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Editorial
by Norm Matloff

The editorial board and I are pleased to present the latst issue of the R Journal.
We apologize that this issue has been so late in publication. As this is my first issue as

Editor-in-Chief, I must personally thank Roger Bivand and John Verzani, the two previous
EiCs, for their guidance in the technical aspects of putting an issue together.

The good news, though, is that publication should be much more timely in the future,
due to improved internal technical documentation and the hiring of the journal’s first-ever
editorial assistants, Stephanie Kobakian and Mitchell O’Hara-Wild. We are thankful to the
R Consortium for a grant supporting the assistants (https://rjpilot.netlify.com).

This issue is chock full of interesting papers, many of them on intriguing, unusual topics.
For those of us whose connection to R goes back to the old S days, it is quite gratifying to
see the wide diversity of application areas in which R has been found productive.

Regular readers of this journal are aware of a change in policy that began January 2017,
under which we are moving away from a paradigm in which a typical article is merely an
extended user’s manual for the author’s R package.

To be sure, most articles will continue to be tied to specific packages. But we hope
for broader coverage, and even the package-specific articles should emphasize aspects such
as technical challenges the package needed to overcome, how it compares in features and
performance to similar packages, and so on. As described in the announcement:

Short introductions to contributed R packages that are already available on
CRAN or Bioconductor, and going beyond package vignettes in aiming to provide
broader context and to attract a wider readership than package users. Authors
need to make a strong case for such introductions, based for example on novelty
in implementation and use of R, or the introduction of new data structures
representing general architectures that invite re-use.

Clearly, there is some subjectivity in assessing these criteria, and views will vary from
one handling editor to the next. But this is the current aim of the journal, so please keep it
in mind in your submissions.

We wish the journal to further evolve in two more senses:

• In 2016, the American Statistical Assocation released a dramatic policy statement,
seriously questioning the general usefulness and propriety of p-values. Though the
statement did not call for a ban on the practice, it did have a strong theme that
p-values should be used more carefully and less often. Many of us, of course, had
been advocating a move away from p-values for years. We wish authors of future
submissions to the journal to be mindful of the ASA policy statement. We hope for
reduced emphasis on hypothesis testing, and in articles that do include testing, proper
consideration of power calculation.

• In the interest of reproducibility—a requirement already imposed by the journal on
article submissions—we will require that any real datasets used as examples in an
article must be provided. Note that this will mean that datasets with privacy issues or
datasets of extremely large size should not be used in an article.

Finally, we note our deep appreciation for the anonymous reviewers. A journal is only as
good as its reviewers, and most reviews are quite thoughtful and useful. If a handling editor
solicits your review for a paper, please make some time for it. And if you must decline the
request, a reply to that effect would be quite helpful; don’t just discard the editor’s e-mail
message. The handling editors are quite busy, and it is unfair to both them and the authors
to have the editors wait until they must conclude you will not reply, causing unnecessary
delay.
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Matching with Clustered Data: the
CMatching Package in R
by Massimo Cannas and Bruno Arpino

Abstract Matching is a well known technique to balance covariates distribution between treated
and control units in non-experimental studies. In many fields, clustered data are a very common
occurrence in the analysis of observational data and the clustering can add potentially interesting
information. Matching algorithms should be adapted to properly exploit the hierarchical structure.
In this article we present the CMatching package implementing matching algorithms for clustered
data. The package provides functions for obtaining a matched dataset along with estimates of most
common parameters of interest and model-based standard errors. A propensity score matching
analysis, relating math proficiency with homework completion for students belonging to different
schools (based on the NELS-88 data), illustrates in detail the use of the algorithms.

Background

Causal inference with observational data usually requires a preliminary stage of analysis corresponding
to the design stage of an experimental study. The aim of this preliminary stage is to reduce
the imbalance in covariates distribution across treated and untreated units due the non-random
assignment of treatment before estimating the parameters of interest. Matching estimators are widely
used for this task (Stuart, 2010). Matching can be done directly on the covariates (multivariate
matching) or on the propensity score (Rosenbaum and Rubin, 1983). The latter is defined as the
probability of the treatment given the covariates value and it has a central role for the estimation
of causal effects. In fact, the propensity score is a one dimensional summary of the covariates and
thus it mitigates the difficulty of matching observations in high dimensional spaces. Propensity
score methods have flourished and several techniques are now well established both in theory and in
practice, including stratification on the propensity score, propensity score weighting (PSW), and
propensity score matching (PSM).

Whilst the implementation of matching techniques with unstructured data has became a standard
tool for researchers in several fields (Imbens and Rubin, 2016), the increasing availability of clustered
(nested, hierarchical) observational data poses new challenges. In a clustered observational study
individuals are partitioned into clusters and the treatment is non-randomly assigned in each cluster so
that confounders may exist both at the individual and at the cluster level. Note that this framework
is different from clustered observational data where a treatment is non-randomly assigned for all
units in the cluster, for which an optimal matching strategy has been suggested by Zubizarreta
and Keele (2017). Such nested data structures are ubiquitous in the health and social sciences
where patients are naturally clustered in hospitals and students in schools, just to make two notable
examples. If relevant confounders are observed at both levels then a standard analysis, adjusting for
all confounders, seems reasonable. However, when only the cluster label — but not the cluster level
variables — is observed there is not a straightforward strategy to exploit the information on the
clustering. Intuitively, the researcher having a strong belief on the importance of the cluster level
confounders may adopt a ’within-cluster ’ matching strategy. On the other extreme, a researcher may
decide to ignore the clustering by using only the pooled data. It is important to note that this pooling
strategy implicitly assumes that cluster level variables are not important confounders. Indeed, there
have been a few proposals to adapt PSW and PSM to clustered data, see Cafri et al. (2018) for a
review. Li et al. (2013) proposed several propensity score weighting algorithms for clustered data
showing, both analytically and by simulation, that they reduce the bias of causal effects estimators
when "clusters matter," that is, when cluster level covariates are important confounders. In the
PSM context, Arpino and Mealli (2011) proposed to account for the clustering in the estimation of
the propensity score via multilevel models. Recently, Rickles and Seltzer (2014) and Arpino and
Cannas (2016) proposed caliper matching algorithms to perform PSM with clustered data. As we
will discuss shortly, these algorithms can be used not only for PSM but also in the more general
context of multivariate matching.

In the remaining of this paper, after reviewing the basic ideas underlying matching estimators,
we briefly describe the available packages for matching in the R environment. Then, we describe the
algorithms for matching with clustered data proposed by Arpino and Cannas (2016) and we present
the package CMatching implementing these algorithms. The applicability of these algorithms is very
broad and refers to all situations where cluster-level data are present (in medicine, epidemiology,
economics, etc.). A section is devoted to illustrate the use of the package on data about students
and schools, which is a common significant occurrence of clustered data.
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Packages for matching unstructured data in R

A list of the most important packages for matching available for R users is shown in Table 1. The
Matching package, which is required to run CMatching, is a remarkably complete package offering
several matching options. Matching implements many greedy matching algorithms including genetic
matching (Diamond and Sekhon, 2013). It also contains a general MatchBalance function to measure
pre- and post-matching balance with a large suite of diagnostics. As for optimal matching, there are
dedicated packages like designmatch and optmatch. The latter can also be called from MatchIT, a
general purpose package implementing also the Coarsened Exact Matching approach of Iacus et al.
(2011). Full matching is a particular form of optimal matching implemented by quickmatch with
several custom options.

Package Description Reference

Matching Greedy matching and balance analysis Sekhon (2011)

MatchIT Greedy matching and balance analysis Iacus et al. (2011)

optmatch Optimal matching Hansen and Klopfer (2006)

quickmatch Generalized full matching Savje et al. (2018)

designmatch Optimal matching and designs Zubizarreta et al. (2018)

Table 1: General purpose packages available from CRAN implementing matching algorithms.
The list is not exhaustive as there are several packages covering specialized matching
routines: a list can be found at http://www.biostat.jhsph.edu/ estuart/propensityscore-
software.html.

At the time of writing none of the packages described above offers specific routines for clustered
data. The CMatching package fills this important gap implementing the algorithms for matching
clustered data described in the next section.

Matching clustered data

Let us consider a clustered data structure D “ tyij ,xij , tiju, i “ 1, ¨ ¨ ¨nj , j “ 1, ¨ ¨ ¨ J . For
observation i in cluster j we observe a vector of covariates X and a binary variable T specifying
the treatment status of each observation. Here n “

ř

nj is the total number of observations and J
is the number of clusters in the data. We observe also a response variable Y whose average value
we are willing to compare across treated and untreated units. A matching algorithm assigns a
(possibly empty) subset of control units to each treated unit. The assignment is made with the aim
of minimizing a loss function, typically expressed in terms of covariates distance between treated
and untreated units. Matching algorithms can be classified as greedy or optimal depending whether
the cost function is minimized locally or globally, respectively. Optimal matching algorithms are not
affected by the order of the units being matched so they can reach the global optimum, but they are
typically more computer-intensive than greedy algorithms proceedings step by step. To bound the
possibility of bad matches in greedy matching, it is customary to define a maximum distance for
two units to be matched, i.e., a caliper, which is usually expressed in standard deviation units of the
covariates (or of the propensity score). one covariate.

A greedy matching procedure can then be articulated in the following steps:

1. fix the caliper;
2. match each treated with control unit(s) at minimum covariates distance (provided that distance

< caliper);
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3. measure the residual covariates’ imbalance in the matched dataset and count the number of
unmatched units (drops);

4. carefully consider both the balance and the number of drops: if they are satisfactory then
proceed to the outcome analysis; otherwise stop or revise previous steps.

If matching proves successful in adjusting covariates, the researcher can proceed to outcome
analysis where the causal estimand of interest is estimated from the matched data using a variety
of techniques (Ho et al., 2007). On the other hand, if the procedure gives either an unsatisfactory
balance or an excessive number of unmatched units, the investigator may try to modify some aspects
of the procedure (e.g., the caliper, the way the distance is calculated).

Conceptually, the same procedure can be used also for hierarchical data. Indeed, it is not
atypical to find analysis ignoring the clustering and pooling together all units. A pooling strategy
implicitly assumes that the clustering is not relevant. However, in several cases the clustering
does matter, that is, the researcher can hypothesize or suspect that some important cluster-level
confounders are unobserved. In this case, the information on the cluster labels can be exploited in
at least two ways: i) forcing the matching to be implemented within-cluster only; ii) performing a
preferential within-cluster matching, an intermediate approach between the two extremes of pooled
and within-cluster matching (Arpino and Cannas, 2016). A within-cluster matching can be obtained
by modifying step 2 above in the following way:

2’ match each treated with the control unit(s) in group j at minimum covariate distance (provided
that distance < caliper).

This procedure may result in a large number of unmatched units (drops) so it increases the risk
of substantial bias due to incomplete matching (Rosenbaum and Rubin, 1985), in particular when
the clusters are small. This particular bias arises when a matched subset is not representative of
the original population of treated units because of several non random drops. Even in the absence
of bias due to incomplete matching, a high number of drops reduces the original sample size with
possible negative consequences in terms of higher standard errors.

It is possible to profit as much as possible of the the exact balance of (unobserved) cluster-level
covariates by first matching within clusters and then recovering some unmatched treated units in
a second stage. This leads to the preferential within-cluster matching, which can be obtained by
modifying step 2 above in the following way:

2” a) match each treated with the control units(s) in group j at minimum covariate distance
(distance < caliper);

2” b) match each unmatched treated unit from previous step with the control unit(s) at minimum
covariate distance in some group different from j (provided that distance < caliper).

Now consider the outcome variable Y . We can define for each unit potential outcomes Y 1, Y 0
as the outcome we would observe under assignment to the treatment and control group, respectively
(Holland, 1986). Causal estimands of interest are the Average Treatment effect: ATE “ ErY 1´ Y 0s
or, more often, the Average Treatment effect on the treated: ATT “ TErY 1´ Y 0s. Given that a
unit is either assigned to the treatment or control group it is not possible to directly observe the
individual causal effect on each unit; we have Y “ T ¨ Y 1` p1´ T q ¨ Y 0. In a randomized study T is
independent of pY 0,Y 1q so, for k “ 0, 1, we have

EpY kq “ EpY k |T “ kq “ EpY |T “ kq

which can be estimated from the observed data. In a observational study, matching can be used to
balance covariates across treated and control units and then the previous relation can be exploited to
impute the unobserved potential outcomes from the matched dataset. In our clustered data context,
after the matched dataset has been created using one of the algorithms above, the ATT and its
standard error can be estimated using a simple regression model:

Yij “ αj ` Tijβ (1)

that is, a linear regression model with clustered standard errors to take into account within-
cluster dependence in the outcome (Arpino and Cannas, 2016). The resulting ATT estimate is
the difference of outcome means across treated and controls, i.e., zATT :“ meanpY |T “ 1q ´
meanpY |T “ 0q, computed on the matched data. Standard errors are calculated using the cluster
bootstrapping method for estimating variance-covariance matrices proposed by Cameron et al. (2011)
and implemented in the package multiwayvcov. In general, calculating standard errors for PSM in
clustered observational studies is a difficult problem requiring prudence from the researcher. While
close formulae exist for weighting estimators (Li et al., 2013), standard error estimation after PSM
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matching relies upon approximation (Cafri et al., 2018), modelling assumption (Arpino and Cannas,
2016), or simulation (Rickles and Seltzer, 2014).

Multisets and matching output

In this section we briefly detail the two routines in the CMatching package. Multisets are useful
to compactly describe pseudo code so we recall some definitions and basic properties herein. A
multiset is a pair tU ,mu where U is a given set, usually called universe, and m : x Ñ NY t0u is
the multiplicity function assigning each x P U its frequency in U . Both the summation symbol
and union symbols are used to manipulate multisets and they have different meanings: if A and
B are multisets then C ” AYB is defined by mCpxq “ maxpmApxq,mBpxqq, while C ” A`B
is defined by mCpxq “ mApxq `mBpxq. For example if A ” t1, 2, 2u and B ” t1, 2, 3u then
AYB ” t1, 2, 2, 3u, A`B ” t1, 1, 2, 2, 2, 3u. In our framework U is the set of observations indexes
and thus m gives information about the number of times a given observation occurred in the matched
dataset. Multisets then allow to naturally represent multiple matches arising from matching with
replacement. When using multiset notation to describe the output of a matching algorithm, we are
implicitly overlooking the fact that the output of a matching algorithm is richer as it also brings out
the pairings, i.e., the associations between matched treated and untreated observations. However,
it can be noted that this pairing is not relevant for calculating common estimates or common
balance measures (e.g., the ATT), as they are invariant to permutations of the labels of the matched
observations.

The routines MatchW and MatchPW

We denote with Wi and W i the sets of treated observations matched within clusters and unmatched
within clusters, respectively. In Algorithms 1 and 2, the summation symbol p

ř

q denotes multiset
sum.

# Algorithm 1 : within´c l u s t e r matching
procedure MatchW( data )

f i nd Wi f o r each i us ing Match func t i on
M :=

ř

iWi # f ind matched with in
mdata := data [M] # ex t r a c t s matched data
i f data conta in s outcome va r i ab l e Y:

e s t imate zATT and sdpzATT q from model on mdata
e l s e zATT <́ sdpzATT q <́ NULL
return mdata , zATT and sdpzATT q

# Algorithm 2 : f o r p r e f e r e n t i a l within´c l u s t e r matching
Procedure {MatchPW( data )

f i nd Wi and W i f o r each i us ing Match func t i on
B := Match (

ř

iW i Y a l l c on t r o l s )
M :=

ř

iWi `B
mdata := data [M] # ex t r a c t s matched data
i f data conta in s outcome va r i ab l e Y:

e s t imate zATT and sdpzATT q from model on mdata
e l s e zATT <́ sdpzATT q <́ NULL
return mdata , zATT and sdp{ATT q

In the first two lines, common to both algorithms, the Match function is repeatedly run to
produce the matched-within subsets Mi i “, ..., J . Then, in Algorithm 1 the sum of the Mi in line
3 gives the matched subset M . Algorithm 2 is similar but after finding the Mi’s an "additional"
subset B is found by recovering some unmatched units (line 3) and then combined to give the final
matched dataset. If a response variable Y was included the output of both algorithms also contains
an estimate of the ATT (default, but the user can choose also other estimands) and its standard
error.

Functions in the CMatching package

CMatching can be freely downloaded from CRAN repository and it contains the functions listed
in Table 2. The main function CMatch performs within-cluster and preferential within-cluster
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matching via subfunctions MatchW and MatchPW, respectively. The output of the main function can
be passed to functions CMatchBalance and summary to provide summaries of covariates balance and
other characteristics of the matched dataset. CMatch exploits the Match function (see Matching)
implementing matching for unstructured data. Given a covariate X and a binary treatment T, the call
Match(X,T,...) gives the set of indexes of matched treated and matched control units. The CMatch
function has the same arguments plus the optional arguments G (specifying the cluster variable)
and type to choose between within-cluster matching or preferential-within-cluster matching. We
highlight that we chose to frame the CMatch in the Match function style so that Matching users can
easily implement PSM with clustered data in a familiar setting.

Function Description Input Output

CMatch Match X, T , G A matched dataset

MatchW Match within X, T , G A matched dataset

MatchPW Match preferentially within X, T , G A matched dataset

summary.Match S3 method for CMatch objects A matched dataset General summaries

CMatchBalance Balance analysis A matched dataset Balance summaries

Table 2: Main input and output of functions in CMatching package.
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Figure 1: Different matching solutions for the toy dataset (caliper = 2). Green and violet
circles indicate cluster 1 and cluster 2 units, respectively; arrows indicate matched
pairs of treated (left) and control units (right). For each matching we report the
absolute percent standardized mean difference of x in the matched subset (asam), a
measure of residual imbalance.

A simple usage example

For an illustration let us consider an artificial dataset consisting of two clusters, the first containing
two treated units and two control units, and the second containing two treated and four controls.
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We use g for the cluster identifier, x for the value of the individual level confounder, and t for the
binary treatment indicator:

> toy
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

id 1 2 3.0 4.0 5.0 6 7 8 9.0 10.0
g 1 1 2.0 2.0 1.0 1 2 2 2.0 2.0
t 1 1 1.0 1.0 0.0 0 0 0 0.0 0.0
x 1 1 1.1 1.1 1.4 2 1 1 1.3 1.3

We also fix a caliper of 2 (in standard deviation units of X, i.e., all units at distance greater or
equal than 2 ¨ sdpxq « 2 ¨ 0.312 “ 0.624 will not be matched together) and we assume that the ATT
is the target parameter. Although artificial the dataset aims at representing the general situation
where pooled matching results in matched treated and control units not distributed homogeneously
across clusters (see Figure 1, left).

The pooled, within and preferential-within matchings for the toy data are depicted in Figure 1.
For each matching we report the asam, a measure of residual imbalance given by the absolute
percent mean difference of x across treated and controls divided by standard deviation of the treated
observations alone. The asam is widely used as a measure of imbalance (Stuart, 2010); its value in
the unmatched data is 491. The pooled matching (left) is a complete matching, i.e., all the treated
units could be matched. However, note that units in pairs 1-7 and 2-8 may differ in cluster level
covariates. Matching within-cluster (center) guarantees perfect balance in cluster level covariates
but it is incomplete because unit 2 cannot be matched within-cluster with the given caliper. This is
a typical disadvantage of within-cluster matching with smaller clusters. Unit 2 is matched with 9 in
the preferential within matching (right), which again is a complete matching.

The above matching solutions can be obtained easily using CMatch as follows. For the pooled
matching it is enough to call Match (or, equivalently, CMatch without type specification) while for
within and preferential-within matching it is enough to specify the appropriate type in the Match
call:

#pooled matching
pm <- Match(Y=NULL, Tr=t, X=x, caliper=2)

# same output as before (with a warning about the absence of groups,
# ties=FALSE,replace=FALSE)
pm <- CMatch(type="within", Y=NULL, Tr=t, X=x, Group=NULL, caliper=2)

#within matching
wm <- CMatch(type="within", Y=NULL, Tr=t, X=x, Group=g, caliper=2)

#preferential-within matching
pwm <- CMatch(type="pwithin", Y=NULL, Tr=t, X=x, Group=g, caliper=2)

The output of these object is quite rich. However, a quick look at the matchings can be obtained
by directly calling the index set of matched observations:

> pm$index.treated; pm$index.control
[1] 1 2 5 6
[1] 7 8 10 9
> wm$index.treated; wm$index.control
[1] 1 5 6
[1] 3 7 8
> pwm$index.treated; pwm$index.control
[1] 1 2 5 6
[1] 3 7 8 10

Note that vertical alignments in the table above correspond to arrows in Figure 1. With larger
datasets and when multiple matches are allowed (i.e., when replace=TRUE) it is probably better to
summarize the output. The output objects are of class "CMatch" and a summary method is available
for these objects. The summary shows the number of treated and the number of controls by group.
Moreover, when Y is not NULL it also shows the point estimate of ATT with its model-based
estimate of the standard error:

> summary(wm)

Estimate... 0
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SE......... NULL

Original number of observations.............. 10
Original number of treated obs............... 4
Original number of treated obs by group......

1 2
2 2

Matched number of observations............... 3
Matched number of observations (unweighted). 3

Caliper (SDs).......................................... 2
Number of obs dropped by 'exact' or 'caliper' ......... 1
Number of obs dropped by 'exact' or 'caliper' by group

1 2
1 0

This summary method does not conflict with the corresponding method for class "Match" which
is still available for objects of that class. From the summary above (see also Figure 1, center) we can
easily see that matching within groups resulted in one unmatched treated unit from group two. The
exact pairing can be recovered from the full output, in particular from the object mdata containing
the list of matched and unmatched units. As we noticed in the introduction, it is essential to analyze
covariate balance to evaluate the effectiveness of matching as a balancing tool. To this end objects
of class "CMatch" can be input of the CMatchBalance function, a wrapper of MatchBalance which
offers a large number of balance diagnostics:

> CMatchBalance( t~x , match.out=wm)

***** (V1) x *****
Before Matching After Matching

mean treatment........ 1.05 1.0667
mean control.......... 1.3333 1.1333
std mean diff......... -490.75 -115.47
(...)

From the output we see that the asam decreased from 491 to 115. One can more directly obtain
the standardized difference in means of these matchings by subcomponents:

> bwm$After[[1]]["sdiff"]
$sdiff
[1] -115.4701

> bpwm$After[[1]]["sdiff"]
$sdiff
[1] -216.5064

Whilst artificial, the previous example prompts some general considerations:

• forcing within-cluster matching may result in suboptimal matches with respect to pooled
matching. In the toy example, unit 2 is best matched with unit 8 but it is unmatched when
type=within is chosen (or it could be matched with a less similar control in the same cluster).
In both cases the increased bias (due to either incomplete matching or greater imbalance
in the observed x) may be at least in part compensated by lower imbalance in cluster level
variables;

• preferential-within matching may occasionally recover all unmatched treated units in the
within step by matching them between in step 2. However, this complete matching is generally
different from the complete pooled matching obtained by ignoring the clustering. In the
toy example, unit 2 is recovered in the preferential step but the final matching has a higher
imbalance than the pooled one. Again, it is up to the researcher to tune the trade-off between
bias due to incomplete matching and bias due to unobserved differences in group covariates.

In applications, when cluster level confounders are unobserved, it is not straightforward to decide
which of the matching strategies is the best. However, combining the within and preferential-within
routines offered by CMatching with sound subject matter knowledge, the researcher can decide how
much importance should be given to balance within-clusters based on the hypothesized strength
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of unobserved cluster level confounders. Note that CMatching uses the same caliper for clusters,
under the assumption that the researcher is typically interested in estimating the causal effect of
the treatment in the whole population of treated units and not by each cluster. This is the main
difference between MatchW and Matchby from the Matching package. The latter exactly matches
on a categorical variable and the caliper is recalculated in each subset and for this reason MatchW
estimates generally differ from those obtained from Matchby. Another difference is that Matchby
does not adjust standard errors for within-cluster correlation in the outcome. A third difference is
that CMatching provides some statistics (e.g., number of drops) by cluster to better appreciate how
well the matched dataset resembles the original clustered structure in terms for example of cluster
size.

Demonstration of the CMatching package on NELS-88 data

The CMatching package includes several functions designed for matching with clustered data. In
this section we illustrate the use of CMatching with a an educational example.

Schools dataset

The example is based on data coming from a nationally representative, longitudinal study of 8th
graders in 1988 in the US, called NELS-88. CMatching contains a selected subsample of the NELS-88
data provided by Kraft and de Leeuw (1998) with 10 handpicked schools from the 1003 schools
in the full dataset. The subsample, named schools, is a data frame with 260 observations on 19
variables recording either school or student’s characteristics.

For the purpose of illustrating matching algorithms in CMatching, we consider estimation of the
causal effect of doing homework on mathematical proficiency. More specifically, our treatment is a
binary variable taking value 1 for students that spent at least one hour doing math homework per
week and 0 otherwise. The latter is a transformation of the original variable "homework" giving two
almost equal-sized groups. The outcome is math proficiency measured on a discrete scale ranging
from 0 to 80. For simplicity we first attach the dataset (attach(schools)) and name the treatment
and the outcome variables as T and Y, respectively. The variable schid is the school identifier and
we rename it as Group:

> T <- ifelse(homework>1, 1, 0)
> Y <- math
> Group <- schid

Since the NELS-88 study was an observational study, we do not expect a simple comparison of
math scores across treated and control students (those doing and those not doing math homework) to
give an unbiased estimate of the "homework effect" because of possible student-level and school-level
confounders. For the purpose of our example, we will consider the following student-level confounders:
"ses" (a standardised continuous measure of family socio-economic status), "sex" (1 = male, 2 =
female) and "white" (1 = white, 0 other race). The NELS-88 study also collected information
on school characteristics. In general, a researcher needs to include all potential confounders in
the matching procedure, irrespective of the hierarchical level. Here we considered one school-level
confounder: "public" (1 = public schools, 0 = private) but it is plausible to assume that one
or more relevant confounders at the school-level are not available. It is clear that, to make the
unconfoundedness assumption more plausible, richer data should be used. For example, students’
motivation and parents’ involvement are potentially important confounders. Thus, the following
estimates should be interpreted with caution.

Before illustrating the use of CMatching, it is useful to get a better understanding of the data
structure. In the school dataset we have a fairly balanced number of treated and control units (128
and 132, respectively). However, in some schools we have more treated than control students, with
proportion of treated ranging from 20% to 78%:

> addmargins(table(Group, T))

T
Group 0 1 Sum
7472 17 6 23
7829 6 14 20
7930 12 12 24
24725 15 7 22
25456 17 5 22
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25642 16 4 20
62821 15 52 67
68448 8 13 21
68493 15 6 21
72292 11 9 20
Sum 132 128 260

From the table above we can notice that the total school sample size is fairly homogeneous
with the exception of one school (code = 62821) where the number of treated students (52) is
considerably higher than the number of control students (15). These considerations are important for
the implementation of the within-cluster and preferential within-cluster matching algorithms. In fact,
within-cluster matching can be difficult in groups where the proportion of treated units is high because
there are relatively few controls that can potentially serve as a match. Preferential-within-cluster
matching would be less restrictive.

This preliminary descriptive analysis is also useful to check if treated and control units are present
in each group. In fact, if a group is only composed of treated or control students then within-cluster
matching cannot be implemented. Groups with only treated or controls should be dropped before
the within-cluster matching algorithm is implemented. We now describe how Cmatching can be
used to implement matching in our school-clustered dataset.

Propensity score matching

CMatching requires to estimate the propensity score before implementing the matching. Here we
estimate propensity scores using a simple logistic regression with only main effects and then estimate
the predicted probability for each student:

> pmodel <- glm(T~ses + as.factor(sex) + white + public, family=binomial(link="logit"))
> eps <- fitted(pmodel)

We do not report the output of the propensity score model because in PSM the propensity score
is only instrumental to implement the matching. Within-cluster propensity score matching can be
implemented by using the function CMatch with the option type="within":

> psm_w <- CMatch(type="within", Y=Y, Tr=T, X=eps, Group=Group)

The previous command implements matching on the estimated propensity score, eps, by using
default settings of Match (one-to-one matching with replacement and a caliper of 0.25 standard
deviations of the estimated propensity score). The output is an object of class "CMatch" and a
customized summary method for objects of this class gives the estimated ATT and the main features
of the matched dataset:

> summary(psm_w)

Estimate... 5.2353
SE......... 2.0677

Original number of observations.............. 260
Original number of treated obs............... 128
Original number of treated obs by group......

7472 7829 7930 24725 25456 25642 62821 68448 68493 72292
6 14 12 7 5 4 52 13 6 9

Matched number of observations............... 119
Matched number of observations (unweighted). 120

Caliper (SDs).......................................... 0.25
Number of obs dropped by 'exact' or 'caliper' ......... 9
Number of obs dropped by 'exact' or 'caliper' by group

7472 7829 7930 24725 25456 25642 62821 68448 68493 72292
0 2 0 0 0 0 2 5 0 0

The summary starts reporting the original total number of students in our sample (260), the
total number of treated students (128) and how they are distributed across the different schools.
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It is of utmost importance to check how many treated units could be matched to avoid bias from
incomplete matching. For this reason the output indicates that 119 students in the treatment
group found a match ("Matched number of observations"), while the remaining 9 were dropped.
Note that the unweighted number of treated observations that found a match ("Matched number
of observations (unweighted)") is different because of ties. Ties management can be controlled
by option ties of the Match function: if ties=TRUE when one treated observation matches with
more than one control unit all possible pairs are included in the matched dataset and each pair is
weighted equal to the inverse of the number of matchedcontrols. If instead ties=FALSE is used ties
are randomly broken. Note that the summary reports the number of treated matched and dropped
units because it is assumed by default the ATT is the target estimand. Then the output also reports
how the 9 unmatched treated students are distributed across schools. For example, we notice that
in one school (68448), 5 of the 13 treated students did not find a match. This is because for these
5 students there was no control student in the same school with a propensity score falling within
the caliper. The report also recalls the caliper, which was set to 0.25 standard deviations of the
estimated propensity score in this example. The caliper can be set in standard deviation units using
the homonymous argument caliper. It may be more useful to calculate the percentage of dropped
units instead of the absolute numbers. These percentages are not reported in the summary but they
can be easily retrieved from the CMatch output. For example, we can calculate the percentage of
unmatched treated units, both overall and by school:

# percentage of drops
> psm_w$ndrops / psm_w$orig.treated.nobs

[1] 0.0703

# percentage of drops by school
> psm_w$orig.dropped.nobs.by.group / table(Group)

Group
7472 7829 7930 24725 25456 25642 62821 68448 68493 72292
0.00 0.10 0.00 0.00 0.00 0.00 0.03 0.24 0.00 0.00

confirming that the percentage of drops is very low in all schools. We could also similarly calculate
the percentage of drops over treated observations, which turn out to be high for school 64448.
The next step before accepting a matching solution is the evaluation of the achieved balance of
confounders across the treatment and control groups. To this end the package contains function
CMatchBalance that can be applied to an object of class "CMatch" to compare the balance before
and after matching (the matched dataset must be specified in the match.out argument):

> b_psm_w <- CMatchBalance(T~ses + as.factor(sex) + white + public, data=schools,
match.out=psm_w)

***** (V1) ses *****
Before Matching After Matching

mean treatment........ 0.23211 0.24655
mean control.......... -0.36947 0.14807
std mean diff......... 61.315 10.086

***** (V2) as.factor(sex)2 *****
Before Matching After Matching

mean treatment........ 0.52344 0.52941
mean control.......... 0.46212 0.56303
std mean diff......... 12.229 -6.706

***** (V3) white *****
Before Matching After Matching

mean treatment........ 0.73438 0.7563
mean control.......... 0.7197 0.71429
std mean diff......... 3.3103 9.7458

***** (V4) public *****
Before Matching After Matching
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mean treatment........ 0.59375 0.57983
mean control.......... 0.88636 0.57983
std mean diff......... -59.346 0

(...)

The output reports the balance for each variable to allow the researcher to assess the effectiveness
of matching in balancing each variable. Many balance metrics are provided but for simplicity of
exposition we focus on comparing on the standardized mean difference between the two groups of
students. Note that the asam can be easily obtained by averaging the standardized mean differences:

vec <-vector()
for(i in 1:length()) {vec[[i]] <- b_psm_w$AfterMatching[[i]]$sdiff}
> mean(abs(vec))
[1] 6.634452

from which we can see that the initial asam of 34 (see Table 3) sharply decreased after matching.
Balance improved dramatically for ses and public (results not shown). In fact, for the latter it
was possible to attain exact matching. This is guaranteed by within-cluster matching because it
forces treated and control students to belong to the same school. For the same reason, within-cluster
matching also guarantees a perfect balance of all other school-level variables (even unobservable)
not included in the propensity score estimation. The balance improved also for the sex variable
but not for the dummy white (from 3.31% to 9.75%). In a real study, the investigator may attain
a matching solution with an even better balance of the dummies for white and sex by changing
the propensity score model or one or more options in the matching algorithms. For example, a
smaller caliper could be tried. Note that CMatchBalance is a wrapper of the MatchBalance function
(Matching package) so it measures balance globally and not by group. This is acceptable also in a
hierarchical context since we first and foremost consider the overall balance. While a group-by-group
balance analysis may be useful it is only the average asam which matters when estimating the ATT
on the whole population of treated units.

We highlighted that the within-cluster algorithm always guarantees a perfect balance in all
cluster-level confounders as in the example above. However, note that it was not possible to match
some treated observations and in part this can be due to the matching constrained to happen only
within clusters. The researcher can relax the constraint using preferential within-cluster matching.
This algorithm can be invoked using the option type="pwithin" in the CMatch function:

> psm_pw <- CMatch(type="pwithin", Y=Y, Tr=T, X=eps, Group=Group)
> summary(psm_pw)

A comparison of results between within and preferential within matching is given in Table 3.
The preferential within-cluster matching was able to match all treated students ("Matched number
of obs" = 128), i.e., the number of unmatched treated students is 0 ("Number of drops" = 0).
In this example, the 9 treated students that did not find a matched control within the caliper in
the same school found a control match in another school. Looking to the overall balance attained
by matching preferentially within, we can notice that preferential within-cluster matching showed
a slightly higher asam than within-matching. In fact there is no clear "winner" between the two
algorithms: the balance of the individual level variables ses and white improves slightly with the
preferential within-cluster matching while for sex the within-cluster matching is considerably better
(not shown). Importantly, using preferential within-cluster matching the absolute standardized mean
difference for the school-level variable public is 3.2% This is not a high value because most of the
treated units actually found a match within schools. However, this finding points to the fact that
preferential within-cluster matching is not able to perfectly balance cluster level variables as the
within-cluster approach.

Finally, having achieved a satisfactory balance with a very low number of drops we can estimate
the ATT on the matched dataset. When the argument Y is not NULL, an estimate is automatically
given otherwise the output of the CMatch function only gives information about the matching. The
estimated average effect of studying math for at least one hour per week on students’ math score is
5.24 with a standard error of 2.07 when matching within schools (Table 3). It is worth mentioning
that the reported SE is model based and adjusts for non-independence of students within schools.
From Table 3 we can see that the estimated ATT and SE for the preferential-within school approach
are very similar to those obtained with the within-cluster approach. We stress that the estimated
ATT should be considered carefully and only after checking the matching solution.

In conclusion, preferential within-cluster matching is expected to improve the solution of the
within-cluster matching in terms of a reduced number of unmatched units. On the other hand,

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859



Contributed Research Articles 18

PSM MAH†

Statistics within pwithin within pwithin

Orig. number of obs. 260 260 260 260

Orig. number of treated obs. 128 128 128 128

Matched number of treated obs. 119 128 84 128

Number of drops 9 0 44 0

ASAM before 34.05 34.05 34.05 34.05

ASAM after 6.63 8.13 0.47 6.31

ATT 5.24 5.18 4.25 4.34

SE 2.07 2.14 2.23 1.83

† PSM: propensity score matching; MAH: Mahalanobis matching.

Table 3: Matching to allow a fair comparison of math test score of students doing (treated)
and not doing homework in a school clustered dataset (NELS-88 data): comparing
matching solutions obtained from CMatching.

within-cluster matching guarantees a perfect balance of school-level variables (both observed and
unobserved) while preferential within does not. The researcher, choosing between the two algorithms,
has to consider the trade-off between having a perfect balance of cluster level variables (within-cluster
matching) or reducing the number of unmatched treated units (preferential within-cluster matching).
The researcher can also implement both approaches and compare the results as a sort of sensitivity
analysis.

Multivariate covariate matching

Instead of matching on the propensity score, the researcher may match directly on the covariates
space. This strategy can be advantageous when the number of covariates is fairly low and it is
expected to match exactly a large number of units on the original space. The syntax is very similar
to the above for propensity score matching: the only difference is that the user indicates the covariate
matrix instead of the propensity score in the X argument:

> mal_w <- CMatch(type="within", Y=Y, Tr=T, X=cbind(ses, sex, white, public),
Group=Group)

When X is a matrix, the covariate distance between a treated and a control unit is measured by
Mahalanobis metrics, i.e., essentially the multivariate Euclidean distance scaled by the standard
deviation of each covariate, a metrics which warrants an homogeneous imbalance reduction property
for (approximately) ellipsoidally distributed covariates (Rubin, 1980). From Table 3, columns 3-4,
we can see that the balance of covariates was indeed very good. Note that the estimated ATT using
Mahalanobis matching is lower than the corresponding estimate obtained with propensity score
matching. However, within-cluster matching using the Mahalanobis distance has generated a large
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number of unmatched treated units (44). Therefore, in this case preferential within-cluster matching
could be used to avoid an high proportion of drops.

Other strategies

Other strategies for controlling unobserved cluster covariates in PSM have been suggested by Arpino
and Mealli (2011). The basic idea is to account for the clustering in the estimation of the propensity
score by using random- or fixed-effects models. This strategy can be combined with the matching
strategies presented before in order to ’doubly’ account for the clustering. This can be done easily
with CMatching. As an example we consider estimating the propensity score with a logit model with
dummies for schools and then matching preferentially within-schools using the estimated propensity
score:

# estimate ps
> mod <- glm(T ~ ses + parented + public + sex + race + urban

schid - 1, family=binomial(link="logit"), data=schools)
eps <- fitted(mod)

# match within on eps
> dpsm <- CMatch(type="pwithin", Y=math, Tr=T, X=eps, Group=NULL)

In concluding this section, we also mention some other matching strategies which can be
implemented using CMatching and some programming effort. First, the utility of the algorithms
naturally extends when there are more than two levels. In this case, it can be useful to match
preferentially on increasingly general levels, for example by allowing individuals to be matched first
between regions and then between countries. Another natural extension involves data where units
have multiple membership at the same hierarchical level. In this case it is possible to combine match
within (or preferential-within) across levels, for example by matching students both within schools
and within living district (e.g. 1 out of 4 possible combinations).

Summary

In this paper we presented the package CMatching implementing matching algorithms for clustered
data. The package allows users to implement two algorithms: i) within-cluster matching and
ii) preferential within-cluster matching. The algorithms provide a model-based estimate of the
causal effect and its standard error adjusted for within-cluster correlation among observations. In
addition, a tailored summary method and a balance function are provided to analyze the output. We
illustrated the case for within and preferential within-cluster matching analyzing data on students
enrolled in different schools for which it is reasonable to assume important confounding at the school
level. Finally, since the analysis of clustered observational data is an active area of research, we are
willing to improve on standard error calculations for matching estimators with clustered data if new
theoretical results in the causal inference literature will become available.
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Time-Series Clustering in R Using the
dtwclust Package
by Alexis Sardá-Espinosa

Abstract Most clustering strategies have not changed considerably since their initial definition.
The common improvements are either related to the distance measure used to assess dissimilarity, or
the function used to calculate prototypes. Time-series clustering is no exception, with the Dynamic
Time Warping distance being particularly popular in that context. This distance is computationally
expensive, so many related optimizations have been developed over the years. Since no single
clustering algorithm can be said to perform best on all datasets, different strategies must be tested
and compared, so a common infrastructure can be advantageous. In this manuscript, a general
overview of shape-based time-series clustering is given, including many specifics related to Dynamic
Time Warping and associated techniques. At the same time, a description of the dtwclust package
for the R statistical software is provided, showcasing how it can be used to evaluate many different
time-series clustering procedures.

Introduction

Cluster analysis is a task that concerns itself with the creation of groups of objects, where each
group is called a cluster. Ideally, all members of the same cluster are similar to each other, but are
as dissimilar as possible from objects in a different cluster. There is no single definition of a cluster,
and the characteristics of the objects to be clustered vary. Thus, there are several algorithms to
perform clustering. Each one defines specific ways of defining what a cluster is, how to measure
similarities, how to find groups efficiently, etc. Additionally, each application might have different
goals, so a certain clustering algorithm may be preferred depending on the type of clusters sought
(Kaufman and Rousseeuw, 1990).

Clustering algorithms can be organized differently depending on how they handle the data and
how the groups are created. When it comes to static data, i.e., if the values do not change with
time, clustering methods can be divided into five major categories: partitioning (or partitional),
hierarchical, density-based, grid-based, and model-based methods (Liao, 2005; Rani and Sikka,
2012). They may be used as the main algorithm, as an intermediate step, or as a preprocessing step
(Aghabozorgi et al., 2015).

Time-series is a common type of dynamic data that naturally arises in many different scenarios,
such as stock data, medical data, and machine monitoring, just to name a few (Aghabozorgi et al.,
2015; Aggarwal and Reddy, 2013). They pose some challenging issues due to the large size and high
dimensionality commonly associated with time-series (Aghabozorgi et al., 2015). In this context,
dimensionality of a series is related to time, and it can be understood as the length of the series.
Additionally, a single time-series object may be constituted by several values that change on the
same time scale, in which case they are identified as multivariate time-series.

There are many techniques to modify time-series in order to reduce dimensionality, and they
mostly deal with the way time-series are represented. Changing representation can be an important
step, not only in time-series clustering, and it constitutes a wide research area on its own (cf. Table
2 in Aghabozorgi et al. (2015)). While choice of representation can directly affect clustering, it can
be considered as a different step, and as such it will not be discussed further here.

Time-series clustering is a type of clustering algorithm made to handle dynamic data. The most
important elements to consider are the (dis)similarity or distance measure, the prototype extraction
function (if applicable), the clustering algorithm itself, and cluster evaluation (Aghabozorgi et al.,
2015). In many cases, algorithms developed for time-series clustering take static clustering algorithms
and either modify the similarity definition, or the prototype extraction function to an appropriate one,
or apply a transformation to the series so that static features are obtained (Liao, 2005). Therefore,
the underlying basis for the different clustering procedures remains approximately the same across
clustering methods. The most common approaches are hierarchical and partitional clustering (cf.
Table 4 in Aghabozorgi et al. (2015)), the latter of which includes fuzzy clustering.

Aghabozorgi et al. (2015) classify time-series clustering algorithms based on the way they treat
the data and how the underlying grouping is performed. One classification depends on whether the
whole series, a subsequence, or individual time points are to be clustered. On the other hand, the
clustering itself may be shape-based, feature-based, or model-based. Aggarwal and Reddy (2013)
make an additional distinction between online and offline approaches, where the former usually deals
with grouping incoming data streams on-the-go, while the latter deals with data that no longer
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change.
In the context of shape-based time-series clustering, it is common to utilize the Dynamic Time

Warping (DTW) distance as dissimilarity measure (Aghabozorgi et al., 2015). The calculation of the
DTW distance involves a dynamic programming algorithm that tries to find the optimum warping
path between two series under certain constraints. However, the DTW algorithm is computationally
expensive, both in time and memory utilization. Over the years, several variations and optimizations
have been developed in an attempt to accelerate or optimize the calculation. Some of the most
common techniques will be discussed in more detail in Dynamic time warping distance.

The choice of time-series representation, preprocessing, and clustering algorithm has a big impact
on performance with respect to cluster quality and execution time. Similarly, different programming
languages have different run-time characteristics and user interfaces, and even though many authors
make their algorithms publicly available, combining them is far from trivial. As such, it is desirable
to have a common platform on which clustering algorithms can be tested and compared against each
other. The dtwclust package, developed for the R statistical software, and part of its TimeSeries
view, provides such functionality, and includes implementations of recently developed time-series
clustering algorithms and optimizations. It serves as a bridge between classical clustering algorithms
and time-series data, additionally providing visualization and evaluation routines that can handle
time-series. All of the included algorithms are custom implementations, except for the hierarchical
clustering routines. A great amount of effort went into implementing them as efficiently as possible,
and the functions were designed with flexibility and extensibility in mind.

Most of the included algorithms and optimizations are tailored to the DTW distance, hence the
package’s name. However, the main clustering function is flexible so that one can test many different
clustering approaches, using either the time-series directly, or by applying suitable transformations
and then clustering in the resulting space. We will describe the new algorithms that are available in
dtwclust, mentioning the most important characteristics of each, and showing how the package can
be used to evaluate them, as well as how other packages complement it. Additionally, the variations
related to DTW and other common distances will be explored.

There are many available R packages for data clustering. The flexclust package (Leisch, 2006)
implements many partitional procedures, while the cluster package (Maechler et al., 2019) focuses
more on hierarchical procedures and their evaluation; neither of them, however, is specifically
targeted at time-series data. Packages like TSdist (Mori et al., 2016) and TSclust (Montero and
Vilar, 2014) focus solely on dissimilarity measures for time-series, the latter of which includes a single
algorithm for clustering based on p values. Another example is the pdc package (Brandmaier, 2015),
which implements a specific clustering algorithm, namely one based on permutation distributions.
The dtw package (Giorgino, 2009) implements extensive functionality with respect to DTW, but
does not include the lower bound techniques that can be very useful in time-series clustering. New
clustering algorithms like k-Shape (Paparrizos and Gravano, 2015) and TADPole (Begum et al.,
2015) are available to the public upon request, but were implemented in MATLAB, making their
combination with other R packages cumbersome. Hence, the dtwclust package is intended to provide
a consistent and user-friendly way of interacting with classic and new clustering algorithms, taking
into consideration the nuances of time-series data.

The rest of this manuscript presents the different logical units required for a time-series clustering
workflow, and specifies how they are implemented in dtwclust. These build on top of each other and
are not entirely independent, so their coherent combination is critical. The information relevant to
the distance measures will be presented in Distance measures. Supported algorithms for prototype
extraction will be discussed in Time-series prototypes. The main clustering algorithms will be
introduced in Time-series clustering. Information regarding cluster evaluation will be provided
in Cluster evaluation. The provided tools for a complete time-series clustering workflow will be
described in Comparing clustering algorithms with dtwclust, and the final remarks will be given
in Conclusion. Note that code examples are intentionally brief, and do not necessarily represent a
thorough procedure to choose or evaluate a clustering algorithm. The data used in all examples is
included in the package (saved in a list called CharTraj), and is a subset of the character trajectories
dataset found in Lichman (2013): they are pen tip trajectories recorded for individual characters,
and the subset contains 5 examples of the x velocity for each considered character.

Distance measures

Distance measures provide quantification for the dissimilarity between two time-series. Calculating
distances, as well as cross-distance matrices, between time-series objects is one of the cornerstones
of any time-series clustering algorithm. The proxy package (Meyer and Buchta, 2019) provides
an extensible framework for these calculations, and is used extensively by dtwclust; Summary of
distance measures will elaborate in this regard.
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The l1 and l2 vector norms, also known as Manhattan and Euclidean distances respectively, are
the most commonly used distance measures, and are arguably the only competitive lp norms when
measuring dissimilarity (Aggarwal et al., 2001; Lemire, 2009). They can be efficiently computed,
but are only defined for series of equal length and are sensitive to noise, scale, and time shifts. Thus,
many other distance measures tailored to time-series have been developed in order to overcome these
limitations, as well as other challenges associated with the structure of time-series, such as multiple
variables, serial correlation, etc.

In the following sections a description of the distance functions included in dtwclust will be
provided; these are associated with shape-based time-series clustering, and either support DTW or
provide an alternative to it. The included distances are a basis for some of the prototyping functions
described in Time-series prototypes, as well as the clustering routines from Time-series clustering, but
there are many other distance measures that can be used for time-series clustering and classification
(Montero and Vilar, 2014; Mori et al., 2016). It is worth noting that, even though some of these
distances are also available in other R packages, e.g., DTW in dtw or Keogh’s DTW lower bound
in TSdist (see Dynamic time warping distance), the implementations in dtwclust are optimized
for speed, since all of them are implemented in C++ and have custom loops for computation of
cross-distance matrices, including multi-threading support; refer to Practical optimizations for more
information.

To facilitate notation, we define a time-series as a vector (or set of vectors in case of multivariate
series) x. Each vector must have the same length for a given time-series. In general, xvi represents
the i-th element of the v-th variable of the (possibly multivariate) time-series x. We will assume
that all elements are equally spaced in time in order to avoid the time index explicitly.

Dynamic time warping distance

DTW is a dynamic programming algorithm that compares two series and tries to find the optimum
warping path between them under certain constraints, such as monotonicity (Berndt and Clifford,
1994). It started being used by the data mining community to overcome some of the limitations
associated with the Euclidean distance (Ratanamahatana and Keogh, 2004).

The easiest way to get an intuition of what DTW does is graphically. Figure 1 shows the
alignment between two sample time-series x and y. In this instance, the initial and final points of
the series must match, but other points may be warped in time in order to find better matches.
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Figure 1: Sample alignment performed by the DTW algorithm between two series. The dashed
blue lines exemplify how some points are mapped to each other, which shows how they
can be warped in time. Note that the vertical position of each series was artificially
altered for visualization.

DTW is computationally expensive. If x has length n and y has length m, the DTW distance
between them can be computed inOpnmq time, which is quadratic ifm and n are similar. Additionally,
DTW is prone to implementation bias since its calculations are not easily vectorized and tend to be
very slow in non-compiled programming languages. A custom implementation of the DTW algorithm
is included with dtwclust in the dtw_basic function, which has only basic functionality but still
supports the most common options, and it is faster (see Practical optimizations).

The DTW distance can potentially deal with series of different length directly. This is not
necessarily an advantage, as it has been shown before that performing linear reinterpolation to
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obtain equal length may be appropriate if m and n do not vary significantly (Ratanamahatana and
Keogh, 2004). For a more detailed explanation of the DTW algorithm see, e.g., Giorgino (2009).
However, there are some aspects that are worth discussing here.

The first step in DTW involves creating a local cost matrix (LCM or lcm), which has nˆm
dimensions. Such a matrix must be created for every pair of distances compared, meaning that
memory requirements may grow quickly as the dataset size grows. Considering x and y as the input
series, for each element pi, jq of the LCM, the lp norm between xi and yj must be computed. This is
defined in Equation 1, explicitly denoting that multivariate series are supported as long as they have
the same number of variables (note that for univariate series, the LCM will be identical regardless
of the used norm). Thus, it makes sense to speak of a DTWp distance, where p corresponds to the
lp norm that was used to construct the LCM.

lcmpi, jq “
˜

ÿ

v

|xvi ´ y
v
j |p

¸1{p

(1)

In the seconds step, the DTW algorithm finds the path that minimizes the alignment between x
and y by iteratively stepping through the LCM, starting at lcmp1, 1q and finishing at lcmpn,mq,
and aggregating the cost. At each step, the algorithm finds the direction in which the cost increases
the least under the chosen constraints.

The way in which the algorithm traverses through the LCM is primarily dictated by the chosen
step pattern. It is a local constraint that determines which directions are allowed when moving ahead
in the LCM as the cost is being aggregated, as well as the associated per-step weights. Figure 2
depicts two common step patterns and their names in the dtw package. Unfortunately, very few
articles from the data mining community specify which pattern they use, although in the author’s
experience, the symmetric1 pattern seems to be standard. By contrast, the dtw and dtw_basic
functions use the symmetric2 pattern by default, but it is simple to modify this by providing the
appropriate value in the step.pattern argument. The choice of step pattern also determines whether
the corresponding DTW distance can be normalized or not (which may be important for series with
different length). See Giorgino (2009) for a complete list of step patterns and to know which ones
can be normalized.
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Figure 2: Two common step patterns used by DTW when traversing the LCM. At each step, the
lines denote the allowed directions that can be taken, as well as the weight associated
with each one.

It should be noted that the DTW distance does not satisfy the triangle inequality, and it is not
symmetric in general, e.g., for asymmetric step patterns (Giorgino, 2009). The patterns in Figure 2
can result in a symmetric DTW calculation, provided no constraints are used (see the next section),
or all series have the same length if a constraint is indeed used.

Global DTW constraints

One of the possible modifications of DTW is to use global constraints, also known as window
constraints. These limit the area of the LCM that can be reached by the algorithm. There are many

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859



Contributed Research Articles 26

types of windows (see, e.g., Giorgino (2009)), but one of the most common ones is the Sakoe-Chiba
window (Sakoe and Chiba, 1978), with which an allowed region is created along the diagonal of the
LCM (see Figure 3). These constraints can marginally speed up the DTW calculation, but they are
mainly used to avoid pathological warping. It is common to use a window whose size is 10% of the
series’ length, although sometimes smaller windows produce even better results (Ratanamahatana
and Keogh, 2004).
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Figure 3: Visual representation of the Sakoe-Chiba constraint for DTW. The red elements will
not be considered by the algorithm when traversing the LCM.

Strictly speaking, if the series being compared have different lengths, a constrained path may not
exist, since the Sakoe-Chiba band may prevent the end point of the LCM to be reached (Giorgino,
2009). In these cases a slanted band window may be preferred, since it stays along the diagonal for
series of different length and is equivalent to the Sakoe-Chiba window for series of equal length. If a
window constraint is used with dtwclust, a slanted band is employed.

It is not possible to know a priori what window size, if any, will be best for a specific application,
although it is usually agreed that no constraint is a poor choice. For this reason, it is better to
perform tests with the data one wants to work with, perhaps taking a subset to avoid excessive
running times.

It should be noted that, when reported, window sizes are always integers greater than zero. If
we denote this number with w, and for the specific case of the slanted band window, the valid region
of the LCM will be constituted by all valid points in the range rpi, j ´wq, pi, j `wqs for all pi, jq
along the LCM diagonal. Thus, at each step, at most 2w` 1 elements may fall within the window
for a given window size w. This is the convention followed by dtwclust.

Lower bounds for DTW

Due to the fact that DTW itself is expensive to compute, lower bounds (LBs) for the DTW distance
have been developed. These lower bounds guarantee being less than or equal to the corresponding
DTW distance. They have been exploited when indexing time-series databases, classification of
time-series, clustering, etc. (Keogh and Ratanamahatana, 2005; Begum et al., 2015). Out of the
existing DTW LBs, the two most effective are termed LB_Keogh (Keogh and Ratanamahatana,
2005) and LB_Improved (Lemire, 2009). The reader is referred to the respective articles for detailed
definitions and proofs of the LBs, however some important considerations will be further discussed
here.

Each LB can be computed with a specific lp norm. Therefore, it follows that the lp norms used
for DTW and LB calculations must match, such that LBp ď DTWp. Moreover, LB_Keoghp ď
LB_Improvedp ď DTWp, meaning that LB_Improved can provide a tighter LB. It must be noted
that the LBs are only defined for series of equal length and are not symmetric regardless of the lp
norm used to compute them. Also note that the choice of step pattern affects the value of the DTW
distance, changing the tightness of a given LB.

One crucial step when calculating the LBs is the computation of the so-called envelopes. These
envelopes require a window constraint, and are thus dependent on both the type and size of the
window. Based on these, a running minimum and maximum are computed, and a lower and upper
envelope are generated respectively. Figure 4 depicts a sample time-series with its corresponding
envelopes for a Sakoe-Chiba window of size 15.

In order for the LBs to be worth it, they must be computed in significantly less time than it takes
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Figure 4: Visual representation of a time-series (shown as a solid black line) and its corresponding
envelopes based on a Sakoe-Chiba window of size 15. The green dashed line represents
the upper envelope, while the red dashed line represents the lower envelope.

to calculate the DTW distance. Lemire (2009) developed a streaming algorithm to calculate the
envelopes using no more than 3n comparisons when using a Sakoe-Chiba window. This algorithm
has been ported to dtwclust using the C++ programming language, ensuring an efficient calculation,
and it is exposed in the compute_envelope function.

LB_Keogh requires the calculation of one set of envelopes for every pair of series compared,
whereas LB_Improved must calculate two sets of envelopes for every pair of series. If the LBs must be
calculated between several time-series, some envelopes can be reused when a given series is compared
against many others. This optimization is included in the LB functions registered with proxy by
dtwclust.

Global alignment kernel distance

Cuturi (2011) proposed an algorithm to assess similarity between time series by using kernels. He
began by formalizing an alignment between two series x and y as π, and defined the set of all possible
alignments as Apn,mq, which is constrained by the lengths of x and y. It is shown that the DTW
distance can be understood as the cost associated with the minimum alignment.

A Global Alignment (GA) kernel that considers the cost of all possible alignments by computing
their exponentiated soft-minimum is defined, and it is argued that it quantifies similarities in a more
coherent way. However, the GA kernel has associated limitations, namely diagonal dominance and
a complexity Opnmq. With respect to the former, Cuturi (2011) states that diagonal dominance
should not be an issue as long as one of the series being compared is not longer than twice the
length of the other.

In order to reduce the GA kernel’s complexity, Cuturi (2011) proposed using the triangular
local kernel for integers shown in Equation 2, where T represents the kernel’s order. By combining
it with the kernel κ in Equation 3 (which is based on the Gaussian kernel κσ), the Triangular
Global Alignment Kernel (TGAK) in Equation 4 is obtained. Such a kernel can be computed in
OpT minpn,mqq, and is parameterized by the triangular constraint T and the Gaussian’s kernel
width σ.

ωpi, jq “
ˆ

1´ |i´ j|
T

˙

`

(2)

κpx, yq “ e´φσpx,yq (3a)

φσpx, yq “ 1
2σ2 ‖x´ y‖2

` log
ˆ

2´ e´
‖x´y‖2

2σ2

˙

(3b)

TGAKpx, y,σ,T q “ τ´1
ˆ

ωb
1
2κ

˙

pi,x; j, yq “ ωpi, jqκpx, yq
2´ ωpi, jqκpx, yq (4)

The triangular constraint is similar to the window constraints that can be used in the DTW
algorithm. When T “ 0 or T Ñ8, the TGAK converges to the original GA kernel. When T “ 1,
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the TGAK becomes a slightly modified Gaussian kernel that can only compare series of equal length.
If T ą 1, then only the alignments that fulfil ´T ă π1piq ´ π2piq ă T are considered.

Cuturi (2011) also proposed a strategy to estimate the value of σ based on the time-series
themselves and their lengths, namely c ¨medp‖x´ y‖q ¨

a

medp|x|q, where medp¨q is the empirical
median, c is some constant, and x and y are subsampled vectors from the dataset. This, however,
introduces some randomness into the algorithm when the value of σ is not provided, so it might be
better to estimate it once and re-use it in subsequent function evaluations. In dtwclust, the value of
c is set to 1.

The similarity returned by the TGAK can be normalized with Equation 5 so that its values lie
in the range r0, 1s. Hence, a distance measure for time-series can be obtained by subtracting the
normalized value from 1. The algorithm supports multivariate series and series of different length
(with some limitations). The resulting distance is symmetric and satisfies the triangle inequality,
although it is more expensive to compute in comparison to DTW.

exp
ˆ

log pTGAKpx, y,σ,T qq ´ log pTGAKpx,x,σ,T qq ` log pTGAKpy, y,σ,T qq
2

˙

(5)

A C implementation of the TGAK algorithm is available at its author’s website1. An R wrapper
has been implemented in dtwclust in the GAK function, performing the aforementioned normalization
and subtraction in order to obtain a distance measure that can be used in clustering procedures.

Soft-DTW

Following with the idea of the TGAK, i.e., of regularizing DTW by smoothing it, Cuturi and Blondel
(2017) proposed a unified algorithm using a parameterized soft-minimum as shown in Equation 6
(where ∆px, yq represents the LCM), and called the resulting discrepancy a soft-DTW, discussing
its differentiability. Thanks to this property, a gradient function can be obtained, and Cuturi and
Blondel (2017) developed a more efficient way to compute it. This can be then used to calculate
centroids with numerical optimization as discussed in Soft-DTW centroid.

dtwγpx, yq “ minγtxA, ∆px, yqy,A P Apn,mqu (6a)

minγta1, . . . , anu “
#

miniďnai, γ “ 0
´γ log

řn
i“1 e

´ai{γ , γ ą 0
(6b)

However, as a stand-alone distance measure, the soft-DTW distance has some disadvantages:
the distance can be negative, the distance between x and itself is not necessarily zero, it does not
fulfill the triangle inequality, and also has quadratic complexity with respect to the series’ lengths.
On the other hand, it is a symmetric distance, it supports multivariate series as well as different
lengths, and it can provide differently smoothed results by means of a user-defined γ.

Shape-based distance

The shape-based distance (SBD) was proposed as part of the k-Shape clustering algorithm (Paparrizos
and Gravano, 2015); this algorithm will be further discussed in Shape extraction and k-Shape
clustering. SBD is presented as a faster alternative to DTW. It is based on the cross-correlation
with coefficient normalization (NCCc) sequence between two series, and is thus sensitive to scale,
which is why Paparrizos and Gravano (2015) recommend z-normalization. The NCCc sequence is
obtained by convolving the two series, so different alignments can be considered, but no point-wise
warpings are made. The distance can be calculated with the formula shown in Equation 7, where
‖¨‖2 is the l2 norm of the series. Its range lies between 0 and 2, with 0 indicating perfect similarity.

SBDpx, yq “ 1´ max pNCCcpx, yqq
‖x‖2 ‖y‖2

(7)

This distance can be efficiently computed by utilizing the Fast Fourier Transform (FFT) to
obtain the NCCc sequence, although that might make it sensitive to numerical precision, especially in
32-bit architectures. It can be very fast, it is symmetric, it was very competitive in the experiments
performed in Paparrizos and Gravano (2015) (although the run-time comparison was slightly biased
due to the slow MATLAB implementation of DTW), and it supports (univariate) series of different

1http://marcocuturi.net/GA.html, accessed on 2016-10-29
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length directly. Additionally, some FFTs can be reused when computing the SBD between several
series; this optimization is also included in the SBD function registered with proxy by dtwclust.

Summary of distance measures

The distances described in this section are the ones implemented in dtwclust, which serve as basis for
the algorithms presented in Time-series prototypes and Time-series clustering. Table 1 summarizes
the salient characteristics of these distances.

Distance Computational
cost

Normalized Symmetric Multivariate
support

Support for
length

differences

LB_Keogh Low No No No No

LB_Improved Low No No No No

DTW Medium Can be* Can be* Yes Yes

GAK High Yes Yes Yes Yes

Soft-DTW High Yes Yes Yes Yes

SBD Low Yes Yes No Yes

Table 1: Characteristics of time-series distance measures implemented in dtwclust. Regarding
the cells marked with an asterisk: the DTW distance can be normalized for certain step
patterns, and can be symmetric for symmetric step patterns when either no window
constraints are used, or all time-series have the same length if constraints are indeed
used.

Nevertheless, there are many other measures that can be used. In order to account for this, the
proxy package is leveraged by dtwclust, as well as other packages (e.g., TSdist). It aggregates all its
measures in a database object called pr_DB, which has the advantage that all registered functions
can be used with the proxy::dist function. For example, registering the autocorrelation-based
distance provided by package TSclust could be done in the following way.

require("TSclust")

proxy::pr_DB$set_entry(FUN = diss.ACF, names = c("ACFD"),
loop = TRUE, distance = TRUE,
description = "Autocorrelation-based distance")

proxy::dist(CharTraj[3L:8L], method = "ACFD", upper = TRUE)

A.V3 A.V4 A.V5 B.V1 B.V2 B.V3
A.V3 0.7347970 0.7269654 1.3365966 0.9022004 0.6204877
A.V4 0.7347970 0.2516642 2.0014314 1.5712718 1.2133404
A.V5 0.7269654 0.2516642 2.0178486 1.6136650 1.2901999
B.V1 1.3365966 2.0014314 2.0178486 0.5559639 0.9937621
B.V2 0.9022004 1.5712718 1.6136650 0.5559639 0.4530352
B.V3 0.6204877 1.2133404 1.2901999 0.9937621 0.4530352

Any distance function registered with proxy can be used for time-series clustering with dtwclust.
More details are provided in Clustering examples.

Practical optimizations

As mentioned before, one of the advantages of the distances implemented as part of dtwclust is
that the core calculations are performed in C++, making them faster. The other advantage is that
the calculations of cross-distance matrices leverage multi-threading. In the following, a series of
comparisons against implementations in other packages is presented, albeit without the consideration
of parallelization. Further information is available in the vignettes included with the package2.

2Visible at https://cran.r-project.org/web/packages/dtwclust/vignettes/
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One of DTW’s lower bounds, LB_Keogh, is also available in TSdist as a pure R implementation.
We can see how it compares to the C++ version included in dtwclust in Figure 5, considering
different series lengths and window sizes. The time for each point in the graph was computed by
repeating the calculation 100 times and extracting the median time.
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Figure 5: Execution times of two implementations of LB_Keogh considering different time series
lengths and window sizes. Note the different vertical scales, although both are in
microseconds. The package of each implementation is written between parentheses.

Similarly, the DTW distance is also available in the dtw package, and possesses a C core. The
dtw_basic version included with dtwclust only supports a slanted window constraint (or none at
all), and the symmetric1 and symmetric2 step patterns, so it performs less checks, and uses a
memory-saving version where only 2 rows of the LCM are saved at a time. As with LB_Keogh, a
comparison of the DTW implementations’ execution times can be seen in Figure 6.
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Figure 6: Execution times of two implementations of DTW considering different time series
lengths and window sizes. Note the different vertical scales, although both are in
microseconds. The package of each implementation is written between parentheses.

The time difference in single calculations is not so dramatic, but said differences accumulate when
calculating cross-distance matrices, and become much more significant. The behavior of LB_Keogh
can be seen in Figure 7, with a fixed window size of 30 and series of length 100. The implementation
in dtwclust performs the whole calculation in C++, and only calculates the necessary warping
envelopes once, although it can be appreciated that this does not have a significant effect.

The behavior of the DTW implementations can be seen in Figure 8. The dtwclust version is an
order of magnitude faster, even single-threaded, and it can benefit from parallelization essentially
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Figure 7: Execution times of the two implementations of LB_Keogh when calculating cross-
distance matrices. The points on the left of the dashed line represent square matrices,
whereas the ones on the right only have one dimension of the cross-distance matrix
increased (the one that results in more envelope calculations). Note the different
vertical scales, although both are in milliseconds. The package of each implementation
is written between parentheses.

proportionally to the number of threads available.
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Figure 8: Execution times of the two implementations of DTW when calculating cross-distance
matrices. Note the different vertical scales, although both are in seconds. The package
of each implementation is written between parentheses.

Time-series prototypes

A very important step of time-series clustering is the calculation of so-called time-series prototypes.
It is expected that all series within a cluster are similar to each other, and one may be interested in
trying to define a time-series that effectively summarizes the most important characteristics of all
series in a given cluster. This series is sometimes referred to as an average series, and prototyping is
also sometimes called time-series averaging, but we will prefer the term “prototyping”, although
calling them time-series centroids is also common.

Computing prototypes is commonly done as a sub-routine of a larger task. In the context
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of clustering (see Time-series clustering), partitional procedures rely heavily on the prototyping
function, since the resulting prototypes are used as cluster centroids. Prototyping could even be
a pre-processing step, whereby different samples from the same source can be summarized before
clustering (e.g., for the character trajectories dataset, all trajectories from the same character can
be summarized and then groups of similar characters could be sought), thus reducing the amount of
data and execution time. Another example is time-series classification based on nearest-neighbors,
which can be optimized by considering only group-prototypes as neighbors instead of the union of
all groups. Nevertheless, it is important to note that the distance used in the overall task should be
congruent with the chosen centroid, e.g., using the DTW distance for DTW-based prototypes.

The choice of prototyping function is closely related to the chosen distance measure and, in a
similar fashion, it is not simple to know which kind of prototype will be better a priori. There are
several strategies available for time-series prototyping, although due to their high dimensionality, what
exactly constitutes an average time-series is debatable, and some notions could worsen performance
significantly. The following sections will briefly describe some of the common approaches when
dealing with time-series.

Partition around medoids

One approach is to use partition around medoids (PAM). A medoid is simply a representative object
from a cluster, in this case also a time-series, whose average distance to all other objects in the
same cluster is minimal. Since the medoid object is always an element of the original data, PAM is
sometimes preferred over mean or median so that the time-series structure is not altered.

A possible advantage of PAM is that, since the data does not change, it is possible to precompute
the whole distance matrix once and re-use it on each iteration, and even across different number of
clusters and random repetitions. However, this is not suitable for large datasets since the whole
distance matrix has to be allocated at once.

In the implementation included in the package, the distances between all member series are
computed, and the series with minimum sum of distances is chosen as the prototype.

DTW barycenter averaging

The DTW distance is used very often when working with time-series, and thus a prototyping function
based on DTW has also been developed in Petitjean et al. (2011). The procedure is called DTW
barycenter averaging (DBA), and is an iterative, global method. The latter means that the order in
which the series enter the prototyping function does not affect the outcome.

DBA requires a series to be used as reference (centroid), and it usually begins by randomly
selecting one of the series in the data. On each iteration, the DTW alignment between each series in
the cluster C and the centroid is computed. Because of the warping performed in DTW, it can be
that several time-points from a given time-series map to a single time-point in the centroid series, so
for each time-point in the centroid, all the corresponding values from all series in C are grouped
together according to the DTW alignments, and the mean is computed for each centroid point using
the values contained in each group. This is iteratively repeated until a certain number of iterations
are reached, or until convergence is assumed.

The dtwclust implementation of DBA is done in C++ and includes several memory optimizations.
Nevertheless, it is more computationally expensive due to all the DTW calculations that must be
performed. However, it is very competitive when using the DTW distance and, thanks to DTW
itself, it can support series with different length directly, with the caveat that the length of the
resulting prototype will be the same as the length of the reference series that was initially chosen by
the algorithm, and that the symmetric1 or symmetric2 step pattern should be used.

Soft-DTW centroid

Thanks to the gradient that can be computed as a by-product of the soft-DTW distance calculation
(see Soft-DTW), it is possible to define an objective function (see Equation (4) in Cuturi and Blondel
(2017)) and subsequently minimize it with numerical optimization. In addition to the smoothing
parameter of soft-DTW (γ), the optimization procedure considers the option of using normalizing
weights for the input series, which noticeably alters the resulting centroids (see Figure 4 in Cuturi
and Blondel (2017)). The clustering and classification experiments performed by Cuturi and Blondel
(2017) showed that using soft-DTW (distance and centroid) provided quantitatively better results in
many scenarios.
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Shape extraction

A recently proposed method to calculate time-series prototypes is termed shape extraction, and is
part of the k-Shape algorithm (see k-Shape clustering) described in Paparrizos and Gravano (2015).
As with the corresponding SBD (see Shape-based distance), the algorithm depends on NCCc, and it
first uses it to match two series optimally. Figure 9 depicts the alignment that is performed using
two sample series.
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Figure 9: Visualization of the NCCc-based alignment performed on two sample series. After
alignment, the second (red) series is either truncated and/or prepended/appended
with zeros so that its length matches the first(black) series.

As with DBA, a centroid series is needed, so one is usually randomly chosen from the data.
An exception is when all considered time-series have the same length, in which case no centroid is
needed beforehand. The alignment can be done between series with different length, and since one
of the series is shifted in time, it may be necessary to truncate and prepend or append zeros to the
non-reference series, so that the final length matches that of the reference. This is because the final
step of the algorithm builds a matrix with the matched series (row-wise) and performs a so-called
maximization of Rayleigh Quotient to obtain the final prototype; see Paparrizos and Gravano (2015)
for more details.

The output series of the algorithm must be z-normalized. Thus, the input series as well as the
reference series must also have this normalization. Even though the alignment can be done between
series with different length, it has the same caveat as DBA, namely that the length of the resulting
prototype will depend on the length of the chosen reference. Technically, for multivariate series, the
shape extraction algorithm could be applied for each variable v of all involved series, but this was
not explored by the authors of k-Shape.

Summary of prototyping functions

Table 2 summarizes the time-series prototyping functions implemented in dtwclust, including the
distance measure they are based upon, where applicable. It is worth mentioning that, as will
be described in Time-series clustering, the choice of distance and prototyping function is very
important for time-series clustering, and it may be ill-advised to use a distance measure that does
not correspond to the one used by the prototyping function. Using PAM is an exception, because
the medoids are not modified, so any distance can be used to choose a medoid. It is possible to use
custom prototyping functions for time-series clustering (see Clustering examples), but it is important
to maintain congruence with the chosen distance measure.
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Prototyping function Distance used Algorithm used

PAM — Time-series with minimum
sum of distances to the
other series in the group.

DBA DTW Average of points grouped
according to DTW
alignments.

Soft-DTW centroid Soft-DTW Numerical optimization
using the derivative of
soft-DTW.

Shape extraction SBD Normalized eigenvector of a
matrix created with
SBD-aligned series.

Table 2: Time-series prototyping functions implemented in dtwclust, and their corresponding
distance measures.

Time-series clustering

There are several clustering algorithms, but in general, they fall within 3 categories: hierarchical
clustering, which induces a hierarchy in the data; partitional clustering, which creates crisp partitions
of data; and fuzzy clustering, which creates fuzzy or overlapping partitions.

Hierarchical clustering is an algorithm that tries to create a hierarchy of groups in which, as the
level in the hierarchy increases, clusters are created by merging the clusters from the next lower level,
such that an ordered sequence of groupings is obtained; this may be deceptive, as the algorithms
impose the hierarchical structure even if such structure is not inherent to the data (Hastie et al.,
2009). In order to decide how the merging is performed, a (dis)similarity measure between groups
should be specified, in addition to the one that is used to calculate pairwise similarities. However, a
specific number of clusters does not need to be specified for the hierarchy to be created, and the
procedure is deterministic, so it will always give the same result for a chosen set of (dis)similarity
measures.

Hierarchical clustering has the disadvantage that the whole distance matrix must be calculated
for a given dataset, which in most cases has a time and memory complexity of OpN2

q if N is the
total number of objects in the dataset. Thus, hierarchical procedures are usually used with relatively
small datasets.

Partitional clustering is a strategy used to create partitions. In this case, the data is explicitly
assigned to one and only one cluster out of k total clusters. The number of desired clusters must be
specified beforehand, which can be a limiting factor. Some of the most popular partitional algorithms
are k-means and k-medoids (Hastie et al., 2009). These use the Euclidean distance and, respectively,
mean or PAM centroids (see Time-series prototypes).

Partitional clustering algorithms commonly work in the following way. First, k centroids are
randomly initialized, usually by choosing k objects from the dataset at random; these are assigned
to individual clusters. The distance between all objects in the data and all centroids is calculated,
and each object is assigned to the cluster of its closest centroid. A prototyping function is applied
to each cluster to update the corresponding centroid. Then, distances and centroids are updated
iteratively until a certain number of iterations have elapsed, or no object changes clusters any more.
Most of the proposed algorithms for time-series clustering use the same basic strategy while changing
the distance and/or centroid function.

Partitional clustering procedures are stochastic due to their random start. Thus, it is common
practice to test different starting points to evaluate several local optima and choose the best result
out of all the repetitions. It tends to produce spherical clusters, but has a lower complexity, so it
may be applied to very large datasets.

In crisp partitions, each member of the data belongs to only one cluster, and clusters are mutually
exclusive. By contrast, fuzzy clustering creates a fuzzy or soft partition in which each member
belongs to each cluster to a certain degree. For each member of the data, the degree of belongingness
is constrained so that its sum equals 1 across all clusters. Therefore, if there are N objects in the
data and k clusters are desired, an N ˆ k membership matrix u can be created, where all the rows
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must sum to 1 (note that some authors use the transposed version of u).
Technically, fuzzy clustering can be repeated several times with different random starts, since u

is initialized randomly. However, comparing the results would be difficult, since it could be that the
values within u are shuffled but the overall fuzzy grouping remains the same, or changes very slightly,
once the algorithm has converged. Note that it is straightforward to change the fuzzy partition to a
crisp one by taking the argument of the row-wise maxima of u and assigning the respective series to
the corresponding cluster only.

The main clustering function in dtwclust is tsclust, which supports all of the aforementioned
clustering algorithms. Part of this support comes from functionality provided by other R packages.
However, the advantage of using dtwclust is that it can handle time-series nuances, like series with
different lengths and multivariate series. This is particularly important for partitional clustering,
where both distance and prototyping functions must be applicable to time-series data. For brevity,
the following sections will focus on describing the new clustering algorithms implemented in dtwclust,
but more information can be obtained in the functions’ documentation.

TADPole clustering

TADPole clustering was proposed in Begum et al. (2015), and is implemented in dtwclust in the
TADPole function. It adopts a relatively new clustering framework and adapts it to time-series
clustering with the DTW distance. Because of the way the algorithm works, it can be considered a
kind of PAM clustering, since the centroids are always elements of the data. However, this algorithm
is deterministic depending on the value of a cutoff distance (dc).

The algorithm first uses the DTW distance’s upper and lower bounds (Euclidean distance and
LB_Keogh respectively) to find series with many close neighbors (in DTW space). Anything below
dc is considered a neighbor. Aided with this information, the algorithm then tries to prune as many
DTW calculations as possible in order to accelerate the clustering procedure. The series that lie in
dense areas (i.e., that have lots of neighbors) are taken as cluster centroids. For a more detailed
explanation of each step, please refer to Begum et al. (2015).

TADPole relies on the DTW bounds, which are only defined for time-series of equal length.
Consequently, it requires a Sakoe-Chiba constraint. Furthermore, it should be noted that the
Euclidean distance is only valid as a DTW upper bound if the symmetric1 step pattern is used
(see Figure 2). Finally, the allocation of several distance matrices is required, making it similar to
hierarchical procedures memory-wise, so its applicability is limited to relatively small datasets.

k-Shape clustering

The k-Shape clustering algorithm was developed by Paparrizos and Gravano (2015). It is a partitional
clustering algorithm with a custom distance measure (SBD; see Shape-based distance), as well as a
custom centroid function (shape extraction; see Shape extraction). It is also stochastic in nature,
and requires z-normalization in its default definition. In order to use this clustering algorithm,
the tsclust function should be called with partitional as the clustering type, SBD as the distance
measure, shape extraction as the centroid function, and z-normalization as the preprocessing step.
As can be appreciated, this algorithm uses the same strategy as k-means, but replaces both distance
and prototying functions with custom ones that are congruent with each other.

Clustering examples

In this example, three different partitional clustering strategies are used: the DTW2 distance
and DBA centroids, k-Shape, and finally TADPole. The results are evaluated using Variation
of Information (see Cluster evaluation), with lower numbers indicating better results. Note that
z-normalization is applied by default when selecting shape extraction as the centroid function. For
consistency, all algorithms used the reinterpolated and normalized data, since some algorithms
require series of equal length. A subset of the data is used for speed. The outcome should not
be generalized to other data, and normalization/reinterpolation may actually worsen some of the
algorithms’ performance.

# Linear reinterpolation to same length
data <- reinterpolate(CharTraj, new.length = max(lengths(CharTraj)))
# z-normalization
data <- zscore(data[60L:100L])

pc_dtw <- tsclust(data, k = 4L, seed = 8L,
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distance = "dtw_basic", centroid = "dba",
norm = "L2", window.size = 20L)

pc_ks <- tsclust(data, k = 4L, seed = 8L,
distance = "sbd", centroid = "shape")

pc_tp <- tsclust(data, k = 4L, type = "tadpole", seed = 8L,
control = tadpole_control(dc = 1.5, window.size = 20L))

sapply(list(DTW = pc_dtw, kShape = pc_ks, TADPole = pc_tp),
cvi, b = CharTrajLabels[60L:100L], type = "VI")

DTW.VI kShape.VI TADPole.VI
0.5017081 0.4353306 0.4901096

As can be seen, using a distance registered with proxy can be done by simply specifying its name
in the distance argument of tsclust. Using the prototyping functions included in dtwclust can be
done by passing their respective names in the centroid parameter, but using a custom prototyping
function is also possible. For example, a weighted mean centroid is implemented as follows. The
usefulness of such an approach is of course questionable.

weighted_mean_cent <- function(x, cl_id, k, cent, cl_old, ..., weights) {
x <- Map(x, weights, f = function(ts, w) { w * ts })
x_split <- split(x, cl_id)
new_cent <- lapply(x_split, function(xx) {

xx <- do.call(rbind, xx)
colMeans(xx)

})
}

data <- reinterpolate(CharTraj, new.length = max(lengths(CharTraj)))
weights <- rep(c(0.9,1.1), each = 5L)
tsclust(data[1L:10L], type = "p", k = 2L,

distance = "Manhattan",
centroid = weighted_mean_cent,
seed = 123,
args = tsclust_args(cent = list(weights = weights)))

partitional clustering with 2 clusters
Using manhattan distance
Using weighted_mean_cent centroids

Time required for analysis:
user system elapsed
0.024 0.000 0.023

Cluster sizes with average intra-cluster distance:

size av_dist
1 5 15.05069
2 5 18.99145

Cluster evaluation

Clustering is commonly considered to be an unsupervised procedure, so evaluating its performance
can be rather subjective. However, a great amount of effort has been invested in trying to standardize
cluster evaluation metrics by using cluster validity indices (CVIs). Many indices have been developed
over the years, and they form a research area of their own, but there are some overall details that
are worth mentioning. The discussion here is based on Arbelaitz et al. (2013) and Wang and Zhang
(2007), which provide a much more comprehensive overview.

In general, CVIs can be either tailored to crisp or fuzzy partitions. For the former, CVIs can be
classified as internal, external or relative depending on how they are computed. Focusing on the
first two, the crucial difference is that internal CVIs only consider the partitioned data and try to
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define a measure of cluster purity, whereas external CVIs compare the obtained partition to the
correct one. Thus, external CVIs can only be used if the ground truth is known.

Note that even though a fuzzy partition can be changed into a crisp one, making it compatible
with many of the existing “crisp” CVIs, there are also fuzzy CVIs tailored specifically to fuzzy
clustering, and these may be more suitable in those situations. Fuzzy partitions usually have no
ground truth associated with them, but there are exceptions depending on the task’s goal (Lei et al.,
2017).

Several of the best-performing CVIs according to Wang and Zhang (2007), Arbelaitz et al. (2013),
and Lei et al. (2017) are implemented in dtwclust in the cvi function. Table 3 specifies which ones
are available and some of their particularities.

There are some advantages and corresponding caveats with respect to the dtwclust implementa-
tions. Many internal CVIs require additional distance calculations, and some also compute so-called
global centroids (a centroid that uses the whole dataset), which were calculated with, respectively, the
Euclidean distance and a mean centroid in the original definition. The implementations in dtwclust
change this, making use of whatever distance/centroid was utilized during clustering without further
intervention from the user, so it is possible to leverage the distance and centroid functions that
support time-series. Nevertheless, many CVIs assume symmetric distance functions, so the cvi
function warns the user when this is not fulfilled.

Knowing which CVI will work best cannot be determined a priori, so they should be tested for
each specific application. Many CVIs can be utilized and compared to each other, maybe using a
majority vote to decide on a final result, but there is no best CVI, and it is important to conceptually
understand what a given CVI measures in order to appropriately interpret its results. Furthermore,
it should be noted that, due to additional distance and/or centroid calculations, computing CVIs
can be prohibitive in some cases. For example, the Silhouette index effectively needs the whole
distance matrix between the original series to be calculated.

CVIs are not the only way to evaluate clustering results. The clue package (Hornik, 2005,?)
includes its own extensible framework for evaluation of cluster ensembles. It does not directly deal
with the clustering algorithms themselves, rather with ways of quantifying agreement and consensus
between several clustering results. As such, it is directly compatible with the results from dtwclust,
since it does not care how a partition/hierarchy was created. Support for the clue package framework
is included.

Cluster evaluation examples

In the following example, different numbers of clusters are computed, and, using internal CVIs, it
is possible to assess which one resulted in a partition with more “purity”. The majority of indices
suggest using k “ 4 in this case.

# subset
data <- CharTraj[1L:20L]
pc_k <- tsclust(data, k = 3L:5L, seed = 94L,

distance = "dtw_basic", centroid = "pam")
names(pc_k) <- paste0("k_", 3L:5L)
sapply(pc_k, cvi, type = "internal")

k_3 k_4 k_5
Sil 6.897035e-01 7.295148e-01 6.726453e-01
SF 1.105005e-11 1.345888e-10 1.074494e-10
CH 2.375816e+01 2.873765e+01 2.207096e+01
DB 4.141004e-01 3.225955e-01 2.858009e-01
DBstar 4.799175e-01 4.998963e-01 7.029138e-01
D 1.054228e+00 7.078230e-01 4.430916e-01
COP 1.176921e-01 7.768459e-02 7.153216e-02

If we choose the value of k “ 4, we could then compare results among different random repetitions
with help of the clue package (or with CVIs again).
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CVI Internal or
external

Crisp or fuzzy
partitions

Minimized or
Maximized

Considerations

Rand External Crisp Maximized —

Adjusted rand External Crisp Maximized —

Jaccard External Crisp Maximized —

Fowlkes-Mallows External Crisp Maximized —

Variation of
information

External Crisp Minimized —

Soft rand External Fuzzy Maximized —

Soft adjusted rand External Fuzzy Maximized —

Soft variation of
information

External Fuzzy Minimized —

Soft normalized
mutual information

External Fuzzy Maximized —

Silhouette Internal Crisp Maximized Requires the whole
cross-distance

matrix.

Dunn Internal Crisp Maximized Requires the whole
cross-distance

matrix.

COP Internal Crisp Minimized Requires the whole
cross-distance

matrix.

Davies-Bouldin Internal Crisp Minimized Calculates distances
to the computed
cluster centroids.

Modified
Davies-Bouldin
(DB*)

Internal Crisp Minimized Calculates distances
to the computed
cluster centroids.

Calinski-Harabasz Internal Crisp Maximized Calculates a global
centroid.

Score function Internal Crisp Maximized Calculates a global
centroid.

MPC Internal Fuzzy Maximized —

K Internal Fuzzy Minimized Calculates a global
centroid.

T Internal Fuzzy Minimized —

SC Internal Fuzzy Maximized Calculates a global
centroid.

PBMF Internal Fuzzy Maximized Calculates a global
centroid.

Table 3: Cluster validity indices included in dtwclust. The first four are calculated with the
comPart function from the flexclust package. The Silhouette index is calculated with the
silhouette function in the cluster package. Internal fuzzy CVIs use the nomenclature
from Wang and Zhang (2007).
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require("clue")

pc_4 <- tsclust(data, type = "p", k = 4L,
distance = "dtw_basic", centroid = "pam",
control = partitional_control(nrep = 5L),
seed = 95L)

names(pc_4) <- paste0("r_", 1L:5L)
pc_4 <- cl_ensemble(list = pc_4)
cl_dissimilarity(pc_4)

Dissimilarities using minimal Euclidean membership distance:
r_1 r_2 r_3 r_4

r_2 3.464102
r_3 0.000000 3.464102
r_4 0.000000 3.464102 0.000000
r_5 0.000000 3.464102 0.000000 0.000000

table(Medoid = cl_class_ids(cl_medoid(pc_4)),
"True Classes" = rep(c(4L, 3L, 1L, 2L), each = 5L))
True Classes

Medoid 1 2 3 4
1 5 0 0 0
2 0 5 0 0
3 0 0 5 0
4 0 0 0 5

Comparing clustering algorithms with dtwclust

As we have seen, there are several aspects that must be considered for time-series clustering. Some
examples are:

• Pre-processing of data, possibly changing the decision space.
• Type of clustering (partitional, hierarchical, etc.).
• Number of desired or expected clusters.
• Choice of distance measure, along with its parameterization.
• Choice of centroid function and its parameterization. This may also depend on the chosen

distance.
• Evaluation of clustering results.
• Computational cost, which depends not only on the size of the dataset, but also on the

complexity of the aforementioned aspects.

In order to facilitate more laborious workflows, dtwclust includes the compare_clusterings
function which, along with its helper functions, optimizes the way the different clustering algorithms
can be executed. Its main advantage is that it leverages parallelization. Using parallelization is not
something that is commonly explored explicitly in the literature, but it can be extremely useful in
practical applications. In the case of time-series clustering, parallel computation can result in a very
significant reduction in execution times.

Handling parallelization has been greatly simplified in R by different software packages. The
implementations done in dtwclust use the foreach package (Revolution Analytics and Weston, 2017)
for multi-processing, and RcppParallel for multi-threading (Allaire et al., 2018). Thanks to foreach,
the parallelized workflow can be executed not only in a local machine, but also in a computing cluster.
In order to avoid data copies and communication overhead in these scenarios, compare_clusterings
is coded in a way that, by default, less data is returned from the parallel processes. Nevertheless, as
will be shown shortly, the results can be fully re-created in the main process on demand.

With this infrastructure, it is possible to cover the whole clustering workflow with dtwclust.

Parallelized workflow example

This example uses the doParallel package (Microsoft Corporation and Weston, 2018), which is one
of the options that provides a parallel backend for foreach.
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The configuration is specified with two helper functions: compare_clusterings_configs and
pdc_configs. It tests partitional clustering with DTW distance and DBA centroids, exploring
different values for window size and norm. The value of the window size can have a very significant
effect on clustering quality (Dau et al., 2016)3, but there is no single size that performs best on all
datasets, so it is important to assess its effect on each specific case.

Since the ground truth is known in this scenario, an external CVI is chosen for evaluation: the
adjusted Rand index. The cvi_evaluators function generates functions that can be passed to
compare_clusterings which, internally, use the cvi function (see Cluster evaluation).

require("doParallel")
workers <- makeCluster(detectCores())
invisible(clusterEvalQ(workers, library(dtwclust)))
registerDoParallel(workers)

cfg <- compare_clusterings_configs(
types = "partitional",
k = 20L,
controls = list(

partitional = partitional_control(
iter.max = 20L

)
),
distances = pdc_configs(

"distance",
partitional = list(

dtw_basic = list(
window.size = seq(from = 10L, to = 30L, by = 5L),
norm = c("L1", "L2")

)
)

),
centroids = pdc_configs(

"centroid",
share.config = c("p"),
dba = list(

window.size = seq(from = 10L, to = 30L, by = 5L),
norm = c("L1", "L2")

)
),
no.expand = c(

"window.size",
"norm"

)
)

evaluators <- cvi_evaluators("ARI", ground.truth = CharTrajLabels)

comparison <- compare_clusterings(CharTraj, types = "partitional",
configs = cfg, seed = 8L,
score.clus = evaluators$score,
pick.clus = evaluators$pick)

stopCluster(workers); registerDoSEQ()

# some rows and columns from the results data frame
head(comparison$results$partitional[, c("config_id", "distance", "centroid",

"window.size_distance", "norm_distance",
"ARI")])

config_id distance centroid window.size_distance norm_distance ARI
1 config1 dtw_basic dba 10 L1 0.6021905
2 config2 dtw_basic dba 10 L2 0.6589223
3 config3 dtw_basic dba 15 L1 0.5306598

3The strategy presented in this reference is also included in dtwclust in the ssdtwclust function, and it is
implemented by leveraging compare_clusterings.
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4 config4 dtw_basic dba 15 L2 0.4733479
5 config5 dtw_basic dba 20 L1 0.4474698
6 config6 dtw_basic dba 20 L2 0.5840729

Based on the ARI, one of the configurations was picked as the best one, and it is possible to
obtain the clustering object by calling repeat_clustering:

clusters <- repeat_clustering(CharTraj, comparison, comparison$pick$config_id)

matrix(clusters@cluster, ncol = 5L, byrow = TRUE)
[,1] [,2] [,3] [,4] [,5]

[1,] 5 5 5 5 5
[2,] 7 7 7 7 7
[3,] 18 18 18 18 18
[4,] 15 15 15 15 15
[5,] 17 17 17 17 17
[6,] 4 4 4 4 9
[7,] 2 2 2 2 2
[8,] 3 3 3 3 11
[9,] 6 6 6 6 6
[10,] 20 20 20 20 20
[11,] 10 10 10 10 10
[12,] 10 19 19 19 19
[13,] 20 20 20 20 12
[14,] 14 8 16 8 8
[15,] 4 4 4 4 4
[16,] 2 2 2 2 2
[17,] 1 1 1 14 1
[18,] 6 6 6 6 6
[19,] 13 13 13 13 9
[20,] 18 12 17 17 17

Conclusion

In this manuscript a general overview of shape-based time-series clustering was provided. This
included a lot of information related to the DTW distance and its corresponding optimizations,
such as constraints and lower bounding techniques. At the same time, the dtwclust package for
R was described and showcased, demonstrating how it can be used to test and compare different
procedures efficiently and unbiasedly by providing a common infrastructure.

The package implements several different routines, most of which are related to the DTW
algorithm. Nevertheless, its modular structure enables the user to customize and complement the
included functionality by means of custom algorithms or even other R packages, as it was the case
with TSdist and clue. These packages are more specialized, dealing with specific tasks (respectively:
distance calculations and cluster evaluation). By contrast, dtwclust provides a more general purpose
clustering workflow, having enough flexibility to allow for the most common approaches to be used.

The goal of this manuscript was not to give a comprehensive and thorough explanation of all
the discussed algorithms, but rather to provide information related to what has been done in the
literature, including some more recent propositions, so that the reader knows where to start looking
for further information, as well as what can or cannot be done with dtwclust.

Choosing a specific clustering algorithm for a given application is not an easy task. There are
many factors to take into account and it is not possible to know a priori which one will yield the best
results. The included implementations try to use the native (and heavily optimized) R functions as
much as possible, relying on compiled code where needed, so we hope that, if time-series clustering
is required, dtwclust can serve as a starting point.
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mixedsde: A Package to Fit Mixed
Stochastic Differential Equations
by Charlotte Dion, Simone Hermann, Adeline Samson

Abstract Stochastic differential equations (SDEs) are useful to model continuous stochastic
processes. When (independent) repeated temporal data are available, variability between the
trajectories can be modeled by introducing random effects in the drift of the SDEs. These models
are useful to analyze neuronal data, crack length data, pharmacokinetics, financial data, to cite some
applications among other. The R package focuses on the estimation of SDEs with linear random
effects in the drift. The goal is to estimate the common density of the random effects from repeated
discrete observations of the SDE. The package mixedsde proposes three estimation methods: a
Bayesian parametric, a frequentist parametric and a frequentist nonparametric method. The three
procedures are described as well as the main functions of the package. Illustrations are presented on
simulated and real data.

Introduction

Continuous stochastic processes are usually observed discretely in time (with equidistant time points
or not) leading to times series, although their intrinsic nature is of continuous time. While discrete
time stochastic models such as auto-regressive models (ARMA, GARCH, ...) have been widely
developed for time series with equidistant times, more and more attention have been focused on
Stochastic Differential Equations (SDEs). Examples of applications where SDEs have been used
include dynamics of thermal systems (Bacher and Madsen, 2011), solar and wind power forecasting
(Iversen et al., 2014), neuronal dynamics (Ditlevsen and Samson, 2014), pharmacokinetic/pharma-
codynamic (PK/PD) (Hansen et al., 2014), crack growth (Hermann et al., 2016). Estimation for
SDE is available in different softwares. We can cite among others the computer software CTSM
with a (extended) Kalman filter approach (Kristensen and Madsen, 2003), the sde package which
proposes several tools for the simulation and the estimation of a variety of SDEs, and more recently
the R-packages Sim.DiffProc (Guidoum and Boukhetala, 2017) and yuima (Iacus, 2018) (the last
one proposes also some tools for quantitative finance).

Depending on the applications, independent repeated temporal measures might be available.
For examples, drug concentration of several subjects is usually observed in PK; dynamics of several
neurons is measured along time; time to crack lengths can be measured repeatedly in crack growth
study. Each trajectory represents the behavior of a unit/subject. The functional form is similar
for all the trajectories. Fitting the overall data simultaneously obviously improves the quality of
estimation, but one has to take into account these variabilities between experiments. This is the
typical framework of mixed-effects models where some parameters are considered as random variables
(random effects) and proper to each trajectory. Hence the random effects represent the particularity
of each subject. Some parameters can also be considered as common to all the trajectories (fixed
effects).

In this work the model of interest is thus a mixed-effects stochastic differential equation (MSDE),
mixed-effects for both fixed and random effects. Themixedsde package has been developed to estimate
the density of the random effects from the discrete observations of M independent trajectories of a
MSDE. It is available from the Comprehensive R Archive Network (CRAN Dion et al., 2016). The
package’s development is actively continued with the latest source code available from a GitHub
repository https://github.com/charlottedion/mixedsde.

More precisely, we focus on MSDE with linear drift. We consider M diffusion processes
pXjptq, t ě 0q, j “ 1, . . . ,M with dynamics ruled by SDE, for t P r0,T s

#

dXjptq “ pαj ´ βjXjptqqdt` σapXjptqqdWjptq

Xjp0q “ xj
(1)

where pWjq1...j...M are M independent Wiener processes, pαj ,βjq are two (random) parameters,
σapXjp¨qq is the diffusion coefficient with a a known function and σ an unknown constant. The
initial condition xj is assumed fixed (and known) in the paper with possibly different values for each
trajectory.

In the package, we restrict the models to the two famous SDEs with linear drift, namely the
Ornstein-Uhlenbeck model (OU) with apxq “ 1 and the Cox-Ingersoll-Ross model (CIR) with
apxq “

?
x. For the CIR model, we assume that xj ą 0, σ ą 0, αj ą σ2

{2 and βj ą 0 to ensure
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that the process never crosses zero.
The random parameters are denoted φj and belong to Rd with either d “ 1 or d “ 2:

• (d “ 1) φj “ αj random and for all j “ 1, . . . ,M , βj “ β fixed,
• (d “ 1) φj “ βj random and for all j “ 1, . . . ,M , αj “ α fixed,
• (d “ 2) φj “ pαj ,βjq random.

The φj ’s are assumed independent and identically distributed (i.i.d.) and independent of the Wj ’s.
The mixedsde package aims at estimating the random effects φj and their distribution whose density

is denoted f , from N discrete observations of theM trajectories pXjptqqj from Equation 1 at discrete
times t0 “ 0 ă t1 ă . . . ă tN “ T (not necessarily equidistant).

Context: To the best of our knowledge, this is the first package in R language dedicated to the
estimation of MSDE. The main software considering mixed models is MONOLIX (2003) but methods
for mixed stochastic differential equations are not implemented for R. One package named PSM
(Mortensen and Klim, 2013) provides functions for estimation of linear and non-linear mixed-effects
models using stochastic differential equations. But the model includes measurement noise and
proposes only parameter estimation. Moreover, there is no mathematical property about the used
estimators. In this context, the package presented is this paper is pioneer.

Estimation procedures for MSDE have been proposed in the non-parametric and the para-
metric frameworks, with a frequentist and a Bayesian point of view. The parametric approaches
assume Gaussian random effects φj . Among other references, for parametric maximum likelihood
estimation, we can cite Ditlevsen and de Gaetano (2005); Picchini et al. (2010) (Hermite expan-
sion of the likelihood); Delattre et al. (2013) (explicit integration of the Girsanov likelihood) or
Delattre et al. (2016) (mixture of Gaussian distributions for the random effects); for parametric
Bayesian estimation, we can cite Oravecz et al. (2009) (restricted to Ornstein-Uhlenbeck) and
Hermann et al. (2016) (general methodology); for non-parametric estimation, we can cite Comte et al.
(2013); Dion (2014); Dion and Genon-Catalot (2015) (kernel estimator and deconvolution estimators).

Three estimation procedures are implemented in the mixedsde package: a kernel nonparametric
estimator (Dion and Genon-Catalot, 2015), a parametric maximum likelihood estimator (Delattre
et al., 2013) and a parametric Bayesian estimator (Hermann et al., 2016). The parametric frequentist
and Bayesian approaches assume the random effects Gaussian. The Bayesian approach seems the
most appropriate method for a small time of observation T and a small number of trajectories M .
The nonparametric approach can be used when no prior idea on the density is available and when T
and M are both large enough. Finally, the parametric frequentist estimation can be used with a
large number of discrete observations.

This paper reviews in Section 8.2 the three estimation methods. An overview of the mixedsde
package is given in Section 8.3 through a description of the main functions and of other related
companion functions. The practical use of this package is illustrated in Section 8.4 on simulated
data and in Section 8.5 on one real dataset in neuronal modeling.

Density estimation in mixed stochastic differential models

We briefly recall the methodology of the three estimators implemented in the mixedsde package.
We start with the nonparametric approach, then the frequentist parametric Gaussian method and
finally the Bayesian parametric Gaussian method.

Nonparametric estimation of the random effects density

The first step of the nonparametric approach is to estimate the random effects. The idea is to
maximize the likelihood of the process Xϕ

j solution of the stochastic differential equation with fixed
ϕ. Assuming continuous observations of pXjptq, 0 ď t ď T q, the likelihood function is obtained with
the Girsanov formula:

`T pϕq “ exp
˜

ż T

0

α´ βXϕ
j psq

σ2a2pXϕ
j psqq

dXjpsq ´
1
2

ż T

0

pα´ βXϕ
j psqq

2

σ2a2pXϕ
j psqq

ds

¸

.
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Maximizing the likelihood yields to the following estimator of φj

Aj :“ V ´1
j Uj (2)

where Uj and Vj are the two sufficient statistics of the model. They are explicit depending on the
form of the random effects:

• αj random and β known

Uj :“
ż T

0

1
σ2a2pXjpsqq

dXjpsq ` β

ż T

0

Xjpsq

σ2a2pXjpsqq
ds, Vj :“

ż T

0

1
σ2a2pXjpsqq

ds,

• βj random and α known

Uj :“ ´
ż T

0

Xjpsq

σ2a2pXjpsqq
dXjpsq ` α

ż T

0

Xjpsq

σ2a2pXjpsqq
ds, Vj :“

ż T

0

Xjpsq
2

σ2a2pXjpsqq
ds,

• pαj ,βjq random, denote bpxq “ p1,´xqt with ut the transposition of vector u. Here Uj is a
column vector with size 2ˆ 1 and Vj “ pVj,k,`qk,`Pt1,2u a 2ˆ 2 symmetric matrix:

Uj :“
ż T

0

b

σ2a2 pXjpsqqdXjpsq, Vj :“
ż T

0

b bt

σ2a2 pXjpsqqds. (3)

Truncated versions of this estimator have been introduced for theoretical reasons. In the bidi-
mensional case φj “ pαj ,βjq, Dion and Genon-Catalot (2015) propose the following estimator

xAj :“ Aj1Bj , Bj :“ tVj ě κ
?
TI2u “ tminpλ1,j ,λ2,jq ě κ

?
T u (4)

with I2 the 2ˆ 2 identity matrix and λi,j , i “ 1, 2 the two eigenvalues of the symmetric non negative
matrix Vj , and κ a numerical constant that has been calibrated (Dion and Genon-Catalot, 2015). In
the one-dimensional case φj “ βj with α “ 0, Genon-Catalot and Larédo (2016) propose

xAj :“ Aj1Vjěκ
?
T (5)

with κ a numerical constant calibrated in practice. Based on these estimators of the φj ’s, we can
proceed to the second step, the estimation of their density f . Several nonparametric estimators of f
have been proposed (see Comte et al., 2013, for example). In the package mixedsde, we focus on the
kernel estimator of f . Let us introduce the kernel function K : Rd

Ñ R, with d “ 1, 2 depending on
the dimension of φj . We assume K to be a C2 function satisfying

ż

Kpuqdu “ 1, }K}2 “

ż

K2
puqdu ă `8,

ż

p∇Kpuqq2du ă `8

(with ∇K the gradient of K). A bandwidth h P pR`qd, for d “ 1, 2, is used to define the function

Khpxq “
1
h
K

´x

h

¯

,x P R
d.

Note that in the bidimensional case, h “ ph1,h2q and the two marginal bandwidths are different.
The nonparametric estimator of the density f of φj is

xfhpxq “
1
M

M
ÿ

j“1
Khpx´Ajq. (6)

and the estimator x

xfhpxq “
1
M

M
ÿ

j“1
Khpx´ pAjq is computed when the truncated estimator Âj is

different than Aj .
In the mixedsde package, Gaussian kernel estimators are implemented with the R -functions

density (available in package stats) when d “ 1 and kde2d (available in package MASS Venables
and Ripley (2016)) when d “ 2 with an automatic selection of the bandwidth h. Note that when
there is only one random effect, the bandwidth is selected by unbiased cross-validation with the
argument bw="ucv", or as the default value given by the rule-of-thumb if the chosen bandwidth is
too small. Note that the estimator is unstable for small variance of the random effects.

It is important to notice that the two random effects are not assumed independent. When there
is only one random effect, the fixed parameter has to be entered by the user.

The computation of Aj “ V ´1
j Uj does not require the knowledge of σ2 as it appears both in Uj
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and Vj . It requires however the evaluation of the two continuous integrals in Uj and Vj while observing
the trajectories pXjq at discrete times pt0, t1, . . . , tN q. For ∆k “ tk`1 ´ tk, k “ 0, . . . ,N ´ 1, the
non-stochastic integrals

şT
0 gpXjpsqqds for the functions g “ b

a2 or g “ b bt

a2 are approximated by

ż T

0
gpXjpsqqds «

N´1
ÿ

k“0
gpXjptkqq∆k.

For the stochastic integrals, we use the following simple discretization
ż T

0
gpXjpsqqdXjpsq «

N´1
ÿ

k“0
gpXjptkqqpXjptk`1q ´ pXjptkqqq∆k.

Note that there is no integrability issue for these two types of integrals considering the two functions
g “ b

a2 or g “ b bt

a2 involved in the sufficient statistics.

Frequentist parametric estimation approach

In this section and the following one, we assume that the random parameters φj are Gaussian:

• when d “ 1, φj „ N pµ,ω2
q with µ P R,

• when d “ 2, φj „ N pµ, Ωq with µ P R2 and a diagonal covariance matrix Ω “ diagpω2
1 ,ω2

2q.

For the bidimensional case d “ 2 we estimate by maximum likelihood the parameters θ :“ pµ, Ωq.
We define the likelihood function assuming first that the trajectories are continuously observed,
similarly to the nonparametric approach (Section 8.2.1). Thanks to the Girsanov formula, the
likelihood function of the jth trajectory Xj is

LpXj , θq “
1

a

detpI2 `ΩVjq
exp

„

´
1
2 pµ´ V

´1
j Ujq

1R´1
j pµ´ V ´1

j Ujq



exp
ˆ

1
2U

1
jV
´1
j Uj

˙

with R´1
j “ pI2 ` VjΩq´1Vj and I2 is the 2ˆ 2 identity matrix.

For the case d “ 1, the parameters to estimate are θ :“ pµ,ω,ψq where ψ denotes the fixed effect
α or β. We adopt the subscript r for the value of random, equal to 1 or 2, and c for the position of
the common fixed effect (thus 2 or 1). The likelihood function of the jth trajectory Xj is

LpXj , θq “
1

b

1` ω2Vj,r,r
exp

„

´
1
2Vj,r,rp1` ω2Vj,r,rq

´1
pµ´ V ´1

j,r,rpUj,r ´ψVj,c,rqq
2


ˆ exp
ˆ

ψUj,c ´
ψ2

2 Vj,c,c

˙

exp
ˆ

1
2 pUj,r ´ψVj,r,cq

2V ´1
j,r,r

˙

with the notations U , V from Equation 3. Details on this formula are available in the Appendix 8.6.
The likelihood function is defined as Lpθq “

śM
j“1 LpXj , θq. The maximum likelihood estimator

pθ :“ ppµ, pΩ, pψq when d “ 1 and pθ :“ ppµ, pΩq when d “ 2 is defined by

pθ “ arg max
θ

Lpθq “ arg max
θ

M
ź

j“1
LpXj , θq. (7)

This estimator is not explicit. In the mixedsde package, the function optim is used to maximize
numerically the likelihood. The maximum is generally not unique and depend on the initialization.
A good initialization is another estimator, for example the moment estimator of θ. Function optim
is thus initialized with the mean and the variance of the estimators Aj of the random parameters
(see Equation 2). Sufficient statistics Uj and Vj are discretized as explained in Section 8.2.1.

Note that this parametric approach requires the knowledge of σ2 to compute the sufficient
statistics Uj and Vj because Vj appears alone in Rj . We plug the following estimator of σ2

xσ2 “
1
M

M
ÿ

j“1

˜

1
N

N´1
ÿ

k“0

pXjptk`1q ´Xjptkqq
2

∆ka2pXjptkqq

¸

. (8)

Selection of (non-nested) models can be performed with the BIC criteria, defined by ´2 logLppθq`
2 logpMq for model with one random effect and ´2 logLppθq ` 4 logpMq with two random effects and
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the AIC criteria defined by ´2 logLppθq ` 2 for one random effect and ´2 logLppθq ` 4 for two random
effects. These asymptotic criteria indicate the trade-off between maximizing fit and minimizing
model complexity. Note that their theoretical properties are guaranteed only when σ2 is known.

Theoretical results are obtained on these estimators in the continuous observations context
under the asymptotic regime T Ñ8, N Ñ8, see (Dion and Genon-Catalot, 2015; Delattre et al.,
2013). For discrete observations, similar results are obtained in the high frequency context: T “ n∆,
nÑ8 (∆ Ñ 0). Nevertheless, in practice the points may not be equidistant and the package allows
a non-regular grid. The influence of T is lighter in the parametric strategy. Moreover, asymptotic
normality is obtained under the additional assumption n{N Ñ8.

Bayesian parametric approach

For the Bayesian approach we assume similarly to the frequentist parametric estimation method a
Gaussian distribution for φj , with a diagonal covariance matrix Ω “ diagpω2

1 ,ω2
2q. In this method,

we estimate in the same time the diffusion coefficient σ. The parameters of interest are thus
θ “ pµ, Ω,σq and we want to estimate their posterior distribution ppθ|pXjptkqqj“1,...,M ,k“1,...,N q.
Let denote X1:M “ pXjptkqqj“1,...,M ,k“1,...,N in the following.

We now introduce prior distributions implemented in mixedsde package for the parameters θ:

µ „ N pm,V q, V “ diagpvq

ω2
i „ IGpαω,i,βω,iq, i “ 1, 2

σ2
„ IGpασ,βσq,

where IG is the Inverse Gamma distribution which is conjugate to the normal likelihood and
m,V ,αω,i, βω,i,ασ,βσ are hyperparameters fixed by the user. The case of only one random effect
is nested by setting ω2

1 or ω2
2 equal to zero.

The aim is to calculate the posterior distribution ppθ|X1:M q which is not explicit for the whole
vector of parameters. Therefore, we simulate it through a Gibbs sampler (see e.g., Robert and Casella,
2004). Here, we have a true transition density of both processes that is used for the likelihood, see
Iacus (2008). For a general hierarchical diffusion approach based on the Euler approximation, see
Hermann et al. (2016).

Analogically to the frequentist approach, there is a first step: sample from the full conditional
posterior of the random effects ppφj |pXjptkqqk“1,...,N , θq, j “ 1, . . . ,M . This is done by a Metropolis
Hastings (MH) algorithm.

The second step is the estimation of the hierarchical parameters µ and Ω. Full conditional
posteriors ppµ|φ1, . . . ,φM , Ωq (resp. ppΩ|φ1, . . . ,φM ,µq) are Gaussian (resp. inverse Gamma) and
can, for example, be found in Hermann et al. (2016).

The last step of the Gibbs sampler is sampling from the full conditional posterior of σ2. For the
CIR model, this is also conducted by a MH step. For the OU model, the inverse Gamma distribution
is conjugate to the normal likelihood. The full conditional posterior distribution is given by

σ2
|X1:M ,φ1, ...,φM „

IG

¨

˝ασ `
MN

2 ,βσ `
1
2

M
ÿ

j“1

N
ÿ

k“1

βj

1´ e´2βj∆k

ˆ

Xjptkq ´
αj
βj
´

ˆ

Xjptk´1q ´
αj
βj

˙

e´βj∆k
˙2

˛

‚.

In the case of one random effect, there is one additional Gibbs sampler step for the fixed effect,
that is also conducted through a MH algorithm.

In the package, the starting values for the Gibbs sampler are set equal to the mean of the
prior distributions. In all the MH algorithms, one each has to choose a proposal density. In the
package mixedsde, we use a normal density for all location parameters with mean equal to the last
chain iteration and a proposal variance that has to be chosen. For the CIR model, the proposal
distribution for σ2 is chosen by

?
σ2 „ N p

b

σ2prev, varianceq where σ2
prev is the previous value of

σ2. The remaining question is how to choose the suitable proposal variance. This variance controls
the chain dependence and the acceptance rate. If the variance is small, the acceptance rate is
large and the chains gets very dependent. If the proposal variance is large, only few candidates are
accepted with the advantage of weakly dependent chains. This problem is solved in the package with
an adaptive Metropolis-within Gibbs algorithm (Rosenthal, 2011) using the proposal distribution
N p0, e2l

q with l the logarithm of the standard deviation of the increment. This parameter is

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859



Contributed Research Articles 49

chosen so that the acceptance rate is approximately 0.44 which is proposed to be optimal in the
Metropolis-within Gibbs sampler (Rosenthal, 2011). It is proposed to add/subtract an adoption
amount δpnq “ minp0.1,n´1{2

q to/from t after every 50th iteration and adapt the proposal variance
if the acceptance rate is smaller than 0.3 or larger than 0.6.

Predictions

In many cases, one is not only interested in parameter estimation but also in the prediction for
future observations. The first step is the prediction of a future random effect φpred. The simulation
of a new random effect is direct for the frequentist parametric approach sampling from N ppµ, pΩq. For
the nonparametric approach, first note that pfh is an estimator given on a discrete grid tx1, . . . ,xnu,
i.e. a vector of corresponding tp1, . . . , pnu after normalisation. Simulating from the estimator pfh
can therefore be performed simulating a discrete variable from vector tx1, . . . ,xnu with (normalized)
probabilities tp1, . . . , pnu. For the Bayesian approach, a new φpred is sampled from the predictive
distribution ppφpred|X1:M q “

ş

ppφpred|µ, Ωqppµ, Ω|X1:M q dpµ, Ωq where the posterior of µ and Ω
is approximated by the results of the Gibbs sampler. This distribution is not explicit, and hence we
suggest to sample over a grid through inversion method, equal to the nonparametric case.

Given a new random effect φpred, we are able to simulate predictive trajectories. This is performed
using the transition density ppXptkq|Xptk´1q,φpred,σ2

q for the frequentist approach. The starting
points of the process xj are the observed ones. For the Bayesian approach, we implement two
prediction settings. Firstly, analogously to the frequentist approach a new trajectory is simulated
using the transition density ppXptkq|Xptk´1q,φpred,σ2

q where φpred is sampled from the MCMC
(Markov chain Monte Carlo) posterior distribution ppφ|X1:M q. Secondly, we can calculate the
predictive distribution

ppXptiq|X1:M q “

ż

ppXptiq|φpred,σ2
qppφpred,σ2

|X1:M q dpφpred,σ2
q

in each time point. We can then calculate only the quantiles for a prediction interval or to draw
directly samples from the predictive distribution. For this predictive distribution, we take the
starting point xj “ x0 to be the same for all series. If the starting points would vary, this is
an additional random effect whose density has to be estimated. This is not implemented in the
estimation procedure and will, therefore, left out for the prediction.

It is then interesting to compare the new trajectories with the real ones. If the number of new
trajectories is large enough we compute an empirical confidence interval.

Overview of the mixedsde functions

This Section presents an overview of the functions implemented in the package. Illustrations of the
code are given in Section 8.4.

Data

Data is a matrix X of size M ˆN for M trajectories with N time points. The time points are not
necessarily equidistant but are the same for the M trajectories. These time points are gathered in
the vector times of length N . Real datasets are available on the package, and detailed on Section
8.5.

To lead a simulation study, the function mixedsde.sim allows to generate a list with a M ˆN
matrix X of M trajectories on the interval r0,T s with N equidistant points (default value 100) and
a vector times with the equidistant times. This function leans on function sde.sim available via
package sde (Iacus, 2006) to simulate SDE. One has to choose: model either OU or CIR; random
that fixes the position and the number of random effects: random = 1 for αj random, random = 2
for βj random or random = c(1,2) for αj and βj random; σ the diffusion coefficient; invariant,
default value 0 means that X0 is 0 (default) or fixed by the user, value 1 means that X0 is generated
from the invariant distribution (see details in the package documentation); density.phi to choose
the distribution of the random effect (see package documentations).

Main function

Main function is mixedsde.fit producing estimation of the random effects and their common density.
Inputs of mixedsde.fit are
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Class Freq.fit Bayes.fit

Method out out

Method plot plot

Method – plot2compare

Method print print

Method summary summary

Method pred pred

Method valid valid

Table 1: Summary of the different methods for the two S4-classes Freq.fit and Bayes.fit
resulting of the package mixedsde.

• X a M ˆN matrix containing the trajectories by rows.
• times The vector of observations times.
• model The chosen model either OU or CIR.
• random It fixes the position and the number of random effects: random = 1 for αj random,

random = 2 for βj random or random = c(1,2) for αj and βj random.
• estim.method The estimation method: nonparam (see Section 8.2.1), paramML (see Section

8.2.2) or paramBayes (see Section 8.2.3).
• fixed The value of the fixed effect β (resp. α) when random = 1 (resp. random = 2), default

0. (Only for the frequentist approaches).
• estim.fix 1 if the fixed effect is estimated, default 0. (Only for the frequentist parametric

approach when random=1 or 2).
• gridf The x-axis grid on which the random effect distribution is computed: we recommend

a fine grid with at least 200 points, default value is a sequence of length 500 starting in
0.8ˆminj pφj and ending in 1.2ˆmaxj pφj . (Only for the frequentist approaches).

• prior The list of prior parameters m,v,alpha.omega,beta.omega,alpha.sigma,
beta.sigma for paramBayes method: Default values are calculated based on the estimations
pAjqj for the first minp3, rM ¨ 0.1sq series and main estimation is only made with the remaining
tM ¨ 0.9u. (Only for the Bayesian approach).

• nMCMC The length of the Markov chain for paramBayes method. (Only for the Bayesian
approach).

Note that for the frequentist approach if there is only one random effect, then the user has the
choice: fix it to a value of the user choice (using: fixed= the value and estim.fix=0) or estimate
it through the package (choosing estim.fix=1. In the following we describe the related methods,
proposed in the package, they are summarized in Table 1.

Outputs

Output of mixedsde.fit is a S4 class called Freq.fit for the frequentist approaches and Bayes.fit
for the Bayesian approach. Results of the estimation procedure are available as a list applying
function out to the Freq.fit (resp. Bayes.fit) object.
Elements of Freq.fit are:

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859



Contributed Research Articles 51

• sigma2 Estimator xσ2 given in Equation 8 of the diffusion coefficient.
• estimphi Estimator pAjqj given in Equation 2 of the random effects.

• estimphi.trunc The truncated estimator pxAjqj given in Equation 4 or 5 of the random effects.
• estim.fixed The estimator of the fixed effect if random = 1 or 2, estim.method = paramML;

estim.fix = 1, default 0.
• gridf The x-axis grid on which the random effect distribution is computed.
• estimf The estimator of the density of the random effects (for both paramML method with

Equation 7 and nonparam method with Equation 6).
• cutoff Binary M -vector of binary values indicating the truncated trajectories, default FALSE

when no truncation.
• estimf.trunc The truncated estimation of the density of the random effects.
• mu Estimation of Gaussian mean of the random effects (only for paramML method from Equation

7).
• omega Estimation of Gaussian variance matrix of the random effects (only for paramML method

method from Equation 7).
• aic and bic AIC and BIC criteria (only for paramML method).
• index Indices of trajectories used for the estimation, excluded are trajectories with Vj “ 0 or

Vj “ `8 (one random effect) or detV “ `8 (two random effects), trajectories containing
negative values for CIR model.

Elements of Bayes.fit are:

• sigma2 Trace of the Markov chain simulated from the posterior of σ2.
• mu Trace of the Markov chain simulated from the posterior of µ .
• omega Trace of the Markov chain simulated from the posterior of ω2.
• alpha Trace of the Markov chain simulated from the posterior of αj , nMCMCˆM matrix if α is

random effect, nMCMCˆ1 otherwise.
• beta Trace of the Markov chain simulated from the posterior of βj , nMCMCˆM matrix if β is

random effect, nMCMCˆ1 otherwise.
• burnIn A proposal for the burn-in phase.
• thinning A proposal for the thin rate.
• ind.4.prior The indices used for the prior parameter calculation, M ` 1 if prior parameters

were specified.

Outputs burnIn and thinning are only proposals for a burn-in phase and a thin rate. The proposed
burnIn is calculated by dividing the Markov chains into 10 blocks and calculate the 95% credibility
intervals and the respective mean. Starting in the first one, the block is taken as burn-in as long as
the mean of the current block is not in the credibility interval of the following block or vice versa.
The thinning rate is proposed by the first lag which leads to a chain autocorrelation of less than
80%. It is not easy to automate these choices, so it is highly recommended by the authors to plot
the chains and look at the mixing property (the chain should not be piecewise constant).

Command plot() applied to a Freq.fit object produces a frequencies histogram of pAjpT qqj (one
or two according to the number of random effects) with the estimated density (red curve) and the
truncated estimator if available (dotted grey red curve) and a quantile-quantile graph with the
quantiles of the Aj ’s versus the quantiles of a normal sample of the same length, with the same
empirical mean and standard deviation. This illustrates the normality of the sample. Applying
this function to the nonparametric results indicates if the Gaussian assumption of the parametric
approach is appropriate. When plot() is applied to a Bayes.fit object, one can choose four
different options, named style. The default value is chains, it plots the Markov chains for the
different parameter values. acf leads to the corresponding autocorrelation functions, density to
the approximated densities for each parameter and cred.int leads to the credibility intervals of
the random parameters with the input parameter level with default 0.05. For all options, with
the input parameter reduced = TRUE, the burn-in period is excluded and a thinning rate is taken,
default is FALSE. There is also a possibility to include the prior means in the plots by lines with
plot.priorMean = TRUE, default is FALSE.

In the Bayesian estimation the influence of prior parameters is interesting, thus for the Bayes.fit
object, there is a second plot method, named plot2compare where three estimation objects can
be compared. For reasons of clarity, only the densities are compared, with the default reduced =
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TRUE. Here, there is also a possibility to include true.values, a list of the true parameters for the
comparison in a simulation example.

Command summary() applied to a Freq.fit object computes the kurtosis and the skewness
of the distribution, xσ2, the empirical mean and standard deviation computed from the estimators
pAjqj , pµ, pΩ (and the fixed effect pα or pβ), AIC, BIC criteria for the frequentist MLE method. When
applied to a Bayes.fit object, it computes means and credibility interval (default level 95%) for
each parameter (µ, Ω,σ,α,β). Here, there is also a possibility to choose the burn-in and the thinning
rate manually by the input parameters burnIn and thinning.

Command print() applied to a Freq.fit object returns the use or not of the cutoff and the
vector of excluded trajectories. When applied to a Bayes.fit object, it returns the acceptance rates
of the MCMC procedure.

Validation methods

Validation of a mixed model, obtained with function valid, is an individual validation. Indeed,
the validation of estimation of trajectory number j is obtained comparing it to M new trajectories
simulated with parameters pα,βq fixed to the estimator Aj (or pAj) in the frequentist approaches
and to the posterior means in the Bayesian approach. Inputs of the function are

• Freq.fit or Bayes.fit object.
• plot.valid 1 to generate a figure (default value is 1).
• numj A specific individual trajectory to validate (default: randomly chosen between 1 and M).
• Mrep The number of simulated trajectories (default value 100).

Each observation Xnumjptkq is compared with the Mrep simulated values pX1
numjptkq, . . . ,X

Mrep
numj ptkqq,

for k “ 1, . . . ,N .
Outputs are the list of the pX1

numjptkq, . . . ,X
Mrep
numj ptkqq. If plot.valid=1, two plots are produced.

Left: plot of the Mrep new trajectories (black) and the true trajectory number numj (in grey/red).
Right: quantile-quantile plot of the quantiles of a uniform distribution and the N quantiles obtained
comparing Xnumjptkq with the Mrep simulated values pX1

numjptkq, . . . ,X
Mrep
numj ptkqq, for k “ 1, . . . ,N .

This is an empirical method. The recent work Kuelbs and Zinn (2015) on depth and quantile
regions for stochastic processes (see for example Zuo and Serfling (2000) for depth functions
definitions) should provide the theoretical context for a more extensive study. This could be done in
further works.

Prediction methods

Prediction (see Section 8.2.4) is implemented in function pred. Main inputs of the function are

• Freq.fit or Bayes.fit object.
• invariant TRUE if the new trajectories are simulated according to the invariant distribution.
• level The level of the empiric prediction intervals (default 0.05).
• plot.pred TRUE to generate a figure (default TRUE).

(and optional plot parameters). Function pred applied to a Freq.fit object returns a list with
predicted random effects phipred, predicted trajectories Xpred and indexes of the corresponding true
trajectories indexpred (see Section 8.2.4 for details of simulation). If plot.pred = TRUE (default)
three plots are produced. Left predicted random effects versus estimated random effects. Middle:
true trajectories. Right predicted trajectories and their empirical 95% prediction intervals (default
value level=0.05). The prediction can also be done from the truncated estimator yp hf based on the
pAj given by Equation 5, if the argument pred.trunc = 1.

Function pred applied to a Bayes.fit object returns a S4 class object Bayes.pred. The first ele-
ment of this class is Xpred, which depends on the input parameters. Including the input trajectories
= TRUE, matrix Xpred contains the M drawn trajectories by rows (see first method described for
the Bayesian approach in Section 8.2.4). Default is trajectories = FALSE which leads to the
calculation of the predictive distribution explained in Section 8.2.4. With the input only.interval
= TRUE (default), only the quantiles for the 1- level prediction interval are calculated, stored in qu.l
and qu.u. Input only.interval = FALSE provides additionally Xpred containing sample.length
(default 500) samples from the predictive distribution in each time point of the observations (except
the first). In both cases, with plot.pred = TRUE, two figures are produced. On the left side, the
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data trajectories are compared with the prediction intervals and on the right side, the coverage
rate is depicted which is stored in entry coverage.rate, namely the amount of series covered by
the prediction intervals for each time point. The last class entry estim stores the results from the
Bayes.fit object in a list. Other input parameters are burnIn and thinning which allow for the
choice of other burn-in phase and thinning rate than proposed in the Bayes.fit object.

For the Bayes.pred class object, two plot methods are available. plot() repeats the figures that
are created with the plot.pred = TRUE command in the pred method. plot2compare() compares
up to three Bayes.pred objects, where in a first figure the prediction intervals are presented in colors
black, red and green and the observed data series in grey and in a second figure the corresponding
coverage rates are compared. With the input parameter names a vector of characters to be written
in a legend can be indicated.

Note that to avoid over-fitting, we recommend to use only 2{3 of the data for the estimation of
the density f and the last third for the prediction.

Package mixedsde through simulated examples

In this part two simulated examples are given to illustrate the strengths of each proposed method.
Two datasets are simulated according to:

1. CIR model with one non-Gaussian random effect βj „ Γp1.8, 0.8q, αj “ 1, T “ 50, M “ 200,
N “ 1000:

R> model1 <- "CIR"; random1 <- 2; fixed1 <- 1; sigma1 <- 0.1 ; M1 <- 200;
R> T1 <- 50; N1 <- 1000; X01 <- 1; density.phi1 <- "gamma";
+ param1 <- c(1.8,0.8);

R> simu1 <- mixedsde.sim(M = M1, T = T1, N = N1, model = model1,
+ random =random1, fixed = fixed1, density.phi = density.phi1,
+ param = param1, sigma = sigma1, X0 = X01)
R> X1<- simu1$X; phi1 <- simu1$phi; times1 <-simu1$times

2. OU model with one Gaussian random effect αj „ N p3, 0.52
q, βj “ 5, T “ 1, M “ 50,

N “ 500:

R> model2 <- "OU"; random2 <- 1; sigma2 <- 0.1; fixed2 <- 5; M2 <- 50;
+ T2 <- 1;N2 <- 500; X02 <- 0; density.phi2 <- "normal";
+ param2 <- c(3, 0.5);
R> simu2 <- mixedsde.sim(M = M2, T = T2, N = N2, model = model2,
+ random = random2, fixed = fixed2, density.phi = density.phi2,
+ param = param2, sigma = sigma2, X0 = X02)
R> X2 <- simu2$X; phi2 <- simu2$phi; times2 <- simu2$times

Example 1 has non Gaussian random effect, the nonparametric method is the most appropriate
approach. Example 2 has T small and Gaussian random effect, nonparametric method is therefore
not the most appropriate approach. Parametric methods should performed better than the non-
parametric one as the number of trajectories M2 “ 50 is not large (and only 2/3 are used for
the estimation of f). A small number of trajectories is especially a good framework to apply the
Bayesian estimation method.

Frequentist nonparametric estimation

We illustrate nonparametric estimation on Example 1. Code for the nonparametric estimation is

R> estim.method <- 'nonparam'
R> estim_nonparam <- mixedsde.fit(times = times1, X = X1, model = model1,
+ random = random1, fixed = fixed1, estim.method = estim.method)
R> outputsNP <- out(estim_nonparam) # stores the results in a list

Summary function provides:

R> summary(estim_nonparam)
[,1] [,2]

[1,] "sigma" "0.099868"
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Density of the random effect
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Figure 1: Simulated example 1 (CIR with one Gamma random effect), nonparametric estimation.
Left: histogram of estimated random effects pAjq and nonparametric estimation of f .
Right: qqplot of pAjq versus a Normal sample (true distribution is Gamma).

Random effect:
[,1]

empiric mean 1.355403
empiric sd 0.939410
kurtosis 3.695013
skewness 1.083577

As expected kurtosis is larger than 3 and skewness is positive which means that the distribution is
right-tail. Figure 1 is provided by

R> plot(estim_nonparam)

Nonparametric estimation fits well the histogram of pAjq (left plot) and we see that the random
effects are non-Gaussian (right plot). Because we are working on simulated data, we can compare
the estimations with the true random effects and the true f :

# Comparison of the true f and its estimation
R> gridf1 <- outputsNP$gridf
# True density function
R> f1 <- dgamma(gridf1, shape = param1[1], scale = param1[2])
# Nonparametric estimated density function
R> fhat <- outputsNP$estimf
R> plot(gridf1, f1, type='l', lwd=2, xlab='', ylab='')
R> lines(gridf1, fhat, col='red')
# Comparison of the true random effects and their estimations
# Estimated random effects
R> phihat1 <- outputsNP$estimphi
R> plot(phi1, phihat1, type = "p", pch = 18, xlab='', ylab='')
R> abline(0, 1)

This results in Figure 2. On the left plot, the estimated density (dotted curve) is very close to
the true density f (plain line). The right plot shows that Aj is a good estimation of φj . This
confirms that the nonparametric approach performs well for this settings. Validation of the MSDE
is produced by function valid. The two graphs on the right of Figure 5 are obtained by

R> validationCIR <- valid(estim_nonparam)

Prediction are obtained with pred and similar Figure 6 (not shown) can be obtained with

R> predNPCIR <- pred(estim_nonparam)

Frequentist parametric estimation

We present the parametric estimation on Example 2. The code is

# Parametric estimation
R> estim.method<-'paramML';
R> estim_param <- mixedsde.fit(times2, X = X2, model = model2,
+ random = random2, estim.fix = 1, estim.method = 'paramML' )
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Figure 2: Simulated example 1 (CIR with one Gamma random effect), nonparametric estimation,
comparison to the truth. Left: estimation pf (dotted line) and true density f (plain
line). Right: Estimated random effects Aj versus true random effects φj .

# Store the results in a list:
R> outputsP <- out(estim_param)

Summary function provides:

R> summary(estim_param)
[,1] [,2]

[1,] "sigma" "0.109144"

Random and fixed effects:
[,1]

estim.fixed 4.914685
empiric mean 2.955582
MLE mean 2.955512
empiric sd 0.536956
MLE sd 0.519955
kurtosis 2.472399
skewness 0.427223

[,1] [,2]
[1,] "BIC" "-3780.383134"
[2,] "AIC" "-3795.335809"

Kurtosis is, as expected, close to 3 and skewness close to 0. The diffusion parameter σ is well
estimated (true value 0.1). The fixed effect is also well estimated (true value 5). Empirical mean
and standard deviations are very close to MLE (estimator of the mean is the same in that case) and
close to the real ones (3, 0.5). Then, Figure 3 (left and right) is provided by

R> plot(estim_param)

The small number of observations makes the estimation harder, nevertheless here, the histogram
seems pretty well fitted by the parametrically estimated density. Because we are working on simulated
data, we can compare the estimations with the true random effects and the true f :

# Comparison of the true f and its estimation
R> gridf2 <- outputsP$gridf
# True density
R> f2 <- dnorm(gridf2, param2[1], param2[2])
# Parametric estimated density
R> fhat_param <- outputsP$estimf
R> plot(gridf2, f2, type = 'l', lwd = 2, xlab = '', ylab = '')
R> lines(gridf2, fhat_param, col='red', lty = 2, lwd = 2)
# Comparison of the true random effects and their estimations
# Estimated random effects
R> phihat2 <- outputsP$estimphi
R> plot(phi2, phihat2, type="p", pch=18, xlab='', ylab='')
R> abline(0, 1)

This results in Figure 4. It shows that estimation of the density is satisfactory (left) and estimation
of the random effects is very good (right). Validation of the MSDE is produced by function valid.
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Density of the random effect
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Figure 3: Simulated example 2 (OU with one Gaussian random effect) frequentist parametric
estimation. Left: histogram of the pAjq and Gaussian parametric estimation of f .
Right parametric qqplot of pAjq versus a Normal sample.
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Figure 4: Simulated example 2 (OU with one Gaussian random effect) frequentist parametric
estimation, comparison to the truth. Left: parametric estimation N ppµ, pω2

q (dotted
line) and true f (plain line). Right: true φj versus estimated random effects Aj .

For example the individual validation of the first trajectory is plotted Figure 5, the first two graphs
on the left, using

R> validationOU <- valid(estim_param)

This illustrates the good estimation of the random effects: a beam of trajectories with the true one
in the middle and the lining up of the quantiles.

Finally, we can predict some trajectories using pred. Predictions are shown on Figure 6, as a
result of

R> predPOU <- pred(estim_param)

Beam of 32 predicted trajectories (right) is close to the true ones (middle). The lining up of
the predicted random effects versus the estimated random effects (left) shows the goodness of the
prediction from the estimated density, thus of the estimation of the density.

Bayesian estimation

Bayesian method is applied to Example 2. Priors are constructed from the true values, but default
values can be used.

R> prior2 <- list( m = c(param2[1], fixed2), v = c(param2[1], fixed2),
+ alpha.omega = 11, beta.omega = param2[2] ^ 2 * 10, alpha.sigma = 10,
+ beta.sigma = sigma2 ^ 2 * 9)
R> estim.method <- 'paramBayes'
R> estim_bayes <- mixedsde.fit(times = times2, X = X2, model = 'OU',
+ random = random2, estim.method = estim.method, prior = prior2, nMCMC = 10000)
R> outputsBayes <- out(estim_bayes)

Figure 7 is produced by
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Figure 5: Simulated examples frequentist approaches, outputs of valid method. Two top plots:
frequentist nonparametric estimation on example 1 (CIR process). Two bottom plots:
frequentist parametric estimation on example 2 (OU process).
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Figure 6: Simulated example 2 (OU with one Gaussian random effect), frequentist parametric
estimation. Left: predicted random effects versus estimated random effects. Middle:
true trajectories. Right: predicted trajectories in black and 95% prediction interval in
grey (green).

R> plot(estim_bayes)

Traces of the Markov chains of µ1, β, ω2
1 and σ are plotted, showing that all chains converge and

have the correct location. Command print() yields acceptance rates of the MH algorithm:

R> print(estim_bayes)

acceptance rates for random effect:
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.5569 0.5646 0.5676 0.5682 0.5718 0.5805

acceptance rate for fixed effect: 0.4248

The fixed effect β has a small acceptance rate, explaining the dependent chain (Figure 7 top right).
This is due to a very sharp likelihood because of the large amount of observations (N ¨M) in
comparison to the random effect (N).

Predictions in the Bayesian framework and the corresponding Figure 8 is obtained by

R> pred.result <- pred(estim_bayes)
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Figure 7: Simulated example 2 (OU with one Gaussian random effect) Bayesian estimation.
Markov chains of µ1, β, ω2

1 and σ2.
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Figure 8: Simulated example 2 (OU with one Gaussian random effect) Bayesian estimation.
Left: predicted trajectories in black and 95% prediction interval in grey (green). Right:
coverage rates: amount of observed values covered by the prediction intervals.

Figure 8 shows the beam of simulated data trajectories together with the 95% prediction interval.
Coverage rates are shown on the right plot and we see that the intervals hold the level.

Package mixedsde through a real data example

A real dataset is available (neuronal.data.rda) through lists of a matrix X and a vector times.
We detail below the analysis of this dataset, following the next steps: run the two random effects
model with both the parametric and nonparametric procedure; choose the number of random effects
depending on the variability of the estimators pAj,1,Aj,2q, on the shape of pfh and the variance pΩ.

These data are available thanks to Rune Berg and Jufang He. Details on data acquisition can be
found in Lansky et al. (2006).

Neuronal data

Neurons are the basement of nervous system and each neuron is connected with around 1000 other
neurons. They are communicating through emission of electrical signal. We focus on the dynamic
of the neuron membrane potential between two spikes emission measured in volts as the difference
of ions concentration between the exterior and the interior of the cell. Data are obtained from
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Figure 9: Neuronal data.

one single neuron of a pig. Data are composed of M “ 240 membrane potential trajectories with
N “ 2000 equidistant observation times. Time step is δ “ 0.00015 [s] and observation time is
T “ 0.3 [s]. Data are uploaded using data("neuronal.data"). They are presented on Figure 9.

These data have been previously analysed with a Ornstein-Uhlenbeck model with one additive
random effect (αj): Picchini et al. (2008) and Picchini et al. (2010) use parametric methods
assuming the normality of the random effect, and Dion (2014) with a nonparametric method. Here
αj represents the local average input that the neuron receives after the jth spike. The initial voltage
(the value following a spike) is assumed to be equal to the resting potential and set to zero: xj “ 0.
Parameter βj (non negative) is the time constant of the neuron. It was fixed in Picchini et al. (2008)
and Picchini et al. (2010).

In this new analysis, we assume that both αj and βj may change from one trajectory to another
because of other neurons or environment influence, for example. Indeed, the form of each trajectory
lead us to think that this is the good model: each one has its mean-reverting value and its own
speed to reach this value. There is no reason to assume that the speed is always the same, but
looking at the trajectories the stationary state seems to be reached nearly at the same time, thus
the second random effect should have a small variance.

Fitting with MSDEs

Our goal is also to compare the two models OU and CIR, both with two random effects, and two
approaches: the nonparametric density estimation and the parametric density estimation. Let us
remark that for the CIR model the algorithm removes two trajectories: 168 and 224, because they
contain negatives values. For two random effects the command is

R> estim <- mixedsde.fit(times, X = X, model = model, random = c(1,2),
+ estim.method = estim.method)

and they can be found in the help data file (command ?neuronal.data). We first apply the

two frequentist approaches on models with two random effects. Kurtosis and skewness of the
distribution of the estimation Aj of the random effects given in Table 2 are not closed to a symmetric
distribution. The bidimensional density of pαj ,βjq is estimated for both models with the parametric
and nonparametric methods running function mixedsde.fit. Figure 10 gives the 4 estimated
marginals. The blue (black) is for the OU model and the green (grey) for the CIR model. The
dotted lines are the estimations from the parametric method, the plain lines for the nonparametric
estimation. Parametric and nonparametric estimators are close, except for the second random effect
with the OU model. Indeed, parametric estimation produces a small variance for the second random
effect, suggesting it could be fixed. Would this assumption be valid, it explains the difference with
the nonparametric estimator which is not stable if the variance is to small. Estimation of σ is
pσ “ 0.0136 for the OU model and pσ “ 0.163 for the CIR model.

To compare with previous literature results, we focus on the OU model. To select the number and
the position of the random effects, we run the code with one random effect, additive or multiplicative:
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OU CIR

Aj1 Kurtosis 6.17 11.70

Skewness 0.96 2.32

Aj2 Kurtosis 6.68 7.07

Skewness 0.96 2.32

Table 2: Neuronal data. Kurtosis and skewness estimations for samples pAj,1q’s and pAj,2q’s,
for OU and CIR models.

random = 1 or random = 2, for both models estimating the common fixed parameter with the
parametric frequentist strategy. Estimators of the means µ1,µ2 and standard deviations ω1,ω2 are
given in Table 3. Criteria AIC and BIC are also given in Table 3. From this table, we can see that
models random = 1 and random = c(1,2) are the best according to the BIC and AIC criteria.

Finally, in Table 4 we compare the BIC and AIC criteria for random = 1 when the value of the
fixed effect is plugged in: the one we obtained in Table 3 and to values obtained in Picchini et al.
(2008) and Picchini et al. (2010). The preferred model is the one minimizing both criteria. Thus,
the OU model with one additive random effect φj “ αj and pβ “ 37.22 seems to be the best model
to describe these data. The summary method gives for the kurtosis: 4.55 and for the skewness -0.95.
Also pσ “ 0.0136. Estimated densities obtained for this model with pβ “ 37.22 are given in Figure 11.
The dotted line is the result of the parametric estimation and the plain line of the nonparametric
estimation, plotted on the histogram of the AjpT q’s. The nonparametric estimation detects a left
tail that is not detected by the parametric one. Otherwise both estimators are very close.

The OU model with random = 1 is then validated with valid function. Figure 12 illustrates the
result for a random trajectory (number 141): 100 simulated trajectories (black) and true trajectory
pX141, red) (left plot) and quantiles of the true measurement among the 100 simulated points at each
time points versus uniform quantiles. The qq-plot is satisfactory (compared to the graph obtained
on simulated data Figure 5).

Finally some prediction plots are performed (not shown) with the pred method and they confirm
that model OU with random = c(1,2) with the parameters obtain from the parametric estimation,
and the OU model with random = 1 and pβ “ 37.22 produce very close trajectories and could be
both validated.

We then apply the Bayesian procedure. As already mentioned, for the Bayesian procedure, large
data sets are a problem because of the very long running time. Therefore, we thin the data set
by 10. That means, every 10th data point of the series is used for the estimation and also for the
prediction. Even with this thinning, one estimation with 20000 samples takes half an hour.

Based on the best model selected by the frequentist approach, the OU model with one random
effect φj “ αj is fitted. No prior knowledge is available, we therefore leave this information out
and let the algorithm take the first 10%, i.e. 24, series for the calculation of the prior parameter,
as described in Section 8.3.2. Figure 13 plots the Markov chains estimated from the remaining
M ´ 24 “ 216 trajectories and show good convergence of the chains. Bayesian point estimations,
i.e. posterior means, are pµ1 “ 0.34, pω1 “

b

pω2
1 “ 0.06, pβ “ 33 and pσ “

?
pσ2 “ 0.01. Compared to

frequentist estimation (Table 4), we notice that these results are a compromise between Picchini
et al. (2010) and frequentist estimation.

In Figure 14, we can see a comparison of the prediction results for all three cases, α, β or
both being random effects. The black and the green lines are very similar, which means, that the
prediction intervals are nearly the same for α and both parameters being random effects. This
confirms the frequentist conclusion of Table 3. Therefore, it could be enough to treat α as random
and β as fixed effect.
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µ1 ω1 µ2 ω2 BIC AIC

random=c(1,2) 0.38 0.06 37.30 1.10 -3229.67 -3247.59

random=2 0.37 - - 37.70 7.47 -3082.36 -3103.40

random=1 0.38 0.06 37.22 - - -3227.47 -3248.51

Table 3: Neuronal data. MLE given by Equation 7, BIC and AIC criteria, for OU model,
depending on the number of random effects (with estim.fix=1 for random = 1 or
random = 2).

µ1 ω1 β BIC AIC

β from Picchini 2008 0.27 0.04 25.64 -2971.59 -2980.55

β from Picchini 2010 0.47 0.08 47.00 -3043.89 -3052.86

Previous estimator MLE of β Table 3 0.38 0.06 37.22 -3240.55 -3249.51

Table 4: Neuronal data. Results obtained with random=1 for the OU model, where the value of
the fixed effect β is plugged in.
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Figure 10: Neuronal data. Frequentist estimated marginals of the bidimensionnal density of
the random effects obtained from 4 estimators. Left: αj ’s density, right: βj ’s
density. CIR model in green (grey), OU in blue (black). Nonparametric in plain line,
parametric in dotted line.

Discussion

In this paper we illustrate the functionality of the package mixedsde for inference of stochastic
differential equations with random and/or fixed effects. This package, and mainly the function
misedsde.fit, can be used to choose the best model to fit some data. It allows to compare two
models: OU or CIR with one or two random effects. The three estimation methods can be used to
help the decision maker. Nevertheless each method can be more appropriate to a specific situation,
as explained before: the Bayesian method is recommended for a small number of observations, the
frequentist nonparametric is a good tool with two random effects and no prior available. In particular
the frequentist parametric proposes for a large sample, an estimation of the fixed effect and of the
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Figure 11: Neuronal data, OU model, α random, β fixed to the estimator obtained by the
maximum likelihood estimator. Histogram of the Aj ’s estimators of the φj “ αj .
Estimator of the density f : N pµ,ω2

q parametric estimation in blue (black) dotted
line, non-parametric estimation blue (black) plain line.

Figure 12: Neuronal data, OU model, α random, β fixed, validation of the frequentist approaches.
Individual validation of trajectory 232. Left: 100 simulated trajectories in black and
true trajectory pXjq in grey (red). Right: quantiles of the true measurement among
the 100 simulated points at each time points versus uniform quantiles.

parameters of the Gaussian distribution for the fixed effect when there is only one. A neuronal
dataset is studied with the three methods. Furthermore, other real data should be investigated with
the present package.

Recently, the parameter estimation method developed in Delattre et al. (2016) for random effects
distributed according to a Gaussian mixture distribution has been implemented in the R package
MseParEst (Delattre and Dion, 2016).
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Appendix

When there is one random effect, what is the likelihood function and the MLE of the fixed effect?

Assume that we are in the case of random = 1, thus the process is

dXjptq “ pα´ φjXjptqqdt` σapXjptqqdWjptq.

Let us compute the log-likelihood function when φj “ ϕ fixed. We omit the subscript j in the
following. We use the same notation as for random=c(1,2), where V “ pVk,`qk,`Pt1,2u is a symmetric
matrix size 2ˆ 2. We have :

logLpX,α,ϕq “
ż T

0

bpXpsq,ϕq
σ2pXpsqq

dXpsq ´
1
2

ż T

0

b2
pXpsq,ϕq
σ2pXpsqq

ds

“ αU1 ´
α2

2 V1,1 `ϕrU2 ´ αV1,2s ´
ϕ2

2 V2,2.

We assume that the random effect is Gaussian with density fξ, and denote ξ “ pµ,ωq and θ :“
pµ,ω,αq. Thus,

LpX, θq “
ż

exp
ˆ

αU1 ´
α2

2 V1,1 `ϕrU2 ´ αV1,2s ´
ϕ2

2 V2,2

˙

fξpϕqdϕ “

ż

exppEpϕqqdϕ.

We find:

Epϕq “ αU1 ´
α2

2 V1,1 ´
1
2

”

ϕ2
pV2,2 ` ω

´2
q ´ 2ϕpU2 ´ αV1,2 ` µω

´2
q

ı

“ αU1 ´
α2

2 V1,1 ´
1

2Σ2 pϕ´mq
2
`
m2

2Σ2 ´
1
2µ

2ω´2

with
m “

µ` ω2U2 ´ ω
2V1,2α

1` ω2V2,2
, Σ2

“
ω2

1` ω2V2,2
.

Finally after simplification we get:

m2

2Σ2 ´
1
2µ

2ω´2
“ ´

1
2 p1` ω

2V2,2q
´1V2,2rµ´ V

´1
2,2 pU2 ´ αV1,2qs

2
`

1
2V2,2

pU2 ´ αV1,2q
2.

Thus for random=1 we get

LpX, θq “ 1
a

1` ω2V2,2
exp

«

αU1 ´
α2

2 V1,1 ´
V2,2

2p1` ω2V2,2q
rµ´ V ´1

2,2 pU2 ´ αV1,2qs
2
`
pU2 ´ αV1,2q

2

2V2,2

ff

.

Then, when random = 2 the roles of α and ϕ are exchanged. To implement a general formula, we
note: r for random: 1 or 2, and c for the number of the common effect. We denote ψ the fixed effect
and we the get the general formula:

LpX, θq “ 1
a

1` ω2Vr,r
exp

«

ψUc ´
ψ2

2 Vc,c ´
Vr,r

2p1` ω2Vr,rq
rµ´ V ´1

r,r pUr ´ψVc,rqs
2
`
pUr ´ψVr,cq

2

2Vr,r

ff

.
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Indoor Positioning and Fingerprinting:
The R Package ipft
by Emilio Sansano, Raúl Montoliu, Óscar Belmonte and Joaquín Torres-Sospedra

Abstract Methods based on Received Signal Strength Indicator (RSSI) fingerprinting are in the
forefront among several techniques being proposed for indoor positioning. This paper introduces
the R package ipft, which provides algorithms and utility functions for indoor positioning using
fingerprinting techniques. These functions are designed for manipulation of RSSI fingerprint data
sets, estimation of positions, comparison of the performance of different positioning models, and
graphical visualization of data. Well-known machine learning algorithms are implemented in this
package to perform analysis and estimations over RSSI data sets. The paper provides a description
of these algorithms and functions, as well as examples of its use with real data. The ipft package
provides a base that we hope to grow into a comprehensive library of fingerprinting-based indoor
positioning methodologies.

Introduction

Intelligent spaces, as a particularity of the concept known as Ambient Intelligence (AmI) (Aarts and
Wichert, 2009; Werner et al., 2005), where agents communicate and use technology in a non-intrusive
way, have an interest in both open and closed environments. Since people spend 90% of time indoors
(Klepeis et al., 2001), one of the most relevant aspects of AmI is indoor localization, due to the
large number of potential applications: industrial and hospital applications, passenger transport,
residences, assistance to emergency services and rescue, localization and support guide for the
disabled, leisure applications, etc. It is expected that the global market for this type of location will
grow from USD 7.11 billion in 2017 to USD 40.99 billion by 2022 (Research and markets, 2017),
being among the key technologies in the future. This is a technology that has already awakened but
that in a short period of time will suffer a big explosion, as happened with the systems of positioning
by satellite in exteriors and its applications.

This paper introduces the R package ipft (Sansano, 2017), a collection of algorithms and utility
functions to create models, make estimations, analyze and manipulate RSSI fingerprint data sets
for indoor positioning. Given the abundance of potential applications for indoor positioning, the
package may have a broad relevance in fields such as pervasive computing, Internet of Things (IoT)
or healthcare, among many others.

The main progress in indoor location systems has been made during the last years. Therefore,
both the research and commercial products in this area are new, and researchers and industry are
currently involved in the investigation, development and improvement of these systems. We believe
that the R language is a good environment for machine learning and data analysis related research,
as its popularity is constantly growing 1, researchers related to indoor positioning have explicitly
selected R as developing framework for their experiments (Quan et al., 2017; Harbicht et al., 2017;
Popleteev et al., 2011), it is well maintained by an active community, and provides an ecosystem of
good-quality packages that leverage its potential to become a standard programming platform for
researchers. There are some open source applications and frameworks to build indoor positioning
services, such as FIND 2, Anyplace 3 or RedPIN 4, based on fingerprinting techniques but, as far as
we know, there is not any public framework or package that provides functions and algorithms to
manipulate fingerprinting datasets and experiment with positioning algorithms.

RSSI (Received Signal Strength Indicator) positioning systems are based on measuring the
intensities of the received radio signals of the emitting devices (beacons) that are available at a
particular position, and comparing them with a previously built RSSI data set (yub Lee et al., 2013).
RSSI is used to measure the relative quality of a received signal to a client device, and each chipset
manufacturer is free to define their own scale for this term. The value read by a device is given on a
logarithmic scale and can correspond to an instant reading or a mean of some consecutive readings.

In this scenario, a fingerprint is an RSSI feature vector composed of received signal values
from different emitting devices or beacons, associated to a precise position. In the last years, this
technique is becoming increasingly important for indoor localization (Liu et al., 2007; He and Chan,
2016), since Wi-Fi is generally available in indoor environments where GPS signals cannot penetrate,

1https://stackoverflow.blog/2017/10/10/impressive-growth-r/
2https://www.internalpositioning.com#about
3https://anyplace.cs.ucy.ac.cy
4http://redpin.org
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Figure 1: During the on-line phase, once the radio map has been built, the fingerprinting
algorithm uses it to estimate the device’s position by comparing the RSSI values heard
by the device with the ones stored in the radio map.

and the wireless access points (WAPs) can be used as emitting devices (Li et al., 2006). Other types
of indoor localization RF emitters, such as Bluetooth (Wang et al., 2013), RFID (Liu et al., 2011),
or Ultra Wide Band (UWB) (Gigl et al., 2007), can be also used in combination with Wi-Fi access
points or as a standalone positioning system.

The RSSI fingerprinting localization approach requires two phases of operation: a training phase,
also known as off-line or survey phase, and a positioning phase, sometimes referred as on-line,
runtime or tracking phase. In the training phase, multidimensional vectors of RSSI values (the
fingerprints) are generated and associated with known locations. These measurements are used to
build a data set (also known as radio map) that covers the area of interest. This data set can include,
along with the collected RSSI values and the location coordinates, many other useful parameters, as
the device type used in the measurements or its orientation. Later, during the positioning phase, an
RSSI vector collected by a device is compared with the stored data to generate an estimation of its
position (Figure 1).

Despite the increasing interest in RSSI positioning (Xiao et al., 2016), this topic has not been
explicitly covered yet by any publicly available R package. The proposed package has been developed
to provide users with a collection of fundamental algorithms and tools to manipulate RSSI radio
maps and perform fingerprinting analysis. While fundamental algorithms and similarity measurement
functions are implemented to provide a main framework for research and comparison purposes, these
are highly customizable, to allow researchers to tailor those methods with their own parameters and
functions.

This paper describes these algorithms and their implementation, and provides examples of how
to use them. The remainder of the paper is structured as follows: Section Problem statement.
Terminology and notation defines the fingerprinting problem statement and the nomenclature that
will be used in the rest of the paper. An overview of the implemented algorithms is given in Section
An overview of the implemented algorithms. Section Data wrangling outlines some data wrangling
techniques included in the package. Section Positioning algorithms describes the implemented
positioning algorithms. Section Beacon position estimation presents the included methods for access
point position estimation. Then, Section Data clustering discuses some tools and functions included
to create clusters or groups of fingerprints. Section Plotting functions illustrates the use of the
plotting functions also included in the package. In all these sections, functions are described and
explored using practical examples, and particular emphasis is placed on how to use them with real
world examples and data sets. Finally, the paper is summarized in Section Summary.

Problem statement. Terminology and notation

This section provides a brief and general introduction to the principles of fingerprinting positioning,
as well as a description of the notation and terminology that will be used in the next sections. The
terms described here are related to general concepts of fingerprinting techniques, while the remaining
of the paper describes the particular implementation of these concepts in the ipft package.

The main goal of the indoor localization techniques is to determine the position of a user
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in an indoor environment, where the GPS signal might not be received. This objective might
require the use of an existing infrastructure, the deployment of a new one, the use of the so-called
signals-of-opportunity (Yang et al., 2014), or even a combination of some of these techniques. Many
of these techniques take advantage of the radio-frequency signals emitted by devices, whose position
can be known or not, to estimate the user’s position from the perceived strength of these signals.
There are many kinds of devices that can be used for this purpose, such as Wi-Fi access points,
bluetooth beacons, RFID or UWB devices, but for all of them, the information provided for a given
position, the fingerprint, can be stored as a vector of received signal strength intensities (RSSI),
whose length is determined by the number of detected emitters.

A radio map, or a fingerprinting data set, is composed of a set of collected fingerprints and the
associated positions where the measurements were taken, and may contain some additional variables,
such as the the type of device used or a time stamp of the observation, among any other useful data.
Let D be a fingerprinting data set. Then:

D “ tF , Lu

where F is the set of collected fingerprints and L is the set of associated locations.
For research purposes, a fingerprinting data set is usually divided into training and test sets.

The training data set is used to store the fingerprints and location data to create models of the
environment that can be used to estimate the position of a new fingerprint. The test data set is
used to test the models obtained from the training data, and to compute the errors from the results
of the position estimation.

Let Dtrain be a training data set:

Dtrain “ tFtrain, Ltrainu

where

Ftrain “
!

λtr1 ,λtr2 , ...,λtrn
)

Ltrain “
!

τ tr1 , τ tr2 , ..., τ trn
)

Dtrain is composed of n fingerprints, stored as n vectors of RSSI measurements (λtri , i P r1, 2, ...,ns),
and n locations (τ tri , i P r1, 2, ...,ns), stored as vectors, representing the position associated with its
correspondent fingerprint. Each fingerprint consists of q RSSI values (ρtrh,i, h P r1, ..., qs), where q is
the number of beacons considered when building the training set:

λtri “
!

ρtr1,i, ρtr2,i, ..., ρtrq,i
)

, i P r1, ...,ns

and each associated position is composed of one or more values, depending on the number of
dimensions to be considered and the coordinate system used. The position can be given as a vector
of values representing its coordinates, although on multi-floor and multi-building environments
labels can be used to represent buildings, floors, offices, etc. Let l be the number of dimensions of a
position vector. Then:

τ tri “

!

νtr1,i, νtr2,i, ..., νtrl,i
)

, i P r1, ...,ns

The test data set is also composed of a collection of fingerprints associated to known positions.
This data set is used for testing purposes, during research or during model building adjustments, to
assess the model’s performance by comparing its estimation of the positions with the ground truth.

The situation is different in real applications, where the goal is to estimate the unknown position
of the receiver given the RSSI values detected at a particular location, using a previously built
model. In this case, the test data set is just composed of a unique fingerprint, and the objective is to
estimate the actual location of the receiver. Therefore, no information about its location is provided.

The test data set is composed of m observations:

Dtest “ tFtest, Ltestu

where

Ftest “
!

λts1 ,λts2 , ...,λtsm
)
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Ltest “
!

τ ts1 , τ ts2 , ..., τ tsm
)

To be able to compare the test observations with the training fingerprints, the number of RSSI
values of its respective fingerprints has to be the same, and the position in the RSSI vector must
represent the same beacon in both data sets. Therefore, each one of the m observations of the test
data set is composed of a fingerprint with q RSSI values:

λtsj “
!

ρts1,j , ρts2,j , ..., ρtsq,j
)

, j P r1, ...,ms

and a location vector with the same spatial dimensions as the training location vectors:

τ tsj “

!

νts1,j , νts2,j , ..., νtsl,j
)

, j P r1, ...,ms

The notation depicted above will be used in the remaining of the paper to represent the
fingerprinting data. Symbols i and j will be used to represent iterations over the training and test
data sets, respectively, while h will be used to iterate over the beacons present in each fingerprint.

An overview of the implemented algorithms

This section presents an introduction to the main functions, included in the ipft5 package, that
implement fingerprinting-based indoor localization methods. The package also provides two data
sets for training and validation purposes that are briefly described in this section.

The ipft package implements three algorithms to build models to estimate the position of a
receiver in an indoor environment. Two of these implementations are based on the well known
k-Nearest Neighbors algorithm (knn) (Cover and Hart, 1967) to, given an RSSI vector, select the k
most similar training examples from the radio map. The similarity between the RSSI value vectors
can be measured, for example, as the euclidean distance between them, but other distance functions
may be used (Torres-Sospedra et al., 2015b). The selection of a method to compute this measure can
be provided to the function in two ways, either choosing one of the already implemented distance
measurements (euclidean, manhattan, etc.), or by way of a reference to a function implemented by
the user that returns the distance (the lower, the more similar or ’closer’) between two matrices or
vectors. Once the k neighbors are selected, the location of the user is estimated as the weighted
average of the neighbors positions.

The first implementation, corresponding to the function ipfKnn, may behave in a deterministic
way, finding the k more similar neighbors using a deterministic similarity function such as the
euclidean or manhattan distances, or in a probabilistic way, using similarity functions such as LDG
(Logarithmic Gaussian Distance) or PLGD (Penalized Logarithmic Gaussian Distance) (Cramariuc
et al., 2016b), that are based upon statistical assumptions on the RSSI measurement error. The
similarity function can be chosen from the set of implemented options or provided by the user via a
custom function. This implementation is discussed in the Section The ipfKnn function.

The other implementation of the knn algorithm assumes a probabilistic nature for the received
signal distribution (Roos et al., 2002) and uses collections of many fingerprints at each particular
position, acquired during the training phase. Therefore, the radio map is composed of several
groups, where a group is a set of fingerprints (vectors of RSSI values) that share the same location.
Assuming that the RSSI value for a specific beacon can be modeled as a random variable following
a normal distribution (Haeberlen et al., 2004), any of these collections, or groups, of fingerprints
can be represented by the statistical parameters of this distribution, in this case, the mean and the
standard deviation. This implies that the original data set can be transformed into a new type of
data structure by storing the mean and the standard deviation of every detected beacon for every
group. All the original data for a group is transformed into two vectors, one storing the means and
the other the standard deviations. The trustworthiness of the data in the new data set will depend
on the number of measurements for every location of the original data. It is assumed that the more
measurements for a particular location, the more reliable will be their inferred statistical parameters.

The implementation of this probabilistic-based method takes the original radio map and a set
of group indices, and fits these groups of measurements to a normal (Gaussian) distribution for
every beacon and every location, so that the signal intensity distribution is determined by the

5The ipft package is available at CRAN and can be installed as any other R package:
> install.packages("ipft")
The package has to be loaded into the main environment to use it for the first time in an R session:
> library("ipft")
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mean and the standard deviation of the Gaussian fit. Then, given a test fingerprint, the algorithm
estimates its position by selecting the k most probable locations, making explicit use of the statistical
parameters of the data stored in the radio map to optimize the probabilities in the assignment of the
estimated position by computing a similarity function based on a summatory of probabilities. This
approach is implemented through the ipfProbabilistic function and is described in the Section
The ipfProbabilistic function.

Finally, the third implemented algorithm is based on a scenario where the location of the beacons
is known, and an estimation of the fingerprint position can be made using the log-distance path
loss model (Seybold, J.S., 2005). The strength of the received signal at a particular point can be
modeled as a function of the logarithmic distance between the receiver and the emitter and some
parameters related to the environment properties and the devices characteristics. Therefore, as
this method uses an analytical model to evaluate the position, no radio map is needed to train a
model to compare fingerprints with, since the position might be estimated from the fingerprint data
and the position of the beacons. This method is implemented by the function ipfProximity and is
described in Section The ipfProximity function.

The previous functions ipfKnn, ipfProbabilistic and ipfProximity create models based on the
training data and parameters provided. These models can then be evaluated using the ipfEstimate
function, that internally detects the algorithm to apply based on the model that receives as parameter.

The package also includes data from the IPIN20166 Tutorial data set. In the ipftrain data
frame there are n = 927 observations, including the RSSI values for q = 168 wireless access points,
the location, expressed in Cartesian coordinates, for the observation (x, y), and some other variables,
as timestamps for the measurements or an identifier for the user who took the survey. The ipftest
data frame contains m = 702 observations with the same structure, for testing and validation
purposes. The fingerprints included in both data sets where taken in the same building and the same
floor. The ipfpwap data frame contains the position of 39 of the WAPs included in the ipftrain
and ipftest data sets. The unknown positions of the remaining WAPs are stored as NA. The
characteristics of these data sets attributes are:

• RSSI values: Columns from 1 to 168. The values represent the strength of the received signal
expressed in decibels, on a scale that ranges from ´30dBm to ´97dBm in the training set,
and from ´31dBm to ´99dBm in the test set. The closer the value to zero, the stronger the
signal.

• position: Columns 169 (X) and 170 (Y). The position given in Cartesian coordinates, with
its origin in the same corridor where the data was acquired.

• user id: A numeric value from 1 to 8 to represent each of the 8 users that acquired the train
data set. The test dataset was acquired by a different user, represented by the value 0.

• timestamp: The UNIX time stamp of the observation, in seconds.

There are some other publicly available indoor location data sets that have been used to develop
and test this package and that are not included for size reasons, as the UJIIndoorLoc Data Set
(Torres-Sospedra et al., 2015a) or the Tampere University data set (Cramariuc et al., 2016a).

The theoretical foundations of the algorithms and its uses are discussed in detail in Section
Positioning algorithms. A description of the functions ipfKnn, ipfProximity, ipfProbabilistic
and ipfEstimate is given while presenting some simulations to show how these algorithms can be
useful in practice.

Data wrangling

An RSSI fingerprint is a vector composed of signal strength measurements from all the emitters
received by a client device at a particular point, and can be measured in any unit of power. It is
often expressed in decibels (dBm), or as percentage values between 1-100, and can be a negative or
a positive value. Typically this values are stored as negative figures, where the strongest signals are
closer to zero.

Some algorithms are sensitive to the scale of the data. For example, Neural Networks generally
work better (?) with data scaled to a range between [0, 1] or [´1, 1], since unscaled data may
slow down the learning process and the convergence of the network parameters and, in some cases,
prevent the network from effectively learning the problem. Thus, the first step before the data
can be fed to a positioning algorithm may involve some kind of transformation, depending on the
characteristics of the original data.

6http://www3.uah.es/ipin2016/
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The data sets included in this package represent the RSSI data from a set of wireless access
points as negative integer numbers from ´99 (weakest detected signal) to ´30 (strongest detected
signal). When the RSSI of a WAP is not available, the value used is NA. This convention may be
inconvenient for some calculations. For example, a similarity measure between two fingerprints as
the euclidean distance will only take into account those WAPs that have been detected in both
observations, causing a loss of information that otherwise could be utilized.

The ipft package contains some functions to manipulate and wrangle raw fingerprint data. The
ipfTransform function mutates the given fingerprint data into a new data set with a specified range
for the RSSI signals. The signature of the function is:

ipfTransform <- function(data, outRange = c(0, 1), outNoRSSI = 0, inRange = NULL,
inNoRSSI = 0, trans = "scale", alpha = 24)

where:

• data: The input data set with the original RSSI fingerprints.
• outRange: A numeric vector with two values indicating the desired range of the output data.
• outNoRSSI: The desired value for not detected beacons in the output data.
• inRange: A numeric vector with two values indicating the range of signal strength values in

the input data. If this parameter is not provided, the function will infer it from the provided
data.

• inNoRSSI: The value given to a not detected beacon in the original data.
• trans: The transformation to perform over the RSSI data, either ’scale’ or ’exponential’.
• alpha: The α parameter for the exponential transformation.

The scale transformation scales the input data values to a range specified by the user. The
feature scaling is performed according to Equation 1:

ρouth,i “

#

a` b ¨ ρinh,i, if ρinh,i ‰ inNoRSSI

outNoRSSI, otherwise
(1)

b “
outMin´ outMax

inMin´ inMax

a “ outMin´ inMin ¨ b

where:

– ρouth,i and ρinh,i are the output and input RSSI values, respectively, for the hth beacon from the
ith observation

– outMax and outMin are the maximum and minimum values, respectively, specified for the
output by the outRange parameter.

– inMax and inMin are the maximum and minimum values, respectively, of the input data.
– outNoRSSI and inNoRSSI are the values assigned in the fingerprint to represent a not

detected beacon for the output and input data, respectively, specified by the parameters
outNoRSSI and inNoRSSI.

The exponential transformation (Torres-Sospedra et al., 2015b) changes the data according to the
next equation:

ρouth,i “

#

expppospρ
in
h,iq

α q, if ρinh,i ‰ inNoRSSI

outNoRSSI, otherwise

pospρinh,iq “

#

ρinh,i ´ inMin, if ρinh,i ‰ inNoRSSI

0, otherwise

where α is a parameter for the exponential transformation. The authors establish α as a case-based
parameter, and find that 24 is a good value for RSSI fingerprinting data, but they did not study the
effects of α in the transformed data.

The following code scales the ipftrain and ipftest data sets RSSI data, stored in the columns
1:168, to a positive range of values, from 0 to 1, with NA representing a not detected WAP. As a
not detected WAP is represented by a NA value in the original data, this has to be indicated to the
function so it can transform these values to the desired output:
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trainRSSI <- ipfTransform(ipftrain[, 1:168], outRange = c(0.1, 1), inNoRSSI = NA,
outNoRSSI = NA)

testRSSI <- ipfTransform(ipftest[, 1:168], outRange = c(0.1, 1), inNoRSSI = NA,
outNoRSSI = NA)

The ipfTransform function returns a new data set with the same structure (vector, matrix or
data frame) as the input.

Positioning algorithms

This section describes three positioning algorithms implemented in the ipft package. The examples
illustrating each description are based on the data previously scaled in Section Data wrangling .

The ipfKnn function.

The ipfKnn and ipfEstimate functions implement a version of the knn algorithm to select the k
nearest neighbors (the k more similar vectors from the training set) to a given RSSI vector. Many
different distance metrics (Torres-Sospedra et al., 2015b) can be used to compare two RSSI vectors
and measure how ’near’ or similar they are.

The distance metrics implemented in the package include some typical functions, as the L1 norm,
or manhattan distance, or the L2, or euclidean distance. The Lu norm between two fingerprints
with indices a and b is defined as follows:

Lu “

˜

q
ÿ

h“1
|pρh,a ´ ρh,b|u

¸1{u

The package also implements some fingerprinting specific distance estimation functions such as
LDG and PLGD. The LGD between two RSSI vectors λtri and λtsj of longitude q is given by:

LGDpλtri ,λtsj q “ ´
q
ÿ

h“1
log maxpGpρtrh,i, ρ

ts
h,jq, εq

where ε is a parameter to avoid logarithm of zero, as well as having one beacon RSSI value influence
the LGD only above a certain threshold. Gpρtrh,i, ρ

ts
h,jq represents the Gaussian similarity between

ρtrh,i and ρ
ts
h,j , defined as

Gpρtrh,i, ρ
ts
h,jq “

$

&

%

1?
2πσ2 exp

ˆ

´
pρtrh,i´ρ

ts
h,jq

2

2σ2

˙

, if ρtrh,i ‰ 0 and ρtsh,j ‰ 0

0, otherwise

The σ2 parameter represents the shadowing variance (Shrestha et al., 2013). Values for σ in the
range between 4 and 10 dBm are usually good for indoor scenarios (Lohan et al., 2014).

The PLGD between two RSSI vectors λtri and λtsj of longitude q is given as:

PLGDpλtri ,λtsj q “ LGDpλtri ,λtsj q ` αpφpλtri ,λtsj q ` φpλtsj ,λtri qq

where φpλtri ,λtsj q is a penalty function for the beacons that are visible in the ith training fingerprint
but not in the jth test fingerprint, φpλtsj ,λtri q is a penalty function for the beacons that are visible
in the jth test fingerprint but not in the ith training fingerprint, and are defined as follows:

φpλtri ,λtsj q “
q
ÿ

h“1
Tmax ´ ρ

tr
h,i, for 0 ă ρtrh,i ď Tmax and ri “ 0q

φpλtsj ,λtri q “
q
ÿ

h“1
Tmax ´ ρ

ts
h,j , for 0 ă ρtsh,j ď Tmax and rj “ 0q

Tmax is an upper threshold for the strength of the signal, and α is a scaling factor.
The similarity measurement method can be chosen by means of the parameter method, or by

providing a custom function (parameters FUN and ...). The signature of the ipfKnn function is:
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ipfKnn <- function(train_fgp, train_pos, k = 3, method = 'euclidean',
weights = 'distance', norm = 2, sd = 5, epsilon = 1e-3,
alpha = 1, threshold = 20, FUN = NULL, ...)

where:

• train_fgp: A data frame of n rows and q columns containing the fingerprint vectors of the
training set.

• train_pos: A data frame of n rows and l columns containing the positions of the training
observations.

• k: The k parameter of the knn algorithm, the number of nearest neighbors to consider.
• method: The distance metric to be used by the algorithm. The implemented options are

’euclidean’, ’manhatan’, ’norm’, ’LGD’ and ’PLGD’
• weights: The weight function to be used by the algorithm. The implemented options are

’distance’ and ’uniform’. The default ’distance’ function calculate the weights from the distances
as:

wj,t “
1

p1` dj,tqWj

where wj,t is the weight assigned to the tth pt P r1..ksq neighbor of the jth pj P r1..msq test
observation, dj,t is the distance in the feature (RSSI) space between the tth neighbor and the
jth test fingerprint, and Wj is a term used to normalize the values so that the total sum of
the k weights is 1.
The ’uniform’ function assigns the same weight value to each neighbor:

wj,t “
1
k

• norm,sd,epsilon,alpha,threshold: Parameters for the ’norm’, ’LGD’ and ’PLGD’ methods.
• FUN: An alternative function provided by the user to compute the distance.
• ...: Additional parameters for the function FUN.

For a training data set of n RSSI vectors (a data frame or a matrix named tr_fingerprints)
and a data set of n position vectors (a data frame or a matrix named tr_positions), the code for
fitting a knn model with a k value of 4 and the manhattan distance as the distance measurement
method is:

knnModel <- ipfKnn(tr_fingerprints, tr_positions, k = 4, method = 'manhattan')

This function returns an S3 object of class ipftModel containing the following properties:

• params: A list with the parameters passed to the function.
• data: A list with the fingerprints and the location data of the radio map.

To estimate the position of a new fingerprint, the ipfEstimate function makes use of the
previously obtained model. An ipfModel object holds the data model needed by the ipfEstimate
function to apply the selected algorithm and returns an estimation of the test fingerprints positions.
The signature of ipfEstimate is:

ipfEstimate <- function(ipfmodel, test_fgp, test_pos = NULL)

where:

• ipfmodel: An S3 object of class ipfModel.
• test_fgp: A data frame of m rows and q columns containing the fingerprints of the test set.
• test_pos: An optional parameter containing a data frame of m rows and l columns with the

position of the test observations.

The ipfEstimate function returns an S3 object of the class ipfEstimation with the following
elements:

• location: A mˆ l matrix with the predicted position for each observation in the test data
set.

• errors: If the actual location of the test observations is passed in parameter test_pos, and
the data that represents the position is numeric, this property returns a numeric vector of
length n with the errors, calculated as the euclidean distances between the actual and the
predicted locations.
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• confusion: If the actual location of the test observations is passed in parameter test_pos,
and the data that represents the position is a factor, the estimation of the actual position is
performed as a classification task, and this property returns a confusion matrix summarizing
the results of this classification.

• neighbors: A mˆ k matrix with the indices of the k selected neighbors for each observation
in the test data set.

• weights: A mˆ k matrix containing the weights assigned by the algorithm to the selected
neighbors.

The following R code shows an example of the usage of the ipfKnn function with the data set
included in the package. This example takes the data previously scaled and generates a positioning
model from the input data trainRSSI (the radio map) that is stored in knnModel. Then, the model
is passed to the ipfEstimate function, along with the test data, to get an estimation of the position
of the 702 test observations:

tr_fingerprints <- trainRSSI[, 1:168]
tr_positions <- ipftrain[, 169:170]
knnModel <- ipfKnn(tr_fingerprints, tr_positions, k = 7, method = "euclidean")
ts_fingerprints <- testRSSI[, 1:168]
ts_positions <- ipftest[, 169:170]
knnEstimation <- ipfEstimate(knnModel, ts_fingerprints, ts_positions)

Since the position of the test observations is known, the mean error for the 702 test observations
can be calculated as follows:

> mean(knnEstimation$errors)
[1] 3.302739

The mean positioning error is one of the most common evaluation metrics used in indoor
positioning (Liu et al., 2007) to assess the system’s accuracy. This metric corresponds to the average
Euclidean distance between the estimated locations and the true locations. As positions in the
ipftrain and ipftest are expressed in meters, this metric represents the average error in meters
for this scenario.

The neighbors selected from the training data set for the 6 first test fingerprints are:

> head(knnEstimation$neighbors)
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 71 176 126 125 127 771 130
[2,] 71 176 126 125 127 771 130
[3,] 465 914 915 913 217 77 218
[4,] 465 914 915 176 913 461 217
[5,] 176 126 125 771 130 127 914
[6,] 77 914 915 217 176 465 218

where each row of the output corresponds to the indices of the k = 7 more similar vectors from the
training data set to the ith vector of the test data set.

As an example of how to use ipfKnn with a custom function, the next code shows the definition
of a C++ function that implements a modified version of the manhattan distance. The function
needs at least two parameters, the two matrices representing the training and test data sets. A third
parameter is here introduced to represent a penalization value. This function penalizes the computed
distance between two RSSI measurements when one of the beacons is not detected (represented by
the value H), by multiplying the resulting distance by a factor F . Given two fingerprints λtri and
λtsj of length q, the myD distance is:

myDpλtri ,λtsj q “
q
ÿ

h“1
mydpρtrh,i, ρ

ts
h,jq,

where

mydpρtrh,i, ρ
ts
h,jq “

#

|ρtrh,i ´ ρ
ts
h,j |, if ρtrh,i ‰ H and ρtsh,j ‰ H

|ρtrh,i ´ ρ
ts
h,j |F , otherwise

The following code implements the myD function and shows an example of its usage with ipfKnn,
as well as the results obtained. The function is coded in C++ to improve its performance when
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using large data sets, although the method also accepts custom plain R functions. The myD function
assumes that the fingerprints are in a positive range:

library('ipft')
library('Rcpp')
cppFunction('
NumericMatrix myD(NumericMatrix train, NumericMatrix test, double F = 2.0) {

NumericMatrix distanceMatrix(test.nrow(), train.nrow());
double d = 0, pv = 0, rssi1 = 0, rssi2 = 0;
for (int itrain = 0; itrain < train.nrow(); itrain++) {
for (int itest = 0; itest < test.nrow(); itest++) {
d = 0;
for (int i = 0; i < train.ncol(); i++) {
rssi1 = R_IsNA(train(itrain, i))? 0 : train(itrain, i);
rssi2 = R_IsNA(test(itest, i))? 0 : test(itest, i);
pv = (rssi1 != 0 && rssi2 != 0)? 1 : F;
d = d + std::abs(rssi1 - rssi2) * pv;

}
distanceMatrix(itest, itrain) = d;

}
}
return distanceMatrix;

}'
)
customModel <- ipfKnn(tr_fingerprints, tr_positions, k = 1, FUN = myD, F = 0.25)
customEstimation <- ipfEstimate(customModel, ts_fingerprints, ts_positions)

> head(customEstimation$neighbors)
[,1]

[1,] 773
[2,] 773
[3,] 776
[4,] 773
[5,] 130
[6,] 130

The previous code outputs the selected neighbors for the first 6 observations in the test data set.
As the ts_positions data frame contains the actual location of the observations, the absolute error
committed by the model is returned in the ipfEstimation object:

> head(customEstimation$errors)
[1] 5.708275 5.708275 5.708275 5.708275 3.380000 3.380000

And the mean error with this custom similarity function is:

> mean(customEstimation$errors)
[1] 3.297342

An ipfEstimation object can be used directly to plot the Empirical cumulative distribution
function of the error (function ipfPlotEcdf()) and the Probability density function (function
ipfPlotPdf()). Figures 1 and 2 show the plots obtained from the following code:

> ipfPlotEcdf(customEstimation)
> ipfPlotPdf(customEstimation)

The plotting functions included in the package are described in detail in Section Plotting
functions.

The ipfProbabilistic function.

Given the limitations of sensors accuracy (Luo and Zhan, 2014) and the irregular character of signal
propagation (Ali et al., 2010), the RSSI vector stored for a particular position cannot have completely
reliable and accurate information about the emitters signal strength. This uncertainty is generally
modeled by a normal distribution (Haeberlen et al., 2004), but to do so many readings of the signals
at the same position are needed to obtain a representative set of statistical parameters to model
each RSSI present at that position.
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Figure 2: Funtion ipfPlotEcdf. Empirical cumulative distribution function of the error. The
plot also shows the mean (red dotted line) and the median (blue dashed line) of the
errors.

Figure 3: Funtion ipfPlotPdf. Probability density function. The plot shows the normalized
histogram of the errors and its density function. The plot also shows the mean (red
dotted line) and the median (blue dashed line) of the errors.
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Figure 4: δ parameter for the probabilistic approach. This parameter sets the width of the
discretization steps.

Thus, the initial collection of RSSI observations associated to a particular point is transformed
into a pair of vectors containing the means and the standard deviations of the RSSI for each beacon,
and then the complete training data is stored as a set of statistical parameters that can be used to
infer the location of a test observation as the one that maximizes a probability function.

Let pDtrain be the new training set obtained from the previous procedure:

pDtrain “
!

pFtrain, pLtrain
)

pFtrain “
!

xλtr1 , xλtr2 , ..., xλtrg
)

pLtrain “
!

xτ tr1 , xτ tr2 , ..., xτ trg
)

where pFtrain is the set of statistical parameters obtained from the fingerprints of the training set, g
is the number of groups of fingerprints with the same associated position, and pLtrain is the set of
positions associated to each group. Each one of the g observations of the training data set is now
composed of a fingerprint with q values:

xλtri “
!

θtr1,i, θtr2,i, ..., θtrq,i
)

, i P r1, ..., gs

θtrh,i „ N pµh,i,σ2
h,iq

where µh,i and σ2
h,i are the mean and the variance, respectively, of the hth RSSI of the ith group of

original fingerprints.
Let ρtsh,j be the hth RSSI measurement of the jth test fingerprint (λtsj ), and let µh,i and σ2

h,i be
the mean and the standard deviation of the hth beacon distribution obtained for the ith position
from the training set. The probability ppiqh,j , of observing ρ

ts
h,j at the ith position is:

p
piq
h,j “

ż ρtsh,j`δ

ρts
h,j´δ

1
σh,i

?
2π

e
´
x´µh,i

2σ2
h,i dx

where δ is a parameter to allow the discretization of the normal distribution (Figure 4).

The set of all probabilities ppiqh,j , h P r1, ..., qs obtained for a given test observation j, expresses the
similarity between the observation measurement and the training data for a particular location. An
evaluation of the total similarity for every location can be computed as a function of these individual
probabilities, like its sum or its product. In the ipft package, this algorithm is implemented by
the ipfProbabilistic and ipfEstimate functions, and by default uses the sum of probabilities as

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=ipft


Contributed Research Articles 79

default operator to evaluate the similarity:

ψ
piq
j “

p
ÿ

h“1
p
piq
h,j

where ψpiqj is the similarity between the jth test observation and the ith distribution from the
training data set. The function to evaluate the similarity can be passed to ipfProbabilistic as a
parameter.

As well as the ipfKnn and ipfProximity funtions, ipfProbabilistic returns a ipfModel object
with the same data structure seen in Section The ipfKnn function, but with the difference that now
the data property returns the probabilistic parameters that define the fitted distributions for every
group of fingerprints on the training set. The clustering or grouping of the training data is performed
by default over the location data provided by the user, but this behavior can be customized by
passing a parameter with the columns over which to group the data, or by passing the group indices
directly. The ipft package implements two functions (ipfGroup() and ipfCluster()) to perform
clustering tasks. These functions are described in Section Data clustering.

The signature of the ipfProbabilistic function is:

ipfProbabilistic <- function(train_fgp, train_pos, group_cols = NULL, groups = NULL,
k = 3, FUN = sum, delta = 1, ...)

where train_fgp, train_pos and k have the same meaning and structure as described in Section
The ipfKnn function, and, given n observations in the training set:

• groups: is a numeric vector of length n, containing the index of the group assigned to each
observation of the training set. This parameter is optional.

• group_cols: is a character vector with the names of the columns to use as criteria to form
groups of fingerprints. This parameter is optional.

• FUN: is a function to estimate a similarity measure from the calculated probabilities.
• delta: is a parameter to specify the interval around the test RSSI value to take into account

when determining the probability.
• ...: are additional parameters for FUN.

The following code shows how to use the ipfProbabilistic function to obtain a probabilistic
model from the ipftrain and ipftest data sets. The default behavior of ipfProbabilistic groups
the training data attending at the position of each observation, in this case, its x and y coordinates:

> probModel <- ipfProbabilistic(tr_fingerprints, tr_positions, k = 7, delta = 10)
> head(probModel$data$positions)

X Y
1 -0.6 24.42
2 -0.6 27.42
3 0.0 0.00
4 0.4 0.00
5 0.4 3.38
6 0.4 6.81

Now the ipfModel$data property returns a list with 3 elements:

• means: a data frame with the means for every beacon and every group of fingerprints.
• sds: a data frame with the standard deviations for every beacon and every group of fingerprints.
• positions: a data frame with the position of each group of fingerprints.

To obtain an estimation from this model, the same code used in section The ipfKnn function
can be used to produce the estimated locations:

> ts_fingerprints <- ipftest[, 1:168]
> ts_positions <- ipftest[, 169:170]
> probEstimation <- ipfEstimate(probModel, ts_fingerprints, ts_positions)

and their errors and its mean value:

> mean(probEstimation$errors)
[1] 6.069336
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An alternative function can be passed to ipfProbabilistic. The following code uses the
maximum value of the probabilities as the similarity measure, and passes a parameter to remove NAs
from the data7:

> probModel <- ipfProbabilistic(tr_fingerprints, tr_positions, k = 9, delta = 10,
+ FUN = max, na.rm = TRUE)
> probEstimation <- ipfEstimate(probModel, ts_fingerprints, ts_positions)
> mean(probEstimation$errors)
[1] 8.652321

The ipfProximity function.

When the location of the access points is known, it’s possible to estimate the position of a fingerprint
using the log-distance path loss model (Seybold, J.S., 2005). Given a set of q beacons, and a
fingerprint vector λ “ tρ1, ρ2, ..., ρqu of length q, this model is expressed as:

ρh “ P1m,h ´ 10α log10 dh ´ γ, h P r1, 2, ..., qs

where ρh is the value of the received signal from the hth beacon, dh is the distance from the
observation to the beacon, P1m,h is the received power at 1 meter from the emitter, α is the path
loss exponent, and γ „ N p0,σ2

γq represents a zero mean Gaussian noise that models the random
shadowing effects of the environment.

The estimator of the distance between the emitting beacon and the position where the signal is
received is:

d̂h “ 10
ρh´P1m,h

10α

This estimation follows a log-normal distribution that is:

ln d̂h „ N pln dh,σ2
dq

where σd “ pσγ ln10q{p10αq.
The mean and the variance of the distribution are:

Erd̂hs “ dh e
σ2
d{2

Varrd̂hs “ d2
h e

σ2
d peσ

2
d ´ 1q

Note that the variance grows quadratically with the distance, making the estimation less reliable
as the distance becomes larger. Therefore, the distances estimated from different beacons will have
different accuracies. To take this into account, the algorithm estimates the position of a fingerprint
as a minimization problem of the overall squared error of the estimated distances. The objective
function to minimize is:

min
τ
J “

p
ÿ

h“1
ωhpd̂h ´ }sh ´ τ}q

2

where τ is the position that minimizes the function, that is, the estimated position, q is the number
of beacons present in the fingerprint, and ωh “ 1{V arrd̂hs are the weights.

The functions ipfProximity and ipfEstimate implement this design, and uses the Broyden-
Fletcher-Goldfard-Shano algorithm (BFGS) (Broyden, 1969; Fletcher, 1970; Goldfarb, 1970; Shanno,
1970), a quasi-Newton method, to minimize the previous function to make an estimation of the
fingerprint position. The accuracy of the estimation is strongly dependent on the reliability of the
emitters positions. When these positions are unknown, they can be estimated with the function
ipfEstimateBeaconPositions. Section Beacon position estimation details the implementation and
usage of this function. The ipfProximity function returns an ipfModel object with the data needed
by the ipfEstimate function to estimate a fingerprint position.

The signature of the ipfProximity function is:
7The ipfProbabilistic function takes into account the NAs contained in the data when using the default

function (sum), but the user needs to manage this situation when a custom function is provided. In this
example, the data is not previously transformed, is passed as it is, with NAs for not detected WAPs, to
illustrate this situation.
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ipfProximity <- function(bpos, rssirange = c(-100, 0), norssi = NA, alpha = 5,
wapPow1 = -30)

where:

• bpos: a matrix or a data frame containing the position of the beacons, in the same order as
they appear in fingerprints.

• rssirange: the range of the RSSI data in the fingerprints.
• norssi: the value used to represent a not detected beacon.
• alpha: the path loss exponent (α).
• wapPow1: a numeric vector with the received power at one meter distance from the beacon

(P1m,h). If only one value is supplied, it will be assigned to all beacons.

In the following example, the goal is to estimate the position of the 702 fingerprints included
in the test set, using the known position of the WAPs and the log-distance path loss model. The
ipfpwap dataset contains the location of 39 of the 168 wireless access points of the ipftrain and
ipftest data sets. The ipfProximity function returns a model that is used to estimate the position
of the fingerprints. As the real position of the test fingerprints is known, this information can be
also passed to the ipfEstimate function. Thus, the returned ipfEstimation object will contain,
along with the estimated positions, the associated errors:

> proxModel <- ipfProximity(ipfpwap, alpha = 4, rssirange = c(-100, 0),
+ norssi = NA, wapPow1 = -32)
> fingerprints <- ipftest[, 1:168]
> positions <- ipftest[, 169:170]
> proxEstimation <- ipfEstimate(proxModel, ipftest[, 1:168], ipftest[, 169:170])
> mean(proxEstimation$errors)
[1] 8.0444

Positioning algorithms comparison

In a classical fingerprint-based positioning system, the radio map is constructed in accordance to
the positioning algorithm to be used in the online phase. The knn algorithm follows a deterministic
approach that performs well in most cases, while the probabilistic method is based on the assumption
that there is enough training data for each particular position to obtain reliable parameters to model
a distribution for each signal at each survey location. As regards to the proximity algorithm, it is
based on two assumptions; first, the ability to realistically simulate the propagation model of the
signal, and second, the known positions of the emitter beacons. These conditions are not met in
many scenarios, where changes in occupation, for example, modify the propagation model and thus
the performance of the positioning system.

To illustrate the previous considerations, Table 1 shows the mean and the quartile errors in
meters for the implemented algorithms, computed using the dataset included in the package. In this
particular case, given the characteristics of the training data, knn performs better than the rest.

Quartile error (m)

algorithm mean error (m) 0% 25% 50% 75% 100%

knn 3.3027 0.15172 1.46891 2.61281 4.08992 19.84650

probabilistic 6.0693 0.14289 3.26988 5.63051 8.19933 17.93031

proximity 8.0444 2.49865 5.71055 7.42602 9.88427 20.12029

Table 1: Comparison of the algorithms’ accuracy on the dataset included in the package
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To compare the performance of the proposed implementation of the previous positioning algo-
rithms, we ran a benchmark test of 1000 iterations on each function, using the dataset included in
the package. The results for the model fitting functions are shown in Table 2. As it can be seen, the
proximity and knn algorithms are the fastest, as expected, since their model fitting process basically
consists in storing the training data for later processing during the estimation stage. In contrast,
the probabilistic algorith has to fit a normal distribution for each signal received at each position,
and thus, it takes longer to complete the process.

function elapsed (sec) relative

ipfKnn 0.031 1.409

ipfProbabilistic 1035.446 47065.727

ipfProximity 0.022 1.000

Table 2: Performance comparison of the model building functions

The outcomes are different when considering the results for the estimation function (Table 3).
The position estimation for the probabilistic algorithm is faster that the rest. For the knn algorithm,
the estimation process could be improved using clustering techniques to avoid comparing the test
fingerprint with all the instances in the training set. With regards to the estimation process for the
proximity algorithm, the fact that the result is computed by solving an unconstrained nonlinear
optimization through an iterative method highly penalyzes its performance.

model function elapsed (sec) relative

knn ipfEstimate 2508.079 2.998

probabilistic ipfEstimate 836.651 1.000

proximity ipfEstimate 28259.110 33.776

Table 3: Performance comparison of the estimation functions on each model

Beacon position estimation

If the actual position of the beacons is unknown, it can be estimated in many ways from the RSSI
data. Two basic methods for estimation of the beacons location have been included in the ipft
package through the ipfEstimateBeaconPositions function. The ’centroid’ and the ’weighted
centroid’ methods.

Both methods use the fingerprint data to guess the position of the beacons. Let q be the number
of beacons and τB be the set of beacons locations:

τB
“

!

νB
1,h, νB

2,h, νB
3,h

)

, h P r1, 2, ..., qs

the position of the hth beacon is given by:

τB
h “

#

n
ÿ

i“1
ωiν

tr
1,i,

n
ÿ

i“1
ωiν

tr
2,i,

n
ÿ

i“1
ωiν

tr
3,i

+
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where n is the number of fingerprints in the training set. The value of ωi is:

ωi “
1
n

for the ’centroid’ method and:

ωi “
ρtrh,i

řn
l“1 ρ

tr
h,l

for the ’weighted centroid’ method. Since the biggest weights have to be assigned to the strongest
RSSI values, the fingerprint vector values should be positive, or at least, positively correlated to
the beacon received intensity. This is checked by the function implementation so the input data is
internally transformed to a positive range when needed.

This is the signature of the ipfEstimateBeaconPositions function:

ipfEstimateBeaconPositions <- function(fingerprints, positions, method = 'wcentroid',
rssirange = c(-100, 0), norssi = NA)

where:

• fingerprints: is a data frame with the fingerprint vectors as rows.
• positions: a data frame with the position of the fingerprints.
• method: the method to use by the algorithm, either ’centroid’ or ’wcentroid’.
• rssirange: the range of the signal strength values of the fingerprints.
• norssi: the value assigned in the fingerprints to a non detected beacon.

The following code uses the function ipfEstimateBeaconPositions with the ’weighted centroid’
method to estimate the position of the wireless access points, under the assumption that this
position is unknown. Finally, the function ipfProximity estimates the positions of the first 6 test
fingerprints:

> bc_positions <- ipfEstimateBeaconPositions(ts_fingerprints, ts_positions,
method = 'wcentroid')

> proxModel <- ipfProximity(bc_positions, rssirange = c(0.1, 1),
+ norssi = NA)
> proxEstimation <- ipfEstimate(proxModel, fingerprints[1:6,],
+ positions[1:6,])
> proxEstimation$location

V1 V2
1 1.686950 12.02117
2 1.686950 12.02117
3 1.654255 10.91767
4 1.682121 10.96035
5 1.711448 10.88966
6 1.695007 10.09507

Data clustering

Clustering techniques can be used with the aim of enhancing localization performance and reducing
computational overhead (Cramariuc et al., 2016b). The ipft package includes some functions for
cluster analysis and grouping of the fingerprinting and location data. These functions can be used
to create or detect clusters based on the position of the observations, on its signal levels, or on any
other criteria that might be useful to group the data by. Performing RSSI clustering before the
positioning process groups a large number of reference points into various clusters that can be used
to perform first-level classification. This allows to assess the testing point location by using only
the fingerprints in the matched cluster rather than the whole radio map. Furthermore, given the
amplitude atenuation that building partitions cause to electromagnetic signals, clusters usually can
be related to physical spaces such as buildings, floors or even rooms.

The main function for clustering tasks is ipfCluster. The more basic usage of the function takes
the provided data and uses the k-means algorithm to classify it into k disjoint sets of observations,
by selecting a set of k cluster centers to minimize the sum of the squared distances between the
data vectors and their corresponding centers.
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The k-means clustering procedure begins with an initial set of randomly selected centers, and
iteratively tries to minimize the sum of the squared distances. This makes the algorithm very
sensitive to the arbitrary selection of initial centers, and introduces variability in the results obtained
from one execution to another. Besides, the number of clusters has to be established beforehand,
and that may be inconvenient in some scenarios.

The signature of the ipftCluster function is:

ipfCluster <- function(data, method = 'k-means', k = NULL, grid = NULL, ...)

where

• data: is a data frame with the data to cluster. When using the k-means method, the data
frame must not contain any NA values.

• method: the algorithm used to create clusters. The implemented algorithms are ’k-means’ for
k-means algorithm, ’grid’ for clustering based on spatial grid partition, and ’AP’ for affinity
propagation algorithm.

• k: a numeric parameter for k-means algorithm.
• grid: a numeric vector with the size of the grid for the grid algorithm.

When using the default k-means algorithm, the function behaves as a wrapper around the
k-means function of the stats package, and therefore, the usage can be further customized by passing
extra parameters, as the number of iterations or the algorithm to be used ("Hartigan-Wong" is the
default).

The following example will find k “ 30 clusters of similar fingerprints in the ipftrain dataset.
First the data set of fingerprints is transformed to eliminate the NA values that represent a not
detected beacon. Then, the data is passed to the ipfCluster function to find the 30 clusters using
the ’MacQueen’ algorithm:

> set.seed(1)
> cl_fingerprints <- ipfTransform(tr_fingerprints, inNoRSSI = NA, outNoRSSI = 0)
> clusterData <- ipfCluster(cl_fingerprints, k = 30, iter.max = 20,
+ algorithm = "MacQueen")
> head(clusterData$clusters)
[1] 3 3 3 3 3 3

The outcome of the ipfCluster function is a list containing the indices of the k clusters and
its centroids. Given the previous example, clusterData$centers will return the k centroids, and
clusterData$clusters will return the cluster index i P r1, .., ks for every observation in ipftrain.

The ipfCluster function includes an implementation of the affinity propagation (AP) algorithm
(Frey and Dueck, 2007) that can be used to estimate the number of distinct clusters present in the
radio map. AP does not require the number of clusters to be determined before running it. It finds
members of the input set, known as ’exemplars’, that are representative of clusters by creating the
centers and the corresponding clusters based on the constant exchanging of reading similarities
between the observations. This message-passing process continues until a good set of centers and
corresponding clusters emerges.

The following code uses AP clustering to find groups of similar RSSI vectors from the ipftrain
data set. With no further parametrization, it will classify the RSSI data into 43 distinct clusters:

> clusterData <- ipfCluster(tr_fingerprints, method = 'AP')
> dim(clusterData$centers)
[1] 43 168

Now, clusterData$centers holds the 43 ’exemplars’, those RSSI vectors from the radio map
that are representative of a cluster, and clusterData$clusters contains the indices that link every
observation of the data set with its assigned cluster.

To perform a more simple grouping based on a precise set of variables, the ipfGroup function
provides a method to group the data by column name. The function signature is:

ipfGroup <- function(data, ...)

where

• data: is a data frame with the data to group.
• ...: The variables to group the data by.
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The ipfGroup function returns a numeric vector with the same length as the number of ob-
servations contained in the data data frame, containing the index of the group assigned to each
observation. The following example groups the data according to the position of the observations,
that in the ipftrain and ipftest datasets are represented by the columns ’X’ and ’Y’:

> groups <- ipfGroup(ipftrain, X, Y)
> head(groups)
[1] 4 4 4 4 22 22
> length(unique(groups))
[1] 41

Plotting functions

Indoor positioning generally involves statistical analysis of datasets, and the ipft provides some
useful functions to produce graphs for exploring data. All the graphic functions included in the
package are built upon the ggplot2 package (Wickham, 2011), and return a ggplot object that can
be plotted or further personalized with custom labels, theme, etc.

The ipfPlotPdf and the ipfPlotEcdf have already been introduced in Section The ipfKnn
function. These functions will plot the probability density function and the empirical cumulative
distribution function, respectively. Both functions take an ipfEstimation object to produce the
plot, while the axis labels and plot tittle can be also supplied by the parameters xlab, ylab and
tittle. Their respective signatures are:

ipfPlotPdf <- function(estimation, xlab = 'error', ylab = 'density',
title = 'Probability density function')

ipfPlotEcdf <- function(estimation, xlab = 'error',
ylab = 'cumulative density of error',
title = 'Empirical cumulative density function')

The function ipfPlotLocation will produce a plot of the location of the data. The following
code shows its signature and presents an example of its use. The example calls the function with
parameter plabel set to TRUE, to plot labels identifying each location, and reverseAxis set to TRUE
to swap the axis. It also modifies the resulting object by changing the default ggplot2 theme to the
white one. The result is shown in Figure 5.

ipfPlotLocation <- function(positions, plabel = FALSE, reverseAxis = FALSE,
xlab = NULL, ylab = NULL, title = '')

library(ggplot2)
ipfPlotLocation(ipftrain[, 169:170], plabel = TRUE, reverseAxis = TRUE) + theme_bw()

The function ipfPlotEstimation plots the estimated position of the test observations based
on an ipfModel object and an ipfEstimation object, as well as the actual position (parameter
testpos), if known, and the position of the k selected fingerprints from the training set used to
guess its location (parameter showneighbors). The green dots indicate the actual position of the
observations, while the black dots indicate the estimated ones. The blue lines connect the estimated
positions with the k neighbors from which the location has been estimated, and the red arrows
connect the actual position of the fingerprint with the estimated one. The following code shows the
function signature and provides an example of its usage. The result plot is shown in Figure 6:

ipfPlotEstimation <- function(model, estimation, testpos = NULL, observations = c(1),
reverseAxis = FALSE, showneighbors = FALSE,
showLabels = FALSE, xlab = NULL, ylab = NULL,
title = '')

library(ggplot2)
probModel <- ipfProbabilistic(ipftrain[, 1:168], ipftrain[, 169:170])
probEst <- ipfEstimate(probModel, ipftest[, 1:168], ipftest[, 169:170])
ipfPlotEstimation(probModel, probEst, ipftest[, 169:170],

observations = c(61:62, 81:82), reverseAxis = TRUE,
showneighbors = TRUE, showLabels = TRUE) + theme_bw()
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Figure 5: Location of fingerprints included in the ipftrain data frame. The labels indicate the
group indices.

Figure 6: Estimated and actual positions of test observations 61, 62, 81 and 82 from the ipftrain
data set. The circles indicate the actual positions of the observations. The squares
show the estimated positions. The red arrows connect the actual positions with the
estimated ones. The dashed lines connect the estimated positions with the k neighbors
from which the location has been estimated, represented by the crosses.
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Summary

In this paper, the package ipft is presented. The main goal of the package is to provide researchers
with a set of functions to manipulate, cluster, transform, create models and make estimations using
indoor localization fingerprinting data. This package enables researchers to use a well established
set of algorithms and tools to manipulate and model RSSI fingerprint data sets, and also allows
them to customize the included algorithms with personalized parameters and functions to adapt the
working mode to their particular research interests.

In this work some of the fundamental algorithms used in indoor fingerprinting localization
techniques have been formally presented and illustrated, while detailed examples and information
about its usage and implementation have been provided.

Future work

This package is an ongoing work, and future versions will implement new algorithms and tools
with the aim of providing a base framework for researchers, and become a reference library for
fingerprinting-based indoor positioning research.

In particular, future lines of work should consider the implementation of deep learning based
algorithms. Many deep learning techniques can be exploited to try to obtain better positioning
performance. Recurrent neural networks could be used to learn not only spatial but also temporal
patterns of the received signals. Deep autoencoders can be implemented as a way to encode
fingerprints and reduce their dimensionality to a few number of significant features. Their variational
and generative extensions can be of use to better model the stochastic nature of RSSI data. These
models can also be applied to generate new training data for deep learning-based clasisifiers, increasing
the robustness of positioning systems and trying to address problems caused by heterogeneity of
devices.
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What’s for dynr: A Package for Linear
and Nonlinear Dynamic Modeling in R
by Lu Ou`, Michael D. Hunter`, and Sy-Miin Chow

Abstract Intensive longitudinal data in the behavioral sciences are often noisy, multivariate in
nature, and may involve multiple units undergoing regime switches by showing discontinuities
interspersed with continuous dynamics. Despite increasing interest in using linear and nonlinear
differential/difference equation models with regime switches, there has been a scarcity of software
packages that are fast and freely accessible. We have created an R package called dynr that can
handle a broad class of linear and nonlinear discrete- and continuous-time models, with regime-
switching properties and linear Gaussian measurement functions, in C, while maintaining simple and
easy-to-learn model specification functions in R. We present the mathematical and computational
bases used by the dynr R package, and present two illustrative examples to demonstrate the unique
features of dynr.

Introduction

The past several decades have seen a significant rise in the prevalence of intensive longitudinal data
(ILD), particularly in the social and behavioral sciences (Bolger and Laurenceau, 2013; Byrom and
Tiplady, 2010; Stone et al., 2008). Differential equation and difference equation models in the form
of state-space models have been one of the most dominant tools for representing the dynamics of
ILD in disciplines such as the physical sciences, econometrics, engineering, and ecology. In parallel,
some computational advances have been proposed in estimating regime-switching models — namely,
models positing how otherwise continuous dynamic processes may undergo discontinuous changes
through categorical but unobserved phases known as “regimes” (Kim and Nelson, 1999; Hamilton,
1989; Muthén and Asparouhov, 2011; Chow et al., 2013, 2015; Dolan, 2009). Throughout, we use the
terms regimes and classes interchangeably to denote unobserved unit- and time-specific indicator
variables that serve to group portions of repeated measures into phases with homogeneous dynamics
or measurement properties.

Examples of regime-switching phenomena from psychology includes Piaget’s (1969) theory of
human cognitive development and related extensions (Dolan et al., 2004; van der Maas and Molenaar,
1992; Hosenfeld, 1997); Kohlberg’s (Kohlberg and Kramer, 1969) conceptualization of stagewise
development in moral reasoning; Van Dijk and Van Geert’s (2007) findings on discrete shifts in early
language development; as well as Fukuda and Ishihara’s (1997) work on the discontinuous changes
in infant sleep and wakefulness rhythm during the first six months of life. Related to, but distinct
from, hidden Markov models (Elliott et al., 1995; Visser, 2007), regime-switching differential and
difference equation models allow researchers to specify targeted differential or difference functions
to describe the continuous changes that occur within regimes. Ample work exists on fitting these
models (Hamilton, 1989; Dolan, 2009; Yang and Chow, 2010; Chow et al., 2013; Chow and Zhang,
2013; Chow et al., 2015; Muthén and Asparouhov, 2011; Tong and Lim, 1980; Tiao and Tsay, 1994),
but readily accessible software suited for handling such models with ILD are lacking.

Several programs and packages exist for fitting differential equation, difference equation, and
hidden Markov models. However, each program has certain limitations that dynr (Ou et al., 2018)
aims to overcome. Speaking broadly, the largest differences between dynr and other packages are
threefold: (1) dynr readily allows for multi-unit models, (2) dynr allows for nonlinear discrete-time
and continuous-time dynamics, and (3) dynr allows for regime switching throughout every part
of the model. Many R packages exist for univariate and multivariate time series. CRAN lists
hundreds of packages in its task view for TimeSeries (Hyndman, 2016), a complete review of which
is well-beyond the scope of this work. However, generally these packages lack facilities for fitting
time series from multiple units. Likewise there are very few software utilities designed for nonlinear
dynamics or regime switching (see Table 1 for an overview). Petris and Petrone (2011) reviewed
three packages for linear state-space models: dlm (Petris, 2010, 2014), KFAS (Helske, 2017a,b), and
dse (Gilbert, 2006 or later, 2015). These are among the state of the art for state-space modeling in
R. Although KFAS can accommodate in its measurement model all densities within the exponential
family, the corresponding dynamic model is required to be linear. In addition to these R packages,
the OpenMx 2.0 release (Neale et al., 2016; Boker et al., 2017) has maximum likelihood time-varying
linear discrete- and continuous-time state-space modeling (Hunter, 2017). Likewise, the MKFM6
program (Dolan, 2005) implements methods of Harvey (1989) for time-invariant linear state-space

+These two authors contributed equally to the work.
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models. SsfPack (Koopman et al., 1999) implements the methods of Durbin and Koopman (2001)
for linear state-space modeling and Markov chain Monte Carlo methods for nonlinear modeling, but
it is primarily restricted to single-unit time series without regime switching. The ctsem package
(Driver et al., 2017b,a) has utilities for linear state-space modeling of multiple units in continuous
time, but lacks functionality for nonlinear models or regime switching. MATLAB (The MathWorks,
Inc., 2016) has numerous extensions for time series and state-space modeling (Grewal and Andrews,
2008), but lacks the ability to include regime switching and multiple units. Some R packages that
handle regime switching are only designed for hidden Markov models, for example, depmixS4 (Visser
and Speekenbrink, 2016, 2010) and RHmm (Taramasco and Bauer, 2012), while the others are only
for specific Markov-switching discrete-time time-series models, including MSwM (Sanchez-Espigares
and Lopez-Moreno, 2014) for univariate autoregressive models, MSBVAR (Brandt, 2016) for vector
autoregressive models, and MSGARCH (Ardia et al., 2017) for generalized autoregressive conditional
heteroskedasticity models. The pomp package (King et al., 2016, 2018) lists among its features hidden
Markov models and state-space models, both of which can be discrete- or continuous-time, non-
Gaussian, and nonlinear. However, pomp does not currently support regime-switching functionality
beyond the regime switching found in hidden Markov modeling. Helske (2017a) included a review of
numerous other packages for non-Gaussian time series models which generally do not involve latent
variables.

Overall, developments in fitting differential/difference equation models that evidence discontinu-
ities in dynamics are still nascent. Despite some of the above-mentioned advances in computational
algorithms, there is currently no readily available software package that allows researchers to fit
differential/difference equations with regime-switching properties. As stated previously, currently
available computational programs for dynamic modeling are limited in one of several ways: (1)
they are restricted to handling only linear models within regimes such as the package OpenMx, (2)
they can only handle very specific forms of nonlinear relations among latent variables, (3) they are
computationally slow, (4) they do not allow for stochastic qualitative shifts in the dynamics over
time, or (5) they require that the user write complex compiled code to enhance computational speed
at the cost of high user burden. Efficient and user-friendly computer software needs to be developed
to overcome these restrictions so the estimation of dynamic models can become more applicable by
researchers.

We present an R package, dynr, that allows users to fit both linear and nonlinear differential
and difference equation models with regime-switching properties. All computations are performed
quickly and efficiently in C, but are tied to a user interface in the familiar R language. Specifically,
for a very broad class of linear and nonlinear differential/difference equation models with linear
Gaussian measurement functions, dynr provides R helper functions that write appropriate C code
based on user input in R into a local (potentially temporary) C file, which is then compiled on
user’s end with a call to an R function in dynr. The C function pointers are passed to the back-end
for computation of a negative log-likelihood function, which is numerically optimized also in C using
the optimization routine SLSQP (Kraft, 1988, 1994) for parameter estimation. During the process,
the user never has to write or even see the C code that underlies dynr and yet, the computations
are performed entirely in C, with no interchanges between R and C to reduce memory copying and
optimize speed. This removes some of the barriers to dynamic modeling, opening it as a possibility to
a broader class of users, while retaining the flexibility of specifying targeted model-specific functions
in C for users wishing to pursue models that are not yet supported in the R interface.

In the remaining sections, we will first present the mathematical and computational bases of the
dynr R package, and then demonstrate the interface of dynr for modeling multivariate observations
with Gaussian measurement errors using two ILD modeling examples from the social and behavioral
sciences. Key features of the dynr package we seek to highlight include: (1) dynr fits discrete-
and continuous-time dynamic models to multivariate longitudinal/time-series data; (2) dynr deals
with dynamic models with regime-switching properties; (3) for improved speed, dynr computes and
optimizes negative log-likelihood function values in C; (4) dynr handles linear and nonlinear dynamic
models with an easy-to-use interface that includes a matrix form (for linear dynamic models only)
and formula form (for linear as well as nonlinear models); (5) dynr removes the burden on the user
to perform analytic differentiation in fitting nonlinear differential/difference equation models by
providing the user with R’s symbolic differentiation; and (6) dynr provides ready-to-present results
through LATEX equations and plots.

General modeling framework

At a basic level, our general modeling framework comprises a dynamic model and a measurement
model. The former describes the ways in which the latent variables change over time, whereas the
latter portrays the relationships between the observed variables and latent variables at a specific
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time.
The dynamic model for a particular regime in continuous-time assumes the following form:

dηiptq “ fSiptq pηiptq, t, xiptqq dt` dwiptq, (1)

where i indexes the smallest independent unit of analysis, t indexes time, ηiptq is the rˆ 1 vector
of latent variables at time t, xiptq is the vector of covariates at time t, and fSiptqp.q is the vector
of (possibly nonlinear) dynamic functions which depend on the latent regime indicator, Siptq. The
left-hand side of Equation 1, dηiptq, gives the differential of the vector of continuous latent variables,
ηiptq, and fSiptqp.q is called the drift function. Added to these deterministic changes induced by the
drift function is wiptq, an r-dimensional Wiener process. The differentials of the Wiener processes
have zero means and covariance matrix, QSiptq, called the diffusion matrix. When the dynamic
model consists only of linear functions, Equation 1 reduces to:

dηiptq “
´

αSiptq ` FSiptqηiptq ` BSiptqxiptq
¯

dt` dwiptq. (2)

where the general function fSiptqpq is replaced with a linear function consisting of (1) an intercept
term αSiptq, (2) linear dynamics in a matrix FSiptq, and (3) linear covariate regression effects BSiptq.

For discrete-time processes, we adopt a dynamic model in state-space form (Durbin and Koopman,
2001) as

ηipti,j`1q “ fSipti,jq
`

ηipti,jq, ti,j , xipti,j`1q
˘

`wipti,j`1q, (3)
now postulated to unfold at discrete time points indexed by sequential positive integers, ti,j ,
j “ 1, 2, ¨ ¨ ¨ . In this case, wipti,jq denotes a vector of Gaussian distributed process noise with
covariance matrix, QSipti,jq. We have intentionally kept notation similar between discrete- and
continuous-time models to facilitate their linkage. dynr allows for an easy transition between these
two frameworks with a binary flag. In a similar vein, we refer to fSiptqp.q in both Equations 1 and 3
broadly as the dynamic functions. The same structure as Equation 2 is possible in discrete time as
the linear analog of Equation 3,

ηipti,j`1q “ αSipti,jq ` FSipti,jqηipti,jq ` BSipti,jqxipti,j`1q `wipti,j`1q. (4)

In both the discrete- and continuous-time cases, the initial conditions for the dynamic functions
are defined explicitly to be the latent variables at a unit-specific first observed time point, ti,1,
denoted as ηipti,1q, and are specified to be normally distributed with means µη1 and covariance
matrix, Ση1 :

ηipti,1q „ N pµη1 , Ση1q . (5)

Likewise for both discrete- and continuous-time models, we assume that observations only occur
at selected, discrete time points. Thus, we have a discrete-time measurement model in which
ηipti,jq at discrete time point ti,j is indicated by a p ˆ 1 vector of manifest observations, yipti,jq.
Continuous-time processes allow unequal time intervals for these observations. Missing data may
be present under either specification. The vector of manifest observations is linked to the latent
variables as

yipti,jq “ τSipti,jq `ΛSipti,jqηipti,jq `ASipti,jqxipti,jq ` εipti,jq, εipti,jq „ N
´

0, RSipti,jq

¯

, (6)

where τSipti,jq is a pˆ 1 vector of intercepts, ASipti,jq is a matrix of regression weights for the
covariates, ΛSipti,jq is a pˆ r factor loadings matrix that links the observed variables to the latent
variables, and εipti,jq is a pˆ 1 vector of measurement errors assumed to be serially uncorrelated
over time and normally distributed with zero means and covariance matrix, RSipti,jq. Of course, all
parts of the measurement model may be regime-dependent.

The subscript Siptq in Equations 1–6 indicates that these functions and matrices may depend
on Siptq, the operating regime. To make inferences on Sipti,jq, we initialize the categorical latent
variable Sipti,jq on the first occasion and then provide a model for how Sipti,jq changes over time.
The initial regime probabilities for Sipti,1q are represented using a multinomial regression model as

Pr
`

Sipti,1q “ m|xipti,1q
˘ ∆
“ πm,i1 “

exppam ` bTmxipti,1qq
řM
k“1 exppak ` bTk xipti,1qq

, (7)

where M denotes the total number of regimes, am is the logit intercept for the mth regime and
bm is a nb ˆ 1 vector of regression slopes linked to a vector of covariates that explain between-unit
differences in initial log-odds (LO). For identification, am and all entries in bm are set to zero for
some regime, m.

We use a first-order Markov process to define how the classes change over time in a transition
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probability matrix, which contains all possible transitions from one regime to another. In the matrix,
the rows index the previous regime at time ti,j´1 and the columns index the current regime at time
ti,j . The rows of this matrix sum to 1 because the probability of transitioning from a particular
state to any other state must be 1. This transition matrix may also depend on covariates. Thus, a
multinomial logistic regression equation is assumed to govern the probabilities of transitions between
regimes as:

Pr
`

Sipti,jq “ m|Sipti,j´1q “ l, xipti,jq
˘ ∆
“ πlm,it “

exppclm ` dTlmxipti,jq
řM
k“1 exppclk ` dTlkxipti,jqq

, (8)

where πlm,it denotes unit i’s probability of transitioning from class l at time ti,j´1 to class m at
time ti,j , clm denotes the logit intercept for the transition probability, and dlm is a nd ˆ 1 vector of
logit slopes summarizing the effects of the covariates in xipti,jq on that transition probability. One
regime, again, has to be specified as the reference regime by fixing all LO parameters, including clm
and all elements in dTlm for some regime m, to zero for identification purposes.

To summarize, the model depicted in Equations 1 – 8 may take on the form of various linear or
nonlinear dynamic models in continuous or discrete time. Moreover, these dynamic models may
have regime-switching properties. Systematic between-unit differences stem primarily from changes
in the unit- and time-specific regime, Sipti,jq, and the corresponding changes in the dynamic and
measurement models over units and occasions.

Estimation procedures

In this section, we outline the procedures implemented in dynr for estimating the model shown in
Equations 1 – 8. An overview of the estimation procedures involved, the different special cases
handled by dynr, and the software packages that can handle these special cases are summarized in
Table 1.

Discrete-time models

Broadly speaking, the estimation procedures implemented in dynr are based on the Kalman filter
(KF; Kalman, 1960), its various continuous-time and nonlinear extensions, and the Kim filter
(Anderson and Moore, 1979; Bar-Shalom et al., 2001; Kim and Nelson, 1999; Yang and Chow, 2010;
Chow and Zhang, 2013; Kulikov and Kulikova, 2014; Kulikova and Kulikov, 2014; Chow et al., 2018).
The Kim filter, designed to extend the Kalman filter to handle regime-switching state-space models,
was proposed by Kim and Nelson (1999) and extended by Chow and Zhang (2013) to allow for
nonlinear dynamic functions. In dynr, models are allowed to (1) be in discrete or continuous time,
(2) be single regime or regime switching, (3) have linear or nonlinear dynamics, (4) involve stochastic
or deterministic dynamics, and (5) have one or more units. All combinations of these variations are
possible in dynr, creating 32 different kinds of models.

In the case of linear discrete-time dynamics without regime-switching, the model reduces to
a linear state-space model, and we apply the Kalman filter to estimate the latent variable values
and obtain other by-products for parameter optimization. At each time point, the KF consists
of two steps. In the first step, the dynamics are used to make a prediction for the latent state
at the next time point conditional on the observed measurements up to time ti,j´1, creating a
predicted mean η̂ipti,j |ti,j´1q “ Epηipti,jq|Yipti,j´1qq and covariance matrix for the latent state
Pipti,j |ti,j´1q “ Covrηipti,jq|Yipti,j´1qs, where Yipti,j´1q includes manifest observations from time
ti,1 up to time ti,j´1. In the second step, the prediction is updated based on the measurement
model (Equation 6) and the new measurements, yielding η̂ipti,j |ti,jq “ Epηipti,jq|Yipti,jqq and
associated covariance matrix, Pipti,j |ti,jq “ Covrηit|Yipti,jqs. Assuming that the measurement and
process noise components are normally distributed and that the measurement equation is linear,
as in Equation 6, the prediction errors, Yipti,jq ´EpYipti,jq|Yipti,jqq, are multivariate normally
distributed. Thus, these by-products of the KF can be used to construct a log-likelihood function
known as the prediction error decomposition function (De Jong, 1988; Harvey, 1989; Hamilton, 1994;
Chow et al., 2010). This log-likelihood function is optimized to yield maximum-likelihood (ML)
estimates of all the time-invariant parameters, as well as to construct information criterion (IC)
measures (Chow and Zhang, 2013; Harvey, 1989) such as the Akaike Information Criterion (AIC;
Akaike, 1973) and Bayesian Information Criterion (BIC; Schwarz, 1978). Standard errors of the
parameter estimates are obtained by taking the square root of the diagonal elements of the inverse
of the negative numerical Hessian matrix of the prediction error decomposition function at the point
of convergence.

At convergence, other products from the linear KF include updated latent states, η̂ipti,j |ti,jq,
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and the updated latent covariance matrices, Pipti,j |ti,jq. In the social and behavioral sciences, the
entire time series of observations has often been collected prior to model fitting. In such cases, we use
the fixed interval smoother (Anderson and Moore, 1979; Ansley and Kohn, 1985) to refine the latent
variable estimates, yielding the smoothed latent variable estimates, η̂ipti,j |Tiq “ Epηipti,jq|YipTiqq,
and associated covariance matrices, Pipti,j |Tiq.

When the dynamic model takes on the form of a nonlinear state-space model with differentiable
dynamic functions, the linear KF is replaced with the extended Kalman filter (EKF; Anderson and
Moore, 1979; Bar-Shalom et al., 2001) so that the nonlinear dynamic functions are “linearized” or
approximated by the first-order Taylor series. Then, a log-likelihood function can be constructed in
similar form to the linear state-space prediction error decomposition. However, the corresponding
parameter estimates are only “approximate” ML estimates due to the truncation errors in the EKF.
The feasibility of this approach has been demonstrated by Chow et al. (2007).

When a linear state-space model is used as the dynamic model but it is characterized by regime-
switching properties, dynr uses an extension of the KF, known as the Kim filter, and the related
Kim smoother (Kim and Nelson, 1999; Yang and Chow, 2010). The Kim filter combines the KF, the
Hamilton filter (Hamilton, 1989) that yields filtered state probabilities, and a collapsing procedure
to avoid the need to store M2 new values of η̂ipti,j |ti,jq

l,m ∆
“ IErηipti,jq|Sipti,j´1q “ l,Sipti,jq “

m, Yipti,jqs, as well as Pipti,j |ti,jql,m
∆
“ Covrηipti,jq|Sipti,j´1q “ l,Sipti,jq “ m, Yipti,jqs with each

additional time point. The collapsing procedure averages the estimates over the previous regime l so
only the marginal estimates, η̂ipti,j |ti,jq

m
“ Erηipti,jq|Sipti,jq “ m, Yipti,jqs), and the associated

covariance matrix, Pipti,j |ti,jqm, need to be stored at each time step. To handle cases in which
nonlinearities are present in Equation 3, a method proposed by Chow and Zhang (2013), called the
extended Kim filter, is used for estimation instead. The extended Kim filter replaces the KF portion
of the Kim filter with the EKF.

Continuous-time models

Finally, when the dynamics are in continuous time—whether composed of linear or nonlinear dynamic
functions—the resultant estimation procedures are the continuous-discrete extended Kalman filter
(CDEKF; Bar-Shalom et al., 2001; Kulikov and Kulikova, 2014; Kulikova and Kulikov, 2014). The
CDEKF handles a single-regime special case of the general model shown in Equations 1–6.

For continuous processes in the form of Equation 1, let η̂iptq “ Epηiptq|Yipti,j´1qq and Piptq “
Covrηiptq|Yipti,j´1qs denote the mean and covariance matrix of the latent variables, respectively,
at time t in the interval rti,j´1, ti,js. In the CDEKF framework, the prediction step of the KF is
replaced by solving a set of ordinary differential equations (ODEs) at time ti,j , given the initial
conditions at time ti,j´1: η̂ipti,j´1q “ η̂ipti,j´1|ti,j´1q and Pipti,j´1q “ Pipti,j´1|ti,j´1q. This
set of ODEs is obtained by only retaining the first term, fSiptq pη̂iptq, t, xiptqq, in the Taylor series
expansion of fSiptq pηiptq, t, xiptqq around the expectation η̂iptq, and is shown below:

dη̂iptq

dt
“ fSiptq pη̂iptq, t, xiptqq , (9)

dPiptq
dt

“
B fSiptq pη̂iptq, t, xiptqq

Bη̂iptq
Pptq `Pptq

˜

B fSiptq pη̂iptq, t, xiptqq
Bη̂iptq

¸J

`QSiptq, (10)

where B fSiptqpη̂iptq,t,xiptqq
Bη̂iptq

is the Jacobian matrix of fSiptq pη̂iptq, t, xiptqq with respect to η̂iptq at time
t. Kulikov and Kulikova (2014, Kulikova and Kulikov 2014) suggested solving for equations 9 and
10 using adaptive ODE solvers. We adopt an approximate numerical solution — the fourth-order
Runge-Kutta (Press et al., 2002) method — to solve Equations 9 and 10. In cases where the
hypothesized continuous-time dynamics are linear, explicit analytic solutions exist and there is no
need to use numerical solvers. However, in our simulation work, estimating known special cases
of linear stochastic differential equation models using numerical solvers yielded both comparable
estimates and computational time to estimating the same models using their known solutions. Thus,
for generality, we utilize numerical solvers in solving both linear and nonlinear differential equations
in dynr.

As in the case involving nonlinear discrete-time dynamic models, parameter estimates obtained
from optimizing the log-likelihood function constructed from by-products of the CDEKF are also
approximate ML estimates; however, the approximations now stem both from the truncation errors
from the first-order Taylor series in the CDEKF, as well as the numerical solution of Equations 9
and 10.

In cases involving regime-switching ordinary or stochastic differential equations, the algorithms
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for estimating regime-switching continuous-time models are essentially estimation procedures that
combine the CDEKF and part of the Kim filter designed to handle estimation of the regime-switching
portion of the model. The resultant procedure, referred to herein as continuous-discrete extended
Kim filter, is summarized in Chow et al. (2018).

Steps for preparing and “cooking” a model

The theme around the naming convention exploits the pronunciation of the package name: dynr is
pronounced the same as “dinner”. Therefore, the names of functions and methods are specifically
designed to relate to things done surrounding dinner, such as gathering ingredients such as the data,
preparing recipes, cooking, which involves combining ingredients according to a “modeling” recipe
and applies heat, and serving the finished product.

The general procedure for using the dynr package can be summarized in five steps. First, data
are gathered and identified with the dynr.data() function. Second, recipes are prepared. To each
part of a model there is a corresponding prep.*() recipe function. Each of these functions creates
an object of class "dynrRecipe". Each prep.*() function creates an object of class "dynr*" which
is in turn a subclass of "dynrRecipe". These recipe functions include:

1. The prep.measurement() function defines the measurement part of the model, that is, how
latent variables and exogenous covariates map onto the observed variables.

2. The prep.matrixDynamics() and prep.formulaDynamics() functions define the dynamics of
the model with either a strictly linear, matrix interface or with a possibly nonlinear formula
interface, respectively.

3. The prep.initial() function defines the initial conditions of the model. The initial conditions
are used by the recursive algorithms as the starting point for latent variable estimates. As
such, the prep.initial() function describes the initial mean vector and covariance matrix of
the latent variables, assumed to be multivariate normally distributed.

4. The prep.noise() function defines the covariance structure for both the measurement (or
observation) noise and the dynamic (or latent) noise.

5. The prep.regimes() function provides the regime switching structure of the model. Single-
regime models do not require a "dynrRegimes" object.

Once the data and recipes are prepared, the third step mixes the data and recipes together into a
model object of class "dynrModel" with the dynr.model() function. Fourth, the model is cooked
with dynr.cook() to estimate the free parameters and standard errors. Fifth and finally, results
are served in summary tables using summary(), LATEX equations using printex(), and plots of
trajectories and equations using plot(), dynr.ggplot(), autoplot(), and plotFormula().

We will demonstrate the interface of dynr using two examples: (1) a linear state-space example
with regime-switching based on Yang and Chow (2010) and (2) a regime-switching extension of the
predator-prey model (Lotka, 1925; Volterra, 1926).

Example 1: Regime-switching linear state-space model

Facial electromyography (EMG) has been used in the behavioral sciences as one possible indicator
of human emotions (Schwartz, 1975; Cacioppo and Petty, 1981; Cacioppo et al., 1986; Dimberg
et al., 2000). A time series of EMG data contains bursts of electrical activity that are typically
magnified when an individual is under emotion induction. Yang and Chow (2010) proposed us-
ing a regime-switching linear state-space model in which the individual may transition between
regimes with and without facial EMG activation. As such, heterogeneities in the dynamic pat-
terns and variance of EMG data are also accounted for through the incorporation of these latent
regimes. Model fitting was previously performed at the individual level. Data from the partici-
pant shown in Figure 1(A) are made available as part of the demonstrative examples in dynr. A
complete modeling script for this example is available as a demo in dynr and can be found by
calling file.edit(system.file("demo","RSLinearDiscreteYang.R",package = "dynr")), and a
full explanation is included as a package vignette called ‘LinearDiscreteTimeModels’.

Here we present selected segments of code to showcase how a linear state-space model with
regime-switching can be specified in dynr. The model of interest is the final model selected for this
participant by Yang and Chow (2010):

yipti,jq “ µySipti,jq ` βSipti,jqSelf-reportpti,jq ` ηipti,jq, (11)
ηipti,j`1q “ φSipti,jqηipti,jq ` ζipti,j`1q, (12)
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in which we allowed the intercept, µySipti,jq; the regression slope, βSipti,jq; and the autoregression
coefficient, φSipti,jq, to be regime-dependent. By allowing φSipti,jq to be regime-specific, we indirectly
allowed the total variance of the latent component, ηipti,j`1q, to be heterogeneous across the
deactivation and activation stages, in spite of requiring the dynamic noise variance, Epζiptq2q, to be
constant across regimes.
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Figure 1: (A) A plot of integrated electromyography (iEMG) and self–report affect ratings for one
participant with a time interval of 0.2 seconds between two adjacent observations. Self–
report = self–report affect ratings; iEMG = integrated EMG signals. (B) An automatic
plot of the smoothed state estimates for the regime-switching linear state-space model.

The first step in dynr modeling is to structure the data. This is done with the dynr.data()
function.

require("dynr")
data("EMG")
EMGdata <- dynr.data(EMG, id = 'id', time = 'time',
observed = 'iEMG', covariates = 'SelfReport')

The first argument of this function is either a "ts" class object of single-unit time series or a
"data.frame" object structured in a long relational format with different measurement occasions
from the same unit appearing as different rows in the data frame. When a "ts" class object is
passed to dynr.data(), no other inputs are needed. Otherwise, the id argument needs the name
of the variable that distinguishes units, allowing multiple replicated time series to be analyzed
together. The time argument needs the name of the variable that indicates unit-specific measurement
occasions. If a discrete-time model is desired, the time variable should contain sequential positive
integers. If the measurement occasions for a unit are sequential but not consecutive, NAs will be
inserted automatically to create equally spaced data. If a continuous-time model is being specified,
the time variable can contain unit-specific increasing sequences of irregularly spaced real numbers.
In this particular example, a discrete-time model is used. The observed and covariates arguments
are vectors of the names of the observed variables and covariates in the data.

The next step in dynr modeling is to build the recipes for the various parts of a model. The
recipes are created with prep.*() functions.

The dynamic functions in Equations 1 and 3, can be specified using either prep.formulaDynamics()
or prep.matrixDynamics(). In this example, the dynamics as in Equation 12 are linear and discrete-
time, so we can describe the dynamics in terms of Equation 4 as

ηipti,j`1q “ 0
ljhn

αSipti,jq

`φSipti,jq
l jh n

FSipti,jq

ηipti,jq ` 0
ljhn

BSipti,jq

xipti,jq ` ζipti,j`1q
l jh n

wipti,j`1q

. (13)

The prep.matrixDynamics() function allows the user to specify the structures of the intercept vector
αSipti,jq, through values.int and params.int; the covariate regression matrix BSipti,jq, through
values.exo and params.exo; and the one-step-ahead transition matrix FSipti,jq, through values.dyn
and params.dyn. We illustrate this function below. The values.dyn argument gives a list of matrices
for the starting values of FSipti,jq. The params.dyn argument names the free parameters. These
are the φSt in Equation 12. The isContinuousTime argument switches between continuous-time
modeling and discrete-time modeling. The arguments corresponding to the intercepts (values.int
and params.int) and the covariate effects (values.exo and params.exo) are omitted to leave these
matrices as zeros.

recDyn <- prep.matrixDynamics(values.dyn = list(matrix(0.1, 1, 1), matrix(0.5, 1, 1)),
params.dyn = list(matrix('phi_1', 1, 1), matrix('phi_2', 1, 1)),
isContinuousTime = FALSE)
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The noise recipe is created with prep.noise(). The noise recipe is stored in the recNoise object,
an abbreviation for “recipe noise”. The latent noise covariance matrix is a 1ˆ 1 matrix with a free
parameter called dynNoise, short for “dynamic noise”. The observed noise covariance matrix is also
a 1ˆ 1 matrix, but has the measurement noise variance fixed to zero using the special keyword
fixed.

recNoise <- prep.noise(values.latent = matrix(1, 1, 1),
params.latent = matrix('dynNoise', 1, 1),
values.observed = matrix(0, 1, 1), params.observed = matrix('fixed', 1, 1))

The prep.regimes() function specifies the structure of the regime time evolution shown in
Equation 8. In this example, we do not have any covariates in the regime-switching (RS) functions.
The problem then reduces to the specification of a 2 ˆ 2 transition log-odds (LO) matrix. We
provide starting values that imply persisting in the same regime is more likely than transitioning
to another regime, and set the second regime LO to zero for identification, making it the reference
regime. The first column of the transition LO matrix, is populated with the starting values of: (1)
c11 “ 0.7, corresponding to expp0.7q “ 2.01 times greater LO of staying within the Deactivated
regime as transitioning to the Activated regime; and (2) c21 “ ´1, corresponding to expp´1q “
0.37 times lower LO of transitioning to the Deactivated regime.

recReg <- prep.regimes(values = matrix(c(0.7, -1, 0, 0), 2, 2),
params = matrix(c('c11', 'c21', 'fixed', 'fixed'), 2, 2))

In essence, the above code creates the following transition probability matrix:

¨

˝

Deactivatedti,j`1 Activatedti,j`1

Deactivatedti,j
exppc11q

exppc11q`expp0q
expp0q

exppc11q`expp0q

Activatedti,j
exppc21q

exppc21q`expp0q
expp0q

exppc21q`expp0q

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

c11“.7 c12“´1

“

ˆ

Dti,j`1 Ati,j`1

Dti,j 0.668 0.332
Ati,j 0.269 0.731

˙

.

(14)
In many situations it is useful to specify the structure of the transition LO matrix in deviation

form — that is, to express the LO intercepts in all but the reference regime as deviations from
the LO intercept in the reference regime. The package vignette illustrates this by invoking the
deviation argument of prep.regimes().

After the recipes for all parts of the model are defined, the dynr.model() function creates
the model and stores it in the "dynrModel" object. Each recipe object created by prep.*() and
the data prepared by dynr.data() are given to this function. The dynr.model() function always
requires dynamics, measurement, noise, initial, and data. When there are multiple regimes,
the regimes argument should also be provided. When parameters are subject to transformation
functions, a transform argument can be added, which will be discussed in the second example. The
dynr.model() function combines information from the recipes and data to write the text for a C
function. This text is written to a file optionally named by the outfile argument, so that the user
can inspect or modify the generated C code. The default outfile is a temporary file returned by
tempfile().

rsmod <- dynr.model(dynamics = recDyn, measurement = recMeas,
noise = recNoise, initial = recIni, regimes = recReg,
data = EMGdata, outfile = "RSLinearDiscreteYang.c")

yum <- dynr.cook(rsmod)

In the last line above, the model is “cooked” with the dynr.cook() function to estimate the free
parameters and their standard errors. When cooking, the C code in the outfile is compiled
and dynamically linked to the rest of the compiled dynr code. If the C functions have previously
been compiled then the user can prevent re-compilation by setting compileLib = FALSE in the
"dynrModel" object given to dynr.cook(). After compilation the C code is executed to optimize
the free parameters while calling the dynamically linked C functions that were created from the
user-specified recipes. In this way, dynr provides an R interface for dynamical systems modeling
while maintaining much of the speed associated with C.

The final step associated with dynr modeling is serving results (a "dynrCook" object) after
the model has been cooked. To this end, several standard, popular S3 methods are defined for
the "dynrCook" class, including coef(), confint(), deviance(), logLik(), AIC(), BIC(), names(),
nobs(), summary(), and vcov(). These methods perform the same tasks as their counterparts for
regression models in R. Additionally, dynr provides a few other model-serving functions illustrated
here: summary(), plot(), dynr.ggplot() (or autoplot()), plotFormula(), and printex(). The
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summary() method provides a table of free parameter names, estimates, standard errors, t-values,
and Wald-type confidence intervals.

summary(yum)

Coefficients:
Estimate Std. Error t value ci.lower ci.upper Pr(>|t|)

phi_1 0.26608 0.04953 5.372 0.16900 0.36315 5.33e-08 ***
phi_2 0.47395 0.04425 10.711 0.38722 0.56068 < 2e-16 ***
beta_2 0.46449 0.04394 10.571 0.37837 0.55061 < 2e-16 ***
mu_1 4.55354 0.02782 163.658 4.49901 4.60807 < 2e-16 ***
mu_2 4.74770 0.14250 33.318 4.46842 5.02699 < 2e-16 ***
dynNoise 0.20896 0.01129 18.504 0.18683 0.23110 < 2e-16 ***
c11 5.50199 0.70939 7.756 4.11160 6.89237 < 2e-16 ***
c21 -5.16170 1.00424 -5.140 -7.12998 -3.19342 1.79e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

-2 log-likelihood value at convergence = 1002.52
AIC = 1018.52
BIC = 1054.87

These parameter estimates, standard errors, and likelihood values closely mirror those reported
in Yang and Chow (2010, p. 755-756). In the Deactivated regime, the autoregressive parameter
(phi_1) and the intercept (mu_1) are lower than those in the Activated regime. So, neighboring EMG
measurements are more closely related in the Activated regime and the overall level is slightly higher.
This matches very well with the idea that the Activated regime consists of bursts of facial muscular
activities and an elevated emotional state. Similarly, the effect of the self-reported emotional level is
positive in the Activated regime and fixed to zero in the Deactivated regime, as the freely estimated
value was close to zero with a nonsignificant t-value. So, in the Deactivated regime the self-reported
emotional level and the facial muscular activity decouple. The dynamic noise parameter gives a
sense of the size of the intrinsic unmeasured disturbances that act on the system. These forces
perturb the system with a typical magnitude of a little less than half a point on the EMG scale seen
in Figure 1(A). Lastly, the log-odds parameters (c11 and c21) can be turned into the transition
probability matrix yielding

ˆ

Deactivatedti,j`1 Activatedti,j`1

Deactivatedti,j 0.9959 0.0041
Activatedti,j 0.0057 0.9943

˙

. (15)

which implies that both the Deactivated and the Activated regimes are strongly persistent with high
self-transistion probabilities. Next we consider some of the visualization options for serving a model.

The default plot() method is used to visualize the time series in a collection of plots: (1) a plot
of time series created by dynr.ggplot() (or autoplot()), (2) a histogram of predicted regimes, and
(3) a plot of equations created by plotFormula().

plot(yum, dynrModel = rsmod, style = 1, textsize = 5)

The dynr.ggplot() (or autoplot()) method creates a plot of the smoothed state estimates with
the predicted regimes. It needs the result object and model object as inputs, and allows for plotting
(1) user-selected smoothed state variables by default or (2) user-selected observed-versus-predicted
values by setting style = 2. An illustrative plot is created from the code below and shown in
Figure 1(B).

dynr.ggplot(yum, dynrModel = rsmod, style = 1,
names.regime = c("Deactivated", "Activated"),
title = "(B) Results from RS-AR model", numSubjDemo = 1,
shape.values = 1, text = element_text(size = 24), is.bw = TRUE)

This shows that for the first 99 seconds the participant is in the Deactivated regime, with their
latent state ηipti,j`1q varying according to the lower autocorrelation model and having no relation
to the variation in the self-reported emotional data in Figure 1(A). Then the participant switches
to the Activated regime and their latent state becomes more strongly autocorrelated and coupled
to the self-report data. There follows a brief period in the Deactivated regime around time=130
seconds with a subsequent return to the Activated regime for the remainder of the observation. Of
course, note that Figure 1(A) shows the observed EMG data whereas Figure 1(B) shows the latent
state which is related to the observed data by Equation 11.
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The plotFormula() method can be used to display model equations on R plots. Equations
can be viewed in several ways with different inputs to the ParameterAs argument: (1) with free
parameter names, for example, returned by names(rsmod), as illustrated in Figure 2(A); (2) with
parameter starting values; or (3) after estimation with fitted parameter values, for example, returned
by coef(yum), as in Figure 2(B). The plotFormula() method does not require the user to install
LATEX facilities and compile LATEX code in a separate step, and hence are convenient to use. To
maximize the readability of the equations, it is only shown here using equations for the dynamic and
measurement models, which can be obtained by respectively setting the printDyn and printMeas
arguments to true.

plotFormula(dynrModel = rsmod, ParameterAs = names(rsmod),
printDyn = TRUE, printMeas = TRUE) + ggtitle("(A)") +
theme(plot.title = element_text(hjust = 0.5, vjust = 0.01, size = 16))

plotFormula(dynrModel = rsmod, ParameterAs = coef(yum),
printDyn = TRUE, printMeas = TRUE) + ggtitle("(B)") +
theme(plot.title = element_text(hjust = 0.5, vjust = 0.01, size = 16))

We can see that the equations in Figure 2(A) are precisely those from Equations 11 and 12 which
we used to define the model except that we have fixed β1 to zero. If these equations did not match,
it may indicate that we made a mistake in our model specification.

Dynamic Model

Regime 1:

η(t+1) = φ1 × η(t) + w1(t)

Regime 2:

η(t+1) = φ2 × η(t) + w1(t)

Measurement Model

Regime 1:

iEMG = 0 × SelfReport + µ1 + η

Regime 2:

iEMG = β2 × SelfReport + µ2 + η

(A)

Dynamic Model

Regime 1:

η(t+1) = 0.27 × η(t) + w1(t)

Regime 2:

η(t+1) = 0.47 × η(t) + w1(t)

Measurement Model

Regime 1:

iEMG = 0 × SelfReport + 4.55 + η

Regime 2:

iEMG = 0.46 × SelfReport + 4.75 + η

(B)

Figure 2: Automatic plots of model equations with (A) parameter names and (B) estimated
parameters for the regime-switching linear state-space model.

Finally, for LATEX users, the printex() method helps generate equations for the model in
LATEX form.

printex(rsmod, ParameterAs = names(rsmod), printInit = TRUE, printRS = TRUE,
outFile = "RSLinearDiscreteYang.tex")

The ParameterAs argument functions the same as that in the plotFormula() method. Here we
have specified to use the names of the free parameters. In this case, the initial conditions and
regime-switching functions are included in the equations, as indicated by the printInit and printRS
arguments being set to TRUE. The LATEX code for the equations is written to ‘RSLinearDiscreteYang.tex’,
which the user can then work with and modify as they wish. Of course, this function is designed
more as a convenience feature for users who already use LATEX and requires all the LATEX-related
facilities on the user’s computer.

This example has used real EMG data from a previous study (Yang and Chow, 2010) to illustrate
many parts of the user-interface for dynr. Of particular note are the various “serving” functions
which allow users to both verify their model and examine their results in presentation-ready formats.
In the next example, we will use simulated data to further illustrate features of dynr, especially the
nonlinear formula interface for dynamics.

Example 2: Nonlinear continuous-time models

In the study of human dynamics many processes are characterized by changes that are dependent
on interactions with other processes producing dynamics with nonlinearities. Nonlinear ordinary
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differential equations have been used to model, among other phenomena, ovulatory regulation (Boker
et al., 2014), circadian rhythms (Brown and Luithardt, 1999), cerebral development (Thatcher,
1998), substance use (Boker and Graham, 1998), cognitive aging (Chow and Nesselroade, 2004),
parent-child interactions (Thomas and Martin, 1976), couple dynamics (Chow et al., 2007; Gottman,
2002), and sudden transitions in attitudes (van der Maas et al., 2003).

Single-regime nonlinear continuous-time model

In addition to the linear/matrix dynamics interface, dynr also provides users with a formula
interface to accommodate nonlinear as well as linear dynamic functions. To illustrate the use of the
formula interface in dynr, we use a benchmark nonlinear ordinary differential equation model, the
predator-prey model (Lotka, 1925; Volterra, 1926; Hofbauer and Sigmund, 1988). One can find the
complete demo scripts in dynr, using file.edit(system.file("demo","NonlinearODE.R",package
= "dynr")) and file.edit(system.file("demo","RSNonlinearODE.R",package = "dynr")), and
related explanation in the package vignette ‘NonlinearContinuousTimeModels’.

The predator-prey model is a classic model for representing the nonlinear dynamics of interacting
populations. The most often cited behavior of the predator-prey system while in a particular
parameter range is ongoing nonlinear oscillations in the predator and prey populations with a phase
lag between them. The utility of the predator-prey model extends far beyond the area of population
dynamics. Direct applications or extensions of this predator-prey system include the epidemic
models of the onset of social activities (EMOSA) used to study the spread of smoking, drinking,
delinquency, and sexual behaviors among adolescents (Rodgers and Rowe, 1993; Rodgers et al.,
1998); the cognitive aging model (Chow and Nesselroade, 2004); and the model of couples’ affect
dynamics (Chow et al., 2007).

Written as a differential equation, the predator-prey model is expressed as:

dppreyptqq “ pa preyptq ´ b preyptq predatorptqq dt, (16)
dppredatorptqq “ p´c predatorptq ` d preyptq predatorptqq dt, (17)

where the parameters a, b, c, d are all nonnegative. These equations make up the continuous-time
dynamics, Equation 1, for this system. Examining the prey equation (Equation 16), the prey
population would increase exponentially without bound if there were zero predators. Similarly,
examining the predator equation (Equation 17), if the prey population was zero, then the predator
population would decrease exponentially to zero. For demonstration purposes, we have included
with the dynr package a set of simulated data generated with true parameter values: a “ 2, b “
1, c “ 4, d “ 1, e “ .25, f “ 5.

Using the formula interface in dynr, which supports all native mathematical functions available
in R, the predator-prey model can be specified as:

preyFormula <- prey ~ a * prey - b * prey * predator
predFormula <- predator ~ - c * predator + d * prey * predator
ppFormula <- list(preyFormula, predFormula)
ppDynamics <- prep.formulaDynamics(formula = ppFormula,
startval = c(a = 2.1, c = 0.8, b = 1.9, d = 1.1), isContinuousTime = TRUE)

The first argument of the prep.formulaDynamics() function is formula. More specifically, this is a
list of formulas. Each element in the list is a single, univariate, formula that defines a differential
(if isContinuousTime “ TRUE) or difference (if isContinuousTime “ FALSE) equation. There
should be one formula for every latent variable, in the order in which the latent variables are
specified by using the state.names argument in prep.measurement(). The left-hand side of each
formula is either the one-step-ahead projection or the differential of the latent variable: namely,
the left-hand side of Equations 1 and 3, respectively. In both cases, users only need to specify the
names of the latent variables that match the specification in prep.measurement() on the left-hand
side of the formulas. The right-hand side of each formula gives a linear or nonlinear function
that may involve free or fixed parameters, numerical constants, exogenous covariates, and other
arithmetic/mathematical functions that define the dynamics of the latent variables. The startval
argument is a named vector giving the names of the free parameters and their starting values.
Just as in the prep.matrixDynamics() function, the isContinuousTime argument is a binary flag
that switches between continuous- and discrete-time modeling. The rest of dynr code for fitting
the predator-prey model can be specified in similar ways to the code shown in Example 1 and is
omitted here for space constraints. A fully functional demo script can be found in dynr, using
file.edit(system.file("demo","NonlinearODE.R",package = "dynr")), and further comments
are included as a package vignette.
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With the formula interface, dynr uses the D() function to symbolically differentiate the for-
mulas provided. Hence, dynr uses the analytic Jacobian of the dynamics in its extended Kalman
filter, greatly increasing its speed and accuracy. The D() function can handle the differentiation of
functions involving parentheses, arithmetic operators, for instance, `, ´, ˚, {, and ˆ, and numer-
ous mathematical functions such as exp(), log(), sin(), cos(), tan(), sinh(), cosh(), sqrt(),
pnorm(), dnorm(), asin(), acos(), atan(), and gamma(). Thus, for a very large class of nonlinear
functions, the user is spared from supplying the analytic Jacobian of the dynamic functions. However,
symbolic differentiation will not work for all formulas. For instance, formulas involving the absolute
value function cannot be symbolically differentiated. For formulas that cannot be differentiated
symbolically, the user must provide the analytic first derivatives through the jacobian argument.
One can use file.edit(system.file("demo","RSNonlinearDiscrete.R",package = "dynr")) to
find an example. An explanation is also included as a package vignette.

Regime-switching extension

Just as with the prep.matrixDynamics(), the formula interface also allows for regime-switching
functionality. Consider an extension of the classical predator-prey model that lets the prey and
predator interaction follow seasonal patterns. In the Summer regime, we have the predator-prey
model as previously described, but in the Winter regime we now have a predator-prey model
characterized by within-species competition and limiting growth/decay. In this competitive predator-
prey model, the two populations do not grow/decline exponentially without bound in absence of the
other, but rather, they grow logistically up to some finite carrying capacity. This logistic growth
adds to the between-species interactions with the other population. This model can be specified as:

cPreyF <- prey ~ a * prey - e * prey ^ 2 - b * prey * predator
cPredF <- predator ~ f * predator - c * predator ^ 2 + d * prey * predator
cpFormula <- list(cPreyF, cPredF)

where the predator and prey equations are combined and supplied as a list.
To specify the regime-switching predator-prey model, we combine the classical predator-prey

model and the predator-prey model with within-species competition into a list of lists. Then we
provide this list to the usual prep.formulaDynamics() function as the formula argument.

rsFormula <- list(ppFormula, cpFormula)
dynm <- prep.formulaDynamics(formula = rsFormula,

startval = c(a = 2.1, c = 3, b = 1.2, d = 1.2, e = 1, f = 2),
isContinuousTime = TRUE)

Many dynamic models only lead to permissible values in particular parameter ranges. As such,
we often need to add box constraints to model parameters. This is accomplished by setting bounds
on the parameters as shown in the next section. An alternative in dynr is to apply unconstrained
optimization to a transformed set of parameters. This latter strategy uses prep.tfun(). For
example, the a – f parameters should take on positive values. Thus, we may choose to optimize
their log-transformed values and exponentiate the unconstrained parameter values during likelihood
evaluations to ensure that their values are always positive. To achieve this, we supply a list of
transformation formulas to the formula.trans argument in the prep.tfun() function as follows:

tformList <- list(a ~ exp(a), b ~ exp(b), c ~ exp(c),
d ~ exp(d), e ~ exp(e), f ~ exp(f))

tformInvList <- list(a ~ log(a), b ~ log(b), c ~ log(c),
d ~ log(d), e ~ log(e), f ~ log(f))

trans <- prep.tfun(formula.trans = tformList, formula.inv = tformInvList)

In cases involving transformation functions, the delta method is used to yield standard error estimates
for the parameters on the constrained scales. If the starting values of certain parameters are indicated
on a constrained scale, the formula.inv argument should then give a list of inverse transformation
formulas.

In our hypothetical example, we have discussed how the weather condition may govern the
regime switching processes. Specifically, we assume a covariate cond (with a value of 0 indicating
the warmer weather and 1 indicating the colder weather) has an effect on the regime-switching
transition probabilities. Then, we can specify the logistic regression model by

regimes <- prep.regimes(
values = matrix(c(0, 0, -1, 1.5, 0, 0, -1, 1.5), nrow = 2, ncol = 4, byrow = TRUE),
params = matrix(c("fixed", "fixed", "int_1", "slp_1",
"fixed", "fixed", "int_2", "slp_2"), nrow = 2, ncol = 4, byrow = TRUE),
covariates = "cond")
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In essence, the above code creates a matrix in the following form:
¨

˚

˚

˚

˚

˚

˝

c11 “ 0 d11 “ 0 c12 “ int1 “ ´1 d12 “ slp1 “ 1.5

c21 “ 0 d21 “ 0 c22 “ int2 “ ´1 d22 “ slp2 “ 1.5

˛

‹

‹

‹

‹

‹

‚

, (18)

which in turn creates the following transition probability matrix:

¨

˝

Summerti,j`1 Winterti,j`1

Summerti,j
expp0`0ˆcondq

expp0`0ˆcondq`exppint1`slp1ˆcondq
exppint1`slp1ˆcondq

expp0`0ˆcondq`exppint1`slp1ˆcondq

Winterti,j
expp0`0ˆcondq

expp0`0ˆcondq`exppint2`slp2ˆcondq
exppint2`slp2ˆcondq

expp0q`exppint2`slp2ˆcondq

˛

‚. (19)

Here we consider the Summer regime as the reference regime, so the first two columns of the transition
LO matrix (Equation 18) are fixed at zero. The third and fourth columns of the transition LO matrix
respectively correspond to the regression intercepts and slopes associated with the covariate, whose
starting values are respectively set at ´1 and 1.5. With this set of starting values, the transition
probability from any regime to the Summer regime is 0.73 when cond “ 0, and 0.38 when cond “ 1.
The negative intercept implies that in warmer days (cond “ 0), there is a greater chance of the
process transitioning into the Summer regime, and the regression slope greater than the absolute
value of the intercept suggests that in colder days (cond “ 1), the transition into the Winter regime
is more likely.

We fitted the specified model to the simulated data. Figure 3 is created from the dynr.ggplot()
(or autoplot()) method with style = 2, and shows that the predicted trajectories match with the
observed values and alternate between different regimes.

9

0 10 20 30

0

2

4

6

8

time

V
al

ue
s

regime Summer Winter variable   x.observed x.predicted y.observed y.predicted

Figure 3: Built-in plotting feature for the predicted trajectories with observed values for the
regime-switching nonlinear ODE model.

Other miscellaneous control options

In parameter estimation, dynr utilizes a sequential quadratic programming algorithm (Kraft, 1988,
1994) available from an open-source library for nonlinear optimization — NLOPT (Johnson, 2008).
By default, we do not set boundaries on the free parameters. However, one can set the upper and
lower bounds by respectively modifying the ub and lb slots of the model object. An example is
given below to constrain the int_1 and int_2 parameters to be between ´10 and 0, while limiting
slp_1 and slp_2 to be between 0 to 10:

model2.2$ub[ c("int_1", "int_2", "slp_1", "slp_2") ] <- c(0, 0, 10, 10)
model2.2$lb[ c("int_1", "int_2", "slp_1", "slp_2") ] <- c(-10, -10, 0, 0)

Similarly, the stopping criteria of the optimization can be modified through the options slot of the
"dynrModel" object, which is a list consisting of the relative tolerance on optimization parameters
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xtol_rel; the stopping threshold of the objective value stopval; the absolute and relative tolerance
on function value, ftol_abs and ftol_rel; the maximum number of function evaluations maxeval;
and the maximum optimization time maxtime.

If there is no need to re-compile the C functions in a call to dynr.cook(), the user can change the
compileLib slot of the "dynrModel" object from default true to false. The output of the estimation
function, dynr.cook(), is an object of class "dynrCook". It not only includes estimation results
displayed with summary(), but also contains information on posterior regime probabilities in the
pr_t_given_T slot, smoothed state estimates η̂ipti,j |Tiq “ Epηipti,jq|YipTiqq of the latent variables
in the eta_smooth_final slot, and smoothed error covariance matrices Pipti,j |Tiq of the latent
variables in the error_cov_smooth_final slot, at all available time points. They can be retrieved
by using the $ operator.

Discussion and conclusions

This paper has introduced the dynr package that attempts to carefully balance intuitive usability with
flexibility in the specification to satisfy the need of the broad social and behavioral science community.
dynr offers linear and nonlinear time series methods for latent variables in both the traditional
discrete-time models and in the hybrid continuous-time models that have discrete measurements
with continuous underlying processes. Moreover, regime-switching can be layered on top of any
aspect of these models.

Even though dynr can specify some models that other programs cannot, all of the features of
other programs that exist for time series modeling are not subsets of dynr. For example, KFAS
allows for nonlinear measurement (Helske, 2017a) which is not currently possible in dynr. Moreover,
SsfPack has nonlinear measurement capabilities along with many MCMC methods that dynr lacks
(Koopman et al., 1999). The pomp package has also implemented several algorithms absent in dynr,
including MCMC methods, Bayesian methods, particle filtering, as well as ensemble filtering and
forecasting. However, to our knowledge, no other software allows for regime-switching nonlinear
dynamics with latent variables.

The dynr package highlighted the use of recipe objects to prepare components of the model.
The recipes divide the full model into meaningful conceptual chunks for ease of specification and
interactive inspection. The recipes seamlessly handle various bookkeeping tasks like the creation
and management of the free parameter vector and how free parameters map onto model components.
This is in contrast to several other packages offload this management on the user, often writing their
own functions in the process. In addition to sparing the user sundry bothersome tasks, the recipes
allow for interactive error checking and model verification using standard commands that should
already be familiar to users of R. The contents of each recipe can be printed in the R console,
letting the user verify that the recipe they intended to specify was actually created. Along this vein,
plotFormula() allows the user to see nicely formatted equations for their models directly in R, and
printex() outputs LATEX equations for their models which can be typeset immediately or modified
for inclusion in manuscripts, presentations, and reports.

The dynr package critically depends on several data structures and methods from the GNU
Scientific Library (GSL; GSL Project Contributors, 2010) for fast and accurate scientific computing,
and consequently requires the user to install GSL on their system. We wanted to allow users the
flexibility of specifying their own models, while not sacrificing computational speed that would be
influenced by frequent interchanges between R and C functions. Thus, dynr requires that users
generate and compile the C code “on the fly”, and pass the C function pointers to the back-end
directly. Hence, dynr has a nontrivial set-up cost as compared to other R packages. However,
to alleviate this burden we have written an installation and configuration guide as a vignette
labeled ‘InstallationGuideForUsers’. We generally find set-up of dynr to be similar to that of other
packages that allow “on the fly” compilation and ready C interfaces like Rcpp (Eddelbuettel, 2013;
Eddelbuettel et al., 2018) and RcppGSL (Eddelbuettel and Francois, 2018).

Alternative computational strategies tended to worsen performance, increase user burden for
model specification, or simply trade one difficult configuration task for another. In dynr the user
only needs to specify a possibly nonlinear model of interest using standard R syntax. By contrast
with Rcpp/RcppGSL the user would have to write C functions and hand differentiate their nonlinear
dynamics functions: an error-prone process with a much steeper learning curve that acts as a deterrent
to adoption, particularly to many researchers in the social and behavioral sciences. Additionally,
we have found that automatic generation of a model specification file coded in C provides more
sophisticated users with the opportunity to define modeling variations directly in C that are not
already supported by the R interface functions.

Currently dynr only allows nonlinearity in the dynamics but not the measurement model to
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capitalize on the availability of a Gaussian approximate log-likelihood function for fast parameter
estimation. Future extensions will incorporate Markov chain Monte Carlo (MCMC) techniques
(Chow et al., 2011; Durbin and Koopman, 2001; Kim and Nelson, 1999; Lu et al., 2015) and
pertinent frequentist-based estimation techniques (Fahrmeir and Tutz, 1994) to accommodate a
broader class of measurement models consisting of nonlinear functions and non-Gaussian densities.
In addition, several other extensions are being pursued and implemented in the dynr package.
For example, dynr currently handles missingness in the dependent variables via full-information
maximum likelihood but does not allow for missingness in the covariates. Future plans include
interfacing dynr with R packages such as mice (van Buuren and Groothuis-Oudshoorn, 2011, 2017)
to handle missingness in the covariates and/or dependent variables via multiple imputation. Further,
models with nonlinearities at the dynamic level currently are not supported by well-established fit
indices. Although dynr provides AIC (Akaike, 1973) and BIC (Schwarz, 1978) for model comparison
purposes, the tenability of using these criteria when nonlinearities at the dynamic level are present
and the optimized log-likelihood function involves approximations and truncation errors is yet
to be investigated. Finally, even though difference and differential equations have served as and
remain one of the most popular modeling tools across myriad scientific disciplines, their use is still
nascent in many social and behavioral sciences. Tools to aid model developments and explorations
are important extensions to enable and promote modeling efforts utilizing difference/differential
equations (Chow et al., 2016; Ramsay et al., 2009). Fortunately, several existing packages in R offer
many of the functionalities to support these modeling endeavors and may be used in conjunction or
interfaced in the future with dynr for these purposes.
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Si
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Linear Linear state-space model Linear SDE/ODE

KF CDEKF

dynr, OpenMx, pomp, KFAS, dlm, dse, dynr, pomp, OpenMx, ctsem,

MKFM6, SsfPack, MATLAB MATLAB

Nonlinear Nonlinear state-space model Nonlinear SDE/ODE

EKF CDEKF

dynr, pomp, SsfPack, MATLAB dynr, pomp, MATLAB

M
ul
tip

le
-r
eg
im

e

Linear RS state-space model RS SDE/ODE

Kim filter CD Kim filter

dynr, dynr only

GAUSS code, MATLAB

Nonlinear RS nonlinear state-space model RS nonlinear SDE/ODE

Extended Kim filter CD extended Kim filter

dynr only dynr only

Table 1: Models, algorithms, and software for the framework of regime-switching (non)linear
state space models in discrete- and continuous-time. SDE = Stochastic Differential
Equation, ODE = Ordinary Differential Equation, CD = Continuous-Discrete, RS =
Regime-Switching, KF = Kalman filter (Kalman, 1960), EKF = Extended Kalman filter
(Anderson and Moore, 1979; Bar-Shalom et al., 2001), Kim filter = KF + Hamilton filter
+ Collapsing procedure (Kim and Nelson, 1999). Extended Kim filter was proposed by
Chow and Zhang (2013); the CD extended Kim filter is proposed by Chow et al. (2018).
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RobustGaSP: Robust Gaussian
Stochastic Process Emulation in R
by Mengyang Gu, Jesus Palomo, and James O. Berger

Abstract Gaussian stochastic process (GaSP) emulation is a powerful tool for approximating
computationally intensive computer models. However, estimation of parameters in the GaSP
emulator is a challenging task. No closed-form estimator is available and many numerical problems
arise with standard estimates, e.g., the maximum likelihood estimator. In this package, we implement
a marginal posterior mode estimator, for special priors and parameterizations. This estimation
method that meets the robust parameter estimation criteria was discussed in Gu et al. (2018);
mathematical reasons are provided therein to explain why robust parameter estimation can greatly
improve predictive performance of the emulator. In addition, inert inputs (inputs that almost have no
effect on the variability of a function) can be identified from the marginal posterior mode estimation
at no extra computational cost. The package also implements the parallel partial Gaussian stochastic
process (PP GaSP) emulator (Gu and Berger (2016)) for the scenario where the computer model
has multiple outputs on, for example, spatial-temporal coordinates. The package can be operated in
a default mode, but also allows numerous user specifications, such as the capability of specifying
trend functions and noise terms. Examples are studied herein to highlight the performance of the
package in terms of out-of-sample prediction.

Introduction

A GaSP emulator is a fast surrogate model used to approximate the outcomes of a computer model
(Sacks et al. (1989); Bayarri et al. (2007); Paulo et al. (2012); Palomo et al. (2015); Gu and Berger
(2016)). The prediction accuracy of the emulator often depends strongly on the quality of the
parameter estimates in the GaSP model. Although the mean and variance parameters in the GaSP
model are relatively easy to deal with, estimation of parameters in the correlation functions is
difficult (Kennedy and O’Hagan (2001)). Standard methods of estimating these parameters, such as
maximum likelihood estimation (MLE), often produce unstable results leading to inferior prediction.
As shown in (Gu et al. (2018)), the GaSP emulator is unstable when the correlation between any
two different inputs are estimated to be close to one or to zero. The former case causes a near
singularity when inverting the covariance matrix (this can partially be addressed by adding a small
nugget (Andrianakis and Challenor (2012))), while the latter problem happens more often and has
no easy fix.

There are several packages on the Comprehensive R Archive Network (CRAN, https://CRAN.
R-project.org/) which implement the GaSP model based on the MLE, including DiceKriging
(Roustant et al. (2012)), GPfit (MacDonald et al. (2015)), mleGP (Dancik (2013)), spatial (Venables
and Ripley (2002)), and fields (Nychka et al. (2016)). In these packages, bounds on the parameters
in the correlation function are typically implemented to overcome the numerical problems with the
MLE estimates. Predictions are, however, often quite sensitive to the choice of bound, which is
essentially arbitrary, so this is not an appealing fix to the numerical problems.

In Gu (2016), marginal posterior modes based on several objective priors are studied. It has
been found that certain parameterizations result in more robust estimators than others, and, more
importantly, that some parameterizations which are in common use should clearly be avoided.
Marginal posterior modes with the robust parameterization are mathematically stable, as the
posterior density is shown to be zero at the two problematic cases–when the correlation is nearly
equal to one or to zero. This motivates the RobustGaSP package; examples also indicate that the
package results in more accurate in out-of-sample predictions than previous packages based on
the MLE. We use the DiceKriging package in these comparisons, because it is a state-of-the-art
implementation of the MLE methodology

The RobustGaSP package (Gu et al. (2016)) for R builds a GaSP emulator with robust parameter
estimation. It provides a default method with regard to a specific correlation function, a mean/trend
function and an objective prior for the parameters. Users are allowed to specify them, for example,
by using a different correlation and/or trend function, another prior distribution, or by adding a
noise term with either a fixed or estimated variance. Although the main purpose of the RobustGaSP
package is to do emulation/approximation of a complex function, this package can also be used in
fitting the GaSP model for other purposes, such as nonparameteric regression, modeling spatial data
and so on. For computational purposes, most of the time consuming functions in the RobustGaSP
package are implemented in C++.
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We highlight several contributions of this work. First of all, to compute the derivative of the
reference prior with a robust parametrization in (Gu et al. (2018)) is computationally expensive,
however this information is needed to find the posterior mode by the low-storage quasi-Newton
optimization method (Nocedal (1980)). We introduce a robust and computationally efficient prior,
called the jointly robust prior (Gu (2018)), to approximate the reference prior in the tail rates of the
posterior. This has been implemented as a default setting in the RobustGaSP package.

Furthermore, the use of the jointly robust prior provides a natural shrinkage for sparsity and thus
can be used to identify inert/noisy inputs (if there are any), implemented in the findInertInputs
function in the RobustGaSP package. A formal approach to Bayesian model selection requires a
comparison of 2p models for p variables, whereas in the RobustGaSP package, only the posterior
mode of the full model has to be computed. Eliminating mostly inert inputs in a computer model is
similar to not including regression coefficients that have a weak effect, since the noise introduced in
their estimation degrades prediction. However, as the inputs have a nonlinear effect to the output,
variable selection in GaSP is typically much harder than the one in the linear regression. The
findInertInputs function in the RobustGaSP package can be used, as a fast pre-experimental check,
to separate the influential inputs and inert inputs in highly nonlinear computer model outputs.

The RobustGaSP package also provides some regular model checks in fitting the emulator, while
the robustness in the predictive performance is the focus in Gu et al. (2018). More specifically,
the leave-one-out cross validation, standardized residuals and Normal QQ-plot of the standardized
residuals are implemented and will be introduced in this work.

Lastly, some computer models have multiple outputs. For example, each run of the TITAN2D
simulator produces up to 109 outputs of the pyroclastic flow heights over a spatial-temporal grid of
coordinates (Patra et al. (2005); Bayarri et al. (2009)). The computational complexity of building a
separate GaSP emulator for the output at each grid is Opkn3

q, where k is the number of grids and
n is the number of computer model runs. The package also implements another computationally
more efficient emulator, called the parallel partial Gaussian stochastic process emulator, which has
the computational complexity being the maximum of Opn3

q and Opkn2
q (Gu and Berger (2016)).

When the number of outputs in each simulation is large, the computational cost of PP GaSP is
much smaller than the separate emulator of each output.

The rest of the paper is organized as follows. In the next section, we briefly review the statistical
methodology of the GaSP emulator and the robust posterior mode estimation. In Section An
overview of RobustGaSP , we describe the structure of the package and highlight the main functions
implemented in this package. In Section Numerical examples , several numerical examples are
provided to illustrate the behavior of the package under different scenarios. In Section Concluding
remarks, we present conclusions and briefly discuss potential extensions. Examples will be provided
throughout the paper for illustrative purposes.

The statistical framework

GaSP emulator

Prior to introducing specific functions and usage of the RobustGaSP package, we first review the
statistical formulation of the GaSP emulator of the computer model with real-valued scalar outputs.
Let x P X denote a p-dimensional vector of inputs for the computer model, and let ypxq denote the
resulting simulator output, which is assumed to be real-valued in this section. The simulator ypxq
is viewed as an unknown function modeled by the stationary GaSP model, meaning that for any
inputs tx1, . . . , xnu from X , the likelihood is a multivariate normal distribution,

pypx1q, . . . , ypxnqqJ | µ, σ2, R „ MN ppµpx1q, . . . ,µpxnqqJ,σ2Rq , (1)

here µp¨q is the mean function, σ2 is the unknown variance parameter and R is the correlation
matrix. The mean function is typically modeled via regression,

µpxq “ hpxqθ “
q
ÿ

t“1
htpxqθt , (2)

where hpxq “ ph1pxq,h2pxq, ...,hqpxqq is a vector of specified mean basis functions and θt is the
unknown regression parameter for basis function htp¨q. In the default setting of the RobustGaSP
package, a constant basis function is used, i.e., hpxq “ 1; alternatively, a general mean structure can
be specified by the user (see Section An overview of RobustGaSP for details).

The pi, jq element of R in (1) is modeled through a correlation function cpxi, xjq. The product
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Matérn α “ 5{2
´
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¯
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´
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¯

Matérn α “ 3{2
´

1`
?

3d
γ

¯

exp
´

´

?
3d
γ

¯

Power exponential exp
!

´

´

d
γ

¯α)

, 0 ă α ď 2

Table 1: Correlation functions currently implemented in RobustGaSP. Here γ is the range
parameter and d is the distance between two points in each dimension. For simplicity,
the subscript l in Equation (3) has been dropped.

correlation function is often assumed in the emulation of computer models (Santner et al. (2003)),

cpxi, xjq “
p
ź

l“1
clpxil,xjlq, (3)

where clp¨, ¨q is an one-dimensional correlation function for the lth coordinate of the input vector.
Some frequently chosen correlation functions are implemented in the RobustGaSP package, listed
in Table 1. In order to use the power exponential covariance function, one needs to specify the
roughness parameter αl, which is often set to be close to 2; e.g., αl “ 1.9 is advocated in Bayarri
et al. (2009), which maintains an adequate smoothness level yet avoids the numerical problems with
αl “ 2.

The Matérn correlation is commonly used in modeling spatial data (Stein (2012)) and has
recently been advocated for computer model emulation (Gu et al. (2018)); one benefit is that the
roughness parameter of the Matérn correlation directly controls the smoothness of the process. For
example, the Matérn correlation with αl “ 5{2 results in sample paths of the GaSP that are twice
differentiable, a smoothness level that is usually desirable. Obtaining this smoothness with the
more common squared exponential correlation comes at a price, however, as, for large distances, the
correlation drops quickly to zero. For the Matérn correlation with αl “ 5{2, the natural logarithm
of the correlation only decreases linearly with distance, a feature which is much better for emulation
of computer models. Based on these reasons, the Matérn correlation with αl “ 5{2 is the default
correlation function in RobustGaSP. It is also the default correlation function in some other packages,
such as DiceKriging (Roustant et al. (2012)).

Since the simulator is expensive to run, we will at most be able to evaluate ypxq at a set of
design points. Denote the chosen design inputs as xD

“ txD
1 , xD

2 , ..., xD
n u, where D Ă X . The

resulting outcomes of the simulator are denoted as yD
“ pyD

1 , yD
2 , ..., yD

n q
J. The design points are

usually chosen to be “space-filling", including the uniform design and lattice designs. The Latin
hypercube (LH) design is a “space-filling" design that is widely used. It is defined in a rectangle
whereby each sample is the only one in each axis-aligned hyperplane containing it. LH sampling for
a 1-dimensional input space is equivalent to stratified sampling, and the variance of an estimator
based on stratified sampling has less variance than the random sampling scheme (Santner et al.
(2003)); for a multi-dimensional input space, the projection of the LH samples on each dimension
spreads out more evenly compared to simple stratified sampling. The LH design is also often used
along with other constraints, e.g., the maximin Latin Hypercube maximizes the minimum Euclidean
distance in the LH samples. It has been shown that the GaSP emulator based on maximin LH
samples has a clear advantage compared to the uniform design in terms of prediction (see, e.g., Chen
et al. (2016)). For these reasons, we recommend the use of the LH design, rather than the uniform
design or lattice designs.

Robust parameter estimation

The parameters in a GaSP emulator include mean parameters, a variance parameter, and range
parameters, denoted as pθ1, .., θq,σ2, γ1, ..., γpq. The objective prior implemented in the RobustGaSP
package has the form

πpθ,σ2, γq9
πpγq

σ2 , (4)
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πRpγq |I˚pγq|1{2

πRpξq |I˚pξq|1{2 with ξl “ logp1{γlq, for l “ 1, ..., p

πJRpβq p
řp
l“1 Clβlq

aexpp´b
řp
l“1 Clβlq, with βl “ 1{γl, for l “ 1, ..., p

Table 2: Different priors for the parameters in the correlation function implemented in Robust-
GaSP. Here I˚p¨q is the expected Fisher information matrix, after integrating out pθ,σ2

q.
The default choice of the prior parameters in πJRpβq is a “ 0.2, b “ n´1{p

pa` pq, and
Cl equal to the mean of |xD

il ´ x
D
jl|, for 1 ď i, j ď n, i ‰ j.

where πpγq is an objective prior for the range parameters. After integrating out pθ,σ2
q by the prior

in (4), the marginal likelihood is

LpyD
|γq9|R|´

1
2 |hJpxD

qR´1hpxD
q|
´ 1

2
´

S2
¯´p

n´q
2 q

, (5)

where S2
“ pyD

q
JQyD with Q “ R´1P and P “ In ´hpxD

qthJpxD
qR´1hpxD

qu
´1hJpxD

qR´1,
with In being the identity matrix of size n.

The reference prior πRp¨q and the jointly robust prior πJRp¨q for the range parameters with
robust parameterizations implemented in the RobustGaSP package are listed in Table 2. Although
the computational complexity of the value of the reference prior is the same as the marginal
likelihood, the derivatives of the reference prior are computationally hard. The numerical derivative
is thus computed in the package in finding the marginal posterior mode using the reference prior.
Furthermore, the package incorporates, by default, the jointly robust prior with the prior parameters
pC1, . . . ,Cp, a, bq (whose values are given in Table 2). The properties of the jointly robust prior
are studied extensively in Gu (2018). The jointly robust prior approximates the reference prior
reasonably well with the default prior parameters, and has a close form derivatives. The jointly
robust prior is a proper prior with a closed form of the normalizing constant and the first two
moments. In addition, the posterior modes of the jointly robust prior can identify the inert inputs,
as discussed in Section 14.2.4.

The range parameters pγ1, ..., γpq are estimated by the modes of the marginal posterior distribution

pγ̂1, . . . γ̂pq “ argmax
γ1,...,γp

pLpyD
|γ1, . . . , γpqπpγ1, . . . , γpqq. (6)

When another parameterization is used, parameters are first estimated by the posterior mode and
then transformed back to obtain pγ̂1, . . . γ̂pq.

Various functions implemented in the RobustGaSP package can be reused in other studies.
log_marginal_lik and log_marginal_lik_deriv give the natural logarithm of the marginal likeli-
hood in (5) and its directional derivatives with regard to γ, respectively. The reference priors πRpγq
and πRpξq are not coded separately, but neg_log_marginal_post_ref gives the negative values of
the log marginal posterior distribution and thus one can use -neg_log_marginal_post_ref minus
log_marginal_lik to get the log reference prior. The jointly robust prior πJRpβq and its directional
derivatives with regard to β are coded in log_approx_ref_prior and log_approx_ref_prior_deriv,
respectively. All these functions are not implemented in other packages and can be reused in other
theoretical studies and applications.

Prediction

After obtaining γ̂, the predictive distribution of the GaSP emulator (after marginalizing pθ,σ2
q out)

at a new input point x˚ follows a student t distribution

ypx˚q | yD, γ̂ „ T pŷpx˚q, σ̂2c˚˚,n´ qq , (7)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859



Contributed Research Articles 116

with n´ q degrees of freedom, where

ŷpx˚q “ hpx˚qθ̂` rJpx˚qR´1
´

yD
´ hpxD

qθ̂
¯

,

σ̂2
“ pn´ qq´1

´

yD
´ hpxD

qθ̂
¯T

R´1
´

yD
´ hpxD

qθ̂
¯

,

c˚˚ “ cpx˚, x˚q ´ rJpx˚qR´1rpx˚q `
´

hpx˚q ´ hJpxD
qR´1rpx˚q

¯J

ˆ

´

hJpxD
qR´1hpxD

q

¯´1 ´
hpx˚q ´ hJpxD

qR´1rpx˚q
¯

, (8)

with θ̂ “
´

hT pxD
qR´1 hpxD

q

¯´1
hJpxD

qR´1yD being the generalized least squares estimator for
θ and rpx˚q “ pcpx˚, xD

1 q, . . . , cpx˚, xD
n qq

J.
The emulator interpolates the simulator at the design points xD

i , 1 ď i ď n, because when
x˚ “ xD

i , one has rJpx˚qR´1
“ eJi , where ei is the n dimensional vector with the ith entry being 1

and the others being 0. At other inputs, the emulator not only provides a prediction of the simulator
(i.e., ŷpx˚q) but also an assessment of prediction accuracy. It also incorporates the uncertainty
arising from estimating θ and σ2 since this was developed from a Bayesian perspective.

We now provide an example in which the input has one dimension, ranging from r0, 10s (Higdon
and others (2002)). Estimation of the range parameters using the RobustGaSP package can be done
through the following code:

R> library(RobustGaSP)
R> library(lhs)
R> set.seed(1)
R> input <- 10 * maximinLHS(n=15, k=1)
R> output <- higdon.1.data(input)
R> model <- rgasp(design = input, response = output)
R> model

Call:
rgasp(design = input, response = output)
Mean parameters: 0.03014553
Variance parameter: 0.5696874
Range parameters: 1.752277
Noise parameter: 0

The fourth line of the code generates 15 LH samples at r0, 10s through the maximinLHS function
of the lhs package (Carnell (2016)). The function higdon.1.data is provided within the RobustGaSP
package which has the form ypxq “ sinp2πx{10q ` 0.2 sinp2πx{2.5q. The third line fits a GaSP model
with the robust parameter estimation by marginal posterior modes.

The plot function in RobustGaSP package implements the leave-one-out cross validation for a
"rgasp" class after the GaSP model is built (see Figure 1 for its output):

R> plot(model)

The prediction at a set of input points can be done by the following code:

R> testing_input <- as.matrix(seq(0, 10, 1/50))
R> model.predict<-predict(model, testing_input)
R> names(model.predict)

[1] "mean" "lower95" "upper95" "sd"

The predict function generates a list containing the predictive mean, lower and upper 95% quantiles
and the predictive standard deviation, at each test point x˚. The prediction and the real outputs
are plotted in Figure 2; produced by the following code:

R> testing_output <- higdon.1.data(testing_input)
R> plot(testing_input, model.predict$mean,type='l', col='blue',
+ xlab='input', ylab='output')
R> polygon( c(testing_input,rev(testing_input)), c(model.predict$lower95,
+ rev(model.predict$upper95)), col = "grey80", border = F)
R> lines(testing_input, testing_output)
R> lines(testing_input,model.predict$mean, type='l', col='blue')
R> lines(input, output, type='p')
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Figure 1: Leave-one-out fitted values for the GaSP model of the higdon.1.data function in the
RobustGaSP package.

It is also possible to sample from the predictive distribution (which is a multivariate t distribution)
using the following code:

R> model.sample <- simulate(model, testing_input, num_sample=10)
R> matplot(testing_input, model.sample, type='l', xlab='input', ylab='output')
R> lines(input, output,type='p')

The plots of 10 posterior predictive samples are shown in Figure 3.

Identification of inert inputs

Some inputs have little effect on the output of a computer model. Such inputs are called inert
inputs (Linkletter et al. (2006)). To quantify the influence of a set of inputs on the variability of the
outputs, functional analysis of the variance (functional ANOVA) can be used, often implemented
through Sobol’s Indices (Sobol’ (1990); Sobol (2001)). Methods for numerical calculation of Sobol’s
Indices have been implemented in the sensitivity package (Pujol et al. (2016)) for R.

The identification of inert inputs through the posterior modes with the jointly robust prior
(πJRp¨q) for the range parameters is discussed in Gu (2018). The package discussed here implements

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=sensitivity


Contributed Research Articles 118

0 2 4 6 8 10

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

input

ou
tp

ut

Figure 2: The predictive mean (blue curve), the 95% predictive credible interval (grey region)
and the real function (black curve). The outputs at the design points are the black
circles.
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Figure 3: 10 posterior predictive samples from the RobustGaSP. The outputs at the design
points are the black circles.

this idea, using the estimated normalized inverse range parameters,

P̂l “
pClβ̂l

řp
i“1 Ciβ̂i

, (9)

for l “ 1, ..., p. The involvement of Cl (defined in Table 2) is to account for the different scales of
different inputs. The denominator p

řp
i“1 Ciβ̂iq reflects the overall size of the estimator and Clβ̂l

gives the contribution of the lth input. The average P̂l is 1 and the sum of P̂l is p. When P̂l is very
close to 0, it means the lth input might be an inert input. In the RobustGaSP package, the default
threshold is 0.1; i.e., when P̂l ă 0.1, it is suggested to be an inert input. The threshold can also be
specified by users through the argument threshold in the function findInertInputs.

For demonstration purpose, we build a GaSP emulator for the borehole experiment (Worley
(1987); Morris et al. (1993); An and Owen (2001)), a well-studied computer experiment benchmark
which models water flow through a borehole. The output y is the flow rate through the borehole in
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Figure 4: Values of the borehole function by varying one input at a time.

m3
{year and it is determined by the equation:

y “
2πTupHu ´Hlq

lnpr{rωq
“

1` 2LTu
lnpr{rωqr2

ωKω
`
Tu
Tl

‰
,

where rω, r,Tu,Hu,Tl,Hl,L and Kω are the 8 inputs constrained in a rectangular domain with the
following ranges

rω P r0.05, 0.15s, r P r100, 50000s, Tu P r63070, 115600s, Hu P r990, 1110s,
Tl P r63.1, 116s, Hl P r700, 820s, L P r1120, 1680s, Kω P r9855, 12045s.

We use 40 maximin LH samples to find inert inputs at the borehole function through the following
code.

R> set.seed(1)
R> input <- maximinLHS(n=40, k=8) # maximin lhd sample
R> # rescale the design to the domain of the borehole function
R> LB <- c(0.05, 100, 63070, 990, 63.1, 700, 1120, 9855)
R> UB <- c(0.15, 50000, 115600, 1110, 116, 820, 1680, 12045)
R> range <- UB - LB
R> for(i in 1:8) {
R> input[,i] = LB[i] + range[i] * input[,i]
R> }
R> num_obs <- dim(input)[1]
R> output <- matrix(0,num_obs,1)
R> for(i in 1:num_obs) {
+ output[i] <- borehole(input[i,])
+ }
R> m <- rgasp(design = input, response = output, lower_bound=FALSE)
R> P <- findInertInputs(m)

The estimated normalized inverse range parameters are : 3.440765 8.13156e-09
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4.983695e-09 0.844324 4.666519e-09 1.31081 1.903236 0.5008652
The inputs 2 3 5 are suspected to be inert inputs

Similar to the automatic relevance determination model in neural networks, e.g. MacKay
(1996); Neal (1996), and in machine learning, e.g. Tipping (2001); Li et al. (2002), the function
findInertInputs of the RobustGaSP package indicates that the 2nd, 3rd, and 5th inputs are
suspected to be inert inputs. Figure 4 presents the plots of the borehole function when varying one
input at a time. This analyzes the local sensitivity of an input when having the others fixed. Indeed,
the output of the borehole function changes very little when the 2nd, 3rd, and 5th inputs vary.

Noisy outputs

The ideal situation for a computer model is that it produces noise-free data, meaning that the output
will not change at the same input. However, there are several cases in which the outputs are noisy.
First of all, the numerical solution of the partial differential equations of a computer model could
introduce small errors. Secondly, when only a subset of inputs are analyzed, the computer model is
no longer deterministic given only the subset of inputs. For example, if we only use the 5 influential
inputs of the borehole function, the outcomes of this function are no longer deterministic, since the
variation of the inert inputs still affects the outputs a little. Moreover, some computer models might
be stochastic or have random terms in the models.

For these situations, the common adjustment is to add a noise term to account for the error,
such as ỹp¨q “ yp¨q ` ε, where yp¨q is the noise-free GaSP and ε is an i.i.d. mean-zero Gaussian
white noise (Ren et al. (2012); Gu and Berger (2016)). To allow for marginalizing out the variance
parameter, the covariance function for the new process ỹp¨q can be parameterized as follows:

σ2c̃pxl, xmq“σ2
tcpxl, xmq ` ηδlmu, (10)

where η is defined to be the nugget-variance ratio and δlm is a Dirac delta function when l “ m,
δlm “ 1. After adding the nugget, the covariance matrix becomes:

σ2R̃ “ σ2
pR` ηInq. (11)

Although we call η the nugget-variance ratio parameter, the analysis is different than when a nugget
is directly added to stabilize the computation in the GaSP model. As pointed out in Roustant
et al. (2012), when a nugget is added to stabilize the computation, it is also added to the covariance
function in prediction, and, hence, the resulting emulator is still an interpolator, meaning that the
prediction will be exact at the design points. However, when a noise term is added, it does not go
into the covariance function and the prediction at a design point will not be exact (because of the
effect of the noise).

Objective Bayesian analysis for the proposed GaSP model with the noise term can be done by
defining the prior

π̃pθ,σ2, γ, ηq9 π̃pγ, ηq
σ2 , (12)

where π̃pγ, ηq is now the prior for the range and nugget-variance ratio parameters pγ, ηq. The
reference prior and the jointly robust prior can also be extended to be π̃Rp¨q and π̃JRp¨q with robust
parameterizations listed in Table 2. Based on the computational feasibility of the derivatives and
the capacity to identify noisy inputs, the proposed default setting is to use the jointly robust prior
with specified prior parameters in Table 2.

As in the previous noise-free GaSP model, one can estimate the range and nugget-variance ratio
parameters by their marginal maximum posterior modes

pγ̂1, . . . γ̂p, η̂q “ argmax
γ1,...,γp,η

LpyD
|γ1, . . . , γp, ηqπ̃pγ1, . . . , γp, ηq. (13)

After obtaining γ̂ and η̂, the predictive distribution of the GaSP emulator is almost the same as
in Equation (7); simply replace cp¨, ¨q by c̃p¨, ¨q and R by R̃.

Using only the influential inputs of the borehole function, we construct the GaSP emulator with
a nugget based on 30 maximin LH samples through the following code:

R> m.subset <- rgasp(design = input[ ,c(1,4,6,7,8)], response = output,
+ nugget.est=TRUE)
R> m.subset

Call:
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π̃Rpγ, ηq |I˚pγ, ηq|1{2

π̃Rpξ, ηq |I˚pξ, ηq|1{2 with ξl “ logp1{γlq, for l “ 1, ..., p

π̃JRpβ, ηq p
řp
l“1 Clβlq

aexpp´bp
řp
l“1 Clβl ` ηqq, with βl “ 1{γl, for l “ 1, ..., p

Table 3: Different priors for the parameters in the correlation function implemented in Robust-
GaSP, when a noise term is present. Here I˚p¨q is the expected fisher information
matrix after integrating out pθ,σ2

q. The default choices of the prior parameters in
π̃JRpβ, ηq are: a “ 0.2, b “ n´1{p

pa` pq, and Cl equal to the mean of |xD
il ´ x

D
jl|, for

1 ď i, j ď n, i ‰ j.

rgasp(design = input[, c(1, 4, 6, 7, 8)], response = output,
nugget.est = TRUE)

Mean parameters: 170.9782
Variance parameter: 229820.7
Range parameters: 0.2489396 1438.028 1185.202 5880.335 44434.42
Noise parameter: 0.2265875

To compare the performance of the emulator with and without a noise term, we perform some
out-of-sample testing. We build the GaSP emulator by the RobustGaSP package and the DiceKriging
package using the same mean and covariance. In RobustGaSP, the parameters in the correlation
functions are estimated by marginal posterior modes with the robust parameterization, while in
DiceKriging, parameters are estimated by MLE with upper and lower bounds. We first construct
these four emulators with the following code.

R> m.full <- rgasp(design = input, response = output)
R> m.subset <- rgasp(design = input[ ,c(1,4,6,7,8)], response = output,
+ nugget.est=TRUE)
R> dk.full <- km(design = input, response = output)
R> dk.subset <- km(design = input[ ,c(1,4,6,7,8)], response = output,
+ nugget.estim=TRUE)

We then compare the performance of the four different emulators at 100 random inputs for the
borehole function.

R> set.seed(1)
R> dim_inputs <- dim(input)[2]
R> num_testing_input <- 100
R> testing_input <- matrix(runif(num_testing_input*dim_inputs),
+ num_testing_input,dim_inputs)
R> for(i in 1:8) {
R> testing_input[,i] <- LB[i] + range[i] * testing_input[,i]
R> }
R> m.full.predict <- predict(m.full, testing_input)
R> m.subset.predict <- predict(m.subset, testing_input[ ,c(1,4,6,7,8)])
R> dk.full.predict <- predict(dk.full, newdata = testing_input,type = 'UK')
R> dk.subset.predict <- predict(dk.subset,
+ newdata = testing_input[ ,c(1,4,6,7,8)],type = 'UK')
R> testing_output <- matrix(0, num_testing_input, 1)
R> for(i in 1:num_testing_input) {
+ testing_output[i] <- borehole(testing_input[i, ])
+ }
R> m.full.error <- abs(m.full.predict$mean - testing_output)
R> m.subset.error <- abs(m.subset.predict$mean - testing_output)
R> dk.full.error <- abs(dk.full.predict$mean - testing_output)
R> dk.subset.error <- abs(dk.subset.predict$mean - testing_output)

Since the DiceKriging package seems not to have implemented a method to estimate the noise
parameter, we only compare it with the nugget case. The box plot of the absolute errors of these
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Figure 5: Absolute out-of-sample prediction errors at 100 random samples by different emulators
of the borehole function based on n “ 30 maximin LH samples. The first two boxes
are the absolute predictive errors from RobustGaSP, with the full set of inputs and
with only influential inputs (and a nugget), respectively, whereas the last two boxes
are from DiceKriging with the full set of inputs and with only influential inputs (and
a nugget), respectively.

4 emulators (all with the same correlation and mean function) at 100 held-out points are shown
in Figure 5. The performance of the RobustGaSP package based on the full set of inputs or only
influential inputs with a noise is similar, and they are both better than the predictions from the
DiceKriging package.

An overview of RobustGaSP

Main functions

The main purpose of the RobustGaSP package is to predict a function at unobserved points based on
only a limited number of evaluations of the function. The uncertainty associated with the predictions
is obtained from the predictive distribution in Equation (7), which is implemented in two steps. The
first step is to build a GaSP model through the rgasp function. This function allows users to specify
the mean function, correlation function, prior distribution for the parameters, and to include a noise
term or not. In the default setting, these are all specified. The mean and variance parameters are
handled in a fully Bayesian way, and the range parameters in the correlation function are estimated
by their marginal posterior modes. Moreover, users can also fix the range parameters, instead of
estimating them, change/replace the mean function, add a noise term, etc. The rgasp function
returns an object of the "rgasp" S4 class with all needed estimated parameters, including the mean,
variance, noise and range parameters to perform predictions.

The second step is to compute the predictive distribution of the previously created GaSP
model through the predict function, which produces the predictive means, the 95% predictive
credible intervals, and the predictive standard deviations at each test point. As the predictive
distribution follows a student t distribution in (7) for any test points, any quantile/percentile of the
predictive distribution can be computed analytically. The joint distribution at a set of test points is
a multivariate t distribution whose dimension is equal to the number of test points. Users can also
sample from the posterior predictive distribution by using the simulate function.

The identification of inert inputs can be performed using the findInertInput function. As it
only depends on the inverse range parameters through Equation (9), there is no extra computational
cost in their identification (once the robust GaSP model has been built through the rgasp function).
We suggest using the jointly robust prior by setting the argument prior_choice="ref_approx" in
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the rgasp function before calling the findInertInput function, because the penalty given by this
prior is close to an L1 penalty for the logarithm of the marginal likelihood (with the choice of default
prior parameters) and, hence, it can shrink the parameters for those inputs with small effect.

Besides, the RobustGaSP package also implements the PP GaSP emulator introduced in Gu
and Berger (2016) for the computer model with a vector of outputs. In the PP GaSP emulator, the
variances and the mean values of the computer model outputs at different grids are allowed to be
different, whereas the covariance matrix of physical inputs are assumed to be the same across grids.
In estimation, the variance and the mean parameters are first marginalized out with the reference
priors. Then the posterior mode is used for estimating the parameters in the kernel. The ppgasp
function builds a PP GaSP model, which returns an object of the "ppgasp" S4 class with all needed
estimated parameters. Then the predictive distribution of PP GaSP model is computed through
the predict.ppgasp function. Similar to the emulator of the output with the scalar output, the
predict.ppgasp function returns the predictive means, the 95% predictive credible intervals, and
the predictive standard deviations at each test point.

The rgasp function

The rgasp function is one of the most important functions, as it performs the parameter estimation
for the GaSP model of the computer model with a scalar output. In this section, we briefly review
the implementation of the rgasp function and its optimization algorithm.

The nˆ p design matrix xD and the nˆ 1 output vector yD are the only two required arguments
(without default values) in the rgasp function. The default setting in the argument trend is a
constant function, i.e., hpxD

q “ 1n. One can also set zero.mean=TRUE in the rgasp function to
assume the mean function in GaSP model is zero. By default, the GaSP model is defined to be
noise-free, i.e., the noise parameter is 0. However, a noise term can be added with estimated or
fixed variance. As the noise is parameterized following the form (10), the variance is marginalized
out explicitly and the nugget-variance parameter η is left to be estimated. This can be done by
specifying the argument nugget.est = T in the rgasp function; when the nugget-variance parameter
η is known, it can be specified; e.g., η “ 0.01 indicates the nugget-variance ratio is equal to 0.01 in
rgasp and η will be not be estimated with such a specification.

Two classes of priors of the form (4), with several different robust parameterizations, have been
implemented in the RobustGaSP package (see Table 3 for details). The prior that will be used is
controlled by the argument prior_choice in the rgasp function. The reference prior πRp¨q with γ (the
conventional parameterization of the range parameters for the correlation functions in Table 1) and
ξ “ logp1{γq parameterization can be specified through the arguments prior_choice="ref_gamma"
and prior_choice="ref_xi", respectively. The jointly robust prior πJRp¨q with the β “ 1{γ
parameterization can be specified through the argument prior_choice="ref_approx"; this is the
default choice used in rgasp, for the reasons discussed in Section Statistical framework.

The correlation functions implemented in the RobustGaSP package are shown in Table 1, with the
default setting being kernel_type = "matern_5_2" in the rgasp function. The power exponential
correlation function requires the specification of a vector of roughness parameters α through the
argument alpha in the rgasp function; the default value is αl “ 1.9 for l “ 1, ..., p, as suggested in
Bayarri et al. (2009).

The ppgasp function

The ppgasp function performs the parameter estimation of the PP GaSP emulator for the computer
model with a vector of outputs. In the ppgasp function, the output yD is a nˆ k matrix, where
each row is the k-dimensional computer model outputs. The rest of the input quantities of the
ppgasp function and rgasp function are the same.

Thus the ppgasp function return the estimated parameters, including k estimated variance
parameters, and qˆ k mean parameters when the mean basis has q dimensions.

The optimization algorithm

Estimation of the range parameters γ is implemented through numerical search for the marginal
posterior modes in Equation (6). The low-storage quasi-Newton optimization method (Nocedal
(1980); Liu and Nocedal (1989)) has been used in the lbfgs function in the nloptr package (Ypma
(2014)) for optimization. The closed-form marginal likelihood, prior and their derivatives are all
coded in C++. The maximum number of iterations and tolerance bounds are allowed to be chosen
by users with the default setting as max_eval=30 and xtol_rel=1e-5, respectively.
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Although maximum marginal posterior mode estimation with the robust parameterization
eliminates the problems of the correlation matrix being estimated to be either In or 1n1Jn , the
correlation matrix could still be close to these singularities in some scenarios, particularly when the
sample size is very large. In such cases, we also utilize an upper bound for the range parameters γ
(equivalent to a lower bound for β “ 1{γ). The derivation of this bound is discussed in the Appendix.
This bound is implemented in the rgasp function through the argument lower_bound=TRUE, and this
is the default setting in RobustGaSP. As use of the bound is a somewhat ad hoc fix for numerical
problems, we encourage users to also try the analysis without the bound; this can be done by
specifying lower_bound=FALSE. If the answers are essentially unchanged, one has more confidence
that the parameter estimates are satisfactory. Furthermore, if the purpose of the analysis is to
detect inert inputs, users are also suggested to use the argument lower_bound=FALSE in the rgasp
function.

Since the marginal posterior distribution could be multi-modal, the package allows for different
initial values in the optimization by setting the argument multiple_starts=TRUE in the rgasp
function. The first default initial value for each inverse range parameter is set to be 50 times their
default lower bounds, so the starting value will not be too close to the boundary. The second initial
value for each of the inverse range parameter is set to be half of the mean of the jointly robust
prior. Two initial values of the nugget-variance parameter are set to be η “ 0.0001 and η “ 0.0002
respectively.

Examples

In this section, we present further examples of the performance of the RobustGaSP package, and
include comparison with the DiceKriging package in R. We will use the same data, trend function,
and correlation function for the comparisons. The default correlation function in both packages is
the Matérn correlation with α “ 5{2 and the default trend function is a constant function. The
only difference is the method of parameter estimation, as discussed in Section Statistical framework,
where the DiceKriging package implements the MLE (by default) and the penalized MLE (PMLE)
methods, Roustant et al. (2018).

The modified sine wave function

It is expected that, for a one-dimensional function, both packages will perform well with an adequate
number of design points, so we start with the function called the modified sine wave discussed in Gu
(2016). It has the form

y “ 3 sinp5πxq ` cosp7πxq,
where x “ r0, 1s. We first perform emulation based on 12 equally spaced design points on r0, 1s.

R> sinewave <- function(x) {
+ 3*sin(5*pi*x)*x + cos(7*pi*x)
+ }
R> input <- as.matrix(seq(0, 1, 1/11))
R> output <- sinewave(input)

The GaSP model is fitted by both the RobustGaSP and DiceKriging packages, with the constant
mean function.

R> m <- rgasp(design=input, response=output)
R> m

Call:
rgasp(design = input, response = output)
Mean parameters: 0.1402334
Variance parameter: 2.603344
Range parameters: 0.04072543
Noise parameter: 0

R> dk <- km(design = input, response = output)
R> dk

Call:
km(design = input, response = output)
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Figure 6: Emulation of the modified sine wave function with 12 design points equally spaced
in r0, 1s. The black curve is the graph of the function and the outputs at the design
points are the black circles. The blue curve is the predictive mean and the grey region
is the 95% posterior credible interval obtained by the RobustGaSP package. The red
curve is the predictive mean produced by the DiceKriging package.

Trend coeff.:
Estimate

(Intercept) 0.1443

Covar. type : matern5_2
Covar. coeff.:

Estimate
theta(design) 0.0000

Variance estimate: 2.327824

A big difference between two packages is the estimated range parameter, which is found to be around
0.04 in the RobustGaSP package, whereas it is found to be very close to zero in the DiceKriging
package. To see which estimate is better, we perform prediction on 100 test points, equally spaced
in r0, 1s.

R> testing_input <- as.matrix(seq(0, 1, 1/99))
R> m.predict <- predict(m, testing_input)
R> dk.predict <- predict(dk, testing_input, type='UK')

The emulation results are plotted in Figure 6. Note that the red curve from the DiceKriging
package degenerates to the fitted mean with spikes at the design points. This unsatisfying phe-
nomenon, discussed in Gu et al. (2018), happens when the estimated covariance matrix is close to
an identity matrix, i.e., R̂ « In, or equivalently γ̂ tends to 0. Repeated runs of the DiceKriging
package under different initializations yielded essentially the same results.

The predictive mean from the RobustGaSP package is plotted as the blue curve in Figure 6 and
is quite accurate as an estimate of the true function. Note, however, that the uncertainty in this
prediction is quite large, as shown by the wide 95% posterior credible regions.

In this example, adding a nugget is not helpful in DiceKriging, as the problem is that R̂ « In;
adding a nugget is only helpful when the correlation estimate is close to a singular matrix (i.e.,
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Figure 7: Emulation of the modified sine wave function with 13 design points equally spaced
in r0, 1s. The black curve is the graph of the function and the outputs at the design
points are the black circles. The blue curve is the predictive mean and the grey region
is the 95% posterior credible interval found by RobustGaSP. The red curve is the
predictive mean obtained by DiceKriging. The left panel and the right panel are two
runs from DiceKriging, with different convergences of the optimization algorithm.

R « 1n1Jn ). However, increasing the sample size is helpful for the parameter estimation. Indeed,
emulation of the modified sine wave function using 13 equally spaced design points in r0, 1s was
successful for one run of DiceKriging, as shown in the right panel of Figure 7. However, the left
panel in Figure 7 gives another run of DiceKriging for this data, and this one converged to the
problematical γ « 0. The predictive mean from RobustGaSP is stable. Interestingly, the uncertainty
produced by RobustGaSP decreased markedly with the larger number of design points.

It is somewhat of a surprise that even emulation of a smooth one-dimensional function can be
problematical. The difficulties with a multi-dimensional input space can be considerably greater, as
indicated in the next example.

The Friedman function

The Friedman function was introduced in Friedman (1991) and is given by

y “ 10 sinpπx1x2q ` 20px3 ´ 0.5q2 ` 10x4 ` 5x5,

where xi P r0, 1s for i “ 1, ..., 5. 40 design points are drawn from maximin LH samples. A GaSP
model is fitted using the RobustGaSP package and the DiceKriging package with the constant mean
basis function (i.e., hpxq “ 1).

R> input <- maximinLHS(n=40, k=5)
R> num_obs <- dim(input)[1]
R> output <- rep(0, num_obs)
R> for(i in 1:num_obs) {
+ output[i] <- friedman.5.data(input[i,])
+ }
R> m <-rgasp(design=input, response=output)
R> dk <- km(design=input, response=output)
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Prediction on 200 test points, uniformly sampled from r0, 1s5, is then performed.

R> dim_inputs <- dim(input)[2]
R> num_testing_input <- 200
R> testing_input <- matrix(runif(num_testing_input * dim_inputs),
+ num_testing_input, dim_inputs)
R> m.predict <- predict(m, testing_input)
R> dk.predict <- predict(dk, testing_input, type='UK')

To compare the performance, we calculate the root mean square errors (RMSE) for both methods,

RMSE “

d

řn˚

i“1 pŷpx˚i q ´ ypx
˚
i qq

2

n˚
,

where ypx˚i q is the ith held-out output and ŷpx˚i q is the prediction for x˚i by the emulator, for
i “ 1, ...,n˚.

R> testing_output <- matrix(0, num_testing_input, 1)
R> for(i in 1:num_testing_input) {
+ testing_output[i] < -friedman.5.data(testing_input[i,])
+ }
R> m.rmse <- sqrt(mean((m.predict$mean - testing_output)^2))
R> m.rmse

[1] 0.2812935

R> dk.rmse <- sqrt(mean((dk.predict$mean - testing_output)^2))
R> dk.rmse

[1] 0.8901442

Thus the RMSE from RobustGaSP is 0.28, while the RMSE from RobustGaSP is 0.89. The
predictions versus the real outputs are plotted in Figure 8. The black circles correspond to the
predictive means from the RobustGaSP package and are closer to the real output than the red
circles produced by the DiceKriging package. Since both packages use the same correlation and
mean function, the only difference lies in the method of parameter estimation, especially estimation
of the range parameters, γ. The RobustGaSP package seems to do better, leading to much smaller
RMSE in out-of-sample prediction.

The Friedman function has a linear trend associated with the 4th and the 5th inputs (but not
the first three) so we use this example to illustrate specifying a trend in the GaSP model. For
realism (one rarely actually knows the trend for a computer model), we specify a linear trend for all
variables; thus we use hpxq “ p1, xq, where x “ px1, ...,x5q and investigate whether or not adding
this linear trend to all inputs is helpful for the prediction.

R> colnames(input) <- c("x1", "x2", "x3", "x4", "x5")
R> trend.rgasp <- cbind(rep(1, num_obs), input)
R> m.trend <- rgasp(design=input, response=output, trend=trend.rgasp)
R> dk.trend <- km(formula ~ x1 + x2 + x3 + x4 + x5, design=input, response=output)
R> colnames(testing_input) <- c("x1", "x2", "x3", "x4", "x5")
R> trend.test.rgasp <- cbind(rep(1, num_testing_input), testing_input)
R> m.trend.predict <- predict(m.trend, testing_input,
+ testing_trend=trend.test.rgasp)
R> dk.trend.predict <- predict(dk.trend, testing_input, type='UK')
R> m.trend.rmse <- sqrt(mean( (m.trend.predict$mean - testing_output)^2))
R> m.trend.rmse

[1] 0.1259403

R> dk.trend.rmse <- sqrt(mean((dk.trend.predict$mean - testing_output)^2))
R> dk.trend.rmse

[1] 0.8468056

Adding a linear trend does improve the out-of-sample prediction accuracy of the RobustGaSP
package; the RMSE decreases to 0.13, which is only about one third of the RMSE of the previous
model with the constant mean. However, the RMSE using the DiceKriging package with a linear
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Figure 8: Prediction of 200 held-out test points of the Friedman Function based on 40 maximin
LH samples. The y-axis is the real output and the x-axis is the prediction. The black
circles are the predictive mean from RobustGaSP and the red circles are the predictive
mean from DiceKriging. A constant mean basis function is used, i.e., hpxq “ 1.

mean increases to 0.85, more than 6 times larger than that for the RobustGaSP. (That the RMSE
actually increased for DiceKriging is likely due to the additional difficulty of parameter estimation,
since now the additional linear trend parameters needed to be estimated; in contrast, for RobustGaSP,
the linear trend parameters are effectively eliminated through objective Bayesian integration.) The
predictions against the real output are plotted in Figure 9. The black circles correspond to the
predictive means from the RobustGaSP package, and are an excellent match to the real outputs.

In addition to point prediction, it is of interest to evaluate the uncertainties produced by the
emulators, through study of out-of-sample coverage of the resulting credible intervals and their
average lengths,

PCIp95%q “ 1
n˚

n˚
ÿ

i“1
1tyjpx˚i q P CIip95%qu,

LCIp95%q “ 1
n˚

n˚
ÿ

i“1
lengthtCIip95%qu,

where CIip95%q is the 95% posterior credible interval. An ideal emulator would have PCIp95%q
close to the 95% nominal level and a short average length. We first show PCIp95%q and LCIp95%q
for the case of a constant mean basis function.

R> prop.m <- length(which((m.predict$lower95 <= testing_output)
+ & (m.predict$upper95 >= testing_output))) / num_testing_input
R> length.m <- sum(m.predict$upper95 - m.predict$lower95) / num_testing_input
R> prop.m

[1] 0.97

R> length.m

[1] 1.122993

R> prop.dk <- length(which((dk.predict$lower95 <= testing_output)
+ & (dk.predict$upper95 >= testing_output))) / num_testing_input
R> length.dk <- sum(dk.predict$upper95 - dk.predict$lower95) / num_testing_input
R> prop.dk
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Figure 9: Prediction of 200 held-out test points for the Friedman Function based on 40 maximin
LH design points. The y-axis is the real output and the x-axis is the prediction. The
black circles are the predictive means obtained from RobustGaSP, and the red circles
are the predictive means obtained from the DiceKriging package. In both cases, linear
terms are assumed for the mean basis function, i.e., hpxq “ p1, xq.

[1] 0.97

R> length.dk

[1] 3.176021

The PCIp95%q obtained by the RobustGaSP is 97%, which is close to the 95% nominal level;
and LCIp95%q, the average lengths of the 95% credible intervals, is 1.12. In contrast, the coverage
of credible intervals from DiceKriging is also 97%, but this is achieved by intervals that are, on
average, about three times longer than those produced by RobustGaSP.

When linear terms are assumed in the basis function of the GaSP emulator, hpxq “ p1, xq,

R> prop.m.trend <- length(which((m.trend.predict$lower95 <= testing_output)
+ &(m.trend.predict$upper95 >= testing_output))) / num_testing_input
R> length.m.trend <- sum(m.trend.predict$upper95 -
+ m.trend.predict$lower95) / num_testing_input
R> prop.m.trend

[1] 1

R> length.m.trend

[1] 0.8392971

R> prop.dk.trend <- length(which((dk.trend.predict$lower95 <= testing_output)
+ & (dk.trend.predict$upper95 >= testing_output))) / num_testing_input
R> length.dk.trend <- sum(dk.trend.predict$upper95 -
+ dk.trend.predict$lower95) / num_testing_input
R> prop.dk.trend

[1] 0.985

R> length.dk.trend

[1] 3.39423
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The PCIp95%q for RobustGaSP is 100% and LCIp95%q “ 0.839, a significant improvement over
the case of a constant mean. (The coverage of 100% is too high, but at least is conservative and is
achieved with quite small intervals.) For DiceKriging, the coverage is 98.5% with a linear mean, but
the average interval size is now around 4 times as those produced by RobustGaSP.

To see whether or not the differences in performance persists when the sample size increases, the
same experiment was run on the two emulators with sample size n “ 80. When the constant mean
function is used, the RMSE obtained by the RobustGaSP package and the DiceKriging package
were 0.05 and 0.32, respectively. With hpxq “ p1, xq, the RMSE’s were 0.04 and 0.34, respectively.
Thus the performance difference remains and is even larger, in a proportional sense, than when the
sample size is 40.

DIAMOND computer model

We illustrate the PP GaSP emulator through two computer model data sets. The first testbed is
the ‘diplomatic and military operations in a non-warfighting domain’ (DIAMOND) computer model
(Taylor and Lane (2004)). For each given set of input variables, the dataset contains daily casualties
from the 2nd and 6th day after the earthquake and volcanic eruption in Giarre and Catania. The
input variables are 13-dimensional, including the speed of helicopter cruise and ground engineers,
hospital and food supply capacity. The complete list of the input variables and the full data set are
given in Overstall and Woods (2016).

The RobustGaSP package includes a data set from the DIAMOND simulator, where the training
and test output both contain the outputs from 120 runs of the computer model. The following code
fit a PP GaSP emulator on the training data using 3 initial starting points to optimize the kernel
parameters and an estimated nugget in the PP GaSP model. We then make prediction on the test
inputs using the constructed PP GaSP emulator.

R> data(humanity_model)
R> m.ppgasp <- ppgasp(design=humanity.X ,response=humanity.Y,
+ nugget.est=TRUE, num_initial_values=3)
R> m_pred <- predict(m.ppgasp, humanity.Xt)
R> sqrt(mean((m_pred$mean - humanity.Yt)^2))

[1] 294.9397

R> sd(humanity.Yt)

[1] 10826.49

The predictive RMSE of the PP GaSP emulator is 294.9397, which is much smaller than the
standard deviation of the test data. Further exploration shows the output has strong positive
correlation with the 11th input (food capacity). We then fit another PP GaSP model where the
food capacity is included in the mean function.

R> n < -dim(humanity.Y)[1]
R> n_testing=dim(humanity.Yt)[1]
R> H <- cbind(matrix(1, n, 1), humanity.X$foodC)
R> H_testing <- cbind(matrix(1, n_testing, 1), humanity.Xt$foodC)
R> m.ppgasp_trend <- ppgasp(design=humanity.X, response=humanity.Y, trend=H,
+ nugget.est=TRUE, num_initial_values=3)
R> m_pred_trend <- predict(m.ppgasp_trend, humanity.Xt, testing_trend=H_testing)
R> sqrt(mean((m_pred_trend$mean - humanity.Yt)^2))

[1] 279.6022

The above result indicates the predictive RMSE of the PP GaSP emulator becomes smaller when
the food capacity is included in the mean function. We also fit GaSP emulators by the DiceKriging
package independently for each daily output. We include the following two criteria.

PCIp95%q “ 1
kn˚

k
ÿ

i“1

n˚
ÿ

j“1
1ty˚i px

˚
j q P CIijp95%qu ,

LCIp95%q “ 1
kn˚

k
ÿ

i“1

n˚
ÿ

j“1
lengthtCIijp95%qu ,
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RMSE PCIp95%q LCIp95%q

Independent GaSP emulator constant mean 720.16 0.99000 3678.5

Independent GaSP emulator selected trend 471.10 0.96667 2189.8

PP GaSP constant mean 294.94 0.95167 1138.3

PP GaSP selected trend 279.60 0.95333 1120.6

Table 4: Predictive performance between the independent GaSP emulator by the DiceKriging
package (first two rows) and PP GaSP emulator by the RobustGaSP package (last
two rows). The selected trend means the food capacity input is included in the mean
function of the emulator, whereas the constant mean denotes the constant mean function.
An estimated nugget is included in all methods. The baseline RMSE is 10817.47 using
the mean of the output to predict.

where for 1 ď i ď k and 1 ď j ď n˚, y˚i px
˚
j q is the held-out test output of the ith run at the jth

day; ŷ˚i px
˚
j q is the corresponding predicted value; CIijp95%q is the 95% predictive credible interval;

and lengthtCIijp95%qu is the length of the 95% predictive credible interval. An accurate emulator
should have the PCIp95%q close to the nominal 0.95 and have small LCIp95%q (the average length
of the predictive credible interval).

The predictive accuracy by the independent GaSP emulator by the DiceKriging and the PP
GaSP emulator for the DIAMOND computer model is recorded in Table 4. First, we noticed the
predictive accuracy of both emulators seems to improve with the food capacity included in the mean
function. Second, the PP GaSP seems to have much lower RMSE than the Independent GaSP
emulator by the DiceKriging in this example, even though the kernel used in both packages are the
same. One possible reason is that estimated kernel parameters by the marginal posterior mode from
the RobustGaSP are better. Nonetheless, the PP GaSP is a restricted model, as the covariance
matrix is assumed to be the same across each output variable (i.e. casualties at each day in this
example). This assumption may be unsatisfying for some applications, but the improved speed in
computation can be helpful. We illustrate this point by the following example for the TITAN2D
computer model.

TITAN2D computer model

In this section, we discuss an application of emulating the massive number of outputs on the spatio-
temporal grids from the TITAN2D computer model (Patra et al. (2005); Bayarri et al. (2009)). The
TITAN2D simulates the volcanic eruption from Soufrière Hill Volcano on Montserrat island for a given
set of input, selected to be the flow volume, initial flow direction, basal friction angle, and interval
friction angle. The output concerned here are the maximum pyroclastic flow heights over time at
each spatial grid. Since each run of the TITAN2D takes between 1 to 2 hours, the PP GaSP emulator
was developed in Gu and Berger (2016) to emulate the outputs from the TITAN2D. The data from
the TITAN2D computer model can be found in https://github.com/MengyangGu/TITAN2D.

The following code will load the TITAN2D data in R:

R> library(repmis)
R> source_data("https://github.com/MengyangGu/TITAN2D/blob/master/TITAN2D.rda?raw=True")

[1] "input_variables" "pyroclastic_flow_heights"
[3] "loc_index"

> rownames(loc_index)

[1] "crater" "small_flow_area" "Belham_Valley"
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The data contain three data frames. The input variables are a 683ˆ 4 matrix, where each row is
a set of input variables for each simulated run. The output pyroclastic flow heights is a 683ˆ 23040
output matrix, where each row is the simulated maximum flow heights on 144ˆ 160 grids. The
index of the location has three rows, which records the index set for the crater area, small flow area
and Belham Valley.

We implement the PP GaSP emulator in the RobustGaSP package and test on the TITAN2D
data herein. We use the first 50 runs to construct the emulator and test it on the latter 633 runs.
As argued in Gu and Berger (2016), almost no one is interested in the hazard assessment in the
crater area. Thus we test our emulator for two regions with habitat before. The first one is the
Belham Valley (a northwest region to the crater of the Soufrière Hill Volcano. The second region is
the “non-crater" area, where we consider all the area after deleting the crater area. We also delete
all locations where all the outputs are zero (meaning no flow hits the locations in the training data).
For those locations, one may predict the flow height to be zero.

The following code will fit the PP GaSP emulator and make predictions on the Balham Valley
area for each set of held out output.

R> input <- input_variables[1:50, ]
R> testing_input <- input_variables[51:683, ]
R> output <- pyroclastic_flow_heights[1:50, which(loc_index[3,]==1)]
R> testing_output <- pyroclastic_flow_heights[51:683, which(loc_index[3,]==1)]
R> n=dim(output)[1]
R> n_testing <- dim(testing_output)[1]
##delete those location where all output are zero
R> index_all_zero <- NULL
R> for(i_loc in 1: dim(output)[2]) {
+ if(sum(output[ ,i_loc]==0)==50) {
+ index_all_zero <- c(index_all_zero, i_loc)
+ }
+ }
##transforming the output
R> output_log_1 <- log(output+1)
R> m.ppgasp <- ppgasp(design=input[,1:3], response=as.matrix(output_log_1[ ,-index_all_zero]),
+ trend=cbind(rep(1, n),input[,1]), nugget.est=TRUE,max_eval=100, num_initial_values=3)
R> pred_ppgasp=predict.ppgasp(m.ppgasp, testing_input[ ,1:3],
+ testing_trend=cbind(rep(1, n_testing), testing_input[,1]))
R> m_pred_ppgasp_mean <- exp(pred_ppgasp$mean)-1
R> m_pred_ppgasp_LB <- exp(pred_ppgasp$lower95)-1
R> m_pred_ppgasp_UB <- exp(pred_ppgasp$upper95)-1
R> sqrt(mean(((m_pred_ppgasp_mean - testing_output_nonallzero)^2)))

[1] 0.2999377

In the above code, we fit the model using the transformed output and the first three inputs, as
the fourth input (internal friction input) has almost no effect on the output. We also transform it
back for prediction. As the fourth input is not used for emulation, we add a nugget to the model.
The flow volume is included to be in the mean function, as the flow volume is positively correlated
with the flow heights in all locations. These settings were used in Gu and Berger (2016) for fitting
the PP GaSP emulator to emulate the TITAN2D computer model. The only function we have not
implemented in the current version of the RobustGaSP package is the “periodic folding" technique
for the initial flow angle, which is a periodic input. This method will appear in a future version of
the package.

We compare the PP GaSP emulator with the independent GaSP emulator by the DiceKriging
package with the same choice of the kernel function, mean function and transformation in the output.
The PP GaSP emulator performs slightly better in terms of the predictive RMSE and the data
covered in the 95% predictive credible interval by the PP GaSP is also slightly closer to the nominal
95% level.

The biggest difference is the computational time for these examples. The computational
complexity by the independent GaSP emulator by the DiceKriging package is Opkn3

q, as it fits
k emulators independently for the outputs at k spatial grid. In comparison, the computational
complexity by the PP GaSP is the maximum of Opn3

q and Opkn2
q. When k " n, the computational

time of the PP GaSP is dominated by Opkn2
q, so the computational improvement in this example

is thus obvious. Note that n is only 50 here. The ratio of the computational time between the
independent GaSP and PP GaSP gets even larger when n increases.

We have to acknowledge that, however, the PP GaSP emulator assumes the same covariance
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Belham Valley RMSE PCIp95%q LCIp95%q Time (s)

Independent GaSP emulator 0.30166 0.91100 0.52957 294.43

PP GaSP 0.29994 0.93754 0.59474 4.4160

Non-crater area RMSE PCIp95%q LCIp95%q Time (s)

Independent GaSP emulator 0.33374 0.91407 0.53454 1402.04

PP GaSP 0.32516 0.94855 0.60432 20.281

Table 5: Predictive performance between the independent GaSP emulator by the DiceKriging
package and PP GaSP emulator by the RobustGaSP package for the outputs of the
TITAN2D computer model in the Belham Valley and non-crater area. 50 runs were
used to fit the emulators and the 633 runs were used as the held-out test outputs. The
RMSE, PCIp95%q, LCIp95%q and the computational time in seconds are shown in
the second column to the fifth column for each method, respectively.

matrix across all output vector and estimate the kernel parameters using all output data. This
assumption may not be satisfied in some applications. We do not believe that the PP GaSP
emulator performs uniformly better than the independent GaSP emulator. Given the computational
complexity and predictive accuracy shown in the two real examples discussed in this paper, the PP
GaSP emulator can be used as a fast surrogate of a computer model with massive output.

Concluding remarks

Computer models are widely used in many applications in science and engineering. The Gaussian
stochastic process emulator provides a fast surrogate for computationally intensive computer models.
The difficulty of parameter estimation in the GaSP model is well-known, as there is no closed-form,
well-behaved, estimator for the correlation parameters; and poor estimation of the correlation
parameters can lead to seriously inferior predictions. The RobustGaSP package implements marginal
posterior mode estimation of these parameters for parameterizations that satisfy the “robustness"
criteria from Gu et al. (2018). Part of the advantage of this method of estimation is that the posterior
has zero density for the problematic cases in which the correlation matrix is an identity matrix or
the matrix or all ones. Some frequently used estimators, such as the MLE, do not have this property.
Several examples have been provided to illustrate the use of the RobustGaSP package. Results of
out-of-sample prediction suggest that the estimators in RobustGaSP, with small to moderately large
sample sizes, perform considerably better than the MLE.

Although the main purpose of the RobustGaSP package is to emulate computationally in-
tensive computer models, several functions could be useful for other purposes. For example, the
findInertInputs function utilizes the posterior modes to find inert inputs at no extra computational
cost than fitting the GaSP model. A noise term can be added to the GaSP model, with fixed or
estimated variance, allowing RobustGaSP to analyze noisy data from either computer models or,
say, spatial experiments.

While posterior modes are used for estimating the correlation parameters in the current software,
it might be worthwhile to implement posterior sampling for this Bayesian model. In GaSP models,
the usual computational bottleneck for such sampling is the evaluation of the likelihood, as each
evaluation requires inverting the covariance matrix, which is a computation of order of Opn3

q, with
n being the number of observations. As discussed in Gu and Xu (2017), however, exact evaluation of
the likelihood for the Matérn covariance is only Opnq for the case of a one-dimensional input, using
the stochastic differential equation representation of the GaSP model. If this could be generalized to
multi-dimensional inputs, posterior sampling would become practically relevant.
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atable: Create Tables for Clinical Trial
Reports
by Armin Ströbel

Abstract Examining distributions of variables is the first step in the analysis of a clinical trial
before more specific modelling can begin. Reporting these results to stakeholders of the trial is
an essential part of a statistician’s work. The atable package facilitates these steps by offering
easy-to-use but still flexible functions.

Introduction

Reporting the results of clinical trials is such a frequent task that guidelines have been established
that recommend certain properties of clinical trial reports; see Moher et al. (2010). In particular,
Item 17a of CONSORT states that “Trial results are often more clearly displayed in a table rather
than in the text”. Item 15 of CONSORT suggests “a table showing baseline demographic and clinical
characteristics for each group”.

The atable package facilitates this recurring task of data analysis by providing a short approach
from data to publishable tables. The atable package satisfies the requirements of CONSORT
statements Item 15 and 17a by calculating and displaying the statistics proposed therein, i.e. mean,
standard deviation, frequencies, p-values from hypothesis tests, test statistics, effect sizes and
confidence intervals thereof. Only minimal post-processing of the table is needed, which supports
reproducibility. The atable package is intended to be modifiable: it can apply arbitrary descriptive
statistics and hypothesis tests to the data. For this purpose, atable builds on R’s S3-object system.

R already has many functions that perform single steps of the analysis process (and they perform
these steps well). Some of these functions are wrapped by atable in a single function to narrow the
possibilities for end users who are not highly skilled in statistics and programming. Additionally,
users who are skilled in programming will appreciate atable because they can delegate this repetitive
task to a single function and then concentrate their efforts on more specific analyses of the data at
hand.

Context

The atable package supports the analysis and reporting of randomised parallel group clinical trials.
Data from clinical trials can be stored in data frames with rows representing ’patients’ and columns
representing ’measurements’ for these patients or characteristics of the trial design, such as location
or time point of measurement. These data frames will generally have hundreds of rows and dozens
of columns. The columns have different purposes:

• Group columns contain the treatment that the patient received, e.g. new treatment, control
group, or placebo.

• Split columns contain strata of the patient, e.g. demographic data such as age, sex or time
point of measurement.

• Target columns are the actual measurements of interest, directly related to the objective of
the trial. In the context of ICH E9 ICH E9 (1999), these columns are called ’endpoints’.

The task is to compare the target columns between the groups, separately for every split column.
This is often the first step of a clinical trial analysis to obtain an impression of the distribution of
data. The atable package completes this task by applying descriptive statistics and hypothesis tests
and arranges the results in a table that is ready for printing.

Additionally atable can produce tables of blank data.frames with arbitrary fill-ins (e.g. X.xx) as
placeholders for proposals or report templates.

Usage

To exemplify the usage of atable, we use the dataset arthritis of multgee Touloumis (2015). This
dataset contains observations of the self-assessment score of arthritis, an ordered variable with five
categories, collected at baseline and three follow-up times during a randomised comparative study of
alternative treatments of 302 patients with rheumatoid arthritis.
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library(atable)
library(multgee)
data(arthritis)
# All columns of arthritis are numeric. Set more appropriate classes:
arthritis = within(arthritis, {
score = ordered(y)
baselinescore = ordered(baseline)
time = paste0("Month ", time)
sex = factor(sex, levels = c(1,2), labels = c("female", "male"))
trt = factor(trt, levels = c(1,2), labels = c("placebo", "drug"))})

First, create a table that contains demographic and clinical characteristics for each group. The
target variables are sex, age and baselinescore; the variable trt acts as the grouping variable:

the_table <- atable::atable(subset(arthritis, time == "Month 1"),
target_cols = c("age", "sex", "baselinescore"),
group_col = "trt")

Now print the table. Several functions that create a LATEX-representation Mittelbach et al. (2004)
of the table exist: latex of Hmisc Harrell Jr et al. (2018), kable of knitr Xie (2018) or xtable of
xtable Dahl et al. (2018). latex is used for this document.

Table 1 reports the number of observations per group. The distribution of numeric variable
age is described by its mean and standard deviation, and the distributions of categorical variable
sex and ordered variable baselinescore are presented as percentages and counts. Additionally,
missing values are counted per variable. Descriptive statistics, hypothesis tests and effect sizes are
automatically chosen according to the class of the target column; see table 3 for details. Because
the data is from a randomised study, hypothesis tests comparing baseline variables between the
treatment groups are omitted.

Now, present the trial results with atable. The target variable is score, variable trt acts as
the grouping variable, and variable time splits the dataset before analysis:

the_table <- atable(score ~ trt | time, arthritis)

Table 2 reports the number of observations per group and time point. The distribution of ordered
variables score is presented as counts and percentages. Missing values are also counted per variable
and group. The p-value and test statistic of the comparison of the two treatment groups are shown.
The statistical tests are designed for two or more independent samples, which arise in parallel group
trials. The statistical tests are all non-parametric. Parametric alternatives exist that have greater
statistical power if their requirements are met by the data, but non-parametric tests are chosen for
their broader range of application. The effect sizes with a 95% confidence interval are calculated;
see table 3 for details.

LATEX is not the only supported output format. All possible formats are:

• LATEX(as shown in this document), further processed with e.g. latex of Hmisc, kable of knitr
or xtable of xtable.

• HTML, further processed with e.g. knitr::kable of knitr.
• Word, can be further processed with e.g. flextable of flextable Gohel (2018).
• R’s console. Human readable format meant for explorative interactive analysis.

The output format is declared by the argument format_to of atable, or globally via atable_options.
The settings package van der Loo (2015) allows global declaration of various options of atable.

Modifying atable

The current implementation of tests and statistics (see table 3) is not suitable for all possible datasets.
For example, the parametric t-test or the robust estimator median may be more adequate for some
datasets. Additionally, dates and times are currently not handled by atable.

It is intended that some parts of atable can be altered by the user. Such modifications are
accomplished by replacing the underlying methods or adding new ones while preserving the structures
of arguments and results of the old functions. The workflow of atable (and the corresponding function
in parentheses) is as follows:

1. calculate statistics (statistics)
2. apply hypothesis tests (two_sample_htest or multi_sample_htest)
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Table 1: Demographics of dataset arthritis.

Group placebo drug

Observations

149 153

age

Mean (SD) 51 (11) 50 (11)

valid (missing) 149 (0) 153 (0)

sex

female 29% (43) 26% (40)

male 71% (106) 74% (113)

missing 0% (0) 0% (0)

baselinescore

1 7.4% (11) 7.8% (12)

2 23% (35) 25% (38)

3 47% (70) 45% (69)

4 19% (28) 18% (28)

5 3.4% (5) 3.9% (6)

missing 0% (0) 0% (0)
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Table 2: Hypothesis tests of dataset arthritis.

Group placebo drug p stat Effect Size (CI)

Month 1

Observations

149 153

score

1 6% (9) 1.3% (2) 0.08 9.9e+03 -0.12 (-0.24; 0.0017)

2 23% (35) 10% (16)

3 34% (50) 50% (77)

4 30% (45) 33% (51)

5 6% (9) 3.3% (5)

missing 0.67% (1) 1.3% (2)

Month 3

Observations

149 153

score

1 6% (9) 2% (3) 0.0065 9e+03 -0.2 (-0.32; -0.08)

2 21% (32) 18% (27)

3 42% (63) 34% (52)

4 24% (36) 33% (50)

5 5.4% (8) 10% (16)

missing 0.67% (1) 3.3% (5)

Month 5

Observations

149 153

score

1 5.4% (8) 1.3% (2) 0.004 8.7e+03 -0.22 (-0.34; -0.1)

2 19% (29) 13% (20)

3 35% (52) 33% (51)

4 32% (48) 29% (45)

5 6.7% (10) 18% (28)

missing 1.3% (2) 4.6% (7)
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Table 3: R classes, scale of measurement and atable. The table lists the descriptive statistics and
hypothesis tests applied by atable to the three R classes factor, ordered and numeric.
The table also reports the corresponding scale of measurement. atable treats the classes
character and logical as the class factor.

R class factor ordered numeric

scale of measure-
ment

nominal ordinal interval

statistic counts occurrences
of every level

as factor Mean and standard
deviation

two-sample test χ2 test Wilcoxon rank sum
test

Kolmogorov-
Smirnov test

effect size two levels: odds ra-
tio, else Cramér’s φ

Cliff’s ∆ Cohen’s d

multi-sample test χ2 test Kruskal-Wallis test Kruskal-Wallis test

3. format statistics results (format_statistics)
4. format hypothesis test results (format_tests).

These five functions may be altered by the user by replacing existing or adding new methods to
already existing S3-generics. Two examples are as follows:

Replace existing methods

The atable package offers three possibilities to replace existing methods:

• pass a function to atable_options. This affects all following calls of atable.
• pass a function to atable. This affects only a single call of atable and takes precedence over

atable_options.
• replace a function in atable’s namespace. This is the most general possibility, as it is applicable

to all R packages, but it also needs more code than the other two and is not as easily reverted.

We now define three new functions to exemplify these three possibilities.
First, define a modification of two_sample_htest.numeric, which applies t.test and ks.test

simultaneously. See the documentation of two_sample_htest: the function has two arguments called
value and group and returns a named list.

new_two_sample_htest_numeric <- function(value, group, ...){

d <- data.frame(value = value, group = group)

group_levels <- levels(group)
x <- subset(d, group %in% group_levels[1], select = "value", drop = TRUE)
y <- subset(d, group %in% group_levels[2], select = "value", drop = TRUE)

ks_test_out <- stats::ks.test(x, y)
t_test_out <- stats::t.test(x, y)
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out <- list(p_ks = ks_test_out$p.value,
p_t = t_test_out$p.value )

return(out)
}

Secondly define a modification of statistics.numeric, that calculates the median, MAD, mean
and SD. See the documentation of statistics: the function has one argument called x and the
ellipsis .... The function must return a named list.

new_statistics_numeric <- function(x, ...){

statistics_out <- list(Median = median(x, na.rm = TRUE),
MAD = mad(x, na.rm = TRUE),
Mean = mean(x, na.rm = TRUE),
SD = sd(x, na.rm = TRUE))

class(statistics_out) <- c("statistics_numeric", class(statistics_out))
# We will need this new class later to specify the format

Third, define a modification of format_statistics: the median and MAD should be next to each
other, separated by a semicolon; the mean and SD should go below them. See the documentation
of format_statistics: the function has one argument called x and the ellipsis .... The function
must return a data.frame with names tag and value with class factor and character, respectively.
Setting a new format is optional because there exists a default method for format_statistics that
performs the rounding and arranges the statistics below each other.

new_format_statistics_numeric <- function(x, ...){

Median_MAD <- paste(round(c(x$Median, x$MAD), digits = 1), collapse = "; ")
Mean_SD <- paste(round(c(x$Mean, x$SD), digits = 1), collapse = "; ")

out <- data.frame(
tag = factor(c("Median; MAD", "Mean; SD"), levels = c("Median; MAD", "Mean; SD")),
# the factor needs levels for the non-alphabetical order
value = c(Median_MAD, Mean_SD),
stringsAsFactors = FALSE)

return(out)
}

Now apply the three kinds of modification to atable: We start with atable’s namespace:

utils::assignInNamespace(x = "two_sample_htest.numeric",
value = new_two_sample_htest_numeric,
ns = "atable")

Here is why altering two_sample_htest.numeric in atable’s namespace works: R’s lexical scoping
rules state that when atable is called, R first searches in the enclosing environment of atable to
find two_sample_htest.numeric. The enclosing environment of atable is the environment where it
was defined, namely, atable’s namespace. For more details about scoping rules and environments,
see e.g. Wickham (2014), section ‘Environments’.

Then modify via atable_options:

atable_options('statistics.numeric' = new_statistics_numeric)

Then modify via passing new_format_statistics_numeric as an argument to atable, together
with actual analysis. See table 4 for the results.

the_table <- atable(age ~ trt, arthritis,
format_statistics.statistics_numeric = new_format_statistics_numeric)

The modifications in atable_options are reverted by calling atable_options_reset(), changes in
the namespace are reverted by calling utils::assignInNamespace with suitable arguments.

Replacing methods allows us to create arbitrary tables, even tables independent of the supplied
data. We will create a table of a blank data.frame with arbitrary fill-ins (here X.xx ) as placeholders.
This is usefull for proposals or report templates:
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Table 4: Modified atable now calculates the median, MAD, t-test and KS-test for numeric
variables. The median is greater than the mean in both the drug and placebo group,
indicating a skewed distribution of age. Additionally the KS-test is significant at the
5% level, while the t-test is not.

Group placebo drug p_ks p_t

Observations

447 459

age

Median; MAD 55; 10.4 53; 10.4 0.043 0.38

Mean; SD 50.7; 11.2 50.1; 11

# create empty data.frame with non-empty column names
E <- atable::test_data[FALSE, ]

stats_placeholder <- function(x, ...){

return(list(Mean = "X.xx",
SD = "X.xx"))

}

the_table <- atable::atable(E, target_cols = c("Numeric", "Factor"),
statistics.numeric = stats_placeholder)

See table 5 for the results. This table also shows that atable accepts empty data frames without
errors.

Add new methods

In the current implementation of atable, the generics have no method for class Surv of survival
Therneau (2015). We define two new methods: the distribution of survival times is described by
its mean survival time and corresponding standard error; the Mantel-Haenszel test compares two
survival curves.

statistics.Surv <- function(x, ...){

survfit_object <- survival::survfit(x ~ 1)

# copy from survival:::print.survfit:
out <- survival:::survmean(survfit_object, rmean = "common")

return(list(mean_survival_time = out$matrix["*rmean"],
SE = out$matrix["*se(rmean)"]))

}

two_sample_htest.Surv <- function(value, group, ...){

survdiff_result <- survival::survdiff(value~group, rho=0)
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Table 5: atable applied to an empty data frame with placeholder statistics for numeric variables.
The placeholder-function is applied to the numeric variable, printing X.xx in the table.
The empty factor variable is summarized in the same way as non-empty factors: by
returning percentages and counts; in this case yielding 0/0 = NaN percent and counts of
0 in every category, as expected. Note, that the empty data frame still needs non-empty
column names.

Group value

Observations

0

Numeric

Mean X.xx

SD X.xx

Factor

G3 NaN% (0)

G2 NaN% (0)

G1 NaN% (0)

G0 NaN% (0)

missing NaN% (0)
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# copy from survival:::print.survdiff:
etmp <- survdiff_result$exp
df <- (sum(1 * (etmp > 0))) - 1
p <- 1 - stats::pchisq(survdiff_result$chisq, df)

return(list(p = p,
stat = survdiff_result$chisq))

}

These two functions are defined in the user’s workspace, the global environment. It is sufficient to
define them there, as R’s scoping rules will eventually find them after going through the search path,
see Wickham (2014).

Now, we need data with class Surv to apply the methods. The dataset ovarian of survival
contains the survival times of a randomised trial comparing two treatments for ovarian cancer.
Variable futime is the survival time, fustat is the censoring status, and variable rx is the treatment
group.

library(survival)
# set classes
ovarian <- within(survival::ovarian, {time_to_event = survival::Surv(futime, fustat)})

Then, call atable to apply the statistics and hypothesis tests. See tables 6 for the results.

atable(ovarian, target_cols = c("time_to_event"), group_col = "rx")

Table 6: Hypothesis tests of the dataset ovarian.

Group 1 2 p stat

Observations

13 13

time_to_event

mean_survival_time 650 889 0.3 1.1

SE 120 115

Discussion

A single function call does the job, and in conjunction with report-generating packages such as knitr,
accelerates the analysis and reporting of clinical trials.

Other R packages exist to accomplish this task:

• furniture Barrett et al. (2018)
• tableone Yoshida and Bohn. (2018)
• stargazer Hlavac (2018): focus is more on reporting regression models; no grouping variables,

so no two-sample hypothesis tests included; and descriptive statistics are comparable to atable
• DescTools Signorell (2018): comparable functions are Desc (only describes data.frames, no

hypothesis tests) and PercTable (contingency tables only).
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furniture and tableone have high overlap with atable, and thus we compare their advantages relative
to atable in greater detail:

Advantages of furniture::table1 are:

• interacts well with margrittr’s pipe %>% Bache and Wickham (2014), as mentioned in the
examples of ?table1. This facilitates reading the code.

• handles objects defined by dplyr’s group_by to define grouping variables Wickham et al. (2019).
atable has no methods defined for these objects.

• uses non-standard evaluation, which allows the user to create and modify variables from within
the function itself, e.g.:

table1(df, x2 = ifelse(x > 0, 1, 0)).

This is not possible with atable.

Advantages of tableone::CreateTableOne are:

• allows arbitrary column names and prints these names in the resulting table unaltered. This is
useful for generating human-readable reports. Blanks and parentheses are allowed for reporting
e.g. ’Sex (Male) x%’. Also, non-ASCII characters are allowed. This facilitates reporting in
languages that have little or no overlap with ASCII. atable demands syntactically valid names
defined by make.names.

• counting missing values is easily switched on and off by an argument of tableone::CreateTableOne.
In atable a redefinition of a function is needed.

• allows pairwise comparisons tests when data is grouped into more than two classes. atable
allows only multivariate tests.

Advantages of atable are:

• options may be changed locally via arguments of atable and globally via atable_options,
• easy expansion via S3 methods,
• formula syntax,
• distinction between split_cols and group_col,
• accepts empty data.frames. This is useful when looping over a list of possibly empty data

frames in subgroup analysis, see table 5,
• allows to create tables with a blank data.frame with arbitrary fill-ins (e.g. X.xx) as placeholders

for proposals or report templates, also see table 5.

Changing options is exemplified in section 16.4: passing options to atable allows the user to modify
a single atable-call; changing atable_options will affect all subsequent calls and thus spares the
user passing these options to every single call.

Descriptive statistics, hypothesis tests and effect sizes are automatically chosen according to
the class of the target column. R’s S3-object system allows a straightforward implementation and
extension of this feature, see section 16.4.

atable supports the following concise and self-explanatory formula syntax:

atable(target_cols ~ group_col | split_cols, ...)

R users are used to working with formulas, such as via the lm function for linear models. When
fitting a linear model to randomised clinical trial data, one can use

lm(target_cols ~ group_col, ...)

to estimate the influence of the interventions group_col on the endpoint target_cols. atable
mimics this syntax:

atable(target_cols ~ group_col, ...)

performs a hypothesis test, whether there is an influence of the interventions group_col on the
endpoint target_cols.
Also, statisticians know the notion of conditional probability:

P(target_cols | split_cols).

This denotes the distribution of target_cols given split_cols. atable borrows the pipe | from
conditional probability:
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atable(target_cols ~ group_col | split_cols)

shows the distribution of the endpoint target_cols within the interventions group_col given the
strata defined by split_cols.

atable distinguishes between split_cols and group_col: group_col denotes the randomised
intervention of the trial. We want to test whether it has an influence on the target_cols; split_cols
are variables that may have an influence on target_cols, but we are not interested in that influence
in the first place. Such variables, for example, sex, age group, and time point of measurement, arise
often in clinical trials. See table 2: the variable time is such a supplementary stratification variable:
it has an effect on the arthritis score, but that is not the effect of interest; we are interested in the
effect of the intervention on the arthritis score.

The package can be used in other research contexts as a preliminary unspecific analysis. Displaying
the distributions of variables is a task that arises in every research discipline that collects quantitative
data.

I thank the anonymous reviewer for his/her helpful and constructive comments.
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Identifying and Testing Recursive vs.
Interdependent Links in Simultaneous
Equation Models via the SIRE
Package
by Gianmarco Vacca and Maria Grazia Zoia

Abstract Simultaneous equation models (SEMs) are composed of relations which either represent
unidirectional links, which entail a causal interpretation, or bidirectional links, due to feedback
loops, which lead to the notion of interdependence. The issue is of prominent interest in several
respects. Investigating the causal structure of a SEM, on the one hand, brings to light the theoretical
assumptions behind the model and, on the other hand, pilots the choice of the befitting estimation
method and of which policy to implement. This paper provides an operational method to distinguish
causal relations from interdependent ones in SEMs, such as macro-econometric models, models
in ecology, biology, demography, and so forth. It is shown that the causal structure of a system
crucially rests on the feedback loops, which possibly affect the equations. These loops are associated
to the non-null entries of the Hadamard product of matrices encoding the direct and indirect links
among the SEM dependent variables. The effectiveness of feedbacks is verified with a Wald test
based on the significance of the aforementioned non-null entries. An R package, SIRE (System of
Interdependent/Recursive Equations), provides the operational completion of the methodological
and analytic results of the paper. SIRE is applied to a macroeconomic model to illustrate how this
type of analysis proves useful in clarifying the nature of the complex relations in SEMs.

Introduction

As is well known, each equation in a simultaneous equation model (SEM) represents a specific link
between a dependent (endogenous) variable and a set of other variables which play an explicative
role for the former. These links can reflect either one-way relations between the dependent and their
explicative variables or two-ways relations, ascribable to the presence of feedback loops operating
either at a systematic or a stochastic level. SEMs are of recursive type as long as the equations
represent unidirectional links. Otherwise, if the equations are bidirectional, the SEM (or part of
it) is interdependent. Interdependence is, both structurally connected to the presence of current
endogenous variables playing an explicative role, and can result as a by-product of error-term
dependencies.

Investigating the nature, causal rather than interdependent, of a SEM is important in several
respects. First the analysis, unfolding the dynamics among variables, sheds more light on the
rationale behind the theoretical assumptions of the model. For instance, in an economic framework,
the distinction between interdependent and causal SEMs leads to models which can be traced
back to two main streams of economic theory: Neoclassical and Keynesian (Bellino et al., 2018).
Furthermore, the implication of interdependence vs. causality is crucial for undertaking parameter
estimation, given that a set of causal equations can be estimated equation by equation by ordinary
least squares (OLS), while simultaneous estimation methods, like three stage least squares (3SLS)
are required when interdependence occurs. Given that large SEMs have become increasingly popular,
the need for an analytical set-up, able to effectively detect and test causality versus interdependence,
has of course become more urgent.

Starting from this premise and following Strotz and Wold, 1960; Wold, 1964; and more recently
Faliva, 1992; Faliva and Zoia, 1994); in this paper we have devised an operational method to
distinguish the causal from the interdependent equations of a SEM. Other approaches for detecting
feedback-loops arising in deterministic (error free) models are based on either graph or system theory
(see e.g., Gilli 1992). Our methodological proposal goes beyond the aforementioned methods, as
besides covering both the cases of deterministic and error-driven feedback effects, it provides a way
for testing the feedback effectiveness. In addition, it differs in principle from other approaches, as
the one proposed by Granger (see Granger, 1980) and the Covariance Structural Analysis (CSA;
Jöreskog). The former essentially rests on a predictability criterion for defining causality regardless of
the theory behind the model. The latter, which is meant to find the best parametric approximation
of the sample covariance matrix in terms of a given theoretical SEM structure; as such, it does not
lead to a causal/interdependent interpretation of the model links as the one developed in our paper.

The feedbacks identified by the method proposed here demand statistical confirmation on certain
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empirical evidence arguments. Lack of significance of (one or more of) the estimated feedbacks can
overturn the nature of the connections among model variables. To this end, a Wald type test is
devised to check whether a given equation is significantly affected by feedback or not. The statistic
of this test hinges on the parameter matrices of the model: the matrix associated to the endogenous
variables playing an explicative role and the dispersion matrix of the error terms. If an equation is
affected by feedback loops, the testing procedure allows to diagnose which endogenous variables are
significantly connected in the loop of interest. Indeed, testing the significance of feedbacks means
also checking if the links among variables, suggested by the theory at the basis of the model, are
confirmed according to an empirical evidence argument.

The methodological approach put forth in this paper is implemented in R with the SIRE package.
Besides integrating functions usually employed for the estimation of SEM’s, the package provides
new functions meant to duly split a system of equations into its unidirectional and bidirectional
links, and test their significance. To our knowledge, extant alternative approaches to causality do
not offer a similar test.

The paper is structured as follows. The first section provides the methodological set-up devised
to single out causal and interdependent relations in a SEM. In the second section, a Wald-type
test is worked out to check whether a given equation is affected by feedbacks or not. The third
section shows how the method and the R code work for detecting and testing feedback-loops in a
macroeconomic model. An Appendix, with proofs of the main theoretical results, completes the
paper.

Detecting Loops in an Equation System

An equation system is a set of structural equations representing economic theory-driven relations
linking the variables relevant to the study at hand.

It is customary to specify an equation system as follows

yt “ Γyt `Azt ` εt t “ 1, . . . ,T (1)

where yt is a Lˆ 1 vector of current dependent or endogenous variables, zt is a J ˆ 1 vector of
explicative variables and εt is a Lˆ 1 vector of error terms. T is the sample period. Γ and A are,
respectively, LˆL and Lˆ J sparse parameter matrices. In particular Γ, expressing the relations
among current endogenous variables, is a hollow matrix to prevent any endogenous variable from
explaining itself. Furthermore, it is assumed that (I´ Γ) is of full rank, meaning that the equations
are linearly independent.

Error terms are assumed to be non-systematic, stationary in a wide sense, and uncorrelated over
time, that is

Epεtq “ 0L (2)

Epεtε
1
τ q “

#

ΣpLˆLq if t “ τ

0pLˆLq if t ‰ τ

Actually, the pattern of relations recognizable in an econometric model can be interpreted either in
terms of causal or interdependent schemes. A causal relation among variables is an asymmetric,
theoretically-grounded and predictive relations which can be ideally meant as a stimulus-response
mechanism (see Wold, 1964 and Strotz and Wold 1960). The equations of a model form a causal
chain when, once they are properly ordered, each current endogenous variable turns out to be, on
the one hand, resultant of the joint effect of the endogenous which precede it in the chain and, on
the other hand, cause of the current endogenous which follow the same endogenous in the chain. A
model with equations that form a causal chain is defined recursive. The following simple equation
system provides an example of a recursive model (see Figure 1, left panel)

y1,t “a11zt ` ε1,t (3)
y2,t “γ2,1y1,t ` a12zt ` ε2,t

y3,t “γ3,2y2,t ` γ3,1y1,t ` a13zt ` ε3,t

y4,t “γ4,3y3,t ` γ4,1y1,t ` a14zt ` ε4,t

Recursive systems can be easily estimated, equation by equation, using OLS, starting from the top
of the chain.

When a causal chain exists among blocks of current endogenous variables, a causal order can be
established among those blocks of equations. In this case, the current endogenous variables of a
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block are effects of the variables belonging to the blocks which come before them in the chain, as
well as the causes of the variables belonging to blocks which follow the block at stake in the chain.
In this case, the model is of block-recursive type. The following simple equation system provides an
example of a recursive model (see Figure 1, middle panel)

y1,t “γ1,2y2,t ` a11zt ` ε1,t (4)
y2,t “γ2,1y1,t ` a12zt ` ε2,t

y3,t “γ3,2y2,t ` γ3,4y4,t ` a13zt ` ε3,t

y4,t “γ4,3y3,t ` γ4,1y1,t ` a14zt ` ε4,t

Here, the chain is formed by two blocks of variables (y1, y2) and (y3 and y4) with the variables of
the first block explaining those of the second.

Sometimes the composite nature of the connections among variables leads to a closed sequence
of dependencies among variables to be ascribed to feedback loops. This type of interaction among
endogenous variables is usually called interdependence. Interdependence is structurally connected
to the presence of both current endogenous variables on the right-hand side of the model and the
correlation between contemporaneous error terms.See the system below as an example in this regard
(see Figure 1, right panel)

y1,t “γ1,2y2,t ` a11zt ` ε1,t (5)
y2,t “γ2,1y1,t ` γ2,3y3,t ` a12zt ` ε2,t

y3,t “γ3,2y2,t ` γ3,4y4,t ` a13zt ` ε3,t

y4,t “γ4,3y3,t ` γ4,1y1,t ` a14zt ` ε4,t

Y1

Y2

Y3

Y4

(a) Recursive model (3).

Y1

Y2

Y3

Y4

(b) block-recursive model (4).

Y1

Y2

Y3

Y4

(c) interdependent model (5).

Figure 1: The three patterns of relations in a simultaneous equation model.

Based on this premise, it is clear that the causal or interdependent features of a model’s
equations depend on the pair of matrices Γ and Σ. The former matrix highlights the possible
(circular) dependencies or feedbacks among endogenous variables, while the latter features those
induced by the stochastic components. In fact, the correlation of error terms associated to an
equation-pair may transform the link between the endogenous, explained by these equations, into a
relation with feedback.

Moreover, the essential information concerning the causal structure of a model can be obtained
from the topological properties1 of the pair of the mentioned matrices and, at the very end, from
the topological properties of the associated binary matrices Γband Σb. 2

Following Faliva (Faliva, 1992) matrix Γ can be split as follows

Γ “ C̃`Ψ0 (6)
1The term topological properties refers to those properties of a matrix which depend exclusively on the

number and the relative position of its null and non-null elements (Marimont, 1969).
2A binary matrix associated to a matrix G is a matrix whose entries are equal to 1 if the corresponding

entries of G are non-null, or 0 otherwise. Binary matrices preserve the topological properties of the parent
matrices.
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where C̃ includes the coefficients associated to current endogenous variables involved in feedback
loops, and Ψ0 those associated to endogenous variables involved in causal relations.

Matrix C̃ is specified as follows
C̃ “ C`Ψ1 (7)

where C includes the feedbacks arising in the systematic part of the model and matrix Ψ1 those
induced by the correlation of the error terms. Matrices C and Ψ1 are defined as follows

C “ Γ ˚R R “

$

&

%

«

L´1
ÿ

r“1

´

Γb
¯r

ffb
,

.

-

1

(8)

Ψ1 “ pΓ´Cq ˚
”

Σb pI`Rq
ıb

, (9)

where the symbol "˚" denotes the Hadamard product.34 The rationale of (8) hinges on the fact
that a direct feedback between variables yi and yj corresponds to the simultaneous non-nullity of
γi,j and γj,i of coefficient matrix Γ. This entails that a direct feedback between these two variables
exists if the pi, jq-th element of the matrix 5

Γ ˚ pΓbq1 (10)

is non null. An indirect feedback between the same variables is instead associated to a bidirectional
connection between yi and yj established through other variables and equations. In algebraic terms
this corresponds to the simultaneous non-nullity of the pi, jq-th element of Γ and of the pi, jq-th
element of a positive power of Γ1 (Fiedler, 2013). This entails that an indirect feedback exists
between the mentioned variables if the pi, jq-th element of the following matrix

Γ1 ˚

$

&

%

«

L´1
ÿ

r“2

´

Γb
¯r

ffb
,

.

-

1

(11)

is non-null.
Accordingly, matrix

Ψ “ Γ´C (12)
includes the coefficients associated to endogenous variables which, as far as the systematic aspects
of the model are concerned, have a causal role.6

In order to show how feedbacks operating in the systematic part of a model can be detected, let
3The Hadamard product of two matrices, A and B of the same order, is defined as the matrix of the

term-to-term products of the elements of these matrices, that is pA ˚Bqpi,jq “ api,jqbpi,jq.
4An alternative approach for determining the feedbacks operating at a systematic level in a model is based

on graph theory (see Jöreskog and Wold, 1982 and Ponstein, 1966).
5The element γj,i of Γ corresponds to the element γi,j of Γ1
6It is worth mentioning that Ψ is Hadamard-orthogonal to C (two matrices A and B are said to be

Hadamard-orthogonal if A ˚B=0). Furthermore, while matrix C is co-spectral to Γ (i.e., they have the same
eigenvalues), matrix Ψ is a hollow-nilpotent matrix, like Γ (a square matrix N is nilpotent if Nk “ 0 for some
k ăM , where M is the matrix dimension). A hollow, nilpotent matrix can always be expressed in triangular
form.
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us consider as an example the following deterministic model

y1,t “γ1,5y5,t ` γ1,7y7,t ` a11zt (13)
y2,t “a12z2,t

y3,t “γ3,11y11,t ` a13zt

y4,t “γ4,3y3,t ` a14zt

y5,t “γ5,10y10,t ` a15zt

y6,t “γ6,5y5,t ` γ6,9y9,t ` a
1
6zt

y7,t “γ7,6y6,t ` a17zt

y8,t “γ8,12y12,t ` a18zt

y9,t “γ9,7y7,t ` a19zt

y10,t “γ10,5y5,t ` a110z2,t

y11,t “γ11,12y12,t ` a111zt

y12,t “γ12,4y4,t ` γ12,11y11,t ` a112zt

y13,t “γ13,2y2,t ` γ13,6y6,t ` a113zt

Matrix Γb is given by

Γb “

»

—

—

—

—

—

—

—

—

–

¨ ¨ ¨ ¨ 1 ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨ ¨
¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨ ¨ ¨
¨ ¨ ¨ ¨ 1 ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨
¨ ¨ ¨ ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨
¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨ ¨
¨ 1 ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(14)

Using (8) and (12), Γb is split in the following two submatrices

Cb
“

»

—

—

—

—

—

—

—

–

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨ ¨
¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨
¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, Ψb “

»

—

—

—

—

—

—

—

–

¨ ¨ ¨ ¨ 1 ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ 1 ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(15)

Looking at matrix Cb, we see that the simultaneous non-nullity of the c5,10, c10,5, c11,12, and c12,11
elements imply the existence of two direct feedbacks: one between the variable-pair y5 and y10, and
the other between y11 and y12. The non-nullity of the c3,11, c4,3, and c12,4 elements denotes the
existence of indirect feedbacks between the four variables y3, y4, y11, and y12. Similarly, variables
y6, y7, and y9 are connected by an (indirect) feeback as a consequence of the non-nullity of the
c6,9, c7,6, and c9,7 elements. Looking at matrix Ψ we conclude that variables y5 and y7 have a
causal role in the first equation. Variables y5 and y12 have the same role in the equations six and
eight, while variables y2 and y6 play a causal role in the last equation. The results ensuing from the
decomposition of Γb are depicted in Figure 2.

Y1 Y7 Y3 Y4

Y5 Y6 Y9 Y11 Y12

Y10 Y13 Y2 Y8

Figure 2: Interdependent links (in red) and causal links (in black) operating in the model (13).

If the error terms are correlated, the causal structure of a model could no longer match that of
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its systematic counterpart since part of the relations that are recursive at systematic level, namely
Ψyt, may become interdependent as a consequence of the feedback mechanisms induced by the
stochastic terms in Σ. In this case, matrix Ψ turns out to be the sum of two Hadamard-orthogonal
matrices, Ψ0 and Ψ1, that is

Ψ “ Ψ0 `Ψ1 Ψ0 ˚Ψ1 “ 0pLˆLq (16)

where
Ψb1 “ Ψ ˚F F “

”

Σb pI`Rq
ıb

(17)

Here, matrix Ψ1 includes the coefficients associated to the endogenous variables involved in loops
induced by disturbances. In fact, it can be proved (see 1. in Appendix) that the matrix

”

Σb pI`Rq
ıb

is the binary counterpart of the covariance matrix between the error terms and the endogenous
variables given by

Epε1tytq “ rΣ pI´ Γq´1
s (18)

The non-null elements of the above matrix express the effect of the model’s left-hand side (LHS)
endogenous variables on the right-hand side (RHS) ones, which are induced by the error term
correlation.

Equations (16) and (17) rest on the logical relations between the concepts of causality and
predictability, where the notion of optimal predictor (in mean-square sense) tallies with that of
conditional expectation. In fact, given that causal relations are also predictive, but not vice-versa,
we can define as causal those relations that are both causal in the deterministic model and predictive
in a stochastic context. This means that if the conditional expectations of the relations, which are
causal in the deterministic model, namely Ψyt, are not affected by the error terms, then Ψyt turns
out to also have a causal role in a stochastic context. Accordingly, we can say that the stochastic
specification is neutral with respect to the underlying systematic causal structure if the following
holds (Faliva, 1992)

EpΨyt ` εt|Ψytq “ Ψyt `Epεt|Ψytq “ Ψyt (19)
meaning that

Epεt|Ψytq “ 0 (20)
Otherwise, the correlation between the error terms and the endogenous variables may affect the
conditional expectation of the error term as follows (see Faliva, 1992)

Epεt|Ψytq “ ´Ψ1yt (21)

which, in turn, implies that

EpΨyt ` εt|Ψytq “ Ψyt ´Ψ1yt “ Ψ0yt (22)

In this case, only the subset Ψ0yt of the original set of causal relations, playing a predictive role, is
causal. This, in turn, implies that the overall feedback operating in the system is included in matrix
rC “ C`Ψ1.

To highlight the role played by the stochastic specification on the model causal structure, let us
consider as an example the following specification for matrix Σb

Σb “

»

—

—

—

—

—

—

—

—

–

1
¨ 1
¨ ¨ 1
1 1 ¨ 1
1 ¨ ¨ 1 1
¨ 1 1 1 ¨ 1
¨ ¨ 1 ¨ ¨ 1 1
1 1 ¨ 1 1 1 ¨ 1
¨ 1 ¨ 1 ¨ 1 ¨ 1 1
1 ¨ ¨ 1 1 ¨ ¨ 1 ¨ 1
¨ ¨ 1 ¨ ¨ 1 1 ¨ ¨ ¨ 1
1 ¨ ¨ 1 1 ¨ ¨ 1 ¨ 1 ¨ 1
¨ ¨ 1 ¨ ¨ 1 1 ¨ ¨ ¨ 1 ¨ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(23)

Then, matrices ĂCb and Ψb0 are

ĂCb “

»

—

—

—

—

—

—

—

—

–

¨ ¨ ¨ ¨ 1 ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨ ¨
¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨
¨ ¨ ¨ ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨
¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨ ¨
¨ ¨ ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ Cb
`Ψb1 “

»

—

—

—

—

—

—

—

–

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨ ¨
¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨
¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

—

–

¨ ¨ ¨ ¨ 1 ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(24)
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Ψb0 “

»

—

—

—

—

—

—

—

–

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ 1 ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(25)

The non-null correlation between the pairs of error terms tε5, ε1u, tε6, ε13u, tε7, ε1u and tε12, ε8u
(see Equation (23)) has transformed the relations among the pairs of variables ty5, y1u, ty6, y13u,
ty7, y1u, and ty12, y8u, which were causal in the deterministic model (13), into interdependent links.
Figure 3 shows the effect of the stochastic specification (23) on the feedbacks originally detected in
the deterministic model (13).

Y1 Y7 Y3 Y4

Y5 Y6 Y9 Y11 Y12

Y10 Y13 Y2 Y8

Figure 3: Interdependent (in red) and causal (in black) links operating in the model (13) when
the stochastic specification is as in (23). Dashed red lines with double-headed arrows
denote interdependent links induced by the correlation of the error terms.

The flow-chart in Figure 4 shows the different cases, according to the structure of matrices Γ

and Σ.

Σ “ I

Γ “ C Interdependence Γ “ C`Ψ1

Γ “ Ψ Recursiveness Γ “ Ψ0

Block recursiveness

yes

yes

no

yes

no

yesyes

no

no no

Figure 4: Flow-chart showing the possible outcome of the system decomposition in terms of Γ

and Σ.
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Testing the Significance of Feedback Loops

In the previous section an analytic framework was set up to describe the potential feedbacks operating
in a model. In fact, the analysis developed, relying on binary matrices, was meant to be qualitative
since it only highlights the feedback set that potentially operates in a model, given the characteristics
of its relations and its stochastic specification. Only once the model has been duly estimated, can the
coefficients of matrix rC be properly evaluated. At this point, it proves useful to devise a procedure
for testing the significance of the estimated loops (see Faliva and Zoia, 1994). To this end, let us
observe that, once the matrix including all the feedbacks operating in the model

C`Ψ1 “ C`Ψ1 “ C` pΨ ˚Fq F “ ΣpI´ Γq´1 (26)

have been properly estimated, a test for the effective functioning of feedback loops can be established,
based on the significance of its non-null entries. Any given equation, say the j-th one, turns out to
be involved in feedback loops with other equations of the model whenever the j´th row of the above
matrix is not a null vector. Should the pj, iq-th entry of this matrix be non-null, then a feedback
between the j-th and the i-th equation would be expected to exist (see A.7 in the Appendix).
Actually, it can be proved (see 2. in Appendix) that, in light of the identity

C` pΨ ˚Fq “ pC`Ψq ˚F “ Γ ˚F (27)

a test for the significance of the loops can be based on the exam of the statistical non-nullity of
the elements of matrix Γ ˚F which, unlike rC, does not require the preliminary split of Γ into its
components, given the feedback loops C`Ψ1 and causal links Ψ0.

In this context (following Faliva and Zoia, 1994), it can be proved that the j-th row of matrix
Γ ˚F measures both the direct effect of the RHS endogenous variables on the j-th one and the
feedback effect of the latter on the former variables. In fact, the direct effects of the RHS endogenous
variables, collected in vector yo, on variable yj are included in the j-th row of matrix Γ (excluding
its j-th element), that is

BEpyj |yoq
Byo

“ e1jΓMj (28)

Here, ej is the L-dimensional j-th elementary vector and Mj is the pLˆ pL´ 1qq selection matrix
obtained from the identity matrix by deleting its j-th column, that is

Mj “

»

– e1
pL,1q

, . . . ej´1
pL,1q

, ej`1
pL,1q

, . . . eL´1
pL,1q

fi

fl (29)

The feedback effects of the yj variable on its explicative endogenous variables, yo, are included in
the j-th row of matrix F (excluding its j-th element), that is

BEpy1o|yjq
Byj

“ pM1
jF
1ejq1 (30)

To prove (30), let us focus on the j-th equation and consider this equation as the first of the system,
with the others in sequence, that is

yj
p1,1q

“ γ1j
p1,L´1q

yo
pL´1,1q

` a1j
p1,Jq

z
pJ,1q

` εj
p1,1q

(31)

yo
pL´1,1q

“ η
pL´1,1q

yj
p1,1q

` Γo
pL´1,L´1q

yo
pL´1,1q

` Ao
pL´1,Jq

z
pJ´1,1q

` εo
pL´1,1q

(32)

¨

˚

˚

˚

˚

˚

˝

εj

εo

˛

‹

‹

‹

‹

‹

‚

„ NL p0, Σq where Σ “

¨

˚

˚

˚

˚

˚

˝

σjj σjo

σoj Σo

˛

‹

‹

‹

‹

‹

‚

(33)

Looking at the j-th equation, it is clear that vector γ1j “ e1jΓMj measures the direct effect of the
(RHS) endogenous variables on yj . In order to determine the feedback effect of yj on yo, let us
rewrite (32) as follows

yo “ ηpγ1jyo ` a1jz` εjq ` Γoyo `Aoz` εo (34)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859



Contributed Research Articles 157

Next, given that, under normality, the following holds

εo “
σoj
σjj

εj ` ζo; ζoKεj (35)

the set of equations (34) can be conveniently rewritten in the form

pI´Gqyo “ Dz` dεj ` ζo (36)

where

G “ ηγ1j ` Γo; D “ ηa1j `Ao; d “ η`
σoj
σjj

(37)

This, in turn (see 3. in Appendix) entails

BEpy1o|εjq
Byj

“
BEpy1o|εjq
Bεj

Bεj
Byj

“ rpI´Gq´1ds1 “ ϕ1j “
1
σjj

e1jFMj (38)

Thus, we can conclude that the presence of non-zero elements in the vector

ρ1j “ γ1j ˚ϕ1j “ pe
1
jΓMjq ˚ p

1
σjj

e1jFMjq “ e1j
1
σjj

pΓ ˚FqMj (39)

reveals the simultaneous action of both the direct effects of yo on yj and the feedback effects of yj
on yo.

Accordingly, testing the significance of ρj means checking whether the j-th endogenous is involved
in feedback loops with other endogenous variables.

Actually, the statistic of the test can be derived from (39), by deleting from γ1j the elements
that, according to the exclusion constraints postulated by the economic theory, are null. This leads
to move from the former ρj vector to the following compressed vector

ρ̃j “ γ̃1j ˚ ϕ̃j
1
“ pSjγjq

1
˚ pSjϕjq1 (40)

which has no zero entries. Here Sj is a selection matrix selecting from γj and ϕj the non-null entries.
Accordingly, the reference model (31)-(33) can be restated as

yj “ γ̃1jyr ` ã1jzr ` εj (41)
yr “ Kz` ϕ̃jεj ` εr (42)

fpεj ,εrq „ NL

¨

˚

˚

˚

˚

˚

˝

0,

¨

˚

˚

˚

˚

˚

˝

σjj 01

0 Ω

˛

‹

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‹

‚

(43)

where
yr “ Sjyo, ãj “ Sraj , zr “ Srz (44)

and Sr is the matrix selecting the non-null entries from a1j and the sub-set of predetermined variables
playing an explicative role in the j-th equation. Furthermore,

K “ SjpI´Gq´1D, εr “ SjpI´Gq´1ζo, Ω “ Epεrε1rq (45)

Hence, the issue of the nature, unidirectional rather than bidirectional, of the equation at stake can
be unfolded by testing a hypothesis in the given form

#

H0 : ρ̃j “ 0
H1 : ρ̃j ‰ 0

(46)

The Wald test takes the form
W “ ˆ̃ρj

1
pĴΨ̂´1Ĵ1q´1 ˆ̃ρj (47)

where ˆ̃ρj is the maximum likelihood estimate of ρ̃j (see 4. in Appendix), and Ĵ, Ψ̂ are, respectively,
the Jacobian matrix

Ĵ “
Bρ̃jpθq

Bθ

∣∣∣∣
θ“θ̂

(48)
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and the information matrix
Ψ̂ “

B
2lpθq
BθBθ1

∣∣∣∣
θ“θ̂

(49)

evaluated in correspondence of the maximum likelihood estimate of the parameter vector

θ1 “ rγ̃1j , ã1j ,ϕ̃1j , vecpKq,σjj , vechpΩqs1 (50)

Under the null hypothesis
W «

as.
χ2
k (51)

where k is the dimension of ρ̃j .
If the Wald test provides evidence that the j-th equation is involved in a statistically significant

feedback loop with other equations of the model, it is worth singling out the variables that are
primarily responsible for the feedback at hand. They can be identified by checking the significance
of each non-null element of ˆ̃ρj . Under the null that the i-th element of ˆ̃ρj is non-zero, the Wald
statistic, for testing the significance of the loop bridging the i-th and j-th endogenous, turns out to
be

W “ pe1i ˆ̃ρjq
1
reipĴΨ̂´1Ĵ1q´1e1isp ˆ̃ρjeiq «

as.
χ2

1 (52)

Detecting and testing causal and interdependent links in a model
with SIRE

Investigating potential feedbacks with SIRE

The analysis developed in the previous sections allows the identification of the potential feedbacks
operating in a model. By assuming the stochastic specification of the model as known, the
investigation can be carried out by using binary matrices Γb and Σb without a preliminary estimation
of the model. The causal structure, which emerges from this analysis, is implied by the theory
underlying the model and mirrored by the topological properties of matrices Γ and Σ. It is also
important to point out that the feedback loops thus detected are only potential, because their
effectiveness must find confirmation in empirical evidence. We start by loading the SIRE package.

> install.packages("SIRE")
> library(SIRE)

The function causal_decompose() is devised for decomposing the matrix Γ. If the structure of Σ is
assumed as known by the user, the function takes the following arguments:

• data: not appropriate to simulated context, set to NULL.
• eq.system: the system of equations.
• resid.est: not appropriate to simulated context, set to NULL.
• instruments: not appropriate to simulated context, set to NULL.
• sigma.in: the binary matrix Σb.

and provides the following output:

• eq.system: the system of equations given as input.
• gamma: the binary matrix Γb.
• sigma: the binary matrix Σb given as input.
• C: the binary matrix of the coefficients associated to the endogenous variables involved in

interdependent mechanisms operating at a systematic level.
• Psi1: the binary matrix of the coefficients associated to the endogenous variables involved in

interdependent mechanisms induced by error correlation (if Sigma is not diagonal).
• Psi0: the binary matrix of the coefficients associated to the endogenous variables having a

causal role.
• all.graph: the DAG object for the undecomposed path diagram (via the R package igraph;

Amestoy, 2017).
• dec.graph: the DAG object for the decomposed path diagram.

Furthermore, if the error terms are assumed to be spherical, then the SIRE package simply splits Γ

in two sub-matrices Cb and Ψb, reflecting the interdependent and causal relations operating in the
system at a deterministic level.

With regard to the system (13), the corresponding code is
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> eq.system <- list(
+ eq1 = y1 ~ y5 + y7, eq2 = y2 ~ z,
+ eq3 = y3 ~ y11, eq4 = y4 ~ y3,
+ eq5 = y5 ~ y10, eq6 = y6 ~ y5 + y9,
+ eq7 = y7 ~ y6, eq8 = y8 ~ y12,
+ eq9 = y9 ~ y7, eq10 = y10 ~ y5,
+ eq11 = y11 ~ y12, eq12 = y12 ~ y4 + y11,
+ eq13 = y13 ~ y2 + y6)
> #fictitious Sigma matrix
> Sigma <- diag(length(eq.system))
> #function call
> decompose.A <- causal_decompose(eq.system , sigma.in = Sigma)

The output is comprised of matrices Cb and Ψb given in (15). The graphical representation of the
system, given in Figure 2, is obtained with the tkplot() function of the R package igraph

> tkplot(decompose.A$dec.graph)

The following example refers to a matrix Σb specified as in (23)

> # indexes of non-null elements of Sigma
> sigma.idx <- cbind(
+ rbind(rep(1,5),c(4,5,8,10,12)), #y1
+ rbind(rep(2,4),c(4,6,8,9)), #y2
+ rbind(rep(3,4),c(6,7,11,13)), #y3
+ rbind(rep(4,6),c(5,6,8,9,10,12)), #y4
+ rbind(rep(5,3),c(8,10,12)), #y5
+ rbind(rep(6,5),c(7,8,9,11,13)), #y6
+ rbind(rep(7,2),c(11,13)), #y7
+ rbind(rep(8,3),c(9,10,12)), #y8
+ rbind(rep(10,1),c(12)), #y10
+ rbind(rep(11,1),c(13))) #y11
> # fictitious Sigma matrix
> low.tri <- as.matrix(Matrix::sparseMatrix(i = sigma.idx[2,] , j = sigma.idx[1,], x = 1,
+ dims = rep(length(eq.system),2)))
> Sigma <- low.tri + t(low.tri) + diag(length(eq.system))
> # function call
> decompose.B <- causal_decompose(eq.system = eq.system,
+ sigma.in = Sigma)

In this case, the package provides as output matrix Cb and splits matrix Ψb into sub-matrices Ψb1
and Ψb0, as in (24) and (25). The tkplot() function can still be used to obtain the pictures of the
relations among the variables given in Figure 3.

The next section will show how to perform the decomposition with causal_decompose() if the
structure of Σ is not known and the goal is to carry out estimation and feedback testing from
observed data.

Finding significant feedbacks with SIRE: an application to Italian macroeconomic
data

As pointed out in the previous section, empirical evidence aside, the results of a decomposition based
on binary matrices Γb and Σb must be considered as preliminary since they show only the potential
links acting in the system. The effectiveness of these links demands a confirmation based on a
sound empirical-evidence argument. In fact, the lack of significance of one or more of the feedbacks
thus detected can alter the nature of the connections among the endogenous variables found by the
preliminary decomposition, which is based only on the topological properties of matrices Γ and Σ.
In order to show how effective feedbacks operating in a model can be detected and tested, we have
applied the functionalities of SIRE to the Klein model (see Klein, 1950, and Greene, 2003). This
model, originally conceived for the US economy, has been recast for the Italian economy. The Italian
macroeconomic variables, mirroring the US counterparts, are available at http://dati.istat.it/.
The given model is composed of n “ 60 observations on a quarterly basis and six equations explaining
the following endogenous variables: consumption expenses for Italian families [C], added value [CP],
private wages from dependent employment [WP], gross investment [I], gross capital stock [K], gross
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domestic product [GDP]. The model is specified as follows
»

—

—

–

Ct
It

WPt
GDPt
CPt
Kt

fi

ffi

ffi

fl

“a0 `

»

—

—

–

0 γ12 0 0 γ15 0
0 0 0 0 0 γ26
0 γ32 0 γ34 0 0
γ41 γ42 0 0 0 0
0 0 γ53 0 0 0
0 γ62 0 0 0 0

fi

ffi

ffi

fl

»

—

—

–

Ct
It

WPt
GDPt
CPt
Kt

fi

ffi

ffi

fl

` (53)

`

»

—

–

a11 0 0 0
a21 0 0 0
0 0 a34 0
0 0 a44 0
0 0 0 a55
0 a62 0 0

fi

ffi

fl

»

–

CPt´1
Kt´1

GDPt´1
Tt

fi

fl`

»

–

eC
eI
eWP
eGDP
eCP
eK

fi

fl

where a0 is the intercept vector. As equation (53) shows, the set of predetermined variables includes
one exogenous variable, taxes [Tt], and three lagged endogenous variables, that is: the one-lagged
added value [CPt´1], the one-lagged gross capital stock [Kt´1], and the one-lagged gross domestic
product [GDPt´1]. We first load the data into the R workspace.

> data(macroIT)

Following Greene, the model equations have been estimated with 3SLS by using the R package
systemfit (Henningsen and Hamann, 2017). The one-lagged capital stock [Kt´1], [Tt], [CPt´1], and
[GDPt´1] have been employed as instrumental variables. Matrix Σ, if the user does not specify its
structure, is estimated by using the covariance matrix of the structural residuals. The function
causal_decompose() can be also employed to estimate both the model via 3SLS and the Σ matrix,
and yields three matrices: C, Ψ1, and Ψ0. The first two include the coefficients associated to
variables affected by feedback loops, operating either at a deterministic level or induced by error
terms, the third contains the coefficients associated to variables playing a causal role in the system.
This version of causal_decompose() takes the following arguments:

• data: data frame containing all the variables in the equations.
• eq.system: list containing all the equations, as in systemfit.
• resid.est: denotes the method used to estimate Σ, on the basis of 3SLS residuals; this

method is specified in systemfit.
• instruments: set of instruments used to estimate the model, introduced either as a list or as

a character vector, as in systemfit.
• sigma.in: not appropriate to empirical context, set to NULL.

The output of this function is a list containing the following objects:

• eq.system: the same list of equations provided as input.
• gamma, C, Psi0, Psi1, A, and Sigma: respectively matrices C, Ψ0, Ψ1, A, and Σ.
• systemfit: the output of the systemfit() function used to estimate the model.
• all.graph: the DAG object for the undecomposed path diagram.
• dec.graph: the DAG object for the decomposed path diagram.
• path: the data-set containing all the paths/relations among the endogenous variables, along

with their classification (i.e., causal, interdependent). The graph highlights which interdepen-
dent relations work at a systematic level and which are induced by the effect of correlations
among residuals).

The code below performs the decomposition using the macroIT data

> #system of equations
> eq.system <- list(eq1 <- C ~ CP + I + CP_1 ,
+ eq2 <- I ~ K + CP_1,
+ eq3 <- WP ~ I + GDP + GDP_1,
+ eq4 <- GDP ~ C + I + GDP_1,
+ eq5 <- CP ~ WP + T,
+ eq6 <- K ~ I + K_1)
> #instruments
> instruments <- ~ T + CP_1 + GDP_1 + K_1
> #decomposition
> dec.macroIT <- causal_decompose(data = macroIT,
+ eq.system = eq.system,
+ resid.est = "noDfCor",
+ instruments = instruments)
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Table 1 shows the results of the model estimation. Since some coefficients are not statistically
significant (such as the coefficient associated to rIs in the equation explaining rCs and the coefficient
associated to rGDPs in the equation explaining rWPs), the model has been re-estimated and the
coefficient matrix associated to the explicative endogenous variables decomposed again.

> #system of equations
> eq.system <- list(eq1 <- C ~ CP + CP_1 ,
+ eq2 <- I ~ K,
+ eq3 <- WP ~ I + GDP_1,
+ eq4 <- GDP ~ C + I + GDP_1,
+ eq5 <- CP ~ WP + T,
+ eq6 <- K ~ I + K_1)
> #instruments
> instruments <- ~ T + CP_1 + GDP_1 + K_1
> #decomposition
> dec.macroIT.new <- causal_decompose(data = macroIT,
+ eq.system = eq.system,
+ resid.est = "noDfCor",
+ instruments = instruments)

The results of the last estimation process are shown in Table 2. Looking at the Theil inequality
indexes (Theil, 1961) reported in the last column of the table, we can see that the estimated equations
fit the data very well. In fact, all Theil indexes are close to zero. The estimated covariance matrix
of the structural error terms is given by

Σ̂ “

»

—

–

10.93
´2.51 2.61
10.75 ´5.04 52.31
´7.55 1.55 3.66 7.15
´9.6 4.27 ´19.73 6.07 15.08
0.43 ´0.68 0.53 ´0.09 ´0.68 0.81

fi

ffi

fl

(54)

while matrices C`Ψ1 and Ψ0 turn out to be

C`Ψ1 “

»

–

0 0 0 0 0 0
0 0 0 0 0 0.73
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0.67 0 0 0 0

fi

fl`

»

–

0 0 0 0 1.02 0
0 0 0 0 0 0
0 ´1.65 0 0 0 0

1.09 0.39 0 0 0 0
0 0 0.48 0 0 0
0 0 0 0 0 0

fi

fl (55)

“

»

—

–

0 0 0 0 1.02 0
0 0 0 0 0 0.73
0 ´1.65 0 0 0 0

1.09 0.39 0 0 0 0
0 0 0.48 0 0 0
0 0.67 0 0 0 0

fi

ffi

fl

Ψ0 “ 0 (56)
The matrix in Equation (55) embodies all the coefficients associated to variables involved in feedback
loops, while matrix (56) includes those associated to variables playing a causal role. Looking at
(55) we find a direct feedback between variables [I] and [K], while the variables of the pairs [I,
WP], [I, GDP], [C, GDP], [CP, C], and [CP, WP] are directly linked (a black arrow connects the
variables of each pair) as well as explained by equations with correlated errors. Accordingly, the
variables of each pair may be internally connected by feedback loops. The goal of our testing
procedure will be to bring out which of these feedbacks, being significant, are truly effective. Figure
5 depicts the links operating in this model, using the function tkplot() of the igraph package. In
this figure, a unidirectional arrow denotes that a variable is explicative for another. If two variables
are explicative one for the other, a direct feedback loop exists, depicted as two red arrows going
in opposite directions. Instead, a red, dashed, curved, two-headed arrow between two variables
indicates the existence of a feedback induced by error correlation.

> tkplot(dec.macroIT.new$dec.graph)

Testing for feedback effects

The significance of these loops has been investigated by using the function feedback_ml() which
performs the Wald test given in (52). The 3SLS parameter estimates have been used as preliminary
estimates to obtain the maximum likelihood (ML) estimates of the parameters needed to build
the test statistic. In particular, in order to reach the global maximum of the log-likelihood, the
initial 3SLS parameter estimates have been randomly perturbed a certain number of times. The
optimizer chosen for the scope is included in the Rsolnp package where the function gosolnp is
specially designed for the randomization of starting values. The function feedback_ml() takes the
following arguments:
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C

I

WP

GDP

CP

K

Figure 5: Path diagram of the macroeconomic model. Unidirectional arrows denote that one
variable is explicative for another. The two red unidirectional arrows denote the
presence of a direct feedback. The red, dashed, curved, double-headed arrows between
pairs of variables denote feedback loops induced by error correlation.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859



a 0
C
t

I t
W

P t
G
D
P t

C
P t

K
t

T
t

G
D
P t
´

1
C
P t
´

1
K
t´

1
T
he

il

C
t

5.
50

p1
1.

97
q

-
´

0.
1

p0
.1

9q
-

-
10

.1
p0

.0
9q
˚
˚
˚

-
-

-
´

0.
35

p0
.0

99
q

˚
˚
˚

-
0.
00
73

I t
10

.2
8

p7
.6

27
q

-
-

-
-

-
0.

72
p0

.0
89
q˚
˚
˚

-
-

0.
00

5
p0

.0
4q

-
0.
01
15

W
P t

´
32

0.
17

p2
8.

87
q

˚
˚
˚

-
´

1.
93

p0
.4

53
q

˚
˚
˚

-
0.

46
p0

.2
77
q

-
-

-
1.

04
p0

.2
51
q˚
˚
˚

-
-

0.
02
88

G
D
P t

4.
55

p1
0.

73
2q

1.
02

p0
.0

98
q˚
˚
˚

0.
37

p0
.1

81
q˚

-
-

-
-

-
0.

31
p0

.0
75
q˚
˚
˚

-
-

0.
00
4

C
P t

14
4.

49
p1

0.
84

8q
˚
˚
˚

-
-

0.
49

p0
.0

45
q˚
˚
˚

-
-

-
3.

62
p0

.3
73
q˚
˚
˚

-
-

-
0.
00
74

K
t

´
5.

69
p1

.5
99
q

˚
˚
˚

-
0.

68
p0

.0
73
q˚
˚
˚

-
-

-
-

-
-

-
0.

49
p0

.0
53
q˚
˚
˚

0.
00
63

T
ab

le
1:

M
ac
ro
ec
on

om
ic

m
od

el
:
pr
el
im

in
ar
y
es
tim

at
es

w
ith

3S
LS

.T
he

la
st

co
lu
m
n
sh
ow

s
th
e
T
he

il
in
de

x
fo
r
ea
ch

m
od

el
eq
ua

tio
n.

‚
:
sig

ni
fic
an

t
at

le
ve
lα

=
0.
1

*:
sig

ni
fic
an

t
at

le
ve
lα

=
0.
05

**
:
sig

ni
fic
an

t
at

le
ve
lα

=
0.
01

**
*:

sig
ni
fic
an

t
at

le
ve
lα

=
0.
00
1

a 0
C
t

I t
W

P t
G
D
P t

C
P t

K
t

T
t

G
D
P t
´

1
C
P t
´

1
K
t´

1
T
he

il

C
t

10
.0

6
p9

.1
7q

-
-

-
-

1.
02

p0
.1

15
q˚
˚
˚

-
-

-
´

0.
39

p0
.1

11
q

˚
˚
˚

-
0.
00
76

I t
11

.2
2

p2
.2

02
q˚
˚
˚

-
-

-
-

-
-

-
-

0.
73

p0
.0

27
q˚
˚

-
0.
01
14

W
P t

´
29

9.
12

p2
6.

38
7q
˚
˚
˚

-
´

1.
65

p0
.4

44
q

˚
˚
˚

-
-

-
-

-
1.

39
p0

.1
34
q˚
˚
˚

-
-

0.
03
04

G
D
P t

3.
04

p8
.8

9q
1.

09
p0

.1
18
q˚
˚
˚

0.
39

p0
.1

12
q˚
˚

-
-

-
-

-
0.

28
p0

.0
76
q˚
˚
˚

-
-

0.
00
42

C
P t

14
2.

70
p9

.5
54
q

˚
˚
˚

-
-

0.
48

p0
.0

34
q˚
˚
˚

-
-

-
3.

68
p0

.2
99
q˚
˚
˚

-
-

-
0.
00
73

K
t

´
5.

53
p1

.6
06
q

˚
˚
˚

-
0.

67
p0

.0
74
q˚
˚
˚

-
-

-
-

-
-

-
0.

49
p0

.0
53
q˚
˚
˚

0.
00
62

T
ab

le
2:

M
ac
ro
ec
on

om
ic

m
od

el
:
fin

al
es
tim

at
es

w
ith

3S
LS

.T
he

la
st

co
lu
m
n
sh
ow

s
th
e
T
he

il
in
de

x
fo
r
ea
ch

m
od

el
eq
ua

tio
n.

‚
:
sig

ni
fic
an

t
at

le
ve
lα

=
0.
1

*:
sig

ni
fic
an

t
at

le
ve
lα

=
0.
05

**
:
sig

ni
fic
an

t
at

le
ve
lα

=
0.
01

**
*:

sig
ni
fic
an

t
at

le
ve
lα

=
0.
00
1



Contributed Research Articles 164

• data: data frame containing all the variables in the equations.
• out.decompose: the output from the previous causal decomposition which is called by using

the command causal_decompose().
• lb and ub: upper and lower bound of the parameter space (as in gosolnp).
• nrestarts, nsim and seed.in: parameters tuning the number of random initializations (as in

gosolnp).

The output of this function is a list containing the following objects:

• rho.est: a data frame containing the estimated feedback loops for a given equation. The first
column of this data frame, feedback eqn., provides the indexes of the equations involved in
the feedback loop with the equation given in input, while the coefficients associated to the
explicative endogenous for the equation in question are shown in the column rho.est.

• loglik: the estimated log-likelihood of the best model.
• theta.hessian: the estimated Hessian matrix Î.
• rho.jacobian: the estimated Jacobian matrix Ĵ.
• wald: the value of the Wald test statistic W .

As an example, let us assume that the interest is in testing the significance of the feedbacks
affecting the second equation, explaining the endogenous variable rIs. According to the previous
analysis, this variable is connected to rKs by a bidirectional link.

TheWald test for the significance of this feedback is performed by using the function feedback_ml()
specified as follows

> test.E2=feedback_ml(data = macroIT,
+ out.decompose = dec.macroIT.new,
+ eq.id = 2,
+ lb = min(dec.macroIT.new$Sigma) - 10,
+ ub = max(dec.macroIT.new$Sigma) + 10,
+ nrestarts = 10,
+ nsim = 20000,
+ seed.in = 1)

By visualizing the estimate of ρ and the Wald statistic

> test.E2$rho.tbl
Feedback eqn. rho.est

1 6 0.1641469

> test.E2$wald
[,1]

[1,] 4.115221

we can see that the existence of a feedback loop between [I] and [K] is confirmed.
Table 3 shows the results of the test for all the equations of the model. Looking at the p-values

we conclude that all feedbacks are significant except the ones involving [CP] and [GDP]. For what
concerns [CP], it is explained by [WP] without a feedback effect from the latter to the former.
Regarding [GDP], which is affected by feedback effects, a deeper analysis is required in order to
understand which of its two explicative variables [C] and [I] (if not both) are responsible for it. To
this end, we have applied the Wald statistic given in (52) which leads us to conclude that only [C] is
involved in a feedback loop with [GDP]. In the end, the path diagram fully describing the recurrent
and interdependent relationships in the model is displayed in Figure 6.

Discussion

The set of functions worked out in the paper allows a system of simultaneous equations to be split
into recursive and/or interdependent subsystems. The user can rely on causal_decompose() in two
ways: to assess the presence of interdependent relations with a known structure of correlation among
the error terms, or to estimate the whole model in presence of empirical data.

The significance of the feedback loops operating in the model is tested with a Wald test using
the feedback_ml() function. The 3SLS parameter estimates are used as preliminary estimates to
obtain the maximum likelihood ones, which are needed to build the test.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859
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Equation Feedback Variable Joint W p-value Singular W p-value

C CP 386.6 ă .001

I K 4.115 0.042 - -

WP I 25.55 ă .001 - -

GDP
C

95.368 ă 0.0001
84.315 ă 0.0001

I 0.352 0.553

CP WP 0.046 0.831 - -

K I 19.595 <0.0001 - -

Table 3: Macroeconomic model: tests for feedback effects for the final model. Joint W denotes
the Wald statistic used to test the set of feedback loops affecting a given variable (see
(47). Singular W denotes the Wald statistic used to test the feedback effect between
two specific variables (see (52)).

C

I

WP

GDP

CP

K

Figure 6: Path diagram of the modified macroeconomic model after testing for feedback effects.
Black arrows denote causal link pΨ0q, red arrows denote interdependent links pCq,
black arrows and red dashed arrows denote interdependent links induced by the
correlation of the error terms pΨ1q.

As for the rationale of our procedure, which rests on a properly devised test, it is worth taking
into account the considerable concern raised recently in the statistical community about the use of
significance testing (see Wasserstein and Lazar, 2016). In this connection, in order to avoid improper
use of p-values and significance-related results, it may be worth addressing the issue of detecting
feedback mechanisms in a simultaneous equations model with different approaches. Among them,
the construction of confidence intervals and the employment of Bayesian methods look particularly
promising for future investigation.

Moving now on more technical notes:

• The ML estimation is performed by concentrating the likelihood with respect to the 3SLS
estimates of A in Equation (1), to reduce the computation required to otherwise re-estimate
parameters that are unnecessary for the computation of the feedback effect.

• As far as the error covariance matrix Σ is concerned, in the current formulation of the test its
estimate Σ̂ is not involved by itself in any testing sub-routine (in fact, all of its elements are

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859
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retained after the 3SLS step), and computing the related matrix of standard errors is therefore
of secondary importance. However, if a matrix normal distribution is hypothesized on E, then
the distribution of Σ̂ turns out to be a L-dimensional Wishart with T degrees of freedom and
scale matrix Σ. Thus, the variance of its elements can be calculated straightforwardly (see
Gupta and Nagar, 1999).
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Proof of relevant formulas

In this Appendix we provide the proofs of some relevant formulas of the paper.

1. Let Σ and R be defined as in Section 2. Then, the proof that ΣbpI`Rq is the binary matrix
associated to Σ pI´ Γq´1 is based on the following two theorems.
Theorem 1. If two conformable matrices, A and B, are such that

A “ A ˚H B “ B ˚K (A.1)

then the binary matrix associated to AB is pHKqb. �

Theorem 2. If a non-singular matrix A is such that

A “ A ˚H (A.2)

where H is a given binary matrix, then

pA´1
q ˚ pI`

N´1
ÿ

n“1
Hn
q
b
“ pA´1

q (A.3)

where N is the matrix dimension. �

Now, upon noting that
pI´Γq “ pI´Γq ˚ pI´Γbq, (A.4)

reference to Theorem 2 leads to conclude that

pI´Γq´1
“ pI´Γq´1

˚ pI`Rq (A.5)

Next, taking into account that Σb and pI`Rq are the binary counterparts of the Σ matrix
and pI´Γq´1 reference to Theorem 1 entails the following

ΣpI´ Γq “ rΣpI´ Γqs ˚ rΣbpI`Rqs. (A.6)

2. The proof that C and F, defined as in Section 3, satisfy the following relationship

C ˚F “ C (A.7)

hinges on a preliminary result given in the following theorem.
Theorem 3. The matrices C and I`R satisfy the following relationship

Cb
˚ pI`Rq “ Cb (A.8)

Proof
Taking into account that the Hadamard product is both commutative pA ˚B “ B ˚Aq and
idempotent for binary matrices pAb

˚Ab
“ Ab

q, and being Γ hollow, the following holds

Γb ˚ I “ 0, (A.9)

simple computations yield

Cb
˚ pI`Rq “ Γb ˚R ˚ pI`Rq “ Γb ˚R ˚ I` Γb ˚R ˚R “ Cb (A.10)

�
Now, consider the following theorem (where the symbol A ě 0 denotes that all the elements
of matrix A are non negative numbers):
Theorem 4. Let B ě 0 and Ab

˚Bb
“ Ab. If C ě 0, then

Ab
˚ pB`Cqb “ Ab (A.11)

�

Given this premise, we can now prove (A.7). To this end, let us write Σb as follows

pI` ∆q “ Σb (A.12)

where ∆ ˚ I “ 0 is a hollow matrix, and note that, in light of (A.12) and (A.5), the binary
matrix associated to F is, according to Theorem 1, given by

Fb “ rpI` ∆qpI`Rqsb (A.13)
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Next, use of Theorems 3 and 4, yields the following

Cb
˚Fb “ Cb

˚ rpI` ∆qpI`Rqsb “ Cb
˚ rpI`Rq ` ∆pI`Rqsb “ Cb (A.14)

as p∆pI`Rqqb ě 0. This, in turn, entails that

Cb
`Ψb

1 ˚Fb “ pCb
`Ψb

1q ˚Fb “ Γb ˚Fb (A.15)

which means that C`Ψ1 ˚F and Γ ˚F have the same topological structure. �

3. Proof of (38) . Formula (38) can be proved as follows. First, note that matrix Γ˚ weighting
the current endogenous explicative variables in the model (31), (32) can be expressed as

Γ˚ “ PjΓPj (A.16)

where Pj is a permutation matrix obtained from an identity matrix by interchanging its first
row with its j-th row. Then note that

Γ˚ “

»

—

—

—

—

—

–

0 γ1j

η pI´ Γoq

fi

ffi

ffi

ffi

ffi

ffi

fl

and that

pI´ Γ˚q´1
“

»

—

—

—

—

—

–

1` γ1jL
´1η γ1jL

´1

L´1η L´1

fi

ffi

ffi

ffi

ffi

ffi

fl

, where
L “ I´ Γo ´ ηγ1j “ pI´Gq (A.17)

Accordingly
1
σjj

M1
1pI´ Γ˚q´1Σe1 “ pI´Gq´1d “ ϕj , (A.18)

where ej is the first elementary vector, Σ, G and d are defined as in (33)and (37) respectively,
and M1 is the selection matrix obtained from the identity matrix by deleting its first column.
Now, taking into account that the following holds

pI´ Γ˚q “ PjpI´ ΓqPj (A.19)

in light of (A.16), and that the following proves true

pI´ Γ˚q´1
“ PjpI´ Γq´1Pj , (A.20)

as Pj is both symmetric and orthogonal, some computations yield

ϕj “
1
σjj

M1
1pI´ Γ˚

1

q
´1Σe1 “

1
σjj

M1
1PjpI´ Γq´1PjΣPjPje1 “ (A.21)

“
1
σjj

M1
jpI´ Γq´1Σej “

1
σjj

M1
jF
1ej

�

4. Derivation of the log-likelihood for the model (41)-(43)
The logarithm of the density in (43) is given by

ln fpεj ,εrq “ c´
1
2 lnσjj ´

1
2 ln |Ω| ´

ε2j
2σjj

´
1
2 ε1rΩ´1εr (A.22)

where c is a constant term. Now, upon noting that

|J| “

ˇ

ˇ

ˇ

ˇ

ˇ

Bpεj , εrq
1

Bpyj , y1rq

ˇ

ˇ

ˇ

ˇ

ˇ

“ 1, (A.23)

and assuming to operate with N observations on the variables of interest, the log-likelihood
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function can be written as

l “
N
ÿ

t“1
lpyj ,y1rq “ k´

N

2 lnσjj ´
N

2 ln |Ω| ´ α1Hα

2σjj
´

1
2 trpΞ

1Ω´1ΞHq (A.24)

where

α1 “
”

1, ´γ̃1j , ´ã1jSj
ı

(A.25)

Ξ “
”

´ϕ̃j , I` ϕ̃j γ̃1j ,ϕ̃j ã1jSj ´K
ı

(A.26)

ν1 “
“

yj , yo, z
‰

(A.27)

H “

˜

N
ÿ

t“1
νtν

1
t

¸

, (A.28)

and k is a constant term. Formula (A.24) can be obtained by noting that, in light of (41), the
following holds

εj “ yj ´ γ̃1jyr ´ ã1jzr “
”

1,´γ̃1j ,´ã1jSr
ı

»

—

—

—

—

—

—

—

—

—

—

—

–

yj

yr

z

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ α1ν (A.29)

and that, according to (42), we have

εr “ yr ´Kz´ ϕ̃jεj “ (A.30)
“ yr ´Kz´ ϕ̃jpyj ´ γ̃1jyr ´ ã1jSrzq “ (A.31)

“

”

´ϕ̃j , I` ϕ̃j γ̃1j ,ϕ̃j ã1jSr ´K
ı

»

—

—

—

—

—

—

—

—

—

—

—

–

yj

yr

z

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ Ξν (A.32)

This implies that
ε1rΩ´1εr “ trpν1Ξ1Ω´1Ξνq “ trpΞ1Ω´1Ξνν1q (A.33)

�
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BINCOR: An R package for Estimating
the Correlation between Two Unevenly
Spaced Time Series
by Josue M. Polanco-Martinez, Martin A. Medina-Elizalde, Maria Fernanda Sanchez Goni,
Manfred Mudelsee

Abstract This paper presents a computational program named BINCOR (BINned CORrelation)
for estimating the correlation between two unevenly spaced time series. This program is also
applicable to the situation of two evenly spaced time series not on the same time grid. BINCOR is
based on a novel estimation approach proposed by Mudelsee (2010) for estimating the correlation
between two climate time series with different timescales. The idea is that autocorrelation (e.g. an
AR1 process) means that memory enables values obtained on different time points to be correlated.
Binned correlation is performed by resampling the time series under study into time bins on a
regular grid, assigning the mean values of the variable under scrutiny within those bins. We present
two examples of our BINCOR package with real data: instrumental and paleoclimatic time series.
In both applications BINCOR works properly in detecting well-established relationships between
the climate records compared.

Introduction

There are several approaches for quantifying the potential association between two evenly spaced
climate time series, e.g. Pearson’s and Spearman’s correlation or the cross-correlation function
(CCF). However, these methods should not be directly applied when the time series are unevenly
spaced (“irregular”), particularly when two time series under analysis are not sampled at identical
points in time, as is usually the case in climate research, especially in paleoclimate studies (Emile-
Geay, 2016; Mudelsee, 2014; Weedon, 2003). The most common way of tackling this problem is
to interpolate the original unevenly spaced climate time series in the time domain so as to obtain
equidistance and the same times. The series can then be analysed using existing conventional
correlation analysis techniques. However, experience shows that interpolation has its drawbacks:
depending on the features of the method applied, the interpolated time series may show deviations
in terms of variability or noise properties, and additional serial dependence may be introduced
(Horowitz, 1974; Mudelsee, 2014; Olafsdottir and Mudelsee, 2014). Thus, interpolation should be
avoided as far as possible.

Fortunately, there are some algorithms and software available to carry out this task, at least for
unevenly spaced climate time series sampled at identical points in time (Mudelsee, 2003; Olafsdottir
and Mudelsee, 2014). However, there are few statistical techniques for estimating the correlation
between two time series not sampled at identical points in time and their corresponding computational
implementations. One exception is the Gaussian-Kernel-based cross-correlation (gXCF) method
and its associated software named NESTOOLBOX (Rehfeld et al., 2011; Rehfeld and Kurths,
2014; Rehfeld and Bedartha, 2014) and the extended version (Roberts et al., 2017) that includes a
confidence interval obtained by a bootstrapping resampling approach; another exception is binned
correlation as proposed by Mudelsee (2010, 2014). However, the software for this method is not
freely available on the Internet.

Binned correlation is a statistical technique developed to estimate the correlation between
two unevenly spaced time series sampled at different points in time. It is also applicable to two
evenly spaced time series that are not on the same time grid (Mudelsee, 2014). It is performed by
resampling the time series into time bins on a regular grid, and then assigning the mean values of
the variable under scrutiny within those bins. Mudelsee (2010) proposes a novel approach adapting
the binned correlation technique (used mainly with astronomical data) to analyse climate time
series taking into account their memory (or persistence), which is a genuine property of climate
time series. Autocorrelation, persistence, memory or serial dependence is characteristic of weather
and climate fluctuations, and is recorded in climate time series (Wilks, 2011; Mudelsee, 2002). A
simple persistence model used to “represent” climate time series is a first-order autoregressive (AR1)
process where a fluctuation depends only on its own immediate past plus a random component
(Gilman et al., 1963; Mann and Lees, 1996; Mudelsee, 2002). However, paleoclimate time series
are usually unevenly spaced in time, and it is necessary to use an AR1 version for the case of
uneven spacing, such as the method proposed by Robinson (1977). The technique of Mudelsee (2010)
requires the concept of nonzero persistence times, enabling the mixing information (i.e. covariance)
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to be recovered, even when the two timescales differ. The BINCOR package presented in this paper
is based on a method that is not applicable when one or both of the time series under examination
have zero persistence. Similarly, this method is not applicable when the time series are sampled with
significantly longer spacing than the persistence time, so that the effectively sampled persistence
time is zero. A fundamental condition for using this method is that the time spacing should not be
much larger than the persistence times. Enough common data points then fall within a time bin,
and knowledge can be acquired on the covariance (Mudelsee, 2010, 2014).

In this paper we present a computational package named BINCOR (BINned CORrelation),
which is based on the approach proposed by Mudelsee (2010, 2014). The BINCOR package contains
(i) a main function named bin_cor, which is used to convert the irregular time series to a binned time
series; (ii) two complementary functions (cor_ts and ccf_ts) for computing the correlation between
the two binned climate time series obtained with the bin_cor function; and (iii) an additional function
(plot_ts) for plotting the “primary” vs. the binned time series. This package is programmed in R
language and is available at the CRAN repository (https://CRAN.R-project.org/package=BINCOR).

This paper is divided into four sections. The first outlines the method and the computational
program. The second presents a Monte Carlo experiment to study the effect of binning size selection.
In the Examples section we apply BINCOR to a couple of unevenly spaced real-world climate data
sets: instrumental and paleoclimate. Finally, the Summary section presents our main conclusions.

The BINCOR package

The method

In this section we outline the main mathematical ideas behind the binned correlation technique
for unevenly spaced sampled at different points in time, following the methodology introduced by
Mudelsee (2010, 2014). The procedure is described as follows:

1. Input: two unevenly spaced climate time series tXpiq,TXuNXi“1 and tY piq,TY uNYi“1, where TX ,
TY and NY , NY are the time domains and the sample sizes of each series, respectively.

2. Compute the average spacing between samples

• d̄X “ rTXpNXq ´ TXp1qs{pNX ´ 1q
• d̄Y “ rTY pNXq ´ TY p1qs{pNY ´ 1q
• d̄XY “ rT̄max ´ T̄mins{pNX `NY ´ 1q

where T̄max “ maxrTXpNXq,TY pNY qs and T̄min “ minrTXp1q,TY p1qs.

3. Estimate the bin-width (τ̄) taking into account the persistence (memory) estimated for each
unevenly spaced climate time series, X and Y denoted as τ̂X and τ̂Y , respectively. To estimate
the persistence, an AR1 model (Robinson, 1977) is fitted to each unevenly spaced time series
(Mudelsee, 2002). BINCOR includes three rules for estimating the bin-width (the options are
shown in Table 1), but we prefer to use rule number 3 as the default value (FLAGTAU=3)
because in terms of the RMSE (Section Monte Carlo experiments) of this rule Monte Carlo
simulations are superior to the other rules for estimating the bin-width (Mudelsee, 2014).

• Estimate the bias-corrected equivalent autocorrelation coefficients

ˆ̄a1X “ expp´d̄X{τ̂ 1Xq, ˆ̄a1Y “ expp´d̄Y {τ̂ 1Y q , and ˆ̄a1XY “
b

ˆ̄a1X ¨ ˆ̄a1Y

• Estimate the bin-width as τ̄ “ ´d̄XY { lnp ˆ̄a1XY q (Eq. 7.48 in Mudelsee (2002)), the
default option (FLAGTAU=3) in the BINCOR package, other options are:

4. Determine the number of bins: Nb “ pT̄max ´ T̄minq{τ̄

5. Set: liminfpn “ 1q “ T̄min. Then, for n “ 1, 2, . . . ,Nb, define (Figure 1):

(a) limsuppnq “ T̄min ` n ¨ τ̄

(b) idTX = WHICH rTX ě liminfpnq AND TX ď limsuppnqs

(c) idTY = WHICH rTY ě liminfpnq AND TY ď limsuppnqs

(d) LTX = LENGTH(idTX)
(e) LTY = LENGTH(idTY )

if (LTX ą 0 AND LTY ą 0)
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τ̄ rule FLAGTAU option Reference

τx ` τy 1 Eq. 7.44 in Mudelsee (2014)

maxpτx, τyq 2 Eq. 7.45 in Mudelsee (2014)

´d̄XY { lnp ˆ̄a1XY q 3 Eq. 7.48 in Mudelsee (2014)

Table 1: The FLAGTAU options and its corresponding methods (rules) to estimate the bin-width.

i. F pnq = mean of X(idTX)
ii. Gpnq = mean of Y (idTY )
iii. T pnq = [liminfpnq + limsuppnq] / 2

(f) liminfpnq “ limsuppnq

6. Output: two binned climate time series tTn, F pnquNbn“1 and tTn,GpnquNbn“1, where Nb is the
number of bins.

7. Estimate the correlation between the two binned time series. This can be done through the
native R functions cor and ccf or by means of the BINCOR functions cor_ts and ccf_ts.

Time, TX (i )

X(i )

Time, T(k)

X(k)

Time, TY ( j )

Y( j )

Time, T(k)

Y(k)

τ τ ττ τ τ ττ

T(1) T(n)T(2)

Time binning

Y averaging

X averaging

Tmin Tmax

τX

τY

min[TX (1), TY (1)]
= Tmin

max[TX (nX), TY (nY)]
= Tmax

Figure 1: Graphical representation for the binned correlation procedure presented in Step 5.
Modified from (Mudelsee, 2010, 2014).

Monte Carlo experiments

We conducted Monte Carlo experiments to study how the specific rules (Table 1) chosen for calculating
the bin-width based on persistence reduce the error compared to arbitrarily choosing a bin-width.
The parameter configuration for the Monte Carlo experiments is presented in Figure 2. To carry out
the Monte Carlo simulations, we used the bivariate Gaussian AR1 process for uneven time spacings
(Mudelsee, 2014), which is given by
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Xp1q “ µXNp0,1qp1q,

Y p1q “ µYNp0,1qp1q,

Xptq “ aXXpt´ 1q ` µXNp0,1´a2
X
qptq, t “ 2, ...,N ,

Y ptq “ aY Y pt´ 1q ` µYNp0,1´a2
Y
qptq, t “ 2, ...,N , (B.3.1)

where aX and aY , the autoregressive parameters for Xptq and Y ptq, are defined as (Mudelsee,
2014): aX “ expt´rTXptq ´ TXpt´ 1qs{τXu and aY “ expt´rTY ptq ´ TY pt´ 1qs{τY u. The correla-
tion (by construction) between Xptq and Y ptq is ρXY (see Mudelsee, 2014, pp. 307-309 for more
details about the statistical properties of the bivariate AR1 process for unevenly spaced time series).
To generate the uneven timescales for Xpiq and Y pjq, we follow the methodology proposed by (see
Mudelsee, 2014, pp. 299-304), which consists of producing a number (10 N) of data pairs on an
evenly spaced grid of 1.0, discarding 90% of points and retaining 10% of X and Y (Nx “ Ny “ N)
points. The time points for Xpiq and Y pjq are subject to the following conditions:

1. Control case (equal timescales):

• Condition 1: NX “ NY

• Condition 2: tTXpiquNXi“1 “ tTY pjqu
NY
j“1

2. “Well” mixed unequal timescales:

• Condition 1: TXpiq ‰ TY pjq for all i and j
• Condition 2: TXp1q ă TY p1q ă TXp2q ă TY p2q ă TXp3q ă ... ă TXpNXq ă TY pNY q

3. “Wildly” mixed unequal timescales:

• There are not conditions for this case.
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Figure 2: Monte Carlo experiments to test the impact of the rules (Table 1) used to calculate the
bin-width and their role in the estimation of the binned correlation. The persistence
figures for X and Y are 10 (column 1), 20 (column 2) and 50 (column 3), respectively.
The constraints for the resampling timescales are for well mixed (first row) and wildly
mixed (second row) cases. The horizontal axis indicates the sample sizes (in log10 scale)
and the vertical axis shows the RMSE that is determined via averaging pρ̂XY ´ ρXY q2
over 5,000 simulations. The blue, green and red curves indicate rules 1 (sum), 2 (max)
and 3 (the default rule option in BINCOR).
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The outcome of the Monte Carlo experiments is as follows: 1) For equal timescales (figures
not shown), all three rules behave similarly (as expected) in terms of RMSE, although the RMSE
increases slightly as the persistence increases. 2) The well mixed case shows that for RMSE the
rules take two different “patterns” with the first two rules (sum and max) on one hand and the
third rule (the default rule option) on the other. This difference is most noticeable in the first values
of the samples (from 10 to 100) and is most pronounced with high persistence values (τx and τy).
The rule that shows the smallest RMSE is rule 3 (the default option), though it is important to
point out that for τx “ τy = 50 the RMSE figures are practically indistinguishable for sample sizes
from 200 to 1000. 3) Finally, RMSE in the wildly mixed case behaves more or less similarly to the
well mixed case, though rule 3 yields the smallest RMSE for all three persistence values. Bearing
in mind that the wildly mixed case does not impose conditions on generating timescales, and in
practice the unevenly spaced climate time series could contain some degree of randomness in the
sampling times, the best rule in terms of RMSE for estimating bin-width (τ̄) and binned correlation
can be said to be number 3, i.e. the default rule used in BINCOR to estimate the bin-width.

The computer program

The BINCOR package developed in R version 3.1.21 to be run from the command line runs on all
major operating systems and is available from the CRAN repository (http://CRAN.R-project.org/
package=BINCOR). The BINCOR package contains four functions: 1) bin_cor (the main function
for building the binned time series); 2) plot_ts (for plotting and comparing the “primary” and
binned time series); 3) cor_ts (for estimating the correlation between the binned time series); and 4)
ccf_ts (for estimating the cross-correlation between the binned time series). The graphical outputs
can be displayed on the screen or saved as PNG, JPG, or PDF graphics files. BINCOR depends on
the dplR (Bunn et al., 2015) and pracma (Borchers, 2015) packages. The dplR package is used by
the function bin_cor to calculate the persistence for the climate time series under study, whereas
the pracma package is used by the functions cor_ts and ccf_ts to remove the linear trend before
estimating the correlation.

The first (and main) function, bin_cor, estimates the binned time series taking into account the
memory or persistence of the unevenly spaced climate time series to be analysed (Mudelsee, 2002).
It has the following syntax:

R> bin_cor(ts1, ts2, FLAGTAU=3, ofilename),

where

• ts1 and ts2 are unevenly spaced time series.
• FLAGTAU defines the method used to estimate the bin-width (τ̄). There are three methods

included in BINCOR for estimating bin-width (Table 1), but we prefer to use (FLAGTAU = 3)
as the default rule because Monte Carlo simulations perform better in terms of RMSE than
the other rules in estimating the bin-width and the binned correlations (Mudelsee, 2014).

• ‘ofilename’ is the name of the output file (in ASCII format) which contains the binned time
series.

bin_cor returns a list object containing the following outputs:

"Binned_time_series", "Auto._cor._coef._ts1", "Persistence_ts1", "Auto._cor._coef._ts2",
"Persistence_ts2", "bin width", "Number_of_bins", "Average spacing", "VAR. ts1",
"VAR. bin ts1", "VAR. ts2", "VAR. bin ts2", "VAR. ts1 - VAR bints1",
"VAR. ts2 - VAR bints2", "% of VAR. lost ts1", "% of VAR. lost ts2".

The names of the outputs are self-explanatory, but we wish to highlight that Average spacing is
the mean value of the times for the binned time series; VAR. ts1, VAR. bin ts1, VAR. ts2 and
VAR. bin ts2 are the variances for ts1 and ts2 for their respective binned time series; the next two
outputs are the differences between the variances of ts1 and ts2 and their corresponding binned
time series; and the last two outputs are the percentages of variance lost for ts1 and ts2 as a result
of the binned process.

The second function, called plot_ts, plots the “primary” (unevenly spaced) time series and the
binned time series. The plot_ts function contains the following elements:

R> plot_ts(ts1, ts2, bints1, bints2, varnamets1="", varnamets2="",
colts1=1, colts2=1, colbints1=2, colbints2=2, ltyts1=1,
ltyts2=1, ltybints1=2, ltybints2=2, device="screen", ofilename),

1It was also tested in R 3.4.1.
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where the input arguments ts1 and ts2 are the unevenly spaced time series, bints1 and bints2
are the binned time series, varnamets1 and varnamets2 are the names of the variables under study,
colts1, colts2 (by default both curves are in black) and colbints1, colbints2 (by default both
curves are in red) are the colours for the “primary” and binned times series; ltyts1, ltyts2,
ltybints1 and ltybints2 are the types of line to be plotted for the “primary” and binned times
series, respectively (1 = solid, 2 = dashed, 3 = dotted, 4 = dot-dashed, 5 = long-dashed, 6 =
double-dashed); device is the type of output device (“screen” by default, the other options being
“jpg,” “png,” and “pdf”); resfig is the image resolution in “ppi” (by default R does not record a
resolution in the image file, except for BMP; 150 ppi could be a suitable value); ‘ofilename’ is the
output filename; and finally, Hfig, WFig and Hpdf, Wpdf are the height and width of the output for
the JPG/PNG and PDF formats, respectively.

The third function, cor_ts, calculates three types of correlation coefficient: Pearson’s correlation,
Spearman’s and Kendall’s rank correlations. These correlation coefficients are estimated through
the native R function cor.test from the R package Stats. The cor_ts function has an option to
remove the linear trend of the time series under analysis – other pre-processing methods could be
used before the cor_ts function is applied. This function has the following syntax:

R> cor_ts(bints1, bints2, varnamets1="", varnamets2="",
KoCM, rmltrd="N", device="screen", Hfig, Wfig, Hpdf, Wpdf,
resfig, ofilename)

where KoCM indicates the correlation estimator: pearson for Pearson (the option by default), spearman
for Spearman and kendall for Kendall; rmltrd is the option to remove the linear trend in the time
series under study (by default the linear trend is not removed, but the function can be enabled
via the option “Y” or “y”). The other parameters are described some lines above. cor_ts has as
its output a list object containing the main information for the estimated correlation coefficient
(e.g. a 95% confidence interval for Pearson and a p-value for Spearman and Kendall). The cor_ts
function also provides a scatterplot for the binned time series, which can be plotted on the screen
(by default) or saved in JPG, PNG or PDF formats (the parameter ‘ofilename’ is available to assign
a name to this output).

Finally, the fourth function, ccf_ts, estimates and plots the cross-correlation between two evenly
spaced paleoclimate time series. We use the native R function ccf (R Stats package) to estimate
the cross-correlation in our ccf_ts function. The ccf_ts function has the following syntax:

R> ccf_acf <- ccf_ts(bints1, bints2, lagmax=NULL, ylima=-1, ylimb=1,
rmltrd="N", RedL=T, device="screen", Hfig, Wfig,
Hpdf, Wpdf, resfig, ofilename)

All these elements are already defined above except the parameters lagmax=NULL, ylima=-1, ylimb=1
and RedL. The first parameter indicates the maximum lag for which the cross-correlation is calculated
(its value depends on the length of the data set), the next two parameters indicate the extremes of
the range in which the CCF will be plotted and the last parameter (the default option is TRUE)
plots a straight red line to highlight the correlation coefficient at lag 0. The ccf_ts function
generates as its output the acf (auto-correlation function; ACF) R object, which is a list with the
following parameters: lag is a three dimensional array containing the lags at which the ACF is
estimated; acf is an array with the same dimensions as lag containing the estimated ACF; type is
the type of correlation (correlation (the default), covariance and partial); n.used is the number
of observations in the time series; and snames provides the names of the time series (bints1 and
bints2).

Examples

Assessing the link between El Niño-Southern Oscillation and Northern Hemi-
sphere sea surface temperature

We first examine two evenly-spaced annually-resolved instrumental climate records that cover the
time interval from 1850 to 2006 (N “ 157 points)2. To test our BINCOR package we created
irregular time series by randomly removing 20% of the data from the evenly spaced time series. We
note that the new “sampling” times are not necessarily the same for both irregular series. The new
irregular time series (“primary” hereafter) consist of 125 data points and have an average temporal
spacing d̄ of 1.24 years. Specifically the two time series used were a record of Northern Hemisphere

2The data sets can be obtained from the following URL http://www.meteo.psu.edu/holocene/public_
html/supplements/MultiproxySpatial09/results/ (NINO3 full and Northern Hemisphere full).
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(NH) sea surface temperature (SST) anomalies (HadCRUT3, Brohan et al. (2006)) and a record
of equatorial Pacific SST anomalies from the El Niño 3 region (2.5˝S to 2.5˝N, 92.5 to 147.5˝W)
(Mann et al., 2009), which is a indicator of El Niño-Southern Oscillation (ENSO). Both time series,
especially the NH-SST data, show strong autocorrelation (plots not shown) and long-term trends
(inspected by Mann-Kendall test; ENSO, z=6.52 and p-value ă 0.001 and NH-SST, z = 10.214
and p-value ă 0.001). To generate the sample data, we fit a linear model to each evenly spaced
time series and, after removing the model fitted to the evenly spaced data, we use the residuals (i.e.
the difference between the observed data and the model fitted) to build the irregular time series and
then create the binned time series.
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Figure 3: “Primary” (unevenly spaced) and binned ENSO-Niño3 (Mann et al., 2009) and NH-
SST (Brohan et al., 2006). The autocorrelation and persistence values for ENSO are
ˆ̄a1 “ 0.82 and τ̂ “ 6.25 years, and for NH-SST are ˆ̄a1 “ 0.86 and τ̄ “ 8.05 years. The
horizontal top axes indicate the sampling times for the plotted time series.

The code used to generate Figure 3 is shown below.

# Load the package
library(BINCOR)

# Load the time series under analysis: Example 1 and Figure 1 (ENSO vs. NHSST)
data(ENSO)
data(NHSST)

# Compute the binned time series though our bin_cor function
bincor.tmp <- bin_cor(ENSO.dat, NHSST.dat, FLAGTAU=3, "output_ENSO_NHSST.tmp")
binnedts <- bincor.tmp$Binned_time_series
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# Applying our plot_ts function
# "Screen"
plot_ts(ENSO.dat, NHSST.dat, binnedts[,1:2], binnedts[,c(1,3)], "ENSO-Nino3",
"SST NH Mean", colts1=1, colts2=2, colbints1=3, colbints2=4, device="screen")

Figures 3 A and 3 B show the binned time series (ENSO in green and NH-SST in red) obtained
with our bin_cor function. Although we use residuals, they show a relative high autocorrelation
( ˆ̄a1ENSO “ 0.82 and ˆ̄a1SST “ 0.86) and their corresponding estimated bias-corrected persistence values
are τ̂ENSO “ 6.25 years and τ̄SST “ 8.05 years. The number of bins and, thus, the number of
elements for each binned time series is 44 and the distance between elements is 3.5 years. We also
plot the “primary” climate time series (in black) to compare them with the binned series. Visually,
the binned time series are roughly similar to the “primary” series. This observation is also supported
by the statistical similarity method (Frentzos et al., 2007) as implemented in the R package TSdist
(Mori et al., 2015, 2016). The dissimilarity metric (DISSIM) has the following interpretation: a
value of zero indicates a perfect relationship such that the closer DISSIM is to zero, the more similar
are the time series. The DISSIM between the binned and “primary” ENSO time series and the
binned and “primary” NH-SST series are 3.70 and 0.84, respectively. This corroborates the similarity
between the “primary” and binned time series observed visually. Figure 3 also shows a comparison
between the “primary” climate time series (Figure 3 C) and the binned series (Figure 3 D). Note
that this plot shows that the number of elements (N “ 125) is the same for both “primary” series,
but this is not strictly necessary: our bin_cor function is able to tackle time series with different
numbers of elements.

The second result obtained from our BINCOR package, and more specifically from the cor_ts
function, is shown in Figure 4, which shows the scatterplot between the ENSO (x-axis) and NH-SST
(y-axis) binned time series. This scatterplot shows a moderate increasing trend from left to right,
suggesting a potentially positive relationship between the two binned time series. This pattern
can be confirmed statistically by means of the cor_ts function output, which also provides the
correlation coefficient between two time series under analysis. For this case, the Pearson’s correlation
(with 95% confidence interval) obtained is r̄XY “ 0.53 [0.28; 0.71] (other estimators can also be used
in cor_ts). This value is close to the Pearson’s correlation estimated for the evenly spaced climate
time series, which is r̄XY “ 0.58 [0.46; 0.67]. The relatively high correlation obtained between
these two climate records is expected; ENSO-related climate variability is observed in many regions
outside the equatorial Pacific, particularly in the tropical North Atlantic (Enfield and Mayer, 1997;
Garcia-Serrano et al., 2017).
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Figure 4: Scatterplot for the ENSO-Niño3 (Mann et al., 2009) and NH-SST (Brohan et al.,
2006) binned time series. The Pearson’s correlation coefficient (with 95% confidence
interval) is r̄XY “ 0.53 [0.28; 0.71].

The code used to generate Figure 2 is shown below.

# Load packages
library(BINCOR)
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library(pracma)

# Load the time series under analysis: Example 1 and Figure 2 (ENSO vs. NHSST)
data(ENSO)
data(NHSST)

# Compute the binned time series though our bin_cor function
bincor.tmp <- bin_cor(ENSO.dat, NHSST.dat, FLAGTAU=3, "output_ENSO_NHSST.tmp")
binnedts <- bincor.tmp$Binned_time_series

# Compute the scatterplot by means of our function cor_ts
# PDF format (scatterplot) and Pearson
cor_ts(binnedts[,1:2], binnedts[,c(1,3)], "ENSO-Nino3", "SST NH Mean",
KoCM="pearson", rmltrd="y", device="pdf", Hpdf=6, Wpdf=9, resfig=300,
ofilename="scatterplot_ENSO_SST")

Abrupt climate changes during the last glacial

We report an analysis of two temporally unevenly-spaced pollen records from two marine sediment
cores (MD04-2845 and MD95-2039)3 collected on the south-western European margin (Figure 5).
The aim of this case study is to show the use of BINCOR to estimate the correlation between two
unevenly spaced paleoclimate time series by means of the cross-correlation function. The pollen time
series analysed in this example span the interval between 73,000 and 15,000 years before present
(BP), thus covering the last glacial period (LGP). The climate during the LGP was characterised by
millennial variability with “abrupt” transitions between cold stadials and warm interstadials known
as Dansgaard-Oeschger (D-O) cycles (Dansgaard et al., 1993; Wolff et al., 2012). The D-O cycles
are characterised by rather fast atmospheric warming events over Greenland of up to 16 ˝C that
occur within a period of approximately 40 years, followed by gradual cooling leading to the cold
stadials (?Wolff et al., 2012).
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Figure 5: Geographical locations for the pollen time series under analysis (?). The labels indicate
the names of the sites where the pollen data were obtained.

3The data sets can be obtained from https://doi.pangaea.de/10.1594/PANGAEA.870867. These time
series come from a global pollen and charcoal database (?) drawn up under the framework of the INQUA
International Focus Group ACER (Abrupt Climate Changes and Environmental Responses).
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Figure 6 illustrates the variations in the pollen percentages of the temperate forest, a type of
vegetation typical of moderate, warm, wet climates. Figure 6 A shows the primary and binned
pollen records from site MD04-2845 (Sanchez Goni et al., 2008; ?). Figure 6 B shows the primary
and binned pollen records from site MD95-2039 (Roucoux et al., 2005; ?). We use the pollen time
series with a harmonised, consistent chronology (?) to carry out a fair comparison. We apply our
bin_cor and plot_ts functions and obtain the binned time series, which have 27 elements, and a
temporal distance between elements of 1220 years. The binned time series show a relatively high level
of autocorrelation, ˆ̄a1MD04´2845 “ 0.85 and ˆ̄a1MD95´2039 “ 0.80, and an estimated bias-corrected
persistence values of τ̂MD04´2845 “ 3400 years and τ̄MD95´2039 “ 1300 years. It can be observed
from Figures 6 A and 6 B that the binned time series are roughly similar to the “primary” time
series, although binning causes some information loss. This is due to the high degree of irregularity
in the sampling of the “primary” time series, which makes it difficult to resample when the binned
time series are built. In addition, information is lost because the length of the bin is dependent on
the persistence and autocorrelation of the “primary” time series. Finally, Figures 6 C and 6 D show
that the two pollen time series, presented as the primary and binned data, may be significantly
correlated. This is discussed below.
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Figure 6: “Primary” (unevenly spaced) and binned pollen time series under analysis (?). The
numbers of elements for both time series are provided in the legend. The autocorrelation
and persistence values for the time series from site MD04-2845 are ˆ̄a1 “ 0.85 and
τ̂ “ 3400 years, and those from site MD95-2039 are ˆ̄a1 “ 0.80 and τ “ 1300 years.
The horizontal top axes indicate the sampling times for the plotted time series.

The code used to generate Figure 6 is as follows.

# Load the package
library(BINCOR)
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library(pracma)

# Load the time series under analysis: Example 2 and Figure 6
data(MD04_2845_siteID31)
data(MD95_2039_siteID32)

# Compute the binned time series though our bin_cor function
bincor.tmp <- bin_cor(ID31.dat, ID32.dat, FLAGTAU=3, "salida_ACER_ABRUPT.tmp")
binnedts <- bincor.tmp$Binned_time_series

# To avoid NA values
bin_ts1 <- na.omit(bincor.tmp$Binned_time_series[,1:2])
bin_ts2 <- na.omit(bincor.tmp$Binned_time_series[,c(1,3)])

# Applying our plot_ts function
# PDF format
plot_ts(ID31.dat, ID32.dat, bin_ts1, bin_ts2, "MD04-2845 (Temp. forest)",
"MD95-2039 (Temp. forest )", colts1=1, colts2=2, colbints1=3, colbints2=4,
device="pdf", Hpdf=6, Wpdf=9, resfig=300, ofilename="ts_ACER_ABRUPT")

The cross-correlation (CCF) analysis obtained with our ccf_ts function is shown in Figure 7.
Before applying the ccf_ts function, a linear trend was removed from the binned time series by
enabling the rmltrd option in ccf_ts, and then the residuals were used. The CCF reveals a high
correlation (rxy = 0.53) between the binned time series at lag 0. The high correlation between
the pollen records from sites MD04-2845 and MD95-2039 reflects similar responses by vegetation
to regional climate variability, particularly to changes in precipitation and temperature. However,
the most noticeable result in our CCF analysis is that the maximum correlation (rxy = 0.63) is
obtained at lag 1. At face value, this result suggests that pollen variability at site MD04-2845 leads
that observed at site MD95-2039 by 1220 years. Nevertheless, these sites are located relatively
close to each other and are in the same climate domain today, so it is difficult to envisage such a
time difference in the response of vegetation (pollen) to rapid climatic changes in the past. The
most plausible explanation for this out-of-phase relationship probably lies in the chronological
uncertainties of the age models applied to these records. Despite best-efforts to harmonise the
different time series in the ACER database using radiometric dating (?), the lack of 14C dates for
site MD95-2039 forced us to build the age model for this site by tuning the planktic foraminifera
and GRIP ice core oxygen isotopic records (Roucoux et al., 2005). This tuning could affect the
time series from site MD95-2039 and introduce unacknowledged chronological uncertainties (Blaauw,
2012; Hu et al., 2017). To summarise, with the present state of data quality we cannot rule out the
idea that timescale uncertainties –rather than climate impact adaptation – caused the lag observed.

The code used to generate Figure 7 is the following.

# Load packages
library(BINCOR)
library(pracma)

# Load the time series under analysis: Example 2 and Figure 7 (ID31 vs. ID32)
data(MD04_2845_siteID31)
data(MD95_2039_siteID32)

# Compute the binned time series though our bin_cor function
bincor.tmp <- bin_cor(ID31.dat, ID32.dat, FLAGTAU=3, "salida_ACER_ABRUPT.tmp")
binnedts <- bincor.tmp$Binned_time_series

# To avoid NA values
bin_ts1 <- na.omit(bincor.tmp$Binned_time_series[,1:2])
bin_ts2 <- na.omit(bincor.tmp$Binned_time_series[,c(1,3)])

# Applying our ccf_ts function
# PDF format
ccf_acf <- ccf_ts(bin_ts1, bin_ts2, RedL=TRUE, rmltrd="y", device="pdf", Hpdf=6,
Wpdf=9, resfig=300, ofilename="ccf_ID31_ID32_res")
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Figure 7: Cross-correlation for the residuals of the binned pollen time series from sites MD04-
2845 and MD95-2039 (?). The CCF correlation coefficients at lag 0 and 1 are 0.53
and 0.63, respectively. The red line indicates the correlation coefficient for lag 0. Each
lag is equivalent to 1220 years.

Summary

We present a computational package named BINCOR (BINned CORrelation) that can be used to
estimate the correlation between two unevenly spaced climate time series which are not necessarily
sampled at identical points in time, and between two evenly spaced time series which are not
on the same time grid. BINCOR is based on a novel estimation approach proposed by Mudelsee
(2010). This statistical technique requires the concept of nonzero persistence times, thus enabling
mixing information to be recovered, even when the two timescales examined differ (Mudelsee, 2014).
The package contains four functions (bin_cor, cor_ts, ccf_ts and plot_ts) with a number of
parameters to obtain a high degree of flexibility in the analysis. BINCOR is programmed in R
language and is available from the CRAN repository. The results when BINCOR s applied to real
climate data sets suggest that the R package BINCOR performs and works properly in detecting
relationships between instrumental and paleoclimate records.

Acknowledgements

JMPM was funded by a Basque Government post-doctoral fellowship. MM’s work was supported by
the European Commission via Marie Curie Initial Training Network LINC (project number 289447)
under the Seventh Framework Programme. Thanks to Charo Sánchez for help to use the i2BASQUE
HPC facilities, to the two anonymous reviewers and Editor (Olivia Lau) for their input and comments
that have improved the quality of the manuscript. The authors thank the support of the computing
infrastructure of the i2BASQUE (Basque Government) academic network. The persistence time
estimation software is freely available via http://www.climate-risk-analysis.com/software/.

Bibliography

M. Blaauw. Out of tune: The dangers of aligning proxy archives. Quaternary Science Reviews, 36:
38–49, 2012. URL https://doi.org/10.1016/j.quascirev.2010.11.012. [p180]

H. W. Borchers. pracma: Practical Numerical Math Functions, 2015. URL http://CRAN.R-
project.org/package=pracma. R package version 1.8.8. [p174]

P. Brohan, J. J. Kennedy, I. Harris, S. F. Tett, and P. D. Jones. Uncertainty estimates in regional and
global observed temperature changes: A new data set from 1850. Journal of Geophysical Research:
Atmospheres, 111(D12), 2006. URL http://dx.doi.org/10.1029/2005JD006548. [p176, 177]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

http://www.climate-risk-analysis.com/software/
https://doi.org/10.1016/j.quascirev.2010.11.012
http://CRAN.R-project.org/package=pracma
http://CRAN.R-project.org/package=pracma
http://dx.doi.org/10.1029/2005JD006548


Contributed Research Articles 182

A. Bunn, M. Korpela, F. Biondi, F. Campelo, P. Merian, F. Qeadan, C. Zang, A. Buras, J. Cecile,
M. Mudelsee, and M. Schulz. Dendrochronology Program Library in R, 2015. URL http://CRAN.R-
project.org/package=dplR. R package version 1.6.3. [p174]

W. Dansgaard, S. Johnsen, H. Clausen, D. Dahl-Jensen, N. Gundestrup, C. Hammer, C. Hvidberg,
J. Steffensen, A. Sveinbjornsdottir, J. Jouzel, and G. Bond. Evidence for general instability
of past climate from a 250-kyr ice-core record. Nature, 364(6434):218–220, 1993. URL http:
//dx.doi.org/10.1038/364218a0. [p178]

J. Emile-Geay. Data Analysis in the Earth & Environmental Sciences. Ed. Figshare, 2016. [p170]

D. B. Enfield and D. A. Mayer. Tropical Atlantic sea surface temperature variability and its relation
to El Nino-Southern Oscillation. Journal of Geophysical Research: Oceans, 102(C1):929–945, 1997.
URL http://dx.doi.org/10.1029/96JC03296. [p177]

E. Frentzos, K. Gratsias, and Y. Theodoridis. Index-based most similar trajectory search. In
2007 IEEE 23rd International Conference Data Engineering, pages 816–825, 2007. URL http:
//dx.doi.org/10.1109/ICDE.2007.367927. [p177]

J. Garcia-Serrano, C. Cassou, H. Douville, A. Giannini, and F. J. Doblas-Reyes. Revisiting the
ENSO teleconnection to the Tropical North Atlantic. Journal of Climate, 30(17):6945–6957, 2017.
URL https://doi.org/10.1175/JCLI-D-16-0641.1. [p177]

D. L. Gilman, F. J. Fuglister, and J. M. Mitchell Jr. On the power spectrum of “red noise”.
Journal of the Atmospheric Sciences, 20(2):182–184, 1963. URL https://doi.org/10.1175/1520-
0469(1963)020<0182:OTPSON>2.0.CO;2. [p170]

L. Horowitz. The effects of spline interpolation on power spectral density. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 22(1):22–27, 1974. URL http://dx.doi.org/10.1109/
TASSP.1974.1162536. [p170]

J. Hu, J. Emile-Geay, and J. Partin. Correlation-based interpretations of paleoclimate data–where
statistics meet past climates. Earth and Planetary Science Letters, 459:362–371, 2017. URL
https://doi.org/10.1016/j.epsl.2016.11.048. [p180]

M. E. Mann and J. M. Lees. Robust estimation of background noise and signal detection in climatic
time series. Climatic Change, 33(3):409–445, 1996. URL https://doi.org/10.1007/BF00142586.
[p170]

M. E. Mann, Z. Zhang, S. Rutherford, R. S. Bradley, M. K. Hughes, D. Shindell, C. Ammann,
G. Faluvegi, and F. Ni. Global signatures and dynamical origins of the Little Ice Age and
Medieval Climate Anomaly. Science, 326(5957):1256–1260, 2009. URL https://doi.org/10.
1126/science.1177303. [p176, 177]

U. Mori, A. Mendiburu, and J. Lozano. TSdist: Distance measures for time series data. R package
version 3.4, 2, 2015. URL http://CRAN.R-project.org/package=TSdist. [p177]

U. Mori, A. Mendiburu, and J. A. Lozano. Distance measures for time series in R: The TSdist
package. R Journal, 8(2):451–459, 2016. [p177]

M. Mudelsee. TAUEST: A Computer Program for Estimating Persistence in Unevenly Spaced
Weather/Climate Time Series. Computers & Geosciences, 28(1):69–72, 2002. URL https:
//doi.org/10.1016/S0098-3004(01)00041-3. [p170, 171, 174]

M. Mudelsee. Estimating Pearson’s correlation coefficient with bootstrap confidence interval
from serially dependent time series. Mathematical Geology, 35(6):651–665, 2003. URL https:
//doi.org/10.1023/B:MATG.0000002982.52104.02. [p170]

M. Mudelsee. Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Springer-
Verlag, 2010. ISBN 9048194814. [p170, 171, 172, 181]

M. Mudelsee. Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Springer-
Verlag, Second edition, 2014. ISBN 9048194814. [p170, 171, 172, 173, 174, 181]

K. Olafsdottir and M. Mudelsee. More accurate, calibrated bootstrap confidence intervals for
estimating the correlation between two time series. Mathematical Geosciences, 46(4):411–427,
2014. URL https://doi.org/10.1007/s11004-014-9523-4. [p170]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

http://CRAN.R-project.org/package=dplR
http://CRAN.R-project.org/package=dplR
http://dx.doi.org/10.1038/364218a0
http://dx.doi.org/10.1038/364218a0
http://dx.doi.org/10.1029/96JC03296
http://dx.doi.org/10.1109/ICDE.2007.367927
http://dx.doi.org/10.1109/ICDE.2007.367927
https://doi.org/10.1175/JCLI-D-16-0641.1
https://doi.org/10.1175/1520-0469(1963)020<0182:OTPSON>2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020<0182:OTPSON>2.0.CO;2
http://dx.doi.org/10.1109/TASSP.1974.1162536
http://dx.doi.org/10.1109/TASSP.1974.1162536
https://doi.org/10.1016/j.epsl.2016.11.048
https://doi.org/10.1007/BF00142586
https://doi.org/10.1126/science.1177303
https://doi.org/10.1126/science.1177303
http://CRAN.R-project.org/package=TSdist
https://doi.org/10.1016/S0098-3004(01)00041-3
https://doi.org/10.1016/S0098-3004(01)00041-3
https://doi.org/10.1023/B:MATG.0000002982.52104.02
https://doi.org/10.1023/B:MATG.0000002982.52104.02
https://doi.org/10.1007/s11004-014-9523-4


Contributed Research Articles 183

K. Rehfeld and G. Bedartha. NESTOOLBOX – Toolbox for the Analysis of Non-Equidistantly
Sampled Time Series, 2014. URL http://tocsy.pik-potsdam.de/nest.php. Matlab/Octave,
version 1.01. [p170]

K. Rehfeld and J. Kurths. Similarity estimators for irregular and age-uncertain time series. Climate
of the Past, 10(1):107–122, 2014. URL https://doi.org/10.5194/cp-10-107-2014. [p170]

K. Rehfeld, N. Marwan, J. Heitzig, and J. Kurths. Comparison of correlation analysis techniques for
irregularly sampled time series. Nonlinear Processes in Geophysics, 18(3):389–404, 2011. URL
https://doi.org/10.5194/npg-18-389-2011. [p170]

J. Roberts, M. Curran, S. Poynter, A. Moy, T. van Ommen, T. Vance, C. Tozer, F. S. Graham,
D. A. Young, C. Plummer, J. Pedro, D. Blankenship, and M. Siegert. Correlation confidence
limits for unevenly sampled data. Computers & Geosciences, 104:120–124, 2017. URL https:
//doi.org/10.1016/j.cageo.2016.09.011. [p170]

P. Robinson. Estimation of a time series model from unequally spaced data. Stochastic Processes
and their Applications, 6(1):9–24, 1977. URL https://doi.org/10.1016/0304-4149(77)90013-8.
[p170, 171]

K. Roucoux, L. De Abreu, N. Shackleton, and P. Tzedakis. The response of NW Iberian vegetation
to North Atlantic climate oscillations during the last 65 kyr. Quaternary Science Reviews, 24(14):
1637–1653, 2005. URL https://doi.org/10.1016/j.quascirev.2004.08.022. [p179, 180]

M. F. Sanchez Goni, A. Landais, W. J. Fletcher, F. Naughton, S. Desprat, and J. Duprat. Contrasting
impacts of Dansgaard–Oeschger events over a western European latitudinal transect modulated
by orbital parameters. Quaternary Science Reviews, 27(11):1136–1151, 2008. URL https:
//doi.org/10.1016/j.quascirev.2008.03.003. [p179]

G. P. Weedon. Time-Series Analysis and Cyclostratigraphy: Examining Stratigraphic Records of
Environmental Cycles. Cambridge Univ Press, Cambridge, 2003. [p170]

D. S. Wilks. Statistical Methods in the Atmospheric Sciences, volume 100. Academic press, 2011.
[p170]

E. W. Wolff, S. P. Harrison, R. Knutti, M. F. Sanchez Goni, O. Wild, A.-L. Daniau, V. Masson-
Delmotte, I. C. Prentice, and R. Spahni. How has climate responded to natural perturbations?
In S. E. Cornell, I. C. Prentice, J. I. House, and C. J. Downy, editors, Understanding the Earth
System : Global Change Science for Application, pages 72–101. Cambridge University Press, 2012.
[p178]

Josue M. Polanco-Martinez
Basque Centre for Climate Change - BC3
Sede Building 1, 1st floor - Scientific Campus of the UPV/EHU
48940 Leioa
&
Econometrics Research Group - Institute of Public Economics
University of the Basque Country
48015 Bilbao
SPAIN
josue.m.polanco@gmail.com, josue.polanco@bc3research.org

Martin A. Medina-Elizalde
Dept. of Geosciences, Auburn University
2050 Beard Eaves Coliseum, 36849 Auburn, AL
USA
mam0199@auburn.edu

Maria F. Sanchez Goni
Ecole Pratique des Hautes Etudes (EPHE), PSL University & UMR EPOC CNRS 5805, University
of Bordeaux
Allee Geoffroy St Hilair, 33615 Pessac
FRANCE
maria.sanchez-goni@u-bordeaux.fr

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

http://tocsy.pik-potsdam.de/nest.php
https://doi.org/10.5194/cp-10-107-2014
https://doi.org/10.5194/npg-18-389-2011
https://doi.org/10.1016/j.cageo.2016.09.011
https://doi.org/10.1016/j.cageo.2016.09.011
https://doi.org/10.1016/0304-4149(77)90013-8
https://doi.org/10.1016/j.quascirev.2004.08.022
https://doi.org/10.1016/j.quascirev.2008.03.003
https://doi.org/10.1016/j.quascirev.2008.03.003
mailto:josue.m.polanco@gmail.com, josue.polanco@bc3research.org
mailto:mam0199@auburn.edu
mailto:maria.sanchez-goni@u-bordeaux.fr


Contributed Research Articles 184

Manfred Mudelsee
Climate Risk Analysis, 37581 Bad Gandersheim
&
Alfred Wegener Institute (AWI) - Helmholtz Centre for Polar and Marine Research
27570 Bremerhaven
GERMANY
mudelsee@climate-risk-analysis.com

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

mailto:mudelsee@climate-risk-analysis.com


Contributed Research Articles 185

Optimization Routines for Enforcing
One-to-One Matches in Record
Linkage Problems
by Diego Moretti, Luca Valentino and Tiziana Tuoto

Abstract Record linkage aims at quickly and accurately identifying if two records represent the
same real world entity. In many applications, we are interested in restricting the linkage results to
"1 to 1" links, that is a single record does not appear more than once in the output. This can be
dealt with the transport algorithm. The optimization problem, however, grows quadratically in the
size of the input, quickly becoming untreatable for cases with a few thousand records. This paper
compares different solutions, provided by some R packages for linear programming solvers. The
comparison is done in terms of memory usage and execution time. The aim is to overcome the current
implementation in the toolkit RELAIS, specifically developed for record linkage problems. The
results highlight improvements beyond expectations. In fact the tested solutions allow successfully
executing the "1 to 1" reduction for large size datasets up to the largest sample surveys at National
Statistical Institutes.

Introduction

Record linkage is a process that aims at quickly and accurately identifying if two (or more) records
represent the same real world entity. A record linkage project can be performed for different purposes
and the variety of the uses makes it a powerful instrument to support decisions in large commercial
organizations and government institutions. In official statistics, the field in which this work is
developed, the combined use of statistical survey, administrative data and other new data sources
(the so-called Big Data) is largely widespread and strongly stimulates the investigation of new
methodologies and instruments to deal with record linkage projects.

This work is developed in the field of official statistics: in this area, the combined use of
statistical surveys, administrative data and other new data sources (the so-called Big Data) is largely
widespread and strongly stimulates the investigation of new methodologies and instruments to deal
with record linkage projects.

Since the earliest contributions to modern record linkage (Newcombe et al., 1959; Fellegi and
Sunter, 1969) there has been a proliferation of different approaches, that make use also of techniques
based on data mining, machine learning, soft computing and others. Record linkage can be seen as
a complex process consisting of several distinct phases involving different knowledge areas.

A record linkage process becomes trivial if the input files share a common error-free unit identifier,
but it can be quite complex when common identifiers are error prone or no common identifier exists
at all and one has to rely on shared covariates, as is actually the case with real data (Hernandez
and Stolfo, 1998).

To effectively face the record linkage problem, the Italian National Statistical Institute (Istat)
designed and developed a toolkit, RELAIS, that is the result of many experiences gained performing
several integration processes in different contexts (Cibella et al., 2012). This software is configured as
an open source project with the aim of facing the record linkage complexity by decomposing the whole
problem in its constituting phases and dynamically adopting the most appropriate technique for each
step. It is therefore possible to define the most suitable strategy for each linkage problem depending
on the specific data requirements (Cibella et al., 2007). Software and related documentation can be
downloaded from the Istat website (ISTAT, 2015) and the European website for sharing and reusing
solutions for public administrations (JOINUP, 2015)

The "Selection of unique links" is a step of the record linkage that has not been thoroughly
investigated by the statistical and IT communities. This work focuses on it. Traditionally, Jaro
(1989) suggested to solve it with an optimization procedure, the simplex algorithm. The solution
is constrained by the size of the data processed: the optimization algorithm must solve an input
matrix that grows quadratically in the input files size. In this work, we analyse the solutions already
proposed and implemented and compare them with the alternatives available in the R CRAN. It
is worth noting that our intention is not to provide a comparison of algorithms or optimization
solutions in a general context, our goal is focused on the specific solution of the record linkage phase.

The work aims at presenting alternative algorithms and their implementations for selecting
unique links in record linkage problems as they are faced in official statistics. To ensure accessibility
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and reuse, we consider R as the environment for running the alternative algorithms, although, due
to the algorithm complexity, R often only provides a wrapper for other more efficient programming
languages. The comparison is presented throughout real life examples, derived from long experiences
in data linkage at NSIs. The provided experiments are designed to account for the several features
and characteristics of real world data, in terms of size, accuracy of input data and expected output.
The comparison is motivated by the need for improving the current optimizer so as to process larger
datasets in a short time, without losing the linkage efficacy measured in terms of precision and recall.

The work is organised as follows: in next section we shortly introduce the most common
formalization for record linkage problems (Fellegi and Sunter, 1969), and specifically the optimization
problem we need to solve. We describe the current module for the selection of unique links in
RELAIS. Then we propose a short section about alternative algorithms. We compare the alternatives
throughout several use cases, based on applications of record linkage in NSIs. Once the best
implementation has been identified, further enhancements are highlighted. Finally, in the last
section, we resume results and concluding remarks.

The record linkage and the optimization phase

Formalization of the probabilistic record linkage decision model

Fellegi and Sunter (1969) firstly defined record linkage as a decision problem: given two lists, say A
and B, of size nA and nB , the linkage process can be viewed as a classification problem where the
pairs in the Cartesian product Ω “ ppa, bq, a P A and b P Bq have to be assigned into two subsets
M and U , independent and mutually exclusive, such that M is the set of Matches pa “ bq while U
is the set of Non-Matches pa ‰ bq.

In order to assign the pairs pa, bq either to the set M or U , k common attributes (the matching
variables) are compared. The statistical model for record linkage is built upon the so called
comparison vectors γ

γpabq “
´

γpabq1, . . . , γpabqk
¯

where, in the simplest setting,

γpabqj “

$

’

’

’

’

’

&

’

’

’

’

’

%

1

0

γpabqj “ γpabqj

γpabqj ‰ γpabqj

, j “ 1, . . . , k.

The comparison vectors γpabq are usually assumed to be independent and identically distributed
random vectors with distribution given by a mixture of two different (unobserved) distributions: the
former represents the pairs (a,b) which actually are the same unit, the m distribution; the latter
represents the pairs (a,b) which actually belong to different units, the u distribution. The mixture
weight p represents the marginal probability that a random pair of records pa, bq is a true match, i.e.
it may be interpreted as the percentage of overlapping of the two data sets.

The estimation of the mixture weight p and the two distributions m and u requires the use of
iterative methods, generally the EM algorithm or its generalizations. Also, in the standard setting,
the matching variables are assumed independent of each other. Several extensions of this basic
set-up have been proposed, mainly by introducing potential interactions among key variables, see
for example (Winkler, 1995; Larsen and Rubin, 2001).

Once the two distributions mpγpabqq and upγpabqq are estimated, a given pair should be allocated
to M or U on the basis of the likelihood ratio, also called composite matching weight:

rpabq “
m̂pγpabqq

ûpγpabqq
.

It is also possible to assign the pairs on the basis of a posterior probability that the pair is a match:

r˚pabq “
p̂ ˚ m̂pγpabqq

p̂ ˚ m̂pγpabqq ` p1´ p̂q ûpγpabqq
.

In general, we declare as matches the pairs of records with likelihood ratio r - or posterior probability
r˚ - above a fixed threshold. In practice, the choice of the threshold can be problematic, as illustrated,
for example, in Belin and Rubin (1995). In this context, optimization techniques may be helpful to
solve the multiple matches issue, that is the possibility that a single unit in data set A is linked
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with more than one unit in data set B. This will be discussed in the next subsection.

The optimization problem in record linkage

In several applications, the record linkage aims at recognizing exactly and univocally the same
units and to establish only unique or "1 to 1" links. In other words, the linkage result must satisfy
the constraint that one record on file A can be assigned to one and only one record on file B,
and vice-versa. This kind of applications requires several constraints and is a complex problem of
optimization. For instance, when comparing Population Census with Post Enumeration Survey, one
is interested in "1 to 1" links in order to recognize people caught in the two occasions; moreover
when linking tax register and income survey again "1 to 1" links are the expected output in order to
enrich the available information in the input sources. On the other side, when hospital admissions
forms are linked to a patient list, multiple linkages ("n to 1" links) are admissible. Finally "n to m"
links are expected when linking, for instance, Employees and Employers files.

To achieve "1 to 1" links in the Fellegi-Sunter setting that considers the cross product of possible
pairs, Jaro (1989) suggested to formulate it as a linear programming problem: once the matching
weight r is assigned to each pair, the identification of "1 to 1" links can be solved maximizing the
objective function given by the sum of weights for the link pairs, under the constraints given by the
fact that each unit of A can be linked at most with one unit of B and vice-versa. According to Jaro
(1989), this is a degenerate transportation problem, and the use of such a linear programming model
represents an advance with respect to other ad hoc assignment methods. In order to formulate
the problem, let rab be the matrix containing the composite weights for all pairs, the maximizing
function is:

Z “
nA
ÿ

a“1

nB
ÿ

b“1
rabXab

under the nA ` nB constrains:
nA
ÿ

a“1
Xab ď 1 b “ 1, 2, . . . ,nB

nB
ÿ

b“1
Xab ď 1 a “ 1, 2, . . . ,nA

where Xab is a matrix with entries corresponding to indicator variables, equal to 1 if record a in A
is linked with record b in B .

It is worth noting that the size of the Xab matrix increases quadratically in the size of the input
files, with dramatic effects on the memory usage and computation time. For instance, when both
input files contain 100 records, the X matrix contains 10 thousand cells; when both input files consist
of 1000 records, the matrix becomes 1 million entries. Traditionally, in record linkage problems, the
computation issues related to the input size are managed via the so called blocking procedures (Gu
et al., 2003; Baxter et al., 2003); in the optimization step, the complexity related to the input size is
also managed restricting to the "most likely" pairs. Indeed, the matching weight r represents the
ratio between the likelihood that a pair belongs to the set of Matches and the likelihood that the
pair belongs to the set of Non-Matches. Similarly, r˚ represents the posterior probability that a
pair belongs to the set of Matches. It is clear that for most pairs, the matching weights rab and
r˚ab take very small values (close to zero), since considering two input files of 1000 records and the
1 million pairs they generate, at most 1000 pairs will be true matches with expected high values
of rab and r˚ab. So, a common practice for solving the "1 to 1" links is to reduce the complexity
by eliminating from the optimization analysis the pairs with a value of rab (similarly, r˚ab) below a
certain threshold. A common choice of the threshold for rab is 1, meaning that we disregard the
pairs for which the likelihood of belonging to M is lower than the likelihood of belonging to U . For
r˚ab, the most proper choice seems 0.5, as it is a posterior probability. The role of rab and r˚ab will
be further discussed in the experimental section.

It is worth mentioning that in the Bayesian approach to record linkage, the "1 to 1" constraint is
solved directly in the model rather than in an ex-post adjustment (Tancredi and Liseo, 2013; Stoerts
et al., 2017; Sadinle, 2017); however, to the best of our knowledge, the Bayesian record linkage is
still affected by a certain lack of scalability, so we do not consider it in this analysis.
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The Relais toolkit

The abovementioned Relais is a toolkit developed and used in Istat and in other NSIs to face record
linkage problems. It is implemented in two programming languages, Java and R; moreover, the
relational database MySql is used to manage datasets and temporary results. The R language is
used for the key statistical phases of Relais: the estimation of the parameters p, m, and u of the
probabilistic decision model, based on Fellegi-Sunter approach (Fellegi and Sunter, 1969), and the
optimization algorithm to obtain the "1 to 1" linkage results.

The "1 to 1" reduction in Relais

The "1 to 1" reduction in RELAIS uses the linear programming problem approach proposed by
Jaro (1989) and defined in the previous section. The R module uses the LpSolve package. In the
following, the core of the current R source:

# pairs is the output of the decision model
# colnames(pairs) <- c("a", "b", "gamma", "r", "r*")

# command1: application of a preliminary filter to the input data
filtered=pairs[pairs[,5]>0.5,]

# command2: input preprocessing
# counting of unique identifiers of records
nA= length(unique(filtered[,1]))
nB= length(unique(filtered[,2]))
A=cbind(a=unique(filtered[,1]),A=1:nA)
B=cbind(b=unique(filtered[,2]),B=1:nB)
filtered =merge(B, filtered)
filtered =merge(A, filtered)
dat=t(filtered)

# command3: preparing constraint matrix
constr=array(rep(0,(nA+nB)*ncol(dat)), dim=c(nA+nB,ncol(dat)))
p=rbind(matrix(rep(dat[2,],nA),c(nA,ncol(constr)),byrow=TRUE),

matrix(rep(as.numeric(dat[4,])+nA,nB),c(nB,ncol(constr)),byrow=TRUE))
constr [as.numeric(p)==row(constr)]=1

# command4: preparing other LP parameters
diseq=rep('<=',nA+nB)
ones=rep(1,nA+nB)
# target function
coeff=dat[6,]

# command5: LP execution
library("lpSolve")
ret=lp ("max", coeff, constr, diseq, ones)
# preparing the reduced set of pairs
reduc <- t(dat[,ret$solution>0.9])

The command1 is the preliminary filter useful to reduce the size of the input pairs: each pair is
an entry of the constraint matrix. The filter is r˚ ě 0.5, as explained at the end of the previous
section. Despite this simplification, the method may not work when processing medium/large sized
datasets, i.e. when the input files A and B consist of more than 5000 records. In this case, the Relais
tool offers an alternative algorithm (the greedy one) which, however, does not guarantee an optimal
result. The size of the datasets that are treatable with the procedure depends on several causes.
First of all, it depends on the workstation system 32-bit o 64-bit for Windows platform. Other
relevant parameters are the size of the RAM, the version of the Operating System, the version of R,
others software running on the workstation, the processor, etc. As shown in the next paragraph,
we investigated the limits of this algorithm in two typical PC configurations (32-bit and 64-bit),
furthermore we propose some improvements aimed at increasing its efficiency and performances.
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Algorithms and R packages for LP solver

A recent analysis and comparison of different algorithms for linear programming is in Gearhart et al.
(2013). This work is an inspiring starting point for our analysis aimed at investigating the best
freely available open-source implementation in terms of performance and memory usage. Gearhart
et al. (2013) compare four different open-source solvers facing a collection of linear programming
problems; Gearhart et al. (2013) also consider the IBM ILOG CPLEX Optimizer (CPLEX), an
industrial standard.

In this work, we compare linear programming solvers with the specific purpose of optimizing the
identification of "1 to 1" links: to this end, we compare the current implementation available in Relais,
the lpSolve (Berkelaar and others, 2013) R package, with the Rglpk (Theussl and Hornik, 2014) and
ROI.plugin.clp (Thieurmel, 2017) R packages. These two R packages are wrappers of C libraries,
corresponding to the two methodologies, GLPK and COIN-OR respectively. The comparison of
these packages in other contexts, with different optimization problems, is out of the scope of this
work. At a very first stage, we also considered the intpoint (del Rio, 2012) R package, that has been
discarded because of the low performance in memory management compared to the previous ones.
We also developed a Java procedure that implements the Hungarian Method Karmarkar (Karmarkar,
1984) but it was discarded because it did not bring improvements.

The comparison of the proposed solvers is influenced by the several configuration parameters of
the personal computers, the specific hand code for the input preparation, and other characteristics
that have been fixed in the experimental settings, described in the following section.

Experiments

In this paragraph, we resume the experiments about the "1 to 1" reduction procedures with the
aim of measuring their execution time and their ability to handle large size data. Moreover, some
upgrades of the code are proposed and described in detail: the upgrades are evaluated by comparing
their performances with the current version. As previously specified, the current Relais procedure
successfully solves optimization problems when the input files are smaller than 5000 records each.
We investigate improvements with the first objective of enlarging these sizes; in the set of solutions
which enable to manage larger datasets, we evaluate the best performances in terms of execution
time. As already mentioned, Relais also proposes another method, the greedy one, but this is
not compared with the optimization algorithms because it follows a different rationale not aimed
at global optimization of the result. In addition, currently in Relais the greedy algorithm is not
implemented as an R module. In short, we have observed that when the greedy algorithm finds links
other than those of the optimal algorithms, these links are not correct; however, this rarely happens,
about 1 in 1000 proposed pairs.

Experiment setup

For the comparison of the algorithms, we used two typical PC configurations, the 32-bit and 64-bit
R respectively. Details on the PC configurations are shown in table 1.

Config. OS System Processor RAM R version

32-bit Windows 7 32-bit Pentium Dual-Core 2.7 Ghz 4 Gb 3.4.0

64-bit Windows 7 64-bit Intel 3.5 Ghz 16 Gb 3.4.2

Table 1: Experiment PC configurations

To evaluate the performances in terms of time and memory usage, we used ten different linkage
exercises summarized in table 2. Each exercise is composed by two datasets to integrate, the entities
object of the linkage can be people or companies. The first seven problems are quite standard, i.e.
the size of the two datasets and the number the matches are balanced; on the other hand, the last
three exercises are less common, i.e. the size of datasets are lopsided or there are few matches. In
the first column of table (Exercise), we mark the exercise on the basis of the size of the datasets,
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with "L" as suffix for lopsided exercises; this mark is also used in the next tables. The datasets
reproduce real data; the linking variables are the true ones either have been artificially generated
mimicking true data, as reported in the second column. The size of datasets and the number of real
matches vary across the exercises, as shown in the last two columns of table 2.

Exercise Linking variables Entity Datasets size True matches

1K Real People 1,165x1,165 1,141

4K Artificial Companies 4,012x3,988 3,187

5K Real People 5,851x5,748 5,543

8K Real People 8,518x7,596 6,893

15K Artificial Companies 14,998x15,003 11,281

25K Real People 25,343x24,613 24,043

40K Artificial Companies 40,048x39,952 36,033

10KL Artificial Companies 9,963x1,018 1,015

20KL Artificial Companies 658x20,052 625

55KL Artificial Companies 55,210x5,083 2,189

Table 2: Experiment datasets

Experiments report

The current procedure encounters two critical phases, in which the memory used risks exceeding
the memory available for the R task, respectively commands 3 (preparing constraint matrix) and 5
(LP execution). In both cases, the issue is represented by the size of the constraint matrix Xab. As
mentioned before, when the sizes of the input files do not allow the execution of the R commands,
currently in Relais the users are suggested to apply greedy techniques.

So, firstly we focused on modifying command 3 to overcome the memory problem. The most
promising solution is to reformulate the constraint matrix as a vector of constraints, where only the
non-zero values of matrix Xab appear. This structure requires much less memory than the previous
solution, especially when the size of the inputs increases. The lp function of the lpSolve package
admits the dense.const parameter which allows us to use a vector instead of a matrix to express
the constraints for our maximization problems. In this case commands 3 and 5 become as follows:

# command3.1: preparing constraint vector
constr.vec <- matrix(c(as.numeric(dat[2,]), as.numeric(dat[4,])+nA,

rep(1:ncol(dat),2), rep(1,(2*ncol(dat)))), ncol=3)

# command5.1: LP execution
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library("lpSolve")
ret=lp ("max", coeff, , diseq, ones, dense.const=constr.vec)
# preparing the reduced set of pairs
reduc <- t(dat[,ret$solution>0.9])

Table 3 shows the results of the 10 exercises, in the two options. The column ’Matrix’ shows the
execution time of the current R module with constraints expressed by a matrix. The column ’Vector’
shows the execution time of the R module with commands 3.1 and 5.1 in place of commands 3 and
5, i.e. constraints expressed by a vector. The ’KO’ entry means that the execution is aborted due to
memory error.

The results shown by table 3 fully meet our expectations. In fact, the current code can process
only 1K, 4K and lopsided datasets using the 32-bit configuration and reaches up to 15K datasets in
the 64-bit configuration. The new code can process all datasets even in the worst configuration. In
addition, there is also a great improvement in the execution times.

In a second phase, we concentrated our efforts on evaluating the use of the alternative packages
identified and abovementioned, i.e. ROI.plugin.clp and Rglpk.

The two solvers accept the constraint parameter as vector, using the structure simple_triplet_matrix
defined in the slam (Hornik et al., 2014) package.

Then, command 3 becomes

# command3.2: preparing constraint parameter
constr <- simple_triplet_matrix(c(as.numeric(dat[2,]),as.numeric(dat[4,])+n),

rep(1:ncol(dat),2), rep(1,(2*ncol(dat))), nrow=(n+m), ncol=ncol(dat))

In the case of ROI.plugin.clp solver, command 5 becomes:

# command5.2: LP execution
LP <- ROI::OP(as.numeric(coeff), ROI::L_constraint(L = constr, dir = diseq, rhs = ones),

max = TRUE)
ret <- ROI::ROI_solve(x = LP, solver = "clp")
# preparing the reduced set of pairs
reduc <- t(dat[,ret$solution>0.9])

In the case of Rglpk solver, command 5 is:

# command5.3: LP execution
ret <- Rglpk_solve_LP(coeff,constrv,diseq,ones,types="I",max=TRUE)
# preparing the reduced set of pairs
reduc <- t(dat[,ret$solution>0.9])

Table 4 compares the execution times in seconds, required for the complete execution of the R
module using the three different packages:

From table 4, the first remark underlines that the use of constraints as vectors allows all packages
to manage all the tested datasets even in the worst configuration. Moreover, for this type of problem,
it is quite clear that the ROI.plugin.clp solver guarantees the best performances, overtaking the other
packages especially with large datasets. The gain with ROI.plugin.clp is more evident in the 32-bit
configuration. The second best performer is Rglpk, however it is at least one order of magnitude
slower than the previous one. Finally, lpSolve presents the worst performances, particularly in
the 32-bit configuration, whilst the differences with Rglpk are reduced in the case of the 64-bit
configuration. These results are substantially valid for both balanced data sets and lopsided data
sets. We note that in lopsided cases all solutions seem to perform better. In fact, the complexity of
the problem is mainly due to the number of pairs proposed to the reduction algorithm rather than
to the size of the input data. In typical "1 to 1" record linkage projects, the number of pairs depends
more on the size of the smallest dataset than on the largest one. The Roi.plugin.clp greatly improves
in the case of sparse matrices; the difference with Rglpk is reduced with lopsided data. In our
opinion, a large part of the improvements with Roi.plugin.clp is due to the COIN-OR Optimization
algorithm written in C and the use of a good wrapper for R; there is a part of the code where the R
language communicates with a buffer with a procedure compiled in C language. Rglpk is also based
on an algorithm written in C, but this is probably less powerful in this type of problem. Instead,
lpSolve is written entirely in R, it makes an intensive use of the memory, and it is therefore less
efficient than the other tested packages.
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Further improvements and concluding remarks

The vector representation of the constraints and the adoption of the ROI.plugin.clp package provide
the expected important improvements in the module’s performance, i.e. the size of the managed pairs,
memory usage and the execution speed. The achieved results encourage us to overcome the current
preliminary filter that allows processing only pairs pabq with posterior probability r˚ab ą 0.5, see
command 1. This filter was included to overcome the previous performance issue in terms of memory
usage, however, from a statistical perspective, it risks compromising the results of the statistical
model by deterministically removing possible matches. Obviously, the more restrictive the filter, the
more likely it is that possible links are missing. So, to partially reduce this drawback, we intend
to apply the filter rab ą 1 instead of r˚ab ą 0.5. In fact, rab ą 1 is less restrictive than r˚ab ą 0.5.
The filters rab ą 1 and r˚ab ą 0.5 are "theoretically" justified, as they represent, respectively, the
likelihood ratio and the posterior probability of a pair to be a match.

We resume the 10 exercises proposed in the previous section and apply the "1 to 1" reduction
with the proposed preliminary filters. In each run we measure the execution time and the quality
of the output in terms of recall. The recall is a standard quality measure used in record linkage
that compares the number of true matches identified by the linkage process with the number of true
matches. The closer the value is to 1, the more effective the procedure is. The following table 5
compares the obtained measures. We only report the values obtained from the ROI.plugin.clp package
in the 32-bit configuration. As above clarified, our first interest is to evaluate the improvements in
the recall and to verify that memory problems do not recur.

Table 5 firstly shows that, with the filter rab ą 1, there is always a small improvement in the
recall. Secondly, the algorithm is always successfully executable and the execution time doesn’t
generally increase significantly. The exercise 40K is an exception: the execution time goes from
1.7 to 7.3 seconds. In this case, we have verified that the modification of the preliminary filter
has a significant impact: in fact, the number of considered pairs increases from about 26,000 to
over 100,000, with remarkable effects on the recall. The 40K experiment proves, on one hand, that
this adjustment can have important positive effects for the linkage process and, on the other hand,
ensures that the procedure can be successfully executed also with a large number of input pairs.

# command1: application of a preliminary filter to the input data
filtered=pairs[pairs[,6]>1,]

# command2: input preprocessing
# counting of unique identifiers of records
n= length(unique(filtered[,1]))
m= length(unique(filtered[,2]))
A=cbind(I=unique(filtered[,1]),A=1:n)
B=cbind(J=unique(filtered[,2]),B=1:m)
filtered =merge(B, filtered)
filtered =merge(A, filtered)
dat=t(filtered)

# command3: preparing constraint parameter
constr <- simple_triplet_matrix(c(as.numeric(dat[2,]),as.numeric(dat[4,])+n), rep(1:ncol(dat),2),

rep(1,(2*ncol(dat))), nrow=(n+m), ncol=ncol(dat))

# command4: preparing other LP parameters
diseq=rep('<=',m+n)
ones=rep(1,m+n)
# coefficients for the target function
coeff=dat[6,]

# command5: LP execution
LP <- ROI::OP(as.numeric(coeff),

ROI::L_constraint(L = constr, dir = diseq, rhs = ones), max = TRUE)
ret <- ROI::ROI_solve(x = LP, solver = "clp")
# prepare the reduced set of pairs
reduc <- t(dat[,ret$solution>0.9])

To conclude, the main advantages of the proposed improvements relate to the successful execution
of the "1 to 1" reduction for large datasets, as well as the gain in the execution time. The above
reported new code for the implementation of the optimization step will replace the previous one
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in the new release of Relais. We are mostly satisfied with the achieved improvements, as they will
simplify and enhance the future linkage strategies. For instance, with the improvements studied
in this paper, we will be able to easily manage the linkage between statistical registers and social
sample surveys. In particular, we will be able to manage the "1 to 1" optimization step for the
current social surveys involving about 40,000 units, as in the experiment 40K. Moreover, we will
also manage within its main spatial domains, the largest Italian sample survey, the Labour Force
Survey (LFS). In fact, currently, the Italian LFS involves up to 25,000 units, in the NUTS2 domain.
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Config. RAM Exercise Matrix Vector

32-bit 4 Gb 1K 4.3 0.5

32-bit 4 Gb 4K 28.0 2.0

32-bit 4 Gb 5K KO 5.7

32-bit 4 Gb 8K KO 9.0

32-bit 4 Gb 15K KO 32.9

32-bit 4 Gb 25K KO 82.5

32-bit 4 Gb 40K KO 213.3

32-bit 4 Gb 10KL 0.7 0.7

32-bit 4 Gb 20KL 1.9 0.8

32-bit 4 Gb 55KL 3.7 1.9

64-bit 16 Gb 1K 2.2 0.3

64-bit 16 Gb 4K 14.6 1.0

64-bit 16 Gb 5K 45.3 2.7

64-bit 16 Gb 8K 69.1 3.8

64-bit 16 Gb 15K 206.2 11.6

64-bit 16 Gb 25K KO 27.6

64-bit 16 Gb 40K KO 77.7

64-bit 16 Gb 10KL 0.2 0.2

64-bit 16 Gb 20KL 0.7 0.4

64-bit 16 Gb 55KL 1.4 0.8

Table 3: Use of the constraint matrix against the constraint vector
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Config. RAM Exerc. lpSolve ROI.plugin.clp Rglpk

32-bit 4 Gb 1K 0.5 0.1 0.4

32-bit 4 Gb 4K 2.0 0.2 1.0

32-bit 4 Gb 5K 5.7 0.3 2.7

32-bit 4 Gb 8K 9.0 0.3 3.5

32-bit 4 Gb 15K 32.9 0.6 9.6

32-bit 4 Gb 25K 82.5 0.7 27.7

32-bit 4 Gb 40K 213.3 1.3 73.2

32-bit 4 Gb 10KL 0.7 0.2 0.2

32-bit 4 Gb 20KL 0.8 0.2 0.3

32-bit 4 Gb 55KL 1.9 0.2 0.8

64-bit 16 Gb 1K 0.3 0.2 0.1

64-bit 16 Gb 4K 1.0 0.2 0.4

64-bit 16 Gb 5K 2.7 0.2 1.1

64-bit 16 Gb 8K 3.8 0.2 1.5

64-bit 16 Gb 15K 11.6 0.3 4.1

64-bit 16 Gb 25K 27.6 0.3 9.8

64-bit 16 Gb 40K 77.7 0.4 22.6

64-bit 16 Gb 10KL 0.2 0.1 0.1

64-bit 16 Gb 20KL 0.4 0.1 0.2

64-bit 16 Gb 55KL 0.8 0.2 0.3

Table 4: Reduction procedure using the three different packages
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Exercise
Filter r˚ab ą 0.5 Filter rab ą 1

Time Recall Time Recall

1K 0.1 0.985 0.1 0.997

4K 0.2 0.943 0.2 0.976

5K 0.3 0.966 0.3 0.971

8K 0.3 0.944 0.3 0.950

15K 0.6 0.927 0.7 0.980

25K 0.7 0.698 0.7 0.710

40K 1.3 0.688 7.3 0.945

10KL 0.2 0.956 0.3 0.983

20KL 0.2 0.944 0.5 0.958

55KL 0.2 0.888 0.6 0.938

Table 5: Recall measure using different filters
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MDFS: MultiDimensional Feature
Selection in R
by Radosław Piliszek, Krzysztof Mnich, Szymon Migacz, Paweł Tabaszewski, Andrzej Sułecki,
Aneta Polewko-Klim, and Witold Rudnicki

Abstract Identification of informative variables in an information system is often performed using
simple one-dimensional filtering procedures that discard information about interactions between
variables. Such an approach may result in removing some relevant variables from consideration. Here
we present an R package MDFS (MultiDimensional Feature Selection) that performs identification
of informative variables taking into account synergistic interactions between multiple descriptors
and the decision variable. MDFS is an implementation of an algorithm based on information theory
(Mnich and Rudnicki, 2017). The computational kernel of the package is implemented in C++.
A high-performance version implemented in CUDA C is also available. The application of MDFS
is demonstrated using the well-known Madelon dataset, in which a decision variable is generated
from synergistic interactions between descriptor variables. It is shown that the application of
multidimensional analysis results in better sensitivity and ranking of importance.

Introduction

Identification of variables that are related to the decision variable is often the most important step in
dataset analysis. In particular, it becomes really important when the number of variables describing
the phenomena under scrutiny is large.

Methods of feature selection fall into three main categories (Guyon and Elisseeff, 2003):

• filters, where the identification of informative variables is performed before data modelling
and analysis,

• wrappers, where the identification of informative variables is achieved by analysis of the
models,

• embedded methods, which evaluate utility of variables in the model and select the most useful
variables.

Filters are designed to provide a quick answer and therefore are the fastest. On the other hand,
their simplicity is also the source of their errors. The rigorous univariate methods, such as t-test, do
not detect interactions between variables. Heuristical methods that avoid this trap, such as Relief-f
algorithm (Kononenko, 1994), may be biased towards weak and correlated variables (Robnik-Šikonja
and Kononenko, 2003). Interesting heuristical filter based on decision trees – Monte Carlo Feature
Selection (MCFS) (Dramiński et al., 2007; Dramiński and Koronacki, 2018) – avoids this pitfall.
However, it may fail to find purely synergistic variables. Several filtering methods are designed to
return only the non-redundant subset of variables (Zhao and Liu, 2007; Peng et al., 2005; Wang
et al., 2013). While such methods may lead to very efficient models, their selection may be far from
the best when one is interested in deeper understanding of the phenomena under scrutiny.

The wrapper algorithms are designed around machine learning algorithms such as SVM (Cortes
and Vapnik, 1995), as in the SVM-RFE algorithm (Guyon et al., 2002), or random forest (Breiman,
2001), as in the Boruta algorithm (Kursa et al., 2010). They can identify variables involved in
non-linear interactions. Unfortunately, for systems with tens of thousands of variables they are slow.
For example, the Boruta algorithm first expands the system with randomised copies of variables and
then requires numerous runs of the random forest algorithm.

The embedded methods are mostly limited to linear approximations and are part of a modelling
approach where the selection is directed towards the utility of the model. Therefore, variables that
are relevant for understanding the phenomena under scrutiny may be omitted and replaced by
variables more suitable for building a particular model.

Here we introduce an R package implementing a filter based on information theory. The algorithm
can identify synergistic relevant variables by performing an exhaustive search of low-dimensional
combinations of variables.

Theory

Kohavi and John proposed that a variable xi P X, where X is a set of all descriptive variables, is
weakly relevant if there exists a subset of variables Xsub Ă X : xi R Xsub that one can increase
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information on the decision variable y by extending this subset with the variable xi (Kohavi and
John, 1997). Mnich and Rudnicki introduced the notion of k-weak relevance, that restricts the
original definition by Kohavi and John to pk´ 1q-element subsets Xsub (Mnich and Rudnicki, 2017).

The algorithm implements the definition of k-weak relevance directly by exploring all possible
k-tuples of variables xi Y txm1 ,xm2 , . . . ,xmk´1u for k-dimensional analysis. For example, in 2
dimensions we explore a set of all possible pairs of variables. For each variable xi we check whether
adding it to another variable xk adds information to the system. If there exists such xk, then we
declare xi as 2-weakly relevant.

The maximum decrease in conditional information entropy upon adding xi to description,
normalized to sample size, is used as the measure of xi’s relevance:

IGkmax py;xiq “ N max
m

`

H
`

y|xm1 ,xm2 , . . . ,xmk´1

˘

´H
`

y|xi,xm1 ,xm2 , . . . ,xmk´1

˘˘

, (F.2.1)

where H is (conditional) information entropy and N is the number of observations. Difference in
(conditional) information entropy is known as (conditional) mutual information. It is multiplied
by N to obtain the proper null-hypothesis distribution. To name this value we reused the term
information gain (IG) which is commonly used in information-theoretic context to denote different
values related to mutual information.

To declare a variable k-weakly relevant it is required that its IGkmaxpy;xiq is statistically
significant. This can be established via a comparison:

IGkmax py;xiq ě IGlim, (F.2.2)

where IGlim is computed using a procedure of fitting the theoretical distribution to the data.
For a sufficiently large sample, the value of IG for a non-informative variable, with respect

to a single k-tuple, follows a χ2 distribution. IGkmaxpy;xiq, which is the maximum value of IG
among many trials, follows an extreme value distribution. This distribution has one free parameter
corresponding to the number of independent tests which is generally unknown and smaller than
the total number of tests. The parameter is thus computed empirically by fitting the distribution
to the irrelevant part of the data (Mnich and Rudnicki, 2017). This allows to convert the IGkmax
statistic to its p-value and then to establish IGlim as a function of significance level α. Since many
variables are investigated, the p-value should be adjusted using well-known FWER (Holm, 1979)
or FDR (?) control technique. Due to unknown dependencies between tests, for best results we
recommend using Benjamini-Hochberg-Yekutieli method (Benjamini and Yekutieli, 2001)1 when
performing FDR control.

In one dimension (k “ 1) Equation F.2.1 reduces to:

IG1
max py;xiq “ N pH pyq ´H py|xiqq , (F.2.3)

which is a well-known G-test statistic (?).
All variables that are weakly relevant in one-dimensional test should also be discovered in

higher-dimensional tests, nevertheless their relative importance may be significantly influenced by
interactions with other variables. Often the criterium for inclusion to further steps of data analysis
and model building is simply taking the top n variables, therefore the ordering of variables due to
importance matters as well.

Algorithm and implementation

The MDFS package (Piliszek et al., 2018) consists of two main parts. One is an R interface to two
computational engines. These engines utilise either CPU or NVIDIA GPU and are implemented
in standard C++ and in CUDA C, respectively. Either computational engine returns the IGkmax
distribution for a given dataset plus requested details which may pose an interesting insight into
data. The other part is a toolkit to analyse results. It is written entirely in R. The version of MDFS
used and described here is 1.0.3. The term ‘MDFS’ (MultiDimensional Feature Selection) is used to
denote the analysis, method and algorithm presented in this article as well.

The IGkmax for each variable is computed using a straightforward algorithm based on Equa-
tion F.2.1. Information entropy (H) is computed using discretised descriptive variables. Discretisation
is performed using customisable randomised rank-based approach. To control the discretisation
process we use a concept of range. Range is a real number between 0 and 1 affecting the share each
discretised variable class has in the dataset. Each share is sampled from a uniform distribution on

1Method "BY" for p.adjust function.
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the interval p1´ range, 1` rangeq. Hence, range “ 0 results in an equipotent split, range “ 1 equals
a completely random split. Let us assume that there are N objects in the system and we want to
discretise a variable to c classes. To this end, pc´ 1q distinct integers from the range p2,Nq are
obtained using computed shares. Then, the variable is sorted and values at positions indexed by
these integers are used to discretise the variable into separate classes. In most applications of the
algorithm there is no default best discretisation of descriptive variables, hence multiple random
discretisations are performed. The IGkmax is computed for each discretisation, then the maximum
IGkmax over all discretizations is returned. Hence, the final returned IGkmax is a maximum over
both tuples and discretisations.

The problem of selecting the right amount of classes (the right value of c) is similar to bias–
variance tradeoff but more subtle. The statistic is better when there are less classes (binary being
the best case) but the shape ought to be better when there are more classes as it improves the
resolution. When the right split is known (as we show later with Madelon), it is best to use it.
Otherwise we recommend to try different numbers of classes and do several random discretizations
for each.

Conditional information entropy is obtained from the experimental probabilities of a decision
class using the following formula:

H py|x1, . . . ,xkq “ ´
ÿ

d“0,1

ÿ

i1“1:c

. . .
ÿ

ik“1:c

pdi1,...,ik log
´

pdi1,...,ik

¯

, (F.3.1)

where pdi1,...,ik denotes the conditional probability of class d in a k-dimensional voxel with coordinates
ij . Note that the number of voxels in k dimensions is ck, where c is the number of classes of discretised
descriptive variables. To this end, one needs to compute the number of instances of each class in
each voxel. The conditional probability of class d in a voxel is then computed as

pdi1,...,ik “
Nd
i1,...,ik ` β

d

N0
i1,...,ik ` β

0 `N1
i1,...,ik ` β

1 , (F.3.2)

where Nd
i1,...,ik is the count of class d in a k-dimensional voxel with coordinates ij and βd is a

pseudocount corresponding to class d:

βd “ ξ
Nd

min pN0,N1q
, (F.3.3)

where ξ ą 0 can be supplied by the user. The default value is set to 0.25. It was obtained in an
experimental process to achieve the best fit to χ2 distribution. Usual usage should not mandate the
need to change ξ.

The implementation of the algorithm is currently limited to binary decision variables. The
analysis for information systems that have more than two categories can be performed either by
executing all possible pairwise comparisons or one-vs-rest. Then all variables that are relevant in
the context of a single pairwise comparison should be considered relevant. In the case of continuous
decision variable one must discretise it before performing analysis. In the current implementation all
variables are discretised into an equal number of classes. This constraint is introduced for increased
efficiency of computations, in particular on a GPU.

Another limitation is the maximum number of dimensions set to 5. This is due to several reasons.
Firstly, the computational cost of the algorithm is proportional to number of variables to power
equal the dimension of the analysis, and it becomes prohibitively expensive for powers larger than
5 even for systems described with a hundred of variables. Secondly, analysis in higher dimensions
requires a substantial number of objects to fill the voxels sufficiently for the algorithm to detect real
synergies. Finally, it is also related to the simplicity of efficient implementation of the algorithm in
CUDA.

The most time-consuming part of the algorithm is computing the counters for all voxels.
Fortunately, this part of the computations is relatively easy to parallelise, as the exhaustive search
is very well suited for GPU. Therefore, a GPU version of the algorithm was developed in CUDA C
for NVIDIA GPGPUs and is targeted towards problems with a very large number of features. The
CPU version is also parallelised to utilise all cores available on a single node. The 1D analysis is
available only in the CPU version since there is no benefit in running this kind of analysis on GPU.
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Package functions introduction

There are three functions in the package which are to be run directly with the input dataset: MDFS,
ComputeMaxInfoGains, and ComputeInterestingTuples. The first one, MDFS, is our recommended
function for new users, since it hides internal details and provides an easy to use interface for
basic end-to-end analysis for current users of other statistical tests (e.g., t.test) so that the user
can straightforwardly get the statistic values, p-values, and adjusted p-values for variables from
input. The other two functions are interfaces to the IG-calculating lower-level C++ and CUDA
C++ code. ComputeMaxInfoGains returns the max IGs, as described in the theory section. It
can optionally provide information about the tuple in which this max IG was observed. On the
other hand, one might be interested in tuples where certain IG threshold has been achieved. The
ComputeInterestingTuples function performs this type of analysis and reports which variable in
which tuple achieved the corresponding IG value.

The ComputePValue function performs fitting of IGs to respective statistical distributions as
described in the theory section. The goodness of fit is tested using Kolmogorov-Smirnov one-
sample test and a warning is emitted if the threshold is exceeded. ComputePValue returns an object
of the "MDFS" class which contains, in particular, p-values for variables. This class implements
various methods for handling output of statistical analysis. In particular they can plot details of
IG distribution, output p-values of all variables, and output relevant variables. ComputePValue
is implemented in a general way, extending beyond limitations of the current implementation of
ComputeMaxInfoGains. In particular, it can handle multi-class problems and different number of
divisions for each variable.

The AddContrastVariables is an utility function used to construct contrast variables (Stoppiglia
et al., 2003; Kursa et al., 2010). Contrast variables are used solely for improving reliability of the fit
of statistical distribution. In the case of fitting distribution to contrast variables we know exactly
how many irrelevant variables there are in the system. The contrast variables are not tested for
relevance and hence not used when adjusting p-values to not decrease the sensitivity without reason.

Canonical package usage

As mentioned earlier, the recommended way to use the package is to use the MDFS function. It uses
the other packaged functions to achieve its goal in the standard and thoroughly tested way, so it
may be considered the canonical package usage pattern. The MDFS function is general in terms
of contrast variables being optional, hence let us examine a simplified version of it assuming the
contrast variables are actually being used. We also neglect the setting of seed but we recommend it
to be set so that the result is reproducible. The MDFS wrapper does accept a seed and saves it with
the result.

The first step is to build the contrast variables:

contrast <- AddContrastVariables(data, n.contrast)

In the next step, the compute-intensive computation of IGs is executed:

MIG.Result <- ComputeMaxInfoGains(contrast$x, decision,
dimensions = dimensions, divisions = divisions,
discretizations = discretizations, range = range, pseudo.count = pseudo.count)

The first two positional parameters are respectively the feature data (plus contrast variables)
and the decision. The other parameters decide on the type of computed IGs: dimensions con-
trols dimensionality, divisions controls the number of classes in the discretisation (it is equal to
divisions+1), discretizations controls the number of discretisations, range controls how ran-
dom the discretisation splits are, and pseudo.count controls the regularization parameter ξ for
pseudocounts.

Finally, the computed IGs are analysed and a statistical result is computed:

fs <- ComputePValue(MIG.Result$IG,
dimensions = dimensions, divisions = divisions,
contrast.mask = contrast$mask,
one.dim.mode = ifelse (discretizations==1, "raw",

ifelse(divisions*discretizations<12, "lin", "exp")))

statistic <- MIG.Result$IG[!contrast$mask]
p.value <- fs$p.value[!contrast$mask]
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adjusted.p.value <- p.adjust(p.value, method = p.adjust.method)
relevant.variables <- which(adjusted.p.value < level)

The one.dim.mode parameter controls the expected distribution in 1D. The rule states that as long
as we have 1 discretisation the resulting distribution is chi-squared, otherwise, depending on the
product of discretizations and divisions, the resulting distribution might be closer to a linear
or exponential, as in higher dimensions, function of chi-squared distributions. This is heuristic and
might need to be tuned. Features with adjusted p-values below some set level are considered to be
relevant.

Testing the Madelon dataset

For demonstration of the MDFS package we used the training subset of the well-known Madelon
dataset (Guyon et al., 2007). It is an artificial set with 2000 objects and 500 variables. The decision
was generated using a 5-dimensional random parity function based on variables drawn from normal
distribution. The remaining variables were generated in the following way. Fifteen variables were
obtained as linear combinations of the 5 input variables and remaining 480 variables were drawn
randomly from the normal distribution. The data set can be accessed from the UCI Machine
Learning Repository (Dheeru and Karra Taniskidou, 2017) and it is included in MDFS package as
well.

We conducted the analysis in all possible dimensionalities using both CPU and GPU versions of
the code. Additionally, a standard t-test was performed for reference. We examined computational
efficiency of the algorithm and compared the results obtained by performing analysis in varied
dimensionalities.

In the first attempt we utilised the given information on the properties of the dataset under
scrutiny. We knew in advance that Madelon was constructed as a random parity problem and
that each base variable was constructed from a distinct distribution. Therefore, we could use one
discretisation into 2 equipotent classes. In the second attempt the recommended ‘blind’ approach in
2D was followed, which utilises several randomized discretisations.

For brevity, in the following examples the set of Madelon independent variables is named x and
its decision is named y:

x <- madelon$data
y <- madelon$decision

For easier comparison we introduce a helper function to obtain, from MDFS analysis, the relevant
features’ indices in decreasing relevance (increasing p-value) order:

GetOrderedRelevant <- function (result) {
result$relevant.variables[order(result$p.value[result$relevant.variables])]

}

One can now obtain p-values from t-test, adjust them using Holm correction (one of FWER
corrections, the default in the p.adjust function), take relevant with level 0.05, and order them:

> tt <- ttests(x, ina = y+1)[,2] # we only use $p$-values (2nd column)
> tt.adjusted <- p.adjust(tt, method = "holm")
> tt.relevant <- which(tt.adjusted < 0.05)
> tt.relevant.ordered <- tt.relevant[order(tt.adjusted[tt.relevant])]
> tt.relevant.ordered
[1] 476 242 337 65 129 106 339 49 379 443 473 454 494

A FWER correction is used because we expect strong separation between relevant and irrelevant
features in this artificial dataset. We used the ttests function from the Rfast (Papadakis et al.,
2018) package as it is a version of t-test optimized for this purpose.

To achieve the same with MDFS for 1, 2, and 3 dimensions one can use the wrapper MDFS
function:

> d1 <- MDFS(x, y, n.contrast = 0, dimensions = 1, divisions = 1, range = 0)
> d1.relevant.ordered <- GetOrderedRelevant(d1)
> d1.relevant.ordered
[1] 476 242 339 337 65 129 106 49 379 454 494 443 473

> d2 <- MDFS(x, y, n.contrast = 0, dimensions = 2, divisions = 1, range = 0)
> d2.relevant.ordered <- GetOrderedRelevant(d2)
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> d2.relevant.ordered
[1] 476 242 49 379 154 282 434 339 494 454 452 29 319 443 129 473 106 337 65

> d3 <- MDFS(x, y, n.contrast = 0, dimensions = 3, divisions = 1, range = 0)
> d3.relevant.ordered <- GetOrderedRelevant(d3)
> d3.relevant.ordered
[1] 154 434 282 49 379 476 242 319 29 452 494 106 454 129 473 443 339 337 65 456

The changes in the relevant variables set can be examined with simple setdiff comparisons:

> setdiff(tt.relevant.ordered, d1.relevant.ordered)
integer(0)
> setdiff(d1.relevant.ordered, tt.relevant.ordered)
integer(0)
> setdiff(d1.relevant.ordered, d2.relevant.ordered)
integer(0)
> setdiff(d2.relevant.ordered, d1.relevant.ordered)
[1] 154 282 434 452 29 319
> setdiff(d2.relevant.ordered, d3.relevant.ordered)
integer(0)
> setdiff(d3.relevant.ordered, d2.relevant.ordered)
[1] 456

One may notice that ordering by importance leads to different results for these 4 tests.
In the above the knowledge about properties of the Madelon dataset was used: that there are

many random variables, hence no need to add contrast variables, and that the problem is best
resolved by splitting features in half, hence one could use 1 discretisation and set range to zero.

However, one is usually not equipped with such knowledge and then may need to use multiple
random discretisations. Below an example run of ‘blind’ 2D analysis of Madelon is presented:

> d2b <- MDFS(x, y, dimensions = 2, divisions = 1, discretizations = 30, seed = 118912)
> d2b.relevant.ordered <- GetOrderedRelevant(d2b)
> d2b.relevant.ordered
[1] 476 242 379 49 154 434 106 282 473 339 443 452 29 454 494 319 65 337 129
> setdiff(d2b.relevant.ordered, d2.relevant.ordered)
integer(0)
> setdiff(d2.relevant.ordered, d2b.relevant.ordered)
integer(0)

This demonstrates that the same variables are discovered, yet with a different order.

Performance

The performance of the CPU version of the algorithm was measured on a computer with two
Intel Xeon E5-2650 v2 processors, running at 2.6 GHz. Each processor has eight physical cores.
Hyperthreading was disabled.

The GPU version was tested on a computer with a single NVIDIA Tesla K80 accelerator. The
K80 is equipped with two GK210 chips and is therefore visible to the system as two separate
GPGPUs. Both were utilised in the tests.

The Madelon dataset has moderate dimensionality for modern standards, hence it is amenable
to high-dimensional analysis. The CPU version of the code handles analysis up to four dimensions
in a reasonable time, see Table 1.

The performance gap between CPU and GPU versions is much higher than suggested by a
simple comparison of hardware capabilities. This is due to two factors. Firstly, the GPU version has
been highly optimised towards increased efficiency of memory usage. The representation of the data
by bit-vectors and direct exploitation of the data locality allows for much higher data throughput.
What is more, the bit-vector representation allows for using very efficient popcnt instruction for
counter updates. On the other hand the CPU version has been written mainly as a reference version
using a straightforward implementation of the algorithm and has not been strongly optimised.
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t-test 1D 2D 3D 4D 5D

CPU 0.01s 0.01s 0.44s 42s 1h:58m 249h

GPU - - 0.23s 0.2s 9.8s 59m:37s

Table 1: Execution times for the Madelon dataset.

1D 2D 3D 4D 5D

CPU 0.35s 5.8s 37m:11s 92h -

GPU - 2.9s 3.3s 7m:36s 42h

Table 2: Execution times for the Madelon dataset with 30 random discretisations.
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Figure 1: Correlation plots for relevant variables discovered in 1-, 2-, 3-, and 5-dimensional
analysis of the Madelon dataset with one deterministic discretisation with division in
the middle. The variables are ordered by IG.

Structure of the Madelon dataset revealed by MDFS analysis

The twenty relevant variables in Madelon can be easily identified by analysis of histograms of
variables, their correlation structure and by a priori knowledge of the method of construction of the
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Cluster Members

154 154, 282, 434

29 29, 319, 452

49 49, 379

242 476, 242

456 456

454 454, 494

339 339

443 473, 443

106 106, 129

65 337, 65

Table 3: Discovered variable clusters (as seen in correlation plots) ordered by descending max-
imum relevance (measured with 5D IG), identified by the variable with the lowest
number.

dataset. In particular, base variables, i.e. these variables that are directly connected to a decision
variable, have the unique distribution that has two distinct peaks. All other variables have smooth
unimodal distribution, hence identification of base variables is trivial. What is more, we know that
remaining informative variables are constructed as linear combinations of base variables, hence
they should display significant correlations with base variables. Finally, the nuisance variables are
completely random, hence they should not be correlated neither with base variables nor with their
linear combinations. The analysis of correlations between variables reveals also that there are several
groups of very highly correlated (r ą 0.99) variables, see Figure 1. All variables in such a group can
be considered as a single variable, reducing the number of independent variables to ten. The entire
group is further represented by the variable with the lowest number. The clusters are presented in
Table 3.

This clear structure of the dataset creates an opportunity to confront results of the MDFS
analysis with the ground truth and observe how the increasing precision of the analysis helps to
discover this structure without using the a priori knowledge on the structure of the dataset.

One-dimensional analysis reveals 13 really relevant variables (7 independent ones), both by
means of the t-test and using the information gain measure, see Table 4. Three-dimensional and
higher-dimensional analyses find all 20 relevant variables. Additionally, with the exception of
one-dimensional case, in all cases there is a clear separation between IG obtained for relevant and
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Figure 2: Information gain obtained by the MDFS algorithm using 1-, 2-, 3-, 4-, and 5-
dimensional variants of the algorithm for the Madelon dataset with one deterministic
discretisation with division in the middle. Full circles represent variables deemed
relevant. All variables are sorted by IG. Margin between irrelevant and relevant
features grows with dimensionality.
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Figure 3: Information gain obtained by the MDFS algorithm using 1-, 2-, 3-, 4-, and 5-
dimensional variants of the algorithm for the Madelon dataset with 30 random
discretisations. Full circles represent variables deemed relevant. All variables are
sorted by IG. The margin between irrelevant and relevant features grows with dimen-
sionality.
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Table 4: Summary of results for the Madelon dataset with one deterministic discretisation with
division in the middle. The variable clusters are ordered by descending IG. The numbers
of base variable clusters are highlighted in boldface. Clusters represented by 65 and
106, displayed in italic font, are deemed highly relevant in 1D analyses and the least
relevant in 5D analysis.

t-test 1D 2D 3D 4D 5D

1. 242 242 242 154 154 154

2. 65 339 49 49 49 29

3. 106 65 154 242 29 49

4. 339 106 339 29 242 242

5. 49 49 454 454 454 456

6. 443 454 29 106 339 454

7. 454 443 443 443 106 339

8. - - 106 339 456 443

9. - - 65 65 443 106

10. - - - 456 65 65

irrelevant variables, see Figure 2. This translates into a significant drop of p-value for the relevant
variables.

Five variables, namely t29, 49, 154, 242, 456u, are clearly orthogonal to each other, hence they are
the base variables used to generate the decision variable. Five other variables are correlated with
base variables and with each other, and hence they are linear combinations of base variables. The
one-dimensional analyses, both t-test and mutual-information approach, find only two base variables,
see Table 4. What is more, while one of them is regarded as highly important (lowest p-value), the
second one is considered only the 5th most important out of 7. Two-dimensional analysis finds 4 or
5 base variables, depending on the method used. Moreover, the relative ranking of variables is closer
to intuition, with three base variables on top. The relative ranking of importance improves with
increasing dimensionality of the analysis. In 5-dimensional analysis all five base variables are scored
higher than any linear combination. In particular, the variable 456, which is identified by 3D analysis
as the least important, rises to the eighth place in 4D analysis and to the fifth in 5D. Interestingly,
the variable 65, which is the least important in 5D analysis is the second most important variable in
t-test and the third most important variable in 1D.
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Table 5: Summary of results for the Madelon dataset with 30 random discretisations. The
variable clusters are ordered by descending IG. The numbers of base variable clusters
are highlighted in boldface. Similar behaviour with 65 and 106 is observed as in the
single discretisation case. Note the irrelevant variable 205 (underlined) discovered in
1D as relevant due to small margin between relevant and irrelevant features.

t-test 1D 2D 3D 4D 5D

1. 242 242 242 154 154 154

2. 65 339 49 49 49 29

3. 106 65 154 242 29 49

4. 339 443 106 29 242 242

5. 49 106 443 106 454 454

6. 443 454 339 454 106 456

7. 454 49 29 443 339 443

8. - 205 454 339 443 339

9. - - 65 65 456 106

10. - - - 456 65 65

Conclusion

We have introduced a new package for identification of informative variables in multidimensional
information systems which takes into account interactions between variables. The implemented
method is significantly more sensitive than the standard t-test when interactions between variables
are present in the system. When applied to the well-known five-dimensional problem—Madelon—the
method not only discovered all relevant variables but also produced the correct estimate of their
relative relevance.
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fclust: An R Package for Fuzzy
Clustering
by Maria Brigida Ferraro, Paolo Giordani and Alessio Serafini

Abstract Fuzzy clustering methods discover fuzzy partitions where observations can be softly
assigned to more than one cluster. The package fclust is a toolbox for fuzzy clustering in the R
programming language. It not only implements the widely used fuzzy k-means (FkM) algorithm,
but also many FkM variants. Fuzzy cluster similarity measures, cluster validity indices and cluster
visualization tools are also offered. In the current version, all the functions are rewritten in the C++
language allowing their application in large-size problems. Moreover, new fuzzy relational clustering
algorithms for partitioning qualitative/mixed data are provided together with an improved version
of the so-called Gustafson-Kessel algorithm to avoid singularity in the cluster covariance matrices.
Finally, it is now possible to automatically select the number of clusters by means of the available
fuzzy cluster validity indices.

Introduction

Standard clustering algorithms assign a set of observations to a limited number of clusters such that
observations belonging to the same cluster are more similar to each other than to those in other
groups. Generally speaking, such algorithms usually produce a hard partition of the observations, i.
e. every observation is assigned to one and only one cluster. This may often be too strict leading to
unfeasible partitions. The well-known Butterfly dataset (Ruspini, 1970) helps to clarify the problem.
It is available in the matrix butterfly of the package fclust, provided that the first and the last
rows of the matrix are removed.

> data("butterfly", package = "fclust")
> butterfly <- butterfly[-c(1,17),]
> rownames(butterfly) <- as.character(rep(1:nrow(butterfly)))
> plot(butterfly, type = "n", xlab = "Var. 1", ylab="Var. 2")
> text(butterfly[,1], butterfly[,2], labels = rownames(butterfly), cex = 0.7, lwd = 2)
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Figure 1: Scatterplot of the Butterfly data.

The Butterfly data refer to 15 observations and 2 variables. Two clusters corresponding to
the left and right wings (observations n.1-n.7 and n.9-n.15, respectively) of the butterfly can be
graphically depicted without any need of clustering tools. The assignment of observation n.8 (the
body of the butterfly) is a much more complex issue because it is at the halfway between the two
clusters. Standard algorithms fail to assign properly such an observation. For instance, let us
consider the (hard) k-means (kM) algorithm (Hartigan and Wong, 1979), the most known clustering
algorithm. We run the kM algorithm (using the function kmeans) a large number of times (nt).
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> set.seed(12)
> nt <- 1000
> ca8 <- rep(NA,nt)
> lfv <- rep(NA,nt)
> for (n in 1: nt){
+ km.butterfly <- kmeans(butterfly, centers = 2, iter.max = 1000, nstart = 10)
+ lfv[n] <- km.butterfly[[5]]
+ if (km.butterfly$cluster[8] == km.butterfly$cluster[1]){
+ ca8[n] <- 1
+ }else{
+ ca8[n] <- 2
+ }
+ }

> summary(lfv)

Min. 1st Qu. Median Mean 3rd Qu. Max.
31.43 31.43 31.43 31.43 31.43 31.43

> table(ca8)

ca8
1 2

560 440

We find (details not reported) that the same two clusters are always obtained (the one formed by
observations n-1-n.7, labelled Cluster 1, and the other one by observations n-9-n.15, labelled Cluster
2), whilst observation n.8 is assigned to one of the two clusters (ca8) by chance without affecting
the loss function value (lfv), i. e. the total within sum of squares.

The difficulty in the assignment of observation n.8 depends on the fact that it shares the features
of both the groups. This situation frequently occurs in real life applications. In general, it may
exist observations without clear assignments to the clusters. In such cases, it would be desirable to
assign them to the clusters to a certain extent. For instance, in the butterfly problem, observation
n.8 should be assigned to the two clusters with the same degree. This goal can be achieved by the
fuzzy approach to clustering where observations belong to clusters with the so-called membership
degrees in r0, 1s and, for each observation, the sum of the membership degrees must be equal to 1.
Therefore, in fuzzy clustering, the observations are not strictly assigned to one and only one cluster,
but can share their memberships to more than one cluster. To differentiate the fuzzy approach from
the standard hard one, it may also be referred to as soft clustering.

The most known fuzzy clustering algorithm is the fuzzy k-means (FkM), proposed by Bezdek
(1981), which is the fuzzy counterpart of kM. It has been implemented in several functions in
different R packages: we mention cluster (Maechler et al., 2017), clue (Hornik, 2005), e1071 (Meyer
et al., 2017), skmeans (Hornik et al., 2012), vegclust (De Caceres et al., 2010), ppclust (Cebeci
et al., 2018) and fclust (Ferraro and Giordani, 2015). Among them, fclust offers a general toolbox
for partitioning data using fuzzy clustering algorithms, computing cluster validity indices and
visualizing clustering results. The current version (version 2.1.1) of the package has been deeply
improved with respect to the previous ones. It contains several new routines and performance
improvements. As a first improvement, all the functions have been rewritten in the C++ language
using Rcpp (Eddelbuettel, 2013) and RcppArmadillo (Eddelbuettel and Sanderson, 2014) to enhance
their computational efficiency. In addition, all the clustering algorithms can automatically select
the optimal number of clusters using the cluster validity indexes available in the package. All the
functions usually require data organized by quantitative variables and observations (object data). To
increase the usability of the package, another relevant improvement is the implementation of fuzzy
clustering algorithms for relational data (Davé and Sen, 2002). Relational data come from measures
of dissimilarity between observations. Two clustering methods proposed by Davé and Sen (2002) have
been considered. They do not require any assumption about the adopted measure of dissimilarity.
Thus, such algorithms can be applied to a wide range of data. Specifically, whilst all the functions
for object data require quantitative variables, those for relational data can handle all kinds of data
(quantitative, qualitative or mixed) provided that a suitable measure of dissimilarity/distance is
selected, e. g. the Gower distance (Gower, 1971) specifying the option metric="gower" of the
function daisy in the package cluster. Finally, new functions to compare two partitions in a fuzzy
environment have been implemented. Namely, the fuzzy versions of the Rand index (RI; Rand,
1971), the adjusted Rand index (ARI; Hubert and Arabie, 1985), and the Jaccard index (Jaccard,
1901; Halkidi et al., 2001) have been developed by Campello (2007). The standard indexes are
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implemented in different packages (see, for instance, Scrucca et al., 2016; Chung et al., 2018). The
fuzzy vartiants are now available in fclust.

In this paper, after reviewing the most relevant fuzzy clustering methods, we recall some of the
original functions to present the new improvements and we introduce the new functions by examples.
We assume that the latest version of fclust available on CRAN is already installed with

> install.packages("fclust")

and loaded into the R session using

> library(fclust)

Fuzzy clustering

In this section, we recall the fuzzy k-means algorithm (Bezdek, 1981) and its extension suggested
by Gustafson and Kessel (1979). Whilst the former detects spherical clusters, the latter allows for
clusters with ellipsoidal shape. Then, a fuzzy clustering algorithm for relational data is described
(Davé and Sen, 2002)

Fuzzy k-means algorithm

The most known and used fuzzy clustering algorithm is the fuzzy k-means (FkM) (Bezdek, 1981).
The FkM algorithm aims at discovering the best fuzzy partition of n observations into k clusters by
solving the following minimization problem:

min
U,H

JFkM “
n
ř

i“1

k
ř

g“1
umigd

2
pxi, hgq,

s.t. uig P r0, 1s ,
k
ř

g“1
uig “ 1,

(H.2.1)

where d pxi, hgq is the Euclidean distance. In (H.2.1), uig is the generic element of the membership
degree matrix U of order (nˆ k), taking values in the interval [0,1] and representing the membership
degree of observation i to cluster g. The row-wise sums of U are equal to 1. The propotypes
(centroids) hg “ rhg1,hg2, ¨ ¨ ¨ ,hgps (g “ 1, ¨ ¨ ¨ , k) are stored in the matrix H of order (kˆ p), being
p the number of variables. Finally, the parameter m tunes the fuzziness of the obtained solution.

Gustafson-Kessel extensions of the FkM algorithm

The FkM algorithm, as the standard k-Means, can determine only spherical shaped clusters. This
depends on the use of the Euclidean distance to measure the dissimilarity between observations. This
limits its applicability when non-spherical clusters are expected. In order to overcome this drawback,
Gustafson and Kessel (1979) extend the FkM algorithm by replacing the Euclidean distance with a
cluster-specific Mahalanobis distance:

d2
M pxi, hgq “ pxi ´ hgq

1

Mg pxi ´ hgq , (H.2.2)

where Mg is a symmetric and positive-definite matrix of order p. When Mg “ I, (H.2.2) is equvalent
to the Euclidean distance. The Gustafson-Kessel FkM (briefly, GK-FkM) consists in solving the
following minimizatin problem

min
U,H,M1,...,Mk

JGK-FkM “
n
ř

i“1

k
ř

g“1
umigd

2
M pxi, hgq,

s.t. uig P r0, 1s ,
k
ř

g“1
uig “ 1, |Mg| “ ρg.

(H.2.3)

The constraints in (H.2.3) are similar to those in (H.2.1) except for the new ones on Mg (|Mg| “

ρg ą 0, with ρg fixed for each g), added to avoid a trivial solution with Mg “ 0, that would be
obtained since JGK-FkM is linear in Mg.
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For the generic g-th cluster, the iterative solution of Mg is rρg|Vg|s
1
nV´1

g , where Vg is the
fuzzy covariance matrix for cluster g, defined as

Vg “

řn
i“1 u

m
igpxi ´ hgqpxi ´ hgq

1

řn
i“1 u

m
ig

, g “ 1, . . . , k. (H.2.4)

The eigenvalues and eigenvectors of Vg describe the shape and orientation of the g-th cluster.
When an eigenvalue is equal to 0 or when the condition number of Vg (i. e. the ratio between its
maximum and minimum eigenvalue) is very large, the matrix is nearly singular, hence V´1

g cannot
be calculated. The condition |Vg| “ ρg cannot overcome this drawback, as the determinant becomes
0. Babuska et al. (2002) propose to avoid these numerical problems by constraining the condition
number of Vg to be smaller than a predefined threshold. Since this might lead to overfit the data,
the update of Vg can be regularized by considering the covariance matrix of the whole dataset. See,
for more details, Babuska et al. (2002).

Fuzzy clustering algorithms for relational data

In practical applications it may occur that only relational data are available. Relational data consist
in the pairwise relations (similarities or dissimilarities) between observations, stored in a square
matrix, say D, not necessarily based on object data. In fact, D can be built either by computing
the dissimilarity (or similarity) between all the pairs of observations on which a set of variables
are collected (indirect relational data) or according to subjective expert knowledge, e. g. a teacher
expresses her/his subjective degrees of dissimilarity for all the pair of pupils in her/his classroom
(direct relational data). In the latter case, fuzzy clustering algorithms for object data can no longer
be applied. In the former case, fuzzy clustering algorithms for object data should be preferred
to those for relational data due to their computational efficiency. Nonetheless, fuzzy clustering
algorithms usually assume to deal with quantitative variables preventing their applicability in case
of qualitative/mixed variables. In such a case, fuzzy clustering methods for relational data can be
fruitfully applied provided that a suitable dissimilarity measure for qualitative/mixed variables is
used.

In the literature, there exist several proposals of fuzzy clustering algorithms for relational data.
Among them, a valuable choice is represented by the class of algorithms proposed by Davé and
Sen (2002), which are suitable for all kinds of dissimilarity. We assume that D is a dissimilarity
matrix. If it contains similarities, these should be converted into dissimilarities. For this purpose,
e. g. the function sim2diss of the package smacof (de Leeuw and Mair, 2009) can be used. The
non-Euclidean fuzzy relational data clustering algorithm (NEFRC) consists in solving the following
minimization problem:

min
U

JNEFRC “
k
ř

g“1

n
ř

i“1

n
ř

j“1
umigu

m
jgdpxi,xjq

2
n
ř

t“1
umtg

,

s.t. uig P r0, 1s ,
k
ř

g“1
uig “ 1.

Notice that the NEFRC algorithm differs from the famous FANNY algorithm proposed by Kaufman
and Rousseeuw (1990) since a general fuzzifier m is used and it is suitable for all kinds of dissimilarity.

The package also offers a robust variant of NEFRC involving the concept of noise cluster. It
is an additional cluster such that the outliers are assigned to it with high membership degrees. It
is not a cluster in a strict sense because the outliers are not necessarily similar to each other. Its
role is that the membership degrees of the outliers to the standard clusters tend to be low without
affecting the obtained partition. The robust version of NEFRC has been implemented in the current
version of fclust and represents the relational counterpart of the FkM algorithm with noise cluster,
already available in the package.

The package

In this section we present the main features of the package fclust with particular emphasis on the
more recent updates. The list of algorithms with the corresponding functions is reported in Table
1. Apart from some peculiarities, all the available functions in the package require the same input
arguments, involving the set-up of the clustering algorithms, i. e. number of starts, convergence
criterion, data standardization. The user is not requested to specify such arguments because default
options are specified. Obviously, the dataset to be clustered must be given.
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Differently from the previous versions, the number of groups k is no longer required. Of course,
the user can select the integer value of k, otherwise the optimal number of clusters is automatically
chosen by maximizing or minimizing one of the available fuzzy cluster validity indices (see Table 2)
to be specified in the option index (default "SIL.F"). By default the possible number of clusters is
in the vector k=2:6, unless a different integer vector is selected by the user.

A fast way to apply one of the available algorithms is represented by the function Fclust:

> Fclust (X, k, type, ent, noise, stand, distance)

In Fclust to choose a given algorithm, the options type, ent, noise and distance should be set.
type is a character string specifying the type of algorithm to be used. The currently available
options are "standard" (the default option for FKM-type algorithms, provided that distance =
FALSE), "polynomial", "gk", "gkb", "medoids". ent (default FALSE) and noise (default FALSE)
are logical values indicating, respectively, whether the entropy regularization and the noise cluster
should be used. Morever, distance (default FALSE) is another logical value indicating whether
the data in X are distances/dissimilarities. When distance = TRUE, type is constrained to be
"standard" and NEFRC-type algorithms are run. Finally, stand is used for standardization (default:
no standardization) and k indicates the desired number of clusters (only for this function, the default
value is 2). For instance, the researcher interested in applying the FkM algorithm with noise cluster
with k “ 3 clusters to X can digit:

> Fclust (X = X, k = 3, type = "standard", noise = TRUE)

In the following we are going to present the main features and improvements of the package by
considering the standard FkM algorithm (function FKM), the Gustafson–Kessel extension of FkM
according to the Babuska et al. (2002) variant (function FKM.gkb), and the clustering algorithm for
relational data (function NEFRC).

Fuzzy k-means (FKM)

The FKM function is applied to the NBA dataset available in fclust. The dataset contains some
statistics on 30 NBA teams for the regular season 2017-2018 (source: https://stats.nba.com/
teams/traditional/): number of wins (W), field goals made (FGM), field goals attempted (FGA),
field goal percentage (FGP), 3 point field goals made (3PM), 3 point field goals attempted (3PA), 3
point field goals percentage (3PP), free throws made (FTM), free throws attempted (FTA), free throw
percentage (FTP), offensive rebounds (OREB), defensive rebounds (DREB), assists (AST), turnovers
(TOV), steals (STL), blocks (BLK), blocked field goal attempts (BLKA), personal fouls (PF), personal
fouls drawn (PFD) and points (PTS). In addition, two more variables are available indicating the
conference (Conference) and the playoff appearance (playoff). Both the variables are objects of
class factor with two levels.

The dataset can be loaded as following:

> data("NBA")

A subset of variables is considered for clustering purposes. The raw values of field goals, point field
goals and free throws are removed (only the percentage values are considered), as well as the wins
and the personal fouls.

> X.NBA <- NBA[,c(4,7,10,11,12,13,14,15,16,17,20)]

We apply the function FKM to the obtained dataset. The parameter of fuzziness m is set to m = 1.2
(the default value m = 2 was too high producing an extremely fuzzy partition with membership
degrees not far from 0.5) and the number of starts is fixed to 50 (RS = 50) to avoid local optima.
The number of clusters is automatically selected using the fuzzy silhouette index (index = "SIL.F").
Notice that the fuzzy silhouette index represents a fuzzy extension of the well-known silhouette
(Kaufman and Rousseeuw, 1990) involving the use of the membership degree information (for further
details, refer to Campello, 2007). Finally, we set stand = 1 in order to standardize the data before
running FKM:

> fkm.NBA <- FKM(X = X.NBA, m = 1.2, RS = 50, stand = 1, index = "SIL.F")

The summary method returns the most relevant information:

> summary(fkm.NBA)
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Fuzzy clustering object of class 'fclust'

Number of objects:
30

Number of clusters:
2

Cluster sizes:
Clus 1 Clus 2

18 12

Clustering index values:
SIL.F k=2 SIL.F k=3 SIL.F k=4 SIL.F k=5 SIL.F k=6
0.2994904 0.2508281 0.2558217 0.2586680 0.2700120

Closest hard clustering partition:
Houston Rockets Toronto Raptors Golden State Warriors

2 2 2
Boston Celtics Philadelphia 76ers Cleveland Cavaliers

1 2 2
Portland Trail Blazers Indiana Pacers New Orleans Pelicans

1 2 2
Oklahoma City Thunder Utah Jazz Minnesota Timberwolves

1 2 2
San Antonio Spurs Denver Nuggets Miami Heat

1 2 1
Milwaukee Bucks Washington Wizards LA Clippers

2 2 1
Detroit Pistons Charlotte Hornets Los Angeles Lakers

1 1 1
New York Knicks Brooklyn Nets Chicago Bulls

1 1 1
Sacramento Kings Orlando Magic Atlanta Hawks

1 1 1
Dallas Mavericks Memphis Grizzlies Phoenix Suns

1 1 1

Cluster memberships:
Clus 1
[1] "Boston Celtics" "Portland Trail Blazers"
[3] "Oklahoma City Thunder" "San Antonio Spurs"
[5] "Miami Heat" "LA Clippers"
[7] "Detroit Pistons" "Charlotte Hornets"
[9] "Los Angeles Lakers" "New York Knicks"
[11] "Brooklyn Nets" "Chicago Bulls"
[13] "Sacramento Kings" "Orlando Magic"
[15] "Atlanta Hawks" "Dallas Mavericks"
[17] "Memphis Grizzlies" "Phoenix Suns"
Clus 2
[1] "Houston Rockets" "Toronto Raptors"
[3] "Golden State Warriors" "Philadelphia 76ers"
[5] "Cleveland Cavaliers" "Indiana Pacers"
[7] "New Orleans Pelicans" "Utah Jazz"
[9] "Minnesota Timberwolves" "Denver Nuggets"
[11] "Milwaukee Bucks" "Washington Wizards"

Number of objects with unclear assignment (maximal membership degree <0.5):
0

Membership degree matrix (rounded):
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Clus 1 Clus 2
Houston Rockets 0.02 0.98
Toronto Raptors 0.01 0.99
Golden State Warriors 0.02 0.98
Boston Celtics 0.92 0.08
Philadelphia 76ers 0.11 0.89
Cleveland Cavaliers 0.05 0.95
Portland Trail Blazers 0.95 0.05
Indiana Pacers 0.34 0.66
New Orleans Pelicans 0.00 1.00
Oklahoma City Thunder 0.78 0.22
Utah Jazz 0.14 0.86
Minnesota Timberwolves 0.12 0.88
San Antonio Spurs 0.77 0.23
Denver Nuggets 0.03 0.97
Miami Heat 1.00 0.00
Milwaukee Bucks 0.03 0.97
Washington Wizards 0.03 0.97
LA Clippers 0.96 0.04
Detroit Pistons 1.00 0.00
Charlotte Hornets 0.98 0.02
Los Angeles Lakers 0.93 0.07
New York Knicks 0.96 0.04
Brooklyn Nets 0.99 0.01
Chicago Bulls 1.00 0.00
Sacramento Kings 0.98 0.02
Orlando Magic 1.00 0.00
Atlanta Hawks 0.98 0.02
Dallas Mavericks 0.97 0.03
Memphis Grizzlies 0.99 0.01
Phoenix Suns 0.99 0.01

Cluster summary:
Cl.size Min.memb.deg. Max.memb.deg. Av.memb.deg. N.uncl.assignm.

Clus 1 18 0.77 1 0.95 0
Clus 2 12 0.66 1 0.92 0

Euclidean distance matrix for the prototypes (rounded):
Clus 1

Clus 2 2.91

Available components:
[1] "U" "H" "F" "clus" "medoid"
[6] "value" "criterion" "iter" "k" "m"
[11] "ent" "b" "vp" "delta" "stand"
[16] "Xca" "X" "D" "call"

According to SIL.F, we select the solution with k “ 2 clusters. The obtained clusters can be plotted
on the plane spanned by the first two principal components. This can be done by using the method
plot associated to an fclust object specifying the option pca = TRUE.

We can see that the first component is able to distinguish the two clusters. Teams with high first
component scores belong to Cluster 2 and those with low scores to Cluster 1. The first component
loadings are (the script is omitted):

FGP 3PP FTP OREB DREB AST TOV STL BLK BLKA
0.455 0.305 0.278 -0.157 0.158 0.395 0.071 0.160 0.370 -0.338

PTS
0.369

Hence, it appears that the clusters are mainly distinguish in terms of FGP, AST, BLK, PTS, BLKA, 3PP
and FTP, i. e. the variables with the highest first component loadings in absolute value.

In order to interpret the clusters, we inspect the prototypes. To this purpose, we apply the
function Hraw to visualize the prototypes by using the original units of measurement.
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> plot(fkm.NBA, pca = TRUE)
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Figure 2: Scatterplot of the NBA teams on the plane spanned by the first two principal compo-
nents. Points are marked according to the obtained partition (Cluster 1: red, Cluster
2: cyan).

> round(Hraw(X = X.NBA, H = fkm.NBA$H), 3)

FGP 3PP FTP OREB DREB AST TOV STL BLK BLKA
Clus 1 0.451 0.358 0.759 9.830 33.757 22.483 14.252 7.446 4.581 4.996
Clus 2 0.474 0.367 0.780 9.513 33.891 24.425 14.305 8.096 5.145 4.548

PTS
Clus 1 104.362
Clus 2 109.357

We can see that Cluster 2 recognizes the best teams. In fact, the values of the prototype of Cluster
2 are better than the corresponding ones of Cluster 1, except for a few variables such as OREB
and BLKA. To further characterize the obtained clusters, we consider the variables Conference and
Playoff. In particular, we aim at discovering whether the two clusters can be interpreted in terms
of the geographical location and/or the playoff appearance. From a statistical point of view, this
consists in comparing the fuzzy partition resulting from FKM with the hard ones corresponding to
the classification variables Conference or Playoff. For this purpose, the fuzzy cluster similarity
measures available in the package are considered. Such measures, proposed by Campello (2007), are
summarized in Table 3.
To report the values of the three measures, the function Fclust.compare can be used. The input
required by Fclust.compare (and similarly for RI.F, ARI.F and JACCARD.F) is a fuzzy membership
degree matrix (U) and a vector of class labels (VC).

> Fclust.compare(VC = NBA$Playoff, U = fkm.NBA$U)

ARI.F RI.F JACCARD.F
0.3077549 0.6537339 0.4825140

> Fclust.compare(VC = NBA$Conference, U = fkm.NBA$U)

ARI.F RI.F JACCARD.F
-0.02547957 0.48701485 0.31724090

It is clear that the clusters cannot be interpreted from a geographical point of view, whilst, to some
extent, they are related to the playoff appearance. Such a comment holds especially for Cluster 2.
In fact, 11 out of 12 teams belonging to Cluster 2 reached the playoff stage. The only exception is
Denver Nuggets, which was one of the best teams in terms of number of wins (W) but not qualified
to the playoff stage, because the number of wins was not sufficient to reach the playoff stage in the
Western conference.
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Gustafson-Kessel extensions of the FKM algorithm (FKM.gk and FKM.gkb)

The Gustafson-Kessel extension of the FkM algorithm is implemented in the functions FKM.gk and
FKM.gkb. The former implements the GK-FkM algorithm in the original proposal, whilst the latter,
recently added to the package, considers the computational improvement suggested by Babuska
et al. (2002). A simulated dataset similar to the one in Babuska et al. (2002) is used to show the
differences between the two functions. Three different clusters with different size (100, 80, and 60)
in two-dimensional space are generated as follows:

y “

#

6´ 2.0x with x „ Up1, 3q for Cluster 1,

´5` 1.5x with x „ Up3.2, 6q for Cluster 2,

3x with x „ Up´1, 1q for Cluster 3.

(H.3.1)

Data can be found in fclust and loaded with the following command:

> data(synt.data2)

Figure 3 shows the scatterplot of the simulated data. In this case the cluster covariance matrices are
singular because the two variables are perfectly collinear in all the clusters.
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Figure 3: Scatterplot of the synt.data2 dataset.

By employing the standard function FKM.gk numerical problems occur. By setting m = 2, k = 3
and RS = 1, we have:

> fkm.gk.synt <- FKM.gk(X = synt.data2, k = 3, RS = 1)

The following warning message appears:

Warning message:
In FKM.gk(X = synt.data2, k = 3, RS = 1) :
When k=3, at least one cluster covariance matrix seems to be singular.
Increase the number of starts RS or use FKM.gkb

Thus, we can see that the algorithm stops because at least one cluster covariance matrix is singular.
In this case, the function returns the standard object of class fclust containing the sub-optimal
solution at the previous iteration, i. e. the one with no singular cluster covariance matrices. By
studying the number of iterations and the loss function value of such a local optimum solution, we
get:

> fkm.gk.synt$iter
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Start 1
13

> fkm.gk.synt$value

Start 1
0.06044555

For comparative purpose, we run the recommended function FKM.gkb using the same start:

> fkm.gkb.synt <- FKM.gkb(X = synt.data2, k = 3, RS = 1, seed = 123)

> fkm.gkb.synt$iter

Start 1
16

> fkm.gkb.synt$value

Start 1
1.482029e-05

The method required two more iterations for convergence. The obtained solution is characterized by
a lower loss function value and is not affected by singularity problems.

Fuzzy clustering for indirect relational data (dichotomous variables)

The NEFRC algorithm can be applied using the function NEFRC. Differently from the other functions
for clustering object data, it requires distances/dissimilarities as input argument. Consistently
with the other functions, the available clustering indices (except for the Xie and Beni one) can be
used to select the optimal number of clusters k. In particular, the silhouette index (SIL) and its
fuzzy extension (SIL.F) have been rearranged for relational data. Specifically, the input of NEFRC
is employed to compute the silhouette and the fuzzy silhouette indices. This is the default option
when SIL.F is called by NEFRC. In order to use the distance/dissimilarity matrix for computing the
fuzzy silhouette index, the option distance = TRUE in SIL.F should be set. Generally speaking, the
fuzzy silhouette index can be applied for any kind of data (quantitative or qualitative or mixed)
provided that a suitable distance/dissimilarity matrix is used as input.

The function NEFRC is presented by considering the congressional voting records data (Schlimmer,
1987) available in fclust. The data collect 1984 United Stated voting records for 475 U.S. House
of Representative congressmen on 16 key votes identified by the Congressional Quartely Almanac
(CQA). The congressmen are split into Democrats and Republicans (variable class). The 16 key
votes are objects of class factor with three levels according to the CQA scheme: y refers to the
types of votes “voted for”, “paired for” and “announced for”; n to “voted against”, “paired against”
and “announced against”; yn to “voted present”, “voted present to avoid conflict of interest” and
“did not vote or otherwise make a position known”.

The dataset can be loaded as follows:

> data("houseVotes")

It contains the following variables:

> colnames(houseVotes)

[1] "class" "handicapped-infants"
[3] "water-project-cost-sharing" "adoption-of-the-budget-resolution"
[5] "physician-fee-freeze" "el-salvador-aid"
[7] "religious-groups-in-schools" "anti-satellite-test-ban"
[9] "aid-to-nicaraguan-contras" "mx-missile"
[11] "immigration" "synfuels-corporation-cutback"
[13] "education-spending" "superfund-right-to-sue"
[15] "crime" "duty-free-exports"
[17] "export-administration-act-south-africa"

Since the level yn might indicate unknown preferences for some key votes, these values are considered
as missing and, therefore, the rows with at least one yn value are removed:
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> level.drop <- droplevels(houseVotes, exclude = "yn")
> houseVotesComplete <- level.drop[complete.cases(level.drop),]

The research interest relies in discovering whether a two-cluster structure exists and a relationship
between the political position and the system of voting emerges. Even if the dataset is not relational,
NEFRC is the only one R routine for getting a fuzzy partition based on qualitative variables. For this
purpose, the Gower distance, implemented in the function daisy of the package cluster, is used to
generate the dissimilarity matrix:

> X.houseVotesComplete <- houseVotesComplete[,-1]
> library(cluster)
> D.houseVotes <- daisy(x = X.houseVotesComplete, metric = "gower")

The standard algorithm for relational data is employed by running the function NEFRC setting m =
1.5 and k = 2 in order to assess whether the clusters are related to the parties (class).

> nefrc.houseVotes <- NEFRC(D = D.houseVotes, k = 2, m = 1.5, index = "SIL.F")

The summary method is similar to that of FKM and hence not reported. The two clusters can be
interpreted in terms of the parties. In fact, we get the following cluster similarity measures:

> Fclust.compare(VC = houseVotesComplete$class, U = nefrc.houseVotes$U)

ARI.F RI.F JACCARD.F
0.4871095 0.7435544 0.5914710

Morevover, we have:

> table(nefrc.houseVotes$clus[,1], houseVotesComplete$class)

democrat republican
1 19 101
2 105 7

Therefore, Cluster 1 and Cluster 2 refer to the Republicans and Democrats, respectively. In Figure
4 the clusters are plotted in the low dimensional space spanned by the first two components. Note
that the plot method for relational data is based on non-metric multidimensional scaling (Kruskal,
1964) by calling the function isoMDS of the package MASS (Venables and Ripley, 2002).

> plot(nefrc.houseVotes)
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Figure 4: Scatterplot of relational data with plot method. Points are marked according to the
obtained classification (Cluster 1: red, Cluster 2: cyan).
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To further interpret the clusters, Figure 5 displays the barplots of the 16 key votes for the two
clusters (by considering the closest hard clustering partition). We can observe that the votes are
highly connected with the Congressmen political positions. This holds for almost all the 16 key
votes with particular reference to, e. g. "adoption-of-the-budget", "education-spending" and
"anti-satellite-test-ban".
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Figure 5: Barplot of the 16 key votes for the two clusters (n: green, y: blue).

Fuzzy clustering for indirect relational data (ordinal variables)

In this section, a dataset with ordinal data is analyzed by using NEFRC. The data refer to the
Math Anxiety Scale Survey administered to 20 students in a statistics course (Bai et al., 2009). In
the survey, each student answers 14 questions by using a Likert scale with five levels ("Strongly
Disagree", "Disagree", "Neutral", "Agree", "Strongly Agree"). First, we load the dataset:

> library(likert)
> data("mass")

Then, we compute the dissimilarity matrix by using the Gower distance. When applied to ordinal
variables, such a distance is based on ranks. Note that the first variable of mass is Gender, not useful
for clustering purposes and, thus, omitted in the computation of the dissimilarity matrix. We have:

> library(cluster)
> D.mass <- daisy(x = mass[,-1], metric = "gower")

Finally, we run the function NEFRC automatically selecting the number of clusters by means of SIL.F:

> nefrc.mass <- NEFRC(D = D.mass, index = "SIL.F")

The fuzzy silhouette values, employed to select the number of clusters, are:

> nefrc.mass$criterion
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SIL.F k=2 SIL.F k=3 SIL.F k=4 SIL.F k=5 SIL.F k=6
0.5330319 0.4623684 0.4039311 0.4428360 0.4685703

Hence, k “ 2 clusters are suggested. Since the default options are used, the solution could also be
obtained by considering the function Fclust:

> nefrc.mass <- Fclust(X = D.mass, k = 2, noise = FALSE, distance = TRUE)

The clusters can be interpreted according to the observed qualitative variables. For this purpose, we
calculate the p-values resulting from the χ2 tests by which we study the independence between the
closest hard clustering partition and every observed variables. The p-values are stored in the vector
PV:

> PV <- rep(NA,ncol(mass))
> for (j in 1:ncol(mass)) PV[j] <- chisq.test(nefrc.mass$clus[,1], mass[,j])$p.value

At the significance level α “ 0.05, we are interested in those variables such that the corresponding
p-value is lower than α:

> alpha <- 0.05
> names(mass)[PV < alpha]

[1] "I find math interesting."
[2] "I get uptight during math tests."
[3] "Mind goes blank and I am unable to think clearly when doing my math test."
[4] "I worry about my ability to solve math problems."
[5] "I get a sinking feeling when I try to do math problems."
[6] "I find math challenging."
[7] "Mathematics makes me feel nervous."
[8] "Mathematics makes me feel uneasy."
[9] "Math is one of my favorite subjects."
[10] "I enjoy learning with mathematics."
[11] "Mathematics makes me feel confused."

We inspect the contingency tables (not reported here) between such a subset of observed variables
and the closest hard clustering partition and we find that Cluster 1 is characterized by large fre-
quencies for the modalities "Strongly Disagree" and "Disagree" with respect to the variables "I
find math interesting.", "Math is one of my favorite subjects." and "I enjoy learning
with mathematics." and large frequencies for the modalities "Agree" and "Strongly Agree"
with respect to the variables "I get uptight during math tests.", "Mind goes blank and I am
unable to think clearly when doing my math test.", "I worry about my ability to solve
math problems.", "I get a sinking feeling when I try to do math problems.", "I find math
challenging.", "Mathematics makes me feel nervous.", "Mathematics makes me feel uneasy."
and "Mathematics makes me feel confused.". Of course, the opposite comment holds for Cluster
2. Therefore, the partition distinguishes the students liking math (assigned to Cluster 2) from those
who experience feelings of stress when faced with math (assigned to Cluster 1).

Fuzzy clustering for direct relational data

In the previous two subsections, NEFRC is applied in order to discover homogeneous clusters of
observations on which qualitative variables are collected. In these cases, suitable dissimilarity
matrices are built before running NEFRC. In the current subsection, we consider the case where
variables are not available and the only information about the observations is expressed in terms of
their dissimilarities or distances. The data are stored in the following object of class dist:

> library(smacof)
> data("FaceExp")

FaceExp contains the dissimilarities between pairs of 13 facial expressions related to particular
stimuli:

> labels(FaceExp)

[1] "Grief at death of mother" "Savoring a Coke"
[3] "Very pleasant surprise" "Maternal love-baby in arms"
[5] "Physical exhaustion" "Something wrong with plane"
[7] "Anger at seeing dog beaten" "Pulling hard on seat of chair"
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[9] "Unexpectedly meets old boyfriend" "Revulsion"
[11] "Extreme pain" "Knows plane will crash"
[13] "Light sleep"

The dissimilarities have been calculated in a psychological experiment where a set of subjects were
invited to judge how much two pictures of emotional expressions differ. Thus, all the possible pairs
of emotional expressions were compared by the subjects and the dissimilarities were derived. See,
for further details, Abelson and Sermat (1962) .

By means of NEFRC the aim is to discover whether similar facial expressions are perceived by the
subjects in connection with similar emotions intended by the stimuli. In this case, we do not know
the number of clusters and, therefore, we determine it according to SIL.F.

> nefrc.FaceExp <- NEFRC(D = FaceExp, index = "SIL.F")

We find that k “ 3 should be set:

> nefrc.FaceExp$criterion

SIL.F k=2 SIL.F k=3 SIL.F k=4 SIL.F k=5 SIL.F k=6
0.5298465 0.5929045 0.5470887 0.5436513 0.4003177

The interpretation of the clusters can be done by seeking a common feature for the facial expressions,
i. e. the stimuli, assigned to the same cluster. We have:

> round(nefrc.FaceExp$clus[(nefrc.FaceExp$clus[,1] == 1), 2], 2)

Savoring a Coke Very pleasant surprise Maternal love-baby in arms
0.64 0.85 0.75

Pulling hard on seat Unexpectedly meets old boyfriend
0.59 0.94

> round(nefrc.FaceExp$clus[(nefrc.FaceExp$clus[,1] == 2), 2], 2)

Grief at death of mother Physical exhaustion Revulsion
0.79 0.81 0.69

Extreme pain Light sleep
0.56 0.64

> round(nefrc.FaceExp$clus[(nefrc.FaceExp$clus[,1] == 3), 2], 2)

Something wrong with plane Anger at seeing dog beaten Knows plane will crash
0.52 0.93 0.78

Cluster 1 groups pleasant stimuli with the only exception of "Pulling hard on seat of chair"
for which the membership degree is however the lowest one (0.59). The facial expressions showing
pain belong to Cluster 2. "Light sleep" is also assigned to the cluster. It follows that the subjects
tend to associate such an expression with suffering. Finally, anxiety characterizes Cluster 3.

Conclusion

In this paper we have described the main features of the package fclust. fclust represents a toolbox
for fuzzy cluster analysis. The functions in the package offer a wide range of fuzzy clustering
algorithms, fuzzy cluster validity indices, measures of similarity for comparing hard and fuzzy
partitions and visualization tools for fuzzy clustering results. Particular attention has been paid
to the new improvements and implementations available in the current version of the package
(version 2.1.1). First of all, the functions have been updated by using the C++ language, with
a remarkable reduction in computation time. Furthermore, the package now includes some fuzzy
clustering algorithms for relational data, allowing the user to perform a fuzzy clustering analysis
when the variables are qualitative or mixed. In such cases, a dissimilarity matrix can be built
by using the existing R functions (e. g. dist or daisy in the package cluster) and the available
functions for relational data (NEFRC and NEFRC.noise) can then be applied. As far as we know,
NEFRC and NEFRC.noise represent the first available R functions for fuzzy clustering of qualitative or
mixed variables. All the functions have been revised in such a way that the number of clusters can
be automatically selected. This might increase the computation time, but it is crucial in order to
spread the use of fuzzy clustering methods especially for non-expert users. In this connection, the
function Fclust for running the available algorithms using the default options and specifying the
desired number of clusters is also offered.
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Function Algorithm

FKM standard FkM algorithm

(Bezdek, 1981)

FKM.ent FkM with entropy regularization

(Li and Mukaidono, 1995, 1999)

FKM.noise FkM with noise cluster

(Davé, 1991)

FKM.ent.noise FkM with entropy regularization and noise
cluster

(Li and Mukaidono, 1999; Davé, 1991)

FKM.gk Gustafson and Kessel extension of FkM

(Gustafson and Kessel, 1979)

FKM.gk.ent Gustafson and Kessel extension of FkMwith
entropy regularization

(Ferraro and Giordani, 2013)

FKM.gk.noise Gustafson and Kessel extension of FkMwith
noise cluster

(Gustafson and Kessel, 1979; Davé, 1991)

FKM.gk.ent.noise Gustafson and Kessel extension of FkMwith
entropy regularization and noise cluster

(Ferraro and Giordani, 2013; Davé, 1991)

FKM.gkb Gustafson, Kessel and Babuska extension
of FkM

(Babuska et al., 2002; Gustafson and Kessel,
1979)

FKM.gkb.ent Gustafson, Kessel and Babuska extension
of FkM with entropy regularization

(Babuska et al., 2002; Ferraro and Giordani,
2013)

FKM.gkb.noise Gustafson, Kessel and Babuska extension
of FkM with noise cluster

(Babuska et al., 2002; Davé, 1991)

FKM.gkb.ent.noise Gustafson, Kessel and Babuska extension of
FkM with entropy regularization and noise
cluster

(Babuska et al., 2002; Ferraro and Giordani,
2013; Davé, 1991)

FKM.pf FkM with polynomial fuzzifier

(Winkler et al., 2009, 2011)

FKM.pf.noise FkM with polynomial fuzzifier and noise
cluster

(Winkler et al., 2009, 2011; Davé, 1991)

FKM.med fuzzy k-medoids algorithm

(Krishnapuram et al., 2001)

FKM.med.noise fuzzy k-medoids algorithm with noise clus-
ter

(Krishnapuram et al., 2001; Davé, 1991)

NEFRC non-euclidean fuzzy relational algorithm
(Davé and Sen, 2002)

NEFRC.noise non-euclidean fuzzy relational algorithm
with noise cluster

(Davé and Sen, 2002; Davé, 1991)

Table 1: List of fuzzy clustering algorithms available in the package fclust.
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Function Index

PC partition coefficient

MPC modified partition coefficient

PE partition entropy

XB partition entropy

SIL (crisp) silhouette

SIL.F fuzzy silhouette

Table 2: List of fuzzy cluster validity indices available in the package fclust.

Function Index

RI.F Fuzzy version of Rand index

ARI.F Fuzzy version of adjusted Rand index

JACCARD.F Fuzzy version of Jaccard index

Table 3: List of fuzzy cluster similarity measures available in the package fclust.
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Nowcasting: An R Package for
Predicting Economic Variables Using
Dynamic Factor Models
by Serge de Valk, Daiane de Mattos and Pedro Ferreira

Abstract The nowcasting package provides the tools to make forecasts of monthly or quarterly
economic variables using dynamic factor models. The objective is to help the user at each step of the
forecasting process, starting with the construction of a database, all the way to the interpretation
of the forecasts. The dynamic factor model adopted in this package is based on the articles from
Giannone et al. (2008) and Banbura et al. (2011). Although there exist several other dynamic factor
model packages available for R, ours provides an environment to easily forecast economic variables
and interpret results.

Introduction

Important economic decisions are made based on current and future conditions. Oftentimes, the
variables used to measure such conditions are not available even for the recent past. This is, for
instance, the case with US GDP that is published 45 days after the end of the quarter. Similarly,
Brazilian GDP is published with a 60-day lag. There is therefore a need for forecasting the current
value of given variables. To this end, Giannone et al. (2008) proposed a statistical model that allows
quarterly variables, such as US GDP, to be forecast using a large set of monthly variables released
with different lags. GDP forecasts for the current quarter are, furthermore, updated whenever
new information is available. Different central banks have shown interest in this methodology,
among them the European Central Bank (Angelini et al., 2008; Bańbura and Rünstler, 2011; Van
Nieuwenhuyze et al., 2008), and the central banks of Ireland (D’Agostino et al., 2008), New Zealand
(Matheson, 2010) and Norway (Aastveit and Trovik, 2012).

Factor models are designed to summarize the variation contained in a large dataset into only a
few variables (Stock and Watson, 2006). In Giannone et al. (2008), the authors show how to reduce
the information contained in dozens of monthly time series into only two dynamic factors. These
two estimated factors, which are initially monthly, are then transformed into quarterly factors and
used in a regression against GDP. Various other authors, such as Chauvet (2001); Marcellino et al.
(2003); Forni et al. (2004); Boivin and Ng (2006); D’Agostino et al. (2006); Banbura et al. (2011);
Dahlhaus et al. (2015); Stock and Watson (2016), have explored Dynamic Factor Models (DFMs) in
time series forecasting and found promising results.

Given the publication lag of many variables, such as GDP, we can either forecast past, current
or future values. In order to differentiate between those types of forecasts we adopt the terminology
used in Giannone et al. (2008) and Banbura et al. (2011). Backcasting refers to forecasting the value
of a yet unpublished variable for a past period, while nowcasting will be with respect to the current
period. By way of illustration, suppose we want to forecast the GDP for the 2nd quarter of 2018. If
the exercise is made during the 2nd quarter of 2018, then the forecast is classified as nowcasting.
However, if the current date is before the 2nd quarter of 2018, then the term used is forecasting.
Finally, if the date is after the 2nd quarter of 2018 and the GDP has not yet been released, then the
forecast is classified as backcasting.

The aim of the package nowcasting is to offer the tools for the R user to implement dynamic
factor models. The different steps in the forecasting process and the associated functions within the
package are based on the literature. We have chosen to divide the process into 4 main steps: 1)
constructing a dataset; 2) defining the model’s initiation parameters; 3) forecasting; 4) presenting
results. This particular division will be maintained in most sections.

This brings us to the article’s sections that are organized as follows: 1) the theoretical framework
is introduced; 2) the functions of our package are presented; 3) working examples of how to nowcast
Brazilian GDP and of the New York FED nowcasting are given; 4) and finally the last section
concludes with some considerations.
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Methodology

Dynamic Factor Model

Let xt “ px1,t,x2,t, ...,xN ,tq
1

be the vector representing N monthly time series transformed to satisfy
the weak stationarity assumption. The general specification of the dynamic factor model is given by:

xt “ µ`Λft ` εt (J.2.1)

ft “

p
ÿ

i“1
Aift´i `But, ut „ i.i.d.Np0, Iqq (J.2.2)

In equation (J.2.1), the variables xt are expressed as a function of an intercept µ and r unobserved
common factors ft. Since all variables x will later be demeaned, one may drop the unconditional
means µ. The variables xt will be loaded into the unobserved factors ft through Λ. Equation (J.2.2)
imposes the structure of a VAR(p) process on the factors ft. Both εt and ut are normal, allowing
the use of the Kalman Filter. Furthermore, the vector of idiosyncratic component εt is unrelated to
ut at all lags, i.e., Erεtu1t´ks “ 0 for any k. An interesting feature of equation (J.2.2) is that the
number of shocks q to the factors need not be equal to the number of factors r. Structural breaks or
lead/lag relationships of the r factors with q common shocks may motivate such a modeling choice
(see Stock and Watson (2016) for more information).

In the so-called exact dynamic factor model, the error components from equation (J.2.1) are
assumed to be mutually uncorrelated at all lags, i.e., Erεi,tεj,ss “ 0 for i ‰ j. However, following
Banbura et al. (2011), the error term could be modeled as an AR(p’) process:

εi,t “
p1
ÿ

j“1
αi,jεi,t´j ` ei,t, ei,t „ i.i.d.Np0,σ2

i q (J.2.3)

where Erei,tej,ss “ 0 for i ‰ j.
Following is an example, in matrix form, of equation (J.2.2) of the model for orders r “ 2, p “ 2

and q “ 2.
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(J.2.4)

Ft “

»

—

—

—

—

—

–

A1 A2

I2 0

fi

ffi

ffi

ffi

ffi

ffi

fl

Ft´1 `But (J.2.5)

Quarterly and monthly variables

In order to predict a quarterly variable using monthly data, we construct a partially observed
monthly counterpart of the quarterly variable as proposed in Mariano and Murasawa (2003). This
allows, for instance, quarterly GDP to be explained by monthly variables. Continuing with this
example, let YMt be the level of the unobservable monthly GDP level and Y Qt the quarterly value of
GDP for the partially observable monthly series. As is usual in the literature, we let quarterly GDP
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be observable in the third month of the quarter.

Y Qt “

#

YMt ` YMt´1 ` Y
M
t´2, t “ 3, 6, 9, . . .

unobserved otherwise
(J.2.6)

The above accounting rule states that the quarterly GDP flow is equal to the sum of the monthly
flows. Looking at the quarterly change, yQt “ Y Qt ´Y Qt´3

1, it is easy to show that it can be expressed
as a function of the differences of the monthly variable, yt “ YMt ´ YMt´1, by using equation (J.2.6):

yQt “ Y Qt ´ Y Qt´3

“ Y Qt ` Y Qt´1 ´ Y
Q
t´1 ` Y

Q
t´2 ´ Y

Q
t´2 ´ Y

Q
t´3

“ yt ` 2yt´1 ` 3yt´2 ` 2yt´3 ` yt´4, t “ 6, 9, . . .

(J.2.7)

Suppose that the variable of interest is a quarterly rate of change, xQt , defined as:

xQt ” logpY Qt q ´ logpY Qt´3q (J.2.8)

Stating the approximation between the arithmetic and geometric means we have:

1
3 rY

M
t ` YMt´1 ` Y

M
t´2s «

3
b

YMt YMt´1Y
M
t´2 (J.2.9)

Combining equations (J.2.8) and (J.2.9) we obtain the approximation from Mariano and Mura-
sawa (2003) that expresses the quarterly growth rate of GDP as a function of the unobservable
monthly growth rates xMt :

xQt «
1
3

„

xMt ` 2xMt´1 ` 3xMt´2 ` 2xMt´3 ` x
M
t´4



(J.2.10)

Suppose that the unobserved monthly growth rate xMt also admits the same factor representation
as in equation (J.2.1) with loadings ΛQ, then the quarterly GDP growth rate, xQt , can be expressed
as a function of monthly factors.

xQt “ ΛQ

„

f 1t . . . f
1
t´4

1

`

„

1 2 3 2 1
„

εMt . . . εMt´4

1

(J.2.11)

where ΛQ “ rΛQ 2ΛQ 3ΛQ 2ΛQ ΛQs is a restricted matrix of loadings on the factors and their
lags. Note that the errors are normal in the exact dynamic factor model or have an AR(1) structure
as in Banbura et al. (2011).

Determining the number of factors and shocks to the factors

We follow the papers by Bai and Ng (2002) and Bai and Ng (2007) to respectively define 1) the
number r of factors in equation (J.2.1) and 2) the number of shocks q to the factors in equation
(J.2.2).

Let V pr, F̂ rq be the sum of squared residuals when r factors are estimated using principal
components. The the information criteria can then be written as follows:

ICr1prq “ lnpV pr, pF rqq ` r
ˆ

N ` T

NT

˙

ln

ˆ

NT

N ` T

˙

(J.2.12)

ICr2prq “ lnpV pr, pF rqq ` r
ˆ

N ` T

NT

˙

ln
`

mintN ,T u
˘

(J.2.13)

ICr3prq “ lnpV pr, pF rqq ` r
ˆ

lnpmintN ,T uq
mintN ,T u

˙

(J.2.14)

1The aggregation scheme, and ensuing weights used for aggregating the monthly series, may differ according
to the order of the difference taken. In the paper of Mariano and Murasawa (2003), the example is of a first
difference of quarterly log GDP, which corresponds to a quarterly growth rate. In the case of an annual
growth rate, ∆12logpY

Q
t q “ logpY Q

t q ´ logpY
Q

t´12q, the aggregation weights would be different. Such cases
are not considered here.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859



Contributed Research Articles 233

The chosen number of factors r˚ will then correspond to arg minr ICriprq, for i P t1, 2, 3u.
Equations (J.2.12), (J.2.13), and (J.2.14) are asymptotically equivalent, but may nevertheless give
significantly different results for finite samples. To this effect, observe that the penalty in equation
(J.2.13) is highest when considering finite samples.

The number of shocks q can be lower than the number of factors r. Once the number of factors
is determined, we use an information criterion from Bai and Ng (2007) to estimate the number of
shocks q in equation (J.2.2). Let pFt be the r factors estimated using principal components and let
put be the residuals from the VAR Aplq pFt “ put. The idea is to check whether the eigenvalues of
the variance-covariance matrix p

ř

u are different from 0. Numerically, we will therefore want to test
whether a given eigenvalue is below a predefined tolerance level.To this end, define the eigenvalues
c1 ą c2 ě ... ě cr ě 0 of p

ř

u and define the kth normalization of the k+1th eigenvalue

pDk “

ˆ c2
pk`1q

řr
j“1 c

2
j

˙1{2
(J.2.15)

Then for some 0 ă m ă 8 and 0 ă δ ă 1{2 that set the tolerance level, define the vector K

K “ tk : pDk ă m{minrN1{2´δ,T 1{2´δ
su (J.2.16)

where the estimated number of shocks to the factors will be q̂ “ mintk P Ku. This estimator will
converge in probability towards the real number of shocks given that r is the real number of factors.

Estimation

We will describe two methodologies for estimating dynamic factors: Two-Stage and Expectation-
Maximization.

1. Two-Stage: This approach is described in Giannone et al. (2008) and refers to the exact
DFM. In the first stage, the parameters of the matrices Λ and ft are estimated by Principal
Components Analysis (PCA) using a standardized, balanced panel (Xt), in which there are
no missing values and outliers. Standardization is important as PCA is not scale invariant.
The estimators pΛ and pft can be obtained by solving the following optimization problem:

min
f1,...,fT ,Λ

1
NT

T
ÿ

t“1
pXt ´Λftq1pXt ´Λftq s.t. N´1Λ1Λ “ Ir (J.2.17)

The estimator for the variance and covariance matrix for εt is then given by

pΨ “ diag

˜

1
T

T
ÿ

t“1
pXt ´ pΛ pftqpXt ´ pΛ pftq

1

¸

(J.2.18)

According to Stock and Watson (2011), the solution to (J.2.17) is to set pΛ equal to
the eigenvectors of the variance and covariance matrix of Xt associated with the r largest
eigenvalues, from which it follows that the vector pft is the r first principal components of Xt.
The coefficients of the matrix Ai, i “ 1, 2, ..., p, from equation (J.2.2), are estimated by OLS
regression of ft on ft´1, ..., ft´p. Finally, BB1 is estimated as the covariance matrix of the
residuals of this regression.

In the second stage, Kalman smoothing (Durbin and Koopman, 2012) is used to re-estimate
the factors for the unbalanced panel xt considering the parameters obtained in the previous
step. There are some R packages that implemented the Kalman smoothing (Tusell, 2011).
However, for convenience, in the nowcasting package, we used the routine provided by Giannone
et al. (2008). Furthermore, two options are provided when estimating the factors:

• No aggregation: No bridge equation, to obtain (J.2.19), is needed if both the dependent
and the explanatory variables are monthly indicators. Hence, the aggregation procedure
as set out in Mariano and Murasawa (2003) is not required. Similarly, if the explanatory
variables have been transformed to represent quarterly quantities, the same aggregation
procedure does not need to be implemented again on the factors.

• With aggregation: This option is relevant when having a dependent variable y of lower
frequency than the explanatory variables. Factors are estimated using the monthly
explanatory variables x, after which the transformation from Mariano and Murasawa
(2003) is applied in order to obtain factors representing quarterly quantities. Those will
be used to forecast the dependent variable in the bridge equation (J.2.19).
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yt “ β0 ` β
1
pft ` et (J.2.19)

The parameters of equation (J.2.19) are estimated by OLS, and the forecast for yt`h is
given by

pyt`h “ xβ0 ` pβ1 pft`h (J.2.20)

2. Expectation-Maximization: This estimation method is able to deal with arbitrary patterns
of missing values as shown in Bańbura and Modugno (2014). It is therefore less restrictive
than the Two-Stage method with regards to the frequencies of the variables and allows for a
mixed frequency database. Following Banbura et al. (2011), factors can be defined for different
subgroups of variables and no longer all need to be global as in the Two-Stage estimation
method. Below, we illustrate a case where three factors are partitioned into three groups
(global, real and nominal) as in Banbura et al. (2011). Rewriting equation (J.2.1) accordingly
gives equation (J.2.21). As opposed to the Two-Stage estimation method that builds on an
exact dynamic factor model, the error term is defined as an AR(1) process. A more restrictive
assumption than the Two-Stage method is that the number of shocks to the factors q is set
equal to the number of factors r.

xt “ µ`

¨

˚

˚

˚

˚

˚

˝

ΛN ,G ΛN ,N 0

ΛR,G 0 ΛR,R

˛

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

fGt

zfNt

fRt

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

` εt (J.2.21)
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The global factor is estimated considering all the explanatory variables, while the estimates
of the nominal and real factors only consider variable classified, respectively, as nominal and
real. The parameter µ is a vector of constants of dimension N. As previously mentioned,
the alternative proposed by Banbura et al. (2011) to the exact DFM, allows for serial
autocorrelation among the error of equation (J.2.1) along an ARp1q process:

εi,t “ αiεi,t´1 ` ei,t, ei,t „ i.i.d.Np0,σ2
i q (J.2.24)

where Erei,tej,ss “ 0 for i ‰ j.
In this model, the parameters, the unobserved common factors and the missing values are

estimated through the Expectation-Maximization algorithm, which uses the following recursive
structure:

• E-step: The conditional expectation of the likelihood function is calculated using the
estimates of the static parameters (θ) from the previous iteration, θj ;

• M-step: The new parameters, θj`1 are estimated by maximizing the likelihood function
from the previous step with respect to θ.

Convergence is achieved when the absolute change in the value of the log-likelihood function
is less than 10´4, the tolerance level used for this algorithm. The recursive process starts with
the PCA estimates given in Giannone et al. (2008) (first stage of the Two-Stage method).

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859



Contributed Research Articles 235

The R package

Working on the dataset

The first step in the nowcasting process is to prepare the data in a way that is compatible with the
proposed models and estimation methods. One of the motivations of the presented models is the
forecasting improvements that can be achieved by using higher frequency variables. More specifically,
the gains that can be obtained in using monthly variables to forecast quarterly series. Hence, all
functions require monthly mts objects. In practice, the quarterly variables are usually represented as
monthly variables for which the last month of the quarter is observed. As illustrated in the working
examples, such straightforward transformations from one frequency representation to another can
be achieved by using the functions qtr2month() or month2qtr().

With regards to the estimation methods, different inputs may have to be provided. As a matter
of fact, the Two-Stage method is more restrictive on the format of the variables as it depends on
principal components in the first stage. This requires a strategy to deal with missing values, which
are not part of the jagged edge, beforehand. Giannone et al. (2008) propose to replace such missing
values with the median of the series that are then smoothed with a moving average. Since such a
strategy assigns a value that is independent of the information contained in other contemporaneous
variables, it is advisable to exclude series with many missing values. The EM algorithm, however,
is able to deal with missing values in a way that uses the information contained in other variables
and might therefore not require discarding such variables. Finally, independently of the estimation
method, stationary series are required. The usual transformations for making time series stationary
and the different strategies to deal with missing values have been included in the function Bpanel()
that prepares the database for the nowcasting function. Since these choices require careful attention,
the function Bpanel() is explained in further detail.

Bpanel(base, trans, NA.replace = TRUE, aggregate = FALSE, k.ma = 3, na.prop = 1/3, h = 12)

trans is a vector indicating the transformations to be applied to the variables. For most cases,
the available transformations are sufficient to make economic variables stationary. The
transformation must be specified by using one of the following values for the argument trans:

trans = 0: the observed series is preserved;

trans = 1: monthly rate of change:
xi,t ´ xi,t´1

xi,t´1
;

trans = 2: monthly difference: xi,t ´ xi,t´1;
trans = 3: monthly difference in year-over-year rate of change:

xi,t ´ xi,t´12
xi,t´12

´
xi,t´1 ´ xi,t´13

xi,t´13
;

trans = 4: monthly difference in year-over-year difference:

pxi,t ´ xi,t´12q ´ pxi,t´1 ´ xi,t´13q.

trans = 5: year difference:
pxi,t ´ xi,t´12q

trans = 6: year-over-year rate of change:

xi,t ´ xi,t´12
xi,t´12

trans = 7: quarterly rate of change
xi,t ´ xi,t´3

xi,t´3

NA.replace is a boolean to determine whether missing values should be replaced (NA.replace =
TRUE) or not (NA.replace = FALSE).

aggregate is a boolean to indicate whether to aggregate the monthly variables to represent quarterly
quantities. If TRUE the aggregation is made following the approximation of Mariano and
Murasawa (2003).

k.ma is a numeric representing the degree of the moving average correction if NA.replace = TRUE.
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na.prop is a number between 0 and 1 indicating the ratio of missing observations to the total
number of observations beyond which series will be discarded. The default is 1/3, meaning
that if more than 1/3 of the observations are missing the series will be discarded from the
database.

h indicates how many periods should be added to the database. Default is 12. Those missing values
will be predicted with the function nowcast().

Determining the number of factors and shocks to the factors

As explained in the section on parameter estimation, the package offers different functions to estimate
the number of factors r and of idiosyncratic shocks q of equations (J.2.1) and (J.2.2) respectively.

1. Function ICfactors() estimates the number of factors r˚ according to an information criterion.
The argument x is a balanced panel and rmax is an integer representing the maximum number
of factors for which the information criterion should be calculated. The default value is
20. type indicates which of the information criterion from Bai and Ng (2002) to use. type
P t1, 2, 3u with the default being 2 as explained in the methodological section. If x is not a
balanced panel, the function will delete rows with missing values in order to use principal
components.

ICfactors(x, rmax = 20, type = 2)

2. Function ICshocks() estimates the number of idiosyncratic shocks given a number r of factors
according to the information criterion introduced in the previous section. The argument x is
a balanced panel. delta and m are parameters of the information criterion, where 0 ă m ă 8

and 0 ă δ ă 1{2. The default values are those from Bai and Ng (2007): m “ 1 and δ “ 0.1.
If the number of factors r is not specified it will be defined according to ICfactors(x,rmax
= 20,type = 2). p is the number of lags in the VAR of equation (J.2.2). If not specified,
the default is the lowest most occurring value from the information criteria used within the
function VARselect() from the package vars.

ICshocks(x, r = NULL, p = NULL, delta = 0.1, m = 1)

Forecasts

An important feature of factor models is the dimensionality reduction of (many) original variables
into a few common factors. Hence, the target variable y will be expressed as a function of a few factors
extracted from the explanatory variables. This motivated the choice of the inputs for the nowcast()
function. The formula format, which is well known to R users, captures this idea as formula = y„.
can be understood as the projection of y on the information contained in the dataset. The model’s
parameters are estimated according to the selected method (2s, 2s_agg and EM, which correspond,
respectively, to “two-stage”, “two-stage with factor aggregation” and “Expectation-Maximization
algorithm”) described in the section on estimation. The number r of dynamic factors, the number q
of shocks to the factors, and the lag order p of the factors are determined beforehand as shown in
the previous subsection. The argument blocks can be used with the EM method to estimate factors
for different subgroups of variables. Finally, the argument frequency is necessary for all methods in
order to identify the frequency of the variables.

nowcast(formula, data, q = NULL, r = NULL, p = NULL, method = 'EM', blocks = NULL,
frequency = NULL)

In the first two methods (2s and 2s_agg), the factors are calculated based on the monthly
variables, on which the dependent variable y will be regressed. The difference between 2s and
2s_agg is that for the latter the monthly factors are transformed into quarterly quantities while in
the former no such aggregation is used. A linear regression (bridge equation if y is quarterly) of y on
the factors allows the former to be forecast.

In the third method (EM) no bridge equation is needed, as opposed to the Two-Stage method. In
practice, the algorithm will estimate all the missing values respecting the restrictions imposed by
equation (J.2.11). The forecasts of quarterly time series are defined as the estimated values of the
third month of the out of sample quarters. As opposed to the Two-Stage method, the number of
common shocks q can not be specified and is assumed to be equal to r, the number of factors in
each block.
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Analyzing the results

The function nowcast.plot() allows to plot several outputs from the function nowcast().

nowcast.plot(out, type = "fcst")

The argument out is the output from the function nowcast(). The argument type can be chosen
from the list {"fcst","factors","eigenvalues","eigenvectors"}:

• "fcst": shows the y variable and its forecasts in sample and out of sample.
• "factors": shows all the estimated factors.
• "eigenvalues": indicates how much of the variability in the dataset is explained by each

factor.
• "eigenvectors": shows the importance of each variable in the first factor.

A working example of the Two-Stage method:
nowcasting Brazilian GDP

Constructing the dataset

In this example we showcase how to nowcast Brazilian GDP using the Two-Stage estimation method.
Most of the variables of interest can be downloaded from the Brazilian central bank using the
function BETSget() from the package BETS. The variables and the associated codes can be found
on the Brazilian central bank’s website 2. For the sake of simplicity we have included the database,
and all relevant information within the package3.

> library(nowcasting)
> data(BRGDP)

For this example we will construct a pseudo real-time dataset, using the function PRTDB(). Some
variables, such as GDP, suffer revisions over time. Since we do not take revisions into account, we
refer to such datasets as pseudo real-time (as opposed to vintages). The (approximate) delays in
days are included in the BRGDP object and will be used to define if observations were available at a
specific moment in time. The dataset is then treated for outliers and missing values that are not
part of the jagged edges of the data, i.e., that are not due to the different publication lags of the
variables. This is achieved through the function Bpanel(). Unless otherwise specified by the user,
the function will also discard series with over 1/3 missing values.

> vintage <- PRTDB(mts = BRGDP$base, delay = BRGDP$delay, vintage = "2015-06-01")
> base <- window(vintage, start = c(2005,06), frequency = 12)
> x <- Bpanel(base = base, trans = BRGDP$trans)

The function month2qtr() transforms monthly time series into quarterly ones. In this case we
want to use the value of the third month as the quarterly value.

> GDP <- base[,which(colnames(base) == "PIB")]
> window(GDP, start = c(2015,1))

Jan Feb Mar Apr May Jun
2015 NA NA 170.68 NA NA NA

> GDP_qtr <- month2qtr(x = GDP, reference_month = 3)
> window(GDP_qtr, start = c(2015,1))

Qtr1 Qtr2
2015 170.68 NA

The quarterly GDP indicator, in this example, is an index representing the seasonal quarterly
product. ∆4Yt deals with seasonality, while ∆∆4Yt is necessary to obtain a stationary time series.
To test the latter, one could look at tests for unit roots or serial auto correlation that are included
in many R packages.

> y <- diff(diff(GDP_qtr,4))
> y <- qtr2month(y)

2see http://www4.bcb.gov.br/pec/series/port/aviso.asp
3The database is a random sample of 100 variables from our own database
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Determining the number of factors and shocks

The dataset x, which now only posses jagged edges, is well suited for the information criteria
that make use of principal components. The estimated number of factors is given by the function
ICfactors(). As explained in the previous section, the information criteria might give different
results for finite samples.

> ICR1 <- ICfactors(x = x, type = 1)

> ICR2 <- ICfactors(x = x, type = 2)

Finally, given the chosen number of factors for our model, we can use an information criterion
for determining the number of shocks to the factors.

> ICQ1 <- ICshocks(x = x, r = 2, p = 2)
> ICQ1$q_star
[1] 2

Forecasts

Let the object data be a monthly mts object where the first column is a partially observable
stationary GDP series (y) and the remaining columns a balanced panel of stationary time series (x).
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The frequency vector will be determined by the quarterly GDP series and the remaining monthly
series. In this example the factors will be aggregated to obtain quarterly quantities by setting method
= "2s_agg".

> data <- cbind(y,x)
> frequency <- c(4,rep(12,ncol(x)))
> now <- nowcast(formula = y~., data = data, r = 2, q = 2 , p = 2, method = "2s_agg",

frequency = frequency)
> summary(now$reg)

Call:
stats::lm(formula = Y ~ ., data = Balanced_panel)

Residuals:
Min 1Q Median 3Q Max

-3.0248 -0.5679 0.1094 0.5835 1.8912

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.19526 0.16940 -1.153 0.258
Factor1 0.22610 0.01456 15.528 < 2e-16 ***
Factor2 0.06135 0.01174 5.228 1.02e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.002 on 32 degrees of freedom
Multiple R-squared: 0.8995,Adjusted R-squared: 0.8932
F-statistic: 143.1 on 2 and 32 DF, p-value: < 2.2e-16

Results

The function nowcast.plot() enables the user to visualize some of the results. Say, for instance,
that we want to look at fitted values and out-of-sample forecasts. This can be achieved by setting the
type to "fcst". We might also want to look at the eigenvalues of the normalized variance-covariance
matrix of our balanced panel or at how variables enter the first factor.

> nowcast.plot(now, type = "fcst")

> nowcast.plot(now, type = "eigenvalues")
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> nowcast.plot(now, type = "eigenvectors")

Up until now, we have been forecasting GDP after transforming it into a stationary variable.
We might want to transform the former back into a level variable in order to forecast the actual
growth rate. Remember that we transformed GDP according to

diffpdiffpGDPt, 4qq “ pGDPt ´GDPt´4q ´ pGDPt´1 ´GDPt´5q

“ GDPt `GDPt´5 ´GDPt´1 ´GDPt´4
(J.4.1)

that can be rewritten as

GDPt “ diffpdiffpGDPt, 4qq ´GDPt´5 `GDPt´1 `GDPt´4 (J.4.2)

Equation (J.4.2) gives us the forecast of the new quarter GDP level. The variable BRGDP$GDP is
the non-stationary GDP.

> level_forecast <- na.omit(now$yfcst[,3])[1] - tail(na.omit(GDP_qtr),5)[1] +
+ + tail(na.omit(GDP_qtr),5)[5] + tail(na.omit(GDP_qtr),5)[2]
> level_forecast
[1] 170.4783

> position_q2_2015 <- which(time(BRGDP$GDP) == 2015.25)
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> BRGDP$GDP[position_q2_2015]
[1] 169.24

A working example of the EM method:
The NY FED nowcast

Constructing the dataset

In this example we work with the data the Federal Reserve of New York made available to reproduce
its weekly nowcasting report4. The explanatory variables are mixed frequencies including both
monthly and quarterly series.

> library(nowcasting)
> data(NYFED)
> NYFED$legend$SeriesName
[1] "Payroll Employment" "Job Openings"
[3] "Consumer Price Index" "Durable Goods Orders"
[5] "Retail Sales" "Unemployment Rate"
[7] "Housing Starts" "Industrial Production"
[9] "Personal Income" "Exports"
[11] "Imports" "Construction Spending"
[13] "Import Price Index" "Core Consumer Price Index"
[15] "Core PCE Price Index" "PCE Price Index"
[17] "Building Permits" "Capacity Utilization Rate"
[19] "Business Inventories" "Unit Labor Cost"
[21] "Export Price Index" "Empire State Mfg Index"
[23] "Philadelphia Fed Mfg Index" "Real Consumption Spending"
[25] "Real Gross Domestic Product"

Similarly to the previous working example, the object NYFED contains all the necessary information
to run the nowcast() function. The time series, the block structure, the transformations to make
the variables stationary and the variables’ frequencies can be loaded as illustrated below.

> base <- NYFED$base
> blocks <- NYFED$blocks$blocks
> trans <- NYFED$legend$Transformation
> frequency <- NYFED$legend$Frequency
> delay <- NYFED$legend$delay

The dataset data can be prepared by using the function Bpanel(). Using the EM algorithm,
there is no need to replace missing values that are not part of the jagged edges, as was the case with
the Two-Stage method. This can be achieved by setting NA.replace to FALSE. In this case we do
not want to discard series based on a particular ratio of missing values to total observations as was
the case in the Two-Stage method. This is done by setting na.prop = 1, where 1 indicates that
only series with more than 100% missing values will be discarded.

> data <- Bpanel(base = base, trans = trans, NA.replace = FALSE, na.prop = 1)

Forecasts

The model´s specifications are the same as those used by the NY FED. We therefore limit the
number of factors, r, per block to one and define the factor process as a VAR(1), i.e., p = 1. The
convergence of the log-likelihood function is displayed every 5 iterations.

> nowEM <- nowcast(formula = GDPC1~., data = data, r = 1, p = 1, method = "EM",
blocks = blocks, frequency = frequency)

5th iteration:
The loglikelihood went from -2418.5983 to -2406.1482
...
65th iteration:
The loglikelihood went from -2354.084 to -2353.8435

4https://www.newyorkfed.org/research/policy/nowcast
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Results

Combining the functions nowcast() and PRTB() within a loop, we illustrate how a pseudo out-of-
sample end-of-quarter nowcast can be made. The vector fcst_dates defines the last month of the
quarters for which quarterly GDP growth will be nowcast. The vector delay contains approximate
delays, in days, with which variables are published. This enables us to construct a pseudo real-time
dataset for a given day.

> fcst_dates <- seq.Date(from = as.Date("2013-03-01"),to = as.Date("2017-12-01"),
by = "quarter")

> fcst_results <- NULL
> for(date in fcst_dates){
+
+ vintage <- PRTDB(data, delay = delay, vintage = date)
+ nowEM <- nowcast(formula = GDPC1~., data = vintage, r = 1, p = 1, method = "EM",

blocks = blocks, frequency = frequency)
+ fcst_results <- c(fcst_results,tail(nowEM$yfcst[,3],1))
+
+ }

The results of this out-of-sample nowcast example, as well as the results of an out-of-sample
ARIMA, are displayed below.

The root mean square prediction error can easily be calculated for the 2013-2016 period. For
this given example, when compared to one-period-ahead projections given by an ARIMA model, a
Theil’s U statistic of 0.70 is obtained, signaling a 30% improvement over the benchmark.

Summary

The package nowcasting was developed in order to facilitate the use of dynamic factor models for
large datasets as set out in Giannone et al. (2008) and Banbura et al. (2011). The package offers
functions at each step of the forecasting process to help the user treat data, choose and estimate the
value of parameters, as well as interpret results. We provided a working example for nowcasting
Brazilian GDP, illustrating each step and showing how to implement the various functions available.
We also used the New York FED nowcasting exercise to illustrate the EM algorithm. We will, in
the future, work on adding new tools for the user to better leverage the EM method by identifying
the source of forecast revisions. As shown by the New York FED nowcasting report, this is an
interesting policy instrument that helps contextualizing forecast updates.
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Connecting R with D3 for dynamic
graphics, to explore multivariate data
with tours
by Michael Kipp, Ursula Laa, Dianne Cook

Abstract The tourr package in R has several algorithms and displays for showing multivariate
data as a sequence of low-dimensional projections. It can display as a movie but has no capacity
for interaction, such as stop/go, change tour type, drop/add variables. The tourrGui package
provides these sorts of controls, but the interface is programmed with the dated RGtk2 package.
This work explores using custom messages to pass data from R to D3 for viewing, using the Shiny
framework. This is an approach that can be generally used for creating all sorts of interactive graphics.

Introduction

Did you know you can run any javascript you like in a Shiny application and you can pass whatever
you want including JSON back and forth? This massively widens the scope of what you can do with
Shiny, and generating a tour of multivariate data with this approach is a really good example of
what is possible.

The tour algorithm (Asimov, 1985) is a way of systematically generating and displaying projections
of high-dimensional spaces in order for the viewer to examine the multivariate distribution of data. It
can do this either randomly, or by picking projections judged interesting according to some criterion
or index function. The tourr package (Wickham et al., 2011) provides the computing and display in
R to make several types of tours: grand, guided, little and local. The projection dimension can be
chosen between one and the number of variables in the data. The display, though, has no capacity
for interaction. The viewer can watch the tour like a movie, but not pause it and restart, or change
tour type, or number of variables.

These interactive controls were provided with the tourrGui package (Huang et al., 2012), with
was programmed with the RGtk2 package (Lawrence and Temple Lang, 2010). This is not the
toolkit of choice today, and has been superceded with primarily web-capable tools, like Shiny (Chang
et al., 2017). To display dynamic graphics though, is not straight-forward. This paper explains how
to use D3 (Bostock et al., 2011) as the display engine in a Shiny graphical user interface (GUI),
using custom message passing between server and client.

Creating a tour, with the tourr package

The tourr package (Wickham et al., 2011) is an R implementation of the tour algorithms discussed
in Cook et al. (2007). It includes methods for geodesic interpolation and basis generation, as well as
an implementation of the simulated annealing algorithm to optimise projection pursuit indices for
the guided tour. The tour can be displayed directly in the R graphics device, for example, the code
below generates a 1D density tour. Figure 1 shows snapshots.

library(tourr)
# quartz() # to display on a Mac; X11() # For windows; The Rstudio graphics
# device is not advised
animate_dist(flea[, 1:6], center = TRUE)

A tour path is a smooth sequence of projection matrices, pˆ d, that when combined with a
matrix of n data points, nˆ p, and a rendering method, produces a steady stream of d-dimensional
views of the data. Each tour is initialised with the new_tour() method, which instantiates a tour
object and takes as arguments the data X, the tour method, e.g. guided_tour(), and the starting
basis. Once initialised, a new target plane is chosen, and a series of steps along a geodesic path from
starting to target plane are generated by interpolation.

This requires a series of calls to the tour object producing the series of projections. The steps
are discrete, of size given by ω{∆, where ω denotes the angular velocity of the geodesic interpolation,
and ∆ is a parameter denoting frames per second, reflecting the rendering speed of the device in use.
The ∆ parameter can be thought of as the frames per second, while ω affects the speed at which the
tour moves through the projection space. For our purposes, ∆, fps in the code, is set at 25, while
the ω can be adjusted by the user.
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Figure 1: Three projections from a 1D tour of 6D data, displayed as a density. Full video can
be seen at https://vimeo.com/255466661.

Connecting the tour projections to D3 display using sendCustomMessage

D3.js (Data-Driven Documents) (Bostock et al., 2011) is a JavaScript library for manipulating
documents based on data. The advantages of D3 are similar to those provided by Shiny: namely,
an industry standard with rich array of powerful, easy to use methods and widgets that can be
displayed on a wide variety of devices, with a large user base. D3 works on data objects in the
JavaScript Object Notation (JSON) format, which are then parsed and used to display customisable
data visualisations.

The new implementation of the tour interface uses D3 to render each projection step returned
by R, focusing on 2D projections as a test case. It does this by drawing and re-drawing a scatterplot
with dots (or circles in D3 language) and providing SVG objects for the web browser to render.
Figure 2 shows the new GUI.

The Shiny functions session$sendCustomMessage() and Shiny.addCustomMessageHandler()
are provided to transport data between R and JavaScript. Whenever the former is executed in
R, the latter function will execute a code block in JS. There are many examples of such functions
being used to pass arbitrary data from an R app to a JS front-end, few examples exist of this basic
functionality to update a D3 animation in real-time.

To set up the interface for the app, we need to load the relevant scripts into the Shiny app and
assign a section for the resulting plots. This is done when setting up the user interface. We import
D3 and our plotting code via the tags$script (for web links) and includeScript (for reading from
a full path). We use tags$div to assign an id for the output section that can be accessed in the D3
code.

tags$script(src = "https://d3js.org/d3.v4.min.js"),
includeScript(system.file("js/d3anim.js", package = "tourrGUID3")),
tags$div(id = "d3_output")

On the D3 side we can access the id defined in Shiny, and for example assign it to a scalable
vector graphics (svg) object to be filled in D3 and rendered onto the Shiny app.

var svg = d3.select("#d3_output")
.append("svg")
.attr("width", w)
.attr("height", h);

The data format expected by D3 is in JSON format, which combines two basic programming
paradigms: a collection of name/value pairs, and an ordered list of values. R’s preferred data formats
include data frames, vectors and matrices. Every time a new projection has been calculated with the
tour path, the resulting matrix needs to be converted to JSON and sent to D3. Using a named list
we can send multiple JSON datasets to D3, e.g. to draw both the data points (stored in dataframe
d) and the projection axes (stored in dataframe a). Converting dataframes will pass the column
names to JSON. The code to send the D3 data looks like this:

session$sendCustomMessage(type = "data", message = list(d = toJSON(d), a = toJSON(a)))

This code is from the observe environment from the server.R file. It converts the matrix of
projected data points to JSON format, and sends it to JavaScript with the id data. The list entries of
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Figure 2: Shiny GUI for the tour, with D3 as the display engine. GUI provides controls to select
tour type, change speed, restart, and select variables to include.

the “message” can parsed in D3 by its data() method, e.g. data(message.d) to access the projected
data points, and we can access each column through the column names assigned in the original
dataframe, and loop over all rows for rendering. All of the code required to render the scatterplots
and legends, along with colours, is JavaScript code in the file d3anim.js. In particular, the data
from R is handled with the following code:

Shiny.addCustomMessageHandler("data",
function(message) {

/* D3 scatterplot is drawn and re-drawn using the
data sent from the server. */

}

Every time the message is sent (25 times per second), the code-block is run.

Getting projections

The observeEvent Shiny method defines a code block to be run whenever some input value changes.
The following code snippet restarts a tour using a random basis:

observeEvent(input$restart_random,
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{
p <- length(input$variables)
b <- matrix(runif(2*p), p, 2)
rv$tour <-

new_tour(as.matrix(rv$d[input$variables]),
choose_tour(input$type,
input$guidedIndex,
c(rv$class[[1]])), b)

})

The projections are calculated using the tour object in an observe() environment, which re-
executes the code whenever it is invalidated. The invalidation is either by a change in reactive value
inside the code block, or we can schedule a re-execution by explicitly invalidating the observer after
a selected interval using invalidateLater(). The projections are calculated using the following
code block:

observe({
if (length(rv$mat[1, ]) < 3) {

session$sendCustomMessage(type = "debug",
message = "Error: Need >2 variables.")

}
aps <- rv$aps
tour <- rv$tour
step <- rv$tour(aps / fps)
invalidateLater(1000 / fps)
j <- center(rv$mat %*% step$proj)
j <- cbind(j, class = rv$class)
colnames(j) <- NULL
session$sendCustomMessage(type = "data",

message = list(d = toJSON(data.frame(pL=rv$pLabel[,1], x=j[,2],
y=j[,1], c=j[,3])),

a = toJSON(data.frame(n=rv$vars, y=step$proj[,1],
x=step$proj[,2]))))

})

Try it

You can try the app yourself using this code:

devtools::install_github("uschiLaa/tourrGUID3")
library(tourrGUID3)
launchApp(system.file("extdata", "geozoo.csv", package = "tourrGUID3"))

Troubleshooting

Fixing bugs in the JavaScript code can be cumbersome, as R and Shiny will not report any errors.
Tracing JavaScript errors can be done when using the JavaScript console in the web browser. For
example, in Google Chrome the console can be accessed via the “Developer Tools” option found
under “Moore Tools” in the control menu. Typical errors that we encountered were version dependent
syntax in D3, e.g. for axis definitions or scaling.

Pros and cons

The D3 canvas makes for smooth drawing and re-drawing of the data projections. Adding a GUI
around the display is straightforward with the Shiny package, e.g. control elements such as stop/go,
increase/decrease speed, change tour type, add/remove variables from the mix.

The main disadvantage is that the speed is inconsistent, as server and client play tag to keep
up with each other, and the display cannot handle many observations. Noticeable slow down was
oberved with 2000 points, the main reason being the rendering time required for the large number
of SVG circle elements. The situation can be improved when using a single HTML5 canvas element
to draw the scatter points, significantly reducing the rendering time.
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Another disadvantage is that the displays needs to be coded anew. D3 provides mostly primitives,
and example code, to make scatterplots, and contours, but the data displays all need to be coded
again.

Summary

The custom message tools from Shiny provide a way to share a tour path with the D3 renderer,
and embed it in a Shiny GUI providing controls such as stop/go, increase/decrease speed, change
tour type, add/remove variables. However, the approach doesn’t provide the smooth motion that is
needed for easy display of projections, and is slow for large numbers of observations.

Code

The code is available at https://github.com/uschiLaa/tourrGUID3, and the source material for
this paper is available at https://github.com/dicook/paper-tourrd3.
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SimCorrMix: Simulation of Correlated
Data with Multiple Variable Types
Including Continuous and Count
Mixture Distributions
by Allison Fialkowski and Hemant Tiwari

Abstract The SimCorrMix package generates correlated continuous (normal, non-normal, and
mixture), binary, ordinal, and count (regular and zero-inflated, Poisson and Negative Binomial)
variables that mimic real-world data sets. Continuous variables are simulated using either Fleishman’s
third-order or Headrick’s fifth-order power method transformation. Simulation occurs at the
component level for continuous mixture distributions, and the target correlation matrix is specified
in terms of correlations with components. However, the package contains functions to approximate
expected correlations with continuous mixture variables. There are two simulation pathways
which calculate intermediate correlations involving count variables differently, increasing accuracy
under a wide range of parameters. The package also provides functions to calculate cumulants of
continuous mixture distributions, check parameter inputs, calculate feasible correlation boundaries,
and summarize and plot simulated variables. SimCorrMix is an important addition to existing R
simulation packages because it is the first to include continuous mixture and zero-inflated count
variables in correlated data sets.

Introduction

Finite mixture distributions have a wide range of applications in clinical and genetic studies. They
provide a useful way to describe heterogeneity in a population, e.g., when the population consists of
several subpopulations or when an outcome is a composite response from multiple sources. In survival
analysis, survival times in competing risk models have been described by mixtures of exponential,
Weibull, or Gompertz densities (Larson and Dinse, 1985; Lau et al., 2009, 2011). In medical research,
finite mixture models may be used to detect clusters of subjects (cluster analysis) that share certain
characteristics, e.g., concomitant diseases, intellectual ability, or history of physical or emotional
abuse (McLachlan, 1992; Newcomer et al., 2011; Pamulaparty et al., 2016). In schizophrenia research,
Gaussian mixture distributions have frequently described the earlier age of onset in men than in
women and the vast phenotypic heterogeneity in the disorder spectrum (Everitt, 1996; Lewine, 1981;
Sham et al., 1994; Welham et al., 2000).

Count mixture distributions, particularly zero-inflated Poisson and Negative Binomial, are
required to model count data with an excess number of zeros and/or overdispersion. These
distributions play an important role in a wide array of studies, modeling health insurance claim
count data (Ismail and Zamani, 2013), the number of manufacturing defects (Lambert, 1992), the
efficacy of pesticides (Hall, 2000), and prognostic factors of Hepatitis C (Baghban et al., 2013).
Human microbiome studies, which seek to develop new diagnostic tests and therapeutic agents, use
RNA-sequencing (RNA-seq) data to assess differential composition of bacterial communities. The
operational taxonomic unit (OTU) count data may exhibit overdispersion and an excess number of
zeros, necessitating zero-inflated Negative Binomial models (Zhang et al., 2016). Differential gene
expression analysis utilizes RNA-seq data to search for genes that exhibit differences in expression
level across conditions (e.g., drug treatments) (Soneson and Delorenzi, 2013; Solomon, 2014). Zero-
inflated count models have also been used to characterize the molecular basis of phenotypic variation
in diseases, including next-generation sequencing of breast cancer data (Zhou et al., 2017).

The main challenge in applying mixture distributions is estimating the parameters for the
component densities. This is usually done with the EM algorithm, and the best model is chosen by
the lowest Akaike or Bayesian information criterion (AIC or BIC). Current packages that provide
Gaussian mixture models include: AdaptGauss, which uses Pareto density estimation (Thrun et al.,
2017); DPP, which uses a Dirichlet process prior (Avila et al., 2017); bgmm, which employs two
partially supervised mixture modeling methods (Biecek and Szczurek, 2017); and ClusterR, mclust,
and mixture, which conduct cluster analysis (Mouselimis, 2017; Fraley et al., 2017; Browne et al.,
2015). Although Gaussian distributions are the most common, the mixture may contain any
combination of component distributions. Packages that provide alternatives include: AdMit, which
fits an adaptive mixture of Student-t distributions (Ardia, 2017); bimixt, which uses case-control
data (Winerip et al., 2015); bmixture, which conducts Bayesian estimation for finite mixtures of
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Gamma, Normal and t-distributions (Mohammadi, 2017); CAMAN, which provides tools for the
analysis of finite semiparametric mixtures in univariate and bivariate data (Schlattmann et al.,
2016); flexmix, which implements mixtures of standard linear models, generalized linear models and
model-based clustering (Gruen and Leisch, 2017); mixdist, which applies to grouped or conditional
data (MacDonald and with contributions from Juan Du, 2012); mixtools and nspmix, which analyze
a variety of parametric and semiparametric models (Young et al., 2017; Wang, 2017); MixtureInf,
which conducts model inference (Li et al., 2016); and Rmixmod, which provides an interface to the
MIXMOD software and permits Gaussian or multinomial mixtures (Langrognet et al., 2016). With
regards to count mixtures, the BhGLM, hurdlr, and zic packages model zero-inflated distributions
with Bayesian methods (Yi, 2017; Balderama and Trippe, 2017; Jochmann, 2017).

Given component parameters, there are existing R packages which simulate mixture distributions.
The mixpack package generates univariate random Gaussian mixtures (Comas-Cufí et al., 2017).
The distr package produces univariate mixtures with components specified by name from stats
distributions (Kohl, 2017; R Core Team, 2017). The rebmix package simulates univariate or
multivariate random datasets for mixtures of conditionally independent Normal, Lognormal, Weibull,
Gamma, Binomial, Poisson, Dirac, Uniform, or von Mises component densities. It also simulates
multivariate random datasets for Gaussian mixtures with unrestricted variance-covariance matrices
(Nagode, 2017).

Existing simulation packages are limited by: 1) the variety of available component distributions
and 2) the inability to produce correlated data sets with multiple variable types. Clinical and
genetic studies which involve variables with mixture distributions frequently incorporate influential
covariates, such as gender, race, drug treatment, and age. These covariates are correlated with the
mixture variables and maintaining this correlation structure is necessary when simulating data based
on real data sets (plasmodes, as in Vaughan et al., 2009). The simulated data sets can then be used
to accurately perform hypothesis testing and power calculations with the desired type-I or type-II
error.

SimCorrMix is an important addition to existing R simulation packages because it is the first to
include continuous mixture and zero-inflated count variables in correlated data sets. Therefore, the
package can be used to simulate data sets that mimic real-world clinical or genetic data. SimCorrMix
generates continuous (normal, non-normal, or mixture distributions), binary, ordinal, and count
(regular or zero-inflated, Poisson or Negative Binomial) variables with a specified correlation matrix
via the functions corrvar and corrvar2. The user may also generate one continuous mixture variable
with the contmixvar1 function. The methods extend those found in the SimMultiCorrData package
(version ě 0.2.1, Fialkowski, 2017; Fialkowski and Tiwari, 2017). Standard normal variables with
an imposed intermediate correlation matrix are transformed to generate the desired distributions.
Continuous variables are simulated using either Fleishman (1978)’s third-order or Headrick (2002)’s
fifth-order polynomial transformation method (the power method transformation, PMT). The
fifth-order PMT accurately reproduces non-normal data up to the sixth moment, produces more
random variables with valid PDF’s, and generates data with a wider range of standardized kurtoses.
Simulation occurs at the component-level for continuous mixture distributions. These components
are transformed into the desired mixture variables using random multinomial variables based
on the mixing probabilities. The target correlation matrix is specified in terms of correlations
with components of continuous mixture variables. However, SimCorrMix provides functions to
approximate expected correlations with continuous mixture variables given target correlations with
the components. Binary and ordinal variables are simulated using a modification of GenOrd’s
ordsample function (Barbiero and Ferrari, 2015b). Count variables are simulated using the inverse
cumulative density function (CDF) method with distribution functions imported from VGAM (Yee,
2017).

Two simulation pathways (correlation method 1 and correlation method 2) within SimCorrMix
provide two different techniques for calculating intermediate correlations involving count variables.
Each pathway is associated with functions to calculate feasible correlation boundaries and/or validate
a target correlation matrix rho, calculate intermediate correlations (during simulation), and generate
correlated variables. Correlation method 1 uses validcorr, intercorr, and corrvar. Correlation
method 2 uses validcorr2, intercorr2, and corrvar2. The order of the variables in rho must be 1st
ordinal (r ě 2 categories), 2nd continuous non-mixture, 3rd components of continuous mixture, 4th
regular Poisson, 5th zero-inflated Poisson, 6th regular Negative Binomial (NB), and 7th zero-inflated
NB. This ordering is integral for the simulation process. Each simulation pathway shows greater
accuracy under different parameter ranges and Calculation of intermediate correlations for count
variables details the differences in the methods. The optional error loop can improve the accuracy of
the final correlation matrix in most situations.

The simulation functions do not contain parameter checks or variable summaries in order
to decrease simulation time. All parameters should be checked first with validpar in order to
prevent errors. The function summary_var generates summaries by variable type and calculates the
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final correlation matrix and maximum correlation error. The package also provides the functions
calc_mixmoments to calculate the standardized cumulants of continuous mixture distributions,
plot_simpdf_theory to plot simulated PDF’s, and plot_simtheory to plot simulated data values.
The plotting functions work for continuous or count variables and overlay target distributions, which
are specified by name (39 distributions currently available) or PDF function fx. The fx input is useful
when plotting continuous mixture variables since there are no distribution functions available in R.
There are five vignettes in the package documentation to help the user understand the simulation and
analysis methods. The stable version of the package is available via the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=SimCorrMix, and the development
version may be found on GitHub at https://github.com/AFialkowski/SimCorrMix. The results
given in this paper are reproducible (for R version ě 3.4.1, SimCorrMix version ě 0.1.0).

Overview of mixture distributions

Mixture distributions describe continuous or discrete random variables that are drawn from more
than one component distribution. For a random variable Y from a finite mixture distribution with k
components, the probability density function (PDF) or probability mass function (PMF) is:

hY pyq “
k
ÿ

i“1
πifYi pyq ,

k
ÿ

i“1
πi “ 1 (N.2.1)

The πi are mixing parameters which determine the weight of each component distribution fYi pyq in
the overall probability distribution. As long as each component has a valid probability distribution,
the overall distribution hY pyq has a valid probability distribution. The main assumption is statistical
independence between the process of randomly selecting the component distribution and the
distributions themselves. Assume there is a random selection process that first generates the
numbers 1, ..., k with probabilities π1, ..., πk. After selecting number i, where 1 ď i ď k, a random
variable yi is drawn from component distribution fYi pyq (Davenport et al., 1988; Everitt, 1996).

Continuous mixture distributions

Continuous mixture distributions are used in genetic research to model the effect of underlying
genetic factors (e.g., genotypes, alleles, or mutations at chromosomal loci) on continuous traits.
Consider a single locus with two alleles A and a, producing three genotypes AA,Aa, and aa with
population frequencies pAA, pAa, and paa. Figure 1a shows a codominant mixture in which each
genotype exhibits a different phenotype; Figure 1b shows a dominant mixture in which individuals
with at least one A allele possess the same phenotype (Schork et al., 1996).

(a) Codominant mixture. (b) Dominant mixture.

Figure 1: Examples of commingled distributions in genetics.

For a continuous phenotype y, the normal mixture density function describing a commingled
distribution is given by:

f
´

y|pAA, µAA, σ2
AA; pAa, µAa, σ2

Aa; paa, µaa, σ2
aa

¯

“

pAAφ
´

y|µAA, σ2
AA

¯

` pAaφ
´

y|µAa, σ2
Aa

¯

` paaφ
´

y|µaa, σ2
aa

¯

,

(N.3.1)
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where φ
´

y|µ, σ2
¯

is the normal density function with mean µ and variance σ2. Commingling
analysis may also study traits that are polygenic (result from the additive effects of several genes) or
multifactorial (polygenic traits with environmental factors, see Elston et al., 2002). For example,
mixture models explain the heterogeneity observed in gene-mapping studies of complex human
diseases, including cancer, chronic fatigue syndrome, bipolar disorder, coronary artery disease, and
diabetes (Fridley et al., 2010; Bahcall, 2015; Bhattacharjee et al., 2015; ?). Segregation analysis
extends commingling analysis to individuals within a pedigree. Mixed models evaluate whether a
genetic locus is affecting a particular quantitative trait and incorporate additional influential factors.
Finally, linkage analysis discovers the location of genetic loci using recombination rates, and the
regression likelihood equation may be written as a mixture distribution (Schork et al., 1996).

Generation of continuous distributions in SimCorrMix

Continuous variables, including components of mixture variables, are created using either Fleishman
(1978)’s third-order (method = "Fleishman") or Headrick (2002)’s fifth-order (method = "Polynomial")
PMT applied to standard normal variables. The transformation is expressed as follows:

Y “ p pZq “ c0 ` c1Z ` c2Z
2
` c3Z

3
` c4Z

4
` c5Z

5, Z „ N p0, 1q , (N.3.2)

where c4 “ c5 “ 0 for Fleishman’s method. The real constants are calculated by SimMultiCorrData’s
find_constants, which solves the system of non-linear equations given in poly or fleish. The
simulation functions corrvar and corrvar2 contain checks to see if any distributions are repeated
for non-mixture or components of mixture variables. If so, these are noted so the constants are
only calculated once, decreasing simulation time. Mixture variables are generated from their
components based on random multinomial variables described by their mixing probabilities (using
stat’s rmultinom).

The fifth-order PMT allows additional control over the fifth and sixth moments of the generated
distribution. In addition, the range of feasible standardized kurtosis pγ2q values, given skew pγ1q
and standardized fifth pγ3q and sixth pγ4q cumulants, is larger than with the third-order PMT.
For example, Fleishman’s method can not be used to generate a non-normal distribution with a
ratio of γ2

1{γ2 ą 9{14. This eliminates the χ2 family of distributions, which has a constant ratio
of γ2

1{γ2 “ 2{3 (Headrick and Kowalchuk, 2007). The fifth-order method also generates more
distributions with valid PDFs. However, if the fifth and sixth cumulants do not exist, the Fleishman
approximation should be used. This would be the case for t-distributions with degrees of freedom
below 7.

For some sets of cumulants, it is either not possible to find power method constants (indicated
by a stop error) or the calculated constants do not generate valid PDF’s (indicated in the simulation
function results). For the fifth-order PMT, adding a value to the sixth cumulant may provide
solutions. This can be done for non-mixture variables in Six or components of mixture variables
in mix_Six, and find_constants will use the smallest correction that yields a valid PDF. Another
possible reason for function failure is that the standardized kurtosis for a distribution is below the
lower boundary of values which can be generated using the third or fifth-order PMT. This boundary
can be found with SimMultiCorrData’s calc_lower_skurt using skew (for method = "Fleishman")
and standardized fifth and sixth cumulants (for method = "Polynomial").

Expected cumulants of continuous mixture variables

The PMT simulates continuous variables by matching standardized cumulants derived from central
moments. Using standardized cumulants decreases the complexity involved in calculations when a
distribution has large central moments. In view of this, let Y be a real-valued random variable with
cumulative distribution function F . Define the central moments, µr, of Y as:

µr “ µr pY q “ IEry´ µsr “
ż `8

´8

ry´ µsrdF pyq . (N.3.3)

The standardized cumulants are found by dividing the first six cumulants κ1 - κ6 by
?
κ2r “

´

σ2
¯r{2

“ σr, where σ2 is the variance of Y and r is the order of the cumulant (Kendall and Stuart,
1977):
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0 “ κ1
a

κ21
“
µ1
σ1 (N.3.4)

1 “ κ2
a

κ22
“
µ2
σ2 (N.3.5)

γ1 “
κ3

a

κ23
“
µ3
σ3 (N.3.6)

γ2 “
κ4

a

κ24
“
µ4
σ4 ´ 3 (N.3.7)

γ3 “
κ5

a

κ25
“
µ5
σ5 ´ 10γ1 (N.3.8)

γ4 “
κ6

a

κ26
“
µ6
σ6 ´ 15γ2 ´ 10γ1

2 ´ 15.

(N.3.9)

The values γ1, γ2, γ3, and γ4 correspond to skew, standardized kurtosis (so that the normal
distribution has a value of 0, subsequently referred to as skurtosis), and standardized fifth and sixth
cumulants. The corresponding sample values for the above can be obtained by replacing µr by
mr “

řn
j“1

`

xj ´m1
˘r
{n (Headrick, 2002).

The standardized cumulants for a continuous mixture variable can be derived in terms of the
standardized cumulants of its component distributions. Suppose the goal is to simulate a continuous
mixture variable Y with PDF hY pyq that contains two component distributions Ya and Yb with
mixing parameters πa and πb:

hY pyq “ πafYa pyq ` πbgYb pyq , y P Y , πa P p0, 1q , πb P p0, 1q , πa ` πb “ 1. (N.3.10)

Here,

Ya “ σaZ
1
a ` µa, Ya „ fYa pyq , y P Ya and Yb “ σbZ

1
b ` µb, Yb „ gYb pyq , y P Yb (N.3.11)

so that Ya and Yb have expected values µa and µb and variances σ2
a and σ2

b . Assume the variables
Z1a and Z1b are generated with zero mean and unit variance using Headrick’s fifth-order PMT given
the specified values for skew

`

γ11a , γ11b
˘

, skurtosis
`

γ12a , γ12b
˘

, and standardized fifth
`

γ13a , γ13b
˘

and
sixth

`

γ14a , γ14b
˘

cumulants:

Z1a “ c0a ` c1aZa ` c2aZ
2
a ` c3aZ

3
a ` c4aZ

4
a ` c5aZ

5
a , Za „ N p0, 1q

Z1b “ c0b ` c1bZb ` c2bZ
2
b ` c3bZ

3
b ` c4bZ

4
b ` c5bZ

5
b , Zb „ N p0, 1q .

(N.3.12)

The constants c0a , ..., c5a and c0b , ..., c5b are the solutions to the system of equations given
in SimMultiCorrData’s poly function and calculated by find_constants. Similar results hold for
Fleishman’s third-order PMT, where the constants c0a , ..., c3a and c0b , ..., c3b are the solutions to
the system of equations given in fleish pc4a “ c5a “ c4b “ c5b “ 0q.

The rth expected value of Y can be expressed as:

IE
“

Y r
‰

“

ż

yrhY pyq dy “ πa

ż

yrfYa pyq dy` πb

ż

yrgYb pyq dy

“ πa IE
“

Y ra
‰

` πb IE
“

Y rb
‰

.
(N.3.13)

Equation N.3.13 can be used to derive expressions for the mean, variance, skew, skurtosis, and
standardized fifth and sixth cumulants of Y in terms of the rth expected values of Ya and Yb. See
Derivation of expected cumulants of continuous mixture variables in the Appendix for the expressions
and proofs.

Extension to more than two component distributions

If the desired mixture distribution Y contains more than two component distributions, the expected
values of Y are again expressed as sums of the expected values of the component distributions, with
weights equal to the associated mixing parameters. For example, assume Y contains k component
distributions Y1, ..., Yk with mixing parameters given by π1, ..., πk, where

řk
i“1 πi “ 1. The

component distributions are described by the following parameters: means µ1, ..., µk, variances
σ2

1 , ..., σ2
k, skews γ

1
11 , ..., γ11k , skurtoses γ

1
21 , ..., γ12k , fifth cumulants γ131 , ..., γ13k , and sixth

cumulants γ141 , ..., γ14k . Then the rth expected value of Y can be expressed as:

IE
“

Y r
‰

“

ż

yrhY pyq dy “
k
ÿ

i“1
πi

ż

yrfYi pyq dy “
k
ÿ

i“1
πiEfi

“

Y ri
‰

. (N.3.14)

Therefore, a method similar to that above can be used to derive the system of equations defining the
mean, variance, skew, skurtosis, and standardized fifth and sixth cumulants of Y . These equations
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are used within the function calc_mixmoments to determine the values for a mixture variable.
The summary_var function executes calc_mixmoments to provide target distributions for simulated
continuous mixture variables.

Example with Normal and Beta mixture variables

Let Y1 be a mixture of Normal(-5, 2), Normal(1, 3), and Normal(7, 4) distributions with mixing
parameters 0.36, 0.48, and 0.16. This variable could represent a continuous trait with a codominant
mixture distribution, as in Figure 1a, where pA “ 0.6 and pa “ 0.4. Let Y2 be a mixture of Beta(13,
11) and Beta(13, 4) distributions with mixing parameters 0.3 and 0.7. Beta-mixture models are
widely used in bioinformatics to represent correlation coefficients. These could arise from pathway
analysis of a relevant gene to study if gene-expression levels are correlated with those of other
genes. The correlations could also describe the expression levels of the same gene measured in
different studies, as in meta-analyses of multiple gene-expression experiments. Since expression varies
greatly across genes, the correlations may come from different probability distributions within one
mixture distribution. Each component distribution represents groups of genes with similar behavior.
Ji et al. (2005) proposed a Beta-mixture model for correlation coefficients. Laurila et al. (2011)
extended this model to methylation microarray data in order to reduce dimensionality and detect
fluctuations in methylation status between various samples and tissues. Other extensions include
cluster analysis (Dai et al., 2009), single nucleotide polymorphism (SNP) analysis (Fu et al., 2011),
pattern recognition and image processing (Bouguila et al., 2006; Ma and Leijon, 2011), and quantile
normalization to correct probe design bias (Teschendorff et al., 2013). Since these methods assume
independence among components, Dai and Charnigo (2015) developed a compound hierarchical
correlated Beta-mixture model to permit correlations among components, applying it to cluster
mouse transcription factor DNA binding data.

The standardized cumulants for the Normal and Beta mixtures using the fifth-order PMT are
found as follows:

library("SimCorrMix")
B1 <- calc_theory("Beta", c(13, 11))
B2 <- calc_theory("Beta", c(13, 4))
mix_pis <- list(c(0.36, 0.48, 0.16), c(0.3, 0.7))
mix_mus <- list(c(-5, 1, 7), c(B1[1], B2[1]))
mix_sigmas <- list(c(sqrt(2), sqrt(3), sqrt(4)), c(B1[2], B2[2]))
mix_skews <- list(c(0, 0, 0), c(B1[3], B2[3]))
mix_skurts <- list(c(0, 0, 0), c(B1[4], B2[4]))
mix_fifths <- list(c(0, 0, 0), c(B1[5], B2[5]))
mix_sixths <- list(c(0, 0, 0), c(B1[6], B2[6]))
Nstcum <- calc_mixmoments(mix_pis[[1]], mix_mus[[1]], mix_sigmas[[1]],

mix_skews[[1]], mix_skurts[[1]], mix_fifths[[1]], mix_sixths[[1]])
Nstcum
## mean sd skew kurtosis fifth sixth
## -0.2000000 4.4810713 0.3264729 -0.6238472 -1.0244454 1.4939902
Bstcum <- calc_mixmoments(mix_pis[[2]], mix_mus[[2]], mix_sigmas[[2]],

mix_skews[[2]], mix_skurts[[2]], mix_fifths[[2]], mix_sixths[[2]])
Bstcum
## mean sd skew kurtosis fifth sixth
## 0.6977941 0.1429099 -0.4563146 -0.5409080 1.7219898 0.5584577

SimMultiCorrData’s calc_theory was used first to obtain the standardized cumulants for each of
the Beta distributions.

Calculation of intermediate correlations for continuous variables

The target correlation matrix rho in the simulation functions corrvar and corrvar2 is specified in
terms of the correlations with components of continuous mixture variables. This allows the user
to set the correlation between components of the same mixture variable to any desired value. If
this correlation is small (i.e., 0–0.2), the intermediate correlation matrix Sigma may need to be
converted to the nearest positive-definite (PD) matrix. This is done within the simulation functions
by specifying use.nearPD = TRUE, and Higham (2002)’s algorithm is executed with the Matrix
package’s nearPD function (Bates and Maechler, 2017). Otherwise, negative eigenvalues are replaced
with 0.

The function intercorr_cont calculates the intermediate correlations for the standard normal
variables used in Equation N.3.2. This is necessary because the transformation decreases the absolute
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value of the final correlations. The function uses Equation 7b derived by Headrick and Sawilowsky
(1999, p. 28) for the third-order PMT and Equation 26 derived by Headrick (2002, p. 694) for the
fifth-order PMT.

Approximate correlations for continuous mixture variables:

Even though the correlations for the continuous mixture variables are set at the component level,
we can approximate the resulting correlations for the mixture variables. Assume Y1 and Y2 are two
continuous mixture variables. Let Y1 have k1 components with mixing probabilities α1, ...,αk1 and
standard deviations σ11 , ...,σ1k1

. Let Y2 have k2 components with mixing probabilities β1, ...,βk2
and standard deviations σ21 , ...,σ2k2

.

Correlation between continuous mixture variables Y1 and Y2

The correlation between the mixture variables Y1 and Y2 is given by:

ρY1Y2 “
IE rY1Y2s ´ IE rY1s IE rY2s

σ1σ2
, (N.3.15)

where σ2
1 is the variance of Y1 and σ2

2 is the variance of Y2. Equation N.3.15 requires the expected
value of the product of Y1 and Y2. Since Y1 and Y2 may contain any number of components and
these components may have any continuous distribution, there is no general way to determine this
expected value. Therefore, it is approximated by expressing Y1 and Y2 as sums of their component
variables:

ρY1Y2 “

IE
”´

řk1
i“1 αiY1i

¯´

řk2
j“1 βjY2j

¯ı

´ IE
”

řk1
i“1 αiY1i

ı

IE
”

řk2
j“1 βjY2j

ı

σ1σ2
, (N.3.16)

where

IE

»

–

˜

k1
ÿ

i“1
αiY1i

¸

¨

˝

k2
ÿ

j“1
βjY2j

˛

‚

fi

fl “ IE
”

α1Y11β1Y21 ` α1Y11β2Y22 ` ...` αk1Y1k1
βk2Y2k2

ı

“ α1β1 IE rY11Y21 s ` α1β2 IE rY11Y22 s ` ...` αk1βk2 IE
”

Y1k1
Y2k2

ı

.
(N.3.17)

Using the general correlation equation, for 1 ď i ď k1 and 1 ď j ď k2:

IE
“

Y1iY2j
‰

“ σ1iσ2jρY1iY2j
` IE rY1i s IE

“

Y2j
‰

, (N.3.18)

so that we can rewrite ρY1Y2 as:

ρY1Y2 “

α1β1
´

σ11σ21ρY11Y21
` IE rY11 s IE rY21 s

¯

σ1σ2

` ...`
αk1βk2

´

σ1k1
σ2k2

ρY1k1
Y2k2

` IE
”

Y1k1

ı

IE
”

Y2k2

ı¯

σ1σ2

´

α1β1 IE rY11 s IE rY21 s ` ...` αk1βk2 IE
”

Y1k1

ı

IE
”

Y2k2

ı

σ1σ2

“

řk1
i“1 αiσ1i

řk2
j“1 βjσ2jρY1i ,Y2j

σ1σ2
.

(N.3.19)

Extending the example from Extension to more than two component distributions, assume there are
now three variables: Y1 (the Normal mixture), Y2 (the Beta mixture), and Y3 (a zero-inflated Poisson
variable with mean 5 and probability of a structural zero set at 0.1). Let the target correlations
among the components of Y1, the components of Y2, and Y3 be 0.4. The components of Y1 have a
weak correlation of 0.1 and the components of Y2 are independent. The resulting correlation between
Y1 and Y2 is approximated as:

rho <- matrix(0.4, 6, 6)
rho[1:3, 1:3] <- matrix(0.1, 3, 3)
rho[4:5, 4:5] <- matrix(0, 2, 2)
diag(rho) <- 1
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rho_M1M2(mix_pis, mix_mus, mix_sigmas, rho[1:3, 4:5])
## [1] 0.103596

Note that rho has 6 columns because k1 “ 3, k2 “ 2, and k1 ` k2 ` 1 “ 6.

Correlation between continuous mixture variable Y1 and other random variable
Y3

Here Y3 can be an ordinal, a continuous non-mixture, or a regular or zero-inflated Poisson or Negative
Binomial variable. The correlation between the mixture variable Y1 and Y3 is given by:

ρY1Y3 “
IE rY1Y3s ´ IE rY1s IE rY3s

σ1σ3
, (N.3.20)

where σ2
3 is the variance of Y3. Equation N.3.20 requires the expected value of the product of Y1

and Y3, which is again approximated by expressing Y1 as a sum of its component variables:

ρY1Y3 “

IE
”´

řk1
i“1 αiY1i

¯

Y3
ı

´ IE
”

řk1
i“1 αiY1i

ı

IE rY3s

σ1σ3
, (N.3.21)

where

IE
«˜

k1
ÿ

i“1
αiY1i

¸

Y3

ff

“ IE
”

α1Y11Y3 ` α2Y12Y3 ` ...` αk1Y1k1
Y3

ı

“ α1 IE rY11Y3s ` α2 IE rY12Y3s ` ...` αk1 IE
”

Y1k1
Y3

ı

.

(N.3.22)

Using the general correlation equation, for 1 ď i ď k1:

IE rY1iY3s “ σ1iσ3ρY1iY3 ` IE rY1i s IE rY3s , (N.3.23)

so that we can rewrite ρY1Y3 as:

ρY1Y3 “

α1
´

σ11σ3ρY11Y3 ` IE rY11 s IE rY3s
¯

` ...` αk1

´

σ1k1
σ3ρY1k1

Y3 ` IE
”

Y1k1

ı

IE rY3s
¯

σ1σ3

´

α1 IE rY11 s IE rY3s ` ...` αk1 IE
”

Y1k1

ı

IE rY3s

σ1σ3

“

řk1
i“1 αiσY1i

ρY1iY3

σ1
.

(N.3.24)

Continuing with the example, the correlations between Y1 and Y3 and between Y2 and Y3 are
approximated as:

rho_M1Y(mix_pis[[1]], mix_mus[[1]], mix_sigmas[[1]], rho[1:3, 6])
## [1] 0.1482236
rho_M1Y(mix_pis[[2]], mix_mus[[2]], mix_sigmas[[2]], rho[4:5, 6])
## [1] 0.2795669

The accuracy of these approximations can be determined through simulation:

means <- c(Nstcum[1], Bstcum[1])
vars <- c(Nstcum[2]^2, Bstcum[2]^2)
seed <- 184
Sim1 <- corrvar(n = 100000, k_mix = 2, k_pois = 1, method = "Polynomial",

means = means, vars = vars, mix_pis = mix_pis, mix_mus = mix_mus,
mix_sigmas = mix_sigmas, mix_skews = mix_skews, mix_skurts = mix_skurts,
mix_fifths = mix_fifths, mix_sixths = mix_sixths, lam = 5, p_zip = 0.1,
rho = rho, seed = seed, use.nearPD = FALSE)

## Total Simulation time: 0.065 minutes
names(Sim1)
## [1] "constants" "Y_cont" "Y_comp" "sixth_correction"
## [5] "valid.pdf" "Y_mix" "Y_pois" "Sigma"
## [9] "Error_Time" "Time" "niter"
Sum1 <- summary_var(Y_comp = Sim1$Y_comp, Y_mix = Sim1$Y_mix,
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Y_pois = Sim1$Y_pois, means = means, vars = vars, mix_pis = mix_pis,
mix_mus = mix_mus, mix_sigmas = mix_sigmas, mix_skews = mix_skews,
mix_skurts = mix_skurts, mix_fifths = mix_fifths, mix_sixths = mix_sixths,
lam = 5, p_zip = 0.1, rho = rho)

names(Sum1)
## [1] "cont_sum" "target_sum" "mix_sum" "target_mix" "rho_mix" "pois_sum"
## [7] "rho_calc" "maxerr"
Sum1$rho_mix
## [,1] [,2] [,3]
## [1,] 1.0000000 0.1012219 0.1475749
## [2,] 0.1012219 1.0000000 0.2776299
## [3,] 0.1475749 0.2776299 1.0000000

The results show that Equation N.3.19 and Equation N.3.24 provided good approximations to
the simulated correlations. Examples comparing the two simulation pathways also compares
approximated expected correlations for continuous mixture variables with simulated correlations.

Figure 2 displays the PDF of the Normal mixture variable and the simulated values of the zero-
inflated Poisson (ZIP) variable obtained using SimCorrMix’s graphing functions. These functions
are written with ggplot2 functions and the results are ggplot objects that can be saved or further
modified (Wickham and Chang, 2016). As demonstrated below, the target distribution, specified by
distribution name and parameters (39 distributions currently available by name) or PDF function
fx, can be overlayed on the plot for continuous or count variables.

plot_simpdf_theory(sim_y = Sim1$Y_mix[, 1], title = "", sim_size = 2,
target_size = 2, fx = function(x) mix_pis[[1]][1] *

dnorm(x, mix_mus[[1]][1], mix_sigmas[[1]][1]) + mix_pis[[1]][2] *
dnorm(x, mix_mus[[1]][2], mix_sigmas[[1]][2]) + mix_pis[[1]][3] *
dnorm(x, mix_mus[[1]][3], mix_sigmas[[1]][3]), lower = -10, upper = 10,

legend.position = "none", axis.text.size = 30, axis.title.size = 30)
plot_simtheory(sim_y = Sim1$Y_pois[, 1], title = "", cont_var = FALSE,

binwidth = 0.5, Dist = "Poisson", params = c(5, 0.1),
legend.position = "none", axis.text.size = 30, axis.title.size = 30)

(a) PDF of Normal mixture variable. (b) Simulated values of ZIP variable.

Figure 2: Graphs of variables (simulated = blue, target = green).

The Continuous Mixture Distributions vignette explains how to compare simulated to theo-
retical distributions of continuous mixture variables, as demonstrated here for the Beta mixture
variable Y2 (adapted from Headrick and Kowalchuk, 2007):

1. Obtain the standardized cumulants for the target mixture variable Y ˚2 and its components:
these were found above using calc_mixmoments and calc_theory.

2. Obtain the PMT constants for the components of Y ˚2 : these are returned in the simulation
result Sim1$constants.

3. Determine whether these constants produce valid PDF’s for the components of Y2 (and therefore
for Y2): this is indicated for all continuous variables in the simulation result Sim1$valid.pdf.

## [1] "TRUE" "TRUE" "TRUE" "TRUE" "TRUE"
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4. Select a critical value from the distribution of Y ˚2 , i.e. y˚2 such that Pr
“

Y ˚2 ě y˚2
‰

“ α, for the
desired significance level α: Let α “ 0.05. Since there are no quantile functions for mixture
distributions, determine where the cumulative probability equals 1´ α “ 0.95.

beta_fx <- function(x) mix_pis[[2]][1] * dbeta(x, 13, 11) +
mix_pis[[2]][2] * dbeta(x, 13, 4)

beta_cfx <- function(x, alpha, fx = beta_fx) {
integrate(function(x, FUN = fx) FUN(x), -Inf, x, subdivisions = 1000,
stop.on.error = FALSE)$value - (1 - alpha)

}
y2_star <- uniroot(beta_cfx, c(0, 1), tol = 0.001, alpha = 0.05)$root
y2_star
## [1] 0.8985136

5. Calculate the cumulative probability for the simulated mixture variable Y2 up to y˚2 and
compare to 1´ α: The function sim_cdf_prob from SimMultiCorrData calculates cumulative
probabilities.

sim_cdf_prob(sim_y = Sim1$Y_mix[, 2], delta = y2_star)$cumulative_prob
## [1] 0.9534

This is approximately equal to the 1´α value of 0.95, indicating that the simulation provides
a good approximation to the theoretical distribution.

6. Plot a graph of Y ˚2 and Y2: Figure 3 shows the PDF and empirical CDF obtained as follows
(plot_sim_cdf is in SimMultiCorrData):

plot_simpdf_theory(sim_y = Sim1$Y_mix[, 2], title = "", sim_size = 2,
target_size = 2, fx = beta_fx, lower = 0, upper = 1,
legend.position = c(0.4, 0.85), legend.text.size = 30,
axis.text.size = 30, axis.title.size = 30)

plot_sim_cdf(sim_y = Sim1$Y_mix[, 2], title = "", calc_cprob = TRUE,
delta = y2_star, text.size = 30, axis.text.size = 30, axis.title.size = 30)

(a) PDF. (b) CDF.

Figure 3: Graphs of the Beta mixture variable.

Count mixture distributions

SimCorrMix extends the methods in SimMultiCorrData for regular Poisson and Negative Binomial
(NB) variables to zero-inflated Poisson and NB variables. All count variables are generated using
the inverse CDF method with distribution functions imported from VGAM. The CDF of a standard
normal variable has a uniform distribution. The appropriate quantile function F´1

Y is applied to this
uniform variable with the designated parameters to generate the count variable: Y “ F´1

y pΦ pZqq.
The order within all parameters for count variables should be 1st regular and 2nd zero-inflated.

A zero-inflated random variable YZI is a mixture of a degenerate distribution having the point
mass at 0 and another distribution Y that contributes both zero and non-zero values. If the mixing
probability is φ, then:

Pr rYZI “ 0s “ φ` p1´ φqPr rY “ 0s , 0 ă φ ă 1. (N.4.1)
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Therefore, φ is the probability of a structural zero, and setting φ “ 0 reduces YZI to the variable Y .
In SimCorrMix, Y can have either a Poisson pYP q or a Negative Binomial pYNBq distribution.

Zero-inflated Poisson (ZIP) distribution

The model for YZIP „ ZIP pλ, φq , λ ą 0, 0 ă φ ă 1 is:

Pr rYZIP “ 0s “ φ` p1´ φq exp p´λq

Pr rYZIP “ ys “ p1´ φq exp p´λq λ
y

y!
, y “ 1, 2, ...

(N.4.2)

The mean of YZIP is p1´ φqλ, and the variance is λ`λ2φ{ p1´ φq (Lambert, 1992). The parameters
λ (mean of the regular Poisson component) and φ are specified in SimCorrMix through the inputs
lam and p_zip. Setting p_zip = 0 (the default setting) generates a regular Poisson variable.

The zero-deflated Poisson distribution is obtained by setting φ P p´1{ pexp pλq ´ 1q , 0q, so that
the probability of a zero count is less than the nominal Poisson value. In this case, φ no longer
represents a probability. When φ “ ´1{ pexp pλq ´ 1q, the random variable has a positive-Poisson
distribution. The probability of a zero response is 0, and the other probabilities are scaled to sum to
1.

Zero-inflated Negative Binomial (ZINB) distribution

A major limitation of the Poisson distribution is that the mean and variance are equal. In practice,
population heterogeneity creates extra variability (overdispersion), e.g., if Y represents the number
of events which occur in a given time interval and the length of the observation period varies across
subjects. If the length of these periods are available for each subject, an offset term may be used.
Otherwise, the length can be considered a latent variable and the mean of the Poisson distribution
for each subject is a random variable. If these means are described by a Gamma distribution, then
Y has a NB distribution, which has an extra parameter to account for overdispersion. However, an
excessive number of zeros requires using a zero-inflated distribution. These extra (structural) zeros
may arise from a subpopulation of subjects who are not at risk for the event during the study period.
These subjects are still important to the analysis because they may possess different characteristics
from the at-risk subjects (He et al., 2014).

The model for YZINB „ ZINB pη, p, φq , η ą 0, 0 ă p ď 1, 0 ă φ ă 1 is:

Pr rYZINB “ 0s “ φ` p1´ φq pη

Pr rYZINB “ ys “ p1´ φq Γ py` ηq
Γ pηq y!

pη p1´ pqη , y “ 1, 2, ...
(N.4.3)

In this formulation, the Negative Binomial component YNB represents the number of failures that
occur in a sequence of independent Bernoulli trials before a target number of successes pηq is reached.
The probability of success in each trial is p. YNB may also be parameterized by the mean µ (of
the regular NB component) and dispersion parameter η so that p “ η{ pη` µq or µ “ η p1´ pq {p.
The mean of YZINB is p1´ φqµ, and the variance is p1´ φqµ p1` µ pφ` 1{ηqq (Ismail and Zamani,
2013; Zhang et al., 2016). The parameters η, p, µ, and φ are specified through the inputs size,
prob, mu, and p_zinb. Either prob or mu should be given for all NB and ZINB variables. Setting
p_zinb = 0 (the default setting) generates a regular NB variable.

The zero-deflated NB distribution may be obtained by setting φ P p´pη{ p1´ pηq , 0q, so that
the probability of a zero count is less than the nominal NB value. In this case, φ no longer represents
a probability. The positive-NB distribution results when φ “ ´pη{ p1´ pηq. The probability of a
zero response is 0, and the other probabilities are scaled to sum to 1.

Calculation of intermediate correlations for count variables

The two simulation pathways differ by the technique used for count variables. The intermediate
correlations used in correlation method 1 are simulation based and accuracy increases with sample
size and number of repetitions. The intermediate correlations used in correlation method 2 involve
correction loops which make iterative adjustments until a maximum error has been reached (if
possible). Correlation method 1 is described below:

1. Count variable pairs: Based on Yahav and Shmueli (2012)’s method, the intermediate
correlation between the standard normal variables Z1 and Z2 is calculated using a logarithmic
transformation of the target correlation. First, the upper and lower Fréchet-Hoeffding bounds
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(mincor, maxcor) on ρY1Y2 are simulated (see Calculation of correlation boundaries; Fréchet,
1957; Hoeffding, 1994). Then the intermediate correlation ρZ1Z2 is found as follows:

ρZ1Z2 “
1
b

log
ˆ

ρY1Y2 ´ c

a

˙

, (N.4.4)

where
a “ ´

maxcor ˚mincor
maxcor`mincor , b “ log

´maxcor` a
a

¯

, c “ ´a.

The functions intercorr_pois, intercorr_nb, and intercorr_pois_nb calculate these cor-
relations.

2. Ordinal-count variable pairs: Extending Amatya and Demirtas (2015)’s method, the interme-
diate correlations are the ratio of the target correlations to correction factors. The correction
factor is the product of the upper Fréchet-Hoeffding bound on the correlation between the
count variable and the normal variable used to generate it and a simulated upper bound on
the correlation between an ordinal variable and the normal variable used to generate it. This
upper bound is Demirtas and Hedeker (2011)’s generate, sort, and correlate (GSC) upper
bound (see Calculation of correlation boundaries). The functions intercorr_cat_pois and
intercorr_cat_nb calculate these correlations.

3. Continuous-count variable pairs: Extending Amatya and Demirtas (2015)’s and Demirtas
and Hedeker (2011)’s methods, the correlation correction factor is the product of the upper
Fréchet-Hoeffding bound on the correlation between the count variable and the normal
variable used to generate it and the power method correlation between the continuous
variable and the normal variable used to generate it. This power method correlation is
given by ρppZqZ “ c1 ` 3c3 ` 15c5, where c3 “ 0 for Fleishman’s method (Headrick and
Kowalchuk, 2007). The functions intercorr_cont_pois and intercorr_cont_nb calculate
these correlations.

Fialkowski and Tiwari (2017) showed that this method is less accurate for positive correlations with
small count variable means (i.e., less than 1) or high negative correlations with large count variable
means.

In correlation method 2, count variables are treated as "ordinal" variables, based on the methods
of Barbiero and Ferrari (Ferrari and Barbiero, 2012; Barbiero and Ferrari, 2015a). The Poisson or NB
support is made finite by removing a small user-specified value (specified by pois_eps and nb_eps)
from the total cumulative probability. This truncation factor may differ for each count variable, but
the default value is 0.0001 (suggested by Barbiero and Ferrari, 2015a). For example, pois_eps =
0.0001 means that the support values removed have a total probability of 0.0001 of occurring in the
distribution of that variable. The effect is to remove improbable values, which may be of concern if
the user wishes to replicate a distribution with outliers. The function maxcount_support creates
these new supports and associated marginal distributions.

1. Count variable or ordinal-count variable pairs: The intermediate correlations are calculated
using the correction loop of ord_norm (see Simulation of ordinal variables).

2. Continuous-count variable pairs: Extending Demirtas et al. (2012)’s method, the intermediate
correlations are the ratio of the target correlations to correction factors. The correction factor
is the product of the power method correlation between the continuous variable and the normal
variable used to generate it and the point-polyserial correlation between the ordinalized count
variable and the normal variable used to generate it (Olsson et al., 1982). The functions
intercorr_cont_pois2 and intercorr_cont_nb2 calculate these correlations.

This method performs best under the same circumstances as ordinal variables, i.e., when there are
few categories and the probability of any given category is not very small. This occurs when the
count variable has a small mean. Therefore, method 2 performs well in situations when method 1 has
poor accuracy. In contrast, large means for the count variables would result in longer computational
times. Examples comparing the two simulation pathways compares the accuracy of correlation
methods 1 and 2 under different scenarios.

Simulation of ordinal variables

Ordinal variables (r ě 2 categories) are generated by discretizing standard normal variables at the
quantiles determined from the cumulative probabilities specified in marginal. Each element of this
list is a vector of length r´ 1 (the rth value is 1). If the support is not provided, the default is to use
t1, 2, ..., ru (Ferrari and Barbiero, 2012). The tetrachoric correlation is used for the intermediate
correlation of binary pairs (Emrich and Piedmonte, 1991; Demirtas et al., 2012). The assumptions
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are that the binary variables arise from latent normal variables and the actual trait is continuous
and not discrete. For Y1 and Y2, with success probabilities p1 and p2, the intermediate correlation
ρZ1Z2 is the solution to the following equation:

Φ rz pp1q , z pp2q , ρZ1Z2 s “ ρY 1Y 2
a

p1 p1´ p1q p2 p1´ p2q ` p1p2, (N.5.1)

where z ppq indicates the pth quantile of the standard normal distribution.
If at least one ordinal variable has more than 2 categories, ord_norm is called. Based on

SimMultiCorrData’s ordnorm and GenOrd’s ordcont and contord, the algorithm to simulate k_cat
ordinal random variables with target correlation matrix rho0 is as follows:

1. Create the default support if necessary.
2. Use norm_ord to calculate the initial correlation of the ordinal variables (rhoordold) generated

by discretizing k_cat random normal variates with correlation matrix set equal to rho0, using
marginal and the corresponding normal quantiles. These correlations are calculated using
means and variances found from multivariate normal probabilities determined by mvtnorm’s
pmvnorm (Genz et al., 2017; Genz and Bretz, 2009).

3. Let rho be the intermediate normal correlation updated in each iteration, rhoord be the
ordinal correlation calculated in each iteration, rhoold be the intermediate correlation from
the previous iteration (initialized at rhoordold), it be the iteration number, and maxit and
epsilon be the user-specified maximum number of iterations and pairwise correlation error.
For each variable pair, execute the following:

(a) If rho0 = 0, set rho = 0.
(b) While the absolute error between rhoord and rho0 is greater than epsilon and it is

less than maxit:
i. If rho0 * (rho0/rhoord) <= -1:

rho = rhoold * (1 + 0.1 * (1 -rhoold) * -sign(rho0 -rhoord)).
ii. If rho0 * (rho0/rhoord) >= 1:

rho = rhoold * (1 + 0.1 * (1 -rhoold) * sign(rho0 -rhoord)).
iii. Else, rho = rhoold * (rho0/rhoord).
iv. If rho >1, set rho = 1. If rho <-1, set rho = -1.
v. Calculate rhoord using norm_ord and the 2ˆ 2 correlation matrix formed by rho.
vi. Set rhoold = rho and increase it by 1.

(c) Store the number of iterations in the matrix niter.

4. Return the final intermediate correlation matrix SigmaC = rho for the random normal variables.
Discretize these to produce ordinal variables with the desired correlation matrix.

Calculation of correlation boundaries

For binary variable pairs, the correlation bounds are calculated as by Demirtas et al. (2012). The
joint distribution is determined using the moments of a multivariate normal distribution (Emrich
and Piedmonte, 1991). For Y1 and Y2, with success probabilities p1 and p2, the boundaries are
approximated by:

"

max
ˆ

´

c

p1p2
q1q2

, ´
c

q1q2
p1p2

˙

, min
ˆ
c

p1q2
q1p2

,
c

q1p2
p1q2

˙*

, (N.6.1)

where q1 “ 1´ p1 and q2 “ 1´ p2. If one of an ordinal variable pair has more than 2 categories,
randomly generated variables with the given marginal distributions and support values are used
in Demirtas and Hedeker (2011)’s generate, sort, and correlate (GSC) algorithm. A large number
(default 100, 000) of independent random samples from the desired distributions are generated. The
lower bound is the sample correlation of the two variables sorted in opposite directions (i.e., one
increasing and one decreasing). The upper bound is the sample correlation of the two variables
sorted in the same direction.

The GSC algorithm is also used for continuous, continuous-ordinal, ordinal-count, and continuous-
count variable pairs. Since count variables are treated as "ordinal" in correlation method 2, the
correlation bounds for count variable pairs is found with the GSC algorithm after creating finite
supports with associated marginal distributions (with maxcount_support). The correlation bounds
for count variable pairs in correlation method 1 are the Fréchet-Hoeffding bounds (Fréchet, 1957;
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Hoeffding, 1994). For two random variables Y1 and Y2 with CDF’s F1 and F2, the correlation
bounds are approximated by:

!

Cor
´

F´1
1 pUq ,F´1

2 p1´Uq
¯

, Cor
´

F´1
1 pUq ,F´1

2 pUq
¯)

, (N.6.2)

where U is a Uniform(0, 1) random variable of default length 100, 000.

Example with multiple variable types

Consider the Normal and Beta mixture variables from Continuous mixture distributions. Additional
variables are an ordinal variable with three equally-weighted categories (e.g., drug treatment), two
zero-inflated Poisson variables with means 0.5 and 1 (for the regular Poisson components) and
structural zero probabilities 0.1 and 0.2, and two zero-inflated NB variables with means 0.5 and 1
(for the regular NB components), success probabilities 0.8 and 0.6, and structural zero probabilities
0.1 and 0.2. The target pairwise correlation is set at ´0.5. The components of the Normal mixture
variable again have weak correlation of 0.1 and those for the Beta mixture variable are uncorrelated.
The parameter inputs are first checked with validpar.

marginal <- list(c(1/3, 2/3))
support <- list(c(0, 1, 2))
lam <- c(0.5, 1)
p_zip <- c(0.1, 0.2)
mu <- c(0.5, 1)
prob <- c(0.8, 0.6)
size <- prob * mu/(1 - prob)
p_zinb <- c(0.1, 0.2)
rho <- matrix(-0.5, 10, 10)
rho[2:4, 2:4] <- matrix(0.1, 3, 3)
rho[5:6, 5:6] <- matrix(0, 2, 2)
diag(rho) <- 1
validpar(k_cat = 1, k_mix = 2, k_pois = 2, k_nb = 2, method = "Polynomial",

means = means, vars = vars, mix_pis = mix_pis, mix_mus = mix_mus,
mix_sigmas = mix_sigmas, mix_skews = mix_skews, mix_skurts = mix_skurts,
mix_fifths = mix_fifths, mix_sixths = mix_sixths, marginal = marginal,
support = support, lam = lam, p_zip = p_zip, size = size, mu = mu,
p_zinb = p_zinb, rho = rho)

## Default of pois_eps = 0.0001 will be used for Poisson variables
## if using correlation method 2.
## Default of nb_eps = 0.0001 will be used for NB variables
## if using correlation method 2.
Target correlation matrix is not positive definite.
## [1] TRUE
valid1 <- validcorr(10000, k_cat = 1, k_mix = 2, k_pois = 2, k_nb = 2,

method = "Polynomial", means = means, vars = vars, mix_pis = mix_pis,
mix_mus = mix_mus, mix_sigmas = mix_sigmas, mix_skews = mix_skews,
mix_skurts = mix_skurts, mix_fifths = mix_fifths, mix_sixths = mix_sixths,
marginal = marginal, lam = lam, p_zip = p_zip, size = size, mu = mu,
p_zinb = p_zinb, rho = rho, use.nearPD = FALSE, quiet = TRUE)

## Range error! Corr[ 7 , 9 ] must be between -0.388605 and 0.944974
## Range error! Corr[ 7 , 10 ] must be between -0.432762 and 0.925402
## Range error! Corr[ 8 , 9 ] must be between -0.481863 and 0.877668
## Range error! Corr[ 9 , 10 ] must be between -0.386399 and 0.937699
names(valid1)
## [1] "rho" "L_rho" "U_rho" "constants"
## [5] "sixth_correction" "valid.pdf" "valid.rho"
valid2 <- validcorr2(10000, k_cat = 1, k_mix = 2, k_pois = 2, k_nb = 2,

method = "Polynomial", means = means, vars = vars, mix_pis = mix_pis,
mix_mus = mix_mus, mix_sigmas = mix_sigmas, mix_skews = mix_skews,
mix_skurts = mix_skurts, mix_fifths = mix_fifths, mix_sixths = mix_sixths,
marginal = marginal, lam = lam, p_zip = p_zip, size = size, mu = mu,
p_zinb = p_zinb, rho = rho, use.nearPD = FALSE, quiet = TRUE)

## Range error! Corr[ 7 , 9 ] must be between -0.385727 and 0.947462
## Range error! Corr[ 7 , 10 ] must be between -0.428145 and 0.921001
## Range error! Corr[ 8 , 9 ] must be between -0.477963 and 0.879439
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## Range error! Corr[ 9 , 10 ] must be between -0.384557 and 0.939524

The validpar function indicates that all parameter inputs have the correct format and the default
cumulative probability truncation value of 0.0001 will be used in correlation method 2 for pois_eps
and nb_eps. Since rho is not PD, the intermediate correlation matrix Sigma will probably also be
non-PD. The user has three choices: 1) convert rho to the nearest PD matrix before simulation,
2) set use.nearPD = TRUE (default) in the simulation functions to convert Sigma to the nearest
PD matrix during simulation, or 3) set use.nearPD = FALSE in the simulation functions to replace
negative eigenvalues with 0. Using use.nearPD = TRUE in validcorr or validcorr2 converts rho to
the nearest PD matrix before checking if all pairwise correlations fall within the feasible boundaries,
whereas use.nearPD = FALSE checks the initial matrix rho. Setting quiet = TRUE keeps the non-PD
message from being reprinted.

Range violations occur with the count variables. The lower and upper correlation bounds are
given in the list components L_rho and U_rho. Note that these are pairwise correlation bounds.
Although valid.rho will return TRUE if all elements of rho are within these bounds, this does not
guarantee that the overall target correlation matrix rho can be obtained in simulation.

Overall workflow for generation of correlated data

The vignette Overall Workflow for Generation of Correlated Data provides a detailed step-
by-step guideline for correlated data simulation with examples for corrvar and corrvar2. These
steps are briefly reviewed here.

1. Obtain the distributional parameters for the desired variables.
(a) Continuous variables: For non-mixture and components of mixture variables, these are

skew, skurtosis, plus standardized fifth and sixth cumulants (for method = "Polynomial")
and sixth cumulant corrections (if desired). The inputs are skews, skurts, fifths,
sixths, and Six for non-mixture variables; mix_skews, mix_skurts, mix_fifths, mix_sixths,
and mix_Six for components of mixture variables. If the goal is to simulate a theoretical
distribution, SimMultiCorrData’s calc_theory will return these values given a distri-
bution’s name and parameters (39 distributions currently available by name) or PDF
function fx. If the goal is to mimic a real data set, SimMultiCorrData’s calc_moments
uses the method of moments or calc_fisherk uses Fisher (1929)’s k-statistics given
a vector of data. For mixture variables, the mixing parameters (mix_pis), component
means (mix_mus), and component standard deviations (mix_sigmas) are also required.
The means and variances of non-mixture and mixture variables are specified in means
and vars and these can be found using calc_mixmoments for mixture variables.

(b) Ordinal variables: The cumulative marginal probabilities in marginal and support values
in support as described in Simulation of ordinal variables.

(c) Poisson variables: The mean values in lam and probabilities of structural zeros in p_zip
(default of 0 to yield regular Poisson distributions). The mean refers to the mean of
the Poisson component of the distribution. For correlation method 2, also cumulative
probability truncation values in pois_eps.

(d) NB variables: The target number of successes in size, probabilities of structural zeros
in p_zinb (default of 0 to yield regular NB distributions), plus means in mu or success
probabilities in prob. The mean refers to the mean of the NB component of the
distribution. For correlation method 2, also cumulative probability truncation values in
nb_eps.

2. Check that all parameter inputs have the correct format using validpar. Incorrect parameter
specification is the most likely cause of function failure.

3. If continuous variables are desired, verify that the skurtoses are greater than the lower
skurtoses bounds using SimMultiCorrData’s calc_lower_skurt. The function permits a
skurtosis correction vector to aid in discovering a lower bound associated with PMT constants
that yield a valid PDF. Since this step can take considerable time, the user may wish to do
this at the end if any of the variables have invalid PDF’s. The sixth cumulant value should be
the actual sixth cumulant used in simulation, i.e., the distribution’s sixth cumulant plus any
necessary correction (if method = "Polynomial").

4. Check if the target correlation matrix rho falls within the feasible correlation boundaries. The
variables in rho must be ordered correctly (see Introduction).

5. Generate the variables using either corrvar or corrvar2, with or without the error loop.
6. Summarize the results numerically with summary_var or graphically with plot_simpdf_theory,

plot_simtheory, or any of the plotting functions in SimMultiCorrData.
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Examples comparing the two simulation pathways

Correlation methods 1 and 2 were compared to demonstrate situations when each has greater
simulation accuracy. In scenario A, the ordinal (O1), Normal mixture (Nmix with components N1,
N2, and N3), Beta mixture (Bmix with components B1 and B2), two zero-inflated Poisson (P1
and P2), and two zero-inflated NB (NB1 and NB2) variables from the Calculation of correlation
boundaries example were simulated. All count variables in this case had small means (less than 1).
In scenario B, the two Poisson variables were replaced with two zero-inflated NB (NB3 and NB4)
variables with means 50 and 100 (for the regular NB components), success probabilities 0.4 and 0.2,
and structural zero probabilities 0.1 and 0.2. This yielded two count variables with small means
and two with large means. The simulations were done with n “ 10, 000 sample size and r “ 1, 000
repetitions using three different positive correlations as given in Table 1 (chosen based on the upper
correlation bounds). The correlation among N1, N2, N3 was set at 0.1; the correlation between B1
and B2 was set at 0. The default total cumulative probability truncation value of 0.0001 was used
for each count variable in corrvar2.

In scenarios A and B, the simulated correlations among the count variables were compared to the
target values using boxplots generated with ggplot2’s geom_boxplot. In scenario A, the simulated
correlations with the continuous mixture variables were compared to the expected correlations
approximated by rho_M1M2 and rho_M1Y, with O1 as the non-mixture variable. Simulation times
included simulation of the variables only with corrvar or corrvar2. Medians and interquartile
ranges (IQR) were computed for the summary tables. Variable summaries are given for Nmix,
Bmix, and NB1–NB4 in scenario B. This example was run on R version 3.4.1 with SimCorrMix
version 0.1.0 using CentOS. The complete code is in the supplementary file for this article.

Results

Table 1 gives the three different correlations and total simulation times (1,000 repetitions) for
correlation method 1 using corrvar (Time M1) and correlation method 2 using corrvar2 (Time
M2). The strong correlation was different between NB variables with small means (NB1, NB2) and
NB variables with large means (NB3, NB4) because the upper bounds were lower for these variable
pairs.

Scenario A: Poisson and NB B: NB

Correlation Type ρ ρ˚ Time M1 Time M2 Time M1 Time M2

Strong 0.7 0.6 2.55 2.03 2.00 9.30

Moderate 0.5 0.5 1.65 0.92 1.98 8.01

Weak 0.3 0.3 1.39 0.90 1.95 5.78

Table 1: Six comparisons and total simulation times for method 1 (M1) and method 2 (M2) in
hours. Correlation ρ˚ applied to the NB1–NB3, NB1–NB4, NB2–NB3, and NB2–NB4
variable pairs.

The strong correlations required the most time for each correlation method. Although method 2
was faster when all count variables had small means (scenario A), it was notably slower when two
of the count variables had large means (scenario B). The reason is that method 2 treats all count
variables as "ordinal," which requires creating finite supports and associated marginal distributions,
as described in Calculation of intermediate correlations for count variables. When a count variable
has a large mean, there are several support values with very small probabilities, making simulation
more difficult.
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Scenario A: Ordinal, Normal and Beta mixtures, Poisson, and NB variables

Figure 4 contains boxplots of the simulated correlations for the continuous mixture variables. Method
1 is in red; method 2 is in green. The middle line is the median (50th percentile); the lower and
upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles). The upper
whisker extends from the hinge to the largest value up to 1.5 * IQR from the hinge. The lower
whisker extends from the hinge to the smallest value at most 1.5 * IQR from the hinge. Data beyond
the end of the whiskers are considered "outliers." The black horizontal lines show the approximate
expected values obtained with the functions rho_M1M2 and rho_M1Y (also given in Table 2).

Correlation Type ρ ρNmix,Bmix ρNmix,O1 ρBmix,O1

Strong 0.7 0.1813 0.2594 0.4892

Moderate 0.5 0.1295 0.1853 0.3495

Weak 0.3 0.0777 0.1112 0.2097

Table 2: Approximate expected correlations with the continuous mixture variables.

Notice in Table 2 that the expected correlations are much smaller than the pairwise correlations,
demonstrating an important consideration when setting the correlations for mixture components.
Even though the strong correlation between the components of Nmix and the components of Bmix
was set at 0.7, the expected correlation between Nmix and Bmix was only 0.1813. Combining
continuous components into one continuous mixture variable always decreases the absolute correlation
between the mixture variable and other variables.

Figure 4 shows that, as expected, the results with correlation methods 1 and 2 were similar,
since the methods differ according to count variable correlations. The simulated correlations were
farthest from the approximate expected values with the strong correlation and closest for the weak
correlation. In the simulations with strong or moderate correlations, the intermediate correlation
matrix Sigma was not PD due to the weak correlation (0.1) between N1, N2, and N3 and independence
(zero correlation) of B1 and B2. During simulation, after Sigma is calculated with intercorr or
intercorr2, eigenvalue decomposition is done on Sigma. The square roots of the eigenvalues form a
diagonal matrix. The product of the eigenvectors, diagonal matrix, and transposed standard normal
variables produces normal variables with the desired intermediate correlations. If Sigma is not PD
and use.nearPD is set to FALSE in the simulation functions, negative eigenvalues are replaced with 0
before forming the diagonal matrix of eigenvalue square roots. If use.nearPD is set to TRUE (default),
Sigma is replaced with the nearest PD matrix using (Higham, 2002)’s algorithm and Matrix’s
nearPD function. Either method increases correlation errors because the resulting intermediate
correlations are different from those found in Sigma. As the maximum absolute correlation in the
target matrix rho increases, these differences increase. In this example, the Sigma matrix had
two negative eigenvalues in the strong correlation simulations and one negative eigenvalue in the
moderate correlation simulations. This is why the correlation errors were largest for the strong
correlation setting.

Figure 5 shows boxplots of the simulated correlations for the count variables. The horizontal
lines show the target values. These correlations were also affected by the adjusted eigenvalues and
the errors for the strong correlations were again the largest. Correlation method 2 performed better
in each case except when generating ρP1,NB1 in the strong correlation case. Barbiero and Ferrari
(2015a)’s method of treating count variables as "ordinal" is expected to exhibit better accuracy
than Yahav and Shmueli (2012)’s equation when the count variables have small means (less than
1). Tables 6–8 in the Appendix provide median (IQR) correlation errors for all variables and each
correlation type.

Scenario B: Ordinal, Normal and Beta mixtures, and NB variables

Tables 3 and 4 describe the target and simulated distributions for Nmix, Bmix, and NB1–NB4
in the weak correlation case. In all instances, the simulated distributions are close to the target
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Figure 4: Boxplots of simulated correlations for continuous mixture variables (scenario A).
Method 1 is in red; method 2 is in green. The horizontal lines show the approximate
expected values.
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Figure 5: Boxplots of simulated correlations for P1, P2, NB1, and NB2 (scenario A). Method 1
is in red; method 2 is in green. The horizontal lines show the target values.
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distributions.

Nmix Bmix

Mean -0.20 -0.20 (-0.20, -0.20) 0.70 0.70 (0.70, 0.70)

SD 4.48 4.48 (4.48, 4.48) 0.14 0.14 (0.14, 0.14)

Skew 0.33 0.33 (0.32, 0.33) -0.46 -0.46 (-0.47, -0.45)

Skurtosis -0.62 -0.62 (-0.64, -0.61) -0.54 -0.54 (-0.56, -0.52)

Fifth -1.02 -1.03 (-1.07, -0.98) 1.72 1.73 (1.68, 1.77)

Sixth 1.49 1.50 (1.36, 1.62) 0.56 0.54 (0.37, 0.72)

Table 3: Target and median (IQR) simulated distributions of continuous mixture variables.

PrY “ 0s IEpPrY “ 0sq Mean IErMeans

NB1 0.68 (0.67, 0.68) 0.68 0.45 (0.45, 0.45) 0.45

NB2 0.57 (0.57, 0.57) 0.57 0.80 (0.80, 0.80) 0.80

NB3 0.10 (0.10, 0.10) 0.10 45.00 (44.96, 45.03) 45.00

NB4 0.20 (0.20, 0.20) 0.20 80.00 (79.90, 80.10) 80.00

Var IErVars Median Max

NB1 0.58 (0.58, 0.59) 0.58 0 (0, 0) 7 (6, 7)

NB2 1.49 (1.48, 1.51) 1.49 0 (0, 0) 11 (10, 12)

NB3 337.76 (335.43, 339.67) 337.50 48 (48, 48) 101 (98, 105)

NB4 2000.09 (1990.21, 2010.18) 2000.00 92 (91, 92) 204 (199, 212)

Table 4: Target and median (IQR) simulated distributions of zero-inflated NB variables.
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Figure 6 shows boxplots of the simulated correlations for the count variables. The horizontal
lines show the target values. Method 1 performed better for all strong correlation cases except
between the two NB variables with small means (NB1 and NB2). Although method 2 had smaller
errors overall, it did require considerably longer simulation times. Therefore, the user should consider
using correlation method 1 when the data set contains count variables with large means. Tables 9–11
in the Appendix provide median (IQR) correlation errors for all variables and each correlation type.

Summary

The package SimCorrMix generates correlated continuous (normal, non-normal, and mixture), ordinal
(r ě 2 categories), and count (regular or zero-inflated, Poisson or Negative Binomial) variables. It is a
significant contribution to existing R simulation packages because it is the first to include continuous
and count mixture variables in correlated data sets. Since SimCorrMix simulates variables which
mimic real-world data sets and provides great flexibility, the package has a wide range of applications
in clinical trial and genetic studies. The simulated data sets could be used to compare statistical
methods, conduct hypothesis tests, perform bootstrapping, or calculate power. The two simulation
pathways, excecuted by the functions corrvar and corrvar2, permit the user to accurately reproduce
desired correlation matrices for different parameter ranges. Correlation method 1 should be used
when the target distributions include count variables with large means, and correlation method
2 is preferable in opposite situations. The package also provides helper functions to calculate
standardized cumulants of continuous mixture variables, approximate expected correlations with
continuous mixture variables, validate parameter inputs, determine feasible correlation boundaries,
and summarize simulation results numerically and graphically. Future extensions of the package
include adding more variable types (e.g., zero-inflated Binomial, Gaussian, and Gamma).

Supplementary Material

The article’s supplementary file contains replication code for the examples in the paper and Examples
comparing the two simulation pathways.
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Appendix

Derivation of expected cumulants of continuous mixture variables

Suppose the goal is to simulate a continuous mixture variable Y with PDF hY pyq that contains two
component distributions Ya and Yb with mixing parameters πa and πb:

hY pyq “ πafYa pyq ` πbgYb pyq , y P Y , πa P p0, 1q , πb P p0, 1q , πa ` πb “ 1. (N.11.1)

Here,

Ya “ σaZ
1
a ` µa, Ya „ fYa pyq , y P Ya and Yb “ σbZ

1
b ` µb, Yb „ gYb pyq , y P Yb (N.11.2)

so that Ya and Yb have expected values µa and µb and variances σ2
a and σ2

b . Assume the variables
Z1a and Z1b are generated with zero mean and unit variance using Headrick’s fifth-order PMT given
the specified values for skew

`

γ11a , γ11b
˘

, skurtosis
`

γ12a , γ12b
˘

, and standardized fifth
`

γ13a , γ13b
˘

and
sixth

`

γ14a , γ14b
˘

cumulants. The rth expected value of Y can be expressed as:

IE
“

Y r
‰

“

ż

yrhY pyq dy “ πa

ż

yrfYa pyq dy` πb

ż

yrgYb pyq dy

“ πa IE
“

Y ra
‰

` πb IE
“

Y rb
‰

.
(N.11.3)

Equation N.11.3 can be used to derive expressions for the mean, variance, skew, skurtosis, and
standardized fifth and sixth cumulants of Y in terms of the rth expected values of Ya and Yb.

1. Mean: Using r “ 1 in Equation N.11.3 yields µ:

IE rY s “ πa IE rYas ` πb IE rYbs “ πa IE
”

σaZ
1
a ` µa

ı

` πb IE
”

σbZ
1
b ` µb

ı

“ πa
´

σa IE
”

Z1a

ı

` µa
¯

` πb

´

σb IE
”

Z1b

ı

` µb

¯

.
(N.11.4)

Since IE
“

Z1a
‰

“ IE
“

Z1b
‰

“ 0, this becomes:

IE rY s “ πaµa ` πbµb. (N.11.5)

2. Variance: The variance of Y can be expressed by the relation Var rY s “ IE
”

Y 2
ı

´ pIE rY sq2.
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Using r “ 2 in Equation N.11.3 yields µ2:

IE
”

Y 2
ı

“ πa IE
”

Y 2
a

ı

` πb IE
”

Y 2
b

ı

“ πa IE
„

´

σaZ
1
a ` µa

¯2


` πb IE
„

´

σbZ
1
b ` µb

¯2


“ πa IE
”

σ2
aZ
1
a

2
` 2µaσaZ1a ` µ2

a

ı

` πb IE
”

σ2
bZ
1
b

2
` 2µbσbZ1b ` µ

2
b

ı

“ πa
´

σ2
a IE

”

Z1a
2ı
` 2µaσa IE

”

Z1a

ı

` µ2
a

¯

` πb

´

σ2
b IE

”

Z1b
2ı
` 2µbσb IE

”

Z1b

ı

` µ2
b

¯

.
(N.11.6)

Applying the variance relation to Z1a and Z1b gives:

IE
”

Z1a
2ı
“ Var

”

Z1a

ı

`

´

IE
”

Z1a

ı¯2

IE
”

Z1b
2ı
“ Var

”

Z1b

ı

`

´

IE
”

Z1b

ı¯2
.

(N.11.7)

Since IE
“

Z1a
‰

“ IE
“

Z1b
‰

“ 0 and Var
“

Z1a
‰

“ Var
“

Z1b
‰

“ 1, IE
”

Z1a
2ı and IE

”

Z1b
2ı both equal 1.

Therefore, Equation N.11.6 simplifies to:

IE
”

Y 2
ı

“ πa
´

σ2
a ` µ

2
a

¯

` πb

´

σ2
b ` µ

2
b

¯

, (N.11.8)

and the variance of Y is given by:

Var rY s “ πa
´

σ2
a ` µ

2
a

¯

` πb

´

σ2
b ` µ

2
b

¯

´ rπaµa ` πbµbs
2 . (N.11.9)

3. Skew: Using r “ 3 in Equation N.11.3 yields µ3:

IE
”

Y 3
ı

“ πa IE
”

Y 3
a

ı

` πb IE
”

Y 3
b

ı

“ πa IE
„

´

σaZ
1
a ` µa

¯3


` πb IE
„

´

σbZ
1
b ` µb

¯3


“ πa IE
”

σ3
aZ
1
a

3
` 3σ2

aµaZ
1
a

2
` 3σaµ2

aZ
1
a ` µ

3
a

ı

` πb IE
”

σ3
bZ
1
b

3
` 3σ2

bµbZ
1
b

2
` 3σbµ2

bZ
1
b ` µ

3
b

ı

“ πa
´

σ3
a IE

”

Z1a
3ı
` 3σ2

aµa IE
”

Z1a
2ı
` 3σaµ2

a IE
”

Z1a

ı

` µ3
a

¯

` πb

´

σ3
b IE

”

Z1b
3ı
` 3σ2

bµb IE
”

Z1b
2ı
` 3σbµ2

b IE
”

Z1b

ı

` µ3
b

¯

.
(N.11.10)

Then IE
”

Z1a
3ı
“ µ13a and IE

”

Z1b
3ı
“ µ13b are given by:

IE
”

Z1a
3ı
“

´

Var
”

Z1a

ı¯3{2
γ11a “ γ11a

IE
”

Z1b
3ı
“

´

Var
”

Z1b

ı¯3{2
γ11b “ γ11b .

(N.11.11)

Combining these with IE
“

Z1a
‰

“ IE
“

Z1b
‰

“ 0 and IE
”

Z1a
2ı
“ IE

”

Z1b
2ı
“ 1, Equation N.11.10

simplifies to:

IE
”

Y 3
ı

“ πa
´

σ3
aγ
1
1a ` 3σ2

aµa ` µ
3
a

¯

` πb

´

σ3
bγ
1
1b ` 3σ2

bµb ` µ
3
b

¯

. (N.11.12)

From Equation N.3.6, the skew of Y is given by:

γ1 “
πa

´

σ3
aγ
1
1a ` 3σ2

aµa ` µ
3
a

¯

` πb

´

σ3
bγ
1
1b ` 3σ2

bµb ` µ
3
b

¯

´

πa
`

σ2
a ` µ

2
a

˘

` πb
`

σ2
b ` µ

2
b

˘

´ rπaµa ` πbµbs
2
¯3{2 . (N.11.13)
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4. Skurtosis: Using r “ 4 in Equation N.11.3 yields µ4:

IE
”

Y 4
ı

“ πa IE
”

Y 4
a

ı

` πb IE
”

Y 4
b

ı

“ πa IE
„

´

σaZ
1
a ` µa

¯4


` πb IE
„

´

σbZ
1
b ` µb

¯4


“ πa IE
”

σ4
aZ
1
a

4
` 4σ3

aµaZ
1
a

3
` 6σ2

aµ
2
aZ
1
a

2
` 4σaµ3

aZ
1
a ` µ

4
a

ı

` πb IE
”

σ4
bZ
1
b

4
` 4σ3

bµbZ
1
b

3
` 6σ2

bµ
2
bZ
1
b

2
` 4σbµ3

bZ
1
b ` µ

4
b

ı

“ πa
´

σ4
a IE

”

Z1a
4ı
` 4σ3

aµa IE
”

Z1a
3ı
` 6σ2

aµ
2
a IE

”

Z1a
2ı
` 4σaµ3

a IE
”

Z1a

ı

` µ4
a

¯

` πb

´

σ4
b IE

”

Z1b
4ı
` 4σ3

bµb IE
”

Z1b
3ı
` 6σ2

bµ
2
b IE

”

Z1b
2ı
` 4σbµ3

b IE
”

Z1b

ı

` µ4
b

¯

(N.11.14)

Then IE
”

Z1a
4ı
“ µ14a and IE

”

Z1b
4ı
“ µ14b are given by:

IE
”

Z1a
4ı
“

´

Var
”

Z1a

ı¯2 ´
γ12a ` 3

¯

“ γ12a ` 3

IE
”

Z1b
4ı
“

´

Var
”

Z1b

ı¯2 ´
γ12b ` 3

¯

“ γ12b ` 3.
(N.11.15)

Since IE
“

Z1a
‰

“ IE
“

Z1b
‰

“ 0 and IE
”

Z1a
2ı
“ IE

”

Z1b
2ı
“ 1, Equation N.11.14 simplifies to:

IE
”

Y 4
ı

“ πa
”

σ4
a

´

γ12a ` 3
¯

` 4σ3
aµaγ

1
1a ` 6σ2

aµ
2
a ` µ

4
a

ı

` πb

”

σ4
b

´

γ12b ` 3
¯

` 4σ3
bµbγ

1
1b ` 6σ2

bµ
2
b ` µ

4
b

ı

.
(N.11.16)

From Equation N.3.7, the skurtosis of Y is given by:

γ2 “
πa

”

σ4
a

`

γ12a ` 3
˘

` 4σ3
aµaγ

1
1a ` 6σ2

aµ
2
a ` µ

4
a

ı

´

πa
`

σ2
a ` µ

2
a

˘

` πb
`

σ2
b ` µ

2
b

˘

´ rπaµa ` πbµbs
2
¯2

`

πb

”

σ4
b

`

γ12b ` 3
˘

` 4σ3
bµbγ

1
1b ` 6σ2

bµ
2
b ` µ

4
b

ı

´

πa
`

σ2
a ` µ

2
a

˘

` πb
`

σ2
b ` µ

2
b

˘

´ rπaµa ` πbµbs
2
¯2 .

(N.11.17)

5. Standardized fifth cumulant: Using r “ 5 in Equation N.11.3 yields µ5:

IE
”

Y 5
ı

“ πa IE
”

Y 5
a

ı

` πb IE
”

Y 5
b

ı

“ πa IE
„

´

σaZ
1
a ` µa

¯5


` πb IE
„

´

σbZ
1
b ` µb

¯5


“ πa IE
”

σ5
aZ
1
a

5
` 5σ4

aµaZ
1
a

4
` 10σ3

aµ
2
aZ
1
a

3
` 10σ2

aµ
3
aZ
1
a

2
` 5σaµ4

aZ
1
a ` µ

5
a

ı

` πb IE
”

σ5
bZ
1
b

5
` 5σ4

bµbZ
1
b

4
` 10σ3

bµ
2
bZ
1
b

3
` 10σ2

bµ
3
bZ
1
b

2
` 5σbµ4

bZ
1
b ` µ

5
b

ı

“ πa
´

σ5
a IE

”

Z1a
5ı
` 5σ4

aµa IE
”

Z1a
4ı
` 10σ3

aµ
2
a IE

”

Z1a
3ı

` 10σ2
aµ

3
a IE

”

Z1a
2ı
` 5σaµ4

a IE
”

Z1a

ı

` µ5
a

¯

` πb

´

σ5
b IE

”

Z1b
5ı
` 5σ4

bµb IE
”

Z1b
4ı
` 10σ3

bµ
2
b IE

”

Z1b
3ı

` 10σ2
bµ

3
b IE

”

Z1b
2ı
` 5σbµ4

b IE
”

Z1b

ı

` µ5
b

¯

.
(N.11.18)

Then IE
”

Z1a
5ı
“ µ15a and IE

”

Z1b
5ı
“ µ15b are given by:

IE
”

Z1a
5ı
“

´

Var
”

Z1a

ı¯5{2 ´
γ13a ` 10γ11a

¯

“ γ13a ` 10γ11a

IE
”

Z1b
5ı
“

´

Var
”

Z1b

ı¯5{2 ´
γ13b ` 10γ11b

¯

“ γ13b ` 10γ11b .
(N.11.19)
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Since IE
“

Z1a
‰

“ IE
“

Z1b
‰

“ 0 and IE
”

Z1a
2ı
“ IE

”

Z1b
2ı
“ 1, Equation N.11.18 simplifies to:

IE
”

Y 5
ı

“ πa
”

σ5
a

´

γ13a ` 10γ11a
¯

` 5σ4
aµa

´

γ12a ` 3
¯

` 10σ3
aµ

2
aγ
1
1a ` 10σ2

aµ
3
a ` µ

5
a

ı

` πb

”

σ5
b

´

γ13b ` 10γ11b
¯

` 5σ4
bµb

´

γ12b ` 3
¯

` 10σ3
bµ

2
bγ
1
1b ` 10σ2

bµ
3
b ` µ

5
b

ı

.
(N.11.20)

From Equation N.3.8, the standardized fifth cumulant of Y is given by:

γ3 “
πa

”

σ5
a

`

γ13a ` 10γ11a
˘

` 5σ4
aµa

`

γ12a ` 3
˘

` 10σ3
aµ

2
aγ
1
1a ` 10σ2

aµ
3
a ` µ

5
a

ı

´

πa
`

σ2
a ` µ

2
a

˘

` πb
`

σ2
b ` µ

2
b

˘

´ rπaµa ` πbµbs
2
¯5{2

`

πb

”

σ5
b

`

γ13b ` 10γ11b
˘

` 5σ4
bµb

`

γ12b ` 3
˘

` 10σ3
bµ

2
bγ
1
1b ` 10σ2

bµ
3
b ` µ

5
b

ı

´

πa
`

σ2
a ` µ

2
a

˘

` πb
`

σ2
b ` µ

2
b

˘

´ rπaµa ` πbµbs
2
¯5{2 ´ 10γ1.

(N.11.21)

6. Standardized sixth cumulant: Using r “ 6 in Equation N.11.3 yields µ6:

IE
”

Y 6
ı

“ πa IE
”

Y 6
a

ı

` πb IE
”

Y 6
b

ı

“ πa IE
„

´

σaZ
1
a ` µa

¯6


` πb IE
„

´

σbZ
1
b ` µb

¯6


“ πa IE
”

σ6
aZ
1
a

6
` 6σ5

aµaZ
1
a

5
` 15σ4

aµ
2
aZ
1
a

4
` 20σ3

aµ
3
aZ
1
a

3

` 15σ2
aµ

4
aZ
1
a

2
` 6σaµ5

aZ
1
a ` µ

6
a

ı

` πb IE
”

σ6
bZ
1
b

6
` 6σ5

bµbZ
1
b

5
` 15σ4

bµ
2
bZ
1
b

4
` 20σ3

bµ
3
bZ
1
b

3

` 15σ2
bµ

4
bZ
1
b

2
` 6σbµ5

bZ
1
b ` µ

6
b

ı

“ πa
´

σ6
a IE

”

Z1a
6ı
` 6σ5

aµa IE
”

Z1a
5ı
` 15σ4

aµ
2
a IE

”

Z1a
4ı
` 20σ3

aµ
3
a IE

”

Z1a
3ı

` 15σ2
aµ

4
a IE

”

Z1a
2ı
` 6σaµ5

a IE
”

Z1a

ı

` µ6
a

¯

` πb

´

σ6
b IE

”

Z1b
6ı
` 6σ5

bµb IE
”

Z1b
5ı
` 15σ4

bµ
2
b IE

”

Z1b
4ı
` 20σ3

bµ
3
b IE

”

Z1b
3ı

` 15σ2
bµ

4
b IE

”

Z1b
2ı
` 6σbµ5

b IE
”

Z1b

ı

` µ6
b

¯

.

(N.11.22)

Then IE
”

Z1a
6ı
“ µ16a and IE

”

Z1b
6ı
“ µ16b are given by:

IE
”

Z1a
6ı
“

´

Var
”

Z1a

ı¯3 ´
γ14a ` 15γ12a ` 10γ11a

2
` 15

¯

“ γ14a ` 15γ12a ` 10γ11a
2
` 15

IE
”

Z1b
6ı
“

´

Var
”

Z1b

ı¯3 ´
γ14b ` 15γ12b ` 10γ11b

2
` 15

¯

“ γ14b ` 15γ12b ` 10γ11b
2
` 15.
(N.11.23)

Since IE
“

Z1a
‰

“ IE
“

Z1b
‰

“ 0 and IE
”

Z1a
2ı
“ IE

”

Z1b
2ı
“ 1, Equation N.11.22 simplifies to:

IE
”

Y 6
ı

“ πa
”
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´
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ı

.

(N.11.24)
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From Equation N.3.9, the standardized sixth cumulant of Y is given by:
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´
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2
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2
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2
´ 15.

(N.11.25)

Results from examples comparing correlation methods 1 and 2

Scenario

Correlation Type A: Poisson and NB B: NB

Strong 6 9

Moderate 7 10

Weak 8 11

Table 5: Table numbers for matrices of correlation errors.
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shadow: R Package for Geometric
Shadow Calculations in an Urban
Environment
by Michael Dorman, Evyatar Erell, Adi Vulkan, Itai Kloog

Abstract This paper introduces the shadow package for R. The package provides functions for
shadow-related calculations in the urban environment, namely shadow height, shadow footprint
and Sky View Factor (SVF) calculations, as well as a wrapper function to estimate solar radiation
while taking shadow effects into account. All functions operate on a layer of polygons with a height
attribute, also known as “extruded polygons” or 2.5D vector data. Such data are associated with
accuracy limitations in representing urban environments. However, unlike 3D models, polygonal
layers of building outlines along with their height are abundantly available and their processing does
not require specialized closed-source 3D software. The present package thus brings spatio-temporal
shadow, SVF and solar radiation calculation capabilities to the open-source spatial analysis workflow
in R. Package functionality is demonstrated using small reproducible examples for each function.
Wider potential use cases include urban environment applications such as evaluation of micro-climatic
influence for urban planning, studying urban climatic comfort and estimating photovoltaic energy
production potential.

Introduction

Spatial analysis of the urban environment (Biljecki et al., 2015) frequently requires estimating
whether a given point is shaded or not, given a representation of spatial obstacles (e.g. buildings)
and a time-stamp with its associated solar position. For example, we may be interested in -

• Calculating the amount of time a given roof or facade is shaded, to determine the utility of
installing photovoltaic cells for electricity production (e.g. Redweik et al., 2013).

• Calculating shadow footprint on vegetated areas, to determine the expected influence of a tall
new building on the surrounding microclimate (e.g. Bourbia and Boucheriba, 2010).

Such calculations are usually carried out using GIS-based models (Freitas et al., 2015), in either
vector-based 3D or raster-based 2.5D settings. Both approaches have their advantages and
limitations, as discussed in the following paragraphs.

Shadow calculations on vector-based 3D models of the urban environment are mostly restricted to
proprietary closed-source software such as ArcGIS (ESRI, 2017) or SketchUp (Google, 2017), though
recently some open-source models such as SURFSUN3D have been developed (Liang et al., 2015).
One of the drawbacks of using closed-source software in this context is the difficulty of adjusting the
software for specific needs and uncommon scenarios. This problem is especially acute in research
settings, where flexibility and extensibility are essential for exploring new computational approaches.
The other difficulty with using 3D software in urban spatial analysis concerns interoperability of file
formats. Since ordinary vector spatial data formats, such as the ESRI Shapefile, cannot represent
three-dimensional surfaces, 3D software is associated with specialized file formats. The latter cannot
be readily imported to a general-purpose geocomputational environment such as R or Python (Van
Rossum and Drake, 2011), thus fragmenting the analysis workflow. Moreover, most 3D software, such
as those mentioned above, are design-oriented, thus providing advanced visualization capabilities but
limited quantitative tools (calculating areas, angles, coordinates, etc.). Finally, true-3D databases of
large urban areas are difficult to obtain, while vector-based 2.5D databases (building outline and
height, see below) are almost universal. The advantages of true-3D software are “wasted” when
the input data are 2.5D, while the disadvantages, such as lack of quantitative procedures and data
interoperability difficulties, still remain.

Raster-based 2.5D solutions, operating on a Digital Elevation Model (DEM) raster, are much
simpler and have thus been more widely implemented in various software for several decades (Kumar
et al., 1997; Ratti and Richens, 2004). For example, raster-based shadow calculations are available in
open-source software such as the r.sun command (Hofierka and Suri, 2002) in GRASS GIS (GRASS
Development Team, 2017), the UMEP plugin (Lindberg et al., 2018) for QGIS (QGIS Development
Team, 2017) and package insol (Corripio, 2014) in R. In the proprietary ArcGIS software, raster-
based shadow calculations are provided through the Solar Analyst extension (Fu and Rich, 1999).
Thanks to this variety of tools, raster-based shadow modelling can be easily incorporated within a
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general spatial analysis workflow. However, raster-based models are more suitable for large-scale
analysis of natural terrain, rather than fine-scale urban environments, for the following reasons -

• A raster representing surface elevation, known as a DEM, at sufficiently high resolution for
the urban context, may not be available and is expensive to produce, e.g. using airborne Light
Detection And Ranging (LiDAR) surveys (e.g. Redweik et al., 2013). Much more commonly,
municipalities and other sources such as OpenStreetMap (Haklay and Weber, 2008) offer 2.5D
vector-based data on cities, i.e. polygonal layers of building outlines associated with height
attributes.

• Rasters are composed of pixels, which have no natural association to specific urban elements,
such as an individual building, thus making it more difficult to associate analysis results with
the corresponding urban elements.

• Vertical surfaces, such as building facades, are rare in natural terrain yet very common in
urban environments. Raster-based representation of facades is problematic since the latter
correspond to (vertical) discontinuities in the 2.5D digital elevation model, requiring unintuitive
workarounds (Redweik et al., 2013).

It should be noted that more specialized approaches have been recently developed to address
some of the above-mentioned difficulties, but they are usually not available as software packages
(e.g. Redweik et al., 2013; Hofierka and Zlocha, 2012).

The shadow package (Dorman, 2019) aims at addressing these limitations by introducing a simple
2.5D vector-based algorithm for calculating shadows, Sky View Factor (SVF) and solar radiation
estimates in the urban environment. The algorithms operate on a polygonal layer extruded to 2.5D,
also known as Levels-of-Detail (LoD) 1 in the terminology of the CityGML standard (Gröger and
Plümer, 2012). On the one hand, the advantages of individual urban element representation (over
raster-based approach) and input data availability (over both raster-based and full 3D approaches) are
maintained. On the other hand, the drawbacks of closed-source software and difficult interoperability
(as opposed to full 3D environment) are avoided.

As demonstrated below, functions in the shadow package operate on a vector layer of obsta-
cle outlines (e.g. buildings) along with their heights, passed as a "SpatialPolygonsDataFrame"
object defined in package sp (Bivand et al., 2013; Pebesma and Bivand, 2005). The latter makes
incorporating shadow calculations in Spatial analysis workflow in R straightforward. Functions to
calculate shadow height, shadow ground footprint, Sky View Factor (SVF) and solar radiation are
implemented in the package.

Theory

Shadow height

All functions currently included in package shadow are based on trigonometric relations in the
triangle defined by the sun’s rays, the ground - or a plane parallel to the ground - and an obstacle.

For example, shadow height at any given ground point can be calculated based on (1) sun
elevation, (2) the height of the building(s) that stand in the way of sun rays and (3) the distance(s)
between the queried point and the building(s) along the sun rays projection on the ground. Figure 1
depicts a scenario where shadow is being cast by building A onto the facade of building B, given the
solar position defined by its elevation angle αelev and azimuth angle αaz . Once the intersection point
is identified (marked with x in Figure 1), shadow height (hshadow) at the queried point (viewer)
can be calculated based on (1) sun elevation (αelev), (2) the height of building A (hbuild) and (3)
the distance (dist1) between the viewer and intersection point x (Equation P.2.1).

hshadow “ hbuild ´ dist1 ¨ tanpαelevq (P.2.1)

The latter approach can be extended to the general case of shadow height calculation at any
ground location and given any configuration of obstacles. For example, if there is more than one
obstacle potentially casting shadow on the queried location, we can calculate hshadow for each
obstacle and then take the maximum value.

Logical shadow flag

Once the shadow height is determined, we may evaluate whether any given 3D point is in shadow or
not. This is done simply by comparing the Z-coordinate (i.e. height) of the queried point with the
calculated shadow height at the same X-Y (i.e. ground) location.
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Figure 1: Shadow height calculation

Shadow footprint

Instead of calculating shadow height at a pre-specified point (e.g. the viewer in Figure 1), we can
set hshadow to zero and calculate the distance (dist2) where the shadow intersects ground level
(Equation P.2.2).

dist2 “
hbuild

tanpαelevq
(P.2.2)

Shifting the obstacle outline by the resulting distance (dist2) in a direction opposite to sun
azimuth (αaz) yields a shadow footprint outline (Weisthal, 2014). Shadow footprints are useful
to calculate the exact ground area that is shaded at specific time. For example, Figure 2 shows the
shadow footprints produced by a single building at different times of a given day.
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Figure 2: Shadow footprints cast by a building on a horizontal ground surface at hourly intervals
on 2004-06-24. The building, indicated by the gray shaded area, is located at 31.97°N
34.78°E, and is 21.38 meters tall
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Figure 3: Sky View factor calculation

Figure 4: Angular cross sections for calculating the Sky View Factor (SVF)

Sky View Factor (SVF)

The Sky View Factor (Beckers, 2013; Erell et al., 2011; Grimmond et al., 2001) is the extent of
sky observed from a point as a proportion of the entire sky hemisphere. The SVF can be calculated
based on the maximal angles (β) formed in triangles defined by the queried location and the obstacles
(Figure 3), evaluated in multiple circular cross-sections surrounding the queried location. Once the
maximal angle βi is determined for a given angular section i, SV Fi for that particular section is
defined (Gál and Unger, 2014) in Equation P.2.3.

SV Fi “ 1´ sin2
pβiq (P.2.3)

For example, in case (βi “ 45˝), as depicted in Figure 3, SV Fi is equal to -

SV Fi “ 1´ sin2
p45˝q “ 0.5

Averaging SV Fi values for all i “ 1, 2, ...,n circular cross-sections gives the final SV F estimate
for the queried location (Equation P.2.4).

SV F “

řn
i“1 SV Fi

n
(P.2.4)

The number of evaluated cross sections depends on the chosen angular resolution. For example,
an angular resolution of 5˝ means the number of cross sections is n “ 360˝{5˝ “ 72 (Figure 4).
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Solar radiation

Components

Frequently, evaluating whether a given location is shaded, and when, is just a first step towards
evaluating the amount of solar radiation for a given period of time. The annual insolation at a given
point is naturally affected by the degree of shading throughout the year, but shading is not the only
factor.

The three components of the solar radiation are the direct, diffuse and reflected radiation -

• Direct radiation refers to solar radiation traveling on a straight line from the sun to the
surface of the earth. Direct radiation can be estimated by taking into account: (1) shading,
(2) surface orientation relatively to the sun, and (3) meteorological measurements of direct
radiation on a horizontal plane or on a plane normal to the beam of sunlight.

• Diffuse radiation refers to solar radiation reaching the Earth’s surface after having been
scattered from the direct solar beam by molecules or particulates in the atmosphere. Dif-
fuse radiation can be estimated by taking into account: (1) SVF, and (2) meteorological
measurements of diffuse radiation at an exposed location.

• Reflected radiation refers to the sunlight that has been reflected off non-atmospheric obstacles
such as ground surface cover or buildings. Most urban surfaces have a low albedo: asphalt
reflects only 5-10 percent of incident solar radiation, brick and masonry 20-30 percent, and
vegetation about 20 percent. Because a dense urban neighborhood will typically experience
multiple reflections, an iterative process is required for a complete analysis. Calculating
reflected radiation requires taking into account reflective properties of the various surfaces,
their geometrical arrangement (Givoni, 1998) and their view factors from the receiving surface,
which is beyond the scope of the shadow package.

The diffuse radiation component is the dominant one on overcast days, when most radiation is
scattered, while the direct radiation component is dominant under clear sky conditions when direct
radiation reaches the earth’s surface.

Direct Normal Irradiance

Equation P.2.5 specifies the Coefficient of Direct Normal Irradiance for a vertical facade surface, as
function of solar position given by the difference between facade azimuth and sun azimuth angles,
and sun elevation angle, at time t.

θfacade,t “ cospαaz,t ´ α
1
azq ¨ cospαelev,tq (P.2.5)

In Equation P.2.5, θfacade,t is the Coefficient of Direct Normal Irradiance on a facade at time t,
αaz,t is the sun azimuth angle at time t (see Figure 1), α1az is the facade azimuth angle, i.e. the
direction where the facade is facing, and αelev,t is sun elevation angle at time t (see Figure 1). Note
that all of latter variables, with the exception of facade azimuth angle α1az , are specific for the time
interval t due to the variation in solar position.

Horizontal roof surfaces, unlike facades, are not tilted towards any particular azimuth1. Equation
P.2.5 thus simplifies to Equation P.2.6 when referring to a roof, rather than a facade, surface.

θroof ,t “ cosp90˝ ´ αelev,tq (P.2.6)

Figure 5 demonstrates the relation given in Equations P.2.5 and P.2.6 for the entire relevant
range of solar positions relative to facade or roof orientation. Again, note that for roof surfaces, the
θroof ,t coefficient is only dependent on sun elevation angle αelev,t (Equation P.2.6) as illustrated on
the right panel of Figure 5. (The code for producing Figure 5 can be found in the help page of
function coefDirect from shadow).

For example, the left panel in Figure 5 shows that maximal proportion of incoming solar radiation
(i.e. θfacade,t “ 1) on a facade surface is attained when facade azimuth is equal to sun azimuth and
sun elevation is 0 (αelev,t “ 0˝, i.e. facade directly facing the sun). Similarly, the right panel shows
that maximal proportion of solar radiation on a roof surface (i.e. θroof ,t “ 1) is attained when the
sun is at the zenith (αelev,t “ 90˝, i.e. sun directly above the roof).

Once the Coefficient of Direct Normal Irradiance θfacade,t or θroof ,t is determined, the Direct
Normal Irradiance meteorological measurement raddirect,t referring to the same time interval t,

1It should be noted that roof surfaces may be pitched rather than horizontal; however 2.5D models, which
shadow supports, can only represent horizontal roofs
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Figure 5: Coefficient of Direct Normal Irradiance, as function of solar position, expressed as the
difference between facade and sun azimuths (X-axis) and sun elevation (Y-axis). The
left panel refers to a facade, the right panel refers to a roof. Note that a horizontal
roof has no azimuth, thus the X-axis is irrelevant for the right panel and only shown
for uniformity

usually on an hourly time step, is multiplied by the coefficient at a point on the building surface
to give the local irradiation at that point (Equation P.2.7). The result rad1direct,t is the corrected
Direct Irradiance the surface receives given its orientation relative to the solar position.

rad1direct,t “ θt ¨ raddirect,t (P.2.7)

Both raddirect,t and rad1direct,t, as well as raddiffuse,t, rad1diffuse,t (Equation P.2.8) and
rad1total (Equation P.2.9) (see below), are given for each time interval t in units of power per unit
area, such as kWh{m2.

Diffuse Horizontal Irradiance

Moving on to discussing the second component in the radiation balance, the diffuse irradiance.
Diffuse irradiance is given by the meteorological measurement of Diffuse Horizontal Irradiance
raddiffuse,t, which needs to be corrected for the specific proportion of viewed sky given surrounding
obstacles expressed by SV F . Assuming isotropic contribution (Freitas et al., 2015), rad1diffuse,t is
the corrected diffuse irradiance the surface receives (Equation P.2.8). Note that SV F is unrelated
to solar position; it is a function of the given configuration of the queried location and surrounding
obstacles, and is thus invariable for all time intervals t.

rad1diffuse,t “ SV F ¨ raddiffuse,t (P.2.8)

Total irradiance

Finally, the direct and diffuse radiation estimates are summed for all time intervals t to obtain the
total (e.g. annual) insolation for the given surface rad1total (Equation P.2.9). The sum refers to
n intervals t “ 1, 2, ...,n, commonly n “ 24ˆ 365 “ 8, 760 when referring to an annual radiation
estimate using an hourly time step.

rad1total “
n
ÿ

t“1
rad1direct,t `

n
ÿ

t“1
rad1diffuse,t (P.2.9)

Package structure

The shadow package contains four “low-level” functions, one “high-level” function, and several
“helper functions”.

The “low-level” functions calculate distinct aspects of shading, and the SVF -

• shadowHeight - Calculates shadow height
• inShadow - Determines a logical shadow flag (in shadow or not)
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Function Location Obstacles Sun Pos. Output

shadowHeight Points (2D) / Raster Polygons Matrix Numeric matrix / Raster

inShadow Points (2D/3D) / Raster Polygons Matrix Logical matrix / Raster

shadowFootprint - Polygons Matrix Polygons

SVF Points (2D/3D) / Raster Polygons - Numeric vector / Raster

Table 1: Inputs and outputs for main functions in package shadow

• shadowFootprint - Calculates shadow footprint
• SVF - Calculates the SVF

Table 1 gives a summary of the (main) input and output object types for each of the “low-level”
functions. The following list clarifies the exact object classes referenced in the table -

• The queried locations points (e.g. the viewer point in Figure 1) can be specified in several
ways. Points ("SpatialPoints*") can be either 2D, specifying ground locations, or 3D2 -
specifying any location on the ground or above ground. Alternatively, a raster ("Raster*")
can be used to specify a regular grid of ground locations. Note that the shadow height
calculation only makes sense for ground locations, as height above ground is what the function
calculates, so it is not applicable for 3D points

• The obstacle polygons are specified as a "SpatialPolygonsDataFrame" object having a
height attribute ("extrusion" height) given in the same units as the layer Coordinate Reference
System (CRS), usually meters. Geographic coordinates (long/lat) are not allowed because
these units are meaningless for specifying height

• Solar position matrix is given as a "matrix" object, where the first column specifies sun
azimuth angle and the second column specifies sun elevation angle. Both angles should be
given in decimal degrees, where -

– sun azimuth (e.g. αaz in Figure 1) is measured clockwise relative to North, i.e North
= 0˝, East = 90˝, South = 180˝, West = 270˝

– sun elevation (e.g. αelev in Figure 1) is measured relatively to a horizontal surface, i.e.
sun on the horizon = 0˝, sun at its zenith = 90˝

• The output of shadowHeight and inShadow is a numeric or logical "matrix", respectively,
where rows represent locations and columns represent solar positions. The output of
shadowFootprint is a polygonal layer of footprints. The output of SVF is a numeric vector
where values correspond to locations. All functions that can accept a raster of ground locations
return a corresponding raster of computed values

The “high-level” function radiation is a wrapper around inShadow and SVF for calculating direct
and diffuse solar radiation on the obstacle surface area (i.e. building roofs and facades). In addition
to the geometric layers and solar positions, this function also requires meteorological measurements
of direct and diffuse radiation at an unobstructed weather station. The shadow package provides a
sample Typical Meteorological Year (TMY) dataset tmy to illustrate the usage of the radiation
function (see below). Similar TMY datasets were generated for many areas (e.g. Pusat et al., 2015)
and are generally available from meteorological agencies, or from databases for building energy
simulation such as EnergyPlus (?).

Finally, the shadow package provides several “helper functions” which are used internally by
“low-level” and “high-level” functions, but can also be used independently -

2The third dimension of 3D points has to be specified using three-dimensional coordinates, rather than a
"height" attribute in a 2D point layer (see Examples section)
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• classifyAz - Determines the azimuth where the perpendicular of a line segment is facing;
used internally to classify facade azimuth

• coefDirect - Calculates the Coefficient of Direct Normal Irradiance reduction (Equations
P.2.5 and P.2.6)

• plotGrid - Makes an interactive plot of 3D spatial points. This is a wrapper around
scatterplot3js from package threejs (Lewis, 2017)

• ray - Creates a spatial line between two given points
• shiftAz - Shifts spatial features by azimuth and distance
• surfaceGrid - Creates a 3D point layer with a grid which covers the facades and roofs of

obstacles
• toSeg - Splits polygons or lines to segments

The following section provides a manual for using these functions through a simple example with
four buildings.

Examples

In this section we demonstrate the main functionality of shadow, namely calculating -

• Shadow height (function shadowHeight)
• Logical shadow flag (function inShadow)
• Shadow footprint (function shadowFootprint)
• Sky View Factor (function SVF)
• Solar radiation (function radiation)

Before going into the examples, we load the shadow package. Package sp is loaded automatically
along with shadow. Packages raster (Hijmans, 2017) and rgeos (Bivand and Rundel, 2017) are used
throughout the following code examples for preparing the inputs and presenting the results, so they
are loaded as well.

> library(shadow)
> library(raster)
> library(rgeos)

In the examples, we will use a small real-life dataset representing four buildings in Rishon-Le-Zion,
Israel (Figure 6), provided with package shadow and named build.

The following code section also creates a hypothetical circular green park located 20 meters to
the north and 8 meters to the west from the buildings layer centroid (hereby named park).

> location = gCentroid(build)
> park_location = shift(location, y = 20, x = -8)
> park = gBuffer(park_location, width = 12)

The following expressions visualize the build and park layers as shown in Figure 6. Note that
the build layer has an attribute named BLDG_HT specifying the height of each building (in meters),
as shown using text labels on top of each building outline.

> plot(build, col = "lightgrey")
> text(gCentroid(build, byid = TRUE), build$BLDG_HT)
> plot(park, col = "lightgreen", add = TRUE)

Shadow height

The shadowHeight function calculates shadow height(s) at the specified point location(s), given a
layer of obstacles and solar position(s). The shadowHeight function, as well as other functions that
require a solar position argument such as inShadow, shadowFootprint and radiation (see below),
alternatively accept a time argument instead of the solar position. In case a time (time) argument is
passed instead of solar position (solar_pos), the function internally calculates solar position using
the lon/lat of the location layer centroid and the specified time, using function solarpos from
package maptools (Bivand and Lewin-Koh, 2017).
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Figure 6: Sample data: a buildings layer and a green park layer. Text labels express building
height in meters.

In the following example, we would like to calculate shadow height at the centroid of the buildings
layer (build) on 2004-12-24 at 13:30:00. First we create the queried points layer (location), in this
case consisting of a single point: the build layer centroid. This is our layer of locations where we
would like to calculate shadow height.

> location = gCentroid(build)

Next we need to specify the solar position, i.e. sun elevation and azimuth, at the particular time
and location (31.967°N 34.777°E), or let the function calculate it automatically based on the time.
Using the former option, we can figure out solar position using function solarpos from package
maptools. To do that, we first define a "POSIXct" object specifying the time we are interested in -

> time = as.POSIXct(
+ x = "2004-12-24 13:30:00",
+ tz = "Asia/Jerusalem"
+ )

Second, we find the longitude and latitude of the point by reprojecting it to a geographic CRS3.

> location_geo = spTransform(
+ x = location,
+ CRSobj = "+proj=longlat +datum=WGS84"
+ )

Finally, we use the solarpos function to find solar position, given longitude, latitude and time -

> library(maptools)
> solar_pos = solarpos(
+ crds = location_geo,
+ dateTime = time
+ )

We now know the sun azimuth (208.7°) and elevation (28.8°) -

> solar_pos

#> [,1] [,2]
#> [1,] 208.7333 28.79944

Given the solar position along with the layer of obstacles build, shadow height in location can
be calculated using the shadowHeight function, as follows -

3Note that calculating solar position is the only example where lon/lat coordinates are needed when
working with shadow. All other spatial inputs are required to be passed in a projected CRS, due to the fact
that obstacles height is meaningless to specify in lon/lat degree units
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Figure 7: Shadow height (m) at a single point (indicated by black ` symbol)

> h = shadowHeight(
+ location = location,
+ obstacles = build,
+ obstacles_height_field = "BLDG_HT",
+ solar_pos = solar_pos
+ )

The resulting object contains the shadow height value of 19.86 meters -

> h

#> [,1]
#> [1,] 19.86451

The second (shorter) approach is letting the function calculate solar position for us, in which
case we can pass just the spatial layers and the time, without needing to calculate solar position
ourselves -

> shadowHeight(
+ location = location,
+ obstacles = build,
+ obstacles_height_field = "BLDG_HT",
+ time = time
+ )

#> [,1]
#> [1,] 19.86451

The results of both approaches are identical. The first approach, where solar position is manually
defined, takes more work and thus may appear unnecessary. However, it is useful for situations
when we want to use specific solar positions from an external data source, or to evaluate arbitrary
solar positions that cannot be observed in the queried location in real life.

Either way, the resulting object h is a "matrix", though in this case it only has a single row and
a single column. The shadowHeight function accepts location layers with more than one point, in
which case the resulting "matrix" will have additional rows. It also accepts more than one solar
position or time value (see below), in which case the resulting "matrix" will have additional columns.
It is thus possible to obtain a matrix of shadow height values for a set of locations in a set of times.

Figure 7 illustrates how the shadow height calculation was carried out. First, a line of sight
is drawn between the point of interest and the sun direction based on sun azimuth (shown as a
yellow line). Next, potential intersections are detected (marked with + symbols). Finally, shadow
height induced by each intersection is calculated based on the distance towards intersection, sun
elevation and intersected building height (see Figure 1). The final result is the maximum of the
per-intersection heights.

The procedure can be readily expanded to calculate a continuous surface of shadow heights, as
the shadowHeight function also accepts "Raster*" objects (package raster). The raster serves as
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Figure 8: Shadow height (m) surface, and an individual shadow height value (indicated by black
` symbol at the center of the image)

a template, defining the grid where shadow height values will be calculated. For example, in the
following code section we create such a template raster covering the examined area plus a 50-meter
buffer on all sides, with a spatial resolution of 2 meters -

> ext = as(extent(build) + 50, "SpatialPolygons")
> r = raster(ext, res = 2)
> proj4string(r) = proj4string(build)

Now we can calculate a shadow height raster by simply replacing the location argument with
the raster r -

> height_surface = shadowHeight(
+ location = r,
+ obstacles = build,
+ obstacles_height_field = "BLDG_HT",
+ solar_pos = solar_pos,
+ parallel = 5
+ )

The result (height_surface), in this case, is not a matrix - it is a shadow height surface (a
"RasterLayer" object) of the same spatial dimensions as the input template r. Note that unshaded
pixels get an NA shadow height value, thus plotted in white (Figure 8). Also note the partial shadow
on the roof of the north-eastern building (top-right) caused by the neighboring building to the
south-west.

The additional parallel=5 argument splits the calculation of raster cells among 5 processor
cores, thus making it faster. A different number can be specified, depending the number of available
cores. Behind the scenes, parallel processing relies on the parallel package (R Core Team, 2018).

Shadow (logical)

Function shadowHeight, introduced in the previous section, calculates shadow height for a given
ground location. In practice, the metric of interest is very often whether a given 3D location is in
shade or not. Such a logical flag can be determined by comparing the Z-coordinate (i.e. the height)
of the queried point with the calculated shadow height at the same X-Y location. The inShadow
function is a wrapper around shadowHeight for doing that.

The inShadow function gives the logical shadow/non-shadow classification for a set of 3D points.
The function basically calculates shadow height for a given unique ground location (X-Y), then
compares it with the elevation (Z) of all points in that location. The points which are positioned
“above” the shadow are considered non-shaded (receiving the value of FALSE), while the points which
are positioned “below” the shadow are considered shaded (receiving the value of TRUE).
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The 3D points we are interested in when doing urban analysis are usually located on the surface
of elements such as buildings. The surfaceGrid helper function can be used to automatically
generate a grid of such surface points. The inputs for this function include the obstacle layer for
which to generate a surface grid and the required grid resolution. The returned object is a 3D point
layer.

For example, the following expression calculates a 3D point layer named grid covering the build
surface at a resolution of 2 meters -

> grid = surfaceGrid(
+ obstacles = build,
+ obstacles_height_field = "BLDG_HT",
+ res = 2
+ )

The resulting grid points are associated with all attributes of the original obstacles each surface
point corresponds to, as well as six new attributes -

• obs_id - Unique consecutive ID for each feature in obstacles
• type - Either "facade" or "roof"
• seg_id - Unique consecutive ID for each facade segment (only for “facade” points)
• xy_id - Unique consecutive ID for each ground location (only for “facade” points)
• facade_az - The azimuth of the corresponding facade, in decimal degrees (only for “facade”

points)

In this case, the resulting 3D point grid has 2,693 features, starting with "roof" points -

> head(grid)

#> build_id BLDG_HT obs_id type seg_id xy_id facade_az
#> 1 722 22.49 3 roof NA NA NA
#> 2 722 22.49 3 roof NA NA NA
#> 3 722 22.49 3 roof NA NA NA
#> 4 722 22.49 3 roof NA NA NA
#> 5 722 22.49 3 roof NA NA NA
#> 6 722 22.49 3 roof NA NA NA

Then going through the "facade" points -

> tail(grid)

#> build_id BLDG_HT obs_id type seg_id xy_id facade_az
#> 19610 831 19.07 4 facade 74 44 100.2650
#> 19710 831 19.07 4 facade 75 45 123.6695
#> 19810 831 19.07 4 facade 75 46 123.6695
#> 19910 831 19.07 4 facade 75 47 123.6695
#> 20010 831 19.07 4 facade 75 48 123.6695
#> 20110 831 19.07 4 facade 75 49 123.6695

Printing the coordinates confirms that, indeed, grid is a 3D point layer having three-dimensional
coordinates where the third dimension h represents height above ground -

> head(coordinates(grid))

#> x1 x2 h
#> 1 667882.9 3538086 22.5
#> 2 667884.9 3538086 22.5
#> 3 667886.9 3538086 22.5
#> 4 667888.9 3538086 22.5
#> 5 667890.9 3538086 22.5
#> 6 667892.9 3538086 22.5

Once the 3D grid is available, we can evaluate whether each point is in shadow or not, at the
specified solar position(s), using the inShadow wrapper function -

> s = inShadow(
+ location = grid,
+ obstacles = build,
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+ obstacles_height_field = "BLDG_HT",
+ solar_pos = solar_pos
+ )

The resulting object s is a "logical" matrix with rows corresponding to the grid features and
columns corresponding to the solar positions. In this particular case a single solar position was
evaluated, thus the matrix has just one column -

> dim(s)

#> [1] 2693 1

The scatter3D function from package plot3D (Soetaert, 2017) is useful for visualizing the result.
In the following code section, we use two separate scatter3D function calls to plot the grid with
both variably colored filled circles (yellow or grey) and constantly colored (black) outlines.

> library(plot3D)
> scatter3D(
+ x = coordinates(grid)[, 1],
+ y = coordinates(grid)[, 2],
+ z = coordinates(grid)[, 3],
+ theta = 55,
+ colvar = s[, 1],
+ col = c("yellow", "grey"),
+ pch = 16,
+ scale = FALSE,
+ colkey = FALSE,
+ cex = 1.1
+ )
> scatter3D(
+ x = coordinates(grid)[, 1],
+ y = coordinates(grid)[, 2],
+ z = coordinates(grid)[, 3],
+ theta = 55,
+ col = "black",
+ pch = 1,
+ lwd = 0.1,
+ scale = FALSE,
+ colkey = FALSE,
+ cex = 1.1,
+ add = TRUE
+ )

The output is shown in Figure 9. It shows the 3D grid points, along with the inShadow
classification encoded as point color: grey for shaded surfaces, yellow for sun-exposed surfaces.

Shadow footprint

The shadowFootprint function calculates the geometry of shadow projection on the ground. The
resulting footprint layer can be used for various applications. For example, a shadow footprint layer
can be used to calculate the proportion of shaded surface in a defined area, or to examine which
obstacles are responsible for shading a given urban element.

In the following example, the shadowFootprint function is used to determine the extent of
shading on the hypothetical green park (Figure 6) at different times of day. First, let us consider a
single time instance of 2004-06-24 09:30:00. At this particular time and geographical location, the
solar position is at an azimuth of 88.8° and at an elevation of 46.7° -

> time2 = as.POSIXct(
+ x = "2004-06-24 09:30:00",
+ tz = "Asia/Jerusalem"
+ )
> solar_pos2 = solarpos(
+ crds = location_geo,
+ dateTime = time2
+ )
> solar_pos2
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Figure 9: Buildings surface points in shadow (grey) and in direct sunlight (yellow) on 2004-12-24
13:30:00

#> [,1] [,2]
#> [1,] 88.83113 46.724

The following expression calculates the shadow footprint for this particular solar position.

> footprint = shadowFootprint(
+ obstacles = build,
+ obstacles_height_field = "BLDG_HT",
+ solar_pos = solar_pos2
+ )

The resulting object footprint is a polygonal layer ("SpatialPolygonsDataFrame" object)
which can be readily used in other spatial calculations. For example, the footprint and park polygons
can be intersected to calculate the proportion of shaded park area within total park area, as follows.

> park_shadow = gIntersection(park, footprint)
> shade_prop = gArea(park_shadow) / gArea(park)
> shade_prop

#> [1] 0.3447709

The numeric result shade_prop gives the proportion of shaded park area, 0.34 in this case (Figure
10).

The shadow footprint calculation can also be repeated for a sequence of times, rather than a
single one, to monitor the daily (monthly, annual, etc.) course of shaded park area proportion. To
do that, we first need to prepare the set of solar positions in the evaluated dates/times. Again,
this can be done using function solarpos. For example, the following code creates a matrix named
solar_pos_seq containing solar positions over the 2004-06-24 at hourly intervals -

> time_seq = seq(
+ from = as.POSIXct("2004-06-24 03:30:00", tz = "Asia/Jerusalem"),
+ to = as.POSIXct("2004-06-24 22:30:00", tz = "Asia/Jerusalem"),
+ by = "1 hour"
+ )
> solar_pos_seq = solarpos(
+ crds = location_geo,
+ dateTime = time_seq
+ )
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Figure 10: Shaded park proportion on 2004-06-24 09:30:00

Note that the choice of an hourly interval is arbitrary. Shorter intervals (e.g. 30 mins) can be
used for increased accuracy.

To calculate the shaded park proportion at each time step we can loop over the solar_pos_seq
matrix, each time -

• Calculating shadow footprint
• Intersecting the shadow footprint with the park outline
• Calculating the ratio of intersection and total park area

The code of such a for loop is given below.

> shadow_props = rep(NA, nrow(solar_pos_seq))
> for(i in 1:nrow(solar_pos_seq)) {
+ if(solar_pos_seq[i, 2] < 0) shadow_props[i] = 1 else {
+ footprint =
+ shadowFootprint(
+ obstacles = build,
+ obstacles_height_field = "BLDG_HT",
+ solar_pos = solar_pos_seq[i, , drop = FALSE]
+ )
+ park_shadow = gIntersection(park, footprint)
+ if(is.null(park_shadow))
+ shadow_props[i] = 0
+ else
+ shadow_props[i] = gArea(park_shadow) / gArea(park)
+ }
+ }

The loop creates a numeric vector named shadow_props. This vector contains shaded proportions
for the park in agreement with the times we specified in time_seq. Note that two conditional
statements are being used to deal with special cases -

• Shadow proportion is set to 1 (i.e. maximal) when sun is below the horizon
• Shadow proportion is set to 0 (i.e. minimal) when no intersections are detected between the

park and the shadow footprint

Plotting shadow_props as function of time_seq (Figure 11) summarizes the daily course of
shaded park proportion on the 2004-06-24. The individual value of 0.34 which we have calculated
for 09:30 in the previous example (Figure 10) is highlighted in red.

Sky View Factor

The SVF function can be used to estimate the SVF at any 3D point location. For example, the
following expression calculates the SVF on the ground4 at the centroid of the build layer (Figure 4).

4Recall (Table 1) that the inShadow and SVF functions accept either 2D or 3D points, whereas 2D points
are treated as ground locations
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Figure 11: Shaded park proportion at each hourly time step on 2004-06-24

> s = SVF(
+ location = location,
+ obstacles = build,
+ obstacles_height_field = "BLDG_HT"
+ )

The resulting SVF is 0.396, meaning that about 39.6% of the sky area are visible (Figure 12)
from this particular location.

> s

#> [1] 0.3959721

Note that the SVF function has a tuning parameter named res_angle which can be used to
modify angular resolution (default is 5˝, as shown in Figure 4). A smaller res_angle value will give
more accurate SVF but slower calculation.

Given a “template” grid, the latter calculation can be repeated to generate a continuous surface
of SVF estimates for a grid of ground locations. In the following code section we calculate an SVF
surface using the same raster template with a resolution of 2 meters from the shadow height example
(see above).

> svf_surface = SVF(
+ location = r,
+ obstacles = build,
+ obstacles_height_field = "BLDG_HT",
+ parallel = 5
+ )

Note that the parallel=5 option is used once again to make the calculation run simultaneously
on 5 cores. The resulting SVF surface is shown in Figure 12. As could be expected, SVF values are
lowest in the vicinity of buildings due to their obstruction of the sky.

Solar radiation

Shadow height, shadow footprint and SVF can be considered as low-level geometric calculations.
Frequently, the ultimate aim of an analysis is the estimation of insolation, which is dependent on
shadow and SVF but also on surface orientation and meteorological solar radiation conditions. Thus,
the low-level geometric calculations are frequently combined and wrapped with meteorological solar
radiation estimates to take the geometry into account when evaluating insolation over a given time
interval. The shadow package provides this kind of wrapper function named radiation.

The radiation function needs several parameters to run -

• 3D points grid representing surfaces where the solar radiation is evaluated. It is important
to specify whether each grid point is on a "roof" or on a "facade", and the azimuth it is facing
(only for "facade"). A grid with those attributes can be automatically produced using the
surfaceGrid function (see above)

• Obstacles layer defined with obstacles, having an obstacles_height_field attribute (see
above)

• Solar positions defined with solar_pos (see above)
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Figure 12: Sky View Factor (SVF) surface, with SVF value for an individual point (indicated
by black ` symbol at the center of the image)

• Meteorological estimates defined with solar_normal and solar_diffuse, corresponding
to the same time intervals given by solar_pos

Given this set of inputs, the radiation function:

• calculates whether each grid surface point is in shadow or not, for each solar position
solar_pos, using the inShadow function (Equation P.2.1),

• calculates the Coefficient of Direct Normal Irradiance reduction, for each grid surface point
at each solar position solar_pos, using the coefDirect function (Equations P.2.5 and P.2.6),

• combines shadow, the coefficient and the meteorological estimate solar_normal to calculate
the direct radiation (Equation P.2.7),

• calculates the SVF for each grid surface point, using the SVF function (Equations P.2.3 and
P.2.4),

• combines the SVF and the meteorological estimate solar_diffuse to calculate the diffuse
radiation (Equation P.2.8)

• and calculates the sums of the direct, diffuse and total (i.e. direct+diffuse) solar radiation
per grid surface point for the entire period (Equation P.2.9).

To demonstrate the radiation function, we need one more component not used in the previous
examples: the reference solar radiation data. The shadow package comes with a sample Typical
Meteorological Year (TMY) dataset named tmy that can be used for this purpose. This dataset
was compiled for the same geographical area where the buildings are located, and therefore can be
realistically used in our example.

The tmy object is a data.frame with 8,760 rows, where each row corresponds to an hourly interval
over an entire year (24ˆ 365 “ 8, 760). The attributes given for each hourly interval include solar
position (sun_az, sun_elev) and solar radiation measurements (solar_normal, solar_diffuse).
Both solar radiation measurements are given in W {m2 units.

> head(tmy, 10)

#> time sun_az sun_elev solar_normal solar_diffuse dbt ws
#> 1 1999-01-01 01:00:00 66.73 -70.94 0 0 6.6 1.0
#> 2 1999-01-01 02:00:00 82.02 -58.68 0 0 5.9 1.0
#> 3 1999-01-01 03:00:00 91.00 -45.99 0 0 5.4 1.0
#> 4 1999-01-01 04:00:00 98.13 -33.32 0 0 4.9 1.0
#> 5 1999-01-01 05:00:00 104.81 -20.86 0 0 4.4 1.0
#> 6 1999-01-01 06:00:00 111.73 -8.76 0 6 4.8 1.0
#> 7 1999-01-01 07:00:00 119.41 2.91 118 24 7.3 1.0
#> 8 1999-01-01 08:00:00 128.39 13.30 572 45 11.2 1.0
#> 9 1999-01-01 09:00:00 139.20 22.46 767 57 16.0 1.0
#> 10 1999-01-01 10:00:00 152.33 29.63 809 66 16.3 2.1
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The Direct Normal Irradiance (solar_normal) is the amount of solar radiation received per unit
area by a surface that is always held normal to the incoming rays from the sun’s current position in
the sky. This is an estimate of maximal direct radiation, obtained on an optimally tilted surface.
The Diffuse Horizontal Irradiance (solar_diffuse) is the amount of radiation received per unit area
at a surface that has not arrived on a direct path from the sun, but has been scattered by molecules
and particles in the atmosphere. This is an estimate of diffuse radiation.

To use the solar positions from the tmy dataset, we create a separate matrix with just the sun_az
and sun_elev columns -

> solar_pos = as.matrix(tmy[, c("sun_az", "sun_elev")])

The first few rows of this matrix are -

> head(solar_pos)

#> sun_az sun_elev
#> 2 66.73 -70.94
#> 3 82.02 -58.68
#> 4 91.00 -45.99
#> 5 98.13 -33.32
#> 6 104.81 -20.86
#> 7 111.73 -8.76

Now we have everything needed to run the radiation function. We are hereby using the same
grid layer with 3D points covering the roofs and facades of the four buildings created above using
the surfaceGrid function (Figure 9), the layer of obstacles, and the solar position and measured
solar radiation at a reference weather station from the tmy table.

> rad = radiation(
+ grid = grid,
+ obstacles = build,
+ obstacles_height_field = "BLDG_HT",
+ solar_pos = solar_pos,
+ solar_normal = tmy$solar_normal,
+ solar_diffuse = tmy$solar_diffuse,
+ parallel = 5
+ )

The returned object rad is a data.frame with the summed direct, diffuse and total (i.e. di-
rect+diffuse) solar radiation estimates, as well as the SVF, for each specific surface location in grid.
Summation takes place over the entire period given by solar_pos, solar_normal and solar_diffuse.
In the present case it is an annual insolation. The units of measurement are therefore Wh{m2

summed over an entire year.
For example, the following printout -

> head(rad)

#> svf direct diffuse total
#> 1 0.9999875 1242100 473334.1 1715434
#> 2 0.9999830 1242100 473332.0 1715432
#> 3 0.9999778 1242100 473329.5 1715429
#> 4 0.9999685 1242100 473325.1 1715425
#> 5 0.9999538 1242099 473318.2 1715417
#> 6 0.9999396 1242099 473311.4 1715411

refers to the first six surface points which are part of the same roof, thus sharing similar annual
solar radiation estimates. Overall, however, the differences in insolation are very substantial among
different locations on the buildings surfaces, as shown in Figure 13. For example, the roofs receive
about twice as much direct radiation as the south-facing facades. The code for producing Figure 13,
using function scatter3D (see Figure 9), can be found on the help page of the radiation function
and is thus omitted here to save space. Note that the figure shows radiation estimates in kWh{m2

units, i.e. the values from the rad table (above) divided by 1000.
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Figure 13: Annual direct, diffuse and total radiation estimates per grid point (kWh{m2). Note
that the Y-axis points to the north. Also note that the color scale range is different
in each panel.
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Discussion

The shadow package introduces a simple geometric model for shadow-related calculations in an urban
environment. Specifically, the package provides functions for calculating shadow height, shadow
footprint and SVF. The latter can be combined with TMY data to estimate insolation on built
surfaces. It is, to the best of our knowledge, the only R package aimed at shadow calculations in a
vector-based representation of the urban environment. It should be noted that the insol package
provides similar functionality for a raster-based environment, but the latter is more suitable for
modelling large-scale natural environments rather than detailed urban landscapes.

The unique aspect of our approach is that calculations are based on a vector layer of polygons
extruded to a given height, known as 2.5D, such as building footprints with a height attribute.
The vector-based 2.5D approach has several advantages over the two commonly used alternative
ones: vector-based 3D and raster-based models. Firstly, the availability of 2.5D input data is much
greater compared to both specialized 3D models and high-resolution raster surfaces. Building layers
for entire cities are generally available from various sources, ranging from local municipality GIS
systems to global crowd-sourced datasets (e.g. OpenStreetMap) (Haklay and Weber, 2008). Secondly,
processing does not require closed-source software, or interoperability with complex specialized
software, as opposed to working with 3D models. Thirdly, results are easily associated back to the
respective urban elements such as buildings, parks, roofs facades, etc., as well as their attributes,
via a spatial join operation (e.g. using function over in R package sp). For example, we can easily
determine which building is responsible for shading the green park in the above shadow footprint
example (Figure 10). This is unlike a raster-based approach, where the input is a continuous surface
with no attributes, thus having no natural association to individual urban elements or objects.

However, it should be noted that the 2.5D vector-based approach requires several assumptions
and has some limitations. When the assumptions do not hold, results may be less accurate compared
to the above-mentioned alternative approaches. For example, it is impossible to represent geometric
shapes that are not a simple extrusion in 2.5D (though, as mentioned above, urban surveys providing
such detailed data are not typically available). An ellipsoid tree, a bridge with empty space
underneath, a balcony extruding outwards from a building facade, etc., can only be represented with
a polyhedral surface in a full vector-based 3D environment (Gröger and Plümer, 2012; Biljecki et al.,
2016). Recently, classes for representing true-3D urban elements, such as the Simple Feature type
POLYHEDRALSURFACE, have been implemented in R package sf (Pebesma, 2018). However, functions
for working with those classes, such as calculating 3D-intersection, are still lacking. Implementing
such functions in R could bring new urban analysis capabilities to the R environment in the future,
in which solar analysis of 3D city models probably comprises a major use case (Biljecki et al., 2015).

It should also be noted that a vector-based calculation may be generally slower than a raster
based calculation. This becomes important when the study area is very large. Though the present
algorithms can be optimized to some extent, they probably cannot compete with raster-based
calculations where sun ray intersections can be computed using fast ray-tracing algorithms based
on matrix input (Amanatides et al., 1987), as opposed to computationally intensive search for
intersections between a line and a polygonal layer in a vector-based environment. For example,
calculating the SVF surface shown in Figure 12 requires processing 72 angular sections × 3,780 raster
cells = 272,160 SVF calculations, which takes about 7.3 minutes using five cores on an ordinary
desktop computer (Intel® Core™ i7-6700 CPU @ 3.40GHz × 8). The annual radiation estimate
shown in Figure 13 however takes about 3.9 hours to calculate, as it requires SVF calculation
for 2,693 grid points, as well as 727 ground locations × 8,760 hours = 6,368,520 shadow height
calculations.

To summarize, the shadow package can be used to calculate shadow, SVF and solar radiation in
an urban environment using widely available polygonal building data, inside the R environment (e.g.
Vulkan et al., 2018). Potential use cases include urban environment applications such as evaluation
of micro-climatic influence for urban planning, studying urban well-being (e.g. climatic comfort) and
estimating photovoltaic energy production potential.
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Integration of networks and pathways
with StarBioTrek package
by Claudia Cava and Isabella Castiglioni

Abstract High-throughput genomic technologies bring to light a comprehensive hallmark of molec-
ular changes of a disease. It is increasingly evident that genes are not isolated from each other
and the identification of a gene signature can only partially elucidate the de-regulated biological
functions in a disease. The comprehension of how groups of genes (pathways) are related to each
other (pathway-cross talk) could explain biological mechanisms causing diseases. Biological pathways
are important tools to identify gene interactions and decrease the large number of genes to be studied
by partitioning them into smaller groups. Furthermore, recent scientific studies have demonstrated
that an integration of pathways and networks, instead of a single component of the pathway or a
single network, could lead to a deeper understanding of the pathology.

StarBioTrek is an R package for the integration of biological pathways and networks which
provides a series of functions to support the user in their analyses. In particular, it implements
algorithms to identify pathways cross-talk networks and gene network drivers in pathways. It is
available as open source and open development software in the Bioconductor platform.

Introduction

In recent years new genomic technologies have made possible to define new marker gene signatures
(Desmedt et al., 2009; Parker et al., 2009; Cava et al., 2014b). However, gene expression-based
signatures present some constraints because they do not consider metabolic role of the genes and
are affected by genetic heterogeneity across patient cohorts (Cava et al., 2015; Donato et al., 2013).

Pathway analysis can help the researchers in the identification of the biological roles of candidate
genes exceeding these limitions (Folger et al., 2011). Indeed, considering the activity of entire
biological pathways rather than the expression levels of individual genes can charactherize the whole
tissue. In particular, there are several methods in computations and data used to perform the
pathway analyses. They can be characterized in two different levels: gene-sets and pathway topology
(García-Campos et al., 2015). Indeed, the existing tools integrating pathway data can be grouped
into these groups based on the pathway definition.

In the first group we can include the tools that are based on gene sets definition as simple lists of
biological molecules, in which the listed components share a common biological role. In this group,
for example, we can include CoRegNet and Gene Set Enrichment Analysis (GSEA). CoRegNet
reconstructs a co-regulatory network from gene expression profiles integrating, also, regulatory
interactions, such as transcription factor binding site and ChIP data, presenting some analyses to
identify master regulators of a given set of genes (Nicolle et al., 2015). One of the first and most
popular methods is GSEA (Subramanian et al., 2005) that uses a list of ranked genes based on
their differential gene expression between two labels. It then evaluates their distribution on a priori
defined set of genes, thus generating an enrichment score (ES) for each set of genes.

In contrast, tools based on pathway topology do not only contain the components of a pathway
but also describe the interactions between them. However, these methods still analyze the pathways
as independent from each other and not considering the influence that a pathway can exert over
another. In this second group we can include analysis methods that take into account the topological
structure of a pathway, such as NetPathMiner, ToPASeq, and XGR. NetPathMiner (Mohamed et al.,
2014) implements methods for the construction of various types of genome scale networks for network
path mining. It generates a network representation from a pathway file supporting metabolic
networks. Since the network is generated, the network edges can be weighted using gene expression
data (e.g., Pearson correlation). Using machine learning methods and Markov mixture models,
the pathways can be classified or clustered based on their association with a response label. The
ToPASeq package implements seven different methods covering broad aspects for topology-based
pathway analysis of RNA-seq data (Ihnatova and Budinska, 2015). With respect to other tools,
XGR (Fang et al., 2016) is designed for enhanced interpretation of genomic data generating also
SNP-modulated gene networks and pathways. However, compared to our tool, the others are not
focused on the pathway cross-talk analyses.

In line with this scenario given the few methods focused on the pathway cross-talk network, the
development of new methodologies to measure pathway activity and cross-talk among pathways
integrating also the information of networks and gene expression data (e.g., TCGA data) could lead
to a deeper knowledge of the pathology.
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Furthermore, functional pathway representation attributes the same functional significance
to each gene without considering the impact of gene interactions in performing that function.
What kinds of interactions are there among genes in functional pathways? Specifically, biological
system interactions are composed of multiple layers of dynamic interaction networks (Cantini et al.,
2015). These dynamic networks can be decomposed, for example, into: co-expression, physical,
co-localization, genetic, pathway, and shared protein domains.

We developed a series of algorithms (see (Cava et al., 2018; Colaprico et al., 2015; Cava et al.,
2016)), implemented in StarBioTrek package able to work on all levels of the pathway analysis.

Starting from the gene expression data of two groups of samples (e.g., normal vs. disease), such
algorithms aim at building a pathway cross-talk model by attributing a score for each pairwise
pathway. Several scores are implemented in the tool using the gene expression levels inside the
pathways. The interacting pathways are filtered considering pathways that are able to classify better
the two groups of samples. In addition, the genes inside the pathways can be weighted defining
key network drivers in the pathways as those gene drivers that are highly connected in biological
networks.

In summary, StarBioTrek package proposes an approach that integrates knowledge on the func-
tional pathways and multiple gene-gene (protein-protein) interactions into gene selection algorithms.
The challenge is to identify more stable biomarker signatures, which are also more easily interpretable
from a biological perspective. The integration of biological networks and pathways can also give
further hypotheses of the mechanisms of driver genes.

Package organization

StarBioTrek makes accessible data of biological pathways and networks in order to perform analyses
without having to navigate and access different web-based databases, without the need to download
data, and by integrating and locally processing the full data sets in a short time. Specifically, it
allows the users to: i) query and download biological pathways and networks from several repositories
such as KEGG, Reactome and GeneMANIA(Zuberi et al., 2013; Cava et al., 2017; Franz et al., 2018)
importing several functions from graphite (Sales et al., 2012), and harmonize annotations for genes
and proteins (query/ download/ annotation harmonization); (ii) integrate pathways and biological
networks with a series of implemented algorithms.

Get data

Pathway and network data

The functions of StarBioTrek import a large amount of data (e.g., biological pathways and networks).
Specifically, the function pathwayDatabases can easily query some features of interest of the user

such as species or specific pathway database from graphite (Sales et al., 2012). Then, the function
GetData imports the selected data.

> library(graphite)
> pathwayDatabases()
species database

1 athaliana kegg
2 athaliana pathbank
3 athaliana reactome
4 btaurus kegg
5 btaurus reactome
6 celegans kegg
7 celegans reactome
8 cfamiliaris kegg
9 cfamiliaris reactome
10 dmelanogaster kegg
11 dmelanogaster reactome
12 drerio kegg
13 drerio reactome
14 ecoli kegg
15 ecoli pathbank
16 ggallus kegg
17 ggallus reactome
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18 hsapiens biocarta
19 hsapiens humancyc
20 hsapiens kegg
21 hsapiens nci
22 hsapiens panther
23 hsapiens pathbank
24 hsapiens pharmgkb
25 hsapiens reactome
26 hsapiens smpdb
27 mmusculus kegg
28 mmusculus pathbank
29 mmusculus reactome
30 rnorvegicus kegg
31 rnorvegicus pathbank
32 rnorvegicus reactome
33 scerevisiae kegg
34 scerevisiae pathbank
35 scerevisiae reactome
36 sscrofa kegg
37 sscrofa reactome
38 xlaevis kegg
> path <- GetData(species="hsapiens", pathwaydb="kegg")

Since the user selected the data of interest, the function GetPathData allows us to obtain a list
of genes grouped by functional role:

> pathwayALLGENE <- GetPathData(path_ALL=path[1:3])
[1] "Downloading............. Glycolysis / Gluconeogenesis 1 of 3 pathways"
[1] "Downloading............. Citrate cycle (TCA cycle) 2 of 3 pathways"
[1] "Downloading............. Pentose phosphate pathway 3 of 3 pathways"

The function ConvertedIDgenes will converter the gene nomenclature (e.g., ENTREZ ID) to
Gene Symbol.

> pathway <- ConvertedIDgenes(path_ALL=path[1:10])

The function getNETdata of StarBioTrek imports biological networks from GeneMANIA. The
biological networks can be selected among physical interactions, co-localization, genetic interactions,
pathways, and shared protein domain networks. Furthermore, it supports 9 species ( Arabidopsis
thaliana, Caenorhabditis elegans, Danio rerio, Drosophila melanogaster, Escherichia coli, Homo
sapiens, Mus musculus, Rattus norvegicus, and Saccharomyces cerevisiae); for default it considers
Homo sapiens. Specifically, the function call

> netw <- getNETdata(network="SHpd")
[1]"genemania.org/data/current/Homo_sapiens/Shared_protein_domains.INTERPRO.txt n.1 of 2"
[1]"genemania.org/data/current/Homo_sapiens/Shared_protein_domains.PFAM.txt n.2 of 2"
[1]"Preprocessing of the network n. 1 of 2"
[1]"Preprocessing of the network n. 2 of 2"

imports biological networks (i.e., shared protein domains interactions from INTERPRO and
PFAM databases) for Homo sapiens. Otherwise, the user can select one of the 9 species or
using the following parameters the user can select different network types: PHint for Physical
interactions, COloc for Co-localization, GENint for Genetic interactions, PATH for Pathway, and SHpd
for Shared protein domains. Finally, StarBioTrek provides the functions for the harmonization
of gene nomenclature in the pathways and biological networks. Biological data are processed for
downstream analyses mapping Ensembl Gene ID to gene symbols. Figure 1 shows an overview of
network types supported by StarBioTrek with the function getNETdata.

Analysing pathways

Starting from a gene expression matrix (DataMatrix), StarBioTrek groups the gene expression levels
according to their biological roles in pathways for each sample.

> listpathgene <- GE_matrix(DataMatrix=tumo[,1:2], genes.by.pathway=pathway[1:10])
> str(listpathgene)
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Figure 1: Network overview. Number of sources for network data. Barplot is divided by
species: AT: Arabidopsis thaliana, CE: Caenorhabditis elegans, DR: Danio rerio, DM:
Drosophila melanogaster, EC: Escherichia coli, HS: Homo sapiens, MM: Mus musculus,
RN: Rattus norvegicus, SC: Saccharomyces cerevisiae, and by network type: COexp:
Co-expression, PHint: Physical interactions, COloc: Co-localization, GENint: Genetic
interactions, PATH: Pathway, SHpd: Shared protein domains

List of 2
$ Cell_cycle :'data.frame': 114 obs. of 2 variables:
..$ TCGA-E9-A1RC-01A: num [1:114] 4218 695 4231 7029 1211 ...
..$ TCGA-BH-A0B1-01A: num [1:114] 3273 692 6733 6468 1290 ...
$ p53_signaling pathway:'data.frame': 64 obs. of 2 variables:
..$ TCGA-E9-A1RC-01A: num [1:64] 989 1614 1592 3456 900 ...
..$ TCGA-BH-A0B1-01A: num [1:64] 816 1274 1770 3190 405 ...

This function allows the user to have in a short time the gene expression levels grouped by
pathways.

Pathway summary indexes

As described in Cava et al. (2014a) there are different measures to summarize the expression levels
of each pathway, such as the mean:

> score_mean <- average(pathwayexpsubset=listpathgene)

or standard deviation:

> score_stdev <- stdv(gslist=listpathgene)

Dissimilarity distances: Pathway cross-talk indexes

Dissimilarity distances have been proved useful in many application fields. Recent studies (Cava
et al., 2013, 2014c) used with success dissimilarity representation among patients, considering the
expression levels of individual genes. To our knowledge, dissimilarity representation is not used
in pathway-based expression profiles. Our goal is to give a dissimilarity representation, which
can express, through a function D(x,y), the dissimilarity between two pathways x and y, such as
Euclidean distance between pairs of pathways:

> scoreeucdistat <- eucdistcrtlk(dataFilt=Data_CANCER_normUQ_fil,
pathway_exp=pathway[1:10])

or discriminating score (Colaprico et al., 2015):

> crosstalkstdv <- dsscorecrtlk(dataFilt=Data_CANCER_normUQ_fil,
pathway_exp=pathway[1:10])
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Integration data

Integration between pathways and networks from GeneMANIA

Biological pathways can involve a large number of genes that are not equivocally relevant for a
functional role in the cell. Therefore, the integration of network and pathway-based methods can
boost the power to identify the key genes in the pathways.

The function takes as arguments: a list of pathways as obtained by the function ConvertedIDgenes
and the networks as obtained by the function getNETdata.

> listanetwork <- pathnet(genes.by.pathway=pathway[1:10], data=netw)

It creates a network of interacting genes for each pathway. The output of the function is a
selection of interacting genes according to the network N in a pathway P , namely a list with two
columns where on the same row there are the two interacting genes.

The function listpathnet takes as inputs the output obtained by the function pathnet and the
pathways as obtained by the function ConvertedIDgenes:

> listpath <- listpathnet(lista_net=listanetwork, pathway=pathway[1:10])

creating a list of vectors for each pathway containing only genes that have at least one interaction
with other genes belonging to the pathway.

Integration between pathways and networks from protein-protein interaction

The function GetPathNet allows us to obtain a list of interacting genes (protein-protein interactions
from graphite package) for each pathway:

> pathwaynet <- GetPathNet(path_ALL=path[1:3])

using as its argument the output obtained by GetData.

Analyzing networks and pathways: implemented algorithms

Pathway cross-talk network

The first algorithm implemented in StarBioTrek explores a pathway cross-talk network from gene
expression data to better understand the underlying pathological mechanism. The algorithm
generates a network of pathways that shows a different behavior between two groups of samples
(i.e., normal vs. disease).

Specifically,

# get pathways from KEGG database
path <- GetData(species="hsapiens", pathwaydb="kegg")
pathway <- ConvertedIDgenes(path_ALL=path)

# create a measure of pathway cross-talk (i.e., Euclidean distance) between pairwise
# of pathways starting from gene expression data (i.e.TCGA) with in the columns the
# samples and in the rows the genes
scoreeucdistat <- eucdistcrtlk(dataFilt=Data_CANCER_normUQ_fil, pathway=pathway)

# split samples' TCGA ID into normal and tumor groups
tumo <- SelectedSample(Dataset=Data_CANCER_normUQ_fil, typesample="tumour")
norm <- SelectedSample(Dataset=Data_CANCER_normUQ_fil, typesample="normal")

# divide the dataset in 60/100 for training and 40/100 for testing
nf <- 60

# a support vector machine is applied
res_class <- svm_classification(TCGA_matrix=scoreeucdistat[1:10,], nfs=nf,

normal=colnames(norm), tumour=colnames(tumo))
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Since the AUC values are obtained for each pair of pathways, they can be ranked in order to
obtain the pathway cross-talk interactions able to classify the two classes (i.e. normal vs. tumor
samples) with the best performance. Such selection can be done considering AUC values:

cutoff=0.80
er <- res_class[res_class[,1]>cutoff, ]

The outputs are the only pathway interactions that are obtained with AUC values ą 0.80. The
implemented algorithm was used in (Colaprico et al., 2015) and (Cava et al., 2016) to screen pathway
cross-talk associated to breast cancer.

The pseudocode of the implemented algorithm is summarized below.
Data: 1) a matrix of gene expression data (TCGA data). The samples are in the columns

and the genes in the rows; 2) a matrix where the pathways are in the columns and the
genes inside the pathways are in the rows

Result: pathway interactions that are able to classify two groups of samples with the best
performances

Being a and b two pathways in a set of pathways P ;
for all nodes(a,b) in P do

a score distance between the nodes a and b;
if AUC > cut-off then

keep (a,b) as edge;
else

remove (a,b) as edge;
end

end
Algorithm 1: Algorithm implemented in (Colaprico et al., 2015) and (Cava et al., 2016)

Driver genes for each pathway

Here, we propose an algorithm for the integrative analysis of networks and pathways. Our method
is inspired on a well-validated method (the GANPA/LEGO) (Fang et al., 2012; Dong et al., 2016),
based on the hypothesis that if one gene is functionally connected in the pathway with more genes
than those expected (according to the functional networks), has a key role in that pathway. The
algorithm, an extension of the GANPA/LEGO method, defines driver genes in a pathway if they are
highly connected in a biological network.

The function

IPPI(patha=pathway_matrix[,1:10], netwa=netw_IPPI)

is used to identify driver genes for each pathway. The inputs of the function are pathways and
network data. It calculates the degree centrality values of genes inside the network and the degree
centrality of genes inside pathways.
The pseudocode of the implemented algorithm is summarized below.

Data: 1) a matrix where the pathways are in the columns and the genes inside the pathways
are in the rows; 2) a data frame where the nodes are presented in the columns and the
rows represent the edges

Result: a list of genes with high degree centrality for each pathway
Being (i P N) & (i P P ) where P is a vector containing the genes inside a pathway of size k
and N is an indirect graph of size m;
for all nodes i in N do

calculate the degree centrality diN ;
end
for all nodes i in P do

calculate the degree centrality diP , being the neighbors of i, ing P P ;
end
Calculate degree centrality expected diE in P
if diE < diP / kp then

iÐÝpotential gene drivers of P ;
else

iÐÝ i` 1;
end

Algorithm 2: Algorithm implemented in (Cava et al., 2018)
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In the first step, given the gene i within the network N with m genes, the function computes
the degree centrality diN as the number of neighbor genes belonging to N to which the gene i is
directly connected.

In the second step, given gene i within the pathway P with k genes, the function then computes
the degree centrality diP considering only the relations among gene i and the other genes in the
networks belonging to pathway P . Overall, by combining the information of the network N within
the pathway P , is obtained a selection of interacting genes according to the network N .

Then, the function computes the degree centrality expected diE by supposing equal probability
for the existence of edges between nodes (diN {m “ diE/k). Thus, diE = diN xk{m.

The function characterizes a gene as a ’network driver’ in the pathway P , when diP of involving
gene, normalized to the size of the pathway (k), is higher than diE , diP /k ą diE .

The speculation is that if one gene is functionally linked (according to the functional network)
with more genes in the pathway than expected, its function is central in that pathway.

The function IPPI was used in (Cava et al., 2018) to find driver genes in the pathways that are
also de-regulated in a pan-cancer analysis.

Visualization

StarBioTrek presents several functions for the preparation to the visualization of gene-gene inter-
actions and pathway cross-talk using the qgraph package (Epskamp et al., 2012). The function
plotcrosstalk prepares the data:

> formatplot <- plotcrosstalk(pathway_plot=pathway[1:6],gs_expre=tumo)

It computes a Pearson correlation between the genes (according to a gene expression matrix,
such as tumor) in which each gene is grouped in a gene set given by the user (e.g., pathway). Each
gene is presented in a gene set if it is involved univocally in that gene set.

The functions of qgraph

> library(qgraph)
> qgraph(formatplot[[1]], minimum = 0.25, cut = 0.6, vsize = 5, groups = formatplot[[2]],

legend = TRUE, borders = FALSE, layoutScale=c(0.8,0.8))

and

> qgraph(formatplot[[1]], groups=formatplot[[2]], layout="spring", diag = FALSE,
cut = 0.6, legend.cex = 0.5, vsize = 6, layoutScale=c(0.8,0.8))

show the network with different layouts. The graphical output of the functions are presented
in the Figure 2 and Figure 3. The color of interactions indicates the type of correlation: green
edges are positive correlations and red edges are negative correlations. The thickness of the edge is
proportional to the strength of correlation.

The outputs of the functions that compute the pairwise distance metrics can be easily used with
heatmap plotting libraries such as heatmap or pheatmap as reported in the Figure 4.

Furthermore, the function circleplot of StarBioTrek implemented using the functions of GOplot
(Walter et al., 2015) provides a visualization of driver genes (with a score indicating the role of genes
in that pathway), as reported in Figure 5.

> formatplot <- plotcrosstalk(pathway_plot=pathway[1:6], gs_expre=tumo)
> score <- runif(length(formatplot[[2]]), min=-10, max=+10)
> circleplot(preplot=formatplot, scoregene=score)

Case studies

In this section we will present two case studies for the usage of the StarBioTrek package. In particular,
the first case study uses the first implemented algorithm reported above to identify pathway cross-talk
network. The second case study uses the second implemented algorithm to identify gene drivers for
each pathway.
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Figure 2: Graphical output of the function plotcrosstalk and qgraph with layout 1

Figure 3: Graphical output of the function plotcrosstalk and qgraph with layout 2
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Figure 4: Heatmap of pathway cross-talk. Each row represent a distance metric between two
pathways (the pathways are seperated by an underscore). The columns represent the
samples.

Figure 5: Circleplot of pathway cross-talk.The figure shows the relation between gene drivers
and pathways. The pathways are represented with different colours. The intensity of
colour of each block of genes is based on the score.
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Figure 6: The computational approach. The matrix of gene expression data (samples in the
columns and genes in the rows) is the input of our algorithm. The samples are grouped
in two classes (e.g., normal vs. tumor). In the first step a matrix score is generated
using all pairwise combinations of pathways. In the second step the score matrix is
used as input for SVM classification. The pathway interactions with the best AUC
performances are selected.

Pathway cross-talk network in breast cancer

Starting from gene expression data of breast cancer samples and normal samples we grouped 15243
genes in pathways according to their functional role in the cell. Pathway data were derived from the
function call:

path <- GetData(species="hsapiens", pathwaydb="kegg")
pathway <- ConvertedIDgenes(path_ALL=path)

For each pair of pathways we calculated a discriminating score as a measure of cross-talk. This
measure can be used considering e.g. the pathways enriched with differentially expressed genes.

crosstalkscore <- dsscorecrtlk(dataFilt=Data_CANCER_normUQ_fil,
pathway_exp=pathway[1:10])

Discriminating score is given by |M1-M2|/S1+S2 where M1 and M2 are means and S1 and S2
standard deviations of expression levels of genes in a pathway 1 and in a pathway 2. In order to
identify the best pathways for breast cancer classification (breast cancer vs. normal) we implemented
a Support Vector Machine. We divided the original dataset in training data set (60/100) and the
rest of original data in the testing set (40/100). In order to validate the classifier, we used a k-fold
cross-validation (k “ 10) obtaining Area Under the Curve (AUC).

tumo <- SelectedSample(Dataset=Data_CANCER_normUQ_fil, typesample="tumour")
norm <- SelectedSample(Dataset=Data_CANCER_normUQ_fil, typesample="normal")
nf <- 60
res_class <- svm_classification(TCGA_matrix=crosstalkscore, nfs=nf,

normal=colnames(norm), tumour=colnames(tumo))

Ranking AUC values obtained we selected the pathway cross-talk network with the best AUC.
The approach of the algorithm is shown in Figure 6.

Gene network drivers in pathways

In the second case study, we downloaded KEGG pathways

path <- GetData(species="hsapiens",pathwaydb="kegg")
pathway <- ConvertedIDgenes(path_ALL=path)

and network data for different network types from GeneMANIA
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Figure 7: The computational approach. The first step involves a network N (e.g. physical
interaction) of size m and for each gene, i in N the algorithm calculates its degree
centrality, DC (diN ). The second step involves a set of functional pathways (e.g.
pathway P ) and for each gene i, the DC (diP ) is calculated using the information on
interacting genes from N . For the speculation of equal probability for existing edges
between nodes, the algorithm computes the expected DC of gene i in the pathway
P . If the DC observed for the gene i (diP ) is higher than expected (diP expected), i
could be a potential driver in the pathway P

# for Physical interactions
netw <- getNETdata(network="PHint")

# for Co-localization
netw <- getNETdata(network="COloc")

# for Genetic interactions
netw <- getNETdata(network="GENint")

# for Pathway interactions
netw <- getNETdata(network="PATH")

# for Shared_protein_domains
netw <- <getNETdata(network="SHpd")

We processed the data obtained by the function getNETdata in order to obtain a data format
supported by the function IPPI. The function IPPI was applied for each of the 5 network types.

We obtained that genes with genetic interaction found the lowest number of potential gene
network drivers. On the other hand, the network that includes proteins with shared protein domains
found the highest number of potential driver genes. Finally, we defined a gene as a “network driver”
in the pathway, when in at least two networks one gene is functionally connected in the pathway
with more genes than those expected (according to the two networks).

The approach is shown in Figure 7.

Conclusions

We have described StarBioTrek, an R package for the integrative analysis of biological networks and
pathways. The package supports the user during the import and data analysis of data. StarBioTrek
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implements two algorithms: i) the identification of gene network drivers in the pathways; ii) the
building of pathway cross talk network.
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ciuupi: An R package for Computing
Confidence Intervals that Utilize
Uncertain Prior Information
by Rheanna Mainzer and Paul Kabaila

Abstract We have created the R package ciuupi to compute confidence intervals that utilize
uncertain prior information in linear regression. Unlike post-model-selection confidence intervals, the
confidence interval that utilizes uncertain prior information (CIUUPI) implemented in this package
has, to an excellent approximation, coverage probability throughout the parameter space that is
very close to the desired minimum coverage probability. Furthermore, when the uncertain prior
information is correct, the CIUUPI is, on average, shorter than the standard confidence interval
constructed using the full linear regression model. In this paper we provide motivating examples of
scenarios where the CIUUPI may be used. We then give a detailed description of this interval and
the numerical constrained optimization method implemented in R to obtain it. Lastly, using a real
data set as an illustrative example, we show how to use the functions in ciuupi.

Introduction

Suppose that y “ Xβ ` ε is a random n-vector of responses, X is a known nˆ p matrix with
linearly independent columns, β is an unknown parameter p-vector and ε „ Np0, σ2 Inq, where σ2 is
unknown. Let a be a specified nonzero p-vector and suppose that the parameter of interest is θ “ aJβ.
We refer to the model y “ Xβ` ε as the “full” model and the confidence interval for θ based on this
model as the “standard” confidence interval. It is often the case that applied statisticians want to
utilize uncertain prior information in their analysis. This uncertain prior information may arise from
previous experience, scientific background or expert opinion. For example, a common assumption
in a factorial experiment is that higher order interaction terms are equal to zero. We consider the
uncertain prior information that τ “ cJβ´ t “ 0, where c is a specified nonzero p-vector that is
linearly independent of a and t is a specified number. Our interest lies in computing (within a
reasonable amount of time) a confidence interval for θ, with minimum coverage probability 1´ α,
that utilizes the uncertain prior information that τ “ 0.

One could incorporate uncertain prior information in statistical inference using a Bayesian
approach. In other words, a 1´ α credible interval for θ could be constructed using an informative
prior distribution for τ . However, the ciuupi package uses a frequentist approach to utilize the
uncertain prior information that τ “ 0. Utilizing uncertain prior information in frequentist inference
has a distinguished history, which includes Hodges and Lehmann (1952), Pratt (1961), Stein (1962),
Cohen (1972), Bickel (1984), Kempthorne (1983, 1987, 1988), Casella and Hwang (1983, 1987),
Goutis and Casella (1991), Tseng and Brown (1997), and Efron (2006).

The standard confidence interval has the desired coverage probability throughout the parameter
space. However, it does not utilize the uncertain prior information that τ “ 0. One may attempt to
utilize this uncertain prior information by carrying out a preliminary hypothesis test of the null
hypothesis τ “ 0 against the alternative hypothesis τ ‰ 0. This attempt is based on the following
two hopes. Firstly, if the prior information is correct then this test will lead to a confidence interval
that is narrower than the standard confidence interval. Secondly, if this prior information happens
to be incorrect then this test will effectively lead to the standard confidence interval. Unfortunately,
this attempt fails miserably because, for certain values of a, c and X, this post-model-selection
confidence interval has minimum coverage probability far below 1´ α (see e.g. Kabaila and Giri,
2009b), making it unacceptable.

Kabaila and Giri (2009a) proposed a family of confidence intervals, with minimum coverage
probability 1´ α, that utilize the uncertain prior information that τ “ 0 as follows. This family
of confidence intervals have expected length that is less than the expected length of the standard
interval when the prior information is correct and maximum (over the parameter space) expected
length that is not too much larger than the expected length of the standard confidence interval. In
addition, these confidence intervals have the same expected length as the standard confidence interval
when the data strongly contradict the prior information. The admissibility result of Kabaila et al.
(2010) implies that a confidence interval with the desired minimum coverage probability and expected
length that is less than that of the standard confidence interval when the prior information is correct,
must have an expected length that exceeds that of the standard interval for some parameter values.

Unfortunately, computing these confidence intervals is quite time consuming. Furthermore, there
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is no existing R package to compute these confidence intervals. Thus, if one wants to compute the
confidence interval proposed by Kabaila and Giri (2009a) and originally computed using MATLAB
programs, they may have to write their own programs to do so. The time and skill required to write
such programs present large barriers to the use of this confidence interval in applied statistics.

? (?, Appendix A) described the family of confidence intervals proposed by Kabaila and Giri
(2009a) when σ2 is known. Each confidence interval in this family is specified by a different tradeoff
between its performance when the prior information is correct and its performance when this prior
information happens to be incorrect. ? (?) then specified an attractive tradeoff that leads to a
unique confidence interval. This interval and its coverage probability and expected length properties
can now be easily and quickly computed using the R package ciuupi.

This confidence interval has the following three practical applications. Firstly, if σ2 has been
accurately estimated from previous data, as in the factorial experiment example described later,
then it may be treated as being effectively known. Secondly, for n´ p sufficiently large (n´ p ě 30,
say), if we replace the assumed known value of σ2 by its usual estimator in the formula for the
confidence interval then the resulting interval has, to a very good approximation, the same coverage
probability and expected length properties as when σ2 is known. Thirdly, some more complicated
models (including those considered by ?, ?) can be approximated by the linear regression model
with σ2 known when certain unknown parameters are replaced by estimates.

The only information needed to assess the coverage probability and expected length of the
confidence interval that utilizes uncertain prior information (CIUUPI) are the values of a, c, X and
1´ α. We stress that this assessment does not use the observed response y. Indeed, if we want to
choose between the CIUUPI and some other confidence interval, such as the standard confidence
interval, then this choice must be made prior to any examination of the observed response y.

In this paper we provide motivating examples of scenarios where this confidence interval may be
used. We then describe, in detail, the CIUUPI computed by the ciuupi package and the numerical
constrained optimization method implemented to obtain it. We contrast and compare the CIUUPI
with a 1´ α credible interval for θ constructed using an informative prior distribution for τ . Lastly,
instructions on how to use the functions in ciuupi are given, using a real data set, from a factorial
experiment, as an illustrative example. We hope that, by making ciuupi freely available, statisticians
who have uncertain prior information of the type that we specify and wish to utilize it will be
encouraged to use the CIUUPI instead of the potentially misleading post-model-selection confidence
interval.

Motivating examples

The following motivating examples are provided by Kabaila and Giri (2013). These are examples of
scenarios where the ciuupi package may be used to find a confidence interval for the parameter of
interest θ that utilizes the uncertain prior information that τ “ 0.

• Pooling of normal means. Suppose that yi “ β1 ` εi for i “ 1, . . . ,n1 and yi “ β1 ` β2 ` εi
for i “ n1 ` 1, . . . ,n1 ` n2, where the εi’s are independent and identically distributed (i.i.d.)
Np0, σ2

q. The parameter of interest is θ “ β1 and we have uncertain prior information that
τ “ β2 “ 0.

• One-way analysis of variance for two treatments. Suppose that yij “ βi ` εij for i “ 1, 2 and
j “ 1, . . . ,ni, where the εi’s are i.i.d. Np0, σ2

q. The parameter of interest is θ “ β1 and we
have uncertain prior information that τ “ β1 ´ β2 “ 0.

• A 2k factorial experiment with two or more replicates. The parameter of interest θ is a specified
contrast. For factorial experiments it is commonly believed that higher order interactions are
negligible. Suppose that the uncertain prior information is that the highest order interaction
is zero.

• One-way analysis of covariance with two treatments and normal errors. The parameter of
interest θ is the difference in expected responses for the two treatments, for a specified value
of the covariate. The uncertain prior information is that the hypothesis of ‘parallellism’ is
satisfied.

• Polynomial regression. Suppose that yi “ β1 ` β2 xi ` ¨ ¨ ¨ ` βp x
p´1
i ` εi for i “ 1, . . . ,n,

where the εi’s are i.i.d. Np0, σ2
q. The parameter of interest θ is the expected response

for a specified value of the explanatory variable x. The uncertain prior information is that
τ “ βp “ 0.

• Linear regression with at least one interaction term. The parameter of interest θ is a given
linear combination of the regression parameters. The uncertain prior information is that a
specified interaction term is 0.
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In addition to the above examples, ? have used the ciuupi package to aid in the computation of
a confidence interval that utilizes uncertain prior information in the following more complicated
scenario that arises in the analysis of both clustered and longitudinal data. Suppose that yij “
β0 ` β1 xij ` β2 xi ` ηi ` εit for i “ 1, . . . ,N and j “ 1, . . . , J , where xi “ J´1 řJ

j“1 xij , the ηi’s
are i.i.d. Np0, σ2

ηq, and the εij ’s are i.i.d. Np0, σ2
εq. The parameter of interest is θ “ β1 and we

have uncertain prior information that τ “ β2 “ 0.

The confidence interval that utilizes uncertain prior information
computed by ciuupi

Let pβ “ pXJXq´1 XJ y, the least squares estimator of β. Then pθ “ aJ pβ and pτ “ cJ pβ´ t are the
least squares estimators of θ and τ , respectively. Now let vθ “ Varppθq{σ2

“ aJpXJXq´1a and vτ “
Varppτq{σ2

“ cJpXJXq´1c. The known correlation between pθ and pτ is ρ “ aJpXJXq´1c{pvθ vτ q
1{2.

Let γ “ τ{pσ v
1{2
τ q, a scaled version of τ , and pγ “ pτ{pσ v

1{2
τ q, an estimator of γ. Assume that σ2 is

known.
The confidence interval that utilizes uncertain prior information about τ has the form

CIpb, sq “
”

pθ´ v
1{2
θ σ b ppγq ´ v

1{2
θ σ s ppγq , pθ´ v

1{2
θ σ b ppγq ` v

1{2
θ σ s ppγq

ı

, (T.3.1)

where b : R Ñ R is an odd continuous function and s : R Ñ R is an even continuous fuc-
tion. In addition, bpxq “ 0 and spxq “ z1´α{2 for all |x| ě 6, where the quantile za is defined
by P pZ ď zaq “ a for Z „ Np0, 1q. The functions b and s are fully specified by the vector
pbp1q, bp2q, . . . , bp5q, sp0q, sp1q, . . . , sp5qq as follows. By assumption, bp0q “ 0, pbp´1q, bp´2q, . . . , bp´5qq
“ p´bp1q,´bp2q, . . . ,´bp5qq and psp´1q, . . . , sp´5qq “ psp1q, . . . , sp5qq. The values of bpxq and spxq
for any x P r´6, 6s are found by cubic spline interpolation for the given values of bpiq and spiq for
i “ ´6,´5, . . . , 0, 1, . . . , 5, 6. The functions b and s are computed such that CIpb, sq has minimum
coverage probability 1´ α and the desired expected length properties. This numerical computation
method is described in detail in the next section. Note that the functions b and s are computed
assuming that σ2 is known.

As stated in the introduction, for n´ p sufficiently large (n´ p ě 30, say), if we replace the
assumed known value of σ2 by pσ2

“ py´X pβqJpy´X pβq{pn´ pq in the formula for CIpb, sq then the
resulting interval has, to a very good approximation, the same coverage probability and expected
length properties as when σ2 is known. In ciuupi, if no value of σ2 is supplied then the user is given
the option of replacing σ2 by pσ2, with a warning that n´ p needs to be sufficiently large (n´ p ě 30,
say).

Numerical constrained optimization method used to compute the vector
pbp1q, bp2q, . . . , bp5q, sp0q, sp1q, . . . , sp5qq

Let

kpxq “ Ψ
´

bpxq ´ spxq, bpxq ` spxq; ρ px´ γq , 1´ ρ2
¯

and

k:pxq “ Ψ
´

´z1´α{2, z1´α{2; ρ px´ γq , 1´ ρ2
¯

,

where Ψp`,u ; µ, σ2
q “ P p` ď Z ď uq for Z „ Npµ, σ2

q. A computationally convenient expression
for the coverage probability of CIpb, sq is

CP pγ; b, s, ρq “ 1´ α`
ż 6

0

´

kpxq ´ k:pxq
¯

φpx´ γq `
´

kp´xq ´ k:p´xq
¯

φpx` γq dx, (T.3.2)

where φ denotes the Np0, 1q pdf. This coverage probability depends on the unknown parameter γ,
the functions b and s, the known correlation ρ and the desired minimum coverage probability 1´ α.
Giri (2008) has shown that CP pγ; b, s, ρq is an even function of γ.

Define the scaled expected length of CIpb, sq to be the expected length of CIpb, sq divided by
the expected length of the standard 1´ α confidence interval, given by

”

pθ´ z1´α{2 v
1{2
θ σ, pθ` z1´α{2 v

1{2
θ σ

ı

. (T.3.3)
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This scaled expected length of CIpb, sq is given by

SELpγ; s, ρq “ 1` 1
z1´α{2

ż 6

´6

´

spxq ´ z1´α{2

¯

φ px´ γq dx.

This scaled expected length depends on the unknown parameter γ, the function s, the known
correlation ρ and the desired minimum coverage probability 1´ α. Giri (2008) has shown that
SELpγ; s, ρq is an even function of γ.

We compute the functions b and s such that CIpb, sq has minimum coverage probability 1´ α
and the desired expected length properties as follows. For given λ P r0,8q, we minimize the objective
function

pSEL pγ “ 0; s, ρq ´ 1q ` λ
ż 8

´8

pSELpγ; s, ρq ´ 1q dγ, (T.3.4)

with respect to the vector
`

bp1q, bp2q, . . . , bp5q, sp0q, sp1q, . . . , sp5q
˘

, subject to the coverage constraint
CP pγq ě 1´ α for all γ. Equivalently, minimize the objective function

ξ pSELpγ “ 0; s, ρq ´ 1q ` p1´ ξq
ż 8

´8

pSELpγ; s, ρq ´ 1q dγ (T.3.5)

subject to this constraint, where ξ “ 1{p1` λq. A computationally convenient formula for the
objective function (T.3.4) is

2
z1´α{2

ż 6

0

´

sphq ´ z1´α{2

¯

pλ` φphqq dh. (T.3.6)

Since we are minimizing this objective function, we can leave out the constant at the front of the
integral.

When λ is large, this numerical computation recovers the standard confidence interval (T.3.3)
for θ. As λ decreases towards 0, this computation puts increasing weight on achieving a small
value of SELpγ “ 0; s, ρq, i.e. an improved confidence interval performance when the uncertain
prior information that τ “ 0 is correct. However, as λ decreases, maxγ SELpγ; s, ρq increases, i.e.
the performance of the confidence interval when the prior information happens to be incorrect is
degraded. Following ?, we choose λ such that the “gain” when the prior information is correct, as
measured by

1´ pSEL pγ “ 0; s, ρqq2 , (T.3.7)
is equal to the maximum possible “loss” when the prior information happens to be incorrect, as
measured by

ˆ

max
γ

SEL pγ; s, ρq
˙2
´ 1. (T.3.8)

We denote this value of λ by λ˚. Our computational implementation of the constraint CP pγq ě 1´α
for all γ is to require that CP pγq ě 1´ α for all γ P t0, 0.05, 0.1, . . . , 8u. By specifying constraints
on the coverage probability CP pγq for such a fine grid of nonnegative values of γ, we ensure that, to
an exceedingly good approximation, CP pγ; b, s, ρq ě 1´ α for all values of γ.

In summary, we compute the vector
`

bp1q, bp2q, . . . , bp5q, sp0q, sp1q, . . . , sp5q
˘

by minimizing
(T.3.6), where λ is chosen such that (T.3.7) = (T.3.8), subject to the constraints CP pγ; b, s, ρq ě 1´α
for all γ P t0, 0.05, 0.1, . . . , 8u. Once pbp1q, bp2q, . . . , bp5q, sp0q, sp1q, . . . , sp5qq has been computed in
this way, we can easily compute the confidence interval that utilizes the uncertain prior information
(CIUUPI) for observed response y.

This constrained optimization procedure is carried out using the slsqp function in the nloptr
package (see Johnson, 2014). Perhaps surprisingly, the large number of constraints on the coverage
probability CP pγ; b, s, ρq is handled well by the slsqp function. The integrals in (T.3.2) and (T.3.6)
are computed as follows. For greater accuracy, each integral is split into a sum of six integrals, with
lower and upper endpoints consisting of successive knots. Each of these integrals is then computed
using Gauss Legendre quadrature with five nodes. Gauss Legendre quadrature was found to be both
faster and more accurate than the R function integrate. This quadrature is carried out using the
gauss.quad function in the statmod package (see Smyth, 2005).

A comparison of the CIUUPI with a Bayesian interval estimator

Kabaila and Dharmarathne (2015) compare Bayesian and frequentist interval estimators for θ in the
linear regression context considered in this paper when σ2 is unknown. They find that the Bayesian
and frequentist interval estimators differ substantially. In this section we compare a 1´ α credible
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interval for θ with the CIUUPI, assuming that σ2 is known.
For ease of comparison of the CIUUPI with a credible interval, we re-express the regression

sampling model as follows. Let the nˆ p matrix rX be obtained from X using the transformation
described in Appendix B of Kabaila and Dharmarathne (2015). The attractive property of rX is that

p rXJ rXq´1
“

¨

˚

˚

˚

˚

˚

˝

V 0

0 Ip´2

˛

‹

‹

‹

‹

‹

‚

, where V “

¨

˚

˚

˚

˚

˚

˝

1 ρ

ρ 1

˛

‹

‹

‹

‹

‹

‚

.

We re-express the regression sampling model as ry “ rX

»

–

ϑ, γ, χJ

fi

fl

J

` rε, where ry “ y{σ, rε “ ε{σ

and ϑ “ θ{pσ v
1{2
θ q. Obviously, rε „ Np0, Inq. Let ppϑ, pγ, pχq denote the least squares estimator of

pϑ, γ, χq. Note that pϑ “ pθ{pσ v
1{2
θ q. Clearly, ppϑ, pγq has a bivariate normal distribution with mean

pϑ, γq and covariance matrix V and, independently, pχ „ Npχ, Ip´2q. Dividing the endpoints of the
CIUUPI by σ v1{2

θ , we obtain the following confidence interval for ϑ:
”

pϑ´ bppγq ´ sppγq, pϑ´ bppγq ` sppγq
ı

, (T.4.1)

where the functions b and s have been obtained using the constrained optimization described in the
previous section.

The uncertain prior information that τ “ 0 implies the uncertain prior information that γ “ 0.
The properties of a Bayesian 1´α credible interval depend greatly on the prior distribution chosen for
pϑ, γ, χq. We have chosen a prior distribution that leads to a credible interval with some similarities
to the CIUUPI. Assume that the prior probability density function of pϑ, γ, χq is proportional to
ξ˚ δpτq ` p1´ ξ˚q, where ξ˚ “ 1{p1` λ˚q and δ denotes the Dirac delta function. In other words,
we assume an improper prior density for τ that consists of a mixture of an infinite rectangular
unit-height ‘slab’ and a Dirac delta function ‘spike’, combined with noninformative prior densities
for the other parameters. This prior density is a Bayesian analogue of the weight function used in
the weighted average over γ, (T.3.5). It may be shown that the marginal posterior density of ϑ is

wpγ̂qφ
´

ϑ; pϑ´ ρpγ, 1´ ρ2
¯

` p1´w pγ̂qqφ
´

ϑ; pϑ, 1
¯

, (T.4.2)

where wpγ̂q “ 1
L`

1` λ˚
?

2π expppγ2
{2q

˘

and φp ¨ ;µ, νq denotes the Npµ, νq pdf. We note that this
posterior density is a mixture of two normal probability density functions, such that the weight
given to the posterior density centred at pϑ increases with increasing pγ2, when λ˚ ą 0. It is evident
from (T.4.2) that the highest posterior density Bayesian 1´ α credible interval may consist of the
union of two disjoint intervals. For this reason, we consider the shortest 1´ α credible interval.

Note that the graph of the function (T.4.2) of ϑ consists of the graph of the function

wppγqφ
´

ϑ;´ρpγ, 1´ ρ2
¯

` p1´wppγqqφ pϑ; 0, 1q ,

shifted to the right by pϑ. We can therefore express the shortest 1´ α credible interval for ϑ in
the form rpϑ` lppγq, pϑ` uppγqs, for the appropriate functions l and u. We compare this interval with
the frequentist 1´ α confidence interval (T.4.1) as follows. Let bBppγq “ ´plppγq ` uppγqq{2 and
sBppγq “ puppγq ´ lppγqq{2. Then rpϑ` lppγq, pϑ` uppγqs is equal to

”

pϑ´ bBppγq ´ sBppγq, pϑ´ bBppγq ` sBppγq
ı

, (T.4.3)

which has a similar form to (T.4.1), but with b and s replaced by bB and sB respectively. Therefore,
we may compare the interval (T.4.1) with (T.4.3) by comparing the functions b and s with the
functions bB and sB , respectively. We will also compare the interval (T.4.1) with (T.4.3) by
comparing the frequentist coverage probability function of (T.4.3).

Using the ciuupi package

In this section we use a real data set to illustrate how each of the six functions in ciuupi works.
Table 1 below gives the name of each of the functions and a short description of what it does. In the
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following subsections we show how the functions in Table 1 are used in R.

Function Description

bsciuupi Compute the optimized vector
`

bp1q, bp2q, . . . , bp5q, sp0q, sp1q, . . . , sp5q
˘

bsspline Evaluate bpxq and spxq at x

cpci Evaluate CP pγ; b, s, ρq at γ

selci Evaluate SELpγ; b, s, ρq at γ

ciuupi Compute the CIUUPI, i.e. compute CIpb, sq

cistandard Compute the standard confidence interval

Table 1: Functions in the ciuupi package

Factorial experiment example

Consider the 2ˆ 2 factorial experiment described by Kabaila and Giri (Discussion 5.8, 2009a), which
has been extracted from a real 23 factorial data set provided by Box et al. (1963). The two factors
are the time of addition of HNO3 and the presence of a ‘heel’. These factors are labelled A and
B, respectively. Define x1 “ ´1 and x1 “ 1 for “Time of addition of HNO3” equal to 2 hours
and 7 hours, respectively. Also define x2 “ ´1 and x2 “ 1 for “heel absent” and “heel present”,
respectively. Assume a model of the form

y “ β0 ` β1x1 ` β2x2 ` β12x1x2 ` ε,

where ε „ Np0,σ2
q. This model can be written in matrix form as

y “ Xβ` ε

where β “
`

β0, β1, β2, β12
˘

,

X “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 ´1 ´1 1

1 1 ´1 ´1

1 ´1 1 ´1

1 1 1 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

and ε „ Np0, σ2 Inq. According to Box et al. (1963), a very accurate estimate of σ, obtained from
previous related experiments, is 0.8.

Suppose that the parameter of interest θ is
`

expected response when factor A is high and factor B is
low

˘

´
`

expected response when factor A is low and factor B is low
˘

. In other words, θ “ 2pβ1´β12q,
so that θ “ aJβ, where a “ p0, 2, 0,´2q. Our aim is to find a confidence interval, with minimum
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coverage 0.95, for θ. We suppose that there is uncertain prior information that the two-factor
interaction is zero. In other words, we suppose that there is uncertain prior information that β12 “ 0.
The uncertain prior information is, then, that τ “ cJβ´ t “ 0, where c “ p0, 0, 0, 1q and t “ 0. Now
that we have specified a, c and X, we can compute ρ “ aJpXJXq´1c{pvθ vτ q

1{2
“ ´1{

?
2 “ ´0.707.

Evaluating the confidence interval (no examination of the observed response)

First suppose that we have not yet examined the observed response y and that we are interested in
knowing how the confidence interval that utilizes uncertain prior information (CIUUPI) performs for
given values of 1´ α, a, c and X. We begin by storing the values of α, a, c and X in R as follows.

# Specify alpha, a, c and x.
alpha <- 0.05
a <- c(0, 2, 0, -2)
c <- c(0, 0, 0, 1)
x <- cbind(rep(1, 4), c(-1, 1, -1, 1), c(-1, -1, 1, 1), c(1, -1, -1, 1))

Next we use the numerical constrained optimization to compute the values at the knots of the
functions b and s that define the CIUUPI. We must specify whether natural cubic spline interpolation
(natural = 1) or clamped cubic spline interpolation (natural = 0) is used in the description of these
functions. In the case of clamped cubic spline interpolation the first derivatives of b and s are set to
zero at ´6 and 6. Natural cubic spline interpolation is the default, and is carried out using splinefun
in the stats package. Clamped cubic spline interpolation is carried out using cubicspline in the
pracma package. The nonlinear constrained optimization using natural cubic spline interpolation
for the description of the functions b and s is much faster and results in a coverage probability
that is slightly closer to 1´ α throughout the parameter space. For this example we are able to
obtain the vector pbp1q, bp2q, . . . , bp5q, sp0q, sp1q, . . . , sp5qq in 6.56 minutes when using natural cubic
spline interpolation and in 21.27 minutes when using clamped cubic spline interpolation. This
computation was carried out on a PC with an Intel i7-7500 CPU (3.4GHz) and 32GB of RAM. The
following code is used to obtain the vector

`

bp1q, bp2q, . . . , bp5q, sp0q, sp1q, . . . , sp5q
˘

that specifies the
CIUUPI, which is obtained from the numerical constrained optimization that uses natural cubic
spline interpolation for the description of the functions b and s.

# Compute (b(1), b(2), ..., b(5), s(0), s(1), ..., s(5)) that specifies the CIUUPI
bsvec <- bsciuupi(alpha, a = a, c = c, x = x)
bsvec

Alternatively, since we know that ρ “ ´0.707, we could obtain the vector
`

bp1q, bp2q, . . . , bp5q, sp0q,
sp1q, . . . , sp5q

˘

that specifies the CIUUPI using the code

# Compute (b(1), b(2), ..., b(5), s(0), s(1), ..., s(5)) that specifies the CIUUPI,
# given rho
bsvec2 <- bsciuupi(alpha, rho = -0.707)

Now that we have the vector
`

bp1q, bp2q, . . . , bp5q, sp0q, sp1q, . . . , sp5q
˘

that specifies the CIUUPI,
we can graph the functions b and s using the following code:

# Compute the functions b and s that specify the CIUUPI on a grid of values
splineval <- bsspline(seq(0, 8, by = 0.1), bsvec, alpha)

# The first 5 values of bsvect are b(1),b(2),...,b(5).
# The last 6 values are s(0),s(1),...,s(5).
xseq <- seq(0, 6, by = 1)
bvec <- c(0, bsvec[1:5], 0)
svec <- c(bsvec[6:11], qnorm(1 - alpha/2))

# Plot the functions b and s
plot(seq(0, 8, by = 0.1), splineval[, 2], type = "l", main = "b function",

ylab = " ", las = 1, lwd = 2, xaxs = "i", col = "blue", xlab = "x")
points(xseq, bvec, pch = 19, col = "blue")
plot(seq(0, 8, by = 0.1), splineval[, 3], type = "l", main = "s function",

ylab = " ", las = 1, lwd = 2, xaxs = "i", col = "blue", xlab = "x")
points(xseq, svec, pch = 19, col = "blue")
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Figure 1 shows the graphs of the functions b and s that specify the CIUUPI, when these functions
are described using natural cubic spline interpolation, for this example. For comparison, Figure
2 shows the graphs of the functions b and s that specify the CIUUPI, when these functions are
described using clamped cubic spline interpolation. These figures are quite similar; there is a small
difference in both the b and s functions near x “ 6.

We can also use the vector
`

bp1q, bp2q, . . . , bp5q, sp0q, sp1q, . . . , sp5q
˘

that specifies the CIUUPI to
evaluate and then plot the coverage probability CP pγ; b, s, ρq and scaled expected length SELpγ; s, ρq
as functions of γ. This is done using the following code.

# Compute the coverage probability and scaled expected for a grid of values of gamma
gam <- seq(0, 10, by = 0.1)
cp <- cpciuupi(gam, bsvec, alpha, a = a, c = c, x = x)
sel <- selciuupi(gam, bsvec, alpha, a = a, c = c, x = x)

# Plot the coverage probability and squared scaled expected length
plot(gam, cp, type = "l", lwd = 2, ylab = "", las = 1, xaxs = "i",
main = "Coverage Probability", col = "blue",
xlab = expression(paste("|", gamma, "|")), ylim = c(0.9495, 0.9505))
abline(h = 1-alpha, lty = 2)
plot(gam, sel^2, type = "l", lwd = 2, ylab = "", las = 1, xaxs = "i",
main = "Squared SEL", col = "blue",
xlab = expression(paste("|", gamma, "|")), ylim = c(0.83, 1.17))
abline(h = 1, lty = 2)
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Figure 1: Graphs of the functions b and s for the factorial experiment example for the CIUUPI,
with minimum coverage probability 0.95, when they are described using natural cubic
spline interpolation, for the factorial experiment example.

Figure 3 shows the graphs of CP pγ; b, s, ρq and the square of SELpγ; b, s, ρq for the CIUUPI
(where the functions b and s have been specified by natural cubic spline interpolation) produced by
this code.

We can see from Figure 3 that, regardless of the value of γ, the coverage probability of the
CIUUPI is extremely close to 1´ α. We can also see that the expected length of the CIUUPI is less
than the expected length of the standard confidence interval when γ is small, with the minimum
scaled expected length achieved when γ “ 0. For moderate values of |γ|, the expected length of the
standard interval is less than the expected length of the CIUUPI. However, for large |γ|, the expected
length of the CIUUPI is essentially the same as the expected length of the standard interval.

For comparison, Figure 4 shows the graphs of CP pγ; b, s, ρq and the square of SELpγ; b, s, ρq for
the CIUUPI when the functions b and s are described by clamped cubic spline interpolation.
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Figure 2: Graphs of the functions b and s for the factorial experiment example for the CIUUPI,
with minimum coverage probability 0.95, when they are described using clamped cubic
spline interpolation, for the factorial experiment example.
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Figure 3: Graphs of the CP pγ; b, s, ρq and the square of SELpγ; b, s, ρq functions for the CIUUPI,
with minimum coverage probability 0.95, where the functions b and s are described by
natural cubic spline interpolation, for the factorial experiment example.
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Figure 4: Graphs of the CP pγ; b, s, ρq and the square of SELpγ; b, s, ρq functions for the CIUUPI,
with minimum coverage probability 0.95, where the functions b and s are described by
clamped cubic spline interpolation, for the factorial experiment example.
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Figures (5) and (6) show the differences between the Bayesian 95% credible interval and the
95% CIUUPI. Figure (5) shows the graphs of the b and bB functions (left panel), and the s and sB
functions (right panel), for the factorial experiment example. Note that, similarly to b and s, bB is
an odd continuous function and sB is an even continuous function. Figure (6) shows the graph of the
frequentist coverage probability of the Bayesian 95% credible interval, for the factorial experiment
example. This coverage probability is also an even function of γ. Unlike the coverage probability
of the CIUUPI, the minimum over γ of the frequentist coverage probability of the Bayesian 95%
credible interval is substantially less than 0.95.

Computing the confidence interval (using the observed response)

The observed response for the factorial experiment example data is y “ p87.2, 88.4, 86.7, 89.2q and
σ is assumed to take the value 0.8. We use the function ciuupi to return the confidence interval
(T.3.1) for θ that utilizes the uncertain prior information that τ “ 0. Continuing from the previous
example, this is done in R as follows:

# Using the vector (b(1),b(2),...,b(5),s(0),s(1),...,s(5)), compute the CIUUPI
# for this particular data
t <- 0
y <- c(87.2, 88.4, 86.7, 89.2)

ci <- ciuupi(alpha, a, c, x, bsvec, t, y, natural = 1, sig = 0.8); ci

We obtain the output

lower upper
ciuupi -0.7710755 3.218500

For comparison purposes, the function standard_CI will return the standard confidence interval
(T.3.3) for θ. The code

# Compute the standard confidence interval
cistandard(a = a, x = x, y = y, alpha = alpha, sig = 0.8)

will return

lower upper
standard -1.017446 3.417446

The 95% confidence interval that utilizes uncertain prior information r´0.77, 3.22s is much shorter
than the standard confidence interval r´1.02, 3.42s. These are observed values of confidence intervals
that have, to an excellent approximation, the same coverage probability. For comparison, a 95%
Bayesian credible interval for θ is r´0.25, 3.51s. Although this interval is shorter than the CIUUPI,
it can be seen from Figure (6) that the minimum over γ of the frequentist coverage of the Bayesian
credible interval is substantially less than 0.95.

Discussion

It is very common in applied statistics to carry out preliminary data-based model selection using,
for example, hypothesis tests or minimizing a criterion such as the AIC. As pointed out by Leamer
(1978, chapter 5), such model selection may be motivated by the desire to utilize uncertain prior
information in subsequent statistical inference. He goes even further when he states, on p.123, that
“The mining of data that is common among non-experimental scientists constitutes prima facie
evidence of the existence of prior information”. One may attempt to utilize such prior information
by constructing confidence intervals, using the same data, based on the assumption that the selected
model had been given to us a priori, as the true model. This assumption is false and it can lead
to confidence intervals that have minimum coverage probability far below the desired minimum
coverage 1´ α (see e.g. Kabaila, 2009, Leeb and Pötscher, 2005), making them invalid.

A numerical constrained optimization approach to the construction of valid confidence intervals
and sets that utilize uncertain prior information has been applied by Farchione and Kabaila (2008),
Kabaila and Giri (2009a), Kabaila and Giri (2013), Kabaila and Giri (2014), Kabaila and Tissera
(2014) and Abeysekera and Kabaila (2017). In each case, numerical constrained optimization was
performed using programs written in MATLAB, restricting the accessibility of these confidence
intervals and sets. The R package ciuupi is a first step in making these types of confidence intervals
and sets more widely accessible.
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Figure 5: Graphs of the b and bB functions (left panel), and the s and sB functions (right panel),
for the factorial experiment example.
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Figure 6: The frequentist coverage probability of the Bayesian 95% confidence interval, for the
factorial experiment example.
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ipwErrorY: An R Package for
Estimation of Average Treatment
Effect with Misclassified Binary
Outcome
by Di Shu and Grace Y. Yi

Abstract It has been well documented that ignoring measurement error may result in severely
biased inference results. In recent years, there has been limited but increasing research on causal
inference with measurement error. In the presence of misclassified binary outcome variable, Shu
and Yi (2017) considered the inverse probability weighted estimation of the average treatment effect
and proposed valid estimation methods to correct for misclassification effects for various settings.
To expedite the application of those methods for situations where misclassification in the binary
outcome variable is a real concern, we implement correction methods proposed by Shu and Yi (2017)
and develop an R package ipwErrorY for general users. Simulated datasets are used to illustrate the
use of the developed package.

Introduction

Causal inference methods have been widely used in empirical research (e.g., Rothman et al., 2008;
Imbens and Rubin, 2015; Hernán and Robins, 2019). The propensity score, defined to be the
probability of an individual to receive the treatment, plays an important role in conducting causal
inference (Rosenbaum and Rubin, 1983). Many causal inference methods have been developed based
on the propensity score (e.g., Rosenbaum, 1987, 1998; Robins et al., 2000; Lunceford and Davidian,
2004). These methods commonly require modeling the treatment assignment, which can be difficult
in some applications. To protect against misspecification of the treatment model, various methods
have been proposed (e.g., Robins et al., 1994; Scharfstein et al., 1999; Bang and Robins, 2005).
Among them, doubly robust methods are often advocated since the resulting estimators are still
consistent when either the treatment model or the outcome model (but not both) is misspecified;
such an attractive property is referred to as double robustness.

Although many methods are available for causal inference such as for the estimation of average
treatment effects (ATE), those methods are vulnerable to poor quality data. Typically when data
are error-contaminated, most existing methods would be inapplicable. It has been well documented
that measurement error in variables can often lead to seriously biased inference results in many
settings (e.g., Fuller, 1987; Gustafson, 2003; Carroll et al., 2006; Buonaccorsi, 2010; Yi, 2017).

In the context of causal inference with error-prone data, there has been limited but increasing
research on the impact of measurement error on causal inference and the development of correction
methods to deal with measurement error. For instances, McCaffrey et al. (2013) proposed a correction
estimation method when baseline covariates are error-prone. Babanezhad et al. (2010) examined the
bias arising from ignoring misclassification in the treatment variable. Braun et al. (2016) developed
a correction method to correct for treatment misclassification using validation data.

In settings with misclassification in the binary outcome variable, Shu and Yi (2017) explored
the estimation of ATE using the inverse probability weighted (IPW) method. They derived
the asymptotic bias caused by misclassification and developed consistent estimation methods to
eliminate the misclassification effects. Their development covers practical scenarios where (1) the
misclassification probabilities are known, or (2) the misclassification probabilities are unknown but
validation data or replicates of outcome measurements are available for their estimation. They
further propose a doubly robust estimator to provide protection against possible misspecification of
the treatment model.

The methods developed by Shu and Yi (2017) enjoy wide applications, because misclassified
binary outcome data arise commonly in practice. For example, the self-reported smoking status
without being confirmed by biochemical tests is subject to misclassification; results of screening
tests are often subject to false positive error and/or false negative error. For datasets with outcome
misclassification, ignoring misclassification effects may lead to severely biased results. To expedite the
application of the correction methods for general users, we develop an R package, called ipwErrorY
(Shu and Yi, 2019), to implement the methods by Shu and Yi (2017) for practical settings where
the commonly-used logistic regression model is employed for the treatment model and the outcome
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model. The package focuses on measurement error in the outcome Y only but not on other types of
measurement error, such as measurement error in covariates.

The remainder is organized as follows. First, we introduce the notation and framework. Secondly,
we describe the methods to be implemented in R. Thirdly, we present the implementation steps
and illustrate the use of the package with examples. Finally, a discussion is given. The developed
R package ipwErrorY is available from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=ipwErrorY.

Notation and framework

Let Y1 be the binary potential outcome that would have been observed had the individual been
treated, and Y0 be the binary potential outcome that would have been observed had the individual
been untreated. Let X be the vector of baseline covariates; T be the observed binary treatment
variable; and Y be the observed binary outcome.

Being consistent with the usual causal inference framework (e.g., Lunceford and Davidian, 2004),
we make the following standard assumptions:

Assumption 1 (Consistency): Y “ TY1 ` p1´ T qY0;
Assumption 2 (No Unmeasured Confounding): pY1,Y0q KK T |X;
Assumption 3 (Positivity): 0 ă P pT “ 1|Xq ă 1.
The objective is to estimate the ATE, defined as τ0 “ EpY1q ´EpY0q. Suppose we have a sample

of size n. For i “ 1, ¨ ¨ ¨ ,n, we add subscript i to notations X, T and Y to denote the corresponding
variable for individual i.

In the presence of outcome misclassification, instead of Y , its surrogate version Y ˚ is observed.
We assume that

P pY ˚ “ a|Y “ b,X,T q “ P pY ˚ “ a|Y “ bq for a, b “ 0, 1. (V.2.1)

That is, conditional on the true value of the outcome, the misclassification probability is assumed to
be homogeneous for all the individuals, regardless of their covariate information or treatment status.
For ease of exposition, write pab “ P pY ˚ “ a|Y “ bq. Then the sensitivity and the specificity are
expressed by p11 and p00, respectively, and the misclassification probabilities are p01 “ 1´ p11 and
p10 “ 1´ p00.

Estimation methods

In this section we present estimation methods for τ0 under three scenarios. We first start with the
case where misclassification probabilities are given, and then consider settings where misclassification
probabilities are unknown but can be estimated by using additional data sources.

Estimation with known misclassification probabilities

In this subsection we assume that misclassification probabilities p11 and p10 are known. For
i “ 1, . . . ,n, let ei “ P pTi “ 1|Xiq be the conditional probability for individual i to receive the
treatment, also termed as the propensity score (e.g., Rosenbaum and Rubin, 1983), a quantity that
plays an important role in causal inference. To correct for outcome misclassification effects, Shu and
Yi (2017) proposed an estimator of τ0 given by

pτ “
1

p11 ´ p10

#

1
n

n
ÿ

i“1

TiY
˚
i

pei
´

1
n

n
ÿ

i“1

p1´ TiqY ˚i
1´ pei

+

, (V.3.1)

where pei is an estimate of the propensity score ei “ P pTi “ 1|Xiq obtained by fitting the treatment
model relating T to X.

The estimator pτ , given by (V.3.1), is a consistent estimator of τ0, provided regularity conditions
including Assumptions 1-3. The sandwich variance estimate of pτ can be obtained using the theory
of estimating functions (e.g., Newey and McFadden, 1994; Heyde, 1997; Yi, 2017, Ch.1).

To estimate the propensity score ei for i “ 1, . . . ,n, we specifically characterize ei using the
widely-used logistic regression model. That is, the treatment model is given by

logit P pTi “ 1|Xiq “ γ0 ` γ
J
XXi, (V.3.2)
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for i “ 1, . . . ,n, where γ “ pγ0, γJXqJ is the vector of parameters. As a result, an unbiased estimating
function of γ is taken as the score function

#

Ti ´
1

1` expp´γ0 ´ γJXXiq

+

p1,XJi qJ. (V.3.3)

Let θ “ pτ , γJqJ. Shu and Yi (2017) showed that

ΨpY ˚i ,Ti,Xi; θq “
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(V.3.4)

is an unbiased estimating function of θ. Solving
řn
i“1 ΨpY ˚i ,Ti,Xi; θq “ 0 for θ yields an estimator

of θ, denoted by pθ.

Let θ0 “ pτ0, γJ0 qJ be the true value of θ. Define Apθ0q “ E
!

´pB{BθJqΨpY ˚,T ,X; θq|θ“θ0

)

and Bpθ0q “ EtΨpY ˚,T ,X; θqΨJpY ˚,T ,X; θq|θ“θ0u. Under regularity conditions, we have that

?
nppθ´ θ0q

d
ÝÑ N

´

0,Apθ0q
´1Bpθ0qApθ0q

´1J
¯

as nÑ8. (V.3.5)

Consequently, the variance of pθ can be estimated by the empirical sandwich estimator:

yV arppθq “
1
n
Anppθq

´1BnppθqAnppθq
´1J, (V.3.6)

where

Anppθq “ ´
1
n

n
ÿ

i“1

B

BθJ
ΨpY ˚i ,Ti,Xi; θq|θ“pθ

(V.3.7)

and

Bnppθq “
1
n

n
ÿ

i“1
ΨpY ˚i ,Ti,Xi; θqΨJpY ˚i ,Ti,Xi; θq|θ“pθ

. (V.3.8)

Then the variance estimate of pτ in (V.3.1) is given by yV arppτq “ pv11, where pv11 is the element
of the first row and the first column of yV arppθq. A p1´ αq100% confidence interval of τ0 is given
by pτ ˘ zα{2 ˆ

b

yV arppτq, where α is a specified value between 0 and 1, and zα{2 is the upper α{2
quantile of the standard normal distribution.

Estimation with validation data

In this subsection we assume that misclassification probabilities p11 and p10 are unknown and that
there is an internal validation subsample V of size nV which collects measurements of variables X,
T , Y and Y ˚.

With the validation data, p11 and p10 can be estimated as

pp11 “

ř

iPV YiY
˚
i

ř

iPV Yi
and pp10 “

ř

iPV p1´ YiqY
˚
i

ř

iPV p1´ Yiq
, (V.3.9)

respectively.
To estimate τ0, one may use error-free outcome data of the validation subsample to construct an

estimator
pτV “

1
nV

ÿ

iPV

TiYi
pei

´
1
nV

ÿ

iPV

p1´ TiqYi
1´ pei

, (V.3.10)

of τ0, or alternatively, one may apply (V.3.1) to estimate τ0 using non-validation data with the
resulting estimator given by

pτN “
1

pp11 ´ pp10

$

&

%

1
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ÿ
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TiY
˚
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1
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ÿ
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1´ pei

,

.

-

, (V.3.11)

where pp11 and pp10 are given by (V.3.9).
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Although the validation data based estimator pτV given by (V.3.10) and the non-validation data
based estimator pτN given by (V.3.11) are both consistent estimators of τ0, they both incur efficiency
loss due to the inability of utilizing all the available data.

Shu and Yi (2017) considered the linear combination of pτV and pτN

pτpcq “ cpτV ` p1´ cqpτN, (V.3.12)

where c is a constant between 0 and 1.
For any c, the consistency of pτpcq is immediate due to the consistency of pτV and pτN. However,

the efficiency of pτpcq depends on the choice of c. Typically, V artpτpcqu is minimized at

cOPT “
V arppτNq ´CovppτV, pτNq

V arppτVq ` V arppτNq ´ 2CovppτV, pτNq
, (V.3.13)

suggesting that pτpcOPTq “ cOPTpτV ` p1´ cOPTqpτN is the optimal estimator among the linear combi-
nation estimators formulated as (V.3.12). Furthermore, cOPT can be estimated by

pcOPT “
yV arppτNq ´ yCovppτV, pτNq

yV arppτVq ` yV arppτNq ´ 2yCovppτV, pτNq
, (V.3.14)

where yV arppτNq, yCovppτV, pτNq and yV arppτVq are the estimates for V arppτNq, CovppτV, pτNq and V arppτVq,
respectively.

To obtain yV arppτNq, yCovppτV, pτNq and yV arppτVq, Shu and Yi (2017) constructed an unbiased
estimating function by combining the estimating functions (V.3.10) and (V.3.11), where they
introduced different symbols, say τV and τN, to denote the parameter τ for which (V.3.10) and
(V.3.11), respectively, are used to estimate; both τV and τN have the true value τ0. Let θ “
pτV, τN, γJ, p11, p10q

J. Define
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, (V.3.15)

where Ip¨q is the indicator function. Then ΨcpY ˚i ,Ti,Xi,Yi; θq is an unbiased combined estimating
function of θ. Solving

řn
i“1 ΨcpY ˚i ,Ti,Xi,Yi; θq “ 0 for θ yields an estimator of θ, denoted by pθ. The

variance of pθ can be estimated by the empirical sandwich estimator, denoted as yV arppθq. Let pvi,j be
the element of the ith row and the jth column of yV arppθq. Then yV arppτVq “ pv1,1, yCovppτV, pτNq “ pv1,2,
and yV arppτNq “ pv2,2.

Finally, Shu and Yi (2017) pointed out the two associated conditions: V arppτVq ` V arppτNq ´

2CovppτV, pτNq ě 0 and 0 ď c ď 1. If one or both conditions are violated with empirical estimates,
pcOPT is then set to be 1 if pτV has smaller variance than pτN and 0 otherwise. The resulting optimal
linear combination estimator pτppcOPTq is

pτOPT “ pcOPTpτV ` p1´ pcOPTqpτN, (V.3.16)

with the variance estimate given by

yV arppτOPTq “ tyV arppτVq` yV arppτNq´2yCovppτV, pτNqupc
2
OPT´t2 yV arppτNq´2yCovppτV, pτNqupcOPT` yV arppτNq.

(V.3.17)
A p1´αq100% confidence interval of τ0 is given by pτOPT˘ zα{2ˆ

b

yV arppτOPTq, where α is a specified
value between 0 and 1, and zα{2 is the upper α{2 quantile of the standard normal distribution.
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Estimation with replicates

In this subsection we assume that misclassification probabilities p11 and p10 are unknown and that
two repeated outcome measurements are available for each individual. Suppose Y ˚i p1q and Y

˚
i p2q are

two independent replicates of Yi. Let η denote the prevalence P pY “ 1q and πr be the probability of
obtaining r outcome observations equal to 1 among two repeated outcome measurements for r “ 0, 1.
Then

π0 “ ηp1´ p11q
2
` p1´ ηqp1´ p10q

2; (V.3.18)

π1 “ 2ηp1´ p11qp11 ` 2p1´ ηqp1´ p10qp10. (V.3.19)
Let θ “ pτ , γJ, η, p11, p10q

J. Shu and Yi (2017) considered an unbiased estimating function of θ,
given by
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, (V.3.20)

where Y ˚i “ tY ˚i p1q ` Y ˚i p2qu{2, together with a constraint imposed for achieving parameters
identifiability (e.g., White et al., 2001; Yi and He, 2017).

Let pτR denote the estimator of τ0 obtained by solving
n
ÿ

i“1
ΨrtY ˚i p1q,Y

˚
i p2q,Ti,Xi; θu “ 0 (V.3.21)

for θ. The variance of pτR can be estimated by the empirical sandwich estimator yV arppτRq. A
p1´αq100% confidence interval of τ0 is given by pτR ˘ zα{2 ˆ

b

yV arppτRq, where α is a specified value
between 0 and 1, and zα{2 is the upper α{2 quantile of the standard normal distribution.

Finally, we comment that when implementing (V.3.21), one of the following constraints is often
used in applications: (C1) sensitivity equals specificity (i.e., p11 “ p00), (C2) sensitivity p11 is
known, (C3) specificity p00 is known, and (C4) prevalence η is known. These four constraints are
implemented in our R package.

Choosing a suitable identifiability constraint is primarily driven by the nature of data. When
the false positive rate p10 and the false negative rate p01 are close, it is reasonable to impose the
constraint that the sensitivity equals the specificity. When there is prior information on the value of
the sensitivity, the specificity, or the prevalence, it is plausible to add the identifiability constraint
(C2), (C3) or (C4). For example, in smoking cessation studies, patients who quit smoking (with
Y “ 1) are unlikely to report that they still smoke, so it may be reasonable to set the constraint
p11 “ 1. Sometimes, researchers may use the disease prevalence reported from another similar study
for their own study, when such a prevalence is perceived to be close to that of the target population.

Doubly robust estimation

To protect against model misspecification, Shu and Yi (2017) proposed a doubly robust estimator of
τ0:

pτDR “ pEpY1q ´ pEpY0q, (V.3.22)
where

pEpY1q “
1
n

n
ÿ

i“1

"

TiY
˚
i

peipp11 ´ p10q
´
Ti ´ pei

pei
pqi1 ´

Ti
pei

ˆ

p10
p11 ´ p10

˙*

, (V.3.23)

pEpY0q “
1
n

n
ÿ

i“1

"

p1´ TiqY ˚i
p1´ peiqpp11 ´ p10q

`
Ti ´ pei
1´ pei

pqi0 ´
1´ Ti
1´ pei

ˆ

p10
p11 ´ p10

˙*

, (V.3.24)

pqi1 is an estimate of qi1 “ P pYi “ 1|Ti “ 1,Xiq and pqi0 is an estimate of qi0 “ P pYi “ 1|Ti “ 0,Xiq.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859



Contributed Research Articles 342

The estimator pτDR enjoys the double robustness property in the sense that it is still consistent
if one of the treatment model and the outcome model is incorrectly specified. In our developed R
package, we particularly implement the following two scenarios.

Scenario 1 (Shared covariate effects for the treated and untreated groups):

Suppose the outcome model is postulated as

logit P pYi “ 1|Ti,Xiq “ β0 ` βTTi ` β
JXi, (V.3.25)

where β0, βT and β are the parameters. The model reflects the setting where the treated and
untreated groups share the same covariate effect β on the outcome.

By (V.2.1) and (V.3.25), the observed likelihood function contributed from individual i is

Lipβ0,βT,βq

“ P pY ˚i |Xi,Tiq

“ P pYi “ 1|Xi,TiqP pY ˚i |Xi,Ti,Yi “ 1q ` P pYi “ 0|Xi,TiqP pY ˚i |Xi,Ti,Yi “ 0q

“
1

1` expt´β0 ´ βTTi ´ βJXiu
¨ tp11Y

˚
i ` p1´ p11qp1´ Y ˚i qu

`
expt´β0 ´ βTTi ´ β

JXiu

1` expt´β0 ´ βTTi ´ βJXiu
¨ tp10Y

˚
i ` p1´ p10qp1´ Y ˚i qu. (V.3.26)

With regularity conditions, maximizing the observed likelihood
śn
i“1 Lipβ0,βT,βq with respect to

pβ0,βT,βJqJ gives a consistent estimator of pβ0,βT,βJqJ, denoted as ppβ0, pβT, pβJqJ. It follows that
qi1 and qi0, are, respectively, estimated by

pqi1 “
1

1` expp´pβ0 ´ pβT ´ pβJXiq
(V.3.27)

and
pqi0 “

1
1` expp´pβ0 ´ pβJXiq

. (V.3.28)

Scenario 2 (Possibly different covariate effects for the treated and untreated
groups):

Suppose that the outcome model is postulated as

logit P pYi “ 1|Ti “ 1,Xiq “ β01 ` β
J
1 Xi (V.3.29)

for the treated group and

logit P pYi “ 1|Ti “ 0,Xiq “ β00 ` β
J
0 Xi (V.3.30)

for the untreated group, where the parameters pβ01,βJ1 qJ for the treated group may differ from the
parameters pβ00,βJ0 qJ for the untreated group.

To obtain a consistent estimator ppβ01, pβJ1 qJ of pβ01,βJ1 qJ and a consistent estimator ppβ00, pβJ0 qJ
of pβ00,βJ0 qJ, we employ the observed likelihood for the treated group and the untreated group
separately. For example, the observed likelihood function contributed from individual l in the treated
group (i.e., Tl “ 1) is

L1,lpβ01,β1q

“ P pY ˚l |Tl “ 1,Xlq

“ P pYl “ 1|Tl “ 1,XlqP pY ˚l |Yl “ 1q ` P pYl “ 0|Tl “ 1,XlqP pY ˚l |Yl “ 0q

“
1

1` expt´β01 ´ βJ1 Xlu
¨ tp11Y

˚
l ` p1´ p11qp1´ Y ˚l qu

`
expt´β01 ´ β

J
1 Xlu

1` expt´β01 ´ βJ1 Xlu
¨ tp10Y

˚
l ` p1´ p10qp1´ Y ˚l qu. (V.3.31)
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Maximizing the observed likelihood
ś

l:Tl“1 L1,lpβ01,β1q with respect to β01 and β1 gives us a
consistent estimator ppβ01, pβJ1 qJ, provided regularity conditions. Similarly, we calculate the observed
likelihood function L0,kpβ00,β0q for individual k in the untreated group (i.e., Tk “ 0), and then
obtain the estimator ppβ00, pβJ0 qJ by maximizing the observed likelihood

ś

l:Tk“0 L0,kpβ00,β0q with
respect to β00 and β0. Thus, qi1 and qi0 are estimated by

pqi1 “
1

1` expp´pβ01 ´ pβJ1 Xiq
(V.3.32)

and
pqi0 “

1
1` expp´pβ00 ´ pβJ0 Xiq

, (V.3.33)

respectively.

Variance estimator of pτDR:

Consistency and asymptotic normality of pτDR can be established using the theory of estimating
functions. Below we derive the sandwich variance estimator of pτDR by constructing an unbiased
estimating function using the “delta method” in the M-estimator framework (Stefanski and Boos,
2002).

Define βF to be the vector of parameters for the outcome models. Under Scenario 1 with shared
covariate effects for the treated and untreated groups, βF “ pβ0,βT,βJqJ. Under Scenario 2 with
possibly different covariate effects for the treated and untreated groups, βF “ pβJF1,βJF0q

J with
βF1 “ pβ01,βJ1 qJ and βF0 “ pβ00,βJ0 qJ. Let θ “ pγJ,βJF ,µ1,µ0, τqJ, where µ1 and µ0 represent
EpY1q and EpY0q, respectively.

We construct the following unbiased estimating function for θ:
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,

(V.3.34)
where ψpY ˚i ,Ti,Xi;βFq is the unbiased estimating equation for βF derived from the observed
likelihood. Specifically, under Scenario 1,

ψpY ˚i ,Ti,Xi;βFq “ BlogtLipβ0,βT,βqu{Bpβ0,βT,βq, (V.3.35)

and under Scenario 2,

ψpY ˚i ,Ti,Xi;βFq “ pψ1pY
˚
i ,Ti,Xi;βF1q

J,ψ0pY
˚
i ,Ti,Xi;βF0q

J
q
J (V.3.36)

with
ψ1pY

˚
i ,Ti,Xi;βF1q “ BlogtL1,ipβ01,β1qu{Bpβ01,β1q ¨ IpTi “ 1q ¨ n

nT
(V.3.37)

and
ψ0pY

˚
i ,Ti,Xi;βF0q “ BlogtL0,ipβ00,β0qu{Bpβ00,β0q ¨ IpTi “ 0q ¨ n

n´ nT
, (V.3.38)

where nT is the size of the treated group.
By the theory of estimating functions (e.g., Newey and McFadden, 1994; Heyde, 1997; Yi, 2017,

Ch.1), solving
řn
i“1 ΨdrtY

˚
i ,Ti,Xi; θu “ 0 for θ yields an estimator of θ, denoted by pθ. Let θ0 be

the true value of θ. Define
Apθ0q “ E

!

´pB{BθJqΨdrpY
˚,T ,X; θq|θ“θ0

)

and
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Bpθ0q “ EtΨdrpY
˚,T ,X; θqΨJdrpY

˚,T ,X; θq|θ“θ0u.
Under regularity conditions, we have that

?
nppθ´ θ0q

d
ÝÑ N

´

0,Apθ0q
´1Bpθ0qApθ0q

´1J
¯

as nÑ8. (V.3.39)

The sandwich variance estimator of pθ is given by

yV arppθq “
1
n
Anppθq

´1BnppθqAnppθq
´1J, (V.3.40)

where

Anppθq “ ´
1
n

n
ÿ

i“1

B

BθJ
ΨdrpY

˚
i ,Ti,Xi; θq|θ“pθ

(V.3.41)

and

Bnppθq “
1
n

n
ÿ

i“1
ΨdrpY

˚
i ,Ti,Xi; θqΨJdrpY

˚
i ,Ti,Xi; θq|θ“pθ

. (V.3.42)

Then yV arppτDRq is the element of the last row and the last column of yV arppθq.
Finally, we comment that Scenario 2 allows for different covariates-outcome associations for the

treated and untreated groups and provides more flexibility than Scenario 1. However, implementing
Scenario 2 involves separately estimating parameters of the outcome model for the treated and
untreated groups. When one group has a small size, estimation results may be unsatisfactory. In
this case, imposing common covariate effects for the treated and untreated groups as in Scenario 1
can help achieve reasonable estimation results.

Implementation in R and Examples

We develop an R package ipwErrorY, which implements the methods (Shu and Yi, 2017) described
in the previous section. The developed package imports R packages stats and nleqslv (Hasselman,
2016). To illustrate the use of ipwErrorY, for each method, we simulate a dataset and then apply a
function to analyze the dataset. To make sure users can reproduce the results, we use the function
set.seed to generate data. Moreover, the simulated data provide users a clear sense about the data
structure.

Implementation and example with known error

The function KnownError produces the ATE estimate using the correction method with known
misclassification probabilities along with the sandwich-variance-based standard error and p1´αq100%
confidence interval. Specifically, KnownError is defined as

KnownError(data, indA, indYerror, indX, sensitivity, specificity, confidence=0.95)

with arguments described in detail in ipwErrorY documentation. Below is an example to illustrate
the use of KnownError.

We first load the package in R:

R> library("ipwErrorY")

Using sensitivity 0.95 and specificity 0.85, we create da, a dataset of size 2000 with “X1”, “A” and
“Yast” being the column names for the covariate, treatment and misclassified outcome, respectively:

R> set.seed(100)
R> X1 = rnorm(2000)
R> A = rbinom(2000, 1, 1/(1 + exp(-0.2 - X1)))
R> Y = rbinom(2000, 1, 1/(1 + exp(-0.2 - A - X1)))
R> y1 = which(Y == 1)
R> y0 = which(Y == 0)
R> Yast = Y
R> Yast[y1] = rbinom(length(y1), 1, 0.95)
R> Yast[y0] = rbinom(length(y0), 1, 0.15)
R> da = data.frame(X1 = X1, A = A,Yast = Yast)

By using the function head, we print the first six observations of dataset da so that the data structure
is clearly shown as follows:
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R> head(da)
X1 A Yast

1 -0.50219235 1 1
2 0.13153117 1 1
3 -0.07891709 1 1
4 0.88678481 0 1
5 0.11697127 1 1
6 0.31863009 1 1

We call the developed function KnownError with sensitivity 0.95 and specificity 0.85, and obtain
a list of the estimate, the sandwich-variance-based standard error and a 95% confidence interval:

R> KnownError(data = da, indA = "A", indYerror = "Yast", indX = "X1",
+ sensitivity = 0.95, specificity = 0.85, confidence=0.95)
$Estimate
[1] 0.1702513

$Std.Error
[1] 0.02944824

$`95% Confidence Interval`
[1] 0.1125338 0.2279688

Implementation and example with validation data

The function EstValidation produces the results for the method with validation data; they include
the optimal linear combination estimate, the sandwich-variance-based standard error, p1´ αq100%
confidence interval and the estimated sensitivity and specificity. Specifically, EstValidation is
defined as

EstValidation(maindata, validationdata, indA, indYerror, indX, indY, confidence=0.95)

with arguments described in detail in ipwErrorY documentation. Below is an example to illustrate
the use of EstValidation.

Using sensitivity 0.95 and specificity 0.85, we create mainda which is the non-validation main
data of size 1200, and validationda which is the validation data of size 800:

R> set.seed(100)
R> X1= rnorm(1200)
R> A = rbinom(1200, 1, 1/(1 + exp(-0.2 - X1)))
R> Y= rbinom(1200, 1, 1/(1 + exp(-0.2 - A - X1)))
R> y1 = which(Y == 1)
R> y0 = which(Y==0)
R> Yast = Y
R> Yast[y1] = rbinom(length(y1), 1, 0.95)
R> Yast[y0] = rbinom(length(y0), 1, 0.15)
R> mainda = data.frame(A = A, X1 = X1, Yast = Yast)
R> X1 = rnorm(800)
R> A = rbinom(800, 1, 1/(1 + exp(-0.2 - X1)))
R> Y = rbinom(800, 1, 1/(1 + exp(-0.2 - A - X1)))
R> y1 = which(Y == 1)
R> y0 = which(Y == 0)
R> Yast = Y
R> Yast[y1] = rbinom(length(y1), 1, 0.95)
R> Yast[y0] = rbinom(length(y0), 1, 0.15)
R> validationda = data.frame(A = A, X1 = X1, Y = Y, Yast = Yast)

We print the first six observations of non-validation data mainda and validation data validationda:

R> head(mainda)
A X1 Yast

1 1 -0.50219235 0
2 0 0.13153117 0
3 1 -0.07891709 1
4 1 0.88678481 1
5 0 0.11697127 1
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6 1 0.31863009 1
R> head(validationda)
A X1 Y Yast

1 0 -0.0749961081 0 0
2 1 -0.9470827924 1 1
3 1 0.0003758095 1 1
4 0 -1.5249574007 0 0
5 1 0.0983516474 0 0
6 0 -1.5266078213 1 1

The preceding output clearly reveals that the non-validation data and validation data differ in the
data structure. The non-validation data mainda record measurements of the treatment, covariate
and misclassified outcome, indicated by the column names “A”, “X1” and “Yast”, respectively. In
comparison, the validation data validationda record measurements of the treatment, covariate,
misclassified outcome and the true outcome, indicated by the column names “A”, “X1”, “Yast”, and
“Y”, respectively.

To apply the optimal linear combination method with validation data, we call the developed
function EstValidation and obtain a list of the estimate, the sandwich-variance-based standard
error, a 95% confidence interval, and the estimated sensitivity and specificity:

R> EstValidation(maindata = mainda, validationdata = validationda, indA = "A",
+ indYerror = "Yast", indX = "X1", indY = "Y", confidence=0.95)
$Estimate
[1] 0.1714068

$Std.Error
[1] 0.02714957

$`95% Confidence Interval`
[1] 0.1181946 0.2246189

$`estimated sensitivity and estimated specificity`
[1] 0.9482072 0.8557047

Implementation and example with replicates

The function Est2Replicates produces the results for the method with replicates; they include the
estimate, the sandwich-variance-based standard error, p1´ αq100% confidence interval, and the im-
posed constraint(s), and the information on sensitivity and specificity. Specifically, Est2Replicates
is defined as

Est2Replicates(data, indA, indYerror, indX, constraint=c("sensitivity equals
specificity", "known sensitivity", "known specificity", "known prevalence"),
sensitivity = NULL, specificity = NULL, prevalence = NULL, confidence=0.95)

with arguments described in detail in ipwErrorY documentation. Below is an example to illustrate
the use of Est2Replicates.

Using sensitivity 0.95 and specificity 0.85, we create da, a dataset of size 2000 with “A”, “X1”,
and {“Yast1”, “Yast2”} being the column names for the treatment, covariate, and two replicates of
outcome, respectively:

R> set.seed(100)
R> X1 = rnorm(2000)
R> A = rbinom(2000, 1, 1/(1 + exp(-0.2 - X1)))
R> Y = rbinom(2000, 1, 1/(1 + exp(-0.2 - A - X1)))
R> y1 = which(Y == 1)
R> y0 = which(Y == 0)
R> Yast1 = Y
R> Yast1[y1] = rbinom(length(y1), 1, 0.95)
R> Yast1[y0] = rbinom(length(y0), 1, 0.15)
R> Yast2 = Y
R> Yast2[y1] = rbinom(length(y1), 1, 0.95)
R> Yast2[y0] = rbinom(length(y0), 1, 0.15)
R> da = data.frame(A = A, X1 = X1, Yast1 = Yast1, Yast2 = Yast2)
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By using the function head, we print the first six observations of dataset da so that the data structure
is clearly shown as follows:

R> head(da)
A X1 Yast1 Yast2

1 1 -0.50219235 1 1
2 1 0.13153117 1 1
3 1 -0.07891709 1 1
4 0 0.88678481 1 0
5 1 0.11697127 1 1
6 1 0.31863009 1 1

To apply the method with replicates, we call the developed function Est2Replicates with the
imposed constraint that specificity equals 0.85. The following list of the estimate, the sandwich-
variance-based standard error, a 95% confidence interval, the imposed constraint and the information
on sensitivity and specificity is returned:

R> Est2Replicates(data = da, indA = "A", indYerror = c("Yast1", "Yast2"),
+ indX = "X1", constraint = "known specificity", sensitivity = NULL,
+ specificity = 0.85, prevalence = NULL, confidence=0.95)
$Estimate
[1] 0.1908935

$Std.Error
[1] 0.02687287

$`95% Confidence Interval`
[1] 0.1382236 0.2435634

$`imposed constraint`
[1] "known specificity"

$`estimated sensitivity and assumed specificity`
[1] 0.95 0.85

Implementation and example of doubly robust estimation

The function KnownErrorDR produces the ATE estimate using the doubly robust correction method
along with the sandwich-variance-based standard error and p1´ αq100% confidence interval. Specifi-
cally, KnownErrorDR is defined as

KnownErrorDR(data, indA, indYerror, indXtrt, indXout, sensitivity, specificity,
sharePara=FALSE, confidence=0.95)

with arguments described in detail in ipwErrorY documentation. Below is an example to illustrate
the use of KnownErrorDR.

Using sensitivity 0.95 and specificity 0.85, we create da, a dataset of size 2000 with “A”, {“X”,
“xx”} and “Yast” being the column names for the treatment, covariates and misclassified outcome,
respectively:

R> set.seed(100)
R> X = rnorm(2000)
R> xx = X^2
R> A = rbinom(2000, 1, 1/(1 + exp(-0.1 - X - 0.2*xx)))
R> Y = rbinom(2000, 1, 1/(1 + exp(1 - A - 0.5*X - xx)))
R> y1 = which(Y == 1)
R> y0 = which(Y == 0)
R> Y[y1] = rbinom(length(y1), 1, 0.95)
R> Y[y0] = rbinom(length(y0), 1, 0.15)
R> Yast = Y
R> da = data.frame(A = A, X = X, xx = xx, Yast = Yast)

By using the function head, we print the first six observations of dataset da so that the data structure
is clearly shown as follows:

R> head(da)
A X xx Yast
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1 1 -0.50219235 0.252197157 1
2 1 0.13153117 0.017300447 1
3 1 -0.07891709 0.006227907 1
4 0 0.88678481 0.786387298 0
5 1 0.11697127 0.013682278 1
6 1 0.31863009 0.101525133 0

When applying the doubly robust method with sensitivity 0.95 and specificity 0.85, covariates
indicated by column names “X” and “xx” are both included in the treatment model and the outcome
model. Let the outcome model be fit for the treated and untreated groups separately. We call the
developed function KnownErrorDR and obtain a list of the estimate, the sandwich-variance-based
standard error, and a 95% confidence interval:

R> KnownErrorDR(data = da, indA = "A", indYerror = "Yast", indXtrt = c("X", "xx"),
+ indXout = c("X", "xx"), sensitivity = 0.95, specificity = 0.85,
+ sharePara = FALSE, confidence=0.95)
$Estimate
[1] 0.2099162

$Std.Error
[1] 0.02811472

$`95% Confidence Interval`
[1] 0.1548124 0.2650201

Discussion

Misclassified binary outcome data arise frequently in practice and present a challenge in conducting
causal inference. Discussion on addressing this issue is rather limited in the literature. Shu and
Yi (2017) developed the IPW estimation methods for ATE with mismeasured outcome effects
incorporated. To expedite the application of these correction methods, we develop an R package
ipwErrorY. For practical settings where the treatment model and the outcome model are specified
as logistic regression models, we implement the correction methods developed by Shu and Yi (2017)
for settings with known misclassification probabilities, validation data, or replicates of the outcome
data as well as the doubly robust method with known misclassification probabilities. Our package
offers a useful and convenient tool for data analysts to perform valid inference about ATE when the
binary outcome variable is subject to misclassification.

For each function of ipwErrorY, we implement the sandwich variance estimate to construct a
normality-based confidence interval. Confidence intervals can also be constructed by bootstrapping
(Efron, 1982; Efron and Tibshirani, 1993), which can be done by leveraging available functions
of ipwErrorY. Below we provide example code to produce normality-based and percentile-based
bootstrap confidence intervals for a doubly robust estimate with 200 bootstrap replicates.

R> drFUN<-function(dt) {
+ KnownErrorDR(data = dt, indA = "A", indYerror = "Yast", indXtrt = c("X", "xx"),
+ indXout = c("X", "xx"), sensitivity = 0.95, specificity = 0.85,
+ sharePara = FALSE, confidence=0.95)$`Estimate`
+ }
R> EST=drFUN(dt=da)
R> set.seed(100)
R> resultsBoot=replicate(200,drFUN(dt=da[sample(1:nrow(da),replace=TRUE),]))
R> STD=sd(resultsBoot)
R> lowN=EST-qnorm(1-(1-0.95)/2)*STD
R> upN=EST+qnorm(1-(1-0.95)/2)*STD
R> CIn=c(lowN,upN)
R> lowP=as.numeric(quantile(resultsBoot,probs=0.025))
R> upP=as.numeric(quantile(resultsBoot,probs=0.975))
R> CIp=c(lowP,upP)

We print the resultant bootstrap normality-based and percentile-based confidence intervals, respec-
tively, as follows.

R> CIn
[1] 0.1562355 0.2635969
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R> CIp
[1] 0.1610038 0.2655065

To make sure the users can reproduce the results, here we call the function set.seed before
KnownErrorDR. If set.seed is not used, then the variance estimates generated at different times can
differ due to the inner randomness of the bootstrap method.

This example code can be easily modified to produce bootstrap confidence intervals for an
estimate obtained from a different method; one needs only to replace KnownErrorDR with the
function in ipwErrorY that corresponds to the method.

Package ipwErrorY requires the data be complete (i.e., no missing values). An error message is
shown when NAs in the dataset are detected. For example, if we artificially introduce an NA in
dataset da and call the developed function KnownErrorDR, an error message is displayed:

R> da[1,1]=NA
R> KnownErrorDR(data = da, indA = "A", indYerror = "Yast", indXtrt = c("X", "xx"),
+ indXout = c("X", "xx"), sensitivity = 0.95, specificity = 0.85,
+ sharePara = FALSE, confidence=0.95)
Error in KnownErrorDR(data = da, indA = "A", indYerror = "Yast", indXtrt = c("X", :
invalid dataset with NAs (missing data detected)

Once seeing this error message, users need to check their dataset to see if the NAs can be
replaced with suitable values. If missing values do occur, the easiest way is to take the subsample of
complete observations to conduct analysis. The resulting point estimates can be reasonable if the
missing data mechanism is missing completely at random (MCAR) (Little and Rubin, 2002); in this
instance, efficiency loss can occur. However, when missing data are not MCAR, this procedure often
yields biased results.

Our implementation uses a logistic regression model with a linear function of covariates for both
the treatment and the outcome processes, as it is perhaps the most widely-used parametric tool to
model a binary variable. Such a logistic regression model can be generalized to include additional
terms, such as higher order terms, nonlinear functions, or interactions of the covariates. In this
case, the users need only to first create an expanded dataset with those terms included as additional
columns of new “covariates", and then use the ipwErrorY package to analyze the expanded dataset.
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optimParallel: An R Package Providing
a Parallel Version of the L-BFGS-B
Optimization Method
by Florian Gerber and Reinhard Furrer

Abstract The R package optimParallel provides a parallel version of the L-BFGS-B optimization
method of optim(). The main function of the package is optimParallel(), which has the same
usage and output as optim(). Using optimParallel() can significantly reduce the optimization
time, especially when the evaluation time of the objective function is large and no analytical gradient
is available. We introduce the R package and illustrate its implementation, which takes advantage
of the lexical scoping mechanism of R.

Introduction

Many statistical tools involve optimization algorithms, which aim to find the minima or maxima of
an objective function fn : Rp

Ñ R, where p P N denotes the number of parameters. Depending on
the specific application different optimization algorithms may be preferred; see the book by Nash
(2014), the special issue of the Journal of Statistical Software (Varadhan, 2014), and the CRAN
Task View Optimization for overviews of the optimization software available for R. A widely used
algorithm is the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm with box constraints
(L-BFGS-B, Byrd et al., 1996), which is available through the general-purpose optimizer optim() of
the R package stats and the more recent R packages lbfgsb3 (Nash et al., 2015) and lbfgsb3c (Fidler
et al., 2018). The L-BFGS-B algorithm has proven to work well in numerous applications. However,
long optimization times of computationally intensive functions sometimes hinder its application;
see Gerber et al. (2017) for an example of such a function from our research in spatial statistics.
For this reason we present a parallel version of the optim() L-BFGS-B algorithm, denoted with
optimParallel(), and explore its potential to reduce optimization times.

To illustrate the possible speed gains of a parallel L-BFGS-B implementation let gr : Rp
Ñ Rp

denote the gradient of fnpq. L-BFGS-B always first evaluates fnpq and then grpq at the same
parameter value and we call one such sequential evaluation one step. Note that this step should
not be confused with the iteration as defined in Byrd et al. (1996) and used in the help page of
optim(), because the latter may involve several steps. Let Tfn and Tgr denote the evaluation times
of fnpq and grpq, respectively. In the case where grpq is specified in the optim() call, one step of the
L-BFGS-B algorithm evaluates fnpq and grpq sequentially, and hence, the evaluation time is little
more than Tfn ` Tgr per step. In contrast, optimParallel() evaluates both functions in parallel,
which reduces the evaluation time to little more than maxtTfn,Tgru per step. In the case where no
gradient is provided, optim() calculates a numeric central difference gradient approximation (CGA).
For p “ 1 the CGA is defined as

Ăgrpxq “ pfnpx` εq ´ fnpx´ εqq { 2 ε, (X.1.1)

and hence, requires two evaluations of fnpq. Similarly, calculating Ăgrpq requires 2p evaluations of
fnpq if fnpq has p parameters. In total, optim() sequentially evaluates fnpq 1` 2p times per step,
resulting in an elapsed time of little more than p1` 2pqTfn per step. Given 1` 2p available processor
cores, optimParallel() evaluates all calls of fnpq in parallel, which reduces the elapsed time to
little more than Tfn per step.

optimParallel() by examples

The main function of the R package optimParallel (Gerber, 2019) is optimParallel(), which has
the same usage and output as optim(), but evaluates fnpq and grpq in parallel. For illustration,
consider 107 samples from a normal distribution with mean µ “ 5 and standard deviation σ “ 2.
Then, we define the following negative log-likelihood and use optim() to estimate the parameters µ
and σ:1

1It is obvious that simpler ways exists to estimate µ and σ. Moreover, a computationally more efficient
version of negll() can be constructed based on mean() and sd().
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> x <- rnorm(n = 1e7, mean = 5, sd = 2)
> negll <- function(par, x) -sum(dnorm(x = x, mean = par[1], sd = par[2], log = TRUE))
> o1 <- optim(par = c(1, 1), fn = negll, x = x, method = "L-BFGS-B",
+ lower = c(-Inf, 0.0001))
> o1$par
[1] 5.000597 2.000038

Using optimParallel(), we can do the same in parallel. The functions makeCluster(),
detectCores(), and setDefaultCluster() from the R package parallel are used to set up a default
cluster for the parallel execution.

> install.packages("optimParallel")
> library("optimParallel")
Loading required package: parallel
> cl <- makeCluster(detectCores()); setDefaultCluster(cl = cl)
> o2 <- optimParallel(par = c(1, 1), fn = negll, x = x, lower = c(-Inf, 0.0001))
> identical(o1, o2)
[1] TRUE

On our computer with 12 Intel Xeon E5-2640 @ 2.50GHz processors one evaluation of negll()
took 0.9 seconds. optim() run with 6.2 seconds per step, whereas optimParallel() run with 1.8
seconds per step. Thus, the optimization time of optimParallel() is reduced by 71% compared to
that of optim(). Note that for p “ 2, 71% is below the maximal possible reduction of 1´ 1{p2p` 1q “
80% because of the overhead associated with the parallel execution and the time needed to run the
L-BFGS-B algorithm, which are both not taken into account in this calculation. In general, the
reduction of the optimization time is large if the parallel overhead is small relative to the execution
time of fnpq. Hence, for this example, the reduction of the optimization time approaches 80% when
the evaluation time of negll() is increased, e. g., by increasing the number of data points in x.

In addition to the arguments of optim(), optimParallel() has the argument parallel, which
takes a list of arguments. For example, we can set parallel = list(loginfo = TRUE) to store all
evaluated parameters and the corresponding gradients.

> o3 <- optimParallel(par = c(1, 1), fn = negll, x = x, lower = c(-Inf, 0.0001),
+ parallel = list(loginfo = TRUE))
> head(o3$loginfo, n = 3)

step par1 par2 fn gr1 gr2
[1,] 1 1.000000 1.000000 109213991 -40005963 -190049608
[2,] 2 1.205988 1.978554 39513324 -9693283 -18700810
[3,] 3 1.265626 2.086455 37160791 -8579638 -14969646
> tail(o3$loginfo, n = 3)

step par1 par2 fn gr1 gr2
[16,] 16 5.000840 2.000140 21121045 609.9480540 507.56421
[17,] 17 5.000586 2.000041 21121045 -26.8237162 15.17266
[18,] 18 5.000597 2.000038 21121045 0.6494038 -1.67717

This can be used to visualize the optimization path as shown in Figure 1 and simplifies the following
study, which illustrates the impact of using different (approximate) gradient specifications.

In the optimParallel() calls above the argument gr was not specified, and hence, the CGA was
used. Another way of using optimParallel() is with a gradient function given to the argument gr.
If the computation of the analytical gradient is tractable and does not take more time than
evaluating fnpq, this usage is preferred.

> negll_gr <- function(par, x){
+ sm <- mean(x); n <- length(x)
+ c(-n*(sm-par[1])/par[2]^2,
+ n/par[2] - (sum((x-sm)^2) + n*(sm-par[1])^2)/par[2]^3)
+ }
> o4 <- optimParallel(par = c(1, 1), fn = negll, gr = negll_gr, x = x,
+ lower = c(-Inf, 0.0001), parallel = list(loginfo = TRUE))
> tail(o4$loginfo, n = 3)

step par1 par2 fn gr1 gr2
[16,] 16 5.000840 2.000139 21121045 609.9651113 507.625076
[17,] 17 5.000586 2.000041 21121045 -26.8233339 15.172072
[18,] 18 5.000597 2.000037 21121045 0.6494452 -1.677113

We see that the resulting optimization path is very similar to that based on the CGA (o3 above).
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Figure 1: Visualization of the optimization path based on the log information obtained with
optimParallel(..., parallel = list(loginfo = TRUE)). The red lines mark the
estimates µ̂ and σ̂.

Besides the CGA and the option to explicitly specify a gradient function, optimParallel()
provides a third option, namely the numeric forward difference gradient approximation (FGA) defined
as Ăgrpxq “ pfnpx` εq ´ fnpxqq{ε for p “ 1 and x sufficiently away from the boundaries. Using the
FGA, the return value of fnpxq can be reused for the computation of the gradient, and hence, the
number of evaluations of fnpq is reduced to 1` p per step. This can be helpful if the number of
available cores is less than 1` 2p or insufficient memory is available to run 1` 2p evaluations of
fnpq in parallel.

> o5 <- optimParallel(par = c(1, 1), fn = negll, x = x, lower = c(-Inf, 0.0001),
+ parallel = list(loginfo = TRUE, forward = TRUE))
> o5$loginfo[17:19, ]

step par1 par2 fn gr1 gr2
[1,] 17 5.000086 1.999541 21121046 -26.33029 14.35781
[2,] 18 5.000331 1.999645 21121045 586.89953 534.85303
[3,] 19 5.000346 1.999651 21121045 625.10421 567.27441

> tail(o5$loginfo, n = 3)
step par1 par2 fn gr1 gr2

[31,] 31 5.000347 1.999652 21121045 627.8436 569.5991
[32,] 32 5.000347 1.999652 21121045 627.8436 569.5991
[33,] 33 5.000347 1.999652 21121045 627.8436 569.5991

We see that the optimizer only stopped after 33 steps, whereas all previous optimization calls
stopped after 18 steps. Hence, it is obvious that the choice of the gradient approximation affects the
optimization. But what happened exactly?—It should be noted that the FGA is less accurate than
the CGA; see, e. g., the numerical study in Nash (2014), Section 10.7. Hence, small differences in
the optimization path are expected, but this does hardly explain the additional 15 steps used by the
FGA based optimization. A closer inspection of the optimization path reveals that up to step 18 the
path is very similar to those of the previous optimization calls and the remaining steps 19–33 only
marginally change par1 and par2. This suggests that using the FGA prevents the algorithm from
stopping. One way to handle this issue is to set a less restrictive stopping criterion by increasing the
value of factr.

> o6 <- optimParallel(par = c(1, 1), fn = negll, x = x, lower = c(-Inf, 0.0001),
+ parallel = list(loginfo = TRUE, forward = TRUE),
+ control = list(factr = 1e-6/.Machine$double.eps))
> tail(o6$loginfo, n = 3)

step par1 par2 fn gr1 gr2
[14,] 14 4.996680 2.001974 21121074 -8524.7678 12125.5022
[15,] 15 4.999743 1.998478 21121052 -884.4955 -5305.2516
[16,] 16 5.000347 1.999652 21121045 627.8436 569.5991

Now the resulting optimization path and the evaluation counts are similar to those resulting from
the optimization using the analytic gradient (o4 above). The take-home message of this study is that
the choice of the (approximate) gradient can affect the optimization path and it may be necessary
to adjust control parameters such as factr, ndeps, and parscale to obtain satisfactory results. A
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more detailed discussion of the use of (approximate) gradients in optimization can be found in Nash
(2014), Chapter 10.

Implementation

optimParallel() is a wrapper to optim() and enables the parallel evaluation of all function calls
involved in one step of the L-BFGS-B optimization method. It is implemented in R and interfaces
compiled C code only through optim(). The reuse of the stable and well-tested C code of optim()
has the advantage that optimParallel() leads to the exact same results as optim(). To ensure that
optimParallel() and optim() indeed return the same results optimParallel contains systematic
unit tests implemented with the R package testthat (Wickham, 2017, 2011).

The basic idea of the implementation is that calling fn() (or gr()) triggers the evaluation
of both fn() and gr(). Their return values are stored in a local environment. The next time
fn() (or gr()) is called with the same parameters the results are read from the local environment
without evaluating fn() and gr() again. The following R code illustrates how optimParallel()
takes advantage of the lexical scoping mechanism of R to store the return values of fn() and gr().

> demo_generator <- function(fn, gr) {
+ par_last <- value <- grad <- NA
+ eval <- function(par) {
+ if(!identical(par, par_last)) {
+ message("--> evaluate fn() and gr()")
+ par_last <<- par
+ value <<- fn(par)
+ grad <<- gr(par)
+ } else
+ message("--> read stored value")
+ }
+ f <- function(par) {
+ eval(par = par)
+ value
+ }
+ g <- function(par) {
+ eval(par = par)
+ grad
+ }
+ list(fn = f, gr = g)
+ }
> demo <- demo_generator(fn = sum, gr = prod)

Calling demo$fn() triggers the evaluation of both fn() and gr().

> demo$fn(1:5)
--> evaluate fn() and gr()
[1] 15

The subsequent call of demo$gr() with the same parameters returns the stored value grad without
evaluating gr() again.

> demo$gr(1:5)
--> read stored value
[1] 120

A similar construct allows optimParallel() to evaluate fnpq and grpq at the same occasion. It is
then straightforward to parallelize the evaluations of the functions using the R package parallel.

Speed gains and performance test

To illustrate the speed gains that can be achieved with optimParallel() we measure the elapsed
times per step when optimizing the following test function and compare them to those of optim().

> fn <- function(par, sleep) {
+ Sys.sleep(sleep)
+ sum(par^2)
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Figure 2: Benchmark experiment comparing the L-BFGS-B method from optimParallel() and
optim(). Plotted are the elapsed times per step (y-axis) and the evaluation time of
fnpq (x-axis) for p “ 1, 2, and 3 using an approximate gradient and p “ 3 using an
analytic gradient. The elapsed times of optimParallel() (solid line) are independent
of p and the specification of an analytic gradient.

+ }
> gr <- function(par, sleep) {
+ Sys.sleep(sleep)
+ 2*par
+ }

In both functions the argument par can be a numeric vector with one or more elements and the
argument sleep controls the evaluation time of the functions. We measure the elapsed time per
step using all combinations of p “ 1, 2, 3, sleep = 0, 0.05, 0.2, 0.4, 0.6, 0.8, 1 seconds with and
without analytic gradient gr(). All measurements are taken on a computer with 12 Intel Xeon E5-
2640@2.50GHz processors. However, because of the experimental design a maximum of 7 processors
are used in parallel. We repeat each measurement 5 times using the R package microbenchmark
(Mersmann et al., 2018). The complete R script of the benchmark experiment is contained in
optimParallel.

The results of the benchmark experiment are summarized in Figure 2. They show that for
optimParallel() the elapsed time per step is only marginally larger than Tfn (black circles in
Figure 2). Conversely, the elapsed time for optim() is Tfn ` Tgr if a gradient function is specified
(violet circles) and p1` 2pqTfn if no gradient function is specified (red, green, and blue circles).
Moreover, optimParallel() adds a small overhead, and hence, it is only faster than optim() for
Tfn larger than 0.05 seconds.

The use of Sys.sleep() in this illustration is useful to characterize the implementation and
its overhead. However, it does not represent a practical use case of optimParallel() and the
speed gains might be less pronounced for other examples. One factor that reduces the speed of
optimParallel() is the specification of large objects in its "..." argument. All those objects are
copied to the running R sessions in the cluster, which increases the elapsed time. Related to that is
the increased memory usage, which may slowdown the optimization when not enough memory is
available.

Summary

The R package optimParallel provides a parallel version of the L-BFGS-B optimization method of
optim(). After a brief theoretical illustration of the possible speed improvement based on parallel
processing, we illustrate optimParallel() by examples. The examples demonstrate that one can
replace optim() by optimParallel() to execute the optimization in parallel and illustrate additional
features like capturing log information and using different (approximate) gradients. Moreover, we
briefly sketch the basic idea of the implementation, which is based on the lexical scoping mechanism
of R. Finally, a performance test shows that using optimParallel() reduces the elapsed time to
optimize computationally demanding functions significantly. For functions with evaluation times
of more than 0.1 seconds we measured speed gains of about factor 2 in the case where an analytic
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gradient was specified and about factor 1` 2p otherwise (p is the number of parameters). Our
results suggest that using optimParallel() is most beneficial when (i) the evaluation time of fnpq
is large (more than 0.1 seconds), (ii) no analytical gradient is available, and (iii) p or more processors
as well as enough memory are available.
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Fixed Point Acceleration in R
by Stuart Baumann, Margaryta Klymak

Abstract A fixed point problem is one where we seek a vector, X, for a function, f, such that f(X)
= X. The solution of many such problems can be accelerated by using a fixed point acceleration
algorithm. With the release of the FixedPoint package there is now a number of algorithms available
in R that can be used for accelerating the finding of a fixed point of a function. These algorithms
include Newton acceleration, Aitken acceleration and Anderson acceleration as well as epsilon
extrapolation methods and minimal polynomial methods. This paper demonstrates the use of fixed
point accelerators in solving numerical mathematics problems using the algorithms of the FixedPoint
package as well as the squarem method of the SQUAREM package.

Introduction

R has had a number of packages providing optimisation algorithms for many years. These include
traditional optimisers through the optim() function, genetic algorithms through the rgenoud package
(Mebane, Jr. and Sekhon, 2011) and response surface global optimisers through packages like
DiceKriging (Roustant et al., 2012). It also has several rootfinders like the uniroot() method and
the methods of the BB package (Varadhan and Gilbert, 2009).

Fixed point accelerators are conceptually similar to both optimisation and root finding algorithms
but thus far implementations of fixed point finders have been rare in R. Prior to FixedPoint’s
(Baumann and Klymak, 2018) release the squarem method of the SQUAREM package1 (Varadhan,
2010) was the only effective fixed point acceleration algorithm available in R.2 In some part this is
likely because there is often an obvious method to find a fixed point by merely feeding a guessed
fixed point into a function, taking the result and feeding it back into the function. By doing this
repeatedly a fixed point is often found. This method (that we will call the "Simple" method) is often
convergent but it is also often slow which can be prohibitive when the function itself is expensive.

This paper shows how the finding of a fixed point of a function can be accelerated using fixed
point accelerators in R. The next section starts by with a brief explanation of fixed points before a
number of fixed point acceleration algorithms are discussed. The algorithms examined include the
Newton, Aitken and Scalar Epsilon Algorithm (SEA) methods that are designed for accelerating
the convergence of scalar sequences. Five algorithms for accelerating vector sequences are also
discussed including the Vector Epsilon Algorithm (VEA), Anderson acceleration and three minimal
polynomial algorithms (MPE, RRE and the squarem method provided in the SQUAREM package).
The FixedPoint package is then introduced with applications of how it can be used to find fixed points.
In total five problems are described which show how fixed point accelerators can be used in solving
problems in asset pricing, machine learning and economics. Here the intent is not only to showcase
the capabilities of FixedPoint and SQUAREM but also to demonstrate how various problems may
be able to be recast in an iterate way in order to be able to exploit fixed point accelerators. Finally
this paper uses the presented numerical problems to perform a speed of convergence test on all of
the algorithms presented in this paper.

Fixed point acceleration

Fixed point problems

A fixed point problem is one where we look for a vector, X P <N , so that for a given real valued
function f : <N Ñ <N we have:

fpXq “ X (Z.2.1)

If f : <1
Ñ <1 and thus any solution X will be a scalar then one way to solve this problem

would be to use a rootfinder on the function gpxq “ fpxq ´ x or to use an optimiser to minimise a
function like hpxq “ pfpxq ´ xq2. These techniques will not generally work however if f : <N Ñ <N
where N is large. Consider for instance using a multidimensional Newtonian optimiser to minimise
hpxq “

řN
i“1pfipxq´xiq

2 where fipxq is the i’th element output by fpxq. The estimation of gradients
for each individual dimension may take an unfeasibly long time. In addition this method may not

1The squarem method has also been implemented in the turboEM package (Bobb and Varadhan, 2014).
2The Anderson method has since been implemented in the daarem package (Henderson and Varadhan,

2018).
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make use all of the available information. Consider for instance that we know that the solution for x
will be an increasing vector (so xi ą xj for any entries of x with i ą j) with many elements. This
information can be preserved and used in the fixed point acceleration algorithms that we present
but would be more difficult to exploit in a standard optimisation algorithm.

Much of the intuition behind the use of optimisers and rootfinders carries over to the use of
fixed point acceleration algorithms. Like a function may have multiple roots and multiple local
optima, a function may have multiple fixed points. The extreme case of this is the identity mapping
fpxq “ x for which every x is a fixed point. Some functions have no roots or optima and likewise
some functions do not possess fixed points. This is the case for the function fpxq “ ´1

x . From
a practical standpoint, it is often useful to have access to multiple optimisers and rootfinders as
different algorithms are better suited to different types of functions. This is also the case for finding
fixed points and the FixedPoint package is useful in this regard, offering eight fixed point algorithms.

The first algorithm implemented in FixedPoint is the “simple” method which merely takes the
output of a function and feeds it back into the function. For instance starting with a guess of x0,
the next guess will be x1 “ fpx0q. The guess after that will be x2 “ fpx1q and so on. Under some
conditions f will be a contraction mapping and so the simple method will be guaranteed to converge
to a unique fixed point (Stokey et al., 1989). Even when this is the case however the simple method
may only converge slowly which can be inconvenient. The other seven methods implemented in
FixedPoint and the squarem method of SQUAREM are designed to be faster than the simple method
but may not be convergent for every problem.

Fixed point acceleration algorithms

Newton acceleration

Here we will define gpxq “ fpxq ´ x. The general approach is to solve gpxq with a rootfinder. The x
that provides this root will be a fixed point. Thus after two iterates we can approximate the fixed
point with:

Next guess “ xi ´
gpxiq

g1pxiq
(Z.2.2)

FixedPoint approximates the derivative g1pxiq such that we use to get an estimated fixed point of:

Next guess “ xi ´
gpxiq

gpxiq´gpxi´1q
xi´xi´1

(Z.2.3)

The implementation of the Newton method in FixedPoint uses this formula to predict the fixed
point given two previous function iterates. This method is designed for use with scalar functions.
If it is used with higher dimensional functions that take and return vectors then it will be used
elementwise.

Aitken acceleration

Consider that a sequence of scalars txiu8i“0 that converges linearly to its fixed point of x̂. This
implies that for a some i:

x̂´ xi`1
x̂´ xi

«
x̂´ xi`2
x̂´ xi`1

(Z.2.4)

For a concrete example consider that every iteration halves the distance between the current value
of xi and the fixed point. In this case the left hand side will be one half which will equal the right
hand side which will also be one half. Equation Z.2.4 can be simply rearranged to give a formula
predicting the fixed point that is used as the subsequent iterate. This is:

Next guess “ xi ´
pxi`1 ´ xiq

2

xi`2 ´ 2xi`1 ` xi
(Z.2.5)

The implementation of the Aitken method in FixedPoint uses this formula to predict the fixed
point given two previous iterates. This method is designed for use with scalar functions. If it is used
with higher dimensional functions that take and return vectors then it will be used elementwise.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859



Contributed Research Articles 361

Figure 1: The Epsilon Algorithm applied to the cos(x) function

Epsilon algorithms

The epsilon algorithms introduced by Wynn (1962) provides an alternate method to extrapolate to
a fixed point. This paper will present a brief numerical example and refer readers to Wynn (1962)
or Smith et al. (1987) for a mathematical explanation of why it works. The basic epsilon algorithm
starts with a column of simple function iterates. If i iterates have been performed then this column
will have a length of i` 1 (the initial starting guess and the results of the i iterations). Then a series
of columns are generated by means of the below equation:

εrc`1 “ εr`1
c´1 ` pε

r`1
c ´ εrcq

´1 (Z.2.6)

Where c is a column index and r is a row index. The algorithm starts with the ε0 column being
all zeros and ε1 being the column of the sequence iterates. The value in the furthest right column
ends up being the extrapolated value.

This can be seen in the figure 1 which uses an epsilon method to find the fixed point of cospxq
with an initial guess of a fixed point of 1. In this figure B1 is the initial guess of the fixed point.
Then we have the iterates B2 “ cospB1q, B3 “ cospB2q and so on. Moving to the next column
we have C1 “ A2` 1{pB2´B1q and C2 “ A3` 1{pB3´B2q and so on before finally we get
F1 “ D2` 1{pE2´E1q. As this is the last entry in the triangle it is also the extrapolated value.

Note that the values in columns C and E are poor extrapolations. Only the even columns D,F
provide reasonable extrapolation values. For this reason an even number of iterates (an odd number
of values including the starting guess) should be used for extrapolation. FixedPoint will enforce this
by throwing away the first iterate provided if necessary to get an even number of iterates.

In the vector case this algorithm can be visualised by considering each entry in the above table to
contain a vector going into the page. In this case the complication emerges from the inverse term in
equation Z.2.6: there is no clear interpretation of pεr`1

c ´ εrcq
´1 when pεr`1

c ´ εrcq represents a vector.
The Scalar Epsilon Algorithm (SEA) uses elementwise inverses to solve this problem which ignores
the vectorised nature of the function. The Vector Epsilon Algorithm (VEA) uses the Samuelson
inverse of each vector pεr`1

c ´ εrcq as described in Smith et al. (1987).

Minimal polynomial algorithms

FixedPoint implements two minimal polynomial algorithms, Minimal Polynomial Extrapolation
(MPE) and Reduced Rank Extrapolation (RRE). The key intuition for these methods is that a linear
combination of previous iterates is taken to generate a new guess vector. The coefficients of the
previous iterates are taken so that this new guess vector is expected to not be changed much by the
function.3

To first define notation, each vector (the initial guess and subsequent iterates) is defined by
x0,x1, ... . The first differences are denoted uj “ xj`1 ´ xj and the second differences are denoted
vj “ uj`1 ´ uj . If we have already completed k´ 1 iterations (and so we have k terms) then we will
use matrices of first and second differences with U “ ru0,u1, ...,uk´1s and V “ rv0, v1, ..., vk´1s.

3For more details an interested reader is directed to Cabay and Jackson (1976) or Smith et al. (1987) for
a detailed explanation.

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859



Contributed Research Articles 362

For the MPE method the extrapolated vector, is found by:

Next guess “
řk
j“0 cjxj
řk
j“0 cj

(Z.2.7)

Where the coefficient vector is found by c “ ´U`uk where U` is the Moore-Penrose generalised
inverse of the U matrix. In the case of the RRE method the extrapolated vector, is found by:

Next guess “ x0 ´UV
`u0 (Z.2.8)

The only effective fixed point accelerator that was available in R prior to the release of the
FixedPoint package was the squarem method provided in the SQUAREM packages. This method
modifies the minimal polynomial algorithms with higher order terms and can thus be considered as a
variant of the MPE algorithms. The squarem method is primarily intended to accelerate convergence
in the solution of expectation maximisation problems but can be used more generally with any
function that is a contraction mapping (Varadhan and Roland, 2008).

Anderson acceleration

Anderson (1965) acceleration is an acceleration algorithm that is well suited to functions of vectors.
Similarly to the minimal polynomial algorithms it takes a weighted average of previous iterates.
It is different however to all previous algorithms in that the previous iterates used to generate a
guess vector need not be sequential but any previous iterates can be used. Thus it is well suited to
parallelising the finding of a fixed point.4

Consider that we have previously run an N-dimensional function M times. We can define a
matrix Gi “ rgi´M , gi´M`1, ..., gis where gpxjq “ fpxjq ´ xj . Each column of this matrix can be
interpreted as giving the amount of “movement” that occurred in a run of the function.

In Anderson acceleration we assign a weight to apply to each column of the matrix. This weight
vector is M-dimensional and can be denoted α “ tα0,α1, ...,αM u. These weights are determined by
means of the following optimisation:

min
α
||Giα||2 (Z.2.9)

s.t.
M
ÿ

j“0
αj “ 1

Thus we choose the weights that will be predicted to create the lowest “movement” in an iteration.
With these weights we can then create the expression for the next iterate as:

Next guess “
M
ÿ

j“0
αjfpxi´M`jq (Z.2.10)

Robustness of fixed point algorithms

Functions with restricted input spaces

Some functions have a restricted input space. Acceleration schemes can perform badly in these
settings by proposing vectors that sit outside of the required input space. As an example consider
the following <2

Ñ <2 function, that we try to find the fixed point for with the Anderson method:

Output “
˜

a

Inputr1s ` Inputr2s
2 ,

ˇ

ˇ

ˇ

ˇ

3Inputr1s
2 `

Inputr2s
2

ˇ

ˇ

ˇ

ˇ

¸

(Z.3.1)

library(FixedPoint)
SimpleVectorFunction = function(x){c(0.5*sqrt(x[1] + x[2]), abs(1.5*x[1] + 0.5*x[2]))}
FPSolution = FixedPoint(Function = SimpleVectorFunction, Inputs = c(0.3,900),

Method = "Anderson")
4An example of this is shown in the appendix for the consumption smoothing problem described later in

this paper.
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Unfortunately an error will occur here. After four iterates the Anderson method decides to try the
vector p´1.085113,´3.255338q. This results in the square root of a negative number and hence the
output is undefined.

In cases like this there are a few things a user can try. The first is to change the function to
another function that retains the same fixed points. In the above case we could change the function
to take the absolute value of the sum of the two inputs before taking the square root. Then after
finding a fixedpoint we can verify if the sum of the two entries is positive and hence it is also a
solution to the original function. Another measure that could be tried is to change the initial guess.
Finally we could change the acceleration method. The simple method will be robust in this case as
the function will never return an Output vector that sums to a negative number. It is still likely
to be slow however.5 A special feature of the FixedPoint package is that it allows methods to be
changed while retaining previous iterates. So in this case we can run the preceding code until an
error causes the acceleration to stop, switch to the simple method for a few iterates and then switch
back to the anderson method. No error will result as we are close enough to the fixedpoint that
each new guess sums to be positive:

FPSolution = FixedPoint(Function = SimpleVectorFunction, Inputs = FPSolution$Inputs,
Outputs = FPSolution$Outputs, Method = "Simple", MaxIter = 5)

# Now we switch to the Anderson Method again. No error results because we are
# close to fixed point.
FPSolution = FixedPoint(Function = SimpleVectorFunction, Inputs = FPSolution$Inputs,

Outputs = FPSolution$Outputs, Method = "Anderson")

Another example of a restricted input space is shown in the consumption smoothing example
presented later in this paper. In this example the input vector must reproduce a monotonic and
concave function. All of the vectorised methods presented in this paper take a combination of
previous iterates all of which take and return vectors representing monotonic and concave functions.
As a result these methods will only propose vectors representing monotonic and concave functions.
By contrast the Newton, SEA and Aitken methods do not take into account the entire vector when
proposing the fixedpoint value for each element of the vector and as a result some of the input
vectors proposed by these methods may not be valid. Ensuring that a vectorised method is chosen is
thus sufficient in this case to ensure that each vector tried is within the input space of the function
for which a fixedpoint is sought.

Convergence by constant increments

Most fixed point acceleration algorithms will fail in finding the fixed point of a function that converges
by a fixed increment. For instance we may have a function that takes x and returns x shifted 1 unit
(in Euclidean norm) in a straight line towards its fixed point. A realistic example of this type of
convergence is the training of a perceptron classifier which is explored later in this paper.

This type of convergence is problematic for all algorithms presented except for the simple method.
The basic problem can be illustrated simply by looking at the Newton and Aitken methods. For the
Newton method consider the derivative in equation Z.2.3 which is approximated by gpxiq´gpxi´1q

xi´xi´1
.

When there is convergence by constant increments then gpxiq “ gpxi´1q and the derivative is zero
which means calculating the Newton method’s recommended new guess of the fixed point involves
division by zero. Now considering the Aitken method of equation Z.2.5 the new guess is given by
xi´

pxi`1´xiq
2

xi`2´2xi`1`xi
. When there is convergence by constant increments then xi´xi`1 “ xi`1´xi`2

and so we have xi`2 ´ 2xi`1 ` xi “ pxi ´ xi`1q ´ pxi`1 ´ xi`2q “ 0. It is not possible to calculate
the new guess.

More generally, when there is convergence by constant increments then then the fixed point
method receives information about what direction to go in but no information about how far to go.
This is a complication that is common to all fixed point acceleration methods. In these cases it may
be possible to change the function to make it converge by varying increments while retaining the
same set of fixed points. An example of this is shown in the perceptron example presented later in
this paper. In other cases where it is not possible to modify the function, it is advisable to use the
simple method.

5As the simple method is so often monotonic and convergent the FixedPoint package has a “dampening”
parameter which allows users to create guesses by linearly combining the guesses of their desired acceleration
method with the simple iterates. This allows users to combine the robustness advantages of the simple
method with the speed advantages of another method.
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Applications of fixed point acceleration with the FixedPoint package

Simple examples with analytical functions

For the simplest possible example we will use the FixedPoint package to accelerate the solution for
a square root. Consider we want to estimate a square root using the Babylonian method. To find
the square root of a number x, given an initial guess t0, the following sequence converges to the
square root:

tn`1 “
1
2

„

tn `
x

tn



(Z.4.1)

This is a fast converging and inexpensive sequence which probably makes an acceleration algorithm
overkill but for sake of exposition we can implement this in FixedPoint. In the next code block we
find the square root of 100 with the SEA method and an initial guess of six:

library(FixedPoint)
SequenceFunction = function(tn){0.5*(tn + 100/tn)}
FP = FixedPoint(Function = SequenceFunction, Inputs = 6, Method = "SEA")

The benefit of fixed point accelerators is more apparent when applied to vectorised functions.
For a simple example consider the below function where each element of the returned vector depends
on both elements of the input vector:

Vec_Function = function(x){c(0.5*sqrt(abs(x[1] + x[2])), 1.5*x[1] + 0.5*x[2])}
FP_Simple = FixedPoint(Function = Vec_Function, Inputs = c(0.3,900),

Method = "Simple")
FP_Anderson = FixedPoint(Function = Vec_Function, Inputs = c(0.3,900),

Method = "Anderson")

Here it takes 105 iterates to find a fixed point with the simple method but only 14 with the
Anderson acceleration method.

Gas diffusion

For a more complex example consider we want to model the diffusion of gas in a two dimensional
space. We set up a two dimensional grid split into φ divisions along the side so there are φ2 grid
squares in total. Pure nitrogen is being released at location p1, 1q and pure oxygen is being released
at location pφ,φq. We are interested in determining the steady state gas concentrations in each
square of the grid. We will model equilibrium as occurring when each square has a gas concentration
equal to the average of itself with its contiguous squares.

phi = 10
Numbering = matrix(seq(1,phi^2,1), phi) # Numbering scheme for squares

NeighbourSquares = function(n,phi){
SurroundingIndexes = c(n)
if (n %% phi != 1){SurroundingIndexes = c(SurroundingIndexes, n-1)} # above
if (n %% phi != 0){SurroundingIndexes = c(SurroundingIndexes, n+1)} # below
if (n > phi){SurroundingIndexes = c(SurroundingIndexes, n-phi)} # right
if (n <= phi^2-phi){SurroundingIndexes = c(SurroundingIndexes, n+phi)} # left
return(SurroundingIndexes)

}

TwoDimensionalDiffusionIteration = function(x, phi){
xnew = x
for (i in 1:(phi^2)){

Subset = NeighbourSquares(i, phi)
xnew[i] = mean(x[Subset])

}
xnew[1] = 0
xnew[phi^2] = 1
return(xnew)

}
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Figure 2: Equilibrium concentrations of Oxygen found by the fixedpoint() function

FP = FixedPoint(Function = function(x) TwoDimensionalDiffusionIteration(x,phi),
Inputs = c(rep(0,50), rep(1,50)), Method = "RRE")

The fixed point found here can then be used to plot the density of oxygen over the space. The
code for this is below while the plot can be found in figure 2.

x = 1:phi
y = 1:phi
oxygen_densities = matrix(FP$FixedPoint, phi)
persp(x, y, oxygen_densities)

Finding equilibrium prices in a pure exchange economy

Consider now we are modeling a pure exchange economy and want to determine the equilibrium
prices given household preferences and endowments. We have N households. Every household has
preferences over G types of good. Household n P N has a utility function of

Un “
G
ÿ

i“1
γn,i logpcn,iq (Z.4.2)

Where γn,i is a parameter describing household n’s taste for good i, cn,i is household n’s consumption
of good i. Each household is endowed with an amount of each good. They can then trade goods
before consumption. We have data on each household’s endowment and preferences for each good
and want to determine the equilibrium prices for this pure exchange economy.

We will choose good 1 as the numeraire, so we will have P1 “ 1. First we will find an expression for
demand given a price vector. Setting up the lagrangian for household n:

Ln “
G
ÿ

i“1
γn,i logpcn,iq ` λnr

G
ÿ

i“1
Pipen,i ´ cn,iqs (Z.4.3)

Where λn is household n’s shadow price, en,i is this household’s endowment of good i and Pi is the
price of good i. Taking the first order condition with respect to ci of this lagrangian yields:

cn,i “
γn,i
Piλn

(Z.4.4)

and taking the first order condition with respect to λn yields the budget constraint. Subbing the
above equation into the budget constraint and rearranging yields:

λn “

řG
i“1 γn,i

řG
i“1 Pien,i

(Z.4.5)

We can also sum over households to find total demand for each good as:

Di “
1
Pi

G
ÿ

n“1

γn,i
λn

(Z.4.6)
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We will find the equilibrium price vector by using an approximate price vector to estimate the λs
using equation Z.4.5. We can then find an estimate of the equilibrium price Pi which solves clears
the market, Di “

řG
n“1 en,i:

Pi “

řG
n“1

γn,i
λn

řG
n“1 en,i

(Z.4.7)

We use this approach in the code below for the case of 10 goods with 8 households. For exposition
sake we generate some data below before proceeding to find the equilibrium price vector.

# Generating data
set.seed(3112)
N = 8
G = 10
Endowments = matrix(rlnorm(N*G), nrow = G)
Gamma = matrix(runif(N*G), nrow = G)
# Every column here represents a household and every row is a good.
# So Endowments[1,2] is the second household's endowment of good 1.

# We now start solving for equilibrium prices:
TotalEndowmentsPerGood = apply(Endowments, 1, sum)
TotalGammasPerHousehold = apply(Gamma, 2, sum)
LambdasGivenPriceVector = function(Price){
ValueOfEndowmentsPerHousehold = Price * Endowments
TotalValueOfEndowmentsPerHousehold = apply(ValueOfEndowmentsPerHousehold, 2, sum)
return(TotalGammasPerHousehold /TotalValueOfEndowmentsPerHousehold)

}

IterateOnce = function(Price){
Lambdas = LambdasGivenPriceVector(Price) # eqn 16
GammaOverLambdas = t(apply(Gamma, 1, function(x) x / Lambdas))
SumGammaOverLambdas = apply(GammaOverLambdas,1,sum)
NewPrices = SumGammaOverLambdas/ TotalEndowmentsPerGood # eqn 18
NewPrices = NewPrices/NewPrices[1] # normalising with numeraire
return(NewPrices)

}

InitialGuess = rep(1,10)
FP = FixedPoint(Function = IterateOnce, Inputs = InitialGuess, Method = "VEA")

The fixed point contained in the FP object is the vector of equilibrium prices.

The training of a perceptron classifier

The perceptron is one of the oldest and simplest machine learning algorithms (Rosenblatt, 1958).
In its simplest form, for each observation it is applied it uses an N-dimensional vector of features
x together with N+1 weights w to classify the observation as being of type one or type zero. It
classifies observation j as a type one if w0 `

řN
i“1 wixi,j ą 0 and as a type zero otherwise.

The innovation of the perceptron was its method for training its weights, w. This is done by
looping over a set of observations that can be used for training (the “training set”) and for which the
true category information is available. The perceptron classifies each observation. When it classifies
an observation correctly no action is taken. On the other hand when the perceptron makes an error
then it updates its weights with the following expressions.

w10 “ w0 ` pdj ´ yjq (Z.4.8)
w1i “ wi ` pdj ´ yjqxj,i for i ą 0 (Z.4.9)

Where wi is the old weight for the i’th feature and w1i is the updated weight. xj,i is the feature
value for observation j’s feature i, dj is the category label for observation j and yj is the perceptron’s
prediction for this observation’s category.

This training algorithm can be rewritten as fixed point problem. We can write a function that
takes perceptron weights, loops over the data updating these weights and then returns the updated
weight vector. If the perceptron classifies every observation correctly then the weights will not
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update and we are at a fixed point.6

Most acceleration algorithms perform poorly in accelerating the convergence of this perceptron
training algorithm. This is due to the perceptron often converging by a fixed increment. This occurs
because multiple iterates can result in the same observations being misclassified and hence the
same change in the weights. As a result we will use the simple method which is guaranteed to be
convergent for this problem (Novikoff, 1963).

# Generating linearly separable data
set.seed(10)
data = data.frame(x1 = rnorm(100,4,2), x2 = rnorm(100,8,2), y = -1)
data = rbind(data,data.frame(x1 = rnorm(100,-4,2), x2 = rnorm(100,12), y = 1))

# Iterating training of Perceptron
IteratePerceptronWeights = function(w, LearningRate = 1){
intSeq = 1:length(data[,"y"])
for (i in intSeq){

target = data[i,c("y")]
score = w[1] + (w[2]*data[i, "x1"]) + (w[3]*data[i, "x2"])
ypred = 2*(as.numeric( score > 0 )-0.5)
update = LearningRate * 0.5*(target-ypred)
w[1] = w[1] + update
w[2] = w[2] + update*data[i, "x1"]
w[3] = w[3] + update*data[i, "x2"]

}
return(w)

}

InitialGuess = c(1,1,1)
FP = FixedPoint(Function = IteratePerceptronWeights, Inputs = InitialGuess,

Method = "Simple", MaxIter = 1200)

The result of this algorithm can be seen in figure 3. It can be seen that the classification line perfectly
separates the two groups of observations.

Only the simple method is convergent here and it is relatively slow taking 1121 iterations. We can
still get a benefit from accelerators however if we can modify the training algorithm to give training
increments that change depending on distance from the fixed point. This can be done by updating
the weights by an amount proportional to a concave function of the norm of w0 `

řN
i“1 wixi,j . Note

that the instances in which the weights are not updated stay the same and hence the modified
training function will result in the same set of fixed points as the basic function. This is done in
the next piece of code where the MPE method is used. It can be seen that there is a substantial
increase in speed with only 54 iterations required by the MPE method.

IteratePerceptronWeights = function(w, LearningRate = 1){
intSeq = 1:length(data[,"y"])
for (i in intSeq){

target = data[i,c("y")]
score = w[1] + (w[2]*data[i, "x1"]) + (w[3]*data[i, "x2"])
ypred = 2*(as.numeric( score > 0 )-0.5)
if ((target-ypred) != 0){

update = LearningRate * -sign(score) * sqrt(abs(score))
w[1] = w[1] + update
w[2] = w[2] + update*data[i, "x1"]
w[3] = w[3] + update*data[i, "x2"]

}
}
return(w)

}
FP = FixedPoint(Function = IteratePerceptronWeights, Inputs = InitialGuess,

Method = "MPE")
6Note that when a perceptron has one fixed point then there are uncountably many such fixed points

where the perceptron correctly classifies the entire training set and will not further update. This is because a
scalar multiple of any set of weights will generate the same classification line and the new set of weights will
also be a fixed point. There may also be multiple linearly independent hyperplanes that correctly classify
every observation. On the other hand it is possible that the data is not linearly separable in which case there
may be no fixed point and the weights will continue to update forever.
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Figure 3: The perceptron linear classifier

Valuation of a perpetual American put option

For an application in finance consider the pricing of a perpetual American put option on a stock. It
never expires unless it is exercised. Its value goes to zero however if the spot price rises to become α
times as much as the strike price, denoted S.7 We will denote x to be the current spot price, σ is
the market volatility, d is the risk free rate. In each period the underlying price either increases by a
multiple of eσ (which happens with probability p) or decreases by a multiple of e´σ (which happens
with probability 1´ p) in each unit of time. We have ´σ ă d ă σ.

Given the risk neutral pricing principle the returns from holding the stock must equal the risk-free
rate. Hence we must have peσ ` p1´ pqe´σ “ ed. This implies that:

p “
ed ´ e´σ

eσ ´ e´σ
(Z.4.10)

The price of this option at any given spot price of the stock can be solved by means of a fixed point
algorithm as shown below:8

d = 0.05
sigma = 0.1
alpha = 2
S = 10
chi = 0
p = (exp(d) - exp(-sigma) ) / (exp(sigma) - exp(-sigma))

# Initially we guess that the option value decreases linearly from S
# (when the spot price is 0) to 0 (when the spot price is \alpha S).
UnderlyingPrices = seq(0,alpha*S, length.out = 100)
OptionPrice = seq(S,chi, length.out = 100)

ValueOfExercise = function(spot){S-spot}
ValueOfHolding = function(spot, EstimatedValueOfOption){

7This is a common approximation when pricing American options with a finite difference method. While
no option’s price will ever become exactly zero, at a sufficiently high spot price the option will be low enough
value for this to be a good approximation.

8In this case the SQUAREM package is used with the squarem method. To use the MPE method through
the SQUAREM package we could add list(K “ 2, method="mpe", square=FALSE) as the control argument
to the squarem function call. RRE can be implemented analogously.
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Figure 4: Price of Perpetual American put for each level of the spot price

if (spot > alpha*S-1e-10){return(chi)}
IncreasePrice = exp(sigma)*spot
DecreasePrice = exp(-sigma)*spot

return((p*EstimatedValueOfOption(IncreasePrice) +
(1-p)*EstimatedValueOfOption(DecreasePrice)))

}
ValueOfOption = function(spot, EstimatedValueOfOption){
Holding = ValueOfHolding(spot, EstimatedValueOfOption)*exp(-d)
Exercise = ValueOfExercise(spot)
return(max(Holding, Exercise))

}
IterateOnce = function(OptionPrice){
EstimatedValueOfOption = approxfun(UnderlyingPrices, OptionPrice, rule = 2)
for (i in 1:length(OptionPrice)){

OptionPrice[i] = ValueOfOption(UnderlyingPrices[i], EstimatedValueOfOption)
}
return(OptionPrice)

}

library(SQUAREM)
FP = squarem(par=OptionPrice, IterateOnce)

plot(UnderlyingPrices,FP$par, type = "l",
xlab = "Price of Underlying", ylab = "Price of Option")

Here the fixed point gives the price of the option at any given level of the underlying asset’s spot
price. This can be visualized as seen in figure 4.

plot(UnderlyingPrices,FP$FixedPoint, type = "l",
xlab = "Price of Underlying", ylab = "Price of Option")

A consumption smoothing problem

A common feature of macroeconomic models is the simulation of consumer spending patterns over
time. These computations are not trivial, in order for a consumer to make a rational spending
decision they need to know their future wellbeing as a function of their future wealth. Often models
exhibit infinitely lived consumers without persistent shocks and in this setting the relationship
between wealth and wellbeing can be found with a fixed point algorithm. Consider an infinitely
lived consumer that has a budget of Bt at time t and a periodic income of 1. She has a periodic
utility function given by εtxδt , where xt is spending in period t and εt is the shock in period t drawn
from some stationary nonnegative shock process with pdf fpεq defined on the interval ry, zs. The
problem for the consumer in period t is to maximise her value function:

V pBt|εtq “ max
0ăxtăBt

εtx
δ
t ` β

ż z

y
V pBt`1|εqfpεqdε (Z.4.11)
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Where β is a discounting factor and Bt`1 “ 1`Bt ´ xt.

Our goal is to find a function that gives the optimal spending amount, x̂pBt, εtq, in period t which
is a function of the shock magnitude εt and the available budget Bt in this period. If we knew the
function

şz
y V pBt`1|εqfpεqdε then we could do this by remembering Bt`1 “ 1`Bt ´ xt and using

the optimisation:

x̂pBt, εtq “ argmax0ăxtăBt εtx
δ
t ` β

ż z

y
V pBt`1|εqfpεqdε (Z.4.12)

So now we need to find the function
şz
y V pBt`1|εqfpεqdε. Note as the shock process is stationary,

the consumer lives forever and income is always 1, this function will not vary with t. As a result we
will rewrite it as simply fpbq, where b is the next period’s budget.

Now we will construct a vector containing a grid of budget values, b̄, for instance b̄ “ r0, 0.01, 0.02, ..., 5s
(we will use bars to describe approximations gained from this grid). If we could then approximate a vec-
tor of the corresponding function values, f̄ , so we had for instance f̄ “ rfp0q, fp0.01q, fp0.02q, ..., fp5qs
then we could approximate the function by constructing a spline f̄pbq between these points. Then
we can get the function:

x̄pBt, εtq “ argmax0ăxăBt εtx
δ
t ` f̄pBt ´ xq (Z.4.13)

So this problem reduces to finding the vector of function values at a discrete number of points, f̄ .
This can be done as a fixed point problem. We can first note that this problem is a contraction
mapping problem. In this particular example this means that if we define a sequence f̄0 “ f0 where
f0 is some initial guess and fi`1 “ gpfiq where g is given by the IterateOnce() function below then
this sequence will be convergent.9 Convergence would be slow however so below we will actually use
the Anderson method:

library(FixedPoint)
library(schumaker)
library(cubature)
delta = 0.2
beta = 0.99
BudgetStateSpace = c(seq(0,1, 0.015), seq(1.05,3,0.05))
InitialGuess = sqrt(BudgetStateSpace)

ValueGivenShock = function(Budget, epsilon, NextValueFunction){
optimize(f = function(x) epsilon*(x^delta) + beta*NextValueFunction(Budget - x + 1),

lower = 0, upper = Budget, maximum = TRUE)
}

ExpectedUtility = function(Budget, NextValueFunction){
if (Budget > 0.001){

adaptIntegrate(f = function(epsilon) ValueGivenShock(Budget,
epsilon,NextValueFunction)$objective * dlnorm(epsilon),
lowerLimit = qlnorm(0.0001), upperLimit = qlnorm(0.9999))$integral

} else {
beta*NextValueFunction(1)

}
}

IterateOnce = function(BudgetValues){
NextValueFunction = schumaker::Schumaker(BudgetStateSpace, BudgetValues,

Extrapolation = "Linear")$Spline
for (i in 1:length(BudgetStateSpace)){ # This is often a good loop to parallelise

BudgetValues[i] = ExpectedUtility(BudgetStateSpace[i], NextValueFunction)
}
return(BudgetValues)

}
9We use two additional packages in solving this problem. The first is the cubature package (Narasimhan

and Johnson, 2017) which is used for the integral in equation Z.4.12. The second is the schumaker package
(Baumann and Klymak, 2017) which generates a spline representing f̄pBt ´ xq in equation Z.4.13. It is
necessary for this spline to be shape preserving to ensure there is a unique local maxima to be found for the
optimiser used in evaluating this expression.
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FP = FixedPoint(Function = IterateOnce, Inputs = InitialGuess,
Method = "Anderson")

This takes 71 iterates which is drastically better than the 2316 iterates it takes with the simple
method. Now the optimal spending amount can be found for any given budget and any income
shock. For instance with the following code we can work out what a consumer with a budget of 1.5
and a shock of 1.2 would spend:

NextValueFunction = Schumaker(BudgetStateSpace, FP$FixedPoint)$Spline
ValueGivenShock(1.5, 1.2, NextValueFunction)$maximum

Using parallelisation with the Anderson method

It takes 71 iterates for the Anderson method to find the fixed point, however we might want to get
it going even faster though parallelisation. The easiest way to do this for this particular problem
is to parallelise the for loop through the budgetspace. For exposition however we show how to do
this by doing multiple iterates at the same time. We will do this by using six cores and using the
parallel capabilities of the foreach and doParallel packages (Revolution Analytics and Weston, 2015;
Microsoft Corporation and Weston, 2017). Each node will produce an different guess vector through
the Anderson method. This will be done by giving each node a different subset of the previous
iterates that have been completed. The first node will have all previous iterate information. For
i ą 1, the ith node will have all previous iterates except for the ith most recent iterate. The code
for this approach is presented in the appendix.

This parallel method takes 102 iterates when using six cores which takes approximately the
same time as running 6` 96

6 “ 22 iterates sequentially. This is a significant speedup and is possible
with the Anderson method as previous iterates do not need to be sequential. The simple parallel
algorithm here may also be able to be modified for better performance, for instance different methods
could be used in each core or the dampening parameter could be modified.

Speed of convergence comparison

All of the algorithms of the FixedPoint package as well as the squarem algorithm of the SQUAREM
package were run for a variety of problems. In addition to all of the above problems fixed points
were found for some basic analytical functions such as cospxq, x

1
3 and the linear case of 95p18´ xq.10

The results are shown in table 1.
It can be seen that the Anderson algorithm performed well in almost all cases. The minimal

polynomial methods tended to outperform the epsilon extrapolation methods. This is largely in
agreement with previous benchmarking performed in Jbilou and Sadok (2000). The MPE tended
to generally outperform the RRE and the VEA outperformed the SEA in all cases. The squarem
method tended to be outperformed by the standard minimal polynomial methods. While it was
generally amongst the slowest methods, the simple method was the most generally applicable,
converging in all but one of the test cases studied.

Conclusion

R has had available a multitude of algorithms for rootfinding and multidimensional optimisation for
a long time. Until recently however the range of fixed point accelerators available in R has been
limited. Before the release of FixedPoint, only the squarem method of the SQUAREM package was
available as a general use fixed point accelerator.

This paper examines the use of fixed point accelerators in R. The algorithms of the FixedPoint
and SQUAREM packages are used to demonstrate the use of fixed point acceleration algorithms in
the solution of numerical mathematics problems. A number of applications were shown. First the
package was used to accelerate the finding of an equilibrium distribution of gas in a diffusion setting.
The package was then used to accelerate the training of a perceptron classifier. The acceleration
of this training was complicated by the training function converging in fixed increments however

10The starting guesses, convergence criteria, etc can also be found in the test files for FixedPoint which are
included with the package’s source files. The squarem method provided in the SQUAREM package checks
for convergence in a different way to the FixedPoint package. To overcome this the convergence target was
adjusted for this package so that in general the squarem achieves slightly less convergence than the FixedPoint
methods in the convergence tests in this table which results in any bias being slightly in favor of the squarem
method.
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Case Dimensions Function

1 1 Babylonian Square Root

2 1 cos(x)

3 6 x1{3

4 6 95p18´ xq

5 2 Simple Vector Function

6 100 Gas Diffusion

7 3 Perceptron

8 3 Modified Perceptron

9 10 Equilibrium Prices

10 100 Perpetual American Put

11 107 Consumption Smoothing

Case Simple Anderson Aitken Newton VEA SEA MPE RRE squarem

1 6 7 7 7 6 6 6 6 6

2 58 7 11 9 13 13 19 25 55

3 22 12 9 9 13 13 9 10 12

4 * 5 3 3 25 * 19 7 *

5 105 14 67 239 20 25 31 31 44

6 221 26 323 * 150 221 44 50 159

7 1121 * * * * * * * *

8 1156 * * 20 75 158 54 129 638

9 11 9 14 24 11 11 11 12 11

10 103 37 203 * 108 103 43 52 103

11 2316 71 * * * * 217 159 285

Table 1: The performance of each algorithm for test cases. An asterix indicates the algorithm
did not converge.
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it was possible to speed up the solution using a fixed point accelerator by changing the training
algorithm while retaining the same set of fixed points. A number of problems in economics were
then examined. First the equilibrium price vector was found for a pure exchange economy. Next
a vector was found that gives the price of a perpetual American put option at various values of
the underlying asset’s spot price. Finally the future value function was found for an infinitely lived
consumer facing a consumption smoothing problem.

In all of these example applications it can be noted that the solving for a fixed point was
accelerated significantly by the use of a fixed point acceleration algorithm. In many cases an
accelerator was available that was more than an order of magnitude faster than the simple method.
The results indicate that large speedups are available to R programmers that are able to apply fixed
point acceleration algorithms to their numerical problem of interest.
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Appendix: An algorithm for finding a fixed point while using parallelisation

library(foreach)
library(doParallel)
cores = 6

NodeTaskAssigner = function(Inputs, Outputs, i, Function){
library(FixedPoint)
library(schumaker)
library(cubature)
Iterates = dim(Inputs)[2]
if (i > 1.5) {IterateToDrop = Iterates-i+1} else {IterateToDrop = 0}
IteratesToUse = (1:Iterates)[ 1:Iterates != IterateToDrop]
Inputs = matrix(Inputs[,IteratesToUse], ncol = length(IteratesToUse), byrow = FALSE)
Outputs = matrix(Outputs[,IteratesToUse], ncol = length(IteratesToUse), byrow = FALSE)
Guess = FixedPointNewInput(Inputs = Inputs, Outputs = Outputs, Method = "Anderson")
Outputs = matrix(Function(Guess), ncol = 1, byrow = FALSE)
Inputs = matrix(Guess, ncol = 1, byrow = FALSE)

return(list(Inputs = Inputs, Outputs = Outputs))
}

# This combines the results returned by each node
CombineLists = function(List1, List2){
width = dim(List1$Inputs)[2] + dim(List2$Inputs)[2]
C = list()
C$Inputs = matrix(c(List1$Inputs , List2$Inputs ), ncol = width, byrow = FALSE)
C$Outputs = matrix(c(List1$Outputs, List2$Outputs), ncol = width, byrow = FALSE)
return(C)

}

# ReSortIterations
# This function takes the previous inputs and outputs from the function, removes
# duplicates and then sorts them in order of increasing convergence.
ReSortIterations = function(PreviousIterates,

ConvergenceMetric = function(Resids){max(abs(Resids))})
{
# Removing any duplicates
NotDuplicated = (!(duplicated.matrix(PreviousIterates$Inputs, MARGIN = 2)))
PreviousIterates$Inputs = PreviousIterates$Inputs[,NotDuplicated]
PreviousIterates$Outputs = PreviousIterates$Outputs[,NotDuplicated]
# Resorting
Resid = PreviousIterates$Outputs - PreviousIterates$Inputs
Convergence = ConvergenceVector = sapply(1:(dim(Resid)[2]), function(x)

ConvergenceMetric(Resid[,x]) )
Reordering = order(Convergence, decreasing = TRUE)
PreviousIterates$Inputs = PreviousIterates$Inputs[,Reordering]
PreviousIterates$Outputs = PreviousIterates$Outputs[,Reordering]
return(PreviousIterates)
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}

ConvergenceMetric = function(Resid){max(abs(Resid))}

# Preparing for clustering and getting a few runs to input to later functions:
PreviousRuns = FixedPoint(Function = IterateOnce, Inputs = InitialGuess,

Method = "Anderson", MaxIter = cores)
PreviousRuns$Residuals = PreviousRuns$Outputs - PreviousRuns$Inputs
PreviousRuns$Convergence = apply(PreviousRuns$Residuals, 2, ConvergenceMetric)
ConvergenceVal = min(PreviousRuns$Convergence)

registerDoParallel(cores=cores)

iter = cores
while (iter < 100 & ConvergenceVal > 1e-10){
NewRuns = foreach(i = 1:cores, .combine=CombineLists) %dopar% {

NodeTaskAssigner(PreviousRuns$Inputs, PreviousRuns$Outputs, i, IterateOnce)
}
# Appending to previous runs
PreviousRuns$Inputs = matrix(c(PreviousRuns$Inputs, NewRuns$Inputs),

ncol = dim(PreviousRuns$Inputs)[2] + cores, byrow = FALSE)
PreviousRuns$Outputs = matrix(c(PreviousRuns$Outputs, NewRuns$Outputs),

ncol = dim(PreviousRuns$Outputs)[2] + cores, byrow = FALSE)
PreviousRuns = ReSortIterations(PreviousRuns)
PreviousRuns$Residuals = PreviousRuns$Outputs - PreviousRuns$Inputs
PreviousRuns$Convergence = apply(PreviousRuns$Residuals, 2, ConvergenceMetric)
# Finding Convergence
ConvergenceVal = min(PreviousRuns$Convergence)
iter = iter + cores

}

stopImplicitCluster()
# And the fixed point comes out to be:
PreviousRuns$Outputs[, dim(PreviousRuns$Outputs)[2]]
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SemiCompRisks: An R Package for
the Analysis of Independent and
Cluster-correlated Semi-competing
Risks Data
by Danilo Alvares, Sebastien Haneuse, Catherine Lee, and Kyu Ha Lee

Abstract Semi-competing risks refer to the setting where primary scientific interest lies in estimation
and inference with respect to a non-terminal event, the occurrence of which is subject to a terminal
event. In this paper, we present the R package SemiCompRisks that provides functions to
perform the analysis of independent/clustered semi-competing risks data under the illness-death
multi-state model. The package allows the user to choose the specification for model components
from a range of options giving users substantial flexibility, including: accelerated failure time or
proportional hazards regression models; parametric or non-parametric specifications for baseline
survival functions; parametric or non-parametric specifications for random effects distributions when
the data are cluster-correlated; and, a Markov or semi-Markov specification for terminal event
following non-terminal event. While estimation is mainly performed within the Bayesian paradigm,
the package also provides the maximum likelihood estimation for select parametric models. The
package also includes functions for univariate survival analysis as complementary analysis tools.

Introduction

Semi-competing risks refer to the general setting where primary scientific interest lies in estimation
and inference with respect to a non-terminal event (e.g., disease diagnosis), the occurrence of
which is subject to a terminal event (e.g., death) (Fine et al., 2001; Jazić et al., 2016). When
there is a strong association between two event times, naïve application of a univariate survival
model for non-terminal event time will result in overestimation of outcome rates as the analysis
treats the terminal event as an independent censoring mechanism (Haneuse and Lee, 2016). The
semi-competing risks analysis framework appropriately treats the terminal event as a competing
event and considers the dependence between non-terminal and terminal events as part of the model
specification.

Toward formally describing the structure of semi-competing risks data, let T1 and T2 denote
the times to the non-terminal and terminal events, respectively. From the modeling perspective,
the focus in the semi-competing risks setting is to characterize the distribution T1 and its potential
relationship with the distribution of T2, i.e. the joint distribution of (T1, T2). For example, from an
initial state (e.g., transplantation), as time progresses, a subject could make a transition into the
non-terminal or terminal state (see Figure 1.a). In the case of a transition into the non-terminal
state, the subject could subsequently transition into the terminal state even if these transitions
cannot occur in the reverse order. The main disadvantage of the competing risks framework (see
Figure 1.b) to the study of non-terminal event is that it does not utilize the information on the
occurrence and timing of terminal event following the non-terminal event, which could be used to
understand the dependence between the two events.

The current literature for the analysis of semi-competing risks data is composed of three
approaches: methods that specify the dependence between non-terminal and terminal events via a
copula (Fine et al., 2001; Wang, 2003; Jiang et al., 2005; Ghosh, 2006; Peng and Fine, 2007; Lakhal
et al., 2008; Hsieh et al., 2008; Fu et al., 2013); methods based on multi-state models, specifically
the so-called illness-death model (Liu et al., 2004; Putter et al., 2007; Ye et al., 2007; Kneib and
Hennerfeind, 2008; Zeng and Lin, 2009; Xu et al., 2010; Zeng et al., 2012; Han et al., 2014; Zhang
et al., 2014; Lee et al., 2015, 2016); and methods built upon the principles of causal inference (Zhang
and Rubin, 2003; Egleston et al., 2007; Tchetgen Tchetgen, 2014; Varadhan et al., 2014).

The SemiCompRisks package is designed to provide a comprehensive suite of functions for
the analysis of semi-competing risks data based on the illness-death model, together with, as a
complementary suite of tools, functions for the analysis of univariate time-to-event data. While
Bayesian methods are used for estimation and inference for all available models, maximum likelihood
estimation is also provided for select parametric models. Furthermore, SemiCompRisks offers flexible
parametric and non-parametric specifications for baseline survival functions and cluster-specific
random effects distributions under accelerated failure time and proportional hazards models. The
functionality of the package covers methods proposed in a series of recent papers on the analysis of
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Figure 1: Graphical representation of (a) semi-competing risks and (b) competing risks.

semi-competing risks data (Lee et al., 2015, 2016, 2017c).
The remainder of the paper is organized as follows. Section Other packages and their features

summarizes existing R packages that provide methods for multi-state modeling, and explains the key
contributions of the SemiCompRisks package. Section Datasets introduces an on-going study of stem
cell transplantation and provides a description of the data available in the package. Section The
illness-death models for semi-competing risks data presents different specifications of models and
estimation methods implemented in our package. Section Package description summarizes the
core components of the SemiCompRisks package, including datasets, functions for fitting models,
functions, the structure of output provided to analysts. Section Illustration: Stem cell transplantation
data illustrates the usage of the main functions in the package through three semi-competing risks
analyses of the stem cell transplantation data. Finally, Section Discussion concludes with discussion
and an overview of the extensions we are working on.

Other packages and their features

As we elaborate upon below, the illness-death model for semi-competing risks, that is the focus on
the SemiCompRisks package, is a special case of the broader class of multi-state models. Currently,
there are numerous R packages that permit estimation and inference for a multi-state model and
that could conceivably be used to analyze semi-competing risks data.

The mvna package computes the Nelson-Aalen estimator of the cumulative transition hazard
for arbitrary Markov multi-state models with right-censored and left-truncated data, but it does
not compute transition probability matrices (Allignol et al., 2008). The TPmsm implements non-
parametric and semi-parametric estimators for the transition probabilities in 3-state models, including
the Aalen-Johansen estimator and estimators that are consistent even without Markov assumption
or in case of dependent censoring (Araújo et al., 2014). The p3state.msm package performs inference
in an illness-death model (Meira-Machado and Roca-Pardiñas, 2011). Its main feature is the ability
for obtaining non-Markov estimates for the transition probabilities. The etm package calculates
the empirical transition probability matrices and corresponding variance estimates for any time-
inhomogeneous multi-state model with finite state space and data subject to right-censoring and
left-truncation, but it does not account for the influence of covariates (Allignol et al., 2011). The
msm package is able to fit time-homogeneous Markov models to panel count data and hidden
Markov models in continuous time (Jackson, 2011). The time-homogeneous Markov approach could
be a particular case of the illness-death model, where interval-censored data can be considered.
The tdc.msm package may be used to fit the time-dependent proportional hazards model and
multi-state regression models in continuous time, such as Cox Markov model, Cox semi-Markov
model, homogeneous Markov model, non-homogeneous piecewise model, and non-parametric Markov
model (Meira-Machado et al., 2007). The SemiMarkov package performs parametric (Weibull or
exponentiated Weibull specification) estimation in a homogeneous semi-Markov model (Król and
Saint-Pierre, 2015). Moreover, the effects of covariates on the process evolution can be studied
using a semi-parametric Cox model for the distributions of sojourn times. The flexsurv package
provides functions for fitting and predicting from fully-parametric multi-state models with Markov
or semi-Markov specification (Jackson, 2016). In addition, the multi-state models implemented in
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flexsurv give the possibility to include interval-censoring and some of them also left-truncation. The
msSurv calculates non-parametric estimation of general multi-state models subject to independent
right-censoring and possibly left-truncation (Ferguson et al., 2012). This package also computes
the marginal state occupation probabilities along with the corresponding variance estimates, and
lower and upper confidence intervals. The mstate package can be applied to right-censored and left-
truncated data in semi-parametric or non-parametric multi-state models with or without covariates
and it may also be used to competing risk models (Wreede et al., 2011). Specifically for Cox-type
illness-death models to interval-censored data, we highlight the packages coxinterval (Boruvka and
Cook, 2015) and SmoothHazard (Touraine et al., 2017), where the latter also allows that the event
times to be left-truncated. Finally, frailtypack package permits the analysis of correlated data under
select clusterings, as well as the analysis of left-truncated data, through a focus on frailty models
using penalized likelihood estimation or parametric estimation (Rondeau et al., 2012).

While these packages collectively provide broad functionality, each of them is either non-specific
to semi-competing risks or only permits consideration of a narrow model specifications. In developing
the SemiCompRisks package, the goal was to provide a single package within which a broad range of
models and model specifications could be entertained. The frailtypack package, for example, can also
be used to analyze cluster-correlated semi-competing risks data but it is restricted to the proportional
hazards model with either patient-specific or cluster-specific random effects but not both (Liquet et al.,
2012). Furthermore, estimation/inference is within the frequentist framework so that estimation
of hospital-specific random effects, of particular interest in health policy applications (Lee et al.,
2016), together with the quantification of uncertainty is incredibly challenging. This, however, is
(relatively) easily achieved through the functionality of SemiCompRisks package. Given the breadth
of the functionality of the package, in addition to the usual help files, we have developed a series of
model-specific vignettes which can be accessed through the CRAN (Lee et al., 2017b) or R command
vignette("SemiCompRisks"), covering a total of 12 distinct model specifications.

CIBMTR data

The example dataset used throughout this paper was obtained from the Center for International
Blood and Marrow Transplant Research (CIBMTR), a collaboration between the National Marrow
Donor Program and the Medical College of Wisconsin representing a worldwide network of transplant
centers (Lee et al., 2017a). For illustrative purposes, we consider a hypothetical study in which the
goal is to investigate risk factors for grade III or IV acute graft-versus-host disease (GVHD) among
9, 651 patients who underwent the first allogeneic hematopoietic cell transplant (HCT) between
January 1999 and December 2011.

As summarized in Table 1, after administratively censoring follow-up at 365 days post-transplant,
each patient can be categorized according to their observed outcome information into four groups:
(i) acute GVHD and death; (ii) acute GVHD and censored for death; (iii) death without acute
GVHD; and (iv) censored for both. Furthermore, for each patient, the following covariates are
available:gender (Male, Female); age (ă10, 10-19, 20-29, 30-39, 40-49, 50-59, 60+); disease type
(AML, ALL, CML, MDS); disease stage (Early, Intermediate, Advanced); and HLA compatibility
(Identical sibling, 8/8, 7/8).

We note that due to confidentiality considerations the original study outcomes (time1, time2,
event1, event2: times and censoring indicators to the non-terminal and terminal events) are not
available in SemiCompRisks package. As such we provide the five original covariates together with
estimates of parameters from the analysis of CIBMTR data, so that one could simulate semi-
competing risks outcomes (see the simulation procedure in Appendix Simulating outcomes using
CIBMTR covariates). Based on this, the data shown in Table 1 reflects simulated outcome data
using 1405 as the seed.

The illness-death models for semi-competing risks data

We offer three flexible multi-state illness-death models for the analysis of semi-competing risks
data: accelerated failure time (AFT) models for independent data; proportional hazards regression
(PHR) models for independent data; and PHR models for cluster-correlated data. These models
accommodate parametric or non-parametric specifications for baseline survival functions as well as a
Markov or semi-Markov assumptions for terminal event following non-terminal event.
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AFT models for independent semi-competing risks data

In the AFT model specification, we directly model the connection between event times and covariates
(Wei, 1992). For the analysis of semi-competing risks data, we consider the following AFT model
specifications under the illness-death modeling framework (Lee et al., 2017c):

logpTi1q “ xJi1β1 ` γi ` εi1, Ti1 ą 0, (B.4.1)
logpTi2q “ xJi2β2 ` γi ` εi2, Ti2 ą 0, (B.4.2)

logpTi2 ´ Ti1q “ xJi3β3 ` γi ` εi3, Ti2 ą Ti1, (B.4.3)

where Ti1 and Ti2 denote the times to the non-terminal and terminal events, respectively, from
subject i “ 1, . . . ,n, xig is a vector of transition-specific covariates, βg is a corresponding vector
of transition-specific regression parameters, and εig is a transition-specific random variable whose
distribution determines that of the corresponding transition time, g P t1, 2, 3u. Finally, in each of
(B.4.1)-(B.4.3), γi is a study subject-specific random effect that induces positive dependence between
the two event times. We assume that γi follows a Normal(0, θ) distribution and adopt a conjugate
inverse Gamma distribution, denoted by IGpapθq, bpθqq for the variance component θ. For regression
parameters βg, we adopt non-informative flat prior on the real line.

From models (B.4.1)-(B.4.3), we can adopt either a fully parametric or a semi-parametric
approach depending on the specification of the distributions for εi1, εi2, εi3. We build a parametric
modeling based on the log-Normal formulation, where εig follows a Normalpµg,σ2

gq distribution.
We adopt non-informative flat priors on the real line for µg and independent IGpapσqg , bpσqg q for σ2

g .
As an alternative, a semi-parametric framework can be considered by adopting independent non-
parametric Dirichlet process mixtures (DPM) of Mg Normalpµgr,σ2

grq distributions, r P t1, . . . ,Mgu,
for each εig. Following convention in the literature, we refer to each component Normal distribution
as being specific to some "class" (Neal, 2000). Since the class-specific pµgr,σ2

grq are unknown,
they are assumed to be draws from a so-called the centering distribution. Specifically, we take a
Normal distribution centered at µg0 with a variance σ2

g0 for µgr and an IGpapσgrqg , bpσgrqg q for σ2
gr.

Furthermore, since the "true" class membership for any given study subject is unknown, we let pgr
denote the probability of belonging to the rth class for transition g and pg “ ppg1, . . . , pgMg

q
J the

collection of such probabilities. In the absence of prior knowledge regarding the distribution of class
memberships for the n subjects across the Mg classes, pg is assumed to follow a conjugate symmetric
Dirichletpτg{Mg, . . . , τg{Mgq distribution, where τg is referred to as the precision parameter (for
more details, see Lee et al., 2017c).

Our AFT modeling framework can also handle interval-censored and/or left-truncated semi-
competing risks data. Suppose that subject i was observed at follow-up times tci1, . . . , cimiu and let
c˚i and Li denote the time to the end of study (or administrative right-censoring) and the time at study
entry (i.e., the left-truncation time), respectively. Considering interval-censoring for both events,
Ti1 and Ti2, for i “ 1, . . . ,n, satisfy cij ď Ti1 ă cij`1 for some j and cik ď Ti2 ă cik`1 for some k,
respectively. Therefore, the observed outcome information for interval-censored and left-truncated
semi-competing risks data for the subject i can be represented by tLi, cij , cij`1, cik, cik`1u.

PHR models for independent semi-competing risks data

We consider an illness-death multi-state model with proportional hazards assumptions characterized
by three hazard functions (see Figure 1.a) that govern the rates at which subjects transition between
the states: a cause-specific hazard for non-terminal event, h1pti1q; a cause-specific hazard for
terminal event, h2pti2q; and a hazard for terminal event conditional on a time for non-terminal event,
h3pti2 | ti1q. We consider the following specification for hazard functions (Xu et al., 2010; Lee et al.,
2015):

h1pti1 | γi, xi1q “ γi h01pti1q exppxJi1β1q, ti1 ą 0, (B.4.4)
h2pti2 | γi, xi2q “ γi h02pti2q exppxJi2β2q, ti2 ą 0, (B.4.5)

h3pti2 | ti1, γi, xi3q “ γi h03pzpti1, ti2qq exppxJi3β3q, ti2 ą ti1, (B.4.6)

where h0g is an unspecified baseline hazard function and βg is a vector of log-hazard ratio regression
parameters associated with the covariates xig. Finally, in each of (B.4.4)-(B.4.6), γi is a study
subject-specific shared frailty following a Gamma(θ´1, θ´1) distribution, parametrized so that
E rγis “ 1 and V rγis “ θ. The model (B.4.6) is referred to as being Markov or semi-Markov
depending on whether we assume zpti1, ti2q “ ti2 or zpti1, ti2q “ ti2 ´ ti1, respectively.

The Bayesian approach for models (B.4.4)-(B.4.6) requires the specification of prior distributions
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for unknown parameters. For the regression parameters βg, we adopt a non-informative flat
prior distribution on the real line. For the variance in the subject-specific frailties, θ, we adopt
a Gammapapθq, bpθqq for the precision θ´1. For the parametric specification for baseline hazard
functions, we consider a Weibull model: h0gptq “ αg κg t

αg´1. We assign a Gammapapαqg , bpαqg q for
αg and a Gammapcpκqg , dpκqg q for κg. As an alternative, a non-parametric piecewise exponential
model (PEM) is considered for baseline hazard functions based on taking each of the log-baseline
hazard functions to be a flexible mixture of piecewise constant function. Let sg,max denote the
largest observed event time for each transition and construct a finite partition of the time axis,
0 “ sg,0 ă sg,1 ă sg,2 ă . . . ă sg,Kg`1 “ sg,max. Letting λg “ pλg,1, . . . ,λg,Kg ,λg,Kg`1q

J denote
the heights of the log-baseline hazard function on the disjoint intervals based on the time splits
sg “ psg,1, . . . , sg,Kg`1q

J, we assume that λg follows a multivariate Normal distribution (MVN),
MVNpµλg1,σ2

λg
Σλg q, where µλg is the overall mean, σ2

λg
represents a common variance component

for the Kg ` 1 elements, and Σλg specifies the covariance structure these elements. We adopt a flat
prior on the real line for µλg and a conjugate Gammapapσqg , bpσqg q distribution for the precision σ´2

λg
.

In order to relax the assumption of fixed partition of the time scales, we adopt a PoissonpαpKqg q

prior for the number of splits, Kg, and conditioned on the number of splits, we consider locations,
sg, to be a priori distributed as the even-numbered order statistics:

πpsg | Kgq9
p2Kg ` 1q!

śKg`1
k“1 psg,k ´ sg,k´1q

psg,Kg`1q2Kg`1 . (B.4.7)

Note that the prior distributions of Kg and sg jointly form a time-homogeneous Poisson process
prior for the partition pKg, sgq. For more details, see Lee et al. (2015).

PHR models for cluster-correlated semi-competing risks data

Lee et al. (2016) proposed hierarchical models that accommodate correlation in the joint distribution
of the non-terminal and terminal events across patients for the setting where patients are clustered
within hospitals. The hierarchical models for cluster-correlated semi-competing risks data build
upon the illness-death model given in (B.4.4)-(B.4.6). Let Tji1 and Tji2 denote the times to the
non-terminal and terminal events for the ith subject in the jth cluster, respectively, for i “ 1, . . . ,nj
and j “ 1, . . . , J . The general modeling specification is given by:

h1ptji1 | γji, xji1,Vj1q “ γji h01ptji1q exppxJji1β1 ` Vj1q, tji1 ą 0, (B.4.8)

h2ptji2 | γji, xji2,Vj2q “ γji h02ptji2q exppxJji2β2 ` Vj2q, tji2 ą 0, (B.4.9)

h3ptji2 | tji1, γji, xji3,Vj3q “ γji h03pzptji1, tji2qq exppxJji3β3 ` Vj3q, tji2 ą tji1, (B.4.10)

where h0g is an unspecified baseline hazard function and βg is a vector of log-hazard ratio regression
parameters associated with the covariates xjig. A study subject-specific shared frailty γji is assumed
to follow a Gamma(θ´1, θ´1) distribution and Vj “ pVj1,Vj2,Vj3qJ is a vector of cluster-specific
random effects, each specific to one of the three possible transitions.

From a Bayesian perspective for models (B.4.8)-(B.4.10), we can adopt either a parametric
Weibull or non-parametric PEM specification for baseline hazard functions h0g with their respective
configurations of prior distributions analogous to those outlined in Section PHR models for indepen-
dent semi-competing risks data. For the parametric specification of cluster-specific random effects,
we assume that Vj follows MVN3p0, ΣV q distribution. We adopt a conjugate inverse-WishartpΨv, ρvq
prior for the variance-covariance matrix ΣV . For the non-parametric specification, we adopt a DPM
of MVN distributions with a centering distribution, G0, and a precision parameter, τ . Here we
take G0 to be a multivariate Normal/inverse-Wishart (NIW) distribution for which the probability
density function can be expressed as the product:

fNIWpµ, Σ | Ψ0, ρ0q “ fMVNpµ | 0, Σq ˆ finverse-WishartpΣ | Ψ0, ρ0q, (B.4.11)

where Ψ0 and ρ0 are the hyperparameters of fNIWp¨q. We assign a Gammapaτ , bτ q prior distribution
for τ . Finally, for βg and θ, we adopt the same priors as those adopted for the model in Section PHR
models for independent semi-competing risks data. For more details, see Lee et al. (2016).

Estimation and inference

Bayesian estimation and inference is available for all models in the SemiCompRisks. Additionally,
one may also choose to use maximum likelihood estimation for the parametric Weibull PHR model
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described in Section PHR models for independent semi-competing risks data.
To perform Bayesian estimation and inference, we use a random scan Gibbs sampling algorithm

to generate samples from the full posterior distribution. Depending on the complexity of the model
adopted, the Markov chain Monte Carlo (MCMC) scheme may also include additional strategies,
such as Metropolis-Hastings and reversible jump MCMC (Metropolis-Hastings-Green) steps. Specific
details of each implementation can be seen in the online supplemental materials of Lee et al. (2015,
2016, 2017c).

Package description

The SemiCompRisks package contains three key functions, FreqID_HReg, BayesID_HReg and
BayesID_AFT, focused on models for semi-competing risks data as well as the analogous univariate
survival models, FreqSurv_HReg, BayesSurv_HReg and BayesSurv_AFT. It also provides two auxil-
iary functions, initiate.startValues_HReg and initiate.startValues_AFT, that can be used to
generate initial values for Bayesian estimation; simID and simSurv functions for simulating semi-
competing risks and univariate survival data, respectively; five covariates and parameter estimates
from CIBMTR data; and the BMT dataset referring to 137 bone marrow transplant patients.

Summary of functionality

Table 2 shows the modeling options implemented in the SemiCompRisks package for both semi-
competing risks and univariate analysis. Specifically, we categorize the approaches based on the
analysis type (semi-competing risks or univariate), the survival model (AFT or PHR), data type
(independent or clustered), accommodation to left-truncation and/or interval-censoring in addition
to right-censoring, and also statistical paradigms (frequentist or Bayesian).

The full description of functionality of the SemiCompRisks package can be accessed through the
R command help("SemiCompRisks") or vignette("SemiCompRisks") which provides in detail the
specification of all models implemented in the package. Below we describe the input data format
and some crucial arguments for defining and fitting a model for semi-competing risks data using the
SemiCompRisks package.

Model specification

From a semi-competing risks dataset, we jointly define the outcomes and covariates in a Formula
object. Here we use the simCIBMTR dataset, obtained from the simulation procedure presented in
Appendix Simulating outcomes using CIBMTR covariates:

R> form <- Formula(time1 + event1 | time2 + event2 ~ dTypeALL + dTypeCML +
+ dTypeMDS + sexP | dTypeALL + dTypeCML + dTypeMDS | dTypeALL +
+ dTypeCML + dTypeMDS)

The outcomes time1, time2, event1 and event2 denote the times and censoring indicators to
the non-terminal and terminal events, respectively, and the covariates of each hazard function are
separated by | (vertical bar).

The specification of the Formula object varies slightly if the semi-competing risks model ac-
commodates left-truncated and/or interval-censored data (see vignette documentation Lee et al.
(2017b)).

Critical arguments

Most functions for semi-competing risks analysis in the SemiCompRisks package take common
arguments. These arguments and their descriptions are shown as follows:

• id: a vector of cluster information for n subjects, where cluster membership corresponds to
one of the positive integers 1, . . . , J .

• model: a character vector that specifies the type of components in a model. It can have up to
three elements depending on the model specification. The first element is for the assumption
on h3: "semi-Markov" or "Markov". The second element is for the specification of baseline
hazard functions for PHR models - "Weibull" or "PEM" - or baseline survival distribution
for AFT models - "LN" (log-Normal) or "DPM". The third element needs to be set only for
clustered semi-competing risks data and is for the specification of cluster-specific random
effects distribution: "MVN" or "DPM".
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• hyperParams: a list containing vectors for hyperparameter values in hierarchical models.
• startValues: a list containing vectors of starting values for model parameters.
• mcmcParams: a list containing variables required for MCMC sampling.

Hyperparameter values, starting values for model parameters, and MCMC arguments depend
on the specified Bayesian model and the assigned prior distributions. For a list of illustrations, see
vignette documentation Lee et al. (2017b).

FreqID_HReg

The function FreqID_HReg fits Weibull PHR models for independent semi-competing risks data, as
in (B.4.4)-(B.4.6), based on maximum likelihood estimation. Its default structure is given by:

FreqID_HReg(Formula, data, model="semi-Markov", frailty=TRUE),

where Formula represents the outcomes and the linear predictors jointly, as presented in Section Sum-
mary of functionality; data is a data frame containing the variables named in Formula; model is one
of the critical arguments of the SemiCompRisks package (see Section Summary of functionality),
in which it specifies the type of model based on the assumption on h3pti2 | ti1, ¨q in (B.4.6). Here,
model can be "Markov" or "semi-Markov". Finally, frailty is a logical value (TRUE or FALSE) to
determine whether to include the subject-specific shared frailty term γ into the illness-death model.

BayesID_HReg

The function BayesID_HReg fits parametric and semi-parametric PHR models for independent or
cluster-correlated semi-competing risks data, as in (B.4.4)-(B.4.6) or (B.4.8)-(B.4.10), based on
Bayesian inference. Its default structure is given by:

BayesID_HReg(Formula, data, id=NULL, model=c("semi-Markov","Weibull"), hyperParams,
startValues, mcmcParams, path=NULL).

Formula and data are analogous to the previous case; id, model, hyperParams, startValues,
and mcmcParams are all critical arguments of the SemiCompRisks package (see Section Summary of
functionality), where id indicates the cluster that each subject belongs to (for independent data,
id=NULL); model allows us to specify either "Markov" or "semi-Markov" assumption, whether the
priors for baseline hazard functions are parametric ("Weibull") or non-parametric ("PEM"), and
whether the cluster-specific random effects distribution is parametric ("MVN") or non-parametric
("DPM"). The third element of model is only required for models for clustered-correlated data given
in (B.4.8)-(B.4.10).

The hyperParams argument defines all model hyperparameters: theta (a numeric vector for
hyperparameters, apθq and bpθq, in the prior of subject-specific frailty variance component), WB (a list
containing numeric vectors for Weibull hyperparameters (apαqg , bpαqg ) and (cpκqg , dpκqg ) for g P t1, 2, 3u:
WB.ab1, WB.ab2, WB.ab3, WB.cd1, WB.cd2, WB.cd3), PEM (a list containing numeric vectors for PEM
hyperparameters (apσqg , bpσqg ), and αpKqg for g P t1, 2, 3u: PEM.ab1, PEM.ab2, PEM.ab3, PEM.alpha1,
PEM.alpha2, PEM.alpha3); and for the analysis of clustered semi-competing risks data, additional
components are required: MVN (a list containing numeric vectors for MVN hyperparameters Ψv and
ρv: Psi_v, rho_v), DPM (a list containing numeric vectors for DPM hyperparameters Ψ0, ρ0, aτ , and
bτ : Psi0, rho0, aTau, bTau).

The startValues argument specifies initial values for model parameters. This specification can
be done manually or through the auxiliary function initiate.startValues_HReg. The mcmcParams
argument sets the information for MCMC sampling: run (a list containing numeric values for setting
for the overall run: numReps, total number of scans; thin, extent of thinning; burninPerc, the
proportion of burn-in), storage (a list containing numeric values for storing posterior samples for
subject- and cluster-specific random effects: nGam_save, the number of γ to be stored; storeV, a
vector of three logical values to determine whether all the posterior samples of Vj , for j “ 1, . . . , J
are to be stored), tuning (a list containing numeric values relevant to tuning parameters for
specific updates in Metropolis-Hastings-Green (MHG) algorithm: mhProp_theta_var, the variance
of proposal density for θ; mhProp_Vg_var, the variance of proposal density for Vj in DPM models;
mhProp_alphag_var, the variance of proposal density for αg in Weibull models; Cg, a vector of three
proportions that determine the sum of probabilities of choosing the birth and the death moves in
PEM models (the sum of the three elements should not exceed 0.6); delPertg, the perturbation
parameters in the birth update in PEM models (the values must be between 0 and 0.5); rj.scheme: if
rj.scheme=1, the birth update will draw the proposal time split from 1:sg_max and if rj.scheme=2,
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the birth update will draw the proposal time split from uniquely ordered failure times in the data. For
PEM models, additional components are required: Kg_max, the maximum number of splits allowed
at each iteration in MHG algorithm for PEM models; time_lambda1, time_lambda2, time_lambda3,
time points at which the posterior distribution of log-hazard functions are calculated. Finally, path
indicates the name of directory where the results are saved. For more details and examples, see Lee
et al. (2017b).

BayesID_AFT

The function BayesID_AFT fits parametric and semi-parametric AFT models for independent semi-
competing risks data, given in (B.4.1)-(B.4.3), based on Bayesian inference. Its default structure is
given by:

BayesID_AFT(Formula, data, model="LN", hyperParams, startValues, mcmcParams, path=NULL),

where data, startValues (auxiliary function initiate.startValues_AFT), and path are analogous
to functions described in previous sections. Here, Formula has a different structure of outcomes,
since the AFT model accommodates more complex censoring, such as interval-censoring and/or
left-truncation (see Section AFT models for independent semi-competing risks data). It takes
the generic form Formula(LT | y1L + y1U | y2L + y2U cov1 | cov2 | cov3), where LT rep-
resents the left-truncation time, (y1L, y1U) and (y2L, y2U) are the interval-censored times to the
non-terminal and terminal events, respectively, and cov1, cov2 and cov3 are covariates of each linear
regression. The model argument specifies whether the baseline survival distribution is parametric
("LN") or non-parametric ("DPM"). The hyperParams argument defines all model hyperparameters:
theta is for hyperparameters (apθq and bpθqq); LN is a list containing numeric vectors, LN.ab1,
LN.ab2, LN.ab3, for log-Normal hyperparameters (apσqg , bpσqg ) with g P t1, 2, 3u; DPM is a list contain-
ing numeric vectors, DPM.mu1, DPM.mu2, DPM.mu3, DPM.sigSq1, DPM.sigSq2, DPM.sigSq3, DPM.ab1,
DPM.ab2, DPM.ab3, Tau.ab1, Tau.ab2, Tau.ab3 for DPM hyperparameters (µg0, σ2

g0), (a
pσgrq
g , bpσgrqg ),

and τg with g P t1, 2, 3u. The mcmcParams argument sets the information for MCMC sampling:
run (see Section BayesID_HReg), storage (nGam_save; nY1_save, the number of y1 to be stored;
nY2_save, the number of y2 to be stored; nY1.NA_save, the number of y1==NA to be stored), tuning
(betag.prop.var, the variance of proposal density for βg; mug.prop.var, the variance of proposal
density for µg; zetag.prop.var, the variance of proposal density for 1{σ2

g ; gamma.prop.var, the
variance of proposal density for γ).

Univariate survival data analysis

The functions FreqSurv_HReg, BayesSurv_HReg and BayesSurv_AFT provide the same flexibility as
functions FreqID_HReg, BayesID_HReg and BayesID_AFT, respectively, but in a univariate context
(i.e., a single outcome).

The function FreqSurv_HReg fits a Weibull PHR model based on maximum likelihood estimation.
This model is described by:

hpti | xiq “ ακ tα´1
i exppxJi βq, ti ą 0. (B.5.1)

The function BayesSurv_HReg implements Bayesian PHR models given by:

hptji | xjiq “ h0ptjiq exppxJjiβ` Vjq, ti ą 0. (B.5.2)

We can adopt either a parametric Weibull or a non-parametric PEM specification for h0. Cluster-
specific random effects Vj , j “ 1, . . . , J , can be assumed to follow a parametric Normal distribution
or a non-parametric DPM of Normal distributions.

Finally, the function BayesSurv_AFT implements Bayesian AFT models expressed by:

logpTiq “ xJi β` εi, Ti ą 0, (B.5.3)

where we can adopt either a fully parametric log-Normal or a non-parametric DPM specification for
εi.

Summary output

The functions presented in Sections FreqID_HReg, BayesID_HReg and BayesID_AFT return objects
of classes Freq_HReg, Bayes_HReg and Bayes_AFT, respectively. Each of these objects represents
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results from its respective semi-competing risks analysis. These results can be visualized using
several R methods, such as print, summary, predict, plot, coef, and vcov.

The function print shows the estimated parameters and, in the Bayesian case, also the MCMC
description (number of chains, scans, thinning, and burn-in) and the potential scale reduction factor
(PSRF) convergence diagnostic for each model parameter (Gelman and Rubin, 1992; Brooks and
Gelman, 1998). If the PSRF is close to 1, a group of chains have mixed well and have converged to a
stable distribution. The function summary presents the regression parameters in exponential format
(hazard ratios) and the estimated baseline hazard function components. Along with a summary of
analysis results, the output from summary includes two model diagnostics and performance metrics,
log-pseudo marginal likelihood (LPML) (Geisser and Eddy, 1979; Gelfand and Mallick, 1995) and
deviance information criterion (DIC) (Spiegelhalter et al., 2002; Celeux et al., 2006), for Bayesian
illness-death models.

Functions predict and plot complement each other. The former uses the fitted model to predict
an output of interest (survival or hazard) at a given time interval from new covariates. From the
object created by predict, plot displays survival (plot.est="Surv") or hazard (plot.est="Haz")
functions with their respective credibility/confidence intervals. In order to predict the joint probability
involving two event times for a new covariate profile, one can use the function PPD, which is calculated
from the joint posterior predictive distribution of pT1,T2q (Lee et al., 2015).

SemiCompRisks also provides the standard functions coef (model coefficients) and vcov (variance-
covariance matrix for a fitted frequentist model). For examples with more details, see Lee et al.
(2017b).

Simulation of semi-competing risks data

The function simID simulates semi-competing risks outcomes from independent or cluster-correlated
data (for more details of the simulation algorithm, see Appendix Simulation algorithm for semi-
competing risks data). The simulation is based on a semi-Markov Weibull PHR modeling and, in the
case of the cluster-correlated approach, the cluster-specific random effects follow a MVN distribution.
We provide a simulation example of independent semi-competing risks data in Appendix Simulating
outcomes using CIBMTR covariates.

Analogously, the function simSurv simulates univariate independent/cluster-correlated survival
data under a Weibull PHR model with cluster-specific random effects following a Normal distribution.

Datasets

CIBMTR data. It is composed of 5 covariates that come from a study of acute GVHD with
9, 651 patients who underwent the first allogeneic hematopoietic cell transplant between January
1999 and December 2011 (see Section Datasets).

BMT data. It refers to a well-known study of bone marrow transplantation for acute leukemia
(Klein and Moeschberger, 2003). This data frame contains 137 patients with 22 variables and its
description can be viewed from the R command help(BMT).

Illustration: Stem cell transplantation data

To illustrate the usage of the SemiCompRisks package, we present two PHR models (one para-
metric model with maximum likelihood estimation and another semi-parametric model based on
Bayesian inference) and one Bayesian AFT model using stem cell transplantation data, described in
Section Datasets.

Frequentist analysis

Independent semi-Markov PHR model with Weibull baseline hazards

In our first example we employ the modeling (B.4.4)-(B.4.6) for independent data, semi-Markov
assumption and Weibull baseline hazards. Here, Formula (form) is defined as in Section Summary of
functionality. We fit the model using the function FreqID_HReg, described in Section FreqID_HReg,
and visualize the results through the function summary:

R> fitFreqPHR <- FreqID_HReg(form, data=simCIBMTR, model="semi-Markov")
R> summary(fitFreqPHR)
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Analysis of independent semi-competing risks data
semi-Markov assumption for h3
Confidence level: 0.05

Hazard ratios:
beta1 LL UL beta2 LL UL beta3 LL UL

dTypeALL 1.49 1.20 1.8 1.37 1.09 1.7 0.99 0.78 1.3
dTypeCML 1.78 1.41 2.3 0.83 0.64 1.1 1.30 0.99 1.7
dTypeMDS 1.64 1.26 2.1 1.39 1.04 1.9 1.49 1.09 2.0
sexP 0.89 0.79 1.0 NA NA NA NA NA NA

Variance of frailties:
Estimate LL UL

theta 7.8 7.3 8.4

Baseline hazard function components:
h1-PM LL UL h2-PM LL UL h3-PM LL UL

Weibull: log-kappa -6.14 -6.4 -5.90 -11.33 -11.74 -10.93 -6.873 -7.189 -6.557
Weibull: log-alpha 0.15 0.1 0.21 0.86 0.82 0.91 0.022 -0.033 0.077

As shown in Section Summary output, summary provides estimates of all model parameters.
Using the auxiliary functions predict (default option x1new=x2new=x3new=NULL which corresponds
to the baseline specification) and plot, we can graphically visualize the results:

R> pred <- predict(fitFreqPHR, time=seq(0,365,1), tseq=seq(from=0,to=365,by=30))
R> plot(pred, plot.est="Surv")
R> plot(pred, plot.est="Haz")

Figure 2 displays estimated baseline survival and hazard functions (solid line) with their corre-
sponding 95% confidence intervals (dotted line).

Bayesian analysis

Independent semi-Markov PHR model with PEM baseline hazards

Our second example is also based on the models (B.4.4)-(B.4.6) adopting a semi-Markov assumption
for h3, but now we use the non-parametric PEM specification for baseline hazard functions. Again,
Formula is defined as in Section Summary of functionality. Here we employ the Bayesian estimation
by means of the function BayesID_HReg, described in Section BayesID_HReg. The first step is to
specify initial values for model parameters through the startValues argument using the auxiliary
function initiate.startValues_HReg:

R> startValues <- initiate.startValues_HReg(form, data=simCIBMTR,
+ model=c("semi-Markov","PEM"), nChain=3)

The nChain argument indicates the number of Markov chains that will be used in the MCMC
algorithm. Next step is to define all model hyperparameters using the hyperParams argument:

R> hyperParams <- list(theta=c(0.5,0.05), PEM=list(PEM.ab1=c(0.5,0.05),
+ PEM.ab2=c(0.5,0.05), PEM.ab3=c(0.5,0.05), PEM.alpha1=10,
+ PEM.alpha2=10, PEM.alpha3=10))

To recall what prior distributions are related to these hyperparameters, see Section PHR models
for cluster-correlated semi-competing risks data. Now we set the MCMC configuration for the
mcmcParams argument, more specifically defining the overall run, storage, and tuning parameters for
specific updates:

R> sg_max <- c(max(simCIBMTR$time1[simCIBMTR$event1==1]),
+ max(simCIBMTR$time2[simCIBMTR$event1==0 & simCIBMTR$event2==1]),
+ max(simCIBMTR$time2[simCIBMTR$event1==1 & simCIBMTR$event2==1]))

R> mcmcParams <- list(run=list(numReps=5e6, thin=1e3, burninPerc=0.5),
+ storage=list(nGam_save=0, storeV=rep(FALSE,3)),
+ tuning=list(mhProp_theta_var=0.05, Cg=rep(0.2,3), delPertg=rep(0.5,3),
+ rj.scheme=1, Kg_max=rep(50,3), sg_max=sg_max, time_lambda1=seq(1,sg_max[1],1),
+ time_lambda2=seq(1,sg_max[2],1), time_lambda3=seq(1,sg_max[3],1)))
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Figure 2: Estimated baseline survival (top) and hazard (bottom) functions from the above
analysis.

As shown above, we set sg_max to the largest observed failure times for g P t1, 2, 3u. For more
details of each item of mcmcParams, see Section BayesID_HReg.

Given this setup, we fit the PHR model using the function BayesID_HReg:

R> fitBayesPHR <- BayesID_HReg(form, data=simCIBMTR, model=c("semi-Markov","PEM"),
+ startValues=startValues, hyperParams=hyperParams, mcmcParams=mcmcParams)

We note that, depending on the complexity of the model specification (e.g. if PEM baseline
hazards are adopted) and the size of the dataset, despite the functions having been written in C
and compiled for R, the MCMC scheme may require a large number of MCMC scans to ensure
convergence. As such, some models may take a relatively long time to converge. The example we
present below, for example, took 45 hours on a Windows laptop with an Intel(R) Core(TM) i5-3337U
1.80GHz processor, 2 cores, 4 logical processors, 4GB of RAM and 3MB of cache memory to cycle
through the 6 millions scans for 3 chains. In lieu of attempting to reproduce the exact results we
present here, while readers are of course free to do, Appendix Code for illustrative Bayesian examples
provides the code for this same semi-competing risks model and its respective posterior summary,
but based on a reduced number of scans of the MCMC scheme (specifically 50,000 scans for 3 chains).
Based on the full set of scans, the print method for object returned by BayesID_HReg, yields:

R> print(fitBayesPHR, digits=2)

Analysis of independent semi-competing risks data
semi-Markov assumption for h3

Number of chains: 3
Number of scans: 5e+06
Thinning: 1000
Percentage of burnin: 50%
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######
Potential Scale Reduction Factor

Variance of frailties, theta:
1

Regression coefficients:
beta1 beta2 beta3

dTypeALL 1 1 1
dTypeCML 1 1 1
dTypeMDS 1 1 1
sexP 1 NA NA

Baseline hazard function components:

lambda1: summary statistics
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 1.01 1.01 1.01 1.02 1.02

lambda2: summary statistics
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 1.00 1.00 1.00 1.00 1.02

lambda3: summary statistics
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 1.00 1.00 1.00 1.00 1.01

h1 h2 h3
mu 1 1 1
sigmaSq 1 1 1
K 1 1 1

...

Note that all parameters obtained PSRF close to 1, indicating that the chains have converged
well (see Section Summary output). Convergence can also be assessed graphically through a trace
plot:

R> plot(fitBayesPHR$chain1$theta.p, type="l", col="red",
+ xlab="iteration", ylab=expression(theta))
R> lines(fitBayesPHR$chain2$theta.p, type="l", col="green")
R> lines(fitBayesPHR$chain3$theta.p, type="l", col="blue")

Figure 3 shows convergence diagnostic for θ (subject-specific frailty variance component), where
the three chains have mixed and converged to a stable distribution. Any other model parameter
could be similarly evaluated. Analogous to the frequentist example, we can also visualize the results
through the function summary:

R> summary(fitBayesPHR)

Analysis of independent semi-competing risks data
semi-Markov assumption for h3

#####

DIC: 85722
LPML: -42827
Credibility level: 0.05

#####

Hazard ratios:
exp(beta1) LL UL exp(beta2) LL UL exp(beta3) LL UL

dTypeALL 1.44 1.2 1.8 1.3 1.06 1.6 0.98 0.77 1.2
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Figure 3: Convergence diagnostic via trace plot of multiple chains.

dTypeCML 1.71 1.4 2.1 0.8 0.63 1.0 1.25 0.96 1.6
dTypeMDS 1.61 1.3 2.1 1.4 1.04 1.8 1.44 1.07 2.0
sexP 0.89 0.8 1.0 NA NA NA NA NA NA

Variance of frailties:
theta LL UL

6.7 6.1 7.4

Baseline hazard function components:
h1-PM LL UL h2-PM LL UL h3-PM LL UL

mu -5.60 -6.006 -5.0 -5.0 -9.5 -2.3 -6.74 -7.030 -6.5
sigmaSq 0.22 0.027 2.3 7.6 2.7 24.5 0.13 0.018 2.7
K 10.00 5.000 17.0 15.0 11.0 20.0 10.00 4.000 17.0

Here we provide two model assessment measures (DIC and LPML) and estimates of all model
parameters with their respective 95% credible intervals.

Independent AFT model with log-Normal baseline survival distribution

Our last example is based on AFT models (B.4.1)-(B.4.3) adopting a semi-Markov assumption for
h3 and the parametric log-Normal specification for baseline survival distributions. Here we apply the
Bayesian framework via function BayesID_AFT. As pointed out in Section BayesID_AFT, Formula
argument for AFT models takes a specific form:

R> simCIBMTR$LT <- rep(0,dim(simCIBMTR)[1])
R> simCIBMTR$y1L <- simCIBMTR$y1U <- simCIBMTR[,1]
R> simCIBMTR$y1U[which(simCIBMTR[,2]==0)] <- Inf
R> simCIBMTR$y2L <- simCIBMTR$y2U <- simCIBMTR[,3]
R> simCIBMTR$y2U[which(simCIBMTR[,4]==0)] <- Inf

R> formAFT <- Formula(LT | y1L + y1U | y2L + y2U ~ dTypeALL + dTypeCML + dTypeMDS +
+ sexP | dTypeALL + dTypeCML + dTypeMDS | dTypeALL + dTypeCML + dTypeMDS)

Recall that LT represents the left-truncation time, and (y1L, y1U) and (y2L, y2U) are the interval-
censored times to the non-terminal and terminal events, respectively. Next step is to set the
initial values for model parameters through the startValues argument, but now using the auxiliary
function initiate.startValues_AFT:

R> startValues <- initiate.startValues_AFT(formAFT, data=simCIBMTR,
+ model="LN", nChain=3)

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859



Contributed Research Articles 389

Again, we considered three Markov chains (nChain=3). Using the hyperParams argument we
specify all model hyperparameters:

R> hyperParams <- list(theta=c(0.5,0.05), LN=list(LN.ab1=c(0.5,0.05),
+ LN.ab2=c(0.5,0.05), LN.ab3=c(0.5,0.05)))

Each pair of hyperparameters defines shape and scale of an inverse Gamma prior distribution
(see Section AFT models for independent semi-competing risks data). Similar to the previous
example, we must specify overall run, storage, and tuning parameters for specific updates through
the mcmcParams argument:

R> mcmcParams <- list(run=list(numReps=5e6, thin=1e3, burninPerc=0.5),
+ storage=list(nGam_save=0, nY1_save=0, nY2_save=0, nY1.NA_save=0),
+ tuning=list(betag.prop.var=rep(0.01,3), mug.prop.var=rep(0.01,3),
+ zetag.prop.var=rep(0.01,3), gamma.prop.var=0.01))

Analogous to the previous Bayesian model, a large number of scans are also required here to
achieve the convergence of the Markov chains. Again, for a quickly reproducible example, the code
for the AFT model with simplified MCMC setting is provided in Appendix Code for illustrative
Bayesian examples. For more details of each item of mcmcParams, see Section BayesID_AFT. Finally,
we fit the AFT model using the function BayesID_AFT and analyze the convergence of each parameter
through the function print:

R> fitBayesAFT <- BayesID_AFT(formAFT, data=simCIBMTR, model="LN",
+ startValues=startValues, hyperParams=hyperParams, mcmcParams=mcmcParams)
R> print(fitBayesAFT, digits=2)

Analysis of independent semi-competing risks data

Number of chains: 3
Number of scans: 5e+06
Thinning: 1000
Percentage of burnin: 50%

######
Potential Scale Reduction Factor

Variance of frailties, theta: 1

Regression coefficients:
beta1 beta2 beta3

dTypeALL 1 1 1
dTypeCML 1 1 1
dTypeMDS 1 1 1
sexP 1 NA NA

Baseline survival function components:
g=1 g=2 g=3

mu 1 1.2 1
sigmaSq 1 1.1 1

...

Again, the PSRF for each parameter indicates the convergence. As a last step, we visualize the
estimate of each parameter and their respective 95% credible intervals through the function summary:

R> summary(fitBayesAFT)

Analysis of independent semi-competing risks data

#####

DIC: 21400
LPML: -12597
Credibility level: 0.05

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859



Contributed Research Articles 390

#####

Acceleration factors:
exp(beta1) LL UL exp(beta2) LL UL exp(beta3) LL UL

dTypeALL 0.68 0.54 0.84 0.94 0.86 1.0 1.08 0.85 1.4
dTypeCML 0.53 0.42 0.67 1.27 1.12 1.4 0.92 0.71 1.2
dTypeMDS 0.58 0.44 0.75 0.88 0.78 1.0 0.78 0.58 1.0
sexP 1.16 0.99 1.36 NA NA NA NA NA NA

Variance of frailties:
theta LL UL

2.6 2.5 2.8

Baseline survival function components:
g=1: PM LL UL g=2: PM LL UL g=3: PM LL UL

log-Normal: mu 8.2 8.0 8.4 6.293 6.244 6.335 6.5 6.4 6.7
log-Normal: sigmaSq 7.2 6.4 8.0 0.013 0.005 0.033 1.7 1.5 2.0

Discussion

This paper discusses the implementation of a comprehensive R package SemiCompRisks for the
analyses of independent/cluster-correlated semi-competing risks data. The package allows to fit
parametric or semi-parametric models based on either accelerated failure time or proportional
hazards regression approach. It is also flexible in that one can adopt either a Markov or semi-Markov
specification for terminal event following non-terminal event. The estimation and inference are mostly
based on the Bayesian paradigm, but parametric PHR models can also be fitted using the maximum
likelihood estimation. Users can easily obtain numerical and graphical presentation of model fits
using R methods, as illustrated in the stem cell transplantation example in Section Illustration:
Stem cell transplantation data. In addition, the package provides functions for performing univariate
survival analysis. We would also like to emphasize that the vignette documentation (Lee et al.,
2017b) provides a list of detailed examples applying each of the implemented models in the package.

Given the complexity of some Bayesian models in the package, it may take relatively long time
to implement the models for large datasets. We are currently looking into possibility to parallelize
parts of the algorithm and to add support for OpenMP to the package, which can bring significant
gains in computational time.

SemiCompRisks provides researchers with valid and practical analysis tools for semi-competing
risks data. The application examples in this paper were run using version v3.30 of the package,
available from the CRAN at https://cran.r-project.org/package=SemiCompRisks. We plan to
constantly update the package to incorporate more functionality and flexibility to the models for
semi-competing risks analysis.
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Appendix

Simulation algorithm for semi-competing risks data

The SemiCompRisks package contains a function, simID, for simulating independent or cluster-
correlated semi-competing risks data. In this section, we provide the details on the simulation
algorithm used in simID for generating cluster-correlated semi-competing risks data based on a
parametric Weibull-MVN semi-Markov illness-death model, as presented in Section PHR models
for cluster-correlated semi-competing risks data, where the baseline hazard functions are defined as
h0gptq “ αg κg t

αg´1, for g P t1, 2, 3u. The step by step algorithm is given as follows:

1. Generate Vj “ pVj1,Vj2,Vj3qJ from a MVN(0, ΣV ), for j “ 1, . . . , J .
2. For each j, repeat the following steps for i “ 1, . . . ,nj .

(a) Generate γji from a Gamma(θ´1, θ´1).

(b) Calculate ηjig “ logpγjiq ` xJjigβg ` Vjg, for g P t1, 2, 3u.

(c) Generate t˚1 from a Weibull(α1, κ1 e
ηji1q and t˚2 from a Weibull(α2, κ2 e

ηji2q.
• If t˚1 ď t˚2 , generate t˚ from a Weibull(α3, κ3 e

ηji3q and set tji1 “ t˚1 , tji2 “ t˚1 ` t
˚.

• Otherwise, set tji1 “ 8, tji2 “ t˚2 .
(d) Generate a censoring time cji from Uniform(cL, cU ).
(e) Set the observed outcome information (time1, time2, event1, event2) as follows:

• (tji1, tji2, 1, 1), if tji1 ă tji2 ă cji.
• (tji1, cji, 1, 0), if tji1 ă cji ă tji2.
• (tji2, tji2, 0, 1), if tji1 “ 8 and tji2 ă cji.
• (cji, cji, 0, 0), if tji1 ą cji and tji2 ą cji.

We note that the function simID is flexible in that one can set the θ argument as zero
(theta.true=0) to simulate the data under the model without the subject-specific shared frailty
term (γji), which is analogous to the model proposed by Liquet et al. (2012). One can generate inde-
pendent semi-competing risks data outlined in Section PHR models for independent semi-competing
risks data by setting the id and ΣV arguments as nulls (id=NULL and SimgaV.true=NULL).

Simulating outcomes using CIBMTR covariates

The true values of model parameters are set to estimates obtained by fitting a semi-Markov Weibull
PHR model to the original CIBMTR data.

R> data(CIBMTR_Params)
R> beta1.true <- CIBMTR_Params$beta1.true
R> beta2.true <- CIBMTR_Params$beta2.true
R> beta3.true <- CIBMTR_Params$beta3.true
R> alpha1.true <- CIBMTR_Params$alpha1.true
R> alpha2.true <- CIBMTR_Params$alpha2.true
R> alpha3.true <- CIBMTR_Params$alpha3.true
R> kappa1.true <- CIBMTR_Params$kappa1.true
R> kappa2.true <- CIBMTR_Params$kappa2.true
R> kappa3.true <- CIBMTR_Params$kappa3.true
R> theta.true <- CIBMTR_Params$theta.true
R> cens <- c(365, 365)

The next step is to define the covariates matrices and then simulate outcomes using the simID
function, available in the SemiCompRisks package.

R> data(CIBMTR)
# Sex (M: reference category)
R> CIBMTR$sexP <- as.numeric(CIBMTR$sexP)-1

# Age (LessThan10: reference category)
R> CIBMTR$ageP20to29 <- as.numeric(CIBMTR$ageP=="20to29")
R> CIBMTR$ageP30to39 <- as.numeric(CIBMTR$ageP=="30to39")
R> CIBMTR$ageP40to49 <- as.numeric(CIBMTR$ageP=="40to49")
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R> CIBMTR$ageP50to59 <- as.numeric(CIBMTR$ageP=="50to59")
R> CIBMTR$ageP60plus <- as.numeric(CIBMTR$ageP=="60plus")

# Disease type (AML: reference category)
R> CIBMTR$dTypeALL <- as.numeric(CIBMTR$dType=="ALL")
R> CIBMTR$dTypeCML <- as.numeric(CIBMTR$dType=="CML")
R> CIBMTR$dTypeMDS <- as.numeric(CIBMTR$dType=="MDS")

# Disease status (Early: reference category)
R> CIBMTR$dStatusInt <- as.numeric(CIBMTR$dStatus=="Int")
R> CIBMTR$dStatusAdv <- as.numeric(CIBMTR$dStatus=="Adv")

# HLA compatibility (HLA_Id_Sib: reference category)
R> CIBMTR$donorGrp8_8 <- as.numeric(CIBMTR$donorGrp=="8_8")
R> CIBMTR$donorGrp7_8 <- as.numeric(CIBMTR$donorGrp=="7_8")

# Covariate matrix
R> x1 <- CIBMTR[,c("sexP", "ageP20to29", "ageP30to39", "ageP40to49",
+ "ageP50to59", "ageP60plus", "dTypeALL", "dTypeCML", "dTypeMDS",
+ "dStatusInt", "dStatusAdv", "donorGrp8_8", "donorGrp7_8")]

R> x2 <- CIBMTR[,c("sexP", "ageP20to29", "ageP30to39", "ageP40to49",
+ "ageP50to59", "ageP60plus", "dTypeALL", "dTypeCML", "dTypeMDS",
+ "dStatusInt", "dStatusAdv", "donorGrp8_8", "donorGrp7_8")]

R> x3 <- CIBMTR[,c("sexP", "ageP20to29", "ageP30to39", "ageP40to49",
+ "ageP50to59", "ageP60plus", "dTypeALL", "dTypeCML", "dTypeMDS",
+ "dStatusInt", "dStatusAdv", "donorGrp8_8", "donorGrp7_8")]

R> set.seed(1405)
R> simOutcomes <- simID(id=NULL, x1=x1, x2=x2, x3=x3,
+ beta1.true, beta2.true, beta3.true, alpha1.true, alpha2.true, alpha3.true,
+ kappa1.true, kappa2.true, kappa3.true, theta.true, SigmaV.true=NULL, cens)

R> names(simOutcomes) <- c("time1", "event1", "time2", "event2")
R> simCIBMTR <- cbind(simOutcomes, CIBMTR[,c("sexP", "ageP20to29", "ageP30to39",
+ "ageP40to49", "ageP50to59", "ageP60plus", "dTypeALL", "dTypeCML", "dTypeMDS",
+ "dStatusInt", "dStatusAdv", "donorGrp8_8", "donorGrp7_8")])

Code for illustrative Bayesian examples

In order to encourage the reproducibility of the results obtained through our R package in a reasonable
computational time, Bayesian analyses contained in Section Bayesian analysis are illustrated below
using a reduced number of scans (numReps), extent of thinning (thin), and simplifying the design
matrix. Given the complexity of these Bayesian models, the reduction of scans/thinning results in
non-convergence of the Markov chains, but at least it is possible to reproduce the results quickly.

Independent semi-Markov PHR model with PEM baseline hazards

R> form <- Formula(time1 + event1 | time2 + event2 ~ sexP | sexP | sexP)

R> startValues <- initiate.startValues_HReg(form, data=simCIBMTR,
+ model=c("semi-Markov","PEM"), nChain=3)

R> hyperParams <- list(theta=c(0.5,0.05), PEM=list(PEM.ab1=c(0.5,0.05),
+ PEM.ab2=c(0.5,0.05), PEM.ab3=c(0.5,0.05), PEM.alpha1=10,
+ PEM.alpha2=10, PEM.alpha3=10))

R> sg_max <- c(max(simCIBMTR$time1[simCIBMTR$event1==1]),
+ max(simCIBMTR$time2[simCIBMTR$event1==0 & simCIBMTR$event2==1]),
+ max(simCIBMTR$time2[simCIBMTR$event1==1 & simCIBMTR$event2==1]))

R> mcmcParams <- list(run=list(numReps=5e4, thin=5e1, burninPerc=0.5),
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+ storage=list(nGam_save=0, storeV=rep(FALSE,3)),
+ tuning=list(mhProp_theta_var=0.05, Cg=rep(0.2,3), delPertg=rep(0.5,3),
+ rj.scheme=1, Kg_max=rep(50,3), sg_max=sg_max, time_lambda1=seq(1,sg_max[1],1),
+ time_lambda2=seq(1,sg_max[2],1), time_lambda3=seq(1,sg_max[3],1)))

R> fitBayesPHR <- BayesID_HReg(form, data=simCIBMTR, model=c("semi-Markov","PEM"),
+ startValues=startValues, hyperParams=hyperParams, mcmcParams=mcmcParams)
R> print(fitBayesPHR, digits=2)

Analysis of independent semi-competing risks data
semi-Markov assumption for h3

Number of chains: 3
Number of scans: 50000
Thinning: 50
Percentage of burnin: 50%

######
Potential Scale Reduction Factor

Variance of frailties, theta:
5.4

Regression coefficients:
beta1 beta2 beta3

sexP 1.3 1.4 1.3

Baseline hazard function components:

lambda1: summary statistics
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.1 2.7 3.0 3.0 3.3 4.0

lambda2: summary statistics
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.0 2.5 3.6 3.3 4.1 5.2

lambda3: summary statistics
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.12 1.42 1.60 1.59 1.70 2.17

h1 h2 h3
mu 1.2 1.0 1.1
sigmaSq 1.2 1.1 1.0
K 1.0 1.4 1.0

######
Estimates
Credibility level: 0.05

Variance of frailties, theta:
Estimate SD LL UL

9.4 0.71 8.9 11

Regression coefficients:
Estimate SD LL UL

sexP -0.19 0.09 0.68 0.99
sexP -0.04 0.10 0.78 1.16
sexP -0.08 0.11 0.74 1.14

Note: Covariates are arranged in order of transition number, 1->3.

The joint posterior predictive probability involving two event times can be obtained with the
PPD function:
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# Prediction for a female patient (x1=x2=x3=1)
R> predF <- PPD(fitBayesPHR, x1=1, x2=1, x3=1, t1=120, t2=300)
R> predF$F_u
0.076
R> predF$F_l
0.26

predF$F_u represents the joint posterior predictive probability of dying within 300 days and
being diagnosed with acute GVHD within 120 days for a female patient (the joint probability from
the upper wedge support, 0ăt1ăt2). On the other hand, predF$F_l is the joint posterior predictive
probability of dying within 300 days without acute GVHD for a female patient (the joint probability
from the domain, t1=8, t2ą0).

Independent AFT model with log-Normal baseline survival distribution

R> simCIBMTR$LT <- rep(0,dim(simCIBMTR)[1])
R> simCIBMTR$y1L <- simCIBMTR$y1U <- simCIBMTR[,1]
R> simCIBMTR$y1U[which(simCIBMTR[,2]==0)] <- Inf
R> simCIBMTR$y2L <- simCIBMTR$y2U <- simCIBMTR[,3]
R> simCIBMTR$y2U[which(simCIBMTR[,4]==0)] <- Inf

R> formAFT <- Formula(LT | y1L + y1U | y2L + y2U ~ sexP | sexP | sexP)

R> startValues <- initiate.startValues_AFT(formAFT, data=simCIBMTR,
+ model="LN", nChain=3)

R> hyperParams <- list(theta=c(0.5,0.05), LN=list(LN.ab1=c(0.5,0.05),
+ LN.ab2=c(0.5,0.05), LN.ab3=c(0.5,0.05)))

R> mcmcParams <- list(run=list(numReps=5e4, thin=5e1, burninPerc=0.5),
+ storage=list(nGam_save=0, nY1_save=0, nY2_save=0, nY1.NA_save=0),
+ tuning=list(betag.prop.var=rep(0.01,3), mug.prop.var=rep(0.01,3),
+ zetag.prop.var=rep(0.01,3), gamma.prop.var=0.01))

R> fitBayesAFT <- BayesID_AFT(formAFT, data=simCIBMTR, model="LN",
+ startValues=startValues, hyperParams=hyperParams, mcmcParams=mcmcParams)
R> summary(fitBayesAFT, digits=2)

Analysis of independent semi-competing risks data

#####

DIC: 55244
LPML: -25839
Credibility level: 0.05

#####

Acceleration factors:
exp(beta1) LL UL exp(beta2) LL UL exp(beta3) LL UL

sexP 1.2 0.95 1.4 0.92 0.86 0.99 0.93 0.8 1.1

Variance of frailties:
theta LL UL

1.5 0.96 1.8

Baseline survival function components:
g=1: PM LL UL g=2: PM LL UL g=3: PM LL UL

log-Normal: mu 8.3 8.2 8.6 6.4 6.38 6.5 6.1 5.9 6.2
log-Normal: sigmaSq 10.1 9.2 11.8 1.1 0.82 1.7 1.9 1.6 2.5
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Outcome category (%)

Both
acute GVHD

& death

Acute GVHD
& censored
for death

Death
without

acute GVHD
Censored
for both

N %

Total subjects 9,651 100.0 9.5 8.9 28.8 52.8

Gender

Male 5,366 55.6 9.7 9.5 28.1 52.7

Female 4,285 44.4 9.1 8.3 29.7 52.9

Age, years

ă10 653 6.8 5.0 11.9 23.4 59.7

10-19 1,162 12.0 8.0 11.4 24.0 56.6

20-29 1,572 16.3 9.7 9.9 27.4 53.0

30-39 1,581 16.4 9.8 10.7 28.5 51.0

40-49 2,095 21.7 11.0 9.6 29.7 49.7

50-59 2,008 20.8 9.8 5.1 32.3 52.8

60+ 580 6.0 9.9 4.8 33.1 52.2

Disease type

AML 4,919 51.0 8.2 8.0 30.3 53.5

ALL 2,071 21.5 9.9 9.0 29.3 51.8

CML 1,525 15.8 12.1 11.3 22.2 54.4

MDS 1,136 11.8 11.0 10.0 30.0 49.0

Disease status

Early 4,873 50.5 8.4 11.0 23.6 57.0

Intermediate 2,316 24.0 9.7 8.5 30.1 51.7

Advanced 2,462 25.5 11.5 5.4 37.7 45.4

HLA compatibility

Identical sibling 3,941 40.8 7.4 8.5 26.3 57.8

8/8 4,100 42.5 10.5 9.7 30.3 49.5

7/8 1,610 16.7 12.2 8.1 30.9 48.8

Table 1: Covariate and simulated outcome information for 9,651 patients who underwent the
first HCT between 1999-2011 with administrative censoring at 365 days.
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Analysis Model Data type L-T and/or I-C Statistical paradigm

AFT

Independent
No B

Yes B

Clustered
No x

Semi-competing Yes x

risks

PHR

Independent
No B & F

Yes x

Clustered
No B

Yes x

Univariate

AFT

Independent
No B

Yes B

Clustered
No x

Yes x

PHR

Independent
No B & F

Yes x

Clustered
No B

Yes x

L-T: left-truncation; I-C: interval-censoring; B: Bayesian; F: frequentist; x: not available

Table 2: Models implemented in the SemiCompRisks package.
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RSSampling: A Pioneering Package for
Ranked Set Sampling
by Busra Sevinc, Bekir Cetintav, Melek Esemen, and Selma Gurler

Abstract Ranked set sampling (RSS) is an advanced data collection method when the exact
measurement of an observation is difficult and/or expensive used in a number of research areas, e.g.,
environment, bioinformatics, ecology, etc. In this method, random sets are drawn from a population
and the units in sets are ranked with a ranking mechanism which is based on a visual inspection or
a concomitant variable. Because of the importance of working with a good design and easy analysis,
there is a need for a software tool which provides sampling designs and statistical inferences based
on RSS and its modifications. This paper introduces an R package as a free and easy-to-use analysis
tool for both sampling processes and statistical inferences based on RSS and its modified versions.
For researchers, the RSSampling package provides a sample with RSS, extreme RSS, median RSS,
percentile RSS, balanced groups RSS, double versions of RSS, L-RSS, truncation-based RSS, and
robust extreme RSS when the judgment rankings are both perfect and imperfect. Researchers can
also use this new package to make parametric inferences for the population mean and the variance
where the sample is obtained via classical RSS. Moreover, this package includes applications of the
nonparametric methods which are one sample sign test, Mann-Whitney-Wilcoxon test, and Wilcoxon
signed-rank test procedures. The package is available as RSSampling on CRAN.

Introduction

Data collection is the crucial part in all types of scientific research. Ranked set sampling (RSS) is
one of the advanced data collection methods, which provides representative sample data by using the
ranking information of the sample units. It was firstly proposed by McIntyre (1952) and the term
"ranked set sampling" was introduced in the study of Halls and Dell (1966) about the estimation of
forage yields in a pine hardwood forest. Takahasi and Wakimoto (1968) theoretically studied the
efficiency of the mean estimator based on RSS which is unbiased for the population mean. They
found that its variance is always smaller than the variance of the mean estimator based on simple
random sampling (SRS) with the same sample size when the ranking is perfect. Some other results
on the efficiency of RSS can be found in Dell and Clutter (1972), David and Levine (1972), and
Stokes (1980a). Stokes (1977) studied the use of concomitant variables for ranking of the sample
units in the RSS procedure and found that the ranking procedure was allowed to be imperfect. In
another study, she constructed the estimator for the population variance in the presence of the
ranking error (Stokes, 1980b). For some examples and results on the regression estimation based
on RSS, see, Yu and Lam (1997) and Chen (2001). The estimation of a distribution function with
various settings of RSS can be found in Stokes and Sager (1988), Kvam and Samaniego (1993), and
Chen (2000). Other results on distribution-free test procedures based on RSS can be found in Bohn
and Wolfe (1992, 1994), and Hettmansperger (1995). Additional results for inferential procedures
based on RSS can be found in the recent works of Zamanzade and Vock (2015), Zhang et al. (2016),
and Ozturk (2018). For more details on RSS, we refer the review papers by Kaur et al. (1995), Chen
et al. (2003), and Wolfe (2012).

The RSS method and its modified versions have come into prominence recently due to its
efficiency and therefore new software tools or packages for a quick evaluation is required. A free
software called Visual Sample Plan (VSP) created by Pacific Northwest National Labaratory has
many sampling designs including classical RSS method for developing environmental sampling
plans under balanced and unbalanced cases. It provides the calculation of the required sample
size and cost information with the location to be sampled. Also, a package NSM3 by Schneider
(2015) in R has two functions related to classical RSS method. It only provides the Monte Carlo
samples and computes a statistic for a nonparametric procedure. Both the VSP and NSM3 package
include only the classical RSS method as a sampling procedure and provide limited methods for
inference. Therefore, there is no extensive package for sampling and statistical inference using both
classical and modified RSS methods in any available software packages. In this study, we propose a
pioneering package, named RSSampling, for sampling procedures based on the classical RSS and the
modified RSS methods in both perfect and imperfect ranking cases. Also, the package provides the
estimation of the mean and the variance of the population and allows the use of the one sample
sign, Mann-Whitney-Wilcoxon, and Wilcoxon signed-rank test procedures under classical RSS. The
organization of the paper is as follows: in the following section, we give some brief information about
classical RSS and modified RSS methods. Then, we introduce the details of RSSampling package
and further, we give some illustrative examples with a real data analysis. In the last section, we give
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the conclusion of the study.

The classical and modified RSS methods

RSS and its modifications are advanced sampling methods using the rank information of the sample
units. The ranking of the units can be done by visual inspection of a human expert or a concomitant
variable. The procedure for the RSS method is as follows:

1. Select m units at random from a specified population.
2. Rank these m units by judgment without actual measurement.
3. Keep the smallest judged unit from the ranked set.
4. Select second set of m units at random from a specified population, rank these units without

measuring them, keep the second smallest judged unit.
5. Continue the process until m ranked units are measured.

The first five steps are referred to as a cycle. Then, the cycle repeats r times and a ranked set
sample of size n “mr is obtained. Figure 1 illustrates the RSS procedure with visual inspection for
the case of r “ 1 and m “ 3, and in the following scheme, Xipj:mq represents the jth ranked unit in
ith set where i “ 1, 2, . . . ,m and j “ 1, 2, . . . ,m and bold units represent the units which are chosen
to ranked set sample.

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

X1p1:3q ď X1p2:3q ď X1p3:3q

X2p1:3q ď X2p2:3q ď X2p3:3q

X3p1:3q ď X3p2:3q ď X3p3:3q

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Figure 1: Ranking with visual inspection for one cycle, Haq et al. (2013)

RSS design obtains more representative samples and gives more precise estimates of the population
parameters relative to SRS (EPA, 2012). The main difference between the RSS method and the
other modified methods is the selection procedure of the sample units from the ranked sets. For
example, Samawi et al. (1996) suggested extreme RSS using the minimum or maximum units from
each ranked set. Muttlak (1997) introduced median RSS using only median units of the random sets.
Jemain et al. (2008) suggested balanced groups RSS which is defined as the combination of extreme
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RSS and median RSS. For additional examples of modified methods, see Muttlak (2003a), Al-Saleh
and Al-Kadiri (2000), and for robust methods see, Al-Nasser (2007), Al-Omari and Raqab (2013),
and Al-Nasser and Mustafa (2009). In literature, the studies for modified RSS methods are generally
interested in obtaining a sample more easily or making a more robust estimation for a population
parameter. Such studies are made for the investigation of properties (for example, bias and mean
squared error) of a proposed estimator and they have generally focused on the comparisons of SRS
and RSS methods. Note that the true comparisons of the modified RSS methods to the others
are difficult to present in general terms. Because the advantages of the sampling methods, when
compared to each other, may vary according to the situations such as the parameter to be estimated,
underlying distribution, the presence of ranking error, etc. For more detailed information on the
modifications of RSS, see Al-Omari and Bouza (2014) and references therein. In the following, the
modified RSS methods which are considered in RSSampling are introduced.

Extreme RSS

Extreme RSS (ERSS) is the first modification of RSS suggested by Samawi et al. (1996) to estimate
the population mean only using the minimum or maximum ranked units from each set. The
procedure for ERSS can be described as follows: select m random sets each of size m units from the
population and rank the units within each set by a human expert or a concomitant variable. If the
set size m is even, the lowest ranked units of each set are chosen from the first m{2 sets, and the
largest ranked units of each set are chosen from the other m{2 sets. If the set size is odd, the lowest
ranked units from the first pm´ 1q{2 sets, the largest ranked units from the other pm´ 1q{2 sets
and median unit from the remaining last set are chosen. If we repeat the procedure r times, we
have a sample of size n “ mr. An example of the procedure for r “ 1 and m “ 4 is shown below.
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˝

X1p1:4q ď X1p2:4q ď X1p3:4q ď X1p4:4q

X2p1:4q ď X2p2:4q ď X2p3:4q ď X2p4:4q

X3p1:4q ď X3p2:4q ď X3p3:4q ď X3p4:4q

X4p1:4q ď X4p2:4q ď X4p3:4q ď X4p4:4q

˛
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Median RSS

Median RSS (MRSS) was suggested by Muttlak (1997). In this method, only median units of the
random sets are chosen as the sample for estimation of population mean. For the odd set sizes, the
ppm` 1q{2qth ranked units are chosen as the median of each set. For even set sizes, the pm{2qth
ranked units are chosen from the first m{2 sets and the ppm` 2q{2qth ranked units are chosen from
the remaining m{2 sets. If necessary, procedure can be repeated r times and we have n “ mr sample
of size. An example of the procedure for r “ 1 and m “ 3 is shown below.
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X1p1:3q ď X1p2:3q ď X1p3:3q

X2p1:3q ď X2p2:3q ď X2p3:3q

X3p1:3q ď X3p2:3q ď X3p3:3q
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Percentile RSS

Muttlak (2003a) suggested another modification for the RSS, percentile RSS (PRSS), where only
the upper and lower percentiles of the random sets are chosen as the sample for selected value of p,
where 0 ď p ď 1. Suppose that m random sets with the size m are chosen from a specific population
to sample m units and ranked visually or with a concomitant variable. If the set size is even, the
pppm` 1qqth smallest units from the first m{2 sets and the pp1´ pqpm` 1qqth smallest units from
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the other m{2 sets are chosen. If m is odd, the pppm` 1qqth smallest units are chosen from the first
pm´ 1q{2 sets, the pp1´ pqpm` 1qqth smallest units are chosen from the other pm´ 1q{2 sets and
the median unit is chosen as the mth unit from the last set. An example of the procedure for r “ 1,
m “ 5 and p “ 0.3 is as below.
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X1p1:5q ď X1p2:5q ď X1p3:5q ď X1p4:5q ď X1p5:5q

X2p1:5q ď X2p2:5q ď X2p3:5q ď X2p4:5q ď X2p5:5q

X3p1:5q ď X3p2:5q ď X3p3:5q ď X3p4:5q ď X3p5:5q

X4p1:5q ď X4p2:5q ď X4p3:5q ď X4p4:5q ď X4p5:5q

X5p1:5q ď X5p2:5q ď X5p3:5q ď X5p4:5q ď X5p5:5q

˛
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Balanced groups RSS

Balanced groups RSS (BGRSS) can be defined as the combination of ERSS and MRSS. Jemain
et al. (2008) suggested to use BGRSS for estimating the population mean with a special sample size
m “ 3k. In their study, BGRSS procedure can be described as follows: m “ 3k (where k “ 1, 2, 3, . . .
) sets each size of m are selected randomly from a specific population. The sets are randomly
allocated into three groups and units in each set are ranked. The smallest units from the first
group, median units from the second group and the largest units from the third group of ranked
sets are chosen. When the set size is odd, the median unit in the second group is defined as the
ppm` 1q{2qth ranked unit in the set and when the set size is even, the median unit is defined as the
mean of the pm{2qth and the ppm` 2q{2qth ranked units. BGRSS process for one cycle and k “ 2
can be described as below.
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X1p1:6q ď X1p2:6q ď X1p3:6q ď X1p4:6q ď X1p5:6q ď X1p6:6q

X2p1:6q ď X2p2:6q ď X2p3:6q ď X2p4:6q ď X2p5:6q ď X2p6:6q

X3p1:6q ď X3p2:6q ď X3p3:6q ď X3p4:6q ď X3p5:6q ď X3p6:6q

X4p1:6q ď X4p2:6q ď X4p3:6q ď X4p4:6q ď X4p5:6q ď X4p6:6q

X5p1:6q ď X5p2:6q ď X5p3:6q ď X5p4:6q ď X5p5:6q ď X5p6:6q

X6p1:6q ď X6p2:6q ď X6p3:6q ď X6p4:6q ď X6p5:6q ď X6p6:6q
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Double RSS

Al-Saleh and Al-Kadiri (2000) introduced another modification of RSS, that is double RSS (DRSS)
as a beginning of multistage procedure. Several researchers also extended the DRSS method to
modified versions such as double extreme RSS (DERSS) by Samawi (2002), double median RSS
(DMRSS) by Samawi and Tawalbeh (2002), and double percentile RSS (DPRSS) by Jemain and
Al-Omari (2006). The DRSS procedure is described as follows: m3 units are identified from the
target population and divided randomly into m groups, the size of each is m2. Then, the usual
RSS procedure is used on each group to obtain m ranked set samples each of size m. Finally, RSS
procedure is applied again on the obtained ranked set samples in the previous step to get a double
ranked set sample of size m.
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L-RSS

L-RSS, which is a robust RSS procedure, is based on the idea of L statistic and it was introduced
by Al-Nasser (2007) as a generalization of different type of RSS methods. The first step for L-RSS
procedure is selecting m random sets with m units and ranking the units in each set. Let k be the
L-RSS coefficient, where k “ tmαu for 0 ď α ă 0.5 and tmαu is the largest integer value less than
or equal to mα. Then, the pk` 1qth ranked units from the first k` 1 sets, pm´ kqth ranked units
from the last k` 1 sets and ith ranked units from the remaining sets which are numbered with i,
where i “ k` 2, . . . ,m´ k´ 1 are selected. The L-RSS procedure for the case of m “ 6 and k “ 1
(α “ 0.20) in a cycle can be shown as below:
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X1p1:6q ď X1p2:6q ď X1p3:6q ď X1p4:6q ď X1p5:6q ď X1p6:6q

X2p1:6q ď X2p2:6q ď X2p3:6q ď X2p4:6q ď X2p5:6q ď X2p6:6q

X3p1:6q ď X3p2:6q ď X3p3:6q ď X3p4:6q ď X3p5:6q ď X3p6:6q

X4p1:6q ď X4p2:6q ď X4p3:6q ď X4p4:6q ď X4p5:6q ď X4p6:6q

X5p1:6q ď X5p2:6q ď X5p3:6q ď X5p4:6q ď X5p5:6q ď X5p6:6q

X6p1:6q ď X6p2:6q ď X6p3:6q ď X6p4:6q ď X6p5:6q ď X6p6:6q
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When k “ 0, then this procedure leads to the classical RSS and when k “ tpm´ 1q{2u, then it
leads to the MRSS method.

Truncation-based RSS

The truncation-based RSS (TBRSS) was presented by Al-Omari and Raqab (2013). This procedure
can be summarized as follows: select randomly m sets each of size m units from the population and
rank the units in each set. Then, determine TBRSS coefficient k as in the L-RSS method and select
the minimums of the first k sets and the maximums of the last k sets. From the remaining m´ 2k
samples, select the ith ranked unit of the ith sample pk` 1 ď i ď m´ kq. The one cycled TBRSS
method for the case of m “ 8 and k “ 2 (α “ 0.35) is shown below.
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X1p1:8q ď X1p2:8q ď X1p3:8q ď X1p4:8q ď X1p5:8q ď X1p6:8q ď X1p7:8q ď X1p8:8q

X2p1:8q ď X2p2:8q ď X2p3:8q ď X2p4:8q ď X2p5:8q ď X2p6:8q ď X2p7:8q ď X2p8:8q

X3p1:8q ď X3p2:8q ď X3p3:8q ď X3p4:8q ď X3p5:8q ď X3p6:8q ď X3p7:8q ď X3p8:8q

X4p1:8q ď X4p2:8q ď X4p3:8q ď X4p4:8q ď X4p5:8q ď X4p6:8q ď X4p7:8q ď X4p8:8q

X5p1:8q ď X5p2:8q ď X5p3:8q ď X5p4:8q ď X5p5:8q ď X5p6:8q ď X5p7:8q ď X5p8:8q

X6p1:8q ď X6p2:8q ď X6p3:8q ď X6p4:8q ď X6p5:8q ď X6p6:8q ď X6p7:8q ď X6p8:8q

X7p1:8q ď X7p2:8q ď X7p3:8q ď X7p4:8q ď X7p5:8q ď X7p6:8q ď X7p7:8q ď X7p8:8q

X8p1:8q ď X8p2:8q ď X8p3:8q ď X8p4:8q ď X8p5:8q ď X8p6:8q ď X8p7:8q ď X8p8:8q
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Note that when k “ 0 or k “ 1, TBRSS scheme is equivalent to the classical RSS scheme.

Robust extreme RSS

Robust extreme RSS (RERSS) scheme was introduced by Al-Nasser and Mustafa (2009). This
method can be described as follows: identify m random sets with m units and rank the units within
each set. Select the pk` 1qth ranked units from the first m{2 sets where k “ tmαu for 0 ă α ă 0.5
and tmαu is the largest integer value less than or equal to mα. Then, select the pm´ kqth ranked
units from the other m{2 sets. If the set size m is odd, ppm` 1q{2qth ranked unit is selected
additionally from the last remaining set. The procedure for one cycle and the case of m “ 6 and
k “ 1 (α “ 0.20) can be shown as below.
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X1p1:6q ď X1p2:6q ď X1p3:6q ď X1p4:6q ď X1p5:6q ď X1p6:6q

X2p1:6q ď X2p2:6q ď X2p3:6q ď X2p4:6q ď X2p5:6q ď X2p6:6q

X3p1:6q ď X3p2:6q ď X3p3:6q ď X3p4:6q ď X3p5:6q ď X3p6:6q

X4p1:6q ď X4p2:6q ď X4p3:6q ď X4p4:6q ď X4p5:6q ď X4p6:6q

X5p1:6q ď X5p2:6q ď X5p3:6q ď X5p4:6q ď X5p5:6q ď X5p6:6q

X6p1:6q ď X6p2:6q ď X6p3:6q ď X6p4:6q ď X6p5:6q ď X6p6:6q
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If k “ 0 and k “ pm{2q, then this sampling procedure corresponds to ERSS and MRSS methods,
respectively.

RSSampling package

The package RSSampling is available on CRAN and can be installed and loaded via the following
commands:

> install.packages("RSSampling")
> library("RSSampling")

The package depends on the stats package and uses a function from the non-standard package
LearnBayes (Albert, 2018) for random data generation in the Examples section. The proposed
package consists of two main parts which are the functions for sampling methods described in Table
1 and the functions for inference procedures described in Table 2 based on RSS. The sampling
part of the package includes perfect and imperfect rankings with a concomitant variable allowing
researchers to sample with classical RSS and the modified versions. The functions for inference
procedures provide estimation for parameters and some hypothesis testing procedures based on RSS.

Sampling with RSSampling

In this part, we introduce a core function, which is called rankedsets, to obtain s ranked sets
consisting of randomly chosen sample units with the set size m. By using this function, we developed
the functions given in Table 1 which provide researchers means to obtain a sample under different
sampling schemes. One can also use rankedsets function for the studies based on other modified
RSS methods which are not mentioned in this paper.

The function rss provides the ranked set sample with perfect ranking from a specific data set,
X, provided in matrix form where the columns and rows represent the sets and cycles, respectively.
One can see the randomly chosen ranked sets by defining sets = TRUE (default sets = FALSE) with
the set size m and the cycle size r. For the modified RSS methods, the function Mrss provides a
sample from MRSS, ERSS, PRSS, and BGRSS which are represented by "m","e", "p", and "bg",
respectively. The type = "r", defined as the default, represents the classical RSS. For the sampling
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Function Description

rss Performs classical RSS method

Mrss Performs modified RSS methods (MRSS, ERSS, PRSS,BGRSS)

Rrss Performs robust RSS methods (L-RSS, TBRSS, RERSS)

Drss Performs double RSS methods (DRSS, DMRSS, DERSS, DPRSS)

con.rss Performs classical RSS method by using a concomitant variable

con.Mrss Performs modified RSS methods (MRSS, ERSS, PRSS,BGRSS)

by using a concomitant variable

con.Rrss Performs robust RSS methods (L-RSS, TBRSS, RERSS)

by using a concomitant variable

obsno.Mrss Determines the observation numbers of the units which will be

chosen to the sample for classical and modified RSS methods

by using a concomitant variable

Table 1: The functions for the sampling methods in RSSampling package

procedure PRSS, there is an additional parameter p which defines the percentile. We note that,
when p = 0.25 in PRSS, one can obtain a sample with quartile RSS given by Muttlak (2003b).
Rrss provides samples from L-RSS, TBRSS, and RERSS methods which are represented by "l",
"tb", and "re", respectively. The parameter alpha is the common parameter for these methods
and defines the cutting value. Drss function is for double versions of RSS, MRSS, ERSS, and PRSS
under perfect ranking. type = "d" is defined as the default which represents the double RSS. Values
"dm", "de", and "dp" are defined for DMRSS, DERSS, and DPRSS methods, respectively.

In the literature, most of the theoretical inferences and numerical studies are conducted based
on perfect ranking. However, in real life applications, the ranking process is done with an expert
judgment or a concomitant variable. Let us consider RSS with a concomitant variable Y . A set of m
units is drawn from the population, then the units are ranked by the order of Y . The concomitant
variable Yipj:mq represents the jth ranked unit in ith set and the variable of interest Xpi,jq represents
the jth unit in ith set, where i “ 1, 2, . . . ,m and j “ 1, 2, . . . ,m. In the following example, the
procedure of RSS using Y is given for m “ 3.
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pY1p1:3q, Xp1,1qq ď pY1p2:3q,Xp1,2qq ď pY1p3:3q,Xp1,3qq ÝÑ Xp1,1q

pY2p1:3q,Xp2,1qq ď pY2p2:3q, Xp2,2qq ď pY2p3:3q,Xp2,3qq ÝÑ Xp2,2q

pY3p1:3q,Xp3,1qq ď pY3p2:3q,Xp3,2qq ď pY3p3:3q, Xp3,3qq ÝÑ Xp3,3q

The functions con.rss, con.Mrss, and con.Rrss provide methods to obtain a sample under
imperfect ranking. With the con.rss function, a researcher can obtain a classical ranked set sample
from a specific data set using a concomitant variable Y with the set size m and cycle size r to make
inference about the variable of interest X. The functions con.Mrss and con.Rrss have similar usage
with con.rss function except the selection method which is defined by type parameter. Also, these
functions are simply extensions of the Mrss and Rrss for concomitant variable cases.

In a real-world research, the values of the variable of interest X are unknown and the researchers
measure X values of the sample units after choosing them from the population with a specific
sampling method. The function obsno.Mrss provides the code for this kind of application, when the
researchers prefer to use RSS methods. After determining the sample frame and the concomitant
variable to be used for ranking, the code provides the number of the units to be selected according
the values of the concomitant variable. Then, the researcher obtain easily the observation numbers of
the units which will be chosen to the sample. type = "r" is defined as the default which represents
the classical RSS. MRSS, ERSS, PRSS, and BGRSS are represented by "m" , "e", "p", and "bg",
respectively.

Inference with RSSampling

Statistical inference refers to the process of drawing conclusions and having an information about
the interested population. Researchers are generally interested in fundamental inferences for the
parameters such as mean and variance. Using the RSSampling package, we provide an easy way to
estimate the parameters about the interested population and to use some distribution-free tests;
namely the sign, Mann-Whitney-Wilcoxon, and Wilcoxon signed-rank tests for nonparametric
inference when the sampling procedure is RSS.

Function Description

meanRSS Performs mean estimation and hypothesis testing with classical RSS method

varRSS Performs variance estimation with classical RSS method

regRSS Performs regression estimation for mean of interested population

with classical RSS method

sign1testrss Performs one sample sign test with classical RSS method

mwwutestrss Performs Mann-Whitney-Wilcoxon test with classical RSS method

wsrtestrss Performs Wilcoxon signed-rank test with classical RSS method

Table 2: The functions for inference in RSSampling package

The meanRSS function provides point estimation, confidence interval estimation, and asymptotic
hypothesis testing for the population mean based on RSS see, (Chen et al., 2003). For the variance
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estimation based on RSS, we define varRSS function which has two type parameters; "Stokes" and
"Montip". Stokes (1980b) proved that estimator of variance is asymptotically unbiased regardless
of presence of ranking error. For the "Montip" type estimation, Tiensuwan and Sarikavanij (2003)
showed that there is no unbiased estimator of variance for one cycle but they proposed unbiased
estimator of variance for more than one cycle. With regRSS function, regression estimator for mean
of interested population can be obtained based on RSS. The β coefficient ("B" in regRSS function)
is calculated under the assumption of known population mean for concomitant Y . Note that, the
ranked set samples for interested variable X and for concomitant variable Y must be the same
length. One can find the detailed information about regression estimator based on RSS in Yu and
Lam (1997).

Finally, for nonparametric inference, sign1testrss, mwwutestrss, and wsrtestrss functions
implement, respectively, the sign test, the Mann-Whitney-Wilcoxon test, and the Wilcoxon signed-
rank test depending on RSS. The normal approximation is used to construct the test statistics and
an approximate confidence intervals. For detailed information on these test methods, see the book
of Chen et al. (2003).

Examples

In this section, we present examples illustrating the RSSampling package.

Sampling with TBRSS using a concomitant variable

This example shows the process to obtain a sample by using TBRSS method for the variable of
interest, X, ranked by using the concomitant variable Y assuming that they are distributed as
multivariate normal. We determined the set size m is 4 and the cycle size r is 2. The ranked sets of
Y and the sets of X are obtained using the function con.Rrss. Thus, the resultant sample for X is
given as below.

##Loading packages
library("RSSampling")
library("LearnBayes")

## Imperfect ranking example for interested (X) and concomitant (Y) variables
## from multivariate normal dist.
set.seed(1)
mu <- c(10, 8)
variance <- c(5, 3)
a <- matrix(c(1, 0.9, 0.9, 1), 2, 2)
v <- diag(variance)
Sigma <- v%*%a%*%v
x <- rmnorm(10000, mu, Sigma)
xx <- as.numeric(x[,1])
xy <- as.numeric(x[,2])

## Selecting a truncation-based ranked set sample
con.Rrss(xx, xy, m = 4, r = 2, type = "tb", sets = TRUE, concomitant = FALSE,

alpha = 0.25)

$corr.coef
[1] 0.9040095

$var.of.interest
[,1] [,2] [,3] [,4]

[1,] 12.332134 13.116611 15.675967 21.72312
[2,] 11.350275 8.846237 10.164005 17.07950
[3,] 4.143757 9.608573 8.708221 11.57671
[4,] 2.284106 9.535388 12.709489 14.11595
[5,] 3.212739 8.089833 11.430411 14.53190
[6,] 6.556222 12.759335 13.210037 11.02219
[7,] 3.337564 -0.864634 12.800243 13.47315
[8,] 5.988893 8.850680 13.208956 15.82731
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$concomitant.var.
[,1] [,2] [,3] [,4]

[1,] 8.034720 10.398398 11.800919 13.754743
[2,] 8.003575 8.118947 11.136804 12.149531
[3,] 4.733177 7.377396 8.866563 11.658837
[4,] 4.027061 8.008146 9.977435 10.912382
[5,] 3.909958 6.220087 7.564130 8.739562
[6,] 5.893001 8.760754 10.067927 10.244593
[7,] 2.119661 2.813413 10.651769 10.775596
[8,] 5.406154 7.722866 8.602551 10.874853

$sample.x
m = 1 m = 2 m = 3 m = 4

r = 1 12.332134 8.846237 8.708221 14.11595
r = 2 3.212739 12.759335 12.800243 15.82731

Obtaining observation number in MRSS method

Random determination of the sample units is an important task for practitioners. The function
obsno.Mrss is for the practitioners who have the frame of the population with unknown variable X
and known concomitant variable Y . In the following example, the observation numbers for median
ranked set sample units are obtained in order to take the measurement of the interested variable X.

## Loading packages
library("RSSampling")

## Generating concomitant variable (Y) from exponential dist.
set.seed(5)
y = rexp(10000)

## Determining the observation numbers of the units which are chosen to sample
obsno.Mrss(y, m = 3, r = 5, type = "m")

m = 1 m = 2 m = 3
r = 1 "Obs. 2452" "Obs. 6417" "Obs. 3227"
r = 2 "Obs. 9094" "Obs. 1805" "Obs. 9877"
r = 3 "Obs. 1333" "Obs. 9252" "Obs. 3219"
r = 4 "Obs. 6397" "Obs. 7038" "Obs. 5019"
r = 5 "Obs. 446" "Obs. 9663" "Obs. 10"

A simulation study based on RSS using a concomitant variable

In order to illustrate the usage of the package, we give a simulation study with 10,000 repetitions for
mean estimation of X based on RSS method using a concomitant variable. It demonstrates the effect
of the correlation level between X and Y on the mean squared error (MSE) of estimation. Samples
are obtained when m = 5 and r = 10 assuming that X and Y are distributed as multivariate normal.
Figure 2 as an output of the simulation study indicates that when the correlation level is increasing,
MSE values are decreasing.

## Loading packages
library("RSSampling")
library("LearnBayes")

## Imperfect ranking example for interested (X) and concomitant (Y) variables
## from multivariate normal dist.
mu <- c(10, 8)
variance <- c(5, 3)
rho = seq(0, 0.9, 0.1)
se.x = mse.x = numeric()
repeatsize = 10000
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for (i in 1:length(rho)) {
set.seed(1)
a <- matrix(c(1, rho[i], rho[i], 1), 2, 2)
v <- diag(variance)
Sigma <- v%*%a%*%v
x <- rmnorm(10000, mu, Sigma)
xx <- as.numeric(x[,1])
xy <- as.numeric(x[,2])
for (j in 1:repeatsize) {

set.seed(j)
samplex = con.Mrss(xx, xy, m = 5, r = 10, type = "r", sets = FALSE,

concomitant = FALSE)$sample.x
se.x[j] = (mean(samplex)-mu[1])^2

}
mse.x[i] = sum(se.x)/repeatsize

}
plot(rho[-1], mse.x[-1], type = "o", lwd = 2,

main = "MSE values based on increasing correlation levels",
xlab = "corr.coef.", ylab = "MSE", cex = 1.5, xaxt = "n")

axis(1, at = seq(0.1, 0.9, by = 0.1))

Figure 2: MSE values based on increasing correlation levels

A real data example

In this real data example, we used the abolone data set which is freely available at https://archive.
ics.uci.edu/ml/machine-learning-databases/abalone/abalone.data. The data consists of 9
variables of 4177 units and the variables are; sex (Male/Female/Infant), length (mm), diameter
(mm), height (mm), whole weight (grams), shucked weight (grams), viscera weight (grams), shell
weight (grams), and rings (`1.5 gives the age of abalone in years), respectively. The data comes
from an original study of the population biology of abalone by Nash et al. (1994). Also, Cetintav
et al. (2016) and Sevinç et al. (2018) used the abalone data set for application of the fuzzy based
modification of RSS and partial groups RSS methods, respectively. The data set can be obtained
easily by using the following R command.

abaloneData <- read.csv(url("https://archive.ics.uci.edu/ml/machine-learning-databases
/abalone/abalone.data"), header = FALSE, col.names = c("sex", "length",
"diameter", "height", "whole.weight", "shucked.weight", "viscera.weight",
"shell.weight", "rings"))
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Suppose that we aimed to estimate the mean of viscera weight and confidence interval and
also test the hypothesis claiming that the mean of the viscera weight is equal to 0.18. The
measurement of viscera weight which is the gut weight of abalone after bleeding is an expensive and
time-consuming process. Because the measurement of whole weight is easy and highly correlated
with viscera weight (the correlation coefficient is 0.966), we used whole weight as the concomitant
variable to obtain a sample of size 25 in RSS method. We have the following results for viscera
weight.

cor(abaloneData$viscera.weight, abaloneData$whole.weight)
[1] 0.9663751

set.seed(50)
sampleRSS = con.rss(abaloneData$viscera.weight, abaloneData$whole.weight, m = 5, r = 5,

sets = TRUE, concomitant = FALSE)$sample.x

meanRSS(sampleRSS, m = 5, r = 5, alpha = 0.05, alternative = "two.sided", mu_0 = 0.18)
$mean
[1] 0.17826

$CI
[1] 0.1293705 0.2271495

$z.test
[1] -0.06975604

$p.value
[1] 0.9443878

varRSS(sampleRSS, m = 5, r = 5, type = "Stokes")
[1] 0.0135364

The results from our sample data indicate that the estimated mean and the variance are 0.17826
and 0.01354, respectively. According to the hypothesis testing result, we conclude that there is no
strong evidence against the null hypothesis (p.valueą 0.05).

Conclusion

RSS is an efficient data collection method compared to SRS especially in situations where the
measurement of a unit is expensive but the ranking is less costly. In this study, we propose a package
which obtains sample from RSS and its modifications and provide functions to allow some inferential
procedures by RSS. We create a set of functions for sampling under both perfect and imperfect
rankings with a concomitant variable. For the inferential procedures, we consider mean, variance,
and regression estimator and sign, Mann-Whitney-Wilcoxon, and Wilcoxon signed-rank tests for
the distribution free tests. Proposed functions in the package are illustrated with the examples and
analysis of a real data is given. Future improvements of the package may be provided by adding
new inference procedures based on RSS methods.
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swgee: An R Package for Analyzing
Longitudinal Data with Response
Missingness and Covariate
Measurement Error
by Juan Xiong and Grace Y. Yi

Abstract Though longitudinal data often contain missing responses and error-prone covariates,
relatively little work has been available to simultaneously correct for the effects of response missingness
and covariate measurement error on analysis of longitudinal data. Yi (2008) proposed a simulation
based marginal method to adjust for the bias induced by measurement error in covariates as well
as by missingness in response. The proposed method focuses on modeling the marginal mean and
variance structures, and the missing at random mechanism is assumed. Furthermore, the distribution
of covariates are left unspecified. These features make the proposed method applicable to a broad
settings. In this paper, we develop an R package, called swgee, which implements the method
proposed by Yi (2008). Moreover, our package includes additional implementation steps which
extend the setting considered by Yi (2008). To describe the use of the package and its main features,
we report simulation studies and analyses of a data set arising from the Framingham Heart Study.

Introduction

Longitudinal studies are commonly conducted in the health sciences, biochemical, and epidemiology
fields; these studies typically collect repeated measurements on the same subject over time. Missing
observations and covariate measurement error frequently arise in longitudinal studies and they
present considerable challenges in statistical inference about such data (Carroll et al., 2006; Yi, 2008).
It has been well documented that ignoring missing responses and covariate measurement error may
lead to severely biased results, thus leading to invalid inferences (Fuller, 1987; Carroll et al., 2006).

Regarding longitudinal data with missing responses, there has been extensive methods such as
maximum likelihood, multiple imputation, and weighted generalized estimating equations (GEE)
method (Little and Rubin, 2002). In terms of methods of handling measurement error in covariate,
many methods have been developed for various settings. Comprehensive discussions can be found in
Fuller (1987), Gustafson (2003), Carroll et al. (2006), Buonaccorsi (2010) and Yi (2017). However,
there has been relatively little work on simultaneously addressing the effects of response missingness
and covariate measurement error in longitudinal data analysis, although some work such as Wang
et al. (2008), Liu and Wu (2007) and Yi et al. (2012), are available. In particular, Yi (2008) proposed
an estimation method based on the marginal model for the response process, which does not require
the full specification of the distribution of the response variable but models only the mean and
variance structures. Furthermore, a functional method is applied to relax the need of modeling the
covariate process. These features make the method of Yi (2008) flexible for many applications.

Relevant to our R package, a set of R packages and statistical software have been available for
performing the GEE and weighted GEE analyses for longitudinal data with missing observations. In
particular, package gee (Carey, 2015) and yags (Carey, 2011) perform the GEE analyses under the
strong assumption of missing completely at random (MCAR) (Kenward, 1998). Package wgeesel
(Xu et al., 2018) can perform the multiple model selection based on weighted GEE/GEE. Package
geepack (Hojsgaard et al., 2016) implements the weighted GEE analyses under the missing at random
(MAR) assumption, in which an optional vector of weights can be used in the fitting process but
the weight vector has to be externally calculated. In addition, the statistical software SAS/STAT
version 13.2 (SAS Institute Inc., 2014) includes an experimental version of the function PROC GEE
(Lin and Rodriguez, 2015), which fits weighted GEE models.

Our swgee package has several features distinguishing from existing packages. First, swgee is
designed to analyze longitudinal data with both missing responses and error-prone covariates. To
the best of our knowledge, this is the first R package that can simultaneously account for response
missingness and covariate measurement error. Secondly, this simulation based marginal method can
be applied to a broad range of problems because the associated model assumptions are minimal.
swgee can be directly applied to handle continuous and binary responses as well as count data with
dropouts under the MAR and MCAR mechanisms. Thirdly, observations are weighted inversely
proportional to their probability of being observed, with weights calculated internally. Lastly, the
swgee package employs the simulation extrapolation (SIMEX) algorithm to account for the effect of
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measurement error in covariates.
The remainder is organized as follows. Section Notation and framework introduces the notation

and model setup. In Section Methodology, we describe the method proposed by Yi (2008) and its
implementation in R in Section Implementation in R. The developed R package is illustrated with
simulation studies and analyses of a data set arising from the Framingham Heart Study in Section
Examples. General discussion is included in Section Summary and discussion.

Notation and framework

For i “ 1, . . . ,n and j “ 1, . . . ,m, let Yij be the response variable for subject i at time point j, let Xij

be the vector of covariates subject to error, and Zij be the vector of covariates which are error-free.
Write Yi “ pYi1,Yi2, . . . ,Yimq1, Xi “ pX1i1, X1i2, . . . , X1imq1, and Zi “ pZ1i1, Z1i2, . . . , Z1imq1.

Response model

For i “ 1, . . . ,n and j “ 1, . . . ,m, let µij “ EpYij |Xi, Ziq and vij “ varpYij |Xi, Ziq be the
conditional expectation and variance of Yij , given the covariates Xi and Zi, respectively. We model
the influence of the covariates on the marginal response mean by means of a regression model:

gpµijq “ X1ijβx `Z1ijβz , (F.2.1)

where β “ pβ1x, β1zq
1 is the vector of regression parameters and gp¨q is a specified monotone function.

The intercept term, if any, of the model may be included as the first element of βz by including the
unit vector as the first column of Zi.

To model the variance of Yij , we consider

vij “ hpµij ;φq, (F.2.2)

where hp¨; ¨q is a given function and φ is the dispersion parameter that is known or to be estimated.
We treat φ as known with emphasis setting on estimation of the β parameter. Here we assume that
EpY kij |Xi, Ziq “ EpY kij |Xij , Zijq for k “ 1 and 2, that is, the dependence of the mean µij and the
variance vij on the subject-level covariates Xi and Zi is completely reflected by the dependence on
the time-specific covariates Xij and Zij . This assumption has been widely used in marginal analysis
of longitudinal analysis (e. g. , Diggle and Kenward, 1994; Lai and Small, 2007). The necessity of
these assumptions was discussed by Yi (2017, Section 5.1.1).

Missing data model

For i “ 1, . . . ,n and j “ 1, . . . ,m, let Oij be 1 if Yij is observed and 0 otherwise, and let Oi “

pOi1,Oi2, . . . ,Oimq1 be the vector of missing data indicators. Dropouts or monotone missing data
patterns are considered here. That is, Oij “ 0 implies Oij1 “ 0 for all j1 ą j. We assume that
Oi1 “ 1 for every subject i. To reflect the dynamic nature of the observation process over time, we
assume an MAR mechanism for the missing process. That is, given the covariates, the missingness
probability depends on the observed responses but not unobserved response components (Little and
Rubin, 2002). Let λij “ P pOij “ 1|Oi,j´1 “ 1, Xi, Zi, Yiq and πij “ P pOij “ 1|Xi, Zi, Yiq, then

πij “

j
ź

t“2
λit. (F.2.3)

Logistic regression models are used to model the dropout process:

logitpλijq “ u1ijα, (F.2.4)

for j “ 2, . . . ,m, where uij is the vector consisting of the information of the covariates Xi, Zi and
the observed responses, and α is the vector of regression parameters. Write θ “ pα1, β1q1 and let
q “ dimpθq.

Measurement error model

For i “ 1, . . . ,n and j “ 1, . . . ,m, let Wij be the observed measurements of the covariates Xij .
Covariates Xij and their observed measurements Wij are assumed to follow a classical additive
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measurement error model:
Wij “ Xij ` eij , (F.2.5)

where the eij are independent of Xi , Zi and Yi. And eij follows Np0, Σeq with the covariance
matrix Σe. This model has been widely used in the context of handling measurement error problems.
Yi (2008) assumed that Σe is known or can be estimated from replication experiments (e. g. , Carroll
et al., 2006; Yi, 2017).

Methodology

Weighted estimation function

The inverse probability weighted generalized estimating equations method is often employed to
accommodate the missing data effects (e. g. , Robins et al., 1995; Preisser et al., 2002; Qu et al.,
2011) when primary interest lies in the estimation of the marginal mean parameters β in the
model (1). For i “ 1, . . . ,n, let Mi be the random dropout time for subject i and mi be a
realization. Define Lipαq “ p1´ λimiq

śmi´1
t“2 λit, where λit is determined by model (4). Let

Sipαq “ BlogLipαq{Bα be the vector of score functions contributed from subject i. Let Di “ Bµ1i{Bβ
be the matrix of the derivatives of the mean vector µi “ pµi1, . . . ,µimq1 with respect to β and
let ∆i “ diagpIpOij “ 1q{πij , j “ 1, 2, . . . ,mq be the weighted matrix accommodating missingness,
where Ip¨q is the indicator function. Let Vi “ A1{2

i CiA
1{2
i be the conditional covariance matrix

of Yi, given Xi and Zi, where Ai “ diagpvij , j “ 1, 2, . . . ,mq and Ci “ rρi;jks is the correlation
matrix with diagonal elements equal 1 and ρi;jk being the conditional correlation coefficient of
response components Yij and Yik for j ‰ k, given Xi and Zi. Define

Uipθq “ DiV´1
i ∆ipYi ´ µiq

and
Hipθq “ pU1ipθq, S1ipαqq1. (F.3.1)

In the absence of measurement error, that is, covariates Xij are precisely observed, we have
ErHipθqs “ 0. Hence, Hpθq “

řn
i“1 Hipθq are unbiased estimation functions for θ (e. g. , Yi, 2017,

Chapter 1). Under regularity conditions, the consistent estimator pθ of θ can be obtained by solving

Hpθq “ 0, (F.3.2)

where the weight matrix ∆i is used to adjust for the contributions of subject i with his/her missingness
probabilities incorporated. Specifically, the probability πij is determined by (3) in conjunction with
(4). Correlation matrix Ci can be replaced by the moment estimate, or alternatively, a working
independence matrix Ai may be used to replace Vi (Liang and Zeger, 1986). A detail discussion
can be found in Yi (2017, Chapter 4).

SIMEX approach

When measurement error is present in covariates Xij , Hpθq is no longer unbiased if naively replacing
Xij with its observed measurement Wij . Yi (2008) developed a simulation-extrapolation (SIMEX)
method to adjust for the bias induced by using Wij , as well as the missingness effects in the response
variables. This method originates from the SIMEX method by Cook and Stefanski (1994) who
considered cross-sectional data with measurement error alone. The basic idea of the SIMEX method
is to first add additional variability to the observed measurement Wij , then establish the trend how
different degrees of measurement error may induce bias in estimation of the model parameters, and
finally extrapolate this trend to the case of no measurement error.

Now, we describe the SIMEX method developed by Yi (2008). Let B be a given positive integer
and Λ “ tλ1,λ2, . . . ,λM u be a sequence of nonnegative numbers taken from r0,λM s with λ1 “ 0.

• Step 1: Simulation For i “ 1, . . . ,n and j “ 1, . . . ,m, generate eijb „ Np0, Σeq for b “
1, 2, . . . ,B. For a given λ P Λ, set

Wijpb,λq “ Wij `
?
λeijb.

• Step 2: Estimation For given λ and b, we obtain an estimate pθpb,λq by solving equation (7)
with Xij replaced by Wijpb,λq. Let pΓpb,λq “

řn
i“1 rBH

1
ipθ; b,λq{Bθs|

θ“pθpb,λq and pΣpb,λq “
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řn
i“1 rHipθ; b,λqH1ipθ; b,λqs|

θ“pθpb,λq, then the covariance matrix of pθpb,λq is estimated by:

pΩpb,λq “ n ¨
!

rpΓpb,λqs´1
¨ pΣpb,λq ¨ rpΓpb,λqs´11

)

|
θ“pθpb,λq.

Let pθrpb,λq be the rth component of pθpb,λq and let pΩrpb,λq be the rth diagonal element of
pΩpb,λq for r “ 1, 2, . . . , q. We then calculate the average of those estimates over b for each λ:

pθrpλq “ B´1
B
ÿ

b“1

pθrpb,λq;

pΩrpλq “ B´1
B
ÿ

b“1

pΩrpb,λq;

pSrpλq “ pB ´ 1q´1
B
ÿ

b“1
ppθrpb,λq ´ pθrpλqq

2;

pτrpλq “ pΩrpλq ´ pSrpλq.

• Step 3: Extrapolation For r “ 1, 2, . . . , q, fit a regression model to each of the sequences
tpλ, pθrpλqq : λ P Λu and tpλ, pτrpλqq : λ P Λu, respectively, and extrapolate it to λ “ ´1,
let pθrp´1q and pτrp´1q denote the resulting predicted values. Then, pθ “ ppθ1, pθ2, . . . , pθqq1 is
the SIMEX estimator of θ and

?
pτr is the associated standard error for the estimator pθr for

r “ 1, 2, . . . , q.

The SIMEX approach is very appealing because of its simplicity of implementation and no
requirement of modeling the true covariates Xi. However, to use this method, several aspects need
to be considered. As suggested by Carroll et al. (2006), the specification of Λ is not unique; a typical
choice of grid Λ is the equal cut points of interval r0, 2s with M “ 5 or 9. Choosing B “ 100 or 200
is often sufficient for many applications. The quadratic regression function is commonly used for
Step 3 to yield reasonable results. (e. g. , He et al., 2012).

Finally, we extend the method by Yi (2008) to accommodating the case where the covariance
matrix Σe for model (5) is unknown but repeated surrogate measurements of Xij are available.
Let Wijk denote the repeated surrogate measurements of Xij for i “ 1, . . . ,n; j “ 1, . . . ,m; and
k “ 1, . . . ,K. The surrogate measurements Wijk and the true covariate Xij are linked by the model

Wijk “ Xij ` eijk, (F.3.3)
where the eijk are independent of Xi , Zi and Yi, and eijk follows Np0, Σeq with the covariance
matrix Σe. We now adapt the arguments of Devanarayan and Stefanski (2002) to modify the
simulation step of the preceding SIMEX method. For a given b and λ P Λ, set

Wijpb,λq “ Wij `
a

λ{K
K
ÿ

k“1
cijkpbqWijk, (F.3.4)

where Wij “ K´1 řK
k“1 Wijk and cijpbq “ pcij1pbq, . . . , cijkpbqq1 is a normalized contrast satisfying

řK
k“1 cijk “ 0 and

řK
k“1 c

2
ijk “ 1.

A simple way to generate a contrast cijpbq can be done by independently generating K variates,
dijkpbq, from Np0, 1q for k “ 1, . . . ,K and a given b. Let dijpbq “ K´1 řK

k“1 dijkpbq. Then cijkpbq
is set as

cijkpb,λq “
dijkpbq ´ dijpbq

b

řK
k“1tdijkpbq ´ dijpbqu

2
.

Once Wijpb,λq of (9) is available, we repeat Steps 2 and 3 to obtain the SIMEX estimator and the
associated standard error.

Implementation in R

We implement the SIMEX procedure described in Section Methodology in R and develop the package,
called swgee. Our package swgee takes the advantage of existing R packages geepack (Hojsgaard
et al., 2016) and mvtnorm (Genz and Bretz, 2009; Genz et al., 2018). Specifically, the function
swgee produces the estimates for elements of the parameter vector β, which are of primary interest,
the associated standard errors, and P-values.
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Our R function swgee requires the input data set to be sorted by subject i and visit time j
for i “ 1, . . . ,n and j “ 1, . . . ,m. If a subject is missing at a certain time, the corresponding
measurements should be recorded as NAs. As long as the user provides the missing data model
(4), the function swgee can internally generate the missing data indicators Oij for i “ 1, . . . ,n
and j “ 1, . . . ,m, and then apply the user specified model (4) to fit the data. The missingness
probabilities πij are calculated by (3) and then used to construct the weight matrix ∆i for the
estimating equation (6). The estimate of the missing data model (4) parameter α can also be
retrieved from the function swgee output.

The form of calling function swgee is given by

swgee(formula, data, id, family, corstr, missingmodel, SIMEXvariable,
SIMEX.err, repeated = FALSE, repind = NULL, B, lambda)

where the arguments are described as follows:

• formula: This argument specifies the model to be fitted, with the variables coming with data.
See the documentation of geeglm and its formula for details.

• data: This is the same as the data argument in the R function geeglm, which specifies the
data frame showing how variables occur in the formula, along with the id variable.

• id: This is the vector which identifies the labels of subjects. i.e., the id for subject i is i,
using the notation of Section Response model, where i “ 1, 2, . . . ,n. Data are arranged so
that observations for the same subject are listed in consecutive rows in order of time, and
consequently, the id for a subject would repeat the same number of times as the observation
times.

• family: This argument describes the error distribution together with the link function for
model (1). See the documentation of geeglm and its argument family for details.

• corstr: This is a character string specifying the correlation structure. See the documentation
of geeglm and its argument corstr for details.

• missingmodel: This argument specifies the formula to be fitted for the missing data model
(4). See the documentation of geeglm and its formula for details.

• SIMEXvariable: This is the vector of characters containing the names of the covariates which
are subject to measurement error.

• SIMEX.err: This argument specifies the covariance matrix of measurement errors in the
measurement error model (5).

• repeated: This is the indicator whether measurement error model is given by (5) or by (8).
The default value FALSE corresponding to model (5).

• repind: This is the index of the repeated surrogate measurements Wijk for each covariate
Xij . It has an R list form. If repeated = TRUE, repind must be specified.

• B: This argument sets the number of simulated samples for the simulation step. The default is
set to be 50.

• lambda: This is the vector tλ1,λ2, . . . ,λM u we describe in Step 1 of Section SIMEX approach.
Its values need to be specified by the user.

Examples

An example data set

To illustrate the usage of the developed R package swgee, we apply the package to a subset of
GWA13 (Genetic Analysis Workshops) data arising from the Framingham Heart Study. The data
set consists of measurements of 100 patients from a series of exams with 5 assessments for each
individual. Measurements such as height, weight, age, systolic blood pressure (SBP) and cholesterol
level (CHOL) are collected at each assessment, and 14% patients dropped out of the study. The
original data were analyzed by Yi (2008). It is of interest to study how an individual’s obesity
may change with age (Zij) and how it is associated with SBP (Xij1) and CHOL (Xij2), where
i “ 1, . . . , 100, and j “ 1, . . . , 5. The response Yi is the indicator of obesity status of subject i as in
Yi (2008); SBP is rescaled as logpSBP´ 50q as in Carroll et al. (2006); and CHOL is standardized.
The response and the covariates are postulated by the logistic regression model:

logit µij “ β0 ` βx1Xij1 ` βx2Xij2 ` βzZij ,

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859



Contributed Research Articles 421

where β0, βx1, βx2 and βz are regression coefficients of interest. We assume that errors in
both risk factors Xij1 and Xij2 can be represented by model (5). The missing data process is
characterized by the logistic regression model:

logitλij “ α1 ` α2Yi,j´1 ` α3Xi,j´1,1 ` α4Xi,j´1,2 ` α5czi,j´1,

for j “ 2, . . . , 5.
We now apply the developed R package swgee, which can be downloaded from CRAN and then

loaded in R:

R> library("swgee")

Next, load the data that are properly organized with the variable names specified. In the example
here, the data set, named as bmidata, is included by issuing

R> data("BMI")
R> bmidata <- BMI

We are concerned how measurement error in SBP and CHOL impacts estimation of parameter
β “ pβ0,βx1,βx2,βzq1. For illustrative purposes, we use setting with B “ 100, λM “ 2 and M “ 5.

In this example, we assume that parameters in Σe “

¨

˚

˚

˚

˚

˚

˝

σ2
1 σ12

σ21 σ2
2

˛

‹

‹

‹

‹

‹

‚

with σ12 “ σ21 are known. This is

a typical case when conducting sensitivity analysis. Here we set σ1 “ σ2 “ 0.5 and σ12 “ σ21 “ 0
as an example.

The naive GEE approach without considering missingness and measurement error effects in
covariates gives the output:

R> output1 <- gee(bbmi~sbp+chol+age, id=id, data=bmidata,
+ family=binomial(link="logit"), corstr="independence")

R> summary(output1)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified 98/01/27 (1998)

Model:
Link: Logit
Variance to Mean Relation: Binomial
Correlation Structure: Independent

Call:
gee(formula = bbmi ~ sbp + chol + age, id = id, data = bmidata,

family = binomial(link = "logit"), corstr = "independence")

Summary of Residuals:
Min 1Q Median 3Q Max

-0.26533967 -0.11385369 -0.08572483 -0.06279540 0.95475735

Coefficients:
Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) -5.43746374 1.42090827 -3.8267521 1.64320527 -3.3090593
sbp 0.59071183 0.30643396 1.9276970 0.24338420 2.4270755
chol 0.11109496 0.13654324 0.8136247 0.23086218 0.4812177
age 0.01297337 0.01339946 0.9682008 0.01814546 0.7149652

Estimated Scale Parameter: 1.017131
Number of Iterations: 1
Working Correlation

[,1] [,2] [,3] [,4] [,5]
[1,] 1 0 0 0 0
[2,] 0 1 0 0 0
[3,] 0 0 1 0 0
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[4,] 0 0 0 1 0
[5,] 0 0 0 0 1

To adjust for possible effects of missingness as well as measurement error in variables SBP and
CHOL, we call the developed function swgee for the analysis:

R> set.seed(1000)
R> sigma <- diag(rep(0.25, 2))
R> output2 <- swgee(bbmi~sbp+chol+age, data=bmidata, id=id,
+ family=binomial(link="logit"), corstr="independence",
+ missingmodel=O~bbmi+sbp+chol+age, SIMEXvariable=c("sbp","chol"),
+ SIMEX.err=sigma, repeated=FALSE, B=100, lambda=seq(0, 2, 0.5))

> summary(output2)
Call: beta

Estimate StdErr t.value p.value
(Intercept) -8.004577 2.060967 -3.8839 0.0001028 ***
sbp 1.196363 0.356868 3.3524 0.0008011 ***
chol 0.099984 0.264180 0.3785 0.7050810
age 0.012718 0.017201 0.7394 0.4596520
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Call: alpha
Estimate StdErr t.value p.value

alpha1 9.019084 3.086533 2.9221 0.003477 **
alpha2 -0.786135 0.656843 -1.1968 0.231370
alpha3 -0.568740 0.732885 -0.7760 0.437732
alpha4 -0.128941 0.247757 -0.5204 0.602761
alpha5 -0.064257 0.025982 -2.4731 0.013395 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The function swgee can store individual estimated coefficients in the simulation step, and
this enables us to show the extrapolation curve through the developed R function plot.swgee.
The plot.swgee function plots the extrapolation of the estimate of each covariate effect with the
quadratic extrapolants. Figure 1 displays the graph for the variable SBP in the example for which
the quadratic extrapolation function is applied from the following command:

R> plot(output2,"sbp")

Figure 1: Display of the SIMEX estimate for the example: the dot is the SIMEX estimate
obtained from the quadratic extrapolation.
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Simulation studies

In this section, we conduct simulation studies to investigate the impact of ignoring covariate
measurement error and response missingness on estimation, where the implementation is carried
out using the usual GEE method. Furthermore, we assess the performance of the swgee method
which accommodates the effects induces from error-prone covariates and missing responses. We set
n “ 200 and m “ 3, and generate 500 simulations for each parameter configuration. Consider the
logistic regression model

logitpµijq “ β0 ` βx1xij1 ` βx2xij2 ` βzzij , (F.5.1)

where β0 “ 0, βx1 “ logp1.5q, βx2 “ logp1.5q, βz “ logp0.75q and zij is generated independently
from Binp1, 0.5q to represent a balanced design. The true covariate Xij “ pxij1,xij2q1 is generated

from the normal distribution Npµx, Σxq, where µx “ p0.5, 0.5q1 and Σx “

¨

˚

˚

˚

˚

˚

˝

σ2
x1 ρxσx1σx2

ρxσx1σx2 σ2
x2

˛

‹

‹

‹

‹

‹

‚

with σx1 “ σx2 “ 1. The surrogate value Wij “ pWij1,Wij2q
1 is generated from NpXij , Σeq with

Σe “

¨

˚

˚

˚

˚

˚

˝

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

˛

‹

‹

‹

‹

‹

‚

. ρ and ρx are set to 0.50 to represent moderate correlations. To feature

minor, moderate and severe degrees of measurement error, we consider σ1,σ2 “ 0.25, 0.50 or 0.75.
The missing data indicator is generated from model (4), where α0 “ α1 “ 0.5, α2 “ α3 “ 0.1, and
αz “ 0.2. In implementing the swgee method, we choose B “ 100, λM “ 2, M “ 5, and a quadratic
regression for each extrapolation step.

In Table 1, we report on the results of the biases of the estimates (Bias), the empirical standard
error (SE), and the coverage rate (CR in percent) for 95% confidence intervals. When measurement
error is minor, (i.e. σ1 “ σ2 “ 0.25), both gee and swgee provide reasonable results with fairly small
finite sample biases and coverage rates close to the nominal level 95%. When there is moderate or
substantial measurement error in covariates Xij , the performance of the gee method deteriorates
remarkably in estimation of error-prone covariate effects, leading to considerably biased estimates
for βx1 and βx2. The corresponding coverage rates for 95% confidence intervals can be quite low. In
contrast, the swgee method remarkably improve the performance, providing a lot smaller biases and
much higher coverage rates. The estimates for βz are not subject to much impact of measurement
error, which is partially attributed by that the precisely observed covariates zij are generated
independently of error-prone covairates Xij under the current simulation study.

In summary, ignoring measurement error may lead to substantially biased results. Properly
addressing covariate measurement error in estimation procedures is necessary. The proposed swgee
method performs reasonably well under various configurations. As expected, its performance may
become less satisfactory when measurement error becomes substantial. However, the swgee method
does significantly improve the performance of the gee analysis.

Summary and discussion

Missing observations and covariate measurement error commonly arise in longitudinal data. However,
there has been relatively little work on simultaneously accounting for the effects of response
missingness and covariate measurement error on estimation of response model parameters for
longitudinal data. Yi (2008) described a simulation based marginal method to adjust for the biases
induced by both missingness and covariate measurement error. The proposed method does not
require the full specification of the distribution of the response vector but only requires modeling its
mean and covariance structure. In addition, the distribution of covariates is left unspecified, which
is desirable for many practical problems. These features make the proposed method flexible.

Here we not only develop the R package swgee to implement the method by Yi (2008), but also
include an extended setting in the package. Our aim is to provide analysts an accessible tool for the
analysis of longitudinal data with missing responses and error-prone covariates. Our illustrations
show that the developed package has the advantages of simplicity and versatility.
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σ1 σ2 Method
βx1 βx2 βz

Bias SE CR Bias SE CR Bias SE CR

0.25 0.25 gee -0.0310 0.1228 92.6 -0.0158 0.1246 92.6 0.0063 0.2121 94.6

0.25 0.25 swgee -0.0062 0.1420 95.0 0.0104 0.1425 95.2 0.0036 0.2354 95.6

0.25 0.50 gee -0.0019 0.1212 95.4 -0.0997 0.1156 83.4 0.0082 0.2110 94.2

0.25 0.50 swgee -0.0003 0.1415 95.0 -0.0087 0.1543 93.0 0.0035 0.2361 95.6

0.25 0.75 gee 0.0328 0.1189 95.4 -0.1841 0.1022 51.0 0.0101 0.2100 94.0

0.25 0.75 swgee 0.0205 0.1407 95.8 -0.0660 0.1562 86.4 0.0046 0.2359 95.6

0.50 0.25 gee -0.1156 0.1114 78.2 0.0139 0.1236 94.2 0.0078 0.2113 94.6

0.50 0.25 swgee -0.0282 0.1520 93.2 0.0177 0.1431 95.4 0.0031 0.2362 95.2

0.50 0.50 gee -0.0948 0.1114 81.8 -0.0780 0.1161 85.6 0.0102 0.2099 94.2

0.50 0.50 swgee -0.0228 0.1510 93.8 -0.0022 0.1542 93.6 0.0030 0.2370 95.4

0.50 0.75 gee -0.0629 0.1103 87.8 -0.1727 0.1036 55.6 0.0125 0.2088 94.2

0.50 0.75 swgee -0.0052 0.1499 94.8 -0.0608 0.1570 87.2 0.0042 0.2369 95.2

0.75 0.25 gee -0.1991 0.0966 45.6 0.0484 0.1216 94.2 0.0092 0.2107 94.6

0.75 0.25 swgee -0.0870 0.1508 86.4 0.0395 0.1430 93.6 0.0034 0.2366 95.2

0.75 0.50 gee -0.1889 0.0976 50.0 -0.0458 0.1154 89.8 0.0121 0.2091 94.0

0.75 0.50 swgee -0.0831 0.1509 87.8 0.0165 0.1539 94.0 0.0034 0.2375 95.4

0.75 0.75 gee -0.1636 0.0974 58.8 -0.1468 0.1039 66.4 0.0147 0.2077 94.2

0.75 0.75 swgee -0.0678 0.1505 90.0 -0.0442 0.1574 88.8 0.0046 0.2374 95.2

Table 1: Simulation Results
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unival: An FA-based R Package For
Assessing Essential Unidimensionality
Using External Validity Information
by Pere J. Ferrando, Urbano Lorenzo-Seva and David Navarro-Gonzalez

Abstract
The unival package is designed to help researchers decide between unidimensional and correlated-

factors solutions in the factor analysis of psychometric measures. The novelty of the approach
is its use of external information, in which multiple factor scores and general factor scores are
related to relevant external variables or criteria. The unival package’s implementation comes from
a series of procedures put forward by Ferrando and Lorenzo-Seva (2019) and new methodological
developments proposed in this article. We assess models fitted using unival by means of a simulation
study extending the results obtained in the original proposal. Its usefulness is also assessed through
a real-world data example. Based on these results, we conclude unival is a valuable tool for use in
applications in which the dimensionality of an item set is to be assessed.

Introduction

Assessing the dimensionality of a set of items is one of the central purposes of psychometric factor
analysis (FA) applications. At present, both the exploratory (EFA) and the confirmatory (CFA)
models can be considered to be fully developed structural equation models (Ferrando and Lorenzo-
Seva, 2017). So, in principle, dimensionality can be rigorously assessed by using the wide array
of goodness-of-fit procedures available for structural models in general. However, it is becoming
increasingly clear that reliance on goodness-of-fit alone is not the way to judge the most appropriate
dimensionality for studying a particular set of item scores (Rodriguez et al., 2016a,b).

The problem noted above is particularly noticeable in instruments designed to measure a single
trait. In the vast majority of cases, item scores derived from these instruments fail to meet the strict
unidimensionality criteria required by Spearman’s model. This failure, in turn, led to the proposal
of multiple correlated-factor solutions as the most appropriate structure for them (Ferrando and
Lorenzo-Seva, 2018, in press; Furnham, 1990; Reise et al., 2013, 2015). However, most instruments
designed to be unidimensional do, in fact, yield data compatible with an essentially unidimensional
solution (Floyd and Widaman, 1995; Reise et al., 2013, 2015). When this is the case, treating the
item scores as multidimensional has several undesirable consequences, mainly, (a) lack of clarity in the
interpretation and unnecessary theoretical complexities, and (b) weakened factor score estimates that
do not allow accurate individual measurement (Ferrando and Lorenzo-Seva, 2018, in press; Furnham,
1990; Reise et al., 2013, 2015). Indeed, treating clearly multidimensional scores as unidimensional
also has such negative consequences as biased item parameter estimates, loss of information, and
factor score estimates that cannot be univocally interpreted (see Ferrando and Lorenzo-Seva, 2018;
Reise et al., 2013).

In recent years, several indices and criteria have been proposed to assess dimensionality using
different perspectives of model appropriateness. These developments, in turn, have been integrated
in comprehensive proposals addressing the dimensionality issue from multi-faceted views including,
but are not limited to, standard goodness-of-fit results (Ferrando and Lorenzo-Seva, 2018; Raykov
and Marcoulides, 2018; Rodriguez et al., 2016a,b). It is worth noting these approaches generally
reflect a trend in which the measurement part of the FA model is again relevant (e.g. Curran et al.,
2018). Considering the ultimate aim of most psychometric measures is individual measurement,
the scoring stage of the FA should be expected to be the most important part of it (Ferrando and
Lorenzo-Seva, 2018, in press). Furthermore, if this view is adopted, a basic criterion for deciding if a
given FA solution is appropriate is the extent to which the score estimates derived from this solution
are strong, reliable, determinate, unbiased, and clearly interpretable (Ferrando and Lorenzo-Seva,
2018; Beauducel et al., 2016; Furnham, 1990; Reise et al., 2013, 2015). Procedures explicitly based
on the quality of the score estimates are already available in widely used programs such as FACTOR
(Lorenzo-Seva and Ferrando, 2013), and more sophisticated procedures based on Haberman’s (2008)
added-value principle have been also proposed (Ferrando and Lorenzo-Seva, in press).

A common characteristic of all the proposals discussed so far is their use of internal information
from the data exclusively: that is to say, the information provided by the item scores of the measure
under study. In contrast, the approach implemented here is based on external sources of information:
that is to say, the information provided by the relations between the factor score estimates derived
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from a given solution and relevant external variables or criteria. This additional information is
a valuable complementary tool that can help reach a decision on whether the instrument under
scrutiny is essentially unidimensional or truly multidimensional.

The present article aims to introduce unival, a new contributed R package implementing a
recently proposed external procedure of the type described above (Ferrando and Lorenzo-Seva,
2019). It also discusses new methodological developments allowing the procedure to be used in a
wider range of situations than those considered in the original proposal. The rest of the article is
organized as follows. First, we provide a summary the needed theoretical bases, and explain the new
methodological contributions. Then, we give details about the package and how to use it. Finally,
we assess the functioning of the program and the new developments proposed here with a simulation
study and give real-world data examples.

Theoretical foundations: A review

Consider two alternative FA solutions – unidimensional and multiple-correlated – which are fitted
to a set of item scores. Suppose further that both solutions are found to be acceptable by internal
criteria, a situation which is quite usual in applications (e.g. Ferrando and Navarro-Gonzalez, 2018).
The aim of the proposal summarized here is to assess which of the competing solutions is more
appropriate in terms of external validity.

The null hypothesis in the proposal assumes (a) there is a general common factor running
through the entire set of items, and (b) all the relations between the multiple factors and the relevant
external variables are mediated by the general factor. In this case, the unidimensional solution is
the most appropriate in terms of validity. At this point we note the proposal is intended to work on
a variable-by-variable basis. So, it will be summarized using a single external variable.

The null hypothesis above can be described by using a second-order FA schema as follows.
Assumption (a) above implies the correlated factors in the multiple solution, which we shall denote
from now on as primary factors, behave as indicators of a single general factor. Assumption (b)
implies the only parts of the primary factor not accounted for by the general factor are unrelated to
the external variable.

The implications of the null model in terms of validity relations are considered in two facets:
differential and incremental. In differential validity terms, the score estimates derived from the
primary factors are expected to be related to the external variable in the same way as they are
related to the general factor. As for incremental validity, the implications of the null model are the
prediction of the external variable which is made from the single (general) factor score estimates
cannot be improved upon by using the primary factor score estimates in a multiple regression schema.

Let θ̂ik be the factor-score estimate of individual i in the k primary factor, and let θik be the
corresponding true factor score. We write

θ̂ik “ θik ` εik, (H.2.1)

where εik denotes the measurement error. The true scores θk are assumed to be distributed
with zero expectation and unit variance. It is further assumed θ̂ik is conditionally unbiased (i.e.
Epθ̂ik|θikq “ θik, which implies the measurement errors are uncorrelated with the true trait levels.
It then follows the squared correlation between θ̂k and θk is

ρ
pθ̂k,θkq “

V arpθkq

V arpθ̂kq
“

1
1` V arpεkq

“
1

1`EpV arpεik|θikqq
“ ρ

pθ̂k,θ̂kq (H.2.2)

which is taken as the marginal reliability of the factor score estimates (see Ferrando and Lorenzo-Seva,
in press). Denote now by y the external variable or criterion also assumed to be scaled with zero
mean and unit variance and by ρ

pθ̂k,yq the correlation between the kth factor score estimates and the
criterion (i.e. the raw validity coefficient). From the results above it follows that the disattenuated
correlation between the estimated primary factor scores and the criterion

ρ̂pθk,yq “
ρ
pθ̂k,yq

a

ρ
pθ̂k,θ̂kq

(H.2.3)

is an unbiased estimate of the corresponding correlation between the true primary scores and the
criterion (i.e. the true validity coefficient). Now let γkg be the loading of the k primary factor on
the general factor (i.e. the second-order loading). If the null model is correct, the following result
should hold

ρ̂pθ1, yq
γ1g

“ ¨ ¨ ¨
ρ̂pθk, yq
γkg

“ ¨ ¨ ¨
ρ̂pθq, yq
γqg

. (H.2.4)
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In words, equation H.2.4 means the primary factors relate to the external variable in the same
proportion to how they relate to the general factor. So, after correcting for this proportionality,
the corrected indices should all be equal (i.e. no differential validity). To test this result, unival
uses the following schema. First, it provides the Bootstrap-based confidence interval for each of the
scaled coefficients in equation H.2.4. Second, the median value of the scaled coefficients is obtained,
and the most extreme scaled value is subtracted from the median. Next, a confidence interval for
this difference is obtained via Bootstrap resampling, and a check is made to see whether the zero
value falls within this interval or not. This second procedure provides a single difference statistic
regardless of the number of primary factors.

If the equality test is found not tenable, then the alternative explanation (i.e. differential validity)
is the unique parts of the primary factors are still differentially related to the external variable
beyond the relations that are mediated by the general factor. If this were so, validity information
would be lost if the unidimensional model was chosen instead of the multiple model.

We turn now to incremental validity. The starting point of the proposal by (Ferrando and
Lorenzo-Seva, 2019) was based on two results. First, the score estimates on the general factor
are a linear composite of the score estimates on the primary factors in which the weights aim to
maximize the accuracy of the general scores. And second, the multiple-regression composite, which
is also based on the primary factor score estimates, has weights aimed at maximizing the correlation
with the external variable. In a truly unidimensional solution both sets of weights are expected
to be proportional, and the predictive power of the general score estimates and the primary score
estimates to be the same. More in detail, (Ferrando and Lorenzo-Seva, 2019) proposed correcting
the primary factor score estimates for measurement error, and then obtained single and multiple
corrected correlation estimates whose expected values were the same under the null model above.
Under the alternative hypothesis, on the other hand, the corrected multiple correlation (denoted
by Rc ) was expected to be larger than the single correlation based on the general scores (denoted
by ρ̂θ̂gy). The procedure implemented in unival for testing the null hypothesis of no incremental
validity is to compute the difference Rc ´ ρ̂θ̂gy, obtain the Bootstrap confidence interval for this
difference, and check whether the zero value falls within the interval or not. If the null hypothesis
is rejected, the alternative explanation (i.e. incremental validity) is the primary score estimates
contain additional information allowing the multiple prediction based on them to be significantly
better than the prediction based only on the general scores.

New methodological contributions

The present article extends the original proposal by (Ferrando and Lorenzo-Seva, 2019) in two
directions. First, the procedure can now be correctly used with types of score estimate other
than those considered initially. Second, an approximate procedure is proposed for testing essential
unidimensionality against a solution in only two correlated factors.

As for the first point, the original proposal is based on factor score estimates behaving according
to the assumptions derived from equation H.2.1. Appropriate scores of this type are mainly maximum-
likelihood (ML) scores, which, in the linear FA model are known as Bartlett’s (1937) scores (see
Ferrando and Lorenzo-Seva, in press, for a discussion). However, other types of scores are in common
use in FA applications. In particular, Bayes Expected-A-Posteriori (EAP) scores have a series of
practical advantages in nonlinear FA applications (Bock and Mislevy, 1982) and are, possibly, the
most commonly used scoring schema for this type of solution. EAP scores, however, are always
inwardly biased (i.e. regressed towards the mean) and so do not fulfill the basic assumptions on
which the original procedure was based.

Simple adaptations and corrections of the existing procedures can be obtained by viewing the
EAP scores as the result of shrinking the ML scores towards the zero population mean so the
shrinkage factor is the marginal reliability (Bock and Mislevy, 1982). By using this concept in the
assessment of differential validity, it follows that the expected value of the raw correlation between
the EAP score estimates for the k factor and y is given by

Epr
pθ̂kEAP ,yqq “

ρpθk,yq
a

1`EpV arpεik|θikqq
(H.3.1)

Indeed, the conditional variances in the denominator of H.3.1 are not known, because they are
based on the ML unbiased estimates. However, as the number of items increases, the posterior
distribution approaches normality (Chang and Stout, 1993), and the posterior standard deviation
(PSD) associated with the EAP estimate becomes equivalent to an asymptotic standard error (Bock
and Mislevy, 1982). So, for factors defined, say, by 8 or more items, the following correction is
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expected to lead to appropriate disattenuated validity coefficients

ρ̂pθk,yq “ r
pθ̂kEAP ,yq

b

1`EpPSD2pθikqq. (H.3.2)

For very short item sets, the PSDs can be noticeably smaller than the standard errors because
of the additional information contributed by the prior. The strategy proposed in this case is first to
approximate the amounts of information from the PSDs by using the approximate relation (Wainer
and Mislevy, 2000, p. 74)

PSDpθ̂q –
1

b

Ipθ̂` 1q
(H.3.3)

and then to use the modified correction

ρ̂pθk,yq “ r
pθ̂kEAP ,yq

d

1`Ep 1
Ipθ̂ikq

q. (H.3.4)

Once the EAP-based disattenuated validity estimates have been obtained, they are used in the
contrast H.2.4 in the same way as those derived from the ML scores.

We turn now to incremental validity. If EAP scores are used, the corrected estimate based on
the general factor score estimates (denoted by ρ̂θ̂gy) can be obtained as

ρ̂pθg,yq “ r
pθ̂gEAP ,yqspθ̂gEAP qp1`Ep

1
Ipθ̂ikq

qq (H.3.5)

or, if the PSD approximation is used

ρ̂pθg,yq “ r
pθ̂gEAP ,yqspθ̂gEAP qp1`EpPSD

2
pθikqqq (H.3.6)

where s
pθ̂gEAP q

is the standard deviation of the EAP score estimates. As for the multiple estimate
based on the primary factor scores (denoted by Rc), only the covariances between the score estimates
and the criterion must be corrected when EAP estimates are used instead of ML estimates (see
Ferrando and Lorenzo-Seva, 2019). EAP-based unbiased estimates of these covariances can be
obtained as

Ĉovθk,y “ Cov
pθ̂kEAP ,yqr1`EpPSD

2
pθikqqs (H.3.7)

or, by using the PSD-to-Information transformation if the number of items is very small

Ĉovθk,y “ Cov
pθ̂kEAP ,yqr1`Ep

1
Ipθ̂ikq

qs. (H.3.8)

Once the vector with the corrected covariances has been obtained, the rest of the procedure is the
same as when it is based on ML score estimates.

Overall, the basis of the proposal so far discussed is to: (a) transform the EAP scores so they
(approximately) behave as ML scores; (b) transform the PSDs so they will be equivalent to standard
errors, and (c) use the transformed results as input in the standard procedure. The transformations
are very simple, and the proposal is expected to work well in practical applications, as the simulation
study below suggests. However, unstable or biased results might be obtained if the marginal reliability
estimate used to correct for shrinkage was itself unstable or biased, or if the PSDs were directly
used as if they were standard errors and the contribution of the prior was substantial.

This approximate procedure is expected to be useful in practice, because in many applications
decisions must be taken about using one or two common factors. The problem in this case is a
second-order solution can only be identified with three or more primary factors, and so, the initial
proposal cannot be used in the bidimensional case. An approximate approach, however, can be used
with the same rationale as in the original procedure.

Consider two matrices of factor score estimates (either ML or EAP): an N ˆ 2 matrix containing
the estimates obtained by fitting the correlated two-factor solution, and an N ˆ 1 matrix containing
the score estimates obtained by fitting the unidimensional (Spearman’s) model to the item scores.
Next, consider the following regression schemas in which the primary factor score estimates in the
N ˆ 2 matrix are corrected for measurement error. The first regression is of the unidimensional
score estimates on the corrected primary factor score estimates. The second is the regression of
the criterion on the same corrected factor score estimates. Now, if the unidimensional solution is
essentially correct in terms of validity, then the profiles of weights for predicting the general scores
and those for predicting the criterion are expected to be the same except for a proportionality
constant. Denoting by βg1 and βg2 the weights for predicting the general scores from the corrected
primary estimates, and by βy1 and βy2 the corresponding weights for predicting the criterion, the
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contrast we propose for testing the null hypothesis no differential validity is

βg1
βy1 “

βg2
βy2 (H.3.9)

and is tested by using the same procedure as in equation H.2.4.
With regards to incremental validity, the null hypothesis of essential unidimensionality indicates

both linear composites will predict the criterion equally well. So, if we denote by y1g the composite
based on the βg1 and βg2 weights, and by y1y the composite based on the βy1 and βy2 weights, the
test of no incremental validity is based on the contrast rpy1y, yq ´ rpy1g, yq, and is tested in the same
way as the standard contrast above.

The unival package details

The current version of the (unival) package, which is available through CRAN, contains one main
function (and additional internal functions) for implementing the procedures described in the sections
above. Further details on the theoretical bases of unival are provided in (Ferrando and Lorenzo-Seva,
2019). The function usage is as follows.

unival(y, FP, fg, PHI, FA_model = 'Linear', type, SEP, SEG, relip, relig,
percent = 90, display = TRUE)

• y, the related external variable,
• FP, the primary factor score estimates,
• fg, the general or second-order factor score estimates. This argument is optional except when

two primary factors are specified. In this case, second-order general score estimates cannot be
obtained,

• PHI, inter-factor correlation matrix,
• FA_model, Which FA-model was used for calibration and scoring. Available options are:

“Linear” (by default) or “Graded”. The Graded option refers to the nonlinear FA model, in
which item scores are treated as ordered-categorical variables, and includes binary scores as a
specific case,

• type, Which type of factor score estimates were used in FP and fg. The two available options
are: “ML” or “EAP” scores. If not specified, ML estimation will be assumed,

• SEP, Standard Errors (ML scores) or PSDs (EAP scores) for primary factor scores (only
required when the “Graded” option is used),

• SEG, Standard Errors (ML scores) or PSDs (EAP scores) for the general factor (only required
when the “Graded” option is used),

• relip, the marginal reliabilities of the primary factor scors estimates. Optional when three or
more primary factors are specified; otherwise, the user should provide them,

• relig, the marginal reliability of the general factor score estimates (optional).

The data provided should be a data frame or a numerical matrix for input vectors and matrices,
and numerical values for the arguments containing a single element, like relig. The package imports
three additional packages: stats (R Core Team, 2018), optimbase (Bihorel and Baudin, 2014) and
psych (Revelle, 2018), for internal calculations (e.g. using the ‘fa’ function from psych package for
performing the FA calibration).

Since the function requires the factor score estimates as input, these estimates must be obtained
from the raw data (i.e. the raw item scores) before unival is used. We recommend the non-commercial
FACTOR program (Lorenzo-Seva and Ferrando, 2013) to obtain EAP estimates under the linear
and the graded FA model, or the mirt R package (Chalmers, 2012) to obtain ML and EAP estimates
for both models. FACTOR also provides PSDs for the EAP scores. Finally, both programs provide
marginal reliability estimates for the chosen factor scores.

Simulation studies

The sensitivity of the procedures proposed in unival, for both differential and incremental validity,
depends on two main factors. The first is the relative strength of the relations between (a) the
general factor scores and the external variables, and (b) the primary factor scores and the external
variable. The second is the extent of the agreement between the relations between the unique parts
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of the primary factor and the external variables and the relations between the primary factor scores
and the general factor. In summary, differential and incremental validity are expected to be clearly
detected when (a) the primary factor scores are more strongly related to the external variable than
to the general scores, and (b) the relation between the unique parts of the primary scores and the
external variables is the opposite of the relation between the corresponding factors and the general
factor. The opposite condition: (a) a general, dominant factor relates more strongly to the external
variable than the primary factors do; and (b) a similar profile of relations in which the primary
factors relate to the external variable in the same way as they do with the general factor, is very
difficult to distinguish from the null hypothesis on which the procedures are based.

Ferrando and Lorenzo-Seva (2019) undertook a general simulation study in which the determinants
above were manipulated as independent variables together with sample and model size. The study
was based on the linear FA model and Bartlett’s ML score estimates. In this article we replicated
the study above but we discretized the continuous item responses in five response categories (i.e.
a typical Likert score) and fitted the data using the non-linear FA model, thus treating the item
scores are ordered-categorical variables. In addition, the factor score estimates were Bayes EAP
scores. The present study, then, considers the second potential FA model that can be used in unival,
and assesses the behavior of some of the new developments proposed in the article (the use of Bayes
scores instead of ML scores). Because the design and conditions of the study were the same as
those in Ferrando and Lorenzo-Seva (2019) the results are only summarized here. Details and tables
of results can be obtained from the authors. The results generally agreed quite well with those
obtained in the original study except for the (unavoidable) loss of power due to categorization. More
in detail, in the study under the null model, neither spurious differential nor incremental validity
was detected in any of the conditions.

In the studies in which the alternative model was correct, the following results were obtained.
Differential validity was correctly detected except in the least favorable cells: dominant general-factor
relations and profile agreement. As for incremental validity, the loss of power was more evident, and
the procedure was less sensitive than in the continuous case: when the profiles of relations agreed
(i.e. when the primary factors related to the external variable in the same way as they related to the
general factor), unival failed to detect the increments in predictive power. This result, which, to a
lesser extent, had already been obtained in the original study, suggests the unique relations have
already been taken into account by the general factor score estimates. So, the multiple-regression
linear composite, with weights very similar to those of the general factor score composite, does
not substantially add to the prediction of the external variable. Overall, then, the results of the
study suggest that in low-sensitivity conditions the unival outcome leads to the unidimensional
model being chosen even when unique relations with the criterion do in fact exist. This choice,
however, is probably not a practical limitation, as in these conditions the unidimensional model is
more parsimonious and can explain the validity relations well. Finally, as for the differences with
the previous study, the results suggest the unival procedures also work well with the non-linear FA
model and Bayes scores. However, as expected, the categorization of the responses leads to a loss of
information which, in turn, results in a loss of sensitivity and power. The most reasonable way to
compensate for this loss would probably be to use a larger number of items.

Illustration with real data

The unival package contains an example dataset – SAS3f – which is a matrix containing a criterion
(marks on a final statistics exam), the primary factor score estimates and the general factor score
estimates in a sample of 238 respondents. Both the primary and general scores were EAP estimates
obtained with the FACTOR (Lorenzo-Seva and Ferrando, 2013) program.

The instrument under scrutiny is the Statistical Anxiety Scale (SAS, Vigil-Colet et al., 2008)
a 24-item instrument which was initially designed to assess three related dimensions of anxiety:
Examination anxiety (EA), asking for help anxiety (AHA) and interpretation anxiety (IA). Previous
studies have obtained a clear solution in three highly-related factors but have also found an essentially
unidimensional solution is tenable. So, the problem is to decide whether it is more appropriate to
use only single-factor scores measuring an overall dimension of statistical anxiety or it is preferable
(and more informative) to use the factor score estimates in each of the three dimensions.

The only remaining argument for running unival with minimal input requests is the inter-factor
correlation matrix between the primary factors. The example should be specified as follows:

> PHI = cbind(c(1,0.408,0.504),c(0.408,1,0.436),c(0.504,0.436,1))
> y = SAS3f[,1]
> FP = as.matrix(SAS3f[,2:4])
> fg = SAS3f[,5]
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> unival(y = y, FP = FP, fg = fg, PHI = PHI, type = 'EAP')

The output from the above command is:

Unival: Assessing essential unidimensionality using external validity information

Differential validity assessment:

0.6012 (0.4615 - 0.7311)
0.2362 (0.0280 - 0.4172)
0.3635 (0.2390 - 0.5035)

Maximum difference

0.2377 (0.0891 - 0.3587) *

Incremental validity assessment:

0.3164 (0.2328 - 0.3944)
0.4107 (0.3362 - 0.4720)

Incremental value estimate

0.0943 (0.0203 - 0.1492) **

* Some factors are more strongly or weakly related to the criterion that can be
predicted from their relations to the general factor
** There is a significant increase in accuracy between the prediction based on the
primary factor score estimates and that based on the general factor score estimates.

Overall, the results seem to be clear. In differential validity terms, the confidence intervals for
the first and second factors do not overlap, and the zero value falls outside the maximum-difference
confidence interval. The interpretation is the primary factors relate to the criterion in ways that
cannot be predicted from their relations with the general factor. More specifically, the first factor
(AHA) seems to be more strongly related, and the second factor (IA) more weakly related to the
criterion than could be predicted by their relations with the general factor.

Incremental-validity results are also clear: the prediction of the criterion based on the primary
factor estimates clearly outperforms the prediction that can be made from the general factor score
estimates when the regressions are corrected for measurement error. Note in particular the zero
value falls well outside the confidence interval of the incremental validity estimate. To sum up, it
is clear both information and predictive power will be lost in this example if the single or general
factor score estimates are used as a summary of the estimates based on the three anxiety factors.
So, in terms of validity, the FA solution in three correlated factors seems to be preferable.

Concluding remarks

In the FA literature, several authors (e.g. Carmines and Zeller, 1991; Floyd and Widaman, 1995;
Goldberg, 1972; Mershon and Gorsuch, 1988) have pointed out the dimensionality of a set of item
scores cannot be decided solely in internal terms. Rather, the ultimate criterion for judging what
the most appropriate solution is should be how the scores derived from this solution relate to
relevant external variables. In spite of this, however, external information is rarely used in FA-based
assessments. One explanation for this state of affairs is, indeed, the difficulty of collecting additional
relevant external measures. Apart from this, however, clear and rigorous procedures on how to carry
out this assessment have only been proposed recently and, so far, have not been implemented in
non-commercial software. For this reason, we believe unival is a useful additional tool for researchers
who use FA in psychometric applications.

unival has been designed to work with scores derived from an FA solution rather than from
raw item scores, and this has both shortcomings and advantages. Thus, at the minimal-input level,
potential users of the program have to be able to carry out factor analyses with other programs,
and, particularly, to obtain factor score estimates. Furthermore, they need to know what types of
score have been computed by the program. More advanced unival usages require users to know how
to obtain marginal reliability estimates for the factor scores or how to perform second-order factor
analysis. To sum up, the program is designed for practitioners with some level of proficiency in FA.
In principle, this is a potential shortcoming but does not restrict the usefulness of the program. As
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described above, all the input required by unival can be obtained from non-commercial FA packages,
some of which are also quite user friendly.

The choice of the factor scores as input, on the other hand, makes the program extremely
flexible and versatile. unival can work with scores derived from standard linear FA solutions or from
non-linear solutions (which include the multidimensional versions of the graded-response and the
two-parameter IRT models). Furthermore, users can choose to provide the minimal input options,
or can tailor the input by choosing the type of marginal reliability estimate to be used in the error
corrections or the general factor score estimates on which the analyses are based (second-order factor
scores or scores derived from directly fitting the unidimensional model). No matter how complex the
model or input choices are, however, the output provided by unival is extremely simple and clear to
interpret, as the illustrative example shows.

Acknowledgments

This project has been made possible by the support of the Ministerio de Economía, Industria y
Competitividad, the Agencia Estatal de Investigación (AEI) and the European Regional Development
Fund (ERDF) (PSI2017-82307-P).

Bibliography

M. S. Bartlett. The statistical conception of mental factors. British Journal of Psychology, 28:
97–104, 1937. URL https://doi.org/10.1111/j.2044-8295.1937.tb00863.x. [p429]

A. Beauducel, C. Harms, and N. Hilger. Reliability estimates for three factor score estimators.
International Journal of Statistics and Probability, 5(6):94–107, 2016. URL https://doi.org/10.
5539/ijsp.v5n6p943. [p427]

S. Bihorel and M. Baudin. optimbase: R port of the Scilab optimbase module, 2014. URL https:
//CRAN.R-project.org/package=optimbase. R package version 1.0-9. [p431]

R. D. Bock and R. J. Mislevy. Adaptive eap estimation of ability in a microcomputer environ-
ment. Applied Psychological Measurement, 6(4):431–444, 1982. URL https://doi.org/10.1177/
014662168200600405. [p429]

E. G. Carmines and R. A. Zeller. Reliability and Validity Assessment, volume 17. SAGE, 1991.
ISBN 9780803913714. [p433]

R. P. Chalmers. mirt: A multidimensional item response theory package for the R environment.
Journal of Statistical Software, 48(6):1–29, 2012. doi:10.18637/jss.v048.i06. [p431]

H. Chang and W. Stout. The asymptotic posterior normality of the latent trait in an irt model.
Psychometrika, 58(1):37–52, 1993. URL https://doi.org/10.1007/BF02294469. [p429]

P. J. Curran, V. T. Cole, D. J. Bauer, W. A. Rothenberg, and A. M. Hussong. Recovering
predictor–criterion relations using covariate-informed factor score estimates. Structural Equation
Modeling: A Multidisciplinary Journal, 25(6):860–875, 2018. URL https://doi.org/10.1080/
10705511.2018.1473773. [p427]

P. J. Ferrando and U. Lorenzo-Seva. Program factor at 10: origins, development and future directions.
Psicothema, 29:236–241, 2017. URL https://doi.org/10.7334/psicothema2016.304. [p427]

P. J. Ferrando and U. Lorenzo-Seva. Assessing the quality and appropriateness of factor solutions
and factor score estimates in exploratory item factor analysis. Educational and Psychological
Measurement, 78(5):762–780, 2018. URL https://doi.org/10.1177/0013164417719308. [p427]

P. J. Ferrando and U. Lorenzo-Seva. An external validity approach for assessing essential unidimen-
sionality in correlated-factor models. Educational and Psychological Measurement, 2019. URL
https://doi.org/10.1177/0013164418824755. [p427, 428, 429, 430, 431, 432]

P. J. Ferrando and U. Lorenzo-Seva. On the added value of multiple factor score estimates in
essentially unidimensional models. Educational and Psychological Measurement, in press. URL
https://doi.org/10.1177/0013164418773851. [p427, 428, 429]

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://doi.org/10.1111/j.2044-8295.1937.tb00863.x
https://doi.org/10.5539/ijsp.v5n6p943
https://doi.org/10.5539/ijsp.v5n6p943
https://CRAN.R-project.org/package=optimbase
https://CRAN.R-project.org/package=optimbase
https://doi.org/10.1177/014662168200600405
https://doi.org/10.1177/014662168200600405
http://dx.doi.org/10.18637/jss.v048.i06
https://doi.org/10.1007/BF02294469
https://doi.org/10.1080/10705511.2018.1473773
https://doi.org/10.1080/10705511.2018.1473773
https://doi.org/10.7334/psicothema2016.304
https://doi.org/10.1177/0013164417719308
https://doi.org/10.1177/0013164418824755
https://doi.org/10.1177/0013164418773851


Contributed Research Articles 435

P. J. Ferrando and D. Navarro-Gonzalez. Assessing the quality and usefulness of factor-analytic
applications to personality measures: A study with the statistical anxiety scale. Personality and
Individual Differences, 123(1):81–86, 2018. URL https://doi.org/10.1016/j.paid.2017.11.014.
[p428]

F. J. Floyd and K. F. Widaman. Factor analysis in the development and refinement of clinical
assessment instruments. Psychological assessment, 7(3):286–299, 1995. URL https://doi.org/
10.1037/1040-3590.7.3.286. [p427, 433]

A. Furnham. The development of single trait personality theories. Personality and Individual Differ-
ences, 11(9):923–929, 1990. URL https://doi.org/10.1016/0191-8869(90)90273-T. [p427]

L. R. Goldberg. Parameters of personality inventory construction and utilization: A comparison of
prediction strategies and tactics. Multivariate Behavioral Research Monographs, 72(2):59, 1972.
[p433]

S. J. Haberman. When can subscores have value? Journal of Educational and Behavioral Statistics,
33(2):204–229, 2008. URL https://doi.org/10.3102/1076998607302636. [p427]

U. Lorenzo-Seva and P. J. Ferrando. Factor 9.2: A comprehensive program for fitting exploratory
and semiconfirmatory factor analysis and irt models. Applied Psychological Measurement, 37(6):
497–498, 2013. URL https://doi.org/10.1177/0146621613487794. [p427, 431, 432]

B. Mershon and R. L. Gorsuch. Number of factors in the personality sphere: Does increase in factors
increase predictability of real-life criteria? Journal of Personality and Social Psychology, 55(4):
675–680, 1988. URL https://doi.org/10.1037/0022-3514.55.4.675. [p433]

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2018. URL https://www.R-project.org/. [p431]

T. Raykov and G. A. Marcoulides. On studying common factor dominance and approximate unidimen-
sionality in multicomponent measuring instruments with discrete items. Educational and Psycho-
logical Measurement, 78(3):504–516, 2018. URL https://doi.org/10.1177/0013164416678650.
[p427]

S. P. Reise, W. E. Bonifay, and M. G. Haviland. Scoring and modeling psychological measures in
the presence of multidimensionality. Journal of personality assessment, 95(2):129–140, 2013. URL
https://doi.org/10.1080/00223891.2012.725437. [p427]

S. P. Reise, K. F. Cook, and T. M. Moore. Evaluating the impact of multidimensionality on
unidimensional item response theory model parameters. In Handbook of item response theory
modeling, pages 13–40. Routledge, 2015. [p427]

W. Revelle. psych: Procedures for Psychological, Psychometric, and Personality Research. North-
western University, Evanston, Illinois, 2018. URL https://CRAN.R-project.org/package=psych.
R package version 1.8.10. [p431]

A. Rodriguez, S. P. Reise, and M. G. Haviland. Evaluating bifactor models: Calculating and
interpreting statistical indices. Psychological Methods, 21(3):137–150, 2016a. URL https://doi.
org/10.1037/met0000045. [p427]

A. Rodriguez, S. P. Reise, and M. G. Haviland. Applying bifactor statistical indices in the evaluation
of psychological measures. Journal of personality assessment, 98(3):223–237, 2016b. URL
https://doi.org/10.1080/00223891.2015.1089249. [p427]

A. Vigil-Colet, U. Lorenzo-Seva, and L. Condon. Development and validation of the statistical
anxiety scale. Psicothema, 20(1):174–180, 2008. URL https://doi.org/10.1037/t62688-000.
[p432]

H. Wainer and R. J. Mislevy. Item response theory, item calibration and proficiency estimations. In
H. Wainer, editor, Computerized Adaptive Testing: A Primer, pages 61–101. LEA, 2000. [p430]

Pere J. Ferrando
Department of Psychology
University Rovira i Virgili
Spain
0000-0002-3133-5466
perejoan.ferrando@urv.cat

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

https://doi.org/10.1016/j.paid.2017.11.014
https://doi.org/10.1037/1040-3590.7.3.286
https://doi.org/10.1037/1040-3590.7.3.286
https://doi.org/10.1016/0191-8869(90)90273-T
https://doi.org/10.3102/1076998607302636
https://doi.org/10.1177/0146621613487794
https://doi.org/10.1037/0022-3514.55.4.675
https://www.R-project.org/
https://doi.org/10.1177/0013164416678650
https://doi.org/10.1080/00223891.2012.725437
https://CRAN.R-project.org/package=psych
https://doi.org/10.1037/met0000045
https://doi.org/10.1037/met0000045
https://doi.org/10.1080/00223891.2015.1089249
https://doi.org/10.1037/t62688-000
mailto:perejoan.ferrando@urv.cat


Contributed Research Articles 436

Urbano Lorenzo-Seva
Department of Psychology
University Rovira i Virgili
Spain
0000-0001-5369-3099
urbano.lorenzo@urv.cat

David Navarro-Gonzalez
Department of Psychology
University Rovira i Virgili
Spain
0000-0002-9843-5058
david.navarro@urv.cat

The R Journal Vol. 11/1, June 2019 ISSN 2073-4859

mailto:urbano.lorenzo@urv.cat
mailto:david.navarro@urv.cat


News and Notes 437

R Foundation News
by Torsten Hothorn

Donations and members

Membership fees and donations received between 2019-01-07 and 2019-09-04.

Donations

Web Hosting Buddy (United States) ilustat (Portugal) Mike Foster (United Kingdom) Dreamz
Inc. (Sweden) Dotcom-Monitor (United States) Loadview-Testing (United States) J. BRIAN
LORIA (United States) Security Guard Training Central (United States) Driven Coffee
Roasters (United States) WebHostingProf (United States) Bill Pikounis (United States)
Daniel Wollschläger (Germany) Direction départementale des finances publiques des Yvelines,
Versailles (France) Merck Research Laboratories, Kenilwort (United States) Novartis Pharma
AG, Basel (Switzerland)

Supporting benefactors

INWT Statistics GmbH (Germany) Mirai Solutions GmbH, Zürich (Switzerland)

Supporting institutions

University of Iowa, Iowa City (United States)

Supporting members

Ashanka Beligaswatte (Australia) Chris Billingham (United Kingdom) Michael Blanks
(United States) Robert Carnell (United States) Henry Carstens (United States) Gerard
Conaghan (United Kingdom) Robin Crockett (United Kingdom) Michael Dorman (Israel)
Andreas Eckner (United States) Gerrit Eichner (Germany) Johan Eklund (Sweden) Martin
Elff (Germany) Mitch Eppley (United States) Spyridon Fortis (United States) Jan Marvin
Garbuszus (Germany) J. Antonio García Ramírez (Mexico) Hlynur Hallgrímsson (Iceland)
Martin Haneferd (Norway) ken ikeda (Japan) Christian Kampichler (Netherlands) Curtis
Kephart (United States) Gavin Kirby (United Kingdom) David Knipping (United States)
Sebastian Koehler (Germany) HOONJEONG KWON (Korea, Republic of) Luca La Rocca
(Italy) Adrien Le Guillou (France) Sharon Machlis (United States) Michal Majka (Austria)
Ernst Molitor (Germany) David Monterde (Spain) Jens Oehlschlägel (Germany) francis
pampush (United States) Stavros Panidis (Greece) Gopal Peddinti (Finland) Fergus Reig
Gracia (Spain) Stefano Rezzonico (Canada) Cristián Rizzi (Argentina) Adriaan Rowan (South
Africa) Henrik Schirmer (Norway) Robert Selden (United States) Harald Sterly (Germany)
Arthur Szasz (Brazil) Robert van den Berg (Austria) Mark van der Loo (Netherlands) Earo
Wang (Australia) Roger Watson (United Kingdom) Klaus Wiese (Honduras) Rahadian
Zulfadin (Indonesia)

Torsten Hothorn
Universität Zürich, Switzerland Torsten.Hothorn@R-project.org
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R News
by R Core Team

CHANGES IN R 3.6.1

INSTALLATION on a UNIX-ALIKE

• The default detection of the shell variable ‘libNN’ is overridden for derivatives of Debian
Linux, some of which have started to have a ‘/usr/lib64’ directory. (E.g. Ubuntu
19.04.) As before, it can be specified in ‘config.site’.

UTILITIES

• R CMD knows the values of AR and RANLIB, often set for LTO builds.

BUG FIXES

• On Windows, GUI package installation via menuInstallPkgs() works again, thanks to
Len Weil’s and Duncan Murdoch’s PR#17556.

• quasi(*,variance = list(..)) now works more efficiently, and should work in
all cases fixing PR#17560. Further, quasi(var = mu(1-mu)) and quasi(var = "mu
3̂") now work, and quasi(variance = "log(mu)") now gives a correct error message.

• Creation of lazy loading database during package installation is again robust to ‘Rprofile’
changing the current working directory (PR#17559).

• boxplot(y f,horizontal=TRUE) now produces correct x- and y-labels.

• rbind.data.frame() allows to keep ‘<NA>’ levels from factor columns (PR#17562)
via new option factor.exclude.
Additionally, it works in one more case with matrix-columns which had been reported
on 2017-01-16 by Krzysztof Banas.

• Correct messaging in C++ pragma checks in tools code for R CMD check, fixing
PR#17566 thanks to Xavier Robin.

• print()ing and auto-printing no longer differs for functions with a user defined print.function,
thanks to Bill Dunlap’s report.

• On Windows, ‘writeClipboard(..,format = <n>)’ now does correctly pass format
to the underlying C code, thanks to a bug report (with patch) by Jenny Bryan.

• as.data.frame() treats 1D arrays the same as vectors, PR#17570.

• Improvements in smoothEnds(x,*) working with NAs (towards runmed() working in
that case, in the next version of R).

• vcov(glm(<quasi>),dispersion = *) works correctly again, fixing PR#17571 thanks
to Pavel Krivitsky.

• R CMD INSTALL of binary packages on Windows now works also with per-directory
locking.

• R CMD INSTALL and install.packages() on Windows are now more robust against
a locked file in an earlier installation of the package to be installed. The default value
of option install.lock on Windows has been changed to TRUE.

• On Unix alikes (when readline is active), only expand tilde ‘( )’ file names starting
with a tilde, instead of almost all tildes.
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OTHER RECENT SIGNIFICANT CHANGES IN R

There were two important, user-visible changes in version 3.6.0:

• Serialization format version 3 becomes the default for serialization and saving of
the workspace (save(),serialize(),saveRDS(),compiler::cmpfile()). Serialized
data in format 3 cannot be read by versions of R prior to version 3.5.0. Serial-
ization format version 2 is still supported and can be selected by version = 2 in
the save/serialization functions. The default can be changed back for the whole
R session by setting environment variables R_DEFAULT_SAVE_VERSION and
R_DEFAULT_SERIALIZE_VERSION to 2. For maximal back-compatibility, files
‘vignette.rds’ and ‘partial.rdb’ generated by R CMD build are in serialization format
version 2, and resave by default produces files in serialization format version 2 (unless
the original is already in format version 3).

• The default method for generating from a discrete uniform distribution (used in
sample(), for instance) has been changed. This addresses the fact, pointed out by
Ottoboni and Stark, that the previous method made sample() noticeably non-uniform
on large populations. See PR#17494 for a discussion. The previous method can be
requested using RNGkind() or RNGversion() if necessary for reproduction of old results.
Thanks to Duncan Murdoch for contributing the patch and Gabe Becker for further
assistance.
The output of RNGkind() has been changed to also return the kind used by sample().
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