

k ≡
√(

1− µ2
1
) (

ξ2 +
1
ξ2

)
+ 2µ2

1 − 1

g ≡ 2
ξ + 1

ξ

c ≡ 1
2
[− log (ν− 2)− log π] + log Γ

(
ν + 1

2

)
− log Γ

( ν

2

)
,

with:

µ1 ≡
2
√

ν− 2
(ν− 1)

Γ( ν+1
2 )

Γ( ν
2 )Γ(

1
2 )

,

and ξ∗t ≡ ξ I{zt≥0}−I{zt≤0}, where I{·} is the indicator function, and zt ≡
(

rt−µ
σt

)
k + m. Taking the

partial derivative of the log density with respect to θt, yields the score st, given by:

st ≡
∂ log fSKST

∂θt
=

(
zt (ν + 1) (zt −m)

(ξ∗t )
2 (ν− 2) + z2

t
− 1

)
.

In the case where ξ = 1, we have m = 0, and the score becomes:

st =

(
z2

t (ν + 1)
(ν− 2) + z2

t
− 1

)
,

which is the score of a Student-t distribution. Finally, when ν→ ∞, we obtain:

st = z2
t − 1 ,

which is the score of the Normal distribution.
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NetworkToolbox: Methods and Measures
for Brain, Cognitive, and Psychometric
Network Analysis in R
by Alexander P. Christensen

Abstract This article introduces the NetworkToolbox package for R. Network analysis offers an
intuitive perspective on complex phenomena via models depicted by nodes (variables) and edges
(correlations). The ability of networks to model complexity has made them the standard approach
for modeling the intricate interactions in the brain. Similarly, networks have become an increasingly
attractive model for studying the complexity of psychological and psychopathological phenomena.
NetworkToolbox aims to provide researchers with state-of-the-art methods and measures for es-
timating and analyzing brain, cognitive, and psychometric networks. In this article, I introduce
NetworkToolbox and provide a tutorial for applying some the package’s functions to personality
data.

Introduction

Open science is ushering in a new era of psychology where multi-site collaborations are common and
big data are readily available. Often, in these data, noise is mixed in with relevant information. Thus,
researchers are faced with a challenge: deciphering information from the noise and maintaining the
inherent structure of the data while reducing its complexity. Other areas of science have tackled this
challenge with the use of network science and graph theory methods. Psychology is beginning to
follow suit, changing the way we conceptualize psychological (Cramer et al., 2012; Schmittmann et al.,
2013) and psychopathological phenomena (Borsboom and Cramer, 2013; Borsboom, 2017).

Psychological and psychopathological constructs are intrinsically complex. Over the years, re-
searchers have focused on reducing phenomena to only the most significant variables. This reductionist
approach has given us a greater understanding of what variables matter and what variables don’t.
Nonetheless, the more we reduce, the less we know about the phenomena as a whole (Barabási, 2011).
With network science, we can begin to put psychological phenomena back together again, embracing
the complexity.

Here, I introduce NetworkToolbox, a package for R (Team, 2018), available on the Compre-
hensive R Archive Network (https://cran.r-project.org/web/packages/NetworkToolbox/index.
html). NetworkToolbox offers various network science methods and measures, which can be applied
to brain, cognitive, psychometric, and other data suitable for network analysis. Networks are made
up of nodes (e.g., circles) that are connected by edges (e.g., lines) to other nodes. Nodes represent
variables (e.g., brain regions, words, questionnaire items) and edges represent a relation between two
nodes (e.g., correlations, partial correlations), which can be undirected (i.e., bidirectional) or directed,
and weighted or unweighted (all weights are equivalent). Thus, networks are conceptually simple yet
capable of considerable complexity. In addition, their graphical depictions offer representations that
have intuitive interpretations (Epskamp et al., 2012).

There are several network analysis packages that are already implemented in R, such as statnet
(Goodreau et al., 2008), igraph (Csardi and Nepusz, 2006), and sna (Butts and others, 2008). Indeed,
there are R packages that specifically focus on brain (e.g., brainGraph; Watson, 2017) and psychometric
(e.g., qgraph, Epskamp et al., 2012; IsingFit, van Borkulo et al., 2014) networks. NetworkToolbox
differentiates itself by including state-of-the-art network methods and measures that are not currently
available in these other packages. Notably, network visualization aspects are not considered in
this package. Where necessary, I refer readers to visualization sources that are compatible with
NetworkToolbox’s outputs. In general, the R package qgraph (Epskamp et al., 2012) is recommended
for network visualizations.

Psychometric network analysis

In this section, I provide explanations for many methods and measures in NetworkToolbox and
include associated code implemented in R. The main body of NetworkToolbox is devoted to psy-
chometric network analysis; however, several functions, such as network construction methods and
network measures, could be applied more generally. To provide examples of functions in Network-
Toolbox, I will use psychometric data but I will provide basic interpretations, so that measures can be
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generalized to other domains. All analyses conducted in this article were performed using R version
3.4.4 (2018-03-15) and NetworkToolbox version 1.2.1. Before exploring the methods and measures in
NetworkToolbox, I will introduce the psychometric data that are used throughout the paper.

Data

The data included in NetworkToolbox are centered around the personality trait Openness to Experi-
ence scale of the NEO personality inventory (NEO-PI-3, McCrae et al., 2005; NEO-FFI-3, McCrae and
Costa Jr, 2007). People high in Openness to Experience are described as creative, curious, imaginative,
unconventional, and intellectual. The NEO Openness to Experience inventories have 6 facets: actions,
aesthetics, fantasy, feelings, ideas, and values, representing distinct characterizations of the global trait.
NetworkToolbox includes psychometric and brain data, which are openly available for researchers to
use.

For the psychometric data, I will use data that includes four Openness to Experience inventories
(Big Five Aspects Scale, DeYoung et al., 2007; HEXACO-100, Lee and Ashton, 2016; NEO-PI-3, McCrae
et al., 2005; Woo et al.’s Openness to Experience Inventory, Woo et al., 2014), which was previously
analyzed in Christensen et al. (2018a). For this article, the analyses of these data will be focused
on the NEO-PI-3 (48 items). Data for all inventories can be found on the Open Science Framework
(https://osf.io/954a7/). These data contain a relatively large sample (N = 802), which provides
a foundation for some of the more nuanced analyses in NetworkToolbox. Below is code to load
NetworkToolbox and the NEO-PI-3 data in the package:

# Load NetworkToolbox
library(NetworkToolbox)

# Load NEO-PI-3 data
data("neoOpen")

Network construction

A popular network construction method in network analysis is the least absolute selection and shrinkage
operator (LASSO; Tibshirani, 1996). In short, the LASSO approach penalizes the inverse covariance
matrix to produce sparse networks whose connections reflect conditional independence (i.e., nodes
that are connected are uniquely associated, given all other nodes in the network). Because there
are already a number of other R packages that compute LASSO networks (see bootnet, Epskamp
et al., 2018; glasso, Friedman et al., 2014; IsingFit, van Borkulo et al., 2014), they are not included in
NetworkToolbox. NetworkToolbox does include several other options for constructing a network.

The main network construction methods within the package are from the Information Filtering
Networks approach (IFN; Barfuss et al., 2016). This approach constructs networks based on the zero-
order correlations between variables and induces parsimony via a topological (structural) constraint.
Currently, this family of networks has four methods: the Triangulated Maximally Filtered Graph (TMFG;
Massara et al., 2016), the Planar Maximally Filtered Graph (PMFG; Tumminello et al., 2005), the Maximum
Spanning Tree (MaST; Chu and Liu, 1965; Edmonds, 1968; Mantegna, 1999), and most recently, the
Pólya filter (Marcaccioli and Livan, 2018). Additionally, the TMFG method can be associated with the
inverse covariance matrix via the Local/Global inversion method (LoGo; Aste and Di Matteo, 2017;
Barfuss et al., 2016) for probabilistic graphical modeling. For brevity, I will only introduce the TMFG
and LoGo methods.

The TMFG() method constructs the network by first sorting the edge weights (i.e., correlations) in
descending order. Next, the TMFG algorithm finds the four nodes that have the largest sum of edge
weights with all other nodes in the network and connects them, forming a tetrahedron. Then, the
algorithm iteratively identifies and adds the node that maximizes the sum of its connections to three of
the nodes already included in the network. This process is completed once the network reaches 3n - 6
edges (n = nodes). The resulting network is composed of 3-node and 4-node cliques (i.e., triangles and
tetrahedrons, respectively), which imposes a nested hierarchy and automatically generates a chordal
network (for more details see Barfuss et al., 2016 and Song et al., 2012). Therefore, the TMFG method
of network construction is a suitable choice for modeling psychological constructs like personality
traits (Christensen et al., 2018a; McCrae, 2015) and psychopathological disorders (Kotov et al., 2017;
Markon et al., 2005).

The chordal property of the TMFG network means that each 4-node clique (i.e., a diamond; a set
of 4 connected nodes) in the network possesses a chord, which connects two of the nodes not already
connected, forming two triangles. Chordal networks are thus composed of separators, which are the
3-node cliques that separate one 4-node clique from another 4-node clique. Chordal networks are a
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special class of networks that can represent the independence assumptions of Bayesian (directed) and
Markovian (undirected) networks (Koller and Friedman, 2009) and have a simple association with the
joint probability distribution (Barfuss et al., 2016; Massara et al., 2016). This association is expressed as:

Q(X) =
∏C∈Cliques φC(XC)

∏S∈Separators φS(XS)
, (1)

where Q(X) is the estimated joint probability distribution, and φ(C) and φ(S) are the marginal probabil-
ities within the subsets of variables of the 4-node cliques (XC) and 3-node separators (XS), respectively.
This association to the joint probability distribution can be implemented using the Local/Global
inversion method (LoGo; Barfuss et al., 2016). Thus, the only difference between the TMFG and LoGo
networks is the edge weights (zero-order correlations and partial correlations regressed over all others,
respectively). In this way, the TMFG network embeds conditional independence within its structure
(see Figure 1). An example of each function is provided below:

# Construct TMFG network
tmfg <- TMFG(neoOpen)$A

# Construct LoGo network
logo <- LoGo(neoOpen)

These networks can be visualized side-by-side (Figure 1) using qgraph and the following code:

# Load qgraph
library(qgraph)

# NEO-PI-3 defined facets
facets <- c(rep("actions", 8), rep("aesthetics", 8), rep("fantasy", 8),
rep("feelings", 8), rep("ideas", 8), rep("values", 8))

# Visualize TMFG
A <- qgraph(tmfg, groups = facets, palette = "ggplot2")
# Visualize LoGo
B <- qgraph(logo, groups = facets, palette = "ggplot2")

# Visualize TMFG and LoGo side-by-side
layout(t(1:2))
Layout <- averageLayout(A, B)
qgraph(A, layout = Layout, esize = 20, title = "TMFG")
qgraph(B, layout = Layout, esize = 20, title = "LoGo")

Figure 1: Plot of NEO-PI-3’s items using the TMFG (left) and LoGo (right) network construction
method

Network Construction Outputs Across all network construction methods, an adjacency matrix
(or network) is output from the function. For most methods, this is the only output from the function.
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Method Output

MaST() adjacency matrix(Chu and Liu, 1965; Edmonds, 1968)

TMFG()
adjacency matrix (A)
separators (separators)

(Massara et al., 2016) cliques (cliques)
LoGo() adjacency matrix(Barfuss et al., 2016)
ECO() adjacency matrix(Fallani et al., 2017)
ECOplusMaST() adjacency matrix(Fallani et al., 2017)

threshold()
adjacency matrix (A)
correlation critical value (r.cv)

Table 1: Network construction methods and outputs

For others, like TMFG(), a list containing the adjacency matrix (A) and other unique output from the
function is supplied. Table 1 provides the output of each network construction method.

The unique arguments of TMFG pertain to the cliques and separators, which are used to
associate the TMFG network with the inverse covariance matrix via LoGo(). These outputs are a
wrapper provided for LoGo() and are usually unimportant to the researcher. threshold() is the other
network construction method with a unique output, r.cv, which provides the correlation value that
was used to threshold values in the network.

Common Network Construction Arguments In general, there are several common arguments
that are applied in each network construction method. Additionally, there are some arguments
that are specific to a single network construction method. For all network construction methods in
NetworkToolbox, there are a few arguments designed to handle the content and structure of the data.
Table 2 displays these arguments with the descriptions of their options.

Argument Options Description

data data input data or correlation matrix

na.data
"listwise" removes any row with missing data
"pairwise" uses available data for given variable
"fiml" uses all information available

normal
TRUE uses cor_auto from qgraph
FALSE uses Pearson’s correlation

Table 2: Network construction arguments

The first argument is data, which can either be data or a correlation matrix. If input is data, then it
should only include the variables of interest, without any identification, demographic, or descriptive
variables (unless, of course, these are of interest). The second argument is na.data, which handles
missing data. There are three options for na.data: "listwise", "pairwise", and "fiml". The coarsest
option is "listwise" deletion, which uses R’s base function na.omit() to remove any case that has a
missing observation. When using this argument, the researcher will automatically be notified exactly
which rows were removed from network’s construction. An example of this output is provided below:

Warning message: In TMFG(neoOpen, na.data = "listwise") :
10 rows were removed for missing data row(s):
234, 497, 71, 639, 99, 677, 652, 255, 150, 28

The "pairwise" deletion will use the data that is available for each variable when constructing the
network. Note that relations from pairwise deletion could potentially be based on different subsets
of cases, which could be problematic. By far, the best and recommended option is "fiml" or Full
Information Maximum Likelihood (FIML), which is implemented by the psych package (Revelle,
2017). FIML uses all information available to produce a deterministic correlation matrix (i.e., the same
result every time). For this reason, FIML has been the standard missing data approach in structural

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://CRAN.R-project.org/package=psych


CONTRIBUTED RESEARCH ARTICLES 426

equation modeling (SEM) software. Notably, network construction does take a few seconds longer
when using the "fiml" option.

The last argument, normal, handles whether correlations should be used that are transformed to
relations that are multivariate normal. There are multiple R packages that offer multivariate normal
testing like MVN (Korkmaz et al., 2014), so such functions are not included in NetworkToolbox.
Multivariate normal data are of particular importance in network and graphical modeling because
there is a direct relationship between the inverse covariance matrix (also known as the precision matrix)
and the partial correlation (conditional independence) structure. Thus, conditional independence
networks fundamentally rely on a multivariate normal distribution. The necessity of this assumption
and the influence of deviating from multivariate normal in network estimation are worthy of future
investigation (e.g., Loh and Wainwright, 2013).

When normal is set to TRUE, then the data are correlated using qgraph’s cor_auto(). This function
detects ordinal variables and uses polyserial, polychoric, and Pearson’s correlations. Other correlations
(e.g., tetrachoric) and association measures can also be used but they must be computed using some
other function (e.g., psych’s tetrachoric(); Revelle, 2017) before they are used as input into any of
the network construction functions. When normal is set to FALSE, Pearson’s correlations are computed.
In all network construction methods in NetworkToolbox, normal defaults to FALSE. It is important
to note that despite the notion that Pearson’s correlation assumes normality, it does not; however,
the test statistic, on which significance is based, may have a different distribution when the data is
non-normal. In addition, Pearson’s correlation is sensitive to outliers and highly skewed variables, so
data transformations or alternative correlation measures (e.g., Spearman’s rho) should be considered
when normality is violated.

Dependency Network Analysis One argument that is specific to the TMFG() function is depend,
which is used to construct a dependency network from data that has been run through the function
depend(). The dependency network approach was introduced by Kenett et al. (2010) and produces
edges in networks that show the direction of influence from one node to another (i.e., a directional
network)—similar to relative importance networks (Grömping and others, 2006; Johnson and LeBreton,
2004; Robinaugh et al., 2014). This approach makes use of first-order partial correlations, which are
the partial (or residual) effect of a given node j on the correlation between another pair of nodes i and
k. The resulting partial correlation between nodes i and k is the correlation after the subtraction of
the correlations between nodes i and j and between nodes k and j. In this way, the partial correlation
provides a measure of node j’s influence on the correlation between nodes i and k. Therefore, the
influence of node j on node i can be determined by taking the average (or the sum) influence of node j
on the correlations of node i with all other nodes. Mathematically, this can be expressed as:

d(i, k|j) ≡ C(i, k)− PC(i, k|j) (2)

where C(i, k) is the correlation between node i and k and PC(i, k|j) is the partial correlation of node
i and k given j. By subtracting the partial correlation of nodes i and k given node j from the correlation
of nodes i and k, the infrequent case of where node j appears to strongly affect the correlation C(i, k)
when C(i, j), and C(k, j) have small values is avoided. In order to determine the influence of node j on
node i, the average influence of node j is defined across all relative effects of the correlations where
node k is not node j:

D(i, j) =
1

N − 1

N−1

∑
k 6=j

d(i, k|j) (3)

As defined, the dependency matrix D has (i, j) elements, which are the dependency of node i
on node j. Put differently, this measure specifies the average influence of node j on node i (j → i).
In a dependency network, the arrow pointing from node j to node i signifies that node j influences
node i. Although the correlation matrix is symmetric, the dependency matrix is asymmetric, which
means the influence of node j on node i, D(j, i), is not equal to the influence of node i on node j, D(i,
j). It’s important to note that these directional influences are not interpreted as causal relations but
instead as predictive relationships. These networks are, however, a step towards inferring causal
relations between two nodes and may function as a “pre-test” for data and methods that can infer
causal relations (Jacob et al., 2016). Therefore, the advantage of the dependency network approach
is that the mutual influence between two nodes is not assumed to be equal but rather one node is
assumed to have more influence in the relationship than the other.

The TMFG algorithm was adapted, in accordance with Kenett, Tumminello, Madi, Gur-Gershgoren,
Mantegna, and Ben-Jacob (2010), to handle the asymmetric relations that are produced by the depen-
dency network approach. Kenett et al.’s (2010) adaption sorts the weights of D(i, j) in a descending
order, and whichever link of D(i, j) or D(j, i) is greater is retained. This is done to keep information
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about the main direction of influence and to avoid multiple links (although the actual direction of in-
fluence could be both ways). Below is an example of how to apply the dependency network approach
and the network it produces (Figure 2):

# Dependency matrix
depmat <- depend(neoOpen)

# Construct dependency TMFG network
deptmfg <- TMFG(depmat, depend = TRUE)$A

# Visualize dependency TMFG network
layout(c(1, 1))
qgraph(deptmfg, layout="spring", groups = facets, palette = "ggplot2",
label.prop = 1, vsize = 4, title = "Dependency TMFG")

Figure 2: Plot of NEO-PI-3’s items using the dependency TMFG network construction method

Network measures

After network construction, network measures can be applied to quantify the information in the
network. In NetworkToolbox, there are a several network measures available. First, I will start with
local network characteristics, which have received the most attention in the psychometric network
literature.

Local network characteristics The local network characteristics of a network describe how each
node contributes to the overall network. Node centrality measures are the most common way to
measure local network characteristics. Node centrality measures quantify each node’s influence in
the network. Some standard measures that are used are betweenness centrality (BC; betweenness();
Freeman, 1977), closeness centrality (LC; closeness()), degree (k; degree()), and node strength (NS;
strength()). Because these measures are frequently used in the network science literature, I will
assume the reader has encountered these measures before.

Randomized shortest paths betweenness centrality One measure that closely resembles the
standard centrality measures is the randomized shortest paths betweenness centrality (RSPBC;
Kivimäki et al., 2016). The difference between the standard BC and the RSPBC is the computa-
tion of the shortest paths—the smallest number of steps to get from one node to another—in the
network. The standard BC measures how often a node is on the absolute shortest path (i.e., the most
direct route) from one node to another. In contrast, the RSPBC measures how often a node is on
the random shortest path (i.e., random “jumps”) from one node to another. The randomness of the
jumps are adjusted using the Bolztmann probability distribution, which can be manipulated with the
argument beta (Kivimäki et al., 2016):

rspbc(A, beta = 0.01)

Higher beta values will decrease the randomness of the paths with beta = 10 being closer to
the standard BC; lower beta values will increase the randomness of the paths with beta = .0001
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being closer to degree. The beta argument defaults to .01, which is based on Kivimäki et al.’s (2016)
recommendation. In NetworkToolbox, the RSPBC is adjusted so that the lowest value is one (the
node is included in its own shortest path) and the rest of the values are relative to this point (i.e., the
minimum RSPBC value - 1 is subtracted from each node’s RSPBC value).

The improvement of the RSPBC over the standard BC is its distribution of values. Often, the
standard BC has a skewed distribution where few nodes have extremely large values and most nodes
have low values or values of zero. The RSPBC also has many large values but there is a greater
gradation of values across the nodes, and nodes that are clearly “between” other nodes are not given
a value of zero (as they would with the standard BC). The node 41 in Figure 1, for example, has a
standard BC log value of 0 but a RSPBC log value of 6.62. In comparison, node 6 in Figure 1 has a
larger log value for standard BC (1.10) but a smaller log value for RSPBC (6.34). To demonstrate these
differences, a plot is sohwn in Figure 3.

# Randomized shortest paths betweenness centrality
bc <- betweenness(tmfg)
rbc <- rspbc(tmfg, beta = .01)

# Plot for comparison
plot(cbind(log(bc+1),log( rbc+1)), xlab = "Standard BC (log)",
ylab = "RSPBC (log)", main = "RSPBC on Standard BC", pch = 16)
text(6, 2, labels = paste("r = ", round(cor(bc, rbc, method = "kendall"), 2)))

Figure 3: Plot of log-transformed RSPBC on log-transformed Standard BC

The rank-order comparison (r = .73) suggests that the measures are related but provide slightly
different information. Indeed, the rank-order of the nodes is generally the same, with most of
the differentiation being provided by the greater gradation of RSPBC values for nodes with small
standard BC values. Notably, because RSPBC is continuous, rather than an all-or-nothing measure
(like the standard BC), it’s likely that it has greater reliability than the standard measure. The issue
of standard BC’s low stability is well known in the psychometric network literature (Epskamp et al.,
2018). Therefore, the RSPBC stands as a reasonable alternative for researchers interested in measuring
the betweenness centrality of their network. Moreover, the RSPBC’s interpretation also provides a
more reasonable explanation of a node’s centrality influence in the network. The standard BC, for
example, suggests that only the nodes on the absolute shortest path are influential in the spread of
activation (i.e., the most central nodes’ effect on other nodes). In contrast, the RSPBC suggests that this
influence is mainly spread through the most central nodes but other avenues, that aren’t the absolute
most direct route but are still a short path to other nodes, could also potentially activate (or effect)
other nodes.

Hybrid centrality Another local network characteristic is an overall measure of centrality. The
hybrid() function computes hybrid centrality (HC), which is not a specific centrality measure but
rather a composite of BC, LC, NS, k, and the eigenvector centrality (EC; Christensen et al., 2018b; Pozzi
et al., 2013). Pozzi et al. (2013) used this measure to assess risk associated with core and peripheral
stocks in the stock market, finding more peripheral stocks were less risky to invest in. Christensen
et al. (2018b) used this measure to assess the overall centrality of items in a self-report schizotypy—
sub-clinical characteristics of schizophrenia—inventory. They found that more central items in the
network were related, above and beyond intermediate and peripheral items, to interview-rated
schizophrenia-spectrum symptoms.

The HC rank orders each centrality measure (lower values receiving a higher rank) using weighted
and unweighted networks. Then, the ranks are added together and subtracted by the number of
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centrality measures used (e.g., eight), forming the numerator. The denominator is the number of
centrality measures times the number of nodes minus one. The mathematical expression is provided
below:

HC =
BCw + BCu + LCw + BCu + ku + NSw + ECw + ECu − 8

8× (N − 1)
, (4)

where w signifies the weighted measure and u signifies the unweighted measure. Note that degree (k)
and node strength (NS) are only included once because the weighted degree is node strength. Other
than the adjacency matrix (A), the HC includes one argument for how BC should be computed. The
options for BC include "standard" for standard BC and "random" for RSPBC, with the default being
"standard".

Node impact One final local network characteristic is node impact(), which measures a node’s
influence on the structure of the network. To be more precise, node impact quantifies the difference
between the network’s average shortest path length (ASPL; the mean of the shortest number of edges
for all nodes to get to other nodes in the network) when the node is removed from the network minus
the ASPL when all nodes are included in the network (Kenett et al., 2011, 2013). Positive values
suggest that removal of the node increases the ASPL of the network; negative values suggest that
removal of the node decreases the ASPL of the network. Thus, a node with a positive impact increases
the interconnectedness of the network when present in the network and a node with a negative
impact decreases the interconnectedness of the network when present in the network. Other than
centrality, node impact could be interpreted in terms of the community (i.e., clustered sets of connected
nodes) structure of the network. A positive impact value means that when the node is removed, the
distinctiveness (or “orthogonal-ness”) of the communities in the network increases (Cotter et al., 2018).
Conversely, a negative impact value means that when the node is removed, the distinctiveness of the
communities in the network decreases.

Meso-scale Network Characteristics Meso-scale features of networks are becoming increasing pop-
ular in network analysis (Blanken et al., 2018; Giscard and Wilson, 2018; Golino and Epskamp, 2017;
Golino and Demetriou, 2017; Golino et al., 2018). Meso-scale network characteristics evaluate the
sub-network structure of the network or how the entire network can be summarized into smaller
components (i.e., communities). These communities have been shown to be equivalent to factors or
dimensions (Golino and Epskamp, 2017). The advantage of using networks to identify hierarchical
structure in data is that they do not rely on the researcher’s interpretation of scree plots, eigenvalues,
or component loadings, which are used in more traditional dimension reduction methods (such as
Principal Components Analysis; PCA). Instead, the hierarchical structure in networks is emergent—
that is, based on the relations between variables, nodes cluster together and form distinct communities
that arise from the data.

Community detection is the main measure of meso-scale network characteristics as well as the
foundation for other meso-scale characteristics. Therefore, the selection of a community detection
algorithm is of the utmost importance. One of the most commonly applied algorithms is the walktrap
algorithm (Golino and Epskamp, 2017; Pons and Latapy, 2006) but it is by no means the only one
(for a review see Fortunato, 2010). The current standard in the psychometric network literature is to
apply Exploratory Graph Analysis (EGA), which implements the walktrap algorithm using igraph.
Currently, this approach has two implementations, which are based on different network construction
methods: the graphical LASSO Golino and Epskamp (2017); Golino and Demetriou (2017) and TMFG
(Golino et al., 2018). Both implementations have yielded promising results in simulation and real-world
data, demonstrating comparable or better accuracy than traditional methods of dimension reduction
(e.g., PCA, parallel analysis, cluster analysis; Christensen et al., in press; Golino and Epskamp, 2017;
Golino et al., 2018). Because these methods are already supplied in EGA (Golino, 2018), I will not cover
them here. Instead, I present a complementary measure that can be used to examine the “centralness”
of communities in the overall network.

Community closeness centrality The concept of this measure extends from node-wise closeness
centrality, with ASPL of the nodes within each community being used rather than the nodes. Each
node’s local ASPL (ASPLi, i.e., each individual node’s ASPL) is computed for all nodes. Then, the
average across these nodes is taken and the reciprocal is calculated. This is done for each community.
The interpretation of this measure is akin to the closeness node centrality—that is, communities
closer to the overall center of the network have a higher value. This measure provides an objective
classification of how central specific communities are in the network. Thus, the relative importance of a
community in the network can be obtained. In psychometric networks, this is related to scale-inventory
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correlations. Below, an example is provided to demonstrate the close relationship between these two
measurements.

# Unique facets
uniq <- unique(facets)

# Initialize matrix
corr <- matrix(0, nrow = length(uniq), ncol = 2)

# Name rows
row.names(corr) <- uniq

# Name columns
colnames(corr) <- c("Scale2Inv", "CommCent")

# Compute scale-to-inventory correlations
for(i in 1:length(uniq))
{

# Identify facet members
target <- which(facets == uniq[i])
corr[i, 1] <- cor(rowMeans(neoOpen[, -target]), rowMeans(neoOpen[, target]))

}

# Compute community impact
corr[,2] <- comm.close(tmfg, comm = facets)

# Compute correlation
round(cor(corr, method = "kendall"), 2)

The rank-order correlation (r = .73) suggests that the measures are closely related but might not be
taken as strong enough evidence for measuring the same thing. One reason for this difference is that
the network’s communities are organized differently than the theoretical definitions. Three items of
the actions facet, for example, are not connected to the other items of the actions facet (Figure 1). This
issue can be resolved by applying EGA to determine the network’s community structure. Below is
code to first apply and compare EGA dimensions to the theoretical dimensions.

# Load EGA
library(EGA)

# Estimate dimensions
ega <- EGA(neoOpen, model = "TMFG")
ega.var <- as.character(ega$dim.variables$items)

# Order by item
ega.ord <- ega$dim.variables[match(colnames(neoOpen), ega.var), 2]

# Visualize theoretical factors
A <- qgraph(tmfg, groups = as.factor(facets), palette = "ggplot2")

# Visualize walktrap factors
B <- qgraph(tmfg, groups = as.factor(ega.ord), palette = "ggplot2")

# Compare theoretical and walktrap factors
layout(t(1:2))
Layout <- averageLayout(A,B)
qgraph(A, layout = Layout, esize = 20, title = "Theoretical")
qgraph(B, layout = Layout, esize = 20, title = "Walktrap")

Notably, although a number of the EGA-derived communities were equivalent to the number of
theoretical facets, the items do not identically correspond between their designations. This does not
suggest that the theoretical facets are incorrect nor does it suggest that the network-derived facets are
incorrect. Network models are sample specific, which means a network with a different sample might
demonstrate results more or less in line with the theoretical facets or the facets provided by EGA.
In general, however, these results reproduce the theoretical facets defined by the NEO-PI-3. Next,
code is provided to compute the similarity between the scale-to-inventory correlations with the EGA
dimensions.
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Figure 4: The theoretical facets are depicted on the left and the network-derived facets are depicted on
the right

# Unique facets
uniq <- unique(ega.ord)

# Initialize matrix
corr <- matrix(0, nrow = length(uniq), ncol = 2)

# Name rows
row.names(corr) <- uniq

# Name columns
colnames(corr) <- c("Scale2Inv", "CommCent")

# Compute scale-to-inventory correlations
for(i in 1:length(uniq))
{

# Identify facet members
target <- which(ega.ord == uniq[i])
corr[i, 1] <- cor(rowMeans(neoOpen[, -target]), rowMeans(neoOpen[, target]))

}

# Compute community closeness centrality
corr[, 2] <- comm.close(tmfg, comm = ega.ord)

# Compute correlation
round(cor(corr, method = "kendall"), 2)

With the EGA dimensions, there is a perfect rank-order correlation (r = 1) between the scale-
to-inventory correlations and the community closeness centrality measure, suggesting there is a
meaningful relationship between these two measures. In the context of networks more generally, this
measure provides a quantitative approach to determining which communities are more central to the
overall network.

Network adjusted means and sums

Network models offer an attractive alternative to latent variable models, such as factor analysis because
they provide a data-driven approach for determining the structure of a construct. Networks also
provide a way to go beyond sum scores by analyzing the smallest components of the overall construct
(i.e., items and symptoms; Fried and Nesse, 2015). In addition, their emergent communities do not
rely on constraints imposed by the researcher, which allows sample-specific expressions to emerge.
To date, however, there has yet to be an approach developed to extract latent scores like traditional
latent variable models (although network models have been combined with latent variable models;
see Epskamp et al., 2017). Below, I introduce a function designed to extract network adjusted means
and sums and propose a framework for establishing a latent network score. First, I briefly discuss the
arguments and outputs of the function. After, I provide the conceptual framework for computing a
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network latent score, similar to latent scores calculated via confirmatory factor analysis (CFA). Finally,
I demonstrate its effectiveness by comparing the network adjusted score to latent variable scores from
a CFA model.

Arguments and output Below are the arguments for the network adjusted means and sums function,
nams:

nams(data, A, comm = c("walktrap", "louvain"),
standardize = TRUE, adjusted = c("mean", "sum"), ...)

where data is an input for the data, which must be included in order to estimate the network ad-
justed mean or sum scores. The argument A is for an adjacency matrix (i.e., the network) associated
with the data. Next, comm allows the researcher to define the communities of the network using a
vector, which may be the output from a community detection algorithm or manually defined (e.g.,
theoretical communities). The default for comm is to treat the network as a single community. If a
community detection algorithm ("walktrap" or "louvain") is used, then ... will handle additional
arguments for the specified community detection algorithm. The argument adjusted is for whether
the researcher would like the network adjusted mean or sum as the output (defaults to "mean"). Finally,
the standardize argument is for whether the network adjusted scores should be standardized or not
(defaults to TRUE). Note that when standardize = TRUE, the adjusted argument is ignored.

The function nams() outputs a list containing three objects: NetAdjScore, FactorItems, and
FactorCor. NetAdjScore contains the network adjusted score, which is specified by the adjusted
and standardize arguments. FactorItems displays a table of nodes corresponding to their respective
factors (this is particularly useful when using a community detection algorithm). Finally, FactorCor
provides the correlations between each community’s network adjusted score including the overall
network adjusted score.

Conceptual Framework The implementation of the this method requires a comprehensive measure
of a node’s influence in the network. As discussed above, the hybrid centrality is optimal for this task
because it captures multiple centrality measures in a single overall centrality measure. The RSPBC is
used for the betweenness centrality measure when computing the hybrid centrality in nams() because
of its ability to differentiate lower values of betweenness (Figure 3).

Network as one community Using the NEO-PI-3 data as an example, the hybrid centrality of
each node is used as a weight for each participant’s response—that is, their response on 5-point
Likert scale ranging from 1 (Strongly Disagree) to 5 (Strongly Agree). This is done by multiplying each
participant’s response to each variable by the hybrid centrality value for each variable. This process is
repeated for each participant and variable in the network. The participant’s network adjusted mean
or sum can be computed by taking the average or sum across their weighted responses. Then, the
participants average or total can be normalized by dividing by the mean of the hybrid centrality values.
The formula for this metric is described below:

θj|uj =
∑n

i=1 hiuij
1
n ∑n

i=1 hi
, (5)

where i is a variable (i.e., a node), j is a case (e.g., a participant), uij is the response value for variable i
and case j, n is the total number of nodes, hi is the hybrid centrality value of node i, and θj|uj is the
latent score of participant j given the response pattern uj. The stated equation provides the latent
score estimate for the general construct that is being measured by the network. If the researcher is
only interested in the construct associated with the entire network, then no additional computation is
necessary.

Example Below I’ve provided code to compare the network’s latent variable scores to the scores
from a CFA latent variable model. For comparison, The network’s latent variable scores are plotted
on the CFA latent variable scores as well as the participant’s mean scores on the CFA latent variable
scores. First, the theoretical CFA model must be built and the latent variable scores extracted. To do so,
the lavaan (Rosseel, 2012) package was used.

# Load lavaan
library(lavaan)

# Build NEO model
neo.model <- 'actions =~ Act1 + Act2 + Act3 + Act4 + Act5 + Act6 + Act7 + Act8
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aesthetics =~ Aes1 + Aes2 + Aes3 + Aes4 + Aes5 + Aes6 + Aes7 + Aes8
fantasy =~ Fan1 + Fan2 + Fan3 + Fan4 + Fan5 + Fan6 + Fan7 + Fan8
feelings =~ Fee1 + Fee2 + Fee3 + Fee4 + Fee5 + Fee6 + Fee7 + Fee8
ideas =~ Ide1 + Ide2 + Ide3 + Ide4 + Ide5 + Ide6 + Ide7 + Ide8
values =~ Val1 + Val2 + Val3 + Val4 + Val5 + Val6 + Val7 + Val8
open =~ actions + aesthetics + fantasy + feelings + ideas + values'

# Fit CFA model
fit <- cfa(neo.model, data = neoOpen, estimator = "WLSMV")

# Compute latent variable scores
cfaScores <- lavPredict(fit)
cfaLV <- scale(cfaScores[, 7])

Then, the network’s overall latent variable scores must be extracted using nams():

# Compute network latent variable scores
netScores <- nams(neoOpen, tmfg, comm = facets)
netLV <- netScores$Standardized$overall

Finally, the plots can be generated:

# Plot network latent variable on CFA latent variable
layout(t(c(1, 2)))
plot(cfaLV, netLV,

main = "Network Latent Variable\non CFA Latent Variable",
ylab = "Network Latent Variable",
xlab = "CFA Latent Variable")

# Compute correlation
netCor <- cor(cfaLV, netLV)

# Compute root mean square error
netRoot <- rmse(cfaLV, netLV)

# Add text to plot
text(-2, 2, labels = paste("r = ", round(netCor, 2),

"\nrmse = ", round(netRoot, 3)))

# Compute standardized participant means
pmeans <- scale(rowMeans(neoOpen))

# Plot participant means on CFA latent variable
plot(cfaLV, pmeans,

main = "Participant Means on\nCFA Latent Variable",
ylab = "Participant Means",
xlab = "CFA Latent Variable")

# Compute correlation
meansCor <- cor(cfaLV, pmeans)

# Compute root mean square error
meansRoot <- rmse(cfaLV, pmeans)

# Add text to plot
text(-2, 2, labels = paste("r = ", round(meansCor, 2),

"\nrmse = ", round(meansRoot, 3)))
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Figure 5: Plot of the standardized network latent scores on the standardized CFA latent scores (left)
and the standardized participant’s means on the standardized CFA latent scores (right)

In general, the network’s latent scores are closer to the CFA’s latent scores than the participant mean
scores. The correlations, however, were high for both the network latent scores and the participant
means. Figure 5 and the root mean square error show that the network’s latent scores (rmse = 0.116)
are more closely related to the CFA latent scores than the participant means (rmse = 0.134). Notably,
the relationship between the network latent scores and the CFA latent scores is not perfect, suggesting
there are some differences between the two measures.

Network as many communities The network’s latent community scores differ slightly from the
global network scores (i.e., the network as one community). For the community scores, it’s important
to consider the relative position of each community in the network. In order to factor in the positions
of communities in the network, the community closeness centrality is computed for each community.
The community closeness centrality provides a weight for nodes that are in communities that are more
central in the network. Thus, nodes with low hybrid centrality that are in more central communities
still receive additional weight because of their overall positioning in the network. The sum of the
community closeness and global hybrid centrality is then used as the weight that is multiplied across
the participant’s response to each item within that community. The sum or mean of these facet scores
are computed and normalized using the respective average of the weights in the community. This
process repeats until all communities are computed. Finally, the mean or sum may not average or total
to the overall network latent variable mean or sum. To adjust for this, the difference between the facets
mean or sum total and the overall network latent mean or sum is taken and proportionally distributed
across the facets.

Example Because the CFA latent scores and network latent scores were already computed, they
can be immediately examined with the following code:

# Network latent facet scores
netFacet <- matrix(0, nrow = 6, ncol = 2)

for(i in 1:6)
{

netFacet[i, 1] <- cor(cfaScores[, i], netScores$Standardized[, i])
netFacet[i, 2] <- rmse(scale(cfaScores[, i]),netScores$Standardized[, i])

}

# Identify unique facets
uniq <- unique(facets)

# Participant facet means
meanFacet <- matrix(0, nrow = 6, ncol = 2)
for(i in 1:6)
{

meanFacet[i, 1] <- cor(cfaScores[, i], rowMeans(neoOpen[, which(facets == uniq[i])]))
meanFacet[i, 2] <- rmse(scale(cfaScores[, i]), scale(rowMeans(neoOpen[, which(facets == uniq[i])])))

}
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# Compare network latent facet scores and participant facet means
comp <- cbind(netFacet, meanFacet)
row.names(comp) <- c("actions", "aesthetics",

"fantasy", "feelings",
"ideas", "values")

colnames(comp) <- c("netCor", "netRMSE", "meanCor", "meanRMSE")

Table 3 displays the results from the above code.

Network Latent Participant
Facet Scores Facet Means

r rmse r rmse

actions .96 .278 .92 .394
aesthetics .98 .176 .98 .220

fantasy .98 .174 .97 .255
feelings .97 .238 .97 .204

ideas .99 .171 .98 .211
values .97 .225 .98 .217

Table 3: Pearson’s correlation (r) and root mean square error (rmse) are shown in relation to the CFA
latent facet scores. Bolded values signify better values.

The results shown in Table 3 suggest that the network latent community scores are equal to or
more related to the CFA latent facet scores than the participant facet means. Once again, this suggests
that the network latent scores are effective for estimating latent scores more generally. Similar to the
global latent scores, the network latent community scores were not perfectly related to the CFA latent
facet scores. Taken together, however, this provides evidence that latent network scores are plausible.
Moreover, the advantage of the proposed method is that network adjusted sums and means can be
computed, meaning sum scores can be altered based on each item’s position in the network, providing
differentiation between identical sum scores—that is, unless two cases with identical sum scores have
identical data patterns, they will have different scores based on the structure of the network.

Summary

Network science is a rapidly developing statistical approach in psychology. The appeal of the approach
is the intuitive modeling of complexity that is intrinsic in many psychological phenomena. Network-
Toolbox is designed to equip researchers with different network tools that have been developed over
decades of work in graph theory and the complex systems domains. In this article, many functions of
NetworkToolbox were introduced with relevant details for appropriate use. The examples of code
used throughout this article can be used as a blueprint for any researcher interested in running their
own psychometric network analysis. Notably, not all of the functions available in NetworkToolbox
were discussed; however, documentation with examples are provided within the package. Many of the
arguments discussed in this article are also used across the package. Notably, NetworkToolbox is not
exhaustive—there are many other methods and measures for constructing, analyzing, and quantifying
networks. Because of this, NetworkToolbox will continue to expand to equip researchers with the
newest advances in the domain.

Computational details

The results of this paper were obtained using R 3.4.4 with the Networktoolbox 1.2.1 package and
the networks were visualized using the qgraph 1.4.4 package. EGA was provided by the EGA 0.4
package (available from GitHub: https://github.com/hfgolino/EGA). The CFA model was generated
using the lavaan 0.5-23.1097 (BETA) package. R itself and all packages used are available from the
Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/.
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jsr223: A Java Platform Integration for R
with Programming Languages Groovy,
JavaScript, JRuby, Jython, and Kotlin
by Floid R. Gilbert and David B. Dahl

Abstract The R package jsr223 is a high-level integration for five programming languages in the
Java platform: Groovy, JavaScript, JRuby, Jython, and Kotlin. Each of these languages can use Java
objects in their own syntax. Hence, jsr223 is also an integration for R and the Java platform. It enables
developers to leverage Java solutions from within R by embedding code snippets or evaluating script
files. This approach is generally easier than rJava’s low-level approach that employs the Java Native
Interface. jsr223’s multi-language support is dependent on the Java Scripting API: an implementation
of “JSR-223: Scripting for the Java Platform” that defines a framework to embed scripts in Java
applications. The jsr223 package also features extensive data exchange capabilities and a callback
interface that allows embedded scripts to access the current R session. In all, jsr223 makes solutions
developed in Java or any of the jsr223-supported languages easier to use in R.

Introduction

About the same time Ross Ihaka and Robert Gentleman began developing R at the University of
Auckland in the early 1990s, James Gosling and the so-called Green Project Team was working on a
new programming language at Sun Microsystems in California. The Green Team did not set out to
make a new language; rather, they were trying to move platform-independent, distributed computing
into the consumer electronics marketplace. As Gosling explained, “All along, the language was a tool,
not the end” (O’Connell, 1995). Unexpectedly, the programming language outlived the Green Project
and sparked one of the most successful development platforms in computing history: Java. According
to the TIOBE index, Java has been the most popular programming language, on average, over the last
sixteen years. Java’s success can be attributed to several factors. Perhaps the most important factor is
platform-independence: the same Java program can run on several operating systems and hardware
devices. Another important factor is that memory management is handled automatically for the
programmer. Consequently, Java programs are easier to write and have fewer memory-related bugs
than programs written in C/C++. These and other factors accelerated Java’s adoption in enterprise
systems which, in turn, established a thriving developer community that has created production-
quality frameworks, libraries, and programming languages for the Java platform. Many successful
Java solutions are relevant to data science today such as Hadoop, Hive, Spark, Cassandra, HBase,
Mahout, Deeplearning4j, Stanford CoreNLP, and others.

In 2003, Simon Urbanek released rJava (2017), an integration package designed to avail R of the
burgeoning development surrounding Java. The package has been very successful to this end. In
the year 2018 alone, rJava registered over 1.95 million downloads on CRAN.1 The rJava package is
described by Urbanek as a low-level R to Java interface analogous to .C and .Call, the built-in R
functions for calling compiled C code. Like R’s integration for C, rJava loads compiled code into an
R process’s memory space where it can be accessed via various R functions. Urbanek achieves this
feat using the Java Native Interface (JNI), a standard framework that enables native (i.e. platform-
dependent) code to access and use compiled Java code. The rJava API requires users to specify classes
and data types in JNI syntax. One advantage to this approach is that it gives users granular, direct
access to Java classes. However, as with any low-level interface, the learning curve is relatively high
and implementation requires verbose coding. A second advantage to using JNI is that it avoids
the difficult task of dynamically interpreting or compiling source code. Of course, this is also a
disadvantage: it limits rJava to using compiled code as opposed to embedding source code directly
within R script.

Our jsr223 package builds on rJava to provide a high-level interface to the Java platform. We
accomplish this by embedding other programming languages in R that use Java objects in natural
syntax. As we show in Section “rJava software review”, this approach is generally simpler and more
intuitive than rJava’s low-level JNI interface. To date, jsr223 supports embedding five programming
languages: Groovy, JavaScript, JRuby, Jython, and Kotlin. (JRuby and Jython are Java platform
implementations of the Ruby and Python languages, respectively.) See Table 1 for a brief description
of each language.

1Downloads tabulated by the cranlogs package (Csardi, 2015).
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Language Description

Groovy Groovy is a scripting language that follows Java syntax very closely.
Hence, jsr223 enables developers to embed Java source code directly in
R script. Groovy also supports an optionally typed, functional paradigm
with relaxed syntax for less verbose code.

JavaScript JavaScript is well known for its use in web applications. However, its
popularity has overflowed into standalone solutions involving databases,
plotting, machine learning, and network-enabled utilities, to name just a
few. The jsr223 package uses Nashorn, the ECMA-compliant JavaScript
implementation for the Java platform.

JRuby JRuby is the Ruby implementation for the Java platform. Ruby is a
general-purpose, object-oriented language with unique syntax. It is
often used with the web application framework Ruby on Rails. Ruby
libraries, called gems , can be accessed via jsr223.

Jython Jython is the Python implementation for the Java platform. Like R, the
Python programming language is used widely in science and analytics.
Python has many powerful language features, yet it is known for being
concise and easy to read. Popular libraries SciPy and NumPy are avail-
able for the Java platform through JyNI (the Jython Native Interface).

Kotlin Kotlin version 1.0 was released in 2016 making it the newest jsr223-
supported language. It is a statically typed language that supports both
functional and object-oriented programming paradigms. Kotlin has simi-
larities to Java, but it often requires less code than Java to accomplish the
same task. Kotlin and Java are the only languages officially supported
by Google for Android application development.

Table 1: The five programming languages supported by jsr223. See the jsr223 User Manual for code
examples and language details.

The jsr223 multi-language integration is made possible by the Java Scripting API (Oracle, 2016), an
implementation of the specification “JSR-223: Scripting for the Java Platform” (Sun Microsystems, Inc.,
2006). The JSR-223 specification includes two crucial elements: an interface for Java applications to
execute code written in scripting languages, and a guide for scripting languages to create Java objects
in their own syntax. Hence, JSR-223 is the basis for our package. However, no knowledge of JSR-223 or
the Java Scripting API is necessary to use jsr223. Figures 1 and 2 show how rJava and jsr223 facilitate
access to the Java platform. Where rJava uses JNI, jsr223 uses the Java Scripting API and embeddable
programming languages.

The primary goal of jsr223 is to enable R developers to leverage existing Java solutions with relative
ease. We demonstrate two typical use cases in this document with subjects that are of particular interest
to many data scientists: a natural language processor and a neural network classifier. In addition to Java
solutions, R developers can use projects developed in any of the five jsr223-supported programming
languages. In essence, jsr223 opens R to a broader ecosystem.

For Java developers, jsr223 facilitates writing high-performance, cross-platform R extensions
using their preferred platform. The jsr223 package also allows organizations that run enterprise
Java applications to more readily develop dashboards and other business intelligence tools. Instead
of writing R code to query raw data from a database, jsr223 enables R packages to consume data
directly from their application’s Java object model where the data has been coalesced according to
business rules. Java developers will also be interested to know that the jsr223-supported programming
languages can implement interfaces and extend classes, just like the Java programming language.
See “Extending existing Java solutions” in the jsr223 User Manual for an in-depth code example that
demonstrates extending Java classes and several other features.

In this paper, we present an introduction to the jsr223 package. Section ”jsr223 package imple-
mentation and features overview” contains a brief description of the package’s primary features and
internals. The section “Typical use cases” provides code examples that highlight the jsr223 pack-
age’s core functionality. Finally, the “Software review” section puts the jsr223 project in context with
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Figure 1: The rJava package facilitates low-level access to the Java platform through the Java Native
Interface (JNI). Some knowledge of JNI is required.

comparisons to other relevant software solutions.

Figure 2: The jsr223 package provides high-level access to the Java platform through five programming
languages. Although jrs223 uses the Java Scripting API in its implementation, users do not need to
learn the API.

The jsr223 package implementation and features overview

The jsr223 package supports most of the major programming languages that implement JSR-223.
Technically, any JSR-223 implementation will work with our package, but we may not officially
support some languages. The most notable exclusion is Scala; we don’t support it simply because
the JSR-223 implementation is not complete. (Consider, instead, the rscala package for a Scala/R
integration (Dahl, 2018).) We also exclude languages that are not actively developed, such as BeanShell.

The jsr223 package features extensive, configurable data exchange between R and Java via jsr223’s
companion package jdx (Gilbert and Dahl, 2018). R vectors, factors, n-dimensional arrays, data frames,
lists, and environments are converted to standard Java objects. Java scalars, n-dimensional arrays,
maps, and collections are inspected for content and converted to the most appropriate R structure
(vectors, n-dimensional arrays, data frames, or lists). Several data exchange options are available
including row-major and column-major ordering schemes for data frames and n-dimensional arrays.
Many language integrations for R provide a comparable feature set by using JSON (JavaScript Object
Notation) libraries. In contrast, the jsr223 package implements data exchange using custom Java
routines to avoid the serialization overhead and loss of floating point precision inherent in JSON data
conversion.

The jsr223 package also supports converting the most common data structures from the jsr223-
supported languages. For example, jsr223 can convert Jython dictionaries and user-defined JavaScript
objects to R objects. Behind the scenes, every Java-based programming language uses Java objects.
For example, a Jython dictionary is backed by a Java object that defines the dictionary’s behavior. The
jsr223 package uses jdx to inspect these Java objects for data and convert them to an appropriate R
object. In most cases, the default conversion rules are intuitive and seamless. Details covering data
exchange features and behavior can be found in the jsr223 User Manual and the jdx package vignette.

The jsr223 programming interface follows design cues from rscala, and V8 (Ooms, 2017b). The
application programming interface is implemented using R6 (Chang, 2017) classes for a traditional
object-oriented style of programming. R6 objects wrap methods in an R environment making them
accessible from the associated variable using list-like syntax (e.g., myObject$myMethod()).

The jsr223 package uses rJava to load and communicate with the Java Virtual Machine (JVM):
the abstract computing environment that executes compiled Java code. The jsr223 package employs
a client-server architecture and a custom multi-threaded messaging protocol to exchange data and
handle script execution. This protocol optimizes performance by eliminating rJava calls that inspect
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generic return values and transform data, both which incur significant overhead. The protocol also
facilitates callbacks that allow embedded scripts to manipulate variables and evaluate R code in the
current R session. This callback implementation is lightweight, does not require any special R software
configuration, and supports infinite callback recursion between R and the script engine (limited only
by stack space).

Other distinguishing jsr223 features include script compiling and string interpolation. Complete
feature documentation is available in the jsr223 User Manual vignette.

Typical use cases

This section includes examples that demonstrate typical use cases for the jsr223 package. More code
examples are available in the jsr223 User Manual.

Using Java libraries

For this introductory example, we use Stanford’s Core Natural Language Processing Java libraries
(Manning et al., 2014) to identify grammatical parts of speech in a text. Natural language processing
(NLP) is a key component in statistical text analysis and artificial intelligence. This example shows
how so-called “glue” code can be embedded in R to quickly leverage the Stanford NLP libraries. It also
demonstrates how easily jsr223 converts Java data structures to R objects. The full script is available at
https://github.com/floidgilbert/jsr223/tree/master/examples/JavaScript/stanford-nlp.R.

The first step: create a jsr223 "ScriptEngine" instance that can dynamically execute source code.
In this case, we use a JavaScript engine. The object is created using the ScriptEngine$new constructor
method. This method takes two arguments: a scripting language’s name and a character vector
containing paths to the required Java libraries. In the code below, the class.path variable contains
the required Java library paths. The new "ScriptEngine" object is assigned to the variable engine.

class.path <- c(
"./protobuf.jar",
"./stanford-corenlp-3.9.0.jar",
"./stanford-corenlp-3.9.0-models.jar"

)
library("jsr223")
engine <- ScriptEngine$new("JavaScript", class.path)

Now we can execute JavaScript source code. The jsr223 interface provides several methods to do so.
In this example, we use the %@% operator; it executes a code snippet and discards the return value, if
any. The code snippet imports the Stanford NLP "Document" class. The import syntax is peculiar to the
JavaScript dialect. The result, DocumentClass, is used to instantiate objects or access static methods.

engine %@% 'var DocumentClass = Java.type("edu.stanford.nlp.simple.Document");'

The next code sample defines a JavaScript function named getPartsOfSpeech. It tags each element in
a text with a grammatical part of speech (e.g., noun, adjective, or verb). The function parses the text
using a new instance of the "Document" class. The parsing results are transferred to a list of JavaScript
objects. Each JavaScript object contains the parsing information for a single sentence.

engine %@% '
function getPartsOfSpeech(text) {

var doc = new DocumentClass(text);
var list = [];
for (i = 0; i < doc.sentences().size(); i++) {
var sentence = doc.sentences().get(i);
var o = {
"words":sentence.words(),
"pos.tag":sentence.posTags(),
"offset.begin":sentence.characterOffsetBegin(),
"offset.end":sentence.characterOffsetEnd()

}
list.push(o);

}
return list;

}
'
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We use engine$invokeFunction to call the JavaScript function getPartsOfSpeech from R. The method
invokeFunction takes the name of the function as the first parameter; any arguments that follow
are automatically converted to Java objects and passed to the JavaScript function. The function’s
return value is converted to an R object. In this case, jsr223 intuitively converts the list of JavaScript
objects to a list of R data frames as seen in the output below. The parts of speech abbreviations
are defined by the Penn Treebank Project (Taylor et al., 2003). A quick reference is available at
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html.

engine$invokeFunction(
"getPartsOfSpeech",
"The jsr223 package makes Java objects easy to use. Download it from CRAN."

)

## [[1]]
## words pos.tag offset.begin offset.end
## 1 The DT 0 3
## 2 jsr223 NN 4 10
## 3 package NN 11 18
## 4 makes VBZ 19 24
## 5 Java NNP 25 29
## 6 objects NNS 30 37
## 7 easy JJ 38 42
## 8 to TO 43 45
## 9 use VB 46 49
## 10 . . 49 50
##
## [[2]]
## words pos.tag offset.begin offset.end
## 1 Download VB 51 59
## 2 it PRP 60 62
## 3 from IN 63 67
## 4 CRAN NNP 68 72
## 5 . . 72 73

In this example, we effectively used Stanford’s Core NLP library with a minimal amount of code.
This same functionality can be replicated in any of the jsr223-supported programming languages.

Using Java libraries with complex dependencies

In this example we use Deeplearning4j (DL4J) (Eclipse Deeplearning4j Development Team, 2018) to
build a neural network. DL4J is an open-source deep learning solution for the Java platform. It is
notable both for its scalability and performance. DL4J can run on a local computer with a standard
CPU, or it can use Spark for distributed computing and GPUs for massively parallel processing.
DL4J is modular in design and it has a large number of dependencies. As with many other Java
solutions, it is designed to be installed using a software project management utility like Apache Maven,
Gradle, or sbt. These utilities feature dependency managers that automatically download a library’s
dependencies from a central repository and make them accessible to your project. This is similar to
installing an R package from CRAN using install.packages; by default, any referenced packages are
also downloaded and installed.

The primary goal of this example is to show how jsr223 can easily leverage complex Java solutions
with the help of a project management utility. We will install both Groovy and DL4J using Apache
Maven. We will then integrate a Groovy script with R to create a simple neural network. The process
is straightforward: i.) create a skeleton Java project; ii.) add dependencies to the project; iii.) build a
class path referencing all of the dependencies; and iv.) pass the class path to jsr223. Though we use
Maven here, the same concepts apply to any project management utility that supports Java.

To begin, visit the Maven web site (https://maven.apache.org/) and follow the installation
instructions for your operating system. Next, create an empty folder for this sample project. Open a
terminal (a system command prompt) and change the current directory to the project folder. Execute
the following Maven command. It will create a skeleton Java project named ‘stub’ in a subfolder
by the same name. The Java project is used only to retrieve dependencies; it is not required for the
R project. If this is the first time Maven has been executed on your computer, several files will be
downloaded to the local Maven repository cache on your computer.

mvn archetype:generate -DgroupId=none -DartifactId=stub -DinteractiveMode=false
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Open the Maven project object model file, ‘stub/pom.xml’, in a plain text editor or an XML editor.
Locate the XML element <dependencies>. It will be similar to the example displayed below. A
<dependency> child element defines a single project dependency that will be retrieved from the Maven
repository. Notice that a dependency has a group ID, an artifact ID, and a version. (Artifact is the
general term for any file residing in a repository.) How do you know which dependencies are required
for your project? They are often provided in the installation documentation. Or, if you are starting
from a code example, dependencies can be located in a Maven repository using fully-qualified Java
class names.

<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
<scope>test</scope>

</dependency>
</dependencies>

Maven dependency definitions can be located at https://search.maven.org. We will search for
dependencies using the syntax ‘g:<group-id> a:<artifact-id>’. This avoids erroneous results and
near-matches. A search string for each dependency in our demonstration is provided in the bullet
list below. Perform a search using the first bullet item. In the search results, click the version number
under the column heading “Latest Version.” On the right-hand side of the page that follows you will
see an XML Maven dependency definition for the artifact. Copy the XML and insert it after the last
</dependency> end tag in your ‘pom.xml’ file. It is not necessary to preserve indentations or other
white space. Repeat this process for each of the remaining search strings below.

• g:org.apache.logging.log4j a:log4j-core

• g:org.slf4j a:slf4j-log4j12

• g:org.deeplearning4j a:deeplearning4j-core

• g:org.nd4j a:nd4j-native-platform

• g:org.datavec a:datavec-api

• g:org.codehaus.groovy a:groovy-all

Save the ‘pom.xml’ file. In your terminal window, change directories to the Java project folder
(‘stub’) and execute the following Maven command. This will download all of the dependencies to a
local repository cache on your computer. It will also create a file named ‘jsr223.classpath’ in the parent
folder. It contains a class path referencing all of the dependencies that will be used by jsr223.

mvn dependency:build-classpath -Dmdep.outputFile="../jsr223.classpath"

Now everything is in place to create a neural network using Groovy and DL4J. To keep the example
simple, we use a feedforward neural network to classify species in the iris data set. The example
involves an R script (‘dl4j.R’) and a Groovy script (‘dl4j.groovy’). Both scripts can be downloaded from
https://github.com/floidgilbert/jsr223/tree/master/examples/Groovy/dl4j. Save both scripts
in the same folder as ‘jsr223.classpath’.

The R script First, we read in the class path created by Maven and create the Groovy script engine.

library(jsr223)

file.name <- "jsr223.classpath"
class.path <- readChar(file.name, file.info(file.name)$size)
engine <- ScriptEngine$new("groovy", class.path)

Next, we set a seed for reproducible results. The value is saved in a variable that will be retrieved
by the Groovy script.

seed <- 10
set.seed(seed)

The code that follows splits the iris data into train and test matrices. The inputs are centered and
scaled. The labels are converted to a binary matrix format: for each record, the number 1 is placed in
the column corresponding to the correct label.
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train.idx <- sample(nrow(iris), nrow(iris) * 0.65)
train <- scale(as.matrix(iris[train.idx, 1:4]))
train.labels <- model.matrix(~ -1 + Species, iris[train.idx, ])
test <- scale(as.matrix(iris[-train.idx, 1:4]))
test.labels <- model.matrix(~ -1 + Species, iris[-train.idx, ])

Finally, we execute the Groovy script. The results will be printed to the console.

result <- engine$source("dl4j.groovy")
cat(result)

The Groovy script The Groovy script here follows Java syntax with one exception: we provide no
class. Instead, we place all of the code at the top level to be executed at once. This is merely a style
choice to keep the code samples easy to follow. The script begins by importing the necessary classes.

import org.deeplearning4j.eval.Evaluation;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.layers.DenseLayer;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.cpu.nativecpu.NDArray;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.learning.config.Sgd;
import org.nd4j.linalg.lossfunctions.LossFunctions;

Next, we convert the train and test data from R objects to the DataSet objects consumed by DL4J.
We retrieve the data from the R environment using the get method of jsr223’s built-in R object. The
R matrices are automatically converted to multi-dimensional Java arrays. These arrays are used to
instantiate the NDArray objects which, in turn, are used to instantiate the DataSet objects.

DataSet train = new DataSet(
new NDArray(R.get("train")),
new NDArray(R.get("train.labels"))

);
DataSet test = new DataSet(

new NDArray(R.get("test")),
new NDArray(R.get("test.labels"))

);

Pulling the data from the R environment using the R object is just one convenient way to share
data between R and the Java environment. It is also possible to push data from R to the Groovy
environment, or to pass the data as function parameters. Note: for very large data sets it is impractical
to exchange data between R and Java using jsr223 methods. Instead, load the data on the Java side for
processing using DL4J classes optimized for big data.

Here we configure a feedforward neural network with backpropagation. The network consists
of four inputs, a seven node hidden layer, a three node hidden layer, and a three node output
layer. An explanation of the network’s hyperparameters is beyond the scope of this discussion.
See https://deeplearning4j.org/docs/latest/deeplearning4j-troubleshooting-training for a
DL4J hyperameter reference.

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(R.get("seed").intValue())
.activation(Activation.TANH)
.weightInit(WeightInit.XAVIER)
.updater(new Sgd(0.1)) // Learning rate.
.list()
.layer(new DenseLayer.Builder().nIn(4).nOut(7).build())
.layer(new DenseLayer.Builder().nIn(7).nOut(3).build())
.layer(

new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
.activation(Activation.SOFTMAX)
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.nIn(3)

.nOut(3)

.build()
)

.backprop(true)

.build();

We use the network configuration to initialize a model which is then trained over 200 epochs.

MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();

for (int i = 0; i < 200; i++) {
model.fit(train);

}

At last, the trained model is evaluated using the test data. The last line produces a text report
including classification metrics and a confusion matrix.

Evaluation eval = new Evaluation(3); // 3 is the number of possible classes
INDArray output = model.output(test.getFeatures());
eval.eval(test.getLabels(), output);
eval.stats();

Results Executing the R script will produce the following console output. Our simple model
performs reasonably well in this case, misclassifying two out of 53 observations.

## ========================Evaluation Metrics========================
## # of classes: 3
## Accuracy: 0.9623
## Precision: 0.9628
## Recall: 0.9628
## F1 Score: 0.9628
## Precision, recall & F1: macro-averaged (equally weighted avg. of 3 classes)
##
##
## =========================Confusion Matrix=========================
## 0 1 2
## ----------
## 17 0 0 | 0 = 0
## 0 16 1 | 1 = 1
## 0 1 18 | 2 = 2
##
## Confusion matrix format: Actual (rowClass) predicted as (columnClass) N times
## ==================================================================

This example demonstrated that complex Java solutions can be integrated with R using jsr223 and
standard dependency management practices.

Using other language libraries

In addition to using Java libraries, jsr223 can easily take advantage of solutions written in other
languages. In some cases, integration is as simple as sourcing a script file. For example, many common
JavaScript libraries like Underscore (http://underscorejs.org) and Voca (https://vocajs.com) can
be sourced using a URL. The following example sources Voca and word-wraps a string.

engine$source(
"https://raw.githubusercontent.com/panzerdp/voca/master/dist/voca.min.js",
discard.return.value = TRUE

)
engine$invokeMethod("v", "wordWrap",
"A long sentence to wrap using Voca methods.",
list(width = 20)

)

## [1] "A long sentence to\nwrap using Voca\nmethods."
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Compiled Groovy and Kotlin libraries are accessed in the same way as Java libraries: simply
include the relevant class or JAR files when instantiating a script engine.

Ruby gems (i.e., libraries) can also be used with jsr223. The jsr223 User Manual provides instruc-
tions and a code example that uses a gem to generate fake entities for sample data sets.

Core Python language features are fully accessible via jsr223. The jsr223 User Manual contains a
code example that implements a simple HTTP server in Python. The Python server calls back to R
to retrieve HTML content. Compatibility with some Python libraries is limited on the Java platform.
Please see “Python integrations software review” for more information.

Software review

There are many integrations that combine the strengths of R with other programming languages. These
language integrations can generally be classified as either R-major or R-minor . R-major integrations
use R as the primary environment to control some other embedded language environment. R-minor
integrations are the inverse of R-major integrations. For example, rJava is an R-major integration
that allows Java objects to be used within an R session. The Java/R Interface (JRI), in contrast, is an
R-minor integration that enables Java applications to embed R.

The jsr223 package provides an R-major integration for the Java platform and several programming
languages. In this software review, we provide context for the jsr223 project through comparisons
with other R-major integrations. Popular R-minor language integrations such as Rserve (Urbanek,
2013) and opencpu (Ooms, 2017a) are not included in this discussion because their objectives and
features do not necessarily align with those of jsr223. We do, however, include a brief discussion of an
R language implementation for the JVM.

Before we compare jsr223 to other R packages, we point out one unique feature that contrasts
jsr223 with all other integrations in this discussion: jsr223 is the only package that provides a standard
interface to integrate R with multiple programming languages. This key feature enables developers
to take advantage of solutions and features in several languages without the need to learn multiple
integration packages.

Our software review does not include integrations for Ruby and Kotlin because jsr223 is the only
R-major integration for those languages on CRAN.

An rJava software review

As noted in the introduction, rJava is the preeminent Java integration for R. It provides a low-level
interface to compiled Java classes via the JNI. The jsr223 package uses rJava together with the Java
Scripting API to create a user-friendly, multi-language integration for R and the Java platform.

The following code example is taken from rJava’s web site http://www.rforge.net/rJava. It
demonstrates the essential functions of the rJava API by way of creating and displaying a GUI window
with a single button. The first two lines are required to initialize rJava. The next lines use the .jnew
function to create two Java objects: a GUI frame and a button. The associated class names are denoted
in JNI syntax. Of particular note is the first invocation of .jcall, the function used to call object
methods. In this case, the add method of the frame object is invoked. For rJava to identify the
appropriate method, an explicit return type must be specified in JNI notation as the second parameter
to .jcall (unless the return value is void). The last parameter to .jcall specifies the object to be
added to the frame object. It must be explicitly cast to the correct interface for the call to be successful.

library("rJava")
.jinit()
f <- .jnew("java/awt/Frame", "Hello")
b <- .jnew("java/awt/Button", "OK")
.jcall(f, "Ljava/awt/Component;", "add", .jcast(b, "java/awt/Component"))
.jcall(f, , "pack")
# Show the window.
.jcall(f, , "setVisible", TRUE)
# Close the window.
.jcall(f, , "dispose")

The snippet below reproduces the rJava example above using JavaScript. In comparison, the
JavaScript code is more natural for most programmers to write and maintain. The fine details of
method lookups and invocation are handled automatically: no explicit class names or type casts are
required. This same example can be reproduced in any of the five other jsr223-supported programming
languages.
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var f = new java.awt.Frame('Hello');
f.add(new java.awt.Button('OK'));
f.pack();
// Show the window.
f.setVisible(true);
// Close the window.
f.dispose();

Using jsr223, the preceding code snippet can be embedded in an R script. The first step is to create
an instance of a script engine. A JavaScript engine is created as follows.

library(jsr223)
engine <- ScriptEngine$new("JavaScript")

This engine object is now ready to evaluate script on demand. Source code can be passed to the engine
using character vectors or files. The sample below demonstrates embedding JavaScript code in-line
with character vectors. This method is appropriate for small snippets of code. (Note: If you try this
example the window may appear in the background. Also, the window must be closed using the last
line of code. These are limitations of the code example, not jsr223.)

# Execute code inline to create and show the window.
engine %@% "
var f = new java.awt.Frame('Hello');
f.add(new java.awt.Button('OK'));
f.pack();
f.setVisible(true);

"

# Close the window
engine %@% "f.dispose();"

To execute source code in a file, use the script engine object’s source method:
engine$source(file.name). The variable file.name may specify a local file path or a URL. Whether
evaluating small code snippets or sourcing script files, embedding source code using jsr223 is straight-
forward.

In comparison to rJava’s low-level interface, jsr223 allows developers to use Java objects without
knowing the details of JNI and method lookups. However, it is important to note that rJava does
include a high-level interface for invoking object methods. It uses the Java reflection API to automati-
cally locate the correct method signature. This is an impressive feature, but according to the rJava web
site, its high-level interface is much slower than the low-level interface and it does not work correctly
for all scenarios.

The jsr223-compatible programming languages also feature support for advanced object-oriented
constructs. For example, classes can be extended and interfaces can be implemented using any
language. These features allow developers to quickly implement sophisticated solutions in R without
developing, compiling, and distributing custom Java classes. This can speed development and
deployment significantly.

The rJava package supports exchanging scalars, arrays, and matrices between R and Java. The
following R code demonstrates converting an R matrix to a Java object, and vice versa, using rJava.

a <- matrix(rnorm(10), 5, 2)
# Copy matrix to a Java object with rJava
o <- .jarray(a, dispatch = TRUE)
# Convert it back to an R matrix.
b <- .jevalArray(o, simplify = TRUE)

Again, the jsr223 package builds on rJava functionality by extending data exchange. Our package
converts R vectors, factors, n-dimensional arrays, data frames, lists, and environments to generic Java
objects.2 In addition, jsr223 can convert Java scalars, n-dimensional arrays, maps, and collections to
base R objects. Several data exchange options are available, including row-major and column-major
ordering schemes for data frames and n-dimensional arrays.

This code snippet demonstrates data exchange using jsr223. The variable engine is a jsr223
ScriptEngine object. Similar to the preceding rJava example, this code copies a matrix to the Java
environment and back again. The same syntax is used for all supported data types and structures.

2rJava’s interface can theoretically support n-dimensional arrays, but currently the feature does not produce
correct results for n > 2. See the related issue at the rJava GitHub repository: “‘.jarray(..., dispatch=T)’ on
multi-dimensional arrays creates Java objects with wrong content.”
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a <- matrix(rnorm(10), 5, 2)
# Copy an R object to Java using jsr223.
engine$a <- a
# Retrieve the object.
engine$a

The rJava package does not directly support callbacks into R. Instead, callbacks are implemented
through JRI: the Java/R Interface. The JRI interface is included with rJava. However, to use JRI, R
must be compiled with the shared library option ‘--enable-R-shlib’. The JRI interface is technical
and extensive. In contrast, jsr223 supports callbacks into R using a lightweight interface that provides
just three methods to execute R code, set variable values, and retrieve variable values. The jsr223
package does not use JRI, so there is no requirement for R to be compiled as a shared library.

In conclusion, jsr223 provides an alternative integration for the Java platform that is easy to learn
and use.

Groovy integrations software review

Besides jsr223, the only other Groovy language integration available on CRAN is rGroovy (Fuller,
2018). It is a simple integration that uses rJava to instantiate groovy.lang.GroovyShell and pass code
snippets to its evaluate method. We outline the typical integration approach using rGroovy.

Class paths must set in the global option GROOVY_JARS before loading the rGroovy package.

options(GROOVY_JARS = list("groovy-all.jar", ...))
library("rGroovy")

After the package is loaded, the Initialize function is called to instantiate an instance of
the Groovy script engine that will be used to handle script evaluation. The Initialize function
has one optional argument named binding. This argument accepts an rJava object reference to a
groovy.lang.Binding object that represents the bindings available to the Groovy script engine. Hence,
rJava must be used to create, set, and retrieve values in the bindings object. The following code
example demonstrates instantiating the Groovy script engine. We initialize the script engine bindings
with a variable named myValue that contains a vector of integers. Notice that knowledge of rJava and
JNI notation is required to create an instance of the bindings object, convert the vector to a Java array,
cast the resulting Java array to the appropriate interface, and finally, call the setVariable method of
the bindings object.

bindings <- rJava::.jnew("groovy/lang/Binding")
Initialize(bindings)
myValue <- rJava::.jarray(1:3)
myValue <- rJava::.jcast(myValue, "java/lang/Object")
rJava::.jcall(bindings, "V", method = "setVariable", "myValue", myValue)

Finally, Groovy code can be executed using the Evaluate method; it returns the value of the last
statement, if any. In this example, we modify the last element of our myValue array, and return the
contents of the array.

script <- "
myValue[2] = 5;
myValue;

"
Evaluate(groovyScript = script)

## [1] 1 2 5

The rGroovy package includes another function, Execute, that allows developers to evaluate
Groovy code without using rJava. However, this interface creates a new Groovy script engine instance
each time it is called. In other words, it does not allow the developer to preserve state between each
script evaluation.

In this code example, we demonstrate Groovy integration with jsr223. After the library is loaded,
an instance of a Groovy script engine is created. The class path is defined at the same time the script
engine is created. The variable engine represents the script engine instance; it exposes several methods
and properties that control data exchange behavior and code evaluation. The third line creates a
binding named myValue in the script engine’s environment; the R vector is automatically converted to
a Java array. The fourth line executes Groovy code that changes the last element of the myValue Java
array before returning it to the R environment.
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library("jsr223")
engine <- ScriptEngine$new("Groovy", "groovy-all.jar")
engine$myValue <- 1:3
engine %~% "
myValue[2] = 5;
myValue;

"

## [1] 1 2 5

In comparison to rGroovy, the jsr223 implementation is more concise and requires no knowledge
of rJava or Java classes. Though not illustrated in this example, jsr223 can invoke Groovy functions
and methods from within R, it supports callbacks from Groovy into R, and it provides extensive and
configurable data exchange between Groovy and R. These features are not available in rGroovy.

In summary, rGroovy exposes a simple interface for executing Groovy code and returning a result.
Data exchange is primarily handled through rJava, and therefore requires knowledge of rJava and JNI.
The jsr223 integration is more comprehensive and does not require any knowledge of rJava.

JavaScript integrations software review

The most prominent JavaScript integration for R is Jeroen Ooms’ V8 package (2017b). It uses the open
source V8 JavaScript engine (Google developers, 2018) featured in Google’s Chrome browser. We
discuss the three primary differences between V8 and jsr223.

First, the JavaScript engine included with V8 provides only essential ECMAscript functionality.
For example, V8 does not include even basic file and network operations. In contrast, jsr223 provides
access to the entire JVM which includes a vast array of libraries and computing functionality.

Second, all data exchanged between V8 and R is serialized using JSON via the jsonlite package
(Ooms et al., 2017). JSON is very flexible; it can represent virtually any data structure. However,
JSON converts all values to/from string representations which adds overhead and imposes round-off
error for floating point values. The jsr223 package handles all data using native values which reduces
overhead and preserves maximum precision. In many applications, the loss of precision is not critical
as far as the final numeric results are concerned, but it does require defensive programming when
checking for equality. For example, an application using V8 must round two values to a given decimal
place before checking if they are equal.

The following code example demonstrates the precision issue using the R constant pi. The JSON
conversion is handled via jsonlite, just as in the V8 package. We see that after JSON conversion the
value of pi is not identical to the original value. In contrast, the jsr223 conversion result is identical to
the original value.

# `digits = NA` requests maximum precision.
library("jsonlite")
identical(pi, fromJSON(toJSON(pi, digits = NA)))

## [1] FALSE

library("jsr223")
engine <- ScriptEngine$new("js")
engine$pi <- pi
identical(engine$pi, pi)

## [1] TRUE

The third significant difference between V8 and jsr223 is syntax checking. V8 includes an interface
to check JavaScript code syntax. The Java Scripting API does not provide an interface for syntax
checking, hence, jsr223 does not provide this feature. We have investigated other avenues to check
syntax, but none are uniformly reliable across all of the jsr223-supported languages. Moreover, this
feature is not critical for most integration scenarios; syntax validation is more common in applications
that involve interactive code editing.

Python integrations software review

In this section, we compare jsr223 with two Python integrations for R: reticulate (Allaire et al., 2018)
and rJython (Grothendieck and Bellosta, 2012). Of the many Python integrations available for R on
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CRAN, reticulate is the most popular as measured by monthly downloads.3 We also discuss rJython
because, like jsr223, it targets Python on the JVM.

The reticulate package is a very thorough Python integration for R. It includes some refined
interface features that are not available in jsr223. For example, reticulate enables Python objects to
be manipulated in R script using list-like syntax. One major jsr223 feature that reticulate does not
support is callbacks (i.e., calling R from Python). Though there are many interface differences between
jsr223 and reticulate (too many to list here), the most practical difference arises from their respective
Python implementations. The reticulate package targets CPython, the reference implementation of the
Python script engine. As such, reticulate can take advantage of the many Python libraries compiled to
machine code such as Pandas (McKinney, 2010). The jsr223 package targets the JVM via Jython, and
therefore supports accessing Java objects from Python script. It cannot, however, access the Python
libraries compiled to machine code because they cannot be executed by the JVM. This isn’t a complete
dead-end for Jython; many important Python extensions are being migrated to the JVM by the Jython
Native Interface project (http://www.jyni.org). These extensions can easily be accessed through
jsr223.

The rJython package is similar to jsr223 in that it employs Jython. Both jsr223 and rJython can
execute arbitrary Python code, call Python functions and methods directly from R, use Java objects,
and copy data between environments. However, there are also several important differences.

Data exchange for rJython can be handled via JSON or direct calls to the Jython interpreter object
via rJava. When using rJava for data exchange, rJython is essentially limited to vectors and matrices.
When using JSON for data exchange, rJython converts R objects to Jython structures. In contrast, the
jsr223 supports a single data exchange interface that supports all major R data structures. It uses
custom Java routines that avoid the overhead and roundoff error associated with JSON conversion.
Finally, jsr223 converts R objects to generic Java structures instead of Jython objects.

JSON data exchange for rJython is handled by the rjson (Couture-Beil, 2014) package. It does not
handle some R structures as one would expect. For example, n-dimensional arrays and unnamed lists
are both converted to one-dimensional JSON arrays. Furthermore, rJython converts data frames to
Jython dictionaries, but dictionaries are always returned to R as named lists.

The jsr223 package does not exhibit these limitations; it provides predictable data exchange for all
major R data structures.

Unlike jsr223, the rJython package does not return the value of the last expression when executing
Python code. Instead, scripts must assign a value to a global Python variable to be fetched by another
rJython method. This does not promote fast code exploration and prototyping. In addition, rJython
does not supply interfaces for callbacks, script compiling, or capturing console output.

In essence, rJython implements a basic interface to the Jython language. The jsr223 package, in
comparison, provides a more developed feature set.

Renjin software review

Renjin (Renjin developers, 2018) is an ambitious project whose primary goal is to create a drop-
in replacement for the R language on the Java platform. The Renjin solution features R syntax
extensions that allow Java classes to be created and used naturally within R script. The Renjin
language implementation has two important limitations: (i) it does not support plotting; and (ii) it
can’t use R packages that contain native libraries (like C). The jsr223 package, in contrast, is designed
for the reference distribution of R. As such, it can be used in concert with any R package.

Renjin also distributes an R package called renjin. It is not available from CRAN. (Find the
installation instructions at http://www.renjin.org.) The renjin package exports a single method that
evaluates an R expression. It is designed only to improve execution performance for R expressions; it
does not allow Java classes to be used in R script. Hence, the renjin package is not a Java platform
integration.

Overall, Renjin is a promising Java solution for R, but it is not yet feature-complete. In comparison,
jsr223 presents a viable Java solution for R today.

Summary

Java is one of the most successful development platforms in computing history. Its popularity continues
as more programming languages, tools, and technologies target the JVM. The jsr223 package provides
a high-level, user-friendly interface that enables R developers to take advantage of the flourishing Java

3The reticulate package has 3,681 downloads per month according to http://rdocumentation.org. The next
most popular Python integration is PythonInR (Schwendinger, 2018) with 322 monthly downloads.
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ecosystem. In addition, jsr223’s unified integration interface for Groovy, JavaScript, Python, Ruby,
and Kotlin also facilitates access to solutions developed in these languages. In all, jsr223 significantly
extends the computing capabilities of the R software environment.

In this paper, we provided an introduction to the main features and advantages of the jsr223
package. For more language-specific examples and a full treatment of software features, see the jsr223
User Manual included in the package vignettes.
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bnclassify: Learning Bayesian Network
Classifiers
by Bojan Mihaljević, Concha Bielza, and Pedro Larrañaga

Abstract The bnclassify package provides state-of-the art algorithms for learning Bayesian network
classifiers from data. For structure learning it provides variants of the greedy hill-climbing search,
a well-known adaptation of the Chow-Liu algorithm and averaged one-dependence estimators. It
provides Bayesian and maximum likelihood parameter estimation, as well as three naive-Bayes-
specific methods based on discriminative score optimization and Bayesian model averaging. The
implementation is efficient enough to allow for time-consuming discriminative scores on medium-
sized data sets. The bnclassify package provides utilities for model evaluation, such as cross-validated
accuracy and penalized log-likelihood scores, and analysis of the underlying networks, including
network plotting via the Rgraphviz package. It is extensively tested, with over 200 automated tests
that give a code coverage of 94%. Here we present the main functionalities, illustrate them with a
number of data sets, and comment on related software.

Introduction

Bayesian network classifiers (Bielza and Larrañaga, 2014; Friedman et al., 1997) are competitive
performance classifiers (e.g., Zaidi et al., 2013) with the added benefit of interpretability. Their simplest
member, the naive Bayes (NB) (Minsky, 1961), is well-known (Hand and Yu, 2001). More elaborate
models exist, taking advantage of the Bayesian network (Pearl, 1988; Koller and Friedman, 2009)
formalism for representing complex probability distributions. The tree augmented naive Bayes
(Friedman et al., 1997) and the averaged one-dependence estimators (AODE) (Webb et al., 2005) are
among the most prominent.

A Bayesian network classifier is simply a Bayesian network applied to classification, that is, to the
prediction of the probability P(c | x) of some discrete (class) variable C given some features X. The
bnlearn (Scutari and Ness, 2018; Scutari, 2010) package already provides state-of-the art algorithms
for learning Bayesian networks from data. Yet, learning classifiers is specific, as the implicit goal is to
estimate P(c | x) rather than the joint probability P(x, c). Thus, specific search algorithms, network
scores, parameter estimation, and inference methods have been devised for this setting. In particular,
many search algorithms consider a restricted space of structures, such as that of augmented naive
Bayes (Friedman et al., 1997) models. Unlike with general Bayesian networks, it makes sense to omit a
feature Xi from the model as long as the estimation of P(c | x) is no better than that of P(c | x \ xi).
Discriminative scores, related to the estimation of P(c | x) rather than P(c, x), are used to learn both
structure (Keogh and Pazzani, 2002; Grossman and Domingos, 2004; Pernkopf and Bilmes, 2010;
Carvalho et al., 2011) and parameters (Zaidi et al., 2013, 2017). Some of the prominent classifiers (Webb
et al., 2005) are ensembles of networks, and there are even heuristics applied at inference time, such
as the lazy elimination technique (Zheng and Webb, 2006). Many of these methods (e.g., Dash and
Cooper, 2002; Zaidi et al., 2013; Keogh and Pazzani, 2002; Pazzani, 1996) are, at best, just available in
standalone implementations published alongside the original papers.

The bnclassify package implements state-of-the-art algorithms for learning structure and parame-
ters. The implementation is efficient enough to allow for time-consuming discriminative scores on
relatively large data sets. It provides utility functions for prediction and inference, model evaluation
with network scores and cross-validated estimation of predictive performance, and model analysis,
such as querying structure type or graph plotting via the Rgraphviz package (Hansen et al., 2017).
It integrates with the caret (Kuhn et al., 2017; Kuhn, 2008) and mlr (Bischl et al., 2017) packages for
straightforward use in machine learning pipelines. Currently it supports only discrete variables. The
functionalities are illustrated in an introductory vignette, while an additional vignette provides details
on the implemented methods. It includes over 200 unit and integration tests that give a code coverage
of 94 percent (see https://codecov.io/github/bmihaljevic/bnclassify?branch=master).

The rest of this paper is structured as follows. We begin by providing background on Bayesian
network classifiers (Section Background) and describing the implemented functionalities (Functionali-
ties). We then illustrate usage with a synthetic data set (Solving a conic linear optimization problem
with sdpt3r) and compare the methods’ running time, predictive performance and complexity over
several data sets (Properties). Finally, we discuss implementation (Implementation), briefly survey
related software (Related software), and conclude by outlining future work (Conclusion).
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Background

Bayesian network classifiers

A Bayesian network classifier is a Bayesian network used for predicting a discrete class variable C. It
assigns x, an observation of n predictor variables (features) X = (X1, . . . , Xn), to the most probable
class:

c∗ = argmax
c

P(c | x) = argmax
c

P(x, c).

The classifier factorizes P(x, c) according to a Bayesian network B = 〈G, θ〉. G is a directed acyclic
graph with a node for each variable in (X, C), encoding conditional independencies: a variable X is
independent of its nondescendants in G given the values pa(x) of its parents. G thus factorizes the
joint into local (conditional) distributions over subsets of variables:

P(x, c) = P(c | pa(c))
n

∏
i=1

P(xi | pa(xi)).

Local distributions P(C | pa(c)) and P(Xi | pa(xi)) are specified by parameters θ(C,pa(c)) and
θ(Xi ,pa(xi)), with θ = {θ(C,pa(c)), θ(X1,pa(x1)), . . . , θ(Xn ,pa(xn))}. It is common to assume each local
distribution has a parametric form, such as the multinomial, for discrete variables, and the Gaussian
for real-valued variables.

Learning structure

We learn B from a data set D = {(x1, c1), . . . , (xN , cN)} of N observations of X and C. There are two
main approaches to learning the structure G from D: (a) testing for conditional independence among
triplets of sets of variables and (b) searching a space of possible structures in order to optimize a
network quality score. Under assumptions such as a limited number of parents per variable, approach
(a) can produce the correct network in polynomial time (Cheng et al., 2002; Tsamardinos et al., 2003).
On the other hand, finding the optimal structure–even with at most two parents per variable–is
NP-hard (Chickering et al., 2004). Thus, heuristic search algorithms, such as greedy hill-climbing, are
commonly used (see e.g., Koller and Friedman, 2009). Ways to reduce model complexity, in order to
avoid overfitting the training data D, include searching in restricted structure spaces and penalizing
dense structures with appropriate scores.

Common scores in structure learning are the penalized log-likelihood scores, such as the Akaike
information criterion (AIC) (Akaike, 1974) and Bayesian information criterion (BIC) (Schwarz, 1978).
They measure the model’s fitting of the empirical distribution P̂(c, x) adding a penalty term that is
a function of structure complexity. They are decomposable with respect to G, allowing for efficient
search algorithms. Yet, with limited N and a large n, discriminative scores based on P(c | x), such
as conditional log-likelihood and classification accuracy, are more suitable to the classification task
(Friedman et al., 1997). These, however, are not decomposable according to G. While one can add a
complexity penalty to discriminative scores (e.g., Grossman and Domingos, 2004), they are instead
often cross-validated to induce preference towards structures that generalize better, making their
computation even more time demanding.

For Bayesian network classifiers, a common (see Bielza and Larrañaga, 2014) structure space is
that of augmented naive Bayes (Friedman et al., 1997) models (see Figure 1), factorizing P(X, C) as

P(X, C) = P(C)
n

∏
i=1

P(Xi | Pa(Xi)), (1)

with C ∈ Pa(Xi) for all Xi and Pa(C) = ∅. Models of different complexity arise by extending or
shrinking the parent sets Pa(Xi), ranging from the NB (Minsky, 1961) with Pa(Xi) = {C} for all Xi,
to those with a limited-size Pa(Xi) (Friedman et al., 1997; Sahami, 1996), to those with unbounded
Pa(Xi) (Pernkopf and O’Leary, 2003). While the NB can only represent linearly separable classes
(Jaeger, 2003), more complex models are more expressive (Varando et al., 2015). Simpler models, with
sparser Pa(Xi), may perform better with less training data, due to their lower variance, yet worse
with more data as the bias due to wrong independence assumptions will tend to dominate the error.

The algorithms that produce the above structures are generally instances of greedy hill-climbing
(Keogh and Pazzani, 2002; Sahami, 1996), with arc inclusion and removal as their search operators.
Some (e.g., Pazzani, 1996) add node inclusion or removal, thus embedding feature selection (Guyon
and Elisseeff, 2003) within structure learning. Alternatives include the adaptation (Friedman et al.,
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1997) of the Chow-Liu (Chow and Liu, 1968) algorithm to find the optimal one-dependence estimator
(ODE) with respect to decomposable penalized log-likelihood scores in time quadratic in n. Some
structures, such as NB or AODE, are fixed and thus require no search.

Learning parameters

Given G, learning θ in order to best approximate the underlying P(C, X) is straightforward. For
discrete variables Xi and Pa(Xi), Bayesian estimation can be obtained in closed form by assuming a
Dirichlet prior over θ. With all Dirichlet hyper-parameters equal to α,

θijk =
Nijk + α

N·j· + riα
, (2)

where Nijk is the number of instances in D such that Xi = k and pa(xi) = j, corresponding to the j-th
possible instantiation of pa(xi), N·j· is the number of instances in which pa(xi) = j, while ri is the
cardinality of Xi. α = 0 in Equation 2 yields the maximum likelihood estimate of θijk. With incomplete
data, the parameters of local distributions are no longer independent and we cannot separately
maximize the likelihood for each Xi as in Equation 2. Optimizing the likelihood requires a time-
consuming algorithm like expectation maximization (Dempster et al., 1977) which only guarantees
convergence to a local optimum.

While the NB can separate any two linearly separable classes given the appropriate θ, learning by
approximating P(C, X) cannot recover the optimal θ in some cases (Jaeger, 2003). Several methods
(Hall, 2007; Zaidi et al., 2013, 2017) learn a weight wi ∈ [0, 1] for each feature and then update θ as

θ
weighted
ijk =

(θijk)
wi

∑ri
k=1(θijk)wi

.

A wi < 1 reduces the effect of Xi on the class posterior, with wi = 0 omitting Xi from the model,
making weighting more general than feature selection. The weights can be found by maximizing a
discriminative score (Zaidi et al., 2013) or computing the usefulness of a feature in a decision tree (Hall,
2007). Mainly applied to naive Bayes models, a generalization for augmented naive Bayes classifiers
has been recently developed (Zaidi et al., 2017).

Another parameter estimation method for the naive Bayes is by means of Bayesian model averaging
over the 2n possible naive Bayes structures with up to n features (Dash and Cooper, 2002). It is
computed in time linear in n and provides the posterior probability of an arc from C to Xi.

Inference

Computing P(c | x) for a fully observed x means multiplying the corresponding θ. With an incomplete
x, however, exact inference requires summing over parameters of the local distributions and is NP-hard
in the general case (Cooper, 1990), yet can be tractable with limited-complexity structures. The AODE
ensemble computes P(c | x) as the average of the Pi(c | x) of the n base models. A special case is the
lazy elimination (Zheng and Webb, 2006) heuristic which omits xi from Equation 1 if P(xi | xj) = 1 for
some xj.

Functionalities

The package has four groups of functionalities:

1. Learning network structure and parameters
2. Analyzing the model
3. Evaluating the model
4. Predicting with the model

Learning is split into two separate steps, the first step is structure learning and the second, optional,
step is parameter learning. The obtained models can be evaluated, used for prediction, or analyzed.
The following provides a brief overview of this workflow. For details on some of the underlying
methods please see the “methods” vignette.

Structures

The learning algorithms produce the following network structures:
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• Naive Bayes (NB) (Figure 1a) (Minsky, 1961)
• One-dependence estimators (ODE)

– Tree-augmented naive Bayes (TAN) (Figure 1b) (Friedman et al., 1997)
– Forest-augmented naive Bayes (FAN) (Figure 1c)

• k-dependence Bayesian classifier (k-DB) (Sahami, 1996; Pernkopf and Bilmes, 2010)
• Semi-naive Bayes (SNB)(Figure 1d) (Pazzani, 1996)
• Averaged one-dependence estimators (AODE) (Webb et al., 2005)

Figure 1 shows some of these structures and their factorizations of P(c, x). We use k-DB in the
sense meant by Pernkopf and Bilmes (2010) rather than that by Sahami (1996), as we impose no
minimum on the number of augmenting arcs. SNB is the only structure whose complexity is not a
priori bounded: the feature subgraph might be complete in the extreme case.

(a) p(c, x) = p(c)p(x1|c)p(x2|c)p(x3|c)p(x4|c)
p(x5|c)p(x6|c)

(b) p(c, x) = p(c)p(x1|c, x2)p(x2|c, x3)p(x3|c, x4)p(x4|c)
p(x5|c, x4)p(x6|c, x5)

(c) p(c, x) = p(c)p(x1|c, x2)p(x2|c)p(x3|c)p(x4|c)
p(x5|c, x4)p(x6|c, x5)

(d) p(c, x) = p(c)p(x1|c, x2)p(x2|c)p(x4|c)
p(x5|c, x4)p(x6|c, x4, x5)

Figure 1: Augmented naive Bayes models produced by the bnclassify package. (a) NB; (b) TAN
(c) FAN (d) SNB. k-DB and AODE not shown. The NB assumes that the features are independent
given the class. ODE allows each predictor to depend on at most one other predictor: the TAN is
a special case with exactly n − 1 augmenting arcs (i.e., inter-feature arcs) while a FAN may have
less than n− 1. The k-DB allows for up to k parent features per feature Xi, with NB and ODE as its
special cases with k = 0 and k = 1, respectively. The SNB does not restrict the number of parents but
requires that connected feature subgraphs be complete (connected, after removing C, subgraphs in (d):
{X1, X2}, and {X4, X5, X6}), also allowing the removal of features (X3 omitted in (d)). The AODE is
not a single structure but an ensemble of n ODE models in which one feature is the parent of all others
(a super-parent).

Algorithms

Each structure learning algorithm is implemented by a single R function. Table 1 lists these algorithms
along with the corresponding structures that they produce, the scores they can be combined with, and
their R functions. Below we provide their abbreviations, references, brief comments, and illustrate
function calls.

Fixed structure

We implement two algorithms:

• NB
• AODE

The NB and AODE structures are fixed given the number of variables, and thus no search is
required to estimate them from data. For example, we can get a NB structure with

n <- nb('class', dataset = car)

where class is the name of the class variable C and car the dataset containing observations of C and
X.
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Optimal ODEs with decomposable scores

We implement one algorithm:

• Chow-Liu for ODEs (CL-ODE; Friedman et al. (1997))

Maximizing log-likelihood will always produce a TAN while maximizing penalized log-likelihood
may produce a FAN since including some arcs can degrade such a score. With incomplete data our
implementation does not guarantee the optimal ODE as that would require computing maximum
likelihood parameters. The arguments of the tan_cl() function are the network score to use and,
optionally, the root for features’ subgraph:

n <- tan_cl('class', car, score = 'AIC', root = 'buying')

Greedy hill-climbing with global scores

The bnclassify package implements five algorithms:

• Hill-climbing tree augmented naive Bayes (HC-TAN) (Keogh and Pazzani, 2002)
• Hill-climbing super-parent tree augmented naive Bayes (HC-SP-TAN) (Keogh and Pazzani,

2002)
• Backward sequential elimination and joining (BSEJ) (Pazzani, 1996)
• Forward sequential selection and joining (FSSJ) (Pazzani, 1996)
• Hill-climbing k-dependence Bayesian classifier (k-DB)

These algorithms use the cross-validated estimate of predictive accuracy as a score. Only the
FSSJ and BSEJ perform feature selection. The arguments of the corresponding functions include the
number of cross-validation folds, k, and the minimal absolute score improvement, epsilon, required
for continuing the search:

fssj <- fssj('class', car, k = 5, epsilon = 0)

Structure Search algorithm Score Feature selection Function

NB - - - nb
TAN/FAN CL-ODE log-lik, AIC, BIC - tan_cl
TAN TAN-HC accuracy - tan_hc
TAN TAN-HCSP accuracy - tan_hcsp
SNB FSSJ accuracy forward fssj
SNB BSEJ accuracy backward bsej
AODE - - - aode
kDB kDB accuracy - kdb

Table 1: Implemented structure learning algorithms.

Parameters

The bnclassify package only handles discrete features. With fully observed data, it estimates the
parameters with maximum likelihood or Bayesian estimation, according to Equation 2, with a single
α for all local distributions. With incomplete data it uses available case analysis and substitutes N·j·
in Equation 2 with Nij· = ∑ri

k=1 Nijk, i.e., with the count of instances in which Pa(Xi) = j and Xi is
observed.

We implement two methods for weighted naive Bayes parameter estimation:

• Weighting attributes to alleviate naive Bayes’ independence assumption (WANBIA) (Zaidi et al.,
2013)

• Attribute-weighted naive Bayes (AWNB) (Hall, 2007)

We implement one method for estimation by means of Bayesian model averaging over all NB
structures with up to n features:

• Model averaged naive Bayes (MANB) (Dash and Cooper, 2002)
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It makes little sense to apply WANBIA, MANB, and AWNB to structures other than NB. WANBIA,
for example, learns the weights by optimizing the conditional log-likelihood of the NB. Parameter
learning is done with the lp() function. For example,

a <- lp(n, smooth = 1, manb_prior = 0.5)

computes Bayesian parameter estimates with α = 1 (the smooth argument) for all local distributions,
and updates them with the MANB estimation obtained with a 0.5 prior probability for each class-to-
feature arc.

Utilities

Single-structure-learning functions, as opposed to those that learn an ensemble of structures, return an
S3 object of class "bnc_dag". The following functions can be invoked on such objects:

• Plot the network: plot()
• Query model type: is_tan(), is_ode(), is_nb(), is_aode(), . . .
• Query model properties: narcs(), families(), features(), . . .
• Convert to a gRain object: as_grain()

Ensembles are of type "bnc_aode" and only print() and model type queries can be applied to
such objects. Fitting the parameters (by calling lp()) of a "bnc_dag" produces a "bnc_bn" object. In
addition to all "bnc_dag" functions, the following are meaningful:

• Predict class labels and class posterior probability: predict()
• Predict joint distribution: compute_joint()
• Network scores: AIC(),BIC(),logLik(),clogLik()
• Cross-validated accuracy: cv()
• Query model properties: nparams()
• Parameter weights: manb_arc_posterior(), weights()

The above functions for "bnc_bn" can also be applied to an ensemble with fitted parameters.

Documentation

This vignette provides an overview of the package and background on the implemented methods.
Calling ?bnclassify gives a more concise overview of the functionalities, with pointers to relevant
functions and their documentation. The “usage” vignette presents more detailed usage examples
and shows how to combine the functions. The “methods” vignette provides details on the under-
lying methods and documents implementation specifics, especially where they differ from or are
undocumented in the original paper.

Usage example

The available functionalities can be split into four groups:

1. Learning network structure and parameters
2. Analyzing the model
3. Evaluating the model
4. Predicting with the model

We illustrate these functionalities with the synthetic car data set with six features. We begin with
a simple example for each functionality group and then elaborate on the options in the following
sections. We first load the package and the dataset:

library(bnclassify)
data(car)

Then we learn a naive Bayes structure and its parameters:

nb <- nb('class', car)
nb <- lp(nb, car, smooth = 0.01)

Then we get the number of arcs in the network:
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narcs(nb)

[1] 6

Then we get the 10-fold cross-validation estimate of accuracy:

cv(nb, car, k = 10)

[1] 0.8628258

Finally, we classify the entire data set:

p <- predict(nb, car)
head(p)

[1] unacc unacc unacc unacc unacc unacc
Levels: unacc acc good vgood

Learning

The functions for structure learning, shown in Table 1, correspond to the different algorithms. They
all receive the name of the class variable and the data set as their first two arguments, which are
then followed by optional arguments. The following runs the CL-ODE algorithm with the AIC score,
followed by the FSSJ algorithm to learn another model:

ode_cl_aic <- tan_cl('class', car, score = 'aic')
set.seed(3)
fssj <- fssj('class', car, k = 5, epsilon = 0)

The bnc() function is a shorthand for learning structure and parameters in a single step,

ode_cl_aic <- bnc('tan_cl', 'class', car, smooth = 1, dag_args = list(score = 'aic'))

where the first argument is the name of the structure learning function while and optional arguments
go in dag_args.

Analyzing

Printing the model, such as the above ode_cl_aic object, provides basic information about it.

ode_cl_aic

Bayesian network classifier

class variable: class
num. features: 6
num. arcs: 9
free parameters: 131
learning algorithm: tan_cl

While plotting the network is especially useful for small networks, printing the structure in the
deal (Bottcher and Dethlefsen, 2013) and bnlearn format may be more useful for larger ones:

ms <- modelstring(ode_cl_aic)
strwrap(ms, width = 60)

[1] "[class] [buying|class] [doors|class] [persons|class]"
[2] "[maint|buying:class] [safety|persons:class]"
[3] "[lug_boot|safety:class]"

We can query the type of structure–params() lets us access the conditional probability tables
(CPTs), while features() lists the features:

is_ode(ode_cl_aic)

[1] TRUE
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params(nb)$buying

class
buying unacc acc good vgood
low 0.2132243562 0.2317727320 0.6664252607 0.5997847478
med 0.2214885458 0.2994740131 0.3332850521 0.3999077491
high 0.2677680077 0.2812467451 0.0001448436 0.0001537515
vhigh 0.2975190903 0.1875065097 0.0001448436 0.0001537515

length(features(fssj))

[1] 5

For example, fssj() has selected five out of six features.

The manb_arc_posterior() function provides the MANB posterior probabilities for arcs from the
class to each of the features:

manb <- lp(nb, car, smooth = 0.01, manb_prior = 0.5)
round(manb_arc_posterior(manb))

buying maint doors persons lug_boot safety
1 1 0 1 1 1

With the posterior probability of 0% for the arc from class to doors, and 100% for all others, MANB
renders doors independent from the class while leaving the other features’ parameters unaltered. We
can see this by printing out the CPTs:

params(manb)$doors

class
doors unacc acc good vgood
2 0.25 0.25 0.25 0.25
3 0.25 0.25 0.25 0.25
4 0.25 0.25 0.25 0.25
5more 0.25 0.25 0.25 0.25

all.equal(params(manb)$buying, params(nb)$buying)

[1] TRUE

For more functions for querying a structure with parameters ("bnc_bn") see ?inspect_bnc_bn. For
a structure without parameters ("bnc_dag"), see ?inspect_bnc_dag.

Evaluating

Several scores can be computed:

logLik(ode_cl_aic, car)

'log Lik.' -13307.59 (df=131)

AIC(ode_cl_aic, car)

[1] -13438.59

The cv() function estimates the predictive accuracy of one or more models with a single run of
stratified cross-validation. In the following we assess the above models produced by NB and CL-ODE
algorithms:

set.seed(0)
cv(list(nb = nb, ode_cl_aic = ode_cl_aic), car, k = 5, dag = TRUE)

nb ode_cl_aic
0.8582303 0.9345913

Above, k is the desired number of folds, and dag = TRUE evaluates structure and parameter learning,
while dag = FALSE keeps the structure fixed and evaluates just the parameter learning. The output
gives 86% and 93% accuracy estimates for NB and CL-ODE, respectively. The mlr and caret packages
provide additional options for evaluating predictive performance, such as different metrics, and
bnclassify is integrated with both (see the “usage” vignette).

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 463

Predicting

As shown above, we can predict class labels with predict(). We can also get the class posterior
probabilities:

pp <- predict(nb, car, prob = TRUE)
# Show class posterior distributions for the first six instances of car
head(pp)

unacc acc good vgood
[1,] 1.0000000 2.171346e-10 8.267214e-16 3.536615e-19
[2,] 0.9999937 6.306269e-06 5.203338e-12 5.706038e-19
[3,] 0.9999908 9.211090e-06 5.158884e-12 4.780777e-15
[4,] 1.0000000 3.204714e-10 1.084552e-15 1.015375e-15
[5,] 0.9999907 9.307467e-06 6.826088e-12 1.638219e-15
[6,] 0.9999864 1.359469e-05 6.767760e-12 1.372573e-11

Properties

We illustrate the algorithms’ running times, resulting structure complexity and predictive performance
on the datasets listed in Table 2. We only used complete data sets as time-consuming inference with
incomplete data makes cross-validated scores costly for medium-sized or large data sets. The structure
and parameter learning methods are listed in the legends of Figure 2, Figure 3, and Figure 4.

N n rc Dataset

1728 7 4 car
958 10 2 tic-tac-toe
435 17 2 voting
351 35 2 ionosphere
562 36 19 soybean

3196 37 2 kr-vs-kr
3190 61 3 splice

Table 2: Data sets used, from the UCI repository (Lichman, 2013). Incomplete rows have been removed.
The number of classes (i.e., distinct class labels) is rc.

Figure 2 shows that the algorithms with cross-validated scores, followed by WANBIA, are the
most time-consuming. Running time is still not prohibitive: TAN-HC ran for 139 seconds on kr-vs-kp
and 282 seconds on splice, adding 27 augmenting arcs on the former and 7 on the latter (a added arcs
mean a iterations of the search algorithm). Note that their running time is linear in the number of
cross-validation folds k; using k = 10 instead of k = 5 would have roughly doubled the time.

CL-ODE tended to produce the most complex structures (see Figure 3), with FSSJ learning complex
models on car, soybean and splice, yet simple ones, due to feature selection, on voting and tic-tac-toe.
The NB models with alternative parameters, WANBIA and MANB, have as many parameters as the
NB, because we are not counting the length-n weights vector, rather just the parameters θ of the
resulting NB (the weights simply produce an alternative parameterization of the NB).

In terms of accuracy, NB and MANB performed comparatively poorly on car, voting, tic-tac-toe,
and kr-vs-kp, possibly because of many wrong independence assumptions (see Figure 4). WANBIA
may have accounted for some of these violations on voting and kr-vs-kp, as it outperformed NB and
MANB on these datasets, showing that a simple model can perform well on them when adequately
parameterized. More complex models, such as CL-ODE and AODE, performed better on car.

Implementation

With complete data, bnclassify implements prediction for augmented naive Bayes models as well as
for ensembles of such models. It multiplies the corresponding θ in logarithmic space, applying the log-
sum-exp trick before normalizing, to reduce the chance of underflow. On instances with missing entries,
it uses the gRain package (Højsgaard, 2016, 2012) to perform exact inference, which is noticeably
slower. Network plotting is implemented by the Rgraphviz package. Some functions are implemented
in C++ with Rcpp for efficiency. The package is extensively tested, with over 200 unit and integrated
tests that give a 94% code coverage.
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Figure 2: Running times of the algorithms on a Ubuntu 16.04 machine with 8 GB of RAM and a 2.5
GHz processor, on a log10 scale. We used the default options for all algorithms and k = 5 and epsilon
= 0 for the wrappers. CL-ODE-AIC is CL-ODE with the AIC rather than the log-likelihood score. The
lines have been horizontally and vertically jittered to avoid overlap where identical.
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Figure 3: The number of Bayesian network parameters θ of the resulting structures, on a log10 scale.
The lines have been horizontally and vertically jittered to avoid overlap where identical.
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Figure 4: Accuracy of the algorithms estimated with stratified 10-fold cross-validation. The lines have
been horizontally and vertically jittered to avoid overlap where identical.

Related software

NB, TAN, and AODE are available in general-purpose tools such as bnlearn and Weka. WANBIA
(https://sourceforge.net/projects/rawnaivebayes) and MANB (http://www.dbmi.pitt.edu/content/
manb) are only available in stand-alone software, published along with the original publications. We
are not aware of available implementations of the remaining methods implemented in bnclassify.

The bnlearn package implements algorithms for learning general purpose Bayesian networks.
Among them, algorithms for Markov blanket learning by testing for independencies, such as IAMB
(Tsamardinos and Aliferis, 2003) and GS (Margaritis and Thrun, 2000), can be very useful for classifi-
cation as they can look for the Markov blanket of the class variable. The bnlearn package combines
the search algorithms, such as greedy hill-climbing and tabu search (Glover and Laguna, 2013), only
with generative scores such as penalized log-likelihood. Among classification models, it implements
the discrete NB and CL-ODE. It does not handle incomplete data and provides cross-validation and
prediction only for the NB and TAN models, but not for the unrestricted Bayesian networks.

Version 3.8 of Weka (Hall et al., 2009; Bouckaert, 2004) provides variants of the AODE (Webb
et al., 2005) as well as the CL-ODE and NB. It implements five additional search algorithms, such as
K2 (Cooper and Herskovits, 1992), tabu search, and simulated annealing (Kirkpatrick et al., 1983),
combining them only with generative scores. Except for the NB, Weka only handles discrete data and
uses simple imputation (replacing with the mode or mean) to handle incomplete data. It provides
two constraint-based algorithms, but performs conditional independence tests in an ad-hoc way
(Bouckaert, 2004). Weka provides Bayesian model averaging for parameter estimation (Bouckaert,
1995).

The Java library jBNC (http://jbnc.sourceforge.net/, version 1.2.2) learns ODE classifiers from
Sacha et al. (2002) by optimizing penalized log-likelihood or the cross-validated estimate of accuracy.
The CGBayes (version 7.14.14) package (McGeachie et al., 2014) for MATLAB implements conditional
Gaussian networks (Lauritzen and Wermuth, 1989). It provides four structure learning algorithms,
including a variant of K2 and a greedy hill-climber, all optimizing the marginal likelihood of the data
given the network.

Conclusion

The bnclassify package implements several state-of-the art algorithms for learning Bayesian network
classifiers. It also provides features such as model analysis and evaluation. It is reasonably efficient
and can handle large data sets. We hope that bnclassify will be useful to practitioners as well as
researchers wishing to compare their methods to existing ones.

Future work includes handling real-valued feature via conditional Gaussian models. Straightfor-
ward extensions include adding flexibility to the hill-climbing algorithm, such as restarts to avoid
local minima.
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Dynamic Simulation and Testing for
Single-Equation Cointegrating and
Stationary Autoregressive Distributed
Lag Models
by Soren Jordan and Andrew Q. Philips

Abstract While autoregressive distributed lag models allow for extremely flexible dynamics, interpret-
ing the substantive significance of complex lag structures remains difficult. In this paper we discuss
dynamac (dynamic autoregressive and cointegrating models), an R package designed to assist users in
estimating, dynamically simulating, and plotting the results of a variety of autoregressive distributed
lag models. It also contains a number of post-estimation diagnostics, including a test for cointegration
for when researchers are estimating the error-correction variant of the autoregressive distributed lag
model.

Introduction

Many important social processes vary systematically over time. Models designed to account for such
dynamics have become more common in the social sciences. Applied examples range from prime
ministerial approval (Clarke et al., 2000), to the determinants of prison admission rates (Jacobs and
Helms, 1996), to preferences for different types of government spending (Wlezien, 1995), to how
changing tax rates affect income (Mertens and Montiel Olea, 2018).

Dynamic processes take many forms. Some of these processes are integrated, such that the
current value (“realization”) of a series is an expression of all past values in the series plus some
new innovation (i.e. yt ∼ I(1) if yt = yt−1 + εt). These series are referred to as I(1), non-stationary,
or having a “unit root.”1 Other processes revert back to some mean level over time. Since they are
not integrated, often these series are termed stationary, or I(0). Stationary series are characterized by
constant mean, variance, and covariance; non-stationary series violate one or more of these properties.
An especially interesting relationship exists when two (or more) integrated variables are in a long-run
relationship with each other, even if in the short term the series may move apart. Such series are said
to be cointegrated.2

The job of properly modeling such a diverse set of dynamic processes is challenging. Researchers
want to test whether a theoretical regressor of interest, X, has an effect on a dependent variable y,
accounting for each series’ own dynamics. Moreover, these effects might occur in both the short-run
and long-run of the series. Additionally, in cases where we have multiple I(1) variables, we must test
whether the variables are in a cointegrating relationship. Researchers still need a way to interpret the
effects of these complex models. When modeling dynamics, then, we might be particularly drawn to a
strategy that contributes to each of these goals.

We advocate for one particular specification because of its generalizability, flexibility and robust-
ness to a variety of data-generating proceeses: autoregressive distributed lag (ARDL) models. ARDL
models can account for multiple lags of independent variables, either in levels or in first-differences,
as well as multiple lags of the dependent variable. Moreover, utilizing the ARDL-bounds testing
procedure of Pesaran et al. (2001), we can test whether variables in the ARDL model are also in a
cointegrating relationship. However, the very flexibility of this modeling strategy produces its own
challenges. If the researcher includes multiple lags (or differences, or lagged differences) of some
independent variable, it becomes increasingly difficult to discern various effects of a change in X on y,
beyond the individual coefficients estimated in the ARDL model. These are more complicated than
static models (De Boef and Keele, 2008), since they often involve both short- and long-run effects of X
on y.3

We introduce a new R package, dynamac (Jordan and Philips, 2018), to help ameliorate these
two challenges. The core of the package consists of two functions: pssbounds, which implements

1A unit-root is one common form of non-stationarity; a series could be non-stationary due to a linear trend, for
instance.

2Stationary variables cannot be in cointegrating relationships, as their long-run response is to return to their
mean value, not a linear combination of some other series.

3See Beck and Katz (2011) or Blackwell and Glynn (2018) for a discussion of this in the cross-sectional time series
context.
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the ARDL-bounds testing procedure for cointegration (Pesaran et al., 2001), and dynardl, which
estimates ARDL models and simulates the effect of some X on y by way of dynamic simulations. The
simulations provided by the latter function help provide substantive inferences of some X on y (1)
in both the short run and long run, (2) when X appears in multiple forms (such as first-differences,
lagged first-differences, and/or lagged levels), and (3) accounting for similar specifications of other
control variables Z. We also include functions to easily take the lag, first-difference, and lagged-first
difference of a series, as well as post-estimation diagnostics users can employ to ensure residuals
from their resulting model are white noise. In doing so, we complement other R packages designed to
show substantive and statistical significance of dynamic models (for instance, the dynsim package,
Gandrud et al., 2015, 2016), as well as broader classes of models such as those compatible with Zelig
(Choirat et al., 2018).

Below we explain the context of ARDL models generally, as well as cointegration testing and the
ARDL-bounds test in particular. We then discuss dynamac functions to help estimate both the ARDL-
bounds test as well as the ARDL models (and their stochastic simulations). We provide illustrative
examples of each function, and conclude by offering suggestions for future research.

The general ARDL model

The autoregressive distributed lag model has a very general form:

yt, ∆yt =α0 + δT +
P

∑
p=1

φpyt−p +
L1

∑
l1=0

θ1l x1,t−l1 + · · ·+
Lk

∑
lk=0

θkl xt−lk
+

M

∑
m=1

αm∆yt−m +
Q1

∑
q1=0

β1q1 ∆x1,t−q1 + · · ·+
Qk

∑
qk=0

βkqk
∆xk,t−qk

+ εt

(1)

The left-hand side can be estimated either in levels (yt) or in first-differences (∆yt). This may be a
function of a constant, a linear trend, up to p lags of the dependent variable, a series of lags for each of
the k regressors—appearing either contemporaneously or with a lag—m lagged first-differences of the
dependent variable, and contemporaneous and/or lagged first-differences of each of the regressors.
Lagged first-differences may enter into Equation 1 for theoretical reasons, or to help ensure that the
resulting residuals ε are white noise.4 Since this model obviously results in a heavy parameterization,
restrictions are often imposed. Two of the most common restrictions are the ARDL(1,1) model with
all-stationary data:

yt =α0 + φ1yt−1 + θ1,0x1,t + · · ·+ θk,0xk,t + θ1,1x1,t−1 + · · ·+ θk,1xk,t−1 + εt (2)

as well as its non-stationary and cointegrating variant, often referred to as an error-correction
model:5

∆yt = α0 + φ1yt−1 + θ1,1x1,t−1 + · · ·+ θk,1xk,t−1 + β1∆x1,t + · · ·+ βk∆xk,t + εt (3)

For clarity, lagged first-differences are not shown, although they may be added to Equations 2 and 3,
either for theoretical reasons or to purge autocorrelation from the residuals.6

The strength and drawback of the ARDL model should be immediately apparent: while researchers
can specify a variety of lagged levels and differences to account for theory as well as ensure white-
noise (random) residuals (that is, no residual autocorrelation), the same flexibility can make inferences
regarding the total effect of any individual X variable difficult to discern. This is exacerbated even
more when we consider that these variables might have short-run and long-run effects. In other words,
an immediate change in an X variable might have an immediate impact in the contemporaneous
period t, but if lagged values of X also appear in the model, this effect will persist for multiple time
periods. Moreover, if the dependent variable is entered into the model in lagged levels through φp, the
effects of the independent variable X in some time period t persist over time. There is a cumulative—or
long-run—effect across time, given a change in X in a single time period. In simple cases this can be
calculated as a non-linear combination of the lagged parameter estimate and the parameter on the
lagged dependent variable (De Boef and Keele, 2008). Yet even these calculations become tedious with
multiple lags of the regressors and the dependent variable.

We circumvent this difficulty by employing stochastic simulations rather than direct interpretation
of coefficients in order to show statistical and substantive significance. Dynamic stochastic simulations

4i.e., ε ∼ N(0, σ2). We discuss the importance of white-noise residuals below.
5Of course, all-stationary series may be estimated in an error-correction model as well (De Boef and Keele, 2008).
6i.e., users could add: ∑M

m=1 αm∆yt−m + ∑Q1
q1=0 β1q1 ∆x1,t−q1 + · · ·+ ∑

Qk
qk=0 βkqk

∆xk,t−qk
.
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provide an alternative to direct hypothesis testing of coefficients, instead focusing on simulating
meaningful counterfactuals from model coefficients many times and drawing inferences from the
central tendencies of the simulations. Such simulations are becoming increasingly popular with
increased computing power, as demonstrated in the social sciences by recent methodological and
applied work (Tomz et al., 2003; Breunig and Busemeyer, 2012; Williams and Whitten, 2012; Philips
et al., 2015, 2016; Gandrud et al., 2015; Choirat et al., 2018).

Recall that the other challenge we wish to confront is that of identifying cointegration in autore-
gressive distributed lag models in error-correction form. In instances of small-sample data, especially
of time points t of 80 or less, traditional tests like the Engle-Granger “two-step” method (Engle and
Granger, 1987) or the Johansen (1991, 1995) approaches too often conclude cointegration when it does
not exist (Philips, 2018). An alternative test, proposed by Pesaran et al. (2001), is more conservative,
meaning it does not conclude cointegration when it does not exist, especially in small samples. This
test, which we call the ARDL-bounds test, is desirable for the social sciences, where shorter time
series (smaller samples) are quite common. The difficulty of the ARDL-bounds test is that it requires
a specific form of the ARDL model and unique critical values. While these are not insurmountable
obstacles, the usefulness of the test would be extended if software existed to get and test these critical
values for the user.

In dynamac, these challenges are resolved through pssbounds (named for Pesaran, Shin and Smith,
the authors of the test), which implements the ARDL-bounds test for cointegration, and dynardl,
which estimates autoregressive distributed lag models and implements the stochastic simulations
we describe above. The commands also have the virtue of working together: estimating an ARDL
model in error-correction form with dynardl by nature stores the values necessary to execute the
ARDL-bounds test with pssbounds. Below, we use a substantive example to motivate our discussion
of the package in greater detail.

Modeling using dynamac

We illustrate the process—autoregressive distributed lag modeling, testing for cointegration with
pssbounds, and interpretation of X through stochastic simulations—using data originally from Wright
(2017) on public concern about inequality in the United States.7 For our example, assume that public
concern about inequality in the US, Concern (concern), is a function of the share of income going to
the top ten percent, Income Top 10 (incshare10). We also hypothesize that the unemployment rate,
Unemployment (urate), affects concern over the short-run (i.e., is not cointegrating):

Concernt = f (Income Top 10t + ∆Unemploymentt) (4)

Before estimating any model using dynamac, users should first check for stationarity. A variety of
unit root tests can be performed using the urca package (Pfaff et al., 2016). These suggest that all three
series are integrated of order I(1), as they appear integrated in levels but stationary in first-differences
(∆), shown in Table 1.

Table 1: Unit root tests

Augmented DF Phillips-Perron Dickey-Fuller GLS KPSS

Concern 0.688 -3.437∗ -0.893 0.642∗

∆Concern -3.507∗ -7.675∗ -3.124∗ 0.814∗

Unemployment -0.612 -2.762 -2.802∗ 0.224

∆Unemployment -5.362∗ -4.879∗ -5.308∗ 0.064

Income Top 10 2.992 0.442 0.994 2.482∗

∆Income Top 10 -3.170∗ -6.244∗ -4.032∗ 0.218
One augmenting lag included for all tests. ∗ : p < 0.05. Augmented Dickey-Fuller, PP,
and DF-GLS have null hypothesis of a unit-root, while KPSS has a null of stationarity.

Given that all series appear to be I(1), we proceed with estimating a model in dynardl in error-
correction form, and then testing for cointegration between concern about inequality and the share

7Available at: http://dx.doi.org/10.7910/DVN/UYUU9G. For simplicity, we use a smaller version of Wright’s
dataset with missing values at the beginning of the series removed.
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of income of the top 10 percent. In general, we suggest using this strategy—outlined in Philips
(2018)—along with alternative tests for cointegration.8 Our error-correction model appears as:

∆Concernt = α0 + φ1Concernt−1 + θ1Income Top 10t−1+

β1∆Income Top 10t + β2∆Unemploymentt + εt
(5)

where we assume εt ∼ N(0, σ2). Now we estimate this model with dynardl.

Estimation using dynardl

The syntax for dynardl, the main function in the package, is as follows:

• formula, a formula of the type y ∼ x1 + x2 + x3 + . . . xk. Note the variables do not need to be
lagged or differenced in the specification; these transformations will be handled automatically
by dynardl.

• data, an optional argument specifying a particular dataset in which the variables from formula
can be found.

• lags, a list of variables to be lagged and their corresponding lagged levels. For instance, if an
analyst had two variables, X1 and X2, that he or she wished to incorporate with a single lag
at t− 1, he or she would specify lags = list("X1" = 1,"X2" = 1). If he or she wanted to
incorporate multiple lags on X2 from time periods t− 1 and t− 2, the code would appear as
lags = list("X1" = 1,"X2" = c(1,2,...), expanded for however many lags were desired.

• diffs, a vector of variables to be differenced, i.e., included as ∆Xt. Only first-differences are
supported. For instance, if an analyst wanted to first-difference X1 and X3, he or she would
include diffs = c("X1",X3").

• lagdiffs, a list of variables to be included with lagged first-differences. The syntax is identical
to lags, but instead of incorporating lagged levels of the relevant variable Xk at t− 1, lagged
differences ∆Xk,t−1 are included. For instance, if the analyst wanted to include a first lagged
difference of X1,t at t− 1, he or she would include lagdiffs = list("X1" = 1).

• levels, a vector of variables to be included in levels contemporaneously—i.e., at time t. If the
analyst wanted to include X2 and X3 in levels at time t, he or she would include levels =
c("X2","X3").

• ec, a TRUE/FALSE option for whether the model should be estimated in error-correcting form.
If ec = TRUE, the dependent variable will be run in differences. The default is FALSE.

• trend, a TRUE/FALSE option for whether a linear trend should be included in the regression.
The default is FALSE.

• constant, a TRUE/FALSE option for whether a constant should be included in the regression.
The default is TRUE.

• modelout, a TRUE/FALSE option for whether model output from the ARDL model should be
printed in the console. The default is FALSE.

• simulate, a TRUE/FALSE option for whether any shocks should be simulated. Since simulations
are potentially computationally intensive, if the analyst is simply using dynardl to test for
cointegration using the bounds procedure, or wishes to just view the model output, he or she
might not wish to estimate simulations in the interim. The default is FALSE.9

Reading the above, dynardl is simply an engine for regression, but one that allows users to focus
on theoretical specification rather than technical coding. All variables in the model are entered into
the formula. In this sense, dynardl can be used in any ARDL context, not just ones in which the user is
also expecting cointegration testing or dynamic simulations.We estimate our example model shown in
Equation 5 using dynardl as follows:

data(ineq)

res1 <- dynardl(concern ~ incshare10 + urate, data = ineq,
lags = list("concern" = 1, "incshare10" = 1),
diffs = c("incshare10", "urate"),
ec = TRUE, simulate = FALSE )

8These include the Johansen (1995) cointegration test (available in urca) or the proposed test by Engle and
Granger (1987), among others.

9For this first example, we will treat this option as FALSE.
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[1] "Error correction (EC) specified;
dependent variable to be run in differences."

We specify the formula by letting dynardl know what the dependent variable and the regressors
are. Next, in the lags option, we let the program know we want a lag at t − 1 for the dependent
variable and for Income Top 10.10 Since Unemployment did not appear in lag form in Equation 5, it
does not appear in lags. In diffs, we let dynardl know to include the first-difference for both Income
Top 10 and Unemployment. The option ec = TRUE estimates the dependent variable in error-correction
form (i.e., takes the first-difference of Concern), and the program will issue a message indicating
to the user that such a transformation has taken place.11 By setting simulate = FALSE, we save on
computing time by estimating the model without performing stochastic simulations needed to make
substantive inferences through stochastic simulations, as shown in the next sections. This is useful if
the residuals of our first model indicate residual autocorrelation and require respecification.

Presenting the model summary is the usual summary(foo):

summary(res1)

Call:
lm(formula = as.formula(paste(paste(dvnamelist), "~", paste(colnames(IVs),

collapse = "+"), collapse = " ")))

Residuals:
Min 1Q Median 3Q Max

-0.025848 -0.005293 0.000692 0.006589 0.031563

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.122043 0.027967 4.364 7.87e-05 ***
l.1.concern -0.167655 0.048701 -3.443 0.0013 **
d.1.incshare10 0.800585 0.296620 2.699 0.0099 **
d.1.urate 0.001118 0.001699 0.658 0.5138
l.1.incshare10 -0.068028 0.031834 -2.137 0.0383 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.01169 on 43 degrees of freedom
(1 observation deleted due to missingness)

Multiple R-squared: 0.3671, Adjusted R-squared: 0.3083
F-statistic: 6.236 on 4 and 43 DF, p-value: 0.0004755

As shown from the regression results, dynardl has included a constant, the lagged dependent
variable, l.1.concern, the first difference of the two regressors (Income Top 10 and Unemployment),
as well as the lag of Income Top 10.12 While changes in Income Top 10 affect changes in Concern in
the short-run, changes in Unemployment do not have a statistically significant effect in the short-run.
The lag of Income Top 10 is negative and statistically significant. Moreover, the parameter on the
lagged dependent variable is negative, between 0 and -1, and statistically significant, giving us cursory
evidence of a cointegrating process taking place; we use a statistical test for this below.

Post-estimation diagnostics

An essential component of ARDL modeling is ensuring that the residuals from any ARDL estimation
are white noise. One symptom of residual autocorrelation in the presence of a lagged dependent
variable (where φ1 6= 0) is that OLS will result in biased and inconsistent estimates (c.f., Keele and
Kelly, 2006, pp. 189-191). Autocorrelation is especially pernicious when using the ARDL-bounds
cointegration test, since the test relies on the assumption of, “serially uncorrelated errors for the
validity of the bounds tests” (Pesaran et al., 2001, p. 311). Moreover, a number of scholars stress that

10If we wanted further lags, we could specify it here, for instance lags = list("concern" = c(1,2),
"incshare10" = 2, "urate" = 2) would add lags at t− 1 and t− 2 for concern, and at t− 2 for incshare10 and
urate.

11Setting this option to ‘FALSE’ would estimate the dependent variable in levels. If ec = TRUE, the saved object
will also contain $pssbounds, described below.

12Lagged variables are denoted by l.X.variable, where X is the lag. First-differences are denoted by d.variable.
Lagged first-differences are denoted by l.d.X.variable, where X is the lag.

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 474

autocorrelation is likely indicative of model misspecification more broadly—which may cause omitted
variable bias in addition to incorrect standard errors—and thus testing for autocorrelation can help
inform users as to which covariates should be included or excluded, as well as the correct dynamic
specification (Mizon, 1995; Keele and Kelly, 2006).

To assist users in model selection and residual testing, we offer dynardl.auto.correlated. This
function takes the residuals from an ARDL model estimated by dynardl and conducts two tests for
autocorrelation—the Shaprio-Wilk test for normality and the Breusch-Godfrey test for higher-order
serial correlation—as well as calculates the fit statistics for the Akaike information criterion (AIC),
Bayesian information criterion (BIC), and log-likelihood. The arguments for this function are:

• x, a dynardl model object.

• bg.type, a character string, either "Chisq" or "F" of the type of Breusch-Godfrey test for higher-
order serial correlation. This returns either the Chi-squared test statistic or the F statistic. The
default is "Chisq".

• digits, an integer for the number of digits to round fit statistics to (by default, this is three
digits).

• order, an integer for the highest possible order of autocorrelation to test in the data. By default,
this is computed by the length of the series.

• object.out, a TRUE/FALSE option for whether to print this output into an object. This might
be useful if the analyst is comparing multiple ARDL objects and testing for white-noise residuals
on the basis of fit criteria like AIC. In this case, the analyst could assign the output to some
object for later comparison.

To run this post-estimation diagnostics for our model above, we type:

dynardl.auto.correlated(res1)

------------------------------------------------------
Breusch-Godfrey LM Test
Test statistic: 3.704
p-value: 0.054
H_0: no autocorrelation up to AR 1

------------------------------------------------------
Shapiro-Wilk Test for Normality
Test statistic: 0.965
p-value: 0.158
H_0: residuals are distributed normal

------------------------------------------------------
Log-likelihood: 148.094
AIC: -284.187
BIC: -272.96
Note: AIC and BIC calculated with k = 5 on T = 48 observations.

------------------------------------------------------
Breusch-Godfrey test indicates we reject the null hypothesis of no
autocorrelation at p < 0.10.
Add lags to remove autocorrelation before running dynardl simulations.

Given the results of the Breusch-Godfrey LM test for autocorrelation, there appears to be some
autocorrelation still in the residuals. To mitigate this, we can add lagged first-differences to our model
(Philips, 2018). For instance, to add a lagged first-difference of the dependent variable:

res2 <- dynardl(concern ~ incshare10 + urate, data = ineq,
lags = list("concern" = 1, "incshare10" = 1),
diffs = c("incshare10", "urate"),
lagdiffs = list("concern" = 1),
ec = TRUE, simulate = FALSE)

For brevity the results are not shown here, but they indicate that AR(1) autocorrelation is no longer
present in the residuals after adding a lagged first-difference of the dependent variable.
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Cointegration testing using pssbounds

Recall the definition of cointegration: two or more integrated series of order I(1) are cointegrated if
some linear combination of them results in a stationary series.13 This means that they have some
long-run relationship; although temporary shocks may move the series apart, there is an attracting
force that brings them back into a stable equilibrium relationship over the long-run. These movements
are commonly referred to as being “corrected” or “re-equilibrated”; cointegrated series do not simply
happen to move together, but are quite literally brought back into long-run relationship by an attracting
force. Since not all I(1) series are cointegrating, failing to account for cointegration—in other words,
including I(1) series in an error-correction model when they are not cointegrating—can lead to a drastic
increase in Type I error (c.f., Grant and Lebo, 2016).

A variety of cointegration tests have been proposed, which we do not discuss here. Instead,
we advocate for a test that has been shown to demonstrate strong small sample properties (Philips,
2018); the ARDL-bounds test for cointegration (Pesaran et al., 2001). The ARDL-bounds procedure
proceeds as follows. First, analysts must ensure that the regressors are not of order I(2) or more, and
that any seasonal component of the series has been removed. Second, analysts must ensure that the
dependent variable y is I(1). A wide variety of unit root tests are designed to assist in this, including
the Dickey-Fuller, Elliott-Rothenberg-Stock, Phillips-Perron, and Kwiatkowski-Phillips-Schmidt-Shin
tests. We reference these tests in Table 1.

Once the analyst ensures that the dependent variable y is I(1), and the independent variables
are not of order I(2) and contain no seasonal components, he or she estimates an ARDL model in
error-correction form.14 That form resembles Equation 6, where the dependent variable is run in
differences:

∆yt =α0 + φ1yt−1 + θ1,1x1,t−1 + · · ·+ θk,1xk,t−1 + β1∆x1,t + · · ·+ βk∆xk,t+

M

∑
m=1

αm∆yt−m +
Q1

∑
q1=1

β1q1 ∆x1,t−q1 + · · ·+
Qk

∑
qk=1

βkqk
∆xk,t−qk

+ εt
(6)

Two points are key. First, any independent variables that are potentially I(1) must be entered
in lagged levels at t− 1. Second, the resulting residuals of the ARDL model must be white noise
in order to perform the cointegration test (approximately normally distributed, with no residual
autocorrelation). If they are not, the analyst should incorporate additional lags of the first difference
of the variables until they are (Philips, 2018). A variety of tests exist to help determine whether the
residuals are white noise, as well as aiding in model specification, including information criteria (like
SBIC and AIC), Breusch-Godfrey tests, Durbin’s Alternative test, and Cook-Weisberg. Users can find
most of these in dynardl.auto.correlated, discussed in the previous section.

The special case of the ARDL model in Equation 6 is that the X variables appearing in levels
(θ1 . . . θk) are the only ones that can possibly be in a cointegrating relationship with the dependent
variable y. The ARDL-bounds test for cointegration works by using a Wald or F-test on the following
restriction from Equation 6:

H0 : φ1 = θ1,1 = · · · = θk,1 = 0 (7)

In other words, that the coefficients on variables appearing in first lags are jointly equal to zero.
The null hypothesis is that of no cointegration. Rejecting the null hypothesis indicates there is a
cointegrating relationship between the series. In addition to the F-test, a one-sided t-test may be used
to test the null hypothesis that the coefficient on the lagged dependent variable (in levels) is equal to
zero, or:

H0 : φ1 = 0 (8)

The alternative to this test is that φ1 < 0, or that y is cointegrating with the regressors. This is
known as the bounds t-test.

The procedure and tests themselves are relatively straightforward to implement, but are com-
plicated by two factors. The first is that critical values for these tests are non-standard, meaning
that they are not readily testable in canned procedures. The correct (asymptotic) critical values are

13For instance, given yt = κ0 + κ1xt + zt, cointegration would exist if zt ∼I(0). Higher orders of cointegration may
also be cointegrating—something known as multicointegration—but these are not supported by the ARDL-bounds
test.

14Note this does not require the analyst to make the sharp distinction between an I(0) or an I(1) regressor, a
special benefit of the ARDL-bounds procedure. This is especially useful when “near integrated” series can appear
to be integrated in small samples even though, if we were to observe more innovations, the series would ultimately
return to some mean value (that is, it would be stationary).
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provided by Pesaran et al. (2001), and the small sample critical values for the F-statistic are given by
Narayan (2005).15 Moreover, the appropriate critical values depend on the “case” of the regression:
a combination of whether the regression includes a (restricted) trend term (or not) and a (restricted)
constant (or not). As Philips (2018) describes, whether the resulting F-statistic is higher than the I(1)
critical value, below the I(0) critical value, or between the two, gives differential evidence on the
integrated nature of the X variables and the potential cointegrating relationship between them.

Just looking at the above discussion: even if the test is powerful, it can be difficult to implement
and interpret correctly. Accordingly, we offer two functions to help implement the test and get dynamic
inferences. The first function, dynardl, estimates the ARDL relationship described above (to obtain
the resulting F-statistic and t-statistic). The second function, pssbounds, takes the results of the ARDL
model and implements the ARDL-bounds test for cointegration, providing the user with the correct
critical values and an easy-to-understand description of hypothesis testing.

To summarize, if we find that the dependent variable and regressors are all I(1), they can only
appear in lagged levels in the error-correction model if there is evidence of cointegration. dynamac
contains the Pesaran et al. (2001) ARDL-bounds cointegration test to assist users in testing for this. To
implement the bounds testing procedure, we introduce the function pssbounds. This function has the
following syntax:

• data, an optional argument expecting a dynardl model, which calculates the following argu-
ments for the user. If none is given, the user must supply each of the following:

• obs, an integer for the number of observations in the model time series.

• fstat, the F statistic on the restriction that each of the first lags in the model (including the
lagged dependent variable) are jointly equal to zero.

• tstat, the t statistic on the lagged dependent variable in the error-correction model.

• case, a numeric 1-2-3-4-5 or numeral I-II-III-IV-V of the case of the regression.

– 1: No intercept and no trend

– 2: Restricted intercept and no trend

– 3: Unrestricted intercept and no trend (the most common case)

– 4: Unrestricted intercept and restricted trend

– 5: Unrestricted intercept and unrestricted trend

• k, the number of regressors appearing in first lags.

• digits, an integer for the number of digits to round fit statistics to (by default, this is three
digits).

• object.out, a TRUE/FALSE option for whether to print this output into an object. The default
is FALSE.

This command can be implemented in two ways. First, users can run the appropriate model
(following the instructions of Philips (2018)) and pass the relevant arguments—obs, fstat, tstat,
case, and k—to pssbounds. Alternatively—and as we advocate—users can estimate the model using
foo <-dynardl(...) and then, post-estimation, run pssbounds(foo).16

Moving back to our example, to test for cointegration, we use the pssbounds command:17

res2 <- dynardl(concern ~ incshare10 + urate, data = ineq,
lags = list("concern" = 1, "incshare10" = 1),
diffs = c("incshare10", "urate"),
lagdiffs = list("concern" = 1),
ec = TRUE, simulate = FALSE)

pssbounds(res2)

PESARAN, SHIN AND SMITH (2001) COINTEGRATION TEST

Observations: 47

15No small-sample critical values are given for the t-test, so it should not be used to conclusively decide whether
a cointegrating relationship exists; rather, only for confirmatory evidence.

16As described earlier, this only applies to models where ec = TRUE, as only error-correcting models can
potentially be cointegrating.

17To re-emphasize, this test is inappropriate if the residuals are not white-noise (Pesaran et al., 2001, p. 311).
Therefore, it is crucial to users to first test for stationarity, run dynardl, and adjust their model as needed before
testing for cointegration.
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Number of Regressors (k): 1
Case: 3

------------------------------------------------------
- F-test -
------------------------------------------------------

<------- I(0) ------------ I(1) ----->
10% critical value 4.19 4.94
5% critical value 5.22 6.07
1% critical value 7.56 8.685

F-statistic = 12.204
------------------------------------------------------
- t-test -
------------------------------------------------------

<------- I(0) ------------ I(1) ----->
10% critical value -2.57 -2.91
5% critical value -2.86 -3.22
1% critical value -3.43 -3.82

t statistic = -3.684
------------------------------------------------------

t-statistic note: Small-sample critical values not provided for Case III.
Asymptotic critical values used.

The program displays the number of observations from the regression, the number of regressors
appearing in lagged levels (i.e., the cointegrating equation), and the case (unrestricted intercept and
no trend); all of these are necessary to obtain the special critical values used by Pesaran et al. (2001).18

This situates the F-statistic and t-statistic with the correct critical values for the appropriate test. Users
are then free to compare the test statistics to the critical values and make the appropriate deduction
regarding cointegration in the sample model.

In our example, since the value of the F-statistic exceeds the critical value at the upper I(1) bound
of the test at the 1% level, we may conclude that Income Top 10 and Concern about inequality are in a
cointegrating relationship. As an auxiliary test, pssbounds displays a one-sided test on the t-statistic
on the lagged dependent variable.19 Since the t-statistic of -3.684 falls below the 5% critical value I(1)
threshold, this lends further support for cointegration. Taken together, these findings indicate that
there is a cointegrating relationship between concern about inequality and the income share of the top
10 percent, and that Equation 6 is appropriately specified.20

Gaining substantive and statistical significance of results using dynardl

Once users have decided on the appropriate theoretical model—accounting for the appropriate lags of
the independent variables, first-differenced variables, and so on—and drawn conclusions regarding
cointegration using pssbounds (if applicable), their resulting models might be somewhat complicated.
Our solution to inferences in the face of this complexity is the use of stochastic simulations.21

If a user runs dynardl with the argument simulate = TRUE, then the following options become
available:

• shockvar, the independent variable to be shocked in the simulation. This is the independent
variable for which we want to estimate an effect. Analysis should enter this in quotes, like
shockvar = "X1". This is the only option required without a default: we must know which
variable we want inferences about.

18Pesaran et al. (2001) provide asymptotic critical values. We use small-sample critical values, calculated by
Narayan (2005), when available.

19We call this an auxiliary test since only asymptotic critical values are available, while small sample critical
values are available for most F-tests. When not available, pssbounds issues a warning note.

20Had we not found evidence of cointegration, (either the F-statistic fell between or below the I(1) and I(0) critical
values), we could adjust our model accordingly, as outlined by Philips (2018).

21If users are aiming for analysis to be able to be repeated, they should set a seed before engaging in stochastic
simulations.
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• shockval, the amount by which the independent variable should be shocked. The default is a
standard deviation of the shock variable.

• time, the time period within the range of the simulation when to shock the independent variable
of interest (the shockvar). The default is 10.

• qoi, whether we should summarize the response of the dependent variable with the mean or
the median. Although the default is mean, if there is underlying skew in the distribution, it
might be better summarized by median (Rainey, 2017).

• forceset, a list of variables and their values that should be set to particular values during the
simulations. By default, variables in levels are held at their means, and variables in differences
are held at 0. If forceset is not specified, the simulation will be estimated using these default
values. However, if the analyst wanted to investigate the change in y when some variables are at
different values, he or she should do this with forceset. These values can be any user-defined
value, including means, medians, percentiles, or other values of interest. For instance, if X1
was meant to be held at 3 (rather than the mean of X1), the analyst would specify forceset =
list("X1" = 3).

• range, an integer for how long the simulation is to run (the default is 20 periods)

• burnin, the number of time periods before the range begins. burnin allows time for the variables
to equilibriate. The default is 20. This means that 20 time periods are simulated, then the range
of the simulation begins. Users are not shown the burnin time periods.

• sims, the number of simulations to run. The quantities of interest are created from these
simulations. The default number is 1000.

• sig, an integer for any user-desired significance level in the form of 1− p. So if the user wants a
p value of 0.10, sig would be 90. The default level is 95.

• expectedval, a TRUE/FALSE option for whether the expected values (which average errors
within simulations) or predicted values (which do not) are desired. Unless the analyst has
a strong reason to use expected values, we recommend using predicted values by including
expectedval = FALSE, the default.

dynardl takes this set of arguments and generates the appropriate autoregressive distributed lag
given the levels, lagged levels, first-differences, and lagged first-differences of the variables provided.
Once this model is estimated using OLS, dynardl simulates the quantities of interest. Specifically, the
coefficients β̂ are simulated as draws (with number of sims) from a multivariate normal distribution
with mean of β̂ and variance from the variance-covariance of the estimated model (using the MASS
package from Ripley (2018)). We introduce uncertainty into these simulations by simulating σ̂2 scaled
by random draws from the chi-squared distribution. We then use this estimate of σ̂2 to add back in
fundamental random error to the predicted value of each simulation. These predictions come from
set levels of the independent variables: the X variables in levels are held at their means and other
variables in differences are held at 0. Users can override this default by specifying a different value for
any variable using forceset. Note that the equation is given time to equilibriate (through the use of
burnin periods) before the independent variable is shocked.

Perhaps the most important argument is shockvar. This is the variable for which the user wants
some sort of inference regarding the effect of an independent variable on the dependent variable: the
response in the dependent variable is created by shocking the shockvar. At time time, the shockvar is
“shocked” by the amount of shockval. This shock is distributed appropriately, as defined by the model
specified. For instance, if the shockvar is entered into the model in lagged levels at time t− 1, that X
variable would be shocked at time +1. Just like in an interactive model, one of the best ways to gain
inferences regarding the effect of X on y is by varying a single X at a single point in time. Accordingly,
only a single shockvar can be specified.

The only thing left to resolve is what to do with our sims. We are not particularly interested in any
individual simulation in any individual time period. Rather, we can get a sense of the central effect of
the shockvar on y by doing some meaningful analysis across the simulations within any time period.
Accordingly, in foo$simulation, dynardl stores the desired summary quantity of interest (either qoi
= "mean" or qoi = "median") of y in each time period. It also stores the lower and upper percentiles
for the 75%, 90% and 95% intervals. Users can add additional intervals with sig. Additionally, users
can specify whether they want predicted values (the average across the simulations within a time
period) or expected values (where each individual simulation essentially averages out fundamental
error). This is through the option expectedval = FALSE or TRUE, respectively; we highly recommend
the former.

Moving back to our substantive example, now that we have our model and found the relationship
to be cointegrating, we move onto interpreting the results through dynamic simulations. Again,
although analytic calculations of short- and long-run effects are possible (c.f., De Boef and Keele, 2008),
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with a multitude of lags and lagged first differences, the ability to interpret the effect on y, given a
change in a regressor, can become even more difficult. One of the easiest ways of getting a sense of the
effect of the shockvar on y is through plotting the simulation results (Tomz et al., 2003; Breunig and
Busemeyer, 2012; Williams and Whitten, 2012; Philips et al., 2015, 2016; Gandrud et al., 2015; Blackwell
and Glynn, 2018; Choirat et al., 2018). To this end, we offer two more functions: area.simulation.plot
and spike.simulation.plot. The only difference is whether an area plot or a spike plot is desired
(both are illustrated below). The arguments for both functions are:

• x, a dynardl model object with a simulation to plot.

• response, whether the the simulated response of the dependent variable should be plotted in
absolute levels of the response, or in changes from the mean value of the dependent variable
(response = "mean.changes"). The default is response = "levels".

• bw, whether the plot should be produced in black and white (for publications) or color. The
default is bw = FALSE (a color plot).

To plot these simulations, all the researcher needs to do is imagine the counterfactual he or she
wishes to investigate. For instance, what is the effect of a 7-percentage-point increase in Income Top 10
on Concern? To examine statistical and substantive significance of this counterfactual, we estimate the
following model below and plot it. Note that users may want to first set a seed in order to ensure that
the plots are reproducible, since the simulations are stochastic. The resulting plot is shown in Figure 1.

set.seed(2059120)
res3 <- dynardl(concern ~ incshare10 + urate, data = ineq,

lags = list("concern" = 1, "incshare10" = 1),
diffs = c("incshare10", "urate"),
lagdiffs = list("concern" = 1),
ec = TRUE, simulate = TRUE,
shockvar = c("incshare10"), shockval = .07)

area.simulation.plot(res3)
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Figure 1: Area plot produced using area.simulation.plot()

The black dotted line shows the predicted value, while the colored areas, from darkest to lightest,
show the 75, 90, and 95 percentiles of the predictions from the simulations, something akin to a credible
interval or confidence interval. The shock to Income Top 10 occurs by default at t = 10, though users
can change this using the time option. If instead we desire a spikeplot, we could type:

spike.simulation.plot(res3)

The resulting plot is shown in Figure 2.

Figures 1 and 2 both illustrate that the immediate effect of a 7-percentage-point increase in Income
Top 10 is to increase Concern by about 4 percentage points. Over time, this effect decays, eventually
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Figure 2: Spike plot produced using spike.simulation.plot()

moving Concern to a new value of 0.56 from its pre-shock mean of 0.58. For clarity: these effects are
produced by estimating the model formula given by the user, taking the estimated coefficients from the
model, drawing a number of simulated coefficients from a multivariate normal distribution with mean
and variance given by the estimated coefficients and variance-covariance from the model, and using
them to predict values of the dependent variable (and incorporating fundamental error by drawing
stochastic terms from σ̂2). It then tracks the response in these predicted values to simulated shifts in
the independent variables. We might also note that the dependent variable could still be responding:
users could increase the range of the simulation time periods to ensure that the dependent variable
has enough time to respond.

Users may have noticed fluctuations in the confidence intervals shown in Figures 1 and 2. This is
due to the stochastic sampling technique used to create these simulations. When using dynardl, users
have the option of increasing the number of simulations performed using the sims option. This should
have the effect of smoothing out period-to-period fluctuations in the confidence intervals, at the cost
of increased computing time.

Additional tools for dynamic analysis with dynamac

dynardl has a number of additional features users may find useful. First, not only is it suitable for
error-correction models; dynardl can model a variety of stationary ARDL processes. To see this, we
show a simple example using data from Durr et al. (2000), who examine how ideological movements
in the United States affect aggregate public support for the Supreme Court. Our model is:

Supreme Court Supportt =α + φ1Supreme Court Supportt−1 + β1Ideological Divergencet+

β2Congressional Approvalt + εt
(9)

where support for the US Supreme Court (1973-1993) (dcalc) is a function of a constant, the lag
of Supreme Court Support, the ideological divergence between the Supreme Court and the public
(Ideological Divergence, iddiv), and the level of Congressional Approval (congapp).22 To estimate this
model using dynardl, we type:

data(supreme.sup)

res4 <- dynardl(dcalc ~ iddiv + congapp, data = supreme.sup,
lags = list("dcalc" = 1),
levels = c("iddiv", "congapp"),
ec = FALSE, simulate = FALSE)

22As stressed in previous sections, stationarity testing is recommended on all dependent and independent
variables before determining whether a stationary or error-correcting ARDL model should be estimated. This is a
stylized example only meant to demonstrate additional capabilities of dynamac.
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[1] "Dependent variable to be run in levels."

Anytime we specify levels, any variables appearing in the list will be included contemporaneously
(i.e., appear at time t without any lags or differences) in the model. As with the error-correction
specification, we can obtain regression results by typing:

summary(res4)

Call:
lm(formula = as.formula(paste(paste(dvnamelist), "~", paste(colnames(IVs),

collapse = "+"), collapse = " ")))

Residuals:
Min 1Q Median 3Q Max

-12.1912 -3.7482 -0.2058 2.6513 11.9549

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 41.6319 11.7367 3.547 0.001078 **
l.1.dcalc 0.2437 0.1352 1.802 0.079758 .
iddiv -5.4771 2.5803 -2.123 0.040535 *
congapp 0.4732 0.1270 3.725 0.000649 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.626 on 37 degrees of freedom
(1 observation deleted due to missingness)

Multiple R-squared: 0.4693, Adjusted R-squared: 0.4263
F-statistic: 10.91 on 3 and 37 DF, p-value: 2.833e-05

As the results show, the lag of Supreme Court Support is only weakly related to Supreme Court
Support. Moreover, as Ideological Divergence grows, Supreme Court Support decreases. In contrast,
as Congressional Approval increases, Supreme Court Support also increases. We can also bring a
substantive interpretation to these effects by again using stochastic simulations. We can investigate
the counterfactual of a 15-percentage-point decrease in Congressional Approval on Supreme Court
Support. Moreover, we demonstrate the difference between the number of simulations used to
generate predictions in Figure 3.

# 1000 sims
res4 <- dynardl(dcalc ~ iddiv + congapp, data = supreme.sup,

lags = list("dcalc" = 1),
levels = c("iddiv", "congapp"),
ec = FALSE, simulate = TRUE,
shockval = -15, shockvar = c("congapp"))

# 15000 sims
res5 <- dynardl(dcalc ~ iddiv + congapp, data = supreme.sup,

lags = list("dcalc" = 1),
levels = c("iddiv", "congapp"),
ec = FALSE, simulate = TRUE,
shockval = -15, shockvar = c("congapp"),
sims = 15000)

par(mfrow = c(2, 1))
area.simulation.plot(res4)
area.simulation.plot(res5)

The effect of the 15-percentage-point decrease in Congressional Approval is about a 10-point
decrease in Supreme Court Support. To uncover this effect, the upper plot uses 1000 simulations, while
the bottom uses 15000 and results in a much smoother measure of uncertainty in predictions across the
simulated timeframe, with only a slight increase in estimation time.23 Of course, it is important to note
that simulations do not lower uncertainty (simulating more values does not decrease the underlying
variance). More simulations just improve and smooth our estimates within each time period.

23For comparison, in this model, 1000 simulations took 3.98 seconds, while 15,000 took 4.12 seconds.
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Figure 3: Effect of a 15-percentage-point decrease in Congressional Approval; 1000 simulations
(default) (top) and 15000 (bottom)

While the default range for simulations is 20 time periods, with a shock occurring at time t = 10—as
shown in Figure 3 for instance—users can change these using the time and range options. In addition,
dynardl offers the ability to set variables at particular values other than their means throughout the
simulation through the option forceset.24 This would be ideal when the mean value is not particularly
intuitive or of substantive interest, such as when dealing with a dichotomous variable. Instead, users
can specify particular values using the option forceset. As an example of this, we re-estimate the
model from above, but extend the total simulation range to t = 50, the shock time to t = 20, and set
both Congressional Approval and Ideological Divergence to their 75th percentiles instead of their
means:

res6 <- dynardl(dcalc ~ iddiv + congapp, data = supreme.sup,
lags = list("dcalc" = 1),
levels = c("iddiv", "congapp"),
ec = FALSE, simulate = TRUE,
shockval = -15, shockvar = c("congapp"),
sims = 15000, time = 20, range = 50,
forceset = list("iddiv" = 0.22, "congapp" = 72))

spike.simulation.plot(res6)

The results of a 15-percentage-point drop in Congressional Approval on Supreme Court Support
are shown in Figure 4. It is clear that there is a relatively quick negative effect on Supreme Court
Support in response to a drop in Congressional Approval, and Supreme Court Support remains at
around 88 for the rest of the time periods.

dynamac also offers a few ancillary functions to help assist in dynamic modeling using autoregres-
sive distributed lag models and dynardl in particular. These include three basic time-series operators
to lag, difference, and lag-difference variables. Users are free to utilize these functions outside of
estimating the models.

For lagging variables, we use lshift(x,l), where x is the variable to be lagged and l is the number
of periods to be lagged. If a user wanted a second lag (that is Xt−2, he or she would use lshift(X,2):

head(ineq$incshare10)
[1] 0.3198 0.3205 0.3198 0.3182 0.3151 0.3175

head(lshift(ineq$incshare10, 2)) # second lag
[1] NA NA 0.3198 0.3205 0.3198 0.3182

For differencing variables, we use dshift(x), where x is the variable to be first-differenced:

24Recall that, by default, variables in levels are set to their means throughout the simulation (unless shocked),
while variables in differences are set to zero.
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Figure 4: Extending the simulation range and using forceset

head(dshift(ineq$incshare10))
[1] NA 0.0007 -0.0007 -0.0016 -0.0031 0.0024

For lag-differencing variables, we use ldshift(x,l), where x is the variable to be lag-differenced
and l is the number of periods for the difference to be lagged. If a user wanted for the difference of X
from two time periods ago (∆Xt−2) to be calculated, he or she would use ldshift(X,2):

head(ldshift(ineq$incshare10, 2))
[1] NA NA NA 0.0007 -0.0007 -0.0016

Additional example: the GDP-energy nexus

As a final example, we model the relationship between a country’s energy consumption and its
economic output. There is a substantial body of literature that focuses on both the short-and long-run
effects between energy and GDP—as well as the directionality of the relationship—making it a prime
candidate for time series analysis (Ozturk, 2010; Tugcu et al., 2012). In fact, a number of articles utilize
the bounds testing approach discussed above (e.g., Odhiambo, 2009; Fuinhas and Marques, 2012).
In the analysis below, we focus on two key variables: the natural log of gross domestic product (in
constant 2010 US dollars) and the log of energy consumption (in million tons of oil equivalent). These
data are for the French economy, measured annually from 1965 to 2017.25 For this example, we assume
that energy consumption, lnenergy, drives GDP, lnGDP_cons2010USD, not the other way around.

As Figure 5 suggests, both series appear non-stationary, with probably a trend as well. Unit-root
tests (not shown) confirm that both series contain a unit root. Therefore, we proceed to estimate an
ARDL model in error-correction form with a deterministic trend, test for cointegration, and interpret
the results.

data(france.data)

res7 <- dynardl(lnGDP_cons2010USD ~ lnenergy, data = france.data,
lags = list("lnGDP_cons2010USD" = 1, "lnenergy" = 1),
diffs = c("lnenergy"), trend = TRUE,
ec = TRUE, simulate = FALSE)

summary(res7)
Call:
lm(formula = as.formula(paste(paste(dvnamelist), "~", paste(colnames(IVs),

collapse = "+"), collapse = " ")))

25GDP data are from the World Bank World Development Indicators. Data on energy
consumption are from the BP Statistical Review of World Energy (June 2018), available at:
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.
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Figure 5: GDP and energy consumption in France, 1965-2017

Residuals:
Min 1Q Median 3Q Max

-0.0262561 -0.0056128 0.0000717 0.0053919 0.0246083

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.995130 1.743518 4.012 0.000214 ***
l.1.lnGDP_cons2010USD -0.283335 0.071552 -3.960 0.000253 ***
d.1.lnenergy 0.257645 0.055622 4.632 2.88e-05 ***
l.1.lnenergy 0.170680 0.048796 3.498 0.001036 **
trendvar 0.003824 0.001063 3.598 0.000769 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01112 on 47 degrees of freedom
(1 observation deleted due to missingness)

Multiple R-squared: 0.6688, Adjusted R-squared: 0.6406
F-statistic: 23.72 on 4 and 47 DF, p-value: 8.84e-11

As is clear from the regression results, there appears to be a fairly slow rate of re-equilibration
when the two series are out of their long-run equilibrium relationship, as shown by the coefficient
on the lagged dependent variable. Moreover, both the first-difference and lag of the log of energy
consumption, as well as the trend variable, are statistically significant. Before proceeding to test for
cointegration, we ensure the residuals are white-noise using dynardl.auto.correlated:

dynardl.auto.correlated(res7)

------------------------------------------------------
Breusch-Godfrey LM Test
Test statistic: 2.563
p-value: 0.109
H_0: no autocorrelation up to AR 1

------------------------------------------------------
Shapiro-Wilk Test for Normality
Test statistic: 0.971
p-value: 0.241
H_0: residuals are distributed normal

------------------------------------------------------
Log-likelihood: 162.789
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AIC: -313.578
BIC: -301.87
Note: AIC and BIC calculated with k = 5 on T = 52 observations.

------------------------------------------------------

The Breusch-Godfrey test suggests there is no residual autocorrelation of order AR(1), and the
residuals are approximately normally distributed. In addition, using the information criteria reported
in dynardl.auto.correlated, we find that the model with a trend term estimated above is more
consistent with the data than one without (these results are not reported here). Given that the model
appears to be well-specified, we proceed to test for cointegration. Note that the program automatically
selects critical values from “Case 5”, an unrestricted intercept and trend:

pssbounds(res7)

PESARAN, SHIN AND SMITH (2001) COINTEGRATION TEST

Observations: 52
Number of Regressors (k): 1
Case: 5

------------------------------------------------------
- F-test -
------------------------------------------------------

<------- I(0) ------------ I(1) ----->
10% critical value 5.8 6.515
5% critical value 6.93 7.785
1% critical value 9.8 10.675

F-statistic = 8.2
------------------------------------------------------
- t-test -
------------------------------------------------------

<------- I(0) ------------ I(1) ----->
10% critical value -3.13 -3.4
5% critical value -3.41 -3.69
1% critical value -3.96 -4.26

t statistic = -3.96
------------------------------------------------------

t-statistic note: Small-sample critical values not provided for Case V.
Asymptotic critical values used.

Since the F-statistic (i.e., the test that all variables appearing in lagged levels are equal to zero) is
larger than the I(1) critical value in the table at the 5% level, we conclude that cointegration between
energy consumption and economic output exists. In addition, the one-sided t-test of the coefficient on
the lagged dependent variable also supports the conclusion of cointegration. Given our model results,
and finding evidence of cointegration, we turn to a substantive interpretation of our findings: what
would be the effect of a one standard deviation decrease in energy consumption on GDP?

res7 <- dynardl(lnGDP_cons2010USD ~ lnenergy, data = france.data,
lags = list("lnGDP_cons2010USD" = 1, "lnenergy" = 1),
diffs = c("lnenergy"), trend = TRUE,
ec = TRUE, simulate = TRUE, shockvar = "lnenergy", shock = -0.2289)

[1] "Error correction (EC) specified;
dependent variable to be run in differences."
[1] "Deterministic linear trend added to model formula."
[1] "dynardl estimating ..."
|==============================================================| 100%

spike.simulation.plot(res7)
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As shown by the spikeplot in Figure 6, the pre-shock (i.e., any prediction before t = 10) values are
consistently increasing over time; this is due to the trend term. At t = 10, the one standard deviation
decrease in energy consumption occurs. This effect does not result in a statistically significant decrease
in the contemporaneous period, but continues to lower GDP until two periods after the shock occurs.
Moreover, it is not until 10 years after this hypothetical shock that GDP returns to its pre-shock level.
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Figure 6: The effect of a one standard deviation decrease in energy consumption on economic growth

Conclusion

In this paper we have introduced dynamac, a suite of functions designed to assist applied time
series analysts. This centers around dynardl, a multipurpose function to estimate autoregressive
distributed lag models. This flexible program models both stationary ARDL relationships as well as
cointegrating ones, and it allows users to easily change model specifications (e.g., lags, differences, and
lag-differences). We also include two post-estimation diagnostic commands to check for white-noise
residuals and cointegration. Last, through several applied examples we have shown the advantages of
dynamic simulation for interpreting the substantive significance of the results of single-equation time
series models, something users can easily do using dynamac.

There are a number of interesting potential future research areas. Most useful would be extending
ARDL modeling to the panel context. While other packages are designed to handle multiple panels
(c.f., Gandrud et al., 2016), the ability to incorporate models that account for unit heterogeneity, such
as random or fixed intercepts, would prove useful to users. In addition, adding the ability to estimate
alternative models in the dynamic panel data context, such as those that account for causal feedback
and time-varying covariates (Blackwell and Glynn, 2018), or generalized method of moments (GMM)
estimators, would also assist practitioners.
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The politeness Package: Detecting
Politeness in Natural Language
by Michael Yeomans, Alejandro Kantor, Dustin Tingley

Abstract This package provides tools to extract politeness markers in English natural language. It
also allows researchers to easily visualize and quantify politeness between groups of documents.
This package combines and extends prior research on the linguistic markers of politeness (Brown
and Levinson, 1987; Danescu-Niculescu-Mizil et al., 2013; Voigt et al., 2017). We demonstrate two
applications for detecting politeness in natural language during consequential social interactions—
distributive negotiations, and speed dating.

Introduction

Politeness is a universal dimension of human communication (Goffman, 1967; Lakoff, 1973; Brown
and Levinson, 1987). In practically all settings, a speaker can choose to be more or less polite to
their audience, and this can have consequences for the speakers’ social goals. Politeness is encoded
in a discrete and rich set of linguistic markers that modify the information content of an utterance.
Sometimes politeness is an act of commission (for example, saying “please” and “thank you”) <and
sometimes it is an act of omission (for example, declining to be contradictory). Furthermore, the
mapping of politeness markers often varies by culture, by context (work vs. family vs. friends),
by a speaker’s characteristics (male vs. female), or the goals (buyer vs. seller). Many branches of
social science might be interested in how (and when) people express politeness to one another, as one
mechanism by which social co-ordination is achieved.

The politeness package is designed to make it easier to detect politeness in English natural
language, by quantifying relevant characteristics of polite speech, and comparing them to other data
about the speaker. For example, researchers may want to know whether politeness is associated with
some situational or trait-level covariate (text as description). Or researchers might want to know
whether people respond differently to polite rather than impolite language (text as treatment). Or
they might want to know how an intervention affects the production of politeness (text as outcome).
Finally, all of these analytical approaches can coalesce to support a theoretical model in which speakers
strategically choose their politeness as a way to affect their audience’s behavior (text as mediator).

Politeness typically draws from a common pool of linguistic markers for social co-ordination
between speaker and listener. But the weight and valence of each marker depends on the context.
Thus, we do not try to provide a single “politeness dictionary” for all contexts. Instead our approach
draws from common methods in computational linguistics that use algorithms to select from a curated
set of features. (Manning and Schütze, 1999; Grimmer and Stewart, 2013; Jurafsky and Martin, 2014).
That is, we draw on existing linguistic theory to calculate a wide set of potentially relevant features
from the text. But we then estimate the weights on those features empirically, defining politeness
using some ground truth label—from a randomized treatment, or the listener, or a third party, or the
speaker herself. We then use a supervised machine learning algorithm as a context-specific model
of politeness: to classify unlabeled documents, and to characterize the nature of how politeness is
expressed in the domain of interest.

Our software contributes to a rich ecosystem of general text analysis packages in R. This includes
structuring raw text (e.g. tidytext, tm, quanteda, coreNLP, spacyR), sentiment analysis (e.g., tidytext,
SentimentAnalysis, syuzhet), and topic modeling (topicmodeling, stm). We incorporate some of
these packages in our own work. Our package is the first in R to study politeness specifically, and also
one of the first to focus on linguistic pragmatics more broadly. By focusing on the turn-level syntactic
structure in natural language, our work is complementary to (and distinct from) existing work that
primarily focuses on semantic content, such as identifying trends in topics or emotions over large
corpora.

In this paper we also work through two important applications of politeness detection in social
science. First, we measure manipulated politeness as a treatment effect in an experiment in which
writers were instructed to write offers for a phone on craigslist.com, in a style that was high (or low)
in politeness. This was used to validate a psychometric construct across several studies. Second, we
measure observed politeness as a context-specific and naturally-occurring construct in a dataset on
speed-dating. This was used to understand the meaning of politeness from different perspectives.
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Politeness workflow

The politeness package provides functions to identify politeness markers in natural language, graph-
ically compare these to covariates of interest, develop a supervised model to detect politeness in
new documents, and inspect high- and low-politeness documents. Table 1 summarizes the main
functions of the politeness package. A full description of the functions is available in the package
documentation.

Function Description

politeness() Detects linguistic markers of politeness in natural language. Takes an N-length
vector of text documents and returning an N-row data.frame of feature counts.
Some politeness features depend on grammatical parsing.

politenessPlot() Plots the prevalence of politeness features over a set of documents. Highlights
differences in politeness across covariate.

politenessProjection() Training and projecting a regression model of politeness based on a binary or
continuous variable. Supports both glmnet and textir, with LASSO as the default.

findPoliteTexts() Finds examples of most or least polite texts in a corpus from a covariate identifying
politeness scores of texts.

Table 1: Politeness functions.

These tools can be combined in a workflow that we believe will be useful to most researchers
interested in linguistic politeness. First, we offer a function, politeness() that will calculate a set of
linguistic features that have been identified in the past as relating to politeness. Second, we offer a
function, politenessPlot() to visualize these counts, in comparison to a covariate related to politeness
(e.g., treatment/control). If the researcher wants to generate a politeness classifier, they can do so using
the politenessProjection() function, which creates a single mapping from the politeness features in
the supplied text to some other measure of interest. In particular, if the researcher has some “ground
truth” labels of politeness over a set of texts, they can use this function as a politeness classifier, and
automatically assign politeness scores to many more new texts.

Politeness features

Broadly speaking, the space of politeness features is guided by a rich literature on the linguistics of
politeness (Goffman, 1967; Lakoff, 1973; Brown and Levinson, 1987). In general, politeness in language
is designed to pay face to the listener, so that they feel respected. And while the linguistic markers
of politeness vary from situation to situation, there are two common themes in most polite speech:
Positive Politeness, and Negative Politeness.

Positive politeness involves actively bolstering the listener’s self-image (showing gratitude, identi-
fying as an in-group member, paying complements) as well as not derogating that image (complaints,
cursing, informal titles, and so on). Negative Politeness involves respecting the listener’s autonomy.
This involves a general softening of statements, using hedges and adverbs. Requests may also be
tempered, using indirect subjunctive language, and apologizing. Alternatively, speakers may express
low negative politeness by making bare commands and being contradictory.

These elements are all included in this package as part of the politeness() function, which
tallies 36 separate politeness markers (summarized in Table 2, along with examples of each.). Many
are translated directly from recent research on the computational linguistics of politeness (Danescu-
Niculescu-Mizil et al., 2013; Voigt et al., 2017). We collected all of the features from these two papers,
and removed a few that were very contextually specific (e.g., “keep your hands on the wheel" for
drivers). However as we demonstrate below, many kinds of context-specific features can be helpful,
and we show how to add them to the feature set manually.

The features in the politeness detector are summarized in in Table 2. We refer interested users to
the original papers for details on the design of each feature. All features involve counting matches
to a pre-defined list, which includes some combination of individual words, word stems, adjacency
pairs, dependency pairs, part-of-speech-tags. Additionally, some features distinguish whether a match
is found at the beginning of a sentence or not. Some (e.g., positive or negative emotion) include
hundreds of possible matches; while others (e.g., "for you") are defined by a single phrase.

library(politeness)

data("feature_table")
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feature_table

Feature Name POS Tags Description Example

Hello No "hi", "hello", "hey" "Hi, how are you today?"
Goodbye No "goodbye", "bye", "see you later" "That’s my best offer. Bye!"
Please Start Yes Please to start sentence "Please let me know if that works"
Please Both Please mid-sentence "Let me know if that works, please"
Gratitude Both "thank you", "i appreciate", etc. "Thanks for your interest"
Apologies Both "sorry", "oops", "excuse me", etc. "I’m sorry for being so blunt"
Formal Title No "sir", "madam", "mister", etc. "Sir, that is quite an offer."
Informal Title No "buddy", "chief", "boss", etc. "Dude, that is quite an offer."
Swearing No Vulgarity of all sorts "The dang price is too high"
Subjunctive No Indirect request "Could you lower the price?"
Indicative No Direct request "Can you lower the price?"
Bare Command Yes Unconjugated verb to start sentence "Lower the price for me"
Let Me Know No "let me know" "Let me know if that works"
Affirmation Yes Direct agreement at start of sentence "Cool, that works for me"
Conjunction Start Yes Begin sentence with conjunction "And if that works for you"
Reasoning No Explicit reference to reasons "I want to explain my offer price"
Reassurance No Minimizing other’s problems "Don’t worry, we’re still on track"
Ask Agency No Request an action for self "Let me step back for a minute"
Give Agency No Suggest an action for other "I want to let you come out ahead"
Hedges No Indicators of uncertainty "I might take the deal"
Actually Both Indicators of certainty "This is definitely a good idea."
Positive No Positive emotion words "that is a great deal"
Negative No Negative emotion words "that is a bad deal"
Negation No Contradiction words "This cannot be your best offer"
Questions No Question words to start sentence "Why did you settle on that value?"
By The Way No "by the way" "By the way, my old offer stands"
Adverbial Just Yes modifying a quantity with "just" "It is just enough to be worth it"
Filler Pause No Filler words and verbal pauses "That would be, um, fine"
For Me No "for me" "It would be great for me"
For You No "for you" "It would be great for you"
First Person Plural No First-person plural pronouns "it’s a good deal for both of us"
First Person Single Both First-person singular mid-sentence "It would benefit me, as well"
Second Person Both Second person mid-sentence "It would benefit you, as well"
First Person Start Yes First-person singular to start sentence "I would take that deal"
Second Person Start Yes Second-person to start sentence "You should take that deal"
Impersonal Pronoun No Non-person referents "That is a deal"

Table 2: Politeness features detected by politeness(). Features that have “No” in the POS Tags
column require part-of-speech (POS) tagging; where as those with “Both” can be approximated with
out POS tagging, but POS tagging is recommended.

Parsing grammar

The meaning of a sentence often depends not just on its constituent words, but also on its grammatical
structure. This is useful for words that can have different meanings, such as the adverbial "just" in
"it is just enough" compared to the adjectival use in "the decision was just". Politeness can also be
expressed in the grammatical structure itself (e.g., the unconjugated verbs in bare commands like "give
me that!"). This information is lost in in bag-of-words analyses that do not label the sentence structure,
or ignore word order.

As of this writing, there was no available grammar parsing software available wholly within
the R language. Instead, we build off one of the most powerful natural language processing tools
available currently—the Python module SpaCy (Honnibal and Johnson, 2015). It is open-source, fast,
accurate, and well-benchmarked. We use spacyr (Benoit and Matsuo, 2017) to connect to SpaCy and
take advantage of their pretrained models to identify the grammatical structure of each document.
The current SpaCy model en_core_web_sm is a Convolutional Neural Network trained on OntoNotes,
a large corpus comprising of news, conversational telephone speech, weblogs, usenet newsgroups,
broadcast, and talk shows texts. Prior to using spacyr, users must install SpaCy in Python. As of
spacyr version 0.9.6, this spacy installation can be detected automatically on the user’s computer by
spacyr when it is first called.1

1For advanced users, including those who may have multiple Python installations, you may have to initialize
the SpaCy engine first, so that it is ready for use during the session. That is done using a separate function
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Many of the politeness features can be calculated without grammar parsing by setting parser="none".
We recommend this as an initial first step for researchers, without having to install SpaCy. At this
reduced setting, some features are dropped entirely (e.g., Bare Commands are a specific verb class).
However, some features are approximated. For example, tags allow users to differentiate between a
mid-sentence “please” and a “please” to start a sentence, while the tagless version of the function will
collapse them into a single feature.

Detecting politeness features

The function politeness() takes in an n-length vector of texts, and returns an n-by-f data.frame, with
f columns corresponding to the number of calculated features. We note that our package does not
perform any spell- or grammar-checking on the text—though these kinds of errors can degrade the
fidelity of the information in the text. Instead, we recommend that users do this on their own—either
in R, using another package like hunspell, or else using other software or by hand.

There are 36 features in total (see Table 2), but some user options affect the number of features that
are returned. For one, if a part-of-speech tagger is not used (by setting parser = "none") then some
features that depend on these tags will not be calculated, as detailed in Table 2. Additionally, you may
use the default setting drop_blank = TRUE which will remove features that were not detected in any
of the texts.

For example, consider the following texts.

library(politeness)

texts <- c("Hello, you", "You")

politeness() with parser="none" (default) will identify that both texts contain the feature Sec-
ond.Person and that only the first contains Hello.

df_politeness <- politeness(texts, parser="none", drop_blank = TRUE)
df_politeness

Hello Second.Person
1 1 1
2 0 1

In order to get the full feature space we use parser="spacy". Now politeness() differentiates
between the features Second.Person.Start (which captures the pronoun as a sentence subject) and
Second.Person (which captures the pronoun as a sentence object) as shown below.

df_politeness <- politeness(texts, parser="spacy", drop_blank = TRUE)
df_politeness

Hello Second.Person.Start Second.Person
1 1 0 1
2 0 1 0

The examples above are very short, in practice longer sentences will use features multiple times
(e.g., positive words). Setting metric="count" will populate each cell with the raw count of each
feature in the text. Alternatively, metric="binary" will return a binary indicator of the presence
or absence of each feature. Finally, metric="average" will count the prevalence of features as a
percentage of the word count of each document. This is useful as a robustness check when there is
wide variance in document length. For example take the following two texts (this data, borrowed
from (Jeong et al., 2018) is included in the package):

data("phone_offers")
texts <- phone_offers$message[c(21,25)]
texts

(‘spacyr::spacy_initialize(python_executable = PYTHON_PATH)’—make sure to substitute in your preferred
Python path name) and is explained well in the spacyr documentation.
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[1] "Hi I am very interested in your phone. It is exactly what I have been looking for.
I would like to offer you 115 for it. It would make me very happy to buy the phone today."

[2] "Hi, I hope your day is going well. I am very pleased to see the phone you are offering
for sale, as it is exactly what I need! I am on a very tight budget so I hope that you will
be willing for accept $115 for the phone. It is the most I can pay. Please know that I
would be so happy if I am able to buy this phone. I'm sorry that I can't offer more.
If you are willing to accept my offer, perhaps I can do you a small favor as well, like
mow your lawn or something. In any case if you accept my offer you would have my sincere
and heartfelt gratitude. Whether you accept my offer or not, I hope that this
message finds you and yours well and happy. I hope you have a great day. :)"

Given a subset of features we observe the following counts.

features <- c("Positive.Emotion", "Impersonal.Pronoun","First.Person","Second.Person",
"Negative.Emotion")

df_politeness <- politeness(texts,drop_blank = TRUE)
df_politeness[ , features]

Positive.Emotion Impersonal.Pronoun First.Person Second.Person Negative.Emotion
1 2 4 3 2 0
2 14 10 17 12 1

Although both texts have similar politeness features, the longer text contains larger count values.
The option metric="binary", on the other hand, will return a simplified result with a 1 if the feature
is present in the text as shown below.

df_politeness <- politeness(texts, metric="binary",drop_blank = TRUE)
df_politeness[ , features]

Positive.Emotion Impersonal.Pronoun First.Person Second.Person Negative.Emotion
1 1 1 1 1 0
2 1 1 1 1 1

Plotting politeness features

The politenessPlot() function combines the politeness feature matrix with another measure of
substantive interest that might covary with the prevalence of some of the politeness features—in
particular, a ground-truth measure of politeness from annotation or assignment to treatment. This
function generates a horizontal bar plot (with 95% confidence intervals) of feature prevalence among
two groups of documents.

The function can handle any kind of politeness metric (counts, binary, or averaged), but that
distinction must be made in the initial call to politeness(). Below, we plot the politeness features
from a feature count matrix in Figure 1, and a binary feature matrix in Figure 2.

The order of the bars themselves are sorted automatically, and determined by calculating the
variance-weighted log odds of each feature with respect to the binary covariate. Many covariates are
continuous. By default, this package treats the top and bottom terciles of that distribution as binary
categories, with the middle tercile dropped. Users can also create their own categories beforehand,
and enter those labels in place of the covariate.

Often some features are not meaningful for further analysis – either because they are too rare in
the data, or else because they do not meaningfully covary with the covariate of interest. Users have
two options to exclude these from the plot. First, the drop_blank parameter can remove rare features –
it takes a number between 0 and 1, which determines a cut-off based on prevalence. Specifically, all
features which appear in less than this proportion of texts are excluded from the plot. To include all
features, leave this value at 0.
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Second, the middle_out parameter can remove features which do not vary meaningfully across
the covariate. Each feature is evaluated using a two-sample t.test, and features are removed when the
p-value of this test lies above the user’s provided cut-off, a number between 0 and 1 (the default is 0.1).
To include all features, simply set this value at 1.

df_politeness_count <- politeness(phone_offers$message,
parser="none",
drop_blank=FALSE)

politenessPlot(df_politeness_count,
split=phone_offers$condition,
split_levels = c("Tough","Warm"),
split_name = "Condition")

Positive.Emotion

Second.Person

Questions

Gratitude

Actually

First.Person

Hello

Subjunctive

Negative.Emotion

Impersonal.Pronoun

Give.Agency

For.You

Please

Ask.Agency

Hedges

Negation

0.1 0.5 1 2
Average Feature Use per Document

Condition Tough Warm

Figure 1: Politeness plot showing for each feature the average use per document in square root scale.
Features are ordered by their variance-weighted log odds. This can accommodate any metric for the
politeness features (count, binary, average) but that must be set in the call of politeness() before the
data.frame is passed the plot function.

df_politeness_binary <- politeness(phone_offers$message,
parser="none",
metric="binary",
drop_blank=FALSE)

politenessPlot(df_politeness_binary,
split=phone_offers$condition,
split_levels = c("Tough","Warm"),
split_name = "Condition")
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Hello

Subjunctive

Negative.Emotion

Give.Agency
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Hedges

Ask.Agency

Second.Person

First.Person

Negation

0% 25% 50% 75% 100%
Percentage of Documents Using Feature

Condition Tough Warm

Figure 2: Politeness plot showing percentage of documents showing each feature. Features are ordered
by their variance-weighted log odds. In order to plot the percentage of documents showing each
feature metric="binary" must be set in the call of politeness().

Projecting politeness features

Users can generate a politeness classifier with the politenessProjection() function. This creates a
single mapping from the politeness features in the supplied text to the covariate of interest. This can
then be used to predict the covariate itself in held-out texts. In particular, if the user has some "ground
truth" labels of politeness over a set of texts, they can use this function as a politeness classifier, and
automatically assign politeness scores to many more new texts. This ground truth can be labelled
by annotators in observational data, or, as in our example below, generated from a randomized
experiment in which the text itself is the outcome.

This function is a wrapper around supervised learning algorithms. The default uses glmnet
(Friedman et al., 2010), the vanilla LASSO implementation in R. We also allow users to use a different
algorithm, textir (Taddy, 2013), which implements a massively multinomial inverse regression.
Intuitively, this model represents a more realistic causal structure to text-plus-covariate data – that is,
the metadata is typically an ex ante property of the speaker that has a causal effect on the words they
use, rather than the words having a causal effect on the speaker’s metadata. Both packages have their
merits, though for now we recommend using glmnet to start, especially if its use is familiar.

In addition to the phone_offers dataset, we have included a smaller bowl_offers dataset (also
from (Jeong et al., 2018)). Participants in this study were given similar instructions (i.e., communi-
cate in a warm or tough style) but for a different negotiation exercise. We use the phone_offers
dataset to define the construct of interest, and use the bowl_offers dataset as held-out data in
politenessProjection(). The results confirm that the manipulation in the held-out data induced
more politeness in one condition than the other.

In addition to the projected labels for the new documents, politenessProjection() also returns
the coefficients estimated in the model. This provides some transparency regarding the exact functional
form of politeness being generated. However, we caution users that the coefficients are chosen
to maximize the prediction accuracy of the model of the whole, rather than recovering the "true"
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coefficient for any particular feature. In particular, these models may not reflect the first-order
relationships in the data, especially when many relevant features are colinear with each other.

df_polite_train <- politeness(phone_offers$message, drop_blank=FALSE)

df_polite_holdout <- politeness(bowl_offers$message, drop_blank=FALSE)

project <- politenessProjection(df_polite_train,
phone_offers$condition,
df_polite_holdout)

t.test(project$test_proj[bowl_offers$condition==0],
project$test_proj[bowl_offers$condition==1])

t = -6.4515, df = 66.914, p-value = 1.439e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.4216472 -0.2223876
sample estimates:
mean of x mean of y
0.2217517 0.5437691

project$train_coefs

Positive.Emotion Negative.Emotion Negation Informal.Title
0.49911207 0.38236159 -1.04272459 0.10637694
Subjunctive For.You Give.Agency Hello
0.92618688 0.11704362 0.48516687 0.60900150

First.Person.Plural Questions Gratitude Actually
-0.52233935 1.32231435 0.69019865 1.34960715

Please First.Person.Single Second.Person
0.04522580 0.03072077 0.03484301

We consistently recommend that researchers build a context-specific model of politeness for their
own datasets, using labeled examples from within-domain. However, some new users may want to
try this workflow before deciding whether to hand-label new documents in their own domain. In that
case, users can follow the example above to build a rudimentary out-of-the-box politeness classifier
with the phone_offers dataset and the politenessProjection() function). This analysis assumes
that the rules of politeness in the user’s domain are identical to the rules of politeness in negotiations,
which may or may not hold.

Finding examples of polite and impolite documents

Before users apply any output from the politenessProjection() function to other analyses, they
should first be curious about examples of texts that best represent the distinction made by that
projection (i.e., the most- or least-typically polite texts()). The findPoliteTexts() function replicates
the analyses of politenessProjection but instead returns a selection of the texts that are the most
extreme (i.e., high, or low, or both) along the projected dimension. The parameters type and num_docs
allow users to specify the type and number of texts that are returned.

set.seed(111)

fpt_most <- findPoliteTexts(phone_offers$message,
df_polite_train,
phone_offers$condition,
type="most",
num_docs=2)

fpt_least <- findPoliteTexts(phone_offers$message,
df_polite_train,
phone_offers$condition,
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type="least",
num_docs=2)

fpt_most$text

[1] Hello, Oh my goodness, I'm so excited to see your listing. The phone is EXACTLY
what I have been searching for! And I can tell from your description and the photo
that it's just perfect, too. I can almost hear it ringing in my pocket right now!
What's that? Hello? So, happy to hear from you. Sorry, sorry. I'm getting ahead of
myself.
Soooo, I was wondering if there was any way that you might consider taking a little bit
less for this phone? It's absolutely everything I've been looking for but my bosses
&lt; grrrrr!!!&gt; will only give us $115 to get this phone. I know! Can you believe
it? Is there any way you could absolutely make my day and say ""yes"" to $115? I'd
be so, so grateful. Just let me know when you can. Thanks so much. :)

[2] Hello, I am glad you're selling this phone. Is it still available? I would love to
purchase it. Would you consider $115 for it? I can buy it today if that price works.
Thank you.

fpt_least$text

[1] I am inquiring about your Iphone 6 plus that you had posted. I am wanting to buy
and I have cash in hand. The max amount I can offer is $115. No more, no less.
Let me know.

[2] Come on. The price you are offering on a product that ISN'T NEW is unreasonable.
Now, I for one am very interested in getting this item. BUT, I will only pay $115.
I am not paying a penny more.

Execution time

In principle, these functions can handle an arbitrarily large set of documents. In practice, however,
language data can be quite large, both in the amount of documents and the length of the documents.
This can have a marked effect on execution time, especially on smaller computers.

In order to reduce computation time, we use data.table (Dowle and Srinivasan, 2017) and quanteda
(Benoit et al., 2018) in the backend which have fast implementations of data manipulation. We also
analyzed the execution time of intermediate steps within politeness() to identify any potential
critical points.

To provide rough benchmarks, we ran the politeness() function with a range of document counts
(102, 103, 104) and lengths (100, 200). The tests were performed using a 2012 Macbook Pro with a 2.5
GHz Intel Core i5. For each case we ran it three times, both with and without part-of-speech tagging,
and the resulting execution times are plotted below.

Figure 3 shows that politeness() scales reasonably well for large sets of documents. For example,
given 200-word documents, and using the spacy parser, we found that 100 and 1,000 length vectors
of texts take an average of 7.3 and 70.6 seconds, respectively. We recommend that for larger corpora,
researchers test the code on smaller subsets first.

A common and complex situation is when text is broken up into many documents per observation.
One example of this would be a conversation transcript, in which people take many turns over a single
conversation, but the covariates are measured at the level of the person, or conversation. In these
cases, we recommend calculating the politeness markers in individual documents separately, and then
aggregated into person-level counts afterwards, for plotting, analysis, and model-building. This will
be more efficient and more accurate than concatenating each person’s turns into one long document
and calculating the politeness of the entire text at once.
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Figure 3: Execution time of politeness() with different number of texts, length of texts, and parsers.

Extended Example: Politeness in Speed Dating

We demonstrate the broader applications of our package in a new context: courtship, in face-to-face
conversation with many turns per speaker. This example comes from the SpeedDate corpus (originally
published in (Ranganath et al., 2009; McFarland et al., 2013). Here, politeness is not a treatment effect.
Instead, we model the naturally-occurring variation in politeness (as rated by listeners) during a series
of speed dating events. Furthermore, we highlight the context-specificity of politeness—we compare
the linguistic markers of politeness in both female speakers (as rated by men) and male speakers (as
rated by women), while holding constant the domain, the outcome measure, and the conversation
itself.

The data were collected over three evenings, in which 110 heterosexual participants each met with
15-20 other potential partners for four minutes at a time. The main observations are gathered from
each dater, from a survey immediately after their date. For privacy reasons, we cannot include the text
of the dates themselves. However, we do include the matrix of politeness features as calculated by the
politeness() function.

Note that the original function call treats each turn in the dataset as a separate document, to
produce a one-row-per-turn matrix. So to analyze these data within our framework we need to
condense the politeness feature matrix to the same one-row-per-person-date level. To do this here, we
loop through each row of the per-person-date data, and add up the counts from the relevant section of
the per-turn database.

load("speedDateDates.rdata")
load("speedDateTurns.rdata")

id.vars<c("selfid","otherid","turn","span","group")
polite.cols<-names(speedDateTurns)[!names(speedDateTurns) %in% id.vars]
speedDateDates[,polite.cols] <- NA
for (o in 1:nrow(speedDateDates)) {
matched.rows<-(speedDateTurns$selfid==speedDateDates[o, "otherid"])

& (speedDateTurns$otherid==speedDateDates[o, "selfid"])
speedDateDates[o,polite.cols] <- colSums(speedDateTurns[matched.rows,polite.cols],

na.rm=T)
}

We wanted to include extra domain-specific features, to capture elements of live face-to-face
conversation. These were calculated separately, and merged into the politeness feature matrix. First,
we counted moments of laughter, which were indicated by the transcribers. We also included repair
questions (e.g., "pardon?") using a list from Ranganath et al. (2009). Finally, we included four kinds
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Followup.Qs Switch.Qs Intro.Qs Mirror.Qs Repair.Qs Laughter
Spoken by Women 4.04 2.89 0.26 1.85 0.13 4.42
Spoken by Men 5.11 3.51 0.38 1.73 0.17 1.83

Table 3: Prevalence of features added to politeness detector, by gender.

of question types from Huang et al. (2017)—switch questions, which change the topic; follow-up
questions, which expand on the current topic; introductory questions, which open a dialogue; and
mirror questions, in which one person returns a question that they had just been asked. By merging
these six extra features into the politeness feature matrix, downstream functions will treat them as
though they were part of the original feature set.

extra_names<-c(paste0(c("Followup", "Switch", "Intro", "Mirror", "Repair"), ".Qs"),
"Laughter")

extras<-rbind(round(colMeans(speedDateDates[(speedDateDates$sex==1),extra_names]), 2),
round(colMeans(speedDateDates[(speedDateDates$sex==0),extra_names]), 2))

row.names(extras)<-c("Spoken by Women (to Men)", "Spoken by Men (to Women)")

extras

Immediately after each date, both participants evaluated their partner on a set of dimensions. The
one most relevant for our purposes was the question “how courteous was your partner", which was
rated on a scale from 1-10 (plotted in Figure 4). We use this as a ground truth measure of politeness.
Because politeness was measured (not manipulated) we must dichotomize the continuous variable
into two groups. We drop the middle third of medium-courtesy dates and compare the dates that
were rated as most and least rude, to increase contrast. For clarity we do this manually in the example
below, but the package also does this automatically if the provided labels are on a continuous scale.

speedDateDates$politeness <- ""
speedDateDates$politeness[speedDateDates$courtesy > 8] <- "Courteous"
speedDateDates$politeness[speedDateDates$courtesy < 6] <- "Rude"
speedDateDates<-speedDateDates[speedDateDates$politeness != "", ]

Figure 4: Distribution of rated courtesy in SpeedDate corpus.

Finally, we wanted to know whether the rules by which politeness is judged were different for men
and for women. The average courtesy rating of men by women was slightly lower than that of the
women by men. But these summary ratings do not tell us anything about how rudeness or courtesy
is determined. Instead, we apply the politenessPlot() function among each gender separately to
determine gender-specific models for how politeness is related to the linguistic choices of the speaker.

politenessPlot(speedDateDates[(speedDateDates$sex==1),
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c(polite.cols, extra_names)],
split=speedDateDates$politeness[(speedDateDates$sex==1)],
split_name="Ratings of Women (by Men)",
top_title="",
middle_out=0.1)

politenessPlot(speedDateDates[(speedDateDates$sex==0),
c(polite.cols, extra_names)],
split=speedDateDates$politeness[(speedDateDates$sex==0)],
split_name="Ratings of Men (by Women)",
top_title="",
middle_out=0.1)

Figure 5: Politeness markers in speed-dating by speaker gender.
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The results in Figure 5 demonstrate that the rules for what is considered polite behavior from
a man or a woman can be quite different, even the same conversation. Men laugh less often than
women, overall; but when they do laugh it is associated with courtesy by their partner. Men who
are considered rude tend to give formal goodbyes as they are leaving, and more often respond to
a question by mirroring it back to their partner. On the other hand, women are seen as rude when
they contradict, or when they ask questions (in particular, topic-switching questions) but are seen
as polite when they reveal more about themselves—the "actually" feature captures pivots to greater
detail, such as "in fact" or "to be honest." Interpreting these features can be difficult without the text
in hand, though, and users are encouraged to incorporate qualitative analyses of their own data, in
addition to the analyses provided here.

We note that the differences in feature use between polite and impolite daters (of both genders)
are not as stark in this example as in the negotiation study. This is for two reasons. First, the variation
in politeness is naturally occurring, rather than induced by a randomized treatment. Contrasts will be
greater when writers are instructed and able to adopt a particular communication style. Secondly, the
speed daters communicated face-to-face, so there could be other sources of information that would
affect the listener’s rating of a speaker’s politeness (such as intonation, body language, pacing, and so
on). In datasets where they are measured, these other features could be added to the workflow in the
same way as the extra text-based features above.

Conclusions

We detail an empirical model of politeness, as codified in the politeness package. We use simple
examples to show the range of output from the politeness() and politenessPlot() functions. We
also show how politenessProjection() can be used to develop a domain-specific supervised model
for politeness, which can be used by findPoliteTexts() to identify and explore distinctive documents.
We also work through two examples of consequential politeness—as manipulated amongst negotiators,
and as observed amongst speed daters—that highlight many challenges that are common for all sorts
of research in R that uses natural language data from social interactions.

The tools presented here should be useful for all researchers who study how people interact with
one another, across a wide variety of contexts. In future work, we hope to expand this toolkit to
handle a wider range of politeness markers that are not present in proper written english (including
shorthand, slang, nonverbals, and other languages). Further research is also needed into the extent
to which the markers of politeness can vary from one context to another, and the consequences of
politeness on interpersonal relations.
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ShinyItemAnalysis for Teaching
Psychometrics and to Enforce Routine
Analysis of Educational Tests
by Patrícia Martinková, Adéla Drabinová

Abstract This work introduces ShinyItemAnalysis, an R package and an online shiny application for
psychometric analysis of educational tests and items. ShinyItemAnalysis covers a broad range of psy-
chometric methods and offers data examples, model equations, parameter estimates, interpretation of
results, together with a selected R code, and is therefore suitable for teaching psychometric concepts
with R. Furthermore, the application aspires to be an easy-to-use tool for analysis of educational
tests by allowing the users to upload and analyze their own data and to automatically generate
analysis reports in PDF or HTML. We argue that psychometric analysis should be a routine part of
test development in order to gather proofs of reliability and validity of the measurement, and we
demonstrate how ShinyItemAnalysis may help enforce this goal.

Introduction

Assessments that are used to measure students’ ability or knowledge need to produce valid, reliable
and fair scores (Brennan 2006; Downing and Haladyna 2011; AERA, APA and NCME 2014). While
many R packages have been developed to cover general psychometric concepts (e. g. psych (Revelle,
2018), ltm (Rizopoulos, 2006)) or specific psychometric topics (e. g. difR (Magis et al., 2010), lavaan
(Rosseel, 2012), see also Psychometrics), stakeholders in this area are often non-programmers and
thus, may find it difficult to overcome the initial burden of an R-based environment. Commercially
available software provides an alternative but high prices and limited methodology may be an issue.
Nevertheless, it is of high importance to enforce routine psychometric analysis in development and
validation of educational tests of various types worldwide. Freely available software with user-friendly
interface and interactive features may help this enforcement even in regions or scientific areas where
understanding and usage of psychometric concepts is underdeveloped.

In this work we introduce ShinyItemAnalysis (Martinková et al., 2018a) - an R package and an
online application based on shiny (Chang et al., 2018) which was initially created to support teaching
of psychometric concepts and test development, and subsequently used to enforce routine validation
of admission tests to Czech universities (Martinková et al., 2017). Its current mission is to support
routine validation of educational and psychological measurements worldwide.

We first briefly explain the methodology and concepts in a step-by-step way, from the classical
test theory (CTT) to the item response theory (IRT) models, including methods to detect differential
item functioning (DIF). We then describe the implementation of ShinyItemAnalysis with practical
examples coming from development and validation of the Homeostasis Concept Inventory (HCI,
McFarland et al., 2017). We conclude with discussion of features helpful for teaching psychometrics,
as well as features important for generation of PDF and HTML reports, enforcing routine analysis of
admission and other educational tests.

Psychometric models for analysis of items and tests

Classical test theory

Traditional item analysis uses counts, proportions and correlations to evaluate properties of test items.
Difficulty of items is estimated as the percentage of students who answered correctly to that item.
Discrimination is usually described as the difference between the percent correct in the upper and
lower third of the students tested (upper-lower index, ULI). As a rule of thumb, ULI should not
be lower than 0.2, except for very easy or very difficult items (Ebel, 1954). ULI can be customized
by determining the number of groups and by changing which groups should be compared: this is
especially helpful for admission tests where a certain proportion of students (e. g. one fifth) are usually
admitted (Martinková et al., 2017).

Other traditional statistics for a description of item discrimination include the point-biserial
correlation, which is the Pearson correlation between responses to a particular item and scores on the
total test. This correlation (R) is denoted RIT index if an item score (I) is correlated with the total score
(T) of the whole test, or RIR if an item score (I) is correlated with the sum of the rest of the items (R).
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In addition, difficulty and discrimination may be calculated for each response of the multiple choice
item to evaluate distractors and diagnose possible issues, such as confusing wording. Respondents are
divided into N groups (usually 3, 4 or 5) by their total score. Subsequently, the percentage of students
in each group which selected a given answer (correct answer or distractor) is calculated and may be
displayed in a distractor plot.

To gain empirical proofs of the construct validity of the whole instrument, correlation structure
needs to be examined. Empirical proofs of validity may be provided by correlation with a criterion
variable. For example, a correlation with subsequent university success or university GPA may be
used to demonstrate predictive validity of admission scores.

To gain proofs of test reliability, internal consistency of items can be examined using Cronbach’s
alpha (Cronbach 1951, see also Zinbarg et al. 2005 for more discussion). Cronbach’s alpha of test
without a given item can be used to determine items not internally consistent with the rest of the test.

Regression models for description of item properties

Various regression models may be fitted to describe item properties in more detail. With binary data,
logistic regression may be used to model the probability of a correct answer as a function of the total
score by an S-shaped logistic curve. Parameter b0 ∈ R describes horizontal location of the fitted curve,
parameter b1 ∈ R describes its slope.

P (Y = 1|X, b0, b1) =
exp (b0 + b1X)

1 + exp (b0 + b1X)
. (1)

A standardized total score may be used instead of a total score as an independent variable to
model the properties of a given item. In such a case, the estimated curve remains the same, only the
interpretation of item properties now focuses on improvement of 1 standard deviation rather than 1
point improvement. It is also helpful to re-parametrize the model using new parameters a ∈ R and
b ∈ R. Item difficulty parameter b is given by location of the inflection point, and item discrimination
parameter a is given by the slope at the inflection point:

P(Y = 1|Z, a, b) =
exp(a(Z− b))

1 + exp(a(Z− b))
. (2)

Further, non-linear regression models allow us to account for guessing by providing non-zero left
asymptote c ∈ [0, 1] and inattention by providing right asymptote d ∈ [0, 1]:

P (Y = 1|Z, a, b, c, d) = c + (d− c)
exp (a (Z− b))

1 + exp (a (Z− b))
. (3)

Other regression models allow for further extensions or different data types: Ordinal regression
allows for modelling Likert-scale and partial-credit items. To model responses to all given options
(correct response and all distractors) in multiple-choice questions, a multinomial regression model can
be used. Further complexities of the measurement data and item functioning may be accounted for by
incorporating student characteristics with multiple regression models or clustering with hierarchical
models.

A logistic regression model (1) for item description, and its re-parametrizations and extensions as
illustrated in equations (2) and (3) may serve as a helpful introductory step for explaining and building
IRT models which can be conceptualized as (logistic/non-linear/ordinal/multinomial) mixed effect
regression models (Rijmen et al., 2003).

Item response theory models

IRT models assume respondent abilities being unobserved/latent scores θ which need to be estimated
together with item parameters. 4-parameter logistic (4PL) IRT model corresponds to regression model
(3) above

P (Y = 1|θ, a, b, c, d) = c + (d− c)
exp (a (θ − b))

1 + exp (a (θ − b))
. (4)

Similarly, other submodels of 4PL model (4) may be obtained by fixing appropriate parameters. E. g.
the 3PL IRT model is obtained by fixing inattention to d = 1. The 2PL IRT model is obtained by further
fixing pseudo-guessing to c = 0, and the Rasch model by fixing discrimination a = 1 in addition.

Other IRT models allow for further extensions or different data types: Modelling Likert-scale and
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partial-credit items can be done by modelling cumulative responses in a graded response model (GRM,
Samejima, 1969). Alternatively, ordinal items may be analyzed by modelling adjacent categories logits
using a generalized partial credit model (GPCM, Muraki, 1992), or its restricted version - partial credit
model (PCM, Masters, 1982), and rating scale model (RSM, Andrich, 1978). To model distractor
properties in multiple-choice items, Bock’s nominal response model (NRM, Bock, 1972) is an IRT
analogy of a multinomial regression model. This model is also a generalization of GPCM/PCM/RSM
ordinal models. Many other IRT models have been used in the past to model item properties, including
models accounting for multidimensional latent traits, hierarchical structure or response times (van der
Linden, 2017).

A wide variety of estimation procedures has been proposed in last decades. Joint maximum
likelihood estimation treats both ability and item parameters as unknown but fixed. Conditional
maximum likelihood estimation takes an advantage of the fact that in exponential family models
(such as in the Rasch model), total score is a sufficient statistics for an ability estimate and the ratio
of correct answers is a sufficient statistics for a difficulty parameter. Finally, in a marginal maximum
likelihood estimation used by the mirt (Chalmers, 2018) and ltm (Rizopoulos, 2006) package as
well as in ShinyItemAnalysis, parameter θ is assumed to be a random variable following certain
distribution (often standard normal) and is integrated out (see for example, Johnson, 2007). An EM
algorithm with a fixed quadrature is used in latent scores and item parameters estimation. Besides
MLE approaches, Bayesian methods with the Markov chain Monte Carlo are a good alternative,
especially for multidimensional IRT models.

Differential item functioning

DIF occurs when respondents from different groups (e. g. such as defined by gender or ethnicity) with
the same underlying true ability have a different probability of answering the item correctly. Differ-
ential distractor functioning (DDF) is a phenomenon when different distractors, or incorrect option
choices, attract various groups with the same ability differentially. If an item functions differently for
two groups, it is potentially unfair, thus detection of DIF and DDF should be routine analysis when
developing and validating educational and psychological tests (Martinková et al., 2017).

Presence of DIF can be tested by many methods including Delta plot (Angoff and Ford, 1973),
Mantel-Haenszel test based on contingency tables that are calculated for each level of a total score
(Mantel and Haenszel, 1959), logistic regression models accounting for group membership (Swami-
nathan and Rogers, 1990), nonlinear regression (Drabinová and Martinková, 2017), and IRT based
tests (Lord, 1980; Raju, 1988, 1990).

Implementation

The ShinyItemAnalysis package can be used either locally or online. The package uses several other
R packages to provide a wide palette of psychometric tools to analyze data (see Table 1). The main
function is called startShinyItemAnalysis(). It launches an interactive shiny application (Figure 1)
which is further described below. Furthermore, function gDiscrim() calculates generalized coefficient
ULI comparing the ratio of correct answers in predefined upper and lower groups of students (Mar-
tinková et al., 2017). Function ItemAnalysis() provides a complete traditional item analysis table with
summary statistics and various difficulty and discrimination indices for all items. Function DDplot()
plots difficulty and selected discrimination indices of the items ordered by their difficulty. Function
DistractorAnalysis() calculates the proportions of choosing individual distractors for groups of
respondents defined by their totals score. Graphical representation of distractor analysis is provided
via function plotDistractorAnalysis(). Other functions include item - person maps for IRT models,
ggWrightMap(), and plots for DIF analysis using IRT methods, plotDIFirt(), and logistic regression
models, plotDIFlogistic(). These functions may be applied directly on data from an R console as
shown in the provided R code. The package also includes training datasets Medical 100, Medical 100
graded (Martinková et al., 2017), and HCI (McFarland et al., 2017).

Examples

Running the application

The ShinyItemAnalysis application may be launched in R by calling startShinyItemAnalysis(),
or more conveniently, directly from https://shiny.cs.cas.cz/ShinyItemAnalysis. The intro page
(Figure 1) includes general information about the application. Various tools are included in separate
tabs which correspond to separate sections.
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R package Citation Title

corrplot (Wei and Simko, 2017) Visualization of a correlation matrix
cowplot (Wilke, 2018) Streamlined plot theme and plot annotations for ’ggplot2’
CTT (Willse, 2018) Classical test theory functions
data.table (Dowle and Srinivasan, 2018) Extension of data.frame
deltaPlotR (Magis and Facon, 2014) Identification of dichotomous differential item functioning us-

ing Angoff’s delta plot method
difNLR (Drabinová et al., 2018) DIF and DDF detection by non-linear regression models
difR (Magis et al., 2010) Collection of methods to detect dichotomous differential item

functioning
DT (Xie et al., 2018) A wrapper of the JavaScript library ’DataTables’
ggdendro (de Vries and Ripley, 2016) Create dendrograms and tree diagrams using ’ggplot2’
ggplot2 (Wickham, 2016) Create elegant data visualisations using the grammar of graph-

ics
gridExtra (Auguie, 2017) Miscellaneous functions for ’grid’ graphics
knitr (Xie, 2018) A general-purpose package for dynamic report generation in R
latticeExtra (Sarkar and Andrews, 2016) Extra graphical utilities based on lattice
ltm (Rizopoulos, 2006) Latent trait models under IRT
mirt (Chalmers, 2018) Multidimensional item response theory
moments (Komsta and Novomestky, 2015) Moments, cumulants, skewness, kurtosis and related tests
msm (Jackson, 2011) Multi-state Markov and hidden Markov models in continuous

time
nnet (Venables and Ripley, 2002) Feed-forward neural networks and multinomial log-linear

models
plotly (Sievert, 2018) Create interactive web graphics via ’plotly.js’
psych (Revelle, 2018) Procedures for psychological, psychometric, and personality

research
psychometric (Fletcher, 2010) Applied psychometric theory
reshape2 (Wickham, 2007) Flexibly reshape data: A reboot of the reshape package
rmarkdown (Allaire et al., 2018) Dynamic documents for R
shiny (Chang et al., 2018) Web application framework for R
shinyBS (Bailey, 2015) Twitter bootstrap components for shiny
shinydashboard (Chang and Borges Ribeiro, 2018) Create dashboards with ’shiny’
shinyjs (Attali, 2018) Easily improve the user experience of your shiny apps in sec-

onds
stringr (Wickham, 2018) Simple, consistent wrappers for common string operations
xtable (Dahl et al., 2018) Export tables to LATEXor HTML

Table 1: R packages used for developing ShinyItemAnalysis.

Figure 1: Intro page.

Data selection and upload

Data selection is available in section Data. Six training datasets may be uploaded using the Select
dataset button: Training datasets Medical 100, Medical 100 graded (Martinková et al., 2017) and HCI
(McFarland et al., 2017) from the ShinyItemAnalysis package, and datasets GMAT (Martinková et al.,
2017), GMAT2 and MSAT-B (Drabinová and Martinková, 2017) from the difNLR package (Drabinová
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et al., 2018).

Besides the provided toy datasets, users’ own data may be uploaded as csv files and previewed
in this section. To replicate examples involving the HCI dataset (McFarland et al., 2017), csv files are
provided for upload in Supplemental Materials.

Figure 2: Page to select or upload data.

Item analysis step-by-step

Further sections of the ShinyItemAnalysis application allow for step-by-step test and item analysis.
The first four sections are devoted to traditional test and item analyses in a framework of classical
test theory. Further sections are devoted to regression models, to IRT models and to DIF methods. A
separate section is devoted to report generation and references are provided in the final section. The
individual sections are described below in more detail.

Section Summary provides for histogram and summary statistics of the total scores as well as for
various standard scores (Z scores, T scores), together with percentile and success rate for each level of
the total score. Section Reliability offers internal consistency estimates with Cronbach’s alpha.

Section Validity provides correlation structure (Figure 3, left) and checks of criterion validity
(Figure 3, right). A correlation heat map displays selected type of correlation estimates between items.
Polychoric correlation is the default correlation used for binary data. The plot can be reordered using
hierarchical clustering while highlighting a specified number of clusters. Clusters of correlated items
need to be checked for content and other similarities to see if they are intended. Criterion validity is
analyzed with respect to selected variables (e. g. subsequent study success, major, or total score on a
related test) and may be analyzed for the test as a whole or for individual items.

Figure 3: Validity plots for HCI data.
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Section Item analysis offers traditional item analysis of the test as well as a more detailed distractor
analysis. The so called DD plot (Figure 4) displays difficulty (red) and a selected discrimination index
(blue) for all items. Items are ordered by difficulty. While lower discrimination may be expected
for very easy or very hard items, all items with ULI discrimination lower than 0.2 (borderline in
the plot) are worth further checks by content experts. The distractor plot (Figure 5) provides for

Figure 4: DD plot for HCI data.

detailed analysis of individual distractors by the respondents’ total score. The correct answer should
be selected more often by strong students than by students with a lower total score, i. e. the solid line
in the distractor plot (see Figure 5) should be increasing. The distractors should work in an opposite
direction, i. e. the dotted lines should be decreasing.

Figure 5: Distractor plots for items 13 and 17 in HCI data.

Section Regression allows for modelling of item properties with a logistic, non-linear or multi-
nomial regression (see Figures 6). Probability of the selection of a given answer is modelled with
respect to the total or standardized total score. Classical as well as IRT parametrization are provided
for logistic and non-linear models. Model fit can be compared by Akaike’s (Akaike, 1974) or Schwarz’s
Bayesian (Schwarz, 1978) information criteria and a likelihood-ratio test.

Figure 6: Regression plots for item 13 in HCI data.

Section IRT models provides for 1-4PL IRT models as well as Bock’s nominal model, which may
also be used for ordinal items. In IRT model specification, ShinyItemAnalysis uses default settings of
the mirt package and for the Rasch model (Rasch, 1960) it fixes discrimination to a = 1, while variance
of ability θ is freely estimated. Contrary to Rasch model, 1PL model allows any discrimination a ∈ R
(common to all items), while fixing variance of ability θ to 1. Similarly, other submodels of 4PL model
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(4), e. g. 2PL and 3PL model, may be obtained by fixing appropriate parameters, while variance of
ability θ is fixed to 1.

Interactive item characteristic curves (ICC), item information curves (IIC) and test information
curves (TIC) are provided for all IRT models (see Figure 7). An item-person map is displayed for
Rasch and 1PL models (Figure 7, bottom right). Table of item parameter estimates is completed by
S− X2 item fit statistics (Orlando and Thissen, 2000). Estimated latent abilities (factor scores) are also
available for download. While fitting of IRT models is mainly implemented using the mirt package
(Chalmers, 2018), sample R code is provided for work in both mirt and ltm (Rizopoulos, 2006).

Figure 7: IRT plots for HCI data. From top left: Item characteristic curves, item information curves,
test information curve with standard error of measurement, and item-person map.

Finally, section DIF/Fairness offers the most used tools for detection of DIF and DDF included in
deltaPlotR (Magis and Facon, 2014), difR (Magis et al., 2010) and the difNLR package (Drabinová
et al., 2018, see also Drabinová and Martinková, 2018 and Drabinová and Martinková, 2017).

Datasets GMAT and HCI provide valuable teaching examples, further discussed in Martinková
et al. (2017). HCI is an example of a situation whereby the two groups differ significantly in their
overall ability, yet no item is detected as DIF. Dataset GMAT was simulated to demonstrate that it is
hypothetically possible that even though the distributions of the total scores for the two groups are
identical, yet, there may be an item present that functions differently for each group (see Figure 8).

Figure 8: GMAT data simulated to show that hypothetically, two groups may have an identical
distribution of total scores, yet there may be a DIF item present in the data.
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Teaching with ShinyItemAnalysis

ShinyItemAnalysis is based on examples developed for a course of IRT models and psychometrics
offered to graduate students at the University of Washington and at the Charles University. It has also
been used at workshops for educators developing admission tests and other tests in various fields.

Besides the presence of a broad range of CTT as well as IRT methods, toy data examples, model
equations, parameter estimates, and interactive interpretation of results, selected R code is also
available, ready to be copy-pasted and run in R. The shiny application can thus serve as a bridge to
users who do not feel secure in the R programming environment by providing examples which can be
further modified or adopted to different datasets.

As an important teaching tool, an interactive training section is present, deploying item charac-
teristic and item information curves for IRT models. For dichotomous models (Figure 9, left), the
user can specify parameters a, b, c, and d of two toy items and latent ability θ of respondent. ICC
is then provided interactively, displaying probability of a correct answer for any θ and highlighting
this probability for selected θ. IIC compares the two items in the amount of information they provide
about respondents of a given ability level.

For polytomous items (Figure 9, right), analogous interactive plots are available for GRM, (G)PCM
as well as for NRM. Step functions are displayed for GRM, and category response functions are
available for all three models. In addition, the expected item score is displayed for all the models.

Figure 9: Interactive training IRT section.

The training sections also contain interactive exercises where students may check their understand-
ing of the IRT models. They are asked to sketch ICC and IIC functions of items with given parameters,
and to answer questions, e. g. regarding probabilities of correct answers and the information these
items provide for certain ability levels.

Automatic report generation

To support routine usage of psychometric methods in test development, ShinyItemAnalysis offers
the possibility to upload your own data for analysis as csv files, and to generate PDF or HTML
reports. A sample PDF report and the corresponding csv files used for its generation are provided in
Supplemental Materials.

Report generation uses rmarkdown templates and knitr for compiling (see Figure 10). LATEX is
used for creating PDF reports. The latest version of LATEX with properly set paths is needed to generate
PDF reports locally.

shiny
environment R Markdown knitr

LATEX
PDF

report

HTML
report

Figure 10: Report generation workflow.

Page with report setting allows user to specify a dataset name, the name of the person who
generated the report, to select a method and to customize the settings (see Figure 11). The Generate
report button at the bottom starts analyses needed for the report to be created. Subsequently, the
Download report button initializes compiling the text, tables and figures into a PDF or an HTML file.
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Figure 11: Report settings for the HCI data analysis.

Sample pages of a PDF report on the HCI dataset are displayed in Figure 12. Reports provide a
quick overview of test characteristics and may be a helpful material for test developers, item writers
and institutional stakeholders.

Figure 12: Selected pages of a report on the HCI data.

Discussion and conclusion

ShinyItemAnalysis is an R package (currently version 1.2.9) and an online shiny application for psy-
chometric analysis of educational tests and items. It is suitable for teaching psychometric concepts and
it aspires to be an easy-to-use tool for routine analysis of educational tests. For teaching psychometric
concepts, a wide range of models and methods are provided, together with interactive plots, exercises,
data examples, model equations, parameter estimates, interpretation of results, and selected R code to
bring new users to R. For analysis of educational tests by educators, ShinyItemAnalysis interactive
application allows users to upload and analyze their own data online or locally, and to automatically
generate analysis reports in PDF or HTML.

Functionality of the ShinyItemAnalysis has been validated on three groups of users. As the first
group, two university professors teaching psychometrics and test development provided their written
feedback on using the application and suggested edits for wording used for interpretation of results
provided by the shiny application. As the second group, over 20 participants of a graduate seminar on
"Selected Topics in Psychometrics" at the Charles University in 2017/2018 used ShinyItemAnalysis
throughout the year in practical exercises. Students prepared their final projects with ShinyItem-
Analysis applied on their own datasets and provided closer feedback on their experience. The third
group consisted of more than 20 university academics from different fields who participated in a
short-term course on "Test Development and Validation" in 2018 at the Charles University. During the
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course, participants used the application on toy data embedded in the package. In addition, an online
knowledge test was prepared in Google Docs, answered by participants, and subsequently analyzed
in ShinyItemAnalysis during the same session. Participants provided their feedback and commented
on usability of the package and shiny application. As a result, various features were improved (e. g.
data upload format was extended, some cases of missing values are now handled).

Current developments of the ShinyItemAnalysis package comprise implementation of wider
types of models, especially ordinal and multinomial models and models accounting for effect of the
rater and a hierarchical structure. In reliability estimation, further sources of data variability are being
implemented to provide estimation of model-based inter-rater reliability (Martinková et al., 2018b).
Technical improvements include a more complex data upload or automatic testing of new versions of
the application.

We argue that psychometric analysis should be a routine part of test development in order to gather
proofs of reliability and validity of the measurement and we have demonstrated how ShinyItemAnal-
ysis may enforce this goal. It may also serve as an example for other fields, demonstrating the ability
of shiny applications to interactively present theoretical concepts and, when complemented with
sample R code, to bring new users to R, or to serve as a bridge to those who have not yet discovered
the beauties of R.
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RcppMsgPack: MessagePack Headers and
Interface Functions for R
by Travers Ching and Dirk Eddelbuettel

Abstract MessagePack, or MsgPack for short, or when referring to the implementation, is an efficient
binary serialization format for exchanging data between different programming languages. The
RcppMsgPack package provides R with both the MessagePack C++ header files, and the ability to
access, create and alter MessagePack objects directly from R. The main driver functions of the R
interface are two functions msgpack_pack and msgpack_unpack. The function msgpack_pack serializes
R objects to a raw MessagePack message. The function msgpack_unpack de-serializes MessagePack
messages back into R objects. Several helper functions are available to aid in processing and formatting
data including msgpack_simplify, msgpack_format and msgpack_map.

Introduction

MessagePack (or MsgPack for short, or when referring to the actual implementation) is a binary
serialization format made for exchanging data between different programming languages (Furuhashi,
2018). Unlike other related formats such as JSON, MsgPack is a binary format—which makes it
more efficient in terms of (disk or memory) space, transfer speeds (which is increasingly important
for large data sets across networks) and potentially also precision (as textual representation rarely
goes to the length of binary precision). As shown on the project homepage at https://msgpack.org,
several major projects including Redis, Pinterest, Fluentd and Treasure Data utilize MsgPack to transfer
data or to represent internal data structures (Furuhashi, 2018). Other binary serialization formats
similar to MsgPack include BSON (MongoDB, 2018) and ProtoBuf (Google, 2018) which have their
own advantages and disadvantages, such as serialization speed, memory usage, compression and
requirement of descriptive schemas (Hamida et al., 2015; Dawborn and Curran, 2014). R support
for these formats is available via the packages mongolite (Ooms, 2014) and RProtoBuf (Eddelbuettel
et al., 2016); Redis is also implemented in R through the RcppRedis package (Eddelbuettel, 2018).
RcppMsgPack (Ching et al., 2018) brings support for the MsgPack specification to R.

The MsgPack specification describes a number of common data type: Booleans, Integers, Floats,
Strings, Binary data, Arrays, Maps, and user-defined extension types, and has been implemented
in most major programming languages. RcppMsgPack aims to provide an efficient, and easy to use
implementation by relying on the official C++ MsgPack code and the Rcpp package (Eddelbuettel,
2013; Eddelbuettel et al., 2018). The package provides users with the MsgPack header files which
can be used to more directly integrate MsgPack into R projects through C++ code. It also provides
the ability to serialize and de-serialize data directly to and from R (e.g., through pipes, file handlers,
sockets or binary object files). These functionalities can be used to efficiently transfer data between
various programming languages and between separate R instances.

In this manuscript, we describe the main interface functions used to serialize and deserialize
MsgPack messages, and the conversion between R data types and MsgPack data types. We describe
helper functions contained in RcppMsgPack and describe several use cases and examples of how
RcppMsgPack can be used in practice, benchmarking several common approaches for transferring
data between processes.

Interface functions

The functions msgpack_pack and msgpack_unpack allow serialization and de-serialization of R objects
respectively (Figure 1). Here, msgpack_pack takes in any number of R objects and generates a single
serialized message in the form of a raw vector. Conversely, msgpack_unpack takes a serialized message
as input, and returns the R object(s) contained in the message. Moreover, msgpack_format is a helper
function to properly format R objects for input, and msgpack_simplify is a helper function to simplify
output from a MsgPack conversion. One of the main goals of MsgPack is the transfer of data
across processes and/or hosts. Therefore, we also define two helper functions msgpack_write and
msgpack_read which facilitate writing and reading of MsgPack objects to files, pipes or any connection
object.

The data types in MsgPack do not directly map on to R data types, more so than other languages.
For example, basic R “atomic” types such as integers and strings are inherently vectorized, which is
not true in C++, Python or most other languages. I.e., in R there is no distinction between a single
integer and a vector of integers of length 1. R also has multiple non-value types, such as NULL or NA
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Figure 1: A flowchart of the conversion of R objects to MsgPack objects and vice versa.

for integer, string, numeric, etc. Because of these complexities, the conversion processes using these
interface functions are described in detail below.

R integers are converted into MsgPack integers, which are automatically reduced in size, de-
pending on the value of the integer. MsgPack integers are converted back into R integers. Because
R does not natively support 64 bit integers, whereas MsgPack supports integers up to 64 unsigned
bits in value, MsgPack integers exceeding signed 32 bits supported by R are coerced to R numeric
values, with potential loss of precision. The integer NA value in R is represented by its bit value in C++
(0x80000000), and requires no special treatment.

R numeric (i.e., doubles) variables conform to IEEE 754 double-precision standards (IEEE Standards
Committee, 2008), and also require no special treatment. The numeric NA value is a special case of
NaN values, and is serialized by its bit representation.

R strings (i.e., objects of class character) are converted to MsgPack strings. Because C++ and
MsgPack do not have missing values for strings, NA characters are converted into MsgPack Nil
(similar to NULL in R).

R logical values are converted into MsgPack bool. Again, because NA logical values do not exist
in C++ or MsgPack, NA logical values are converted into MsgPack Nil.

R raw vectors are converted into MsgPack bin. Raw vectors with the “EXT” integer attribute are
converted into MsgPack extension types. The EXT attribute should be a positive integer, as negative
values are reserved for official extensions.

Currently, the MsgPack specifications includes one official extension type: timestamps. Times-
tamps are a MsgPack extension type with extension value -1 and can be converted to and from R
POSIXct objects using msgpack_timestamp_decode and msgpack_timestamp_encode respectively. Ms-
gPack timestamps can encode nanosecond precision. R POSIXct objects rely on numeric, and therefore
conversion may have some loss of precision (unless a package such as nanotime (Eddelbuettel and
Silvestri, 2018) is used, which is left as a future extension).

MsgPack specifications define two container objects: arrays and maps. MsgPack arrays are a
sequential container object. The length of the array is defined in its message header. Arrays can contain
any other MsgPack types, including other arrays or maps.

MsgPack arrays are naturally analogous to R unnamed list objects. However, because lists have
a large memory footprint, R atomic vectors (with length of 0 or greater than or equal to 2) are also
allowed as input for serialization to arrays.

MsgPack maps are an ordered sequence of key and value pairs, where each key and value can
be any MsgPack object. There is no requirement for unique keys. Maps do not have an analogous
data type in R . Therefore, maps are implemented by creating an object of class map, which is also a
data.frame with key and value columns. As input to serialization, these columns can also be lists,
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and can therefore contain any other R object, and not only a single type. The function msgpack_map is
a simple helper function that takes two lists and returns a map which can be serialized into a MsgPack
object with msgpack_pack.

In order to support as much generality as possible in serialization and deserialization, the use
of lists to represent arrays and maps is necessary. However, it is often the case in R that one would
want to deal with large vectors or matrices of a single type without the computational and memory
overhead of lists. Two approaches are given to deal with this type of scenario. msgpack_simplify can
be used after a call to msgpack_unpack to recursively simplify lists to vectors when only a single type
is included within a list. (For lists of characters or logicals, this may also include NULLs.) Secondly,
msgpack_unpack can be called with the simplify=TRUE parameter, which performs the same task as
msgpack_simplify within C++, and is therefore much faster. The second approach can drastically
improve speed and memory usage compared to the first approach.

Using MsgPack C++ headers through RcppMsgPack and Rcpp

Complex objects or data structures, such as trees, often do not fit into R data types because a tree data
structure does not map nicely to an R vector, data.frame, matrix, etc. Storing such a complex object as
a MsgPack message will be more performant in terms of serialization speed and memory usage.

The example below demonstrates how MsgPack headers can be integrated into a standard Rcpp
workflow. In this example, a prefix tree is created for nucleotide sequences, and is serialized through
MsgPack to create a persistant tree object in the form of a raw vector in R. The stored tree can be saved
to disk, unpacked within R directly using msgpack_unpack or it can be reconstructed into the prefix
tree within C++ using the MsgPack C++ interface. The code below defines a structure for storing the
Prefix tree data and a function for constructing the tree using sequence data input from R and saving
it as a MsgPack object:

struct Node {
std::shared_ptr<Node> parent;
std::set<int> sequence_idx;
std::map< std::string, std::shared_ptr<Node> > children;

};

struct std::shared_ptr<Node>
NewNode(std::shared_ptr<Node> parent,

std::string name,
std::set<int> sequence_idx) {

std::shared_ptr<Node> node = std::shared_ptr<Node>(new Node);
node->sequence_idx = sequence_idx;
if (parent) {
parent->children.insert(std::pair<std::string,

std::shared_ptr<Node> >(name, node));
}
return node;

}

void packTree(std::shared_ptr<Node> node,
msgpack::packer<std::stringstream>& pkr) {

pkr.pack_array(2);
std::set<int> sequence_idx = node->sequence_idx;
std::vector<int> vs(sequence_idx.begin(), sequence_idx.end());
pkr.pack(vs);
std::map< std::string, std::shared_ptr<Node> > children = node->children;
pkr.pack_map(children.size());
for (auto const& x : children) {

pkr.pack(x.first);
packTree(x.second, pkr);

}
}

Rcpp::RawVector create_prefix_tree(std::vector<std::string> clone_sequences) {
std::shared_ptr<Node> root;
root = NewNode(std::shared_ptr<Node>(nullptr), "^", {});
for(int i=0; i<clone_sequences.size(); i++) {
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std::shared_ptr<Node> current_node = root;
for(int j=0; j < clone_sequences[i].size(); j++) {

std::string nuc = clone_sequences[i].substr(j,1);
if(current_node->children.count(nuc) == 1) {
current_node = current_node->children[nuc];
if(j == clone_sequences[i].size() - 1) {
current_node->sequence_idx.insert(i);

}
} else {
if(j == clone_sequences[i].size() - 1) {
current_node = NewNode(current_node, nuc, {i});

} else {
current_node = NewNode(current_node, nuc, {});

}
}

}
}
std::stringstream buffer;
msgpack::packer<std::stringstream> pk(&buffer);
packTree(root, pk);
std::string bufstr = buffer.str();
Rcpp::RawVector rawbuffer(bufstr.begin(), bufstr.end());
return rawbuffer;

}

The create_prefix_tree function is an C++ function that returns a raw vector, which is a serial-
ization of the prefix tree. From R, the prefix tree can be initialized and serialized through calling the
Rcpp function.

tree <- create_prefix_tree(c("AGCT", "AGCC", "AGC", "ATG", "GACC", "GTCT"))

Because the resulting message is a standard MsgPack object, the tree can be unpacked directly
in R using msgpack_unpack. Additionally, the following code reconstructs the prefix tree from the
MsgPack message from within C++ using the C++ interface:

void print_node(msgpack::object & node_obj, std::string name) {
std::vector<msgpack::object> node_obj_array;
node_obj.convert(node_obj_array);
msgpack::object_kv* p = node_obj_array[1].via.map.ptr;
msgpack::object_kv* pend = node_obj_array[1].via.map.ptr +

node_obj_array[1].via.map.size;
std::cout << name;
if(p != pend) {

std::cout << "(";
for (; p < pend; ++p) {

std::string name_child = p->key.as<std::string>();
msgpack::object node_child_obj = p->val.as<msgpack::object>();
print_node(node_child_obj, name_child);
if(p < (pend-1)) std::cout << ",";

}
std::cout << ")";

}
}
void print_newick_tree(std::vector<unsigned char> packed_tree) {

std::string message(packed_tree.begin(), packed_tree.end());
msgpack::object_handle oh;
msgpack::unpack(oh, message.data(), message.size());
msgpack::object obj = oh.get();
print_node(obj, "Root");

}

Called from within R, the tree is printed to the console:

tree_nested_list <- msgpack_unpack(tree, simplify=F)
print_newick_tree(tree)

[1] Root(A(G(C(C,G,T),G)),G(A(C(C)),T(C(A,T))))
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Writing MsgPack objects to disk and reading data from the internet

Following is an example of how one can create a MsgPack serialized message as a binary file, and
read it from the internet into R. The first step would be to read in the data to R as normal, and serialize
the data using the msgpack_pack function.

dat <- read.csv(paste0("https://raw.githubusercontent.com/vincentarelbundock/",
"Rdatasets/master/csv/mosaicData/Birthdays.csv"))

mp <- with(dat, msgpack_pack(X, state, year, month, day, date, wday, births))

The msgpack_pack function returns a raw vector, which can be written to disk using the writeBin
function or the helper function msgpack_write.

msgpack_write(mp, file="birthdays_msgpack.mp")

A MsgPack object can be read directly from the internet, e.g., using the GET function from the
httr package (Wickham, 2018). Subsequently, the msgpack_unpack function can be used to unpack the
object to its original values.

md <- GET("http://travers.im/birthdays_msgpack.mp")
mp <- md$content
mu <- msgpack_unpack(mp)

Transferring large datasets from Python to R and back

To evaluate the performance of MsgPack serialization, we benchmarked the transfer of the MNIST
(LeCun et al., 2010) and CIFAR-10 (Krizhevsky, 2009) datasets to and from Python and R. We compared
this approach to writing and reading in CSV format, and to writing and reading using feather
(Wickham et al., 2016), a cross-platform library and specification for efficiently handling tabular data.
(The feather package is no longer actively developed, and will be superseded by Apache Arrow
(Apache Arrow Developers, 2018), a more general cross-language development platform for working
with in-memory data in a standardized language-independent columnar memory format. However,
Arrow is not yet available for R.) In Python, serialization of the data was performed using the msgpack
package and written to disk in binary format:

Figure 2: Transferring the MNIST dataset (left) and the CIFAR-10 dataset (right) to and from R and
Python using either MsgPack, feather or CSV format.

xb = msgpack.packb(x)
with open("/tmp/dataset.mp", "wb") as file:

file.write(xb)
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Conversely, the unpackb function was used when benchmarking the transfer time from R to
Python:

with open("/tmp/dataset.mp", "rb") as file:
file.write(xb)

x = msgpack.unpackb(file.read())

In R, we used the readBin function followed by msgpack_unpack function to deserialize the dataset.
Alternatively, one could use the helper function msgpack_read.

xb <- readBin(con = "/tmp/dataset.mp", "raw",
n=file.info("/tmp/dataset.mp")$size)

x <- msgpack_unpack(xb, simplify=T)

Subsequently, the data can be re-serialized and written to disk using the msgpack_pack function
followed by writeBin:

xb <- msgpack_pack(x)
writeBin(xb,"/tmp/dataset.mp", useBytes=T)

For CSV format, we used the fread and fwrite functions in the data.table package (Dowle
et al., 2018) to write and read CSV tables in R. In Python, we used the package numpy savetxt and
loadtxt functions (van der Walt et al., 2011). For the feather format, we used the write_feather
and read_feather functions within the feather package in R and Python. All approaches were
benchmarked after clearing the system cache and replicated 5 times (Figure 2).

Serialization and de-serialization of objects from MsgPack objects was similar between R and
Python, with a slight speed advantage going to Python. Reading MsgPack objects was generally
considerably faster than reading CSV format in both R and Python. Comparing MsgPack to feather,
feather was generally faster. As feather is designed for columnar binary data, it does not use a header
for every element and therefore has an advantage over the (more general) MsgPack in this context.

One surprising result is in writing of CSVs in R. Using data.table, writing the MNIST dataset was
faster than MsgPack, although not quite as fast as feather. The MNIST dataset is formatted as a single
floating point value in per pixel by TensorFlow (Abadi et al., 2016). When writing floating point data
as CSV, both numpy and the data.table package truncate floating point numbers by default, which
causes loss of precision.

MsgPack serialization memory usage

Figure 3: Serialization memory usage: MsgPack vs. R. Left: raw serialization size for datasets in
datasets. Right: Gzip-compressed serialization size.

To compare the memory usage of MsgPack to native R serialization, we serialized the datasets
found in the datasets R package (Figure 3). For R serialization, this was done by calling the serialize
function for native R serialization or calling the msgpack_pack function for MsgPack serialization. For
compression, the memCompress function was called on the results. Some datasets contained formulas,
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or other R-specific attributes that can’t be stored in MsgPack; these attributes were removed prior to
serialization and compression.

Memory usage was generally very similar between MsgPack and native R. Although there were
some differences in raw serialization, the difference seems to be less apparent after compression. For
some uncompressed serializations, MsgPack significantly outperformed R in memory usage. This
is attributable to efficient integer storage: MsgPack stores variable size integers depending on the
integer magnitude, and can be as low as 8 bits. Native R serialization uses the modified External Data
Representation (XDR) standard (Srinivasan, 1995), which uses a fixed 32 bits for integers. Furthermore,
attributes of each dataset are stored as lists internally, which can increase the relative overhead for
small datasets, as R lists are not memory-efficient objects.

On the other hand, every MsgPack element has a short header of several bits, which increases its
memory overhead, particularly for large vectors. This overhead is apparent for larger datasets, where
R typically is more memory efficient.

Serialization of large lists

Figure 4: Serialization and compression time of a large list of DNA sequences.

As mentioned, one situation where MsgPack serialization is much more efficient than R serializa-
tion is how it handles list objects. Because R lists have a large memory overhead, both compression
times and writing/reading to disk are faster using the MsgPack format. To show this, we generated a
contrived list of DNA sequences as follows:

x <- replicate(10000, {
replicate(sample(5,1), {

paste(sample(c("G","C","A","T"), size=sample(50,1), replace=T), collapse="")
})

})

If the data structure of the object is known, using the C++ headers directly can speed up serializa-
tion and de-serialization by avoiding the logic involved in serializing generic data structures, although
the speed-up is not large. Compression and writing to disk can also be performed directly within C++,
for example, by using the zlib C++ library (Gailly and Adler, 2018) to perform standard DEFLATE
compression. The example below illustrates MsgPack serialization and subsequent compression using
the zlib library:

void list_pack_gzip(List x, std::string file) {
std::stringstream buffer;
msgpack::packer<std::stringstream> pk(&buffer);
pk.pack_array(x.size());
for(int i=0; i<x.size(); i++) {
CharacterVector xi = x[i];
if(xi.size() == 1) {
pk.pack(Rcpp::as<std::string>(xi[0]));

} else {
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pk.pack_array(xi.size());
for(int j=0; j<xi.size(); j++) {
pk.pack(Rcpp::as<std::string>(xi[j]));

}
}

}
std::string bufstr = buffer.str();
gzFile fi = gzopen(file.c_str(),"wb");
gzwrite(fi, bufstr.c_str(), bufstr.size());
gzclose(fi);

}

Conversely, uncompression and deserialization would need to be performed to recover the original
R object. The following C++ function illustrates how this could be done:

Rcpp::List list_unpack_gzip(std::string file) {
gzFile fi = gzopen(file.c_str(),"rb");
char buf[8192];
std::vector<char> dat;
uint b = gzread(fi, buf, 8192);
while (b) {
dat.insert(dat.end(), buf, buf + b);
b = gzread(fi, buf, 8192);

}
gzclose(fi);
std::string message = std::string(dat.data(), dat.size());
msgpack::object_handle oh;
msgpack::unpack(oh, message.data(), message.size());
msgpack::object obj = oh.get();
std::vector<msgpack::object> obj_vector;
obj.convert(obj_vector);
Rcpp::List L = Rcpp::List(obj_vector.size());
std::vector< std::string > temp_str_vec;
std::string temp_str;
for (int i=0; i< obj_vector.size(); i++) {
if (obj_vector[i].type == msgpack::type::ARRAY) {
obj_vector[i].convert(temp_str_vec);
L[i] = Rcpp::wrap(temp_str_vec);

} else {
obj_vector[i].convert(temp_str);
L[i] = Rcpp::wrap(temp_str);

}
}
return(L);

}

To illustrate the potential benefit of this approach, we compared MsgPack serialization and zlib
compression to standard R serialization using the saveRDS function (Figure 4). Using MsgPack,
serialization is slightly faster for the example above. The timing of these two approaches can be broken
down by process: both serialization and compression to disk (and vice versa) are faster using the
MsgPack approach described above for certain types of data structures, such as lists. However, for
most other types of data structures, native R serialization is usually faster. Most of the time-saving
comes from the fact that the serialized MsgPack message is considerably smaller, leading to faster
compresion time and/or faster reading and writing to disk.

Summary

The examples given above show how working with the R interface functions the C++ headers in
RcppMsgPack can be useful in transferring data and integrated within data analysis workflows.
The package allows fast and flexible serialization of generic data structures in R, and equivalent
de-serialization of objects from other langauages. The RcppMsgPack package is hosted on CRAN,
and can be installed via the standard install.packages("RcppMsgPack") command.
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BNSP: an R Package for Fitting Bayesian
Semiparametric Regression Models and
Variable Selection
by Georgios Papageorgiou

Abstract The R package BNSP provides a unified framework for semiparametric location-scale
regression and stochastic search variable selection. The statistical methodology that the package is
built upon utilizes basis function expansions to represent semiparametric covariate effects in the mean
and variance functions, and spike-slab priors to perform selection and regularization of the estimated
effects. In addition to the main function that performs posterior sampling, the package includes
functions for assessing convergence of the sampler, summarizing model fits, visualizing covariate
effects and obtaining predictions for new responses or their means given feature/covariate vectors.

Introduction

There are many approaches to non- and semi-parametric modeling. From a Bayesian perspective,
Müller and Mitra (2013) provide a review that covers methods for density estimation, modeling of
random effects distributions in mixed effects models, clustering, and modeling of unknown functions
in regression models.

Our interest is on Bayesian methods for modeling unknown functions in regression models. In
particular, we are interested in modeling both the mean and variance functions non-parametrically, as
general functions of the covariates. There are multiple reasons why allowing the variance function
to be a general function of the covariates may be important (Chan et al., 2006). Firstly, it can result
in more realistic prediction intervals than those obtained by assuming constant error variance, or as
Müller and Mitra (2013) put it, it can result in more honest representation of uncertainties. Secondly, it
allows the practitioner to examine and understand which covariates drive the variance. Thirdly, it
results in more efficient estimation of the mean function. Lastly, it produces more accurate standard
errors of unknown parameters.

In the R (R Core Team, 2016) package BNSP (Papageorgiou, 2018) we implemented Bayesian
regression models with Gaussian errors and with mean and log-variance functions that can be mod-
eled as general functions of the covariates. Covariate effects may enter the mean and log-variance
functions parametrically or non-parametrically, with the nonparametric effects represented as linear
combinations of basis functions. The strategy that we follow in representing unknown functions is to
utilize a large number of basis functions. This allows for flexible estimation and for capturing true
effects that are locally adaptive. Potential problems associated with large numbers of basis functions,
such as over-fitting, are avoided in our implementation, and efficient estimation is achieved, by
utilizing spike-slab priors for variable selection. A review of variable selection methods is provided by
O’Hara and Sillanpää (2009).

The methods described here belong to the general class of models known as generalized additive
models for location, scale, and shape (GAMLSS) (Rigby and Stasinopoulos, 2005; Stasinopoulos and
Rigby, 2007) or the Bayesian analogue termed as BAMLSS (Umlauf et al., 2018) and implemented
in package bamlss (Umlauf et al., 2017). However, due to the nature of the spike-and-slab priors
that we have implemented, in addition to flexible modeling of the mean and variance functions, the
methods described here can also be utilized for selecting promising subsets of predictor variables in
multiple regression models. The implemented methods fall in the general class of methods known as
stochastic search variable selection (SSVS). SSVS has received considerable attention in the Bayesian
literature and its applications range from investigating factors that affect individual’s happiness
(George and McCulloch, 1993), to constructing financial indexes (George and McCulloch, 1997), and to
gene mapping (O’Hara and Sillanpää, 2009). These methods associate each regression coefficient, either
a main effect or the coefficient of a basis function, with a latent binary variable that indicates whether
the corresponding covariate is needed in the model or not. Hence, the joint posterior distribution of
the vector of these binary variables can identify the models with the higher posterior probability.

R packages that are related to BNSP include spikeSlabGAM (Scheipl, 2016) that also utilizes SSVS
methods (Scheipl, 2011). A major difference between the two packages, however, is that whereas
spikeSlabGAM utilizes spike-and-slab priors for function selection, BNSP utilizes spike-and-slab
priors for variable selection. In addition, Bayesian GAMLSS models, also refer to as distributional
regression models, can also be fit with R package brms using normal priors (Bürkner, 2018). Further,
the R package gamboostLSS (Hofner et al., 2018) includes frequentist GAMLSS implementation based
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on boosting that can handle high-dimensional data (Mayr et al., 2012). Lastly, the R package mgcv
(Wood, 2018) can also fit generalized additive models with Gaussian errors and integrated smoothness
estimation, with implementations that can handle large datasets.

In BNSP we have implemented functions for fitting such semi-parametric models, summarizing
model fits, visualizing covariate effects and predicting new responses or their means. The main
functions are mvrm, mvrm2mcmc, print.mvrm, summary.mvrm, plot.mvrm, and predict.mvrm. A quick
description of these functions follows. The first one, mvrm, returns samples from the posterior distri-
butions of the model parameters, and it is based on an efficient Markov chain Monte Carlo (MCMC)
algorithm in which we integrate out the coefficients in the mean function, generate the variable
selection indicators in blocks (Chan et al., 2006), and choose the MCMC tuning parameters adaptively
(Roberts and Rosenthal, 2009). In order to minimize random-access memory utilization, posterior
samples are not kept in memory, but instead written in files in a directory supplied by the user.
The second function, mvrm2mcmc, reads-in the samples from the posterior of the model parameters
and it creates an object of class "mcmc". This enables users to easily utilize functions from package
coda (Plummer et al., 2006), including its plot and summary methods for assessing convergence and
for summarizing posterior distributions. Further, functions print.mvrm and summary.mvrm provide
summaries of model fits, including models and priors specified, marginal posterior probabilities of
term inclusion in the mean and variance models and models with the highest posterior probabilities.
Function plot.mvrm creates plots of parametric and nonparametric terms that appear in the mean
and variance models. The function can create two-dimensional plots by calling functions from the
package ggplot2 (Wickham, 2009). It can also create static or interactive three-dimensional plots by
calling functions from the packages plot3D (Soetaert, 2016) and threejs (Lewis, 2016). Lastly, function
predict.mvrm provides predictions either for new responses or their means given feature/covariate
vectors.

We next provide a detailed model description followed by illustrations on the usage of the package
and the options it provides. Technical details on the implementation of the MCMC algorithm are
provided in the Appendix. The paper concludes with a brief summary.

Mean-variance nonparametric regression models

Let y = (y1, . . . , yn)> denote the vector of responses and let X = [x1, . . . , xn]> and Z = [z1, . . . , zn]>

denote design matrices. The models that we consider express the vector of responses utilizing

Y = β01n + Xβ1 + ε,

where 1n is the usual n-dimensional vector of ones, β0 is an intercept term, β1 is a vector of regression
coefficients and ε = (ε1, . . . , εn)> is an n-dimensional vector of independent random errors. Each
εi, i = 1, . . . , n, is assumed to have a normal distribution, εi ∼ N(0, σ2

i ), with variances that are
modeled in terms of covariates. Let σ2 = (σ2

1 , . . . , σ2
n)
>. We model the vector of variances utilizing

log(σ2) = α01n + Zα1,

where α0 is an intercept term and α1 is a vector of regression coefficients. Equivalently, the model for
the variances can be expressed as

σ2
i = σ2 exp(z>i α1), i = 1, . . . , n, (1)

where σ2 = exp(α0).

Let D(α) denote an n-dimensional, diagonal matrix with elements exp(z>i α1/2), i = 1, . . . , n.
Then, the model that we consider may be expressed more economically as

Y = X∗β + ε,

ε ∼ N(0, σ2D2(α)), (2)

where β = (β0, β>1 )> and X∗ = [1n, X].

In the following subsections we describe how, within model (2), both parametric and nonpara-
metric effects of explanatory variables on the mean and variance functions can be captured utilizing
regression splines and variable selection methods. We begin by considering the special case where
there is a single covariate entering the mean model and a single covariate entering the variance model.
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Locally adaptive models with a single covariate

Suppose that the observed dataset consists of triplets (yi, ui, wi), i = 1, . . . , n, where explanatory vari-
ables u and w enter flexibly the mean and variance models, respectively. To model the nonparametric
effects of u and w we consider the following formulations of the mean and variance models

µi = β0 + fµ(ui) = β0 +
q1

∑
j=1

β jφ1j(ui) = β0 + x>i β1, (3)

log(σ2
i ) = α0 + fσ(wi) = α0 +

q2

∑
j=1

αjφ2j(wi) = α0 + z>i α1. (4)

In the preceding xi = (φ11(ui), . . . , φ1q1 (ui))
> and zi = (φ21(wi), . . . , φ2q2 (wi))

> are vectors of basis
functions and β1 = (β1, . . . , βq1 )

> and α1 = (α1, . . . , αq2 )
> are the corresponding coefficients.

In package BNSP we implemented two sets of basis functions. Firstly, radial basis functions

B1 =
{

φ1(u) = u, φ2(u) = ||u− ξ1||2 log
(
||u− ξ1||2

)
, . . . ,

φq(u) = ||u− ξq−1||2 log
(
||u− ξq−1||2

) }
, (5)

where ||u|| denotes the Euclidean norm of u and ξ1, . . . , ξq−1 are the knots that within package BNSP
are chosen as the quantiles of the observed values of explanatory variable u, with ξ1 = min(ui),
ξq−1 = max(ui) and the remaining knots chosen as equally spaced quantiles between ξ1 and ξq−1.

Secondly, we implemented thin plate splines

B2 =
{

φ1(u) = u, φ2(u) = (u− ξ1)+, . . . , φq(u) = (u− ξq)+
}

,

where (a)+ = max(a, 0) and the knots ξ1, . . . , ξq−1 are determined as above.

In addition, BNSP supports the smooth constructors from package mgcv (e.g., the low-rank thin
plate splines, cubic regression splines, P-splines, their cyclic versions, and others). Examples on how
these smooth terms are used within BNSP are provided later in this paper.

Locally adaptive models for the mean and variance functions are obtained utilizing the method-
ology developed by Chan et al. (2006). Considering the mean function, local adaptivity is achieved
by utilizing a large number of basis functions, q1. Over-fitting, and problems associated with it, is
avoided by allowing positive prior probability that the regression coefficients are exactly zero. The
latter is achieved by defining binary variables γj, j = 1, . . . , q1, that take value γj = 1 if β j 6= 0 and
γj = 0 if β j = 0. Hence, vector γ = (γ1, . . . , γq1 )

> determines which terms enter the mean model. The
vector of indicators δ = (δ1, . . . , δq2 )

> for the variance function is defined analogously.

Given vectors γ and δ, the heteroscedastic, semiparametric model (2) can be written as

Y = X∗γβγ + ε,

ε ∼ N(0, σ2D2(αδ)),

where βγ consisting of all non-zero elements of β1 and X∗γ consists of the corresponding columns of
X∗. Subvector αδ is defined analogously.

We note that, as was suggested by Chan et al. (2006), we work with mean corrected columns in the
design matrices X and Z, both in this paper and in the BNSP implementation. We remove the mean
from all columns in the design matrices except those that correspond to categorical variables.

Prior specification for models with a single covariate

Let X̃ = D(α)−1X∗. The prior for βγ is specified as (Zellner, 1986)

βγ|cβ, σ2, γ, α, δ ∼ N(0, cβσ2(X̃>γX̃γ)
−1).

Further, the prior for αδ is specified as

αδ|cα, δ ∼ N(0, cα I).

Independent priors are specified for the indicators variables γj as P(γj = 1|πµ) = πµ, j = 1, . . . , q1,
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from which the joint prior is obtained as

P(γ|πµ) = π
N(γ)
µ (1− πµ)

q1−N(γ),

where N(γ) = ∑
q1
j=1 γj.

Similarly, for the indicators δj we specify independent priors P(δj = 1|πσ) = πσ, j = 1, . . . , q2. It
follows that the joint prior is

P(δ|πσ) = π
N(δ)
σ (1− πσ)

q2−N(δ),

where N(δ) = ∑
q2
j=1 δj.

We specify inverse Gamma priors for cβ and cα and Beta priors for πµ and πσ

cβ ∼ IG(aβ, bβ), cα ∼ IG(aα, bα),

πµ ∼ Beta(cµ, dµ), πσ ∼ Beta(cσ, dσ). (6)

Lastly, for σ2 we consider inverse Gamma and half-normal priors

σ2 ∼ IG(aσ, bσ) and |σ| ∼ N(0, φ2
σ). (7)

Extension to bivariate covariates

It is straightforward to extend the methodology described earlier to allow fitting of flexible mean and
variance surfaces. In fact, the only modification required is in the basis functions and knots. For fitting
surfaces, in package BNSP we implemented radial basis functions

B3 =
{

φ1(u) = u1, φ2(u) = u2, φ3(u) = ||u− ξ1||2 log
(
||u− ξ1||2

)
, . . . ,

φq(u) = ||u− ξq−2||2 log
(
||u− ξq−2||2

) }
.

We note that the prior specification presented earlier for fitting flexible functions remains unchained
for fitting flexible surfaces. Further, for fitting bivariate or higher order functions, BNSP also supports
smooth constructors s, te, and ti from mgcv.

Extension to additive models

In the presence of multiple covariates, the effects of which may be modeled parametrically or semi-
parametrically, the mean model in (3) is extended to the following

µi = β0 + u>ipβ +
K1

∑
k=1

fµ,k(uik), i = 1, . . . , n,

where uip includes the covariates the effects of which are modeled parametrically, β denotes the
corresponding effects, and fµ,k(uik), k = 1, . . . , K1, are flexible functions of one or more covariates
expressed as

fµ,k(uik) =
q1k

∑
j=1

βkjφ1kj(uik),

where φ1kj, j = 1, . . . , q1k are the basis functions used in the kth component, k = 1, . . . , K1.

Similarly, the variance model (4), in the presence of multiple covariates, is expressed as

log(σ2
i ) = α0 + w>ipα +

K2

∑
k=1

fσ,k(wik), i = 1, . . . , n,

where

fσ,k(wik) =
q2k

∑
j=1

αkjφ2kj(wik).

For additive models, local adaptivity is achieved using a similar strategy, as in the single covariate
case. That is, we utilize a potentially large number of knots or basis functions in the flexible components
that appear in the mean model, fµ,k, k = 1, . . . , K1, and in the variance model, fσ,k, k = 1, . . . , K2. To
avoid over-fitting, we allow removal of the unnecessary ones utilizing the usual indicator variables,
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γk = (γk1, . . . , γkq1k
)>, k = 1, . . . , K1, and δk = (δk1, . . . , δkq2k

)>, k = 1, . . . , K2. Here, vectors γk and δk
determine which basis functions appear in fµ,k and fσ,k respectively.

The model that we implemented in package BNSP specifies independent priors for the indicators
variables γkj as P(γkj = 1|πµk ) = πµk , j = 1, . . . , q1k. From these, the joint prior follows

P(γk|πµk ) = π
N(γk)
µk (1− πµk )

q1k−N(γk),

where N(γk) = ∑
q1k
j=1 γkj.

Similarly, for the indicators δkj we specify independent priors P(δkj = 1|πσk ) = πσk , j = 1, . . . , q2k.
It follows that the joint prior is

P(δk|πσk ) = π
N(δk)
σk (1− πσk )

q2k−N(δk),

where N(δk) = ∑
q2k
j=1 δkj.

We specify the following independent priors for the inclusion probabilities.

πµk ∼ Beta(cµk , dµk ), k = 1, . . . , K1 πσk ∼ Beta(cσk , dσk ), k = 1, . . . , K2. (8)

The rest of the priors are the same as those specified for the single covariate models.

Usage

In this section we provide results on simulation studies and real data analyses. The purpose is twofold:
firstly we point out that the package works well and provides the expected results (in simulation
studies) and secondly we illustrate the options that the users of BNSP have.

Simulation studies

Here we present results from three simulations studies, involving one, two, and multiple covariates.
For the majority of these simulation studies, we utilize the same data-generating mechanisms as those
presented by Chan et al. (2006).

Single covariate case

We consider two mechanisms that involve a single covariate that appears in both the mean and
variance model. Denoting the covariate by u, the data-generating mechanisms are the normal model
Y ∼ N{µ(u), σ2(u)} with the following mean and standard deviation functions:

1. µ(u) = 2u, σ(u) = 0.1 + u,

2. µ(u) =
{

N(u, µ = 0.2, σ2 = 0.004) + N(u, µ = 0.6, σ2 = 0.1)
}

/4,
σ(u) =

{
N(u, µ = 0.2, σ2 = 0.004) + N(u, µ = 0.6, σ2 = 0.1)

}
/6.

We generate a single dataset of size n = 500 from each mechanism, where variable u is obtained from
the uniform distribution, u ∼ Unif(0, 1). For instance, for obtaining a dataset from the first mechanism
we use

> mu <- function(u) {2 * u}
> stdev <- function(u) {0.1 + u}
> set.seed(1)
> n <- 500
> u <- sort(runif(n))
> y <- rnorm(n, mu(u), stdev(u))
> data <- data.frame(y, u)

Above we specified the seed value to be one, and we do so in what follows, so that our results are
replicable.

To the generated dataset we fit a special case of the model that we presented, where the mean and
variance functions in (3) and (4) are specified as

µ = β0 + fµ(u) = β0 +
q1

∑
j=1

β jφ1j(u) and log(σ2) = α0 + fσ(u) = α0 +
q2

∑
j=1

αjφ2j(u), (9)
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with φ denoting the radial basis functions presented in (5). Further, we choose q1 = q2 = 21 basis
functions or, equivalently, 20 knots. Hence, we have φ1j(u) = φ2j(u), j = 1, . . . , 21, which results in
identical design matrices for the mean and variance models. In R, the two models are specified using

> model <- y ~ sm(u, k = 20, bs = "rd") | sm(u, k = 20, bs = "rd")

The above formula (Zeileis and Croissant, 2010) specifies the response, mean and variance models.
Smooth terms are specified utilizing function sm, that takes as input the covariate u, the selected
number of knots and the selected type of basis functions.

Next we specify the hyper-parameter values for the priors in (6) and (7). The default prior for cβ is
inverse Gamma with aβ = 0.5, bβ = n/2 (Liang et al., 2008). For parameter cα the default prior is a
non-informative but proper inverse Gamma with aα = bα = 1.1. Concerning πµ and πσ, the default
priors are uniform, obtained by setting cµ = dµ = 1 and cσ = dσ = 1. Lastly, the default prior for the
error standard deviation is the half-normal with variance φ2

σ = 2, |σ| ∼ N(0, 2).

We choose to run the MCMC sampler for 10, 000 iterations and discard the first 5, 000 as burn-in.
Of the remaining 5, 000 samples we retain 1 of every 2 samples, resulting in 2, 500 posterior samples.
Further, as mentioned above, we set the seed of the MCMC sampler equal to one. Obtaining posterior
samples is achieved by a function call of the form

> DIR <- getwd()
> m1 <- mvrm(formula = model, data = data, sweeps = 10000, burn = 5000,
+ thin = 2, seed = 1, StorageDir = DIR,
+ c.betaPrior = "IG(0.5,0.5*n)", c.alphaPrior = "IG(1.1,1.1)",
+ pi.muPrior = "Beta(1,1)", pi.sigmaPrior = "Beta(1,1)", sigmaPrior = "HN(2)")

Samples from the posteriors of the model parameters {β, γ, α, δ, cβ, cα, σ2} are written in seven separate
files which are stored in the directory specified by argument StorageDir. If a storage directory is
not specified, then function mvrm returns an error message, as without these files there will be no
output to process. Furthermore, the last two lines of the above function call show the specified priors,
which are cβ ∼ IG(0.5, n/2), cα ∼ IG(1.1, 1.1), πµ ∼ Beta(1, 1), πσ ∼ Beta(1, 1) and |σ| ∼ N(0, 2),
respectively. As we mentioned above, these priors are the default ones, and hence the same function
call can be achieved without specifying the last two lines. Here we display the priors in order to
describe how users can specify their own priors. For parameters cβ and cα only inverse Gamma priors
are available, with parameters that can be specified by the user in the intuitive way. For instance, the
prior cβ ∼ IG(1.01, 1.01) can be specified in function mvrm by using c.betaPrior = "IG(1.01,1.01)".
The second parameter of the prior for cβ can be a function of the sample size n (but only symbol n
would work here), so for instance c.betaPrior = "IG(1,0.4*n)" is another acceptable specification.
Further, Beta priors are available for parameters πµ and πσ with parameters that can be specified
by the user again in the intuitive way. Lastly, two priors are available for the error variance. These
are the default half-normal and the inverse Gamma. For instance, sigmaPrior = "HN(5)" defines
|σ| ∼ N(0, 5) as the prior while sigmaPrior = "IG(1.1,1.1)" defines σ2 ∼ IG(1.1, 1.1) as the prior.

Function mvrm2mcmc reads in posterior samples from the files that the call to function mvrm generated
and creates an object of class "mcmc". Hence, for summarizing posterior distributions and for assessing
convergence, functions summary and plot from package coda can be used. As an example, here we
read in the samples from the posterior of β and summarize the posterior using summary. For the sake
of economizing space, only the part of the output that describes the posteriors of β0, β1, and β2 is
shown below:

> beta <- mvrm2mcmc(m1, "beta")

> summary(beta)

Iterations = 5001:9999
Thinning interval = 2
Number of chains = 1
Sample size per chain = 2500

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
(Intercept) 9.534e-01 0.004399 8.799e-05 0.0002534
u 1.864e+00 0.042045 8.409e-04 0.0010356
sm(u).1 3.842e-04 0.016421 3.284e-04 0.0003284

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 532

5000 6000 7000 8000 9000 10000
0.

90
1.

00

Iterations

Trace of (Intercept)

0.90 0.92 0.94 0.96 0.98 1.00

0
60

Density of (Intercept)

N = 2500   Bandwidth = 0.0006888

5000 6000 7000 8000 9000 10000

1.
4

2.
2

Iterations

Trace of u

1.4 1.6 1.8 2.0 2.2 2.4

0
30

Density of u

N = 2500   Bandwidth = 0.001937

5000 6000 7000 8000 9000 10000

−
0.

2
0.

4

Iterations

Trace of sm(u).1 Density of sm(u).1

0
10

−1.281334 −0.281334 0.168114 0.613418

Figure 1: Trace and density plots for the regression coefficients β0, β1 and β2 of the first simulated
example. Parameters β1 and β2 are the coefficients of the first two basis functions, denoted by “u” and
“sm(u).1”. Plots for coefficients β3, . . . , β21 are omitted as they follow a very similar pattern to that
seen for β2 (i.e., most of the time they take value zero but with random spikes away from zero).

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
(Intercept) 0.946 0.9513 0.9533 0.9554 0.960
u 1.833 1.8565 1.8614 1.8682 1.923
sm(u).1 0.000 0.0000 0.0000 0.0000 0.000

Further, we may obtain a plot using

> plot(beta)

Figure 1 shows the first three of the plots created by function plot. These are the plots of the
samples from the posteriors of coefficients β0, β1 and β2. As we can see from both the summary and
Figure 1, only the first two coefficients have posteriors that are not centered around zero.

Returning to the function mvrm2mcmc, it requires two inputs. These are an object of class "mvrm" and
the name of the file to be read in R. For the parameters in the current model {β, γ, α, δ, cβ, cα, σ2} the
corresponding file names are ‘beta’, ‘gamma’, ‘alpha’, ‘delta’, ‘cbeta’, ‘calpha’, and ‘sigma2’ respectively.

Summaries of mvrm fits may be obtained utilizing functions print.mvrm and summary.mvrm. The
method print takes as input an object of class "mvrm". It returns basic information of the model fit, as
shown below:

> print(m1)

Call:
mvrm(formula = model, data = data, sweeps = 10000, burn = 5000,

thin = 2, seed = 1, StorageDir = DIR, c.betaPrior = "IG(0.5,0.5*n)",
c.alphaPrior = "IG(1.1,1.1)", pi.muPrior = "Beta(1,1)",
pi.sigmaPrior = "Beta(1,1)", sigmaPrior = "HN(2)")

2500 posterior samples

Mean model - marginal inclusion probabilities
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u sm(u).1 sm(u).2 sm(u).3 sm(u).4 sm(u).5 sm(u).6 sm(u).7
1.0000 0.0040 0.0036 0.0032 0.0084 0.0036 0.0044 0.0028

sm(u).8 sm(u).9 sm(u).10 sm(u).11 sm(u).12 sm(u).13 sm(u).14 sm(u).15
0.0060 0.0020 0.0060 0.0036 0.0056 0.0056 0.0036 0.0052

sm(u).16 sm(u).17 sm(u).18 sm(u).19 sm(u).20
0.0060 0.0044 0.0056 0.0044 0.0052

Variance model - marginal inclusion probabilities
u sm(u).1 sm(u).2 sm(u).3 sm(u).4 sm(u).5 sm(u).6 sm(u).7

1.0000 0.6072 0.5164 0.5808 0.5488 0.6760 0.5320 0.6336
sm(u).8 sm(u).9 sm(u).10 sm(u).11 sm(u).12 sm(u).13 sm(u).14 sm(u).15
0.6936 0.6708 0.5996 0.4816 0.4912 0.3728 0.6268 0.5688

sm(u).16 sm(u).17 sm(u).18 sm(u).19 sm(u).20
0.5872 0.6528 0.4428 0.6900 0.5356

The function returns a matched call, the number of posterior samples obtained, and marginal
inclusion probabilities of the terms in the mean and variance models.

Whereas the output of the print method focuses on marginal inclusion probabilities, the output of
the summary method focuses on the most frequently visited models. It takes as input an object of class
"mvrm" and the number of (most frequently visited) models to be displayed, which by default is set to
nModels = 5. Here to economize space we set nModels = 2. The information returned by the summary
method is shown below

> summary(m1, nModels = 2)

Specified model for the mean and variance:
y ~ sm(u, k = 20, bs = "rd") | sm(u, k = 20, bs = "rd")

Specified priors:
[1] c.beta = IG(0.5,0.5*n) c.alpha = IG(1.1,1.1) pi.mu = Beta(1,1)
[4] pi.sigma = Beta(1,1) sigma = HN(2)

Total posterior samples: 2500 ; burn-in: 5000 ; thinning: 2

Files stored in /home/papgeo/1/

Null deviance: 1299.292
Mean posterior deviance: -88.691

Joint mean/variance model posterior probabilities:
mean.u mean.sm.u..1 mean.sm.u..2 mean.sm.u..3 mean.sm.u..4 mean.sm.u..5

1 1 0 0 0 0 0
2 1 0 0 0 0 0
mean.sm.u..6 mean.sm.u..7 mean.sm.u..8 mean.sm.u..9 mean.sm.u..10

1 0 0 0 0 0
2 0 0 0 0 0
mean.sm.u..11 mean.sm.u..12 mean.sm.u..13 mean.sm.u..14 mean.sm.u..15

1 0 0 0 0 0
2 0 0 0 0 0
mean.sm.u..16 mean.sm.u..17 mean.sm.u..18 mean.sm.u..19 mean.sm.u..20 var.u

1 0 0 0 0 0 1
2 0 0 0 0 0 1
var.sm.u..1 var.sm.u..2 var.sm.u..3 var.sm.u..4 var.sm.u..5 var.sm.u..6

1 1 1 1 1 1 1
2 1 0 1 1 1 1
var.sm.u..7 var.sm.u..8 var.sm.u..9 var.sm.u..10 var.sm.u..11 var.sm.u..12

1 1 1 1 0 1 0
2 1 1 1 1 1 1
var.sm.u..13 var.sm.u..14 var.sm.u..15 var.sm.u..16 var.sm.u..17 var.sm.u..18

1 1 1 1 1 1 1
2 0 1 1 1 1 0
var.sm.u..19 var.sm.u..20 freq prob cumulative

1 1 1 141 5.64 5.64
2 1 0 120 4.80 10.44
Displaying 2 models of the 916 visited
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2 models account for 10.44% of the posterior mass

Firstly, the method provides the specified mean and variance models and the specified priors. This
is followed by information about the MCMC chain and the directory where files have been stored.
In addition, the function provides the null and the mean posterior deviance. Finally, the function
provides the specification of the joint mean/variance models that were visited most often during
MCMC sampling. This specification is in terms of a vector of indicators, each consisting of zeros and
ones, that show which terms are in the mean and variance model. To make clear which terms pertain
to the mean and which to the variance function, we have preceded the names of the model terms by
“mean.” or “var.”. In the above output, we see that the most visited model specifies a linear mean
model (only the linear term is included in the model) while the variance model includes twelve terms.
See also Figure 2.

We next describe the function plot.mvrm which creates plots of terms in the mean and variance
functions. Two calls to the plot method can be seen in the code below. Argument x expects an object
of class "mvrm", as created by a call to the function mvrm. The model argument may take on one of three
possible values: "mean", "stdev", or "both", specifying the model to be visualized. Further, the term
argument determines the term to be plotted. In the current example there is only one term in each of
the two models which leaves us with only one choice, term = "sm(u)". Equivalently, term may be
specified as an integer, term = 1. If term is left unspecified, then, by default, the first term in the model
is plotted. For creating two-dimensional plots, as in the current example, the plot method utilizes the
package ggplot2. Users of BNSP may add their own options to plots via the argument plotOptions.
The code below serves as an example.

> x1 <- seq(0, 1, length.out = 30)
> plotOptionsM <- list(geom_line(aes_string(x = x1, y = mu(x1)), col = 2, alpha = 0.5,
+ lty = 2), geom_point(data = data, aes(x = u, y = y)))
> plot(x = m1, model = "mean", term = "sm(u)", plotOptions = plotOptionsM,
+ intercept = TRUE, quantiles = c(0.005, 0.995), grid = 30)
> plotOptionsV = list(geom_line(aes_string(x = x1, y = stdev(x1)), col = 2,
+ alpha = 0.5, lty = 2))
> plot(x = m1, model = "stdev", term = "sm(u)", plotOptions = plotOptionsV,
+ intercept = TRUE, quantiles = c(0.05, 0.95), grid = 30)

The resulting plots can be seen in Figure 2, panels (a) and (b). Panel (a) displays the simulated
dataset, showing the expected increase in both the mean and variance with increasing values of the
covariate u. Further, we see the posterior mean of µ(u) = β0 + fµ(u) = β0 + ∑21

j=1 β jφ1j(u) evaluated
over a grid of 30 values of u, as specified by the (default) grid = 30 option for plot. For each
sample β(s), s = 1, . . . , S, from the posterior of β, and for each value of u over the grid of 30 values,

uj, j = 1, . . . , 30, the plot method computes µ(uj)
(s) = β

(s)
0 + ∑21

j=1 β
(s)
j φ1j(uj). The default option

intercept = TRUE specifies that the intercept β0 is included in the computation, but it may be removed
by setting intercept = FALSE. The posterior means are computed by the usual µ̄(uj) = S−1 ∑s µ(uj)

(s)

and are plotted with solid (blue-color) line. By default, the function displays 80% point-wise credible
intervals (CI). In Figure 2, panel (a) we have plotted 99% CIs, as specified by option quantiles =
c(0.005,0.995). This option specifies that for each value uj, j = 1, . . . , 30, on the grid, 99% CIs for
µ(uj) are computed by the 0.5% and 99.5% quantiles of the samples µ(uj)

(s), s = 1, . . . , S. Plots without
credible intervals may be obtained by setting quantiles = NULL.

Figure 2, panel (b) displays the posterior mean of the standard deviation function σ(u) =
σ exp{∑q2

j=1 αjφ2j(u)/2}. The details are the same as for the plot of the mean function, so here we briefly
mention a difference: option intercept = TRUE specifies that σ is included in the calculation. It may be
removed by setting intercept = FALSE, which will result in plots of σ(u)∗ = exp{∑q2

j=1 αjφ2j(u)/2}.
We use the second simulated dataset to show how the s constructor from the package mgcv may

be used. In our example, we use s to specify the model:

> model <- y ~ s(u, k = 15, bs = "ps", absorb.cons=TRUE) |
+ s(u, k = 15, bs = "ps", absorb.cons=TRUE)

Function BNSP::s calls in turn mgcv::s and mgcv::smoothCon. All options of the last two functions
may be passed to BNSP::s. In the example above we used options k, bs, and absorb.cons.

The remaining R code for the second simulated example is precisely the same as the one for the
first example, and hence omitted. Results are shown in Figure 2, panels (c) and (d).

We conclude the current section by describing the function predict.mvrm. The function provides
predictions and posterior credible or prediction intervals for given feature vectors. The two types of
intervals differ in the associated level of uncertainty: prediction intervals attempt to capture a future
response and are usually much wider than credible intervals that attempt to capture a mean response.
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Figure 2: Results from the single covariate simulated examples. The column on the left-hand side
displays the generated data points and posterior means of the estimated effect along with 99% CIs.
The column on the right-hand side displays the posterior mean of the estimated standard deviation
function along with 90% CIs. In all panels, the truth is represented by dashed (red color) lines, the
posterior means by solid (blue color) lines, and the CIs by gray color.

The following code shows how credible and prediction intervals can be obtained for a sequence of
covariate values stored in x1

> x1 <- seq(0, 1, length.out = 30)
> p1 <- predict(m1, newdata = data.frame(u = x1), interval = "credible")
> p2 <- predict(m1, newdata = data.frame(u = x1), interval = "prediction")

where the first argument in the predict method is a fitted mvrm model, the second one is a data frame
containing the feature vectors at which predictions are to be obtained and the last one defines the
type of interval to be created. We applied the predict method to the two simulated datasets. To each
of those datasets we fitted two models: the first one is the one we saw earlier, where both the mean
and variance are modeled in terms of covariates, while the second one ignores the dependence of the
variance on the covariate. The latter model is specified in R using

> model <- y ~ sm(u, k = 20, bs = "rd") | 1

Results are displayed in Figure 3. Each of the two figures displays a credible interval and two
prediction intervals. The figure emphasizes a point that was discussed in the introductory section, that
modeling the variance in terms of covariates can result in more realistic prediction intervals. The same
point was recently discussed by Mayr et al. (2012).

Bivariate covariate case

Interactions between two predictors can be modeled by appropriate specification of either the built-in
sm function or the smooth constructors from mgcv. Function sm can take up to two covariates, both
of which may be continuous or one continuous and one discrete. Next we consider an example that
involves two continuous covariates. An example involving a continuous and a discrete covariate is
shown later on, in the second application to a real dataset.
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Figure 3: Predictions results from the first two simulated datasets. Each panel displays a credible
interval and two prediction intervals, one obtained using a model that recognizes the dependence of
the variance on the covariate and one that ignores it.

Let u = (u1, u2)
> denote a bivariate predictor. The data-generating mechanism that we consider is

y(u) ∼ N{µ(u), σ2(u)},
µ(u) = 0.1 + N (u, µ1, Σ1) + N (u, µ2, Σ2) ,

σ2(u) = 0.1 + {N (u, µ1, Σ1) + N (u, µ2, Σ2)} /2,

µ1 =

(
0.25
0.75

)
, Σ1 =

(
0.03 0.01
0.01 0.03

)
, µ2 =

(
0.65
0.35

)
, Σ2 =

(
0.09 0.01
0.01 0.09

)
.

As before, u1 and u2 are obtained independently from uniform distributions on the unit interval.
Further, the sample size is set to n = 500.

In R, we simulate data from the above mechanism using

> mu1 <- matrix(c(0.25, 0.75))
> sigma1 <- matrix(c(0.03, 0.01, 0.01, 0.03), 2, 2)
> mu2 <- matrix(c(0.65, 0.35))
> sigma2 <- matrix(c(0.09, 0.01, 0.01, 0.09), 2, 2)
> mu <- function(x1, x2) {x <- cbind(x1, x2);
+ 0.1 + dmvnorm(x, mu1, sigma1) + dmvnorm(x, mu2, sigma2)}
> Sigma <- function(x1, x2) {x <- cbind(x1, x2);
+ 0.1 + (dmvnorm(x, mu1, sigma1) + dmvnorm(x, mu2, sigma2)) / 2}
> set.seed(1)
> n <- 500
> w1 <- runif(n)
> w2 <- runif(n)
> y <- vector()
> for (i in 1:n) y[i] <- rnorm(1, mean = mu(w1[i], w2[i]),
+ sd = sqrt(Sigma(w1[i], w2[i])))
> data <- data.frame(y, w1, w2)

We fit a model with mean and variance functions specified as

µ(u) = β0 +
12

∑
j1=1

12

∑
j2=1

β j1,j2 φ1j1,j2 (u), log(σ2(u)) = α0 +
12

∑
j1=1

12

∑
j2=1

αj1,j2 φ2j1,j2 (u).

The R code that fits the above model is

> Model <- y ~ sm(w1, w2, k = 10, bs = "rd") | sm(w1, w2, k = 10, bs = "rd")
> m2 <- mvrm(formula = Model, data = data, sweeps = 10000, burn = 5000, thin = 2,
+ seed = 1, StorageDir = DIR)

As in the univariate case, convergence assessment and univariate posterior summaries may be
obtained by using function mvrm2mcmc in conjunction with functions plot.mcmc and summary.mcmc.
Further, summaries of the mvrm fits may be obtained using functions print.mvrm and summary.mvrm.
Plots of the bivariate effects may be obtained using function plot.mvrm. This is shown below, where
argument plotOptions utilizes the package colorspace (Zeileis et al., 2009).

> plot(x = m2, model = "mean", term = "sm(w1,w2)", static = TRUE,
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Figure 4: Bivariate simulation study results with two continuous covariates. Shown are posterior
means of (a) the mean and (b) the standard deviation function.

+ plotOptions = list(col = diverge_hcl(n = 10)))
> plot(x = m2, model = "stdev", term = "sm(w1,w2)", static = TRUE,
+ plotOptions = list(col = diverge_hcl(n = 10)))

Results are shown in Figure 4. For bivariate predictors, function plot.mvrm calls function ribbon3D
from the package plot3D. Dynamic plots, viewable in a browser, can be created by replacing the
default ‘static=TRUE’ by ‘static=FALSE’. When the latter option is specified, function plot.mvrm
calls the function scatterplot3js from the package threejs. Users may pass their own options to
plot.mvrm via the plotOptions argument.

Multiple covariate case

We consider fitting general additive models for the mean and variance functions in a simulated
example with four independent continuous covariates. In this scenario, we set n = 1000. Further the
covariates w = (w1, w2, w3, w4)

> are simulated independently from a uniform distribution on the unit
interval. The data-generating mechanism that we consider is

Y(w) ∼ N(µ(w), σ2(w)),

µ(w) =
4

∑
j=1

µj(wj) and σ(w) =
4

∏
j=1

σj(wj),

where functions µj, σj, j = 1, . . . , 4, are specified below:

1. µ1(w1) = 1.5w1, σ1(w1) =
{

N(w1, µ = 0.2, σ2 = 0.004) + N(w1, µ = 0.6, σ2 = 0.1)
}

/2,

2. µ2(w2) =
{

N(w2, µ = 0.2, σ2 = 0.004) + N(w2, µ = 0.6, σ2 = 0.1)
}

/2,
σ2(w2) = 0.6 + 0.5 sin(2πw2),

3. µ3(w3) = 1 + sin(2πw3), σ3(w3) = 1.1− w3,

4. µ4(w4) = −w4, σ4(w4) = 0.2 + 1.5w4.

To the generated dataset we fit a model with mean and variance functions modeled as

µ(w) = β0 +
4

∑
k=1

16

∑
j=1

βkjφkj(wk) and log{σ2(w)} = α0 +
4

∑
k=1

16

∑
j=1

αkjφkj(wk).

Fitting the above model to the simulated data is achieved by the following R code

> Model <- y ~ sm(w1, k = 15, bs = "rd") + sm(w2, k = 15, bs = "rd") +
+ sm(w3, k = 15, bs = "rd") + sm(w4, k = 15, bs = "rd") |
+ sm(w1, k = 15, bs = "rd") + sm(w2, k = 15, bs = "rd") +
+ sm(w3, k = 15, bs = "rd") + sm(w4, k = 15, bs = "rd")
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> m3 <- mvrm(formula = Model, data = data, sweeps = 50000, burn = 25000,
+ thin = 5, seed = 1, StorageDir = DIR)

By default the function sm utilizes the radial basis functions, hence there is no need to specify bs =
"rd", as we did earlier, if radial basis functions are preferred over thin plate splines. Further, we have
selected k = 15 for all smooth functions. However, there is no restriction to the number of knots and
certainly one can select a different number of knots for each smooth function.

As discussed previously, for each term that appears in the right-hand side of the mean and
variance functions, the model incorporates indicator variables that specify which basis functions
are to be included and which are to be excluded from the model. For the current example, the
indicator variables are denoted by γkj and δkj, k = 1, 2, 3, 4, j = 1, . . . , 16. The prior probabili-
ties that variables are included were specified in (8) and they are specific to each term, πµk ∼
Beta(cµk , dµk ), πσk ∼ Beta(cσk , dσk ), k = 1, 2, 3, 4. The default option pi.muPrior = "Beta(1,1)" spec-
ifies that πµk ∼ Beta(1, 1), k = 1, 2, 3, 4. Further, by setting, for example, pi.muPrior = "Beta(2,1)"
we specify that πµk ∼ Beta(2, 1), k = 1, 2, 3, 4. To specify a different Beta prior for each of the four
terms, pi.muPrior will have to be specified as a vector of length four, as an example, pi.muPrior =
c("Beta(1,1)","Beta(2,1)","Beta(3,1)","Beta(4,1)"). Specification of the priors for πσk is done
in a similar way, via argument pi.sigmaPrior.

We conclude this section by presenting plots of the four terms in the mean and variance models.
The plots are presented in Figure 5. We provide a few details on how the plot method works in the
presence of multiple terms, and how the comparison between true and estimated effects is made.
Starting with the mean function, to create the relevant plots, that appear on the left panels of Figure 5,
the plot method considers only the part of the mean function µ(u) that is related to the chosen term
while leaving all other terms out. For instance, in the code below we choose term = "sm(u1)" and
hence we plot the posterior mean and a posterior credible interval for ∑16

j=1 β1jφ1j(u1), where the
intercept β0 is left out by option intercept = FALSE. Further, comparison is made with a centered
version of the true curve, represented by the dashed (red color) line and obtained by the first three
lines of code below.

> x1 <- seq(0, 1, length.out = 30)
> y1 <- mu1(x1)
> y1 <- y1 - mean(y1)
> PlotOptions <- list(geom_line(aes_string(x = x1, y = y1),
+ col = 2, alpha = 0.5, lty = 2))
> plot(x = m3, model = "mean", term = "sm(w1)", plotOptions = PlotOptions,
+ intercept = FALSE, centreEffects = FALSE, quantiles = c(0.005, 1 - 0.005))

The plots of the four standard deviation terms are shown in the right panels of Figure 5. Again,
these are created by considering only the part of the model for σ(u) that is related to the chosen term.
For instance, below we choose term = "sm(u1)". Hence, in this case the plot will present the posterior
mean and a posterior credible interval for exp{∑16

j=1 α1jφ1j(u1)/2}, where the intercept α0 is left out
by option intercept = FALSE. Option centreEffects = TRUE scales the posterior realizations of
exp{∑16

j=1 α1jφ1j(u1)/2} before plotting them, where the scaling is done in such a way that the realized
function has mean one over the range of the predictor. Further, the comparison is made with a scaled
version of the true curve, where again the scaling is done to achieve mean one. This is shown below
and it is in the spirit of Chan et al. (2006) who discuss the differences between the data generating
mechanism and the fitted model.

> y1 <- stdev1(x1) / mean(stdev1(x1))
> PlotOptions <- list(geom_line(aes_string(x = x1, y = y1),
+ col = 2, alpha = 0.5, lty = 2))
> plot(x = m3, model = "stdev", term = "sm(w1)", plotOptions = PlotOptions,
+ intercept = FALSE, centreEffects = TRUE, quantiles = c(0.025, 1 - 0.025))

Data analyses

In this section we present four empirical applications.

Wage and age

In the first empirical application, we analyse a dataset from Pagan and Ullah (1999) that is available
in the R package np (Hayfield and Racine, 2008). The dataset consists of n = 205 observations on
dependent variable logwage, the logarithm of the individual’s wage, and covariate age, the individual’s
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Figure 5: Multiple covariate simulation study results. The column on the left-hand side presents the
true and estimated mean functions, along with 99% credible intervals. The column on the right-hand
side presents the true and estimated standard deviation functions, along with 95% credible intervals.
In all panels, the truth is represented by dashed (red color) lines, the estimated functions by solid (blue
color) lines, and the credible intervals by gray color.
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Figure 6: Results from the data analysis on the relationship between age and the logarithm of wage.
Panel (a) shows the posterior mean, an 80% credible interval of the mean function, and the observed
data-points. Panel (b) shows the posterior mean and an 80% credible interval of the standard deviation
function.

age. The dataset comes from the 1971 Census of Canada Public Use Sample Tapes and the sampling
units it involves are males of common education. Hence, the investigation of the relationship between
age and the logarithm of wage is carried out controlling for the two potentially important covariates
education and gender.

We utilize the following R code to specify flexible models for the mean and variance functions, and
to obtain 5, 000 posterior samples, after a burn-in period of 25, 000 samples and a thinning period of 5.

> data(cps71)
> DIR <- getwd()
> model <- logwage ~ sm(age, k = 30, bs = "rd") | sm(age, k = 30, bs = "rd")
> m4 <- mvrm(formula = model, data = cps71, sweeps = 50000,
+ burn = 25000, thin = 5, seed = 1, StorageDir = DIR)

After checking convergence, we use the following code to create the plots that appear in Figure 6.

> wagePlotOptions <- list(geom_point(data = cps71, aes(x = age, y = logwage)))
> plot(x = m4, model = "mean", term = "sm(age)", plotOptions = wagePlotOptions)
> plot(x = m4, model = "stdev", term = "sm(age)")

Figure 6 (a) shows the posterior mean and an 80% credible interval for the mean function and it
suggests a quadratic relationship between age and logwage. Figure 6 (b) shows the posterior mean and
an 80% credible interval for the standard deviation function. It suggest a complex relationship between
age and the variability in logwage. The relationship suggested by Figure 6 (b) is also suggested by
the spread of the data-points around the estimated mean in Figure 6 (a). At ages around 20 years the
variability in logwage is high. It then reduces until about age 30, to start increasing again until about
age 45. From age 45 to 60 it remains stable but high, while for ages above 60, Figure 6 (b) suggests
further increase in the variability, but the wide credible interval suggests high uncertainty over this
age range.

Wage and multiple covariates

In the second empirical application, we analyse a dataset from Wooldridge (2008) that is also available
in the R package np. The response variable here is the logarithm of the individual’s hourly wage
(lwage) while the covariates include the years of education (educ), the years of experience (exper),
the years with the current employer (tenure), the individual’s gender (named as female within the
dataset, with levels Female and Male), and marital status (named as married with levels Married and
Notmarried). The dataset consists of n = 526 independent observations. We analyse the first three
covariates as continuous and the last two as discrete.

As the variance function is modeled in terms of an exponential, see (1), to avoid potential numerical
problems, we transform the three continuous variables to have range in the interval [0, 1], using

> data(wage1)
> wage1$ntenure <- wage1$tenure / max(wage1$tenure)
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> wage1$nexper <- wage1$exper / max(wage1$exper)
> wage1$neduc <- wage1$educ / max(wage1$educ)

We choose to fit the following mean and variance models to the data

µi = β0 + β1 marriedi + f1(ntenurei) + f2(neduci) + f3(nexperi, femalei),

log(σ2
i ) = α0 + f4(nexperi).

We note that, as it turns out, an interaction between variables nexper and female is not necessary for
the current data analysis. However, we choose to add this term in the mean model in order to illustrate
how interaction terms can be specified. We illustrate further options below.

> knots1 <- seq(min(wage1$nexper), max(wage1$nexper), length.out = 30)
> knots2 <- c(0, 1)
> knotsD <- expand.grid(knots1, knots2)
> model <- lwage ~ fmarried + sm(ntenure) + sm(neduc, knots=data.frame(knots =
+ seq(min(wage1$neduc), max(wage1$neduc), length.out = 15))) +
+ sm(nexper, ffemale, knots = knotsD) | sm(nexper, knots=data.frame(knots =
+ seq(min(wage1$nexper), max(wage1$nexper), length.out=15)))

The first three lines of the R code above specify the matrix of (potential) knots to be used for represent-
ing f3(nexper,female). Knots may be left unspecified, in which case the defaults in function sm will
be used. Furthermore, in the specification of the mean model we use sm(ntenure). By this, we chose
to represent f1 utilizing the default 10 knots and the radial basis functions. Further, the specification of
f2 in the mean model illustrates how users can specify their own knots for univariate functions. In the
current example, we select 15 knots uniformly spread over the range of neduc. Fifteen knots are also
used to represent f4 within the variance model.

The following code is used to obtain samples from the posteriors of the model parameters.

> DIR <- getwd()
> m5 <- mvrm(formula = model, data = wage1, sweeps = 100000,
+ burn = 25000, thin = 5, seed = 1, StorageDir = DIR))

After summarizing results and checking convergence, we create plots of posterior means, along
with 95% credible intervals, for functions f1, . . . , f4. These are displayed in Figure 7. As it turns out,
variable married does not have an effect on the mean of lwage. For this reason, we do not provide
further results on the posterior of the coefficient of covariate married, β1. However, in the code below
we show how graphical summaries on β1 can be obtained, if needed.

> PlotOptionsT <- list(geom_point(data = wage1, aes(x = ntenure, y = lwage)))
> plot(x = m5, model = "mean", term="sm(ntenure)", quantiles = c(0.025, 0.975),
+ plotOptions = PlotOptionsT)
> PlotOptionsEdu <- list(geom_point(data = wage1, aes(x = neduc, y = lwage)))
> plot(x = m5, model = "mean", term = "sm(neduc)", quantiles = c(0.025, 0.975),
+ plotOptions = PlotOptionsEdu)
> pchs <- as.numeric(wage1$female)
> pchs[pchs == 1] <- 17; pchs[pchs == 2] <- 19
> cols <- as.numeric(wage1$female)
> cols[cols == 2] <- 3; cols[cols == 1] <- 2
> PlotOptionsE <- list(geom_point(data = wage1, aes(x = nexper, y = lwage),
+ col = cols, pch = pchs, group = wage1$female))
> plot(x = m5, model = "mean", term="sm(nexper,female)", quantiles = c(0.025, 0.975),
+ plotOptions = PlotOptionsE)
> plot(x = m5, model = "stdev", term = "sm(nexper)", quantiles = c(0.025, 0.975))
> PlotOptionsF <- list(geom_boxplot(fill = 2, color = 1))
> plot(x = m5, model = "mean", term = "married", quantiles = c(0.025, 0.975),
+ plotOptions = PlotOptionsF)

Figure 7, panels (a) and (b) show the posterior means and 95% credible intervals for f1(ntenure)
and f2(neduc). It can be seen that expected wages increase with tenure and education, although there
is high uncertainty over a large part of the range of both covariates. Panel (c) displays the posterior
mean and a 95% credible interval for f3. We can see that although the forms of the two functions
are similar, (i.e. the interaction term is not needed), males have higher expected wages than females.
Lastly, panel (d) displays posterior summaries of the standard deviation function, σi = σ exp( f4/2). It
can be seen that variability first increases and then decreases as experience increases.
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Figure 7: Results from the data analysis on the relationship between covariates gender, marital
status, experience, education, and tenure, and response variable logarithm of hourly wage. Posterior
means and 95% credible intervals for (a) f1(ntenure), (b) f2(neduc), (c) f3(nexper, female), and (d)
the standard deviation function σi = σ exp[ f4(nexper)/2].

Lastly, we show how to obtain predictions and credible intervals for the levels "Married" and
"Notmarried" of variable fmaried and the levels "Female" and "Male" of variable fffemale, with
variables ntenure, nedc, and nexper fixed at their mid-range.

> p1 <- predict(m5, newdata = data.frame(fmarried = rep(c("Married", "Notmarried"), 2),
+ ntenure = rep(0.5, 4), neduc = rep(0.5, 4), nexper = rep(0.5, 4),
+ ffemale = rep(c("Female", "Male"), each = 2)), interval = "credible")

> p1
fit lwr upr

1 1.321802 1.119508 1.506574
2 1.320400 1.119000 1.505272
3 1.913341 1.794035 2.036255
4 1.911939 1.791578 2.034832

The predictions are suggestive of no “marriage” effect and of “gender” effect.

Brain activity

Here we analyse brain activity level data obtained by functional magnetic resonance imaging. The
dataset is available in package gamair (Wood, 2006) and it was previously analysed by Landau et al.
(2003). We are interested in three of the columns in the dataset. These are the response variable, medFPQ,
which is calculated as the median over three measurements of “Fundamental Power Quotient” and
the two covariates, X and Y, which show the location of each voxel.

The following R code loads the relevant data frame, removes two outliers and transforms the
response variable, as was suggested by Wood (2006). In addition, it plots the brain activity data using
function levelplot from the package lattice (Sarkar, 2008).

> data(brain)
> brain <- brain[brain$medFPQ > 5e-5, ]
> brain$medFPQ <- (brain$medFPQ) ^ 0.25
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Figure 8: Results from the brain activity level data analysis. Panel (a) shows the observed data and
panel (b) the model-based smooth surface.

> levelplot(medFPQ ~ Y * X, data = brain, xlab = "Y", ylab = "X",
+ col.regions = gray(10 : 100 / 100))

The plot of the observed data is shown in Figure 8, panel (a). Its distinctive feature is the noise
level, which makes it difficult to decipher any latent pattern. Hence, the goal of the current data
analysis is to obtain a smooth surface of brain activity level from the noisy data. It was argued by
Wood (2006) that for achieving this goal a spatial error term is not needed in the model. Thus, we
analyse the brain activity level data using a model of the form

medFPQi
ind∼ N(µi, σ2), where µi = β0 +

10

∑
j1=1

10

∑
j2=1

β j1,j2 φ1j1,j2 (Xi, Yi), i = 1, . . . , n,

where n = 1565 is the number of voxels.

The R code that fits the above model is

> Model <- medFPQ ~ sm(Y, X, k = 10, bs = "rd") | 1
> m6 <- mvrm(formula = Model, data = brain, sweeps = 50000, burn = 20000, thin = 2,
+ seed = 1, StorageDir = DIR)

From the fitted model we obtain a smooth brain activity level surface using function predict.
The function estimates the average activity at each voxel of the brain. Further, we plot the estimated
surface using function levelplot.

> p1 <- predict(m6)
> levelplot(p1[, 1] ~ Y * X, data = brain , xlab = "Y", ylab = "X",
+ col.regions = gray(10 : 100 / 100), contour = TRUE)

Results are shown in Figure 8, panel(b). The smooth surface makes it much easier to see and
understand which parts of the brain have higher activity.

Cars

In the fourth and final application we use the function mvrm to identify the best subset of predictors in
a regression setting. Usually stepwise model selection is performed, using functions step from base R
and stepAIC from the MASS package. Here we show how mvrm can be used as an alternative to those
two functions. The data frame that we apply mvrm on is mtcars, where the response variable is mpg
and the explanatory variables that we consider are disp, hp, wt, and qsec. The code below loads the
data frame, specifies the model and obtains samples from the posteriors of the model parameters.

> data(mtcars)
> Model <- mpg ~ disp + hp + wt + qsec | 1
> m7 <- mvrm(formula = Model, data = mtcars, sweeps = 50000, burn = 25000, thin = 2,
+ seed = 1, StorageDir = DIR)

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 544

The following is an excerpt of the output that the summary method produces showing the three
models with the highest posterior probability.

> summary(m7, nModels = 3)

Joint mean/variance model posterior probabilities:
mean.disp mean.hp mean.wt mean.qsec freq prob cumulative
1 0 1 1 0 1085 43.40 43.40
2 0 0 1 1 1040 41.60 85.00
3 0 0 1 0 128 5.12 90.12
Displaying 3 models of the 11 visited
3 models account for 90.12% of the posterior mass

The model with the highest posterior probability (43.4%) is the one that includes explanatory variables
hp and wt. The model that includes wt and qsec has almost equal posterior probability, 41.6%. These
two models account for 85% of the posterior mass. The third most promising model is the one that
includes only wt as predictor, but its posterior probability is much lower, 5.12%.

Appendix: MCMC algorithm

In this section we present the technical details of how the MCMC algorithm is designed for the case
where there is a single covariate in the mean and variance models. We first note that to improve mixing
of the sampler, we integrate out vector β from the likelihood of y, as was done by Chan et al. (2006):

f (y|α, cβ, γ, δ, σ2) ∝ |σ2D2(αδ)|−
1
2 (cβ + 1)−

N(γ)+1
2 exp(−S/2σ2), (10)

where, withỹ = D−1(αδ)y, we have S = S(y, α, cβ, γ, δ) =ỹ>ỹ− cβ

1+cβ
ỹ>X̃γ(X̃

>
γX̃γ)−1X̃>γỹ.

The six steps of the MCMC sampler are as follows

1. Similar to Chan et al. (2006), the elements of γ are updated in blocks of randomly chosen
elements. The block size is chosen based on probabilities that can be supplied by the user or
be left at their default values. Let γB be a block of random size of randomly chosen elements
from γ. The proposed value for γB is obtained from its prior with the remaining elements of γ,
denoted by γBC , kept at their current value. The proposal pmf is obtained from the Bernoulli
prior with πµ integrated out

p(γB|γBC ) =
p(γ)

p(γBC )
=

Beta(cµ + N(γ), dµ + q1 − N(γ))

Beta(cµ + N(γBC ), dµ + q1 − L(γB)− N(γBC ))
,

where L(γB) denotes the length of γB (i.e., the size of the block). For this proposal pmf, the
acceptance probability of the Metropolis-Hastings move reduces to the ratio of the likelihoods
in (10)

min

1,
(cβ + 1)−

N(γP )+1
2 exp(−SP/2σ2)

(cβ + 1)−
N(γC )+1

2 exp(−SC/2σ2)

 ,

where superscripts P and C denote proposed and currents values respectively.

2. Vectors α and δ are updated simultaneously. Similarly to the updating of γ, the elements
of δ are updated in random order in blocks of random size. Let δB denote a block. Blocks
δB and the whole vector α are generated simultaneously. As was mentioned by Chan et al.
(2006), generating the whole vector α, instead of subvector αB, is necessary in order to make the
proposed value of α consistent with the proposed value of δ.
Generating the proposed value for δB is done in a similar way as was done for γB in the previous
step. Let δP denote the proposed value of δ. Next, we describe how the proposed vale for αδP

is obtained. The development is in the spirit of Chan et al. (2006) who built on the work of
Gamerman (1997).

Let β̂
C
γ = {cβ/(1 + cβ)}(X̃>γX̃γ)−1X̃>γỹ denote the current value of the posterior mean of βγ.

Define the current squared residuals

eC
i = (yi − (x∗iγ)

> β̂
C
γ )

2,

i = 1, . . . , n. These will have an approximate σ2
i χ2

1 distribution, where σ2
i = σ2 exp(z>i α). The
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latter defines a Gamma generalized linear model (GLM) for the squared residuals with mean
E(σ2

i χ2
1) = σ2

i = σ2 exp(z>i α), which, utilizing a log-link, can be thought of as Gamma GLM
with an offset term: log(σ2

i ) = log(σ2) + z>i α. Given the proposed value of δ, denoted by δP,
the proposal density for αP

δP is derived utilizing the one step iteratively re-weighted least squares
algorithm. This proceeds as follows. First define the transformed observations

dC
i (α

C) = log(σ2) + z>i αC +
eC

i − (σ2
i )

C

(σ2
i )

C ,

where superscript C denotes current values. Further, let dC denote the vector of dC
i .

Next we define

∆(δP) = (c−1
α I + Z>δP ZδP )−1 andα̂(δP, αC) = ∆δP Z>δP dC,

where Z is the design matrix. The proposed value αP
δP is obtained from a multivariate normal

distribution with meanα̂(δP, αC) and covariance h∆(δP), denoted as N(αP
δP ;α̂(δP, αC), h∆(δP)),

where h is a free parameter that we introduce and select its value adaptively (Roberts and
Rosenthal, 2009) in order to achieve an acceptance probability of 20% − 25% (Roberts and
Rosenthal, 2001).
Let N(αC

δC ;α̂(δC, αP), h∆(δC)) denote the proposal density for taking a step in the reverse direc-
tion, from model δP to δC. Then the acceptance probability of the pair (δP, αP

δP ) is the minimum
between 1 and

|D2(αP
δP )|−

1
2 exp(−SP/2σ2)

|D2(αC
δC )|−

1
2 exp(−SC/2σ2)

(2πcα)
− N(δP )

2 exp(− 1
2cα

(αP
δP )
>αP

δP )

(2πcα)
− N(δC )

2 exp(− 1
2cα

(αC
δC )>αC

δC )

N(αC
δC ;α̂δC , h∆δC )

N(αP
δP ;α̂δP , h∆δP )

.

We note that the determinants that appear in the above ratio are equal to one when utilizing
centred explanatory variables in the variance model and hence can be left out of the calculation
of the acceptance probability.

3. We update σ2 utilizing the marginal (10) and the two priors in (7). The full conditional corre-
sponding to the IG(aσ, bσ) prior is

f (σ2| . . . ) ∝ (σ2)−
n
2−aσ−1 exp{−(S/2 + bσ)/σ2},

which is recognized as another inverse gamma IG(n/2 + aσ, S/2 + bσ) distribution.
The full conditional corresponding to the normal prior |σ| ∼ N(0, φ2

σ) is

f (σ2| . . . ) ∝ (σ2)−
n
2 exp(−S/2σ2) exp(−σ2/2φ2

σ).

Proposed values are obtained from σ2
p ∼ N(σ2

c , f 2) where σ2
c denotes the current value. Pro-

posed values are accepted with probability f (σ2
p | . . . )/ f (σ2

c | . . . ). We treat f 2 as a tuning
parameter and we select its value adaptively (Roberts and Rosenthal, 2009) in order to achieve
an acceptance probability of 20%− 25% (Roberts and Rosenthal, 2001).

4. Parameter cβ is updated from the marginal (10) and the IG(aβ, bβ) prior

f (cβ| . . . ) ∝ (cβ + 1)−
N(γ)+1

2 exp(−S/2σ2)(cβ)
−aβ−1 exp(−bβ/cβ).

To sample from the above, we utilize a normal approximation to it. Let `(cβ) = log{ f (cβ| . . . )}.
We utilize a normal proposal density N(ĉβ,−g2/`

′′
(ĉβ)), where ĉβ is the mode of `(cβ), found

using a Newton-Raphson algorithm, `
′′
(ĉβ) is the second derivative of `(cβ) evaluated at the

mode, and g2 is a tuning variance parameter the value of which is chosen adaptively (Roberts
and Rosenthal, 2009). At iteration u + 1 the acceptance probability is the minimum between one
and

f (c(u+1)
β | . . . )

f (c(u)β | . . . )

N(c(u)β ; ĉβ,−g2/`
′′
(ĉβ))

N(c(u+1)
β ; ĉβ,−g2/`′′ (ĉβ))

.

5. Parameter cα is updated from the inverse Gamma density IG(aα + N(δ)/2, bα + α>δ αδ/2).
6. The sampler utilizes the marginal in (10) to improve mixing. However, if samples are required

from the posterior of β, they can be generated from

βγ| · · · ∼ N(
cβ

1 + cβ
(X̃>γX̃γ)

−1X̃>γỹ,
σ2cβ

1 + cβ
(X̃>γX̃γ)

−1),
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where βγ is the non-zero part of β.

Summary

We have presented a tutorial on several functions from the R package BNSP. These functions are
used for specifying, fitting and summarizing results from regression models with Gaussian errors and
with mean and variance functions that can be modeled nonparametrically. Function sm is utilized to
specify smooth terms in the mean and variance functions of the model. Function mvrm calls an MCMC
algorithm that obtains samples from the posteriors of the model parameters. Samples are converted
into an object of class "mcmc" by the function mvrm2mcmc which facilitates the use of multiple functions
from package coda. Functions print.mvrm and summary.mvrm provide summaries of fitted "mvrm"
objects. Further, function plot.mvrm provides graphical summaries of parametric and nonparametric
terms that enter the mean or variance function. Lastly, function predict.mvrm provides predictions for
a future response or a mean response along with the corresponding prediction/credible intervals.
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Measurement Errors in R
by Iñaki Ucar, Edzer Pebesma, Arturo Azcorra

Abstract This paper presents an R package to handle and represent measurements with errors in a
very simple way. We briefly introduce the main concepts of metrology and propagation of uncertainty,
and discuss related R packages. Building upon this, we introduce the errors package, which provides
a class for associating uncertainty metadata, automated propagation and reporting. Working with
errors enables transparent, lightweight, less error-prone handling and convenient representation
of measurements with errors. Finally, we discuss the advantages, limitations and future work of
computing with errors.

Introduction

The International Vocabulary of Metrology (VIM) defines a quantity as “a property of a phenomenon,
body, or substance, where the property has a magnitude that can be expressed as a number and a
reference”, where most typically the number is a quantity value , attributed to a measurand and
experimentally obtained via some measurement procedure, and the reference is a measurement unit
(BIPM et al., 2012).

Additionally, any quantity value must accommodate some indication about the quality of the
measurement, a quantifiable attribute known as uncertainty . The Guide to the Expression of Uncer-
tainty in Measurement (GUM) defines uncertainty as “a parameter, associated with the result of a
measurement, that characterises the dispersion of the values that could reasonably be attributed to
the measurand” (BIPM et al., 2008). Uncertainty can be mainly classified into standard uncertainty,
which is the result of a direct measurement (e.g., electrical voltage measured with a voltmeter, or
current measured with a amperemeter), and combined standard uncertainty, which is the result of
an indirect measurement (i.e., the standard uncertainty when the result is derived from a number of
other quantities by the means of some mathematical relationship; e.g., electrical power as a product of
voltage and current). Therefore, provided a set of quantities with known uncertainties, the process of
obtaining the uncertainty of a derived measurement is called propagation of uncertainty .

Traditionally, computational systems have treated these three components (quantity values, mea-
surement units and uncertainty) separately. Data consisted of bare numbers, and mathematical
operations applied to them solely. Units were just metadata, and uncertainty propagation was an
unpleasant task requiring additional effort and complex operations. Nowadays though, many soft-
ware libraries have formalised quantity calculus as method of including units within the scope of
mathematical operations, thus preserving dimensional correctness and protecting us from computing
nonsensical combinations of quantities. However, these libraries rarely integrate uncertainty handling
and propagation (Flater, 2018).

Within the R environment, the units package (Pebesma and Mailund, 2017; Pebesma et al., 2016)
defines a class for associating unit metadata to numeric vectors, which enables transparent quantity
derivation, simplification and conversion. This approach is a very comfortable way of managing
units with the added advantage of eliminating an entire class of potential programming mistakes.
Unfortunately, neither units nor any other package address the integration of uncertainties into
quantity calculus.

This article presents errors (Ucar, 2018), a package that defines a framework for associating
uncertainty metadata to R vectors, matrices and arrays, thus providing transparent, lightweight and
automated propagation of uncertainty. This implementation also enables ongoing developments for
integrating units and uncertainty handling into a complete solution.

Propagation of uncertainty

There are two main methods for propagation of uncertainty: the Taylor series method (TSM) and the
Monte Carlo method (MCM). The TSM, also called the delta method , is based on a Taylor expansion
of the mathematical expression that produces the output variables. As for the MCM, it can deal with
generalised input distributions and propagates the uncertainty by Monte Carlo simulation.

Taylor series method

The TSM is a flexible and simple method of propagation of uncertainty that offers a good degree of
approximation in most cases. In the following, we will provide a brief description. A full derivation,
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f(Xn)

µY

µXn

Figure 1: Illustration of linearity in an interval ± one standard deviation around the mean.

discussion and examples can be found in Arras (1998).

Mathematically, an indirect measurement is obtained as a function of n direct or indirect measure-
ments, Y = f (X1, ..., Xn), where the distribution of Xn is unknown a priori. Usually, the sources of
random variability are many, independent and probably unknown as well. Thus, the central limit
theorem establishes that an addition of a sufficiently large number of random variables tends to a
normal distribution. As a result, the first assumption states that Xn are normally distributed.

The second assumption presumes linearity, i.e., that f can be approximated by a first-order Taylor
series expansion around µXn (see Figure 1). Then, given a set of n input variables X and a set of m
output variables Y, the first-order uncertainty propagation law establishes that

ΣY = JXΣX JT
X (1)

where Σ is the covariance matrix and J is the Jacobian operator.

In practice, as recommended in the GUM (BIPM et al., 2008), this first-order approximation is good
even if f is non-linear, provided that the non-linearity is negligible compared to the magnitude of the
uncertainty, i.e., IE[ f (X)] ≈ f (IE[X]). Also, this weaker condition is distribution-free: no assumptions
are needed on the probability density functions (PDF) of Xn, although they must be reasonably
symmetric.

If we consider Equation (1) for pairwise computations, i.e., Y = f (X1, X2), we can write the
propagation of the uncertainty σY as follows:

σ2
Y =

(
∂2 f
∂X2

1

)2

σ2
X1

+

(
∂2 f
∂X2

2

)2

σ2
X2

+ 2
∂ f ∂ f

∂X1∂X2
σX1X2 (2)

The cross-covariances for the output Y and any other variable Z can be simplified as follows:

σYZ =
∂ f

∂X1
σX1Z +

∂ f
∂X2

σX2Z (3)

where, notably, if Z = Xi, one of the covariances above results in σ2
Xi

. Finally, and for the sake of
completeness, the correlation coefficient can be obtained as rYZ = σYZ/(σYσZ).

Monte Carlo method

The MCM is based on the same principles underlying the TSM. It is based on the propagation of the
PDFs of the input variables Xn by performing random sampling and evaluating them under the model
considered. Thus, this method is not constrained by the TSM assumptions, and explicitly determines
a PDF for the output quantity Y, which makes it a more general approach that applies to a broader
set of problems. For further details on this method, as well as a comparison with the TSM and some
discussion on the applicability of both methods, the reader may refer to the Supplement 1 of the GUM
(BIPM et al., 2008).
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Reporting uncertainty

The GUM (BIPM et al., 2008) defines four ways of reporting standard uncertainty and combined
standard uncertainty. For instance, if the reported quantity is assumed to be a mass mS of nominal
value 100 g:

1. mS = 100.02147 g with (a combined standard uncertainty) uc = 0.35 mg.
2. mS = 100.02147(35) g, where the number in parentheses is the numerical value of

(the combined standard uncertainty) uc referred to the corresponding last digits of
the quoted result.

3. mS = 100.02147(0.00035) g, where the number in parentheses is the numerical value
of (the combined standard uncertainty) uc expressed in the unit of the quoted result.

4. mS = (100.02147± 0.00035) g, where the number following the symbol ± is the
numerical value of (the combined standard uncertainty) uc and not a confidence
interval.

Schemes (2, 3) and (4) would be referred to as parenthesis notation and plus-minus notation
respectively throughout this document. Although (4) is a very extended notation, the GUM explicitly
discourages its use to prevent confusion with confidence intervals.

Related work

Several R packages are devoted to or provide methods for propagation of uncertainties. The car
(Fox and Weisberg, 2016, 2011) and msm (Jackson, 2016, 2011) packages provide the functions
deltaMethod() and deltamethod() respectively. Both of them implement a first-order TSM with
a similar syntax, requiring a formula, a vector of values and a covariance matrix, thus being able to
deal with dependency across variables.

library(msm)

vals <- c(5, 1)
err <- c(0.01, 0.01)
deltamethod(~ x1 / x2, vals, diag(err**2))

#> [1] 0.0509902

The metRology (Ellison, 2017) and propagate (Spiess, 2014) packages stand out as very compre-
hensive sets of tools specifically focused on this topic, including both TSM and MCM. The metRology
package implements TSM using algebraic or numeric differentiation, with support for correlation. It
also provides a function for assessing the statistical performance of GUM uncertainty (TSM) using
attained coverage probability. The propagate package implements TSM up to second order. It provides
a unified interface for both TSM and MCM through the propagate() function, which requires an
expression and a data frame or matrix as input. In the following example, the uncertainty of x/y is
computed, where x = 5.00(1) and y = 1.00(1). The first result corresponds to the TSM method and
the second one, to the MCM.

library(propagate); set.seed(42)

x <- c(5, 0.01)
y <- c(1, 0.01)
propagate(expression(x/y), data=cbind(x, y), type="stat", do.sim=TRUE)

#> Mean.1 Mean.2 sd.1 sd.2 2.5% 97.5%
#> 5.0000000 5.0005000 0.0509902 0.0509952 4.9005511 5.1004489
#> Mean sd Median MAD 2.5% 97.5%
#> 5.00042580 0.05101762 4.99991050 0.05103023 4.90184577 5.10187805

Unfortunately, as in the case of car and msm, these packages are limited to work only with
expressions, which does not solve the issue of requiring a separate workflow to deal with uncertainties.

The spup package (Sawicka and Heuvelink, 2017) focuses on uncertainty analysis in spatial
environmental modelling, where the spatial cross-correlation between variables becomes important.
The uncertainty is described with probability distributions and propagated using MCM.

Finally, the distr package (Kohl, 2017; Ruckdeschel et al., 2006) takes this idea one step further by
providing an S4-based object-oriented implementation of probability distributions, with which one
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can operate arithmetically or apply mathematical functions. It implements all kinds of probability
distributions and has more methods for computing the distribution of derived quantities. Also, distr
is the base of a whole family of packages, such as distrEllipse, distrEx, distrMod, distrRmetrics,
distrSim and distrTeach.

All these packages provide excellent tools for uncertainty analysis and propagation. However,
none of them addresses the issue of an integrated workflow, as units does for unit metadata by
assigning units directly to R vectors, matrices and arrays. As a result, units can be added to any
existing R computation in a very straightforward way. On the other hand, existing tools for uncertainty
propagation require building specific expressions or data structures, and then some more work to
extract the results out and to report them properly, with an appropriate number of significant digits.

Automated uncertainty handling in R: the errors package

The errors package aims to provide easy and lightweight handling of measurement with errors,
including uncertainty propagation using the first-order TSM presented in the previous section and a
formally sound representation.

Package description and usage

Standard uncertainties, can be assigned to numeric vectors, matrices and arrays, and then all the
mathematical and arithmetic operations are transparently applied to both the values and the associated
uncertainties:

library(errors)

x <- 1:5 + rnorm(5, sd = 0.01)
y <- 1:5 + rnorm(5, sd = 0.02)
errors(x) <- 0.01
errors(y) <- 0.02
x; y

#> Errors: 0.01 0.01 0.01 0.01 0.01
#> [1] 0.990148 1.993813 2.995589 3.995865 5.011481

#> Errors: 0.02 0.02 0.02 0.02 0.02
#> [1] 1.014570 1.996277 2.959307 3.992147 5.013118

(z <- x / y)

#> Errors: 0.021616206 0.011190137 0.007630253 0.005605339 0.004459269
#> [1] 0.9759291 0.9987660 1.0122601 1.0009312 0.9996735

The errors() method assigns or retrieves a vector of uncertainties, which is stored as an attribute
of the class errors, along with a unique object identifier:

str(x)

#> 'errors' num [1:5] 0.99(1) 1.99(1) 3.00(1) 4.00(1) 5.01(1)
#> - attr(*, "id")=<environment: 0x55e111773cd8>
#> - attr(*, "errors")= num [1:5] 0.01 0.01 0.01 0.01 0.01

Correlations (and thus covariances) between pairs of variables can be set and retrieved using the
correl() and covar() methods. These correlations are stored in an internal hash table indexed by
the unique object identifier assigned to each errors object. If an object is removed, its associated
correlations are cleaned up automatically.

correl(x, x) # one, cannot be changed

#> [1] 1 1 1 1 1

correl(x, y) # NULL, not defined yet

#> NULL

correl(x, y) <- runif(length(x), -1, 1)
correl(x, y)
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#> [1] 0.39668415 -0.03191595 0.91062883 -0.37620892 0.25118328

covar(x, y)

#> [1] 7.933683e-05 -6.383190e-06 1.821258e-04 -7.524178e-05 5.023666e-05

Internally, errors provides S3 methods for the generics belonging to the groups Math and Ops,
which propagate the uncertainty and the covariance using Equations (2) and (3) respectively.

z # previous computation without correlations

#> Errors: 0.021616206 0.011190137 0.007630253 0.005605339 0.004459269
#> [1] 0.9759291 0.9987660 1.0122601 1.0009312 0.9996735

(z_correl <- x / y)

#> Errors: 0.017799486 0.011332199 0.004014688 0.006393033 0.003986033
#> [1] 0.9759291 0.9987660 1.0122601 1.0009312 0.9996735

Other many S3 methods are also provided, such as generics belonging to the Summary group,
subsetting operators ([, [<-, [[, [[<-), concatenation (c()), differentiation (diff), row and column
binding (rbind, cbind), coercion to list, data frame and matrix, and more. Such methods mutate the
errors object, and thus return a new one with no correlations associated. There are also setters defined
as an alternative to the assignment methods (set_*() instead of errors<-, correl<- and covar<-),
primarily intended for their use in conjunction with the pipe operator (%>%) from the magrittr (Bache
and Wickham, 2014) package.

Additionally, other useful summaries are provided, namely, the mean, the weighted mean and
the median. The uncertainty of any measurement of central tendency cannot be smaller than the
uncertainty of the individual measurements. Therefore, the uncertainty assigned to the mean is
computed as the maximum between the standard deviation of the mean and the mean of the individual
uncertainties (weighted, in the case of the weighted mean). As for the median, its uncertainty is
computed as

√
π/2 ≈ 1.253 times the standard deviation of the mean, where this constant comes from

the asymptotic variance formula (Hampel et al., 2011).

It is worth noting that both values and uncertainties are stored with all the digits. However, when
a single measurement or a column of measurements in a data frame are printed, there are S3 methods
for format() and print() defined to properly format the output and display a single significant digit
for the uncertainty. This default representation can be overridden using the digits option, and it is
globally controlled with the option errors.digits.

# the elementary charge
e <- set_errors(1.6021766208e-19, 0.0000000098e-19)
print(e, digits = 2)

#> 1.6021766208(98)e-19

The parenthesis notation, in which the number in parentheses is the uncertainty referred to the corre-
sponding last digits of the quantity value (scheme 2 from the GUM, widely used in physics due to its
compactness), is used by default, but this can be overridden through the appropriate option in order
to use the plus-minus notation instead.

options(errors.notation = "plus-minus")
print(e, digits = 2)

#> (1.6021766208 ± 0.0000000098)e-19

options(errors.notation = "parenthesis")

Finally, errors also facilitates plotting of error bars. In the following, we first assign a 2% of
uncertainty to all the numeric variables in the iris data set and then we plot it using base graphics
and ggplot2 (Wickham and Chang, 2016; Wickham, 2009). The result is shown in Figure 2.

library(dplyr)

iris.e <- iris %>%
mutate_at(vars(-Species), funs(set_errors(., .*0.02)))

head(iris.e, 5)
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Figure 2: Base plot with error bars (left) and ggplot2’s version (right).

#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 5.1(1) 3.50(7) 1.40(3) 0.200(4) setosa
#> 2 4.9(1) 3.00(6) 1.40(3) 0.200(4) setosa
#> 3 4.70(9) 3.20(6) 1.30(3) 0.200(4) setosa
#> 4 4.60(9) 3.10(6) 1.50(3) 0.200(4) setosa
#> 5 5.0(1) 3.60(7) 1.40(3) 0.200(4) setosa

plot(iris.e[["Sepal.Length"]], iris.e[["Sepal.Width"]], col=iris.e[["Species"]])
legend(6.2, 4.4, unique(iris.e[["Species"]]), col=1:length(iris.e[["Species"]]), pch=1)

library(ggplot2)

ggplot(iris.e, aes(Sepal.Length, Sepal.Width, color=Species)) +
geom_point() + theme_bw() + theme(legend.position=c(0.6, 0.8)) +
geom_errorbar(aes(ymin=errors_min(Sepal.Width), ymax=errors_max(Sepal.Width))) +
geom_errorbarh(aes(xmin=errors_min(Sepal.Length), xmax=errors_max(Sepal.Length)))

In base graphics, the error bars are automatically plotted when an object of class errors is passed.
Additionally, we provide the convenience functions errors_min(x) and errors_max(x) for obtaining
the boundaries of the interval in ggplot2 and other plotting packages, instead of writing x -errors(x)
and x + errors(x) respectively.

Example: Simultaneous resistance and reactance measurement

From Annex H.2 of the GUM (BIPM et al., 2008):

The resistance R and the reactance X of a circuit element are determined by measuring
the amplitude V of a sinusoidally-alternating potential difference across its terminals, the
amplitude I of the alternating current passing through it, and the phase-shift angle φ of
the alternating potential difference relative to the alternating current.

The measurands (resistance R, reactance X and impedance Z) are related to the input quantities
(V, I, phi) by the Ohm’s law:

R =
V
I

cos φ; X =
V
I

sin φ; Z =
V
I

(4)

Five simultaneous observations for each input variable are provided (Table H.2 of the GUM),
which are included in errors as dataset GUM.H.2. First, we need to obtain the mean input values and
set the correlations from the measurements. Then, we compute the measurands and examine the
correlations between them. The results agree with those reported in the GUM:

V <- mean(set_errors(GUM.H.2$V))
I <- mean(set_errors(GUM.H.2$I))
phi <- mean(set_errors(GUM.H.2$phi))

correl(V, I) <- with(GUM.H.2, cor(V, I))
correl(V, phi) <- with(GUM.H.2, cor(V, phi))
correl(I, phi) <- with(GUM.H.2, cor(I, phi))
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print(R <- (V / I) * cos(phi), digits = 2, notation = "plus-minus")

#> 127.732 ± 0.071

print(X <- (V / I) * sin(phi), digits = 3, notation = "plus-minus")

#> 219.847 ± 0.296

print(Z <- (V / I), digits = 3, notation = "plus-minus")

#> 254.260 ± 0.236

correl(R, X); correl(R, Z); correl(X, Z)

#> [1] -0.5884298

#> [1] -0.4852592

#> [1] 0.9925116

Example: Calibration of a thermometer

From Annex H.3 of the GUM (BIPM et al., 2008):

A thermometer is calibrated by comparing n = 11 temperature readings tk of the ther-
mometer [. . . ] with corresponding known reference temperatures tR,k in the temperature
range 21 ◦C to 27 ◦C to obtain the corrections bk = tR,k − tk to the readings.

Measured temperatures and corrections (Table H.6 of the GUM), which are included in errors as
dataset GUM.H.3, are related by a linear calibration curve:

b(t) = y1 + y2(t− t0) (5)

In the following, we first fit the linear model for a reference temperature t0 = 20 ◦C. Then, we
extract the coefficients, and assign the uncertainty and correlation between them. Finally, we compute
the predicted correction b(30), which agrees with the value reported in the GUM:

fit <- lm(bk ~ I(tk - 20), data = GUM.H.3)

y1 <- set_errors(coef(fit)[1], sqrt(vcov(fit)[1, 1]))
y2 <- set_errors(coef(fit)[2], sqrt(vcov(fit)[2, 2]))
covar(y1, y2) <- vcov(fit)[1, 2]

print(b.30 <- y1 + y2 * set_errors(30 - 20), digits = 2, notation = "plus-minus")

#> -0.1494 ± 0.0041

Discussion

The errors package provides the means for defining numeric vectors, matrices and arrays with errors
in R, as well as to operate with them in a transparent way. Propagation of uncertainty implements
the commonly used first-order TSM formula from Equation (1). This method has been pre-computed
and expanded for each operation in the S3 groups Math and Ops, instead of differentiating symbolic
expressions on demand or using functions from other packages for this task. The advantages of this
approach are twofold. On the one hand, it is faster, as it does not involve simulation nor symbolic
computation, and very lightweight in terms of package dependencies.

Another advantage of errors is the built-in consistent and formally sound representation of
measurements with errors, rounding the uncertainty to one significant digit by default and supporting
two widely used notations: parenthesis (e.g., 5.00(1)) and plus-minus (e.g., 5.00 ± 0.01). These
notations are applied for single numbers and data frames, as well as tbl_df data frames from the
tibble (Wickham et al., 2017) package.

Full support is provided for both data.frame and tbl_df, as well as matrices and arrays. However,
some operations on those data structures may drop uncertainties (i.e., object class and attributes). More
specifically, there are six common data wrangling operations: row subsetting, row ordering, column
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Table 1: Compatibility of errors and R base data wrangling functions.

Operation R base function(s) Compatibility

Row subsetting [, [[, subset Full
Row ordering order + [ Full
Column transformation transform, within Full
Row aggregation tapply, by, aggregate with simplify=FALSE
Column joining merge Full
(Un)Pivoting reshape Full

transformation, row aggregation, column joining and (un)pivoting. Table 1 shows the correspondence
between these operations and R base functions, as well as the compatibility with errors.

Overall, errors is fully compatible with data wrangling operations embed in R base, and this
is because those functions are mainly based on the subsetting generics, for which errors provides
the corresponding S3 methods. Nonetheless, special attention must be paid to aggregations, which
store partial results in lists that are finally simplified. Such simplification is made with unlist,
which drops all the input attributes, including custom classes. However, all these aggregation
functions provide the argument simplify (sometimes SIMPLIFY), which if set to FALSE, prevents
this destructive simplification, and lists are returned. Such lists can be simplified non-destructively by
calling do.call(c,...).

unlist <- function(x) if (is.list(x)) do.call(c, x) else x
iris.e.agg <- aggregate(. ~ Species, data = iris.e, mean, simplify=FALSE)
as.data.frame(lapply(iris.e.agg, unlist), col.names=colnames(iris.e.agg))

#> Species Sepal.Length Sepal.Width Petal.Length Petal.Width
#> 1 setosa 5.0(1) 3.43(7) 1.46(3) 0.25(1)
#> 2 versicolor 5.9(1) 2.77(6) 4.26(9) 1.33(3)
#> 3 virginica 6.6(1) 2.97(6) 5.6(1) 2.03(4)

Summary and future work

We have introduced errors, a lightweight R package for managing numeric data with associated stan-
dard uncertainties. The new class errors provides numeric operations with automated propagation
of uncertainty through a first-order TSM, and a formally sound representation of measurements with
errors. Using this package makes the process of computing indirect measurements easier and less
error-prone.

Future work includes importing and exporting data with uncertainties and providing the user
with an interface for plugging uncertainty propagation methods from other packages. Finally, errors
enables ongoing developments for integrating units and uncertainty handling into a complete solution
for quantity calculus. Having a unified workflow for managing measurements with units and errors
would be an interesting addition to the R ecosystem with very few precedents in other programming
languages.
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Navigating the R Package Universe
by Julia Silge, John C. Nash, and Spencer Graves

Abstract Today, the enormous number of contributed packages available to R users outstrips any given
user’s ability to understand how these packages work, their relative merits, or how they are related
to each other. We organized a plenary session at useR!2017 in Brussels for the R community to think
through these issues and ways forward. This session considered three key points of discussion. Users
can navigate the universe of R packages with (1) capabilities for directly searching for R packages, (2)
guidance for which packages to use, e.g., from CRAN Task Views and other sources, and (3) access to
common interfaces for alternative approaches to essentially the same problem.

Introduction

As of our writing, there are over 13,000 packages on CRAN. R users must approach this abundance of
packages with effective strategies to find what they need and choose which packages to invest time
in learning how to use. At useR!2017 in Brussels, we organized a plenary session on this issue, with
three themes: search, guidance, and unification. Here, we summarize these important themes, the
discussion in our community both at useR!2017 and in the intervening months, and where we can go
from here.

Users need options to search R packages, perhaps the content of DESCRIPTION files, documenta-
tion files, or other components of R packages. One author (SG) has worked on the issue of searching
for R functions from within R itself in the sos package (Graves et al., 2017). Other options have been
built such as RDocumentation.org (Cornelissen, 2018).

Guidance about what package to use for any given task is available from multiple resources for
users. R users can turn to long-established resources like CRAN Task Views (Zeileis, 2005), or newer
options under current development such as packagemetrics (Firke et al., 2018) or the CRANsearcher
RStudio addin (Krouse and Calatroni, 2017). One author (JS) organized a survey before useR about
how R users learn about R packages that informed our discussion and is summarized here.

By unification, we largely mean meta-packages or wrappers, packages that call other, related pack-
ages for a common set of tasks. A unified wrapper package provides a common API through which
to access many different implementations for a certain task. One author (JN) has been particularly
involved in numerical optimization techniques and presented possibilities there and beyond. More
generally, as revealed during breakout discussions at useR!2017 and afterward, there are opportunities
to merge either packages or their functionality. Such ideas require human cooperation and some give
and take in a realm where egos can take precedence over ease of use.

After our main presentation at useR!2017, we broke out into three smaller sessions focused on
these themes. We are encouraged by the engaged attendance and vigorous participation from the
community we experienced, and hope to use our community’s enthusiasm and ideas to move forward
with steps that will improve the value of the R ecosystem.

Search

There are a number of different search capabilities for R, with different characteristics and strengths.
The ways to search for help using R have proliferated in much the same way that the number of
packages has, with some of the same challenges. It is not clear to users what the best way to search is,
and many if not most users are not even aware of the search capabilities that have been built.

The R Project for Statistical Computing’s website has had a page focused on “Getting Help with R”
(R Core Team, a) from early in R’s history. This official overview of various help facilities recognized by
the R Core Team includes functions such as help(), demo(), apropos(), help.search(), and vignettes.
This search and help functionality, used from R itself, accesses only locally installed documentation.
This page also currently points to resources such as the CRAN Task Views, FAQ pages, Stack Overflow,
and R email lists.

Other search capabilities have been developed by the R community over the years, focused on
different types of searching. The R Site Search built by Baron is one of the longest running, and can
also be accessed from R itself using the RSiteSearch() function in utils (R Core Team, 2018) and the
sos package. The sos::findFn() function returns a data.frame of class findFn summarizing the help
pages matching a search term. These objects can be combined by union and intersection, summarized
by package, and output to an Excel file with sheets giving one row for each package and for each help
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Table 1: Percentage of respondents who chose each answer on survey

How do you currently discover and learn about R packages? % of respondents

Social media such as blogs, R-bloggers, Twitter, Slack, or GitHub contacts 79.8%
General search websites such as Google and Yahoo 57.0%
Your personal network, such as colleagues and professors 41.6%
Books, textbooks, or journal articles (JSS, JOSS, R-Journal) 31.9%
Conferences, meet-ups, or seminars 24.1%

CRAN Task Views 21.8%
Email lists such as r-help, r-packages, or r-pkg-devel 15.3%
R-specific search websites such as METACRAN or Rdocumentation 11.1%
Other 4.2%
R packages built for search such as the sos package 2.2%

page sorted by package.

The rseek site of Goodman (2007) is another resource that has been available for over a decade,
and searches not only documentation but also GitHub issues, social media, and more. The R Package
Documentation site of Howson (2018) is a newer option that includes not only a way to search R
documentation but also the ability to run R in the browser. Another full-featured and modern website
for search is RDocumentation.org, which offers users the ability to contribute examples.

Other options for search capability focus not on documentation or individual functions but
on packages and package descriptions. The search capability at METACRAN (Csárdi and Ooms),
crantastic (Wickham and Mæland), and the RStudio addin CRANsearcher allow users to search the
descriptions and titles of packages to find tools that fit their analysis needs.

This discussion of search options for R users is intended to be thorough but not entirely exhaustive,
and to demonstrate the variety of resources available. Many search sites are not clear how to use their
search capabilities (single words vs. structured queries), and the algorithms used for ranking results
give disparate results. An additional point to be considered is to what extent these options for search
are open source, and what effect that could have, either positive or negative. For example, the source
code for both METACRAN and CRANsearcher is entirely open on GitHub while RDocumentation.org
is maintained by DataCamp, a privately held company.

The analysis in this section is summarized in a Wikiversity article (Graves, 2017); the article is on
Wikiversity so anyone can contribute to it. At useR!2017, after the large contributed session, we broke
out into three smaller sessions for discussion and brainstorming. In the breakout session focused
on search, some participants commented that user reviews, available on at least crantastic among
these existing resources, are useful alongside search. The discussion overall led to the development
of a draft proposal for improving the ability of R users to search R packages, which is available on
Wikiversity; anyone can contribute to moving it closer to realization (Graves, 2018). Overall, perhaps
it is time for the R Project for Statistical Computing’s “Search” (R Core Team, c) page to include more
updated options.

Guidance

In preparation for this session, one author (JS) ran a brief online survey in the spring of 2017 to ask R
users how they currently discover and learn about R packages. The results of this survey are available
in an R package packagesurvey (Silge, 2018) on GitHub. There were 1039 respondents to this survey,
which had a single multiple select question on it, “How do you currently discover and learn about R
packages?”

Responses to this survey were fielded from R email help lists, local R meetup groups, social
media such as Twitter, and affinity groups such as R-Ladies. Figure 1 shows when users responded
to the survey. The respondents to this survey overwhelmingly look to social media including blogs
and Twitter to learn about R packages, and also make use of general search sites and their personal
network.

There were helpful, insightful answers from people contributing to the “other” option. R users
use Stack Overflow to learn about R packages, as well as options like CRANberries (Eddelbuettel)
and crantastic, both of which have RSS feeds that users follow. Other users mentioned learning
by reading code on GitHub, the R Special Interest Group mailing lists (R Core Team, b) such as
r-sig-mixed-models and r-sig-geo, and other search websites including rpackages.io.
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Figure 1: Responses to survey on package discovery during the spring of 2017

In the breakout session at useR!2017 focused on guidance for package choice and package evalua-
tion, we had about 40 participants in our discussion. It was a fruitful discussion and several important
themes emerged.

Value of personal impact

Participants in this session emphasized how impactful personal relationships can be in how packages
are shared and evaluated. Some participants discussed how building local networks of R users may
be more important in this effort than top-down, technological solutions. Our survey does show that
personal recommendations have been important for many individuals in evaluating R packages. This
is yet another area where local user groups can continue to have important impact. Some ways to
share this experience more broadly would be online video series or live data analysis, such as those by
Sean Taylor (Taylor, 2017) and Roger Peng (Peng, 2017). Learning through personal networks does not
invalidate the importance of other tools like search, especially when it comes to more specialized tasks.

CRAN Task Views

Some participants wondered whether the idea of a CRAN Task View (Zeileis, 2005) is outdated in the
current climate with so many packages, and whether it is even possible for one person to maintain
one effectively. In fact, several participants voiced frustration with CTVs that have focused on older
packages alone. Others responded that CTVs are focused on curation, which is still important, perhaps
even more so now in a world with over 13,000 packages. We had at least one CTV maintainer present
in our breakout session, and several things were presented as important in order for CTV maintainers
to do their jobs:

• Package maintainers should update their NEWS files.
• Package maintainers need to write good documentation.

These are helpful for all R users, of course, but also for maintainers of CRAN Task Views. The
pkgdown (Wickham and Hesselberth, 2018) package was mentioned as an effective option for making
documentation more visible.

CRAN and you

Participants had several ideas about how things are done on CRAN now and adjustments that might
be made in the interest of discovering and evaluating packages. One idea that came up several times
was the possibility of keywords or tagging for packages. Since useR!2017, the authors have learned
that there is support for some tagging architecture for packages on CRAN in the DESCRIPTION file
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using ACM, JEL, or MSC classifications. For an example of this in action, check out the lfe (Gaure,
2018) package. These are fairly unwieldy lists currently and something like an RStudio addin could be
used to navigate them, if they were widely used.

Another desire participants voiced was for more information directly on CRAN, such as the
number of downloads for packages. Participants also suggested that vignettes for context-specific
tasks like the Bioconductor Workflows (Bioconductor) would be helpful for package discovery and
evaluation, either associated with CRAN or perhaps the R Journal. Finally, there was some discussion
about whether gate-keeping on CRAN, perceived by most to be reasonable and minimal currently, is
good or bad for the community. The conclusion in our discussion was that increased editorial efforts
to keep packages off CRAN would not be positive for our community.

More data, more problems

Some of the package developers at the session wondered why, when R is a data-centric language,
developers have such primitive analytics about their users. Issues of user privacy are central here,
but there might be opt-in options that could help both package developers and users make better
decisions. The idea of a recommender system for R packages was brought up multiple times, perhaps
a Tinder for R packages like papr, the Tinder for academic preprints (McGowan et al., 2017). Both
the users and developers present thought that data on package use (instead of package downloads
alone) would be helpful in evaluating how important or helpful R packages are. Participants also
discussed the possibility of a linter for analysis scripts, similar in concept to linters for code (such as
Hester (2017)) that automatically analyze code for potential problems and errors, that would suggest
packages and good practice. Such a linter would necessarily be opinionated, but almost all efforts to
suggest and evaluate R packages are, by definition.

Unification

Unification, as we describe it here, attempts to reduce the package count and the span of knowledge
required of users. When there are many ways to carry out the same calculation, there are inevitable
differences of approach. However, in many respects it is the similarity of approaches that causes
most confusion. Very similar calling sequences, unless they are entirely compatible, lead to confusing
experiences for users, and threaten the validity of results.

From the experience of one author (JN), the most satisfactory form of unification from the user per-
spective is the use of wrapper functions that consolidate a number of similar tools into a single calling
sequence. This has been the goal of the package optimx, which in its 2018 incarnation consolidates
several R-internal and package-based function minimization tools. Moreover, the present version
subsumes a number of other packages, thereby offering a reduction in the effective package count.

A real downside of unification is the burden of work for the developers involved, including dealing
with complex dependencies and reverse dependencies. At the time of writing, the new optimx fails
reverse dependency checks because of new, stricter checks for CRAN policies. Embracing unification
as an approach to deal with package proliferation means that such issues are a part of life and must be
resolved.

While a wrapper such as optimx can, with effort, be created, merging two existing but different
packages that provide similar capability with very different user interfaces requires human cooperation.
At this time, and despite the open and collaborative R community, the level of effort to do such work
is daunting. Moreover, there is a general lack of financial or other reward for such efforts.

During discussions at useR!2017, it was clear that R users are quite interested in unification of
packages. Younger participants expressed the opinion that there are egos and interest groups standing
in the way of some such unifications, and the status of some of the players impeded the discussion of
such possibilities.

Conclusion

Our exploration of these topics leads us to call for increased respect and value for the work done
by local meetup group organizers and individuals who contribute to spreading R knowledge, both
online and in their communities. Our survey and discussions show how impactful these community
networks are; investing in community building is not something we need do only because of idealism,
but because it is effective.

We also identify the importance of growing the skills of package developers across the R ecosystem,
in dependency management, documentation, and beyond. Wider adoption of best practices makes the
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R package universe easier for everyone to navigate, from the developer with downstream dependencies
to the CRAN Task View maintainer to the new R user.
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Conference Report: LatinR 2018
by Laura Acion, Natalia da Silva, and Riva Quiroga

Conference summary

LatinR <- Latin American Conference about the Use of R in Research + Development
(LatinR) was an international conference whose goal was bringing together the Latin Ameri-
can R community. The inagural LatinR took place at the Universidad de Palermo in Buenos
Aires, Argentina, on September 3 to 5, 2018. About 100 participants from more than 10 differ-
ent countries (e.g., Argentina, Uruguay, Chile, Peru, Ecuador, Brazil, Costa Rica, Venezuela,
Spain, United States, Canada) attended LatinR.

LatinR will be an annual meeting that will rotate among different countries in Latin
America. LatinR 2019 will be hosted by the Universidad Católica de Chile in Santiago de
Chile on September 25 to 27.

Getting started

Up to now, Latin America never hosted a useR! conference. Until 2017, only Brazil, the
biggest Latin American country, had some events gathering the local R community (i.e., R
Day - Encontro Nacional de Usuários do R and SER - International Seminar on Statistics
with R).

On October 25, 2017, an announcement was made by Heather Turner on the R User
Group (RUG) Organizers Slack: "the R Foundation Conference Committee would like to see
academic-focused R events in regions not currently covered by useR!" In less than a week,
a group of academic Latin American R-Ladies organized their first conference call to start
thinking about how this challenge could be achieved. This fast response was not the result
of mere chance, but the consequence of a year in which the R community grew stronger in
South America. By mid-November, everything was set up: a name, a place, a date, and a
motivated, international, organizing committee.

To ease the organizational load of its first edition, LatinR 2018 was hosted within the
47th Argentinean Meetings of Informatics and Operational Research (JAIIO). JAIIO usually
includes about 13 simultaneous meetings over five days and is organized by the Argentinean
Informatics Society (SADIO). The 47th JAIIO was not only the organizational umbrella under
which LatinR 2018 took place but also the first time JAIIO had a Code of Conduct (CoC).
The CoC was requested by the R Foundation, one of LatinR endorsers, and was written by
LatinR organizers for all meetings within JAIIO.

Program

LatinR had three official languages: Spanish, Portuguese, and English. It received submis-
sions in the three languages and had presentations also in all three languages. September
3rd was dedicated to three, half-day, hands-on tutorials:

• Natalia da Silva: Static and interactive visualization with ggplot2 and plotly

• Andrés Farall: Introduction to deep learning with R

• Jenny Bryan: How to repeat yourself with purrr

LatinR 2018 also had two outstanding plenary talks: "The Zen and the Art of Workflow
Maintenance" by Jenny Bryan and "Aprender a Computar vs. Computar para Aprender" by
Walter Sosa Escudero. Bryan presented the interaction between Statistics and Data Science
and several practical tips to learn, improve, and maintain good data workflows with R. On
the other hand, Sosa Escudero showed some examples about how teaching statistics can
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benefit by incorporating R programming in theoretical Statistics courses. Both plenary talks
complemented each other and left a clear message about the need to embrace changes both
when teaching and practicing Statistics and Data Science.

LatinR received 93 abstracts from several different countries. Only 62 abstracts were
accepted, 32 of them were 15-minute oral presentations and the rest of the accepted abstracts
were presented in a poster session. Figure 1 shows a bar plot with the abstract submission
country distribution based on first author origin. Most of the submissions were from South
America (Argentina, Uruguay, Peru, and Brazil). Nine out of the 32 oral presentations
(28%) were conducted by women or other under-represented minorities (URM) in the R
community. Seventeen out of the 30 posters (56%) had women or URM as first authors
and out of the 8 invited talks, 6 were presented by women (75%). That is, out of all 40 oral
presentations, 38% were presented by women or URM.

Figure 1: LatinR 2018 abstract submission distribution by first author country

Topics presented included applications of R in academic and industry settings through-
out a wide number of fields such as Data Science, Statistics, Informatics, Biological and
Health Sciences, Atmospheric Sciences, Social Sciences, Humanities, Economics, and Cre-
ativity. Talks and posters encompassed, among others, new R packages, innovative uses of
R in Education, R visualization tools, and open data analysis with R.

The program also included presentations by members of vibrant communities such as
Global and Latin American R-Ladies and The Carpentries. One of LatinR tracks during
Wednesday morning was a summary tutorial about how to become a Carpentries instructor
attracting 28 attendees. Wednesday was the moment of rOpenSci represented by Maëlle
Salmon via teleconference and a live Q&A session led by Jenny Bryan. R user groups were
also represented on Wednesday by Joshua Kunst from the Santiago de Chile RUG. The
Spanish-speaking community efforts for translating R for Data Science (R4DS) (Wickham
and Grolemund, 2017) was also presented by Riva Quiroga, one of the project leaders.

LatinR had a very important networking role. For instance, its three chairs, almost all
its organizers, volunteers, and many community members (such as those working on the
translation of R4DS) who were used to working together virtually, got to meet in person for
the first time during the conference. Additionally, LatinR impulsed the community in the
region in the form of at least three new RUGs that just launched in Rosario, Montevideo,
and Buenos Aires.

LatinR also collaborated in a JAIIO-wide activity that debated during two hours the
participation of women in sciences, technology, engineering, and math. Six women from

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



NEWS AND NOTES 566

varied backgrounds presented their views about this topic and discussed them with the
attendees.

Scientific and organizing committees

LatinR was possible thanks to the effort of a highly motivated and compromised team of
about 80 people including: 3 chairs (100% women from 3 Latin American countries), a
36-member scientific committee (44% women or URM; representing 8 countries around
the globe), the SADIO organizing team (88% women), and a 16-member LatinR organizing
committee (88% women; representing 6 Latin American countries). In addition, a highly
motivated group of 15 volunteers (66% women) helped the conference run smoothly. Among
all these people, Yanina Bellini Saibene, Elio Campitelli, Paola Corrales, and Florencia
D’Andrea received the Chairs’ Recognition Award for their outstanding and continuous
contribution since the very beginning of LatinR.

Sponsors

LatinR was also possible to the following sponsors: RStudio, Fundación Sadosky, Escuelas
Argentinas de Nuevas Tecnologías, R Consortium, DataCamp, and IBM Argentina.

Further information

• Video of Jenny Bryan plenary talk: https://bit.ly/2EIRaEs

• Video of Walter Sosa Escudero plenary talk: https://bit.ly/2RfwW6F

• LatinR presentations: https://github.com/LatinR/presentaciones-LatinR2018

• Twitter account: @LatinR_Conf #LatinR2018

• Webpage: http://latin-r.com
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Conference Report: SER III
by Ariel Levy, Luciane F. Alcoforado, and Orlando Celso Longo

Introduction

SER is a multidisciplinary event, which integrates professionals, students, and practioners
from most diversified knowledge areas who make use of data analysis. The first edition took
place on May 2016 as the initiative of a group of professors from the Fluminense Federal
University, partners of other Institutions, and was supported by CAPES (Coordination
for higher Education Staff Development). SER event was recognized by the R foundation
(2018)1 for its pioneering in Latin America in bringing together an expressive number of R
users.

From its very first beginning, the motivation was to bring together those who wish
to learn, R users, and to spread R language knowledge through the Federal Fluminense
University, UFF. Organizers came up with the first event title: SER, Seminários de Estatística
com R, notice that ser means to be in Portuguese. Soon, they discovered the borders of their
ambition were too shy, as some other institutions, even from abroad, joined the project. The
event name had changed but the acronym was kept.

After the resounding success of the two prior editions the third International Seminars of
Statistics with R, III SER, took place, may, 22nd - 24th, 2018 at Federal Fluminense University
- Niterói - Rio de Janeiro. In this issue the event call was: R for Science Integration Challenge.
A high level event program was presented, diversified in themes, and with a remarkable
feminine touch, represented in talks by Julia Silge, Jesse Maegan, Gabriela de Queiroz,
Luciane Alcoforado, Becky Pattinson, Nicole Barros, Cristiane Ramos, and Karla Esquerre.

The program had 517 attendees, 357 freebies for beginners in the R basic mini-course, 27
speakers from different regions and countries, 7 authorities present among coordinators,
pro-rectors, and unit directors. Fifty papers were selected by the scientific committee and
presented during the oral contributor and poster sessions, in the morning of the third day,
involving about 144 authors from 31 institutions.

Pre-conference Tutorials

The first day of the event occurred at the Administration Faculty in Valonguinho Campus,
consisted of nine, sold out, R tutorials in diversified themes:

• Jurimetry - Julio Trecenti, ABJ;

• Importing and Wrangling Financial Data in R - Wilson Freitas, B3;

• Interactive 2D and 3D Graphics in R using OpenGL Tools - Alex Laier Bordingon, UFF;

• Dynamic Reports - Cassio Freitas, ENCE;

• My first R package - Steven Dutt Ross, UNIRIO;

• Bayesian Inference - Alexandre Silva, UNIRIO;

• Regression Models for Politomous Data - José Rodrigo de Morais, UFF;

• Web Scrapping Using rvest Package - Karla Esquerre & Adelmo Filho, UFBA;

• Mining and Modeling Text Using Tidy Data Principles - Julia Silge, Stack Overflow.
1https://rforwards-auto.github.io/blog/2018/02/05/r-in-latin-america/
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The Conference

The opening day, at the Praia Vermelha Campus, began with Prof. Levy and guests in a
relaxed warm-up where they discussed how they learn and teach R. After showing and
commenting on several books, articles, courses, and posts on twitter and slack, the message
left was: “In R we are all apprentices in different stages.”

The event opening was attended by officials from UFF and ENCE. Prof. Vitor Francisco
Ferreira, currently Research Pro-Rector and representative of UFF Rector, as well as authori-
ties, congratulated Luciane Alcoforado and the other organizers for their excellent work at
event organization. Prof. Fábio Barboza Passos, current director of the Engineering Faculty,
reinforced the importance for a market culture change over free software usage, which is
to be achieved by its dissemination over the academic community. He also pointed out
that data wrangling and reports reaches all areas of knowledge in which R language stands
out. He concludes that this event is to be shown as a positive result on how a relationship
between at least 3 faculties within UFF and several other Universities and Institutions
demonstrates that collaboration works.

The keynote opening talk was given by prof. Luciane Alcoforado, SER General Coordina-
tor, exposing how the event organizer team has been working on the challenge of integrating
the community around the dissemination of the R language. The main target audience
for this project are beginners in the R language, most of them undergraduate students for
whom the project mission is to embrace, and for which several courses and activities all
developed in Portuguese. One of these activities, within this event issue, was a free online
mini course with 400 attendees. This concluded by inviting the public to visit the event site
where several articles and code bases that have been produced since the first event issue is
deposited.

The following talks dealt with varied topics with strong interaction between the speakers
and the audience.

Jesse Mostipak, Teaching Trust, brought up one of the biggest shortcomings for both
teachers and learners of data science in R: the often unspoken prerequisite skills and content
knowledge necessary to successfully apply R to data science problems. She taught us
strategies to more effectively bring learners up to speed, while, for learners, how to develop
strategies to identify and address their own knowledge gaps. She shared strategies from a
data-driven culture that can be immediately implemented with groups of any size in order
to more quickly develop data science skills in R.

R-Ladies project was the subject for Gabriela de Queiroz talk. She was so emphatic in
presenting the spread throughout the world, seeking to defend and encouraging the increase
of women’s participation in the field of data science with the use of the R-language, that
succeeded in motivating Noelle Camello in establishing the new Niterói chapter2.

Becky Pattinson, Lancaster University and UFF, approached the ageing population prob-
lem which is faced by many countries in the world, including Brazil. Using a nationally
representative sample from the 2008 PNAD, she demonstrated how they developed measure-
ment models for the health and economic well-being of older people (aged 60+ years old).
Clustering older individuals by sector, multilevel structural equation modeling provided
greater understanding of the challenges for the older people of Brazil. This understanding
allows for the development of policies that are efficient in the application of resources in the
care of older people. Analyses were conducted using the MplusAutomation package in R
for data formatting and estimation of the multilevel SEM in Mplus (Version 6); a commercial
SEM program. In clustering individuals by sector, the model had a different structure of
latent variables at the sector level. Strong associations existed between health and economic
well-being and demographic variables of both individuals and sectors had significant effect
on health and economic well-being.

Daniel Takata, researcher from ENCE/IBGE, discuss how to handle distributions that
present heavy tail, without assumptions on the presence of moments, by introducing proce-

2A week after SER, we wish her success.
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dures for applications in R and the stable package.

Gareth McCray, Keele University, followed in video conference explaining the rationale
behind and the utility of Item Response Theory (IRT), a specific family of psychometric
models for creating continuous score variables from binary or ordinal responses to sets of
test items or questionnaire questions. IRT models have distinct advantages for score creation
over other scale creation methods, e.g., Classical Test Theory (CTT). Different data structures
call for different types of IRT model and the presenter briefly sketched out the landscape
of this family of models. Following, he discussed how to apply the various models using
various R packages.

In sequence, the most antecipated lecture of the day, Julia Silge, data scientist at Stack
Overflow, with her brilliance, taught us how to manipulate, summarize, and visualize text
characteristics using the methods and R packages from the tidy tool ecosystem. These tools
are highly effective for many analytical questions that allow analysts to integrate natural
language processing into effective workflows already in wide use. We explored how to
implement approaches such as sentiment analysis of texts, measuring tf-idf, and finding
word vectors.

Surprising the audience and closing the second day talks, Rodrigo Hartmann, a prac-
titioner data scientist at Casa & Video, showed us the evolution in the use of the Shiny
package with several set up details for installations and some business applications.

The activities ended with the evening of autographs, Julia Silge signing "Text Mining
with R", Pedro Ferreira autographing "Analysis of Time Series in R", and Luciane Alcoforado
autographing "Introduction to R using Basic Statistics."

The second day morning was reserved for the poster and the oral contributors sections.

The afternoon started with Prof. Maysa Magalhães (ENCE) as the spokesperson for
the honor to the illustrious Prof. Djalma Pessoa, one of the precursors of the use of the R
language in Brazil. Currently retired, Prof. Djalma Pessoa says that R is the only computa-
tional tool that he knows how to use and that has always resisted the use of other statistical
programs, attracting other people to R. After his retirement he thought he would do nothing
else, but today he works even harder due to the help he provides to R users.

In sequence, the contributors awards section took place, almost a tradition in our events.

The third day presentations begun with Leonardo and Jonatha, UFF Statistical students,
who reported on their experience in the academic world by encouraging colleagues to
study R every day, search for new packages, look at available documentation, participate in
projects and events such as SER. Followed by Prof. Marcelo Perlin (UFRGS), he introduced
his GetHFData package, which downloads and aggregates high frequency trading data for
Brazilian instruments directly from B3, the Brazilian stock exchange.

Closing the III SER lectures, Prof. Karla Esquerre quickly introduced the GAMMA Group,
an extension project for data analysis in UFBA. Tassio Barreto showed how to communicate
with R codes through the tidyverse package using his passion, cinema. His presentation
was permeated by movie quotes.

The event closure was made official by Prof. Orlando Longo current coordinator of the
Post-Graduation Program in Civil Engineering at UFF, who highlighted the importance of
new partnerships for the continuation of the next SER.

The awards

Poster Section

1. Hugo Henrique Oliveira, Adriane Caroline Portela, Denise Nunes Viola - Use of
Software R as a Tool for Teaching and Learning of Combinatory Analysis.

2. Luiz Fernando Guilhem Nassif Maia, Alinne de Carvalho Veiga, Renata Souza Bueno -
Brazilian Musical Genres Similarity Analysis Using Web Scraping and Text Mining
with R.
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3. Lucas José Gonçalves Freitas, Marcelo dos Santos Ventura - Cryptocurrency and an
Application for Linear Hyperbolic Models.

Oral Contributors Section

1. Andrea Ugolini and Juan Carlos Reboredo - Multivariate Conditional Quantile Depen-
dence Between Energy Prices and Clean Energy Stock Returns.

2. Silvio Augusto Jr. and Vinícius Basseto Félix - Brazilian Spotify Rankings Survival
Analysis: Differences Between Domestic and Foreign Artists.

3. Arthur Rios de Azevedo, Anderson Ara, Mariana Yukari Noguti and Angela Ernestina
Cardoso de Brito - Shiny Application: Intersection Between Gender, Class and Race in
2016 ENEM.

Testimonials

"Beyond programming and statistics, SER was a bright moment to meet and be inspired
by people who make our praxis so challenging and pleasurable. This kind of connection
is what makes difference for the new ones and builds a strong foundation for data science
culture in Brazil" Adelmo FIlho.

"I was so happy to be introduced to the vibrant R community in Brazil via SER. It was
a pleasure to meet professors, industry professionals, and students using R in their daily
work and context" Julia Silge.

"Participating in SER was an absolutely joyful experience. The event was well-organized,
the presentations covered a wide variety of topics, and the networking opportunities were a
wonderful time to share a passion for R amongst peers" Jesse Mostipak.

"I had difficulty in the beginning, I had never installed any program in my life, I needed
help but I was winning the challenge gradually, being encouraged by my daughter. I confess
that I enjoyed the joke and for me it was a possibility to keep the mind active and break the
routine. I am retired, I am over 70 years old, and I like challenges. The usefulness of the
course for me is to show that it does not matter the age but the desire to search for the new
one always" ( An anonymous student of the basic course).

Organizing Committee

Orlando Celso Longo - PPGEC/UFF, Luciane Ferreira Alcoforado - PPGEC/UFF, Ariel
Levy - PPGAD/UFF, José Rodrigo de Moraes - IME/UFF, Alex Laier Bordingon - IME/UFF,
Manuel Febrero Bande - Un. de Santiago de Compostela/ Spain, Steven Dutt Ross - UNIRIO

Scientific Committee

Wenceslao Gonzalez Manteiga - Un. Santiago de Compostela - SP, Manuel Febrero Bande -
Un. Santiago de Compostela - SP, Luís Torgo - Un. do Porto - PT, Jorge Passamani Zubelli -
IMPA - BR, Orlando Celso Longo - UFF - BR, Luciane Ferreira Alcoforado - UFF - BR, Ariel
Levy - UFF - BR, Steven Dutt Ross - UNIRIO - BR, Pedro Costa Ferreira - FGV/IBRE - BR,
Maysa Sacramento de Magalhães - ENCE/IBGE - BR, Djalma Galvão Carneiro Pessoa -
ENCE/IBGE - BR, José Rodrigo de Moraes - UFF - BR, Ludmilla da Silva Viana Jacobson -
UFF - BR, Carlos Alberto Pereira Soares - UFF - BR, Assed Naked Haddad - UFRJ - BR

Further Information

Several pictures and more can be seen in our home page or in facebook.
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• Conference homepage: http://www.ser.uff.br

• Facebook page: https://www.facebook.com/eventoser.uff/

• e-mail: ser.uff.br@gmail.com

Next SER

Next SER will take place in May 21-23rd 2019, we require(You).

Figure 1: SER logo.

Ariel Levy
Department of Business Administration
Federal Fluminense University
Brazil
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Brazil
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Conference Report: Why R? 2018
by Michał Burdukiewicz, Marta Karas, Leon Eyrich Jessen, Marcin Kosiński, Bernd Bischl, and
Stefan Rödiger

Figure 1: Why R? 2018 conference banner used for social media promotion. The background displays
banks of the Odra river in Wroclaw – the city of Poland where the conference was held.

Why R? 2018 conference

The primary purpose of the Why R? 2018 conference was to provide R programming
language enthusiasts with an opportunity to meet and discuss experiences in R software
development and analysis applications, for both academia and industry professionals. The
event was held 2-5 August, 2018 in a city of Wroclaw, a strong academic and business
center of Poland. The total of approximately 250 people from 6 countries attended the main
conference event. Additionally, approximately 540 R users attended the pre-meetings in
eleven cities across Europe (Figure 2).

Why R? 2018 conference is the continuation of the Why R?’s first edition that took place
Sep 27-29, 2017 at the Warsaw University of Technology in Warsaw (Poland). Given the
success of the first event, this year’s conference extended its program concept and scope;
importantly, Why R? 2018 conference was held as international.

Conference program

The format of the conference was aimed at exposing participants to recent developments in
the R language, as well as a wide range of application examples. It consisted of workshops,
invited talks, field-specific series of talks, lighting-talks, special interest groups, and a
full-day programming hackathon.

The conference program had a strong focus on machine learning techniques and applications,
with mlr (Bischl et al., 2016) R package – an interface to a large number of classification and
regression methods – being emphasized in a number of presentations, as well as employed
during workshops and the hackathon provided by the mlr team. The scope of conference
program included statistical methodology, data visualization, R code performance, building
products based on data analyses, and R’s role in academia / industry.

The event offered extensive networking opportunities. The cocktail party was held at the
conference venue on the 2nd conference day. In addition, convenient location in the close
proximity of the old town market square facilitated many informal gatherings that were
happening each conference day.
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Figure 2: Locations and dates of the Why R? 2018 main conference event and 11 Why R?-branded
pre-meetings.

Why R? Pre-meetings

The novel idea of pre-meetings has proved to be successful in popularizing Why R? confer-
ence in the international community of R users. Eleven pre-meetings took place in Czech
Republic, Denmark, Germany, Poland, and Sweden in the run-up to the Why R? main event.
The pre-meetings either constituted a part of another conference, one day-long workshop
and discussion event, or a meeting of a local R user group.

As R provides a versatile framework for reproducible research in different scientific domains
(Gentleman and Temple Lang, 2007; Gandrud, 2013; Leeper, 2014; Liu and Pounds, 2014;
Rödiger et al., 2015), we considered the Why R? pre-meetings as a great opportunity to
convey and popularize R as an analytics tool in groups of professionals from different fields.
The pre-meeting held at International Biotechnology Innovation Days (IBID), an open-access
conference held 23-25 May, 2018 at the Brandenburg University of Technology Cottbus -
Senftenberg (Senftenberg, Germany)1 is an example where the R came in close contact with
scientist from other domains. IBID brought together specialists and experts in the fields of
bioanalytics, biomedical and translational research, autoimmune diagnostics, digitalization,
and engineering; hence it posed an excellent platform to promote R and the Why R? 2018
conference.

Workshops

Why R? 2018 conference had a wide portfolio of workshops:

• Maps in R by Piotr Sobczyk (OLX Group). Piotr showed how to create spatial data
visualization efficiently in the R. He gave a plenty of tips to follow, pitfalls to avoid and
a number of useful hacks. Starting from a basic plot function, he covered the usage of
ggplot2 as well as R packages that use interactive javascript libraries to prepare data
reports.

1http://web.archive.org/web/20180701084524/https://ibid-2018.b2match.io/
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• iDash - Make your R slides awesome with xaringan by Mikołaj Olszewski (iDash)
and Mikołaj Bogucki (iDash). The workshop introduced the xaringan (Xie et al., 2018)
package – an alternative approach to preparing a slide deck. The xaringan package
allows customizing each slide entirely and previewing slides dynamically in RStudio;
moreover, the export of the slide deck (natively in HTML) to a pixel-perfect PDF is
fairly easy. As xaringan also uses RMarkdown, it allows for reproducible results.

• Jumping Rivers - Shiny Basics and Advanced Shiny by Roman Popat (Jumping
Rivers). The instructor Roman Popat from Jumping Rivers conducted two workshops.
In the first (Shiny Basics), he gave an introduction to creating interactive visualizations
of data using Shiny. Here, participants learned how to use rmarkdown and htmlwid-
gets; input and output bindings to interact with R data structures; and input widgets
and render functions to create complete page layouts using shiny and shiny dashboard.
The advanced Shiny workshop explored how to add functionality to shiny apps using
javascript packages and code. In particular, it was showed how one might deal with
routines in a Shiny application that take a long time to run and how to provide a good
experience for simultaneous users of an app. Finally, the instructor showed how to
create a standalone web server API to the R code and how to integrate the use of it
into a Shiny application using the plumber (Technology et al., 2018) package.

• DALEX - Descriptive mAchine Learning EXplanations by Mateusz Staniak(Uniwersytet
Wrocławski). THe workshop covered tools for exploration, validation, and explana-
tion of complex machine learning models. The packages explored in this workshop
include mlr (Bischl et al., 2016), DALEX (Biecek, 2018), live (Staniak and Biecek, 2018),
FactorMerger (Sitko and Biecek, 2017), archivist (Biecek and Kosinski, 2017), pdp
(Greenwell, 2017) and ALEPlot (Apley, 2018).

• Constructing scales from survey questions by Tomasz Żółtak (Educational Research
Institute in Warsaw, Poland). Tomasz showed how to create scales based on sets of
categorical variables using Categorical Exploratory/Confirmatory Factor Analysis
(CEFA / CCFA) and IRT models. He used models with bi-factor rotation to deal
with different forms of asking questions and corrected for differences in a style of
answering questions asked using a Likert scale. In addition, it was showed how to
correct self-assessment knowledge/skill indicators using fake items.

• From RS data to knowledge – Remote Sensing in R by Bartłomiej Kraszewski (Forest
Research Institute, Poland). Remote sensing data from different sensors is a rich
source of information for studying the natural environment, natural phenomena
and monitoring some extreme phenomena, such as floods. Bartłomiej presented R
language packages that can be used to work with remote sensing data. These included
(a) for geographic information system analysis: rgdal (Bivand et al., 2018a), rgeos
(Bivand et al., 2018b) and sf (Pebesma et al., 2018); (b) for raster data processing:
raster (Hijmans et al., 2017); (c) for Airborne LaserScanning data processing: the lidR
(Roussel et al., 2018) package.

• Introduction to Deep Learning with Keras in R by Michał Maj (Appsilon Data Sci-
ence). The workshop covered many important aspects of Deep Learning with the
Keras in R, including sequential model building, performing data ingestion and using
pre-trained models and performing fine-tuning. The keras (Allaire et al., 2018) R
package was explored.

Invited talks

The invited talks topics included domain knowledge from statistics, computer science,
natural sciences, and economics. The speakers list presents as follows:

• Tomasz Niedzielski (University of Wroclaw): Forecasting streamflow using the HydroProg
system developed in R,
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• Daria Szmurło (McKinsey & Company): The age of automation – What does it mean for
data scientists?,

• Agnieszka Suchwałko (Wroclaw University of Technology): Project evolution – from
university to commerce,

• Bernd Bischl (Ludwig-Maximilians-University of Munich): Machine learning in R,

• Artur Suchwałko (QuantUp): A business view on predictive modeling: goals, assumptions,
implementation,

• Maciej Eder (Institute of Polish Language): New advances in text mining: exploring word
embeddings,

• Thomas Petzoldt (Dresden University of Technology): Simulation of dynamic models in
R,

• Leon Eyrich Jessen (Technical University of Denmark): Deep Learning with R using
TensorFlow.

Special Interest Groups

Three Special Interest Groups were organized to facilitate topic-specific discussion between
conference participants.

• Diversity in Data Science, moderated by R-Ladies Warsaw, aimed to discuss boosting
the diversity of R community and inspire members of affinity groups to pursue careers
in data science.

• The Career planning in data science, moderated by Artur Suchwałko (QuantUp)
and Marcin Kosiński (Why R? Foundation), gave participants a chance to learn from
experienced R enthusiasts about their career paths.

• Teaching of data science, moderated by Leon Eyrich Jessen (Technical University of
Denmark) and Stefan Rödiger (Brandenburg Technical University Cottbus-Senftenberg),
gathered data science experts from academia an industry to share their experiences
and discuss challenges and solutions in teaching different concepts of data science.

Conference organizers

The quality of the scientific program of the conference was the achievement of Marcin
Kosiński, Alicja Gosiewska, Aleksandra Grudziąż, Malte Grosser, Andrej-Nikolai Spiess,
Przemysław Gagat, Joanna Szyda, Paweł Mackiewicz, Bartosz Sękiewicz, Przemysław
Biecek, Piotr Sobczyk, Marta Karaś, Marcin Krzystanek, Marcin Łukaszewicz, Agnieszka
Borsuk - De Moor, Jarosław Chilimoniuk, Michał Maj, and Michał Kurtys. The organization
was in the hands of Michał Burdukiewicz (chair).

The organizers want to acknowledge R user groups from Berlin, Copenhagen, Cracow,
Hamburg, Munich, Poznan, Prague, Stockholm, TriCity, Wroclaw, and Warsaw.
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Additional information

Why R? 2018 website http://whyr.pl/2018
Corporate sponsors: McKinsey & Company, Wrocław Center for Biotechnology, KRUK
S.A., iDash s.c., R Consortium, WLOG Solutions, Jumping Rivers Ltd., RStudio, Inc., Ana-
lyx®GmbH, and Pearson IOKI.
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Conference Report: R / Pharma 2018
by Joseph Rickert

The R / Pharma conference began as grass-roots initiative led by data scientists working in
the pharmaceutical industry to promote the use of R in Pharma, and to establish and share
best practices. The founding members organized the project as an R Consortium working
group, and undertook the ambitious task of launching an annual conference envisioned as a
relatively small, collegial, industry-oriented event with a strong scientific program.

Inaugural Conference

The inaugural conference, R / Pharma 2018 (https://bit.ly/2RVKKI8) held on August 16th
and 17th at Harvard University attracted a representatives from academia, government, and
industry.

Figure 1: R / Pharma 2018 participants

Keynotes (https://bit.ly/2SdvMNd) were presented by Lilliam Rosario of the FDA’s
Center for Drug Evaluation and Research, Michael Lawrence Genentech/Roche and the R
Core Group, and Max Kuhn and Joe Cheng from RStudio.

Over forty-five talks and workshops were delivered with topics ranging from repro-
ducible research, regulatory constraints and considerations, and package administration
to scaling R for production. A considerable number of talks emphasized the development
of production-grade Shiny applications. Although considerably larger than most of the
Shiny applications developed, Roche’s 500,000 line application, which was presented at
the conference and subsequently written up in a post (https://bit.ly/2NeXKFJ), reflects a
common use case. Abstracts for the talks are available (https://bit.ly/2CUTEeG).

Organizing Committee

Melvin Munsaka - AbbVie; Bella Fang and Min Lee - Amgen; Eric Nantz - Eli Lilly; Elena
Rantou and Paul Schuette - FDA; Elizabeth Hess - Harvard; James Black, Reinhold Koch,
and Michael Lawrence - Genentech / Roche; Edward Louzier - Merck; Michael Blanks -
PPD; Phil Bowsher - RStudio; and Harvey Lieberman - Sanofi.
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Program Committee

Co-chairs for the program committee were Bella Feng - Amgen, John Sims - Pfizer, and Ryan
Benz - SocalBioinformatics.

Program committee leads included: Melvin Munsaka - AbbVie; Robert Engle - Biogen;
Elena Rantou and Paul Schuette - FDA; Elizabeth Hess - Harvard University; James Black
and Reinhold Koch - Genentech/Roche; Paulo Bargo - Johnson & Johnson; Eric Nantz - Eli
Lilly; Edward Lauzier - Merck; Xiao Ni- Novartis; Thomas Tensfeldt - Pfizer; and Harvey
Lieberman - Sanofi.

R / Pharma 2019

R / Pharma 2019 will be held on August 21, 22, and 23, 2019 at Harvard University. In a
response to attendee feedback, a third day is being planned for workshops. Please watch
the conference website for more information as it becomes available.

R / Pharma 2019 conference website: http://rinpharma.com/

Twitter: #rinpharma

Joseph Rickert
RStudio
E-mail: joseph.rickert@gmail.com
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Conference Report: R / Medicine Report
by Joseph Rickert, Naras Balasubramanian, and Michael Kane

R has found widespread use and is flourishing in bioinformatics, the pharmaceutical indus-
try, clinical trials, and basic science labs. While R is being adopted in clinical informatics,
its potential has not yet been realized. We believe R will fundamentally transform the
space because of its strengths in making new methods available, the availability of tools
for reproducible research, its interfaces to other languages, and it’s ability to disseminate
new approaches through web interfaces and packaging for rapid prototyping of ideas and
implementations.

Moreover, while large number of clinicians, scientists, and statisticians contribute to data
driven medical science, communication between individuals working in similar areas has
been limited. The goals of the R Medicine working group, and the annual R / Medicine con-
ference, are: (1) to form an international community that can help to facilitate collaboration
and awareness of developments in the field; and (2) to do a better job of integrating data
scientists into medical research to form more meaningful collaborations with clinicians.

R / Medicine 2018

The inaugural conference, R / Medicine 2018 (https://bit.ly/2Hzpm76), was held on
September 7th and 8th at a venue just off the Yale University campus. The conference
was produced by the Yale School of Public Health and the Department of Biostatistics.
Sponsors included the R Consortium, Medidata Inc., The New England Statistical Society,
and RStudio.

Keynotes and Talks

Four keynote addresses were delivered: Robert Tibshirani of Stanford University spoke
about predicting platelet demand at the Stanford Blood Center (https://bit.ly/2B3xWFi).
Victoria Stodden of the University of Illinois at Urbana-Champaign presented Computa-
tional Reproducibility in Medical Research: Toward Open Code and Data (https://stanford.io/
2UlAqWF). Michael Lawrence of Genentech and the R Core Group presented Scientific software
in-the-large (https://bit.ly/2RU7rg4). And. Dr. Harlan Krumholz of Yale University and
the Yale-New Haven Hospital presented Dream Crazy: Imagine the Possibilities of Data Science
in Medicine.

Additional talks ranged from tutorials on Shiny and Stan to presentations on reproducible
research and tidy models, analyzing genomic data and more. For a complete list of talks
refer to the conference website. A high point of the conference was the closing roundtable
discussion with the theme Bridging the Two Cultures. This considered how the professional
representing the statistical and clinical points of view may conceptualize and approach
medical challenges in very different ways. For a fuller account of this discussion and the
conference as a whole see https://bit.ly/2Myn5rm.

Organizing and Program Committees

The conference organizing committee consisted of: Beth Atkinson, The Mayo Clinic; Denise
Esserman, Yale University; Michael Kane, Yale University (Conference Chair); Balasubrama-
nian Narasimhan (Naras), Stanford University; Joseph Rickert, RStudio; and Hongyu Zhao,
Yale University.

The program committee was composed of Denise Esserman (Program Chair), Beth
Atkinson, Michael Kane, Balasubramanian Narasimhan, and Hongyu Zhao
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R / Medicine 2019

R / Medicine 2019 will be held at Yale University from September 19th through September
21st. The conference goal is to grow the community and nurture the conversation about
developing useful clinical research and operational solutions. The conference organizers
invite clinicians, statistical researchers and others who have an interest in promoting R
in clinical practice and medical research to participate however they can. We also invite
interested organizations to consider sponsoring R / Medicine 2019. Please watch the website
below for announcements regarding abstract submissions, sponsorship opportunities and
important dates.

R / Medicine 2019 conference website: https://r-medicine.com/

Twitter: #rmedicine

For information: r-medicine@protonmail.com

Joseph Rickert
RStudio
E-mail: joseph.rickert@gmail.com

Naras Balasubramanian
Department of Statistics
Stanford University
Palo Alto, CA
URL: naras.web.stanford.edu

Michael Kane
Yale Center for Analytical Sciences
Yale University
New Haven, CT
E-mail: michael.kane@yale.edu
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R Foundation News
by Torsten Hothorn

Donations and members

Membership fees and donations received between 2018-08-13 and 2019-01-07.

Donations

Pedro Albuquerque (France), Robert Baskin (United States), Shalese Fitzgerald (United
States), Michael Forster (Austria), Brian Gough (United Kingdom), Gen KOBAYASHI (Japan),
Ravinderpal Vaid (United States), and Novartis Pharma AG, (Basel, Switzerland)

Supporting benefactors

Jay Raol (United States) and b-data GmbH, (Zürich, Switzerland)

Supporting institutions

General Counsel Metrics, LLC, PRINCETON (United States), Marine Scotland, (Aberdeen
City Aberdeen, United Kingdom), and vizGet, (Autrans, France)

Supporting members

Tim Appelhans (Germany), Joaquín Baquer-Miravete (Spain), Marcel Baumgartner (Switzer-
land), Daniel Booth (Australia), Petr Bouchal (Czech Republic), Florian Brezina (Germany),
Robert Daly (Australia), Steph de Silva (Australia), Ajit de Silva (United States), Jasja
Dekker (Netherlands), Shaban Demirel (United States), Lukman Edwindra (Indonesia),
Arturo Erdely (Mexico), Michael Feyder (United States), Naohiro Furutani (Japan), Jan
Galkowski (United States), Krushi Gurudu (United States), Karl Habermeier (United States),
Joe Harwood (United Kingdom), Bela Hausmann (Austria), Joshua Hruzik (Germany),
Abner Huertas (Guatemala), Ken Ikeda (Japan), Larry Jamner (United States), Knut Helge
Jensen (Norway), Woojune Jung (Korea, Republic of), June Kee Kim (Korea, Republic of),
Miha Kosmac (United Kingdom), Jan Herman Kuiper (United Kingdom), Yannick Lelu
(France), Chin Soon Lim (Singapore), Michael Mahoney (United States), Daniel McNichol
(United States), Guido Möser (Germany), Yoshinobu Nakahashi (Japan), Vialaneix Nathalie
(France), Michael Neale (United States), Mark Niemann-Ross (United States), Berk Orbay
(Turkey), Dan Orsholits (Switzerland), Mucio Osorio (Mexico), Floris Padt (Netherlands),
Peter Perez (United States), Elgin Perry (United States), Que Binh Phung (France), Emma
Rand (United Kingdom), Ma Reader (United Kingdom), Kun Ren (China), Marty Rose
(United States), Ingo Ruczinski (United States), Antonio J. Saez-Castillo (Spain), Sarah Shakil
(Canada), Jagat Sheth (United States), Kevin Shook (Canada), Rachel Smith-Hunter (United
States), Tobias Strapatsas (Germany), Robert Szabo (Sweden), Koray Tascilar (Germany),
Uku Vainik (Estonia), Jaime Vera (Colombia), Marcus Vollmer (Germany), Jaap Walhout
(Netherlands), Sandra Ware (Australia), Nan Xiao (United States), Metin Yazici (Turkey),
and Victor Zurkowski (Canada)

Torsten Hothorn
Universität Zürich, Switzerland
Torsten.Hothorn@R-project.org
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Changes on CRAN
2018-07-01 to 2018-12-31

by Kurt Hornik, Uwe Ligges, and Achim Zeileis

In the past 6 months, 1029 new packages were added to the CRAN package repository.
68 packages were unarchived, 122 archived, and one removed. The following shows the
growth of the number of active packages in the CRAN package repository:
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On 2018-12-31, the number of active packages was around 13592.

Changes in the CRAN Repository Policy

The Policy now says the following:

• Packages which use Internet resources should fail gracefully with an informative
message if the resource is not available (and not give a check warning nor error).

CRAN package submissions

During the last 6 months (July to December 2018), CRAN received 10259 package submis-
sions. For these, 16830 actions took place of which 11618 (69%) were auto processed actions
and 5212 (31%) manual actions.

Minus some special cases, a summary of the auto-processed and manually triggered
actions follows:

action archive inspect pending pretest publish recheck
auto 2731 4341 460 0 3148 938
manual 1902 70 286 145 2262 547

These include the final decisions for the submissions which were

action archive publish
auto 2562 (26.1%) 2779 (28.3%)
manual 1861 (18.9%) 2620 (26.7%)
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where we only count those as auto processed whose publication happened automatically in
all steps.

CRAN mirror security

Currently, there are 100 official CRAN mirrors, 68 of which provide both secure downloads
via ‘https’ and use secure mirroring from the CRAN master (via rsync through ssh tunnels).
Since the R 3.4.0 release, chooseCRANmirror() offers these mirrors in preference to the others
which are not fully secured (yet).

New CRAN task views

Databases Topic: Databases with R. Maintainer: Yuan Tang. Packages: DBI∗, DBItest,
MonetDBLite, R4CouchDB, RCassandra, RGreenplum, RH2, RJDBC, RMari-
aDB, RMySQL, ROracle, RPostgreSQL, RPostgres, RPresto, RSQLite, RcppRedis,
TScompare, bigrquery, dbfaker, dbplyr, dplyr, dplyr.teradata, elastic, filehash-
SQLite, implyr, influxdbr, liteq, mongolite, odbc∗, pivot, pointblank, pool, redux,
rpostgis, sqldf, tidyr, uptasticsearch.

MissingData Topic: Missing Data. Maintainer: Julie Josse, Nicholas Tierney and Nathalie
Vialaneix (r-miss-tastic team). Packages: Amelia∗, BaBooN, BaylorEdPsych, CAL-
IBERrfimpute, CMF, CRTgeeDR, CVThresh, CoImp, DMwR, DTWBI, DTWUMI,
DescTools, DiffusionRimp, DrImpute, FHDI, FamEvent, FastImputation, ForImp,
GSE, GenForImp, Haplin, HardyWeinberg, Hmisc, HotDeckImputation, JointAI,
MissMech, MixedDataImpute, NNLM, NPBayesImputeCat, OpenMx, PSIMEX,
PSM, PST, QTLRel, Qtools, RNAseqNet, ROptSpace, Rmagic, Rphylopars, SNPas-
soc, StAMPP, StatMatch, StratifiedRF, TAM, TAR, TVsMiss, TestDataImputation,
TippingPoint, TreePar, TreeSim, VIM∗, VIMGUI, VarSelLCM, WaverR, accelmiss-
ing, ade4, alleHap, brlrmr, cat, cdparcoord, cobalt, cutoffR, dejaVu, denoiseR,
dils, dlookr, eigenmodel, experiment, extracat, fastLink, filling, forecast, gapfill,
gsynth, hmi, hot.deck∗, icdGLM, icenReg, idealstan, idem, imputePSF, imputeTS∗,
imputeTestbench, ipw, jomo∗, lavaan, ltm, mdmb, memisc, mi, mice∗, miceFast,
miceMNAR, miceadds, micemd, mirt, missForest, missMDA∗, mitml, mitools, mix,
naniar∗, nipals, norm, padr, pan, phylin, plsRglm, powerlmm, prefmod, prophet,
pseval, randomForest, reddPrec, robCompositions, robustrao, rsem, rtop, samon,
sbart, sbgcop, scorecardModelUtils, simputation, sjlabelled, sjmisc, smcfcs, softIm-
pute∗, spacetime, sptemExp, stlplus, swgee, tabplot, tidyimpute, timeSeries, tsib-
ble, wNNSel, wrangle, xts, yaImpute∗, zCompositions, zoo.

(* = core package)

New packages in CRAN task views

ChemPhys ATmet, MALDIrppa, NISTunits, constants, errors, fingerprint, measure-
ments, metRology, spectralAnalysis, units.

Cluster MixAll.

DifferentialEquations diffeqr, sundialr.

Distributions Wrapped, bivariate, pgdraw.

Econometrics bife, nse.

Finance PeerPerformance, crseEventStudy, riskParityPortfolio.

HighPerformanceComputing bigstatsr, qsub.

MetaAnalysis MetaStan, MetaSubtract, dfmeta, metamedian, ofGEM, puniform.
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https://CRAN.R-project.org/package=MissMech
https://CRAN.R-project.org/package=MixedDataImpute
https://CRAN.R-project.org/package=NNLM
https://CRAN.R-project.org/package=NPBayesImputeCat
https://CRAN.R-project.org/package=OpenMx
https://CRAN.R-project.org/package=PSIMEX
https://CRAN.R-project.org/package=PSM
https://CRAN.R-project.org/package=PST
https://CRAN.R-project.org/package=QTLRel
https://CRAN.R-project.org/package=Qtools
https://CRAN.R-project.org/package=RNAseqNet
https://CRAN.R-project.org/package=ROptSpace
https://CRAN.R-project.org/package=Rmagic
https://CRAN.R-project.org/package=Rphylopars
https://CRAN.R-project.org/package=SNPassoc
https://CRAN.R-project.org/package=SNPassoc
https://CRAN.R-project.org/package=StAMPP
https://CRAN.R-project.org/package=StatMatch
https://CRAN.R-project.org/package=StratifiedRF
https://CRAN.R-project.org/package=TAM
https://CRAN.R-project.org/package=TAR
https://CRAN.R-project.org/package=TVsMiss
https://CRAN.R-project.org/package=TestDataImputation
https://CRAN.R-project.org/package=TippingPoint
https://CRAN.R-project.org/package=TreePar
https://CRAN.R-project.org/package=TreeSim
https://CRAN.R-project.org/package=VIM
https://CRAN.R-project.org/package=VIMGUI
https://CRAN.R-project.org/package=VarSelLCM
https://CRAN.R-project.org/package=WaverR
https://CRAN.R-project.org/package=accelmissing
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https://CRAN.R-project.org/package=cutoffR
https://CRAN.R-project.org/package=dejaVu
https://CRAN.R-project.org/package=denoiseR
https://CRAN.R-project.org/package=dils
https://CRAN.R-project.org/package=dlookr
https://CRAN.R-project.org/package=eigenmodel
https://CRAN.R-project.org/package=experiment
https://CRAN.R-project.org/package=extracat
https://CRAN.R-project.org/package=fastLink
https://CRAN.R-project.org/package=filling
https://CRAN.R-project.org/package=forecast
https://CRAN.R-project.org/package=gapfill
https://CRAN.R-project.org/package=gsynth
https://CRAN.R-project.org/package=hmi
https://CRAN.R-project.org/package=hot.deck
https://CRAN.R-project.org/package=icdGLM
https://CRAN.R-project.org/package=icenReg
https://CRAN.R-project.org/package=idealstan
https://CRAN.R-project.org/package=idem
https://CRAN.R-project.org/package=imputePSF
https://CRAN.R-project.org/package=imputeTS
https://CRAN.R-project.org/package=imputeTestbench
https://CRAN.R-project.org/package=ipw
https://CRAN.R-project.org/package=jomo
https://CRAN.R-project.org/package=lavaan
https://CRAN.R-project.org/package=ltm
https://CRAN.R-project.org/package=mdmb
https://CRAN.R-project.org/package=memisc
https://CRAN.R-project.org/package=mi
https://CRAN.R-project.org/package=mice
https://CRAN.R-project.org/package=miceFast
https://CRAN.R-project.org/package=miceMNAR
https://CRAN.R-project.org/package=miceadds
https://CRAN.R-project.org/package=micemd
https://CRAN.R-project.org/package=mirt
https://CRAN.R-project.org/package=missForest
https://CRAN.R-project.org/package=missMDA
https://CRAN.R-project.org/package=mitml
https://CRAN.R-project.org/package=mitools
https://CRAN.R-project.org/package=mix
https://CRAN.R-project.org/package=naniar
https://CRAN.R-project.org/package=nipals
https://CRAN.R-project.org/package=norm
https://CRAN.R-project.org/package=padr
https://CRAN.R-project.org/package=pan
https://CRAN.R-project.org/package=phylin
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https://CRAN.R-project.org/package=rsem
https://CRAN.R-project.org/package=rtop
https://CRAN.R-project.org/package=samon
https://CRAN.R-project.org/package=sbart
https://CRAN.R-project.org/package=sbgcop
https://CRAN.R-project.org/package=scorecardModelUtils
https://CRAN.R-project.org/package=simputation
https://CRAN.R-project.org/package=sjlabelled
https://CRAN.R-project.org/package=sjmisc
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NumericalMathematics chebpol, freegroup.

OfficialStatistics BayesSAE, RRreg, SmallCountRounding, census, censusGeography,
emdi, idbr, ipumsr, noncensus, sae, tidycensus.

Optimization caRamel, lbfgsb3c, nilde, osqp.

Phylogenetics apex, aphid, brms, brranching, ecospat, entropart, enveomics.R, hisse,
metacoder, nodiv, picante, warbleR.

Psychometrics NetworkToolbox, TreeBUGS, cNORM, equateMultiple, ifaTools, mud-
fold.

Spatial RPostgreSQL, cartogram, geogrid, geometa, geonapi, geosapi, inlmisc, land-
scapemetrics, leaflet, lwgeom, ows4R, rnaturalearth, stars.

TimeSeries ARCensReg, FKF, GNAR, NTS, RTransferEntropy, TSEntropies, change-
point.mv, dsa, ggTimeSeries, gmvarkit, graphicalVAR, imputePSF, imputeTest-
bench, mgm, multDM, rollRegres, sugrrants, sym.arma, tbrf.

WebTechnologies HIBPwned, LendingClub, OpenML, RSauceLabs, RSocrata, Rcrawler,
WikidataQueryServiceR, ZillowR, ajv, analogsea, aws.polly, aws.s3, aws.sns, banR,
birdnik, brandwatchR, colourlovers, crminer, crplyr, crul∗, crunch, crunchy, do-
cuSignr, duckduckr, facebook.S4, fauxpas, feedeR, fulltext, ganalytics, gdns, geon-
api, geosapi, gh, giphyr, googleComputeEngineR, googleLanguageR, htm2txt,
htmltidy, htmltools, httpcode, httptest, internetarchive, iptools, js, jstor, language-
layeR, mapsapi, mathpix, ndjson, notifyme, owmr, ows4R, pivotaltrackR, plotly,
postlightmercury, radiant, rapiclient, rcoreoa, rcrossref, rdpla, rdrop2, refimpact,
reqres, rerddap, restfulr, rhub, rjsonapi, roadoi, robotstxt, routr, rpinterest, rtweet,
rwars, securitytxt, seleniumPipes, sparkbq, spiderbar, swagger, tidyRSS, trelloR,
tuber, tubern, ubeR, udapi, validatejsonr, vcr∗, vkR, webmockr∗, xslt.

(* = core package)
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News from the Bioconductor Project
by Bioconductor Core Team

The Bioconductor project provides tools for the analysis and comprehension of high-throughput
genomic data. Bioconductor 3.8 was released on 31 October, 2018. It is compatible with R 3.5.2
and consists of 1649 software packages, 360 experiment data packages, and 941 up-to-date
annotation packages. The release announcement includes descriptions of 95 new software
packages and updated NEWS files for many additional packages.

Start using Bioconductor by installing the most recent version of R and evaluating the
commands

if (!requireNamespace("BiocManager"))
install.packages("BiocManager")

BiocManager::install()

Install additional packages and dependencies, e.g., SingleCellExperiment, with

BiocManager::install("SingleCellExperiment")

Additional installation instructions are available. Docker and Amazon images provide an
effective on-ramp for power users to rapidly obtain access to standardized and scalable
computing environments. Key resources include:

• The bioconductor.org web site to install, learn, use, and develop Bioconductor packages.

• A listing of available software, linking to pages describing each package.

• A question-and-answer style user support site and developer-oriented mailing list.

• The F1000Research Bioconductor channel for peer-reviewed Bioconductor work flows.

• Our package submission repository for open technical review of new packages.

• The Bioconductor community slack for in-depth conversation about Bioconductor soft-
ware use and development.

Key training resources include common workflows and last year’s conference workshop
booklet. Our annual conference will be on June 24 through 27, 2019 in New York City, with a
line-up of morning scientific talks and afternoon user-oriente hands-on workshops, as well
as a developer day, starting to take shape.

Bioconductor Core Team
Biostatistics and Bioinformatics
Roswell Park Comprehensive Cancer Center, Buffalo, NY
USA
maintainer@bioconductor.org
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Changes in R
From version 3.5.0 patched to version 3.5.2

by R Core Team

CHANGES IN R 3.5.2

PACKAGE INSTALLATION

• New macro ‘CXX_VISIBILITY’ analogous to ‘C_VISIBILITY’ (which several packages
have been misusing for C++ code) for the default C++ compiler (but not necessarily
one used for non-default C++ dialects like C++14).

TESTING

• The random number generator tests in ‘tests/p-r-random-tests.R’ no longer fail occasion-
ally as they now randomly sample from “certified” random seeds.

BUG FIXES

• The "glm" method of drop1() miscalculated the score test (test="Rao") when the
model contained an offset.

• Linear multiple empty models such as lm(y ~ 0) now have a correctly dimensioned
empty coefficient matrix; reported by Brett Presnell.

• vcov(<empty mlm>) and hence confint() now work (via a consistency change in
summary.lm()).

• confint(<multiple lm()>) now works correctly; reported on R-devel by Steven Pav.

• quade.test() now also works correctly when its arguments are not yet sorted along
groups, fixing PR#15842.

• Installation on a Unix-alike tries harder to link to the ‘pthread’ library where required
(rather than relying on OpenMP to provide it: configuring with ‘--disable-openmp’
was failing on some Linux systems).

• The data.frame method for print(x) is fast now also for large data frames x and got
an optional argument max, thanks to suggestions by Juan Telleria.

• hist() no longer integer overflows in very rare cases, fixing PR#17450.

• untar() ignored a character compressed argument: however many external tar pro-
grams ignore the flags which should have been set and automagically choose the
compression type, and if appropriate gzip or bzip2 compression would have been
chosen from the magic header of the tarball.

• zapsmall(x) now works for more “number-like” objects.

• The tools-internal function called from R CMD INSTALL now gets a warnOption = 1
argument and only sets options(warn = warnOption) when that increases the warning
level (PR#17453).

• Analogously, the tools-internal function called from R CMD check gets a warnOption
= 1 argument and uses the larger of that and getOption("warn"), also allowing to be
run with increased warning level.

• Parse data now have deterministic parent nodes (PR#16041).
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• Calling match() with length one x and POSIXlt table gave a segfault (PR#17459).

• Fork clusters could hang due to a race condition in cluster initialization
(makeCluster()).

• nextn(n) now also works for larger n and no longer loops infinitely for e.g, n <-214e7.

• cooks.distance() and rstandard() now work correctly for multiple linear models
("mlm").

• polym() and corresponding lm() prediction now also work for a boundary "vector"
case fixing PR#17474, reported by Alexandre Courtiol.

• With a very large number of variables terms() could segfault (PR#17480).

• cut(rep(0,7)) now works, thanks to Joey Reid and Benjamin Tyner (PR#16802).

• download.file(*,method = "curl",cacheOK = FALSE) should work now on Win-
dows, thanks to Kevin Ushey’s patch in PR#17323.

• duplicated(<dataframe with 'f'>) now works, too, thanks to Andreas Kersting’s
PR#17485; ditto for anyDuplicated().

• legend(*,cex = 1:2) now works less badly.

• The print() method for POSIXct and POSIXlt now correctly obeys
getOption("max.print"), fixing a long-standing typo, and it also gets a corre-
sponding optional max argument.

• Unserialization of raw vectors serialized in ASCII representation now works correctly.

• <data frame>[TRUE,<new>] <-list(c1,c2) now works correctly, thanks to Suharto
Anggono’s PR#15362 and Emil Bode’s patch in PR#17504.

• seq.int(*,by=by,length=n) no longer wrongly “drops fractional parts” when by is
integer, thanks to Suharto Anggono’s report PR#17506.

• Buffering is disabled for file() connections to non-regular files (like sockets), as well
as fifo() and pipe() connections. Fixes PR#17470, reported by Chris Culnane.

CHANGES IN R 3.5.1

BUG FIXES

• file("stdin") is no longer considered seekable.

• dput() and dump() are no longer truncating when options(deparse.max.lines = *)
is set.

• Calls with an S3 class are no longer evaluated when printed, fixing part of PR#17398,
thanks to a patch from Lionel Henry.

• Allow file argument of Rscript to include space even when it is first on the command
line.

• callNextMethod() uses the generic from the environment of the calling method. Re-
ported by Hervé Pagès with well documented examples.

• Compressed file connections are marked as blocking.

• optim(*,lower = c(-Inf,-Inf)) no longer warns (and switches the method), thanks
to a suggestion by John Nash.
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• predict(fm,newdata) is now correct also for models where the formula has terms
such as splines::ns(..) or stats::poly(..), fixing PR#17414, based on a patch
from Duncan Murdoch.

• simulate.lm(glm(*,gaussian(link = <non-default>))) has been corrected, fixing
PR#17415 thanks to Alex Courtiol.

• unlist(x) no longer fails in some cases of nested empty lists. Reported by Steven
Nydick.

• qr.coef(qr(<all 0,w/ colnames>)) now works. Reported by Kun Ren.

• The radix sort is robust to vectors with >1 billion elements (but long vectors are still
unsupported). Thanks to Matt Dowle for the fix.

• Terminal connections (e.g., stdin) are no longer buffered. Fixes PR#17432.

• deparse(x), dput(x) and dump() now respect c()’s argument names recursive and
use.names, e.g., for x <-setNames(0,"recursive"), thanks to Suharto Anggono’s
PR#17427.

• Unbuffered connections now work with encoding conversion. Reported by Stephen
Berman.

• ‘.Renviron’ on Windows with Rgui is again by default searched for in user documents
directory when invoked via the launcher icon. Reported by Jeroen Ooms.

• printCoefmat() now also works with explicit right=TRUE.

• print.noquote() now also works with explicit quote=FALSE.

• The default method for pairs(..,horInd=*,verInd=*) now gets the correct order,
thanks to reports by Chris Andrews and Gerrit Eichner. Additionally, when horInd or
verInd contain only a subset of variables, all the axes are labeled correctly now.

• agrep("..|..",..,fixed=FALSE) now matches when it should, thanks to a reminder
by Andreas Kolter.

• str(ch) now works for more invalid multibyte strings.
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