
The Journal
Volume 11/2, December 2019

A peer-reviewed, open-access publication of the
R Foundation for Statistical Computing

Contents

Editorial . 4

Contributed Research Articles

Using Web Services to Work with Geodata in R. 6

orthoDr: Semiparametric Dimension Reduction via Orthogonality Constrained Opti-
mization . 24

coxed: An R Package for Computing Duration-Based Quantities from the Cox Propor-
tional Hazards Model. 38

Modeling regimes with extremes: the bayesdfa package for identifying and forecasting
common trends and anomalies in multivariate time-series data. 46

Fitting Tails by the Empirical Residual Coefficient of Variation: The ercv Package . . . 56

biclustermd: An R Package for Biclustering with Missing Values 69

auditor: an R Package for Model-Agnostic Visual Validation and Diagnostics 85

The R Package trafo for Transforming Linear Regression Models 99

BondValuation: An R Package for Fixed Coupon Bond Analysis 124

ConvergenceClubs: A Package for Performing the Phillips and Sul’s Club Conver-
gence Clustering Procedure . 142

PPCI: an R Package for Cluster Identification using Projection Pursuit 152

dr4pl: A Stable Convergence Algorithm for the 4 Parameter Logistic Model 171

cvcrand: A Package for Covariate-constrained Randomization and the Clustered
Permutation Test for Cluster Randomized Trials 191

jomo: A Flexible Package for Two-level Joint Modelling Multiple Imputation 205

Time Series Forecasting with KNN in R: the tsfknn Package 229

rollmatch: An R Package for Rolling Entry Matching 243

Associative Classification in R: arc, arulesCBA, and rCBA 254

Indoor Positioning and Fingerprinting: The R Package ipft 268

roahd Package: Robust Analysis of High Dimensional Data 291

The IDSpatialStats R Package: Quantifying Spatial Dependence of Infectious Disease
Spread . 308

Comparing namedCapture with other R packages for regular expressions 328

The Landscape of R Packages for Automated Exploratory Data Analysis 347

https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=namedCapture

2

HCmodelSets: An R Package for Specifying Sets of Well-fitting Models in High
Dimensions . 370

Resampling-Based Analysis of Multivariate Data and Repeated Measures Designs
with the R Package MANOVA.RM . 380

spGARCH: An R-Package for Spatial and Spatiotemporal ARCH and GARCH models 401

lpirfs: An R Package to Estimate Impulse Response Functions by Local Projections . . 421

News and Notes

Conference Report: ConectaR 2019 . 439

R Foundation News . 443

Changes on CRAN . 444

News from the Bioconductor Project . 447

R News . 448

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

3

The R Journal is a peer-reviewed publication of the R
Foundation for Statistical Computing. Communications

regarding this publication should be addressed to the
editors. All articles are licensed under the Creative

Commons Attribution 4.0 International license (CC BY 4.0,
http://creativecommons.org/licenses/by/4.0/).

Prospective authors will find detailed and up-to-date
submission instructions on the Journal’s homepage.

Editor-in-Chief:
Michael Kane, Yale University, USA

Executive editors:
Dianne Cook, Monash University, Australia

Colin Gillespie, New Castle University, England
Catherine Hurley, Maynooth University, Ireland

Email:
r-journal@R-project.org

R Journal Homepage:
https://journal.r-project.org/

Editorial advisory board:
Bettina Gruen, Johannes Kepler Universität Linz, Austria
Deepayan Sarkar, Indian Statistical Institute, Delhi, India

Friedrich Leisch, University of Natural Resources and Life
Sciences, Vienna, Austria

Hadley Wickham, RStudio, Houston, Texas, USA
Heather Turner, University of Warwick, Coventry, UK

John Fox, McMaster University, Hamilton, Ontario, Canada
Kurt Hornik, WU Wirtschaftsuniversität Wien, Vienna,

Austria
Paul Murrell, University of Auckland, New Zealand

Peter Dalgaard, Copenhagen Business School, Denmark
Martyn Plummer, International Agency for Research on

Cancer, Lyon, France
Vincent Carey, Harvard Medical School, Boston, USA
Torsten Hothorn, University of Zurich, Switzerland

The R Journal is indexed/abstracted by EBSCO and
Thomson Reuters.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

http://creativecommons.org/licenses/by/4.0/
https://journal.r-project.org/

4

Editorial
by Michael J. Kane

On behalf of the editorial board, I am pleased to present Volume 11, Issue 2 of the R Journal
and my first issue as the Editor in Chief. This year, both Colin Gillespie and Catherine
Healey join the Editorial Board, and Norm Matloff will rotate out. The R Journal continues
to see increases in impact and popularity and this year we plan on making advances to
better serve the community and streamline the publishing process to meet the increase in
submissions we have seen over the last few years.

In this issue

Along with news and notes are provided from the ConectaR 2019 conference, the R Foun-
dation, CRAN, and Bioconductor, this issue features 26 articles. I have categorized them
below.

Papers focusing on performance and novel, domain-specific applications:

• “Comparing namedCapture with other R packages for regular expressions

• “cvcrand: a Package for Covariate-constrained Randomization and the Clustered
Permutation Test for Cluster Randomization Trials

• “Indoor Positioning and Fingerprinting: The R package ipft

Data preprocessing, imputation, validation, and exploration:

• “jomo: a Flexible Package for Two-level Joint Modelling Multiple Imputation”

• “auditor: an R Package for Model-Agnostic Visual Validation and Diagnostics”

• “Fitting tails by the empirical residual coefficient of variation: The ercv package”

• “The Landscape of R Packages for Automated Exploratory Data Analysis”

• “The R Package trafo for Transforming Linear Regression Models”

• “orthoDr: semiparametric dimension reduction via orthogonality constrained opti-
mization”

Spatial statistics:

• “spGARCH: An R Package for Spatial and Spatiotemporal ARCH models”

• “The IDSpatialStats R package: Quantifying spatial dependence of infectious disease
spread”

• “Using Web Services to Work with Geodata in R”

Time-series analysis and finance:

• “lpirfs: An R-package to estimate impulse response functions by local projections”

• “Time Series Forecasting with KNN in R: the tsfknn Package”

• “rollmatch: An R Package for Rolling Entry Matching”

• “BondValuation: An R Package for Fixed Coupon Bond Analysis”

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://www.scimagojr.com/journalrank.php?category=2613

5

• “Modeling regimes with extremes: the bayesdfa package for identifying and forecast-
ing common trends and anomalies in multivariate time-series data”

Clustering:

• “roahd Package: Robust Analysis of High Dimensional Data”

• “PPCI: an R Package for Cluster Identification using Projection Pursuit”

• “ConvergenceClubs: A Package for Performing the Phillips and Sul’s Club Conver-
gence Clustering Procedure”

• “biclustermd: An R Package for Biclustering with Missing Values”

And supervised modeling:

• “dr4pl: A stable convergence algorithm for the 4 Parameter Logistic model”

• “coxed: An R Package for Computing Duration Based Quantities from the Cox Pro-
portional Hazards Model”

• “Analysis of Multivariate Data and Repeated Measures Designs with the R Package
MANOVA.RM”

• “Associative Classification in R: arc, arulesCBA, and rCBA”

• “HCmodelSets: An R Package for Specifying Sets of Well-fitting Models in High
Dimensions”

Michael J. Kane
michael.kane@r-project.org

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

mailto:michael.kane@r-project.org

CONTRIBUTED RESEARCH ARTICLES 6

Using Web Services to Work with
Geodata in R
by Jan-Philipp Kolb

Abstract Through collaborative mapping, a massive amount of data is accessible. Many individuals
contribute information each day. The growing amount of geodata is gathered by volunteers or obtained
via crowd-sourcing. One outstanding example of this is the OpenStreetMap (OSM) Project which
provides access to big data in geography. Another online mapping service that enables the integration
of geodata into the analysis is Google Maps. The expanding content and the availability of geographic
information radically changes the perspective on geodata (Chilton 2009). Recently many application
programming interfaces (APIs) have been built on OSM and Google Maps. That leads to a point where
it is possible to access sections of geographical information without the usage of a complex database
solution, especially if one only requires a small data section for a visualization.

First tools for spatial analysis have been included in the R language very early (Bivand and
Gebhardt, 2000) and this development will continue to accelerate, underpinning a continual change.
Notably, in recent years many tools have been developed to enable the usage of R as a geographic
information system (GIS). With a GIS it is possible to process spatial data. QuantumGIS (QGIS) is a
free software solution for these tasks, and a user interface is available for this purpose. R is, therefore,
an alternative to geographic information systems like QGIS (QGIS Development Team 2009). Besides,
add-ins for QGIS and R-packages (RQGIS) are available, that enables the combination of R and QGIS
(Muenchow and Schratz 2017). It is the target of this article to present some of the most important
R-functionalities to download and process geodata from OSM and the Google Maps API. The focus of
this paper is on functions that enable the natural usage of these APIs.

Introduction and outline

This paper introduces some interesting web services for downloading, processing and visualizing
geodata. The focus especially in the second half of the paper is on OpenStreetMap-data, because
it is released under the Open Database License (ODbL) 1.0. That allows multiple uses of the data
(Schmidt et al., 2013). The study of Barrington-Leigh and Millard-Ball (2017) shows for example, that
the data quality available at OSM is already sufficient in many countries to use it for scientific and
analytic purposes. However, Barron et al. (2014) state that the quality of the OSM-data depends on the
individual use case. And Grippa et al. (2018) mention that it is essential to consider the variations at
regional or national scales. One example of a scientific analysis based on OSM-data is the Simulation
of Urban MObility (SUMO) project (Behrisch et al. 2011). Meijer et al. (2018) for example use OSM-data
to analyze global patterns of road infrastructure. Gervasoni et al. (2018) use OSM-data to generate
urban features that help to estimate population density at a higher resolution. Arsanjani et al. (2015)
give an overview of typical and recent examples of studies done with OSM-data. Much more research,
carried out in various countries, is listed at OpenStreetMap Wiki (2017e).

The focus is on the most important APIs to download geodata. The significant advantage of using
these specific APIs is that we can obtain data free of charge. Short examples are used to describe how
the data can be imported into R and processed. Some examples show the easiest and fastest way to get
the information needed. In other examples I look a bit further behind the scenes. Static maps can be
used as background information for geographic visualization and may be used to highlight positions
of so-called points of interest (poi). A prerequisite to visualise these points is the availability of their
exact spatial location. With the Overpass API (http://wiki.openstreetmap.org/wiki/Overpass_API)
for example, we can get the positions for many points of interest. This application programming
interface (API) is perfect to download data on very particular topics. For example, if you are looking
for special map features.

The used API’s are listed in the individual sections below. I discuss an example where I am inter-
ested in public transportation in Amsterdam. In the next section (Background Maps - Download via
Map Tile Servers), hints on the download of static maps from so-called map tile servers are presented.
In the third section (Geocoding with Application Programming Interfaces (APIs) the functionality
of APIs like the Google Maps and OSM Nominatim API is used to realize geocoding. It is shown,
how the Nominatim API can be used to search OSM-data by name and address (OpenStreetMap Wiki
2018a). In the fourth section (Downloading and Importing OSM-data) I show various possibilities
to download more general OSM-data. The usage of the main OSM-API is presented as well as some
functions of the osmdata package, which also uses the Overpass API, are described in this section.
Possibilities to process OSM-data with R are presented in the fifth section (Processing OSM-data). A

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=RQGIS
http://wiki.openstreetmap.org/wiki/Overpass_API
https://CRAN.R-project.org/package=osmdata

CONTRIBUTED RESEARCH ARTICLES 7

summary follows at the end.

Background maps - download via Map Tile Servers

If a background map is needed, it is possible to use a tile server to download them. Map tiles are
quadratic bitmap graphics which are arranged in a grid to show a map. The vector tile is a newer
format developed recently which is for example used by Mapbox (https://www.mapbox.com/). Vector
tiles have a vector representation (OpenStreetMap Wiki 2018d, p. 1). The tiles contain vector data
instead of the rendered image and provide readable, descriptive, and extensible content (Li et al. 2018).
Vector tiles can be rendered dynamically and allow for an efficient extraction of the relevant data
(Gaffuri 2012, p. 94).

So-called map tile servers offer to download static maps of various types. It is, for example,
possible to get maps on such diverse issues as biking, public transportation, or land shading.1 Map
Tiles are very suitable for the use as background image. Various R-packages can be used to access map
tile servers. One way to get static maps is the package OpenStreetMap. It is a package to access high-
resolution raster maps using the OSM protocol (Fellows, 2016). A high number of satellite, topographic
and road map servers can be accessed directly using the JMapViewer Java component (Stotz, 2018).
The used map servers are for example CloudMade, Mapnik, Bing, Stamen, and MapQuest. The
function openmap can be used to retrieve a map. It is necessary to provide values for the upper left
latitude and longitude value as well as for the lower right values. In the example below, this is done
for some coordinates in Amsterdam. Also, we have to specify the type of source. That may be the
tile server from which to get the map or the uniform resource locator (URL) pattern. However, OSM
servers have limited capacity, and heavy use adversely affects the purpose of use. With the package
OpenStreetMap, it is also possible to access other web services. Bing Maps, the web mapping service
provided by Microsoft is one example. In the following code example, the function openmap is used to
get a map based on latitude and longitude coordinates.

We need a geocode to get a map of Amsterdam. In the next section, geocodes will be explained in
more detail. We specify the tile server with the argument type. In this example, OSM is chosen, but a
Bing map would also be possible. The result of this call is visible in Figure 1.

library("OpenStreetMap")
map <- openmap(c(52.278174, 4.729242),

c(52.431064, 5.079162),
type = "osm")

plot(map)

Stamen is an alternative source. Stamen Design publishes maps under a Creative Commons license
CC BY-3.0 (Attribution). The maps are based on OSM-data (Lamigueiro 2014, p. 95). We get a Stamen
map when we add further arguments to the openmap call. In the following the source is stamen. The
type was specified as toner and watercolor. The resulting Stamen maps are depicted in Figure 2. The
downloaded maps are very suitable as background for info graphics. It is possible to add further
layers using, for example, the ggplot2 framework (Wickham 2009). That will be shown later.

map_stt <- OpenStreetMap::openmap(c(52.385914, 4.874383), c(52.35514, 4.92054),
type = "stamen-toner")

map_st <- OpenStreetMap::openmap(c(52.278174, 4.729242), c(52.431064, 5.079162),
type = "stamen-watercolor")

plot(map_st)
plot(map_stt)

Another package to get static maps is ggmap (Kahle and Wickham 2013). This package provides a
collection of functions to visualize spatial data and models on top of static maps from various online
sources, like Google Maps, OSM, Stamen Maps and CloudMade Map (Kahle and Wickham, 2013).
Only a few lines of code are necessary to get a map for a freely selectable location. The default source
of ggmap is the Google Static Maps API, and with the download of these images, you agree to the
terms of usage (https://developers.google.com/maps/terms - Dorman 2014). Recently, the Google
Maps API terms of use have changed. Now you need an account to use the API for downloading
a static map. The development version on Github (https://github.com/dkahle/ggmap) already has
the function register_google where you can define your key. Previously you have to register your
project at https://cloud.google.com/maps-platform/. The function qmap is a wrapper for ggmap and
get_map. It is necessary to specify the place for which the map should be downloaded and a zoom
factor, whereas the zoom parameter takes values between three and 21. A whole continent is visible

1An overview on the map tile servers is available at http://wiki.openstreetmap.org/wiki/Tileserver

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://www.mapbox.com/
https://CRAN.R-project.org/package=OpenStreetMap
https://CRAN.R-project.org/package=OpenStreetMap
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggmap
https://CRAN.R-project.org/package=ggmap
https://developers.google.com/maps/terms
https://github.com/dkahle/ggmap
https://cloud.google.com/maps-platform/
http://wiki.openstreetmap.org/wiki/Tileserver

CONTRIBUTED RESEARCH ARTICLES 8

Figure 1: Map of Amsterdam - data from OSM

Figure 2: Static stamen maps of Amsterdam

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 9

on the map for a zoom factor of three whereas only one building is on the map for a zoom factor of 21.
The default value is ten. In this case, a city is visible on the map.

The RgoogleMaps package can be used for querying OSM servers for static maps in the form of
portable network graphics (PNGs) (Loecher and Ropkins, 2015). Map tiles can be downloaded using,
for example, the command GetMap.bbox. In this case, the center and a zoom level have to be provided.
The center is determined using so-called geocodes. Geocodes are used to specify a precise location on
the map. More information about these codes will be given in the next section.

Also, it is possible to create interactive maps with online mapping services. This can be done for
example with the R-package leaflet created by Cheng and Xie (2016). The package can be used to
create interactive maps for websites. These kinds of maps are also known as slippy maps where it is
possible to zoom and pan (OpenStreetMap Wiki 2016b). That means that the map slips around when
you drag the mouse. Slippy maps in OSM are based on the AJAX library OpenLayers which is written
in JavaScript. Here, the default OSM tiles can be added to the interactive map visualization. It is also
possible to use Stamen maps or CartoDB as background for slippy maps (Abernathy 2016, p. 311).
A good starting point for the work with this package is https://rstudio.github.io/leaflet/. In
the following example, the pipe-forward operator of package magrittr is used which enables chain
operations. The first operation in this chain is the creation of a leaflet map widget (function leaflet).
The second operation is to add a layer (function addTiles), and in the last operation a marker is added
(function addMarkers). Here we have to specify the position of the marker and the text that pops up.

library(leaflet)
leaflet() %>%
addTiles() %>%
addMarkers(lng=4.891013, lat=52.38054, popup = "Amsterdam")

Map Tiles are a good possibility for geographic data visualization. They can be valuable to
get a first impression, but these visualizations may also occlude relevant geodata. Therefore it is
useful to know, how to add further information to the map. In the next section, it is shown how to
append more information to either the static map or the interactive map. Interactive maps can for
example be produced very easily with tmap and mapview (Appelhans et al. 2018) and many other
packages. The functionalities for interactive maps in both mentioned packages are built on top of the
R-package leaflet. The interface to Javascript allows a very vital exchange. The R-package mapdeck
is for example a very suitable tool, for a browser based visualization of geodata. Like most of the
interactive graphics in R this package is also based on a Javascript library. In this case Mapbox GL
JS is used (Cooley 2018a). Like for package deckard (see Hansel 2018), the package also provides
access to the Deck.gl framework of Uber (Lovelace et al. 2018). A registration is necessary to use the
framework. The package lawn provides a client for the geospatial analysis with the javascript library
Turfjs (Chamberlain and Hollister 2017). That allows us to use for example Javascript libraries like
geojson-random and geojsonhint, which can be used to randomly create GeoJSON objects and to
color them. For example the gr_polygon function can be used to create an example object. Then you
can plot the object with the generic function view.

We have seen in the examples above, that we need a set of coordinates to locate a point of interest
or pop-up. For a study on the transport system, it is for example good to know which public transport
stops (train or bus stops, etc.) are located in the surrounding of the area under research. The geocoding
for an address list of these stops can be done with the Nominatim API of the OSM project. In the next
section it is shown how this geocoding process is done in R.

Geocoding with Aplication Programming Interfaces (APIs)

Geocoding is the derivation of a structured spatial representation from textual information like postal
codes (Aitchison, 2009, p. 157). Many possibilities are available to realize geocoding with R. The
most popular is perhaps the usage of interfaces like the Google Maps API. The API is described
in Svennerberg (2010). It can be accessed directly from R using the R-package ggmap (Kahle and
Wickham, 2013, p. 156). The ggmap-package was one of the first R packages to provide an interface
for data exchange between R and the Google Maps API. The process can be implemented using the
geocode function. Then we just need an adress to get the corresponding coordinates. For the example
"Waterlooplein 1, Amsterdam, Zentrum" we get the latitude and longitude coordinates visible in Table
1 as a result of this call.

The Mercator-projection is used in Google Maps (Moore and Drecki 2008, p. 206). The European
Petroleum Survey Group Geodesy (EPSG) published a system of globally unique key numbers of
geodetic data records (EPSG codes). The used coordinate reference system and the projection are
determined using this EPSG codes (http://epsg.org/). The EPSG code used in this example is 3857
(Harris 2016). One of the issues when using the Google Maps API is that only 2,500 requests per day

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=RgoogleMaps
https://CRAN.R-project.org/package=leaflet
https://rstudio.github.io/leaflet/
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=tmap
https://CRAN.R-project.org/package=mapview
https://CRAN.R-project.org/package=leaflet
https://CRAN.R-project.org/package=mapdeck
https://CRAN.R-project.org/package=lawn
https://CRAN.R-project.org/package=ggmap
https://CRAN.R-project.org/package=ggmap
http://epsg.org/

CONTRIBUTED RESEARCH ARTICLES 10

lat lon

1 4.901323 52.36896

Table 1: Latitude and longitude coordinates of the address "‘Amsterdam, Waterlooplein 1"’

can be performed free of charge, which might cause problems with large data sets. The terms of usage
of the API can be seen at https://developers.google.com/maps/terms. It is clear that nobody should
use such an online service to geocode privacy sensitive data. The googleway package also connects to
Google (Cooley 2018b). To use the package, the registration and an API key is necessary to use most
of the functionalities. When we have done this, it is for example possible to query the distance, the
elevation or the timezone. Additional information on the visinity of a point is accessible using for
example the packages geonames (https://github.com/ropensci/geonames) or RDSTK.

A less known alternative described here in more detail is the usage of the Nominatim API of the
OSM project (Warden, 2011, p. 25). This tool is an open source system designed on top of OSM-data
to search by name and address (Clemens, 2015). Nominatim (OpenStreetMap Wiki 2018a) is the
main geocoder maintained by OSM (Abernathy, 2016). Detailed information on this geocoder is
available at http://wiki.openstreetmap.org/wiki/Nominatim. Similar to the geocoding with the
Google Maps API, the service Nominatim can be used to query the name of the reference object to
obtain corresponding GPS coordinates. When using the Nominatim API, it is possible to choose
between different output formats. We can choose between HTML, XML, JSON and JSONV2. The
RJSONIO and jsonlite packages can be used to import JSON files to R (Lang 2014 and Ooms 2014).
The core from the following example is the command fromJSON of package RJSONIO. It converts
JSON content to R objects. The code chunk is designated to get the corresponding coordinates for
the address "‘Rozengracht 1"’ in Amsterdam. With the function url we specify a path to be opened.
In this case it is the adress of the Nominatim API http://nominatim.openstreetmap.org/ plus some
additional information (format and adress details).

library("RJSONIO")
con <- url("http://nominatim.openstreetmap.org/search?format=json&
addressdetails=1&extratags=1&q=Amsterdam+Niederlande+Rozengracht+1")
geoc <- fromJSON(paste0(readLines(con, warn=F)))
close(con)

The result is an object that contains a lot of information. We can get an overview when we query
the names of the first object in geoc.

names(geoc[[1]])

[1] "place_id" "licence" "osm_type" "osm_id" "boundingbox"
[6] "lat" "lon" "display_name" "class" "type"
[11] "importance" "address" "extratags"

This object contains for example information on the license which is ODbL 1.0 (http://www.
openstreetmap.org/copyright). We get the latitude and longitude coordinates:

geoloc <- c(geoc[[1]][which(names(geoc[[1]]) == "lat")],
geoc[[1]][which(names(geoc[[1]]) == "lon")])

lat lon

1 52.3737223 4.8826404

We also get the combination of OSM id and the OSM type, which can be useful information, when
downloading and processing specific OSM-data. And then we have some key-value pairs, which will
be explained below. The package jsonlite can also be used for importing json data:

link <- url("http://nominatim.openstreetmap.org/search?format=json&
addressdetails=1&extratags=1&q=Amsterdam+Niederlande+Rozengracht+1")

geoc2 <- jsonlite::fromJSON(link)
geoc2df <- with(geoc2, data.frame(osm_id, lat,lon))
geoc2df$house_number <- geoc2$address$house_number

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://developers.google.com/maps/terms
https://CRAN.R-project.org/package=googleway
https://github.com/ropensci/geonames
https://CRAN.R-project.org/package=RDSTK
http://wiki.openstreetmap.org/wiki/Nominatim
http://wiki.openstreetmap.org/wiki/Nominatim
https://CRAN.R-project.org/package=RJSONIO
https://CRAN.R-project.org/package=jsonlite
https://CRAN.R-project.org/package=RJSONIO
http://nominatim.openstreetmap.org/
http://www.openstreetmap.org/copyright
http://www.openstreetmap.org/copyright
https://CRAN.R-project.org/package=jsonlite

CONTRIBUTED RESEARCH ARTICLES 11

osm_id lat lon house_number

1 2721815875 52.3737223 4.8826404 1
2 2743624072 52.3719482 4.8755534 237-1
3 2721830930 52.3736673 4.8823914 7-1
4 2721827922 52.3734021 4.8813371 53-1
5 2721824637 52.372232 4.8767542 231-1
6 2721823434 52.3724786 4.8776618 187-1
7 2721820122 52.3727335 4.8786657 137-1
8 2721816644 52.3729874 4.8797588 105E-1
9 2720971311 52.3727658 4.8775263 194-1

10 2720971056 52.3728019 4.8775994 184-1

Table 2: Adresses for house number with one - "Rozengracht"

The dataframe geoc2df contains several addresses in the "Rozengracht" street that all start with a
one. Parts of the adresses are visible in the following table.

The package tmaptools offers tool functions to supply the workflow to create thematic maps. It
provides the function geocode_OSM which is a wrapper for geocoding using the OSM Nominatim
API (Tennekes 2018). A bounding box can be created with the tmap::bb command. The functions
tmaptools::bb_poly, and osmdata::getbb are also worth mentioning here, in particular with regard
to extracting bounding polygons rather than mere boxes. In the following example for function
geocode_OSM of package tmaptools we get only the coordinates as output because the default value of
the argument details is FALSE.

library("tmaptools")
gc_tma <- geocode_OSM("Amsterdam, Buiten Brouwersstraat")

Info Nominatim Google Maps

CRS EPSG:4326 EPSG:3857
Projection Mercator Mercator
Longitude 4.891013 4.900478

Latitude 52.380541 52.36859

Table 3: Result of the geocoding request for a poi in Amsterdam

The result of the request for a postal address in Amsterdam is visible in Table 3 in the second
column. A big difference becomes apparent when we compare the result for Nominatim and the result
for Google Maps API (third column). The projection and the coordinate reference system (CRS) may
be of great importance (Brown, 2016). The projection is used to display the three-dimensional earth.
Typically, this is a projection onto a two-dimensional map display. Google Maps uses, for example, the
Mercator projection, which is good for zoomed-in viewing, but causes distortions when zoomed out
(Turner 2006). For the Nominatim-query we get EPSG:4326 (Maier 2014).

The projection of the data is often necessary for the work with geodata from different sources,
and this is true if we want to combine the gained information with other geodata, for example, static
maps or satellite pictures. In the following example a transformation is shown. In a first step we create
a data.frame which is called poi. In a second step we use the function coordinates to set spatial
coordinates and to create a spatial object. Then we set the projection attributes with the command
proj4string. In this case we use the epsg projection 4326. Afterwards it is possible to transform the
spatial points using the function spTransform.

library(sp)
poi <- data.frame(lat = gc_tma$coords["x"],

lon = gc_tma$coords["y"])
sp::coordinates(poi) <- c("lat", "lon")
sp::proj4string(poi) <- sp::CRS("+init=epsg:4326")
res <- spTransform(poi, CRS("+init=epsg:3035"))

We get the following numbers for the coordinates:

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=tmaptools
https://CRAN.R-project.org/package=tmaptools

CONTRIBUTED RESEARCH ARTICLES 12

res@coords
lat lon

3973434 3264547

A clearer alternative to realize the coordinate reference system transformation is included in
package sf:

library(sf)
poi2 <- st_sfc (st_point(gc_tma$coords), crs = 4326)
res2 <- st_transform (poi2, crs = 3035)

Further functions are available to switch between reference systems. The OpenStreeetMap pack-
age has the openproj function to translate from Mercator to another coordinate reference system
and can be used to create ggplot2 and base graphics. Lovelace et al. (2017) present a possibility
to transform the reference system. A whole section in the book of Pebesma and Bivand (2019) is
dedicated to this topic. Brown (2016) also explains how to work with map projections and coordinate
reference systems in R. More information is available in Plant et al. (2012). Further, the mapmisc
package provides projection capabilities and utilities for producing maps (Brown 2016). The function
projection supplies information on the coordinate reference system.

The accessed geocodes might be combined with a static map in the next step. As already shown,
the openmap function from package OpenStreetMap can be utilized to download a background map.
We have to re-project the original OSM map, for example with the function openproj from package
OpenStreetMap. The static map can then be combined with the extracted geocode. The result is
visible in Figure 3.

poi <- data.frame(lon = gc_tma$coords["x"],
lat = gc_tma$coords["y"])

adm_map <- openproj(map_stt,
projection = "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")

library(ggmap)
autoplot(adm_map) + geom_point(aes(x = lon, y = lat), data = poi,size=5, col="red")

●

52.36

52.37

52.38

4.88 4.89 4.90 4.91 4.92

x

y

Figure 3: Amsterdam, Buiten Brouwersstraat

Only the coordinates are available for the download in the Waterlooplein example. In the following
example, the package opencage is used for geocoding. The Opencage service (https://opencagedata.
com/) combines the quality of multiple geocoders in one API. An access token is necessary to use this
geocoder. With the free token, up to 2,500 calls per day are possible. The command opencage_forward
can be used for geocoding. A small part of the information in the resulting object (for argument
placename = "Amsterdam,Van Woustraat"), the address information, is visible in Table 4. We also get
the suburb, the city district, the city, the state district, the state and the postcode area in which the
object is located.

Reverse geocoding is the counterpart to geocoding. It is the target to retain additional infor-
mation from the geocodes. The procedure described above is reversed. Thus, the starting point

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=OpenStreeetMap
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=mapmisc
https://CRAN.R-project.org/package=OpenStreetMap
https://CRAN.R-project.org/package=opencage
https://opencagedata.com/
https://opencagedata.com/

CONTRIBUTED RESEARCH ARTICLES 13

Value

road Van Woustraat
neighbourhood de Pijp

suburb Zuid
city Amsterdam

state Noord-Holland
postcode 1017

country Nederland
country_code nl

Table 4: Address information for an object in Amsterdam, Van Woustraat.

is the geocode and the task is to extract textual information, such as an address or a name, from
these geographic coordinates (Kounadi et al. 2013). The Nominatim API can be used for this. The
function rev_geocode_OSM of package tmaptools can be used to realize this. The Nominatim ser-
vice runs on donated servers. It is necessary to be careful with the usage. No heavy use is ac-
cepted. The absolute maximum is one request per second. For details on the usage see https:
//operations.osmfoundation.org/policies/nominatim/. If bulk geocoding of larger amounts of
OSM-data is intended, it is necessary to look for alternatives. One possibility are third-party providers
like MapQuest (https://developer.mapquest.com/documentation/open/nominatim-search/). An-
other possibility is the offline geocoding. The source code of the Nominatim API is available in the
OSM svn repository. The readme is very detailed and can be used as a step by step guide to set up an
offline geocoder.

As seen above, it is possible to geocode a list of addresses. E.g. with the Nominatim API. If we
want to know in general which objects are present in a certain map section, we can use the main OSM
Api. This is introduced in the following section.

Downloading general OSM-data

The ‘tagging’ scheme is crucial for the work with OSM-data. Its basic data structures (nodes, ways,
and relations) are tagged with a key value pair (Ramm et al., 2011). Examples of this scheme are given
in Table 4. A topic, category, or type of feature is named in the key. The value is used to describe
the particular form. For example, there are numerous OSM objects with key=highway. It can be a
footpath (value=pathway) or a highway (value=motorway). This tagging scheme is a core part of
the OSM project (Haklay and Weber, 2008). A list of the available OSM map features is available at
http://wiki.openstreetmap.org/wiki/Map_Features.

Three different object types exist in OSM. There are simple nodes or points. This can be, for
example, a public transport stop (key=highway and value=bus_stop) or a station where you get
potable water for consumption (key=amenity and value=drinking_water). The second object type is
ways. This is a sequence of points that describe, for example, the course of roads or rivers. The third
object type is relations, a grouping of objects that are logically related (Pruvost and Mooney 2017).

There are several ways to get the OSM data. The Humanitarian Open Streetmap Team (https:
//export.hotosm.org) offers customized extracts of up-to-date OSM data. Basically the raw data are
offered in protocolbuffer binary format (PBF) or in extensible markup language (XML) format. An
alternative to download large OSM sections is the Geofabrik page (http://download.geofabrik.de/).
Here you can download current excerpts as well as shapefiles. The shapefile format is a popular
format of spatial vector data for geographic information systems (GIS). This file type is a geodata
format originally developed for ESRI’s ArcView software.

A special feature of the OSM project is that you can not only get geolocations, but also down-
load individual objects or collections of objects from OSM. The OSM API version 0.6 (http://api.
openstreetmap.org/api/0.6/) is optimized for editing. That means, it is used for fetching and saving
raw geodata. It is a REST (representational state transfer) API. Thus, it is possible to make HTTP GET
calls to the OSM API (Mooney and Corcoran, 2011). For more information on REST APIs and RESTful
web service interfaces see for example Masse (2011). For this paper, it is important that an extract for a
pre-defined area can be retrieved from the OSM database using REST.

It is instructive to see how to parse the information to R. In the following use case, information
for Amsterdam is downloaded to R. We can get the OSM id using the search function at https:
//www.openstreetmap.org/. This id is essential for the work with OSM-data. With the object id it is
possible to uniquely identify an object. In the case below we download information for the relation

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=tmaptools
https://operations.osmfoundation.org/policies/nominatim/
https://operations.osmfoundation.org/policies/nominatim/
https://developer.mapquest.com/documentation/open/nominatim-search/
http://wiki.openstreetmap.org/wiki/Map_Features
https://export.hotosm.org
https://export.hotosm.org
http://download.geofabrik.de/
http://api.openstreetmap.org/api/0.6/
http://api.openstreetmap.org/api/0.6/
https://www.openstreetmap.org/
https://www.openstreetmap.org/

CONTRIBUTED RESEARCH ARTICLES 14

Amsterdam, which has the OSM id 47811. The first step is to specify the correct url. This url is a
combination of a fixed part, the address of the API (https://www.openstreetmap.org/api/0.6/) and
a variable part based on the object to be downloaded (relation/4290854847). Thus, we need to know
if the object is a node, a way, or a relation. In addtion we need the object id. In a second part, the file is
downloaded from the Internet using the download.file command and saved.

url2 <-"https://www.openstreetmap.org/api/0.6/node/4290854847"
download.file(url2, "4290854847.xml")

It is also possible to save the object as a .osm file, a format that uses the data tree structure of XML
(OpenStreetMap Wiki 2017c). This format is human readable due to a clear structure, and it is machine
independent because of exact definitions. But a .osm file might be very huge, when it is decompressed.
In the following case information for a node is downloaded.

ghURL2<-"https://www.openstreetmap.org/api/0.6/relation/47811"
download.file(ghURL2, "amsterdam.osm")

If the interest is in information in the vicinity of a point, we can download information for a small
section. The following example shows the download for a section around the main train station in
Amsterdam. I used the export function of https://www.openstreetmap.org/ to download the section
visible in Figure 4 as .osm. The same section can be downloaded using the command curl_download
from package curl (Ooms 2018). The download of these small map sections are subject to the OSM
API usage policy (OpenStreetMap Wiki 2018b and OpenStreetMap Wiki 2017a).

library(curl)
uac<-"https://api.openstreetmap.org/api/0.6/map?bbox=4.89359,52.37640,4.90589,52.38172"
curl_download(uac, "amsterdamcentraal.osm")

Figure 4: Export functionality https://www.openstreetmap.org/

Thus, it is possible to use the OSM API to download all objects in a map section. The Overpass API
can be used to download all elements of a specific type. The Overpass API written by Roland Olbricht
allows developers to download small extractions of user-generated content from OSM according to
given criteria (OpenStreetMap Wiki 2016a). Overpass is a read-only API that provides custom selected
parts of the OSM-data. It can be understood as a database over the web, it uses the fact that OSM
is enriched with additional information ranging from city names to e.g. locations of street lamps or
energy generators (Schmidt et al., 2013). If it is the target, to get all bus stops in Amsterdam, then it is
possible to download the information from Overpass Turbo (https://overpass-turbo.eu/), using
the key highway and the value bus_stop. An example is depicted in Figure 5. Overpass turbo is a
web-based data collection tool for OSM. It runs with any overpass API query and displays the results
on an interactive map (OpenStreetMap Wiki 2017d).

With a query by the client to the API you get the corresponding data. The API is streamlined
for data consumers that need a few elements within a short time, selected by search criteria like for
example type of objects, location, proximity, tag properties, or combinations of them (Mongiello et al.,
2015). The usage of the Overpass API is especially advisable if only points of interest for a particular
topic and a bigger section are relevant. It is possible to download the data in GeoJSON, GPX and KML
format. The Keyhole Markup Language (KML) is a language used to describe geodata. It was used in
Google Earth. KML also follows the XML-syntax. In addition also the raw data can be downloaded
form Overpass Turbo. The package XML can be used to access the API directly from R (Lang and the
CRAN Team 2016).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://www.openstreetmap.org/api/0.6/
relation/4290854847
https://www.openstreetmap.org/
https://CRAN.R-project.org/package=curl
https://www.openstreetmap.org/
https://overpass-turbo.eu/
https://CRAN.R-project.org/package=XML

CONTRIBUTED RESEARCH ARTICLES 15

Figure 5: Bus stops in Amsterdam

Processing OSM-data

In this section the processing of the downloaded OSM-data is presented. The online book of Lovelace
et al. (2018) gives a very good overview on tasks like this. In the previous section we have seen how
to download data from the main OSM API. Now we parse the string containing XML content and
generate an R-structure using the function xmlParse from package XML.

library(XML)
AM <- xmlParse("amsterdam.osm")

This XML-file contains information about nodes, ways, and relations. In a next step, the informa-
tion has to be extracted. For some OSM objects there is a lot of tagged information available. But some
key-value pairs are very seldom, whereas the geocode is available for every object. With the XML Path
syntax, it is possible to find XML nodes that match a particular criterion. You can get the right search
criterion by looking closer at the downloaded XML file. In the following example the typical OSM
key-value pair structure is used to get information about the downloaded node.

xpathApply(AM,"//tag[@k = 'population']")

In the result we get the population of Amsterdam:

[[1]]
<tag k="population" v="844952"/>

attr(,"class")
[1] "XMLNodeSet"

The .osm files can also be imported using the package sf. With the function st_layers we can
check which layers are available.

library(sf)
st_layers("amsterdam.osm")

Driver: OSM
Available layers:

layer_name geometry_type features fields
1 points Point NA 10
2 lines Line String NA 9
3 multilinestrings Multi Line String NA 4
4 multipolygons Multi Polygon NA 25
5 other_relations Geometry Collection NA 4

In a seond step, the multipolygons layer can be imported with the function st_read.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=XML
https://CRAN.R-project.org/package=sf

CONTRIBUTED RESEARCH ARTICLES 16

points_am <- st_read("amsterdam.osm", "points")

Sf is the abbreviation for simple features. With the integration of simple features in R, the inter-
national standard ISO 19125-1:2004 was implemented. This standard describes how geographical
information is handled (Pebesma et al. 2018). A feature might be a tree or a building. A feature may
consist of several other features. The same as abouth also works for an .xml file. The outcome is the
Table 5 with the layer names, the geometry type and the number of fields.

library("sf")
st_layers("4290854847.xml")

name geomtype fields

1 points Point 10
2 lines Line String 9
3 multilinestrings Multi Line String 4
4 multipolygons Multi Polygon 25
5 other_relations Geometry Collection 4

Table 5: Available layers in object 4290854847.xml (Driver: osm)

We can also import .xml files with the commandst_read.

centraal <- st_read("4290854847.xml", "points")

The result is information of the the node or point. The function st_read can also be used to import
for example the GeoJSON format. The information in the object centraal can be accessed relatively
conveniently with the dollar sign. For example, the coordinates result from the following command:

centraal$geometry

For a query on the first level of the object centraal the first lines the geometry type, the dimension,
the bounding box and the epsg code results. If we work with simple features we can use the function
st_transform from package sf.

Geometry set for 1 feature
geometry type: POINT
dimension: XY
bbox: xmin: 4.90058 ymin: 52.3789 xmax: 4.90058 ymax: 52.3789
epsg (SRID): 4326
proj4string: +proj=longlat +datum=WGS84 +no_defs
POINT (4.900581 52.3789)

If very large excerpts or the entire planet file are downloaded from OSM, the XML files can become
very large. Here the protocolbuffer binary format (PBF) offers an efficient alternative, which will
spread further in the future (OpenStreetMap Wiki 2018c). It is for example planned to implement
this file format in the osmdata package. The XML structure of OSM objects is unfortunately not very
intuitive at first glance. Despite these disadvantages, the XML format still has its justification, since
the use of XML formats is widespread (see for example Nolan and Lang 2014). In the following I use
the command st_layers from sf to see which layers are available in the downloaded data.

The osmdata package provides functionality to download OSM-data using the Overpass API. The
data can be imported as simple features and spatial objects (Padgham et al. 2017). With this package,
it is possible to download information for one object (node, way or relation) or a collection of objects.

library(osmdata)
dat_rw <- opq(bbox = 'Amsterdam') %>%

add_osm_feature(key = 'railway',
value = 'tram_stop') %>%

osmdata_sf()

It is obvious and simple to combine the information obtained with osmdata with further informa-
tion to a map. We can e.g. also extract information for other types of highways. In the following that is
done with the package osmplotr. In a first step a bounding box is generated with the command getbb
from osmdata. The functions add_osm_feature and osmdata_sf can be used to get the raw XML data
from Overpass API.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=osmdata
https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=osmdata
https://CRAN.R-project.org/package=osmdata
https://CRAN.R-project.org/package=osmplotr
https://CRAN.R-project.org/package=osmdata

CONTRIBUTED RESEARCH ARTICLES 17

library(osmplotr)
bbox <- getbb("Amsterdam")
dat_pa <- extract_osm_objects(key = 'highway',

value = "primary",
bbox = bbox)

dat_sa <- extract_osm_objects(key = 'highway',
value = "secondary",
bbox = bbox)

The function osm_basemap from package osmplotr creates a base OSM plot (Padgham 2017).

map <- osm_basemap(bbox = bbox, bg = c("#F5F5DC"))
map <- add_osm_objects(map, dat_pa, col = c("#00008B"))
map <- add_osm_objects(map, dat_sa, col = "green")
further objects can be added
print_osm_map(map)

In the following figure 6, the highways with value cycleway, footway, pedestrian, primary, sec-
ondary, tertiary and residential are used to depict the colored lines.

Figure 6: Map of Amsterdam with roads

library(tmap)
qtm(dat_pa$geometry, fill = "#8B1A1A")

In the following code chunk I use this object to create an interactive map with the aforementioned
R-package mapview.

library(mapview)
mapview(centraal)

In the previous section I downloaded an object and named it amsterdamcentraal.osm. The .osm-
file (e.g. for the section visible in Figure 4) can parsed to R with the function st_read from package sf.
With the sf package it is possible to import all available layers of the .osm file. We can check which
layers are available with the function st_layers. In this case we also get information on ways and
relations:

library(sf)
st_layers("amsterdamcentraal.osm")
am_cen <- st_read("amsterdamcentraal.osm", "multipolygons")

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=osmplotr
https://CRAN.R-project.org/package=mapview
https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=sf

CONTRIBUTED RESEARCH ARTICLES 18

An outcome is an simple feature collection. We can access the information relatively conveniently
with the dollar sign. The first part of the object contains general information about the geometry type,
bounding box, and EPSG code:

Simple feature collection with 53 features and 25 fields
geometry type: MULTIPOLYGON
dimension: XY
bbox: xmin: 11.48829 ymin: 48.13825 xmax: 11.5604 ymax: 48.14688
epsg (SRID): 4326
proj4string: +proj=longlat +datum=WGS84 +no_defs

The second part then lists specific information about the individual features. For example the OSM
id and in the last column the geometry we need for visualization. In Table 6 we can see the first rows
and some selected columns of the feature table.

osm_id type building geometry

56955 multipolygon yes MULTIPOLYGON (((11.54238 48...
<NA> <NA> yes MULTIPOLYGON (((11.54157 48...
<NA> <NA> yes MULTIPOLYGON (((11.54245 48...
<NA> <NA> yes MULTIPOLYGON (((11.54201 48...
<NA> <NA> yes MULTIPOLYGON (((11.54041 48...
<NA> <NA> yes MULTIPOLYGON (((11.54134 48...
<NA> <NA> yes MULTIPOLYGON (((11.54058 48...
<NA> <NA> yes MULTIPOLYGON (((11.54254 48...
<NA> <NA> <NA> MULTIPOLYGON (((11.54276 48...
<NA> <NA> yes MULTIPOLYGON (((11.54038 48...

Table 6: Table of tags for the imported osm section

A comparison between Table 2 and 6 shows that the level of information varies. sf simply calls
GDAL, which only imports the osm_id value of the containing object but discards values of all
members of a MULTIPOLYGON for example. The different degree of information can therefore
be traced back to the definition of simple features standard. The osmdata package will provide an
equivalent version of Table 6 in which all osm_id values will have been retained.

The number of nodes is bounded at 50,000 as well as the size of the area (Roick et al., 2011, p. 4).
Subsequently, it is possible to work with the data in the standard R-manner. The data can be converted
into available infrastructure provided by existing R-packages, e.g. sp and igraph objects (Bivand et al.
2013 and Csardi and Nepusz 2006).

houses <- am_cen[!is.na(am_cen$building),]
other_tags <- am_cen[!is.na(am_cen$other_tags),]

Based on this information maps can be plotted using either base graphics, or the plot functions in
package sp. The package tmap by Tennekes (2018) also offers an intuitive and fast way to visualize
this information (see Kolb 2016 for a description). With this package it is possible to create thematic
maps with flexibility. In the following, we use the tm_shape command from the tmap-package. So far
we extracted mainly nodes and lines within the specified bounding box. It is also possible to obtain
polygones. In this case, we can use for instance building as key. Than we subselect the related objects
and we plot them. The result is visible on the right-hand side of figure 7.

library(tmap)
tm_shape(houses) + tm_fill("royalblue") + tm_shape(other_tags) + tm_borders("gray")

Summary

The OSM project offers a great variety of possibilities to access interesting geo-information. We can
combine this data with static maps (e.g. satellite maps) from the Google Maps API. Thus, it is for
example possible to create valuable visualizations quite fast with the APIs. And they offer much more
possibilities. Very early, there were packages available in R that could be used to process and display
geographic information. Especially lately, the number of these packages is increasing.

The map tile servers of the OSM project provide possibilities to work with static maps in R. They
also provide the necessary information to create interactive maps using the package leaflet. Lately

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=osmdata
https://CRAN.R-project.org/package=sp
https://CRAN.R-project.org/package=igraph
https://CRAN.R-project.org/package=sp
https://CRAN.R-project.org/package=tmap
https://CRAN.R-project.org/package=tmap
https://CRAN.R-project.org/package=leaflet

CONTRIBUTED RESEARCH ARTICLES 19

Figure 7: Amsterdam Centraal - two levels of information

many packages have been developped based on Javascript libraries like e.g. mapdeck and deckard,
are a good example of how quickly interactive maps evolve. With these packages it is possible to create
many different interactive graphics. These kind of visualizations are developing very fast. Already
now there are various fascinating possibilities available, and it is to be expected that soon many more
possibilities will be added.

There are packages available in R to realize geocoding using the Nominatim API or the Google
Maps API. With the Overpass API, it is possible to obtain useful information for particular points of
interest like restaurants, fuel stations, bakeries and so on. The ggmap package can be used to combine
and visualize this information. The combination of the OSM API‘s with packages like osmdata allows
downloading collections of objects. The Overpass API is about downloading information on a specified
key-value combination. In contrast, with the main OSM API you can get all the information available
for a section.

There are already massive amounts of data available free of charge. And thanks to numerous
volunteers, the database is getting better and more comprehensive. So it is very crucial to handle
this treasure of information with care. If it is the target to work with big data from OSM, it is highly
recommended to install OSM locally and therefore, to download the whole planet file, or an excerpt.
Geofabrik (http://www.geofabrik.de/) may be used for this (OpenStreetMap Wiki 2017b). It has to
be mentioned that the data quality of the information may be heterogeneous and that the completeness
may vary, depending on the region (see Kounadi 2009 and Goodchild and Li 2012).

Bibliography

D. Abernathy. Using Geodata and Geolocation in the Social Sciences: Mapping Our Connected World. SAGE,
2016. doi: 10.4135/9781473983267. [p9, 10]

A. Aitchison. Beginning Spatial with SQL Server 2008. Apress, 2009. [p9]

T. Appelhans, F. Detsch, C. Reudenbach, and S. Woellauer. mapview: Interactive Viewing of Spatial Data
in R, 2018. URL https://CRAN.R-project.org/package=mapview. R package version 2.3.0. [p9]

J. J. Arsanjani, A. Zipf, P. Mooney, and M. Helbich. An introduction to OpenStreetMap in geographic
information science: Experiences, research, and applications. In J. J. Arsanjani, A. Zipf, P. Mooney,
and M. Helbich, editors, OpenStreetMap in GIScience, pages 1–15. Springer, 2015. doi: 10.1007/978-3-
319-14280-7_1. [p6]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=mapdeck
https://CRAN.R-project.org/package=ggmap
https://CRAN.R-project.org/package=osmdata
http://www.geofabrik.de/
https://CRAN.R-project.org/package=mapview

CONTRIBUTED RESEARCH ARTICLES 20

C. Barrington-Leigh and A. Millard-Ball. The world’s user-generated road map is more than 80%
complete. PloS one, 12(8):e0180698, 2017. doi: 10.1371/journal.pone.0180698. [p6]

C. Barron, P. Neis, and A. Zipf. A comprehensive framework for intrinsic openstreetmap quality
analysis. Transactions in GIS, 18(6):877–895, 2014. doi: 10.1111/tgis.12073. [p6]

M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz. SUMO–simulation of urban mobility: An
overview. In Proceedings of SIMUL 2011, The Third International Conference on Advances in System
Simulation. ThinkMind, 2011. [p6]

R. Bivand and A. Gebhardt. Implementing functions for spatial statistical analysis using the R language.
Journal of Geographical Systems, 2(3):307–317, 2000. doi: 10.1007/pl00011460. [p6]

R. S. Bivand, E. Pebesma, and V. Gomez-Rubio. Applied spatial data analysis with R. Springer, NY.,
second edition. edition, 2013. doi: 10.1007/978-1-4614-7618-4. URL http://www.asdar-book.org/.
[p18]

P. Brown. Maps, coordinate reference systems and visualising geographic data with mapmisc. R-
Journal, 2016. [p11, 12]

S. Chamberlain and J. Hollister. lawn: Client for ’Turfjs’ for ’Geospatial’ Analysis, 2017. URL https:
//CRAN.R-project.org/package=lawn. R package version 0.4.2. [p9]

J. Cheng and Y. Xie. leaflet: Create Interactive Web Maps with the JavaScript ’Leaflet’ Library, 2016. URL
https://CRAN.R-project.org/package=leaflet. R package version 1.0.1. [p9]

S. Chilton. Crowdsourcing is radically changing the geodata landscape: case study of OpenStreetMap.
In Proceedings of the UK 24th International Cartography Conference, 2009. [p6]

K. Clemens. Qualitative comparison of geocoding systems using OpenStreetMap data. International
Journal on Advances in Software, 8(3 & 4), 2015. [p10]

D. Cooley. mapdeck: Interactive Maps Using ’Mapbox GL JS’ and ’Deck.gl’, 2018a. URL https://CRAN.R-
project.org/package=mapdeck. R package version 0.1.0. [p9]

D. Cooley. googleway: Accesses Google Maps APIs to Retrieve Data and Plot Maps, 2018b. URL https:
//CRAN.R-project.org/package=googleway. R package version 2.7.1. [p10]

G. Csardi and T. Nepusz. The igraph software package for complex network research. InterJournal,
Complex Systems:1695, 2006. URL http://igraph.org. [p18]

M. Dorman. Learning R for geospatial analysis. Packt Publishing Ltd, 2014. [p7]

I. Fellows. OpenStreetMap: Access to OpenStreetMap Raster Images, 2016. URL https://CRAN.R-project.
org/package=OpenStreetMap. R package version 0.3.3. [p7]

J. Gaffuri. Toward web mapping with vector data. In International Conference on Geographic Information
Science, pages 87–101. Springer, 2012. [p7]

L. Gervasoni, S. Fenet, R. Perrier, and P. Sturm. Convolutional neural networks for disaggregated
population mapping using open data. In IEEE International Conference on Data Science and Advanced
Analytics (DSAA), 2018. [p6]

M. F. Goodchild and L. Li. Assuring the quality of volunteered geographic information. Spatial
statistics, 1:110–120, 2012. doi: 10.1016/j.spasta.2012.03.002. [p19]

T. Grippa, S. Georganos, S. Zarougui, P. Bognounou, E. Diboulo, Y. Forget, M. Lennert, S. Vanhuysse,
N. Mboga, and E. Wolff. Mapping urban land use at street block level using OpenStreetMap, remote
sensing data, and spatial metrics. ISPRS International Journal of Geo-Information, 7(7):246, 2018. doi:
10.3390/ijgi7070246. [p6]

M. Haklay and P. Weber. OpenStreetMap: User-generated street maps. IEEE Pervasive Computing, 7(4):
12–18, 2008. doi: 10.1109/mprv.2008.80. [p13]

I. Hansel. deckard: Visualise Data with deck.gl, 2018. R package version 0.0.0.9000. [p9]

R. Harris. Quantitative Geography: The Basics. Sage, 2016. doi: 10.4135/9781473920446. [p9]

D. Kahle and H. Wickham. ggmap: Spatial visualization with ggplot2. The R Journal, 5(1):144–161,
2013. URL http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf. [p7, 9]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

http://www.asdar-book.org/
https://CRAN.R-project.org/package=lawn
https://CRAN.R-project.org/package=lawn
https://CRAN.R-project.org/package=leaflet
https://CRAN.R-project.org/package=mapdeck
https://CRAN.R-project.org/package=mapdeck
https://CRAN.R-project.org/package=googleway
https://CRAN.R-project.org/package=googleway
http://igraph.org
https://CRAN.R-project.org/package=OpenStreetMap
https://CRAN.R-project.org/package=OpenStreetMap
http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf

CONTRIBUTED RESEARCH ARTICLES 21

J.-P. Kolb. Visualizing geodata with R. Austrian Journal of Statistics, 45(1):45–54, 2016. doi: 10.17713/ajs.
v45i1.88. [p18]

O. Kounadi. Assessing the quality of OpenStreetMap data. Msc geographical information science,
University College of London Department of Civil, Environmental And Geomatic Engineering, 2009. [p19]

O. Kounadi, T. J. Lampoltshammer, M. Leitner, and T. Heistracher. Accuracy and privacy aspects in
free online reverse geocoding services. Cartography and Geographic Information Science, 40(2):140–153,
2013. doi: 10.1080/15230406.2013.777138. [p13]

O. P. Lamigueiro. Displaying time series, spatial, and space-time data with R. CRC Press, 2014. doi:
10.1201/b16713. [p7]

D. T. Lang. RJSONIO: Serialize R objects to JSON, JavaScript Object Notation, 2014. URL https://CRAN.R-
project.org/package=RJSONIO. R package version 1.3-0. [p10]

D. T. Lang and the CRAN Team. XML: Tools for Parsing and Generating XML Within R and S-Plus, 2016.
URL https://CRAN.R-project.org/package=XML. R package version 3.98-1.5. [p14]

C. Li, H. Lu, Y. Xiang, Z. Liu, W. Yang, and R. Liu. Bringing geospatial data closer to mobile users: A
caching approach based on vector tiles for wireless multihop scenarios. Mobile Information Systems,
2018, 2018. doi: 10.1155/2018/5186495. [p7]

M. Loecher and K. Ropkins. RgoogleMaps and loa: Unleashing R graphics power on map tiles. Journal
of Statistical Software, 63(4):1–18, 2015. doi: 10.18637/jss.v063.i04. URL http://www.jstatsoft.org/
v63/i04/. [p9]

R. Lovelace, J. Cheshire, R. Oldroyd, et al. Introduction to visualising spatial data in R, 2017. URL
https://cran.r-project.org/doc/contrib/intro-spatial-rl.pdf. [p12]

R. Lovelace, J. Nowosad, and J. Muenchow. Geocomputation with R, 2018. URL https://geocompr.
robinlovelace.net/. [p9, 15]

G. Maier. OpenStreetMap, the wikipedia map. Region, 1(1):3–10, 2014. doi: 10.18335/region.v1i1.70.
[p11]

M. Masse. REST API Design Rulebook: Designing Consistent RESTful Web Service Interfaces. O’Reilly
Media, Inc., 2011. ISBN 1449319904. [p13]

J. Meijer, M. A. Huijbregts, K. Schotten, and A. Schipper. Global patterns of current and future road
infrastructure. Environmental Research Letters, 13(6), 2018. doi: 10.1088/1748-9326/aabd42. [p6]

M. Mongiello, T. Di Noia, and E. Di Sciascio. A temporal logic-based approach to query OpenStreetMap.
In 23nd Italian Symposium on Advanced Database Systems. SEBD 2015, 2015. [p14]

P. Mooney and P. Corcoran. Accessing the history of objects in OpenStreetMap. In Proceedings AGILE,
page 155, 2011. [p13]

A. Moore and I. Drecki. Geospatial Vision: New Dimensions in Cartography. Springer Science & Business
Media, 2008. ISBN 978-3-540-70970-1. doi: 10.1007/978-3-540-70970-1. [p9]

J. Muenchow and P. Schratz. RQGIS: Integrating R with QGIS, 2017. URL https://CRAN.R-project.
org/package=RQGIS. R package version 0.2.0. [p6]

D. Nolan and D. T. Lang. XML and web technologies for data sciences with R. Springer, 1 edition, 2014.
ISBN 9781461478997. doi: 10.1007/978-1-4614-7900-0. [p16]

J. Ooms. The jsonlite package: A practical and consistent mapping between JSON data and R objects.
arXiv:1403.2805 [stat.CO], 2014. URL https://arxiv.org/abs/1403.2805. [p10]

J. Ooms. curl: A Modern and Flexible Web Client for R, 2018. URL https://CRAN.R-project.org/
package=curl. R package version 3.2. [p14]

OpenStreetMap Wiki. Overpass API — OpenStreetMap wiki, 2016a. URL http://wiki.
openstreetmap.org/w/index.php?title=Overpass_API&oldid=1405270. [Online; accessed 7-
Februar-2017]. [p14]

OpenStreetMap Wiki. Slippy map — OpenStreetMap wiki, 2016b. URL http://wiki.openstreetmap.
org/w/index.php?title=Slippy_Map&oldid=1412781. [Online; accessed 2-Februar-2017]. [p9]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=RJSONIO
https://CRAN.R-project.org/package=RJSONIO
https://CRAN.R-project.org/package=XML
http://www.jstatsoft.org/v63/i04/
http://www.jstatsoft.org/v63/i04/
https://cran.r-project.org/doc/contrib/intro-spatial-rl.pdf
https://geocompr.robinlovelace.net/
https://geocompr.robinlovelace.net/
https://CRAN.R-project.org/package=RQGIS
https://CRAN.R-project.org/package=RQGIS
https://arxiv.org/abs/1403.2805
https://CRAN.R-project.org/package=curl
https://CRAN.R-project.org/package=curl
http://wiki.openstreetmap.org/w/index.php?title=Overpass_API&oldid=1405270
http://wiki.openstreetmap.org/w/index.php?title=Overpass_API&oldid=1405270
http://wiki.openstreetmap.org/w/index.php?title=Slippy_Map&oldid=1412781
http://wiki.openstreetmap.org/w/index.php?title=Slippy_Map&oldid=1412781

CONTRIBUTED RESEARCH ARTICLES 22

OpenStreetMap Wiki. Api usage policy — OpenStreetMap wiki, 2017a. URL http://wiki.
openstreetmap.org/w/index.php?title=API_usage_policy&oldid=1538003. [Online; accessed 26-
November-2018]. [p14]

OpenStreetMap Wiki. Geofabrik — OpenStreetMap wiki, 2017b. URL http://wiki.openstreetmap.
org/w/index.php?title=Geofabrik&oldid=1501676. [Online; accessed 4-March-2018]. [p19]

OpenStreetMap Wiki. OSM XML — OpenStreetMap wiki, 2017c. URL http://wiki.openstreetmap.
org/w/index.php?title=OSM_XML&oldid=1419416. [Online; accessed 26-November-2018]. [p14]

OpenStreetMap Wiki. De:overpass turbo — OpenStreetMap wiki, 2017d. URL http://wiki.
openstreetmap.org/w/index.php?title=DE:Overpass_turbo&oldid=1485193. [Online; accessed
28-Juni-2018]. [p14]

OpenStreetMap Wiki. Research — OpenStreetMap wiki, 2017e. URL http://wiki.openstreetmap.
org/w/index.php?title=Research&oldid=1422855. [Online; accessed 2-Februar-2017]. [p6]

OpenStreetMap Wiki. Nominatim — OpenStreetMap wiki, 2018a. URL http://wiki.openstreetmap.
org/w/index.php?title=Nominatim&oldid=1667946. [Online; accessed 27-November-2018]. [p6,
10]

OpenStreetMap Wiki. Downloading data — OpenStreetMap wiki, 2018b. URL http://wiki.
openstreetmap.org/w/index.php?title=Downloading_data&oldid=1631037. [Online; accessed 26-
November-2018]. [p14]

OpenStreetMap Wiki. Pbf format — OpenStreetMap Wiki, 2018c. URL http://wiki.openstreetmap.
org/w/index.php?title=PBF_Format&oldid=1580310. [Online; accessed 12-September-2018]. [p16]

OpenStreetMap Wiki. Vector tiles — OpenStreetMap wiki, 2018d. URL http://wiki.openstreetmap.
org/w/index.php?title=Vector_tiles&oldid=1551297. [Online; accessed 27-Oktober-2018]. [p7]

M. Padgham. osmplotr: Bespoke Images of ’OpenStreetMap’ Data, 2017. URL https://CRAN.R-project.
org/package=osmplotr. R package version 0.3.0. [p17]

M. Padgham, B. Rudis, R. Lovelace, and M. Salmon. osmdata. The Journal of Open Source Software, 2
(14), jun 2017. doi: https://doi.org/10.21105/joss.00305. [p16]

E. Pebesma and R. Bivand. Spatial Data Science, 2019. URL https://www.r-spatial.org/book. [p12]

E. Pebesma, R. Bivand, E. Racine, M. Sumner, I. Cook, T. Keitt, R. Lovelace, H. Wickham, J. Ooms,
and K. Müller. Simple Features for R, 2018. URL https://cran.r-project.org/web/packages/sf/
vignettes/sf1.html. R package version 0.6-3. [p16]

R. E. Plant et al. Spatial data analysis in ecology and agriculture using R. cRc Press Boca Raton, Florida,
2012. doi: 10.1201/b11769. [p12]

H. Pruvost and P. Mooney. Exploring data model relations in OpenStreetMap. Future Internet, 9(4):70,
2017. [p13]

QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation,
2009. URL http://qgis.osgeo.org. [p6]

F. Ramm, J. Topf, and S. Chilton. OpenStreetMap: using and enhancing the free map of the world. UIT
Cambridge Cambridge, 2011. [p13]

O. Roick, P. Neis, and A. Zipf. Volunteered Geographic Information – Datenqualität und Nutzungspo-
tentiale am Beispiel von OpenStreetMap. In Kommission Angewandte Kartographie- Geovisualisierung
der Deutschen Gesellschaft für Kartographie (DGfK)- Symposium Königslutter, 2011. [p18]

S. Schmidt, S. Manschitz, C. Rensing, and R. Steinmetz. Extraction of address data from unstructured
text using free knowledge resources. In Proceedings of the 13th International Conference on Knowledge
Management and Knowledge Technologies, page 7. ACM, 2013. doi: 10.1145/2494188.2494193. [p6, 14]

J. P. Stotz. JMapViewer, 2018. URL https://wiki.openstreetmap.org/wiki/JMapViewer. [p7]

G. Svennerberg. Beginning Google Maps API 3. Apress, 2010. [p9]

M. Tennekes. tmap: Thematic maps in R. Journal of Statistical Software, 84(6):1–39, 2018. doi: https:
//doi.org/10.18637/jss.v084.i06. [p11, 18]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

http://wiki.openstreetmap.org/w/index.php?title=API_usage_policy&oldid=1538003
http://wiki.openstreetmap.org/w/index.php?title=API_usage_policy&oldid=1538003
http://wiki.openstreetmap.org/w/index.php?title=Geofabrik&oldid=1501676
http://wiki.openstreetmap.org/w/index.php?title=Geofabrik&oldid=1501676
http://wiki.openstreetmap.org/w/index.php?title=OSM_XML&oldid=1419416
http://wiki.openstreetmap.org/w/index.php?title=OSM_XML&oldid=1419416
http://wiki.openstreetmap.org/w/index.php?title=DE:Overpass_turbo&oldid=1485193
http://wiki.openstreetmap.org/w/index.php?title=DE:Overpass_turbo&oldid=1485193
http://wiki.openstreetmap.org/w/index.php?title=Research&oldid=1422855
http://wiki.openstreetmap.org/w/index.php?title=Research&oldid=1422855
http://wiki.openstreetmap.org/w/index.php?title=Nominatim&oldid=1667946
http://wiki.openstreetmap.org/w/index.php?title=Nominatim&oldid=1667946
http://wiki.openstreetmap.org/w/index.php?title=Downloading_data&oldid=1631037
http://wiki.openstreetmap.org/w/index.php?title=Downloading_data&oldid=1631037
http://wiki.openstreetmap.org/w/index.php?title=PBF_Format&oldid=1580310
http://wiki.openstreetmap.org/w/index.php?title=PBF_Format&oldid=1580310
http://wiki.openstreetmap.org/w/index.php?title=Vector_tiles&oldid=1551297
http://wiki.openstreetmap.org/w/index.php?title=Vector_tiles&oldid=1551297
https://CRAN.R-project.org/package=osmplotr
https://CRAN.R-project.org/package=osmplotr
https://www.r-spatial.org/book
https://cran.r-project.org/web/packages/sf/vignettes/sf1.html
https://cran.r-project.org/web/packages/sf/vignettes/sf1.html
http://qgis.osgeo.org
https://wiki.openstreetmap.org/wiki/JMapViewer

CONTRIBUTED RESEARCH ARTICLES 23

A. Turner. Introduction to Neogeography. O’Reilly Media, 2006. ISBN 9780596529956. URL https:
//books.google.de/books?id=oHgDv4feV-8C. [p11]

P. Warden. Data Source Handbook. O’Reilly Media, Inc., 2011. ISBN 1449303145. [p10]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009. ISBN
978-0-387-98140-6. doi: 10.1007/978-0-387-98141-3. URL http://ggplot2.org. [p7]

Jan-Philipp Kolb
GESIS Leibniz Institute for the Social Sciences
B2,1 Mannheim
Germany
Jan-Philipp.Kolb@gesis.org

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://books.google.de/books?id=oHgDv4feV-8C
https://books.google.de/books?id=oHgDv4feV-8C
http://ggplot2.org
mailto:Jan-Philipp.Kolb@gesis.org

CONTRIBUTED RESEARCH ARTICLES 24

orthoDr: Semiparametric Dimension
Reduction via Orthogonality Constrained
Optimization
by Ruoqing Zhu, Jiyang Zhang, Ruilin Zhao, Peng Xu, Wenzhuo Zhou and Xin Zhang

Abstract orthoDr is a package in R that solves dimension reduction problems using orthogonality
constrained optimization approach. The package serves as a unified framework for many regression
and survival analysis dimension reduction models that utilize semiparametric estimating equations.
The main computational machinery of orthoDr is a first-order algorithm developed by Wen and
Yin (2012) for optimization within the Stiefel manifold. We implement the algorithm through Rcpp
and OpenMP for fast computation. In addition, we developed a general-purpose solver for such
constrained problems with user-specified objective functions, which works as a drop-in version of
optim(). The package also serves as a platform for future methodology developments along this line
of work.

Introduction

Dimension reduction is a long-standing problem in statistics and data science. While the traditional
principal component analysis (Jolliffe, 1986) and related works provide a way of reducing the dimen-
sion of the covariates, the term “sufficient dimension reduction” is more commonly referring to a
series of regression works originated from the seminal paper on sliced inverse regression (Li, 1991). In
such problems, we observe an outcome Y ∈ R, along with a set of covariates X = (X1, . . . , Xp)T ∈ Rp.
Dimension reduction models are interested in modeling the conditional distribution of Y given X,
while their relationship satisfies, for some p× d matrix B = (β1, . . . , βp),

Y = h(X, ε) = h(BTX, ε) = h(βT
1X, . . . , βT

dX, ε), (1)

where ε represents any error terms and h, with a slight abuse of notation, represents the link function
using X or BTX. One can easily notice that when d, the number of columns in B, is less than p, a
dimension reduction is achieved, in the sense that only a d dimensional covariate information is
necessary for fully describing the relationship (Cook, 2009). Alternatively, this relationship can be
represented as (Zeng and Zhu, 2010)

Y ⊥ X | BTX, (2)

which again describes the sufficiency of BTX. Following the work of Li (1991), a variety of methods
have been proposed. An incomplete list of literature includes Cook and Weisberg (1991); Cook and Lee
(1999); Yin and Cook (2002); Chiaromonte et al. (2002); Zhu et al. (2006); Li and Wang (2007); Zhu et al.
(2010b,a); Cook et al. (2010); Lee et al. (2013); Cook and Zhang (2014); Li and Zhang (2017). For a more
comprehensive review of the literature, we refer the readers to Ma and Zhu (2013b). One advantage of
many early developments in dimension reduction models is that only a singular value decomposition
is required to obtain the reduced space parameters B through inverse sliced averaging. However,
this comes at a price of assuming the linearity assumption (Li, 1991), which is almost the same as
assuming that the covariates follow an elliptical distribution (Li and Dong, 2009; Dong and Li, 2010).
Moreover, some methods require more restrictive assumptions on the covariance structure (Cook and
Weisberg, 1991). Many methods attempt to avoid these assumptions by resorting to nonparametric
estimations. The most successful ones include Xia et al. (2002) and Xia (2007). However, recently a
new line of work started by Ma and Zhu (2012b,a, 2013a) shows that by formulating the problem into
semiparametric estimating equations, not only we can avoid many distributional assumptions on the
covariates, the obtained estimator of B also enjoys efficiency. Extending this idea, Sun et al. (2017)
developed a framework for dimension reduction in survival analysis using a counting process based
estimating equations. The method performs significantly better than existing dimension reduction
methods for censored data such as Li et al. (1999); Xia et al. (2010) and Lu and Li (2011). Another
recent development that also utilizes this semiparametric formulation is Zhao et al. (2017), in which
an efficient estimator is derived.

Although there are celebrated theoretical and methodological advances, estimating B through the
semiparametric estimating equations is still not a trivial task. Two challenges remain: first, by a careful
look at the model definition 1, we quickly noticed that the parameters are not identifiable unless certain
constraints are placed. In fact, if we let A be any d× d full rank matrix, then (BA)TX preserves the same

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=orthoDr

CONTRIBUTED RESEARCH ARTICLES 25

column space information of BTX, hence, we can define h∗((BA)TX, ε) accordingly to retain exactly
the same model as (1). While traditional methods can utilize singular value decompositions (SVD) of
the estimation matrix to identify the column space of B instead of recovering each parameter (Cook
and Lee, 1999), it appears to be a difficult task in the semiparametric estimating equation framework.
One challenge is that if we let B change freely, the rank of the B matrix cannot be guaranteed, which
makes the formulation meaningless. Hence, for both computational and theoretical concerns, Ma
and Zhu (2012b) resorts to an approach that fixes the upper d× d block of B as an identity matrix,
i.e., B = (Id×d, B∗T)T, where B∗ is a (p− d)× d matrix that sits in the lower block of B. Hence, in
this formulation, only B∗ needs to be solved. While the solution is guaranteed to be rank d in this
formulation, as pointed out by Sun et al. (2017), this approach still requires correctly identifying and
reordering of the covariate vector x such that the first d entries are indeed important, which creates
another daunting task. Another challenge is that solving semiparametric estimating equations requires
the estimation of nonparametric components. These components need to be computed through kernel
estimations, usually the Nadaraya-Watson type, which significantly increases the computational
intensity of the method considering that these components need to be recalculated at each iteration of
the optimization. Up to date, these drawbacks remain as the strongest criticism of the semiparametric
approaches. Hence, although enjoying superior statistical asymptotic properties, are not as attractive
as a traditional sliced inverse type of approaches such as Li (1991) and Cook and Weisberg (1991).

The goal of our orthoDr package is to develop a computationally efficient optimization platform
for solving the semiparametric estimating equation approaches proposed in Ma and Zhu (2013a), Sun
et al. (2017) and possibly any future work along this line. Revisiting the rank preserving problem of B
mentioned above, we can essentially set a constraint that

BTB = I, (3)

where I is a d× d identity matrix. A solution of the estimating equations that satisfies the constraint
will correctly identify the dimensionality-reduced subspace. This is known as optimizing on the Stiefel
manifold, which is a class of well-studied problems (Edelman et al., 1998). A recent R development
(Martin et al., 2016) utilizes quasi-Newton methods such as the well known BFGS method on the
Riemannian manifold (Huang et al., 2018). However, second order optimization methods always
require forming and storing large hessian matrices. In addition, they may not be easily adapted to
penalized optimization problems, which often appear in high dimensional statistical problems Zhu
et al. (2006); Li and Yin (2008). On the other hand, first-order optimization methods are faster in
each iteration, and may also incorporate penalization in a more convenient way Wen et al. (2010).
By utilizing the techniques developed by Wen and Yin (2012), we can effectively search for the
solution in the Stiefel manifold, and this becomes the main machinery of our package. Further
incorporating the popular Rcpp (Eddelbuettel and François, 2011) and RcppArmadillo (Eddelbuettel
and Sanderson, 2014) toolboxes and the OpenMP parallel commuting, the computational time for
our package is comparable to state-of-the-art existing implementations (such as ManifoldOpthm),
making the semiparametric dimension reduction models more accessible in practice.

The purpose of this article is to provide a general overview of the orthoDr package (version 0.6.2)
and provide some concrete examples to demonstrate its advantages. orthoDr is available from the
Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=orthoDr and
GitHub at https://github.com/teazrq/orthoDr. We begin by explaining the underlying formulation
of the estimating equation problem and the parameter updating scheme that preserves orthogonality.
Next, the software is introduced in detail using simulated data and real data as examples. We further
demonstrate an example that utilizes the package as a general purpose solver. We also investigate the
computational time of the package compared with existing solvers. Future plans for extending the
package to other dimension reduction problems are also discussed.

Model description

Counting process based dimension reduction

To give a concrete example of the estimating equations, we use the semiparametric inverse regression
approach defined in Sun et al. (2017) to demonstrate the calculation. Following the common notations
in the survival analysis literature, let Xi be the observed p dimensional covariate values of subject
i, Yi = min(Ti, Ci) is the observed survival time, with failure time Ti and censoring time Ci, and
δi = I(Ti ≤ Ci) is the censoring indicator. A set of i.i.d. observations {Xi, Yi, δi}n

i=1 is observed. We
are interested in a situation that the conditional distribution of failure time Ti|Xi depends only on the

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=orthoDr
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=ManifoldOpthm
https://CRAN.R-project.org/package=orthoDr
https://github.com/teazrq/orthoDr

CONTRIBUTED RESEARCH ARTICLES 26

reduced space BTXi. Hence, to estimate B, the estimating equation is given by

ψ̂n
(
B
)
=vec

[
1
n

n

∑
i=1

n

∑
j=1
δj=1

{
Xi−Ê

(
X
∣∣Y ≥ Yj, BTXi

)}
ϕ̂T(Yj)

{
δi I(j= i)−λ̂

(
Yj|BTXi

)}]
, (4)

where the operator vec(·) is the vectorization of matrix. Several components are estimated nonparasit-
ically: the function ϕ̂(u) is estimated by sliced averaging,

ϕ̂(u) =
∑n

i=1 Xi I
(
u ≤ Yi < u +4u, δi = 1

)
∑n

i=1 I
(
u ≤ Yi < u +4u, δi = 1

) − ∑n
i=1 Xi I

(
Yi ≥ u

)
∑n

i=1 I
(
Yi ≥ u

) , (5)

where 4u is chosen such that there are hn number of observations lie between u and u +4u. The
conditional mean function Ê

(
X|Y ≥ u, BTX = z

)
is estimated through the Nadaraya-Watson kernel

estimator

Ê
(
X|Y ≥ u, BTX= z

)
=

∑n
i=1 XiKh(BTXi−z)I(Yi ≥ u)

∑n
i=1 Kh(BTXi−z)I(Yi ≥ u)

. (6)

In addition, the the conditional hazard function at any time point u can be estimated by

λ̂(u|BTX = z) =
∑n

i=1 Kb(Yi − u)δiKh
(
BTXi − z

)
∑n

j=1 I
(
Yj ≥ u

)
Kh
(
BTXj − z

) . (7)

However, this substantially increase the computational burden since the double kernel estimator
requires O(n2) flops to calculate the hazard at any given u and z. Instead, an alternative version using
Dabrowska (1989) can greatly reduce the computational cost without compromising the performance.
Hence, we estimate the conditional hazard function by

λ̂(u|BTX = z) =
∑n

i=1 I
(
Yi = u

)
I
(
δi = 1

)
Kh
(
BTXi − z

)
∑n

i=1 I
(
Yi ≥ u

)
Kh
(
BTXi − z

) , (8)

which requires only O(n) flops. In the above equations (5), (6) and (8), h is a pre-specified kernel
bandwidth and Kh(·) = K(·/h)/h, where K(·) is the Gaussian kernel function. By utilizing the method
of moments estimators (Hansen, 1982) and noticing our constraint for identifying the column space of
B, solving for the solution of the estimating equations (4) is equivalent to

minimize f (B) = ψ̂n(B)Tψ̂n(B) (9)

subject to BTB = I. (10)

Essentially all other semiparametric dimension reduction models described in Ma and Zhu (2013a),
and more recently Ma and Zhang (2015) Xu et al. (2016), Sun et al. (2017), Huang and Chiang (2017) and
many others can be estimated in the samimilar fashion as the above optimization problem. However,
due to the difficult in the constrains and the purpose of identifiability, all of these methods resort to
either fixing the upper block of the B matrix as an identity matrix or adding a penalty of ‖BTB− I‖F to
preserve the orthogonality constraint. There appears to be no existing method that solves (9) directly.
Here, we utilize Wen and Yin (2012)’s approach which can effectively tackle this problem.

Orthogonality preserving updating scheme

The algorithm works in the same fashion as a regular gradient decent, except that we need to preserve
the orthogonality at each iteration of the update. As described in Wen and Yin (2012), given any
feasible point B0, i.e., B0

TB0 = I, which can always be generated randomly, we update B0 as follows.
Let the p× d gradient matrix be

G =

(
∂ f (B0)

∂B0(i, j)

)
{i,j}

. (11)

Then, utilizing the Cayley transformation, we have

Bnew =
(

I +
τ

2
A
)−1(

I− τ

2
A
)

B0, (12)

with the orthogonality preserving property BT
newBnew = I. Here, A = GB0

T − B0GT is a skew-
symmetric matrix. It can be shown that {Bnew(τ)}τ≥0 is a descent path. Similar to line search

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 27

algorithms, we can then find a proper step size τ through a curvilinear search. Recursively updating
the current value of B, the algorithm stops when the tolerance level is reached. An initial value is also
important for the performance of nonconvex optimization problems. A convenient initial value for
our framework is the computational efficient approach developed in Sun et al. (2017), which only
requires a SVD of the estimation matrix.

The R package orthoDr

There are several main functions in the orthoDr package: orthoDr_surv, ortho_reg and ortho_optim.
They are corresponding to the survival model described perviously (Sun et al., 2017), the regression
model in Ma and Zhu (2012b), and a general constrained optimization function, respectively. In this
section, we demonstrate the details of using these main functions, illustrate them with examples.

Semiparametric dimension reduction models for survival data

The orthoDr_surv function implements the optimization problem defined in Equation (9), where the
kernel estimations and various quantities are implemented and calculated within C++. Note that
in addition, the method defined previously, some simplified versions are also implemented such as
the counting process inverse regression models and the forward regression models, which are all
described in Sun et al. (2017). These specifications can be made using the method parameter. A routine
call of the function orthoDr_surv proceed as

orthoDr_surv(x, y, censor, method, ndr, B.initial, bw, keep.data,
control, maxitr, verbose, ncore)

• x: A matrix or data.frame for features (numerical only).

• y: A vector of observed survival times.

• censor: A vector of censoring indicators.

• method: The estimating equation method used.

– "dm" (default): semiparametric inverse regression given in (4).

– "dn": counting process inverse regression.

– "forward": forward regression model with one structural dimensional.

• ndr: The number of structural dimensional. For method = "dn" or "dm", the default is 2. For
method = "forward" only one structural dimension is allowed, hence the parameter is sup-
pressed.

• B.initial: Initial B values. Unless specifically interested, this should be left as default, which
uses the computational efficient approach (with the CPSIR() function) in Sun et al. (2017) as the
initial. If specified, must be a matrix with ncol(x) rows and ndr columns. The matrix will be
processed by Gram-Schmidt if it does not satisfy the orthogonality constrain.

• bw: A kernel bandwidth, assuming each variables have unit variance. By default we use the
Silverman rule-of-thumb formula Silverman (1986) to determine the bandwidth

bw = 1.06×
(

4
d + 2

) 1
d+4

n−
1

d+4 .

This bandwidth can be computed using the silverman(n,d) function in our package.

• keep.data: Should the original data be kept for prediction? Default is FALSE.

• control: A list of tuning variables for optimization, including the convergence criteria. In
particular, epsilon is the size for numerically approximating the gradient, ftol, gtol, and
btol are tolerance levels for the objective function, gradients, and the parameter estimations,
respectively, for judging the convergence. The default values are selected based on Wen and Yin
(2012) .

• maxitr: Maximum number of iterations. Default is 500.

• verbose: Should information be displayed? Default is FALSE.

• ncore: Number of cores for parallel computing when approximating the gradients numerically.
The default is the maximum number of threads.

We demonstrate the usage of orthoDr_surv function by solving a problem with generated survival
data.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 28

generate some survival data with two structural dimensions
R> set.seed(1)
R> N = 350; P = 6; dataX = matrix(rnorm(N*P), N, P)
R> failEDR = as.matrix(cbind(c(1, 1, 0, 0, 0, 0, rep(0, P-6)),
+ c(0, 0, 1, -1, 0, 0, rep(0, P-6))))

R> censorEDR = as.matrix(c(0, 1, 0, 1, 1, 1, rep(0, P-6)))
R> T = exp(-2.5 + dataX %*% failEDR[,1] + 0.5*(dataX %*%
+ failEDR[,1])*(dataX %*% failEDR[,2]) + 0.25*log(-log(1-runif(N))))

R> C = exp(-0.5 + dataX %*% censorEDR + log(-log(1-runif(N))))
R> Y = pmin(T, C)
R> Censor = (T < C)

fit the model
R> orthoDr.fit = orthoDr_surv(dataX, Y, Censor, ndr = 2)
R> orthoDr.fit

[,1] [,2]
[1,] -0.689222616 0.20206497
[2,] -0.670750726 0.19909057
[3,] -0.191817963 -0.66623300
[4,] 0.192766630 0.68605407
[5,] 0.005897188 0.02021414
[6,] 0.032829356 0.06773089

To evaluate the accuracy of this estimation, a distance function distance() can be used. This
function calculates the distance between the column spaces generated by the true B and the estimated
version B̂. Note that the sine angle distance between the two column spaces is closely related to the
canonical correlation between the two matrices B and B̂.

distance(s1, s2, method, x)

• s1: A matrix for the first column space (e.g., B).

• s2: A matrix for the second column space (e.g., B̂).

• method:

– "dist": the Frobenius norm distance between the projection matrices of the two given
matrices, where for any given matrix B, the projection matrix P = B(BTB)−1BT.

– "trace": the trace correlation between two projection matrices tr(PP̂)/d, where d is the
number of columns of the given matrix.

– "canonical": the canonical correlation between BTX and B̂TX.

– "sine": the sine angle distance ‖ sin Θ‖F obtained from P1(I− P2) = U sin ΘVT.

• x: The design matrix X (default = NULL), required only if method = "canonical" is used.

We compare the accuracy of the estimations obtained by the method ="dm" and "dn". Note that
the "dm" method enjoys double robustness property of the estimating equations, hence the result is
usually better.

Calculate the distance to the true parameters
R> distance(failEDR, orthoDr.fit$B, "dist")

[1] 0.1142773

Compare with the counting process inverse regression model
R> orthoDr.fit1 = orthoDr_surv(dataX, Y, Censor, method = "dn", ndr = 2)
R> distance(failEDR, orthoDr.fit1$B, "dist")

[1] 0.1631814

Semiparametric dimension reduction models for regression

The orthoDr_reg function implements the semiparametric dimension reduction methods proposed
in Ma and Zhu (2012b). A routine call of the function orthoDr_reg proceed as

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 29

orthoDr_reg(x, y, method, ndr, B.initial, bw, keep.data, control,
maxitr, verbose, ncore)

• x: A matrix or data.frame for features (numerical only).

• y: A vector of observed continuous outcome.

• method: We currently implemented two methods: the semiparametric sliced inverse regression
method ("sir"), and the semiparametric principal Hessian directions method ("phd").

– "sir": semiparametric sliced inverse regression method solves the sample version of the
estimating equation

E
([

E(X|Y)− E{E(X|Y)|BTX}
][

X− E(X|BTX)
]T
)
= 0

– "phd": semiparametric principal Hessian directions method that estimates B by solving
the sample version of

E
[
{Y− E(Y|BTX)}{XXT − E(XXT|BTX)}

]
= 0

• ndr: The number of structural dimensional (default is 2).

• B.initial: Initial B values. For each method, the initial values are taken from the corresponding
traditional inverse regression approach using the dr package. The obtained matrix will be
processed by Gram-Schmidt for orthogonality.

• bw, keep.data, control, maxitr, verbose and ncore are exactly the same as those in the orthoDr_surv
function.

To demonstrate the usage of orthoDr_reg, we consider the problem of dimension reduction by
fitting a semi-PHD model proposed by Ma and Zhu (2012b).

R> set.seed(1)
R> N = 100; P = 4; dataX = matrix(rnorm(N*P), N, P)
R> Y = -1 + dataX[,1] + rnorm(N)
R> orthoDr_reg(dataX, Y, ndr = 1, method = "phd")

Subspace for regression model using phd approach:
[,1]

[1,] 0.99612339
[2,] 0.06234337
[3,] -0.04257601
[4,] -0.04515279

Parallelled gradient approximation through OpenMP

The estimation equations of the dimension reduction problem in the survival and regression settings
usually have a complicated form. Especially, multiple kernel estimations are involved, which results
in difficulties in taking derivatives analytically. As an alternative, numerically approximated gradients
are implemented using OpenMP. A comparison between a single core and multiple cores (4 cores) is
given in the following example. Results from 20 independent simulation runes are summarized in
Table 1. The data generating procedure used in this example is the same as the survival data used in
Section Semiparametric dimension reduction models for survival data. All simulations are performed
on an i7-4770K CPU.

R> t0 = Sys.time()
R> dn.fit = orthoDr_surv(dataX, Y, Censor, method = "dn", ndr = ndr,
+ ncore = 4, control = list(ftol = 1e-6))

R> Sys.time() - t0

Table 1: Computational cost of different numbers of cores

of cores
1 4

n=350, p=6 3.9831 1.2741
n=350, p=12 12.7780 3.4850

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 30

General solver for orthogonality constrained optimization

ortho_optim is a general purpose optimization function that can incorporate any user defined objective
function f (and gradient function if supplied). The usage of ortho_optim is similar to the widely used
optim() function. A routine call of the function proceed as

ortho_optim(B, fn, grad, ..., maximize, control, maxitr, verbose)

• B: Initial B values. Must be a matrix, and the columns are subject to the orthogonality constrains.
It will be processed by Gram-Schmidt if not orthogonal.

• fn: A function that calculates the objective function value. The first argument should be B.
Returns a single value.

• grad: A function that calculate the gradient. The first argument should be B. Returns a matrix
with the same dimension as B. If not specified, a numerical approximation is used.

• ...: Arguments passed to fn and grad besides B.

• maximize: By default, the solver will try to minimize the objective function unless maximize =
TRUE.

• The parameters maxitr, verbose and ncore works in the same way as introduced in the previous
sections.

To demonstrate the simple usage of ortho_optim as a drop-in function of optim(), we consider
the problem of searching for the first principle component for a data matrix.

an example of searching for the first principal component
R> set.seed(1)
R> N = 400; P = 100; X = scale(matrix(rnorm(N*P), N, P), scale = FALSE)
R> w = gramSchmidt(matrix(rnorm(P), P, 1))$Q
R> fx <- function(w, X) t(w) %*% t(X) %*% X %*% w
R> gx <- function(w, X) 2*t(X) %*% X %*% w

fit the model
R> fit = ortho_optim(w, fx, gx, X = X, maximize = TRUE, verbose = 0)
R> head(fit$B)

[,1]
[1,] 0.01268226
[2,] -0.09065592
[3,] -0.01471700
[4,] 0.10583958
[5,] -0.02656409
[6,] -0.04186199

compare results with the prcomp() function
R> library(pracma)
R> distance(fit$B, as.matrix(prcomp(X)$rotation[, 1]), type = "dist")

[1] 1.417268e-05

The ManifoldOptim (Martin et al., 2016) package is known for solving optimization problems on
manifolds. We consider the problem of optimizing Brockett cost function (Huang et al., 2018) on the
Stiefel manifold with objective and gradient functions written in R. The problem can be stated as

min
BTB=Ip , B∈Rn×p

trace(BTXBD), (13)

where X ∈ Rn×n, X = XT, D = diag(µ1, µ2, ..., µp) with µ1 ≥ µ2 ≥ ... ≥ µp. We generate the data
with exactly the same procedure as the documentation file provided in the ManifoldOptim package,
with only a change of notation. For our orthoDr package, the following code is used to specify the
objective and gradient functions and solve for the optimal B.

R> n = 150; p = 5; set.seed(1)

R> X <- matrix(rnorm(n*n), nrow=n)
R> X <- X + t(X)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 31

R> D <- diag(p:1, p)

R> f1 <- function(B, X, D) { Trace(t(B) %*% X %*% B %*% D) }
R> g1 <- function(B, X, D) { 2 * X %*% B %*% D }

R> b1 = gramSchmidt(matrix(rnorm(n*p), nrow=n, ncol=p))$Q
R> res2 = ortho_optim(b1, fn = f1, grad = g1, X, D)
R> head(res2$B)

[,1] [,2] [,3] [,4] [,5]
[1,] -0.110048632 -0.060656649 -0.001113691 -0.03451514 -0.063626067
[2,] -0.035495670 -0.142148873 -0.011204859 0.01784039 0.129255824
[3,] 0.052141162 0.015140614 -0.034893426 0.02600569 0.006868275
[4,] 0.151239722 -0.008553174 -0.096884087 0.01398827 0.132756189
[5,] -0.001144864 -0.056849007 0.080050182 0.23351751 -0.007219738
[6,] -0.140444290 -0.112932425 0.082197835 0.18644089 -0.057003273

Furthermore, we compare the performence with the ManifoldOptim package, using four opti-
mization methods: "LRBFGS", "LRTRSR1", "RBFGS" and "RTRSR1" (Huang et al., 2018). We wrote the
same required functions for the Brockett problem in R. Further more, note that different algorithms
implements slightly different stoping criterion, we run each algorithm a fixed number of iterations
with a single core. We consider three smaller settings with n = 150, and p = 5, 10 and 15, and a
larger setting with n = 500 and p = 50. Each simulation is repeated 100 times. The functional value
progression (Figures 1 and 2) and the total time cost up to a certain number of iterations (Table 2) are
presented.

We found that "LRBFGS" and our orthoDr package usually achieve the best performance, with
functional value decreases the steepest in the log scale. In terms of computing time, "LRBFGS" and
orthoDr performers similarly. Although "LRTRSR1" has similar computational time, its functional
value falls behind. This is mainly because the theoretical complexity of second-order algorithms is
similar to first order algorithms, both are of order O(p3). However, it should be noted that for a
semiparametric dimension reduction method, the major computational cost is not due to the parameter
updates, rather, it is calculating the gradient since complicated kernel estimations are involved. Hence,
we believe there is no significant advantage using either "LRBFGS" or our orthoDr package regarding
the efficiency of the algorithm. However, first order algorithms may have an advantage when
developing methods for penalized high-dimensional models.

Table 2: Running times with a fixed number of iterations (in seconds)

n p iteration ManifoldOpthm orthoDrLRBFGS LRTRSR1 RBFGS RTRSR1

150 5 250 0.053 0.062 0.451 0.452 0.065
150 10 500 0.176 0.201 4.985 5.638 0.221
150 20 750 0.526 0.589 28.084 36.142 0.819
150 50 1000 2.469 2.662 – – 6.929

500 5 250 0.403 0.414 7.382 7.426 0.423
500 10 500 1.234 1.305 57.047 67.738 1.332
500 20 750 3.411 3.6 – – 3.974
500 50 1000 13.775 14.43 – – 19.862

Examples

We use the Concrete Compressive Strength (Yeh, 1998) dataset as an example to further demonstrate
the orthoDr_reg function and to visualize the results. The dataset is obtained from the UCI Machine
Learning Repository.

Concrete is the most important material in civil engineering. The concrete compressive strength is
a highly nonlinear function of age and ingredients. These ingredients include cement, blast furnace
slag, fly ash, water, superplasticizer, coarse aggregate, and fine aggregate. In this dataset, we have
n = 1030 observation, 8 quantitative input variables, and 1 quantitative output variable. We present
the estimated two directions for structural dimension and further plot the observed data in these two
directions. A non-parametric kernel estimation surface is further included to approximate the mean
concrete strength.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 32

Figure 1: Log of function value vs. iteration (n = 150)

0 50 100 150 200 250

iteration

fu
nc

tio
na

l v
al

ue
 -

 m
in

im
um

LRBFGS
LRTRSR1
RBFGS
RTRSR1
orthoDr

1e
-7

1e
-6

1e
-5

1e
-4

1e
-3

1e
-2

1e
-1

1
1e

1
1e

2
1e

3

0 100 200 300 400 500

iteration

fu
nc

tio
na

l v
al

ue
 -

 m
in

im
um

LRBFGS
LRTRSR1
RBFGS
RTRSR1
orthoDr

1e
-7

1e
-6

1e
-5

1e
-4

1e
-3

1e
-2

1e
-1

1
1e

1
1e

2
1e

3

0 200 400 600

iteration

fu
nc

tio
na

l v
al

ue
 -

 m
in

im
um

LRBFGS
LRTRSR1
RBFGS
RTRSR1
orthoDr

1e
-5

1e
-4

1e
-3

1e
-2

1e
-1

1
1e

1
1e

2
1e

3

0 200 400 600 800 1000

iteration

fu
nc

tio
na

l v
al

ue
 -

 m
in

im
um

LRBFGS
LRTRSR1
orthoDr

1e
-3

1e
-2

1e
-1

1
1e

1
1e

2
1e

3

From left to right, top to bottom: p = 5, 10, 20 and 50 respectively.

R> concrete_data = read.csv(choose.files())
R> X = as.matrix(concrete_data[,1:8])
R> colnames(X) = c("Cement", "Blast Furnace Slag", "Fly Ash", "Water",

"Superplasticizer", "Coarse Aggregate", "Fine Aggregate", "Age")
R> Y = as.matrix(concrete_data[,9])

R> result = orthoDr_reg(X, Y, ndr = 2, method = "sir", maxitr = 1000,
+ keep.data = TRUE)

R> rownames(result$B) = colnames(X)
R> result$B

[,1] [,2]
Cement 0.08354280 -0.297899899
Blast Furnace Slag 0.27563507 0.320304097
Fly Ash 0.82665328 -0.468889856
Water 0.20738201 0.460314093
Superplasticizer 0.43496780 0.540733516
Coarse Aggregate 0.01141892 0.011870495
Fine Aggregate 0.02936740 -0.004718979
Age 0.02220664 -0.290444936

Discussion

Using the algorithm proposed by Wen and Yin (2012) for optimization on the Stiefel manifold, we
developed the orthoDr package that serves specifically for semi-parametric dimension reductions

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 33

Figure 2: Log of function value vs. iteration (n = 500)

0 50 100 150 200 250

iteration

fu
nc

tio
na

l v
al

ue
 -

 m
in

im
um

LRBFGS
LRTRSR1
RBFGS
RTRSR1
orthoDr

1e
-4

1e
-3

1e
-2

1e
-1

1
1e

1
1e

2
1e

3

0 100 200 300 400 500

iteration

fu
nc

tio
na

l v
al

ue
 -

 m
in

im
um

LRBFGS
LRTRSR1
RBFGS
RTRSR1
orthoDr

1e
-4

1e
-3

1e
-2

1e
-1

1
1e

1
1e

2
1e

3

0 200 400 600

iteration

fu
nc

tio
na

l v
al

ue
 -

 m
in

im
um

LRBFGS
LRTRSR1
orthoDr

1e
-4

1e
-3

1e
-2

1e
-1

1
1e

1
1e

2
1e

3

0 200 400 600 800 1000

iteration

fu
nc

tio
na

l v
al

ue
 -

 m
in

im
um

LRBFGS
LRTRSR1
orthoDr

1e
-2

1e
-1

1
1e

1
1e

2
1e

3

From left to right, top to bottom: p = 5, 10, 20 and 50 respectively.

problems. A variety of dimension reduction models are implemented for censored survival outcome
and regression problems. In addition, we implemented parallel computing for numerically appropriate
the gradient function. This is particularly useful for semi-parametric estimating equation methods
because the objective function usually involves kernel estimations and the gradients are difficult
to calculate. Our package can also be used as a general purpose solver and is comparable with
existing manifold optimization approaches. However, since the performances of different optimization
approaches could be problem dependent, hence, it could be interesting to investigate other choices
such as the “LRBFGS” approach in the ManifoldOptim package.

Our package also serves as a platform for future methodology developments along this line of
work. For example, we are currently developing a personalized dose-finding model with dimension
reduction structure (Zhou and Zhu, 2018). Also, when the number of covariates p is large, the
model can be over-parameterized. Hence, applying a L1 penalty can force sparsity and allow the
model to handle high-dimensional data. To this end, first-order optimization approaches can have
advantages over second-order approaches. However, persevering the orthogonality during the
Cayley transformation while also preserve the sparsity can be a challenging task and requires new
methodologies. Furthermore, tuning parameters can be selected through a cross-validation approach,
which can be implemented in the future.

Acknowledgement

Xin Zhang’s research was supported in part by grants DMS-1613154 and CCF-1617691 from U.S.
National Science Foundation. Ruoqing Zhu’s research was supported in part by grant RB19046 from
UIUC.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 34

X
T β̂2

X T
β̂
1

St
re

ng
th

X
T β̂ 1

X Tβ̂2

St
re

ng
th

Figure 3: Response variable over learned directions

Bibliography

F. Chiaromonte, R. D. Cook, and B. Li. Sufficient dimensions reduction in regressions with categorical
predictors. The Annals of Statistics, 30(2):475–497, 2002. URL https://doi.org/10.1214/aos/
1021379862. [p24]

R. D. Cook. Regression Graphics: Ideas for Studying Regressions through Graphics, volume 482. John Wiley
& Sons, 2009. [p24]

R. D. Cook and H. Lee. Dimension reduction in binary response regression. Journal of the American
Statistical Association, 94(448):1187–1200, 1999. URL https://doi.org/10.1080/01621459.1999.
10473873. [p24, 25]

R. D. Cook and S. Weisberg. Discussion of ‘sliced inverse regression for dimension reduction’. Journal
of the American Statistical Association, 86(414):328, 1991. URL https://doi.org/10.2307/2290564.
[p24, 25]

R. D. Cook and X. Zhang. Fused estimators of the central subspace in sufficient dimension reduction.
Journal of the American Statistical Association, 109(506):815–827, 2014. URL https://doi.org/10.
1080/01621459.2013.866563. [p24]

R. D. Cook, B. Li, and F. Chiaromonte. Envelope models for parsimonious and efficient multivariate
linear regression. Statistica Sinica, pages 927–960, 2010. [p24]

D. M. Dabrowska. Uniform consistency of the kernel conditional kaplan-meier estimate. The Annals of
Statistics, pages 1157–1167, 1989. URL https://doi.org/10.1214/aos/1176347261. [p26]

Y. Dong and B. Li. Dimension reduction for non-elliptically distributed predictors: Second-order
methods. Biometrika, 97(2):279–294, 2010. URL https://doi.org/10.1093/biomet/asq016. [p24]

D. Eddelbuettel and R. François. Rcpp: Seamless R and C++ integration. Journal of Statistical Software,
40(8):1–18, 2011. URL https://doi.org/10.18637/jss.v040.i08. [p25]

D. Eddelbuettel and C. Sanderson. Rcpparmadillo: Accelerating r with high-performance c++ linear
algebra. Computational Statistics & Data Analysis, 71:1054–1063, 2014. URL http://dx.doi.org/10.
1016/j.csda.2013.02.005. [p25]

A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality constraints.
SIAM journal on Matrix Analysis and Applications, 20(2):303–353, 1998. URL https://doi.org/10.
1137/s0895479895290954. [p25]

L. P. Hansen. Large sample properties of generalized method of moments estimators. Econometrica:
Journal of the Econometric Society, pages 1029–1054, 1982. URL https://doi.org/10.2307/1912775.
[p26]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1214/aos/1021379862
https://doi.org/10.1214/aos/1021379862
https://doi.org/10.1080/01621459.1999.10473873
https://doi.org/10.1080/01621459.1999.10473873
https://doi.org/10.2307/2290564
https://doi.org/10.1080/01621459.2013.866563
https://doi.org/10.1080/01621459.2013.866563
https://doi.org/10.1214/aos/1176347261
https://doi.org/10.1093/biomet/asq016
https://doi.org/10.18637/jss.v040.i08
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://dx.doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1137/s0895479895290954
https://doi.org/10.1137/s0895479895290954
https://doi.org/10.2307/1912775

CONTRIBUTED RESEARCH ARTICLES 35

M.-Y. Huang and C.-T. Chiang. An effective semiparametric estimation approach for the sufficient
dimension reduction model. Journal of the American Statistical Association, pages 1–15, 2017. URL
https://doi.org/10.1080/01621459.2016.1215987. [p26]

W. Huang, P.-A. Absil, K. A. Gallivan, and P. Hand. Roptlib: An object-oriented c++ library for
optimization on riemannian manifolds. ACM Transactions on Mathematical Software, 44(4):1–21, 2018.
URL https://doi.org/10.1145/3218822. [p25, 30, 31]

I. T. Jolliffe. Principal component analysis and factor analysis. In Principal Component Analysis, pages
115–128. Springer-Verlag, 1986. URL https://doi.org/10.1007/978-1-4757-1904-8_7. [p24]

K.-Y. Lee, B. Li, F. Chiaromonte, and others. A general theory for nonlinear sufficient dimension
reduction: Formulation and estimation. The Annals of Statistics, 41(1):221–249, 2013. URL https:
//doi.org/10.1214/12-aos1071. [p24]

B. Li and Y. Dong. Dimension reduction for nonelliptically distributed predictors. The Annals of
Statistics, pages 1272–1298, 2009. URL https://doi.org/10.1214/08-aos598. [p24]

B. Li and S. Wang. On directional regression for dimension reduction. Journal of the American Statistical
Association, 102(479):997–1008, 2007. URL https://doi.org/10.1198/016214507000000536. [p24]

K.-C. Li. Sliced inverse regression for dimension reduction. Journal of the American Statistical Association,
86(414):316–327, 1991. URL https://doi.org/10.2307/2290563. [p24, 25]

K.-C. Li, J.-L. Wang, C.-H. Chen, and others. Dimension reduction for censored regression data. The
Annals of Statistics, 27(1):1–23, 1999. URL https://doi.org/10.1214/aos/1018031098. [p24]

L. Li and X. Yin. Sliced inverse regression with regularizations. Biometrics, 64(1):124–131, 2008. URL
https://doi.org/10.1111/j.1541-0420.2007.00836.x. [p25]

L. Li and X. Zhang. Parsimonious tensor response regression. Journal of the American Statistical
Association, pages 1–16, 2017. URL https://doi.org/10.1080/01621459.2016.1193022. [p24]

W. Lu and L. Li. Sufficient dimension reduction for censored regressions. Biometrics, 67(2):513–523,
2011. URL https://doi.org/10.1111/j.1541-0420.2010.01490.x. [p24]

Y. Ma and X. Zhang. A validated information criterion to determine the structural dimension in
dimension reduction models. Biometrika, 102(2):409–420, 2015. URL https://doi.org/10.1093/
biomet/asv004. [p26]

Y. Ma and L. Zhu. Efficiency loss caused by linearity condition in dimension reduction. Biometrika, 99
(1):1–13, 2012a. URL https://doi.org/10.1093/biomet/ass075. [p24]

Y. Ma and L. Zhu. A semiparametric approach to dimension reduction. Journal of the American Statistical
Association, 107(497):168–179, 2012b. URL https://doi.org/10.1080/01621459.2011.646925. [p24,
25, 27, 28, 29]

Y. Ma and L. Zhu. Efficient estimation in sufficient dimension reduction. Annals of statistics, 41(1):250,
2013a. URL https://doi.org/10.1214/12-aos1072. [p24, 25, 26]

Y. Ma and L. Zhu. A review on dimension reduction. International Statistical Review, 81(1):134–150,
2013b. URL https://doi.org/10.1111/j.1751-5823.2012.00182.x. [p24]

S. Martin, A. M. Raim, W. Huang, and K. P. Adragni. Manifoldoptim: An r interface to the roptlib
library for riemannian manifold optimization, 2016. URL https://arxiv.org/abs/1612.03930.
[p25, 30]

B. W. Silverman. Density estimation in action. In Density Estimation for Statistics and Data Analysis, pages
120–158. Springer-Verlag, 1986. URL https://doi.org/10.1007/978-1-4899-3324-9_6. [p27]

Q. Sun, R. Zhu, T. Wang, and D. Zeng. Counting process based dimension reduction methods for
censored outcomes, 2017. URL https://arxiv.org/abs/1704.05046. [p24, 25, 26, 27]

Z. Wen and W. Yin. A feasible method for optimization with orthogonality constraints. Mathematical
Programming, 142(1-2):397–434, 2012. URL https://doi.org/10.1007/s10107-012-0584-1. [p24,
25, 26, 27, 32]

Z. Wen, D. Goldfarb, and W. Yin. Alternating direction augmented lagrangian methods for semidefinite
programming. Mathematical Programming Computation, 2(3-4):203–230, 2010. URL https://doi.org/
10.1007/s12532-010-0017-1. [p25]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1080/01621459.2016.1215987
https://doi.org/10.1145/3218822
https://doi.org/10.1007/978-1-4757-1904-8_7
https://doi.org/10.1214/12-aos1071
https://doi.org/10.1214/12-aos1071
https://doi.org/10.1214/08-aos598
https://doi.org/10.1198/016214507000000536
https://doi.org/10.2307/2290563
https://doi.org/10.1214/aos/1018031098
https://doi.org/10.1111/j.1541-0420.2007.00836.x
https://doi.org/10.1080/01621459.2016.1193022
https://doi.org/10.1111/j.1541-0420.2010.01490.x
https://doi.org/10.1093/biomet/asv004
https://doi.org/10.1093/biomet/asv004
https://doi.org/10.1093/biomet/ass075
https://doi.org/10.1080/01621459.2011.646925
https://doi.org/10.1214/12-aos1072
https://doi.org/10.1111/j.1751-5823.2012.00182.x
https://arxiv.org/abs/1612.03930
https://doi.org/10.1007/978-1-4899-3324-9_6
https://arxiv.org/abs/1704.05046
https://doi.org/10.1007/s10107-012-0584-1
https://doi.org/10.1007/s12532-010-0017-1
https://doi.org/10.1007/s12532-010-0017-1

CONTRIBUTED RESEARCH ARTICLES 36

Y. Xia. A constructive approach to the estimation of dimension reduction directions. The Annals of
Statistics, pages 2654–2690, 2007. URL https://doi.org/10.1214/009053607000000352. [p24]

Y. Xia, H. Tong, W. Li, and L.-X. Zhu. An adaptive estimation of dimension reduction space. Journal of
the Royal Statistical Society B, 64(3):363–410, 2002. [p24]

Y. Xia, D. Zhang, and J. Xu. Dimension reduction and semiparametric estimation of survival models.
Journal of the American Statistical Association, 105(489):278–290, 2010. URL https://doi.org/10.
1198/jasa.2009.tm09372. [p24]

K. Xu, W. Guo, M. Xiong, L. Zhu, and L. Jin. An estimating equation approach to dimension reduction
for longitudinal data. Biometrika, 103(1):189–203, 2016. URL https://doi.org/10.1093/biomet/
asv066. [p26]

I.-C. Yeh. Modeling of strength of high-performance concrete using artificial neural networks. Cement
and Concrete research, 28(12):1797–1808, 1998. URL https://doi.org/10.1016/s0008-8846(98)
00165-3. [p31]

X. Yin and R. D. Cook. Dimension reduction for the conditional kth moment in regression. Journal of the
Royal Statistical Society B, 64(2):159–175, 2002. URL https://doi.org/10.1111/1467-9868.00330.
[p24]

P. Zeng and Y. Zhu. An integral transform method for estimating the central mean and central
subspaces. Journal of Multivariate Analysis, 101(1):271–290, 2010. URL https://doi.org/10.1016/j.
jmva.2009.08.004. [p24]

G. Zhao, Y. Ma, and W. Lu. Efficient estimation for dimension reduction with censored data, 2017.
URL https://arxiv.org/abs/1710.05377. [p24]

W. Zhou and R. Zhu. A dimension reduction framework for personalized dose finding, 2018. URL
https://arxiv.org/abs/1802.06156. [p33]

L. Zhu, B. Miao, and H. Peng. On sliced inverse regression with high-dimensional covariates. Journal
of the American Statistical Association, 101(474):630–643, 2006. URL https://doi.org/10.1198/
016214505000001285. [p24, 25]

L. Zhu, T. Wang, L. Zhu, and L. Ferré. Sufficient dimension reduction through discretization-
expectation estimation. Biometrika, 97(2):295–304, 2010a. URL https://doi.org/10.1093/biomet/
asq018. [p24]

L.-P. Zhu, L.-X. Zhu, and Z.-H. Feng. Dimension reduction in regressions through cumulative
slicing estimation. Journal of the American Statistical Association, 105(492):1455–1466, 2010b. URL
https://doi.org/10.1198/jasa.2010.tm09666. [p24]

Ruoqing Zhu
Department of Statistics
University of Illinois at Urbana-Champaign
725 S. Wright St., 116 D
Champaign, IL 61820, USA
E-mail: rqzhu@illinois.edu

Jiyang Zhang
Department of Statistics
University of Illinois at Urbana-Champaign
725 S. Wright St.
Champaign, IL 61820, USA
E-mail: jiyangz2@illinois.edu

Ruilin Zhao
School of Engineering and Applied Science
University of Pennsylvania
220 South 33rd St.
Philadelphia, PA 19104, USA

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1214/009053607000000352
https://doi.org/10.1198/jasa.2009.tm09372
https://doi.org/10.1198/jasa.2009.tm09372
https://doi.org/10.1093/biomet/asv066
https://doi.org/10.1093/biomet/asv066
https://doi.org/10.1016/s0008-8846(98)00165-3
https://doi.org/10.1016/s0008-8846(98)00165-3
https://doi.org/10.1111/1467-9868.00330
https://doi.org/10.1016/j.jmva.2009.08.004
https://doi.org/10.1016/j.jmva.2009.08.004
https://arxiv.org/abs/1710.05377
https://arxiv.org/abs/1802.06156
https://doi.org/10.1198/016214505000001285
https://doi.org/10.1198/016214505000001285
https://doi.org/10.1093/biomet/asq018
https://doi.org/10.1093/biomet/asq018
https://doi.org/10.1198/jasa.2010.tm09666
mailto:rqzhu@illinois.edu
mailto:jiyangz2@illinois.edu

CONTRIBUTED RESEARCH ARTICLES 37

E-mail: rzhao15@seas.upenn.edu

Peng Xu
Departments of Statistics
Columbia University
1255 Amsterdam Avenue
New York, NY 10027, USA
E-mail: px2132@columbia.edu

Wenzhuo Zhou
Department of Statistics
University of Illinois at Urbana-Champaign
725 S. Wright St.
Champaign, IL 61820, USA
E-mail: wenzhuo3@illinois.edu

Xin Zhang
Department of Statistics
Florida State University
214 OSB, 117 N. Woodward Ave.
Tallahassee, FL 32306-4330, USA
E-mail: zhxnzx@gmail.com

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

mailto:rzhao15@seas.upenn.edu
mailto:px2132@columbia.edu
mailto:wenzhuo3@illinois.edu
mailto:zhxnzx@gmail.com

CONTRIBUTED RESEARCH ARTICLES 38

coxed: An R Package for Computing
Duration-Based Quantities from the Cox
Proportional Hazards Model
by Jonathan Kropko and Jeffrey J. Harden

Abstract The Cox proportional hazards model is one of the most frequently used estimators in duration
(survival) analysis. Because it is estimated using only the observed durations’ rank ordering, typical
quantities of interest used to communicate results of the Cox model come from the hazard function
(e.g., hazard ratios or percentage changes in the hazard rate). These quantities are substantively vague
and difficult for many audiences of research to understand. We introduce a suite of methods in the R
package coxed to address these problems. The package allows researchers to calculate duration-based
quantities from Cox model results, such as the expected duration (or survival time) given covariate
values and marginal changes in duration for a specified change in a covariate. These duration-based
quantities often match better with researchers’ substantive interests and are easily understood by most
readers. We describe the methods and illustrate use of the package.

Introduction

The Cox proportional hazards model (Cox, 1972) is frequently used for duration (survival) analysis
in a myriad of disciplines including the health sciences, social sciences, operations research, and
engineering. For many researchers who employ the Cox model, the chief concept of substantive
interest is the duration of an event, such as the survival time of a patient or the duration of a civil
war. However, the standard methods of reporting results from the Cox model—which are based
in the hazard function—communicate no specific information about duration. As a result, standard
interpretations of Cox model results are often substantively vague and difficult for many audiences of
research to understand.

Here we introduce an R package implementation of Cox proportional hazards model with expected
durations, or COX ED (Kropko and Harden, 2020). The COX ED suite of methods available in the coxed
package provides a more intuitive approach to communicating results from the Cox model. Specifically,
it computes duration-based quantities of interest, such as the expected time until event occurrence
according to the estimated model. These quantities have long been available with parametric duration
models, but in some instances researchers may not wish to make the distributional assumptions
required of those estimators. The COX ED methods allow researchers to stay within the Cox model
framework, but communicate results in the language of time. This affords more conceptual precision
when conversing with other researchers and makes the results of the analysis more intuitive and
accessible for general audiences.

The methodology

The goal of COX ED is to generate expected durations for individual observations and/or marginal
changes in expected duration given a change in a covariate from the Cox model. Specifically, the
methods can compute (1) the expected duration for each observation used to fit the Cox model, given
the covariates, (2) the expected duration for a “new” observation with a covariate profile set by the
analyst, or (3) the first difference, or change, in expected duration given two new observations.

There are two different methods of generating duration-based quantities in the package. The
first method employs a generalized additive model (GAM) to map the model’s exponentiated linear
predictor values to duration times. The second method calculates expected durations by using
nonparametric estimates of the baseline hazard and survivor functions. We present overviews of
these methods here. See Kropko and Harden (2020) for additional details, including simulation
results comparing the two methods. Importantly, both approaches use coefficient estimates from
the Cox model, so researchers must first estimate the model just as they always have. COX ED is a
postestimation procedure, not a new estimator. All of the choices required of applied researchers in
estimating the Cox model must be made first, at the estimation stage, before proceeding to implement
COX ED.1

1Additionally, because it is used after estimation, more extensive modeling features—such as non-linear effects
or time-varying covariates—can be incorporated into the use of COX ED.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=coxed

CONTRIBUTED RESEARCH ARTICLES 39

Method 1: GAM

The GAM approach to COX ED proceeds according to five steps. As is noted above, the first step is
model estimation. Then the method computes expected values of risk for each observation by matrix-
multiplying the covariates, X, by the estimated coefficients from the model, β̂, then exponentiating
the result. This creates exp(X β̂), or the exponentiated linear predictor (ELP). Then the observations
are ranked from smallest to largest according to their values of the ELP. This ranking is interpreted
as the expected order of failure; the larger the value of the ELP, the sooner the model expects that
observation to fail, relative to the other observations.

The next step is to connect the model’s expected risk for each observation (ELP) to duration time
(the observed durations). A GAM fits a model to data by using a series of locally-estimated polynomial
splines set by the user (Hastie and Tibshirani, 1990). It is a flexible means of allowing for the possibility
of nonlinear relationships between variables. COX ED uses a GAM to model the observed durations
as a function of the linear predictor ranks generated in the previous step. More specifically, the method
utilizes a cubic regression spline to draw a smoothed line summarizing the bivariate relationship
between the observed durations and the ranks (for more details, see Wood, 2006, 2011).2

The GAM fit can be used directly to compute expected durations, given the covariates, for each
observation in the data. However, for most researchers it is more useful to assess how a change to
a particular covariate of interest corresponds to changes in expected duration. In order to examine
such marginal changes, it is necessary to create two or more “new” observations corresponding
to theoretically-interesting, hypothetical covariate profiles. For example, the analyst might set an
indicator variable to 0 and 1 or a continuous variable to a “low” and a “high” value. COX ED allows
the covariates in the model to vary naturally over the entire data, then averages over them in the
computations.3 For instance, to estimate the effect of an increase in a covariate X1 from 0 to 1 on the
expected duration, we use the following steps:

(a) Set X1 to 1 for the entire data (all N observations) and calculate the ELP for every observation,
then take an average value of those computations (the median is the default).

(b) Repeat step (a) while setting X1 equal to 0.

(c) Take the values obtained in steps (a) and (b) and append them to the list of ELP values from the
original Cox model in which X1 is left as exogenous data. Then compute new rankings of the
linear predictor values from this list, which is now length N + 2.

(d) Pass the list of rankings from step (c) to the GAM as new data to generate expected values. Note
that a new GAM is not estimated at this step. Rather, expected durations are generated for each
observation—including the two new ones created in steps (a) and (b)—using the previously
estimated GAM. This produces point estimates of the expected durations for those two new
observations.

(e) Compute the difference between the two estimates obtained in step (d): the expected duration
for the data in which X1 is set to 1 and the expected duration for the data in which X1 is set to 0.
This quantity is a point estimate for the marginal effect, or first difference, corresponding to the
change in X1 from 0 to 1.

Finally, to produce estimates of uncertainty, the GAM approach repeats this process via bootstrap-
ping. The method generates bootstrap samples of the data and re-estimates the Cox model coefficients
on each bootstrap sample.4 At each iteration, this produces a new vector of actual durations and a new
ranking of ELP values, which are then used to fit a new GAM. This process results in a distribution
of expected durations for each independent variable profile (e.g., step d) and a distribution of the
marginal effect (step e). These distributions can be used to produce standard errors and confidence
intervals for the estimates.5 Importantly, by bootstrapping the entire process, this step incorporates
the uncertainty from the Cox model estimation and the uncertainty from the GAM.

2The GAM is fit with the uncensored observations only. If the sample contains a large proportion of censored
observations, the NPSF method (see below) may be preferable to the GAM method.

3This default option can be changed at the discretion of the analyst.
4Standard bootstrapping at the observation level or bootstrapping at the group level (Cameron et al., 2008) are

both available.
5By default, the method computes the standard errors of each quantity as the standard deviation of its bootstrap

distribution. The halfwidth of the confidence interval is then computed by multiplying a tunable critical value
based on the standard normal distribution by the standard error. The default critical value is 1.96 (i.e., a 95%
confidence interval). Fully non-parametric confidence intervals based on quantiles or bias-corrected quantiles of
the bootstrap distribution are also available (see below).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 40

Method 2: Nonparametric step-function

One drawback to the GAM approach is that it uses two statistical models (Cox model and GAM),
which yields two sources of estimation uncertainty. An alternative approach comes from the method
proposed by Cox and Oakes (1984, 107–109) for estimating the cumulative baseline hazard function.
This method is nonparametric and results in a step-function representation of the cumulative baseline
hazard; we refer to it as the nonparametric step-function (NPSF) approach.

Cox and Oakes (1984, 108) show that the cumulative baseline hazard function can be estimated
after fitting a Cox model by

Ĥ0(t) = ∑
τj<t

dj

∑
l∈<(τj)

ψ̂(l)
, (1)

where τj represents time points earlier than t, dj is a count of the total number of failures at τj, <(τj) is
the remaining risk set at τj, and ψ̂(l) represents the ELP from the Cox model for observations still in
the risk set at τj. The NPSF method uses equation (1) to calculate the cumulative baseline hazard at all
time points in the range of observed durations with the following steps.

(a) Tied durations are handled by collapsing the dataset by unique duration. The method calculates
dj, the numerator in equation (1), for all time points τj by summing the indicator for a non-
censored failure within each unique duration (dj = 0 only if all observed durations at τj are
right-censored). Additionally, it sums the ELPs for all observations with the same duration,
because these observations leave the risk set at the same time.

(b) The NPSF approach calculates a running sum, in reverse, for the collapsed ELPs. That is, at
the first time point this sum includes the ELP for observations at every time point. At the
second time point, this sum includes the ELP for every observation except for those with the
earliest observed duration. At the last time point, this sum is equal to the sum of only the ELPs
of observations with the latest observed duration. These sums represent the denominator of
equation (1).

(c) For each time point, the method divides the number of failures dj by the sum of ELPs for
observations still in the risk set.

(d) Finally, the method calculates the running sum of the ratios we derived in the previous step.
This running sum is the non-parametric estimate of the cumulative hazard function.

This procedure yields a stepwise function. Time points with no failures do not contribute to the
cumulative hazard, so the function is flat until the next time point with observed failures.

The NPSF approach next obtains expected durations and marginal changes in expected duration
by first calculating the baseline survivor function from the cumulative hazard function, using

Ŝ0(t) = exp[−Ĥ0(t)]. (2)

Each observation’s survivor function is related to the baseline survivor function by

Ŝi(t) = Ŝ0(t)ψ̂(i), (3)

where ψ̂(i) is the ELP for observation i. These survivor functions can be used directly to calculate
expected durations for each observation. The expected value of a non-negative random variable can
be calculated by

E(X) =
∫ ∞

0

(
1− F(t)

)
dt, (4)

where F(.) is the cumulative distribution function for X. In the case of a duration variable ti, the
expected duration is

E(ti) =
∫ T

0
Si(t) dt, (5)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 41

where T is the largest possible duration and S(t) is the individual’s survivor function. The NPSF
method approximates this integral with a right Riemann-sum by calculating the survivor functions at
every discrete time point from the minimum to the maximum observed durations, and multiplying
these values by the length of the interval between time points with observed failures:

E(ti) ≈ ∑
tj∈[0,T]

(tj − tj−1)Si(tj). (6)

To calculate a marginal effect, the NPSF approach to COX ED follows the same strategy employed
in the GAM approach. It creates two new covariate profiles, setting a variable of interest to two
theoretically interesting values. It calculates expected values from each profile, then computes the
difference in the two estimates. Finally, the method bootstraps to obtain a standard error and/or
confidence intervals for this point estimate.

Implementation in R and empirical example

The methods described above are mostly automated in the package; analysts generally need only a
coxph model object from the survival package (Therneau, 2015) or a cph model object from the rms
package (Harrell, 2018), and, if covariate effects are desired, the name of the variable of interest and the
two values of that variable they wish to input.6 However, the functions also allow for several changes
to default settings, such as the formulation of the GAM in the first approach or the computation of
confidence intervals.

We illustrate the main features of the package with an empirical example. Martin and Vanberg
(2003) examine the determinants of negotiation time among political parties forming coalition govern-
ments in Western Europe. The outcome variable in this analysis is the number of days between the
beginning and end of the bargaining period. The covariates include the range of government—the
ideological distance between the extreme members of the coalition—the number of parties in the
coalition, as well as several others. Their main hypotheses predict negative coefficients on the range of
government and number of parties variables. They expect that increases in the ideological distance
between the parties and the size of the coalition correspond with decreases in the risk of government
formation, or longer negotiation times.

The authors demonstrate support for their hypotheses with a sample of data on bargaining in
Western European democracies between 1950 and 1995. They estimate a Cox model, then interpret the
covariate effects with quantities based in the hazard rate. As an alternative, we employ COX ED with
these data. We use the coxed() function to predict bargaining duration for every case in the data. Then
test the first of their hypotheses by computing estimates of bargaining duration at different values of
ideological range of government.

The first step with COX ED is to estimate the model. We estimate the Cox model from Martin and
Vanberg (2003) using the Surv() and coxph() functions from the survival package:

library(coxed)
data(martinvanberg)

mv.surv <- Surv(martinvanberg$formdur, event = rep(1, nrow(martinvanberg)))
mv.cox <- coxph(mv.surv ~ postel + prevdef + cont + ident + rgovm + pgovno +

tpgovno + minority, data = martinvanberg)

We report these results in Table 1.

Next we use the GAM version of coxed() to examine expected durations and marginal changes in
duration.7 We can calculate standard errors and confidence intervals for any of these quantities with
the bootstrap = TRUE option. By default the bootstrapping procedure uses 200 iterations (to set this
value to a different number, use the B argument).8

6Future versions of the software may accept Cox models estimated from other packages, such as timereg
(Scheike and Zhang, 2011).

7For an example of this analysis using the NPSF method, see the vignette for the coxed package.
8Here we use 30 iterations simply to ease the computational burden of compiling this example. For more

reliable results, set B to a higher value. There are different methods for calculating a bootstrapped confidence
interval. The default method used by coxed() (setting the argument confidence = "studentized") adds and
subtracts qnorm(level - (1 - level)/2) times the bootstrapped standard error to the point estimate, where
level is the analyst’s chosen threshold for evaluating statistical significance. The alternative approach is to take the
(1 - level)/2 and level + (1 - level)/2 quantiles of the bootstrapped draws, which can be done by specifying

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 42

Table 1: Cox model results from Martin and Vanberg (2003). Entries report coefficients with standard
errors in parentheses. These results represent a common approach to presenting Cox model output,
but the coefficients themselves are not immediately intuitive.

Range of government −0.213∗

(0.120)

Number of government parties 1.191∗∗∗

(0.124)

Number of government parties −0.432∗∗∗

× ln(t) (0.035)

Do negotiations commence −0.577∗∗∗

immediately after an election? (0.169)

Did the government take a −0.100
parliamentary defeat? (0.230)

Continuation 1.100∗∗∗

(0.240)

Identifiability 0.146
(0.119)

Minority government −0.428∗∗

(0.208)

Observations 203
R2 0.745
Max. Possible R2 1.000
Log Likelihood −745.478
Wald Test 218.130∗∗∗ (df = 8)
LR Test 277.239∗∗∗ (df = 8)
Score (Logrank) Test 279.277∗∗∗ (df = 8)

Note: Cell entries report Cox model coefficient estimates with standard errors in parentheses.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

ed <- coxed(mv.cox, method = "gam", bootstrap = TRUE, B = 30)

Now every predicted duration has a standard error and a 95% confidence interval. The first several
cases’ predicted durations are estimated as follows:

> head(ed$exp.dur)
exp.dur bootstrap.se lb ub

1 48.978295 5.6915889 37.8229859 60.133605
2 42.036276 4.8132767 32.6024267 51.470125
3 55.440293 6.8188818 42.0755303 68.805056
4 15.734577 1.7119205 12.3792749 19.089880
5 1.530695 0.3512462 0.8422652 2.219125
6 64.449942 7.7421823 49.2755433 79.624340

The summary() function, when applied to coxed() output, reports either the mean or median estimated
duration along with the bootstrapped standard error and confidence interval for the statistic:

> summary(ed, stat = "mean")

confidence = "empirical". We recommend a higher number of bootstrap iterations for empirical confidence
intervals. Additionally, the nonparametric bias corrected and accelerated (BCa) method can be computed with
confidence = "bca", which implements the bias correction and acceleration procedure in DiCiccio and Efron
(1996) using code modified from the mediation package (Tingley et al., 2014).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 43

mean bootstrap.se lb ub
28.034 1.998 24.119 31.95
> summary(ed, stat = "median")
median bootstrap.se lb ub
21.208 2.263 16.773 25.643

coxed() can be used to provide duration predictions for observations outside of the estimation sample.
Suppose that we observe five new cases and place them inside a data frame:

new.coalitions <- data.frame(postel = c(1, 1, 1, 0, 1),
prevdef = c(0, 0, 1, 1, 0),
cont = c(1, 0, 1, 0, 1),
ident = c(1, 2, 2, 3, 3),
rgovm = c(.3, .8, 1.1, .2, .35),
pgovno = c(2, 3, 3, 2, 4),
tpgovno = c(3.2, 0, 5, 0, 2.6),
minority = c(0, 0, 1, 0, 0))

To forecast durations for these cases along with standard errors and confidence intervals, we use the
coxed() function and place new.coalitions into the newdata argument:

forecast <- coxed(mv.cox, newdata = new.coalitions, method = "gam",
bootstrap = TRUE, B = 30)

> forecast$exp.dur
exp.dur bootstrap.se lb ub

1 4.5845636 2.7517846 -0.8088352 9.977962
2 0.9542265 0.5656203 -0.1543688 2.062822
3 5.2816962 1.1323172 3.0623953 7.500997
4 1.2358600 0.4684499 0.3177151 2.154005
5 0.5924056 0.7286877 -0.8357961 2.020607

The data used by coxed() to map rankings to durations are stored in the gam.data attribute, and
can be used to visualize the fit of the GAM, as in Figure 1.

Figure 1: Mapping duration rankings to observed durations using a GAM. The x-axis plots the ranks
of the linear predictor from smallest to largest and the y-axis plots the observed durations. The
downward trend shows a non-linear relationship between the model’s expectation and the observed
data.

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●

● ●

●●

●

●

●
●

●

●

● ●● ●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●● ● ●

●

●●

●

●

●

●●

●

●

●

●

●

0

50

100

150

200

0 50 100 150 200

Cox model LP rank (smallest to largest)

D
ur

at
io

n

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 44

We use coxed() to provide an answer to the key question, “how much longer will negotiations
take for an ideologically polarized coalition as compared to an ideologically homogeneous one?”
Specifically, we call coxed() and specify two new datasets, one in which rgovm = 0 indicating that
all political parties in the governing coalition have the same ideological position (i.e., a coalition of
one party), and one in which rgovm = 1.24, indicating that the parties have very different ideological
positions.9 We use mutate() from the dplyr package (Wickham et al., 2018) to quickly create new data
frames in which rgovm equals 0 or 1.24 for all cases, and set these two data frames as newdata and
newdata2 inside coxed().

me <- coxed(mv.cox, method = "gam", bootstrap = TRUE, B = 30,
newdata = mutate(martinvanberg, rgovm = 0),
newdata2 = mutate(martinvanberg, rgovm = 1.24))

coxed() calculates expected durations for all cases under each new data frame and subtracts the
durations for each case. To obtain point estimates we can request the mean or median difference.

> summary(me, stat = "mean")
mean bootstrap.se lb ub

newdata2 28.927 3.285 22.489 35.365
newdata 25.321 2.632 20.163 30.480
difference 3.605 2.417 -1.133 8.343
> summary(me, stat = "median")

median bootstrap.se lb ub
newdata2 22.392 3.234 16.053 28.730
newdata 19.692 3.449 12.932 26.451
difference 2.928 1.931 -0.857 6.714

These results demonstrate that a coalition in which the parties have average ideological differences
will take 3.6 more days on average (with a median of 2.9 days) to conclude negotiations than a coalition
in which all parties have the same position (i.e., a single-party government).

The NPSF method can be used to compute estimates of these same quantities simply by specifying
method = "npsf" in the coxed() function. Additionally, the package includes a function called
sim.survdata() designed for simple simulations of duration data that do not assume a distributional
form for the baseline hazard. This method, which is fully described in Harden and Kropko (2019), can
be useful in several applied and computational settings that involve the Cox model.

Conclusions

The Cox model is popular among applied researchers in a wide range of disciplines due to its inherent
flexibility. However, this flexibility makes conveying the substantive meaning of results challenging.
By using only the rank ordering of the observed duration times, the Cox model limits researchers to
interpreting results in the language of hazard and changes in risk. This yields two key problems. First,
it is substantively vague because hazard does not have a meaningful scale. This hinders researchers’
capacity to determine whether an estimated effect is substantively “large” or “small.” Furthermore,
hazard-based interpretations require specialized knowledge to understand. This makes the research
less accessible to general audiences, who may be able to learn from the work but cannot due to the
means by which results are communicated.

The COX ED methods provide a solution to these problems by allowing researchers to compute
duration-based quantities from the Cox model. Communicating results in the language of time allows
for more substantive precision and is intuitive to a broad audience of readers. We demonstrate above
that COX ED is straightforward to implement in R. The coxed package contains functions that allow
researchers to use the methods even with minimal knowledge of R. Additionally, the functions are
flexible; users can make several changes to many of their features to suit the problem at hand. Finally,
the output from the functions provide point estimates, standard errors, and confidence intervals, so
researchers can report their results with appropriate measures of uncertainty.

In sum, the coxed package provides a useful alternative for researchers to communicate results
from the Cox model. It gives them the benefits of the intuitive quantities available in parametric
models while retaining the desirable estimation properties of the Cox model. Thus, the analysis can be
guided by appropriate modeling choices, but reported in an intuitive, accessible manner.

9Martin and Vanberg (2003) select these values in making hazard rate comparisons. The value rgovm = 1.24
reflects the average ideological range of coalition governments in the sample.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 45

Bibliography

A. C. Cameron, J. B. Gelbach, and D. L. Miller. Bootstrap based improvements for inference with
clustered errors. Review of Economics and Statistics, 90(3):414–427, 2008. URL https://doi.org/10.
1162/rest.90.3.414. [p39]

D. R. Cox. Regression models and life-tables. Journal of the Royal Statistical Society. Series B (Methodologi-
cal), 34(2):187–220, 1972. URL https://doi.org/10.1111/j.2517-6161.1972.tb00899.x. [p38]

D. R. Cox and D. Oakes. Analysis of Survival Data. Monographs on Statistics & Applied Probability.
Chapman & Hall/CRC, Boca Raton, FL, 1984. [p40]

T. J. DiCiccio and B. Efron. Bootstrap confidence intervals. Statistical Science, 11(3):189–228, 1996. URL
https://doi.org/10.1214/ss/1032280214. [p42]

J. J. Harden and J. Kropko. Simulating duration data for the Cox model. Political Science Research and
Methods, 7(4):921–928, 2019. URL https://doi.org/10.1017/psrm.2018.19. [p44]

F. E. Harrell. rms: Harrell Miscellaneous, 2018. R package version 5.1–2. http://biostat.mc.vanderbilt.
edu/wiki/Main/Rrms. [p41]

T. Hastie and R. Tibshirani. Generalized Additive Models. Chapman & Hall/CRC, Boca Raton, FL, 1990.
[p39]

J. Kropko and J. J. Harden. Beyond the hazard ratio: Generating expected durations from the
Cox proportional hazards model. British Journal of Political Science, 50(1):303–320, 2020. URL
https://doi.org/10.1017/S000712341700045X. [p38]

L. W. Martin and G. Vanberg. Wasting time? The impact of ideology and size on delay in coalition
formation. British Journal of Political Science, 33(2):323–344, 2003. URL https://doi.org/10.1017/
S0007123403000140. [p41, 42, 44]

T. H. Scheike and M.-J. Zhang. Analyzing competing risk data using the R timereg package. Journal of
Statistical Software, 38(2):1–15, 2011. URL http://dx.doi.org/10.18637/jss.v038.i02. [p41]

T. Therneau. survival: A Package for Survival Analysis in S, 2015. R package version 2.38. [p41]

D. Tingley, T. Yamamoto, K. Hirose, L. Keele, and K. Imai. mediation: R package for causal mediation
analysis. Journal of Statistical Software, 59(5):1–38, 2014. URL http://dx.doi.org/10.18637/jss.
v059.i05. [p42]

H. Wickham, R. François, L. Henry, and K. Müller. dplyr: A Grammar of Data Manipulation, 2018. URL
https://CRAN.R-project.org/package=dplyr. R package version 0.7.6. [p44]

S. N. Wood. Generalized Additive Models: An Introduction with R. Chapman & Hall/CRC, Boca Raton,
FL, 2006. [p39]

S. N. Wood. Fast stable restricted maximum likelihood and marginal likelihood estimation of semi-
parametric generalized linear models. Journal of the Royal Statistical Society. Series B (Methodological),
73(1):3–36, 2011. URL https://doi.org/10.1111/j.1467-9868.2010.00749.x. [p39]

Jonathan Kropko
University of Virginia
School of Data Science
Dell 1 Building
Charlottesville, VA 22904
jkropko@virginia.edu

Jeffrey J. Harden
University of Notre Dame
Department of Political Science
2055 Jenkins Nanovic Halls
Notre Dame, IN 46556
jeff.harden@nd.edu

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1162/rest.90.3.414
https://doi.org/10.1162/rest.90.3.414
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.1214/ss/1032280214
https://doi.org/10.1017/psrm.2018.19
http://biostat.mc.vanderbilt.edu/wiki/Main/Rrms
http://biostat.mc.vanderbilt.edu/wiki/Main/Rrms
https://doi.org/10.1017/S000712341700045X
https://doi.org/10.1017/S0007123403000140
https://doi.org/10.1017/S0007123403000140
http://dx.doi.org/10.18637/jss.v038.i02
http://dx.doi.org/10.18637/jss.v059.i05
http://dx.doi.org/10.18637/jss.v059.i05
https://CRAN.R-project.org/package=dplyr
https://doi.org/10.1111/j.1467-9868.2010.00749.x
mailto:jkropko@virginia.edu
mailto:jeff.harden@nd.edu

CONTRIBUTED RESEARCH ARTICLES 46

Modeling regimes with extremes: the
bayesdfa package for identifying and
forecasting common trends and
anomalies in multivariate time-series data
by Eric J. Ward, Sean C. Anderson, Luis A. Damiano, Mary E. Hunsicker, Michael A. Litzow

Abstract The bayesdfa package provides a flexible Bayesian modeling framework for applying dy-
namic factor analysis (DFA) to multivariate time-series data as a dimension reduction tool. The core
estimation is done with the Stan probabilistic programming language. In addition to being one of the
few Bayesian implementations of DFA, novel features of this model include (1) optionally modeling
latent process deviations as drawn from a Student-t distribution to better model extremes, and (2)
optionally including autoregressive and moving-average components in the latent trends. Besides
estimation, we provide a series of plotting functions to visualize trends, loadings, and model pre-
dicted values. A secondary analysis for some applications is to identify regimes in latent trends. We
provide a flexible Bayesian implementation of a Hidden Markov Model — also written with Stan — to
characterize regime shifts in latent processes. We provide simulation testing and details on parameter
sensitivities in supplementary information.

Overview

A goal of many multivariate statistical techniques is to reduce dimensionality in observed data to
identify shared or latent processes. Factor analysis models represent a general class of models used to
relate multiple observations to a lower dimension (factors), while also considering different covariance
structures of the observed data. Factors are not directly observed, but represent a hidden, shared
process among variables. Though goals of factor analysis are sometimes similar to techniques such as
principal component analysis (PCA), factor analysis models explicitly estimate residual error terms,
whereas PCA does not (Anderson and Rubin, 1956; Jolliffe, 1986). These factor models are written as
yi = ui + Z fi + εi, where observed data yi is a linear combination of an intercept ui and the product
of latent factors fi and loadings Z (loadings are sometimes referred to in the literature as L).

In a time-series setting, factor models may be extended to dynamic factor analysis (DFA) models.
DFA models aim to reduce the dimensionality of a collection of time series by estimating a set of
shared trends and factors, representing the linear effects of each trend on the observed data (Molenaar,
1985; Zuur et al., 2003; Stock and Watson, 2005). The number of trends m is chosen to be less or
equal than the number of time series n. The general form of the DFA model can be formulated as
a state-space model (Petris, 2010). The latent processes (also referred to as ‘trends’) are generally
modeled as random walks, so that trend i is modeled as xi,t+1 = xi,t + wi,t where xi,t is the value of
the i-th latent trend at time t, and the deviations wi,t are modeled as white noise. Across trends, these
deviations are modeled as wt ∼ MVN(0, Q). The latent trends xi,t are linked to data via a loadings
matrix Z whose values do not evolve through time, yt = Zxt + a + Bdt + et. The loadings matrix Z
is dimensioned n × m so that Zj,i represents the effect of trend i on time series j. The parameters a
and B are optional parameters, representing time-series-specific intercepts and effects of covariates, dt.
Finally, the residual errors are assumed to be et ∼ MVN(0, R), where R is an estimated covariance
matrix.

Estimation of DFA models is typically done in a maximum likelihood framework, using the
expectation-maximization (EM) algorithm or other optimization tools. Implementation of these
methods is available in multiple R packages including dlm (Petris, 2010), KFAS (Helske, 2017),
MARSS (Holmes et al., 2012b), and tsfa (Gilbert and Meijer, 2005). Challenges in parameter estimation
and interpretation for DFA models have been well studied. Without constraints, parameters in the
DFA model are not identifiable (Harvey, 1990; Zuur et al., 2003). To ensure identifiability of variance
parameters, for example, the covariance matrix Q is generally fixed as an identity matrix (Harvey,
1990). To avoid confounding the latent trends and loadings matrix Z, elements of Z must also be
constrained. A common choice of constraints is for the elements in the first m− 1 rows of Z to be set to
zero if the column index is greater than the row index, j > i (Harvey, 1990), though other constraints
have been proposed (Bai and Wang, 2015). For a 3-trend DFA model for instance, these constraints

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=dlm
https://CRAN.R-project.org/package=KFAS
https://CRAN.R-project.org/package=MARSS
https://CRAN.R-project.org/package=tsfa

CONTRIBUTED RESEARCH ARTICLES 47

would mean that the Z matrix parameters would be configured as
Z1,1 0 0
Z2,1 Z2,2 0
Z3,1 Z3,2 Z3,3
...

.

Several previous approaches to DFA estimation in a maximum likelihood framework also center
(subtract the sample means) or standardize (subtract the sample means and divide by the sample
standard deviations) data prior to fitting DFA models and set the intercepts a equal to zero to avoid
potential confounding of level parameters (Holmes et al., 2012a). We adopt a similar approach,
allowing users to either center or standardize data before estimation, and not including the intercepts
as estimated parameters.

Label switching

We developed our DFA model in a Bayesian framework, using Stan and the package rstan (Stan
Development Team, 2016), which implements Markov chain Monte Carlo (MCMC) using the No-U
Turn Sampling (NUTS) algorithm (Hoffman and Gelman, 2014; Carpenter et al., 2017). Although
estimation of the DFA model in a Bayesian setting is not new (Aguilar and West, 2000; Koop and
Korobilis, 2010; Stock and Watson, 2011), it presents several interesting challenges over the EM
algorithm. In addition to the constraints on Q and Z, Bayesian estimation suffers from a problem of
label switching. In particular, elements of F or Z may flip sign within an MCMC chain, or multiple
chains may converge on parameters that are identical in magnitude but with different signs.

To minimize issues with label switching, previous work on Bayesian factor analysis has proposed
additional constraints on the loadings matrix, including setting the elements of Z to be constrained (-1,
1), or adding a positive constraint to the diagonal, Zii > 0 (Aguilar and West, 2000; Geweke and Zhou,
1996). Though these constraints generally help, there may be situations where MCMC chains still do
not converge. To address this issue, we adopt the parameter-expanded priors for the loadings and
trends proposed by Ghosh and Dunson (2009). To ensure that the sign of the estimated quantities is
the same across MCMC chains, we created the function flip_trends() to flip the posterior samples of
MCMC chains relative to the first chain as needed.

The Bayesian dynamic factor model with extremes

There are several approaches for modeling extreme deviations in time series models. Techniques
include modeling deviations as a two-component mixture (Ward et al., 2007; Evin et al., 2011), or
modeling deviations with non-Gaussian distributions including the Student-t distribution (Praetz,
1972; Anderson et al., 2017; Anderson and Ward, 2018). There are several existing packages to include
Student-t distributions; these include heavy for applications to regression and mixed effects models
(Osorio and F., 2018), bsts for univariate time series models (Scott, 2018), and stochvol for stochastic
volatility models (Kastner, 2016). Because switching from a Gaussian to Student-t distribution only
introduces a single parameter, ν, the degrees of freedom, we extend the latter approach to a multivariate
setting to model extreme events in the latent trends, so that deviations in the trends are modeled as
wt ∼ MVT(ν, 0, Q). As before, Q is fixed as an identity matrix I. Our parameterization constrains DFA
models to have the same degrees of freedom ν in the residuals of the multiple trends, which may be
fixed a priori or treated as a free parameter with a gamma(shape = 2, rate = 0.1)[2,∞] prior (Juárez and
Steel, 2010).

Including autoregressive and moving average components

The trends of the dynamic factor model are most commonly modeled as non-stationary random
walks, xi,t+1 = xi,t + wi,t, where the wi,t ∼ N(0, 1) are Gaussian white noise. Like with other
vector autoregressive time series models, this framework can be easily extended to include optional
autoregressive (AR) or moving average (MA) components (Chow et al., 2011). We allow for AR(1)
and MA(1) processes to be specified with boolean arguments to the fit_dfa() function. For both the
AR(1) and MA(1) components, we assume separate parameters for each trend. Including the AR(1)
component φi makes the trend process become xi,t+1 = φixi,t + wi,t, where values of φi close to 1 make
the trend behave as a random walk, and small values of φi close to 0 make the trend behave as white
noise. Similarly, we model the MA(1) component as an AR(1) process on the error terms wi,t. Instead
of being independent at each time step, θi controls the degree of autocorrelation among deviations,
wi,t ∼ N

(
θiwi,t−1, 1

)
. For stationarity and invertability, we constrain |φi| < 1 and |θi| < 1.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=rstan
https://CRAN.R-project.org/package=heavy
https://CRAN.R-project.org/package=bsts
https://CRAN.R-project.org/package=stochvol

CONTRIBUTED RESEARCH ARTICLES 48

Rotation of trends and loadings

Like factor analysis models, there are many solutions from a DFA model capable of producing the
same fit to the data. Following previous authors, we use a varimax rotation of the loadings matrix Z to
transform the posterior loadings and trends (Kaiser, 1958; Harvey, 1990; Holmes et al., 2012a). If Ẑ is
the posterior mean of the loadings matrix from a DFA model of 4 time series and 2 trends for example,
the rotation matrix W ∗ = varimax(Ẑ) is dimensioned 2 × 2. The rotated loadings matrix can then
be calculated as Ẑ

∗
= Ẑ W ∗ and rotated trends calculated as x̂∗ = W ∗−1x̂, where x̂ is the posterior

mean of the trends.

Identifying data support for the number of trends

Since the number of trends in a DFA model is not a parameter, comparing data support across models
is often necessary. Using model selection tools to identify data support is available via Akaike’s
Information Criterion (AIC) in packages implementing maximum likelihood for estimation of state-
space models (Petris, 2010; Holmes et al., 2012b). In addition to comparing the relative support of
different number of trends, model selection for Bayesian dynamic factor models may be useful for
evaluating the error structure for the residual error covariance matrix R, whether covariates should
be included, whether latent trends are better modeled with a distribution allowing for extremes
(MVT versus MVN), and whether the latent trends support estimation of AR or MA components. For
our Bayesian DFA models, we extend the loo package (Vehtari et al., 2016a,b) to generate estimates
of LOOIC (Leave-One-Out Information Criterion) for fitted models. To ease the selection process,
bayesdfa includes the function find_dfa_trends() to run multiple models specified by the user. It
returns a table of LOOIC values (denoting which of those failed convergence criteria) and the model
with the lowest LOOIC value.

Anomalies or black-swan events

As a diagnostic tool, we include the function find_swans() to fitted DFA models. We adopt the same
approach and terminology for ‘black-swan events’ as in Anderson et al. (2017), where black-swan
events are rare and unexpected extremes. Our find_swans() function first-differences the posterior
mean estimates of each DFA trend and evaluates the probability of observing a difference that is more
extreme than expected under a normal distribution with the same scale parameter. Events beyond a
user-defined threshold (e.g. 1 in 100, or 1 in 10,000) are then classified as outliers and plotted.

Simulation tests

To evaluate the ability of the Bayesian DFA model to identify anomalies in latent processes, we
created simulated data using our sim_dfa() function. We generated simulated multivariate time series
(n = 4 time series with T = 20 time steps each) with m = 2 underlying latent trends. Extremes were
included as a step-change in the midpoint of the first trend in each simulated dataset. We varied the
value of the step from -4 to -8, which represent unlikely events under the assumption that temporal
deviations in the latent trends are distributed according to N(0, 1). Because increased observation
error may corrupt inference about anomalies in the trends, we considered three levels of observation
error (σ = 0.25, 0.75, 1.25). We generated 200 simulated samples for each permutation of parameters,
resulting in a total of 3000 datasets.

We fit the Bayesian DFA model with Student-t errors to each simulated dataset. As expected, the
posterior estimates from these simulations illustrate that the ability to estimate low degrees of freedom
is related to the magnitude of extremes (Figure 1). Similarly, higher observation error corrupts the
ability to estimate extreme events, even when they are large in magnitude (Figure 1).

Using HMMs to classify regimes in latent DFA trends

An alternative approach to DFA for dimension reduction of multivariate time series data are Hidden
Markov Models (HMMs). Like DFA models, they model a latent process for a time series (or collection
of multivariate time series). Instead of the latent process being modeled continuously (e.g. as a
random walk in DFA), HMMs conceive the latent process as a series of discrete-time, discrete-state
first-order Markov chains st ∈ {1, . . . , G} with the number of possible states G specified a priori.
State transition is characterized by the G × G transition matrix with simplex rows A =

{
aig

}
where

aig = p(st = g|st−1 = i) represents the probability of transitioning from state i to g. Useful quantities

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=loo

CONTRIBUTED RESEARCH ARTICLES 49

5

10

15

20

−8 −6 −4

Outlier standard deviations

E
st

im
at

ed
 ν Obs σ

0.25

0.75

1.25

Figure 1: Results for simulated data illustrating support for the Student-t distribution (low values
of nu), varying the magnitude of extremes (standard deviations from the mean) and magnitude of
observation error.

from HMMs include the transition probabilities between latent states, and the probability of being in a
given lantent state at each point in time (Zucchini et al., 2017).

HMMs can be applied to raw multivariate data to identify latent states; however, they may also
be linked with DFA to identify regimes and transitions in the latent DFA trends. Similar to DFA,
applications of HMMs are widely available in R, including via the packages depmixS4 (Visser and
Speekenbrink, 2010), HMM (Himmelmann, 2010), and msm (Jackson, 2011). Consistent with our
implementation of the Bayesian DFA model, we include fully Bayesian inference in Stan based on
Damiano et al. (2018). We apply independent HMM models to each DFA trend to identify alternate
states or regimes. Like with the estimation of DFA models, we use the LOOIC metric to evaluate
the relative support for HMMs with different numbers of underlying states, selecting the converged
model with the lowest LOOIC. By default, we assume the observation model of the input time series
to be normally distributed with the scale parameter equal to the estimated residual variance. However,
for some applications, such as datasets with changing sampling frequencies over time, uncertainty
in DFA trends may also vary through time. To propogate this uncertainty forward, we also allow
the residual variance to be entered as a known quantity for every data point in our find_regimes()
function.

Example application: identifying common patterns in sea surface temper-
atures in the Northeast Pacific Ocean

To illustrate an example application of the bayesdfa package to real data, we use monthly anomalies
of sea surface temperature (SST, measured in C◦). SST is observed from satellite and buoy data at
fixed locations, and model-based interpolations are used to generate estimates at additional gridded
locations1. We used estimates generated at the locations of 4 observing stations used by the Pacific
Fisheries Environmental Laboratory2 from the west coast of North America (USA). The four stations
have some degree of correlation with one another, and are separated by approximately 6 degrees
of latitude from one another. In summary, we work with n = 4 monthly time series with T = 167
observations each (from 2003–01 to 2016–05) and no missing values.

Initially, we fit a DFA model with 2 hidden trends, and will assume the 4 time series to have the
same error variances R. We will fit the DFA model with possible extremes, modeling process error
with a Student-t distribution by using the argument estimate_nu(). To evaluate whether these data
support an extreme DFA with trends modeled as a t-distribution, we will fit two competing forms: one
modeling the random walks with a Gaussian distribution, and the other using a Student-t distribution.
Generating posterior samples for each model takes approximately 7 minutes per chain, when MCMC
chains aren’t run in parallel.

1https://coastwatch.pfeg.noaa.gov/erddap/info/osuSstAnom/index.html
2https://www.pfeg.noaa.gov/

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=depmixS4
https://CRAN.R-project.org/package=HMM
https://CRAN.R-project.org/package=msm
https://coastwatch.pfeg.noaa.gov/erddap/info/osuSstAnom/index.html
https://www.pfeg.noaa.gov/

CONTRIBUTED RESEARCH ARTICLES 50

−2

0

2

4

2003 2005 2007 2009 2011 2013 2015

Year

S
ea

 s
ur

fa
ce

 te
m

pe
ra

tu
re

 a
no

m
al

y

Latitude

24

30

36

42

Figure 2: Sea surface temperature anomalies, at four stations on the west coast of the USA ordered by
increasing latitude. The station coordinates are (113W, 24N), (119W, 30N), (122W, 36N), (125W, 42N).

Z[3,1] Z[4,1]

Z[1,1] Z[2,1]

0 200 400 600 800 1000 0 200 400 600 800 1000

0 200 400 600 800 1000 0 200 400 600 800 1000
0.0

0.5

1.0

1.5

−0.4

−0.2

0.0

0.2

0.4

0.0

0.5

1.0

1.5

0.00

0.25

0.50

0.75

1.00

Chain

1

2

3

4

Figure 3: MCMC trace plots of loading parameters (Z) in the DFA model with Student-t errors.

After fitting the models, we confirm whether the MCMC chains are consistent with convergence
using a threshold value of R̂ = 1.05 (Gelman et al., 2014) using our is_converged() function. We also
visually inspect chain traceplots (e.g. Figure 3) and check the minimum effective sample size across
parameters: NaN.

As a consistency diagnostic, we also retrieve the estimated degrees of freedom from the Student-t
model ν. By visual inspection, Figure 4 shows that the posterior distribution on ν is lower than the
prior distribution.

Visualizing the trends and loadings

We will focus the remaining portion of our analysis on the results from the DFA model with Student-t
deviations. In Figure 5, we observe that Trend 1 and Trend 2 both support SST anomalies increasing
over the latter half of the time series. Both trends appear to have reversed direction (reverting to the
mean in the last 2–3 years) and this pattern is more evident in Trend 1. Because we do not model
seasonality explicitly, for example by including a covariate effect for the month, each of the estimated
trends also includes the within-year variability that describes seasonal patterns in observed sea surface
temperature.

In the violin plot of Figure 6, we note that more southern stations (24 and 30N) contribute largely
to Trend 1, while the more northern stations appear to load more heavily on Trend 2.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 51

0.00

0.02

0.04

0.06

0.08

2 10 20 30 40 50

Estimate of Student − t degrees of freedom (ν)

D
en

si
ty

Distribution

Posterior

Prior

Figure 4: Posterior and prior degrees of freedom in the DFA model with Student-t errors.

Trend 1 Trend 2

2003 2005 2007 2009 2011 2013 2015 2003 2005 2007 2009 2011 2013 2015

−10

0

10

Year

Figure 5: Latent trends from the DFA model with Student-t process deviations. Trends are rotated
using the stats::varimax() rotation.

Trend 1 Trend 2

−0.5 0.0 0.5 1.0 −0.5 0.0 0.5 1.0

24

30

36

42

Loading

T
im

e
S

er
ie

s

Figure 6: Loadings from the DFA model with Student-t process deviations. Loadings are rotated using
the stats::varimax() rotation.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 52

Regimes LOOIC Trend 1 LOOIC Trend 2

1 855.5 756.7
2 31.0 30.3
3 69.1 99.9
4 139.7 164.6

Table 1: LOOIC estimates across different numbers of regimes for each latent DFA trend. LOOIC is
calculated using the loo::loo() function.

State 1

2003 2005 2007 2009 2011 2013 2015
0.00

0.25

0.50

0.75

1.00

Year

P
ro

ba
bi

lit
y

Figure 7: Estimated regimes from the 2-regime HMM in Trend 1 of the DFA model fit to the sea surface
temperature anomaly data. The visualization summarizes the assignment probabilities p(st = 1|xT)
of Trend 1 being in State 1 (for the sea surface temperature case study, State 1 is associated with warm
periods). Dots represent the latent DFA trend scaled to an interval [0, 1]. The black line represents the
median and the shaded area uncertainty (90% posterior interval).

Identifying regimes in the latent DFA trends with Hidden Markov Models

For each trend, we apply independent HMMs to examine the support for differing numbers of
underlying regimes. Both the posterior mean and standard deviation (optional argument) will be the
inputs to the HMM.

Using LOOIC as a metric of support for the number of regimes, the estimates reported in Table 1
support the inclusion of 2 regimes for both Trends 1 and 2.

Our fit_regimes() function computes the probability of each time point being in one of the
regime states, which may also be visualized using plot_regime_model(). For example, the output of
the 2-regime model for Trend 1 in Figure 7 suggests a change in the middle of the time series, then
changing back again to State 1. Similarly, by the end of the series, the HMM assigns Trend 1 to being
in State 1.

Extensions

There are a number of extensions to our implementation of the Bayesian DFA model with extremes that
could make the model more applicable to a wider range of problems. Examples for the process model
include adopting a skew-t distribution for asymmetric extremes. For models estimating multiple
trends, multiple parameters may be treated hierarchically (e.g. covariate effects, variance parameters).
For the observation or data model, our implementation of the Bayesian DFA model only includes data
arising from a Gaussian or Student-t distribution, though this could be extended to include discrete or
other continuous densities. Finally, spatial dynamic factor models (sDFA) have emerged as a useful
tool for complicated multivariate spatial datasets (Lopes et al., 2011; Thorson et al., 2015), and could
be similarly implemented in Stan.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 53

Conclusion

This paper presents the bayesdfa package for applying Bayesian DFA to multivariate time series as a
dimension reduction tool, particularly if extreme events may be present in observed data. In addition
to allowing for the inclusion of covariates, we also extend the conventional dynamic factor model to
include optionial moving average and autoregressive components in the latent trends. Applying this
package to a dataset of sea surface temperature from the Northeast Pacific Ocean, we fit DFA models
with Gaussian and Student-t errors. Though the model with Student-t errors has slightly lower LOOIC,
the results from the two models are similar. Output from these 2-trend DFA models of sea surface
temperature are useful in demonstrating a north-to-south gradient in temperature anomalies (Figure
6). Standardized temperature data from southern stations experience more interannual variability and
temperatures that are greater in magnitude compared to northern stations (Figure 5). We also illustrate
how latent trends from DFA models can be analyzed in a HMM framework to identify regimes and
transitions; applied to the sea surface temperature data, both Trend 1 and Trend 2 support 2-regime
models (roughly interpreted as ‘warm’ and ‘cool’ regimes; Figure 7).

Acknowledgements

This work was funded by NOAA’s Fisheries and the Environment (FATE) Program. Development of
this package benefitted from discussions with other members of our working group (Jin Gao, Chris
Harvey, Sam McClatchie, Stepahni Zador) and scientists at the Northwest Fisheries Science Center
(including Mark Scheuerell, James Thorson, Eli Holmes, and Kelly Andrews). 2 anonymous reviewers
helped improve the clarity and plots of this paper.

Bibliography

O. Aguilar and M. West. Bayesian Dynamic Factor Models and Portfolio Allocation. Journal of Business
& Economic Statistics, 18(3):338–357, July 2000. doi: 10.1080/07350015.2000.10524875. [p47]

S. C. Anderson and E. J. Ward. Black swans in space: Modelling spatiotemporal processes with
extremes. Ecology, In press, 2018. doi: 10.1002/ecy.2403. [p47]

S. C. Anderson, T. A. Branch, A. B. Cooper, and N. K. Dulvy. Black-swan events in animal populations.
Proceedings of the National Academy of Sciences, 114(12):3252–3257, 2017. doi: 10.1073/pnas.1611525114.
[p47, 48]

T. W. Anderson and H. Rubin. Statistical inference in factor analysis. In Proceedings of the Third Berkeley
Symposium on Mathematical Statistics and Probability, Volume 5: Contributions to Econometrics, Industrial
Research, and Psychometry, pages 111–150, Berkeley, California, 1956. University of California Press.
[p46]

J. Bai and P. Wang. Identification and Bayesian Estimation of Dynamic Factor Models. Journal of
Business & Economic Statistics, 33(2):221–240, Apr. 2015. doi: 10.1080/07350015.2014.941467. [p46]

B. Carpenter, A. Gelman, M. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker, J. Guo, P. Li,
and A. Riddell. Stan: A probabilistic programming language. Journal of Statistical Software, Articles,
76(1):1–32, 2017. ISSN 1548-7660. doi: 10.18637/jss.v076.i01. URL https://www.jstatsoft.org/
v076/i01. [p47]

S.-M. Chow, N. Tang, Y. Yuan, X. Song, and H. Zhu. Bayesian estimation of semiparametric nonlinear
dynamic factor analysis models using the Dirichlet process prior. The British journal of mathematical
and statistical psychology, 64(Pt 1):69–106, Feb. 2011. doi: 10.1348/000711010X497262. [p47]

L. Damiano, B. Peterson, and M. Weylandt. A tutorial on hidden Markov models using Stan. 2018.
doi: 10.5281/zenodo.1284341. URL https://doi.org/10.5281/zenodo.1284341. [p49]

G. Evin, J. Merleau, and L. Perreault. Two-component mixtures of normal, gamma, and Gumbel
distributions for hydrological applications. Water Resources Research, 47(8), Aug. 2011. doi: 10.1029/
2010WR010266. [p47]

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. Bayesian Data Analysis.
Chapman & Hall, Boca Raton, FL, third edition, 2014. [p50]

J. Geweke and G. Zhou. Measuring the pricing error of the arbitrage pricing theory. The Review of
Financial Studies, 9(2):557–587, 1996. doi: 10.1093/rfs/9.2.557. URL http://dx.doi.org/10.1093/
rfs/9.2.557. [p47]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://www.jstatsoft.org/v076/i01
https://www.jstatsoft.org/v076/i01
https://doi.org/10.5281/zenodo.1284341
http://dx.doi.org/10.1093/rfs/9.2.557
http://dx.doi.org/10.1093/rfs/9.2.557

CONTRIBUTED RESEARCH ARTICLES 54

J. Ghosh and D. B. Dunson. Default prior distributions and efficient posterior computation in Bayesian
factor analysis. Journal of Computational and Graphical Statistics, 18(2):306–320, 2009. doi: 10.1198/
jcgs.2009.07145. URL https://doi.org/10.1198/jcgs.2009.07145. PMID: 23997568. [p47]

P. D. Gilbert and E. Meijer. Time Series Factor Analaysis with an Application to Measuring Money.
Technical Report 05F10, University of Groningen, SOM Research School, 2005. [p46]

A. C. Harvey. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University
Press, 1990. ISBN 978-0-521-40573-7. [p46, 48]

J. Helske. KFAS: Exponential Family State Space Models in R. Journal of Statistical Software, 78(10):1–39,
2017. doi: 10.18637/jss.v078.i10. [p46]

L. Himmelmann. HMM: HMM - Hidden Markov Models. 2010. R package version 1.0. [p49]

M. D. Hoffman and A. Gelman. The No-U-Turn Sampler: Adaptively Setting Path Lengths in
Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15:1593–1623, 2014. [p47]

E. E. Holmes, E. J. Ward, and M. D. Scheuerell. Analysis of multivariate time-series using the MARSS
package. Technical report, NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake
Blvd E., Seattle, WA 98112., 2012a. [p47, 48]

E. E. Holmes, E. J. Ward, and K. Wills. MARSS: Multivariate autoregressive state-space models for
analyzing time-series data. R Journal, 4(1):11–19, 2012b. [p46, 48]

C. H. Jackson. Multi-State Models for Panel Data: The msm Package for R. Journal of Statistical Software,
38(8):1–29, 2011. [p49]

I. T. Jolliffe. Principal Component Analysis and Factor Analysis. In Principal Component Analysis,
Springer Series in Statistics, pages 115–128. Springer, New York, NY, 1986. ISBN 978-1-4757-1906-2
978-1-4757-1904-8. doi: 10.1007/978-1-4757-1904-8_7. [p46]

M. A. Juárez and M. F. J. Steel. Model-based clustering of non-Gaussian panel data based on skew-t
distributions. J. Bus. Econ. Stat., 28(1):52–66, 2010. doi: 10.1198/jbes.2009.07145. [p47]

H. F. Kaiser. The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3):187–200,
Sept. 1958. doi: 10.1007/BF02289233. [p48]

G. Kastner. Dealing with stochastic volatility in time series using the R package stochvol. Journal of
Statistical Software, 69(5):1–30, 2016. doi: 10.18637/jss.v069.i05. [p47]

G. Koop and D. Korobilis. Bayesian Multivariate Time Series Methods for Empirical Macroeconomics.
Foundations and Trends® in Econometrics, 3(4):267–358, July 2010. doi: 10.1561/0800000013. [p47]

H. F. Lopes, D. Gamerman, and E. Salazar. Generalized spatial dynamic factor models. Computational
Statistics & Data Analysis, 55(3):1319–1330, Mar. 2011. doi: 10.1016/j.csda.2010.09.020. [p52]

P. C. M. Molenaar. A dynamic factor model for the analysis of multivariate time series. Psychometrika,
50(2):181–202, June 1985. doi: 10.1007/BF02294246. [p46]

Osorio and F. heavy: Robust estimation using heavy-tailed distributions, 2018. URL https://CRAN.R-
project.org/package=heavy. R package version 0.38.19. [p47]

G. Petris. An R Package for Dynamic Linear Models. Journal of Statistical Software, 36(12):1–16, 2010.
[p46, 48]

P. D. Praetz. The Distribution of Share Price Changes. The Journal of Business, 45(1):49–55, 1972. [p47]

S. L. Scott. bsts: Bayesian structural time series. 2018. URL https://CRAN.R-project.org/package=
bsts. R package version 0.8.0. [p47]

Stan Development Team. RStan: The R interface to Stan. 2016. R package version 2.14.1. [p47]

J. H. Stock and M. W. Watson. Implications of Dynamic Factor Models for VAR Analysis. Working
Paper 11467, National Bureau of Economic Research, July 2005. [p46]

J. H. Stock and M. W. Watson. Dynamic Factor Models. The Oxford Handbook of Economic Forecasting,
July 2011. doi: 10.1093/oxfordhb/9780195398649.013.0003. [p47]

J. T. Thorson, M. D. Scheuerell, A. O. Shelton, K. E. See, H. J. Skaug, and K. Kristensen. Spatial factor
analysis: A new tool for estimating joint species distributions and correlations in species range.
Methods in Ecology and Evolution, 6(6):627–637, June 2015. doi: 10.1111/2041-210X.12359. [p52]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1198/jcgs.2009.07145
https://CRAN.R-project.org/package=heavy
https://CRAN.R-project.org/package=heavy
https://CRAN.R-project.org/package=bsts
https://CRAN.R-project.org/package=bsts

CONTRIBUTED RESEARCH ARTICLES 55

A. Vehtari, A. Gelman, and J. Gabry. Loo: Efficient leave-one-out cross-validation and WAIC for
Bayesian models. 2016a. R package version 1.1.0. [p48]

A. Vehtari, A. Gelman, and J. Gabry. Practical Bayesian model evaluation using leave-one-out cross-
validation and WAIC. Statistics and Computing, 2016b. doi: 10.1007/s11222-016-9696-4. [p48]

I. Visser and M. Speekenbrink. depmixS4: An R Package for Hidden Markov Models. Journal of
Statistical Software, 36(7):1–21, 2010. [p49]

E. J. Ward, R. Hilborn, R. G. Towell, and L. Gerber. A state–space mixture approach for estimating
catastrophic events in time series data. Canadian Journal of Fisheries and Aquatic Sciences, 64(6):
899–910, June 2007. doi: 10.1139/f07-060. [p47]

W. Zucchini, I. L. MacDonald, and R. Langrock. Hidden Markov Models for Time Series: An Introduction
Using R, Second Edition. CRC Press, Dec. 2017. ISBN 978-1-4822-5384-9. [p49]

A. F. Zuur, R. J. Fryer, I. T. Jolliffe, R. Dekker, and J. J. Beukema. Estimating common trends in
multivariate time series using dynamic factor analysis. Environmetrics, 14(7):665–685, Nov. 2003.
doi: 10.1002/env.611. [p46]

Eric J. Ward
Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National
Oceanic and Atmospheric Administration
2725 Montlake Blvd E, Seattle WA, 98112, USA
eric.ward@noaa.gov

Sean C. Anderson
Pacific Biological Station, Fisheries and Oceans Canada
3190 Hammond Bay Rd, Nanaimo, BC, V6T 6N7, Canada
sean.anderson@dfo-mpo.gc.ca

Luis A. Damiano
Iowa State University
2438 Osborn Drive, Snedecor Hall, Ames IA, 50011, USA
ldamiano@iastate.edu

Mary E. Hunsicker
Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic
and Atmospheric Administration
2725 Montlake Blvd E, Seattle WA, 98112, USA
mary.hunsicker@noaa.gov

Michael A. Litzow
University Alaska Fairbanks, College of Fisheries and Ocean Sciences,
118 Trident Way, Kodiak Seafood and Marine Science Center, Kodiak, AK 99615, USA
mlitzow@alaska.edu

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

mailto:eric.ward@noaa.gov
mailto:sean.anderson@dfo-mpo.gc.ca
mailto:ldamiano@iastate.edu
mailto:mary.hunsicker@noaa.gov
mailto:mlitzow@alaska.edu

CONTRIBUTED RESEARCH ARTICLES 56

Fitting Tails by the Empirical Residual
Coefficient of Variation: The ercv Package
by Joan del Castillo, Isabel Serra, Maria Padilla and David Moriña

Abstract This article is a self-contained introduction to the R package ercv and to the methodology on
which it is based through the analysis of nine examples. The methodology is simple and trustworthy
for the analysis of extreme values and relates the two main existing methodologies. The package
contains R functions for visualizing, fitting and validating the distribution of tails. It also provides
multiple threshold tests for a generalized Pareto distribution, together with an automatic threshold
selection algorithm.

Introduction and overview

Extreme value theory (EVT) is one of the most important statistical techniques for the applied sciences.
A review of the available software on extreme value analysis appears in Gilleland et al. (2013). R
software (R Core Team, 2017) contains some useful packages for dealing with EVT. The R package
evir (Pfaff and McNeil, 2012) provides maximum likelihood estimation (MLE) at the same time for the
block maxima and threshold model approaches. The R package ismev (Heffernan and Stephenson,
2018) allows fitting parameters of a generalized Pareto distribution depending on covariates and
offers diagnostics such as qqplots and return level plots with confidence bands. The R package
poweRlaw (Gillespie, 2015) enables power laws and other heavy tailed distributions to be fitted using
the techniques proposed by Clauset et al. (2009).This approach had been used to describe sizes of cities
and word frequency and is linked to the physics of phase transitions and to complex systems.

This paper shows that the R package ercv (del Castillo et al., 2017a), based on the coefficient
of variation (CV), is a complement, and often an alternative, to the available software on EVT. The
mathematical background is shown in Section Mathematical Background, including threshold models
and the relationship between power law distribution and the generalized Pareto distributions (GPD),
which is the relationship between the two different approaches followed by the aforementioned R
packages evir, or ismev, and poweRlaw.

Section Exploratory data analysis with cvplot function introduces the tools for the empirical
residual coefficient of variation developed in the papers del Castillo et al. (2014), del Castillo and Serra
(2015) and del Castillo and Padilla (2016). Section Examples also shows the exploratory data analysis
of nine examples, some of them from the R packages evir and poweRlaw, with the cvplot function,
see Figure 1.

Section Estimation and Model diagnostics with Tm function explains the Tm function in the R
package ercv that provides a multiple thresholds test that truly reduces the multiple testing problem in
threshold selection and provides clearly defined p-values. The function includes an estimation method
of the extreme value index. An automatic threshold selection algorithm provided by the thrselect
function is explained in Section 12.5 to determine the point above which GPD can be assumed for the
tail distribution.

Section Transformation from heavy to light tails (tdata) shows how the methodology developed in
the previous sections can be extended with the tdata function to all GPD distributions, even with no
finite moments. This technique is applied to the MobyDick example and to the Danish fire insurance
dataset, a highly heavy-tailed, infinite-variance model. Finally, Section Fitting PoT parameters and
tail plots (fitpot ccdfplot) describes the functions of the R package ercv that allow estimation of the
parameters (fitpot) and drawing of the adjustments (ccdfplot) for the peak-over-threshold method.

Mathematical Background

Extreme value theory is widely used to model exceedances in many disciplines, such as hydrology,
insurance, finance, internet traffic data and environmental science. The underlying mathematical basis
is now thoroughly established in Leadbetter et al. (1983), Embrechts et al. (1997), de Haan and Ferreira
(2007), Novak (2012) and Resnick (2013). Statistical tools and methods for use with a single time series
of data, or with a few series, are well developed in Coles (2001), Beirlant et al. (2006) and Markovich
(2007).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 57

Threshold models

The first fundamental theorem on EVT by Fisher and Tippett (1928) and Gnedenko (1943) characterizes
the asymptotic distribution of the maximum in observed data. Classical analyses now use the
generalized extreme value family of distribution functions for fitting to block maximum data provided
the number of blocks is sufficiently large. Another point of view emerged in the 1970’s with the
fundamental theorem by Pickands (1975) and Balkema and de Haan (1974). The Pickands-Balkema-
DeHaan (PBdH) theorem, see McNeil et al. (2005, chap 7), initiated a new way of studying extreme
value theory via distributions above a threshold, which use more information than the maximum data
grouped into blocks.

Let X be a continuous non-negative r.v. with distribution function F(x). For any threshold,
t > 0, the r.v. of the conditional distribution of threshold excesses X − t given X > t, denoted as
Xt = {X − t | X > t}, is called the residual distribution of X over t. The cumulative distribution
function of Xt, Ft(x), is given by

1− Ft(x) = (1− F(x + t))/(1− F(t)). (1)

The quantity M(t) = E(Xt) is called the residual mean and V(t) = var(Xt) the residual variance. The
plot of sample mean excesses over increasing thresholds is a commonly used diagnostic tool in risk
analysis called ME-plot (meplot function in evir R package).

The residual coefficient of variation is given by

CV(t) ≡ CV(Xt) =
√

V(t)/M(t), (2)

like the usual CV, the function CV(t) is independent under change of scale.

The PBdH theorem characterizes the asymptotic distributions of the residual distribution over a
high threshold under widely applicable regularity conditions, see Coles (2001). The result essentially
says that GPD is the canonical distribution for modelling excess over high thresholds. The probability
density function for a GPD(ξ, ψ) is given by

g(x; ξ, ψ) =

{
ψ−1(1 + ξx/ψ)−(1+ξ)/ξ , ξ 6= 0,

ψ−1 exp(−x/ψ), ξ = 0,
(3)

where ξ ∈ R is called the extreme value index (evi) and ψ > 0 is a scale parameter, 0 ≤ x ≤ −ψ/ξ
if ξ < 0, and x ≥ 0 if ξ ≥ 0. The value of ξ determines the tail type. If ξ < 0, we say that the
distribution is light tailed, if ξ = 0 we say it is exponential tailed. If ξ > 0 a GPD has finite moments of
order n if ξ < 1/n and it is called heavy tailed. The mean of a GPD is ψ/(1− ξ) and the variance is
ψ2/[(1− ξ)2(1− 2ξ)] provided ξ < 1 and ξ < 1/2, respectively. Then, the coefficient of variation is

cξ =
√

1/(1− 2ξ), (4)

the cvevi and evicv functions of the R package ercv correspond to this function and its inverse.

The residual distribution of a GPD is again GPD with the same extreme value index ξ, for any
threshold t > 0, in fact

GPDt(ξ, ψ) = GPD(ξ, ψ + ξt). (5)

Therefore, the residual CV for GPD is independent of the threshold and the scale parameter and is
given by equation (4).

The probability density functions (3) are monotone decreasing (L-shaped) for ξ > −1, covering
practically all the applications. Therefore, we are mainly concerned with the subset of data that
indicate this behaviour. For example, if the dataset is concentrated in the centre and decreases on
either side (bell-shaped) we will study the upper and lower part (changed sign) of the distribution
separately, taking the median or some other location statistic as the origin.

The power law distribution and GPD

The power law distribution is the model, introduced by Pareto,

p (x; α, σ) =
α

σ

(σ

x

)α+1
, x > σ (6)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 58

where α > 0 is the tail index and σ > 0 the minimum value parameter. The model corresponds to the
distribution functions F with the linear relation

log [1− F (x)] = −α log(x) + α log (σ) , (7)

see also Gillespie (2015).

Note that if X is a r.v. with probability density function p (x; α, σ), given by (6), Z = X − σ has
probability density function

g(z; 1/α, σ/α) =
α

σ

(
σ

z + σ

)α+1
, z > 0, (8)

that is, there is a one to one correspondence between power law distributions and GPD distributions
with heavy tails (ξ > 0), where ξ = 1/α and σ = ψ/ξ. However, the two statistical models (3) and (6),
with ξ > 0, are different since there is no unique transformation for all functions of the model (the
transformation Z = X− σ depends on the minimum value parameter σ of the same variable X).

The MLE for model (6) leads to the Hill estimator and Hill-plot (hill function in evir R package).
The support of the distributions in (6) depends on the minimum value parameter σ. Hence, the
MLE has no standard regularity conditions and the minimum value parameter σ is estimated with
alternative methods, see Clauset et al. (2009) and its implementation in the poweRlaw R package by
Gillespie (2015).

However, the support of the distributions in (3), with ξ > 0, does not depend on parameters and
MLE existing for large samples provided ξ > −1 and is asymptotically efficient provided ξ > −0.5,
see del Castillo and Serra (2015) and the references therein for details. The gdp function in the evir R
package provides the MLE for (3).

Note that model (3) includes all the limit distributions (heavy or not) of the residual distribution
over a high threshold and comes from a mathematical result (the PBdH theorem) and often (6) comes
from empirical evidence of the linear relationship (7) and comparison with other models. Moreover,
the linear relationship (7) is also obtained from the relationship between the parameters (8), see
the ccdfplot function in Section Fitting PoT parameters and tail plots (fitpot ccdfplot).

The residual CV approach

Gupta and Kirmani (2000) show that the residual CV characterizes the distribution in univariate
and bivariate cases, provided threre is a finite second moment (ξ < 1/2). In the case of GPD, the
residual CV is constant and is a one to one transformation of the extreme value index suggesting its
use to estimate this index. The residual CV can also be expressed in terms of probabilities, rather
than the threshold, through the inverse of the distribution function or the quantile function defined by
Q (p) = in f [x : F(x) ≥ p] , then the CV can be drawn, for 0 ≤ p < 1, for the threshold t = Q (p), that
is to plot the function p→ CV(Q(p)). This representation makes it possible to draw on the same scale
for the x axis the residual CV of distributions with different supports.

Exploratory data analysis with cvplot function

In this section the cvplot function of the R package ercv is introduced as a graphical tool for use in a
exploratory data analysis, through the nine examples described in Section 3.2. The cvplot function is
essentially the empirical residual CV whose asymptotic distribution as a stochastic process is explained
by del Castillo et al. (2014) and del Castillo and Padilla (2016).

The empirical residual CV and confidence intervals.

Assume that the raw data consist of a sequence of independent and identically distributed measure-
ments x1, ..., xn. Extreme events are identified by defining a high threshold t for which the exceedances
are {xj : xj > t}. Hence, we first identify a threshold t such that its exceedances correspond to a
constant residual CV (equivalently a GPD). We denote the ordered sample x(1) ≤ x(2) ≤ · · · ≤ x(n).
The cvplot function provides the function cv(t) of the sample coefficient of variation of the threshold
excesses (xj − t) given by

t→ cv(t) = sd{xj − t | xj > t}/mean{xj − t | xj > t}, (9)

in practice t = x(k) are the order statistics, where, k (1 ≤ k ≤ n) is the size of the sub-sample excluded.
Hereinafter the graph of this function is called CV-plot. Figure 1 shows the CV-plots of nine examples

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 59

(blue lines) that we comment on the next section.

Point-wise error limits for cv(t) under GPD(ξ, ψ) (provided ξ < 1/4) follow from the asymptotic
distribution of the empirical residual CV, by del Castillo and Padilla (2016), in particular for a fixed
threshold t, the asymptotic confidence intervals in Figure 1 (solid orange lines) are obtained by√

n(t)(cv(t)− cξ)
d→ N(0, σ2

ξ), (10)

where cξ is in (4), n(t) = ∑n
j=1 1(xj>t) . For an exponential distribution (ξ = 0) , c0 = 1 and σ2

0 = 1,

and for a uniform distribution (ξ = −1) , c−1 = 1/
√

3 and σ2
−1 = 8/45.

By default, if
√

2 is in the range of y’s then the cvplot function draws the line y =
√

2 (black dotted
line), which corresponds to ξ = 1/4 (finite fourth moment). Hence, CV-plot larger than this value for
high thresholds lead to very heavy tailed distribution and we suggest to switch to transformed data
through function tdata (Section 12.6). Alternatively, finite moments can be checked by a confidence
interval for the MLE estimator of evi, or the methods in the R package RobExtremes (Ruckdeschel
et al., 2019) and the references cited therein can be used.

The CV-plot is an alternative tool to Hill-plot an to ME-plot. It has two advantages over ME-plot:
first, it depends on a scale parameter and CV-plot does not; second, linear functions are defined by
two parameters and the constants by only one. So the uncertainty is reduced from three to one single
parameter. On the other hand, the Hill-plot can only be used for heavy tailed distributions.

500 700 900

0.
8

1.
0

1.
2

Excluded sample size

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

iFFT

Threshold

1100000 1100000 1100000

500 700 900

0.
6

1.
0

1.
4

Excluded sample size

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

FFT

Threshold

7100000 7200000 7400000

500 700 900
0.

8
1.

0
1.

2

Excluded sample size

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

BIFP

Threshold

290000 290000 290000

500 700 900

0.
0

1.
0

2.
0

3.
0

Excluded sample size

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

MA

Threshold

2.7e+07 2.7e+07 2.7e+07

10000 14000 18000

2
4

6
8

Excluded sample size

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

MobyDick

Threshold

 2 2 4 7 23

0 500 1500

1.
0

2.
0

3.
0

Excluded sample size

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

Danish

Threshold

1.0 1.3 1.7 2.5 6.6

0 50 100 150

0.
6

1.
0

1.
4

Excluded sample size

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

Nidd

Threshold

 66 77 92 250

0 50 100 150

0.
4

0.
8

1.
2

Excluded sample size

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

Bilbao

Threshold

7.1 7.8 8.4 9.2

0 1000 2500

0.
8

1.
0

1.
2

Excluded sample size

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

EUR/USD

Threshold

0.00064 0.10000 0.32000 0.94000

Figure 1: CV-plots stowed from left to right and top to bottom: four different types of execution time
distributions of automotive applications, the frequency of words in the novel Moby Dick, Danish
fire insurance data, River Nidd exceedances above value 65, Bilbao waves dataset and positive daily
returns of euro/dollar exchange rates between 1999 and 2014.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 60

Examples

The use of the cvplot function and its options is described using nine examples. The first four (iFFT,
FFT, BIFP and MA) correspond to different types of execution time distributions observed for a set of
representative programs for the analysis of automotive applications. Three others are in R packages:
MobyDick (“moby” in R package poweRlaw), Danish and Nidd (“danish” and ’“nidd.thresh” in the R
package evir). The Bilbao waves dataset (bilbao) was originally analysed by Castillo and Hadi (1997).
EURUSD is the dataset of euro/dollar daily exchange rates between 1999 and 2016.

We collect samples with n = 1, 000 observations for 4 of the 16 benchmarks in the EEMBC
AutoBench suite (Poovey, 2007), which is a well-known suite for real-time systems that includes
a number of programs used in embedded automotive systems. Hereinafter, these datasets will be
called iFFT (idctrn), FFT (aifftr), BIFP (basefp) and MA (matrix), leaving the real names in parentheses,
they correspond respectively to Inverse Fast Fourier Transform, Fast Fourier Transform, Basic Integer
and Floating Point and Matrix Arithmetic, see Abella et al. (2017) and del Castillo et al. (2017b). The
histograms of the four datasets are bell-shaped. Hence, when searching for L-shaped distributions, we
start the exploratory data analysis of the upper part of the distribution by taking the median as origin.
Note also that large samples increase the precision of the estimates, provided that the fitted model is
validated. The CV-plots for these four datasets are obtained, for instance, with:

library("ercv")
data(iFFT)
cvplot(iFFT,thr=median(iFFT))

The plots in Figure 1 are stowed from left to right and top to bottom. For iFFT, the CV-plot is inside
the confidence interval of the exponential distribution (evi = 0). Hence, it can be assumed that the CV
is constant equal to 1 (dashed orange line). For FFT, the CV-plot is inside the confidence interval for
the last 250 observations. For BIFP, the CV-plot looks like a constant with CV lower than 1, hence a
light tailed GPD is suggested. For MA, the CV-plot suggests a heavy tailed distribution.

The following three CV-plots in Figure 1 are made from the MobyDick, Danish and Nidd datasets,
which can be directly loaded from the R packages. The three plots are made with the default cvplot
function options, but including title, for instance:

data("moby", package = "poweRlaw")
cvplot(moby,main="MobyDick")

The second row of Figure 1 shows three examples that suggest heavy tailed distributions. In the
centre is MobyDick and on the right is the Danish fire insurance dataset, which is a highly heavy-tailed
infinite-variance example used to illustrate the basic ideas of extreme value theory, see Embrechts et al.
(1997), McNeil et al. (2005, Example 7.23) and Novak (2012, Example 9.8). Section Transformation from
heavy to light tails (tdata) shows how to analyse these examples, with the tdata function, using the
methodology developed in del Castillo and Padilla (2016).

Nidd is the dataset of high levels of the River Nidd above a threshold value of 65. Its CV-plot
is always lower than

√
2, begins in the area of heavy tails and goes into the confidence interval of

exponentially. The Bilbao waves dataset was originally analysed by Castillo and Hadi (1997). The
Nidd and Bilbao datasets are two of the most commented examples of extreme values theory, which
were also analysed by del Castillo and Serra (2015) from the MLE point of view.

By default, the cvplot function draws a 90% confidence interval of CV-plot from exponential
distribution (evi = 0). The evi parameter of the function provides confidence intervals of the corre-
sponding GPD (evi < 1/4). The conf.level parameter allows for changing confidence levels. Both evi
and conf.level may be a vector. For light tailed distributions, as is presumably the case with the wave
levels, it is also advisable to draw a confidence interval from the uniform distribution (evi = −1).
Hence, the Bilbao CV-plot in Figure 1 has confidence intervals for exponential (orange) and uniform
(green) distributions.

data(bilbao)
cvplot(bilbao,evi = c(0,-1),main="Bilbao")

EURUSD is the data frame object of the euro/dollar daily exchange rates between 1999 and 2016,
including the financial crisis of 2007-08, which was obtained from the R package quantmod (Ryan,
2016). Various parts of the EURUSD series have been studied by several authors, see Gomes and
Pestana (2007) and del Castillo and Padilla (2016). The last plot in Figure 1 shows the CV-plot of the
positive log-returns of the euro/dollar daily prices, obtained from

data("EURUSD")
prices<-ts(EURUSD$EUR.USD,frequency=365,start=1999)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 61

#plot(prices,col="blue",main="euro/dollar daily prices(1999-2016)")
return <- 100*diff(log(prices));
pos.return <- subset(return, return >0);
cvplot(pos.return,main="pos.returns EUR/USD 1999-2016")

The dynamics of the daily return can be described by a GARCH(1,1) model. One might then hope
that for sufficiently high values of t the subset of daily returns that are above t is so well separated in
time that independence can reasonably be assumed. Then, the CV-plot clearly shows that the tail of
the distribution looks like an exponential.

Estimation and Model diagnostics with Tm function

Following the exploratory analysis, we would like to confirm or deny some of the previous observa-
tions. It is known that in order to make optimum decisions, it is necessary to quantify the uncertainty
of information extracted from data. Statistics provides mechanisms to ensure a controlled probability
of error, but there is always the risk of misuse for multiple testing, especially in EVT where quite
small changes can be greatly magnified on extrapolation. The asymptotic distribution of the residual
coefficient of variation for GPD as a random process indexed by the threshold by del Castillo and
Padilla (2016) provides pointwise error limits for CV-plot, used in the last section, and a multiple
thresholds test that truly reduces the multiple testing problem, hence, the p-values are clearly defined.

Using the building blocks given by (10) the multiple threshold test Tm (the Tm function of the
R package ercv) for a (supplementary) number of thresholds m as large as necessary for practical
applications is constructed from

Tm(ξ) = n
m

∑
k=0

pk(cv(qk)− cξ)
2, (11)

where cξ is in (4), qk are the empirical quantiles corresponding to probabilities 1− pk and probability p
is chosen so that n pm ≈ omit, where omit is the smaller sample size used to calculate CV. This statistic
can be used to test whether a sample is distributed as a GPD with parameter ξ.

The Tm function makes it possible to see whether the 75 largest values of Nidd can be assumed to
be exponentially distributed.

data("nidd.thresh",package = "evir")
Tm(nidd.thresh,evi=0, nextremes = 75)

nextremes cvopt evi tms pvalue
75 1.000 0.000 0.981 0.310

The Tm function provides tms = Tm(evi)/(m+ 1), which is stable on vary the number of thresholds
m, the p-value says that it can not be rejected exponenciality (the number of simulations can be
increased with nsim). Moreover, by default the Tm function assumes that the parameter ξ is unknown
(evi = NA), then the cvopt is estimated as the value c̃ξ such that achieves the minimum of Tm(ξ), and
reversing (4) provides an estimator ξ̃.

The following code shows that the assumption of constant CV (GDP) is rejected for the complete
sample.

Tm(nidd.thresh)

nextremes cvopt evi tms pvalue
154 1.225 0.167 1.214 0.030

It is rejected that Bilbao dataset is uniform distributed. However, It can not be rejected GPD as the
following code shows

Tm(bilbao,evi=-1,nsim=1000)

nextremes cvopt evi tms pvalue
179 0.577 -1.000 0.629 0.003

Tm(bilbao,nsim=1000)

nextremes cvopt evi tms pvalue
179 0.650 -0.685 0.254 0.172

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 62

The confidence interval for the parameter estimation evi = −0.685 can be obtained with

cievi(nextremes=length(bilbao),evi=-0.685)

5% 95%
-0.778 -0.549

Using a small threshold, (0.1%), the Tm function shows that the positive and negative returns of
the euro/dollar between 1999 and 2016 can be assumed exponentially distributed.

Tm(pos.return,m=50,evi=0,thr=0.1,nsim=1000)

nextremes cvopt evi tms pvalue
2207 1.000 0.000 0.392 0.780

neg.return <- -subset(return, return <0);
Tm(neg.return,m=50,evi=0,thr=0.1,nsim=1000)

nextremes cvopt evi tms pvalue
2187 1.000 0.000 1.160 0.231

The last statement with Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz takes elapsed=4.73 (R>
proc.time()).

Threshold selection algorithm (thrselect)

There are two different approaches to the question of threshold choice. The first approach is to regard
the free choice of the threshold as an advantageous feature of the procedure. By varying the threshold,
the data can be explored, and if a single estimate is needed it can be obtained by subjective choice. It
may well be that such a subjective approach is in reality the most useful one.

The other, to some extend opposing, view is that there is a need for an automatic method whereby
the threshold is chosen by the data. It is fairer to use the word automatic rather than objective for such a
method, because there are arbitrary decisions involved in the choice of the method itself. Nevertheless,
it is of course the case that conditional on the automatic method being used, the threshold is indeed
objective. Automatic methods need not be used in an uncritical way; they can of course be used as a
starting point for fine tuning.

The thrselect function in the R package ercv starts with the Tm(ξ) calculation (11) where the
number of thresholds m must be fixed by the researcher. This determines the thresholds where the
CV is calculated, 0 = q0 < q1 < · · · < qm, which are fixed throughout the procedure. We accept or
reject the null hypothesis for the shape parameter using all the thresholds. If the hypothesis is rejected,

the threshold excesses
(

xj − q1

)
are calculated for the sub-sample

{
xj > q1

}
. The previous steps are

repeated, but removing one threshold, to accept or reject the null hypothesis that the sample comes
from a GPD with parameter ξ, see del Castillo and Padilla (2016).

If we apply the function thrselect on the Nidd dataset the code shows

DF <- thrselect(nidd.thresh,m=10, nsim=1000)

m nextremes threshold rcv cvopt evi tms pvalue
5 6 63 87.85 1.193 1.073 0.0656 0.408 0.102

This means that the algorithm need 5 steps to achieve a p-value larger than 0.10 and it is using
in this step m = 6 thresholds. Then, constant CV can be accepted for the last 63 extremes over the
threshold 87.85, with the CV cvopt = 1.0728 and the corresponding evi = 0.0656.

The output of thrselect is in the data frame DF, the printed values are in DF$solution and
DF$options provides complementary information that can be used for a more personal approach.

print(DF$options,digits=4)

m nextremes threshold rcv cvopt evi tms pvalue
1 10 154 65.08 1.2486 1.2249 0.166758 1.33553 0.023
2 9 123 74.38 1.4082 1.2183 0.163112 1.47158 0.012
3 8 99 77.80 1.3163 1.1634 0.130594 0.93927 0.034
4 7 79 81.40 1.2587 1.1175 0.099606 0.64548 0.064
5 6 63 87.85 1.1933 1.0728 0.065559 0.40795 0.102

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 63

6 5 50 92.82 1.1328 1.0320 0.030493 0.24415 0.217
7 4 40 99.14 1.0714 0.9945 -0.005584 0.12917 0.457
8 3 32 107.94 1.0054 0.9619 -0.040406 0.05888 0.609
9 2 26 115.93 0.9006 0.9396 -0.066323 0.04218 0.637
10 1 21 131.87 0.9473 0.9667 -0.034986 0.01755 0.597

Transformation from heavy to light tails (tdata)

It is possible to extend the previous methodology based on CV to all distributions, even without finite
moments. For CV-plots above the straight line y =

√
2 , like the three examples in the second row of

Figure 1, the datasets are transformed by the strictly increasing function that applies (0, ∞) to (0, σ),

y (x) = σ x/(x + σ),

where σ > 0, using the tdata function in the R package ercv.

This technique is founded on the following result: if X is a random variable GPD (ξ, ψ) distributed
and ξ > 0, then for σ = ψ/ξ the transformed random variable Y = y(X) is GPD (−ξ, ψ) distributed.
Furthermore, the converse is also true, as evidenced by applying the inverse transformation x (y) =
σ y/(σ− y), see also del Castillo and Padilla (2016). The σ > 0 parameter is estimated by tdata, using
MLE with the internal function egpd, (see del Castillo and Serra (2015)) or may be provided by the
researcher as a preliminary estimate.

The CV-plots for Danish and MobyDick transformed by tdata function are obtained with:

data("danish",package = "evir")
tdanish<- tdata(danish)
cvplot(tdanish,main="transformed Danish")
tmoby<- tdata(moby)
cvplot(tmoby,main="transformed MobyDick")

The CV-plots in Figure 2 for the transformed datasets are more stable than the original CV-plots
in Figure 1 and actually look light tailed. The CV-plot of the transformed MobyDick has a sawtooth
profile because the original dataset only takes positive integer values and the smaller values have a
high frequency (among the 18,855 values, 1 appears 9,161 times, 2 appears 3,085, ...). In order to use a
GPD approach for this example we assume that the data correspond to positive values rounded to the
nearest integer.

0 500 1500

0.
6

1.
0

1.
4

Excluded sample size

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

(a) Transformed Danish

Threshold

0.0029 0.4800 1.2000

10000 14000 18000

0.
0

0.
4

0.
8

1.
2

Excluded sample size

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

(b) Transformed MobyDick

Threshold

8.1e−05 8.1e−05 8.1e−05

Figure 2: CV-plots under tdata transformation of Danish fire insurance data and frequencies of words
in the novel Moby Dick.

The Tm function rejects GPD for the complete transformation of MobyDick. The same result is
obtained with the transformation of the dataset on the thresholds 2 and 3. However, GPD is not
rejected on threshold 4, hence the frequencies of words that appear four or more times in the novel
Moby Dick (4,980 observations) can be approximated by a GPD distribution with evi = 0.982, as the
following code shows (changing the sign of evi):

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 64

t4moby<-tdata(moby,thr=4)
Tm(t4moby,m=50,nsim=1000)

nextremes cvopt evi tms pvalue
4980 0.581 -0.982 0.198 0.293

The Danish example was studied by del Castillo and Padilla (2016). The results obtained are
validated by the Tm function after the transformation tdata

Tm(tdanish,m=20,nextremes = 951,omit = 8, nsim = 1000)

nextremes cvopt evi tms pvalue
951 0.676 -0.595 0.256 0.253

Applying the thrselect function to Danish after the transformation by tdata we obtain

DF<-thrselect(tdanish,m=30,nsim=1000)

m nextremes threshold rcv cvopt evi tms pvalue
19 12 116 1.283 0.589 0.6747 -0.598 0.265 0.11

The automatic algorithm chooses the threshold 1.283 (116 extremes) with the estimate evi = 0.598
(changing the sign of evi) really close to the previous one evi = 0.595. The result is different from that
obtained by McNeil et al. (2005) by MLE evi = 0.50 (109 extremes). However the cievi function shows
that evi = 0.50 can not be rejected, as shown by the confidence interval provided by the following
code (changing the sign of evi again),

cievi(116,evi=-0.596)

5% 95%
-0.714 -0.440

In the next section we will discuss these results with new features of the R package ercv.

Fitting PoT parameters and tail plots (fitpot ccdfplot)

The tools described in the previous sections provide an asymptotic model for threshold exceedances
over a high quantile, the so-called peak-over-threshold (PoT) method, see McNeil et al. (2005). The
PoT method is based on determining a high enough threshold from which the distribution of the
observations above this value, adjusted to zero, approaches to a GPD distribution. Then, given a
threshold t, for x > t the complementary cumulative distribution function (ccdf) is estimated by

1− F̂ (x) = p̂t
(
1− G

(
x− t; ξ̂t, ψ̂t

))
(12)

where G (x; ξ, ψ) is the cumulative distribution function of the GDP, whose probability density function
was introduced in (3), and

(
ξ̂t, ψ̂t

)
are their estimated parameters for the nt threshold exceedances

over t adjusted to zero, from a sample of size n with p̂t = nt/n. Alternatively, given nt the estimated
parameter is t.

The ppot function is the cumulative distribution function for the PoT method. That is, given
an estimate of the four parameters in (12),

(
ξ̂, ψ̂, t̂, p̂

)
, the right hand part of (12) is provided by

1−ppot
(

x,
(
ξ̂, ψ̂, t̂, p̂

))
. The qpot is the quantile function for the PoT method that assigns to each

probability p attained by ppot the value x for which ppot(x) = p, given the same vector of four
parameters. The qpot function can be used in the estimation of high quantiles, that in terms of risk
is expressed as the value at risk (VaR). For a small p, VaRp = q if and only if 1− F (q) = p. Hence, if
ε < p̂,

VaRε = t̂ + qpot
(
(1− ε/ p̂) ,

(
ξ̂, ψ̂, t̂, p̂

))
.

The fitpot function of the R package ercv provides an estimate of the four parameters in (12) that
allow approximating the empirical cumulative distribution function of a dataset. It is assumed that the
threshold t, or the number of extremes, has been chosen based on the tools of the previous sections. By
default fitpot uses MLE. However, since parameter ξ (evi) can be estimated minimizing (11) by the
Tm function, this value can be entered into the function fitpot and then it uses MLE by the restricted
model to a single parameter. From now on this method of estimation will be called CV method.

The two methods of estimation of fitpot applied to Danish explain the differences between the
results obtained by us and by other researchers, which we have discussed in the previous section, as
we can see with the code

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 65

fit1<-fitpot(danish,nextremes =116);fit1 #MLE

evi psi threshold prob
0.446 7.462 9.200 0.054

fit2<-fitpot(danish,evi=0.598,nextremes =116);fit2 #CV

evi psi threshold prob
0.598 6.450 9.200 0.054

Naturally, different estimation methods provide different estimates, but the question of identifying
the best approach still remains. To clarify this point, we can use the ccdfplot function, which draws
the empirical complementary cumulative distribution function with the approximations provided
by the parameters estimated by fitpot. The ccdfplot function allows to draw several approaches at
several scales. The approximation is linear in the log-log scale for datasets with heavy tails, although
it is linear in log scale for datasets with exponential tails (log = "y", by default). To draw the approach
on natural scale the option log = "" has to be used.

The plots of Figure 3 have been obtained with ccdfplot function applied to Danish data with the
estimates obtained by MLE (orange) and CV method (green) on logarithmic and double logarithmic
scales, with

ccdfplot(danish,pars=list(fit1,fit2),main="Danish (log scale)")
ccdfplot(danish,pars=list(fit1,fit2),log="xy",main="Danish (log-log
scale)")

0 50 100 200

5e
−

04
5e

−
02

data

cc
df

●●●
●
●

●
●

●

●

●

(a) Danish (log scale)

1 2 5 20 50 200

5e
−

04
5e

−
02

data

cc
df

●●●
●
●

●
●

●

●

●

(b) Danish (log−log scale)

Figure 3: Complementary cumulative distribution function of Danish fire insurance data adjusted by
MLE and CV methods. in log scale and log-log scale.

Figure 3 shows that both adjustments are reasonable. The CV method is not worse than MLE,
perhaps less optimistic or more realistic. The previous PoT approach can be validated using the
Clauset et al. (2009) point of view.

Based on the four parameters estimated by fitpot
(
ξ̂, ψ̂, t̂, p̂

)
for heavy tailed models (evi > 0),

the linear relationship (7) can be obtained for the dataset values over the threshold, with the new
threshold σ̂ = ψ̂/ξ̂ and the probability 1, see the following code.

fit1<-as.numeric(fit1$coeff);sg1<- fit1[2]/fit1[1];sg1
fit2<-as.numeric(fit2$coeff);sg2<- fit2[2]/fit2[1];sg2
exDanish<-danish[danish>fit1[3]]-fit1[3] #origin to zero
exDanish1<- exDanish+sg1 #origin to sg1
exDanish2<-exDanish+sg2 #origin to sg2
exfit1<-c(fit1[1],fit1[2],sg1,1)
exfit2<-c(fit2[1],fit2[2],sg2,1)
ccdfplot(exDanish, pars=c(exfit1),log="xy",main="adjusted by MLE")
ccdfplot(exDanish2, pars=c(exfit2),log="xy",main="adjusted by CV")

The Figure 4 plot (a) shows the linear relationship (7) for the 116 upper extremes of Danish adjusted
by MLE. Changing the previous fit1 by fit2 the linear relationship is obtained by the CV method and is

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 66

shown in plot (b). Notice that the linear relationship (7) begins at the threshold sg1 = 16.727 for MLE
and at a threshold sg2 = 10.787 for the CV method, so we can not overlay them in the same graph. The
goodness of fit can now be measured by the correlation between the logarithm of the complementary
empirical distribution function, log(1− Fn) and the logarithm of the data, log(x + sg), where (x + sg)
are the 116 upper extremes of Danish, adjusted to sigma. The results are correlation = −0.981 using
MLE, plot (a), and correlation = −0.990 using CV-method, plot (b).

We can also calculate the threshold th having a maximum correlation between log(1− Fn) and
log(x + th), obtaining th = 6.996 and correlation = −0.992. Thus, the correlation on which the
goodness of the CV method adjustment is based on is very close to the best that can be obtained by
this procedure, which is in line with Clauset et al. (2009) and the poweRlaw R package by Gillespie
(2015) (although here the estimation of evi is different). This shows that the methodology provided by
the R package ercv complements and connects the contributions of evir (Pfaff and McNeil, 2012) and
poweRlaw by Gillespie (2015).

20 50 100 200

0.
01

0.
05

0.
50

data

cc
df

●●
●

●
●

●
●
●

●
●

●

●

●

●

(a) Danish extremes by MLE

10 20 50 100 200

0.
01

0.
05

0.
50

data

cc
df

●●
●

●
●

●
●
●

●
●

●

●

●

●

(b) Danish extremes by CV

Figure 4: The linear relationship for the 116 upper extremes of Danish fire insurance data adjusted by
MLE and CV method.

Acknowledgements

This work was supported by the Spanish Ministry of Economy and Competitiveness under Grant:
Statistical modelling of environmental, technological and health risks, MTM2015-69493-R. David
Moriña acknowledges financial support from the Spanish Ministry of Economy and Competitiveness,
through the María de Maeztu Programme for Units of Excellence in R&D (MDM-2014-0445) and from
Fundación Santander Universidades.

Bibliography

J. Abella, M. Padilla, J. del Castillo, and F. Cazorla. Measurement-based worst-case execution time
estimation using the coefficient of variation. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 22(4):72:1–72:29, 2017. [p60]

A. Balkema and L. de Haan. Residual life time at great age. Annals of Probability, 2:792–804, 1974. [p57]

J. Beirlant, Y. Goegebeur, J. Segers, and J. L. Teugels. Statistics of Extremes: Theory and Applications. John
Wiley & Sons, Chichester, UK, 2006. [p56]

E. Castillo and A. S. Hadi. Fitting the generalized pareto distribution to data. Journal of the American
Statistical Association, 92:1609 – 1620, 1997. [p60]

A. Clauset, C. R. Shalizi, and M. Newman. Power-law distributions in empirical data. SIAM Review,
51(4):661–703, 2009. [p56, 58, 65, 66]

S. Coles. An Introduction to Statistical of Extremes Values. Springer-Verlag, London, 2001. [p56, 57]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 67

L. de Haan and A. Ferreira. Extreme Value Theory: An Introduction. Springer-Verlag, New York, 2007.
[p56]

J. del Castillo and M. Padilla. Modelling extreme values by the residual coefficient of variation.
Statistics and Operations Research Transactions, 40:303–320, 2016. [p56, 58, 59, 60, 61, 62, 63, 64]

J. del Castillo and I. Serra. Likelihood inference for generalized pareto distribution. Computational
Statistics & Data Analysis, 83:116–128, 2015. [p56, 58, 60, 63]

J. del Castillo, J. Daoudi, and R. Lockhart. Methods to distinguish between polynomial and exponential
tails. Scandinavian Journal of Statistics, 41:382–393, 2014. URL https://doi.org/10.1111/sjos.
12037. [p56, 58]

J. del Castillo, D. Moriña, and I. Serra. ercv: Fitting Tails by the Empirical Residual Coefficient of Variation,
2017a. URL https://CRAN.R-project.org/package=ercv. R package version 1.0.0. [p56]

J. del Castillo, M. Padilla, J. Abella, and F. Cazorla. Execution time distributions in embedded safety-
critical systems using extreme value theory. International Journal of Systems Control and Information
Processing, 9(4):348–361, 2017b. [p60]

P. Embrechts, C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and Finance.
Springer-Verlag, Berlin, 1997. [p56, 60]

R. Fisher and L. Tippett. Limiting forms of the frequency distribution of the largest or smallest member
of a sample. Mathematical Proceedings of the Cambridge Philosophical Society, 24(2):180–190, 1928. [p57]

E. Gilleland, M. Ribatet, and A. Stephenson. A software review for extreme value analysis. Extremes,
16:103–119, 2013. [p56]

C. Gillespie. Fitting heavy tailed distributions: The powerlaw package. Journal of Statistical Software,
64(2):1–16, 2015. [p56, 58, 66]

B. V. Gnedenko. Sur la distribution limite du terme maximum d’une serie aleatoire. The Annals of
Mathematics, 44(3):423–453, 1943. [p57]

M. I. Gomes and D. Pestana. A sturdy reduced-bias extreme quantile (var) estimator. Journal of the
American Statistical Association, 102:280–292, 2007. [p60]

R. Gupta and S. N. U. A. Kirmani. Residual coefficient of variation and some characterization results.
Journal of Statistical Planning and Inference, 91:23–31, 2000. [p58]

J. E. Heffernan and A. G. Stephenson. Ismev: An Introduction to Statistical Modeling of Extreme Values,
2018. URL https://CRAN.R-project.org/package=ismev. [p56]

R. Leadbetter, G. Lindgren, and H. Rootzén. Extremes and Related Properties of Random Sequences and
Processes. Springer-Verlag, New York, 1983. [p56]

N. Markovich. Nonparametric Analysis of Univariate Heavy-Tailed Data. John Wiley & Sons, Chichester,
UK, 2007. [p56]

A. McNeil, R. Frey, and P. Embrechts. Quantitative Risk Management: Concepts, Techniques and Tools.
Princeton Series in Finance, New Jersey, 2005. [p57, 60, 64]

S. Novak. Extreme Value Methods with Applications to Finance. CRC Press, Boca Raton, 2012. [p56, 60]

B. Pfaff and A. McNeil. evir: Extreme Values in R, 2012. URL https://CRAN.R-project.org/package=
evir. R package version 1.7-3. [p56, 66]

J. Pickands. Statistical inference using extreme order statistics. The Annals of Statistics, 3:119–131, 1975.
[p57]

J. Poovey. Characterization of the EEMBC Benchmark Suite. North Carolina State University, Raleigh, NC,
2007. [p60]

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2017. URL https://www.R-project.org/. [p56]

S. Resnick. Extreme Values,Regular Variation,and Point Processes. Springer-Verlag, New York, 2013. [p56]

P. Ruckdeschel, M. Kohl, and N. Horbenko. RobExtremes: Optimally Robust Estimation for Extreme Value
Distributions, 2019. URL http://robast.r-forge.r-project.org/. Contributions by S. Desmettre,
G. Kroisandt, E. Massini, D. Pupashenko and B. Spangl; R package version 1.2.0. [p59]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1111/sjos.12037
https://doi.org/10.1111/sjos.12037
https://CRAN.R-project.org/package=ercv
https://CRAN.R-project.org/package=ismev
https://CRAN.R-project.org/package=evir
https://CRAN.R-project.org/package=evir
https://www.R-project.org/
http://robast.r-forge.r-project.org/

CONTRIBUTED RESEARCH ARTICLES 68

J. A. Ryan. quantmod: Quantitative Financial Modelling Framework, 2016. URL https://CRAN.R-
project.org/package=quantmod. R package version 0.4-7. [p60]

Joan del Castillo
Departament de Matemàtiques, Universitat Autònoma de Barcelona (UAB)
Edifici C, E-08193 Barcelona
Spain
castillo@mat.uab.cat

Isabel Serra
Centre de Recerca Matemàtica (CRM)
Edifici C, E-08193 Barcelona
Spain
iserra@crm.cat

Maria Padilla
Departament de Matemàtiques, Universitat Autònoma de Barcelona (UAB)
Edifici C, E-08193 Barcelona
Spain
mpadilla@mat.uab.cat

David Moriña
Barcelona Graduate School of Mathematics (BGSMath), Departament de Matemàtiques, Universitat Autònoma
de Barcelona (UAB)
Edifici C, E-08193 Barcelona
Spain
dmorina@mat.uab.cat

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=quantmod
https://CRAN.R-project.org/package=quantmod
mailto:castillo@mat.uab.cat
mailto:iserra@crm.cat
mailto:mpadilla@mat.uab.cat
mailto:dmorina@mat.uab.cat

CONTRIBUTED RESEARCH ARTICLES 69

biclustermd: An R Package for
Biclustering with Missing Values
by John Reisner, Hieu Pham, Sigurdur Olafsson, Stephen Vardeman and Jing Li

Abstract Biclustering is a statistical learning technique that attempts to find homogeneous partitions
of rows and columns of a data matrix. For example, movie ratings might be biclustered to group both
raters and movies. biclust is a current R package allowing users to implement a variety of biclustering
algorithms. However, its algorithms do not allow the data matrix to have missing values. We provide
a new R package, biclustermd, which allows users to perform biclustering on numeric data even in
the presence of missing values.

Introduction

Traditional (one-way) clustering (such as with complete-link hierarchical clustering or k-means)
aims to partition only rows (or columns) of a data matrix into homogeneous subsets. Rows or
columns are clustered simply based upon their relational similarity to other observations. Biclustering
simultaneously groups rows and columns to identify homogeneous “cells”. Biclustering is known to
be NP-hard; as such, every existing algorithm approaches this problem heuristically. This methodology
was first investigated by Hartigan (1972) but was not given much attention until applied to gene
expression data (Cheng and Church, 2000). Today, biclustering is applied across many areas such as
biomedicine, text mining, and marketing (Busygin et al., 2008).

For our purposes, we consider rearranging a data matrix to obtain a checkerboard-like structure
where each cell is as homogeneous as possible. In this regard, our algorithm has the same goal as
spectral biclustering (Kluger et al., 2003), but approaches the problem in a different way. In contrast to
clustering with the end goal being a checkerboard-like structure, other techniques have been proposed
based on the singular value decomposition (Lazzeroni and Owen, 2002; Bergmann et al., 2003) and
others are based on a graph-theoretic approach (Tan and Witten, 2014). Although each technique is
different, each has the goal of finding substructure within the data matrix. In Figure 1 we provide a
visual suggestion of our biclustering goal. The color scheme represents similar numeric values and
our goal is to rearrange the data matrix so that these values form homogeneous cells.

RawDataMatrix0805ShuffledDataMatrix0805

Figure 1: Biclustering with checkerboard-like structure

A publicly available R package for biclustering is biclust by Kaiser and Leisch (2008). This appears
to be a commonly used package developed with the intent of allowing users to choose from a variety
of algorithms and renderable visualizations. Other biclustering packages include superbiclust, iBBiG
QUBIC, s4vd, BiBitR which each provide unique algorithms and implementations (Khamiakova,
2014; Gusenleitner and Culhane, 2019; Zhang et al., 2017; Sill and Kaiser, 2015; Ewoud, 2017). However,
from an implementation and algorithmic standpoint, the methods implemented in these packages
fail when given a data matrix with missing values. This is clearly a limitation since there exist many
rectangular datasets with missing values. For handling missing data, many imputation methods exist
in the literature. While this does produce a complete two-way data table, which can subsequently
be fully analyzed using existing biclustering algorithms, it has inherent limitations. When large
percentages of data are missing, such as is, for example, common in plant breeding and movie rating
applications to be discussed later, it is difficult and impossible to reasonably infer missing values.
Even if a small number of values are missing values those are potentially missing not-at-random due
to non-random and unknown devices. For example, in plant breeding, observation may be missing
because it is unreasonable to plant a crop in a particular environment or simply because a plant breeder
decides to not plant in certain environments. In these cases, imputing missing values would imply
that one can confidently estimate the performance of (say) crop yield in an environment where it was
never observed growing. There is a large body of literature on the difficult nature of this problem.
With this as motivation, our goal was to produce a biclustering algorithm which can successfully deal
with data with missing values without applying imputation or making any assumptions about why
data are missing.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=biclust
https://CRAN.R-project.org/package=superbiclust
https://www.bioconductor.org/packages/release/bioc/html/iBBiG.html
https://www.bioconductor.org/packages/release/bioc/html/QUBIC.html
https://CRAN.R-project.org/package=s4vd
https://CRAN.R-project.org/package=BiBitR

CONTRIBUTED RESEARCH ARTICLES 70

Biclustering with missing data

The package described in this paper, biclustermd, implements the biclustering algorithm of Li et al.
(2020) and their paper gives a thorough explanation of the proposed biclustering algorithm as well as
its applicability. For completeness we give an overview of their algorithm here.

Notation

• X is a data matrix with I rows and J columns. Xij is a response measure of row i in column j for
i ∈ {1, 2, . . . , I} and j ∈ {1, 2, . . . , J}.

• Row index set I = {1, 2, . . . , I} is partitioned into r mutually exclusive and exhaustive sets
T1, T2, . . . , Tr. Q ≡ partition of the row index set.

• Column index set J = {1, 2, . . . , J} is partitioned into c mutually exclusive and exhaustive sets
S1, S2, . . . , Sc. P ≡ partition of the column index set.

Our goal for biclustering is to generate a rearranged data matrix with a checkerboard structure
such that each “cell” of the matrix defined by Q and P is as homogeneous as possible. Depending on
specifics of a real problem, “homogeneous” can have different subject matter meanings, and hence
optimization of different objective functions can be appropriate. We present our algorithm here with
the goal of optimizing a total within-cluster sum of squares given both the row groups in Q and
column groups in P . This can be interpreted as the total sum of squared errors between cell means
and data values within cells. Hence we refer to this as SSE. Using the above notations we have r row
groups (or row clusters) and c column groups (or column clusters). Let A denote an r× c “cell-average
matrix” with entries

Amn ≡
1

|{Xij : i ∈ Tm; j ∈ Sn; Xij 6= NA}| ∑
{Xij :i∈Tm ; j∈Sn ; Xij 6=NA}

Xij (1)

for m ∈ 1, 2, . . . , r and n ∈ 1, 2, . . . , c. Here, |·| is the set cardinality function and NA denotes a missing
value. Then, the within-cluster sum of squares function to be minimized is

SSE ≡∑
m,n

∑
Xij 6=NA

i∈Tm
j∈Sn

(
Xij − Amn

)2
. (2)

Biclustering with missing data algorithm

1. Randomly generate initial partitionsQ(0) and P (0) with respectively r row groups and c column
groups.

2. Create a matrix A(0) using Equation (1) and the initial partitions. In the event that a “cell” (m, n)
defined by {(i, j) |i ∈ Tm and j ∈ Sn} is empty, Amn can be set to some pre-specified constant
or some function of the numerical values corresponding to the non-empty cells created by the
partition. (For example, the mean of the values coming from non-empty cells in row m or in
column n can be used.) This algorithmic step should not be seen as imputation of responses for
the cell under consideration, but rather only a device to keep the algorithm running.

3. At iteration s of the algorithm, with partitions P (s−1) and Q(s−1) and corresponding matrix
A(s−1) in hand, for i = 1, 2, . . . , I let

MR
in =

1∣∣∣{j ∈ Sn|Xij 6= NA
}∣∣∣ ∑

j∈Sn
s.t. Xij 6=NA

Xij

for each n = 1, 2, . . . , c and compute for m = 1, 2, . . . , r

dR
im =

c

∑
n=1

(
Amn −MR

in

)2
·
∣∣∣{j ∈ Sn|Xij 6= NA

}∣∣∣ .

Then create Q(s)∗ by assigning each row i to Tm with minimum dR
im.

4. If for Q(s)∗ every Tm is non-empty, proceed to Step 5. If at least one Tm = ∅ do the following:

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=biclustermd

CONTRIBUTED RESEARCH ARTICLES 71

(a) Randomly choose a row group Tm′ with |Tm′ | > kR
min (a user-specified positive integer

parameter) and choose kR
move < kR

min row indices to move to one empty Tm. Choose those
indices i from Tm′ with the largest kR

move corresponding values of the sum of squares

c

∑
n=1

∑
j∈Sn

s.t. Xij 6=NA

(
Xij −MR

in

)2
.

(b) If after the move in (a) no empty row group remains, proceed to Step 5. Otherwise return
to (a).

5. Replace Q(s−1) in Step 3 with the updated version of Q(s)∗ and cycle through Steps 3 and 4 α

times, where α is a user-specified integer parameter. If row_shuffles > 1, replace Q(s−1) in 3.
with the updated version of Q(s)∗ and cycle through steps 3. and 4. row_shuffles−1 times.

6. Set Q(s) = Q(s)∗. Then update A(s−1) to A(s)∗ using the partitions Q(s) and P (s−1) in Equation
(1).

7. For j = 1, 2, . . . , J let

MC
jm =

1∣∣∣{i ∈ Tm|Xij 6= NA
}∣∣∣ ∑

i∈Tm
s.t.Xij 6=NA

Xij

for each m = 1, 2, . . . , r and compute for n = 1, 2, . . . , c

dC
jn =

r

∑
m=1

(
Amn −MC

jm

)2
·
∣∣∣{i ∈ Tm|Xij 6= NA

}∣∣∣ .

Then create P (s)∗ by assigning each column j to Sn with minimum dC
jn.

8. If for P (s)∗ every Sn is non-empty, proceed to Step 9. If at least one Sn = ∅ do the following:

(a) Randomly choose a column group Sn′ with |Sn′ | > kC
min (a user-specified positive integer

parameter) and choose kC
move < kC

min column indices to move to one empty Sn. Choose
those indices j from Sn′ with the largest kC

move corresponding values of the sum of squares

r

∑
m=1

∑
i∈Tm

s.t. Xij 6=NA

(
Xij −MC

jm

)2
.

(b) If after the move in (a) no empty column group remains, proceed to Step 9. Otherwise
return to (a).

9. Replace P (s−1) in Step 3 with the updated version of P (s)∗ and cycle through Steps 7 and 8 β

times, where β is a user-specified integer parameter. If col_shuffles > 1, replace P (s−1) in 3.
with the updated version of P (s)∗ and cycle through steps 7. and 8. col_shuffles−1 times.

10. Set P (s) = P (s)∗ and we have new partitions Q(s) and P (s). Then update A(s)∗ to A(s) using
the partitions Q(s) and P (s) in Equation (1).

11. Steps 3–10 are executed N times or until the algorithm converges, which is when the Rand
Indices for successive row and column partitions are both 1. (See the description of the Rand
Index below.)

Intuitively, our proposed algorithm is nothing more than a rearrangement of rows and columns
with the objective to minimize the objectives given in Steps 3 and 7. We consider Step 1 (the random
generation of initial cluster assignments) to be of high importance to avoid any bias in the original
structure of the data. As a quantitative way to measure the effectiveness of our biclustering, we
consider the sum of squared errors (SSE) as the measure of within cell homogeneity. Paired with the
SSE, we allow for three different convergence criteria, the Rand Index (Rand, 1971), the Adjusted
Rand Index (Hubert and Arabie, 1985), and the Jaccard Index (Goodall, 1966). These indices provide
measures for the similarity between two clusterings.

Overview of biclustermd

The biclustermd package consists of six main functions with the most important being bicluster().
This function is where the algorithmic process is embedded and contains numerous tunable parame-
ters.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 72

• data: dataset to bicluster. Must be a data matrix/table with only numbers and missing values in
the dataset. It should have row names and column names.

• row_clusters: The number of clusters to partition the rows into. Default is
⌊√

I
⌋

• col_clusters: The number of clusters to partition the columns into. Default is
⌊√

J
⌋

• missing_val: Value or function used to represent empty cells of the data matrix. If a value, a
random normal variable centered at itself with standard deviation miss_val_sd is used each
iteration. Note that this is not data imputation but a temporary value used by the algorithm.

• missing_val_sd: Standard deviation of the normal distribution miss_val follows if miss_val is
a number. By default this equals 1.

• similarity: The metric used to compare two successive clusterings. Can be "Rand" (default),
"HA" for the Hubert and Arabie adjusted Rand index or "Jaccard". See clues for details.

• row_min_num: Minimum row cluster size in order to be eligible to be chosen when filling an
empty row cluster. Default is bI/rc.

• col_min_num: Minimum column cluster size in order to be eligible to be chosen when filling
an empty column cluster. Default is bJ/cc.

• row_num_to_move: Number of rows to remove from the sampled cluster to put in an empty
row cluster. Default is 1.

• col_num_to_move: Number of columns to remove from the sampled cluster to put in an empty
column cluster. Default is 1.

• row_shuffles: Number of times to shuffle rows in each iteration. Default is 1.

• col_shuffles: Number of times to shuffle columns in each iteration. Default is 1.

• max.iter: Maximum number of iterations to let the algorithm run.

• verbose: Logical. If TRUE, will report iteration progress.

In the following sections, we provide an overview of the functionality of biclustermd. For the first
dataset, we display the array of visualizations available, in the second example we demonstrate the
impact of numerous tunable parameters, our final example demonstrates the computational times of
our algorithm.

Example with NYCflights13

For a first example, we will utilize the flights dataset from Wickham’s package nycflights13 (Wickham,
2017). Per the package documentation, flights contains data on all flights in 2013 that departed NYC
via JFK, LaGuardia, or Newark. The variables of interest are month, dest, and arr_delay these are the
rows, columns and response value, respectively. In a dataset such as this, an application of biclustering
would be to determine if there exist subsets of months and airports with similar numbers of delays.
From a pragmatic perspective, this discovery may allow for air officials to investigate the connection
between these airports and months and why delays are occurring.

Using functions from tidyverse (Wickham, 2016), we generate a two-way data table such that
rows represent months, columns represent destination airports, and the numeric response values
are the average arrival delays in minutes. This data matrix contains 12 rows (months), 105 columns
(destination airports), and approximately 11.7% missing observations. Below is a snippet of our data
matrix.

> flights[1:5,1:5]
ABQ ACK ALB ANC ATL

January NA NA 35.17460 NA 4.152047
February NA NA 17.38889 NA 5.174092
March NA NA 17.16667 NA 7.029286
April 12.222222 NA 18.00000 NA 11.724280
May -6.516129 3.904762 10.19643 NA 8.187036

The first step is to determine the number of clusters for months and the number of clusters for
destination airports. Since we are clustering months, in this analysis, choosing r = 4 row clusters
seems reasonable (create a group for each season/quarter of the year). Although this is arbitrary, we
choose c = 6 column clusters. Since this algorithm incorporates purposeful randomness (by row and
column cluster initialization), biclustermd() should be run multiple times keeping the result with the
lowest sum of squared errors (SSE) since it may be expected that for different initialization one can
obtain a different local minimum (Li et al., 2020).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=clues
https://CRAN.R-project.org/package=nycflights13
https://CRAN.R-project.org/package=tidyverse

CONTRIBUTED RESEARCH ARTICLES 73

> bc <- biclustermd(data = flights, col_clusters = 6, row_clusters = 4,
+ miss_val = mean(flights, na.rm = TRUE), miss_val_sd = 1,
+ col_min_num = 5, row_min_num = 3,
+ col_num_to_move = 1, row_num_to_move = 1,
+ col_shuffles = 1, row_shuffles = 1,
+ max.iter = 100)
> bc

Data has 1260 values, 11.75% of which are missing
10 Iterations
Initial SSE = 186445; Final SSE = 82490
Rand similarity used; Indices: Columns (P) = 1, Rows (Q) = 1

The output of biclustermd() is a list of class “biclustermd” and “list” containing the following:

• The two-way table of data provided to the function.

• The final column and row partition matrices.

• SSE generated from the initial partitioning.

• SSE of each iteration, as an “biclustermd_sse” object.

• Similarity measures for rows and columns for each iteration, as an “biclustermd_sim” object.

• The number of iterations to convergence.

• A table of resulting cell means.

Analyzing the NYCflights13 biclustering

The list output of biclustermd() is used for rendering plots and to obtain cell information. One such
visual aid is a plot of the convergence indices versus iteration, given in Figure 2. From this graphic,
we can determine the rate at which convergence occurs for both row and column clusters. Moreover,
this provides confirmation that our algorithm can indeed achieve good clusterings along both dimen-
sions. Plotting of the similarity measures and SSE is done with autoplot.biclustermd_sim() and
autoplot.biclustermd_sse(), methods added to autoplot() of ggplot2 (Wickham, 2009).

> autoplot(bc$Similarities, ncol = 3) +
+ theme_bw() +
+ theme(aspect.ratio = 1) +
+ scale_x_continuous(breaks = 0:9)

●

●

●

●
●

●

● ● ● ●

●

● ● ● ● ● ● ● ● ●

●

●

●

●
●

●

●
● ● ●

●

● ● ● ● ● ● ● ● ●

●

●

●
● ● ●

● ● ● ●

●

● ● ● ● ● ● ● ● ●

Adjusted Rand (HA) Jaccard Rand

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0.00

0.25

0.50

0.75

1.00

Iteration

va
lu

e

Dimension

●

●

Column

Row

Figure 2: Plot of similarity measures for the flights biclustering

In addition to the similarity plots, one can utilize the SSE graphic as an indication of convergence
to a (local) minimum biclustering. This can be seen in Figure 3. From this we can observe the rate of
decrease of the SSE as well as the relative difference between the first and final iteration. Observing
closely each of the three convergence criteria suddenly decrease in value along the columns, namely
from iteration three to four. The algorithm is simply (attempting to) obtain a lower SSE which may
result in column shuffles which differ from iteration to iteration.

> autoplot(bc$SSE) +
+ theme_bw() +

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLES 74

+ theme(aspect.ratio = 1) +
+ scale_y_continuous(labels = comma) +
+ scale_x_continuous(breaks = 0:9)

●

●

●

●

●

●

●
●

● ●

85,000

90,000

95,000

100,000

0 1 2 3 4 5 6 7 8 9
Iteration

S
S

E

Figure 3: SSE plot of flights biclustering

Traditionally visualizations of biclustering plots are in a heat map fashion. autoplot.biclustermd()
makes visual analysis of biclustering results easy by rendering a heat map of the biclustered data
and allows for additional customization. Each of Figure 4–7 provide an example of the flexibility of
this function. Recall that the algorithm uses purposeful randomness, so a replicated result may look
different.

In Figure 4, we provide the default visualization without additional parameters. The white space
represent cells without any observations which is directly useful for our interpretation, and the color
scale is represented on the same spread as the numerical response.

> autoplot(bc) +
+ scale_fill_viridis_c(na.value = 'white') +
+ labs(x = "Destination Airport",
+ y = "Month",
+ fill = "Average Delay")

Destination Airport

M
on

th

−30

0

30

60

90

Average Delay

Figure 4: A heat map of the flights biclustering without transforming colors.

Often it may aid in interpretation to run the data through an S-shaped function before plotting.
Two parameter arguments in autoplot() are transform_colors = TRUE and c where c is the constant

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 75

to scale the data by before running it through a standard normal cumulative distribution function.
See Figure 5 for an illustration. Applying this transformation, one can immediately notice the distinct
dissimilarity between cells that were not clearly present in Figure 4.

> autoplot(bc, transform_colors = TRUE, c = 1/15) +
+ scale_fill_viridis_c(na.value = 'white') +
+ labs(x = "Destination Airport",
+ y = "Month",
+ fill = "Average Delay")

Destination Airport

M
on

th

0.25

0.50

0.75

Average Delay

Figure 5: A heat map of the flights biclustering after transforming colors.

To further aid interpretations, we make use of reorder_biclust in Figure 6. This command
reorders row and column clusters from increasing to decreasing mean. In our fights dataset, this may
be particularly useful to determine if there is a slow shift in airport locations moving from a high to
low number of delays.

> autoplot(bc, reorder = TRUE, transform_colors = TRUE, c = 1/15) +
+ scale_fill_viridis_c(na.value = 'white') +
+ labs(x = "Destination Airport",
+ y = "Month",
+ fill = "Average Delay")

Lastly, with large heat maps the authors have found it useful to zoom into selected row and column
clusters. In Figure 7, row clusters three and four and column clusters one and four are shown, using
the row_clusts and col_clusts arguments of autoplot(). Colors are not transformed.

> autoplot(bc, col_clusts = c(3, 4), row_clusts = c(1, 4)) +
+ scale_fill_viridis_c(na.value = 'white') +
+ labs(x = "Destination Airport",
+ y = "Month",
+ fill = "Average Delay")

There are two additional visualizations that provide insight into the quality of each cell: mse_heatmap()
and cell_heatmap(). mse_heatmap() gives the mean squared error (MSE) of each cell. Here, MSE
is defined as the mean squared difference between data values and the mean in each cell. Whereas
cell_heatmap() provides a heatmap with the total number of observations in the given cell. Combined,
these tools provide valuable insight into the homogeneity of each cell.

> mse_heatmap(bc) +
+ theme_bw() +
+ scale_fill_viridis_c() +
+ labs(fill = "Cell MSE") +
+ scale_x_continuous(breaks = 1:6)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 76

Destination Airport

M
on

th

0.25

0.50

0.75

Average Delay

Figure 6: An ordered heat map of the flights biclustering after transforming colors.

Destination Airport

M
on

th

−20

0

20

40

Average Delay

Figure 7: A zoomed in view of the heat map of the biclustering.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 77

1

2

3

4

1 2 3 4 5 6
Column Cluster Index

R
ow

 C
lu

st
er

 In
de

x
100

200

300

Cell MSE

Figure 8: A heat map of cell MSEs for the flights biclustering

> cell_heatmap(bc) +
+ theme_bw() +
+ scale_fill_viridis_c()

1

2

3

4

1 2 3 4 5 6
Column Cluster Index

R
ow

 C
lu

st
er

 In
de

x

30

60

90

Cell Size

Figure 9: A heat map of cell sizes for the flights biclustering

Finally, for interpretation purposes, retrieving row or column names and their corresponding
clusters is easily done using the biclustermd method of row.names() (for rows) and use of a new
generic col.names() and its method col.names.biclustermd() (for columns). Two final examples are
given below showing the output of each function, which have class data.frame.

> row.names(bc) %>% head()
row_cluster name

1 1 January
2 1 April
3 2 February
4 2 March
5 2 August
6 3 May

> col.names(bc) %>% head()
col_cluster name

1 1 ABQ
2 1 ACK
3 1 AUS

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 78

4 1 AVL
5 1 BGR
6 1 BQN

Further capabilities

As previously mentioned, due to the purposeful randomness of initial row and column clusterings,
multiple runs of the algorithm can produce different results. Hence it is recommended to perform
several trials (with various parameters) and store the result which obtains the lowest SSE. These multi-
ple runs can easily be done in parallel using the tune_biclustermd() function with the parameters as
listed below. To utilize this, first a tuning grid must be defined as an input for tune_biclustermd().
Below we provide an illustration of the process.

• data: Dataset to bicluster. Must to be a data matrix with only numbers and missing values in
the data set. It should have row names and column names.

• nrep: dataset to bicluster. The number of times to repeat the biclustering for each set of
parameters. Default 10.

• parallel : Logical indicating if the user would like to utilize the foreach parallel backend.
Default is FALSE.

• ncores: The number of cores to use if parallel computing. Default 2.

• tune_grid: A data frame of parameters to tune over. The column names of this must match the
arguments passed to biclustermd().

> flights_grid <- expand.grid(
+ row_clusters = 4,
+ col_clusters = c(6, 9, 12),
+ miss_val = fivenum(flights),
+ similarity = c("Rand", "Jaccard")
+)

> flights_tune <- tune_biclustermd(
+ flights,
+ nrep = 10,
+ parallel = TRUE,
+ tune_grid = flights_grid
+)

The output of tune_biclustermd() is a list of class “biclustermd” and “list” containing the following:

• best_combn: The best combination of parameters

• best_bc: The minimum SSE biclustering using the parameters in best_combn

• grid: tune_grid with columns giving the minimum, mean, and standard deviation of the final
SSE for each parameter combination

• runtime: CPU runtime & elapsed time.

Users can easily identify which set of tuning parameters gives the best results and corresponding
performance with the below code. The minimum SSE is obtained when 12 column clusters are used,
the missing value used is −34, and the Rand similarity is used. A minimum SSE of 70,698 was
obtained in the 10 repeats with that combination, which is a 16% reduction in SSE from our original
parameter guesses above. Due to the unsupervised nature of biclustering, ultimately, it is the user’s
responsibility to choose reasonable number of row and column clusters for interpretations. Each
domain and application of biclustering may lead to a different number of desired row or column
clusters for a given array size. We simply utilize the SSE and convergence criteria as quantitative
measures in determining the quality of the biclustering result.

> flights_tune$grid[trimws(flights_tune$grid$best_combn) == '*',]
row_clusters col_clusters miss_val similarity min_sse mean_sse sd_sse best_combn

3 4 12 -34 Rand 70697.95 76581.85 4934.83 *

Any of the previously discussed exploratory functions can be used on the biclustering fit with the
best tuning parameters by accessing the best_bc element of flights_tune since it is a biclustermd
object:

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 79

> flights_tune$best_bc
Data has 1260 values, 11.75% of which are missing
8 Iterations
Initial SSE = 184165; Final SSE = 69586
Rand similarity used; Indices: Columns (P) = 1, Rows (Q) = 1

Finally, biclustermd also possesses a method for gather() (Wickham and Henry, 2019) which
provides the name of the row and column a data point comes from as well as its corresponding
row and column group association. This is particularly useful since we can easily determine the cell
membership of each row and column to do further analysis. Namely, given these associations one
can further analyze the quality of each cell and paired with domain knowledge of their data make
informed judgments about the value of the biclustering. The following output was created from
flights_tune$best_bc.

> gather(flights_tune$best_bc) %>% head()
row_name col_name row_cluster col_cluster bicluster_no value

1 January ABQ 1 1 1 NA
2 March ABQ 1 1 1 NA
3 April ABQ 1 1 1 12.22222
4 January ACK 1 1 1 NA
5 March ACK 1 1 1 NA
6 April ACK 1 1 1 NA

Example with soybean yield data

For our next example, we perform biclustering on a dataset which has a larger fraction of missing data
to further show the practicability of our algorithm. Using data from a commercial soybean breeding
program, we consider 132 soybean varieties as rows, 73 locations as columns, and yield in bushels per
acre as the response. The locations span across the Midwestern United States and includes parts of
Illinois, Iowa, Minnesota, Nebraska, and South Dakota, and each of the 132 soybean varieties represent
a different genetic make-up. As one can imagine, not every soybean is grown in each location, as such
we obtain a dataset with approximately 72.9% missing values. One application of a dataset such as
this would be to determine if there are some subset of soybeans that perform consistently better (or
worse) in some locations than others. From a plant breeding perspective, it is of vital importance to
understand the relationship between the genetics and environments of crops, and identifying cells
non-overlapping homogeneous cells from biclustering can provide insights into this matter (Malosetti
et al., 2013).

The main purpose of this dataset is to demonstrate our algorithm on a dataset with a large amount
of missing values as well as show the usefulness of the tuning parameters. Below is our first trial on
the soybean yield data where we partition into 10 column clusters, 11 row clusters, and use the Jaccard
similarity measure.

> yield_bc <- biclustermd(
+ yield,
+ col_clusters = 10,
+ row_clusters = 11,
+ similarity = "Jaccard",
+ miss_val_sd = sd(yield, na.rm = TRUE),
+ col_min_num = 3,
+ row_min_num = 3
+)
> yield_bc

Data has 9636 values, 72.9% of which are missing
13 Iterations
Initial SSE = 239166; Final SSE = 51813, a 78.3% reduction
Jaccard similarity used; Indices: Columns (P) = 1, Rows (Q) = 1

In observing Figure 10, we notice that perfect convergence through the Rand Index, adjusted
Rand Index, and Jaccard similarity; however, the similarities suggest that the columns converge more
quickly than the rows. This may be attributed to the high percentage of missing values in the rows of
the data table. That is, for each location there is more data available than there is for each soybean
variety. Again we notice decreases in the values for each of the three indices, but observing Figure

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 80

11, we are assured that the algorithm is only making a column/row swap because a lower SSE is
obtainable.

> autoplot(yield_bc$Similarities, facet = TRUE, ncol = 3, size = 0) +
+ theme_bw() +
+ theme(aspect.ratio = 1)

●

●

●

●

●

●

● ●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

● ● ● ●

●

●

●

●
●

●

●

●
●

●

●

●
●

Adjusted Rand (HA) Jaccard Rand

0.0 2.5 5.0 7.5 10.0 12.50.0 2.5 5.0 7.5 10.0 12.50.0 2.5 5.0 7.5 10.0 12.5

0.00

0.25

0.50

0.75

1.00

Iteration

va
lu

e

Dimension
●

●

Column

Row

Figure 10: Plot of similarity measures for the soybean yield biclustering

> autoplot(yield_bc$SSE, size = 1) +
+ theme_bw() +
+ theme(aspect.ratio = 1) +
+ scale_y_continuous(labels = comma)

●

●

●

●
●

●
●

●
●

● ● ● ●

60,000

70,000

80,000

0.0 2.5 5.0 7.5 10.0 12.5

Iteration

S
S

E

Figure 11: SSE plot of soybean yield biclustering

For the initial trial we observe that the Jaccard index converges in 13 iterations to an SSE value of
51,813. To see if it is possible to decrease this SSE even further, we test the impact of col_shuffles and
row_shuffles. Recall that these parameters determine how many row and column rearrangements
the algorithm makes before completing one iteration. Below we use tune_biclustermd() to test
combinations of col_shuffles and row_shuffles as well as its corresponding SSE. We define the tune
grid to mimic that of the yield_bc creation above, but let col_shuffles and row_shuffles take on
values in {1, 3, 6} independent of each other. We repeat the biclustering ten times for each parameter,
specified by nrep = 10. Note that parallel = TRUE allows us to tune over the grid in parallel.

> yield_tbc <- tune_biclustermd(
+ yield,
+ nrep = 10,
+ tune_grid = expand.grid(
+ col_clusters = 10,

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 81

+ row_clusters = 11,
+ similarity = "Jaccard",
+ miss_val_sd = sd(yield, na.rm = TRUE),
+ col_min_num = 3,
+ row_min_num = 3,
+ row_shuffles = c(1, 3, 6),
+ col_shuffles = c(1, 3, 6)
+),
+ parallel = TRUE,
+ ncores = 2
+)
> yield_tbc$grid[, c('row_shuffles', 'col_shuffles', 'min_sse', 'sd_sse', 'best_combn')]

row_shuffles col_shuffles min_sse sd_sse best_combn
1 1 1 51202.74 2640.662
2 3 1 54073.92 2766.218
3 6 1 52203.23 3198.391
4 1 3 51296.99 1883.676
5 3 3 52869.85 2118.745
6 6 3 50530.38 2107.578 *
7 1 6 51442.19 1895.268
8 3 6 52111.31 2015.416
9 6 6 52870.18 2652.400

Algorithm time study with movie ratings data

For our last example, we focus our attention on a movie ratings dataset obtained from MovieLens
(Harper and Konstan, 2015). If we consider movie raters as defining rows, movies as defining columns,
and a rating from 1–5 (with 5 being the most favorable) as a response, then biclustering can be used to
determine subsets of raters who have similar preferences towards some subset of movies.

The main topic of this section will be to perform time studies to test the scalability of our proposed
algorithm. In some applications, it is not uncommon to have a two-way data table with 10,000+ rows
or columns. Intuitively as the dimensions of the two-way data table increases so will the computational
time. In it is not uncommon for other biclustering algorithms to run for 24+ hours (Oghabian et al.,
2014). We ran the biclustering over a grid of 80 combinations of I rows, J columns, r row clusters, and
c column clusters with 30 replications for each combination. In addition to the four grid parameters,
we consider the following metrics which are byproducts of the four parameters: the size of the dataset
N = I × J, average row cluster size I/r, and average column cluster size J/c. Table 1 summarizes the
grid parameters, their byproducts and the defined lower and upper limits on each.

N = I × J I J r c I/r J/c

Lower Limit 2,500 50 50 4 4 5 5
Min 18,146 86 98 4 4 5 5
Mean 665,842 784 839 42 45 49 47
Max 1,929,708 1,495 1,457 239 258 293 346
Upper Limit 2,225,000 1,500 1,500 300 300 375 375

Table 1: Summary of the movie data runtime grid with defined lower and upper limits

Table 2 gives a five number summary and the mean runtime in seconds paired with the parameters
which produced run times closest to each statistic. In all, we see that the algorithm can take less
than a second to run, while in the other extreme the algorithm requires 39 minutes to converge. It is
particularly interesting that for the two parameter combinations closest to the median run time, one
dataset is nearly twice the size of the other. Furthermore, note than the mean run time is more than
twice that of the median, but the size of the dataset is just 38% of that at the median. However, at the
mean, 3744 = 72 · 52 biclusters are computed, while at the medians, only 80 = 20 · 4 and 481 = 13 · 37
biclusters are computed. For a visual summary of the results, we point the reader to Figure 12.

Figure 12 plots run times versus the five parameters controlled for in the study as well as average
row cluster size, average column cluster size, and sparsity. We encourage the reader to personally
explore the results; the run time data is the runtimes dataset in the package. Moreover, Li et al. (2020),
provides further insights into the effect of sparsity on runtimes.

Finally, we address the trade-off between interpretability and computation time. Figure 13 plots

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 82

Seconds I J N r c Sparsity

Min 0.4 210 98 20,580 10 9 96.2%
Q1 24.7 820 184 150,880 53 12 98.2%
Median 63.6 988 1,240 1,225,120 20 4 98.5%
Median 63.5 501 1,302 652,302 13 37 98.0%
Mean 137.5 1,084 427 462,868 72 52 98.4%
Q3 141.0 485 875 424,375 36 126 98.0%
Max 2,369.0 1,495 1,233 1,843,335 147 204 98.5%

Table 2: Five number summary and mean runtime in seconds along with parameters achieved at

Avg Column Cluster Size Sparsity

Row Clusters Column Clusters Avg Row Cluster Size

N Rows Columns

0 100 200 300 0.96 0.97 0.98

0 50 100 150 200 250 0 100 200 0 100 200 300

0 500000 1000000 1500000 2000000 400 800 1200 500 1000 1500
0

500

1,000

1,500

0

500

1,000

1,500

0

500

1,000

1,500

value

A
ve

ra
ge

 T
im

e
(s

ec
)

Figure 12: Relationship between movie grid parameters and elapsed time

elapsed time versus average cluster size on a doubly log 10 scales for row clusters (left) and column
clusters (right). Clearly, computation time can be decreased by increasing the average cluster size, but
doing so potentially reduces the interpretability of results; biclusters may be too large for certain use
cases. Keeping in mind that the y-axis is on a log 10 scale, increasing average cluster size will have
diminishing returns. Reviewing the plot on the right-hand side of the second row and the left-hand
side of row three in Figure 12 sheds more light into this notion.

Summary

Based on the work of (Li et al., 2020) we provide a user-friendly R implementation of their proposed
biclustering algorithm for missing data as well as a variety of visual aids that are helpful for biclustering
in general and biclustering with missing data specifically. The unique benefit biclustermd provides
is in its ability to operate with missing values. Compared to other packages which do not allow
incomplete data or make use of some sort of imputation, we approach this problem with a novel
framework that does not alter the structure of an inputted data matrix. Moreover, given the tunability
of our biclustering algorithm, users are able to run trials on numerous combinations in an attempt to
best bicluster their data.

Acknowledgments

This research was supported in part by Syngenta Seeds and by a Kingland Data Analytics Faculty
Fellowship at Iowa State University.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 83

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

Rows Columns

10 30 100 300 10 30 100 300

1

10

100

1,000

Average Cluster Size

A
ve

ra
ge

 T
im

e
(s

ec
)

Figure 13: Relationship between average cluster sizes and elapsed time

Bibliography

S. Bergmann, J. Ihmels, and N. Barkai. Iterative signature algorithm for the analysis of large-scale gene
expression data. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary
Topics, 2003. ISSN 1063651X. URL https://doi.org/10.1103/PhysRevE.67.031902. [p69]

S. Busygin, O. Prokopyev, and P. M. Pardalos. Biclustering in data mining. Computers and Operations
Research, 35(9), 2008. URL https://doi.org/10.1016/j.cor.2007.01.005. [p69]

Y. Cheng and G. M. Church. Biclustering of expression data. Proceedings International Conference
on Intelligent Systems for Molecular Biology ; ISMB. International Conference on Intelligent Systems for
Molecular Biology, 8, 2000. [p69]

D. T. Ewoud. BiBitR: R Wrapper for Java Implementation of BiBit, 2017. R package version 0.4.2. [p69]

D. W. Goodall. A new similarity index based on probability. Biometrics, 22:882–907, 1966. [p71]

D. Gusenleitner and A. Culhane. iBBiG: Iterative Binary Biclustering of Genesets, 2019. URL http:
//bcb.dfci.harvard.edu/~aedin/publications/. R package version 1.28.0. [p69]

F. M. Harper and J. A. Konstan. The MovieLens datasets. ACM Transactions on Interactive Intelligent
Systems, 2015. [p81]

J. A. Hartigan. Direct clustering of a data matrix. Journal of the American Statistical Association, 67(337):
123–129, 1972. URL https://doi.org/10.1080/01621459.1972.10481214. [p69]

L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 1985. ISSN 01764268. doi:
10.1007/BF01908075. [p71]

S. Kaiser and F. Leisch. A toolbox for bicluster analysis in {R}. Compstat 2008—Proceedings in Computa-
tional Statistics, pages 201–208, 2008. [p69]

T. Khamiakova. superbiclust: Generating Robust Biclusters from a Bicluster Set (Ensemble Biclustering),
2014. URL https://CRAN.R-project.org/package=superbiclust. R package version 1.1. [p69]

Y. Kluger, R. Basri, J. T. Chang, and M. Gerstein. Spectral biclustering of microarray data: Coclustering
genes and conditions. Genome Research, 13(4):703–716, 2003. URL https://doi.org/10.1101/gr.
648603. [p69]

L. Lazzeroni and A. Owen. Plaid models for gene expression data. Statistica Sinica, 12:61–86, 2002.
ISSN 10170405. URL https://doi.org/10.1017/CBO9781107415324.004. [p69]

J. Li, J. Reisner, H. Pham, S. Olafsson, and S. Vardeman. Biclustering for missing data. Information
Sciences, 510:304–316, 2020. URL https://doi.org/10.1016/j.ins.2019.09.047. [p70, 72, 81, 82]

M. Malosetti, J. M. Ribaut, and F. A. van Eeuwijk. The statistical analysis of multi-environment data:
Modeling genotype-by-environment interaction and its genetic basis. Frontiers in Physiology, 4(44),
2013. URL https://doi.org/10.3389/fphys.2013.00044. [p79]

A. Oghabian, S. Kilpinen, S. Hautaniemi, and E. Czeizler. Biclustering methods: Biological relevance
and application in gene expression analysis. PLOS ONE, 9(3):1–10, 03 2014. doi: 10.1371/journal.
pone.0090801. URL https://doi.org/10.1371/journal.pone.0090801. [p81]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1103/PhysRevE.67.031902
https://doi.org/10.1016/j.cor.2007.01.005
http://bcb.dfci.harvard.edu/~aedin/publications/
http://bcb.dfci.harvard.edu/~aedin/publications/
https://doi.org/10.1080/01621459.1972.10481214
https://CRAN.R-project.org/package=superbiclust
https://doi.org/10.1101/gr.648603
https://doi.org/10.1101/gr.648603
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1016/j.ins.2019.09.047
https://doi.org/10.3389/fphys.2013.00044
https://doi.org/10.1371/journal.pone.0090801

CONTRIBUTED RESEARCH ARTICLES 84

M. Rand. Objective criteria for the evaluation of methods clustering. Journal of the American Statistical
Association, 66(336):846–850, 1971. URL https://doi.org/10.1080/01621459.1971.10482356. [p71]

M. Sill and S. Kaiser. s4vd: Biclustering via Sparse Singular Value Decomposition Incorporating Stability
Selection, 2015. URL https://CRAN.R-project.org/package=s4vd. R package version 1.1-1. [p69]

K. M. Tan and D. M. Witten. Sparse Biclustering of Transposable Data. Journal of Computational and
Graphical Statistics, 2014. ISSN 15372715. URL https://doi.org/10.1080/10618600.2013.852554.
[p69]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009. ISBN
978-0-387-98140-6. URL http://ggplot2.org. [p73]

H. Wickham. tidyverse: Easily Install and Load ’Tidyverse’ Packages. 2016. URL https://cran.r-
project.org/package=tidyverse. [p72]

H. Wickham. nycflights13: Flights that departed NYC in 2013, 2017. URL https://CRAN.R-project.org/
package=nycflights13. R package version 0.2.2. [p72]

H. Wickham and L. Henry. tidyr: Easily Tidy Data with ’spread()’ and ’gather()’ Functions, 2019. URL
https://CRAN.R-project.org/package=tidyr. R package version 0.8.3. [p79]

Y. Zhang, J. Xie, J. Yang, A. Fennell, C. Zhang, and Q. Ma. QUBIC: a bioconductor package for
qualitative biclustering analysis of gene co-expression data. Bioinformatics, 33(3):450–452, 2017. URL
https://doi.org/10.1093/bioinformatics/btw635. [p69]

John Reisner
Department of Statistics
Iowa State University
United States
johntreisner@gmail.com

Hieu Pham
Department of Industrial and Manufacturing Systems Engineering
Iowa State University
United States
htpham@iastate.edu

Sigurdur Olafsson
Department of Industrial and Manufacturing Systems Engineering
Iowa State University
United States
olafsson@iastate.edu

Stephen Vardeman
Department of Statistics
Department of Industrial and Manufacturing Systems Engineering
Iowa State University
United States
vardeman@iastate.edu

Jing Li
Boehringer Ingelheim Animal Health
St. Joseph, Missouri
United States
jingli2014cymail@gmail.com

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1080/01621459.1971.10482356
https://CRAN.R-project.org/package=s4vd
https://doi.org/10.1080/10618600.2013.852554
http://ggplot2.org
https://cran.r-project.org/package=tidyverse
https://cran.r-project.org/package=tidyverse
https://CRAN.R-project.org/package=nycflights13
https://CRAN.R-project.org/package=nycflights13
https://CRAN.R-project.org/package=tidyr
https://doi.org/10.1093/bioinformatics/btw635
mailto:johntreisner@gmail.com
mailto:htpham@iastate.edu
mailto:olafsson@iastate.edu
mailto:vardeman@iastate.edu
mailto:jingli2014cymail@gmail.com

CONTRIBUTED RESEARCH ARTICLES 85

auditor: an R Package for Model-Agnostic
Visual Validation and Diagnostics
by Alicja Gosiewska and Przemysław Biecek

Abstract

Machine learning models have successfully been applied to challenges in applied in biology,
medicine, finance, physics, and other fields. With modern software it is easy to train even a complex
model that fits the training data and results in high accuracy on test set. However, problems often
arise when models are confronted with the real-world data. This paper describes methodology and
tools for model-agnostic auditing. It provides functinos for assessing and comparing the goodness of
fit and performance of models. In addition, the package may be used for analysis of the similarity of
residuals and for identification of outliers and influential observations. The examination is carried out
by diagnostic scores and visual verification. The code presented in this paper are implemented in the
auditor package. Its flexible and consistent grammar facilitates the validation models of a large class
of models.

Introduction

Predictive modeling is a process using mathematical and computational methods to forecast outcomes.
Many algorithms in this area have been developed and novel ones are continuously being proposed.
Therefore, there are countless possible models to choose from and a lot of ways to train a new new
complex model. A poorly- or over-fitted model usually will be of no use when confronted with
future data. Its predictions will be misleading (Sheather, 2009) or harmful (O’Neil, 2016). That is why
methods that support model diagnostics are important.

Diagnostics are often carried out only by checking model assumptions. However, they are often
neglected for complex machine learning models and they may be used as if they were assumption-free.
Still, there is a need to verify their quality. We strongly believe that a genuine diagnosis or an audit
incorporates a broad approach to model exploration. The audit includes three objectives.

• Objective 1: Enrichment of information about model performance.

• Objective 2: Identification of outliers, influential and abnormal observations.

• Objective 3: Examination of other problems relating to a model by analyzing distributions
of residuals, in particular, problems with bias, heteroscedasticity of variance and autocorrelation
of residuals.

In this paper, we introduce the auditor package for R, which is a tool for diagnostics and visual
verification. As it focuses on residuals1 and does not require any additional model assumptions,
most of the presented methods are model-agnostic. A consistent grammar across various tools
reduces the amount of effort needed to create informative plots and makes the validation more
convenient and available.

Figure 1: Anscombe Quartet data sets are
identical when examined with he use of
simple summary statistics. The difference
is noticeable after plotting the data.

Diagnostic methods have been a subject of much re-
search (Atkinson, 1985). Atkinson and Riani (2012) focus
on graphical methods of diagnostics regression analy-
sis. Liu et al. (2017) present an overview of interactive
visual model validation. One of the most popular tools
for verification are measures of the differences between
the values predicted by a model and the observed values
(Willmott et al., 1985). These tools include Root Mean
Square Error (RMSE) and Mean Absolute Error (MAE)
(Hastie et al., 2001). Such measures are used for well-
researched and easily interpretable linear model as well
as for complex models such as random forests (Ho, 1995),
gradient-boosted trees (Chen and Guestrin, 2016), or neu-
ral networks (Venables and Ripley, 2002).

However, no matter which measure of model per-
formance we use, it does not reflect all aspects of the
model. For example, Breiman (2001) points out that a
linear regression model validated only on the basis of R2

1Residual of an observation is the difference between the observed value and the value predicted by a model.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=auditor
https://CRAN.R-project.org/package=auditor

CONTRIBUTED RESEARCH ARTICLES 86

may lead to many false conclusions. The best known example of this issue is the Anscombe Quartet
(Anscombe, 1973). It contains four different data sets constructed to have nearly identical simple
statistical properties such as mean, variance, correlation, etc. These measures directly correspond
to the coefficients of the linear models. Therefore, by fitting a linear regression to the Anscombe
Quartet we obtain four almost identical models (see Figure 1). However, residuals of these models
are very different. The Anscombe Quartet is used to highlight that the numerical measures should be
supplemented by graphical data visualizations.

The analysis of diagnostics is well-researched for linear and generalized linear models. The said
analysis is typically done by extracting raw, studentized, deviance, or Pearson residuals and examining
residual plots. Common problems with model fit and basic diagnostics methods are presented in
Faraway (2002) and Harrell Jr. (2006)

Model validation may involve both checking the overall trend in residuals and looking at residual
values of individual observations (Littell et al., 2007). Gałecki and Burzykowski (2013) discussed
methods based on residuals for individual observation and groups of observations.

Diagnostics methods are commonly used for linear regression (Faraway, 2004). Complex models
are treated as if they were assumption-free, which is why their diagnostics is often ignored. Con-
sidering the above, there is a need for more extensive methods and software dedicated for model
auditing. Many of diagnostic tools, such as plots and statistics developed for linear models, are still
useful for exploring machine learning models. Applying the same tools to all models facilitates their
comparison.

The paper is organized as follows. Section 16.2 summarizes related work and state of the art.
Section 16.3 contains an architecture of the auditor package. Section 16.4 provides the notation.
Selected tools that help to validate models are presented in Section 16.5 and conclusions can be found
in Section 16.6.

Related work

In this chapter, we overview common methods and tools for auditing and examining the validity of
the models. There are several attempts to validate. They include diagnostics for predictor variables
before and after model fit, methods dedicated to specific models, and model-agnostic approaches.

Data diagnostics before model fitting

The problem of data diagnostics is related to the Objective 2 presented in the Introduction, that is, the
identification of problems with observations. There are several tools that address this issue. We review
the most popular of them.

• One of the tools that supports the identification of errors in data is the dataMaid package
(Petersen and Ekstrom, 2018). It creates a report that contains summaries and error checks for
each variable in data. Package lumberjack (van der Loo, 2017) provides row-wise analysis. It
allows for monitoring changes in data as they get processed. The validatetools (de Jonge and
van der Loo, 2018) is a package for managing validation rules.

• The datadist function from rms package (Harrell Jr, 2018) computes distributional summaries
for predictor variables. They include the overall range and certain quantiles for continuous
variables, as well as distinct values for discrete variables. It automates the process of fitting and
validating several models due to storing model summaries by datadist function.

• While above packages use pipeline approaches, there are also tools that focus on specific step of
data diagnostic. The package corrgram (Wright, 2018) calculates a correlation of variables and
displays corrgrams. Corrgrams (Friendly, 2002) are visualizations of correlation matrices, that
help to identify the relationship between variables.

Diagnostics methods for linear models

As linear models have a very simple structure and do not require high computational power, they have
been and still are used very frequently. Therefore, there are many tools that validate different aspects
of linear models. Below, we overview the most widely known tools implemented in R packages.

• The stats package provides basic diagnostic plots for linear models. Function plot generates
six types of charts for "lm" and "glm" objects, such as a plot of residuals against fitted values,
a scale-location plot of

√
|residuals| against fitted values and a normal quantile-quantile plot.

These visual validation tools may be addressed to the Objective 3 of diagnostic, related to the

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=dataMaid
https://CRAN.R-project.org/package=lumberjack
https://CRAN.R-project.org/package=validatetools
https://CRAN.R-project.org/package=rms
https://CRAN.R-project.org/package=corrgram
https://CRAN.R-project.org/package=stats

CONTRIBUTED RESEARCH ARTICLES 87

examination of model by analyzing the distribution of residuals. The other three plots, that
include: a plot of Cook’s distances, a plot of residuals against leverages, and a plot of Cook’s
distances against leverage

1−leverage may be addressed to the identification of influential observations
(Objective 1).

• Package car (Fox and Weisberg, 2011) extends the capabilities of stats by including more types of
residuals, such as Pearson and deviance residuals. It is possible to plot against values of selected
variables and to group residuals by levels of factor variables. What is more, car provides more
diagnostic plots such as, among others, partial residual plot (crPlot), index plots of influence
(infIndexPlot) and bubble plot of studentized residuals versus hat values (influencePlot).
These plots allow for checking both the effect of observation and the distribution of residuals,
what address to the Objective 2 and the Objective 3 respectively.

• A linear regression model is still one of the most popular tools for data analysis due to its simple
structure. Therefore, there is a rich variety of methods for checking its assumptions, for example,
the normality of residual distribution and the homoscedasticity of the variance.
The package nortest (Gross and Ligges, 2015) provides five tests for normality: the Anderson-
Darling (Anderson and Darling, 1952), the Cramer-von Mises (Cramer, 1928; Von Mises,
1928), the Kolmogorov-Smirnov (Stephens, 1974), the Pearson chi-square (F.R.S., 1900), and
the Shapiro-Francia (Sanford Shapiro and S. Francia, 1972) tests. The lmtest package (Zeileis
and Hothorn, 2002) also contains a collection of diagnostic tests: the Breusch-Pagan (Breusch
and Pagan, 1979), the Goldfield-Quandt (Goldfeld and Quandt, 1965) and the Harrison-McCabe
(Harrison and McCabe, 1979) tests for heteroscedasticity and the Harvey-Collier (Harvey and
Collier, 1977), the Rainbow (Utts, 1982), and the RESET (Ramsey, 1969) tests for nonlinearity
and misspecified functional form. A unified approach for examining, monitoring and dating
structural changes in linear regression models is provided in strucchange package (Zeileis et al.,
2002). It includes methods to fit, plot and test fluctuation processes and F-statistics. The gvlma
implements the global procedure for testing the assumptions of the linear model (find more
details in Peña and Slate (2006)).
The Box-Cox power transformation introduced by Box and Cox (1964) is a way to transform the
data to follow a normal distribution. For simple linear regression, it is often used to satisfy the
assumptions of the model. Package MASS (Venables and Ripley, 2002) contains functions that
compute and plot profile log-likelihoods for the parameter of the Box-Cox power transformation.

• The broom package (Robinson, 2018) provides summaries for about 30 classes of models.
It produces results, such as coefficients and p-values for each variable, R2, adjusted R2, and
residual standard error.

Other model-specific approaches

There are also several tools to generate validation plots for time series, principal component analysis,
clustering, and others.

• Tang et al. (2016) introduced the ggfortify interface for visualizing many popular statistical
results. Plots are generated with ggplot2 (Wickham, 2009), what makes them easy to modify.
With one function autoplot it is possible to generate validation plots for a wide range of models.
It works for, among others, lm, glm, ts, glmnet, and survfit objects.
The autoplotly (Tang, 2018) package is an extension of ggfortify and it provides functionalities
that produce plots generated by plotly (Sievert et al., 2017). This allows for both modification
and interaction with plots.
However, ggorftify and autoplotly do not support some popular types of models, for instance,
random forests from randomForest (Liaw and Wiener, 2002) and ranger (Wright and Ziegler,
2017) packages.

• The hnp package (Moral et al., 2017) provides half-normal plots with simulated envelopes.
These charts evaluate the goodness of fit of any generalized linear model and its extensions. It
is a graphical method for comparing two probability distributions by plotting their quantiles
against each other. The package offers a possibility to extend the hnp for new model classes.
However, this package provides only one tool for model diagnostic. In addition, plots are not
based on ggplot2, what makes it difficult to modify them.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=car
https://CRAN.R-project.org/package=nortest
https://CRAN.R-project.org/package=lmtest
https://CRAN.R-project.org/package=strucchange
https://CRAN.R-project.org/package=gvlma
https://CRAN.R-project.org/package=MASS
https://CRAN.R-project.org/package=broom
https://CRAN.R-project.org/package=ggfortify
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=autoplotly
https://CRAN.R-project.org/package=plotly
https://CRAN.R-project.org/package=randomForest
https://CRAN.R-project.org/package=ranger
https://CRAN.R-project.org/package=hnp

CONTRIBUTED RESEARCH ARTICLES 88

Model-agnostic approach

The tools presented above target specific model classes. The model-agnostic approach allows us to
compare different models.

• The DALEX (Descriptive mAchine Learning EXplanations) (Biecek, 2018) is a methodology
for exploration of black-box models. Main functionalities focus on understanding or proving
how the input variables impact on final predictions. There are also two simple diagnostics:
reversed empirical cumulative distribution function for absolute values of residuals and box
plot of absolute values of residuals. As methods in the DALEX are model-agnostic, they allow
for comparison of two or more models.

• The package iml (Molnar et al., 2018) also contains methods for structure-agnostic exploration
of model. For example, a measure of a feature’s importance by calculating the change of the
model performance after permuting values of a variable.

Model-agnostic audit

In this paper, we present the auditor package for R, which fills out the part of model-agnostic validation.
As it expands methods used for linear regression, it may be used to verify any predictive model.

Package Architecture

The auditor package works for any predictive model which returns a numeric value. It offers a consis-
tent grammar of model validation, what is an efficient and convenient way to generate plots and diag-
nostic scores. A diagnostic score is a number that evaluates one of the properties of a model. That might
be, for example, an accuracy of model, an independence of residuals or an influence of observation.

Figure 2 presents the architecture of the package. The auditor provides 2 pipelines for model
validation. First of them consists of two steps. Function audit wraps up the model with meta-data, then
the result is passed to the plot or score function. Second pipeline includes an additional step, which
consists of calling one of the functions that generate computations for plots and scores. These functions
are: modelResiduals, modelEvaluation, modelFit, modelPerformance, and observationInfluence.
Further, we call them computational functions. Results of these functions are tidy data frames
(Wickham, 2014).

Figure 2: Architecture of the auditor. The blue color indicates the first pipeline, while orange
indicates the second. Function audit takes model and data or "explainer" object created with
the DALEX package.

Both pipelines for model audit are compared below.

1. model %>% audit() %>% computational function %>% plot(type=. . .)
We recommend this pipeline. Function audit wraps up a model with meta-data used for model-
ing and creates a "modelAudit" object. One of the computational functions takes "modelAudit"
object and computes the results of validation. Then, outputs may be printed or passed to
functions score and plot with defined type. We describe types of plots in Chapter 16.5. This
approach requires one additional function within the pipeline. However, once created output
of the computational function contains all necessary calculations for related plots. Therefore,
generating multiple plots is fast.

2. model %>% audit() %>% plot(type=. . .)
This pipeline is shorter than the previous one. The only difference is that it does not include
computational function. Calculations are carried out every time a generic plot function is called.
Omitting one step might be convenient for ad-hoc model analyses.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=DALEX
https://CRAN.R-project.org/package=iml

CONTRIBUTED RESEARCH ARTICLES 89

Implemented types of plots are presented in Table 1. Scores are presented in Table 2. All plots are
generated with ggplot2, what provides a convenient way to modify and combine plots.

Plot Function plot(type = ...) Reg. Class.
Autocorrelation Function modelResiduals "ACF" + +
Autocorrelation modelResiduals "Autocorrelation" + +
Cooks’s Distances observationInfluence "CooksDistance" + +
Half-Normal modelFit "HalfNormal" + +
LIFT Chart modelEvaluation "LIFT" +
Model Correlation modelResiduals "ModelCorrelation" + +
Model PCA modelResiduals "ModelPCA" + +
Model Ranking modelPerformance "ModelRanking" + +
Predicted Response modelPerformance "ModelPerformance" + +
REC Curve modelResiduals "REC" + +
Residuals modelResiduals "Residual" + +
Residual Boxplot modelResiduals "ResidualBoxplot" + +
Residual Density modelResiduals "ResidualDensity" + +
ROC Curve modelEvaluation "ROC" +
RROC Curve modelResiduals "RROC" + +
Scale-Location modelResiduals "ScaleLocation" + +
Two-sided ECDF modelResiduals "TwoSidedECDF" + +

Table 1: Columns contain respectively: name of the plot, name of the computational function, value
for type parameter of the function plot, indications whether the plot can be applied to regression and
classification tasks.

Score Function score(type = ...) Reg. Class.
Cook’s Distance observationInfluence "CooksDistance" + +
Durbin-Watson modelResiduals "DW" + +
Half-Normal modelFit "HalfNormal" + +
Mean Absolute Error modelResiduals "MAE" + +
Mean Squared Error modelResiduals "MSE" + +
Area Over the REC modelResiduals "REC" + +
Root Mean Squared Error modelResiduals "RMSE" + +
Area Under the ROC modelEvaluation "ROC" +
Area Over the RROC modelResiduals "RROC" + +
Runs modelResiduals "Runs" + +
Peak modelResiduals "Peak" + +

Table 2: Columns contain respectively: name of a score, name of a computational function, value for
type parameter of function the score, indications whether the score can be applied to regression and
classification tasks.

Notation

Let us use the following notation: xi = (x(1)i , x(2)i , ..., x(p)
i) ∈ X ⊂ Rp is a vector in space X , yi ∈ R is

an observed response associated with xi. A single observation we denote as a pair (yi, xi) and n is
the number of observations.

Let us denote a model as a function f : X → R. Predictions of the model f for particular
observation we shall denote as

f (xi) = ŷi. (1)

The row residual, or simply the residual, is the difference between the observed value yi and the
predicted value ŷi. We shall denote residual of particular observation as

ri = yi − ŷi. (2)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 90

Illustrations

Diagnostics allows for evaluation of different properties of a model. They may be related to the
following questions: Which model has better performance? Does the model fit data? Which observa-
tions are abnormal? These questions are directly related to the diagnostics objectives described in the
Introduction. First of them refers to the evaluation of a model performance, which was proposed as
the Objective 1. The second question concerns the examination of residuals distribution (Objective 3).
The last one refers to outliers and influential observations (Objective 2).

In this Section we illustrate chosen validation tools that allow for exploration of the above issues.
To demonstrate applications of the auditor, we use the data set apartments available in the DALEX
package. First, we fit two models: simple linear regression and random forest.

library("auditor")
library("DALEX")
library("randomForest")

lm_model <- lm(m2.price ~ ., data = apartments)
set.seed(59)
rf_model <- randomForest(m2.price ~ ., data = apartments)

The next step creates "modelAudit" objects related to these two models.

lm_audit <- audit(lm_model, label = "lm",
data = apartmentsTest, y = apartmentsTest$m2.price)

rf_audit <- audit(rf_model, label = "rf",
data = apartmentsTest, y = apartmentsTest$m2.price)

Below, we create objects of class "modelResidual", which are needed to generate plots. Parame-
ter variable determines the order of residuals in the plot. When the variable argument is set to
"Fitted values" residuals are sorted by values of predicted responses. Entering a name of a variable
"m2.price" implies that residuals will be in order of this variable.

lm_res_fitted <- modelResiduals(lm_audit, variable = "Fitted values")
rf_res_fitted <- modelResiduals(rf_audit, variable = "Fitted values")

lm_res_observed <- modelResiduals(lm_audit, variable = "m2.price")
rf_res_observed <- modelResiduals(rf_audit, variable = "m2.price")

Model Ranking Plot

In this subsection, we propose a Model Ranking plot which compares models performance across
multiple measures (see Figure 3). The implemented measures are listed in Table 2 in Chapter 16.3. The
descriptions of all scores are in (Gosiewska and Biecek, 2018).

Model Ranking Radar plot consists of two parts. On the left side there is a radar plot. Colors
correspond to models, edges to values of scores. Score values are inverted and rescaled to [0, 1].

Let us use the following notation: mi ∈ M is a model in a finite set of modelsM, where |M| = k,
score :M→ R is a loss function for the model under consideration. Higher values mean worse model
performance. The score(mi) is a performance of model mi.

Definition 16.5.1. We define the inverted score of model mi as

invscore(mi) =
1

score(mi)
min

j=1...k
score(mj). (3)

Models with the larger invscore are closer to the centre. Therefore, the best model is located the
farthest from the center of the plot. On the right side of the plot is a table with results of scoring. The
third column contains scores scaled to one of the models.

Let ml ∈ M where l ∈ {1, 2, ..., k} be a model to which we scale.

Definition 16.5.2. We define the scaled score of model mi to model ml as

scaledl(mi) =
score(ml)

score(mi)
. (4)

As values of scaledl(ml) are always between 0 and 1, comparison of models is easy, regardless of
the ranges of scores.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 91

The plot below is generated by plot function with parameter type = "ModelRanking" or by
function plotModelRanking. The scores included in the plot may be specified by scores parameter.

rf_mp <- modelPerformance(rf_audit)
lm_mp <- modelPerformance(lm_audit)
plot(rf_mp, lm_mp, type = "ModelRanking")

Figure 3: Model Ranking Plot. Random forest (red) has better performance in aspect of MAE and REC
scores, while linear model (blue) is better in aspect of MSE and RROC scores.

REC Curve Plot

Regression Error Characteristic (REC) curve (see Figure 4) is a generalization of Receiver Operating
Characteristic (ROC) curve for binary classification (Swets, 1988).

REC curve estimates the Cumulative Distribution Function of the error. On the x axis of the plot
there is an error tolerance. On the y axis there is an accuracy at the given tolerance level. Bi and
Bennett (2003) define the accuracy at tolerance ε as a percentage of observations predicted within the
tolerance ε. In other words, residuals larger than ε are considered as errors.

Let us consider pairs (yi, xi) introduced in the beginning of Chapter 16.5. Bi and Bennett (2003)
define an accuracy as follows.

Definition 16.5.3. An accuracy at tolerance level ε is given by

acc(ε) =
|{(x, y) : loss(f (xi), yi) ≤ ε, i = 1, ..., n}|

n
. (5)

REC Curves implemented in the auditor are plotted for a special case of Definition 16.5.3 where
the loss is defined as

loss(f (xi), yi) = | f (xi)− yi| = |ri|. (6)

The shape of the curve illustrates the behavior of errors. The quality of the model can be evaluated
and compared for different tolerance levels. The stable growth of the accuracy does not indicate any
problems with the model. A small increase of accuracy near 0 and the areas where the growth is fast
signalize bias of the model predictions.

The plot below is generated by plot function with parameter type = "REC" or by plotREC function.

plot(rf_res_fitted, lm_res_fitted, type = "REC")

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 92

Figure 4: REC curve. Curve for linear model (blue) suggests that the model is biased. It displays poor
accuracy when the tolerance ε is small. However, once ε exceeds the error tolerance 130, accuracy
rapidly increases. The random forest (red) has a stable increase of accuracy when compared to the
linear model. However, there is s fraction of large residuals.

As often it is difficult to compare models on the plot, there is an REC score implemented in the
auditor. This score is the Area Over the REC Curve (AOC), which is a biased estimate of the expected
error for a regression model. As Bi and Bennett (2003) proved, AOC provides a measure of the overall
performance of regression model.

Scores may be obtained by score function with type = "REC" or scoreREC function.

scoreREC(lm_res_fitted)
scoreREC(rf_res_fitted)

Residual Boxplot Plot

Residual boxplot shows the distribution of the absolute values of residuals ri. They may be used
for analysis and comparison of residuals. Example plots are presented in Figure 5. Boxplots (Tukey,
1977) usually consist of five components. The box itself corresponds to the first quartile, median,
and third quartile. The whiskers extend to the smallest and largest values, no further than 1.5 of
Interquartile Range (IQR) from the first and third quartile respectively. Residual boxplots consists of
a sixth component, namely a red dot which stands for Root Mean Square Error (RMSE). In case of
an appropriate model, most of the residuals should lay near zero. A large spread of values indicates
problems with a model.

The plot presented below is generated by plotResidualBoxplot or by plot function with parame-
ter type = 'ResidualBoxplot' function.

plot(lm_res_fitted, rf_res_fitted, type = "ResidualBoxplot")

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 93

Figure 5: Boxplots of absolute values of residuals. Dots are in similar places, hence RMSE for both
models is almost identical. However, the distribution of residuals of these two models is different. For
the linear model (blue), most of the residuals are around the average. For the random forest (red),
most residuals are small. Nevertheless, there is also a fraction of large residuals.

Residual Density Plot

Residual Density plot detects the incorrect behavior of residuals. An example is presented in Figure 6.
On the plot, there are estimated densities of residuals. For some models, the expected shape of density
derives from the model assumptions. For example, simple linear model residuals should be normally
distributed. However, even if the model does not have an assumption about the distribution of
residuals, such a plot may be informative. If most of the residuals are not concentrated around zero,
it is likely that the model predictions are biased. Values of errors are displayed as marks along the
x axis. That makes it possible to ascertain whether there are individual observations or groups of
observations with residuals significantly larger than others.

The plot below is generated by plotResidualDensity function or by plot function with parameter
type = "ResidualDensity".

plot(rf_res_observed, lm_res_observed, type = "ResidualDensity")

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 94

Figure 6: Residual Density Plot. The density of residuals for the linear model (blue) forms two peaks.
There are no residuals with values around zero. Residuals do not follow the normal distribution, what
is one of the assumptions of the simple linear regression. There is an asymmetry of residuals generated
by random forest (red).

Two-sided ECDF Plot

Two-sided ECDF plot (see Figure 7) shows an Empirical Cumulative Distribution Functions (ECDF)
for positive and negative values of residuals separately.

Let x1, ..., xn be a random sample from a cumulative distribution function F(t). The following
definition comes from van der Vaart (2000).

Definition 16.5.4. The empirical cumulative distribution function is given by

Fn(t) =
1
n

n

∑
i=1

1{xi ≤ t}. (7)

Empirical cumulative distribution function presents a fraction of observations that are less than or
equal to t. It is an estimator for the cumulative distribution function F(t).

On the positive side of the x-axis, there is the ECDF of positive values of residuals. On the negative
side, there is a transformation of ECDF:

Frev(t) = 1− F(t). (8)

Let nN and nP be numbers of negative and positive values of residuals respectively. Negative part of
the plot is normalized by multiplying it by the ratio of the nN over nN + nP. Similarly, positive part is
normalized by multiplying it by the ratio of the nP over nN + nP. Due to the applied scale, the ends of
the curves add up to 100% in total. The plot shows the distribution of residuals divided into groups
with positive and negative values. It helps to identify the asymmetry of the residuals. Points represent
individual error values, what makes it possible to identify ’outliers’.

The plot below is generated by plotTwoSidedECDF function or by plot function with parameter
type = "TwoSidedECDF".

plot(rf_res_fitted, lm_res_fitted, type = "TwoSidedECDF")

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 95

Figure 7: Two-sided ECDF plot. The plot shows that majority of residuals for the random forest (red)
is smaller than residuals for the linear model (blue). However, random forest has also fractions of
large residuals.

Conclusion and future work

In this article, we presented the auditor package and selected diagnostic scores and plots. We dis-
cussed the existing methods of model validation and proposed new visual approaches. We also
specified three objectives of model audit (see Section 16.1), proposed relevant verification tools, and
demonstrated their usage. Model Ranking Plot and REC Curve enrich the information about model
performance (Objective 1). Residual Boxplot, Residual Density, and Two-Sided ECDF Plots expand the
knowledge about the distribution of residuals (Objective 3). What is more, the latter two tools allow
for identification of outliers (Objective 2). Finally, we proposed two new plots, the Model Ranking
Plot and the Two-Sided ECDF Plot.

We implemented all the presented scores and plots in the auditor package for R. The included
functions are based on a uniform grammar introduced in Figure 16.3. Documentation and examples
are available at https://mi2datalab.github.io/auditor/. The stable version of the package is on
CRAN, the development version is on GitHub (https://github.com/MI2DataLab/auditor). A more
detailed description of methodology is available in the extended version of this paper on arXiv:
https://arxiv.org/abs/1809.07763 (Gosiewska and Biecek, 2018).

There are many potential areas for future work that we would like to explore, including more
extensions of model-specific diagnostics to model-agnostic methods and residual-based methods for
investigating interactions. Another potential aim would be to develop methods for local audit based
on the diagnostics of a model around a single observation or a group of observations.

Acknowledgements

We would like to acknowledge and thank Aleksandra Grudziąż and Mateusz Staniak for valuable
discussions. Also, we wish to thank Dr. Rafael De Andrade Moral for his assistance and help related
to the hnp package.

The work was supported by NCN Opus grant 2016/21/B/ST6/02176.

Bibliography

T. W. Anderson and D. A. Darling. Asymptotic theory of certain goodness of fit criteria based on
stochastic processes. Ann. Math. Statist., 23(2):193–212, 1952. URL https://doi.org/10.1214/aoms/
1177729437. [p]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://mi2datalab.github.io/auditor/
https://github.com/MI2DataLab/auditor
https://arxiv.org/abs/1809.07763
https://doi.org/10.1214/aoms/1177729437
https://doi.org/10.1214/aoms/1177729437

CONTRIBUTED RESEARCH ARTICLES 96

F. J. Anscombe. Graphs in statistical analysis. The American Statistician, 27(1):17–21, 1973. URL
https://doi.org/10.1080/00031305.1973.10478966. [p]

A. Atkinson and M. Riani. Robust Diagnostic Regression Analysis. Springer Series in Statistics. Springer-
Verlag, 2012. ISBN 9781461211600. URL https://books.google.pl/books?id=sZ3SBwAAQBAJ. [p]

A. C. Atkinson. Plots, Transformations, and Regression: An Introduction to Graphical Methods of Diagnostic
Regression Analysis. Oxford statistical science series. Clarendon Press, 1985. URL https://books.
google.pl/books?id=oFjgnQEACAAJ. [p]

J. Bi and K. P. Bennett. Regression error characteristic curves. In ICML, 2003. [p]

P. Biecek. DALEX: Explainers for Complex Predictive Models. ArXiv e-prints, 2018. [p]

G. E. P. Box and D. R. Cox. An analysis of transformations. Journal of the Royal Statistical Society B,
pages 211–252, 1964. [p]

L. Breiman. Statistical modeling: The two cultures (with comments and a rejoinder by the author).
Statist. Sci., 16(3):199–231, 2001. URL https://doi.org/10.1214/ss/1009213726. [p]

T. S. Breusch and A. R. Pagan. A simple test for heteroscedasticity and random coefficient variation.
Econometrica, 47(5):1287–1294, 1979. ISSN 00129682, 14680262. URL http://www.jstor.org/stable/
1911963. [p]

T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. CoRR, abs/1603.02754, 2016. URL
http://arxiv.org/abs/1603.02754. [p]

H. Cramer. On the composition of elementary errors: Second paper: Statistical applications. Scandina-
vian Actuarial Journal, 1928(1):141–180, 1928. [p]

E. de Jonge and M. van der Loo. Validatetools: Checking and Simplifying Validation Rule Sets, 2018. URL
https://CRAN.R-project.org/package=validatetools. R package version 0.4.3. [p]

J. J. Faraway. Practical Regression and Anova Using R. University of Bath, 2002. URL https://books.
google.pl/books?id=UjhBnwEACAAJ. [p]

J. J. Faraway. Linear Models with R. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis,
2004. ISBN 9780203507278. URL https://books.google.pl/books?id=fvenzpofkagC. [p]

J. Fox and S. Weisberg. An R Companion to Applied Regression. Sage, Thousand Oaks CA, 2nd edition,
2011. URL http://socserv.socsci.mcmaster.ca/jfox/Books/Companion. [p]

M. Friendly. Corrgrams: Exploratory displays for correlation matrices. The American Statistician, 56(4):
316–324, 2002. [p]

K. P. F.R.S. X. On the Criterion That a Given System of Deviations from the Probable in the Case of a Correlated
System of Variables Is Such That It Can Be Reasonably Supposed to Have Arisen from Random Sampling,
volume 50. Taylor & Francis, 1900. URL https://doi.org/10.1080/14786440009463897. [p]

A. Gałecki and T. Burzykowski. Linear Mixed-Effects Models Using R: A Step-by-Step Approach. Springer
Texts in Statistics. Springer-Verlag, 2013. ISBN 9781461439004. URL https://books.google.pl/
books?id=rbk_AAAAQBAJ. [p]

S. M. Goldfeld and R. E. Quandt. Some tests for homoscedasticity. Journal of the American Statistical
Association, 60(310):539–547, 1965. URL https://doi.org/10.1080/01621459.1965.10480811. [p]

A. Gosiewska and P. Biecek. auditor: An R Package for Model-Agnostic Visual Validation and
Diagnostic. ArXiv e-prints, 2018. [p]

J. Gross and U. Ligges. Nortest: Tests for Normality, 2015. URL https://CRAN.R-project.org/package=
nortest. R package version 1.0-4. [p]

F. E. Harrell Jr. Regression Modeling Strategies. Springer-Verlag, Berlin, Heidelberg, 2006. ISBN
0387952322. [p]

F. E. Harrell Jr. Rms: Regression Modeling Strategies, 2018. URL https://CRAN.R-project.org/package=
rms. R package version 5.1-2. [p]

M. J. Harrison and B. P. M. McCabe. A test for heteroscedasticity based on ordinary least squares
residuals. Journal of the American Statistical Association, 74(366):494–499, 1979. ISSN 01621459. URL
http://www.jstor.org/stable/2286361. [p]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1080/00031305.1973.10478966
https://books.google.pl/books?id=sZ3SBwAAQBAJ
https://books.google.pl/books?id=oFjgnQEACAAJ
https://books.google.pl/books?id=oFjgnQEACAAJ
https://doi.org/10.1214/ss/1009213726
http://www.jstor.org/stable/1911963
http://www.jstor.org/stable/1911963
http://arxiv.org/abs/1603.02754
https://CRAN.R-project.org/package=validatetools
https://books.google.pl/books?id=UjhBnwEACAAJ
https://books.google.pl/books?id=UjhBnwEACAAJ
https://books.google.pl/books?id=fvenzpofkagC
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
https://doi.org/10.1080/14786440009463897
https://books.google.pl/books?id=rbk_AAAAQBAJ
https://books.google.pl/books?id=rbk_AAAAQBAJ
https://doi.org/10.1080/01621459.1965.10480811
https://CRAN.R-project.org/package=nortest
https://CRAN.R-project.org/package=nortest
https://CRAN.R-project.org/package=rms
https://CRAN.R-project.org/package=rms
http://www.jstor.org/stable/2286361

CONTRIBUTED RESEARCH ARTICLES 97

A. C. Harvey and P. Collier. Testing for functional misspecification in regression analysis. Journal of
Econometrics, 6(1):103 – 119, 1977. ISSN 0304-4076. URL https://doi.org/10.1016/0304-4076(77)
90057-4. [p]

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer Series in Statistics.
Springer-Verlag, New York, NY, USA, 2001. [p]

T. K. Ho. Random decision forests. In Proceedings of the Third International Conference on Document
Analysis and Recognition (Volume 1) - Volume 1, ICDAR ’95, pages 278–, Washington, DC, USA, 1995.
IEEE Computer Society. ISBN 0-8186-7128-9. URL http://dl.acm.org/citation.cfm?id=844379.
844681. [p]

A. Liaw and M. Wiener. Classification and regression by randomforest. R News, 2(3):18–22, 2002. URL
https://CRAN.R-project.org/doc/Rnews/. [p]

R. C. Littell, G. A. Milliken, W. W. Stroup, R. D. Wolfinger, and O. Schabenberger. SAS for Mixed Models,
Second Edition. SAS Institute, 2007. ISBN 9781599940786. URL https://books.google.pl/books?
id=z9qv32OyEu4C. [p]

S. Liu, X. Wang, M. Liu, and J. Zhu. Towards better analysis of machine learning models: A visual
analytics perspective. Visual Informatics, 1(1):48 – 56, 2017. ISSN 2468-502X. URL https://doi.org/
10.1016/j.visinf.2017.01.006. [p]

C. Molnar, B. Bischl, and G. Casalicchio. Iml: An r package for interpretable machine learning. JOSS, 3
(26):786, 2018. URL https://doi.org/10.21105/joss.00786. [p]

R. Moral, J. Hinde, and C. Demétrio. Half-normal plots and overdispersed models in r: The hnp
package. Journal of Statistical Software, Articles, 81(10):1–23, 2017. ISSN 1548-7660. URL https:
//doi.org/10.18637/jss.v081.i10. [p]

C. O’Neil. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy.
Crown Publishing Group, New York, NY, USA, 2016. ISBN 0553418815, 9780553418811. [p]

A. H. Petersen and C. T. Ekstrom. dataMaid: A Suite of Checks for Identification of Potential Errors in a
Data Frame as Part of the Data Screening Process, 2018. URL https://CRAN.R-project.org/package=
dataMaid. R package version 1.1.2. [p]

E. A. Peña and E. H. Slate. Global validation of linear model assumptions. Journal of the American
Statistical Association, 101(473):341–354, 2006. URL https://doi.org/10.1198/016214505000000637.
PMID: 20157621. [p]

J. B. Ramsey. Tests for specification errors in classical linear least-squares regression analysis. Journal
of the Royal Statistical Society B, 31(2):350–371, 1969. ISSN 00359246. URL http://www.jstor.org/
stable/2984219. [p]

D. Robinson. Broom: Convert Statistical Analysis Objects into Tidy Data Frames, 2018. URL https:
//CRAN.R-project.org/package=broom. R package version 0.4.4. [p]

S. Sanford Shapiro and R. S. Francia. An approximate analysis of variance test for normality. Journal of
the American Statistical Association, 67:215–216, 1972. [p]

S. Sheather. A Modern Approach to Regression with R. Springer Texts in Statistics. Springer-Verlag, 2009.
ISBN 9780387096070. URL https://books.google.pl/books?id=zS3Jiyxqr98C. [p]

C. Sievert, C. Parmer, T. Hocking, S. Chamberlain, K. Ram, M. Corvellec, and P. Despouy. Plotly: Create
Interactive Web Graphics via ’plotly.js’, 2017. URL https://CRAN.R-project.org/package=plotly. R
package version 4.7.1. [p]

M. A. Stephens. Edf statistics for goodness of fit and some comparisons. Journal of the American Statistical
Association, 69(347):730–737, 1974. ISSN 01621459. URL http://www.jstor.org/stable/2286009.
[p]

J. Swets. Measuring the accuracy of diagnostic systems. Science, 240(4857):1285–1293, 1988. ISSN
0036-8075. URL https://doi.org/10.1126/science.3287615. [p]

Y. Tang. Autoplotly - Automatic Generation of Interactive Visualizations for Popular Statistical Results.
ArXiv e-prints, 2018. [p]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1016/0304-4076(77)90057-4
https://doi.org/10.1016/0304-4076(77)90057-4
http://dl.acm.org/citation.cfm?id=844379.844681
http://dl.acm.org/citation.cfm?id=844379.844681
https://CRAN.R-project.org/doc/Rnews/
https://books.google.pl/books?id=z9qv32OyEu4C
https://books.google.pl/books?id=z9qv32OyEu4C
https://doi.org/10.1016/j.visinf.2017.01.006
https://doi.org/10.1016/j.visinf.2017.01.006
https://doi.org/10.21105/joss.00786
https://doi.org/10.18637/jss.v081.i10
https://doi.org/10.18637/jss.v081.i10
https://CRAN.R-project.org/package=dataMaid
https://CRAN.R-project.org/package=dataMaid
https://doi.org/10.1198/016214505000000637
http://www.jstor.org/stable/2984219
http://www.jstor.org/stable/2984219
https://CRAN.R-project.org/package=broom
https://CRAN.R-project.org/package=broom
https://books.google.pl/books?id=zS3Jiyxqr98C
https://CRAN.R-project.org/package=plotly
http://www.jstor.org/stable/2286009
https://doi.org/10.1126/science.3287615

CONTRIBUTED RESEARCH ARTICLES 98

Y. Tang, M. Horikoshi, and W. Li. ggfortify: Unified Interface to Visualize Statistical Results of Popular
R Packages. The R Journal, 8(2):474–485, 2016. URL https://journal.r-project.org/archive/
2016/RJ-2016-060/index.html. [p]

J. W. Tukey. Exploratory Data Analysis. Addison-Wesley series in behavioral science. Addison-Wesley
Publishing Company, 1977. ISBN 9780201076165. URL https://books.google.pl/books?id=
UT9dAAAAIAAJ. [p]

J. M. Utts. The rainbow test for lack of fit in regression. Communications in Statistics - Theory and
Methods, 11(24):2801–2815, 1982. URL https://doi.org/10.1080/03610928208828423. [p]

M. van der Loo. Lumberjack: Track Changes in Data, 2017. URL https://CRAN.R-project.org/package=
lumberjack. R package version 0.2.0. [p]

A. W. van der Vaart. Asymptotic Statistics. Asymptotic Statistics. Cambridge University Press, 2000.
ISBN 9780521784504. URL https://books.google.pl/books?id=UEuQEM5RjWgC. [p]

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer-Verlag, New York, 4th
edition, 2002. URL http://www.stats.ox.ac.uk/pub/MASS4. ISBN 0-387-95457-0. [p]

R. Von Mises. Wahrscheinlichkeit, Statistik Und Wahrheit. Number t. 3 in Schriften zur wissenschaftlichen
Weltauffassung. Springer-Verlag, 1928. URL https://books.google.pl/books?id=W1IaAAAAIAAJ.
[p]

H. Wickham. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, 2009. ISBN 978-0-387-98140-6.
URL http://ggplot2.org. [p]

H. Wickham. Tidy data. The Journal of Statistical Software, 59, 2014. URL http://www.jstatsoft.org/
v59/i10/. [p]

C. J. Willmott, S. G. Ackleson, R. E. Davis, J. J. Feddema, K. M. Klink, D. R. Legates, J. O’Donnell, and
C. M. Rowe. Statistics for the evaluation and comparison of models. Journal of Geophysical Research,
90(C5):8995, 1985. URL https://doi.org/10.1029/jc090ic05p08995. [p]

K. Wright. Corrgram: Plot a Correlogram, 2018. URL https://CRAN.R-project.org/package=corrgram.
R package version 1.13. [p]

M. N. Wright and A. Ziegler. ranger: A fast implementation of random forests for high dimensional
data in C++ and R. Journal of Statistical Software, 77(1):1–17, 2017. URL https://doi.org/10.18637/
jss.v077.i01. [p]

A. Zeileis and T. Hothorn. Diagnostic checking in regression relationships. R News, 2(3):7–10, 2002.
URL https://CRAN.R-project.org/doc/Rnews/. [p]

A. Zeileis, F. Leisch, K. Hornik, and C. Kleiber. Strucchange: An r package for testing for structural
change in linear regression models. Journal of Statistical Software, Articles, 7(2):1–38, 2002. ISSN
1548-7660. URL https://doi.org/10.18637/jss.v007.i02. [p]

Alicja Gosiewska
Faculty of Mathematics and Information Science
Warsaw University of Technology
Poland
ORCID: https://orcid.org/0000-0001-6563-5742
alicjagosiewska@gmail.com

Przemysław Biecek
Faculty of Mathematics and Information Science
Warsaw University of Technology
Faculty of Mathematics, Informatics and Mechanic
University of Warsaw
Poland
ORCID: https://orcid.org/0000-0001-8423-1823
przemyslaw.biecek@gmail.com

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://journal.r-project.org/archive/2016/RJ-2016-060/index.html
https://journal.r-project.org/archive/2016/RJ-2016-060/index.html
https://books.google.pl/books?id=UT9dAAAAIAAJ
https://books.google.pl/books?id=UT9dAAAAIAAJ
https://doi.org/10.1080/03610928208828423
https://CRAN.R-project.org/package=lumberjack
https://CRAN.R-project.org/package=lumberjack
https://books.google.pl/books?id=UEuQEM5RjWgC
http://www.stats.ox.ac.uk/pub/MASS4
https://books.google.pl/books?id=W1IaAAAAIAAJ
http://ggplot2.org
http://www.jstatsoft.org/v59/i10/
http://www.jstatsoft.org/v59/i10/
https://doi.org/10.1029/jc090ic05p08995
https://CRAN.R-project.org/package=corrgram
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01
https://CRAN.R-project.org/doc/Rnews/
https://doi.org/10.18637/jss.v007.i02
https://orcid.org/0000-0001-6563-5742
mailto:alicjagosiewska@gmail.com
https://orcid.org/0000-0001-8423-1823
mailto:przemyslaw.biecek@gmail.com

CONTRIBUTED RESEARCH ARTICLES 99

The R Package trafo for Transforming
Linear Regression Models
by Lily Medina, Ann-Kristin Kreutzmann, Natalia Rojas-Perilla and Piedad Castro

Abstract Researchers and data-analysts often use the linear regression model for descriptive, predictive,
and inferential purposes. This model relies on a set of assumptions that, when not satisfied, yields
biased results and noisy estimates. A common problem that can be solved in many ways – use of less
restrictive methods (e.g. generalized linear regression models or non-parametric methods), variance
corrections or transformations of the response variable just to name a few. We focus on the latter
option as it allows to keep using the simple and well-known linear regression model. The list of
transformations proposed in the literature is long and varies according to the problem they aim to
solve. Such diversity can leave analysts lost and confused. We provide a framework implemented
as an R-package, trafo, to help select suitable transformations depending on the user requirements
and data being analyzed. The package trafo contains a collection of selected transformations and
estimation methods that complement and increase the breadth of methods that exist in R.

Introduction

To study the relation between two or more variables, the linear regression model is one of the most
employed statistical methods. For an appropriate usage of this model, a set of assumptions needs
to be fulfilled. These assumptions are, among others, related to the functional form and to the error
terms, such as linearity and homoscedasticity. However, in practical applications, these assumptions
are not always satisfied. This leads to the question of how to move on with the analysis in such cases.
One way to proceed is to conduct the analysis ignoring the model assumption violations which is,
of course, not recommended as it would likely yield misleading results. An alternative solution is to
use more complex methods such as generalized linear regression models or non-parametric methods,
as they might fit the data and problem better. A third method–and the focus of the present work–
is the application of suitable transformations. Throughout the current manuscript, we use the term
transformations to refer to the application of monotonic functions to the response variable of a linear
regression model. For more flexible transformation functions, please refer to (e.g.) Hothorn et al.
(2018).

Transformations have the potential to correct certain violations of model assumptions and by
doing so, allow an analysis to continue with the linear regression model. Due to its convenience,
transformations such as the logarithm or the Box-Cox (Box and Cox, 1964) are commonly applied in
many branches of sciences; for example in economics (Hossain, 2011) and neuroscience (Morozova
et al., 2016). In order to simplify the choice and the usage of transformations in the linear regression
model, the R package trafo (Medina et al., 2018) is developed. The present work is inspired by the
framework proposed in Rojas-Perilla (2018, pp. 9-45) and extends other existing R packages that
provide transformations.

Many packages that contain transformations do not specifically focus on the use of transformations
(Venables and Ripley, 2002; Fox and Weisberg, 2011; Molina and Marhuenda, 2015; Ribeiro Jr. and
Diggle, 2016). They often only include widely used transformations like the logarithmic or the
Box-Cox transformation family. The package car (Fox and Weisberg, 2011) expands the selection of
transformations; it includes the Box-Cox, the Tukey (Tukey, 1957), and the Yeo-Johnson (Yeo and
Johnson, 2000) transformation families, and uses the maximum likelihood approach for the estimation
of the transformation parameter (Box and Cox, 1964). The package rcompanio (Mangiafico, 2019)
focuses on the Tukey transformation with estimation via goodness of fit tests. In addition to the
logarithm and Box-Cox, the package bestNormalize (Peterson, 2019) also includes the glog (see e.g.
Durbin et al., 2002) and Yeo-Johnson transformations. An exponential transformation proposed by
Manly (1976) is provided in the package caret (Kuhn, 2008) and the multiple parameter Johnson
transformation (Johnson, 1949) in the packages Johnson (Fernandez, 2014) and jtrans (Wang, 2015).
While the packages MASS (Venables and Ripley, 2002) and car (Fox and Weisberg, 2011) solely provide
the maximum likelihood approach for the estimation of the transformation parameter for the Box-Cox
family, the package AID (Dag et al., 2017) includes a wide range of methods, mostly based on goodness
of fit tests like the Shapiro-Wilk or the Anderson-Darling test. Though the use of these methods is
limited to the Box-Cox transformation. For a summary of the various transformations available in R
packages, please see Table 1.

It is noticeable that most of the above-mentioned packages do not help the user in the process
of deciding which transformation is actually suitable according to the users needs. Furthermore,

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=trafo
https://CRAN.R-project.org/package=car
https://CRAN.R-project.org/package=rcompanio
https://CRAN.R-project.org/package=bestNormalize
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=Johnson
https://CRAN.R-project.org/package=jtrans
https://CRAN.R-project.org/package=MASS
https://CRAN.R-project.org/package=car
https://CRAN.R-project.org/package=AID

CONTRIBUTED RESEARCH ARTICLES 100

Table 1: Overview of available transformations and estimation methods in R packages

AID bestNormalize car caret Johnson jtrans MASS rcompanion trafo

Transformation
Log 7 7 7 7 7 7
Log (shift) 7 7 7 7 7
Glog 7 7
Neglog 7
Reciprocal 7 7 7
Tukey 7 7
Box-Cox 7 7 7 7 7 7
Box-Cox (shift) 7 7 7
Log-shift opt 7
Bickel-Docksum 7
Yeo-Johnson 7 7 7 7 7 7
Square Root (shift) 7
Manly 7 7
Modulus 7
Dual 7
Gpower 7
Customized 7

Estimation method
Maximum likelihood theory 7 7 7 7 7
Distribution moments optimization 7
Divergence minimization 7
Via goodness of fit tests 7 7 7
Rank-mapping 7
Via percentiles 7

most packages do not provide tools to “eyeball” whether the employed transformation improves
the data with regard to fulfilling the model assumptions. Package trafo combines and extends the
features provided by the packages mentioned above. Additionally to transformations that are already
provided by existing packages, the trafo package includes, among others, the Bickel-Doksum (Bickel
and Doksum, 1981), modulus (John and Draper, 1980), the neglog (Whittaker et al., 2005) and glog
(see e.g. Durbin et al., 2002) transformations that are modifications of the Box-Cox and the logarithmic
transformation in order to deal with negative values in the response variable. The selection of
estimation methods for the transformation parameter is enlarged by methods based on moments and
divergence measures (see e.g. Taylor, 1985; Yeo and Johnson, 2000; Royston et al., 2011). The main
benefits of the package trafo can be summarized as follows:

• An initial check can be conducted that helps to decide if and which transformation is useful for
the researchers’ needs.

• The untransformed model and a model with a transformed dependent variable can be easily
compared under the light of the model assumptions (more on this below). Alternatively, two
transformed models can be run and compared simultaneously

• Extensive diagnostics are provided in order to check if the transformation helps to fulfill the
model assumptions normality, homoscedasticity, and linearity.

Transformations and estimation methods

The equation describing and summarizing the relationship between a continuous outcome variable
y and different covariates x (either categorical or continuous) is defined by yi = xT

i β + ei, with
i = 1, . . . , n. This is also known as the linear regression model and is composed by a deterministic and
a random component, which rely on different assumptions. Among others, these assumptions can be
summarized as follows:

• Normality (N): The conditional distribution of y given x follows a normal distribution. This is
an optional, but often desired assumption (e.g. Box and Cox (1964)).

• Homoscedasticity (H): The conditional variance of y given x is constant.

• Linearity (L): The conditional expectation of the outcome variable y given the continuous
covariates x is a linear function in x.

As already mentioned, different approaches have been proposed to overcome the violations of
these model assumptions. Some of them include alternative estimation methods of the regression
terms or more complex regression models (see e.g. Nelder and Wedderburn, 1972; Berry, 1993). In
the present manuscript, we focus on defining a parsimonious modification for the model, such as the
usage of non-linear transformations of the outcome variable. The transformations implemented in the

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://cran.r-project.org/web/packages/AID/index.html
https://cran.r-project.org/web/packages/bestNormalize/index.html
https://cran.r-project.org/web/packages/car/index.html
https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/Johnson/index.html
https://cran.r-project.org/web/packages/jtrans/index.html
https://cran.r-project.org/web/packages/MASS/index.html
https://https://cran.r-project.org/web/packages/rcompanion/index.html
https://cran.r-project.org/web/packages/trafo/index.html

CONTRIBUTED RESEARCH ARTICLES 101

package trafo particularly help to achieve normality. However, most of them simultaneously correct
other assumptions (see also Table 2 and Table 3).
We classify transformations in two groups: non-parametric transformations and data-driven transfor-
mations with a transformation parameter that needs to be estimated. The first set of transformations
presented in Table 2 comprises, among others, the logarithmic transformation, which is considered
due to its popularity and straightforward application. The data-driven transformations presented in

Table 2: Non-parametric transformations

Transformation Source Formula Support N H L

Log (shift) Box and Cox (1964) log(y + s) y ∈ {−s; ∞} 7 7 7

Glog Rocke and Durbin (2001) log(y +
√

y2 + 1) y ∈ R 7 7 7
Durbin et al. (2002)
Huber et al. (2002, 2003)

Neglog Whittaker et al. (2005) Sign(y) log(|y|+ 1) y ∈ R 7 7

Reciprocal Tukey (1957) 1
y y 6= 0 7 7

Table 3 are dominated by the Box-Cox transformation and its modifications or alternatives, e.g. the
modulus or Bickel-Doksum transformation. More flexible versions of the logarithmic transformation,
as the log-shift opt, or the Manly transformation, an exponential transformation, are also included in
the package trafo.

Table 3: Data-driven transformations.

Transformation Source Formula Support N H L

Box-Cox (shift) Box and Cox (1964)

{
(y+s)λ−1

λ if λ 6= 0;
log(y + s) if λ = 0.

y ∈ {−s; ∞} 7 7 7

Log-shift opt Feng et al. (2016) log(y + λ) y ∈ {−s; ∞} 7 7 7

Bickel-Docksum Bickel and Doksum (1981) |y|λSign(y)−1
λ if λ > 0 y ∈ R 7 7

Yeo-Johnson Yeo and Johnson (2000)

(y+1)λ−1

λ if λ 6= 0, y ≥ 0;
log(y + 1) if λ = 0, y ≥ 0;
(1−y)2−λ−1

λ−2 if λ 6= 2, y < 0;
−log(1− y) if λ = 2, y < 0.

y ∈ R 7 7

Square Root (shift) Medina et al. (2018)
√

y + λ y ∈ R 7 7

Manly Manly (1976)

{
eλy−1

λ if λ 6= 0;
y if λ = 0.

y ∈ R 7 7

Modulus John and Draper (1980)

{
Sign(y) (|y|+1)λ−1

λ if λ 6= 0;
Sign(y) log (|y |+ 1) if λ = 0.

y ∈ R 7

Dual Yang (2006)

{
(yλ−y−λ)

2λ if λ > 0;
log(y) if λ = 0.

y > 0 7

Gpower Kelmansky et al. (2013)

{
(y+
√

y2+1)λ−1
λ if λ 6= 0;

log(y +
√

y2 + 1) if λ = 0.
y ∈ R 7

Table 2 and 3 provide information about the range y that is supported by the transformation. Some
transformations are only suitable for positive values of y. This is generally true for the logarithmic
and Box-Cox transformations. However, in case that the dependent variable contains negative values,
the values are shifted by a deterministic shift s such that y + s > 0 by default in package trafo.
Furthermore, the tables highlights which assumptions the transformation helps to achieve. Kindly
note that we are proposing general suggestions and the benefits of transformations depend on the
data. For specific properties of each transformation we refer to the further references. The square root
shift transformation with a data-driven shift in analogy to the log-shift opt transformation is, to the
best of our knowledge, firstly implemented in this work. In contrast, a square root transformation
with deterministic shift, for example, is suggested in Bartlett (1947).

Below, we summarize the collection of methods included in trafo to estimate the parameters of the
transformations presented in Table 3. The benefit of each estimation method depends on the research
analysis and the underlying data.

• Maximum likelihood theory (Box and Cox, 1964)
• Distribution moments optimization: Skewness or kurtosis (Carroll and Ruppert, 1987; Royston

et al., 2011; Rojas-Perilla, 2018)
• Divergence minimization: Following Kolmogorov-Smirnov (KS), Cramér-von-Mises (KM) or

Kullback-Leibler (KL) measurements (Cramér, 1928; Kolmogorov, 1933; Smirnov, 1939; Kullback
and Leibler, 1951; Hernandez and Johnson, 1980; Rojas-Perilla, 2018)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 102

Table 4: Diagnostic checks provided in the package trafo.

Assumption Diagnostic check Fast check

Normality Skewness and kurtosis 7
Shapiro-Wilk/Anderson-Darling test 7
Quantile-quantile plot
Histograms

Homoscedasticity Breusch-Pagan test 7
Residuals vs. fitted plot
Scale-location

Linearity Scatter plots between y and x 7
Observed vs. fitted plot

The maximum likelihood estimation method finds the set of values for the transformation parame-
ter that maximizes the likelihood function of the dataset under the selected transformation (Box and
Cox, 1964). This is a standard approach that is also implemented in several of the mentioned R pack-
ages (Venables and Ripley, 2002; Fox and Weisberg, 2011). However, since the maximum likelihood
estimation is rather sensitive to outliers, the skewness or kurtosis optimization might be preferable for
the estimation of the transformation parameter in the presence of outliers (see e.g. Royston et al., 2011).
The use of kurtosis over skewness optimization depends entirely on the shape of the distribution of the
data and the goal of the analyst – skewness optimizations corrects for asymmetry and kurtosis for light
or heavy tails. Additionally, if the focus lies on comparing the whole distribution of the transformed
data with a normal distribution, and not only on some moments, different divergence measures as
the KS, KM or KL can be used (see e.g. Yeo and Johnson, 2000). For all estimation methods, a range
on which the functions are evaluated needs to be proposed. Therefore, default values are set for the
predefined transformations. For more information about different estimation methods we refer to
Rojas-Perilla (2018, pp. 9-45).

Since the user can only decide if the transformation is helpful by checking the above mentioned
assumptions, the package trafo contains a wide range of diagnostic checks (e.g. Anderson and Darling,
1954; Shapiro and Wilk, 1965; Breusch and Pagan, 1979). A smaller selection is used in the fast check
that helps to decide if a transformation might be useful. Table 4 summarizes the implemented
diagnostic checks that are simultaneously returned for the untransformed and a transformed model
or two differently transformed models and indicates which diagnostics are conducted in the fast
check. Additionally, plots are provided that help to detect outliers such as the Cook’s distance plot
and influential observations by the residuals vs leverage plot.

Another feature of the package trafo is the possibility of defining a customized transformation.
Thus, a user can also use the infrastructure of the package for a transformation that suits the individuals
needs better than the predefined transformations. However, in this version of the package trafo the
user needs to define the transformation and the standardized transformation in order to use this
feature. For the derivation of the standardized transformation of all predefined transformations, see
the Appendix.

Applications

The usage of transformations in practice may help to meet model assumptions but it can also
lead to complexities as the interpretation of parameters and standard errors in inference or back-
transformation biases in prediction (Rojas-Perilla, 2018). For instance, it is questionable how to address
the estimation of the transformation parameter in inference. Box and Cox (1964) point out that after
applying the Box-Cox transformation to the outcome variable, the transformation parameter should
be treated as fixed and known and the subsequent analysis could be done in the transformed scale.
However, Bickel and Doksum (1981) emphasize that estimating a transformation parameter in a model
could overestimate the parameters’ variance yielding conservative confidence intervals. In prediction,
on the other hand, lost interpretability of parameters and standard errors may be less important but
the back-transformation could lead to a bias neglecting the non-linearity of the transformation (see e.g.
Mosimann et al., 2018).

Nevertheless, several studies show how transformations can be useful in applications. Pek
et al. (2017) demonstrate how the log transformation can be used for describing the relation between
earnings and years of experience and the reciprocal transformation for the effect of intelligence quotient
(IQ) on performance on mental sum problems. The logarithm and the Box-Cox transformation are
often applied in econometric research, e.g. to describe monetary policies (Zarembka, 1968, 1974).
Transformations have also been used to improve the functional form in studies of demand functions
for meat (shyong Chang, 1977), travel costs (Vaughan et al., 1982), and recreation (Ziemer et al., 1980)
in the U.S and for import equations in the Republic of Ireland (Boylan et al., 1982). Another research
field for the application of transformations is genetics (Huber et al., 2003). The data sets often exhibit a

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 103

Table 5: Core functions of package trafo.

Function Description

assumptions() Enables a fast check whether A transformation is suitable.
trafo_lm() Compares the untransformed model with a transformed model.

trafo_compare() Compares two differently transformed models.
diagnostics() Returns information about the transformation and different

diagnostics checks in form of tests.
plot() Returns graphical diagnostics checks.

high variability and non-normality problems. To address this, the glog and gpower can be useful in
practice (Durbin et al., 2002; Kelmansky et al., 2013).

When using package trafo for applications, it should be noted that the package focuses on finding
a suitable transformation with regards to fulfilling specific model assumptions, the user still has to
decide if the transformation is reasonable in a specific application. The following section shows which
functionalities the package provides for the user.

Case study

In order to show the functionality of the package trafo, we present – in form of a case study – the steps
a user faces when checking the assumptions of the linear model. For this illustration, we use the data
set called University from the R package Ecdat (Croissant, 2016). This data set contains variables
measuring the equipment and costs of university teaching and research. These data can be made
available as follows:

R> library(Ecdat)
R> data(University)

A practical question for the head of a university could be how study fees (stfees) raise the universities
net assets (nassets). Both variables are metric. Thus, a linear regression could help to explain the
relation between these two variables. A linear regression model can be conducted in R using the lm
function.

R> linMod <- lm(nassets ~ stfees, data = University)

The features in the package trafo that help to find a suitable transformation for this model and to
compare different models are summarized in Table 5 and illustrated in the next subsections.

Finding a suitable transformation

It is well known that the reliability of the linear regression model depends on the assumptions
presented above. In this section, we focus on presenting how the user can decide and assess which
(and whether) transformations help to fulfill these model assumptions. A first fast check of these
model assumptions can be used in the package trafo in order to find out if the untransformed
model meets these assumptions or if using a transformation seems suitable. The fast check can be
conducted by the function assumptions. This function returns the skewness, the kurtosis and the
Shapiro-Wilk/Anderson-Darling test for normality, the Breusch-Pagan test for homoscedasticity and
scatter plots between the dependent and the explanatory variables for checking the linear relation. All
possible arguments of the function assumptions are summarized in Table 6. In the following, we only
show the returned normality and homoscedasticity tests. The results are ordered by the p value of the
Shapiro-Wilk and Breusch-Pagan test.

R> assumptions(linMod)

The default lambdarange for the log shift opt transformation is calculated
dependent on the data range. The lower value is set to -2035.751 and the upper
value to 404527.249

The default lambdarange for the square root shift transformation is calculated
dependent on the data range. The lower value is set to -2035.751 and the upper
value to 404527.249

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=Ecdat

CONTRIBUTED RESEARCH ARTICLES 104

Table 6: Arguments of function assumptions.

Argument Description Default

object Object of class lm.
method Estimation method for the transformation parameter. Maximum likelihood

std Normal or standardized transformation. Normal
... Addtional arguments can be added, especially for changing Default values of

the lambda range for the estimation of the parameter, e.g. lambda range of
manly_lr = c(0.000005,0.00005). each transformation

Test normality assumption
Skewness Kurtosis Shapiro_W Shapiro_p

logshiftopt -0.4201 4.0576 0.9741 0.2132
boxcox -0.4892 4.2171 0.9621 0.0527
bickeldoksum -0.4892 4.2171 0.9621 0.0527
gpower -0.4892 4.2171 0.9621 0.0527
modulus -0.4892 4.2171 0.9621 0.0527
yeojohnson -0.4892 4.2171 0.9621 0.0527
dual -0.4837 4.2180 0.9619 0.0519
sqrtshift 0.6454 5.2752 0.9504 0.0139
log -1.1653 5.1156 0.9140 0.0004
neglog -1.1651 5.1150 0.9140 0.0004
glog -1.1653 5.1156 0.9140 0.0004
untransformed 2.4503 12.7087 0.7922 0.0000
reciprocal -3.7260 19.0487 0.5676 0.0000

Test homoscedasticity assumption
BreuschPagan_V BreuschPagan_p

modulus 0.1035 0.7477
yeojohnson 0.1035 0.7477
boxcox 0.1035 0.7476
bickeldoksum 0.1036 0.7476
gpower 0.1035 0.7476
dual 0.1128 0.7369
logshiftopt 0.1154 0.7341
neglog 0.7155 0.3976
log 0.7158 0.3975
glog 0.7158 0.3975
reciprocal 1.6109 0.2044
sqrtshift 5.4624 0.0194
untransformed 9.8244 0.0017

Following the Shapiro-Wilk test, the log-shift opt transformation yields a transformed outcome
variable that is (statistically) normally distributed (p = 0.2132). The same applies for the Box-Cox,
Bickel-Doksum, gpower, modulus and Yeo-Johnson transformations though at lower significance
level (α = 0.05). For improving the homoscedasticity assumption, all transformations help except the
square root (shift) transformation. As mentioned before, default values for the range of lambda for all
transformations are predefined and these are used in this fast check. Since the default values for the
log-shift opt and square root (shift) transformation depend on the range of the response variable, the
chosen range is reported in the return. The Manly transformation is not in the list since the default
lambda range for the estimation of the transformation parameter is not suitable for this data set. For
such a case, the user can change the lambda range for the transformations manually. Similarly, the
user can change the estimation methods for the transformation parameter. For instance, if symmetry
is of special interest for the user the skewness minimization might be a better choice than the default
maximum likelihood method. In this case study all assumptions are assumed to be equally important.
Thus, we choose the Box-Cox transformation for the further illustrations even though some other
transformations would be suitable as well.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 105

Comparing the untransformed model with a transformed model

For a more detailed comparison of the transformed model with the untransformed model, a function
called trafo_lm (for the arguments see Table 7) can be used as follows:

R> linMod_trafo <- trafo_lm(linMod)

The Box-Cox transformation is the default option such that only the lm object needs to be given to
the function. The object linMod_trafo is of class trafo_lm and the user can conduct the methods
print, summary and plot in the same way as for an object of class lm. The difference is that the
new methods simultaneously return the results for both models, the untransformed model and the
transformed model. Furthermore, a method called diagnostics helps to compare results of normality
and homoscedasticity tests. In the following, we will show the return of the diagnostics method and
some selected plots in order to check the normality, homoscedasticity, and the linearity assumption of
the linear regression model.

R> diagnostics(linMod_trafo)

Diagnostics: Untransformed vs transformed model

Transformation: boxcox
Estimation method: ml
Optimal Parameter: 0.1894257

Residual diagnostics:

Normality:
Pearson residuals:

Skewness Kurtosis Shapiro_W Shapiro_p
Untransformed model 2.4503325 12.708681 0.7921672 6.024297e-08
Transformed model -0.4892222 4.217105 0.9620688 5.267566e-02

Heteroscedasticity:
BreuschPagan_V BreuschPagan_p

Untransformed model 9.8243555 0.00172216
Transformed model 0.1035373 0.74762531

The first part of the output shows information of the applied transformation. As chosen, the Box-Cox
transformation is used with the optimal transformation parameter around 0.19 which is estimated
using the maximum likelihood approach that is also set as default. The optimal transformation
parameter differs from 0, which would be equal to the logarithmic transformation, and 1, which
means that no transformation is optimal. The Shapiro-Wilk test rejects normality of the residuals of
the untransformed model but it does not reject normality for the residuals of the transformed model
on a 5% level of significance. Furthermore, the skewness shows that the residuals in the transformed
model are more symmetric and the kurtosis is closer to 3, the value of the kurtosis of the normal
distribution. The results of the Breusch-Pagan test clearly show that homoscedasticity is rejected in
the untransformed model but not in the transformed model. These two findings can be supported by
diagnostic plots shown in Figure 1.

R> plot(linMod_trafo)

In order to evaluate the linearity assumption, scatter plots of the dependent variable against the
explanatory variable can help. Figure 2 shows that the assumption of linearity is violated in the
untransformed model. The upper panel shows the Pearson correlation coefficient. In contrast, the
relation between the transformed net assets and the study fees seems to be linear. As shown above,
the user can obtain diagnostics for an untransformed and a transformed model with only a little
more effort in comparison to fitting the standard linear regression model without transformation.
While we only show the example with the default transformation, the user can also easily change
the transformation and the estimation method. For instance, the user could choose the log-shift opt
transformation with the skewness minimization as estimation method.

R> linMod_trafo2 <- trafo_lm(object = linMod, trafo = ''logshiftopt'',
+ method = "skew")

Compare two transformed models

The user can also compare different transformations within the frame of the model assumptions.
Oftentimes the logarithm is blindly used without much consideration about its usefulness. In order to

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 106

−2 −1 0 1 2

0
2

4
6

Untransformed model

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

25

416

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2

Transformed model

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

61

2958

(a) Q-Q plots of the error terms.

0 100000

−
1e

+
05

1e
+

05

Untransformed model

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

25

416

120000 180000

−
60

00
0

0
40

00
0

Transformed model

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

61
29 58

(b) Residuals versus fitted.

Figure 1: Selection of diagnostic plots obtained by using plot(linMod_trafo). (a) shows Q-Q plots
error terms of the untransformed and the transformed model. (b) shows the residuals against the
fitted values of the untransformed and the transformed model.

nassets

0 5000 10000 15000

0e
+

00
3e

+
05

0.75

0e+00 2e+05 4e+05

0
10

00
0

stfees

Untransformed model

(a)

nassetst

0 5000 10000 15000

20
30

40
50

0.81

20 30 40 50

0
50

00
15

00
0

stfees

Transformed model

(b)

Figure 2: Selection of obtained diagnostic plots by using plot(linMod_trafo). (a) shows the scatter
plot of the untransformed net assets and the study fees (b) shows scatter plot of the transformed net
assets and the study fees. The numbers specify the correlation coefficient between the dependent and
independent variable.

Table 7: Arguments of function trafo_lm.

Argument Description Default

object Object of class lm.
trafo Selected transformation. Box-Cox

lambda Estimation or a self-selected numeric value. Estimation
method Estimation method for the transformation parameter. Maximum likelihood

lambdarange Determines range for the estimation of the Default lambdarange
transformation parameter. for each transformation.

std Normal or standardized transformation. Normal
custom_trafo Add customized transformation. None

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 107

Table 8: Arguments of function trafo_compare.

Argument Description Default

object Object of class lm.
trafos List of objects of class trafo.

std Normal or standardized transformation. Normal

compare the logarithm with (e.g.) the selected Box-Cox transformation, the user needs to specify two
objects of class trafo as follows:

R> boxcox_uni <- boxcox(linMod)
R> log_uni <- logtrafo(linMod)

The utility of trafo objects is twofold. First, the user can use the functions for each transformation in
order to simply receive the transformed vector. The print method gives first information about the
vector and the method as.data.frame returns the whole data frame with the transformed variable in
the last column. The variable is named as the dependent variable with an added t.

R> head(as.data.frame(boxcox_uni))

nassets stfees nassetst
1 3669.71 2821 19.71248
2 12156.00 4037 26.07723
3 185203.00 17296 47.24867
4 323100.00 18800 53.08840
5 32154.00 9314 32.42140
6 41669.00 7388 34.31882

Second, the objects can be used to compare linear models with differently transformed dependent
variable using function trafo_compare. The arguments of this functions are shown in Table 8. The
user creates an object of class trafo_compare by:

R> linMod_comp <- trafo_compare(object = linMod,
+ trafos = list(boxcox_uni, log_uni))

For this object, the user can use the same methods as for an object of class trafo_lm. In this work, we
only want to show the return of method diagnostics.

R> diagnostics(linMod_comp)

Diagnostics of two transformed models

Transformations: Box-Cox and Log
Estimation methods: ml and no estimation
Optimal Parameters: 0.1894257 and no parameter

Residual diagnostics:

Normality:
Pearson residuals:

Skewness Kurtosis Shapiro_W Shapiro_p
Box-Cox -0.4892222 4.217105 0.9620688 0.0526756632
Log -1.1653028 5.115615 0.9140135 0.0003534879

Heteroscedasticity:
BreuschPagan_V BreuschPagan_p

Box-Cox 0.1035373 0.7476253
Log 0.7158162 0.3975197

The first part of the return points out that the Box-Cox transformation is a data-driven transformation
with a transformation parameter while the logarithmic transformation does not adapt to the data.
Furthermore, we can see that normality is rejected for the model with a logarithmic transformed
dependent variable, while it is not rejected when the Box-Cox transformation is used. The violation of
the homoscedasticity assumption can be fixed by both transformations.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 108

Additional features

Extract the transformed model and vector

The trafo package provides focused but limited methods to analyze the model. However, the trans-
formed model can be easily extracted from the trafo_lm object.

R> class(linMod_trafo$trafo_mod)
[1] "lm"

The extracted object is of class lm such that all available methods for "lm" objects can also be used for
the extracted object.

Similarly, it is possible to get the transformed vector.

R> head(linMod_custom$trafo_mod$model)
nassetst stfees

1 13466771 2821
2 147768336 4037
3 34300151209 17296
4 104393610000 18800
5 1033879716 9314
6 1736305561 7388

Customized transformation

As summarized in the introduction, many R packages, including package trafo, provide a large
number of transformations. Naturally, we do not include the comprehensive list of available trans-
formations as this would be a too ambitious task, though we do acknowledge that depending on
the needs of the user, a non-implemented transformation might be of interest (for the wide range of
possible transformations, see e.g. Rojas-Perilla, 2018). Motivated by this, we include the option to
employ our framework– e.g. the estimation of the transformation parameter – with transformations
not provided in our package. In the following lines, we show the application of this future using the
Tukey transformation (Tukey, 1957).

In a first step, the transformation and the standardized or scaled transformation need to be defined.

R> tukey <- function(y, lambda = lambda) {
+ lambda_cases <- function(y, lambda = lambda) {
+ lambda_absolute <- abs(lambda)
+ if (lambda_absolute <= 1e-12) {
+ y <- log(y)
+ } else {
+ y <- y^2
+ }
+ return(y)}
+ y <- lambda_cases(y = y, lambda = lambda)
+ return(y = y)}

R> tukey_std <- function(y, lambda) {
+ gm <- exp(mean(log(y)))
+ if (abs(lambda) > 1e-12) {
+ y <- (y^lambda) / (lambda * ((gm)^(lambda - 1)))
+ } else {
+ y <- gm * log(y)
+ }
+ return(y)}

Second, the user inserts the two functions as a list argument to the trafo_lm function. Further-
more, the user needs to specify for the trafo argument if the transformation is without a parameter
(''custom_wo'') or with one parameter (''custom_one''). The Tukey transformation relies on a
transformation parameter. Thus, a lambdarange argument will be speified.

R> linMod_custom <- trafo_lm(linMod, trafo = "custom_one",
+ lambdarange = c(0, 2), custom_trafo = list(tukey, tukey_std))

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 109

One limitation of this feature is the necessity to insert both the transformation and the scaled trans-
formation since the latter is often not known. Furthermore, the framework is only suitable for
transformations without and with one transformation parameter.

Conclusions and future developments

Although transformations were developed in the absence of efficient machines as an alternative to
high memory-consumming methods, they are still a parsimonious way to meet model assumptions
for linear regression model. We showed how the package trafo helps the user to easily decide whether
and which transformations are suitable to fulfill normality, homoscedasticity, and linearity. To the best
of our knowledge trafo is the only R package that supports this decision process. Furthermore, the
package trafo provides an extensive collection of transformations usable in linear regression models
and a wide range of estimation methods for the transformation parameter. In future versions, we plan
to enlarge this collection as well as providing similar functionality for other types of data, e.g. count
data. Additionally, more methods that are available for the class lm could be developed for objects of
class trafo_lm. We would also like to expand the infrastructure for linear mixed regression models.

Acknowledgment

We thank Prof. Dr. Timo Schmid for fruitful discussions.

Appendix: Likelihood derivation of the transformations

Log (shift) transformation

Let J(y) denote the Jacobian of a transformation from yi to y∗i . In order to obtain z∗i , the scaled log

(shift) transformation, given by y∗i
J(y)1/n , and for simplicity, we use a modification of the definition of

the geometric mean, denoted by ȳLS. Therefore, the Jacobian, the scaled, and the inverse of the log
(shift) transformation are given below.

The log (shift) transformation presented in Table 2 is defined as:

y∗i = log (yi + s) .

In case, the fixed shift parameter s would not be necessary, the standard logarithm function
(logarithmic transformation with s = 0) is applied.

The modification of the definition of the geometric mean for this transformation is:

ȳLS =

[
n

∏
i=1

yi + s

] 1
n

.

Therefore, the expression of the Jacobian is defined as:

J(y) =
n

∏
i=1

dy∗i
dy

=
n

∏
i=1

1
yi + s

= ȳ−n
LS .

The scaled transformation is given by:

z∗i = log (yi + s) ȳLS.

The inverse function of the log (shift) transformation is denoted as:

f (yi) = log (yi + s)
y∗i = log (yi + s)

yi = ey∗i − s

⇒ f−1 (y∗i) = ey∗i − s.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 110

Glog transformation

Let J (y) denote the Jacobian of a transformation from yi to y∗i . In order to obtain z∗i , the scaled glog

transformation, given by y∗i
J(y)1/n , and for simplicity, we use a modification of the definition of the

geometric mean, denoted by ȳGL. Therefore, the Jacobian, the scaled, and the inverse of the glog
transformation are given below.

The glog transformation presented in Table 2 is defined as:

y∗i = log
(

yi +
√

y2
i + 1

)
if λ = 0.

The modification of the definition of the geometric mean for this transformation is:

ȳGL =

[
n

∏
i=1

1 + y2
i

] 1
n

.

Therefore, the expression of the Jacobian is defined as:

J (y) =
n

∏
i=1

dy∗i
dy

=
n

∏
i=1

1

yi +
√

y2
i + 1

1 +
2yi

2
√

y2
i + 1

=

n

∏
i=1

1

yi +
√

y2
i + 1

 yi +
√

y2
i + 1√

y2
i + 1

=

n

∏
i=1

1√
y2

i + 1

= ȳ
−n
2

GL.

The scaled transformation is given by:

z∗i = log
(

yi +
√

y2
i + 1

)
ȳ

1
2
GL.

The inverse function of the glog transformation is denoted as:

f (yi) = log
(

yi +
√

y2
i + 1

)
y∗i = log

(
yi +

√
y2

i + 1
)

ey∗i − yi =
√

y2
i + 1(

ey∗i − yi

)2
= y2

i + 1

ey∗2i − 2ey∗i yi = 1

yi = −

(
1− ey∗2i

)
2ey∗i

⇒ f−1 (y∗i) = −

(
1− ey∗2i

)
2ey∗i

.

Neglog transformation

Let J(y) denote the Jacobian of a transformation from yi to y∗i . In order to obtain z∗i , the scaled neglog

transformation, given by y∗i
J(y)1/n , and for simplicity, we use a modification of the definition of the

geometric mean, denoted by ȳNL. Therefore, the Jacobian, the scaled, and the inverse of the neglog
transformation are given below.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 111

The neglog transformation presented in Table 2 is defined as:

y∗i = sign(yi) log (|yi|+ 1) .

The modification of the definition of the geometric mean for this transformation is:

ȳNL =

[
n

∏
i=1

(|yi|+ 1)

] 1
n

.

Therefore, the expression of the Jacobian comes to:

J(y) =
n

∏
i=1

dy∗i
dy

=
n

∏
i=1

sign(yi)
1

|yi|+ 1

= sign
(n

∏
i=1

yi

)(n

∏
i=1
|yi|+ 1

)−1

= sign
(n

∏
i=1

yi

)
ȳ−n

NL.

The scaled transformation is given by:

z∗i = sign(yi) log (|yi|+ 1) sign
(n

∏
i=1

yi

)
ȳNL.

The inverse function of the neglog transformation is denoted as:

f (yi) = sign(yi) log (|yi|+ 1)

y∗i = sign(yi) log (|yi|+ 1)

|yi| = esign(y∗i)y
∗
i − 1

⇒ f−1(y∗i) = ±
[
esign(y∗i)y

∗
i − 1

]
.

Reciprocal transformation

Let J(y) denote the Jacobian of a transformation from yi to y∗i . In order to obtain z∗i , the scaled

reciprocal transformation, given by y∗i
J(y)1/n , and for simplicity, we use a modification of the definition

of the geometric mean, denoted by ȳR. Therefore, the Jacobian, the scaled, and the inverse of the
reciprocal transformation are given below.

The reciprocal transformation presented in Table 2 is defined as:

y∗i =
1
yi

.

The definition of the geometric mean is:

ȳR =

[
n

∏
i=1

yi

] 1
n

.

Therefore, the expression of the Jacobian is defined as:

J(y) =
n

∏
i=1

dy∗i
dy

=
n

∏
i=1
− 1

y2
i

= −ȳ−2n
R .

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 112

The scaled transformation is given by:

z∗i = − 1
yi

ȳ2
R.

The inverse function of the reciprocal transformation is denoted as:

f (yi) =
1
yi

y∗i =
1
yi

yi =
1
y∗i

⇒ f−1(y∗i) =
1
y∗i

.

Box-Cox (shift) transformation

y∗i (λ) =

{
(yi+s)λ−1

λ if λ 6= 0 (A);
log(yi + s) if λ = 0 (B).

Box-Cox (shift) transformation case (A)

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i (λ), the

scaled Box-Cox (shift)(A) transformation, given by y∗i (λ)
J(λ,y)1/n , and for simplicity, we use a modification

of the definition of the geometric mean, denoted by ȳBC. Therefore, the Jacobian, the scaled, and the
inverse of the Box-Cox (shift)(A) transformation are given below.

The Box-Cox (shift)(A) transformation presented in Table 3 is defined as:

y∗i (λ) =
(yi + s)λ − 1

λ
if λ 6= 0.

In case, the fixed shift parameter s is not necessary for making the dataset positive, the standard
Box-Cox transformation (with s = 0) is applied.

The definition of the geometric mean is:

ȳBC =

[
n

∏
i=1

yi + s

] 1
n

.

Therefore, the expression of the Jacobian comes to:

J(λ, y) =
n

∏
i=1

dy∗i (λ)
dy

=
n

∏
i=1

λ(yi + s)λ−1

λ

=
n

∏
i=1

(yi + s)λ−1

= ȳn(λ−1)
BC .

The scaled transformation is given by:

z∗i (λ) =
(yi + s)λ − 1

λ

1
ȳλ−1

BC

.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 113

The inverse function of the Box-Cox (shift)(A) transformation is denoted as:

f (yi) =
(yi + s)λ − 1

λ

y∗i =
(yi + s)λ − 1

λ

yi = (λy∗i + 1)
1
λ − s

⇒ f−1(y∗i) = (λy∗i + 1)
1
λ − s.

Box-Cox (shift) transformation case (B)

This case is exactly equal to the log (shift) case.

Log-shift opt transformation

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i (λ), the

scaled log-shift opt transformation, given by y∗i (λ)
J(λ,y)1/n , and for simplicity, we use a modification of the

definition of the geometric mean, denoted by ȳLSO. Therefore, the Jacobian, the scaled, and the inverse
of the log-shift opt transformation are given below.

The log-shift opt transformation presented in Table 3 is defined as:

y∗i (λ) = log(yi + λ).

The modification of the definition of the geometric mean for this transformation is:

ȳLSO =

[
n

∏
i=1

yi + λ

] 1
n

.

Therefore, the expression of the Jacobian is defined as:

J(λ, y) =
n

∏
i=1

dy∗i (λ)
dy

=
n

∏
i=1

1
yi + λ

= ȳ−n
LSO.

The scaled transformation is given by:

z∗i (λ) = log(yi + λ)ȳLSO.

The inverse function of the log-shift opt transformation is denoted as:

f (yi) = log(yi + λ)

y∗i = log(yi + λ)

yi = ey∗i − λ

⇒ f−1(y∗i) = ey∗i − λ.

Bickel-Docksum transformation

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i (λ), the

scaled Bickel-Docksum transformation, given by y∗i (λ)
J(λ,y)1/n , and for simplicity, we use a modification

of the definition of the geometric mean, denoted by ȳBD. Therefore, the Jacobian, the scaled, and the
inverse of the Bickel-Docksum transformation are given below.

The Bickel-Docksum transformation presented in Table 3 is defined as:

y∗i (λ) =
|yi|λsign(yi)− 1

λ
if λ > 0.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 114

The modification of the definition of the geometric mean for this transformation is:

ȳBD =

[
n

∏
i=1
|yi|
] 1

n

.

Therefore, the expression of the jacobian comes to:

J(λ, y) =
n

∏
i=1

dy∗i (λ)
dy

=
n

∏
i=1

sign(yi)λ|yi|λ−1

λ

= sign
(n

∏
i=1

yi

)(n

∏
i=1
|yi|
)λ−1

= sign
(n

∏
i=1

yi

)
ȳn(λ−1)

BD .

The scaled transformation is given by:

z∗i (λ) =
|yi|λsign(yi)− 1

λ

1

sign
(

∏n
i=1 yi

)
ȳ(λ−1)

BD

.

The inverse function of the Bickel-Docksum transformation is denoted as:

f (yi) =
|yi|λsign (yi)− 1

λ

y∗i =
|yi|λsign (yi)− 1

λ

|yi| = [sign(y∗i) (y
∗
i λ + 1)]

1
λ

⇒ f−1(y∗i) = ± [sign(y∗i) (y
∗
i λ + 1)]

1
λ .

Yeo-Johnson transformation

y∗ij (λ) =

(yi+1)λ−1

λ if λ 6= 0, yi ≥ 0 (A) ;
log (yi + 1) if λ = 0, yi ≥ 0 (B) ;

− (1−yi)
2−λ−1

2−λ if λ 6= 2, yi < 0 (C) ;
−log (1− yi) if λ = 0, yi < 0 (D) .

Yeo-Johnson transformation case (A)

This case is exactly equal to the Box-Cox (shift) case (A), with s = 1.

Yeo-Johnson transformation case (B)

This case is exactly equal to the log (shift) case, with s = 1.

Yeo-Johnson transformation case (C)

Let J (λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i (λ), the

scaled Yeo-Johnson(C) transformation, given by y∗i (λ)
J(λ,y)1/n , and for simplicity, we use a modification

of the definition of the geometric mean, denoted by ȳYC. Therefore, the Jacobian, the scaled, and the
inverse of the Yeo-Johnson(C) transformation are given below.

The Yeo-Johnson(C) transformation presented in Table 3 is defined as:

y∗i (λ) = −
(1− yi)

2−λ − 1
2− λ

if λ 6= 2 and yi < 0.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 115

The modification of the definition of the geometric mean for this transformation is:

ȳYC =

[
n

∏
i=1

1− yi

] 1
n

.

Therefore, the expression of the Jacobian comes to:

J(λ, y) =
n

∏
i=1

dy∗i (λ)
dy

=
n

∏
i=1

(2− λ) (1− yi)
1−λ

2− λ

=
n

∏
i=1

(1− yi)
1−λ

= ȳn(1−λ)
YC .

The scaled transformation is given by:

z∗i (λ) = −

(
1− yij

)2−λ
− 1

2− λ
ȳn(1−λ)

YC .

The inverse function of the Yeo-Johnson(C) transformation is denoted as:

f (yi) = −
(1− yi)

2−λ − 1
2− λ

y∗i = − (1− yi)
2−λ − 1

2− λ

−y∗i (2− λ) = (1− yi)
2−λ − 1

yi = 1− [−y∗i (2− λ) + 1]
1

2−λ

⇒ f−1(y∗i) = 1− [−y∗i (2− λ) + 1]
1

2−λ .

Yeo-Johnson transformation case (D)

Let J (y) denote the Jacobian of a transformation from yi to y∗i . In order to obtain z∗i , the scaled

Yeo-Johnson(D) transformation, given by y∗i
J(y)1/n , and for simplicity, we use a modification of the

definition of the geometric mean, denoted by ȳYD. Therefore, the Jacobian, the scaled, and the inverse
of the Yeo-Johnson(D) transformation are given below.

The Yeo-Johnson(D) transformation presented in Table 3 is defined as:

y∗i = − log (1− yi) .

The modification of the definition of the geometric mean for this transformation is:

ȳYD =

[
n

∏
i=1

1− yi

] 1
n

.

Therefore, the expression of the Jacobian is defined as:

J(λ, y) =
n

∏
i=1

dy∗i
dy

=
n

∏
i=1

1
1− yi

= ȳ−n
YD.

The scaled transformation is given by:

z∗i = − log (1− yi) ȳYD.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 116

The inverse function of the Yeo-Johnson(D) transformation is denoted as:

f (yi) = − log (1− yi)

y∗i = − log (1− yi)

yi = −e−y∗i + 1

⇒ f−1 (y∗i) = −e−y∗i + 1.

Square root-shift opt transformation

Let J (λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i , the scaled

square root-shift opt transformation, given by y∗i (λ)
J(λ,y)1/n , and for simplicity, we use a modification of the

definition of the geometric mean, denoted by ȳSR. Therefore, the Jacobian, the scaled, and the inverse
of the square root-shift opt transformation are given below.

The square root-shift opt transformation presented in Table 3 is defined as:

y∗i (λ) =
√

yi + λ.

The definition of the geometric mean is:

ȳSR =

[
n

∏
i=1

yi + λ

] 1
n

.

Therefore, the expression of the Jacobian is defined as:

J (λ, y) =
n

∏
i=1

dy∗i
dy

=
n

∏
i=1
− 1

2
√

yi + λ

=
1
2

ȳ
−n
2

SR .

The scaled transformation is given by:

z∗i = − 1
yi

ȳ2
SR.

The inverse function of the square root-shift opt transformation is denoted as:

f (yi) =
√

yi + λ

y∗i =
√

yi + λ

yi = y∗2i − λ

⇒ f−1 (y∗i) = y∗2i − λ.

Manly transformation

y∗i (λ) =

{
eλyi−1

λ if λ 6= 0 (A) ;
yi if λ = 0 (B) .

Manly transformation case (A)

Let J (λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i (λ), the

scaled Manly(A) transformation, given by y∗i (λ))
J(λ,y)1/n , and for simplicity, we use a modification of the

definition of the geometric mean, denoted by ȳM. Therefore, the Jacobian, the scaled, and the inverse
of the Manly(A) transformation are given below.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 117

The Manly(A) transformation presented in Table 3 is defined as:

y∗i (λ) =
eλyi − 1

λ
if λ 6= 0.

The modification of the definition of the geometric mean for this transformation is:

ȳM =

[
n

∏
i=1

eyi

] 1
n

=
[
e∑n

i=1 yi
] 1

n

= eȳ.

Therefore, the expression of the Jacobian comes to:

J (λ, y) =
n

∏
i=1

dy∗i (λ)
dy

=
n

∏
i=1

λeλyi

λ

=

(
n

∏
i=1

eyi

)λ

= ȳλn
M

= eλnȳ.

The scaled transformation is given by:

z∗i (λ) =
eλyi − 1

λ

1
ȳλ

M

=
eλyi − 1

λ

1
eλȳ .

The inverse function of the Manly(A) transformation is denoted as:

f (yi) =
eλyi − 1

λ

y∗i =
eλyi − 1

λ

λy∗i + 1 = eλyi

yi =
log
(
λy∗i + 1

)
λ

⇒ f−1(y∗i) =
log
(
λy∗i + 1

)
λ

.

Manly transformation case (B)

The variable remains equal, y∗i = yi.

Modulus transformation

y∗i (λ) =

{
sign (yi)

(|yi |+1)λ−1
λ if λ 6= 0 (A) ;

sign(yi) log (|yi|+ 1) if λ = 0 (B) .

Modulus transformation case (A)

Let J (λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i (λ), the

scaled modulos(A) transformation, given by y∗i (λ)
J(λ,y)1/n , and for simplicity, we use a modification of the

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 118

definition of the geometric mean, denoted by ȳMA. Therefore, the Jacobian, the scaled, and the inverse
of the modulus(A) transformation are given below.

The modulus(A) transformation presented in Table 3 is defined as:

y∗i (λ) = sign (yi)
(|yi|+ 1)λ − 1

λ
if λ 6= 0.

The modification of the definition of the geometric mean for this transformation is:

ȳMA =

[
n

∏
i=1
|yi|+ 1

] 1
n

.

Therefore, the expression of the Jacobian comes to:

J (λ, y) =
n

∏
i=1

dy∗i (λ)
dy

=
n

∏
i=1

sign (yi)λ(|yi|+ 1)λ−1

λ

= sign

(
n

∏
i=1

yi

)(
n

∏
i=1
|yi|+ 1

)λ−1

= sign

(
n

∏
i=1

yi

)
ȳn(λ−1)

MA .

The scaled transformation is given by:

z∗i (λ) = sign (yi)
(|yi|+ 1)λ − 1

λ

1

sign (∏n
i=1 yi) ȳ(λ−1)

MA

.

The inverse function of the modulus(A) transformation is denoted as:

f (yi) = sign (yi)
(|yi|+ 1)λ − 1

λ

y∗i = sign(yi)
(|yi|+ 1)λ − 1

λ

|yi| = [sign (y∗i) λ + 1]
1
λ − 1

⇒ f−1(y∗i) = ±
[
(sign(y∗i)λ + 1)

1
λ − 1

]
.

Modulus transformation case (B)

This case is exactly equal to the neglog transformation case.

Dual power transformation

y∗i (λ) =

{
yλ

i −y−λ
i

2λ if λ > 0 (A) ;
log (yi) if λ = 0 (B) .

Dual power transformation case (A)

Let J (λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i (λ), the

scaled dual power(A) transformation, given by y∗i (λ)
J(λ,y)1/n , and for simplicity, we use a modification of

the definition of the geometric mean, denoted by ȳDA. Therefore, the Jacobian, the scaled, and the
inverse of the dual power(A) transformation are given below. The dual power(A) transformation
presented in Table 3 is defined as:

y∗i (λ) =
yλ

i − y−λ
i

2λ
if λ > 0.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 119

The modification of the definition of the geometric mean for this transformation is:

ȳDA =

[
n

∏
i=1

(
yλ−1

i + y−λ−1
i

)] 1
n

.

Therefore, the expression of the Jacobian comes to:

J (λ, y) =
n

∏
i=1

dy∗i (λ)
dy

=
n

∏
i=1

λyλ−1
i + λy−λ−1

i
2λ

=
1
2

ȳn
DA.

The scaled transformation is given by:

z∗i (λ) =
yλ

i − y−λ
i

2λ

2
ȳDA

.

The inverse function of the dual power(A) transformation is found by solving the quadratic by
completing the square as:

f (yi) =
yλ

i − y−λ
i

2λ

y∗i =
yλ

i − y−λ
i

2λ

2λy∗i = yλ
i − y−λ

i

2λy∗i = yλ
i −

1
yλ

i

2λy∗i =
y2λ

i − 1

yλ
i

2λy∗i yλ
i = y2λ

i − 1

1 + λ2y∗2i = y2λ
i − 2λy∗i yλ

i + λ2y∗2i

1 + λ2y∗2i = (yλ
i − λy∗i)

2√
1 + λ2y∗2i + λy∗i = yλ

i

yi =

[√
1 + λ2y∗2i + λy∗i

] 1
λ

⇒ f−1(y∗i) =
[√

1 + λ2y∗2i + λy∗i

] 1
λ

.

Dual power transformation case (B)

This case is exactly equal to the Box-Cox (shift) transformation, case (B).

Gpower transformation

y∗i (λ) =

(

yi+
√

y2
i +1

)λ
−1

λ if λ 6= 0 (A) ;

log
(

yi +
√

y2
i + 1

)
if λ = 0 (B) .

Gpower transformation case (A)

Let J (λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i (λ), the

scaled gpower(A) transformation, given by y∗i (λ)
J(λ,y)1/n , and for simplicity, we use a modification of the

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 120

definition of the geometric mean, denoted by ȳGA. Therefore, the Jacobian, the scaled, and the inverse
of the gpower(A) transformation are given below.

The gpower(A) transformation presented in Table 3 is defined as:

y∗i (λ) =

[
yi +

√
y2

i + 1
]λ
− 1

λ
if λ 6= 0.

The modification of the definition of the geometric mean for this transformation is:

ȳGA =

 n

∏
i=1

(
yi +

√
y2

i + 1
)λ−1

1 +
yi√

y2
i + 1

 1
n

.

Therefore, the expression of the Jacobian comes to:

J(λ, y) =
n

∏
i=1

dy∗i (λ)
dy

=
n

∏
i=1

λ
(

yi +
√

y2
i + 1

)λ−1 (
1 + 2yi

2
√

y2
i +1

)
λ

= ȳn
GA.

The scaled transformation is given by:

z∗i (λ) =

[
yi +

√
y2

i + 1
]λ
− 1

λ

1
ȳGA

.

The inverse function of the gpower(A) transformation is denoted as:

f (yi) =

[
yi +

√
y2

i + 1
]λ
− 1

λ

y∗i =

[
yi +

√
y2

i + 1
]λ
− 1

λ

λy∗i + 1 =

[
yi +

√
y2

i + 1
]λ

(λy∗i + 1)
1
λ = yi +

√
y2

i + 1[
(λy∗i + 1)

1
λ − yi

]2
=

[√
y2

i + 1
]2

(λy∗i + 1)
2
λ − 2yi(λy∗i + 1)

1
λ + y2

i = y2
i + 1

−yi(λy∗i + 1)
1
λ =

1−
(
λy∗i + 1

) 2
λ

2

yi = −
[

1− (λy∗i + 1)
2
λ

2(λy∗i + 1)
1
λ

]

⇒ f−1(yi) = −
[

1− (λyi + 1)
2
λ

2(λyi + 1)
1
λ

]
.

Gpower transformation case (B)

This case is exactly equal to the glog transformation case.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 121

Bibliography

T. W. Anderson and D. A. Darling. A test of goodness of fit. Journal of the American Statistical Association,
49(268):765–769, 1954. URL https://www.jstor.org/stable/2281537. [p102]

M. S. Bartlett. The use of transformations. Biometrics, 3(1):39–52, 1947. URL http://dx.doi.org/10.
2307/3001536. [p101]

W. D. Berry. Understanding Regression Assumptions. SAGE Publications, Thousand Oaks, 1993. URL
https://dx.doi.org/10.4135/9781412986427. [p100]

P. J. Bickel and K. A. Doksum. An analysis of transformations revisited. Journal of the American Sta-
tistical Association, 76(374):296–311, 1981. URL https://www.tandfonline.com/doi/abs/10.1080/
01621459.1981.10477649. [p100, 101, 102]

G. E. P. Box and D. R. Cox. An analysis of transformations. Journal of the Royal Statistical Society B, 26
(2):211–252, 1964. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.321.3819.
[p99, 100, 101, 102]

T. Boylan, M. Cuddy, and I. O’Muircheartaigh. Import demand equations: An application of a
generalized Box-Cox methodology. International Statistical Review, 50(1):103–112, 1982. URL https:
//www.jstor.org/stable/1402461. [p102]

T. S. Breusch and A. R. Pagan. A simple test for heteroscedasticity and random coefficient variation.
Econometrica, 47(5):1287–1294, 1979. URL https://www.jstor.org/stable/1911963. [p102]

R. J. Carroll and D. Ruppert. Diagnostics and robust estimation when transforming the regression
model and the response. Technometrics, 29(3):287–299, 1987. URL https://www.tandfonline.com/
doi/abs/10.1080/00401706.1987.10488239. [p101]

H. Cramér. On the composition of elementary errors. Scandinavian Actuarial Journal, 1928(1):13–74,
1928. URL https://doi.org/10.1080/03461238.1928.10416862. [p101]

Y. Croissant. Ecdat: Data Sets for Econometrics, 2016. URL https://CRAN.R-project.org/package=
Ecdat. R package version 0.3-1. [p103]

O. Dag, O. Asar, and O. Ilk. AID: Box-Cox Power Transformation, 2017. URL https://CRAN.R-project.
org/package=AID. R package version 2.3. [p99]

B. P. Durbin, J. S. Hardin, D. M. Hawkins, and D. M. Rocke. A variance-stabilizing transformation for
gene-expression microarray data. Bioinformatics, 18(1):105–110, 2002. URL https://doi.org/10.
1093/bioinformatics/18.suppl_1.S105. [p99, 100, 101, 103]

Q. Feng, J. Hannig, and J. S. Marron. A note on automatic data transformation. Stat, 5(1):82–87, 2016.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.104. [p101]

E. S. Fernandez. Johnson: Johnson Transformation, 2014. URL https://CRAN.R-project.org/package=
Johnson. R package version 1.4. [p99]

J. Fox and S. Weisberg. An R Companion to Applied Regression. SAGE Publications, Thousand Oaks,
2011. [p99, 102]

F. Hernandez and R. A. Johnson. The large-sample behavior of transformations to normality. Journal
of the American Statistical Association, 75(372):855–861, 1980. URL http://www.jstor.org/stable/
2287172. [p101]

M. Z. Hossain. The use of Box-Cox transformation technique in economic and statistical analyses.
Journal of Emerging Trends in Economics and Management Sciences, 2(1):32–39, 2011. URL https:
//journals.co.za/content/sl_jetems/2/1/EJC133850. [p99]

T. Hothorn, L. Möst, and P. Bühlmann. Most likely transformations. Scandinavian Journal of Statistics,
45(1):110–134, 2018. URL https://doi.org/10.1111/sjos.12291. [p99]

W. Huber, A. Von Heydebreck, H. Sültmann, A. Poustka, and M. Vingron. Variance stabilization
applied to microarray data calibration and to the quantification of differential expression. Bioin-
formatics, 18(1):96–104, 2002. URL https://doi.org/10.1093/bioinformatics/18.suppl_1.S96.
[p101]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://www.jstor.org/stable/2281537
http://dx.doi.org/10.2307/3001536
http://dx.doi.org/10.2307/3001536
https://dx.doi.org/10.4135/9781412986427
https://www.tandfonline.com/doi/abs/10.1080/01621459.1981.10477649
https://www.tandfonline.com/doi/abs/10.1080/01621459.1981.10477649
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.321.3819
https://www.jstor.org/stable/1402461
https://www.jstor.org/stable/1402461
https://www.jstor.org/stable/1911963
https://www.tandfonline.com/doi/abs/10.1080/00401706.1987.10488239
https://www.tandfonline.com/doi/abs/10.1080/00401706.1987.10488239
https://doi.org/10.1080/03461238.1928.10416862
https://CRAN.R-project.org/package=Ecdat
https://CRAN.R-project.org/package=Ecdat
https://CRAN.R-project.org/package=AID
https://CRAN.R-project.org/package=AID
https://doi.org/10.1093/bioinformatics/18.suppl_1.S105
https://doi.org/10.1093/bioinformatics/18.suppl_1.S105
https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.104
https://CRAN.R-project.org/package=Johnson
https://CRAN.R-project.org/package=Johnson
http://www.jstor.org/stable/2287172
http://www.jstor.org/stable/2287172
https://journals.co.za/content/sl_jetems/2/1/EJC133850
https://journals.co.za/content/sl_jetems/2/1/EJC133850
https://doi.org/10.1111/sjos.12291
https://doi.org/10.1093/bioinformatics/18.suppl_1.S96

CONTRIBUTED RESEARCH ARTICLES 122

W. Huber, A. von Heydebreck, H. Sültmann, A. Poustka, and M. Vingron. Parameter estimation for
the calibration and variance stabilization of microarray data. Statistical Applications in Genetics and
Molecular Biology, 2(1):1–24, 2003. URL https://doi.org/10.2202/1544-6115.1008. [p101, 102]

J. A. John and N. R. Draper. An alternative family of transformations. Journal of the Royal Statistical
Society C, 29(2):190–197, 1980. URL https://www.jstor.org/stable/2986305. [p100, 101]

N. L. Johnson. Systems of frequency curves generated by methods of translation. Biometrika, 36(1/2):
149–176, 1949. URL http://www.jstor.org/stable/2332539. [p99]

D. M. Kelmansky, E. J. Martínez, and V. Leiva. A new variance stabilizing transformation for gene
expression data analysis. Statistical Applications in Genetics and Molecular Biology, 12(6):653–666, 2013.
URL https://doi.org/10.1515/sagmb-2012-0030. [p101, 103]

A. Kolmogorov. Sulla determinazione empirica di una legge di distributione. Giornale dell’Istituto
Italiano degli Attuar, 4(1):1–11, 1933. [p101]

M. Kuhn. Building predictive models in R using the caret package. Journal of Statistical Software, 28(5):
1–26, 2008. URL https://www.jstatsoft.org/article/view/v028i05. [p99]

S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of Mathematical Statistics, 22
(1):79–86, 1951. URL https://www.jstor.org/stable/2236703. [p101]

S. Mangiafico. Rcompanion: Functions to Support Extension Education Program Evaluation, 2019. URL
https://CRAN.R-project.org/package=rcompanion. R package version 3.3. [p99]

B. F. J. Manly. Exponential data transformations. Journal of the Royal Statistical Society D, 25(1):37–42,
1976. URL https://www.jstor.org/stable/2988129. [p99, 101]

L. Medina, P. Castro, A.-K. Kreutzmann, and N. Rojas-Perilla. Trafo: Estimation, Comparison and Selection
of Transformations, 2018. URL https://CRAN.R-project.org/package=trafo. R package version
1.0.0. [p99, 101]

I. Molina and Y. Marhuenda. Sae: An R package for small area estimation. The R Journal, 7(1):81–98,
2015. URL https://journal.r-project.org/archive/2015/RJ-2015-007. [p99]

M. Morozova, K. Koschutnig, E. Klein, and G. Wood. Monotonic non-linear transformations as a tool to
investigate age-related effects on brain white matter integrity: A Box-Cox investigation. NeuroImage,
125:1119–1130, 2016. URL https://doi.org/10.1016/j.neuroimage.2015.08.003. [p99]

M. Mosimann, L. Frossard, M. Keiler, R. Weingartner, and A. Zischg. A robust and transferable model
for the prediction of flood losses on household contents. Multidisciplinary Digital Publishing Institute,
10(11):1596, 2018. URL https://doi.org/10.3390/w10111596. [p102]

J. A. Nelder and R. W. M. Wedderburn. Generalized linear models. Journal of the Royal Statistical Society
A, 135(3):370–384, 1972. URL https://www.jstor.org/stable/2344614. [p100]

J. Pek, O. Wong, and C. M. Wong. Data transformations for inference with linear regression: Clar-
ifications and recommendations. Practical Assessment, Research and Evaluation, 22(9):1–11, 2017.
[p102]

R. A. Peterson. bestNormalize: Normalizing Transformation Functions, 2019. URL https://CRAN.R-
project.org/package=bestNormalize. R package version 3.1. [p99]

P. J. Ribeiro Jr. and P. J. Diggle. geoR: Analysis of geostatistical data. R News, 1(2):15–18, 2016. URL http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.3971&rep=rep1&type=pdf. [p99]

D. M. Rocke and B. Durbin. A model for measurement error for gene expression arrays. Journal
of Computational Biology, 8(6):557–569, 2001. URL https://doi.org/10.1089/106652701753307485.
[p101]

N. Rojas-Perilla. The Use of Data-Driven Transformations and Their Application in Small Area Estimation.
PhD thesis, Freie Universität Berlin, 2018. URL http://dx.doi.org/10.17169/refubium-1006. [p99,
101, 102, 108]

P. Royston, P. C. Lambert, and others. Flexible Parametric Survival Analysis Using Stata: Beyond the Cox
Model. Stata Press, College Station, 2011. [p100, 101, 102]

S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality. Biometrika, 52(3/4):591–611,
1965. URL https://www.jstor.org/stable/2333709. [p102]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.2202/1544-6115.1008
https://www.jstor.org/stable/2986305
http://www.jstor.org/stable/2332539
https://doi.org/10.1515/sagmb-2012-0030
https://www.jstatsoft.org/article/view/v028i05
https://www.jstor.org/stable/2236703
https://CRAN.R-project.org/package=rcompanion
https://www.jstor.org/stable/2988129
https://CRAN.R-project.org/package=trafo
https://journal.r-project.org/archive/2015/RJ-2015-007
https://doi.org/10.1016/j.neuroimage.2015.08.003
https://doi.org/10.3390/w10111596
https://www.jstor.org/stable/2344614
https://CRAN.R-project.org/package=bestNormalize
https://CRAN.R-project.org/package=bestNormalize
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.3971&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.3971&rep=rep1&type=pdf
https://doi.org/10.1089/106652701753307485
http://dx.doi.org/10.17169/refubium-1006
https://www.jstor.org/stable/2333709

CONTRIBUTED RESEARCH ARTICLES 123

H. shyong Chang. Functional forms and the demand for meat in the United States. The Review of
Economics and Statistics, 59(3):355–359, 1977. URL https://www.jstor.org/stable/1925054. [p102]

N. Smirnov. Sur les écarts de la courbe de distribution empirique. Recueil Mathematique (Matematiceskii
Sbornik), 6(1):3–26, 1939. [p101]

J. M. G. Taylor. Power transformations to symmetry. Biometrika, 72(1):145–152, 1985. URL https:
//doi.org/10.1093/biomet/72.1.1450. [p100]

J. W. Tukey. On the comparative anatomy of transformations. Ann. Math. Statist., 28(3), 1957. URL
https://www.jstor.org/stable/2237223. [p99, 101, 108]

W. J. Vaughan, C. S. Russell, and M. Hazilla. A note on the use of travel cost models with unequal
zonal populations: Comment. Land Economics, 58(3):400–407, 1982. URL https://www.jstor.org/
stable/3145948. [p102]

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer-Verlag, New York, 2002.
URL 10.1007/978-0-387-21706-2. [p99, 102]

Y. Wang. Jtrans: Johnson Transformation for Normality, 2015. URL https://CRAN.R-project.org/
package=jtrans. R package version 0.2.1. [p99]

J. Whittaker, C. Whitehead, and M. Somers. The neglog transformation and quantile regression for
the analysis of a large credit scoring database. Journal of the Royal Statistical Society C, 54(4):863–878,
2005. URL doi:10.1111/j.1467-9876.2005.00520.x. [p100, 101]

Z. Yang. A modified family of power transformations. Economics Letters, 92(1):14–19, 2006. URL
doi:10.1016/j.econlet.2006.01.011. [p101]

I.-K. Yeo and R. A. Johnson. A new family of power transformations to improve normality or symmetry.
Biometrika, 87(4):954–959, 2000. URL https://www.jstor.org/stable/2673623. [p99, 100, 101, 102]

P. Zarembka. Functional form in the demand for money. Journal of the American Statistical Association,
63(322):502–511, 1968. URL https://www.jstor.org/stable/2284021. [p102]

P. Zarembka. Transformation of variables in econometrics. In P. Macmillan, editor, The New Palgrave
Dictionary of Economics, pages 1–3. Palgrave Macmillan, London, 1974. URL https://doi.org/10.
1057/978-1-349-95121-5_1882-1. [p102]

R. F. Ziemer, W. N. Musser, and R. C. Hill. Recreation demand equations: Functional form and
consumer surplus. American Journal of Agricultural Economics, 62(1):136–141, 1980. URL https:
//www.jstor.org/stable/1239482. [p102]

Lily Medina
Freie Universität Berlin
Garystraße 21, 14195 Berlin
Germany
lilymiru@gmail.com

Ann-Kristin Kreutzmann
Freie Universität Berlin
Garystraße 21, 14195 Berlin
Germany
Ann-Kristin.Kreutzmann@fu-berlin.de

Natalia Rojas-Perilla
Freie Universität Berlin
Garystraße 21, 14195 Berlin
Germany
natalia.rojas@fu-berlin.de

Piedad Castro
Freie Universität Berlin
Garystraße 21, 14195 Berlin
Germany
piedad@madmath.co

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://www.jstor.org/stable/1925054
https://doi.org/10.1093/biomet/72.1.1450
https://doi.org/10.1093/biomet/72.1.1450
https://www.jstor.org/stable/2237223
https://www.jstor.org/stable/3145948
https://www.jstor.org/stable/3145948
10.1007/978-0-387-21706-2
https://CRAN.R-project.org/package=jtrans
https://CRAN.R-project.org/package=jtrans
doi:10.1111/j.1467-9876.2005.00520.x
doi:10.1016/j.econlet.2006.01.011
https://www.jstor.org/stable/2673623
https://www.jstor.org/stable/2284021
https://doi.org/10.1057/978-1-349-95121-5_1882-1
https://doi.org/10.1057/978-1-349-95121-5_1882-1
https://www.jstor.org/stable/1239482
https://www.jstor.org/stable/1239482
mailto:lilymiru@gmail.com
mailto:Ann-Kristin.Kreutzmann@fu-berlin.de
mailto:natalia.rojas@fu-berlin.de
mailto:piedad@madmath.co

CONTRIBUTED RESEARCH ARTICLES 124

BondValuation: An R Package for Fixed
Coupon Bond Analysis
by Wadim Djatschenko

Abstract The purpose of this paper is to introduce the R package BondValuation for the analysis of
large datasets of fixed coupon bonds. The conceptual heterogeneity of fixed coupon bonds traded
in the global markets imposes a high degree of complexity on their comparative analysis. Contrary
to baseline fixed income theory, in practice, most bonds feature coupon period irregularities. In
addition, there are a multitude of day count methods that determine the interest accrual, the cash
flows and the discount factors used in bond valuation. Several R packages, e.g., fBonds, RQuantLib,
and YieldCurve, provide tools for fixed income analysis. Nevertheless, none of them is capable
of evaluating bonds featuring irregular first and/or final coupon periods, and neither provides
adequate coverage of day count conventions currently used in the global bond markets. The R package
BondValuation closes this gap using the generalized valuation methodology presented in Djatschenko
(2019).

Introduction

Although bond valuation using the traditional present value approach is fundamental in financial the-
ory and practice, the R community lacks applications that comprehensively handle the peculiarities of
real-world fixed coupon bonds. A possible reason for the slow development of adequate computation
tools concerns the matter’s theoretical intricacy, characterized by a complex interaction of day count
conventions (DCC) and irregularities in the temporal structure of the fixed income instruments.

A day count convention is an instrument-specific set of rules that prescribes the way in which
calendar dates are converted to numerical values. Thus, given a schedule of a bond’s anniversary
dates (i.e., issue date, coupon payment dates, maturity date), a day count convention is used, e.g., to
determine the fraction of regular coupon periods between two calendar dates within the bond’s life.
Irregular first and final coupon periods occur irrespective of the stipulated day count convention. The
lengths of the first and final coupon periods are measured in fractions of regular coupon periods and
calculated according to the rules of the specified day count convention. A fist or final coupon period is
irregular, if its length differs from 1, which is the length of a regular coupon period.1

The R package RQuantLib (Eddelbuettel et al., 2018) provides access to parts of QuantLib (QuantLib
Team, 2018), which is the leading open-source software library for quantitative finance. Currently,
QuantLib incorporates methods for the analysis and valuation of a wide variety of financial instru-
ments, such as options, swaps, various financial derivatives, and several types of bonds, including
fixed rate bonds. Nevertheless, QuantLib does not implement methods for handling irregular coupon
periods, and the coverage of DCCs is not exhaustive with nine different conventions.

A closer examination of bond market data reveals the importance of this problem. According
to the Thomson Reuters EIKON database, 99.66% of the plain vanilla fixed coupon bonds that were
issued worldwide in 2017 are spread over 15 different DCCs, and 67% of them feature irregular first
and/or final coupon periods. Given the enormous size of the global bond market, neglecting irregular
coupon periods potentially leads to cash flow miscalculations in the tens of billions of US dollars, as
Djatschenko (2019) points out.

Essentially, DCCs influence bond valuation in three places. First, the amounts of interest payable at
the end of any irregular coupon period are computed according to the respective convention. Second,
the powers of the discount factors used in present value calculations depend on the stipulated DCC.
Finally, in contrast to stocks, the full prices of bonds are usually not directly observable but need to
be calculated as the sum of the quoted clean price and accrued interest, which is paid by the buyer
to the seller if the transaction is conducted between two coupon payment dates. Accrued interest is
computed conformal to the stipulated bond- and market-specific DCCs.

Djatschenko (2019) addresses these three aspects and proposes a generalized valuation methodol-
ogy for fixed coupon bonds that allows for irregular first and final coupon periods and is compatible
with any conceivable DCC. In summary, the methodology can be described as follows. In a first step,
Djatschenko (2019) introduces a standardized bond-specific temporal structure, which is determined
by the stipulated DCC. Based on this time structure, a valuation formula is derived that allows for
first and final coupon periods of any lengths. The novelty of this proposed evaluation formula lies

1Djatschenko (2019) provides a comprehensive overview of most day count conventions currently used in the
global bond markets and demonstrates their interactions with irregular coupon periods.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=BondValuation
https://CRAN.R-project.org/package=fBonds
https://CRAN.R-project.org/package=RQuantLib
https://CRAN.R-project.org/package=YieldCurve

CONTRIBUTED RESEARCH ARTICLES 125

in the isolation of each DCC-dependent parameter, resulting in a modular structure that can easily
integrate any conceivable DCC. In addition, Djatschenko (2019) presents closed-form solutions for the
valuation formula’s first and second derivatives, which are useful in the Newton-Raphson based
determination of the bond’s yield as well as in calculation of duration and convexity. The approach
outlined in Djatschenko (2019) relies exclusively on information that is typically provided by financial
data vendors and is seamlessly implemented in the R package BondValuation.

The remainder of this paper consists of the two main sections, ”The BondValuation package“
and ”Application of the package BondValuation“. The section entitled ”The BondValuation package“
provides an overview of the functions implemented in the R package BondValuation and briefly
illustrates the underlying theoretical concepts. The subsection entitled ”Day count conventions“
introduces the DCCs covered by BondValuation and demonstrates their impact on interest accrual using
the function AccrInt(). Subsequently, the Bond-specific temporal structure and its implementation
within the function AnnivDates() are illustrated. In the following subsection, the calculation of
Cash flows, accrued interest, and dirty price is demonstrated using the functions AnnivDates()
and DP(). Next, the functions BondVal.Yield() and BondVal.Price() are used to compute Yield to
maturity, duration, and convexity. The section entitled ”Application of the package BondValuation“
demonstrates how the R package BondValuation can be used for the analysis of large data frames of
fixed coupon bonds. The paper ends with a short ”Conclusion“.

The BondValuation package

The R package BondValuation consists of five functions, AccrInt(), AnnivDates(), BondVal.Price(),
BondVal.Yield(), and DP(), and four data frames, List.DCC, NonBusDays.Brazil, PanelSomeBonds2016,
SomeBonds2016.

The workhorse function of the package, AnnivDates(), performs a variety of sanity checks on the
input data and, if possible, automatically corrects corrupted entries. It determines the bond-specific
temporal structure and cash flows. The output of AnnivDates() is used in the downstream processes of
the functions BondVal.Price(), BondVal.Yield(), and DP(). While AnnivDates(), BondVal.Price(),
BondVal.Yield(), and DP() require bond data as input, the function AccrInt() simply computes the
amount of interst accruing from some start date to some end date.

The data frames PanelSomeBonds2016 and SomeBonds2016 provide simulated data of 100 plain
vanilla fixed coupon corporate bonds issued in 2016. List.DCC provides an overview of the DCCs
implemented in the R package BondValuation. NonBusDays.Brazil is used with the BusDay/252
(Brazilian) convention and contains all non-business days in Brazil from 1946-01-01 to 2299-12-31 based
on the Brazilian national holiday calendar.

Day count conventions

All DCCs that are identified by Thomson Reuters EIKON for plain vanilla fixed coupon bonds in 2017,
and, additionally, the 30E/360 (ISDA) method, are covered by the R package BondValuation2:

> # example 1
> library(BondValuation)
> print(List.DCC, row.names = FALSE)
DCC DCC.Name DCC.Reference
1 ACT/ACT (ISDA) ISDA (1998); ISDA (2006) section 4.16 (b)
2 ACT/ACT (ICMA) ICMA Rule 251; ISDA (2006) section 4.16 (c)
3 ACT/ACT (AFB) ISDA (1998); EBF (2004); SWX (2003)
4 ACT/365L ICMA Rule 251; SWX (2003)
5 30/360 ISDA (2006) section 4.16 (f); MSRB (2017) Rule G-33
6 30E/360 ICMA Rule 251; ISDA (2006) section 4.16 (g); SWX (2003)
7 30E/360 (ISDA) ISDA (2006) section 4.16 (h)
8 30/360 (German) EBF (2004); SWX (2003)
9 30/360 US Mayle (1993); SWX (2003)

10 ACT/365 (Fixed) ISDA (2006) section 4.16 (d); SWX (2003)
11 ACT(NL)/365 Krgin (2002); Thomson Reuters EIKON
12 ACT/360 ISDA (2006) section 4.16 (e); SWX (2003)
13 30/365 Krgin (2002); Thomson Reuters EIKON
14 ACT/365 (Canadian Bond) IIAC (2018); Thomson Reuters EIKON
15 ACT/364 Thomson Reuters EIKON
16 BusDay/252 (Brazilian) Caputo Silva et al. (2010), Itau Unibanco S.A. (2017)

2Djatschenko (2019) provides a comprehensive overview of these DCCs.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 126

The function AccrInt() can be used to compare the differences in interest accrual between the
day count methods. As an example, the code below returns the number of days and the amount of
interest (in percent of the bond’s par value) accrued from Start = 2011-08-31 to End = 2012-02-29
with different DCCs, ceteris paribus. In this example, we assume that CpY = 2 coupons are paid per
year, the nominal interest rate p.a. is Coup = 5.25%, the bond is redeemed at RV = 100% of its par value,
and payments follow the End-of-Month rule3, i.e., EOM = 1. In addition, some of the DCCs require
specification of the next coupon payment’s year figure, YearNCP = 2012, and the maturity date, Mat =
2021-08-31.

> # example 2
> library(BondValuation)
> DCC_Comparison<-data.frame(Start = rep(as.Date("2011-08-31"), 16),
+ End = rep(as.Date("2012-02-29"), 16),
+ Coup = rep(5.25, 16),
+ DCC = seq(1, 16),
+ DCC.Name = List.DCC[, 2],
+ RV = rep(100, 16),
+ CpY = rep(2, 16),
+ Mat = rep(as.Date("2021-08-31"), 16),
+ YearNCP = rep(2012, 16),
+ EOM = rep(1, 16))
> AccrIntOutput <- suppressWarnings(
+ apply(
+ DCC_Comparison[, c('Start', 'End', 'Coup', 'DCC', 'RV', 'CpY', 'Mat',
+ 'YearNCP', 'EOM')], 1,
+ function(y) AccrInt(y[1], y[2], y[3], y[4], y[5], y[6], y[7], y[8], y[9])
+)
+)
> Accrued_Interest <- do.call(rbind, lapply(AccrIntOutput, function(x) x[[1]]))
> Days_Accrued <- do.call(rbind, lapply(AccrIntOutput, function(x) x[[2]]))
> DCC_Comparison <- cbind(DCC_Comparison, Accrued_Interest, Days_Accrued)
> print(DCC_Comparison[, c('DCC.Name', 'Start', 'End', 'Days_Accrued',
+ 'Accrued_Interest')], row.names = FALSE)

DCC.Name Start End Days_Accrued Accrued_Interest
ACT/ACT (ISDA) 2011-08-31 2012-02-29 182 2.615490
ACT/ACT (ICMA) 2011-08-31 2012-02-29 182 2.625000
ACT/ACT (AFB) 2011-08-31 2012-02-29 182 2.617808

ACT/365L 2011-08-31 2012-02-29 182 2.610656
30/360 2011-08-31 2012-02-29 179 2.610417
30E/360 2011-08-31 2012-02-29 179 2.610417

30E/360 (ISDA) 2011-08-31 2012-02-29 180 2.625000
30/360 (German) 2011-08-31 2012-02-29 180 2.625000

30/360 US 2011-08-31 2012-02-29 179 2.610417
ACT/365 (Fixed) 2011-08-31 2012-02-29 182 2.617808

ACT(NL)/365 2011-08-31 2012-02-29 182 2.617808
ACT/360 2011-08-31 2012-02-29 182 2.654167
30/365 2011-08-31 2012-02-29 179 2.574658

ACT/365 (Canadian Bond) 2011-08-31 2012-02-29 182 2.625000
ACT/364 2011-08-31 2012-02-29 182 2.625000

BusDay/252 (Brazilian) 2011-08-31 2012-02-29 124 2.549769

Bond-specific temporal structure

The function AnnivDates() evaluates bond-specific information and returns the bond’s time-invariant
characteristics in the data frame Traits, the bond’s temporal structure in the data frame DateVectors
and, if the nominal interest rate is passed, the bond’s cash flows in the data frame PaySched.4 The
classes and formats of input data are checked and adjusted, if possible. Moreover, AnnivDates() per-
forms several plausibility tests, e.g., whether the provided calendar dates are in a correct chronological
order and whether there are inconsistencies among the provided parameters. The results of these
sanity checks are reported in the data frame Warnings.

3See manual to the R package BondValuation for details on implementation and Krgin (2002) for the theoretical
background of the End-of-Month rule.

4See Djatschenko (2019) for theoretical background.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 127

The minimum accepted input for AnnivDates() are two calendar dates, of which the first is
interpreted as the bond’s issue date and the second as its maturity date. If, as illustrated below, only
two dates are passed to AnnivDates(), several parameters take on default values, which are reported
in warning messages.

> # example 3
> library(BondValuation)
> AnnivDates(as.Date("2019-05-31"), "2021-07-31")
$`Warnings`
Em_FIAD_differ EmMatMissing CpYOverride RV_set100percent NegLifeFlag

0 0 1 1 0
ZeroFlag Em_Mat_SameMY ChronErrorFlag FIPD_LIPD_equal IPD_CpY_Corrupt

0 0 0 0 0
EOM_Deviation EOMOverride DCCOverride NoCoups

0 1 1 0
$Traits
DateOrigin CpY FIAD Em Em_Orig FIPD
1970-01-01 2 <NA> 2019-05-31 2019-05-31 <NA>
FIPD_Orig est_FIPD LIPD LIPD_Orig est_LIPD Mat

<NA> 2019-07-31 <NA> <NA> 2021-01-31 2021-07-31
Refer FCPType FCPLength LCPType LCPLength Par

2021-07-31 short 0.3370166 regular 1 100
CouponInPercent.p.a DayCountConvention EOM_Orig est_EOM EOM_used

NA 2 NA 1 1

$DateVectors
RealDates RD_indexes CoupDates CD_indexes AnnivDates AD_indexes

2019-05-31 0.6629834 2019-07-31 1 2019-01-31 0
2019-07-31 1.0000000 2020-01-31 2 2019-07-31 1
2020-01-31 2.0000000 2020-07-31 3 2020-01-31 2
2020-07-31 3.0000000 2021-01-31 4 2020-07-31 3
2021-01-31 4.0000000 2021-07-31 5 2021-01-31 4
2021-07-31 5.0000000 <NA> NA 2021-07-31 5

Warning messages:
1: In InputFormatCheck(Em = Em, Mat = Mat, CpY = CpY, FIPD = FIPD, :

The maturity date (Mat) is supplied as a string of class "character" in the
format "yyyy-mm-dd". It is converted to class "Date" using the command
"as.Date(Mat,"%Y-%m-%d")" and processed as Mat = 2021-07-31 .

2: In AnnivDates(as.Date("2019-05-31"), "2021-07-31") :
Number of interest payments per year (CpY) is missing or NA. CpY is set 2!

3: In AnnivDates(as.Date("2019-05-31"), "2021-07-31") :
Redemption value (RV) is missing or NA. RV is set 100!

4: In AnnivDates(as.Date("2019-05-31"), "2021-07-31") :
EOM was not provided or NA! EOM is set 1 .
Note: The available calandar dates suggest that EOM = 1 .

5: In AnnivDates(as.Date("2019-05-31"), "2021-07-31") :
The day count indentifier (DCC) is missing or NA. DCC is set 2 (Act/Act (ICMA))!

Since neither the first nor the penultimate coupon payment date is passed to AnnivDates(), the
calendar dates in the data frame DateVectors are constructed backwards starting from the matu-
rity date 2021-07-31. This results in a bond with a short first coupon period having a length of
$Traits$FCPLength = 0.3370166 regular coupon periods.

The data frame DateVectors contains three vectors of calendar dates, RealDates, CoupDates,
and AnnivDates, and their corresponding indexes, RD_indexes, CD_indexes, and AD_indexes. The
vector RealDates comprises the bond’s issue date, maturity date, and all coupon payment dates in
between, while CoupDates contains only the coupon payment dates. The vector AnnivDates consists
of the bond’s so-called anniversary dates, i.e., scheduled coupon dates and notional coupon dates
located before the first and after the penultimate coupon payment dates. The lengths of the first
($Traits$FCPLength) and final coupon periods ($Traits$LCPLength) are calculated as differences
between the coresponding values of the vectors AD_indexes and RD_indexes. RD_indexes are used
in the functions BondVal.Price(), BondVal.Yield(), and DP() to determine the powers of discount
factors in pricing formulas.

As warning message 4 in the example above reports, the function AnnivDates() analyzes the

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 128

provided calendar dates to ascertain whether the bond follows the End-of-Month rule (EOM). An auto-
mated replacement of the provided value of EOM by the value determined by the function AnnivDates()
can be activated by setting option FindEOM = TRUE, which defaults to FALSE.

The following example illustrates the effect of EOM on DateVectors. In addition to issue date (Em)
and maturity date (Mat), the first coupon payment date (FIPD), the penultimate coupon payment date
(LIPD), the number of coupon payments p.a. (CpY), and EOM are passed to the function AnnivDates():

> # example 4
> library(BondValuation)
> # example 4a: computing DateVectors for EOM = 1
> EOM.input <- 1
> AnnivDates(Em = as.Date("2019-05-31"),
+ Mat = as.Date("2021-07-31"),
+ CpY = 2,
+ FIPD = as.Date("2020-02-29"),
+ LIPD = as.Date("2021-02-28"),
+ EOM = EOM.input)$DateVectors

RealDates RD_indexes CoupDates CD_indexes AnnivDates AD_indexes
1 2019-05-31 -0.500000 2020-02-29 1.000000 2019-02-28 -1
2 2020-02-29 1.000000 2020-08-31 2.000000 2019-08-31 0
3 2020-08-31 2.000000 2021-02-28 3.000000 2020-02-29 1
4 2021-02-28 3.000000 2021-07-31 3.831522 2020-08-31 2
5 2021-07-31 3.831522 <NA> NA 2021-02-28 3
6 <NA> NA <NA> NA 2021-08-31 4
Warning messages:
1: In AnnivDates(Em = as.Date("2019-05-31"), Mat = as.Date("2021-07-31"), :

Redemption value (RV) is missing or NA. RV is set 100!
2: In AnnivDates(Em = as.Date("2019-05-31"), Mat = as.Date("2021-07-31"), :

The day count indentifier (DCC) is missing or NA. DCC is set 2 (Act/Act (ICMA))!
>
> # example 4b: computing DateVectors for EOM = 0
> EOM.input <- 0
> AnnivDates(Em = as.Date("2019-05-31"),
+ Mat = as.Date("2021-07-31"),
+ CpY = 2,
+ FIPD = as.Date("2020-02-29"),
+ LIPD = as.Date("2021-02-28"),
+ EOM = EOM.input)$DateVectors

RealDates RD_indexes CoupDates CD_indexes AnnivDates AD_indexes
1 2019-05-31 -0.4945055 2020-02-29 1.000000 2019-02-28 -1
2 2020-02-29 1.0000000 2020-08-29 2.000000 2019-08-29 0
3 2020-08-29 2.0000000 2021-02-28 3.000000 2020-02-29 1
4 2021-02-28 3.0000000 2021-07-31 3.840659 2020-08-29 2
5 2021-07-31 3.8406593 <NA> NA 2021-02-28 3
6 <NA> NA <NA> NA 2021-08-29 4
Warning messages:
1: In AnnivDates(Em = as.Date("2019-05-31"), Mat = as.Date("2021-07-31"), :

Redemption value (RV) is missing or NA. RV is set 100!
2: In AnnivDates(Em = as.Date("2019-05-31"), Mat = as.Date("2021-07-31"), :

The available calandar dates suggest that EOM = 1 .
Option FindEOM = FALSE is active. Provided EOM is not overridden and remains
EOM = 0 .

3: In AnnivDates(Em = as.Date("2019-05-31"), Mat = as.Date("2021-07-31"), :
The day count indentifier (DCC) is missing or NA. DCC is set 2 (Act/Act (ICMA))!

In contrast to example 3, the bond in example 4 features a long first and a short final coupon period.
The function AnnivDates() has checked whether the provided dates FIPD and LIPD are on each other’s
annivesary dates and constructed the calendar dates in DateVectors backwards and forwards from
LIPD. The values of RD_indexes and AD_indexes are illustrated in Figure 1, where E corresponds to
the first element of RD_indexes and M is the final element of RD_indexes.

As shown in example 4, all else equal, the value of EOM affects the DCC-conformal temporal locations
of the issue date E and the maturity date M and, hence, the lengths of the first and final coupon
periods, which, in turn, determine the amounts of interest paid on the first and final coupon payment
dates. So far, no value of DCC was passed to the function AnnivDates(). As reported in the warning

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 129

messages in example 4, the parameter DCC defaults to the Act/Act (ICMA) convention. The following,
example 5, illustrates how RD_indexes, FCPLength and LCPLength vary across DCCs for EOM = 0.

t−1 tE t0 t1 t2 t3 tM t4

FCPLength LCPLength

Figure 1: Timeline illustration of the bonds in examples 4 and 5.

> # example 5
> library(BondValuation)
> TempStruct.by.DCC <- data.frame(Em = rep(as.Date("2019-05-31"), 16),
+ Mat = rep(as.Date("2021-07-31"), 16),
+ CpY = rep(2, 16),
+ FIPD = rep(as.Date("2020-02-29"), 16),
+ LIPD = rep(as.Date("2021-02-28"), 16),
+ FIAD = rep(as.Date("2019-05-31"), 16),
+ DCC = seq(1, 16),
+ EOM = rep(0, 16),
+ DCC.Name = List.DCC[, 2])
> # Applying AnnivDates() to the data frame TempStruct.by.DCC for EOM = 0
> suppressWarnings(
+ FullAnalysis.EOM0 <- apply(
+ TempStruct.by.DCC[, c('Em','Mat','CpY','FIPD','LIPD','FIAD','DCC','EOM')],
+ 1, function(y) AnnivDates(
+ y[1], y[2], y[3], y[4], y[5], y[6], , , y[7], y[8])
+)
+)
> FCPLength.EOM0 <- lapply(lapply(lapply(FullAnalysis.EOM0, `[[`, 2), `[[`, 15)
+ , na.omit)
> FCPLength.EOM0 <- as.data.frame(do.call(rbind, lapply(FCPLength.EOM0, round, 4)))
> LCPLength.EOM0 <- lapply(lapply(lapply(FullAnalysis.EOM0, `[[`, 2), `[[`, 17)
+ , na.omit)
> LCPLength.EOM0 <- as.data.frame(do.call(rbind, lapply(LCPLength.EOM0, round, 4)))
> TempStruct.EOM0 <- lapply(lapply(lapply(FullAnalysis.EOM0, `[[`, 3), `[[`, 2)
+ , na.omit)
> TempStruct.EOM0 <- lapply(TempStruct.EOM0, `length<-`,
+ max(lengths(TempStruct.EOM0)))
> TempStruct.EOM0 <- as.data.frame(do.call(rbind, lapply(TempStruct.EOM0, round, 4)))
> TempStruct.by.DCC.EOM0 <- cbind(TempStruct.by.DCC, TempStruct.EOM0,
+ FCPLength.EOM0, LCPLength.EOM0)
> names(TempStruct.by.DCC.EOM0)[c(10:16)] <- c("E", "01", "02", "03", "M",
+ "FCPLength", "LCPLength")
> print(TempStruct.by.DCC.EOM0[, c(9:ncol(TempStruct.by.DCC.EOM0))],
+ row.names = FALSE)

DCC.Name E 01 02 03 M FCPLength LCPLength
ACT/ACT (ISDA) -0.4945 1 2 3 3.8407 1.4945 0.8407
ACT/ACT (ICMA) -0.4945 1 2 3 3.8407 1.4945 0.8407
ACT/ACT (AFB) -0.4945 1 2 3 3.8407 1.4945 0.8407

ACT/365L -0.4945 1 2 3 3.8407 1.4945 0.8407
30/360 -0.4862 1 2 3 3.8453 1.4862 0.8453

30E/360 -0.4917 1 2 3 3.8398 1.4917 0.8398
30E/360 (ISDA) -0.4972 1 2 3 3.8380 1.4972 0.8380

30/360 (German) -0.4972 1 2 3 3.8380 1.4972 0.8380
30/360 US -0.4862 1 2 3 3.8453 1.4862 0.8453

ACT/365 (Fixed) -0.4945 1 2 3 3.8407 1.4945 0.8407
ACT(NL)/365 -0.4945 1 2 3 3.8407 1.4945 0.8407

ACT/360 -0.4945 1 2 3 3.8407 1.4945 0.8407
30/365 -0.4862 1 2 3 3.8453 1.4862 0.8453

ACT/365 (Canadian Bond) -0.4945 1 2 3 3.8407 1.4945 0.8407
ACT/364 -0.4945 1 2 3 3.8407 1.4945 0.8407

BusDay/252 (Brazilian) -0.5040 1 2 3 3.8425 1.5040 0.8425

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 130

The output of example 5 shows that for the specified bond, there is little variation in temporal struc-
ture across the DCCs. Specifically, with DCC ∈ {1, 2, 3, 4, 10, 11, 12, 14, 15}, the values of RD_indexes
are {−0.4945, 1, 2, 3, 3.8407}; with DCC ∈ {5, 9, 13}, it holds RD_indexes= {−0.4862, 1, 2, 3, 3.8453},
and with DCC ∈ {7, 8}, we get RD_indexes = {−0.4972, 1, 2, 3, 3.8380}. Only the DCCs 6 and 16
produce a unique temporal structure for this bond. Nevertheless, it would be wrong to infer from this
that the temporal structure always has so little variation across the DCCs, as example 6 illustrates.
> # example 6
> library(BondValuation)
> TempStruct.by.DCC <- data.frame(Em = rep(as.Date("2019-10-31"), 16),
+ Mat = rep(as.Date("2024-02-29"), 16),
+ CpY = rep(2, 16),
+ FIPD = rep(as.Date("2020-03-30"), 16),
+ LIPD = rep(as.Date("2023-03-30"), 16),
+ FIAD = rep(as.Date("2019-10-31"), 16),
+ DCC = seq(1, 16),
+ EOM = rep(0, 16),
+ DCC.Name = List.DCC[, 2])
>
> # Applying AnnivDates() to the data frame TempStruct.by.DCC for EOM = 0
> suppressWarnings(
+ FullAnalysis.EOM0 <- apply(
+ TempStruct.by.DCC[, c('Em','Mat','CpY','FIPD','LIPD','FIAD','DCC','EOM')],
+ 1, function(y) AnnivDates(
+ y[1], y[2], y[3], y[4], y[5], y[6], , , y[7], y[8])
+)
+)
> FCPLength.EOM0 <- lapply(lapply(lapply(FullAnalysis.EOM0, `[[`, 2), `[[`, 15)
+ , na.omit)
> FCPLength.EOM0 <- as.data.frame(do.call(rbind, lapply(FCPLength.EOM0, round, 4)))
> LCPLength.EOM0 <- lapply(lapply(lapply(FullAnalysis.EOM0, `[[`, 2), `[[`, 17)
+ , na.omit)
> LCPLength.EOM0 <- as.data.frame(do.call(rbind, lapply(LCPLength.EOM0, round, 4)))
> TempStruct.EOM0 <- lapply(lapply(lapply(FullAnalysis.EOM0, `[[`, 3), `[[`, 2)
+ , na.omit)
> TempStruct.EOM0 <- lapply(TempStruct.EOM0, `length<-`,
+ max(lengths(TempStruct.EOM0)))
> TempStruct.EOM0 <- as.data.frame(do.call(rbind, lapply(TempStruct.EOM0, round, 4)))
> TempStruct.by.DCC.EOM0 <- cbind(TempStruct.by.DCC, TempStruct.EOM0,
+ FCPLength.EOM0, LCPLength.EOM0)
> names(TempStruct.by.DCC.EOM0)[c(10:20)] <- c("E","01","02","03","04","05","06",
+ "07","M","FCPLength","LCPLength")
> print(TempStruct.by.DCC.EOM0[, c(9:ncol(TempStruct.by.DCC.EOM0))],
+ row.names = FALSE)

DCC.Name E 01 02 03 04 05 06 07 M FCPLength LCPLength
ACT/ACT (ISDA) 0.1706 1 2 3 4 5 6 7 8.8354 0.8294 1.8354
ACT/ACT (ICMA) 0.1703 1 2 3 4 5 6 7 8.8352 0.8297 1.8352
ACT/ACT (AFB) 0.1708 1 2 3 4 5 6 7 8.8375 0.8292 1.8375

ACT/365L 0.1703 1 2 3 4 5 6 7 8.8352 0.8297 1.8352
30/360 0.1667 1 2 3 4 5 6 7 8.8278 0.8333 1.8278

30E/360 0.1667 1 2 3 4 5 6 7 8.8278 0.8333 1.8278
30E/360 (ISDA) 0.1667 1 2 3 4 5 6 7 8.8278 0.8333 1.8278

30/360 (German) 0.1667 1 2 3 4 5 6 7 8.8333 0.8333 1.8333
30/360 US 0.1667 1 2 3 4 5 6 7 8.8278 0.8333 1.8278

ACT/365 (Fixed) 0.1703 1 2 3 4 5 6 7 8.8352 0.8297 1.8352
ACT(NL)/365 0.1713 1 2 3 4 5 6 7 8.8398 0.8287 1.8398

ACT/360 0.1703 1 2 3 4 5 6 7 8.8352 0.8297 1.8352
30/365 0.1667 1 2 3 4 5 6 7 8.8278 0.8333 1.8278

ACT/365 (Canadian Bond) 0.1703 1 2 3 4 5 6 7 8.8352 0.8297 1.8352
ACT/364 0.1703 1 2 3 4 5 6 7 8.8352 0.8297 1.8352

BusDay/252 (Brazilian) 0.1840 1 2 3 4 5 6 7 8.8279 0.8160 1.8279

The output of example 6 reveals that, all else equal, the specified bond can feature 7 different
temporal structures, depending on the stipulated DCC. While in example 5 the “ACT/ACT” family of
DCCs produced the same temporal structure, in example 6 most of the “30/360” DCCs result in the same
day count.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 131

Cash flows, accrued interest, and dirty price

In the preceding examples of AnnivDates(), no information on nominal interest rate (Coup) and
redemption value (RV) was passed to the function. If this information, however, is provided, then
AnnivDates() generates the data frame PaySched, consisting of the scheduled coupon dates and the
corresponding cash flows. As Djatschenko (2019) points out, precise application of the respective
DCC’s mathematical rule results in varying interest payments. While this is intended for calculation
of the cash flows paid at the ends of irregular first and final coupon periods, most issuers design
their bonds to pay the same cash flow at the end of each regular period. With default RegCF.equal
= 0 the function AnnivDates() calculates all cash flows according to the mathematical rule of the
respective DCC. Passing any other value to RegCF.equal forces all regular cash flows to be equal sized.
The following, example 7, uses the same input as example 6 supplemented by information on nominal
interest rate p.a. (Coup = 10%) and redemption value (RV = 100%) and illustrates the differences in
cash flows (in percent of the bond’s par value) by DCC between the two modes of RegCF.equal.

> # example 7
> library(BondValuation)
> CashFlows.by.DCC <- data.frame(Em = rep(as.Date("2019-10-31"), 16),
+ Mat = rep(as.Date("2024-02-29"), 16),
+ CpY = rep(2, 16),
+ FIPD = rep(as.Date("2020-03-30"), 16),
+ LIPD = rep(as.Date("2023-03-30"), 16),
+ FIAD = rep(as.Date("2019-10-31"), 16),
+ RV = rep(100, 16),
+ Coup = rep(10, 16),
+ DCC = seq(1, 16),
+ EOM = rep(0, 16),
+ DCC.Name = List.DCC[, 2])
>
> # Applying AnnivDates() to the data frame CashFlows.by.DCC for EOM = 0
> # with option RegCF.equal = 0 and RegCF.equal = 1
> Suffix <- c("RegCFvary","RegCFequal")
> for (i in c(0,1)) {
+ suppressWarnings(
+ FullAnalysis <- apply(
+ CashFlows.by.DCC[, c('Em','Mat','CpY','FIPD','LIPD','FIAD','RV',
+ 'Coup','DCC','EOM')],
+ 1, function(y) AnnivDates(
+ y[1],y[2],y[3],y[4],y[5],y[6],y[7],y[8],y[9],y[10], RegCF.equal = i)
+)
+)
+ CashFlows <- lapply(lapply(lapply(FullAnalysis, `[[`, 4), `[[`, 2)
+ , na.omit)
+ CashFlows <- as.data.frame(do.call(rbind, lapply(CashFlows, round, 4)))
+ CashFlows <- cbind(CashFlows.by.DCC, CashFlows)
+ names(CashFlows)[c(12:19)] <- c(
+ "CF.1","CF.2","CF.3","CF.4","CF.5","CF.6","CF.7","CF.M")
+ assign(paste0("CashFlows.by.DCC.",Suffix[i+1]),CashFlows)
+ rm(FullAnalysis,CashFlows)
+ }
>
> # RegCF.equal = 0, \textit{i.e.}, regular cash flows may vary
> print(CashFlows.by.DCC.RegCFvary[, c(11:ncol(CashFlows.by.DCC.RegCFvary))],
+ row.names = FALSE)

DCC.Name CF.1 CF.2 CF.3 CF.4 CF.5 CF.6 CF.7 CF.M
ACT/ACT (ISDA) 4.1303 5.0273 4.9519 5.0411 4.9589 5.0411 4.9589 9.2011
ACT/ACT (ICMA) 4.1484 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1758
ACT/ACT (AFB) 4.1257 5.0411 4.9589 5.0411 4.9589 5.0411 4.9589 9.2055

ACT/365L 4.1257 5.0273 4.9589 5.0411 4.9589 5.0411 4.9589 9.1803
30/360 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1389

30E/360 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1389
30E/360 (ISDA) 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1389

30/360 (German) 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1667
30/360 US 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1389

ACT/365 (Fixed) 4.1370 5.0411 4.9589 5.0411 4.9589 5.0411 4.9589 9.2055

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 132

ACT(NL)/365 4.1096 5.0411 4.9589 5.0411 4.9589 5.0411 4.9589 9.2055
ACT/360 4.1944 5.1111 5.0278 5.1111 5.0278 5.1111 5.0278 9.3333
30/365 4.1096 4.9315 4.9315 4.9315 4.9315 4.9315 4.9315 9.0137

ACT/365 (Canadian Bond) 4.1370 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1644
ACT/364 4.1484 5.0549 4.9725 5.0549 4.9725 5.0549 4.9725 9.2308

BusDay/252 (Brazilian) 3.9332 4.8809 4.8809 4.8809 4.8809 4.8809 4.8809 9.0060
>
> # RegCF.equal = 1, \textit{i.e.}, regular cash flows forced to be equal
> print(CashFlows.by.DCC.RegCFequal[, c(11:ncol(CashFlows.by.DCC.RegCFequal))],
+ row.names = FALSE)

DCC.Name CF.1 CF.2 CF.3 CF.4 CF.5 CF.6 CF.7 CF.M
ACT/ACT (ISDA) 4.1303 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.2011
ACT/ACT (ICMA) 4.1484 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1758
ACT/ACT (AFB) 4.1257 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.2055

ACT/365L 4.1257 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1803
30/360 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1389

30E/360 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1389
30E/360 (ISDA) 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1389

30/360 (German) 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1667
30/360 US 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1389

ACT/365 (Fixed) 4.1370 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.2055
ACT(NL)/365 4.1096 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.2055

ACT/360 4.1944 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.3333
30/365 4.1096 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.0137

ACT/365 (Canadian Bond) 4.1370 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1644
ACT/364 4.1484 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.2308

BusDay/252 (Brazilian) 3.9332 4.8809 4.8809 4.8809 4.8809 4.8809 4.8809 9.0060

Please note that, irrespective of the value of RegCF.equal passed to AnnivDates(), the cash flows
at the ends of all regular coupon periods are equal sized with the conventions ACT/ACT (ICMA),
ACT/365 (Canadian Bond), and BusDay/252 (Brazilian). This is due to the DCC-specific rules described
in Djatschenko (2019). While with the majority of DCCs, the cash flows are computed based upon the
ratio of the nominal interest rate p.a. and the number of interest payments per year, which yields
regular cash flows of 5%, BusDay/252 (Brazilian) determines them exponentially, resulting in regular
cash flows of 4.8809%.

The vast majority of bonds are quoted clean, i.e., their observable prices do not contain accrued
interest. The actual price that a bond buyer pays to the seller is called full or dirty price and computed
as the sum of the quoted clean price and accrued interest, which is calculated according to the
respective DCC. Accrued interest and the dirty price of a specific bond can be calculated using the
function DP(). In addition to the input parameters required by AnnivDates(), the clean price (CP) and
the settlement date (SETT) need to be passed to the function DP(). The following, example 8, returns
the accrued interest and dirty price by DCC for the same bond as used in example 7, assuming that on
the settlement dates SETT1 = 2020-09-28, SETT2 = 2023-03-30, and SETT3 = 2024-01-15, the quoted
clean price is 105% of the bond’s par value.

> # example 8
> library(BondValuation)
> AccrIntDP.by.DCC <- data.frame(CP = 105,
+ SETT1 = rep(as.Date("2020-09-28"), 16),
+ SETT2 = rep(as.Date("2023-03-30"), 16),
+ SETT3 = rep(as.Date("2024-01-15"), 16),
+ Em = rep(as.Date("2019-10-31"), 16),
+ Mat = rep(as.Date("2024-02-29"), 16),
+ CpY = rep(2, 16),
+ FIPD = rep(as.Date("2020-03-30"), 16),
+ LIPD = rep(as.Date("2023-03-30"), 16),
+ FIAD = rep(as.Date("2019-10-31"), 16),
+ RV = rep(100, 16),
+ Coup = rep(10, 16),
+ DCC = seq(1, 16),
+ EOM = rep(0, 16),
+ DCC.Name = List.DCC[, 2])
>
> Suffix <- c("SETT1","SETT2","SETT3")
> for (i in c(1:3)) {

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 133

+ DP.Output<-suppressWarnings(
+ apply(AccrIntDP.by.DCC[,c('CP',paste0('SETT',i),'Em','Mat','CpY','FIPD',
+ 'LIPD','FIAD','RV','Coup','DCC')],
+ 1,function(y) DP(y[1],y[2],y[3],y[4],y[5],y[6],y[7],
+ y[8],y[9],y[10],y[11])))
+ AI<-do.call(rbind,lapply(lapply(lapply(DP.Output, `[[`, 2), `[[`, 3), round, 4))
+ DP<-do.call(rbind,lapply(lapply(lapply(DP.Output, `[[`, 2), `[[`, 1), round, 4))
+ AccrIntDP.by.DCC<-cbind(AccrIntDP.by.DCC,AI,DP)
+ names(AccrIntDP.by.DCC)[
+ c((ncol(AccrIntDP.by.DCC) - 1) : ncol(AccrIntDP.by.DCC))] <- c(
+ paste0("AI.", Suffix[i]), paste0("DP.", Suffix[i]))
+ rm(DP.Output,AI,DP)
+ }
> print(AccrIntDP.by.DCC[,c(15:ncol(AccrIntDP.by.DCC))], row.names = FALSE)

DCC.Name AI.SETT1 DP.SETT1 AI.SETT2 DP.SETT2 AI.SETT3 DP.SETT3
ACT/ACT (ISDA) 4.9727 109.9727 0 105 7.9716 112.9716
ACT/ACT (ICMA) 4.9457 109.9457 0 105 7.9396 112.9396
ACT/ACT (AFB) 4.9863 109.9863 0 105 7.9726 112.9726

ACT/365L 4.9727 109.9727 0 105 7.9508 112.9508
30/360 4.9444 109.9444 0 105 7.9167 112.9167

30E/360 4.9444 109.9444 0 105 7.9167 112.9167
30E/360 (ISDA) 4.9444 109.9444 0 105 7.9167 112.9167

30/360 (German) 4.9444 109.9444 0 105 7.9167 112.9167
30/360 US 4.9444 109.9444 0 105 7.9167 112.9167

ACT/365 (Fixed) 4.9863 109.9863 0 105 7.9726 112.9726
ACT(NL)/365 4.9863 109.9863 0 105 7.9726 112.9726

ACT/360 5.0556 110.0556 0 105 8.0833 113.0833
30/365 4.8767 109.8767 0 105 7.8082 112.8082

ACT/365 (Canadian Bond) 4.9863 109.9863 0 105 7.9315 112.9315
ACT/364 5.0000 110.0000 0 105 7.9945 112.9945

BusDay/252 (Brazilian) 4.8412 109.8412 0 105 7.7354 112.7354

Yield to maturity, duration, and convexity

The yield to maturity p.a. is determined as the value y that fulfills equation (1).

DPτ = CPτ + AC(tτ) =
CN(tτ)(
1 +

y
h

)w +
η

∑
i=1

CFi+k(
1 +

y
h

)w+i +
CFM + RV(

1 +
y
h

)w+η+z . (1)

In equation (1), DPτ denotes the dirty price, consisting of the quoted clean price CPτ and accrued
interest AC(tτ). Conformal with the notation in Djatschenko (2019), tτ is the settlement date and
τ its index in the temporal structure established by the function AnnivDates(). On the right side
of equation (1), CN(tτ) denotes the next coupon payment after the settlement date tτ , and w is the
fraction of a regular coupon period left until this payment. The set CFi+k with i ∈ {x ∈N | x ∈ [1, η]}
contains all interest payments after tk, excluding the final coupon payment, CFM, where k is the
index of the next coupon date after tτ , η is the number of interest payment dates between tτ and the
penultimate coupon date, and M is the index corresponding to the bond’s maturity date. RV denotes
the redemption payment, z represents the length of the final coupon period, and h represents the
number of regular interest payments per year.

The dirty price DPτ and the accrued interest AC(τ) are computed as illustrated in example 8. The
cash flows CN(tτ), CFi+k, and CFM are calculated as demonstrated in example 7. The powers in the
denominators in equation (1) are found based on the temporal structure established by the function
AnnivDates(), as shown in example 6.

Essentially, the same DCC is used for computation of cash flows, accrued interest and the indexes of
the temporal structure. Nevertheless, the option Calc.Method in the functions BondVal.Price() and
BondVal.Yield() allows for switching the calculation method for the temporal structure to DCC = 2,
i.e., ACT/ACT (ICMA), while keeping the DCC passed to the function for determination of cash flows
and accrued interest.

The function BondVal.Price() can be used to compute a bond’s clean price, (CPτ), given its yield

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 134

to maturity p.a. (y), while the function BondVal.Yield() returns y given CPτ . Besides accrued interest
(AC(tτ)) and dirty price (DPτ), both functions return τ, MacAulay duration, modified duration, and
convexity of the specified bond.5 The following, example 9, demonstrates the use of the function
BondVal.Yield() for the bond analyzed in example 8. In the output of example 9, YtM denotes the
bond’s yield to maturity p.a. in percent, DUR is the bond’s modified duration in years, and Conv is the
bond’s convexity in years. The suffixes .S1, .S2, and .S3 correspond to the three analyzed settlement
dates, SETT1 = 2020-09-28, SETT2 = 2023-03-30, and SETT3 = 2024-01-15. For space reasons, the
first column of the displayed data frame contains the DCC-codes instead of their names.

> # example 9
> library(BondValuation)
> YtM.by.DCC <- data.frame(CP = 105,
+ SETT1 = rep(as.Date("2020-09-28"), 16),
+ SETT2 = rep(as.Date("2023-03-30"), 16),
+ SETT3 = rep(as.Date("2024-01-15"), 16),
+ Em = rep(as.Date("2019-10-31"), 16),
+ Mat = rep(as.Date("2024-02-29"), 16),
+ CpY = rep(2, 16),
+ FIPD = rep(as.Date("2020-03-30"), 16),
+ LIPD = rep(as.Date("2023-03-30"), 16),
+ FIAD = rep(as.Date("2019-10-31"), 16),
+ RV = rep(100, 16),
+ Coup = rep(10, 16),
+ DCC = seq(1, 16),
+ EOM = rep(0, 16))
>
> Suffix <- c("S1","S2","S3")
> i<-1
> for (i in c(1:3)) {
+ BondValYield.Output<-suppressWarnings(
+ apply(YtM.by.DCC[,c('CP',paste0('SETT',i),'Em','Mat','CpY','FIPD',
+ 'LIPD','FIAD','RV','Coup','DCC')],
+ 1,function(y) BondVal.Yield(y[1],y[2],y[3],y[4],y[5],y[6],y[7],
+ y[8],y[9],y[10],y[11])))
+
+ YtM<-do.call(rbind,lapply(lapply(BondValYield.Output, `[[`, 4), round, 3))
+ ModDUR<-do.call(rbind,lapply(lapply(BondValYield.Output, `[[`, 5), round, 4))
+ Conv<-do.call(rbind,lapply(lapply(BondValYield.Output, `[[`, 7), round, 4))
+ YtM.by.DCC<-cbind(YtM.by.DCC,YtM,ModDUR,Conv)
+ names(YtM.by.DCC)[
+ c((ncol(YtM.by.DCC) - 2) : ncol(YtM.by.DCC))] <- c(
+ paste0("YtM.", Suffix[i]), paste0("DUR.", Suffix[i]),
+ paste0("Conv.", Suffix[i]))
+ rm(BondValYield.Output,YtM,ModDUR,Conv)
+ }
> print(YtM.by.DCC[,c(13,15:ncol(YtM.by.DCC))], row.names = FALSE)
DCC YtM.S1 DUR.S1 Conv.S1 YtM.S2 DUR.S2 Conv.S2 YtM.S3 DUR.S3 Conv.S3
1 8.244 2.7593 4.9777 4.360 0.8824 0.7786 -27.035 0.1277 0.0163
2 8.252 2.7590 4.9766 4.334 0.8825 0.7788 -26.956 0.1279 0.0164
3 8.245 2.7595 4.9793 4.360 0.8833 0.7803 -26.899 0.1282 0.0164
4 8.238 2.7604 4.9813 4.339 0.8824 0.7787 -27.002 0.1279 0.0164
5 8.251 2.7564 4.9676 4.313 0.8792 0.7730 -27.373 0.1265 0.0160
6 8.251 2.7564 4.9676 4.313 0.8792 0.7730 -27.373 0.1265 0.0160
7 8.251 2.7564 4.9676 4.313 0.8792 0.7730 -27.373 0.1265 0.0160
8 8.252 2.7584 4.9746 4.329 0.8817 0.7774 -26.568 0.1293 0.0167
9 8.251 2.7564 4.9676 4.313 0.8792 0.7730 -27.373 0.1265 0.0160

10 8.248 2.7587 4.9763 4.365 0.8822 0.7784 -26.973 0.1279 0.0164
11 8.243 2.7604 4.9824 4.354 0.8845 0.7823 -26.825 0.1286 0.0165
12 8.381 2.7505 4.9554 4.498 0.8812 0.7765 -26.824 0.1279 0.0163
13 8.120 2.7645 4.9882 4.183 0.8802 0.7748 -27.521 0.1265 0.0160
14 8.236 2.7593 4.9776 4.322 0.8826 0.7789 -26.983 0.1279 0.0164
15 8.274 2.7570 4.9722 4.391 0.8820 0.7780 -26.943 0.1279 0.0164
16 8.032 2.7729 5.0104 4.175 0.8803 0.7750 -26.038 0.1314 0.0173

5Djatschenko (2019) provides the theoretical background on the implemented key figures.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 135

Application of the package BondValuation

This section demonstrates how the R package BondValuation can be applied for the analysis of large
data frames. For this purpose, the two sample data frames, SomeBonds2016 and PanelSomeBonds2016,
are used. SomeBonds2016 contains time-invariant information of 100 hypothetical bonds. PanelSomeBonds2016
provides daily clean prices and yields of the same bonds in long format.

Checking the data with AnnivDates()

Since erroneous entries in the data are often an issue, the function AnnivDates() performs several
plausibility checks. Example 10 provides a summary of SomeBonds2016 and illustrates a strategy for
error identification in this data frame.

> # example 10
> library(BondValuation)
> summary(SomeBonds2016)

ID.No Coup.Type Issue.Date FIAD.Input
Min. : 1.00 Length:100 Min. :2016-01-01 Min. :2016-01-01
1st Qu.: 25.75 Class :character 1st Qu.:2016-04-25 1st Qu.:2016-04-25
Median : 50.50 Mode :character Median :2016-06-12 Median :2016-06-12
Mean : 50.50 Mean :2016-06-19 Mean :2016-06-19
3rd Qu.: 75.25 3rd Qu.:2016-08-23 3rd Qu.:2016-08-23
Max. :100.00 Max. :2016-10-14 Max. :2016-10-28
FIPD.Input LIPD.Input Mat.Date CpY.Input

Min. :2016-04-24 Min. :2016-08-23 Min. :2017-01-24 Min. : 1.0
1st Qu.:2016-09-30 1st Qu.:2019-02-14 1st Qu.:2019-07-24 1st Qu.: 2.0
Median :2016-12-15 Median :2020-06-08 Median :2020-11-20 Median : 2.5
Mean :2016-12-15 Mean :2021-11-11 Mean :2022-05-18 Mean : 4.3
3rd Qu.:2017-03-02 3rd Qu.:2022-11-04 3rd Qu.:2023-05-05 3rd Qu.: 6.0
Max. :2017-08-23 Max. :2056-05-20 Max. :2056-08-31 Max. :12.0
Coup.Input RV.Input DCC.Input EOM.Input

Min. : 0.010 Min. :100 Min. : 1.00 Min. :0.00
1st Qu.: 0.800 1st Qu.:100 1st Qu.: 5.00 1st Qu.:1.00
Median : 1.410 Median :100 Median :10.00 Median :1.00
Mean : 2.270 Mean :100 Mean : 8.95 Mean :0.79
3rd Qu.: 2.869 3rd Qu.:100 3rd Qu.:13.00 3rd Qu.:1.00
Max. :24.020 Max. :100 Max. :16.00 Max. :1.00

The summary information above reveals that all bonds in the data frame were issued (Issue.Date)
and started to accrue interest (FIAD.Input) in 2016. The terms to maturity (Mat.Date) span from about
1 to approximately 40 years. The summary of variable CpY.Input shows that there are no zero coupon
bonds in the dataset and the number of interest payments per year varies from 1 to 12. Nominal
interest rates (Coup.Input) average 2.27%, varying from 0.01% to 24.02%. All bonds are redeemed
(RV.Input) at 100% of their respective par values and 79% of them follow the End-of-Month rule
(EOM.Input). Now AnnivDates() is used to analyze the data for plausibility.

> # example 10: continued (I)
>
> # Applying AnnivDates() to the data frame SomeBonds2016.
> FullAnalysis<-suppressWarnings(
+ apply(
+ SomeBonds2016[,c('Issue.Date','Mat.Date','CpY.Input','FIPD.Input',
+ 'LIPD.Input','FIAD.Input','RV.Input','Coup.Input',
+ 'DCC.Input','EOM.Input')], 1,
+ function(y) AnnivDates(y[1], y[2], y[3], y[4], y[5], y[6], y[7],
+ y[8], y[9], y[10])
+)
+)
> # Extracting the data frame Warnings and binding the Warnings to the bonds
> BondsWithWarnings<-cbind(
+ SomeBonds2016, do.call(
+ rbind, lapply(FullAnalysis, `[[`, 1)
+)
+)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 136

> summary(BondsWithWarnings[,c((ncol(SomeBonds2016)+1):ncol(BondsWithWarnings))])
Em_FIAD_differ EmMatMissing CpYOverride RV_set100percent NegLifeFlag
Min. :0.00 Min. :0 Min. :0 Min. :0 Min. :0
1st Qu.:0.00 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0
Median :0.00 Median :0 Median :0 Median :0 Median :0
Mean :0.04 Mean :0 Mean :0 Mean :0 Mean :0
3rd Qu.:0.00 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0
Max. :1.00 Max. :0 Max. :0 Max. :0 Max. :0

ZeroFlag Em_Mat_SameMY ChronErrorFlag FIPD_LIPD_equal IPD_CpY_Corrupt
Min. :0 Min. :0 Min. :0.00 Min. :0.00 Min. :0.00
1st Qu.:0 1st Qu.:0 1st Qu.:0.00 1st Qu.:0.00 1st Qu.:0.00
Median :0 Median :0 Median :0.00 Median :0.00 Median :0.00
Mean :0 Mean :0 Mean :0.01 Mean :0.02 Mean :0.09
3rd Qu.:0 3rd Qu.:0 3rd Qu.:0.00 3rd Qu.:0.00 3rd Qu.:0.00
Max. :0 Max. :0 Max. :1.00 Max. :1.00 Max. :1.00

EOM_Deviation EOMOverride DCCOverride NoCoups
Min. :0.00 Min. :0.00 Min. :0 Min. :0.00
1st Qu.:0.00 1st Qu.:0.00 1st Qu.:0 1st Qu.:0.00
Median :1.00 Median :1.00 Median :0 Median :0.00
Mean :0.69 Mean :0.68 Mean :0 Mean :0.01
3rd Qu.:1.00 3rd Qu.:1.00 3rd Qu.:0 3rd Qu.:0.00
Max. :1.00 Max. :1.00 Max. :0 Max. :1.00

The summary information in example 10: continued (I) reveals that 1% of the bonds suffer from a
chronological error (ChronErrorFlag) and 9% feature inconsistencies between the coupon payment
dates and the number of interest payment dates per year CpY (IPD_CpY_Corrupt). To illustrate the
rationale behind the plausibility analysis, a manual inspection of the affected bonds is performed
below.6

> # example 10: continued (II)
>
> # manual examination of the rows where ChronErrorFlag = 1
> print(BondsWithWarnings[
+ which(BondsWithWarnings$ChronErrorFlag == 1),
+ c('ID.No', 'Issue.Date', 'FIAD.Input', 'FIPD.Input', 'LIPD.Input', 'Mat.Date')],
+ row.names = FALSE)
ID.No Issue.Date FIAD.Input FIPD.Input LIPD.Input Mat.Date

17 2016-08-23 2016-08-23 2017-08-23 2016-08-23 2017-08-23
>
> # manual examination of the rows where IPD_CpY_Corrupt = 1
> print(BondsWithWarnings[
+ which(BondsWithWarnings$IPD_CpY_Corrupt == 1),
+ c('ID.No', 'Issue.Date', 'FIAD.Input', 'FIPD.Input', 'LIPD.Input', 'Mat.Date',
+ 'CpY.Input')], row.names = FALSE)
ID.No Issue.Date FIAD.Input FIPD.Input LIPD.Input Mat.Date CpY.Input

2 2016-06-23 2016-06-23 2016-07-15 2019-05-15 2019-06-15 4
4 2016-05-24 2016-05-24 2016-05-31 2017-04-30 2017-05-31 2

19 2016-09-28 2016-09-28 2017-02-28 2021-08-31 2021-09-28 1
56 2016-07-26 2016-07-26 2017-01-26 2020-07-26 2020-10-26 1
64 2016-04-13 2016-04-13 2016-04-24 2017-03-24 2017-04-24 6
65 2016-09-30 2016-09-30 2016-10-31 2018-02-28 2018-03-29 1
70 2016-08-26 2016-08-26 2016-11-20 2056-05-20 2056-08-31 1
82 2016-06-30 2016-06-30 2016-07-15 2028-09-15 2028-12-15 2
84 2016-07-20 2016-07-20 2016-07-24 2016-09-24 2017-01-24 2

The chronological error occurred because the provided penultimate coupon date (LIPD.Input)
is located prior to the supplied first interest payment date (FIPD.Input). Since the authenticity of
FIPD.Input and LIPD.Input is unclear in this case, both are automatically dropped by AnnivDates(),
and the calculation continues based upon the provided values of Issue.Date and Mat.Date.

As can be seen in the manual examination of the rows where IPD_CpY_Corrupt = 1, for all of them,
there are inconsistencies between the value of CpY.Input and the interval between FIPD.Input and
LIPD.Input. In the first row, for example, CpY.Input indicates that coupons are paid quarterly. If the

6Please refer to the package manual of BondValuation for detailed descriptions of the other warning flags.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 137

value of FIPD.Input is correct, coupon payments should occur on July 15th, October 15th, January
15th, and April 15th. If the value of LIPD.Input is genuine, however, interest should be paid on May
15th, August 15th, November 15th, and February 15th. Finally, in this case, FIPD.Input and LIPD.Input
can both be correct, lying on each other’s anniversary dates for a value of CpY.Input = 6. Since it
is not clear which of the three values is correct, AnnivDates() cannot automatically revise the input
but only helps the user to identify the inconsistency. If the data are passed to AnnivDates() as they
are, CpY.Input is assumed to be genuine, FIPD.Input and LIPD.Input are dropped, and the execution
continues as if they were not provided in the first place, resulting in the temporal structure and cash
flows provided below in example 10: continued (III).

> # example 10: continued (III)
> # Printing data frame DateVectors for bond with ID.No = 2
> print(
+ as.data.frame(do.call(rbind, lapply(FullAnalysis, `[[`, 3)[2])),
+ row.names = FALSE)
RealDates RD_indexes CoupDates CD_indexes AnnivDates AD_indexes

2016-06-23 0.08888889 2016-09-15 1 2016-06-15 0
2016-09-15 1.00000000 2016-12-15 2 2016-09-15 1
2016-12-15 2.00000000 2017-03-15 3 2016-12-15 2
2017-03-15 3.00000000 2017-06-15 4 2017-03-15 3
2017-06-15 4.00000000 2017-09-15 5 2017-06-15 4
2017-09-15 5.00000000 2017-12-15 6 2017-09-15 5
2017-12-15 6.00000000 2018-03-15 7 2017-12-15 6
2018-03-15 7.00000000 2018-06-15 8 2018-03-15 7
2018-06-15 8.00000000 2018-09-15 9 2018-06-15 8
2018-09-15 9.00000000 2018-12-15 10 2018-09-15 9
2018-12-15 10.00000000 2019-03-15 11 2018-12-15 10
2019-03-15 11.00000000 2019-06-15 12 2019-03-15 11
2019-06-15 12.00000000 <NA> NA 2019-06-15 12
>
> # Printing data frame PaySched for bond with ID.No = 2
> print(
+ as.data.frame(do.call(rbind, lapply(FullAnalysis, `[[`, 4)[2])),
+ row.names = FALSE)
CoupDates CoupPayments

2016-09-15 0.7368611
2016-12-15 0.8087500
2017-03-15 0.8087500
2017-06-15 0.8087500
2017-09-15 0.8087500
2017-12-15 0.8087500
2018-03-15 0.8087500
2018-06-15 0.8087500
2018-09-15 0.8087500
2018-12-15 0.8087500
2019-03-15 0.8087500
2019-06-15 0.8087500

The consequences of the plausibility-check-induced automated data revision by AnnivDates()
are stored in the data frame Traits. Alongside the values that were initially provided and that are
actually used in the subsequent calculations, Traits contains information on the types and lengths of
the first and final coupon periods. Example 10: continued (IV) demonstrates how the data frame Traits
can be extracted from the output of AnnivDates() and provides summary information on the lengths
and types of the first and final coupon periods in the data frame SomeBonds2016. Of the 100 bonds
in SomeBonds2016, only 20 have regular first coupon periods and 28 feature final coupon periods of
regular length. The lengths of the first coupon periods vary from 1.37% to 1, 200% of the bond-specific
regular coupon period length, while the final coupon periods average 238% and span from 2.78% to
1, 200% of the respective bond’s regular coupon period length.

> # example 10: continued (IV)
> # Extracting the data frame Warnings and binding the Warnings to the bonds
> BondsWithTraits<-cbind(
+ SomeBonds2016, do.call(
+ rbind, lapply(FullAnalysis, `[[`, 2)
+)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 138

+)
> summary(BondsWithTraits[, c('FCPType', 'LCPType', 'FCPLength', 'LCPLength')])

FCPType LCPType FCPLength LCPLength
long :49 long :51 Min. : 0.01366 Min. : 0.02778
short :31 regular:28 1st Qu.: 0.92150 1st Qu.: 1.00000
regular:20 short :21 Median : 1.00000 Median : 1.25140

Mean : 2.19291 Mean : 2.38417
3rd Qu.: 3.00000 3rd Qu.: 3.00000
Max. :12.00000 Max. :12.00000

Applying BondVal.Yield() to long format data

In addition to the time-invariant information in SomeBonds2016, the data frame PanelSomeBonds2016
provides daily clean prices (CP.Input) and yields to maturity (YtM.Input) that correspond to the trade
dates, TradeDate, and settlement dates, SETT. TradeDate is the calendar date on which the transaction
is initiated and the quoted clean price is observed; SETT is the actual calendar date on which the
transfer of cash and assets is completed. The settlement date is used for the following computation.
Example 11 below shows that PanelSomeBonds2016 has 12, 718 rows and 16 columns and provides
summary information regarding the time-variant variables. The clean prices span from 90.38% to
224.16%, while the yields to maturity average −0.01593%, varying from −1.725% to 2%.

> # example 11
> library(BondValuation)
> dim(PanelSomeBonds2016)
[1] 12718 16
> summary(PanelSomeBonds2016[, c(13:16)])

TradeDate SETT CP.Input YtM.Input
Min. :2016-01-29 Min. :2016-02-02 Min. : 90.38 Min. :-1.72500
1st Qu.:2016-08-03 1st Qu.:2016-08-05 1st Qu.:102.73 1st Qu.:-0.35000
Median :2016-10-03 Median :2016-10-05 Median :105.79 Median :-0.02500
Mean :2016-09-20 Mean :2016-09-23 Mean :112.53 Mean :-0.01593
3rd Qu.:2016-11-17 3rd Qu.:2016-11-21 3rd Qu.:113.21 3rd Qu.: 0.27500
Max. :2016-12-30 Max. :2017-01-03 Max. :224.16 Max. : 2.00000

In the following, example 12, the function BondVal.Yield() is used to determine τ, accrued interest,
dirty price, yield to maturity, modified duration, MacAulay duration, and convexity for each bond
and settlement date in PanelSomeBonds2016. In alternative 1, the function BondVal.Yield() is applied
to every row of the data frame PanelSomeBonds. Alternative 2 demonstrates a significantly faster
approach, where AnnivDates() is applied to every bond’s time-invariant characteristics before its
output is passed to BondVal.Yield() for every settlement date. Alternative 2 takes less than half the
time of alternative 1.7

> # example 12
> # analysis of PanelSomeBonds2016 with BondValuation
> library(BondValuation)
> Panel <- PanelSomeBonds2016
> Vars <- c("tau","AccrInt","DP","YtM","ModDUR","MacDUR","Conv")
> Panel[, c((ncol(Panel) + 1) : (ncol(Panel) + length(Vars)))] <- as.numeric(NA)
> names(Panel)[(ncol(Panel) - length(Vars) + 1) : ncol(Panel)] <- Vars
>
> # Alternative 1: loop through the data frame
> # applying BondVal.Yield to each row
> Time.Alt01 <- system.time(
+ for (i in c(1:nrow(Panel))) {
+ BondVal.Out <- suppressWarnings(
+ BondVal.Yield(CP = Panel$CP.Input[i],
+ SETT = Panel$SETT[i],
+ Em = Panel$Issue.Date[i],
+ Mat = Panel$Mat.Date[i],
+ CpY = Panel$CpY.Input[i],
+ FIPD = Panel$FIPD.Input[i],
+ LIPD = Panel$LIPD.Input[i],

7On an "Intel(R) Core(TM) i7-3687U CPU @ 2.10GHz" machine, alternative 1 takes about 350 seconds, while
alternative 2 takes ca. 170 seconds.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 139

+ FIAD = Panel$FIAD.Input[i],
+ RV = Panel$RV.Input[i],
+ Coup = Panel$Coup.Input[i],
+ DCC = Panel$DCC.Input[i],
+ EOM = Panel$EOM.Input[i],
+ Precision = .Machine$double.eps^0.5
+)
+)
+ Panel[i, c((ncol(Panel) - length(Vars) + 1) : ncol(Panel))] <-
+ round(as.numeric(BondVal.Out[c(11, 2 : 7)]), 4)
+ }, gcFirst = TRUE
+)
>
>
> # Alternative 2: Run AnnivDates() once per Bond-ID and pass its output
> # to BondVal.Yield() for every row with the same Bond-ID
> NonDuplID <- c(which(!duplicated(Panel$ID.No)), (nrow(Panel)+1))
> Time.Alt02 <- system.time(
+ for (i in c(1 : (length(NonDuplID) - 1))) {
+ BondCount <- NonDuplID[i]
+ AnnivDates.Out <- suppressWarnings(
+ AnnivDates(Em = Panel$Issue.Date[BondCount],
+ Mat = Panel$Mat.Date[BondCount],
+ CpY = Panel$CpY.Input[BondCount],
+ FIPD = Panel$FIPD.Input[BondCount],
+ LIPD = Panel$LIPD.Input[BondCount],
+ FIAD = Panel$FIAD.Input[BondCount],
+ RV = Panel$RV.Input[BondCount],
+ Coup = Panel$Coup.Input[BondCount],
+ DCC = Panel$DCC.Input[BondCount],
+ EOM = Panel$EOM.Input[BondCount]
+)
+)
+ for (j in c(NonDuplID[i] : (NonDuplID[i + 1] - 1))) {
+ BondVal.Out <- suppressWarnings(
+ BondVal.Yield(CP = Panel$CP.Input[j],
+ SETT = Panel$SETT[j],
+ Em = Panel$Issue.Date[j],
+ Mat = Panel$Mat.Date[j],
+ CpY = Panel$CpY.Input[j],
+ FIPD = Panel$FIPD.Input[j],
+ LIPD = Panel$LIPD.Input[j],
+ FIAD = Panel$FIAD.Input[j],
+ RV = Panel$RV.Input[j],
+ Coup = Panel$Coup.Input[j],
+ DCC = Panel$DCC.Input[j],
+ EOM = Panel$EOM.Input[j],
+ InputCheck = 0,
+ Precision = .Machine$double.eps^0.5,
+ AnnivDatesOutput = AnnivDates.Out
+)
+)
+ Panel[j, c((ncol(Panel) - length(Vars) + 1) : ncol(Panel))] <-
+ round(as.numeric(BondVal.Out[c(11, 2 : 7)]), 4)
+ }
+ }, gcFirst = TRUE
+)
>
> round(Time.Alt02[[3]] / Time.Alt01[[3]], 2)
[1] 0.48

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 140

Conclusion

This article introduces the R package BondValuation and provides guidance on its application for
analysis of large data frames of fixed coupon bonds. The theoretical foundation of the package is the
generalized valuation methodology developed by Djatschenko (2019). Its seamless implementation
in BondValuation is framed by a set of routines that assist the user in data quality evaluation and
automatically correct corrupted entries.

BondValuation is the first R package that properly handles irregular first and final coupon periods
of fixed coupon bonds and provides a comprehensive coverage of the day count conventions (DCC)
used in the global bond markets. Currently, 16 different DCCs are implemented, which account for the
vast majority of the methods used in the global fixed income markets. Within its scope, the R package
BondValuation performs correctly and efficiently. Nevertheless, the current version of the software
remains open for further development and refinement. Essentially, the calculations are performed
under the assumption that interest accrual and temporal structure follow the same DCC. The option
CalcMethod in the functions BondVal.Price() and BondVal.Yield() can be used to force the temporal
structure to follow the ACT/ACT (ICMA) method, while the DCC passed to the respective function is
used to compute accrued interest. In future versions of the package, I intend to implement an explicit
assignment of DCC to both interest accrual and temporal structure, which will increase the flexibility of
the package.

A further limitation is that the calendar dates of the temporal structure are currently returned,
regardless of whether or not they are business days. Although this is the common approach in
theoretical bond valuation, including the possibility of business day adjustments for cash flows would
be particularly appealing to practitioners. Along with business day adjustments, future versions of
BondValuation can be extended by methods for bond portfolio analysis.

The current version of BondValuation is designed for processing non-callable, option-free, non-
sinkable fixed coupon bonds and zero bonds. With the implemented methods, callable bonds can
be analyzed through appropriate adjustment of the maturity date to the next call date, returning
the so-called yield-to-worst and the corresponding duration and convexity measures. Based on the
implemented functions, the R package BondValuation can be extended to incorporate methods for
explicit treatment of callable, sinkable and convertible fixed and floating rate bonds.

The R package BondValuation provides the computational foundation for the exploration of
a variety of interesting research questions related to the analysis of fixed income securities across
markets. Even considering the limitations described above, the software is also useful to practitioners.
I intend to continuously extend and improve the package, and I highly appreciate feedback from the
users.

Acknowledgments

I would like to thank Ingo Geishecker for our frequent discussions and his profound advice. I am also
grateful to Karl Ludwig Keiber and Philipp Otto for their helpful comments and suggestions, and to
Inna Keil for her excellent research assistance. All remaining errors are my own responsibility.

Bibliography

Banking Federation of the European Union. Master Agreement for Financial Transactions - Supplement
to the Derivatives Annex - Interest Rate Transactions, 2004. URL http://www.ebf.eu/wp-content/
uploads/2017/07/10InterestRateTransactions-2004-02699-01-E.pdf. [p125]

A. Caputo Silva, L. Oliveira de Carvalho, and O. Ladeira de Medeiros. PUBLIC DEBT: the Brazil-
ian experience. National Treasury Secretariat and World Bank, Brasilia, BR, 2010. ISBN 978-
85-87841-44-5. URL http://documents.worldbank.org/curated/en/967171469672182286/pdf/
700810ESW0P1160Brazilian0Experience.pdf. [p125]

D. Christie and SWX Swiss Exchange. Accrued Interest & Yield Calculations and Determination of
Holiday Calendars, 2003. URL http://janroman.dhis.org/finance/General/accrued_interest_
en.pdf. [p125]

W. Djatschenko. The Nitty Gritty of Bond Valuation: A Generalized Methodology for Straight Bond
Analysis, July 2019. URL http://dx.doi.org/10.2139/ssrn.3205167. Discussion Paper. [p124,
125, 126, 131, 132, 133, 134, 140]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

http://www.ebf.eu/wp-content/uploads/2017/07/10InterestRateTransactions-2004-02699-01-E.pdf
http://www.ebf.eu/wp-content/uploads/2017/07/10InterestRateTransactions-2004-02699-01-E.pdf
http://documents.worldbank.org/curated/en/967171469672182286/pdf/700810ESW0P1160Brazilian0Experience.pdf
http://documents.worldbank.org/curated/en/967171469672182286/pdf/700810ESW0P1160Brazilian0Experience.pdf
http://janroman.dhis.org/finance/General/accrued_interest_en.pdf
http://janroman.dhis.org/finance/General/accrued_interest_en.pdf
http://dx.doi.org/10.2139/ssrn.3205167

CONTRIBUTED RESEARCH ARTICLES 141

D. Eddelbuettel, K. Nguyen, and T. Leitch. RQuantLib: R Interface to the ’QuantLib’ Library, 2018. URL
https://CRAN.R-project.org/package=RQuantLib. R package version 0.4.5. [p124]

International Capital Market Association. Rule 251 Accrued Interest Calculation - Excerpt from ICMA’s
Rules and Recommendations, 2010. URL https://www.isda.org/a/NIJEE/ICMA-Rule-Book-Rule-
251-reproduced-by-permission-of-ICMA.pdf. [p125]

International Swaps and Derivatives Association, Inc. EMU and Market Conventions: Recent Devel-
opments, 1998. [p125]

International Swaps and Derivatives Association, Inc. 2006 ISDA Definitions. International Swaps and
Derivatives Association, Inc., New York, 2006. [p125]

Investment Industry Association of Canada (IIAC). Canadian Conventions in Fixed Income Markets
- A Reference Document of Fixed Income Securities Formulas and Practices; Release: 1.3, 2018.
URL https://iiac.ca/wp-content/uploads/Canadian-Conventions-in-FI-Markets-Release-1.
3.pdf. [p125]

Itaú Unibanco. Brazilian Sovereign Fixed Income and Foreign Exchange Markets. Itaú Unibanco, 1st edition,
2017. [p125]

D. Krgin. The Handbook of Global Fixed Income Calculations. Wiley, New York, 1st edition, 2002. ISBN
978-0-471-21835-7. [p125, 126]

J. Mayle. Standard Securities Calculation Methods: Fixed Income Securities Formulas for Price, Yield, and
Accrued Interest, volume 1. Securities Industry Association, New York, 3rd edition, 1993. ISBN
1-882936-01-9. [p125]

Municipal Securities Rulemaking Board. MSRB Rule Book. Municipal Securities Rulemaking Board,
Washington, DC, 2017. URL http://www.msrb.org/msrb1/pdfs/MSRB-Rule-Book-October-2017.
pdf. [p125]

QuantLib Team. Quantlib: A free/open-source library for quantitative finance, 2018. URL http:
//quantlib.org/. [p124]

Wadim Djatschenko
European University Viadrina
Frankfurt (Oder)
Germany
ORCiD: 0000-0003-0653-8779
wadim.djatschenko@gmx.de

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=RQuantLib
https://www.isda.org/a/NIJEE/ICMA-Rule-Book-Rule-251-reproduced-by-permission-of-ICMA.pdf
https://www.isda.org/a/NIJEE/ICMA-Rule-Book-Rule-251-reproduced-by-permission-of-ICMA.pdf
https://iiac.ca/wp-content/uploads/Canadian-Conventions-in-FI-Markets-Release-1.3.pdf
https://iiac.ca/wp-content/uploads/Canadian-Conventions-in-FI-Markets-Release-1.3.pdf
http://www.msrb.org/msrb1/pdfs/MSRB-Rule-Book-October-2017.pdf
http://www.msrb.org/msrb1/pdfs/MSRB-Rule-Book-October-2017.pdf
http://quantlib.org/
http://quantlib.org/
mailto:wadim.djatschenko@gmx.de

CONTRIBUTED RESEARCH ARTICLES 142

ConvergenceClubs: A Package for
Performing the Phillips and Sul’s Club
Convergence Clustering Procedure
by Roberto Sichera and Pietro Pizzuto

Abstract This paper introduces package ConvergenceClubs, which implements functions to perform
the Phillips and Sul (2007, 2009) club convergence clustering procedure in a simple and reproducible
manner. The approach proposed by Phillips and Sul to analyse the convergence patterns of groups
of economies is formulated as a nonlinear time varying factor model that allows for different time
paths as well as individual heterogeneity. Unlike other approaches in which economies are grouped a
priori, it also allows the endogenous determination of convergence clubs. The algorithm, usage, and
implementation details are discussed.

Introduction

Economic convergence refers to the idea that per–capita incomes of poorer economies will tend to
grow at faster rates than those of richer economies. The issue has been widely investigated in economic
literature since the classical contributions on economic growth and development (Solow, 1956; Myrdal,
1957). In addition to the traditional concepts of beta and sigma convergence, an increasing amount
of literature has recently emerged on the concept of club convergence . This notion was originally
introduced by Baumol (1986) to describe convergence among a subset of national economies and it has
quickly spread also at the regional level. Several contributions have tried to empirically investigate the
topic proposing different methodologies. For example, Quah (1996) developed a Markov chain model
with probability transitions to estimate the evolution of income distribution. Le Gallo and Dall’Erba
(2005) proposed a spatial approach to detect convergence clubs using the Getis–Ord statistic. Corrado
et al. (2005) introduced a multivariate stationarity test in order to endogenously identify regional club
clustering.

More recently, Phillips and Sul (2007, 2009) proposed a time-varying factor model that allows for
individual and transitional heterogeneity to identify convergence clubs. Due to its positive attributes,
this methodology has become predominant in the analysis of the convergence patterns of economies.
In fact, it has several advantages. First, it allows for different time paths as well as individual
heterogeneity, therefore, different transitional paths are possible1. Second, unlike other approaches
in which economies are grouped a priori, this methodology enables the endogenous (data–driven)
determination of convergence clubs. Third, the test does not impose any particular assumption
concerning trend stationarity or stochastic non–stationarity since it is robust to heterogeneity and to
the stationarity properties of the series.

As for existing routines, Phillips and Sul (2007, 2009) provided Gauss (Aptech Systems, 2016) code
used in their empirical studies. Schnurbus et al. (2017) provided a set of R functions to replicate the
key results of Phillips and Sul (2009), while Du (2018) developed a full Stata (StataCorp, 2017) package
to perform the club convergence algorithm. A dedicated R package for this methodology has been
missing. The ConvergenceClubs (Sichera and Pizzuto, 2019) package fills this gap, since it allows to
carry out the Phillips and Sul’s methodology in a simple and reproducible fashion, allowing for easy
definition of the parameters. Moreover, our package also implements the alternative club merging
algorithm developed by von Lyncker and Thoennessen (2017).

The remainder of the paper is organised as follows. First, the club convergence methodology is
presented. Then, the main features of the package are listed and described. Finally, an example based
on Phillips and Sul (2009) data is provided.

Methodology

The log–t test

The approach proposed by Phillips and Sul is based on a modification of the conventional panel
data decomposition of the variable of interest. In fact, panel data Xit are usually decomposed in the

1For example, in the context of income convergence, the approach proposed by Phillips and Sul allows to
account for heterogeneity in technology growth rates and in the speed of convergence, unlike the traditional
neoclassical model à la Solow that assumes homogeneous technological progress.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=ConvergenceClubs

CONTRIBUTED RESEARCH ARTICLES 143

following way:

Xit = git + ait , (1)

where git is the systematic factor (including the permanent common component) and ait is the
transitory component. In order to account for temporal transitional heterogeneity they modify eq. (1)
as follows:

Xit =

(
git + ait

µt
µt

)
= bitµt , (2)

where bit is the systematic idiosyncratic element that is allowed to evolve over time and to include a
random component that absorbs ait, and µt is the common factor. In this dynamic factor formulation,
that allows to separate common from idiosyncratic components, bit becomes the transition path of
the economy to the common steady–state growth path determined by µt. Particularly, the common
growth component µt, may follow either a trend–stationary process or a non–stationary stochastic
trend with drift, since a specific assumption regarding the behaviour of µt is not necessary.

In order to test if different economies converge, a key role is played by the estimation of bit.
According to the authors, the estimation of this parameter is not possible without imposing additional
structural restrictions and assumptions. However, as a viable way to model this element, they propose
the construction of the following relative transition component:

hit =
Xit

N−1 ∑N
i=1 Xit

=
bit

N−1 ∑N
i=1 bit

, (3)

which is called relative transition path and can be directly computed from the data. In such a way
it is possible to remove the common steady–state trend µt, tracing an individual trajectory for each
economy i in relation to the panel average. In other words, the relative transition path describes the
relative individual behaviour as well as the relative departures of the i–th economy from the common
growth path µt.

In presence of convergence, there should be a common limit in the transition path of each economy
and the coefficient hit should converge towards unity (hit → 1) for all i = 1, . . . , N, as t→ ∞. At the
same time, the cross–sectional variation Hit (computed as the quadratic distance measure for the panel
from the common limit) should converge to zero:

Ht = N−1
N

∑
i=1

(hit − 1)2 → 0 as t→ ∞ . (4)

In order to construct a formal statistical test for convergence, Phillips and Sul (2007, 2009) assume
the following semi–parametric specification of bit:

bit = bi +
σi ξit

L(t) tα
, (5)

where bi is fixed (time invariant), the ξit are i.i.d. N(0, 1) random variables across i, but weakly
dependent over t, L(t) is a slowly varying increasing function (with L(t)→ ∞ as t→ ∞), and α is the
decay rate, or more specifically in this case, the convergence rate. The null hypothesis of convergence
can be written as H0 : bi = b and α ≥ 0 versus the alternative H1 : bi 6= b for all i, or α < 0. Under
H0, different transitional paths are possible, including temporary divergence (a stylized way in which
economies may converge is shown in fig. 1).

More formally, to test the presence of convergence among different economies, Phillips and Sul
(2007, 2009) suggest to estimate the following equation model through the ordinary least squares
method:

log
H1
Ht

= −2 log (log t) = α + β log t + ut , for t = [rT], [rT] + 1, . . . , T , (6)

where Ht = N−1 ∑N
i=1 (hit − 1)2, and H1/Ht is the cross–sectional variance ratio; β is the speed of

convergence parameter of bit; −2 log(log t) is a penalization function that improves the performance
of the test mainly under the alternative; r assumes a positive value in the interval (0, 1] in order to
discard the first block of observation from the estimation, and [rT] is the integer part of rT. To this
regard, Phillips and Sul suggest to use r ∈ [0.2, 0.3] for small sample size (T < 50) as a result of Monte
Carlo simulations. The null hypothesis of convergence is tested through a one–sided t–test robust to
heteroskedasticity and autocorrelation (HAC) of the inequality α > 0 (using the estimated β̂ = 2 α)
and specifically it is rejected at the 5% level if tβ̂ < −1.65. This procedure, generally called log–t test ,

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 144

Figure 1: Different transition paths and phases of transition. Source: Phillips and Sul (2009).

has power against cases of club convergence. Hence, if the log–t test is rejected for the whole sample,
the authors suggest to repeat the test procedures according to a clustering mechanism consisting of
four steps, described below (see next section).

The clustering algorithm

When the log t–test is rejected for the whole sample, the test procedure should be repeated according
to the following clustering mechanism:

1. (Cross–section last observation ordering): Sort units in descending order according to the last
panel observation of the period;

2. (Core group formation): Run the log–t regression for the first k units (2 < k < N) maximizing
k under the condition that t-value > −1.65. In other words, choose the core group size k∗ as
follows:

k∗ = arg max
k
{tk} subject to min {tk} > −1.65 . (7)

If the condition tk > −1.65 does not hold for k = 2 (the first two units), drop the first unit and
repeat the same procedure. If tk > −1.65 does not hold for any units chosen, the whole panel
diverges;

3. (Sieve the data for club membership): After the core group k∗ is detected, run the log–t regression
for the core group adding (one by one) each unit that does not belong to the latter. If tk is greater
than a critical value c∗ add the new unit in the convergence club. All these units (those included
in the core group k∗ plus those added) form the first convergence club;

4. (Recursion and stopping rule): If there are units for which the previous condition fails, gather
all these units in one group and run the log–t test to see if the condition tk > −1.65 holds. If
the condition is satisfied, conclude that there are two convergence clubs. Otherwise, step 1 to
3 should be repeated on the same group to determine whether there are other subgroups that
constitute convergence clubs. If no further convergence clubs are found (hence, no k in step 2
satisfies the condition tk > −1.65), the remaining units diverge.

Phillips and Sul (2007) suggest to make sure tk > −1.65 for the clubs. Otherwise, repeat the procedure
by increasing the value of the c∗ parameter until the condition tk > −1.65 is satisfied for the clubs.

The merging algorithms

Due to the fact that the number of identified clubs strongly depends on the core group formation, a
key role is played by the critical value c∗. The choice of this parameter is related to the desired degree
of conservativeness, where a higher level of c∗ corresponds to a more conservative selection. In other
words, the higher is c∗ the less likely we add wrong members to the convergence clubs. Related to
this, for small samples (T < 50) Phillips and Sul suggest to set c∗ = 0.

However, as the same authors suggest, a high value of c∗ can lead to more groups than those really
existing. For these reasons Phillips and Sul (2009) suggest a club merging algorithm to avoid this

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 145

over–determination. This algorithm suggests to merge for adjacent groups. In particular, it works as
follows:

1. Take the first two groups detected in the basic clustering mechanism and run the log–t test. If
the t statistic is larger than −1.65, these groups together form a new convergence club;

2. Repeat the test adding the next group and continue until the basic condition (t statistic > −1.65)
holds;

3. If the convergence hypothesis is rejected, conclude that all previous groups converge, except
the last one. Hence, start again the merging algorithm beginning from the group for which the
hypothesis of convergence did not hold.

In our package we also provide the implementation in R of an alternative club merging algorithm
developed by von Lyncker and Thoennessen (2017). They introduce two innovations in the club
merging algorithm by Phillips and Sul. First, they add a further condition to the club clustering
algorithm to avoid mistakes in merging procedures in the case of transition across clubs. Second, they
propose an algorithm for diverging units. The first algorithm works as follows:

1. Take all the P groups detected in the basic clustering mechanism and run the t–test for adjacent
groups, obtaining a (M × 1) vector of convergence test statistics t (where M = P − 1 and
m = 1, . . . , M);

2. Merge for adjacent groups starting from the first, under the conditions t(m) > −1.65 and
t(m) > t(m + 1). In particular, if both conditions hold, the two clubs determining t(m) are
merged and the algorithm starts again from step 1, otherwise it continues for all following pairs;

3. For the last element of vector M (the value of the last two clubs) the only condition required for
merging is t(m = M) > −1.65.

For the second algorithm, von Lyncker and Thoennessen (2017) claim that units identified as divergent
by the original clustering procedure by Phillips and Sul might not necessarily still diverge in the case
of new convergence clubs detected with the club merging algorithm. To test if divergent units may be
included in one of the new convergence clubs, they propose the following algorithm:

1. Run a log–t test for all diverging units; if tk > −1.65, all these units form a convergence club
(this step is implicitly included in Phillips and Sul basic algorithm);

2. Run a log–t test for each diverging units and each club, creating a matrix of t–statistic values
with dimension d × p, where each row d represents a divergent region and each column p
represents a convergence club;

3. Take the highest t–value greater than a critical parameter e∗ and add the respective region to the
corresponding club, then start again from step 1. The authors suggest to use e∗ = t = −1.65;

4. The algorithm stops when no t–value > e∗ is found in step 3, and as a consequence all remaining
units are considered divergent.

The ConvergenceClubs package

ConvergenceClubs aims to make the clustering procedure described above easy to perform and
simply reproducible.

The log–t test is performed by function estimateMod(). It takes as main input the vector of
cross–sectional variances H for the units to be tested for convergence, which can be obtained through
function computeH():

Compute cross-sectional variances
computeH(X, quantity = "H", id)

Perform the log-t test
estimateMod(H, time_trim=1/3, HACmethod = c("FQSB", "AQSB"))

The former takes a matrix or data.frame object containing time series data and returns either the vector
of cross–sectional variances H or the matrix of transition paths h, or both, depending on the value
of argument quantity. These quantities can also be computed on a subset of units by selecting the
unit IDs through argument id. Function estimateMod() takes two additional arguments, time_trim
and HACmethod, described later. These two functions are available for the user who wants to test the
convergence hypothesis on a set of units. This is especially useful to assess the opportunity of carrying
out the clustering procedure during the initial phase of a study.

Nonetheless, the log–t test over the whole sample is automatically performed before starting the
clustering procedure by function findClubs(). This is the main function of the package, as it carries
out Phillips and Sul’s clustering algorithm:

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 146

findClubs(X, dataCols, unit_names = NULL,
refCol, time_trim = 1/3, cstar = 0, HACmethod = c("FQSB", "AQSB"))

where X is a data frame containing the data, dataCols is an integer vector indicating the column indices
of the time series data, and unit_names is an integer scalar, indicating the index of the column of X
that includes id codes for the units (e.g. the name of the countries/regions). The parameters of the
clustering procedure are regulated by the following arguments.

• refCol: takes an integer value representing the index of the column to use for ordering data;

• time_trim: accepts numeric scalars between 0 and 1, and indicates the portion of time periods
to trim when running the log–t regression model. By default, time_trim=1/3, which means
that the first third of the time series period is discarded, as suggested by Phillips and Sul (2007,
2009);

• cstar: takes a scalar indicating the threshold value of the sieve criterion c∗ to include units in
the detected core (primary) group (step 3 of Phillips and Sul (2007, 2009) clustering algorithm).
The default value is 0;

• HACmethod: accepts a character string indicating whether a Fixed Quadratic Spectral Bandwidth
(HACmethod="FQSB") or an Adaptive Quadratic Spectral Bandwidth (HACmethod="AQSB") should
be used for the truncation of the Quadratic Spectral kernel in estimating the log–t regression
model with heteroskedasticity and autocorrelation consistent standard errors. The default
method is FQSB.

The clustering procedure is performed by iteratively calling two internal functions: coreG() and
club(), which implement steps 2 and 3 of Phillips and Sul clustering algorithm, respectively.

Function findClubs() returns an object belonging to the S3 class "convergence.clubs". Objects
belonging to this class are lists that include results about clubs and divergent units that have been
detected by the clustering procedure. Their structure can be analysed through function str(), and
their elements can be accessed as commonly done with list elements.

Information about clubs and divergent units can be easily displayed by means of functions print()
and summary(), for which the package provides specific methods for class "convergence.clubs". A
plot() method is available for class "convergence.clubs", which provides a way to visualise the
transition paths of the units included in convergence clubs, and also the average transition paths for
each club:

plot(x, y = NULL, nrows = NULL, ncols = NULL, clubs, avgTP = TRUE, avgTP_clubs,
y_fixed = FALSE, legend = FALSE, save = FALSE, filename, path, width = 7,
height = 7, device = c("pdf", "png", "jpeg"), res, ...)

Plot customisation (i.e. clubs to be displayed or the number of rows and columns of the graphical
layout) and options to export it to a file are discussed in more details in the package manual (Sichera
and Pizzuto, 2019). Finally, the merging algorithms described in the previous section are implemented
in function mergeClubs():

mergeClubs(clubs, time_trim, mergeMethod = c("PS", "vLT"),
threshold = -1.65, mergeDivergent = FALSE, estar = -1.65)

Merging is performed on argument clubs, an object of class "convergence.clubs", by means of either
the Phillips and Sul (2009) or the von Lyncker and Thoennessen (2017) algorithm, selected through
argument mergeMethod. Through argument threshold it is possible to change the significance level
of the log–t test for club merging. Moreover, argument mergeDivergent determines whether the test
for diverging units according to von Lyncker and Thoennessen (2017) should be performed, while
argument estar is used to set the value of the critical parameter e∗. Function mergeClubs() returns an
object of class "convergence.clubs" as well, thus information about the new clubs can be accessed
and summarised as previously discussed.

A detailed example of all functionalities of the package is presented in the next section.

Application to the country GDP dataset

In this section we provide an example that replicates the results of Phillips and Sul (2009). The dataset
GDP, available in package ConvergenceClubs, covers a panel of 152 countries for the period 1970-2003.

First, we filter the data using the Hodrick-Prescott filter methodology by means of function
hpfilter in package mFilter (Balcilar, 2018). Filtered data are also available in the package through
dataset filteredGDP.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=mFilter

CONTRIBUTED RESEARCH ARTICLES 147

Load ConvergenceClubs package
library(ConvergenceClubs)

Load GDP data
data("GDP")

Filter data
logGDP <- log(GDP[,-1])
filteredGDP <- apply(logGDP, 1,

function(x){mFilter::hpfilter(x, freq=400, type="lambda")$trend})
filteredGDP <- data.frame(Countries = GDP[,1], t(filteredGDP), stringsAsFactors=FALSE)
colnames(filteredGDP) <- colnames(GDP)

Filtered data are available in the package
data(filteredGDP)

By using the estimateMod() function we perform the log–t test over the whole sample in order to
verify whether all units converge.

log-t test over all units
H <- computeH(filteredGDP[,-1], quantity = "H")
round(estimateMod(H, time_trim=1/3, HACmethod = "FQSB"), 3)
beta std.err tvalue pvalue
-0.875 0.005 -159.555 0.000

The null hypothesis of convergence is rejected at 5% level since the t-value is smaller than −1.65.
Therefore, we proceed with the identification of convergence clubs, which is performed using the
findClubs() function. As for the arguments, we set:

• unit_names=1 indicates that Countries’ IDs are represented in the first column of the dataset;

• dataCols=2:35 indicates the columns (years) for which the test should be performed;

• refCol=35 represents the final period according to which data should be ordered (see step 1 of
the clustering algorithm).

• time_trim=1/3 represents the portion of time periods to trim when running the log–t regression
model;

• cstar= 0 is the threshold value of the sieve criterion c∗ (see step 3 of the clustering algorithm);

• HACmethod = 'FQSB' indicates that the Fixed Quadratic Spectral Bandwidth is used for the
truncation of the Quadratic Spectral kernel in estimating the log–t regression model.

Cluster Countries using GDP from year 1970 to year 2003, with 2003 as reference year
clubs <- findClubs(filteredGDP, dataCols=2:35, unit_names = 1, refCol=35,

time_trim=1/3, cstar=0, HACmethod = 'FQSB')

class(clubs)
[1] "convergence.clubs" "list"

As we can see, clubs is an object of class "convergence.clubs", that is a common list, whose
structure can be displayed through function str(), and whose elements can be accessed as usual:

str(clubs, give.attr=FALSE)

A method for function summary() is provided for class "convergence.clubs". It produces a
summary table with the key results of the clustering procedure:

summary(clubs)

Number of convergence clubs: 7
Number of divergent units: 0
#
| # of units | beta | std.err | tvalue
-------- ------------- ---------- ---------- ----------
club1 | 50 | 0.382 | 0.041 | 9.282
club2 | 30 | 0.24 | 0.035 | 6.904
club3 | 21 | 0.11 | 0.032 | 3.402
club4 | 24 | 0.131 | 0.064 | 2.055

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 148

club5 | 14 | 0.19 | 0.111 | 1.701
club6 | 11 | 1.003 | 0.166 | 6.024
club7 | 2 | -0.47 | 0.842 | -0.559

The summary shows that there are 7 clubs and no divergent units. For each club, the summary
also reports how many units are included, the beta coefficient of the log–t test, its standard error, and
the value of the t–statistics. This exercise exactly replicates the results obtained by Phillips and Sul
(2009). A minor difference concerns the last two clubs (6 and 7). In the original paper, Phillips and Sul
showed a divergence group of 13 countries. However, another iteration of the algorithm using these
13 countries suggests the presence of two clubs consisting of 11 and 2 countries, respectively (on this
point see also Schnurbus et al. (2017) and Du (2018)).

As shown in the following example, information about the club composition can be obtained using
the print() function. For brevity, only the output for the first club is shown.

Print results
print(clubs)

or just
clubs

==
club 1
--
United.States, Norway, Bermuda, United.Arab.Emirates, Qatar, Luxembourg, Singapore,
Switzerland, Hong.Kong, Denmark, Ireland, Austria, Australia, Canada, Macao,
Netherlands, Kuwait, Iceland, United.Kingdom, Germany, France, Sweden, Belgium, Japan,
Brunei, Finland, Italy, Cyprus, Puerto.Rico, Israel, New.Zealand, Taiwan, Spain, Malta,
Korea..Republic.of, Portugal, Oman, Mauritius, Antigua, St..Kitts...Nevis, Chile,
Malaysia, Equatorial.Guinea, Dominica, St.Vincent...Grenadines, Botswana, Thailand,
Cape.Verde, China, Maldives
#
beta: 0.3816
std.err: 0.0411
tvalue 9.2823
pvalue: 1
#
[...]

Transition path plots can be generated through the function plot(). Here we show some examples.

Plot Transition Paths for all units in each club and average Transition Paths
for all clubs
plot(clubs)

Plot Transition Paths
plot(clubs, avgTP = FALSE, nrows = 4, ncols = 2, plot_args = list(type='l'))

Plot only average Transition Paths of each club
plot(clubs, clubs=NULL, avgTP = TRUE, legend=TRUE, plot_args = list(type='o'))

The second and third commands produce figs. 2 and 3, respectively. In the first case, we can see how
economies approach the steady–state of each club. Conversely, in the second case, the comparison
among the average transitional behaviour of each club is shown.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 149

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

Club 1

Time

R
el

at
iv

e
tr

an
si

tio
n

pa
th

1 4 7 10 13 16 19 22 25 28 31 34

0.
9

1.
0

1.
1

1.
2

Club 2

Time

R
el

at
iv

e
tr

an
si

tio
n

pa
th

1 4 7 10 13 16 19 22 25 28 31 34

0.
7

0.
8

0.
9

1.
0

1.
1

Club 3

Time

R
el

at
iv

e
tr

an
si

tio
n

pa
th

1 4 7 10 13 16 19 22 25 28 31 34

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

1.
05

Club 4

Time

R
el

at
iv

e
tr

an
si

tio
n

pa
th

1 4 7 10 13 16 19 22 25 28 31 34

0.
75

0.
80

0.
85

0.
90

0.
95

Club 5

Time

R
el

at
iv

e
tr

an
si

tio
n

pa
th

1 4 7 10 13 16 19 22 25 28 31 34

0.
75

0.
80

0.
85

0.
90

Club 6

Time

R
el

at
iv

e
tr

an
si

tio
n

pa
th

1 4 7 10 13 16 19 22 25 28 31 34

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

Club 7

Time

R
el

at
iv

e
tr

an
si

tio
n

pa
th

1 4 7 10 13 16 19 22 25 28 31 34

Figure 2: Transition paths within each convergence club.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 150

0.
7

0.
8

0.
9

1.
0

1.
1

Average transition paths − All clubs

Time

R
el

at
iv

e
tr

an
si

tio
n

pa
th

1 4 7 10 13 16 19 22 25 28 31 34

club1

club2

club3

club4

club5

club6

club7

Figure 3: Average transition paths for each convergence club.

Finally, we assess if it is possible to merge some clubs together by using function mergeClubs().
Phillips and Sul (2009) merging algorithm is chosen through the argument mergeMethod='PS'.

Merge clusters using Phillips and Sul (2009) method
mclubs <- mergeClubs(clubs, mergeMethod='PS')
summary(mclubs)

Number of convergence clubs: 6
Number of divergent units: 0
#
| merged clubs | # of regions | beta | std.err | tvalue
-------- --------------- --------------- ---------- ---------- ----------
club1 | clubs: 1 | 50 | 0.382 | 0.041 | 9.282
club2 | clubs: 2 | 30 | 0.24 | 0.035 | 6.904
club3 | clubs: 3 | 21 | 0.11 | 0.032 | 3.402
club4 | clubs: 4, 5 | 38 | -0.044 | 0.07 | -0.636
club5 | clubs: 6 | 11 | 1.003 | 0.166 | 6.024
club6 | clubs: 7 | 2 | -0.47 | 0.842 | -0.559

According to the Phillips and Sul merging algorithm, former clubs 4 and 5 have been merged
forming a new club (club 4), which now includes 38 Countries (24+14).

Conclusions

In this paper, we have discussed the implementation in R of the Phillips and Sul (2007, 2009) clustering
procedure by presenting the ConvergenceClubs package. The package allows for simple and intuitive
application of this methodology, which has become predominant in the analysis of the convergence
patterns of economies due to its positive attributes. We have provided functions to perform the
log–t test and cluster units, as well as to merge existing clubs. We have also described functions to
summarise and plot the information obtained through the application of the clustering algorithm, as
well as a detailed example of the package functionalities.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 151

Bibliography

Aptech Systems. The GAUSS system version 17, 2016. URL https://store.aptech.com/gauss-
platform-category.html. Maple Valley, WA. [p142]

M. Balcilar. mFilter: Miscellaneous Time Series Filters, 2018. URL https://CRAN.R-project.org/
package=mFilter. R package version 0.1-4. [p146]

W. J. Baumol. Productivity growth, convergence, and welfare: What the long–run data show. The
American Economic Review, 76(5):1072–1085, 1986. URL http://www.jstor.org/stable/1816469.
[p142]

L. Corrado, M. Weeks, and R. Martin. Identifying and Interpreting Regional Convergence Clusters
Across Europe. The Economic Journal, 115(502):C133–C160, 03 2005. URL https://doi.org/10.1111/
j.0013-0133.2005.00984.x. [p142]

K. Du. Econometric convergence test and club clustering using Stata. The Stata Journal, 17(4):882–900,
2018. URL https://doi.org/10.1177/1536867X1801700407. [p142, 148]

J. Le Gallo and S. Dall’Erba. Spatial econometric analysis of the evolution of the European regional
convergence process, 1980–1999. Technical report, EconWPA, 2005. URL https://econwpa.ub.uni-
muenchen.de/econ-wp/urb/papers/0311/0311001.pdf. [p142]

G. Myrdal. Economic theory and underdeveloped regions. Gerald Duckworth & Co Ltd, 1957. [p142]

P. C. B. Phillips and D. Sul. Transition modeling and econometric convergence tests. Econometrica, 75
(6):1771–1855, 2007. URL https://doi.org/10.1111/j.1468-0262.2007.00811.x. [p142, 143, 144,
146, 150]

P. C. B. Phillips and D. Sul. Economic transition and growth. Journal of Applied Econometrics, 24(7):
1153–1185, 2009. URL https://doi.org/10.1002/jae.1080. [p142, 143, 144, 146, 148, 150]

D. T. Quah. Regional convergence clusters across Europe. European Economic Review, 40(3):951 –
958, 1996. URL https://doi.org/10.1016/0014-2921(95)00105-0. Papers and Proceedings of the
Tenth Annual Congress of the European Economic Association. [p142]

J. Schnurbus, H. Haupt, and V. Meier. Economic transition and growth: A replication. Journal of Applied
Econometrics, 32(5):1039–1042, 2017. URL https://doi.org/10.1002/jae.2544. [p142, 148]

R. Sichera and P. Pizzuto. ConvergenceClubs: Finding Convergence Clubs, 2019. URL https://cran.r-
project.org/web/packages/ConvergenceClubs. R package version 2.2.1. [p142, 146]

R. M. Solow. A Contribution to the Theory of Economic Growth. The Quarterly Journal of Economics, 70
(1):65–94, 02 1956. URL https://doi.org/10.2307/1884513. [p142]

StataCorp. Stata statistical software: release 15, 2017. URL https://www.stata.com. College Station,
TX: StataCorp LLC. [p142]

K. von Lyncker and R. Thoennessen. Regional club convergence in the EU: evidence from a panel data
analysis. Empirical Economics, 52(2):525–553, Mar 2017. URL https://doi.org/10.1007/s00181-
016-1096-2. [p142, 145, 146]

Roberto Sichera
Department of Economics,
Business and Statistics (SEAS)
Viale delle Scienze, Ed. 13
Palermo, Italy
ORCID: 0000-0001-5307-6656
roberto.sichera@unipa.it

Pietro Pizzuto
Department of Economics,
Business and Statistics (SEAS)
Viale delle Scienze, Ed. 13
Palermo, Italy
ORCID: 0000-0001-5055-8916
pietro.pizzuto02@unipa.it

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://store.aptech.com/gauss-platform-category.html
https://store.aptech.com/gauss-platform-category.html
https://CRAN.R-project.org/package=mFilter
https://CRAN.R-project.org/package=mFilter
http://www.jstor.org/stable/1816469
https://doi.org/10.1111/j.0013-0133.2005.00984.x
https://doi.org/10.1111/j.0013-0133.2005.00984.x
https://doi.org/10.1177/1536867X1801700407
https://econwpa.ub.uni-muenchen.de/econ-wp/urb/papers/0311/0311001.pdf
https://econwpa.ub.uni-muenchen.de/econ-wp/urb/papers/0311/0311001.pdf
https://doi.org/10.1111/j.1468-0262.2007.00811.x
https://doi.org/10.1002/jae.1080
https://doi.org/10.1016/0014-2921(95)00105-0
https://doi.org/10.1002/jae.2544
https://cran.r-project.org/web/packages/ConvergenceClubs
https://cran.r-project.org/web/packages/ConvergenceClubs
https://doi.org/10.2307/1884513
https://www.stata.com
https://doi.org/10.1007/s00181-016-1096-2
https://doi.org/10.1007/s00181-016-1096-2
mailto:roberto.sichera@unipa.it
mailto:pietro.pizzuto02@unipa.it

CONTRIBUTED RESEARCH ARTICLES 152

PPCI: an R Package for Cluster
Identification using Projection Pursuit
by David P. Hofmeyr and Nicos G. Pavlidis

Abstract This paper presents the R package PPCI which implements three recently proposed projec-
tion pursuit methods for clustering. The methods are unified by the approach of defining an optimal
hyperplane to separate clusters, and deriving a projection index whose optimiser is the vector normal
to this separating hyperplane. Divisive hierarchical clustering algorithms that can detect clusters
defined in different subspaces are readily obtained by recursively bi-partitioning the data through such
hyperplanes. Projecting onto the vector normal to the optimal hyperplane enables visualisations of the
data that can be used to validate the partition at each level of the cluster hierarchy. Clustering models
can also be modified in an interactive manner to improve their solutions. Extensions to problems
involving clusters which are not linearly separable, and to the problem of finding maximum hard
margin hyperplanes for clustering are also discussed.

Introduction

Clustering refers to the problem of identifying distinct groups (clusters) of relatively homogeneous
points within a collection of data, with no explicit knowledge about the group associations of any
of the points. Various definitions of what constitutes a cluster have led to a multitude of clustering
algorithms (Jain et al., 1999), with no universal consensus and no definition which is appropriate for
all applications. Without a ground truth solution clusters must be determined by the relative spatial
relationships between points. However, the spatial structure can be less informative for determining
clusters in the presence of irrelevant/noisy features, as well as correlations among subsets of features.
Such characteristics abound especially in high dimensional applications, and make the clustering
problem especially challenging. To accurately cluster such data sets it becomes necessary to identify
subspaces which allow a strong separation of clusters. The best subspace to separate clusters will
clearly depend on the cluster definition employed, and moreover a single subspace of fixed dimension
may not allow a complete separation of all clusters.

A principled approach to finding high quality subspaces for clustering is via projection pursuit.
Projection pursuit refers to a class of dimension reduction techniques which seek to optimise over all
linear projections of the data a given measure of interestingness, called a projection index (Huber, 1985).
Principal Component Analysis (PCA) is arguably the most popular projection pursuit method. In PCA
the projection index can be formulated as the variance of the projected data. This index is known to be
maximised by the eigenvector associated with the largest eigenvalue of the covariance matrix. For most
other projection indices no closed form solution is available and these objectives are instead numerically
optimised. Although PCA has been successfully applied in numerous clustering problems, there is no
guarantee that any number of principal components will be relevant for preserving/exposing cluster
structure. This is unsurprising as it is trivial to construct data sets in which clusters are only separated
along directions of low data variability. As will be seen in the remainder, when the clustering objective
is included in the projection index, substantial improvements can be made.

As far as we are aware the only existing R package which combines projection pursuit and
clustering is ProjectionBasedClustering (Thrun et al., 2018). ProjectionBasedClustering provides
both linear and non-linear dimension reduction techniques, including Independent Component
Analysis (Hyvärinen et al., 2004, ICA) and t-distributed Stochastic Neighbour Embedding (Maaten
and Hinton, 2008, t-SNE). None of these incorporates a clustering criterion directly into the dimension
reduction formulation. As a result there is no guarantee that the lower dimensional embeddings of the
data will exhibit any cluster structure. Moreover different dimension reduction techniques may lead
to very different low dimensional embeddings. This is problematic from the user’s perspective. Even
if the user knows the type of clusters which are of interest it is unclear which dimension reduction
technique is most appropriate for their problem. The subspace package (Hassani and Hansen, 2015)
also performs projection based clustering, including methods such as CLIQUE (Agrawal et al., 1998)
and SubClu (Kailing et al., 2004). The approach adopted by these methods differs fundamentally from
ours in that clusters are defined through grid cells which have high data density when projected onto
multiple axes of the input space. There is thus no search for an optimal subspace/projection of the
data.

In this paper we present the R package PPCI which provides implementations of three recently
developed projection pursuit methods for clustering. The projection indices underlying these methods
are based on three popular clustering objectives, including those underlying k-means; density cluster-

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=ProjectionBasedClustering
https://CRAN.R-project.org/package=subspace

CONTRIBUTED RESEARCH ARTICLES 153

ing; and clustering by normalised graph cuts. With no guarantee of the existence of a single subspace
to distinguish all clusters, we instead adopt the approach of repeatedly identifying a single univariate
subspace which allows the separation of at least one cluster from the remainder. The separations of
clusters are thus induced by hyperplanes in the original space. The overall clustering model has a
divisive hierarchical structure, in which each cluster is formed by the intersection of finitely many
half-spaces.

The PPCI package can be installed from the Comprehensive R Archive Network (CRAN) from
within the R console:

> install.packages("PPCI")
> library(PPCI)

The remaining paper contains a formulation of the general problem of divisive hierarchical
clustering using projection pursuit, and a description of the three methods included in PPCI. Thereafter
we provide instructive examples and important extensions of these approaches.

Projection pursuit, hyperplanes and divisive hierarchical clustering

In this section we introduce a general framework for finding optimal univariate projections for
separating clusters. Since the induced cluster boundaries are hyperplanes with normal vector equal to
the optimal projection vector, we approach this problem from the point of view of defining optimal
hyperplanes to bi-partition the data, and from these derive associated projection indices. We then
discuss briefly how to combine such hyperplanes to produce a divisive hierarchical clustering model.

Finding optimal hyperplanes via projection pursuit

To begin with, assume the data set consists of a finite set of vectors in Rd, X = {xi}n
i=1. For a unit-

length vector v ∈ Bd =
{

x ∈ Rd | ‖x‖2 = 1
}

, we use v>X = {v>xi}n
i=1 to denote the projection of X

onto v. Now, a hyperplane in Rd is a translated subspace of co-dimension one, that is parameterised
by a pair (v, b) ∈ Bd ×R, as the set,

H(v, b) =
{

x ∈ Rd | v>x = b
}

.

A hyperplane that intersects the interior of the convex hull of X induces a binary partition based on
the half-space to which each observation is allocated,

X = X+
v,b ∪ X

−
v,b,

X+
v,b := {x ∈ X |v>x > b},

X−v,b := {x ∈ X |v>x < b}.

Hyperplanes are linear cluster separators as the boundary between the two clusters is defined by
the linear equation v>x = b. It is simple to construct examples where linear cluster separators are too
restrictive, however hyperplanes have been very successful in accurately separating clusters in many
real world applications, and especially in high dimensional data sets (Boley, 1998; Tasoulis et al., 2010,
2012; Zhang et al., 2009).

One of the benefits of employing hyperplanes for clustering is that projecting onto a vector (in
this case the vector normal to the hyperplane) achieves the maximum reduction of dimensionality.
Furthermore the associated clustering problems within the corresponding one-dimensional subspace
become tractable. Now, if the projection vector, v, is a combination of features that are not relevant for
distinguishing clusters then there will be no hyperplane orthogonal to v which induces a high quality
binary partition of X . If instead v is a combination of features along which clusters are separable, then
there will exist a b for which H(v, b) induces a high quality binary partition of X .

Let Q be a measure of quality of a binary partition, where quality can be measured either in terms
of a high degree of clusterability, or low degree of connectedness between the two components. The
quality of a hyperplane H(v, b) can then be written as,

φ(v, b|X) = Q(v>X−v,b, v>X+
v,b).

When the number of clusters is large, the objective φ(v, b|X) has numerous local optima. As a
result optimising φ(v, b|X) directly with respect to both parameters, v and b, can lead to partitions of

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 154

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●
● ●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●●

●

●

●

●
● ●

●

●

●

●●

●

●

●

● ●

●

●

●●
● ●

●

●●
● ●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●●

●
●

●

●
●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
● ● ●●●●

●

●
●

●●
●

●

●

●

●

●

●
● ●

● ●

●
●●

●

●

●

●

●
●

●

●●●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●●

●

●

●

● ●

●
● ●

●
●

●●●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●
●●

● ●

●
●

●

●

●
● ●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●●

●

● ●●
●

●

●
●

● ●●

●

● ●

●

●

● ●

●
●

●

●●

●

●
●

●●
●

●
●

● ●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●
● ●

●

●
●
●

● ●

●

●

●
●

●

●

●

●

●
●

● ●
●

●

● ●
●

●

●

●
●
●

●

●

●

●

●

●

● ●
●●

● ●

●
●

●

●
●

● ●

●
●

● ●●
●●

●

●

●
●●

●

●
●●

●

●
●●●

●

●
●

●

●

●

●
●

●●

●

●

●

● ●

●
● ●

●

●
●

●
●

●
●

●

●
● ●●

●

●
●●

●
●

●

●

●

●
●

●
●

●

●
●●

●

● ●
●

●

●

●
●

●

●
●

● ●
●

●

●
●

●●

●

●
●

●

●

●

●
●

●
●

● ●●
●

●
●

●
●●

●
●

●
●●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●●

●
●

●

●

●
●

●

●

●
● ●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●● ●● ● ● ●
●

● ●●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●
●

●

●

●
●

●

●
●

●

●
●●

●
●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●● ●
●

●

●

● ●

●

●

●
●

●●

●

● ●

●
●

●
●

●

●
●
●●

● ●
●

●●

●
●

●

●

●

●●
●

●

●
●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●
●

●● ●
●

●

●

●●●

●
●

●

●

●

●
●

●

●

●
●

●

●
●●●

●

●

●●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●
●

●
●

● ●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

● ●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●
● ●

●

● ●
●●

●

● ●

●

●

●
●

●●

●●
●

● ●

●

●●
●●

●

●

●

●

●

●
●

●
●●

●
● ●

●

●
●

●

●●

●

●

●●
●

● ●

●
●

●

●

●

●
●

● ●
●

●

●
●

●

●
●

●

●

●
●

●
●

●

● ●

●

●

●

●
● ●●

●

●

● ●

●

●

●●

●

●

●
● ●

●
●

●
● ●● ●●

●

●●
●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●
● ●

●●
●

●

●
● ●

●
●●

●

●
●

●

●
●

●

●●
●

●●

●
●

●

●

●

●

● ●

●
● ●

●
●

●

●

●

●
●●

●

●
●

●●

●

●

●
● ●

●
●

●

●

●●
●

●

●

●

●●

●

●●

●
●
● ●

●●
●

●

●

●

●
●● ●

●
●

●

●

●

●
●●

● ●
●

● ●●
●

●
●

●
●

●
● ●

●●
●

●

●

●

● ●

● ●
●

●

●●
●

●

●

●

●●

●

●

●●

●
●

●

●
●●

●

●
●

●

●

●

●

●
● ●

●

●

●

●●
●●

●

●
●

●

●●

●

●● ●
●●●

●
●

●

●

●● ●

●

●

●

●

●●●

●

● ●

●
●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●●
●

●
● ●

●

●

●

●

● ●
●●

●

●
●●

●
●●

●

● ●

●

●

●●

●
●

●
●

●

●

●

●
●

●

●
●

●●
●

●
● ●●

●●
●

●

●● ●

●
●

●

●

●

●
●

●
●

●

●

● ●
●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●
● ●

●
●

●

●
●

●

●

●

●

●
●

●●
●

●
●

●

● ●
●●

●

●
● ●

●
●

●

●

●●

● ●●

●●
●

●

●

●

●
● ●

●

●●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●
●

● ●

●●

●

●●
●

●

●

●

●

●
● ●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●
●

● ●

●
●

●

●
●

●

●

●

● ●

●

●
●

●

●

●
●

●

●●
●
●● ● ●

●●
●

●

●

●

●

●
●

●●
●

● ●●

●● ●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●●●

●

●
●

●

●
●

●●
● ●

●

●
●

●●

●
● ●

●
●

● ●

●

●

●
●
● ●

●

●●

●●

●

●

● ●

●
●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●
●

● ●

●●

●

●

●●
● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●●

●
●

●

●
● ●

●

●

●

●

●

●

●
●●

●
●

●

●

● ●

●
●

●

●

●
● ● ●● ●

●

●●
●

●
●

●

●●
●

●●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●
●

●
●

●

●●
●

●

●●

●
●

●
●

●

●
●

●
●

●

●
●

●

●●
●

● ●●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●●●

●
●

●
●

●
●

●
●

●

●

●●

● ●

●

●

●

●

●

●

● ●

●

● ●●

● ●
●

●●

●

●

●
● ●●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●
●

●
● ●

●

●

● ●●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●●
●

●●

●

●
●

●●

●

● ● ●●

● ●●●●
●

●
●●

●
●

●
●

●
●●

●
●

●

● ●
●

●

●
●

●
● ●●

●
●

●

●
●

●
● ●

●

●

●
●

●
●

●

● ●●
●

●●
●

●

●

●

●

●●

●

●

●
●

●

●

● ●
● ●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●●

●●
●

●

●

●

●

● ●

●

●
●

●●
●●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●
●

●
●

●

●

●

● ●●
●

●

●
●

●

●●
● ●●
●

●
●●

●

●
●

●●

●

●
●

●

● ●

●

●
●

●

●● ●

●
● ●

●

●

●●●

●
●

●

●

●
●

●

●

●

●●
●

● ● ●

●

●

●
●

●

●

●
●

●
● ●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●●
●
●

●
●

●

●

● ●

●

● ●●
●

●

●
●

●

●
●

●

●
●●

●

● ● ●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●
●

● ●

●

● ●●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●●
●

●●

●●

●
●

● ●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●●

●

●

●● ●●

●

●●

●●

●

●

●

●

●
●

●

● ●
●

●

●●
● ●

●

●
●

●
●●

●●

●
●

●
●●

● ●

●

●

●

●● ●

●

● ●
●

●

●●

●

●
●

●● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

● ●
● ●

●

●

● ● ●

●

●

●
●

● ●

●

●

●

●

●
●

●●

●●●
●●

●

●

●
●

●

●
●

●

●●

●
● ●

●

●●
●

●
●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●●
●

● ●

●

●
●

●
●

●

●●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●
●

●
●●

●

●
●

●●
●

●●

●

●●

●

●

●

●

●

●
● ●

●●

● ●●
●

●
●

● ●

●

●

●

●

●

●
●

●

●
●●●

●

● ●
●

●

●

● ●

●
●

●

●

● ●
●

●
●

●

● ●

●
●

●

●

●

●

●
● ●●

●

●

●
●

●

●

● ●

●
●

●

●

●

●
●

●●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●●
●

●
●

●

● ●

● ● ● ●
●

●
●

●

●

●●
●

●
●
●

●
●

●

● ●

●

●
●

●

●

●●

●
●

●

●

●
●

●

● ●●

● ●
● ●

●
●●

●

1

●

●

●

●

●●

●
●

●

●

● ●
●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●●●
●

●

●

●
●● ●

●

●●●

●

●

●

●
●

●
● ●

●

●
●

●

●
●●

●

● ●

●

●

●
● ●

●

●
●

●

● ●

●

●

●
●

●

●

●
●

●
●

●
●

● ●

●

●
●

●●

●

●●

●
●

●

●
●●

●

●

●
● ●

● ●●

●●
●

●

●

●●
●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●
●

●

●

●

●●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●●

●
●

● ●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●● ●
●

●

●
●

●

●

●
● ●●●

●●
●● ●

●

● ●● ●● ●

●
● ●

●
●

●
●

●

●

● ●●
●

●

●
●

●

●

●

●
●

●

●

●
●

●
●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●
●●

●

●

●

●

● ●

●

●
● ●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

● ●

●
●

●

●

●
●

●

●

●●

● ●

● ●

●

●

●
●

●● ●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●●

●

●

●
●●

●●
●
●

●

●

●
●

●●
●

●
●

●
●

●

●

●

●●●
●

●

●

●
●

●

●

●
●

● ●

●
●

●

● ●●

●

●

●
●

●

●

●● ●
●

●

●

●

● ●

●
●

●

●

●

● ●

●

● ● ● ●
●

●
●

●
●

●

●
● ●

●

●●

●
●

●

●

●● ●

●

●
●

●●
●

●

●●●
●

●

●

● ●
●● ●

●
●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

● ●

●

●
●

●●

●

●

●

●
●
●

●

●●

●
●

●●
● ●

●

●●

●
●

●

●

●● ●●

●

●

●

●

●

●

● ●

●

●
●

●
●

● ●

●

●

●
●

●
●●

●

●

●

●
●

●● ●

●
●

●
●

●
●

● ● ●

●●

●

●

● ●
●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●
● ●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●●

●

●●
●

●

●
●

●
●
●

●
●

●

●

●

●
●

●

●

●●

●

●
● ●

●

●
●

●
●

●

●

●
●

●

●●

●

● ●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●

●● ●●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

● ● ●●

●
●

●

●
●

●

●
●

●
●●

●

●

●

●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●●

●
●●

●

●●
●

● ● ●

●

●

●
●

●●
● ●

●

●

●●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●●●
●

●

● ●

●
●

●
●

●

●

● ●

●

●
●

●
●

●

●

●●

●

● ●
●

●
●

●

●

●
●

●

●

●
●

●
●
●

●

●

●
●

● ● ●
●

●
●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●● ●

●

●

●

●●

●

●

●
●

●

●

●●
●

●

●

●
● ●

●
● ●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●●
●

● ●

●●

●

● ●

●

●
●

●

●

●

●

● ●

●
●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

● ●
●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●●

●

● ●

●
●

●

●

●
● ●●

● ●●

●

●
●

● ●●
●

●

●
● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●●

●
●

● ●

●
●

●

●

●

●

●

●

●

●●

●●

●●●

●

●
●

●
●

●

●

●

● ●

●

●

●
●

●

●●

● ●

●
●

●
●

●

●

●●

●

●
●

● ●●
●

●
●
●

●
●

●●●●

●

●

●
●

●

●

●●

●

●●●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●
●

●● ●

●●

●

●

● ●●

●

●

● ●

●

●●

●● ●

●

●
●

●
●●

●

●

●
●

●

●
●●

●

●
●

●●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●
●

● ●

●●●

●
●

●●●
●

●●

●
●

●
●

●
●

●

●●

●

●
●●

●

●

●

●
● ●

●
●●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●
●●●

●
●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●●
●

●

●

●
●

●
● ●

●

●

●

●

●

●
●● ●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●
● ●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●●

●
●

●

●

● ●
●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●
●

●
●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●
●●

●
●

●
●●

●●

●

●
●

●

●
●

●●

●

●

● ●●
●

●

●
●

●

●
●

●
●

●●
●

●

●

●

●● ●
●

● ● ●
●

● ●

●

●●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

● ●
●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

● ●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●
●

● ●

●

●

●● ●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

● ●●
●

●●
●
●

●

●●

●

● ●

● ●
●

●●

●

●

●
●

● ●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●●

●
●●

●
●

●

● ●

●

●

● ●
●

●

●

●
●

●

●

●

●

●●

●
●

●
●●●

●

● ●
●

●

●

●

●
●

●●

●

●

●

●
●

●
●●

●
●

●

●

●
●

●

●

●
●

● ●

●

●
●

●

●● ●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●●

● ●
●

●

●

●
●

●

●

●

●
●

●
●

● ●
●

●

●
●

●

●

●
●

●●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●
●●●

●

●
●

●●
●

●

●
●

●

●●

●

● ●

●

●

●

●

●
●

● ●
●●

●

●●
●●

●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

2

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●
●

●●

●

●
●

●●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
● ● ●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

● ● ●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

● ●
●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

● ●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

4

●

●

●

●

●
●●

●●

●

●

● ●

● ●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

● ●●

●
●

●

●

●
●

●●

● ●
●

●●

●
●

●

●

●

●

● ●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●
● ●

●

●

●

●
●●

●

●

●
●

●
●

●
●

●

●
●

●
● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

● ● ●●
●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●● ●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●
●●

●

●

●
●

●

●●

●
●

●

●
●
●

●
●

●●

●

●

●
●

●
●

●

●

●

● ●

●

●●
●

●● ●

●●

●

●
●

●

●●
●●

● ●

● ●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

● ●

●

●
● ● ●● ●

●

●

●
●

●

●

●
●

●●

●●
●

●
●

●

●

●●●
● ●

●

●

●●
●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

● ● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

● ●
●

●
●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●●●

●

●

●

●

●
●

● ●

●
● ●

●

●

●
●

●●●

●

●

●
●

●

●
●

●
●

● ●

●

●

●
●

●

●● ●

●
●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●
●
●

●

●
●
● ●

●

●

●

● ●
● ●

●●

●

●
●

●

●●
●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●

●
●●●

●● ●●
● ●●

●

● ●

●
●

●
●

●

●

●

●

●
●

●
●

● ●

●

● ●
●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●● ●
●

●
●

●
●

●
●

●

●

●

● ●

●
●●●

●

●

●

●

●
●●

●

●
●

●

●

●

●●●

●

●
●

●

●

● ●

●

●

●●

●

●
●
●

●

● ●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●● ●

●
●

●

●

● ●

●
●●

●
●

●
●

●

●

●

●

●

●● ●
●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

● ●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●●●

●

●

●
● ●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●
●

●
●●

●●
●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ●●

●●
●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●● ●

● ●●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●●
●

●
●

●

●

●●

●

●●

●●
●

●

● ●

●
●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●●

●

●
●

●●

●

●

●

●●

●●

●
●

●

●
●

●

●
●

●●

●

●●

●

●

●

●●

●

●

●
●

●
●

●
●

●●

●
●

●
●●

● ●

●
●
●

●●
●

●

●

●

●

●●

●

●

●
●

●
●

●

● ●

●

●

● ●
●●

●

●

●

●

●
●

●

●

●
●

●

●●

●

● ●

●

●● ●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●
●

●
●

●

●

● ●
●●

●
●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●
●

●

●●
●

●
●

●
●

●

●● ●

●
●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●● ●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●
●

●
●● ●

● ●

●● ●

●
●

●

●●
●

●

●

●

●●

●

●
●

●

●

●

●

● ●
●

●

●
●●

●

● ●●

● ●
●

●

●

●

●
●●

●
●

●

●

● ●
●

●●

● ●

●
●

●●●
●

● ●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●●

●

●● ●

●

●

●

●●

●

● ●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●● ●●

●

●

●

●

●

●

●
●

●

●

●●●
●

●
● ●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●

●
●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

● ●
●

●

●

●
●

●
●

●
●

●

● ● ● ●

●

●

● ●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●●

●●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●●

●

5

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●
●

●

●
●

●
●

●

●●

●

●
●

● ●●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

● ●

●●

●
●

●

●

●

●

●

● ●

●●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●●●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●●

●
●●

●
●●

●

●

●
●●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

● ●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

6

●

●

● ●

●
●

● ●

●
●

●

●

●
●

●

●●

●

●

●
●
●

●

●

● ●

● ●

●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●
●●

●

●

●

●

●

●
●

● ●

●
●

●●

●

●

●

●

●
● ●
●

●

●●

●●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

7

●

●
●

●

●●

●

●

●

●

●

●

● ●
● ●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

● ●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●●
●

●

●

●
●

●

●

8
●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●●

●
●

●

●●
● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●

9

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

3

(a) Without cluster labels

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●
● ●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●●

●

●

●

●
● ●

●

●

●

●●

●

●

●

● ●

●

●

●●
● ●

●

●●
● ●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●●

●
●

●

●
●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
● ● ●●●●

●

●
●

●●
●

●

●

●

●

●

●
● ●

● ●

●
●●

●

●

●

●

●
●

●

●●●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●●

●

●

●

● ●

●
● ●

●
●

●●●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●
●●

● ●

●
●

●

●

●
● ●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●●

●

● ●●
●

●

●
●

● ●●

●

● ●

●

●

● ●

●
●

●

●●

●

●
●

●●
●

●
●

● ●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●
● ●

●

●
●
●

● ●

●

●

●
●

●

●

●

●

●
●

● ●
●

●

● ●
●

●

●

●
●
●

●

●

●

●

●

●

● ●
●●

● ●

●
●

●

●
●

● ●

●
●

● ●●
●●

●

●

●
●●

●

●
●●

●

●
●●●

●

●
●

●

●

●

●
●

●●

●

●

●

● ●

●
● ●

●

●
●

●
●

●
●

●

●
● ●●

●

●
●●

●
●

●

●

●

●
●

●
●

●

●
●●

●

● ●
●

●

●

●
●

●

●
●

● ●
●

●

●
●

●●

●

●
●

●

●

●

●
●

●
●

● ●●
●

●
●

●
●●

●
●

●
●●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●●

●
●

●

●

●
●

●

●

●
● ●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●● ●● ● ● ●
●

● ●●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●
●

●

●

●
●

●

●
●

●

●
●●

●
●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●● ●
●

●

●

● ●

●

●

●
●

●●

●

● ●

●
●

●
●

●

●
●
●●

● ●
●

●●

●
●

●

●

●

●●
●

●

●
●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●
●

●● ●
●

●

●

●●●

●
●

●

●

●

●
●

●

●

●
●

●

●
●●●

●

●

●●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●
●

●
●

● ●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

● ●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●
● ●

●

● ●
●●

●

● ●

●

●

●
●

●●

●●
●

● ●

●

●●
●●

●

●

●

●

●

●
●

●
●●

●
● ●

●

●
●

●

●●

●

●

●●
●

● ●

●
●

●

●

●

●
●

● ●
●

●

●
●

●

●
●

●

●

●
●

●
●

●

● ●

●

●

●

●
● ●●

●

●

● ●

●

●

●●

●

●

●
● ●

●
●

●
● ●● ●●

●

●●
●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●
● ●

●●
●

●

●
● ●

●
●●

●

●
●

●

●
●

●

●●
●

●●

●
●

●

●

●

●

● ●

●
● ●

●
●

●

●

●

●
●●

●

●
●

●●

●

●

●
● ●

●
●

●

●

●●
●

●

●

●

●●

●

●●

●
●
● ●

●●
●

●

●

●

●
●● ●

●
●

●

●

●

●
●●

● ●
●

● ●●
●

●
●

●
●

●
● ●

●●
●

●

●

●

● ●

● ●
●

●

●●
●

●

●

●

●●

●

●

●●

●
●

●

●
●●

●

●
●

●

●

●

●

●
● ●

●

●

●

●●
●●

●

●
●

●

●●

●

●● ●
●●●

●
●

●

●

●● ●

●

●

●

●

●●●

●

● ●

●
●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●●
●

●
● ●

●

●

●

●

● ●
●●

●

●
●●

●
●●

●

● ●

●

●

●●

●
●

●
●

●

●

●

●
●

●

●
●

●●
●

●
● ●●

●●
●

●

●● ●

●
●

●

●

●

●
●

●
●

●

●

● ●
●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●
● ●

●
●

●

●
●

●

●

●

●

●
●

●●
●

●
●

●

● ●
●●

●

●
● ●

●
●

●

●

●●

● ●●

●●
●

●

●

●

●
● ●

●

●●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●
●

● ●

●●

●

●●
●

●

●

●

●

●
● ●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●
●

● ●

●
●

●

●
●

●

●

●

● ●

●

●
●

●

●

●
●

●

●●
●
●● ● ●

●●
●

●

●

●

●

●
●

●●
●

● ●●

●● ●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●●●

●

●
●

●

●
●

●●
● ●

●

●
●

●●

●
● ●

●
●

● ●

●

●

●
●
● ●

●

●●

●●

●

●

● ●

●
●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●
●

● ●

●●

●

●

●●
● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●●

●
●

●

●
● ●

●

●

●

●

●

●

●
●●

●
●

●

●

● ●

●
●

●

●

●
● ● ●● ●

●

●●
●

●
●

●

●●
●

●●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●
●

●
●

●

●●
●

●

●●

●
●

●
●

●

●
●

●
●

●

●
●

●

●●
●

● ●●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●●●

●
●

●
●

●
●

●
●

●

●

●●

● ●

●

●

●

●

●

●

● ●

●

● ●●

● ●
●

●●

●

●

●
● ●●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●
●

●
● ●

●

●

● ●●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●●
●

●●

●

●
●

●●

●

● ● ●●

● ●●●●
●

●
●●

●
●

●
●

●
●●

●
●

●

● ●
●

●

●
●

●
● ●●

●
●

●

●
●

●
● ●

●

●

●
●

●
●

●

● ●●
●

●●
●

●

●

●

●

●●

●

●

●
●

●

●

● ●
● ●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●●

●●
●

●

●

●

●

● ●

●

●
●

●●
●●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●
●

●
●

●

●

●

● ●●
●

●

●
●

●

●●
● ●●
●

●
●●

●

●
●

●●

●

●
●

●

● ●

●

●
●

●

●● ●

●
● ●

●

●

●●●

●
●

●

●

●
●

●

●

●

●●
●

● ● ●

●

●

●
●

●

●

●
●

●
● ●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●●
●
●

●
●

●

●

● ●

●

● ●●
●

●

●
●

●

●
●

●

●
●●

●

● ● ●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●
●

● ●

●

● ●●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●●
●

●●

●●

●
●

● ●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●●

●

●

●● ●●

●

●●

●●

●

●

●

●

●
●

●

● ●
●

●

●●
● ●

●

●
●

●
●●

●●

●
●

●
●●

● ●

●

●

●

●● ●

●

● ●
●

●

●●

●

●
●

●● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

● ●
● ●

●

●

● ● ●

●

●

●
●

● ●

●

●

●

●

●
●

●●

●●●
●●

●

●

●
●

●

●
●

●

●●

●
● ●

●

●●
●

●
●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●●
●

● ●

●

●
●

●
●

●

●●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●
●

●
●●

●

●
●

●●
●

●●

●

●●

●

●

●

●

●

●
● ●

●●

● ●●
●

●
●

● ●

●

●

●

●

●

●
●

●

●
●●●

●

● ●
●

●

●

● ●

●
●

●

●

● ●
●

●
●

●

● ●

●
●

●

●

●

●

●
● ●●

●

●

●
●

●

●

● ●

●
●

●

●

●

●
●

●●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●●
●

●
●

●

● ●

● ● ● ●
●

●
●

●

●

●●
●

●
●
●

●
●

●

● ●

●

●
●

●

●

●●

●
●

●

●

●
●

●

● ●●

● ●
● ●

●
●●

●

1

●

●

●

●

●●

●
●

●

●

● ●
●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●●●
●

●

●

●
●● ●

●

●●●

●

●

●

●
●

●
● ●

●

●
●

●

●
●●

●

● ●

●

●

●
● ●

●

●
●

●

● ●

●

●

●
●

●

●

●
●

●
●

●
●

● ●

●

●
●

●●

●

●●

●
●

●

●
●●

●

●

●
● ●

● ●●

●●
●

●

●

●●
●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●
●

●

●

●

●●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●●

●
●

● ●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●● ●
●

●

●
●

●

●

●
● ●●●

●●
●● ●

●

● ●● ●● ●

●
● ●

●
●

●
●

●

●

● ●●
●

●

●
●

●

●

●

●
●

●

●

●
●

●
●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●
●●

●

●

●

●

● ●

●

●
● ●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

● ●

●
●

●

●

●
●

●

●

●●

● ●

● ●

●

●

●
●

●● ●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●●

●

●

●
●●

●●
●
●

●

●

●
●

●●
●

●
●

●
●

●

●

●

●●●
●

●

●

●
●

●

●

●
●

● ●

●
●

●

● ●●

●

●

●
●

●

●

●● ●
●

●

●

●

● ●

●
●

●

●

●

● ●

●

● ● ● ●
●

●
●

●
●

●

●
● ●

●

●●

●
●

●

●

●● ●

●

●
●

●●
●

●

●●●
●

●

●

● ●
●● ●

●
●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

● ●

●

●
●

●●

●

●

●

●
●
●

●

●●

●
●

●●
● ●

●

●●

●
●

●

●

●● ●●

●

●

●

●

●

●

● ●

●

●
●

●
●

● ●

●

●

●
●

●
●●

●

●

●

●
●

●● ●

●
●

●
●

●
●

● ● ●

●●

●

●

● ●
●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●
● ●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●●

●

●●
●

●

●
●

●
●
●

●
●

●

●

●

●
●

●

●

●●

●

●
● ●

●

●
●

●
●

●

●

●
●

●

●●

●

● ●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●

●● ●●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

● ● ●●

●
●

●

●
●

●

●
●

●
●●

●

●

●

●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●●

●
●●

●

●●
●

● ● ●

●

●

●
●

●●
● ●

●

●

●●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●●●
●

●

● ●

●
●

●
●

●

●

● ●

●

●
●

●
●

●

●

●●

●

● ●
●

●
●

●

●

●
●

●

●

●
●

●
●
●

●

●

●
●

● ● ●
●

●
●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●● ●

●

●

●

●●

●

●

●
●

●

●

●●
●

●

●

●
● ●

●
● ●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●●
●

● ●

●●

●

● ●

●

●
●

●

●

●

●

● ●

●
●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

● ●
●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●●

●

● ●

●
●

●

●

●
● ●●

● ●●

●

●
●

● ●●
●

●

●
● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●●

●
●

● ●

●
●

●

●

●

●

●

●

●

●●

●●

●●●

●

●
●

●
●

●

●

●

● ●

●

●

●
●

●

●●

● ●

●
●

●
●

●

●

●●

●

●
●

● ●●
●

●
●
●

●
●

●●●●

●

●

●
●

●

●

●●

●

●●●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●
●

●● ●

●●

●

●

● ●●

●

●

● ●

●

●●

●● ●

●

●
●

●
●●

●

●

●
●

●

●
●●

●

●
●

●●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●
●

● ●

●●●

●
●

●●●
●

●●

●
●

●
●

●
●

●

●●

●

●
●●

●

●

●

●
● ●

●
●●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●
●●●

●
●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●●
●

●

●

●
●

●
● ●

●

●

●

●

●

●
●● ●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●
● ●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●●

●
●

●

●

● ●
●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●
●

●
●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●
●●

●
●

●
●●

●●

●

●
●

●

●
●

●●

●

●

● ●●
●

●

●
●

●

●
●

●
●

●●
●

●

●

●

●● ●
●

● ● ●
●

● ●

●

●●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

● ●
●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

● ●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●
●

● ●

●

●

●● ●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

● ●●
●

●●
●
●

●

●●

●

● ●

● ●
●

●●

●

●

●
●

● ●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●●

●
●●

●
●

●

● ●

●

●

● ●
●

●

●

●
●

●

●

●

●

●●

●
●

●
●●●

●

● ●
●

●

●

●

●
●

●●

●

●

●

●
●

●
●●

●
●

●

●

●
●

●

●

●
●

● ●

●

●
●

●

●● ●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●●

● ●
●

●

●

●
●

●

●

●

●
●

●
●

● ●
●

●

●
●

●

●

●
●

●●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●
●●●

●

●
●

●●
●

●

●
●

●

●●

●

● ●

●

●

●

●

●
●

● ●
●●

●

●●
●●

●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

2

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●
●

●●

●

●
●

●●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
● ● ●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

● ● ●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

● ●
●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

● ●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

4

●

●

●

●

●
●●

●●

●

●

● ●

● ●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

● ●●

●
●

●

●

●
●

●●

● ●
●

●●

●
●

●

●

●

●

● ●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●
● ●

●

●

●

●
●●

●

●

●
●

●
●

●
●

●

●
●

●
● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

● ● ●●
●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●● ●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●
●●

●

●

●
●

●

●●

●
●

●

●
●
●

●
●

●●

●

●

●
●

●
●

●

●

●

● ●

●

●●
●

●● ●

●●

●

●
●

●

●●
●●

● ●

● ●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

● ●

●

●
● ● ●● ●

●

●

●
●

●

●

●
●

●●

●●
●

●
●

●

●

●●●
● ●

●

●

●●
●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

● ● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

● ●
●

●
●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●●●

●

●

●

●

●
●

● ●

●
● ●

●

●

●
●

●●●

●

●

●
●

●

●
●

●
●

● ●

●

●

●
●

●

●● ●

●
●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●
●
●

●

●
●
● ●

●

●

●

● ●
● ●

●●

●

●
●

●

●●
●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●

●
●●●

●● ●●
● ●●

●

● ●

●
●

●
●

●

●

●

●

●
●

●
●

● ●

●

● ●
●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●● ●
●

●
●

●
●

●
●

●

●

●

● ●

●
●●●

●

●

●

●

●
●●

●

●
●

●

●

●

●●●

●

●
●

●

●

● ●

●

●

●●

●

●
●
●

●

● ●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●● ●

●
●

●

●

● ●

●
●●

●
●

●
●

●

●

●

●

●

●● ●
●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

● ●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●●●

●

●

●
● ●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●
●

●
●●

●●
●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ●●

●●
●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●● ●

● ●●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●●
●

●
●

●

●

●●

●

●●

●●
●

●

● ●

●
●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●●

●

●
●

●●

●

●

●

●●

●●

●
●

●

●
●

●

●
●

●●

●

●●

●

●

●

●●

●

●

●
●

●
●

●
●

●●

●
●

●
●●

● ●

●
●
●

●●
●

●

●

●

●

●●

●

●

●
●

●
●

●

● ●

●

●

● ●
●●

●

●

●

●

●
●

●

●

●
●

●

●●

●

● ●

●

●● ●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●
●

●
●

●

●

● ●
●●

●
●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●
●

●

●●
●

●
●

●
●

●

●● ●

●
●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●● ●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●
●

●
●● ●

● ●

●● ●

●
●

●

●●
●

●

●

●

●●

●

●
●

●

●

●

●

● ●
●

●

●
●●

●

● ●●

● ●
●

●

●

●

●
●●

●
●

●

●

● ●
●

●●

● ●

●
●

●●●
●

● ●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●●

●

●● ●

●

●

●

●●

●

● ●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●● ●●

●

●

●

●

●

●

●
●

●

●

●●●
●

●
● ●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●

●
●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

● ●
●

●

●

●
●

●
●

●
●

●

● ● ● ●

●

●

● ●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●●

●●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●●

●

5

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●
●

●

●
●

●
●

●

●●

●

●
●

● ●●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

● ●

●●

●
●

●

●

●

●

●

● ●

●●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●●●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●●

●
●●

●
●●

●

●

●
●●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

● ●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

6

●

●

● ●

●
●

● ●

●
●

●

●

●
●

●

●●

●

●

●
●
●

●

●

● ●

● ●

●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●
●●

●

●

●

●

●

●
●

● ●

●
●

●●

●

●

●

●

●
● ●
●

●

●●

●●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

7

●

●
●

●

●●

●

●

●

●

●

●

● ●
● ●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

● ●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●●
●

●

●

●
●

●

●

8
●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●●

●
●

●

●●
● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●

9

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

3

(b) With true cluster labels

Figure 1: Divisive hierarchical clustering model for simulated data set based on Maximum Cluster-
ability Divisive Clustering algorithm

only moderate quality. To mitigate this we use a projection pursuit formulation in which the projection
index, Φ(v|X) in Eq. (2), is the quality of the best hyperplane with normal vector v. If Q is a measure of
clusterability then the optimal projection vector, vopt, maximises Φ(v|X) over all unit-length vectors,

vopt = argmax
v∈Bd

Φ(v|X), (1)

Φ(v|X) = max
b∈R

φ(v, b|X). (2)

If instead Q measures the connectedness between the elements of the binary partition then Eqs. (1)
and (2) become minimisation problems. Since Q is arbitrary this provides a framework for deriving
projection indices for essentially any clustering objective. By considering only the best hyperplane
orthogonal to a candidate projection vector this formulation allows b to change discontinuously, and
hence avoids many local optima of φ(v, b|X). Since Φ(v|X) is a maximum of φ(v, ·|X) it is not
guaranteed to be continuously differentiable everywhere. However, with the exception of pathological
cases in which the elements of X have a very precise geometry, it is difficult to construct examples
in which Φ(v|X) is not continuously differentiable almost everywhere. Lewis and Overton (2013)
strongly advocate using BFGS to optimise such non-smooth locally Lipschitz functions, over more
computationally expensive methods like gradient sampling (Burke et al., 2005). We therefore use the
existing optimised implementation of BFGS provided in R’s base stats package.

Divisive hierarchical clustering using hyperplanes

A divisive hierarchical clustering model is constructed by recursively applying a partitioning method to
(subsets of) the data set. Using hyperplanes to recursively bi-partition the data yields a cluster hierarchy
with a binary tree structure. The leaves of the tree correspond to the final clusters, with each defined
as the intersection of a finite number of half spaces. If the number of clusters is specified then the only
requirements for constructing a divisive hierarchical clustering model are the cluster quality measure
Q, which leads to the projection index Φ, and an indexing (or selection) strategy that determines which
leaf (cluster) of the current hierarchy should be partitioned at each step of the recursion. Examples
of indexing strategies include splitting the largest cluster, i = argmaxj∈leaves(T){|Cj|}, where T is
the cluster hierarchy and Cj ⊂ X is the data subset allocated to leaf j, or splitting the leaf whose
bi-partition achieves the maximum clusterability, i = argmaxj∈leaves(T) Φ(vopt|Cj).

Example 1. We apply the Maximum Clusterability Divisive Clustering algorithm (Hofmeyr and Pavlidis,
2015, MCDC) to 10 dimensional simulated data arising from a Gaussian mixture containing 5 components,
each representing a cluster. The function mcdc() implements this algorithm and is described in detail later.
The resulting hierarchical clustering model is visualised through the tree_plot() function, and depicted in
Figure 1. Details of the arguments of this function are given in Table 1

Each scatterplot in Figure 1 depicts the data subset assigned to the corresponding node in the hierarchy
projected into a two-dimensional subspace. The horizontal axis corresponds to the optimal projection vector,
vopt in Eq. (1), while the vertical axis is the direction of maximum variance orthogonal to vopt. If the labels

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 155

Argument Description
sol A clustering solution from any clustering algorithm in PPCI.
labels (optional) A vector of class labels. Points with the same label are

plotted with the same colour.
node.numbers (optional) Logical. If node.numbers==TRUE then the order in which

the nodes were added to the hierarchy is indicated in the plot.

Table 1: Arguments accepted by tree_plot function.

argument is not specified, as in Figure F.1(a), colours indicate the binary partitions induced by the corresponding
hyperplane separator. Since leaf nodes correspond to clusters the projected data are assigned a single colour. When
the labels argument is specified the points in each scatterplot are coloured according to their corresponding
labels, as shown in Figure F.1(b).

> set.seed(1)
> means <- matrix(rnorm(50), ncol = 10)
> X <- matrix(, 2500, 10)
> for(i in 1:5) X[((i-1)*500+1):(i*500),] <- t(matrix(rnorm(5000, 0, .5), ncol = 500) + means[i,])
> sol <- mcdc(X, 5)
> tree_plot(sol)
> tree_plot(sol, labels = rep(1:5, each = 500))

Clustering and Projection Pursuit in PPCI

In this section we describe the projection pursuit and clustering methods provided in PPCI, as well
as their implementation in R. The main functions are described in Table 2. The projection pursuit
algorithms find optimal projections and corresponding optimal hyperplanes to bi-partition the data,
while the clustering algorithms obtain a complete divisive hierarchical clustering model.

Proj. Pursuit Clustering Description of method
mdh mddc Uses hyperplanes with minimal integrated density

to separate clusters. Such hyperplanes avoid inter-
secting high density clusters, as defined in connec-
tion with density clustering. The implementation
is based on the method of Pavlidis et al. (2016).

mch mcdc Uses hyperplanes which maximise the variance
ratio clusterability of the induced binary partition.
This approach is closely related to the k-means
objective. The implementation is based on that of
Hofmeyr and Pavlidis (2015)

ncuth ncutdc Uses hyperplanes with minimum normalised
cut measured across them, using the method
of Hofmeyr (2017). This leads to partitions with
low between and high within cluster similarity.

Table 2: Projection pursuit and clustering algorithms in PPCI.

The only mandatory argument for the projection pursuit methods (mdh,mch and ncuth) is the data
matrix X, while the clustering algorithms (mddc,mcdc and ncutdc) require both the data matrix, X, and
the number of clusters to extract, K. In addition all methods accept numerous optional arguments
which allow the user to modify the parameters associated with the projection pursuit. When omitted
all optional arguments are assigned default values. Table 3 provides a complete list of the arguments
for these methods. For full details use the help() command within the R console, providing the
relevant function name as argument, e.g. ‘help(mdh)’.

The output of the projection pursuit algorithms (mdh,mch and ncuth) is an unnamed list of length
m, where m is the number of initialisations considered. Each element of the output is a named list
containing the details of the corresponding optimal solution. The output of the clustering algorithms
(mddc,mcdc and ncutdc) is a named list containing details of the clustering solution. The most impor-
tant components of the output are the $cluster field, which contains the cluster assignment vector,
and the $Nodes field, which is an unnamed list in which each element contains the details of the
corresponding node in the hierarchical clustering model.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 156

Argument Description
X Data matrix (n× d) with observations row-wise.
K (mddc,mcdc and ncutdc only) Number of clusters to extract.
v0 (optional) Used to obtain data driven initialisations for projection

pursuit. A function accepting a single matrix argument (the data
being partitioned) and returning a d×m matrix (for user chosen m).
Each column of the output of v0 is used as an initialisation. Projection
pursuit algorithms (mdh,mch and ncuth) also accept directly the d×m
matrix whose columns are used as initialisations.

split.index (optional. mddc,mcdc and ncutdc only) Used to determine the order
in which clusters are split (in decreasing order of split indices). A
numeric valued function of the optimal projection vector (v), the data
matrix (X) and parameter list P.

minsize (optional) Integer valued minimum cluster size.
verb (optional) Verbosity level. Values greater than zero produce plots to

illustrate progress of the algorithm.
labels (optional) Vector of class labels. Only used in plots produced

for verbosity levels greater than zero. Does not influence cluster-
ing/projection pursuit itself.

maxit (optional) Maximum number of iterations in projection pursuit.
ftol (optional) Relative tolerance level for optimisation.
bandwidth (optional. mdh and mddc only) Used to determine data driven band-

width parameter for kernel density estimator. In mddc a function
taking only a matrix argument (the data being partitioned) and re-
turning a scalar. In mdh a scalar to be used directly in kernel estimator.

alphamin (optional. mdh and mddc only) Initial (scaled) bound on the distance of
the optimal hyperplane from the mean of the data being partitioned
(α in Eq. (5)).

alphamax (optional. mdh and mddc only) Final/maximum (scaled) bound on the
distance of the optimal hyperplane from the mean of the data being
partitioned (α in Eq. (5)).

s (optional. ncuth and ncutdc only) Used to determine data driven
scaling parameter for pairwise similarities. In ncutdc a function tak-
ing only a matrix argument (the data being partitioned) and returning
a scalar. In ncuth a scalar to be used directly in similarity calculations.

Table 3: Arguments accepted by clustering and projection pursuit functions.

In the following subsections we provide a brief description of each of the methods implemented in
PPCI, as well as examples illustrating the usage in R.

Minimum Density Hyperplanes (mdh and mddc)

In density clustering the data set, X , is assumed to represent a sample of realisations of a random
variable X on Rd, with unknown probability density function p. Clusters are defined either as “regions
of attraction” of each mode of p (Comaniciu and Meer, 2002; Stuetzle and Nugent, 2010; Menardi and

Azzalini, 2014); or as maximally connected components of the level sets
{

x ∈ Rd
∣∣ p(x) > λ

}
, for a

suitable choice of the level parameter λ (Hartigan, 1975; Cuevas et al., 2001; Rinaldo and Wasserman,
2010). An immediate consequence of this definition is that cluster boundaries traverse regions of
low probability density, known as the low density separation assumption (Chapelle and Zien, 2005).
A number of influential methods for clustering and semi-supervised classification use low density
hyperplanes, including maximum margin clustering (Xu et al., 2004) and semi-supervised support
vector machines (Chapelle and Zien, 2005; Chapelle et al., 2008). Although all these methods use
maximum margin hyperplanes to approximate low density separators, the consistency of this approach
remains an open question (Ben-David et al., 2009).

The Minimum Density Hyperplane (Pavlidis et al., 2016, MDH) directly estimates the hyperplane
with minimum density based on an estimated density p̂. Following Ben-David et al. (2009) the
estimated density on H(v, b), Î(v, b) in Eq. (3), is defined as the surface integral of p̂ on H(v, b).
By estimating p through a Gaussian kernel mixture Î(v, b) can be computed exactly using only the

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 157

Argument Description
sol A solution from any projection pursuit algorithm in PPCI.
X The data matrix used to obtain sol.
labels (optional) A vector of class labels. Points with the same label are

plotted with the same colour.

Table 4: Arguments accepted by hp_plot function.

projections of X onto v,

p̂(x) =
1

n(2πh2)d/2

n

∑
i=1

e−
‖x−xi‖

2

2h2 ⇒ Î(v, b) :=
∫

H(v,b)
p̂(x)dx =

1

n
√

2πh2

n

∑
i=1

e−
(b−v>xi)

2

2h2 . (3)

It is clear that for any vector v one has limb→±∞ Î(v, b) = 0, that is, hyperplanes passing through
the tail of the estimated density can be made to have arbitrarily small density. To avoid such solutions
which are not meaningful for clustering, a penalty term is added to Î(v, b) to constrain the distance of
the optimal hyperplane from the mean of the data (which without loss of generality can be assumed to
be zero). Specifically, the Minimum Density Projection Pursuit (Pavlidis et al., 2016, MDP2) algorithm
is based on the following optimisation problem,

min
v

Φ(v|X) = min
b∈R

φ(v, b|X), (4)

φ(v, b|X) = Î(v, b) + C max{0,−ασv − b, b− ασv}1+ε, (5)

for any ε ∈ (0, 1), and a constant C. The term σv denotes the standard deviation of the projected data
v>X . The value of α controls the distance of the optimal solution to the mean of the data, and is
dynamically adjusted during the execution of the algorithm.

Example 2. In this example we first apply mdh() and then mddc() to obtain a binary partition, and then a
complete clustering of the optical recognition of handwritten digits (optidigits) data set from the UCI reposi-
tory (Lichman, 2013). The data set we consider combines the training and test set data sets in UCI and contains
5620 observations. Observations correspond to vectorised images of handwritten digits 0–9. The images have
been compressed to 8×8 pixels resulting in a 64 dimensional data set.

> data(optidigits)
> sol <- mdh(optidigits$x)
> hp_plot(sol, optidigits$x)
> hp_plot(sol, optidigits$x, labels = optidigits$c)
> success_ratio(sol[[1]]$cluster, optidigits$c)
[1] 0.9040637

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

● ●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
● ●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

−4 −2 0 2 4

−
11

.5
−

8.
8

−
6

−
3.

3
−

0.
5

2.
3

5

0
0.

04
0.

08
0.

11
0.

15
0.

19
0.

23

relative depth: 1.549 success ratio: −

(a) Labels not specified

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

● ●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
● ●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

−4 −2 0 2 4

−
11

.5
−

8.
8

−
6

−
3.

3
−

0.
5

2.
3

5

0
0.

04
0.

08
0.

11
0.

15
0.

19
0.

23

relative depth: 1.549 success ratio: 0.904

(b) Labels specified

Figure 2: Two-dimensional visualisation of binary partition of the optical handwritten digits recogni-
tion data set through mdh().

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 158

The function hp_plot provides a visualisation of hyperplane separators obtained from any projection pursuit
algorithm in PPCI. The arguments for this function are described in Table 4. The output of the first call to this
function is depicted in Figure F.2(a). If the labels argument is not specified the points are coloured according
to the half space to which they belong. The projected density is depicted with a solid black line, with its scale
depicted on the right vertical axis. If the labels argument is specified, as in the second call to hp_plot above,
the colours of the projected points represent the true cluster assignments, as shown in Figure F.2(b). In this case
each true cluster can be assigned to the half space that contains the majority of its observations. The projected
density can then be seen as a two component mixture density arising from the clusters assigned to the two
half spaces. The red and blue solid lines illustrate these two component densities. The quality of a binary
partition of a data set containing more than two clusters can be evaluated through the success ratio (Pavlidis
et al., 2016). The success ratio is reported in the title of Figure F.2(b), and can be computed through the
success_ratio(clusters,labels) function.

Next we use the mddc() algorithm to obtain a complete clustering of the optidigits data set.

> sol <- mddc(optidigits$x, 10)
> tree_plot(sol)
> cluster_performance(sol$cluster, optidigits$c)
adj.rand purity v.measure nmi
0.6451702 0.7919929 0.7202152 0.7202187

The visualisation of the cluster hierarchy through the tree_plot function has been discussed in Example 1).
The cluster_performance(clusters,labels) function implements four external cluster validity measures:
purity (Zhao and Karypis, 2004), normalised mutual information (NMI) (Strehl and Ghosh, 2002), adjusted
Rand index (Hubert and Arabie, 1985), and V-measure (Rosenberg and Hirschberg, 2007).

Maximum clusterability clustering (mch and mcdc)

The term clusterability has been used to refer to the strength, or conclusiveness, of the cluster structure
in a data set (Ackerman and Ben-David, 2009). The variance ratio clusterability is defined as (Zhang,
2001),

max
X=C1∪···∪Ck
Ci∩Cj=∅,i 6=j

k
∑

i=1
|Ci| ‖µµµCi −µµµ‖2

k
∑

i=1
∑

j:xj∈Ci

‖xj −µµµCi‖2
, (6)

where µµµCi = 1
|Ci | ∑

xj∈Ci

xj is the mean of the i-th cluster and µµµ = 1
n

n
∑

j=1
xj is the mean of the data.

This represents the ratio of the between and within cluster scatter values, and is related to Fisher’s
discriminant function used in Linear Discriminant Analysis. It is easy to show that the solution that
maximises the variance ratio clusterability also minimises the k-means objective. Determining the
clusterability of a data set is therefore of the same complexity as identifying the optimal k-means
solution, which is known to be NP-hard. This renders clusterability in the general setting primarily of
theoretical interest. In the univariate setting, however, the k-means solution becomes tractable and
so the variance ratio may be used practically to define a projection index. This is important as the
values of the variance ratio and of the k-means objective are largely determined by directions in which
the data exhibit high variability. This is problematic when the clusters are not separable along these
directions. The Maximum Clusterability Divisive Clustering algorithm (MCDC) recursively partitions
a data set by identifying the univariate subspace that maximises the variance ratio of the projected
data. Since the variance ratio measure is scale invariant, this objective is able to overcome situations
where directions which separate clusters are of relatively low variability.

It is straightforward to see that the optimal partition of v>X based on the variance ratio splits the
projected data at a point. The projection index can thus be written as

Φ(v|X) = max
b

φ(v, b|X),

φ(v, b|X) :=

∣∣∣X+
v,b

∣∣∣ (µv>X+
v,b
− µv>X

)2
+
∣∣∣X−v,b

∣∣∣ (µv>X−v,b
− µv>X

)2

n
n−1

n
∑

i=1

(
v>xi − µv>X

)2
+ ∑

xi∈X+
v,b

(
v>xi − µv>X+

v,b

)2
+ ∑

xj∈X−v,b

(
v>xj − µv>X−v,b

)2 .

The term n
n−1 ∑n

i=1

(
v>xi − µv>X

)2
in the denominator is added to ensure that Φ(v, b|X) is bounded,

without affecting the optimal solution.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 159

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a) k-means solution

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(b) MCDC solution

Figure 3: Data set containing two well distinguished clusters. High within cluster variability along
the principal axis dominates the between cluster variability causing k-means to fail, (a). MCDC on the
other hand is able to recover the true solution, (b).

Example 3. We consider a simple two-dimensional example, seen in Figure 3, to illustrate the effectiveness of
using variance ratio as a projection index. This example contains two well separated and easily distinguished
clusters. However, the elongation of the clusters along their principal axes means that the variability of the data
along this direction dominates the variability in the direction which separates the clusters. The k-means solution,
Figure F.3(a), is severely influenced by this fact. On the other hand by maximising the variance ratio of the
projected data the true clusters can be recovered, Figure F.3(b).

> set.seed(1)
> S <- matrix(c(1, .7, .7, 1), 2, 2)
> X <- matrix(rnorm(2000), ncol = 2) %*% S
> X[,1] <- X[,1] + rep(c(.8, -.8), each = 500)
> X[,2] <- X[,2] + rep(c(-.8, .8), each = 500)
>
> km <- kmeans(X, 2, nstart = 10)
> sol <- mch(X)
>
> par(mfrow = c(1, 2))
> plot(X, col = km$cluster, main = "kmeans solution")
> plot(X, col = sol[[1]]$cluster, main = "MCH solution")

Example 4. We next consider a face recognition task with ten clusters in which centroid based algorithms like
k-means perform suboptimally because the within cluster covariance structure dominates the between cluster
separation. We apply both k-means and MCDC to a subset of the Yale face database B (Georghiades et al., 2001),
containing 2000 portrait images of 10 different human subjects in different lighting conditions and with different
orientations. The images have been compressed to 30× 20 pixels and vectorised, resulting in 600 dimensional
data.

> require(rARPACK)
> set.seed(1)
> data(yale)
> km <- kmeans(yale$x, 10, nstart = 10)
> sol <- mcdc(yale$x, 10)
>
> pc <- rARPACK::eigs_sym(cov(yale$x), 2)$vectors
> par(mfrow = c(1, 2))
> plot(yale$x%*%pc, xlab = "PC1", ylab = "PC2",

main = "Principal component projection", col = yale$c)
> plot(yale$x%*%cbind(sol$Nodes[[1]]v, solNodes[[2]]$v), xlab = "VR1",

ylab = "VR2", main = "Projection based on variance ratio", col = yale$c)
>
> cluster_performance(sol$cluster, yale$c)
adj.rand purity v.measure nmi
0.7206458 0.8220000 0.8309754 0.8309877
> cluster_performance(km$cluster, yale$c)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 160

adj.rand purity v.measure nmi
0.5006819 0.6675000 0.6798313 0.6800078

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●
●

●
●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●
●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●●●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

● ●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●
●

●

●

●●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●
●

●

●

●●

●●

●

●●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●●

●
●●

●●

●
●

●●
●

●

●

●
●

●●

●

●

●

●

● ●
●

● ●

●
●

●

●

●●

●
●

● ●

●

●

●
●

●

●

●

●

● ●

●

●

●

●●

●
●

●

● ●

●

●
●

●

●

●

●

●
●●

●
●●

●●

● ●

●●
●

●

●

●
●

●●

●

●

●

●

● ●●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

● ●

●

●
● ●●

● ●

●

●
●

●

●
●

●

●

●●

●

●●

●
●●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●
●

●

●
●

●
●

●

●
●

●

●

●●

●

●
●
●

● ●

●

●

●
●●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
● ● ●

●

●

●

●●

●

●

●
●

●
●

●

●●●

●●

●

●

●

●

●

●

●
●
●

●

●● ●●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●
●

●

●

●

●
●

●● ●●
●

●

●

●●
●

●

●●

●●

●

●
●●

●●

●

●

●

●

●

●

●
●
●

●

●
● ●●

●

●

●
●●

● ●

●
●

●

●
●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●

●

● ●

●● ●●
●

●

●

●●
●

●

●●
●●

●

●●●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
● ●

●
●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●
●

●

●●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

● ●

●

●

●

● ●

●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●

● ●

●

●

●

●

●●●

●

●
● ● ●

●

●

●●

●

●
●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●
● ●

●

●

●

●

● ●

●

● ● ●

●

●

●

●●●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
● ●

●

●
● ●

●

●
●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●●
●

●

●
●●

●

●
●

●

●

●●
●

●●

●
●

●
●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

● ●

●●
●

●● ●

●

●

● ●
●

●
●

●

●

●
●

●

●

●

●●●
●

● ●

●

●
●●●

●

●
●

●

●

●●

●
●

●●
●

●●

●●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
● ●

●●
●

●● ●

●

●
● ●

●

●
●

●

●

●
●●

●

●

●●●

●

●
●

●

●
●

●●

●

●
●

●

●

●●

●
●

●●
●

●●
●●

●●

●
●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●●

●

●

●

●●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

−60 −50 −40 −30 −20 −10

−1
0

0
10

20

(a) Principal component projection

●

●
●●● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●
●

●
●

●

●
●●

● ●
●

●

●

●

●

● ●●
●

●
● ●

●●
●

●

●

●
●

●●●
●

●

●

●

●

●
●

● ●

●

●
●

●

●

●●
●

●●●●
●

●

●

●
●
●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●
●●

●
●

●

●
●●

●

●

●●
●

●

●

●
●

●
●

●●

●

●

●
●
●

●

●

●

●

●

●
●●

●

●

●
●

●● ●●
●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●
●

●● ● ●
●

●

●

●●
●
●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●●

●
●

●

●

●

●

● ●

●

●

●

●
●

●
● ● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●●

●

●
●

●

●

● ●
●

●

●

●●

●●

●

●●

●

●

●

●
●

●

●

●

●●
●

● ●●
●

●

●

●
●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●●

●

●

●
●

●
●

● ●

●
●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●● ●

●
●

●

●

●●

●

●

●

●
●

●

●

● ●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●
●

●

●

●

● ●

●
● ●

●

● ●

●

●

●

●●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●

●

●● ●
●

●

●

●

●

●
●

●●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●
●●●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●●

●

●

●●●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●● ●
●

●
●

●

●
● ●

●●

●

●

●

●

●●

●

● ●
●

●

●

●
●●

●

●

● ●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

● ● ●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●●

●

●
●

●
●●●

●

●

●

●

●

●

●●
●

●
●

●●

●

●

●●
●

●

●

●●
●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●
●

● ●
●●

●

●
●

●

●

●●

●

●

●

●

●

●

●●
●

●
●

●

●●
●

●

●

●
●

●

●

●

● ●

●
●

●
● ●

●

●
●

●●

●
●

●

● ●
● ● ●●

●●

● ●
●●● ●

●

● ●

●●
●●

● ●●

●
●

● ●

●

●

●●

●

●

●●

●
● ●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●
●● ●

●
●

●
●

●
●

●●

●

●

●●●
●●

●
●

●

●●●

●

●

●●

●
●

● ●
●

●

●

●

●

●

●●

●●
●

●

●

●

●
●●●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●
● ●

●
● ●

●
●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●
●

● ●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●
●●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●
●

●●

● ●
●

●●

●●
●

●

●
●
● ●
● ●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●
●● ●

●

●●

●

●

●

●

●

●
● ●●

●
●

●

●

●

●
●●

●

●

●

●
●

● ●

●
●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

● ●

●●
●

●

●

●

●

●

●
● ●

●

●

●
●

● ●

●

●
●

●
●

●

●
●

●
●

●

●
●●

●

●

●
●

●

●●

● ●●

● ●

●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●
●●

●

●
● ●

●

●

●

●

●
●

●

●●

●

● ●

●
●

●
●●

● ●

●

●●

●
●

●

●●
●●

●

●
●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●● ●

●●

●●

●●

●

● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

● ●

●

●
●

●

●

●

●

●

●

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

−2
−1

0
1

2
3

(b) Projection based on variance ratio

Figure 4: Two dimensional projections of vectorised images taken from the Yale faces database B

Figure 4 shows two dimensional projections of these data. In Figure F.4(a) the data are projected along the
first two principal components, while in Figure F.4(b) the projection vectors are taken as the optimal projection
vectors from the first two nodes in the MCDC model. Although there is evidence of the presence of multiple
clusters in the principal component projections, these high variance projections do not admit a separation of
any clusters from the rest. In contrast the projections based on variance ratio show very strong evidence of at
least three clusters. The remaining clusters are identified further down the hierarchical model. The presence of
elongated cluster shapes, evident in Figure F.4(a), prevents k-means from achieving performance as high as that
of MCDC.

Minimum normalised cut hyperplanes (ncuth and ncutdc)

Arising from graph partitioning algorithms, the normalised cut objective has become popular for
data clustering (von Luxburg, 2007). The normalised cut (NCut) associated with a partition of X into
clusters C1, ..., Ck is given by (Shi and Malik, 2000),

NCut(C1, . . . , Ck) =
k

∑
m=1

Cut(Cm,X \ Cm)

volume(Cm)
, (7)

Cut(C,X \ C) := ∑
i,j:xi∈C,

xj 6∈C

similarity(xi, xj), volume(C) := ∑
i,j:xi∈C
xj∈X

similarity(xi, xj). (8)

By minimising the normalised cut one tends to find solutions for which Cut(Cm,X \ Cm) is small and
volume(Cm) is large, for all m. Now, since volume(Cm) = Cut(Cm,X \Cm)+∑i,j:xi ,xj∈Cm

similarity(xi, xj),
where the latter term is the total internal similarity of points in Cm, this implies that the similarity
within clusters is high but the similarity between clusters is low. This makes NCut an attractive
objective for clustering. However, the NCut problem is NP-hard, and unlike the k-means objective it is
not straightforward to obtain a high quality locally optimal solution efficiently. Instead it is common
to consider a continuous relaxation of the problem known as spectral clustering (Shi and Malik, 2000;
von Luxburg, 2007). This reduces the complexity to O(kn2), but this approach remains applicable
only to problems of moderate size. In the linear cluster separation framework utilised here substantial
improvements can be achieved.

The most critical choice in clustering algorithms based on graph cuts is the determination of
pairwise similarities. Similarities are typically defined as a function of the distances between pairs
of points, i.e., similarity(xi, xj) = k(‖xi − xj‖), where k : R+ → R+ is a decreasing function. When
computing similarities between the projected data v>X , if the Laplace kernel, k(x) = exp (−|x|/σ), is
used then the optimal NCut solution by a hyperplane orthogonal to v can be determined in O(n log n)
time (Hofmeyr, 2017). The associated Normalised Cut Divisive Clustering (NCUTDC) algorithm is a
computationally efficient divisive clustering algorithm relying on hyperplane separators, arising from

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 161

the objectives,

Φ(v|X) = min
b

φ(v, b|X) (9)

φ(v, b|X) := NCut(v>X+
v,b, v>X−v,b). (10)

As in the minimum density hyperplane case, the projection pursuit problem is more conveniently
formulated as a minimisation problem. It is important to note that in (Hofmeyr, 2017) this algorithm is
called NCutH. To be consistent with the naming conventions used in this paper we call the divisive
algorithm NCUTDC while NCUTH refers to the projection pursuit algorithm for a single hyperplane.

Example 5. We return to the optidigits data set, and apply both spectral clustering and NCUTDC. We use the
implementation of spectral clustering in the R package kernlab (Karatzoglou et al., 2004).

> require(kernlab)
> data(optidigits)
>
> system.time(sol1 <- ncutdc(optidigits$x, 10))
> system.time(sol2 <- kernlab::specc(optidigits$x, 10))
> cluster_performance(sol1$cluster, optidigits$c)

adj.rand purity v.measure nmi
0.6554853 0.7870107 0.7171148 0.7171234

> cluster_performance(sol2, optidigits$c)
adj.rand purity v.measure nmi

0.3551385 0.4967972 0.4658001 0.4659070

NCUTDC runs orders of magnitude faster than spectral clustering, and achieves substantially higher perfor-
mance.

It is important to note that because the projection index underlying NCUTDC uses similarities
computed on the projected data, this algorithm cannot operate on an arbitrary graph or similarity
matrix.

Modifying and validating a clustering solution

If the data are assumed to arise from a mixture of simple parametric distributions, then well established
model selection methods can be used to validate a clustering model. In the absence of such strong
assumptions the validation of a clustering model remains a challenging problem. Low-dimensional
visualisations that reveal the cluster structure present in multivariate data can therefore be critical in
determining an appropriate model. In this section we discuss how clustering models obtained through
one of the hierarchical algorithms implemented in PPCI can be validated through visualisations, and
modified interactively. The projection pursuit algorithms discussed in this paper identify vectors
that maximise the clusterability of a data set, and are thus natural candidates for creating such
visualisations. In previous sections we looked briefly at visualisations of both hyperplane partitions, as
well as entire clustering models. Here we use these visualisations to identify important modifications
and validate clustering solutions. A hierarchical clustering model can be modified either by pruning
parts of the model when it is apparent that a single cluster was divided by the partition at an internal
node, or by extending the model by splitting leaves which contain more than one cluster. A model can
also be refined by changing the partition at an internal node via the modification of the parameters of
the projection pursuit algorithm. Since this affects the entire sub-hierarchy extending from that node,
the model is first pruned and then iteratively extended until the model is deemed valid. A solution
may be seen to be valid if there are no internal nodes at which a single cluster is divided by the binary
partition at that node, and there are no leaf nodes which contain multiple clusters. We will illustrate
the modification of a clustering hierarchy by means of a detailed example.

Example 6. In this example we again revisit the optical recognition of handwritten digits data set (Lichman,
2013). For illustrative purposes, we do not assume as we did in Example 2 that the number of clusters is known.
We initially partition the data set into seven clusters using minimum density hyperplanes, and then visualise
the solution using the tree_plot() function. This visualisation is shown in Figure 5.

> data(optidigits)
> sol <- mddc(optidigits$x, 7)
> tree_plot(sol)

The first thing to notice is the partition at the node numbered 4. There is a clear presence of multiple clusters,
however the separating hyperplane appears to pass through regions of relatively high density, and may not

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 162

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●
●● ●

●

●
●

●

● ●

●

●

●

●

● ●

● ●

●

●

●

●●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●
●● ●

●
●

●●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●●
●

●

●

● ●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●
●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●● ●

●

●

● ●

●

●

● ●

●

●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●● ●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
● ●●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

● ●●
●

●
●

●

●●

●

●
●●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●

● ●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
● ●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

● ●
●

●

● ●

●
●

●

●

●
● ●●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●●

●

●

●
●

● ●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●
●
●

●

●

●
●

●

●

●

●

●

●●

●

● ●

● ●
●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

● ●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●●

● ●●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
● ●

● ● ●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●●

●
●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

● ●●
●

●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●
●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●● ●

●
●

●●

●

● ●
●

●

●

●
●

●

●
●

●●

●

● ●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●●

● ●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

● ●
●

●
● ●

●

●

●

●●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●●
●●

●

●
●

●
●

● ●●

●

●

●
●

●

● ●● ●
●

●

●

●
●

● ●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●●
●

●

●

●● ●
●

●

●
● ●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●●

●

● ●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

● ●●

●

●

●
●

●

●

●
●●

●

●
●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

● ●

●●
●

●

●

●

●●
● ●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●
●

●
●

●●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

● ●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●
● ●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●● ●●
●

●

●●
●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●●● ●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
● ●

●

●
●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●
● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

● ●
●

●

●

●

●
●

●

●
●

●

● ●●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●
●●

●
●

●

●

●
●

●●●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●● ●
●

●

●
●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●●

●●
●

●

●

●

●

●● ●

●

●

●

●

●●
●

●

●
●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●●

●

● ●●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●● ●

●

●

●

●

●

●●
●●

●

●

●
●

●

●

●

●●

●

●
●

●

●●
●

●

●
●

●

● ●●

●

●●●
●

●●

● ●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
● ●●●

●

●

●

● ●

●

●

●
●● ●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●
●

● ●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●●

●●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●●

●

●

●

●●

●● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

● ●
●●

●
●

●
●

●●

●

●

●

● ●●

●

●●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●
●●

●

1

●●●

●

●

●

●

●

● ●

●
●

● ●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●●
●

●
●●

●

●

●

●
●

●

●

●

●●
●●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
● ●

●

●
●

●

●

●

●●

●

●

●
●●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●●

●

●
●

●

●

●
●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●●●
●

●

●
● ●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●
●

●
●
●●●

●

●

● ●

●
●

●●●

●●

●

●
●

●●
● ●

●
●

●

● ●

●

●●

●

●●
●

●

●

●

●●

●
●

●

●

●

●

● ● ●●

●●
●●

●
●

●
●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
● ●●

●

●

●●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●
● ●

●

●

●

●
●●

●

●
●

●
● ●

●
●

●● ●
●

●

●

●
●

●
●

●

●

●

●
● ●

●

●● ●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●●

●
●

●

●

● ●
●

●
●

●● ●

●

●

●

●
●

● ●●●
●

●
●
●

●

● ●●

●

●●

●
●●●
●

●

●

●

● ●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●

● ●
●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●
●

●

●
● ●

●● ●● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●● ●

●

●●
●

●

●

●

●

● ●

●
●

●

●

● ●●
●

●
●●

●

●

●
●
●●

●

●
●

●

●

●●

● ●●●
●

●
●

●

●
●●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●
●

●●

●

● ●●

●
●

●

●

●
●

●

●

●
●

●

●

●
●● ●

●

●
●●

●●

● ●

●
●

●

●

●

●

●
●

● ●

●

●
●●●

● ● ●

●

●

●

●

●
●

● ●
●

●●

●

●

●

● ●
●

●
●

●
●

●

●●

●●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●●

●

●● ●

●

●
●●

●●

●

●
●

●

●

●
●

●●
●

●

●

● ●

●

●

●

●

● ●

●
●● ●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

● ●

●

●
●●
●

●

●
●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●
●
●

●

●

●
● ●

●

● ●
●

● ●

●
●

●
●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
● ●●

●

●●

●

●●

●

●

● ●

●

●
●

●

●

●●

● ●

●
●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●
● ●●

●●

● ●●
●

●

●
●

●●

●

●

●

●

● ●
●●

●
●●

● ●
●

●

●

●

●

●

●●
●

●

●

●
●

● ●

● ●

●●
●●

●

●

●

●

●

●

●

●

●
●
●●

●●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●●●●

●

●

●

● ●
●

●
●

●

●

●

●

● ●

●

●

●
●
●

●

●

● ●
●

●

●

●

● ●
●

●

●

●

●●

● ●
●

●

●● ●

●

●
● ●

●

●

●
●

●

●
●●●

●
●

●●

●●
●
●

●

●
●

●
●

●

●

●
●

●●

●

●

●

● ●●
●

●

●

● ●
●

●

●
●

●

●

●

●
●

●

● ●

●

●
●●

●

●●

●

●

●
●

●
●●

●

●
●

●●

●
●●

●

●

● ●

●
● ●

●

●
●

●

●
●

●

●

● ●

●
●

●

●

●
●

●

●

●●

●

●●●

●
●

●

● ●

●

●

●

●
●

●

●

●
● ●

●

●

●
●●

●

●

●

●
●

●
●

● ●
●

●

●●

●
●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●●

●

●

●

●
● ●

●●

●

●●
●

●
●

● ●

●

●●

●

●● ●

●

●

●● ●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●●
●

●

●
●● ●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●
●

● ●●
●

● ●
●

●
●

●

●
●

●

●

●

●

●

● ●●
●●
●

●

●

●●

●
● ●
●● ●

●

●

●

●
●

●

●

●●

●

●●

●
●
●
●

●

● ●
●

●

●
● ●

● ●

●

●

●

●
●●

●

●

●

●
●

●●●

●

●●
●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●
●

●

● ●
●

●

●

●
●

● ●

●

●
●

●

●
●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

● ●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

● ●●

●●

●
●●

● ●
●

● ●●

●
●

●●

●

●

● ●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●● ●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●
●

●
●● ●●

●

●
●

●

●●

●

●●
●

●●

●

● ●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●
●●

●

●

●●

●

●
●

●

●

●●●

●

● ●

●

●

●

●
●

●●

●●

● ●

●

●

●●

●

●
●

●
●

●●
●

●

●●

●

●
●

●

●

●
●●

●
●●

● ●
●

●

●

● ●

●●●
● ●●● ●● ●

● ● ●●
●

●●
●

●
●●

●

●

●

●●

●
●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

● ●

●●●

●

●
●●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●●
●

●

●●
●●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

●
●
●

●●
●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

● ● ●
●

● ●●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

● ●●

●

●

●

●

●

●

●● ●
●

●

● ●

●

●

●

●●●

●

●
●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●●●

●

●
●

●
●

●
●●

●

●

●

●

●
●

●
●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●
●●

●

● ●

●
●

●●
●

●

●
●

●
●

●
●

●

●

●

●

●
●

● ●●

●
●

●
● ● ●

●

● ●

●

●● ●

●

●●●●

●
●

●

●

●
● ●

●
●

● ●
●

●
●

●

●● ●
●

●●

●

●
●
●

●
●●

●
●

●
●

●●
●

●●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●●● ●
●

●

●

●
● ●

●

●●
●●●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●●

●

2

●

●
●

●●●●●●●●●●●
●●●

●
●●

●

●●●
●

●●
●

●●
●●

●
●

●
●●●●●●●●●●●

● ●

●●

●

●
●

●

●
●●
●●●●

●
●●

● ●●●●●
●●

●
●

●
●●●●●●●●●
●●●●●●

●
●●
●●●●

●
●

●
●

●●●●●
●

●●●●
●

●●●
●

●●●●●●●●●
●●

●
●●● ●●

●
●●●●●●●●●●●●●

●●●
●●●

●
●

●
●

● ●
● ●

●

●
●

●
●

●
●

●●
●

●●●
● ●
●●●●●●●

●
● ●●

●

●●●●

●

●●●●●●●●
●●●●

●

●●●

●

● ●
● ●●●●●●

●
●●

●
● ●●

●
●

●●●
●

●
●

●●●
●●●●●●●●●●

●●

●
●●●●

●
●●●●

●● ●
●●

●
●

●●●●●●●● ●●
● ●

●●●
●●

●
●

●●●

●

●
●

●●● ●●●

●

●

●

●●
●●
●●●●

●
●

●
●●

●
●●

●●●●●
●

●●●●●●●●●●● ●●●●
●●●●

●

●
●

●● ●●●
●●●●●

●●●●●●●●●
●
●●●●●●●

●●●●●●
●●●

●

●

●

●●●

●

●●●●
●●

●
●●
●●

●
● ●

●
● ●●●●●

●
●●●●●●●

●
●

● ● ●●●

●

●●

●

● ●●●●●●●●●
●

●●●●●●●
●

●●●●

●
●●●●●●●●● ●●●

●

●

●
●●●
●●●●●●●
●

●● ●●●●●●●●●●●●●●●●
●

●●●●●●●

●

●●●●●●●●
●●●●● ●●●●
●●●
●

6 ●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●●

●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●
●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●●●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●
●

●

●
●●●

●

●

●●

●
●

●
●

●
●●●

●●

●

●

●
●

●
●

●
●
●

●
●

● ●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●●

●

●

●

●

●
● ●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●●●●

● ●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

●
●
●●

●

●

●

●
●●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●
●

●

●●●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●● ●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●●

●

●
●

●

●●
●
●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●●

●● ●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●●
● ●

● ●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

●

●
●

●●

●●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●
●

●●

●

● ●●●

●

●

●●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●●

●

●
●

●
●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●
● ●

●
●

●

● ●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●

●

●●
●

●

●

●
●

●●

●

●
●

●
●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
● ●●

●
●

●●

●●

●

● ●

●
●

●
●●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

● ●

●

●

●

●

●
●

●

●
●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●●

●
● ●

●

●
●

●●
●●

●
●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●●●

●

● ●
●
●

●

●

●●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●●●

●

●

●

●●

●

●

●
●

●●

●

●
●

●
●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●●

●
●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●7

●●●●●●
●

●
●●

●

●
●●
●
●●●
●●●
●

●●●●
●●●

●

●●●
●

●
●
●
●
●
●●●●●●●

●
●●

●
●

●●●●●

●

●●●
●

●

●●●
●●●

●
●●
●
●●●●●
●

●
●●

●

●●
●

●
●

●

●

●

●

●●●●●●
●●

●

●

●●
●
●●●●
●●●
●
●●●●●
●
●

●
●●●●●●●●●
●●

●

●

●

●

●

●●

●
●

●

●●

●

●

●●
●

●●

●●
●
●●●

●

●

●●

●

●

●
●
●

●●

●
●

●

●●●●●

●

●●●

●

●

●
●●
●●●●●
●

●
●
●
●●

●

●●●●●
●●

●●

●

●

●●●●●●
●●
●
●●●
●
●●●●●●●●
●
●●●●
●●

●
●

●

●●
●

●

●●
●●●●●

●

●●●●
●
●●
●
●
●
●

●

●

●

●

●●●
●

●

●●●●

●
●
●●●
●●

●

●●
●
●
●●●●●●●
●

●

●
●●●●●
●
●

●

●●●

●

●

●●
●

●

●

●

●
●●●
●
●●
●●●
●●●
●●●●●

●

●
●●●

●

●

●●●
●
● ●

●●●●●

●

●

●

●
●●
●

●

●●
●
●●

●●
●●
●
●●
●●

●

●
●●●
●

●●

●●
●

●
●●

●
●
●
●●
●
●

●●
●

●

●●●●
●
●●
●●●●●
●●
●
●●●●●

●

●
●

●●●●
●

●●

●

●

●

●●●

●
●●●●●●●
●
●
●

●
●
●

●●●●

●
●

●●

●

●●●
●
●●●●

●
●●●
●●
●●
●

●

●
●
●
●●●●
●
●
●●●●
●
●●●●●●●

●

●●●●●
●●●●●●●●●●●●
●●
●●●●
●●●●●
●
●●
●●

●●●
●
●
●
●●

●
●●
●
●

●

●●●

●●
●
●●●●●●●●●●

●

●●●●●●●●●●●

●

●
●●●●

●

●●●

●

●

●
●

●●

●
●●
●

●●
●●
●

●

●

●

●
●●●

●
●●

●

●
●

●

●

●

●

●
●

●●●●
●●

●

●●

●

●●●●●●
●
●
●
●●●●
●●●●●
●
●●●
●●●●●●

●

●●
●●●●●
●
●●●●●●●

10

●
●

●

● ●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●
●●
●●●●

●

●
●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●●

●

●

●

●

●

●●

●

●
● ●●

●●●

●●
●●

●

●●●
●

●
●●●●

●
●

●
●●

●●●●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●●

●

●

●●
●

●

●

●

●
●

●

●

●

●●●

●

●
●

●

●

●

●

●
●

●

●●
●

●
●●●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

● ●
●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●●
●●

●

●●
●

●
●●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●●
●

●
●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●
●
●●●●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●●
● ●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●●

●

●

●

●●

●

●

●

●●

●

●

●●●

●●
●

●

●

●
●
●
●

●

●

●

●
●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●●●
●

●
●

●

●●

●
●

●
●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

● ●

●●

●

●●

●

●●

●

●

●

●

● ●●

●

●

●
●

●

●

●●

● ●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●
● ●
●

●
●

●

●
●

●

●
●

●

●

●●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●
● ●
●
●

●

●
●

●

●●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●
●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●
●

●

● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●●

●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●●

●

●

●●●
●
●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

11

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●●

●●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●
●

● ●
●●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●●

●

●

●

●●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●
●

● ●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
● ●

●

●

●
●

●
●

● ●

●

●

●●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●●

●

●
●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●● ●

●

●
●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●●

●

● ●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●
●

●

●

●

●

●●

● ●

●

●
●

● ●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

● ●●
●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●●
●

●

●●

●

●

●●●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●
●

●
●

●

●

●

●

●

●
● ●

● ●

●

●
●

●

●
●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

3

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●
● ●

●

●

●
●

●
●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●
● ●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●
●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●●

●

●

●

●

● ●●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

● ●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
● ●

●

●

●

●

●

●
●

● ●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●
●●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●●

●

●

●

●

●
●

●

● ●

●

● ●
● ●

●

●
●

●

●
●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●
●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●

●
●

●
●

●

● ●

●

●●

●

●

●

●

●

●●
●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

4

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●
●
●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●●

●

●

●

●●
●●

●
●

●
●●●

●

●●●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●
●

●

●●

●
●●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

8

●

●
●
●●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●● ●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●●

●

●

●

●

●
●
●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●●

●

●

●

●

●
●

●

●●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●

9

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●
●

●●●

●

●

●●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●●

●●

●

●●

●

●

●

●●

●
●

● ●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●●
●●

●

●

●

● ●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●
●

●

●

● ●
●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●●

●
●

●
● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●
●

●

●●
●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

● ●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●
●

●

●

●

●

● ●

●

●●●

●●

●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

● ●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

● ●

●

●

●

●●●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●
●

●●

●

●

●
● ● ●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●
●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●●●
● ● ●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●
●

● ●

●

●

●

●

● ●
●

●

●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●●
●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

● ●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●●●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

● ●

●

●

●

● ●

●● ●

●
●

●

●

●

●
●
●

●

●

●

●

●

● ●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

● ●

●

●
●●

●
●

5

●● ● ●● ●●●● ●●● ●● ●●● ●● ●●●● ●●●● ●● ●●●● ●● ●● ●●●● ●●●●●
● ●● ●● ●● ●● ●● ●● ● ●●●● ●●●● ●●● ●● ●●● ●● ● ● ● ●●● ● ● ●●● ●●●

●

●● ● ●●● ●● ●●●● ●●●●● ● ●●●● ● ● ●●● ● ● ●● ● ● ●●● ● ●●●● ●●● ●●● ●●● ●●●● ●
●
● ●

●● ●●● ●●● ● ●●●● ●●● ●●●● ● ●● ●● ●● ●●●●● ●●●●● ●● ● ●● ● ●●●
●

● ●● ● ●●● ●● ●● ●● ● ●●● ●●● ●● ●● ●● ●● ●●● ● ●● ●● ●● ●●● ●●● ●●● ●●●● ●●● ●● ●●●●●●●● ● ●●● ●●●● ●●●● ● ●●● ●● ● ●●● ●●●● ●● ●● ●● ●● ●●●●● ●● ●● ●●●●● ●●● ●●● ●●● ●●●● ●●● ●●●● ●●● ●●● ● ●● ● ●● ●● ● ●● ● ●● ●● ●●●

●

●●●● ●●●● ●● ●● ●● ●●
●

● ●● ●●●● ● ●●●● ●●● ●●●● ●●●
●

●●●● ●● ●● ● ●●● ●●● ● ● ●●● ● ●● ● ●● ●●●●● ●●● ●● ●● ●● ●●● ●● ●●● ●● ●●●●● ●● ●●● ●●● ● ●●● ●●● ● ●● ● ●●● ●● ● ● ●● ●● ● ●● ● ●● ● ●● ●● ●● ● ●●● ●●●● ● ●●● ●●●● ● ●●●● ● ●●●● ●●
●

● ●● ●● ●●● ● ●●● ●● ●●●● ● ●● ●● ●●● ●● ●●●●●● ●●●● ●● ● ●●●●●● ●●● ●●●●● ● ●● ● ●● ●● ●● ●●●● ●●●● ●●● ●●●●● ●● ●● ●●
●

● ●●●● ●●●● ● ●●● ●●● ●●●●●● ●● ●●●●●● ●● ● ●● ●●● ●●● ●●● ●● ● ●● ●● ●● ● ●●● ● ●● ●● ●● ● ●● ●●● ●●●●● ●●●● ● ●●● ●● ●●● ●● ●●● ●●●

●

● ●● ●● ●● ● ●● ● ●● ●● ●● ●●● ●●● ●● ●● ●● ● ●●● ●●● ●● ●●● ●●●● ●● ●● ●● ●●● ●● ●●●● ● ●●●●● ●● ●● ● ●● ●● ● ●● ●● ●●● ● ● ●●● ●● ● ● ●●● ●● ●● ● ●●●● ●● ●●● ● ●● ●● ●●● ●● ●●●
●

●●● ●● ●●● ●● ● ● ●●● ●● ●● ●● ●● ●●● ●●● ● ●● ●●● ●● ●
●

● ●● ●●●●●●● ●● ● ●●● ●●
●

●● ●●● ●● ● ●● ● ●●● ●●●● ●● ●● ●●●● ●●●● ●● ●●● ●●12

●● ● ●● ●●● ● ●● ●● ●●● ●●● ● ● ●●● ● ●●●●●●
●

● ●●●●●●●●● ●●●●●●●● ● ●●●● ●●●●●● ● ●●● ●●● ●● ●● ●● ●● ●●● ●●● ●● ●
●● ●

●●● ●●● ●●●
●●

●● ●●● ●●● ●● ● ●●●● ● ●●
● ●● ●●● ●●● ●●● ● ●●●●● ●●●●●●●● ●

●●●● ●● ●●● ●●
●●

●
●●● ● ●●●

● ●●● ●● ●●●●●●● ●●
●●

●
●●●●●●

●●●
●

● ●● ● ●●●● ●● ●
● ●●●●●● ● ●●●●●●●● ●●●

●●
●●●●●●●● ●●● ●● ● ●

●●●●●
● ●

● ●●●●●●
●● ●

● ●●● ●●●● ● ●● ●●●●●●●● ●●●● ●
●●● ●●● ●

●●●●● ●● ●● ● ●● ● ●●●● ●●●●●●●●
● ●●●● ●●●● ● ●●● ●●●● ●● ●●● ●● ●●●
●●●●● ● ●● ●● ●●● ●● ● ●●●● ● ●

●

●● ●●●●●● ●● ●
●

● ●●●●●
●●

●
●●●●● ●● ●●● ●●●●●●●●●●●●
●●●● ●
●● ●● ●●● ●●●● ●● ●●● ●● ●●●●● ●● ●●●● ● ●● ●● ●● ● ●● ●● ●● ● ● ●● ●●●●●● ●●

●●●●● ●●●
●●● ●

●●
●

●
●● ●● ●●● ● ●●● ●● ●●● ●●● ●● ● ●● ●●●● ●● ●●● ●●● ●● ●● ●

●
●●● ● ●

●

●

●

●●

●

●●●● ● ●●● ●●● ● ●●●● ●●●●●●● ●●●● ● ●● ●●● ●●●● ●●● ●●● ●●●

13

Figure 5: Initial clustering of optidigits data set through MDDC with 7 clusters.

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−6 −4 −2 0 2

−
4.

6
−

2.
8

−
1

0.
9

2.
7

4.
5

6.
3

0
0.

03
0.

07
0.

1
0.

14
0.

17
0.

2

relative depth: 0.652 success ratio: −

(a) First principal component

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

−4 −2 0 2 4

−
4.

8
−

2.
9

−
1.

1
0.

8
2.

6
4.

5
6.

3

0
0.

04
0.

07
0.

11
0.

15
0.

18
0.

22

relative depth: 0.433 success ratio: −

(b) Second principal component

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
4.

9
−

3
−

1.
1

0.
8

2.
7

4.
6

6.
5

0
0.

04
0.

09
0.

13
0.

17
0.

21
0.

26

relative depth: 0.723 success ratio: −

(c) Third principal component

Figure 6: Three potential binary partitions for node 4 based on three different initialisations.

be optimally separating the clusters. The default initialisation which gave rise to this projection was the first
principal component of the data assigned to the node. We isolate the data assigned to this node to see if a better
solution can be obtained by considering additional initialisations (we now consider the first three principal
components). Each node in the model is stored as a list containing the field $ixs which specifies the indices of
the observations allocated to the node. We use the optional argument v0 to investigate additional initialisations.
When multiple initialisations are considered within one of the projection pursuit algorithms, all the resulting
solutions are stored for inspection. Within a hierarchical clustering algorithm only the best solution is included
in the model.

> node4_x <- optidigits$x[sol$Nodes[[4]]$ixs,]
> v0 <- function(X) eigen(cov(X))$vectors[,1:3]
> node4_alt <- mdh(node4_x, v0 = v0)
> hp_plot(node4_alt[[1]], node4_x)
> hp_plot(node4_alt[[2]], node4_x)
> hp_plot(node4_alt[[3]], node4_x)

The outputs can be seen in Figure 6. The solution obtained by initialising on the third principal component
(Figure F.6(c)) appears superior to the current solution (Figure F.6(a)). The clustering solution is thus first
pruned at node 4, and then extended with a new initialisation. The function tree_prune() removes the
sub-hierarchy rooted at a specific node. The tree_split() function can then be used to extend a clustering
model by splitting a leaf node further. The arguments accepted by both functions are shown in Table 5. Both
functions return an object of the same type as the original solution. The function tree_split() accepts all
optional arguments associated with the clustering algorithm which produced the solution sol. This allows the
user to refine the solution at the node by modifying the way in which the projection pursuit is conducted. In

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 163

Argument Description
sol A clustering solution arising from one of mddc,mcdc or ncutdc.
node In tree_prune the node at which to prune the clustering model. In

tree_split the node at which to extend the model by further splitting
the data at the node.

... (optional. tree_split only) Any collection of optional arguments
associated with the clustering algorithm which produced the solution
sol.

Table 5: Arguments accepted by tree_prune and tree_split functions.

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●
●● ●

●

●
●

●

● ●

●

●

●

●

● ●

● ●

●

●

●

●●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●
●● ●

●
●

●●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●●
●

●

●

● ●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●
●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●● ●

●

●

● ●

●

●

● ●

●

●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●● ●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
● ●●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

● ●●
●

●
●

●

●●

●

●
●●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●

● ●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
● ●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

● ●
●

●

● ●

●
●

●

●

●
● ●●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●●

●

●

●
●

● ●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●
●
●

●

●

●
●

●

●

●

●

●

●●

●

● ●

● ●
●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

● ●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●●

● ●●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
● ●

● ● ●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●●

●
●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

● ●●
●

●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●
●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●● ●

●
●

●●

●

● ●
●

●

●

●
●

●

●
●

●●

●

● ●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●●

● ●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

● ●
●

●
● ●

●

●

●

●●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●●
●●

●

●
●

●
●

● ●●

●

●

●
●

●

● ●● ●
●

●

●

●
●

● ●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●●
●

●

●

●● ●
●

●

●
● ●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●●

●

● ●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

● ●●

●

●

●
●

●

●

●
●●

●

●
●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

● ●

●●
●

●

●

●

●●
● ●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●
●

●
●

●●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

● ●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●
● ●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●● ●●
●

●

●●
●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●●● ●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
● ●

●

●
●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●
● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

● ●
●

●

●

●

●
●

●

●
●

●

● ●●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●
●●

●
●

●

●

●
●

●●●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●● ●
●

●

●
●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●●

●●
●

●

●

●

●

●● ●

●

●

●

●

●●
●

●

●
●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●●

●

● ●●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●● ●

●

●

●

●

●

●●
●●

●

●

●
●

●

●

●

●●

●

●
●

●

●●
●

●

●
●

●

● ●●

●

●●●
●

●●

● ●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
● ●●●

●

●

●

● ●

●

●

●
●● ●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●
●

● ●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●●

●●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●●

●

●

●

●●

●● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

● ●
●●

●
●

●
●

●●

●

●

●

● ●●

●

●●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●
●●

●

1

●●●

●

●

●

●

●

● ●

●
●

● ●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●●
●

●
●●

●

●

●

●
●

●

●

●

●●
●●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
● ●

●

●
●

●

●

●

●●

●

●

●
●●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●●

●

●
●

●

●

●
●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●●●
●

●

●
● ●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●
●

●
●
●●●

●

●

● ●

●
●

●●●

●●

●

●
●

●●
● ●

●
●

●

● ●

●

●●

●

●●
●

●

●

●

●●

●
●

●

●

●

●

● ● ●●

●●
●●

●
●

●
●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
● ●●

●

●

●●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●
● ●

●

●

●

●
●●

●

●
●

●
● ●

●
●

●● ●
●

●

●

●
●

●
●

●

●

●

●
● ●

●

●● ●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●●

●
●

●

●

● ●
●

●
●

●● ●

●

●

●

●
●

● ●●●
●

●
●
●

●

● ●●

●

●●

●
●●●
●

●

●

●

● ●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●

● ●
●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●
●

●

●
● ●

●● ●● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●● ●

●

●●
●

●

●

●

●

● ●

●
●

●

●

● ●●
●

●
●●

●

●

●
●
●●

●

●
●

●

●

●●

● ●●●
●

●
●

●

●
●●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●
●

●●

●

● ●●

●
●

●

●

●
●

●

●

●
●

●

●

●
●● ●

●

●
●●

●●

● ●

●
●

●

●

●

●

●
●

● ●

●

●
●●●

● ● ●

●

●

●

●

●
●

● ●
●

●●

●

●

●

● ●
●

●
●

●
●

●

●●

●●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●●

●

●● ●

●

●
●●

●●

●

●
●

●

●

●
●

●●
●

●

●

● ●

●

●

●

●

● ●

●
●● ●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

● ●

●

●
●●
●

●

●
●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●
●
●

●

●

●
● ●

●

● ●
●

● ●

●
●

●
●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
● ●●

●

●●

●

●●

●

●

● ●

●

●
●

●

●

●●

● ●

●
●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●
● ●●

●●

● ●●
●

●

●
●

●●

●

●

●

●

● ●
●●

●
●●

● ●
●

●

●

●

●

●

●●
●

●

●

●
●

● ●

● ●

●●
●●

●

●

●

●

●

●

●

●

●
●
●●

●●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●●●●

●

●

●

● ●
●

●
●

●

●

●

●

● ●

●

●

●
●
●

●

●

● ●
●

●

●

●

● ●
●

●

●

●

●●

● ●
●

●

●● ●

●

●
● ●

●

●

●
●

●

●
●●●

●
●

●●

●●
●
●

●

●
●

●
●

●

●

●
●

●●

●

●

●

● ●●
●

●

●

● ●
●

●

●
●

●

●

●

●
●

●

● ●

●

●
●●

●

●●

●

●

●
●

●
●●

●

●
●

●●

●
●●

●

●

● ●

●
● ●

●

●
●

●

●
●

●

●

● ●

●
●

●

●

●
●

●

●

●●

●

●●●

●
●

●

● ●

●

●

●

●
●

●

●

●
● ●

●

●

●
●●

●

●

●

●
●

●
●

● ●
●

●

●●

●
●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●●

●

●

●

●
● ●

●●

●

●●
●

●
●

● ●

●

●●

●

●● ●

●

●

●● ●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●●
●

●

●
●● ●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●
●

● ●●
●

● ●
●

●
●

●

●
●

●

●

●

●

●

● ●●
●●
●

●

●

●●

●
● ●
●● ●

●

●

●

●
●

●

●

●●

●

●●

●
●
●
●

●

● ●
●

●

●
● ●

● ●

●

●

●

●
●●

●

●

●

●
●

●●●

●

●●
●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●
●

●

● ●
●

●

●

●
●

● ●

●

●
●

●

●
●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

● ●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

● ●●

●●

●
●●

● ●
●

● ●●

●
●

●●

●

●

● ●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●● ●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●
●

●
●● ●●

●

●
●

●

●●

●

●●
●

●●

●

● ●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●
●●

●

●

●●

●

●
●

●

●

●●●

●

● ●

●

●

●

●
●

●●

●●

● ●

●

●

●●

●

●
●

●
●

●●
●

●

●●

●

●
●

●

●

●
●●

●
●●

● ●
●

●

●

● ●

●●●
● ●●● ●● ●

● ● ●●
●

●●
●

●
●●

●

●

●

●●

●
●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

● ●

●●●

●

●
●●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●●
●

●

●●
●●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

●
●
●

●●
●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

● ● ●
●

● ●●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

● ●●

●

●

●

●

●

●

●● ●
●

●

● ●

●

●

●

●●●

●

●
●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●●●

●

●
●

●
●

●
●●

●

●

●

●

●
●

●
●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●
●●

●

● ●

●
●

●●
●

●

●
●

●
●

●
●

●

●

●

●

●
●

● ●●

●
●

●
● ● ●

●

● ●

●

●● ●

●

●●●●

●
●

●

●

●
● ●

●
●

● ●
●

●
●

●

●● ●
●

●●

●

●
●
●

●
●●

●
●

●
●

●●
●

●●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●●● ●
●

●

●

●
● ●

●

●●
●●●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●●

●

2

●

●
●

●●●●●●●●●●●
●●●

●
●●

●

●●●
●

●●
●

●●
●●

●
●

●
●●●●●●●●●●●

● ●

●●

●

●
●

●

●
●●
●●●●

●
●●

● ●●●●●
●●

●
●

●
●●●●●●●●●
●●●●●●

●
●●
●●●●

●
●

●
●

●●●●●
●

●●●●
●

●●●
●

●●●●●●●●●
●●

●
●●● ●●

●
●●●●●●●●●●●●●

●●●
●●●

●
●

●
●

● ●
● ●

●

●
●

●
●

●
●

●●
●

●●●
● ●
●●●●●●●

●
● ●●

●

●●●●

●

●●●●●●●●
●●●●

●

●●●

●

● ●
● ●●●●●●

●
●●

●
● ●●

●
●

●●●
●

●
●

●●●
●●●●●●●●●●

●●

●
●●●●

●
●●●●

●● ●
●●

●
●

●●●●●●●● ●●
● ●

●●●
●●

●
●

●●●

●

●
●

●●● ●●●

●

●

●

●●
●●
●●●●

●
●

●
●●

●
●●

●●●●●
●

●●●●●●●●●●● ●●●●
●●●●

●

●
●

●● ●●●
●●●●●

●●●●●●●●●
●
●●●●●●●

●●●●●●
●●●

●

●

●

●●●

●

●●●●
●●

●
●●
●●

●
● ●

●
● ●●●●●

●
●●●●●●●

●
●

● ● ●●●

●

●●

●

● ●●●●●●●●●
●

●●●●●●●
●

●●●●

●
●●●●●●●●● ●●●

●

●

●
●●●
●●●●●●●
●

●● ●●●●●●●●●●●●●●●●
●

●●●●●●●

●

●●●●●●●●
●●●●● ●●●●
●●●
●

6 ●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●●

●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●
●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●●●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●
●

●

●
●●●

●

●

●●

●
●

●
●

●
●●●

●●

●

●

●
●

●
●

●
●
●

●
●

● ●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●●

●

●

●

●

●
● ●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●●●●

● ●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

●
●
●●

●

●

●

●
●●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●
●

●

●●●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●● ●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●●

●

●
●

●

●●
●
●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●●

●● ●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●●
● ●

● ●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

●

●
●

●●

●●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●
●

●●

●

● ●●●

●

●

●●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●●

●

●
●

●
●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●
● ●

●
●

●

● ●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●

●

●●
●

●

●

●
●

●●

●

●
●

●
●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
● ●●

●
●

●●

●●

●

● ●

●
●

●
●●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

● ●

●

●

●

●

●
●

●

●
●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●●

●
● ●

●

●
●

●●
●●

●
●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●●●

●

● ●
●
●

●

●

●●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●●●

●

●

●

●●

●

●

●
●

●●

●

●
●

●
●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●●

●
●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●7

●●●●●●
●

●
●●

●

●
●●
●
●●●
●●●
●

●●●●
●●●

●

●●●
●

●
●
●
●
●
●●●●●●●

●
●●

●
●

●●●●●

●

●●●
●

●

●●●
●●●

●
●●
●
●●●●●
●

●
●●

●

●●
●

●
●

●

●

●

●

●●●●●●
●●

●

●

●●
●
●●●●
●●●
●
●●●●●
●
●

●
●●●●●●●●●
●●

●

●

●

●

●

●●

●
●

●

●●

●

●

●●
●

●●

●●
●
●●●

●

●

●●

●

●

●
●
●

●●

●
●

●

●●●●●

●

●●●

●

●

●
●●
●●●●●
●

●
●
●
●●

●

●●●●●
●●

●●

●

●

●●●●●●
●●
●
●●●
●
●●●●●●●●
●
●●●●
●●

●
●

●

●●
●

●

●●
●●●●●

●

●●●●
●
●●
●
●
●
●

●

●

●

●

●●●
●

●

●●●●

●
●
●●●
●●

●

●●
●
●
●●●●●●●
●

●

●
●●●●●
●
●

●

●●●

●

●

●●
●

●

●

●

●
●●●
●
●●
●●●
●●●
●●●●●

●

●
●●●

●

●

●●●
●
● ●

●●●●●

●

●

●

●
●●
●

●

●●
●
●●

●●
●●
●
●●
●●

●

●
●●●
●

●●

●●
●

●
●●

●
●
●
●●
●
●

●●
●

●

●●●●
●
●●
●●●●●
●●
●
●●●●●

●

●
●

●●●●
●

●●

●

●

●

●●●

●
●●●●●●●
●
●
●

●
●
●

●●●●

●
●

●●

●

●●●
●
●●●●

●
●●●
●●
●●
●

●

●
●
●
●●●●
●
●
●●●●
●
●●●●●●●

●

●●●●●
●●●●●●●●●●●●
●●
●●●●
●●●●●
●
●●
●●

●●●
●
●
●
●●

●
●●
●
●

●

●●●

●●
●
●●●●●●●●●●

●

●●●●●●●●●●●

●

●
●●●●

●

●●●

●

●

●
●

●●

●
●●
●

●●
●●
●

●

●

●

●
●●●

●
●●

●

●
●

●

●

●

●

●
●

●●●●
●●

●

●●

●

●●●●●●
●
●
●
●●●●
●●●●●
●
●●●
●●●●●●

●

●●
●●●●●
●
●●●●●●●

8

●
●

●

● ●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●
●●
●●●●

●

●
●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●●

●

●

●

●

●

●●

●

●
● ●●

●●●

●●
●●

●

●●●
●

●
●●●●

●
●

●
●●

●●●●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●●

●

●

●●
●

●

●

●

●
●

●

●

●

●●●

●

●
●

●

●

●

●

●
●

●

●●
●

●
●●●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

● ●
●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●●
●●

●

●●
●

●
●●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●●
●

●
●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●
●
●●●●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●●
● ●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●●

●

●

●

●●

●

●

●

●●

●

●

●●●

●●
●

●

●

●
●
●
●

●

●

●

●
●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●●●
●

●
●

●

●●

●
●

●
●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

● ●

●●

●

●●

●

●●

●

●

●

●

● ●●

●

●

●
●

●

●

●●

● ●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●
● ●
●

●
●

●

●
●

●

●
●

●

●

●●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●
● ●
●
●

●

●
●

●

●●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●
●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●
●

●

● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●●

●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●●

●

●

●●●
●
●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

9

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●●

●●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●
●

● ●
●●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●●

●

●

●

●●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●
●

● ●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
● ●

●

●

●
●

●
●

● ●

●

●

●●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●●

●

●
●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●● ●

●

●
●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●●

●

● ●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●
●

●

●

●

●

●●

● ●

●

●
●

● ●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

● ●●
●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●●
●

●

●●

●

●

●●●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●
●

●
●

●

●

●

●

●

●
● ●

● ●

●

●
●

●

●
●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

3

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●●●

●

●

●
●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●●

●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●
●●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●
●

●

●
●

●

●

●
●

●
●

●●

●
●

●
●

●

●

●

● ●

● ●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●●

●●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●
●

●

●

●●●

●

●
●

●●

●

●

●
● ●

●
●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●
●

●●

●

●
●

●

●
●
●

●
●

●●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●
●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●● ●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

● ●●
●

●

●

●

● ●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●
● ●

●

●
●

●

●

●

●

●

●
●

●
●● ●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●
● ●

●

●

● ●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

● ●

●

●
●

●

●

●

4

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●

●●

●

●

●

●
●

●

●
●
●

● ●
●●

●

●
●

●

●

●●
●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●

● ●

● ●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●●●

●

●●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

● ●

●

●

● ●●
●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●●●

●
●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●
●

●

●
●

● ●
●●

●
●

●

●

●

● ●
●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

● ●
●●

●●● ●●

●
●
● ●

●

●

●

●

●

●

●
●

● ●

●

●●●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

● ●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

● ●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●●

●

● ●

●

●

●

●
●

●

12

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

● ●

●
●
●

●

●
●●

●●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●
●

●

●
●

●

●

13

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●
●

●●●

●

●

●●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●●

●●

●

●●

●

●

●

●●

●
●

● ●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●●
●●

●

●

●

● ●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●
●

●

●

● ●
●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●●

●
●

●
● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●
●

●

●●
●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

● ●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●
●

●

●

●

●

● ●

●

●●●

●●

●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

● ●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

● ●

●

●

●

●●●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●
●

●●

●

●

●
● ● ●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●
●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●●●
● ● ●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●
●

● ●

●

●

●

●

● ●
●

●

●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●●
●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

● ●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●●●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

● ●

●

●

●

● ●

●● ●

●
●

●

●

●

●
●
●

●

●

●

●

●

● ●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

● ●

●

●
●●

●
●

5

●● ● ●● ●●●● ●●● ●● ●●● ●● ●●●● ●●●● ●● ●●●● ●● ●● ●●●● ●●●●●
● ●● ●● ●● ●● ●● ●● ● ●●●● ●●●● ●●● ●● ●●● ●● ● ● ● ●●● ● ● ●●● ●●●

●

●● ● ●●● ●● ●●●● ●●●●● ● ●●●● ● ● ●●● ● ● ●● ● ● ●●● ● ●●●● ●●● ●●● ●●● ●●●● ●
●
● ●

●● ●●● ●●● ● ●●●● ●●● ●●●● ● ●● ●● ●● ●●●●● ●●●●● ●● ● ●● ● ●●●
●

● ●● ● ●●● ●● ●● ●● ● ●●● ●●● ●● ●● ●● ●● ●●● ● ●● ●● ●● ●●● ●●● ●●● ●●●● ●●● ●● ●●●●●●●● ● ●●● ●●●● ●●●● ● ●●● ●● ● ●●● ●●●● ●● ●● ●● ●● ●●●●● ●● ●● ●●●●● ●●● ●●● ●●● ●●●● ●●● ●●●● ●●● ●●● ● ●● ● ●● ●● ● ●● ● ●● ●● ●●●

●

●●●● ●●●● ●● ●● ●● ●●
●

● ●● ●●●● ● ●●●● ●●● ●●●● ●●●
●

●●●● ●● ●● ● ●●● ●●● ● ● ●●● ● ●● ● ●● ●●●●● ●●● ●● ●● ●● ●●● ●● ●●● ●● ●●●●● ●● ●●● ●●● ● ●●● ●●● ● ●● ● ●●● ●● ● ● ●● ●● ● ●● ● ●● ● ●● ●● ●● ● ●●● ●●●● ● ●●● ●●●● ● ●●●● ● ●●●● ●●
●

● ●● ●● ●●● ● ●●● ●● ●●●● ● ●● ●● ●●● ●● ●●●●●● ●●●● ●● ● ●●●●●● ●●● ●●●●● ● ●● ● ●● ●● ●● ●●●● ●●●● ●●● ●●●●● ●● ●● ●●
●

● ●●●● ●●●● ● ●●● ●●● ●●●●●● ●● ●●●●●● ●● ● ●● ●●● ●●● ●●● ●● ● ●● ●● ●● ● ●●● ● ●● ●● ●● ● ●● ●●● ●●●●● ●●●● ● ●●● ●● ●●● ●● ●●● ●●●

●

● ●● ●● ●● ● ●● ● ●● ●● ●● ●●● ●●● ●● ●● ●● ● ●●● ●●● ●● ●●● ●●●● ●● ●● ●● ●●● ●● ●●●● ● ●●●●● ●● ●● ● ●● ●● ● ●● ●● ●●● ● ● ●●● ●● ● ● ●●● ●● ●● ● ●●●● ●● ●●● ● ●● ●● ●●● ●● ●●●
●

●●● ●● ●●● ●● ● ● ●●● ●● ●● ●● ●● ●●● ●●● ● ●● ●●● ●● ●
●

● ●● ●●●●●●● ●● ● ●●● ●●
●

●● ●●● ●● ● ●● ● ●●● ●●●● ●● ●● ●●●● ●●●● ●● ●●● ●●10

●● ● ●● ●●● ● ●● ●● ●●● ●●● ● ● ●●● ● ●●●●●●
●

● ●●●●●●●●● ●●●●●●●● ● ●●●● ●●●●●● ● ●●● ●●● ●● ●● ●● ●● ●●● ●●● ●● ●
●● ●

●●● ●●● ●●●
●●

●● ●●● ●●● ●● ● ●●●● ● ●●
● ●● ●●● ●●● ●●● ● ●●●●● ●●●●●●●● ●

●●●● ●● ●●● ●●
●●

●
●●● ● ●●●

● ●●● ●● ●●●●●●● ●●
●●

●
●●●●●●

●●●
●

● ●● ● ●●●● ●● ●
● ●●●●●● ● ●●●●●●●● ●●●

●●
●●●●●●●● ●●● ●● ● ●

●●●●●
● ●

● ●●●●●●
●● ●

● ●●● ●●●● ● ●● ●●●●●●●● ●●●● ●
●●● ●●● ●

●●●●● ●● ●● ● ●● ● ●●●● ●●●●●●●●
● ●●●● ●●●● ● ●●● ●●●● ●● ●●● ●● ●●●
●●●●● ● ●● ●● ●●● ●● ● ●●●● ● ●

●

●● ●●●●●● ●● ●
●

● ●●●●●
●●

●
●●●●● ●● ●●● ●●●●●●●●●●●●
●●●● ●
●● ●● ●●● ●●●● ●● ●●● ●● ●●●●● ●● ●●●● ● ●● ●● ●● ● ●● ●● ●● ● ● ●● ●●●●●● ●●

●●●●● ●●●
●●● ●

●●
●

●
●● ●● ●●● ● ●●● ●● ●●● ●●● ●● ● ●● ●●●● ●● ●●● ●●● ●● ●● ●

●
●●● ● ●

●

●

●

●●

●

●●●● ● ●●● ●●● ● ●●●● ●●●●●●● ●●●● ● ●● ●●● ●●●● ●●● ●●● ●●●

11

Figure 7: Clustering solution after the modification of the partition at node 4.

the example below we set the initial projection vector to the third principal component by using the optional
argument v0. It is important to note that the numbers assigned to the nodes in a model reflect the order in which
they were added to the model. As such, pruning a model may alter the numbers of multiple nodes, including
potentially those on different branches in the hierarchy. The modified clustering solution is shown in Figure 7.

> sol <- tree_prune(sol, 4)
> v0 <- function(X) matrix(eigen(cov(X))$vectors[,3], ncol = 1)
> sol <- tree_split(sol, 4, v0 = v0)
> tree_plot(sol)

At this stage the internal nodes appear to produce satisfactory partitions of their data. However, there is evidence
of multiple leaf nodes which each contain more than one cluster. A single node can be closely inspected using
the function node_plot(sol,node). This produces an output similar to the hp_plot function, but includes
information about the position of the node within the hierarchical clustering model as well. All leaf nodes can
therefore be inspected separately. Examples including nodes numbered 10 and 12 are seen in Figure 8.

> node_plot(sol, 10)
> node_plot(sol, 12)

Both nodes show strong evidence of multiple clusters, through their highly bimodal projected densities. Moreover,
the potential partition at the leaf node numbered 12 does not appear to offer an optimal partition of the clusters.
Alternative initialisations can be considered as above for node 4, leading to the conclusion that initialisation on
the second principal component produces a better partition. The importance of closer inspection of individual
nodes is also apparent in the case of node 10, where the high variance projection orthogonal to vopt, depicted in
the vertical axis in Figure F.8(a), is influenced by a few outlying points, making the two dimensional plot less
relevant for visualising the cluster structure in the data. After inspecting all leaves, the nodes numbered 9, 10,
12 and 13 are further partitioned, with node 12 using the alternative initialisation discussed above.

> sol <- tree_split(sol, 9)
> sol <- tree_split(sol, 10)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 164

Index

0

●● ● ●● ●● ●
●

●●●
●● ●●● ●● ●● ● ● ●●●● ●●

●●● ● ●● ●● ●
● ●
●

●
● ●

●●

●

●● ● ● ●● ●● ●● ●●
●

●●●
●

●● ●
●

●●

●

●
●

●●● ●

●
●

● ● ●●
● ● ● ●●● ●●●

●

●
● ● ●●● ●● ●● ●● ●

●
●●●

●
●●●● ● ● ●●

● ● ● ●●
●

●
●

●● ● ●●●● ● ●● ●●● ●●
●

●●
●●

●

●

● ●

●

●
●●

●

●
●● ● ● ●●● ●●

●

● ●
● ● ●

●
●

●● ●● ●●
●

● ● ●
●●

●

●
●

●
●

●●
●

●
●

●

●

●
●

● ● ●
●● ●

●

●● ●● ● ●●● ●●● ●
●

●
●

●● ●●
●●● ●

●

● ●●
●

●
●●● ●●● ●●● ● ●

●● ●●● ●

●

●●●● ●
●

●
●

● ●●●

●

● ●
●

●●● ●
● ●
●

● ●
● ● ●●● ●● ● ● ●

●
●● ●● ●● ● ●●●● ●● ●● ●● ●●

●
●●● ● ●● ●●● ●●●

●
●●● ●●

●●
●

●●
●

●

● ● ●● ● ●
● ●

● ●
●●

●

●●
●

●
●

●
●

●

●
●

● ●
● ●●● ●● ●● ●● ●●

●

● ●● ● ●●●
●

●●
●● ●

●● ●●
●●

●●●

●

●
●●

●
●

●
●● ● ●●● ●

●● ● ●
●

●●
● ●

● ●
●● ●●●●● ●●

● ●● ●● ●

●

●

●
●

●● ●●
● ●● ● ●● ●●

●
● ●● ●

●
●

● ● ●●● ●● ● ● ●● ● ●●● ●● ● ● ●● ●●
●

●● ●
●

●
● ●● ●● ●

● ●
● ●● ● ●●● ● ●●● ●●● ●

● ●
●●

● ●
●●●●

●
●

●

● ●● ●● ●●● ● ●●● ●● ●●● ● ●
●●

●● ●●● ●
● ● ● ●●●

●
●

●
● ●

●
● ●

●
●●●

●● ●
●

●

●●● ●● ●
●

● ●

●● ●● ●● ● ●●● ●
●

●● ●
●● ●● ●●●

●

●

●
● ●●

●

● ●●●●
●●● ● ● ●●

●
● ●● ●●●●●● ●● ●

●
●● ●

● ●
● ●

●●
●

●●
●

●●
●

●
● ●● ● ●● ●

●
●

●
● ●●

● ●
●

●
●● ●● ● ●● ● ●

● ●●●●●
●●

●
● ● ●●● ●●

●●
●

●● ●
●

●
●

●
●

●

● ● ●
●●

●
● ● ●● ● ●

● ●● ●● ●●
●

●●● ●● ●● ●● ● ●●● ●● ● ●● ●●●
●●●● ●● ●

●
●

●
●●●

●
● ● ●●● ● ●

●
● ●● ●

●
●●

● ●
●

●●
●

●● ●● ●
●● ● ●

●●
● ●● ● ● ●

●●
●

●

●●
● ●

● ●
●

●
● ●●● ●

●●
●● ●●● ●● ● ●●

●

● ●
●

●
●

●● ● ●
● ● ● ●●● ●● ●● ●● ●● ●

●● ●●
●

● ●
●

● ●●
●●

●

●

● ●● ●● ●● ●●
● ●●

●
●●● ●●

●

●● ●●● ●● ● ●● ● ●●
●

●●●●
●● ●● ●●●● ● ● ●

●
●● ●●● ●●

−2 0 2 4 6

−
4.

1
4.

9
13

.8
22

.8
31

.8
40

.7
49

.7

0
0.

03
0.

06
0.

08
0.

11
0.

14
0.

17

0.
05

node: 10

depth: 4

position: 5

n: 926

relative depth: 1.841

cluster purity: −

(a) Visualisation of node 10

Index

0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−
7.

8
−

5.
8

−
3.

7
−

1.
6

0.
5

2.
6

4.
7

0
0.

03
0.

06
0.

09
0.

12
0.

15
0.

19

0.
05

node: 12

depth: 4

position: 3

n: 1090

relative depth: 0.756

cluster purity: −

(b) Visualisation of node 12

Figure 8: Visualisations of individual nodes in cluster hierarchy.

●
●

●

●

● ●

●

●●

●

●

●

●

●
●●

●
●

●

●●

●●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
● ●●

●

●●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●●
●

● ●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●● ●
●

●

●

●

● ●

●
●

●

●
●

●

●●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●●

●

●

●

●
●●

●

●●
●

●

●
●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●

●
●
●●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●●
●●

●

●
●● ●

●

●
●

●

● ●

●

●

●
●

● ●
● ●

●

●

●
●●

●

●

● ●●
●

●
●●

●

●

●

●
●

●

●

●●● ●
●

●●●
●

●

●

●
●●

●
●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●● ●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

● ●

●

●

● ●●

●

●
●

●●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●
●● ●

●

●

●

●
●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●● ● ●
●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●
●

●
●

●

●

●●
●

●
●●●

●
●

●
● ●●

● ●

●
●

●

●

●●

●

●

●

●

●

●
● ●

●

●●●

●●●
●

●

●

●

●
●

●

●

●

●
●

●● ●
●

●

● ●

●

●

● ●
●

●●
●

●

●

●

● ●
●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●
●●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
● ●

●
●

●
●

●
●

●

●
●●

●●
●●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●●
●

● ●● ●

●

●

●●
●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●●

●
●

●
●●

●

●

●
●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●●
●

●

●●
●

●

●

●●
●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●●

●

●
●

●

●
●

●

●
●

●● ●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●
●

●●●

●
●

●

●

●

● ●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

● ●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●
●

●

●

●

● ●

●●

●

●

●

●
●

● ●

●
●
●

●

●

●
●

●

●●
●●

●●
●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●● ●●●
●

●●

●

●

●●
●

●
●

●

●

●

●

●●
●●
●

●
●●

●

●

●
● ●●●

●
●

●

●●
●

● ●●

●●

●●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

● ●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●
●●

●
● ●

●

●
●

●

●

●
● ●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●● ●
●

●

●

●

●
●

●
●
●

●
●

●

●

●●

● ●●
●

● ●

●
●

●
●

●

●
●

●

●

●

●
●

● ●
●

●

●
●

●

●

● ●●

●

●
●

●

●

●
●

●
●

●

●
●

●

●● ●
●

●

●

●

●

● ●●
●

● ●
●

●

●

●
●

● ●●
●

●

●
●

●● ●
●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●
●
●

●

●

●
● ●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●
●

●

●

●●●

●

●
●

●

●

●

●

●

●
●

●

●

●● ●

●●

●

●●

●

●
●

●

● ●●

●

●

●
●

●

●

● ●

●●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●● ●

●
●

●
●

●

●

●

●

●●●

●

●
●

●
●●●

●
●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

● ●

● ●
●

●

●
● ●

●
●

●

●

●

●●

●
●●

● ● ●

●
●

●

●

●

●
●

●

●

●

●● ●

●

●

● ●

●

●●
●

●

●●

●

●

●
●

●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●
● ●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●●

●

●

●

●
●

●

●

● ●
●

●
●

●
●

●

●

● ●●

●

●

●

●●
●

●

●

●
●

●

●
●

●
●

●

●

●
●●

●

●
●

●

●
●●

●

●
●

●
●

●

●●

●
●

●

●
●

●

●

●

●●●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
● ●

●
●
●

●

●

●

●
●

●● ●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
● ●

● ●
●

●

●

●●
●

●
●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●
●
●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

● ●

●

●●

●

●
●

●

●

● ●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●●

●

●
●●

●●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●
●

●
●

● ●
●

● ●

●

●
●
●

●

●
●

●

●
●

●

●
●

●

●●

● ●

●
●

●

●

●

●
●

●

●●

●

●

●
●●

●

●

●

●

●

●● ●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●
●

●

●

●

●

●
●
●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●

●
●

● ●

● ●
●

●
●

●
●

●●
●

●

●

●

●

●●

● ●●
●●

●

●

●

●

●

●
●● ●

●

●

● ●

●

● ●

●

●

●
●

●●

●

●

●

●●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

●
●●●

●
●

●

● ● ●● ● ●

●

●

●

●
●

●

●

● ●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●●
●●

●
●

●

●

●

●

●

●

● ●
●●

●
●●

●

●●

●●

●

●

●●

●
●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●● ●
●

● ●

●

●
●

●

● ●

●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●●
●●

● ●
●

●

●●
●

●

●
●●

●

●
●

●

●
●

●

● ●●●

●●

●●
●

●

●●

●
●

●

●

●

●
●

●●

●
● ●

●
● ●●

●

●●
●

●

●

●

●●

● ●

●
●

●

●●

●●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

● ●

●
●●

●

●
●

●
● ●

●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●
●

● ●
●

●
●

●

●

●

●
●

●

●

●
●

● ●

●●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●● ●●
●●

● ● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

● ●
●

●
●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●
●●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

● ●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●●●

●

●

●

●

●

●
●

●

●

●

●●

● ●● ●
●

●
●●

●

● ●●
●
●

●
●

●

●
●

●●
●

● ●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●

●

●
●

●

●

●
●

● ●

●

●
●

●

●
●

●

●
●

●
●

●
●●

●

●

●●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●●

● ●
●●

●●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●
●●

●

●

●

●

●
● ●

●

●
●

●

●

●●
●

●

●
●

●
●

●
●

●

●

●

●●

●
●

●

●

●●
●

●

●●
●

●●

●

●●

●●
●●● ●

●

●
● ●

●

●

●

●●
●

●
●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
● ●

●

●
●

● ●

●

●
●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●●

●

●

●

●

●●
●

●

●

●

●●

●

●●

●
● ●

●

●

●

●

●
●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●● ●●●

● ●

●
●

● ●●

●

●

●
●

●

● ●● ●
●

●

●
●●

● ●
●

●

●

●
● ●

●
●●

●●

●

●

●

●●●●

●
●● ●●

●
●● ●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

● ●

●●
●

●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●● ●●

●

●

●

●

● ●

●

● ●
●

●
●

●●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●● ●●
●

● ●

●

●

● ●

●
●

● ●
●

●●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●
●

●
●

●
●

●
●

●

● ●●

●
●

●●
●

●

●
●●

●

●
●

●
●●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●●
●

● ●

●

●●

●

●

●●

●
●

●

●
●

●

●

●

●

●●

● ●

●

●

●●
● ●

●● ●
●

●
●

●●
● ●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●●

●
●

●

●
● ● ●

●

●
●

●

●

●

●

●
●

●●

●●
●

● ●

●

●

●● ●

●

●

●
●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●
●

●
●

●
●

●

● ●

●
● ●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●
●

●

●

●●
●

●

●●
●●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●
●

●

●

●

●●
●

●
●

●
●

●
●

● ●
● ●

●

●

●●

●
●

●
●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●
●

●
●

●●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●●

●

● ●●

● ●
●

● ●
●

●

● ●
●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●
●

●
●

●

●
●

● ●●

●●

●
● ●

●

●

●●
● ●

●

●

●
●

●

●

●
●

●

● ●●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

● ●

●

●

●

●●

●

●

● ●
●● ●●

●

●

●●
●●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
● ●

●

●●

●

●
●

●●●● ●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
● ●

●

●

●

●
●

●
●

●
● ●

●
●

●
●

●●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●●
●

●

●

●
●●

●

●

●

●

●

● ●

●●

●
●
●

●●●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●
● ●●

●
●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

● ●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●
●

● ●
●●●

●

● ●

●
●

●

● ●

●
●

●

●
●

●
●

●

●

●

●

●
● ●

●●
●

●

●

●
●

●

● ●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●●

●

●
●

●

●●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●
●
●

●

●

●
●
●
●

●

●

●●

●
●

●

●●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●
● ●

●

●

●
●

●

●●

●
●

●

●

●●

● ●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●●●

●

●

●

●
● ●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●●

●
●

●

●

●●

●
●

●●●

●

●
● ●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●●

●

● ●
●

●

●

●

●
●

●

●●

●

● ●●

●

●

●●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●●

●

●

●●
●

●●

●

●

●

●
●

●●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●
●

●

● ●

●
●

● ● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●
● ●

●

●

●
●

●

●●
●

●●

●

●
●

●
● ●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●
●

●

●

●

●
●

●

●●●
●

●

●

●
●

● ●
●●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●●

●

●

●

●

●● ●

●

●

●

●
● ●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●● ●

●

●

● ●●

● ●

●

●

●
●

●●●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

● ●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●●

●
●
●

●

●● ● ●
●

●
●

●
●
● ●

●
●

●
●

●●

●

●

●

●
●

●●

●
●

●

●
●

●

●●●

●

●●
●●

●

●

●

●

●
●● ●

●

●

●

●

●●●

●

●●

●

●●
●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

● ●
●

●

●

●

● ● ●●
●

● ●●
●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

● ●

●

●
●

●

●

●
●●

●

●●
●

●
●

●● ●

●
●

●
●
●

●●
●●

●

●

●
●

●

●
●

●●

●

●
●

●

●●●

●
●
●

●
● ●●

●

●●●
●

●●

● ●
●

●●
●

●

●●

●
●

●

●

●

●●
●

●

●

●

●

●●

●

●

●
● ●●●

●

●

●

● ●
●

●

● ●● ●
●

● ●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●
● ●●●

●

●

●

●
●

●

●
●

●●
●

●●

●

●●
●●

●

●

●
●

●

●● ●●

●

●
●

●

●●
●

●

●

●

●
● ●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●
●●

● ●●
●

●

●

●●

●

●

●

●●

●● ●
●

●

●
●

●

●
●

●
●

●

● ●
●

●● ●
●

●
●

●

●

●

●

●
●

●

●

●

● ●
●● ●

●

●
●

●

●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

● ●●

●
●

●

●

●

●●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
● ●●●

● ●
●● ●●

●
●

●
●●●

●

●●
●

●●●
●

●●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
● ●

●

●

●
●

●
●● ●

●
●

●

●

●●
●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

● ●

●●

● ●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

● ●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●
●●

●

●

●●
●

●
●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●●

●●
●

●

●
●
●●
●

●
●●

●

1

●●●
●

●

●

●

●

● ●
●
●

● ●●

●
●

●

●●
●

●
●

●

● ●

●

●
●●

●

●●●

●

●

●

●●

●

●

●

●●
●●

●

● ● ● ●

● ●

●
●

●
●

●

●

●

●●

●
●

●●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●●

●
●●

●

●

●

●● ●

●
●

●
●

●
●

●●
●

●

● ●●

●

●

●

●

● ●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●
●

●

●
●●

●
● ●

●
●

●
●

●
● ●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●●

●

●
●

●
●

●●

●

●

●

●

●
●

●●
● ●

●

●
●

●
●

●●●●
●

● ● ●
●

●
●

●
●●●

● ●
●

●

●

●

●

●

●●
●●●●● ●

●
● ●

●
●

●●●

●●

●
● ●

●●● ●
●●

●
●●

●

●●

●

●● ●

●

●

●

●●

●●
●

●

●

●

● ●●●
●●●●

●
●

●
●

●
●●● ●

●

●●

●

●
●
●

●

●
●

●

●
●

●
● ●●

●

●
●●

●

●●

●

●●●

●
●

●

●

●
●

●

●
●●

●

●

●
●

●

●●

●

● ●●
●

●

●
●

●
●

●●
●●

●●

●
●

●
● ●

●
●

●

●●●
●

●
● ●● ●

●
●●● ● ●

●
●

●
●

●
●

●
●

●
●● ●

●
●● ●

●

●

●

●●

●

●

●●
●

●
● ●●

●

●

●
●

●

●

●●●

●●
●

●
● ●
●

●●●● ●

●
●

●
●●

● ●●●
●●

●●

●

● ●●

●

●●

●
●●●●

●

●
●

● ●●
●

●

●●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●●

● ●●

●

●
●

● ●

●

●

●
●

●●

●
●

●
●

●
●

●
●

●
●●

●
●

●

●
●
●

●
●

●

●
● ●

●● ●●●

●

● ● ●●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
● ●●● ●

●
●● ●

●

●

●

●
● ●

● ●●

●

● ●● ●
●●●

●

●
● ●●●●

●
●

●
●

●●
● ●●●●

● ●

●

●
●●

●

●●

●

● ●

●
●

●

●

●

●●

●
●

●
●

●
●

●
●

●

●
● ●

●

●

●
●

●

●

● ●

●

●
●

●

● ●●●
●
● ●●

●
●

●

●
●

●

●
●

●● ●

●

●
●● ●

●

●●●●●
● ●

●
●

●
●

●

●

●
●
● ●

●
● ●●●● ● ●

●

●

●
●

●
●

● ●
●●●

●
●

●
● ●●●

● ●
●

●

●●
●●

●

●
● ●●

●

●

●

●●

●

●
●

●
●●

●

●● ●

●

●
●●

●●

●

●
●

●
●

●●

●● ●●

●

● ●

●
●

●

●

● ●

●
●● ●

●

●
●● ●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●●

●
●●

●
●

●

●

●●● ●
●

●

●

●

●

●

●
● ●

●

● ●● ●

●

●
●

●

●
●●

●
●

●●
●

●
●

●

●

●

●

●
●●●

●

●

●

●●

●
●

●

●

●●
●

●

●

●● ●
●

●●
●
● ●

●
●

●
●

●

●
●

●

●

●

●

●

●● ●

●

●

●
●

●●

●

●
●

●

●
●

●
● ● ●●

●

●●

●

●●

●

●

● ●
●

● ●

●

●

●●

● ●
●

●

●
●

● ●●

●
●

●● ●
●

●
●

●
●

●

●

● ●

●

●

●

●
●●

●

●

●
●

●
●

● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●
● ●

●

●

●

●

●● ●●

●●

● ●●●
●

●
●

●●

●

●
●

●
● ●●●

●●●
● ●

●
●

●
●

●

●

●●
●

●

●

● ●
● ●

● ●
●● ●●

●

●

●

●
●

●

●

●

●
●●●

●●
●

●

●●

●
●
●

●
●

●

●

●●

●

●●●●
●

●

●

● ●
●

● ●●

●

●

●

● ●

●

●

●●
●

●

●

● ●
●

●

●

●
● ●● ●

●

●
●●

● ●
●

●

●● ●

●

●
● ●

●

●

●●

●

●
●●●

● ●

●●

●● ●●
●
●

●
●

●
●

●
● ●

●●

●
●

●
● ●● ●

●
●

● ●
●

●
●

●

●

●

●
● ●

●

● ●

●

●●●

●
●●

●

●

● ●

●●●
●

●●

●●
●●●

●

●
● ●

●
● ●

●

●
●

●
●

●

●

●

● ●

●●
●
●

●
●

●
●

●●

●

●●●
●

●

●
● ●

●
●

●

●
●

●

●

●● ●

●

●
●

●●

●
●

●

●●

● ●

●●
●

●
●●

●
●

●
●

●
●● ●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●
● ●

●
●

●

●

●

●●

●

● ●

●

●
●

●
●

●●
●

●
●

●● ●
●●

●
●●●

●
●

●●
●

●●

●
●● ●
●

●

●● ●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●●
●

●

●

●
● ●●● ●

●

●
●● ●

●

●
●

●

●●
●

●
●●●●

●

●

●●●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●●
●

●
●

● ●●
●● ●

●●
●

●

●
●

●

●

●

●
●

● ●●
●●●

●
●

●●

●●●●● ●

●

●

●

●●
●

●
●●

●
●●

●
●●
●●

● ●
●
●

●● ●● ●

●

●
●

●●●
●

●

●
● ●

●●●

●

●●● ●●

●

●

●

●

●●
●

●●
●

●●

●
●

●

●

●

●

●
●●
●

●

●

●

●●

●
●●

●

●

●●
●

●

●
●

●
●●

●

●

●

●

●

●

●●● ●

●
●

●

● ● ●
●

●

●●

● ●

●

● ●

●

●●

● ●

●
●
●

●
● ●

●

●
● ●

●

●

●

●
●

●

●
●

●
●●

●
● ●

●
●

●
●

●●
●

●
●

●

●

●●
●

●

●

● ●●

●●

●●●
● ●●

● ●●
●●

●●

●

●
● ●

●

●
●

●

●

● ●
●

●
●

●
●

●
●
●

●●● ●
●

●
●

●
●●

●
●●

●
●

●

●
●

●

●

●●

●●
●

●
●●

● ●

●●
●

●●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●●●

●●●●
● ●●

●

●● ●

●●

●
●●

●

●●

●

● ●
●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●●●

●

●

●●

●

●●

●

●

●●●

●
● ●

●

●

●

● ●

●●

●●
●●

●

●

●●
●

●
●

●
●

●●●
●

●●
●

●●

●

●

●
●●

●●●
●●

●
●

●

● ●

●●●
● ●●● ●● ●

● ● ●●
●

●● ●

●
●●

●
●

●
●●

●
●

●●
●

●

●

● ●
●

●

● ●

●
●

●

●

●

●
●

●
●

● ●

●

●

●

●●
● ●

●

● ●

●●●

●
●●●● ●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●

●●
●

●
●

●●
●

●● ●
●

●●
●

●

●● ●●
●

●

●

●
● ●●

●

●
●●

●

●●
●

●
●
●

●● ●

●
●

●● ●

●

●
●●

●●

● ●

●
●

●●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

●●●

●

●
●

●
●

●
●

●

●●
●

●

●

●

●
●●

●
●

●

● ●

●

●

● ●
●

●

●
● ●

●

●
●

●

●

●
●

●●
●

●

●

● ● ●
●

● ●●
●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●
●

●●

●●

●

●

● ●

●

●
● ●●

●

●

●

●

●

●

●● ●●●
● ●

●

●

●

●●●

●

●
●●●

● ●
●

●

●
●

●

●

●

●

●
●
●●

●
●

●

●

● ●
●●

●

●

●

●
●
●

●

●
●

●

●

● ●

●

●
●

●● ●●
●

●
●

●
●

●●●

●

●
●● ●● ●●

●

●

●
●

●●

●●
●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

● ●
●●

●

● ●

● ●

●●●

●

●●●
●

●
●

●

●

●

●

●●

● ●●

●
●

●●● ●●

● ●
●

●● ●
●
●●●●
●●

●

●

●
● ●
●

●

● ●
●

●●
●
●● ●●

●●

●
●

●
●

●●● ●●
●

●

●●
●●●●

●
●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

● ●

● ●●● ● ●
●

●

●
● ●

●

●●●●● ●
●

●

●
●

●

●●

●
●

●
●

● ●

●
●

●●

●

2

●
●

●●●●●●●●●●●●●●●
●

●●
●

●●● ●●●
●

●●●●
●●●

●●●●●●●●●●●
● ●

●●

●
●

●

●

●●●●●●●
●

●●●●●●●●●●
●

●
● ●●●●●●●●●●●●●●●

●●●●●●●●●●
● ●●●●●

●
●●●●

●
●●●● ●●●●●●●●●●●
●

●●●●●
●

●●●●●●●●●●●●●●●●●●●
●

●●●●●●●
●

●●●
●

●●●●●●●●
● ●●●●●●●●● ● ●●

●
●●●●

●
●●●●●●●●●●●●

●
●●●

●

● ●
●●●●●●● ●●●

●
● ●●

●
●

●●●
●

●
●●●●●●●●●●●●●●●●

●
●●●●

●
●●●●●●● ●●

●● ●●●●●●●●●●● ● ●●●●●● ●●●●

●
● ●●●● ●●●

●
●

●

●●●● ●●●●●●●●
●

● ●●
●●●●●● ●●●●●●●●●●●●●●●●●●●

●
● ● ●● ●●●●●●●●●●●●●●●●●

●
●●●●●●●

●●●●●●●●●

●
●

●
●●●

●
●●●●●●●●● ●●

●
● ●

●
● ●●●●●● ●●●●●●●●●

● ● ●●●
●

●●
●

●●●●●●●●●●●●●●●●●●● ●●●●
●

●●●●●●●●●●●●
●

●
●

●●● ●●●●●●●
●

●● ●●●●●●●●●●●●●●●●● ●●●●●●●
●

●●●●●●●●●●●●●●●●●●●
●●

6 ●
●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●●
●

●

●

●

●

● ●

●
●

●●

●

●●

●●

●

●
●

●●

●

●●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●●

●

●

●

●
●●
●

●

●●
●

●

●
●

●

●
●

●
●

●

●

●

●●
●

●

●●

●

●
●

●

●

●●

●●

●
●●

●

●
●

●
●
●●
●

●
●

●

●
●

●
●

● ●
●

●
●

●
●

●●

●

●

●●
●●

●●
●●

●
●

●
●

●●●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●●

●●

●

●

●

●●●

●
●●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●● ●
●

●

●

●●●

●
●
●

●
●

●
●

●

●

●

●

●●●●
●●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●●

●

●
●●

●

●

●
●

●

●

●

●
●●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●●

● ●
●

●
●

●

●

●
●
●

●●

●
●
●

●

●
●●

●

●

●●

●

●

●

●
●

●●
●

●

●

●

●
●

●
●

●

●●●

● ●

●

●●
●

●●●●

●

●

●●
●
●
●

●
● ●●●

●●

●

●

●●

●
●

●●●

●●
● ●

●●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●
●

●

●●
●

● ●

●
●
●

●
●

●

●

●

●
●●

●

●
●

●●

● ●●
●

●

●
●

●

●

●
●

●

●●●

●

●
●

●

●
●

●

●
●

●●
●
●

●
●
●

●

●
●

●
●

●●

●
●

●
●●

●
●

●

●●

●

●
●●

●
●

●
●

●●

●

●

●

●

●
●

●●

●●

●●

●

●

●

●

●●●

●

●●●
●

●
●

●

●

●

●
●

●●

●

●

●
●● ●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●
●●

●●●●

● ●

●

●

●

●●
●

●

●
●

●

● ●●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●
●
●●●

●

●

●

● ●●●

●

●

●
●
●

●
●
●●●

●

●
●

●

●

●
●●

●●

●

●

●

●

●
●

● ●

●●

●
●●

●

●
●

●

●

●●●
●
●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●●

●●

●
●

●●
●●●

●

●

●●
●●

●●
●

●

●
●

●●

●
●● ●
●

●
●

●

●

● ●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
● ●●

●

● ●
●

●

●
●

●

●

●
●

●
●

●
●

●
●
●

●

●

●

●
●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●●
●●

●
●

●

●●●●●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●
●

●●

●

●
●●●

●●

●

●
●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
● ●

●

●
●

●

●●

●

●

●●

●

●
●

●
●●●
●

●

●
●

●

●
●

●●

●●●
●

●

●

●

●

●●

●● ●

●●

●

● ●

●

●

●
●

●

●●

●
●

●

●●

●
●●●

●
●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●

●●
● ●

●●

●
●

●

●

●●●

●

●

●
●

●

●

●●

●

●
●

●

●●

● ●

●●
●

●●

●●
●●

●●

●

●●

●

●

●
●

●●
●●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●
● ●

●

●

●
●

●
●●

●

●●

● ●●
●
●

●

●●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●●

●●

●
●

●

●
●●

●

●

●

●●
●

●

●

●●

●●

●
●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●●

●

●
●●

●

●

●

●

●

●
●

●●

●

● ●●●

●
●

●●

●

●
●

●
●

● ●
●

●●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●
●●●

●

●●

●●

●

●●

●

●
●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●●

●

●

●

●
●

●●

●
●

●●

●

●
●

●
●● ●
●

●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●

●●

●●●

●

●●

●

●

●

● ●

●

●
●

●●

●

●
●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●●
● ●

●●●

● ●

●
●

●
●

●
●●

●●
●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●
●

●

●

●●●

●

●●
●

●

●

●
●

●●

●

●●

●●

●

●●

●●

●
●

●
●●

●

●

●
●

●

●

●

●
●

●
●

●

●
●
●

●

●
● ●●

●
●

●●
●●

●

●●
●●

●●●

●●

●

●●
●

●

●

●

●

●

●
●

●
●

●●●

●

●

●●

●

●

●

●
●
●

●

● ●
●

●●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●●
●

●

●●
●

●

●

●
● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●
●
●

● ●

●

●

●
●

●●

●

●●

●●●●

●
●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●
●

●
●

●

●●
●

●
●

●●

●● ●

●

●
●

●●
●●

●●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●●●

●

● ●●●

●

●

●●

●

●

●

●
●●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●●

●

●

●●●

●

●
●

●●

●

●

● ●
●●

●

●
●

●●●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●●
●

●

●

●●

●●

●

●●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●
●

●

●●
●

●●
●

●
●
●

●

●

●●
●

●●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

● ●

●

●

●●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●●

●7

●●●●●●
●

●●●

●

●●●
●●●●
●●●●●●●●●
●●

●

●●●
●
●
●●●●●
●●●●●●●●
●

●●

●●●●●

●

●●●●

●

●●●●●●
●
●●
●●●●●●
●

●●●
●

●●
●

●
●

●

●

●

●

●●●●●●●●

●

●
●●●●●●●●●●
●
●●●●●●
●
●
●●●●●●●●●●●

●
●

●

●

●

●●

●
●
●

●●

●

●

●●
●

●●
●●●●●●

●

●

●●

●

●
●●
●
●●
●●

●
●●●●●

●

●●●

●
●

●●●●●●●●
●●●●●
●

●
●●●●●●
●
●●
●
●
●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●

●
●●
●●●

●
●●●●
●●●

●
●●●●
●●●
●●●
●
●

●

●
●
●●●●●
●●●●
●
●●●●●●

●
●●●●●●●●●●●●

●

●●●●●●●●

●

●●●

●
●

●●
●

●
●

●

●
●●●●●●●●●●
●●
●●●●●

●
●●●●

●

●

●●●●●
●●●●●●

●

●
●

●
●●●

●

●●
●●●●●
●●●●●●●

●

●●●●●●●

●●●
●
●●

●
●
●
●●●●
●●●

●

●●●●●●●●●●●●●●
●●●●●●

●

●
●
●●●●●●●

●

●

●

●●●
●●
●●●●●●
●●●●●●
●●●●
●
●

●●

●

●●●●●●●●●
●●●
●●●●
●
●
●
●●●●●●
●●●●●●
●●●●●●●●

●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●
●
●●●
●●●●●●
●●●●

●
●●●
●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●

●

●●●
●

●

●●
●●

●
●●●

●●●●●●
●

●
●

●●●
●
●●●
●●

●

●

●
●

●
●

●●●●●●

●

●●
●

●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●

8
●

●
●

● ●

●

●●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●●
●

●●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●
● ●

●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●●● ●
●●

●●

●

●

●●
●

●

●

●
●●●

● ●
●

●
●

●
●

●●●●●
●●

●

●
●●●

●

●

●
●●

●
●
●

●
●

●

●

●

●

●

●

●

●
●
●
●

●●●
●●

●

●●
●●

●
●

●
●

●

●

●●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●●● ●

●

●

●●●

●
●

●
●

●

●●

●

●●●●

●●●
●● ●●

●

●●●
●

●
●●●●●●

●●●

●●●●

●

●

●

●●●

●

●
●●

●
●

●

●
●●

●

●
●●●

●

●

●
●●

●
●

●

●●●

●

●
●

●

●

●

●

●
●

●
●●●

●●●●●

●

●

●

●
●

●

●
●

●

●

● ●
●

●
●

●

●

●

●
●
●

●●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●
●

●

●●
●
●

●

●●●

●

●

●

●
●●

●

●

●
●●●

●
●

●

●
●

●

●

●
●

●

●● ●●

●

●● ●
●●● ●

●●

●●

●

●

●

●

●
●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●●
●

●
●●

●

●

●
●

●

●

●

● ●

●
●●

●

●

●

● ●●●
●●●●

●

●
●

●
●●

●

●

●

●
● ●

●

●●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●●

●

●

●

●
●
●
●●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●
●
●

●

●
●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●●

●

●
●

●

●
●●

●

●
●

●

●

●●
●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●●
●

●●

●●●●●●●

●

●
●

●

●

●●

●●
●

●
●

●

●

●

●●
● ●

●●
●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●
●● ●●●

●

●

●

●●

●
●

●

●●
●

●

●●●
●●

●

●

●
●●

●●
●

●

●
●●●●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●●●●
●
●●

●

●●

●
●

●●
●

●

●●

●

●

●
●

●
●

●
●
●

●

●

●●
●

●

●●

●

●

● ●
●●

●

●●

●

●●

●
●

●

●

● ●●

●

●
●
● ●

●

●●

●●

●

●

●

●

●●

●●

●
●

●

●
●

●

●

●
●● ●● ●●

●

●
●●

●●

●

●
●●

●●

●

●
●●

●●
●

●

●

●
●

●

●
●

●●●
●

●●

●
●
●

●

●

●

●

●

●
●

●●●

●

● ●●

●

●

●

●
● ●
●●●

●●

●
●●

●●
●●
●
●

●

●

●●

●

●

●

●
●

●●
●

●● ●

●

●

●

●

●●
●
●●●

●

●

●
●
●

●
●

●

●

●

●
●

●

●
●●

● ●
●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●●

●

●●

●

●
●

●
●
●
●

●
● ●●

●●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●
●

● ●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●●
●

●●

●

●
●
●

●
●

●

●
●

●

●
●

●● ●●

●

●

●●
●

●

●●
●

●

●●●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●●●

●

●

●●●

●

●

●●

●
●
●●

●
●

●
●

●●
●●●
●

●

●●● ●●●●●
●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●●
●●

●●●

●

●●

●

●
● ●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●
●

●●

●

●● ●

●

●
●●●

●

●

●
●

●

●

●

●

●

9

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

● ●
●

●●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●
●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●
●

●

●

●
●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

● ●
●

●
●●●
●

●

●

●
●

●

●

●

●●

●

●

●

● ●●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
● ●

●

●

●
●●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●●●

● ●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●●

●

●●●

●

●
● ●

●

●
●●●●

●

●

●
●

●●
●

●

●

●

● ●
●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●
●
●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●
●

●
●

●

●
●●

● ●● ●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●●
●●
●

●● ●

●

●

●

●

●
●

●

● ●
●

●●

●

●

●

●

●

●

●
●

●●

●●

●
●

●●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
● ●●

●●

●
●●

●

● ●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●
●●

●
●

●

●

●●

●●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●
●

●

●
●●

●
●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

14

●

●

●
●

●

● ●●
●●
●
●●●

●

●
●●

●

●

●●

●

●

●

●●

● ●

●

●

●

●●●●
●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●
●

●

●
●●●
●●
●

●●
●
● ●

●
●

●

●
●

●●

●
●●

● ●

●

●
●
●
●●

●

● ●●●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●●●
●
●

●

●

●

●
●
●

●●

●

●

●

●

●

●
●

●

●●
●

●●●

●
●

●

●●
● ●●
●

●

●

●●●

●
●

●●
●●

●

●

●

●

●
●

●
●

●

●
●●
●

●

●●
●
●

●●
●

●
●

●

●

●

●●
●

●

●
●●

●

●

●

●
●

●

●●

●●
●

●

●

●

●
●

●

●
●

●
●

●●

●●
●●
●
●●

●●●
●●

●
●
●

●

●

●
●

●
●

●

●
●

●●

●
●●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●
●
●

●

●●●●

●

●●

●

●

●
●
●

●

●

●
●

●
●

●

●

●●
●

●
●●

●

●
●●

●
●

●●

● ●
●●

●
●

●

●●●●

●
●
●

●

●●
● ●
●

●
●●

●

●

●

●

●
●
●
●

●

●●●●

●
●

●
●
●

●
●

●

●●

●
●●●
●
●
●

●●
●
●●
●
●

●●●

●

●●

●

●
●●

●
●

●

● ●

●

●●
●
●
●

●
●

●
●●
●

●● ●
●●

●●
●●●

●●

●
●

●●

●

●

●

●
●● ●

●

●
●

●

●

●
● ●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●●

●●

●●
●
●
●

●

●

●
●●

●

●

●

●

●●
●●

●

●

●

●

●●●●●●●
●

●
●●●●

●
●●

●

●●
●●
●●
●

● ●

●●

●

●

●

●●●●
●

●●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●●

●●●

15

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●●

● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●
●

●●
●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●●

●

●●
●

●
●

●

●

●

●
●●

●

●

●

●

● ●●

●●

●

●

● ●

●

● ●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●●

●●
●

●

●

●

●
●

●

●

●
● ●

●

●
●

●

●

●

●

●
●

●
●

● ●

●

●● ●
●

●●
●●

●

●

●●

●

●●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●●

●

●
●●

●

●

●

●

●

● ●●
●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●
● ●

●

●

●●

●
●
●
● ●

●

●

●
●

●

●●
●●

●

●

●

●

●

●
●● ●

●●

●

●

●

●

●

●
●

●

●

● ●

●

●
● ●

●

●

●
●

●
●

●

●

●
●

●
●

●● ●

●

● ●●

●

●●●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●●

●●

●
●

●

●●
●

●

●

●
●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

● ●

●

●

●●

●

●

●●

● ●

●
●

●

●

●

●

●
●

●
●

●

●●●

●
●●

● ●

●
●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●

●
●●

●

●

●

● ●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ● ●

●

●

●
●

● ●
● ●

●

●

●●
●

●●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●
●
●

●

●

●

● ●●
●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●
●●

●

●

●

●●

●

●

●

●

●

●
●
●

●●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●●●

●

●
● ●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●

● ●●

●●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●
●

●
●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●●

● ●●

●
●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

● ●
● ●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

● ●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

● ●

●
●

●●

●

●

●

●
●

●

●

●

●

● ●●

●

●●
●

●●

●
●

●● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

● ●

●

●

●

●

●●●

●●

●

●●

●
●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

● ●

●

●
●
● ●

●

●

●

●

●●
●

●

●

●●

●

●
●

●

●
● ●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●
● ●●●

●
●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●● ●

●

●

●●

●

●●
●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●●

●
●

●●●●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●●

●
●

●●

●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
● ●

●
●

●●

●●
●

●

●

●●●
●

●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

● ● ●

●
●

●

●●
● ●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●●

●

●●

●

●

●
●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●●

●

●●

●

●
●●

●

●●
● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●●
●

●

● ●
●

●

●

●
● ●●●

●

● ●●

●

●●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●●●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

●●

●

● ●

●● ●

●

●
●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●
●

●

●
●

● ●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●● ●

●

●

●

●

● ●
●

●

●
●

● ●
●

●
●

●
●

●

●

●
●

● ●●

●

●

●

●

●●

●

●

●●●

●

●
●

●
●

●●

●

●●
●

●● ●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

● ●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●
●

●
●

●
●

●

●

●●

● ●

●

●
●

● ●

●

●

●

●●

●
●

●
●

●

●●
●●

●

● ●●
●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

● ●

●

●

●
●
●

●●

●

●

●

●

●

●
●

●
●

●
●

●

● ●●

●

●
●

●

●

●

●

●

● ●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●●●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●
●

● ●

●

●

●
●

●●

●
●●

●
●●

●

●

●

●

●
●

●●

●

●
●

●●●
●

●●

●

●
●●●

●
●●

●

●●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

● ●●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

● ●

●

●

●
●

●
●

●

●

● ●

●

●
●

●

●

●

●

● ●

●

●●

●●

●

●

●
●●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●
●●●

●

●

●

●

●

●
●

●

●
●

●

●● ●
●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●●

● ●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●●

● ●

●

●
●

●

●
●

●

●

●

● ●
●

●
●

●

●

● ●●

●

●
●

●

●

●

●

●

●
●●●

●

●
● ●●

●●

●

●

●
●

●

●● ●
● ●

●

●
●

●
●
●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●
● ●

●

●

●

●

●●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●●

●

●

● ●

●
●● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●●

●
●

●

●

● ●
●

●

●

●
●

●
●

●

●
●

●●
● ●

●

●

●
●

●
●

●● ●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

3

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●
●
●

●
●

●

●
●
●

●
●

●
●

●
●

●
●●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●● ●

● ●

●
●

●

●

●
●●●

●

●
●●
●

●
●

●

●●
●

●

●
●●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●
●●

●

●

● ●

●

●
●

●

●
●

●
●

●
●

●
●

●●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●●

●
●

●

●● ●
●

●
●●

●

●
●● ●

●

●

●

●

●

●

●●

●●
●

●

●
●●

●

●

●

●●

●

●

●

●●

● ●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
● ●

● ●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●● ●●●●

●

●

●

● ●

●

●
●

●

●●

●

●●
●

●

●

●

●
●

●

●●

●

●

●
● ●●

●
●

●

●

●

●

●

●
●

●
●

●
●●

●
●

●

●
●●

●●

●
●

●

●
●

●
●

● ●
●●

●●

● ●

●
●

●

●

●
●●

● ●● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●●

●●
●

●
●

●

●

●

●
●

●
●●

●

●
●●

●

●
●●

●

●
●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

● ●●
●

●

●

●

●
●

●

●

●●

●●
● ●

●●

●

●

●

●

●

●

●

●
●

●

●●

●●
●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●●

●

●●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●
●

●

●●

●

●
●●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●●

●
●

●

●

●
●●
●

●

●●

●

●
●

●
●

●

●

●

●
● ●

●

●

●
●

●
●●

●

●

●

●
●

●
●

●●●●
●

●

●●●

●
●

●

●●

●

●

●●●

●
●
● ●

●

●●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●●
●●

●

●
●

●

●●
●

●
●

●●
●●●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●●

●

●
●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

● ●

● ●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

●● ●

●●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

● ●
●

●

●

●

●
●

●●

●

●●
● ●

●
●

● ●
●●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

● ●
●

●

●●
● ●

●
●
●●

●

●●
●

●●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

● ●

●
●
●

●

●

●

●●

●
●

●

●
●

●

● ●

●

●●●

●

●

●

●

●

● ●●
●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

● ●

●●●
●

●

●

●
● ●

●

●

●

● ●

●●

●
●

●

●●

●

●

●
●

● ●

●

●

● ●
●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●
●

●
●

●

●●

●

●

●

●

●

● ●

● ●●

● ●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

● ● ●

●
● ● ●

●●
●

●
●

●

●

●
●

● ●● ●
●●

●
●

●

●

●

● ●

●

●
●

●
●

●

●

● ●● ●

●
●

●
●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●●

●

●

●

●
●

● ●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●●
●

●
●

●●
●

●●

●

●

● ●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●
●●

●

●
●

●
●

●
●

●

●
●

●
●

●●
●●

●

● ●●●
●
●

●

●

●

●

●

●
●
●

●

●

●

●
●●

●●

●
●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●
●

●

●
●

●●●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●
●●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

● ●
●

● ●

●

●
●
●

●

●

4

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●
●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●
●

●

●

● ●
●

●

●

●
●

●

●

●●
●●

●

●
●●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●● ●

●

●

●
●

● ●
●

●

●●●

●

●

●

●

●

●● ●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
● ●

●●●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●●● ●
●

●
●

●

●●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●
●●

●●
●

●

●
●

●●
●

●●

●●
●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●
●●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●●

●

●
●

● ●

●

●

●

●

●

●

●
●●●
●

●

●

●●

●

●

●

●

●
●

●

●●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●●

●

●

●●

●

●

●

●
● ●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●
● ● ●● ●
●

●

●

●●

●●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●
●

●
●
●

●

●
●●

●

●
●

●
●

●●

●
●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

● ●●

●●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●
●●
●

●●●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

● ●
●

●

●

● ●●

●
●

●
●

●

●
● ●

●

●
●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

● ●

●

●

●
●

●

●

●

●
●

●●

●●●

●

●

●

●

●

●

●

●

●●

●●
●

●
●

●

●

●

●

●

●

●

● ●

● ●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

● ●●●

●

●● ●
●

●

12

●

●

●

●
●
●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●●

●●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
● ●

●●

●
●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●●
●

● ●
●●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

● ●●

●

●

● ●
●

●●●

●

●

●

●

● ●

●

●
●

●

●

●●

●●

●
●

●

●

●
●

●

●

●

●●
●

●●

●

●

●
●●

●

●●●

●

●

●

●

●

● ●

●

●

● ●

●
● ●

●

●
●

●

●

●
●
●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

● ●●●
●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

● ●

●
●

●●●

●

●

●

●

●

●

●

●

●

18

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●

●

●●

●
●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●●

●

● ●
●

●

●●● ●●●●

●

●
●●

●

●●
●

●●
●

●●
●●

●

●

●

●

●

● ●
●

●

●● ●
●

●

●

●

●

●

●

● ●●

●
●●

●

●

●●

●

●

● ●

●
●●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●
● ●

●

●

●

●
●

●●

●
●

●

●
●●

●

●● ●

●

● ●

●

●
●

●

●
●

●
●

● ●●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

● ●●

●
●

●

●

●

●
●

●●

●
●

●

●●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●●
●●

●
●

●

● ●

●

●

●
●
●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●
● ●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●●●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

● ●

●

●
●

●

●

24
●

●

●

●

●
●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●
●

●●

●

●

●●

●

● ●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●●

●

●
●

●

●

●

●
●● ●
●

●

●

●●

●

●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●
●

●

25

● ●

●

● ●

●
●

●

●

●

●

●

●
●●

●●

●
●
●

● ●

●● ●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●
●

●
●●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

● ●
●

●

●

●
●● ●

●

●

●

●
●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●●
●●

●

●●

●●●

● ●●

●

●

●●

●

●
●

●

●

●
●

● ●
●

●
●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●●●
●

●

●
●

●

●
●

● ●●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●
●●

●●
●

●

●

●

● ●

●●

●
●

●●●
●

●

●

●●●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●
●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●
●●●
●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●●

19

●
●●

●

●

●

●

●

●

●●
●
●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●●

● ●
●

●
●

●

●

●

●

●

●
●

●●
●● ●
●

●● ●

●

●

●

●●●●

●

●

●

●
●

●

●

26

●●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●●

●●
●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●
●
●

●
●

●●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●
●

●

●

●● ●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

● ●
●

●

●●
●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●● ●

●

● ●

●

●

●
●

●

● ●

●

●

● ●

●

●● ●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●●
●

●●

●
●

●

●●

●●●●

●

●●●

●
●

●

27

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

● ●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●●●

●
●

●

●

●●

●●

●
●

●
●

●

●
●

●

●

●

●●
●
●
●

●

● ●●

●●

●

●

●

●
●

●
●

●

●

●
● ●

●

●

●

●●●●
●

●

●●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●
●

●

●
●

● ●
●
●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●
●
●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●●●
●
●

●

●
●●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

● ●●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●●
● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●●
●●
●

●

●

●
●●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●●
●●

●
●●

●●

●
●

13

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●20

●

●

●

●

●●
●

●

●●●

●

●
●

●

●

●

●
●

●

●
●●
●●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●●

●

●

●

●

●

●●
●●
●

●

●●

●●

●

●
●

●●

●
●

●

●

●
●

●

●●

●

●

●

●●

●

●
●●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●

●

●
●

●●
●

●
●

●

●
● ●

●

●

●

●
●

●

●
●

●

●
●

●

●●●
●

●

●

●

●
●

●

●
●●●

●●

●

●

●●●

●

●

●

●

●

● ●●

● ●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●

●

●

●●
●

●

●

●

●●●

●

●

●

●
●

●

●

● ●●●●

●
●

●
●●

●

● ●

●

●●●●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●
●
●

●
●● ●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●
●
●

●

●
●

●●

●●

●

●

●

●

●

●

●●

●
●

●

●

●
●
●
●●

●●●

●
●

●

●

●●

●

●●

●
●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●●

●
●
●●●●

●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

21

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●●

●

●
●
●

●●

●●
●

●

●

●
● ●

●

●
●

●
●

●

●

●

●

●

●
●●●
●

●
●

●

●●

●

●
●

●●●

●

●
●●●

● ●●●
●

●
●

●
●

●

●

●

●

●

●

●●
●

●
●●

●

●●

●
●

●

●
●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●
●●

●
●

●●● ●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●
●

●

●

●●
●●

●

●

●
●

●

●●

●

●

●●
●

●●

●●

●
●●

●

●
●

●●

●●

● ●● ●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

● ●

●
●

●●

●

●● ●●
●

●

●

● ●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●
●

●
●

●●

●●

●
●

●
●

●●
●

●

● ●●

●●
●

●
●

●
●●

●●

●
●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●●●

●

●

●●

●

●

●

●

●
●●●

● ●

●
● ●

●●

●

●

●

●
●

●

●
●
●

●

●

●
●
●

●

●

●

●

●● ●

●●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●●

●

●
●
●

●●

●

●

●

●
●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●●
●

●
●

●●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●
●●

●

●
●

●
●

●

●●
● ●
●

●
●●

●●●

●

●
● ●

●
●

●
●

●

●●

●

●

●

●●

●
●

●

●●
●

●

● ●●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●●●

●

●●

● ●
●
●

●

●

● ●

●

●●●
●●

●●

●

●

●

●
●
●

●

●

● ●

●

●
●

● ●

●

●

●● ●

●

●●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●●
●

●

●
●

●

●
● ● ●●●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●
●

●
●

●
●

●

●
● ●

●●

●

●

● ●

●

●

●

●●●

●
●

●

●● ●

●

●

●
●

●

●

●●
●

●
●

●
●●

●

●
●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●
● ●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●
● ●●
●

●

●

●●

●●
●

●

●

●

● ●

●●

●
●

●● ● ●

●

●

●

●

●
●

●

● ●

●

●

●●
●

●

●

●

●

●
●

●●

●
●

●
●

●

●
●●

●

●

●
●

●

●
●

●●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●●

●
●

●
●

●

●

●

●

●
●
●

●

●
●

●

● ●

●

●

● ●

●

●●●
●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●● ● ●

●

●

●
●

● ●●
●

●

●

●

●
●

●

●

●
●
●

●

●

●●

●

●●
●

●

●

●●
●

●

●
●

● ●
●

●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●● ●
●
●

●

●●●
● ● ●

●
●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●●

●●●●

●

●●

●
●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●
●

●
●●

●
● ●

●
● ●

●
●

●

●

●

●

●● ●

●

● ●

●
●

●

●

●

●

●

●
●

●

● ●

●
●

●

●●

●

●
●

●

●
● ●

●

●

●
●

●

●

●

●

●●
●
●

●

●

●
●

●
●

●

●

●●●
●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●
●

●

●●

●

●
●

●

● ●●

●

●●

●

●●

●●
●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●
●

●
●●

●

●

●

●●● ●

●
●●

●
● ●

●

●

●●

●
●

●●

● ●
●

●●●
●

●

●

●●

●

●
●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●
●●● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●●
●

●

● ●

●

●

●
●

●
●● ●

●
●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●●●

●

●

●
●

●

●

●
●

●

●●●●

●

●

●

●

●

●

●
●
●●● ●

●

●

●

●

●

●

●

●

●

●
●●

●
●● ● ●
●

●
●

●●
●● ●

●
●

●

●

●

●
●
●

●

●

●

●

●
● ●

●

●
●

●●

● ●
●●

●

●

●

●

●

●

●

●
●
●

●●
●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●
●

●●

●●

●●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●
●

●
●
●

●
●●

●

●
●●

●●

5

●●● ●● ●●●● ●●● ●● ●●● ●●●●●● ●●●● ●● ●●●● ●● ●● ●●●● ●●●●●● ●●●●●●●● ●● ●●● ●●●● ●●●● ●●● ●● ●●● ●● ●● ●●●● ● ●●●● ●●●
●

●● ● ●●● ●● ●●●● ●●●●● ● ●●●● ● ● ●●●● ● ●● ● ● ●●● ● ●●●● ●●● ●●● ●●● ●●●● ●●● ●●● ●●● ●●●● ●●●● ●●● ●●●●● ●●●● ●● ●●●●● ●●●●● ●● ● ●●●●●●
●

● ●● ● ●●●●● ●● ●● ● ●●● ●●● ●● ●● ●● ●● ●●● ● ●● ●● ●● ●●● ●●● ●●● ●●●●●●● ●● ●●●●●●●● ● ●●● ●●●● ●●●● ●●●● ●● ● ●●● ●●●● ●● ●● ●● ●● ●●●●● ●● ●● ●●●●● ●●● ●●● ●●● ●●●●●●● ●●●● ●●● ●●● ● ●●● ●● ●● ● ●●● ●●●●●●●

●

●●●● ●●●● ●● ●●●● ●● ●● ●●●●●● ● ●●●● ●●● ●●●● ●●●● ●●●● ●● ●● ● ●●● ●●● ● ● ●●● ● ●● ● ●● ●●●●● ●●● ●●●● ●● ●●● ●● ●●●●● ●●●●● ●● ●●● ●●● ● ●●● ●●● ● ●● ● ●●●●● ●● ●● ●● ● ●●● ●● ●●● ●●●● ● ●●● ●●●●● ●●● ●●●● ● ●●●● ● ●●●● ●●
●

● ●● ●● ●●● ● ●●● ●● ●●●●● ●● ●●●●● ●● ●●●●●● ●●●● ●● ● ●●●●●● ●●● ●●●●● ● ●● ● ●● ●●●● ●●●● ●●●● ●●● ●●●●●●● ●● ●● ●● ●●●● ●●●● ● ●●● ●●● ●●●●●● ●● ●●●●●●●● ●●● ●●● ●●● ●●● ●● ● ●● ●● ●●● ●●● ● ●● ●● ●●● ●● ●●● ●●●●● ●●●● ● ●●● ●● ●●● ●● ●●●●●●

●

● ●● ●● ●●●●● ● ●● ●● ●● ●●● ●●●●● ●● ●● ● ●●● ●●● ●● ●●● ●●●● ●● ●● ●● ●●● ●● ●●●● ● ●●●●● ●● ●● ● ●● ●● ● ●● ●● ●●● ● ● ●●● ●● ● ●●●● ●● ●● ● ●●●● ●● ●●● ● ●● ●● ●●● ●● ●●●● ●●● ●●●●● ●● ● ● ●●● ●● ●●●● ●● ●●● ●●● ● ●● ●●●●●●● ● ●● ●●●●●●● ●● ● ●●● ●●● ●● ●●● ●● ●●● ● ●●● ●●●● ●● ●● ●●●● ●●●● ●● ●●●●●10

●●●

●

●
●

●

●
●

●
●
●●

●
●●

●●
●

● ●●

●

●●

●

●

●
●
●

●●
●
●

●●●
●

●

●

●●
●

●
●

●

●
●
●● ●

●

●

●
●

●
●

●
●●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●●
●

●
● ●

●

●

●

●

●

●
●

●

●

●

●●
●
●

●●

●
●

●
●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●●●
●●

●

●

●

●

●

● ●
●

●●

●●●

● ●

●●
●● ●

●
●

●

●
●

●
●●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

● ●
●●●
●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●●

●
●

●

●

●
●

●●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●
● ●●
● ●

●

●

●
●●

●
●
●●

●●

●

●

●
●

●

●●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●
●

●

●●

●

●●

●

●
●

●
●

●
● ●

●

●●

●
●

●

●

●

●

●●●

●

●
●

●

●

●
●

●

●
●●

●●

● ●

● ●

●

●

●

●
● ●●

●●

●
●● ●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

● ●●

●

●

●

●

●

●●

●

●

●
● ●

●

●
●

●
●

●●●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●
●●

●●

●

●●

●●
●

●

●

●

●

●

●

●

●

● ●
●

●
●

●
●

●

●

●

●

●●

●

●

●
●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●●●

●
●●

●
●

●

●

●
●

●

●
●

●

●●

●

●
● ●●

●
●
●

●

●

●●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●●
●
●●

●

16

●●
●●●

●

●

●

●●
●

●

●

●
●
●●

●

●
●●

● ●

●●

●●
●●●●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

● ●

●●
●

●

●

●
●

●
●

●
● ●●

●

●
●

●

●
●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●● ●●● ●

● ●
●
●●

●

●
●

●

●●
●●●

●

●

●
●

●

●
●

●

●

●
●
●

●
●

●

●

●

●

●●

●

●
● ●

●

●

●

●●

●
●

●

●●

●

●

●

●●●

●

●
● ●●
●●

●
●

●●

●

●
●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●●

●●
●

●

●
●

●●

●●

●

●

●22

●

●

●
●●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

28

●●

●●
●

●

●

●●

● ●

●●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

● ●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●
●

●

●

●

●

●●
● ●

●

●

●
●

●
●

●

●

●

●

29

●

●

●

●

●

●

●
●

●

●

●●

● ●

●

●

●●

●

●

●
●●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

● ●

●
● ●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●
●

●●●

●
● ●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●● ●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●●

●

●

●

●

●●

●

●
●

● ●●

●

●

●

●
● ●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●
●
● ●

●
●

●

●●
●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
● ●●

●

● ●

●

●
●

●●

●

23

●
●●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●
●

●
●●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

30

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●● ●

●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●●

●

●

●

●
●

●

● ●●

●

●

●

●

●

● ●

31

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●
●

●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
17

●● ●●● ●●● ●●●●● ●●● ●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ● ●●● ●●● ●● ●● ●● ●● ●●● ●●● ●● ● ●●● ●●●●●● ●●● ●●●● ●●● ●●●●● ● ●●●●● ●●● ●●●●● ●●● ●●●●●●●●●●●●●●●●●● ●●●● ●● ●●● ●●
●●●

●●● ●●●● ●●●●●●●●●●●●●●● ●● ●●●●●●●●●●
●● ●●● ●●●● ●● ●● ●●●●●● ●●●●●●●●●●●●●● ●●●●●●●● ●●● ●● ●●●●●●●

●●●●●●●●● ●●●●●●● ●●●● ●●●●●●●●●●● ●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ● ●●●●●●● ●●●●● ●● ●●● ●●●●●●●●●●●●● ●● ●●●●● ● ●

●

●●●●●●●●●● ● ●●●●●●●●●
●

●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●●●●●● ●● ●●●● ● ●●●● ●●● ●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●● ● ●●●
●

●● ●● ●●●● ●●● ●● ●●● ●●● ●●● ●● ●●●●●●●●● ●●● ●● ●●●●●●●●●

●

●

●

●●

●

●●●● ● ●●● ●●● ●●●●● ●●●●●●●●●●● ●●● ●●● ●●●● ●●● ●●●●●●

11

Figure 9: Final clustering solution after modifications. There is no evidence of individual clusters
being split, and no evidence of clusters not identified in the model.

> v0 <- function(X) matrix(eigen(cov(X))$vectors[,2], ncol = 1)
> sol <- tree_split(sol, 12, v0 = v0)
> sol <- tree_split(sol, 13)

Inspecting the newly produced leaf nodes shows that leaves numbered 16, 18 and 19 likely contain multiple
clusters, and so are further partitioned.

> sol <- tree_split(sol, 16)
> sol <- tree_split(sol, 18)
> sol <- tree_split(sol, 19)

Once again the resulting leaf nodes are inspected, and nodes 22 and 23 are partitioned.

> sol <- tree_split(sol, 22)
> sol <- tree_split(sol, 23)

The complete solution at this stage can be seen in Figure 9. The solution is valid in the sense that there appear
to be no internal nodes at which a single cluster is split, and there are no leaf nodes which show evidence of
multiple clusters. Finally, we compare the performance of this model with the solution assuming the number of
clusters is known.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 165

> sol2 <- mddc(optidigits$x, 10)
> cluster_performance(sol$cluster, optidigits$c)
adj.rand purity v.measure nmi
0.7150910 0.8989324 0.7641322 0.7656866
> cluster_performance(sol2$cluster, optidigits$c)
adj.rand purity v.measure nmi
0.6451702 0.7919929 0.7202152 0.7202187

The solution obtained by means of modifying the initial model overestimates the number of clusters by 60%.
Despite this it substantially improves the overall agreement between the cluster assignment and the true class
labels when compared with the solution assuming the number of clusters is known.

Extensions

In this section we consider two extensions of the projection pursuit methods discussed in the previous
sections. First we discuss how to estimate large margin hyperplanes for clustering through either
mdh() or ncuth(), and subsequently consider the binary partition of data sets whose clusters cannot
be linearly separated.

Maximum margin hyperplanes for clustering

Maximum Margin Clustering (MMC) (Xu et al., 2004), seeks the maximum margin hyperplane to
perform a bi-partition of unlabelled data. MMC can be equivalently viewed as identifying the
binary labelling of X that will maximise the margin of a Support Vector Machine (SVM) classifier
estimated on the labelled data set. Unlike the supervised SVM problem, which corresponds to a
convex optimisation problem that can be efficiently solved, estimating MMC involves an integer
optimisation problem. Exact methods for this problem are applicable only to very small data sets.
Existing MMC algorithms that can handle reasonably sized data sets are not guaranteed to identify
the globally optimal solution (Zhang et al., 2009).

The minimum density hyperplane and the minimum normalised cut hyperplane converge to the
maximum hard margin hyperplane through the data, as the bandwidth (scaling) parameter is reduced
towards zero (Pavlidis et al., 2016; Hofmeyr, 2017). A simple and effective approach to obtain large
margin hyperplanes for clustering is to apply either of the above methods for a decreasing sequence of
bandwidth/scaling parameters.

Example 7. In this example we attempt to separate digits 3 and 9 from the optidigits data set. This is one of the
most difficult binary classification benchmarks considered in Zhang et al. (2009). We only use the test set of the
optidigits data set to render our results directly comparable to those reported by Zhang et al. (2009). To obtain
large margin hyperplane separators we apply the mdh() function recursively. At each iteration after the first,
the initial projection vector is set to the optimal vector identified in the previous iteration, while the bandwidth
parameter is multiplied by 0.9. The bandwidth can be specified with the optional argument bandwidth. So as not
to affect the initialisation through the penalty term in the MDH formulation, the initial value of α is set to the
final value from the previous solution (using the optional argument alphamin). This and the previous bandwidth
value may be extracted from the $params field of the solution. The outputs of all of the binary-partitioning
hyperplane algorithms in PPCI contain the field $params, a named list storing the parameters used in the
projection pursuit.

> ids <- (3824:5620)[which(optidigits$c[3824:5620]%in%c(3, 9))]
>
> x39 <- optidigits$x[ids,]
> hp0 <- mdh(x39)
>
> hp <- hp0
>
> repeat{
> hp_new <- mdh(x39, v0 = hp[[1]]$v, bandwidth = hp[[1]]$params$h*0.9,

alphamin = hp[[1]]$params$alpha)
> if(hp[[1]]$v%*%hp_new[[1]]$v>(1-1e-10)) break
> else hp <- hp_new
> }
>
> hp_plot(hp0[[1]], x39)
> hp_plot(hp[[1]], x39)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 166

>
> 1-cluster_performance(hp[[1]]$cluster, optidigits$c[ids])[2]

purity
0.02479339

The first and last MDHs obtained from the above example are illustrated in Figure 10. As the figure shows,
the optimal MDH for the smallest bandwidth achieves a large margin, unlike the MDH for the default setting
of h. Notice that in Figure F.10(b) the very small value of the bandwidth causes the density on the separating
hyperplane to be very close to zero, and consequently the relative depth is extremely large.

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

−2 0 2 4

−
5.

7
−

3.
9

−
2

−
0.

2
1.

6
3.

5
5.

3

0
0.

03
0.

06
0.

09
0.

12
0.

15
0.

18

relative depth: 1.977 success ratio: −

(a) MDH for default bandwidth

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

−2 −1 0 1 2 3

−
6

−
4.

2
−

2.
3

−
0.

4
1.

5
3.

3
5.

2

0
0.

06
0.

12
0.

18
0.

23
0.

29
0.

35

relative depth: 26998 success ratio: −

(b) MDH for smallest bandwidth considered

Figure 10: Large margin hyperplane separator for the optdigits 3-9 problem obtained by applying
mdh() for a decreasing sequence of bandwidths

For this data set (Zhang et al., 2009, Table IV) report the clustering error of k-means, kernel k-means,
normalised cut spectral clustering (Shi and Malik, 2000), generalised maximum margin clustering (Valizadegan
and Jin, 2006), and three versions of the iterative support vector machine (regression) they propose. The best
performance is achieved by generalised maximum margin clustering with an error of 0.083. Both versions of
k-means, and spectral clustering achieve an error around 0.2. The more recent cutting plane maximum margin
clustering algorithm (Wang et al., 2010) achieves a much larger error of 0.3609 on this data set.1 The large
margin hyperplane obtained through repeatedly reducing the bandwidth parameter of the MDH algorithm
achieves an error that is more than three times smaller than that of the best competing algorithm.

Non-linear separators using Kernel PCA

The main limitation of linear cluster separators is their inability to accurately separate clusters whose
convex hulls overlap. Although many real world applications involve data in which clusters can be
separated well by hyperplanes, this is not always the case, especially in lower dimensional examples.
Using Kernel Principal Components Analysis (KPCA) (Schölkopf et al., 1998) the data can be embedded
in a high-dimensional feature space in which clusters are linearly separable. Hyperplanes in the
feature space correspond to nonlinear cluster boundaries in the original space. Below we illustrate
how combining KPCA with a linear cluster separator enables the separation of clusters which cannot
be linearly separated within the input space. We then apply this approach to the application of
identifying different hand-written digits based on pen trajectories. We selected the hyperparameter
for the kernel embedding using trial and error; choosing a value for which the cluster sizes were
reasonably well balanced. The setting of kernel hyperparameters remains a challenging problem in
the unsupervised setting.

Example 8. We employ a data set containing two clusters, each in the shape of a half moon, arranged so
that they cannot be separated by a hyperplane (Jain and Law, 2005). We use KPCA to embed the data in a
high-dimensional feature space in which the clusters are linearly separable.

> require(kernlab)
> set.seed(1)
> th <- runif(500)*pi + rep(c(pi,0),each=250)

1Code for this method is available at https://sites.google.com/site/binzhao02/

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://sites.google.com/site/binzhao02/

CONTRIBUTED RESEARCH ARTICLES 167

>
> x <- cbind(cos(th) + rep(c(0.5,-0.5),each=250), sin(th))
> x <- x + matrix(0.18*rnorm(1000), ncol=2)
> x2 <- kernlab::kpca(x, kernel = "rbfdot", kpar = list(sigma = 3))@rotated
> sol1 <- ncuth(x)
> sol2 <- ncuth(x2)
> par(mfrow = c(1, 2))
> par(mar = c(2.5, 2.5, 3, 2.5))
> plot(x, col = sol1[[1]]$cluster, main = "Linear Separator")
> plot(x, col = sol2[[1]]$cluster, main = "Non-linear Separator")

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

(a) Linear Separator

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

(b) Nonlinear Separator

Figure 11: Nonlinear cluster separation after preprocessing the data through Kernel PCA

Example 9. We next apply the KPCA embedding to the Pen Based Recogntion of Handwritten Digits data
set (Lichman, 2013). Due to the size of the data set, which includes 10992 observations, we build the kernel
embedding using a compressed version of the data set obtained through k-means.

> require(kernlab)
> set.seed(1)
> data(pendigits)
> kp <- kernlab::kpca(kmeans(pendigits$x, 200)$centers, kernel = "rbfdot",

kpar = list(sigma = 0.1))
> x2 <- predict(kp, pendigits$x)
> sol1 <- ncutdc(pendigits$x, 10)
> sol2 <- ncutdc(x2, 10)
> cluster_performance(sol1$cluster, pendigits$c)

adj.rand purity v.measure nmi
0.6180774 0.7801128 0.7097384 0.7097736

> cluster_performance(sol2$cluster, pendigits$c)
adj.rand purity v.measure nmi

0.7130409 0.8265102 0.7940943 0.7941021

The performance is substantially improved by first embedding the data in the feature space and then applying
NCUTDC.

Conclusions

This paper discusses three recently proposed projection pursuit methods for clustering, and the
implementation in the R package PPCI. The projection pursuit methods seek univariate projections
that maximise the clusterability of the binary partition of the projected data, or alternatively minimise
the connectedness between the elements of this bi-partition. Identifying projection directions that
explicitly optimise a clustering criterion enables significant improvements over PCA and other classical
dimension reduction techniques. The cluster boundaries induced by these methods are hyperplanes,
which can be combined to produce divisive hierarchical clustering models capable of identifying
clusters defined in different subspaces and with different scales. An important advantage of using
hyperplanes for clustering is that projecting onto the vector normal to the hyperplane provides the
maximum dimensionality reduction. Visualising the data through such projections allows the user to

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 168

obtain insights concerning the validity of the clustering model. We discuss how kernel PCA can be
combined with the implemented methods to handle clusters which cannot be linearly separated. Two
of the implemented projection pursuit algorithms are asymptotically equivalent to the maximum hard
margin separator as their smoothing parameters are reduced to zero. We illustrate how large margin
hyperplanes for clustering can be obtained using these methods.

Bibliography

M. Ackerman and S. Ben-David. Clusterability: A theoretical study. In D. van Dyk and M. Welling,
editors, Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, vol-
ume 5 of Proceedings of Machine Learning Research, pages 1–8, Hilton Clearwater Beach Resort,
Clearwater Beach, Florida USA, 16–18 Apr 2009. PMLR. URL http://proceedings.mlr.press/v5/
ackerman09a.html. [p158]

R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high
dimensional data for data mining applications. In Proceedings of the 1998 ACM SIGMOD International
Conference of Management of Data, pages 94–105. ACM, 1998. [p152]

S. Ben-David, T. Lu, D. Pal, and M. Sotakova. Learning low density separators. In D. van Dyk and
M. Welling, editors, Proceedings of the Twelth International Conference on Artificial Intelligence and
Statistics, volume 5 of Proceedings of Machine Learning Research, pages 25–32, Hilton Clearwater Beach
Resort, Clearwater Beach, Florida USA, 16–18 Apr 2009. PMLR. URL http://proceedings.mlr.
press/v5/ben-david09a.html. [p156]

D. Boley. Principal direction divisive partitioning. Data Mining and Knowledge Discovery, 2(4):325–344,
Dec 1998. ISSN 1573-756X. doi: 10.1023/A:1009740529316. URL https://doi.org/10.1023/A:
1009740529316. [p153]

J. V. Burke, A. S. Lewis, and M. L. Overton. A robust gradient sampling algorithm for nonsmooth,
nonconvex optimization. SIAM Journal on Optimization, 15(3):751–779, 2005. doi: 10.1137/030601296.
[p154]

O. Chapelle and A. Zien. Semi-supervised classification by low density separation. In R. G. Cowell
and Z. Ghahramani, editors, aistats05, pages 57–64. Society for Artificial Intelligence and Statistics,
2005. URL http://www.gatsby.ucl.ac.uk/aistats/fullpapers/198.pdf. [p156]

O. Chapelle, V. Sindhwani, and S. S. Keerthi. Optimization techniques for semi-supervised support
vector machines. Journal of Machine Learning Research, 9:203–233, Feb 2008. URL http://www.jmlr.
org/papers/v9/chapelle08a.html. [p156]

D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature space analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(5):603–619, 2002. ISSN 0162-8828. doi:
10.1109/34.1000236. [p156]

A. Cuevas, M. Febrero, and R. Fraiman. Cluster analysis: a further approach based on density
estimation. Computational Statistics and Data Analysis, 36(4):441–459, 2001. doi: 10.1016/S0167-
9473(00)00052-9. [p156]

A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman. From few to many: illumination cone models
for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 23(6):643–660, Jun 2001. doi: 10.1109/34.927464. [p159]

J. A. Hartigan. Clustering Algorithms. Wiley Series in Probability and Mathematical Statistics. Wiley,
New York, 1975. [p156]

M. Hassani and M. Hansen. subspace: Interface to OpenSubspace, 2015. R package version 1.0.4. [p152]

D. Hofmeyr and N. Pavlidis. Maximum clusterability divisive clustering. In 2015 IEEE Symposium
Series on Computational Intelligence, pages 780–786, Dec 2015. doi: 10.1109/SSCI.2015.116. [p154, 155]

D. P. Hofmeyr. Clustering by minimum cut hyperplanes. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39(8):1547–1560, Aug 2017. ISSN 0162-8828. doi: 10.1109/TPAMI.2016.2609929.
[p155, 160, 161, 165]

P. J. Huber. Projection pursuit. The Annals of Statistics, 13(2):435–475, 06 1985. doi: 10.1214/aos/
1176349519. [p152]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

http://proceedings.mlr.press/v5/ackerman09a.html
http://proceedings.mlr.press/v5/ackerman09a.html
http://proceedings.mlr.press/v5/ben-david09a.html
http://proceedings.mlr.press/v5/ben-david09a.html
https://doi.org/10.1023/A:1009740529316
https://doi.org/10.1023/A:1009740529316
http://www.gatsby.ucl.ac.uk/aistats/fullpapers/198.pdf
http://www.jmlr.org/papers/v9/chapelle08a.html
http://www.jmlr.org/papers/v9/chapelle08a.html

CONTRIBUTED RESEARCH ARTICLES 169

L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2(1):193–218, Dec 1985. doi:
10.1007/BF01908075. [p158]

A. Hyvärinen, J. Karhunen, and E. Oja. Independent component analysis, volume 46. John Wiley & Sons,
2004. [p152]

A. K. Jain and M. H. C. Law. Data clustering: A user’s dilemma. In S. K. Pal, S. Bandyopadhyay, and
S. Biswas, editors, Pattern Recognition and Machine Intelligence: First International Conference, PReMI
2005, Kolkata, India, December 20-22, 2005. Proceedings, pages 1–10, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg. doi: 10.1007/11590316_1. [p166]

A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Computing Surveys, 31(3):
264–323, 1999. doi: 10.1145/331499.331504. [p152]

K. Kailing, H.-P. Kriegel, and P. Kröger. Density-connected subspace clustering for high-dimensional
data. In Proceedings of the 2004 SIAM International Conference on Data Mining, pages 246–256. SIAM,
2004. [p152]

A. Karatzoglou, A. Smola, K. Hornik, and A. Zeileis. kernlab - an S4 package for kernel methods in R.
Journal of Statistical Software, Articles, 11(9):1–20, 2004. doi: 10.18637/jss.v011.i09. [p161]

A. S. Lewis and M. L. Overton. Nonsmooth optimization via quasi-newton methods. Mathematical
Programming, 141(1):135–163, Oct 2013. doi: 10.1007/s10107-012-0514-2. [p154]

M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml. [p157,
161, 167]

L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine learning research, 9(Nov):
2579–2605, 2008. [p152]

G. Menardi and A. Azzalini. An advancement in clustering via nonparametric density estimation.
Statistics and Computing, 24(5):753–767, 2014. doi: 10.1007/s11222-013-9400-x. [p156]

N. G. Pavlidis, D. P. Hofmeyr, and S. K. Tasoulis. Minimum density hyperplanes. Journal of Machine
Learning Research, 17(156):1–33, 2016. URL http://jmlr.org/papers/v17/15-307.html. [p155, 156,
157, 158, 165]

A. Rinaldo and L. Wasserman. Generalized density clustering. The Annals of Statistics, 38(5):2678–2722,
2010. doi: 10.1214/10-AOS797. [p156]

A. Rosenberg and J. Hirschberg. V-measure: A conditional entropy-based external cluster evaluation
measure. In Empirical Methods in Natural Language Processing and Computational Natural Language
Learning (EMNLP-CoNLL), volume 7, pages 410–420, 2007. URL http://www1.cs.columbia.edu/
~amaxwell/pubs/v_measure-emnlp07.pdf. [p158]

B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue
problem. Neural Computation, 10(5):1299–1319, 1998. doi: 10.1162/089976698300017467. [p166]

J. Shi and J. Malik. Normalized cuts and image segmentation. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 22(8):888–905, Aug 2000. doi: 10.1109/34.868688. [p160, 166]

A. Strehl and J. Ghosh. Cluster ensembles—a knowledge reuse framework for combining multiple
partitions. Journal of Machine Learning Research, 3:583–617, Dec 2002. URL http://www.jmlr.org/
papers/v3/strehl02a.html. [p158]

W. Stuetzle and R. Nugent. A generalized single linkage method for estimating the cluster tree of a
density. Journal of Computational and Graphical Statistics, 19(2):397–418, 2010. doi: 10.1198/jcgs.2009.
07049. [p156]

S. K. Tasoulis, D. K. Tasoulis, and V. P. Plagianakos. Enhancing principal direction divisive clustering.
Pattern Recognition, 43(10):3391–3411, 2010. doi: 10.1016/j.patcog.2010.05.025. [p153]

S. K. Tasoulis, D. K. Tasoulis, and V. P. Plagianakos. Random direction divisive clustering. Pattern
Recognition Letters, 2012. doi: http://dx.doi.org/10.1016/j.patrec.2012.09.008. [p153]

M. Thrun, F. Lerch, and F. Pape. ProjectionBasedClustering: Projection Based Clustering, 2018. URL https:
//CRAN.R-project.org/package=ProjectionBasedClustering. R package version 1.0.6. [p152]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

http://archive.ics.uci.edu/ml
http://jmlr.org/papers/v17/15-307.html
http://www1.cs.columbia.edu/~amaxwell/pubs/v_measure-emnlp07.pdf
http://www1.cs.columbia.edu/~amaxwell/pubs/v_measure-emnlp07.pdf
http://www.jmlr.org/papers/v3/strehl02a.html
http://www.jmlr.org/papers/v3/strehl02a.html
https://CRAN.R-project.org/package=ProjectionBasedClustering
https://CRAN.R-project.org/package=ProjectionBasedClustering

CONTRIBUTED RESEARCH ARTICLES 170

H. Valizadegan and R. Jin. Generalized maximum margin clustering and unsupervised kernel learning.
In P. B. Schölkopf, J. C. Platt, and T. Hoffman, editors, Advances in Neural Information Process-
ing Systems 19, pages 1417–1424. MIT Press, 2006. URL http://papers.nips.cc/paper/3072-
generalized-maximum-margin-clustering-and-unsupervised-kernel-learning.pdf. [p166]

U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416, 2007. ISSN
0960-3174. doi: 10.1007/s11222-007-9033-z. [p160]

F. Wang, B. Zhao, and C. Zhang. Linear time maximum margin clustering. IEEE Transactions on Neural
Networks, 21(2):319–332, 2010. doi: 10.1109/TNN.2009.2036998. [p166]

L. Xu, J. Neufeld, B. Larson, and D. Schuurmans. Maximum margin clustering. In L. K. Saul, Y. Weiss,
and L. Bottou, editors, Advances in Neural Information Processing Systems 17, pages 1537–1544. MIT
Press, 2004. URL http://papers.nips.cc/paper/2602-maximum-margin-clustering.pdf. [p156,
165]

B. Zhang. Dependence of clustering algorithm performance on clustered-ness of data. HP Labs Technical
Report HPL-2001-91, 2001. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
84.285&rep=rep1&type=pdf. [p158]

K. Zhang, I. W. Tsang, and J. T. Kwok. Maximum margin clustering made practical. IEEE Transactions
on Neural Networks, 20(4):583–596, 2009. doi: 10.1109/TNN.2008.2010620. [p153, 165, 166]

Y. Zhao and G. Karypis. Empirical and theoretical comparisons of selected criterion functions for
document clustering. Machine Learning, 55(3):311–331, 2004. doi: 10.1023/B:MACH.0000027785.
44527.d6. [p158]

David P. Hofmeyr
Stellenbosch University
Stellenbosch
South Africa
dhofmeyr@sun.ac.za

Nicos G. Pavlidis
Lancaster University
Lancaster
United Kingdom
n.pavlidis@lancaster.ac.uk

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

http://papers.nips.cc/paper/3072-generalized-maximum-margin-clustering-and-unsupervised-kernel-learning.pdf
http://papers.nips.cc/paper/3072-generalized-maximum-margin-clustering-and-unsupervised-kernel-learning.pdf
http://papers.nips.cc/paper/2602-maximum-margin-clustering.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.285&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.285&rep=rep1&type=pdf
mailto:dhofmeyr@sun.ac.za
mailto:n.pavlidis@lancaster.ac.uk

CONTRIBUTED RESEARCH ARTICLES 171

dr4pl: A Stable Convergence Algorithm
for the 4 Parameter Logistic Model
by Hyowon An, Justin T. Landis, Aubrey G. Bailey, James S. Marron and Dirk P. Dittmer

Abstract The 4 Parameter Logistic (4PL) model has been recognized as a major tool to analyze the
relationship between doses and responses in pharmacological experiments. A main strength of this
model is that each parameter contributes an intuitive meaning enhancing interpretability of a fitted
model. However, implementing the 4PL model using conventional statistical software often encounters
numerical errors. This paper highlights the issue of convergence failure and presents several causes
with solutions. These causes include outliers and a non-logistic data shape, so useful remedies such
as robust estimation, outlier diagnostics and constrained optimization are proposed. These features
are implemented in a new R package dr4pl (Dose-Response analysis using the 4 Parameter Logistic
model) whose code examples are presented as a separate section. Our R package dr4pl is shown to
work well for data sets where the traditional dose-response modelling packages drc and nplr fail.

Introduction

Dose-response models are a primary tool of pharmacological and toxicological studies. After fitting a
suitably chosen model to experimental data, the fitted parameters are used to evaluate the potency of a
drug or compare the potencies of different drugs. Based on outcomes of the analysis, drug candidates
may be advanced to further development. One of the most popular models among dose-response
models is the 4 Parameter Logistic (4PL) model whose detailed explanation is given in Subsection 4
Parameter Logistic model. In this paper, we focus on some important challenges in the 4PL model and
present methods to handle those challenges.

Fitting dose-response models to data is usually a nonlinear regression problem. One of the prob-
lems with nonlinear regression is that numerical errors often occur during a model fitting optimization
process. The 4PL model is not an exception. Examples of problem data sets and diagnostics of their
problems are presented in Subsection Motivation: convergence failure.

In this paper, we analyze the convergence failure problem within the context of the 4PL model.
Descriptions of the 4PL model and existing methods are presented in Section Existing methods.
Problems are clearly illustrated using the contour of the likelihood function, shown in Section Diagnosis
of convergence failure. This suggests a useful set of constraints to put on the parameter space, and their
effectiveness is analyzed in that section as well. Non-convergence is indicated by our R package dr4pl
(Landis et al., 2018) when crossing one of these boundaries, in which case robust parameter estimates
are returned as described in Section Remedy for outliers. Section Remedy for the support problem
presents a new method of selecting initial parameter estimates which is not currently implemented in
other dose-response modelling R packages. This method will be shown to be effective in handling a
non-logistic data shape in that section. Walk-through of R functions in dr4pl with real-world data sets
will be presented in Section Walk-through in R.

Existing methods

This section describes the 4PL model and existing methods that have been implemented for the 4PL
model. Example data sets that motivate our research are presented as well.

4 Parameter Logistic model

The response in a pharmacological process usually slowly trends downward at low dose levels,
then rapidly drops at a certain dose level and finally stabilizes. Tracking this sort of change in
response results in a reverse S shaped curve motivating sigmoidal curves as primary models of interest.
Robertson (1908) suggested that the biochemical nature of such processes is well modelled by the
differential equation

dg
dz

=
θ3
θ1

g(z) (θ1 − g(z)) , (1)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=dr4pl

CONTRIBUTED RESEARCH ARTICLES 172

where z is a dose level, g(z) is the response at the level z and θ1, θ3 ∈ R are parameters. Solving this
differential equation yields

g(z|θ1, θ2, θ3) = θ1 −
θ1

1 + (z/θ2)θ3
,

where θ2 > 0 is a parameter coming from a boundary condition given to Equation (1). Since this
model allows the response value g(z) to range only between 0 and θ1, a common extension uses a shift
parameter θ4 ∈ R yielding the well-known 4 parameter logistic (4PL) model or Hill model given in Hill
(1910) as

f (x|θ) = θ1 +
θ4 − θ1

1 + 10θ3(x−log10θ2)

= θ1 +
θ4 − θ1

1 + (z(x)/θ2)
θ3

, (2)

where x ∈ R is a log 10 dose, z(x) = 10x > 0 is the corresponding dose and the parameter vector
θ = (θ1, θ2, θ3, θ4) determines the relationship between the log 10 dose x and the response f (x).
Working on this log 10 scale has been shown to accurately model many physical reactions.

A major strength of the 4PL model is that each of the four parameters has an intuitive meaning.
The parameters θ1 and θ4 are called the upper asymptote and lower asymptote, respectively, since we
have from Equation (2) that

if θ3 > 0, then lim
x→−∞

f (x|θ) = θ4, lim
x→∞

f (x|θ) = θ1,

if θ3 < 0, then lim
x→−∞

f (x|θ) = θ1, lim
x→∞

f (x|θ) = θ4.

In this paper, we assume that θ1 > θ4 holds. This implies that θ3 > 0 corresponds to an increasing
curve while θ3 < 0 corresponds to a decreasing curve. A response usually decreases as a dose increases
in a pharmacological experiment, so we focus on decreasing curves throughout this paper. However,
all the functionalities such as model fitting and confidence interval calculation are implemented in
the R package dr4pl for both decreasing and increasing curves. The parameter θ2 is called the half
maximum inhibitory concentration (IC50) or effective concentration (EC50), depending on whether the
curve is decreasing or increasing, which represents the dose level whose response lies halfway between
the upper and lower asymptotes. That is, we have f (θ2) = (θ1 + θ4) /2. The parameter θ3 is related to
the slope of the function f at θ2 as given in Appendix A of Giraldo et al. (2002) by

d
dx

f (x|θ)
∣∣∣∣
x=log10θ2

= (ln 10) (θ4 − θ1) θ3,

where ln indicates the natural logarithm.

The effects of the IC50 parameter θ2 and the slope parameter θ3 on the 4PL model is illustrated in
Figure 1. For each plot in the figure, the x-axis represents dose levels on a log 10 scale and the y-axis
represents response values. For both the left and right plots, the upper asymptote θ1 is fixed at 100
and the lower asymptote θ4, which is represented by a horizontal gray dashed line, is fixed at 0. The
left plot shows the change in the dose response curve as the IC50 parameter θ2 changes. Note that the
blue dotted curve with the largest θ2 value of 10 is located on the right while the red solid curve with
the smallest θ2 value of 0.1 is located on the left. However, the rate of decrease θ3 of each curve is the
same. The right plot shows that the blue dotted curve with the most negative θ3 value of −2 most
rapidly decreases around the IC50 value while the red solid curve with the least negative θ3 value of
−0.5 most slowly decreases. Note that all three curves in the right plot achieve the half response θ2 at
the same dose level, i.e. they have the same IC50 values.

Motivation: convergence failure

As mentioned in Section Introduction, dose-response models are prone to numerical errors in their
optimization processes like other nonlinear regression models; see Bates and Watts (1988) and Seber
and Wild (1989) for theoretical and practical issues related to nonlinear regression models. The specific
type of errors in dose-response models depends on the data and statistical software at hand, and here
we focus on R packages developed for bioassay data. The R package drc (Ritz et al., 2005) provided
various non-linear regression models for bioassay data analysis. The R package nplr (Commo and Bot,
2016) focused on the family of n-parameter logistic regression models with an option to choose an
optimal value n based on a goodness-of-fit measure. Unfortunately, these two R packages have only
scant solutions to the convergence failure problem. For example, drc provides a function argument
errorm to control whether an error or a warning message is drawn when convergence failure happens,

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=drc
https://CRAN.R-project.org/package=nplr

CONTRIBUTED RESEARCH ARTICLES 173

Figure 1: 4PL models with different values of the IC50 parameter θ2 (left plot) and the slope parameter
θ3 (right plot). The other parameters are fixed at θ1 = 100, θ4 = 0 with θ3 = −1 in the left plot and
θ2 = 1 in the right plot. The left plot implies that θ2 controls horizontal shifts while the right plot
implies that θ3 drives rates of decrease.

and nplr provides a weighting scheme that reduces the effect of outliers. Both methods did not suffice
to prevent convergence failure as shown in the following.

Figure 2 shows four real-world data sets. The R package drc fails to converge on all these four data
sets and the R package nplr fails on the last data set. In each plot of the figure, the x-axis represents
doses on a log 10 scale and the y-axis represents responses. Data points flagged as problematic by our
R package are shown as red triangles. These include strong outliers in every case, and are found as
described in Subsection Robust regression and outlier detection. Error Case 1 in the upper left plot has
an outlier at the dose level 10−5 which seems to result from an error in measurement. Error Case 2 in
the upper right plot has more complicated problems. There exists a strong outlier at the dose level
1.35, and the two responses measured at the dose level 0.135 seem to be measured at a wrong scale.
Both of them have abnormally large values and their values are far more different from each other
than the responses measured at other dose levels. Even though these two responses were not detected
as outliers by our method, this plot indicates that the data set of Error Case 2 requires users’ attention.

The data in the lower two plots have a different problem in addition to outliers. They seem to
have insufficient data points on the right side of their IC50 parameters. This situation is well known
in dose-response experiments in cases where solubility issues limit the maximal drug concentration
that can be used in dose titration. Error Case 3 in the lower left plot shows two strong outliers with
abnormally small response values at the dose level 10. In addition, the response starts decreasing at
the dose levels 10 and 100 but no more responses are measured at higher dose levels. This is because
the drug fell out of solution at higher concentrations in this experiment. We call this type of problem a
support problem because of a lack of data points on the right side, and possibly also on the left side, of
the IC50 parameter. This lack in Error Case 3 can result in instability of an optimization process due
to difficulty in estimation of the IC50 parameter θ2 and the slope parameter θ3. Indeed, the package
drc draws an error message for that data. Error Case 4 in the lower right plot has a similar support
problem also resulting in a drc error.

Convergence failure of numerical optimization methods can be overcome in various ways. Experi-
menters often try other starting parameter values or adopt a simpler mathematical model. However,
both solutions have a drawback in dose-response modelling since they require arbitrary decisions
by experimenters. This limits their utility for automated, high-throughput screening and may be
cost-prohibitive depending on the expense per data point. It can be foolhardy to decide which starting
values should be tried next unless problems with data are diagnosed. Performing a grid search on
the parameter space can be an alternative as claimed in Wang et al. (2010), but even this does not
fundamentally solve the problems with the data sets in Figure 2. Shifting to a simpler model can result
in loss of interpretability of the 4PL model. As pointed out in Di Veroli Giovanni et al. (2015) and Lim
(2015), the 4PL model conveys useful intuitive content through their parameters.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 174

Figure 2: Data that generate numerical errors in the R packages drc and nplr. The y-axis represents
responses and the x-axis represents doses in a log 10 scale. All data sets have at least one strong outlier
which are denoted by red triangles. Data in the lower row also have insufficient numbers of data
points on the right sides of the dose-response curves.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 175

Diagnosis of convergence failure

The 4PL model given in Equation (2) is fitted to a data set {(xi, yi) |i = 1, 2, · · · , n} where xi is the log
10 dose level of the i-th observation and yi is the corresponding response value. The most commonly
chosen loss function is the sum-of-squares errors essentially given as

L(θ) = 1
n

n

∑
i=1

(yi − f (xi|θ))2 , (3)

where the function f was given in Equation (2) as

f (x|θ) = θ1 +
θ4 − θ1

1 + 10θ3(x−log10θ2)
. (4)

Since this function is nonlinear in the parameters θ, minimization of L is a typical nonlinear regression
problem. Gadagkar and Call (2015) mentioned the optimization problem is indeed a non-convex
optimization, so different initial parameter estimates can result in different fitted models or even
convergence failure. Example data sets with such a convergence failure problem were given in Figure
2. In this section, we present one possible solution to the convergence problem based on statistical
theory, which can help users diagnose problems with their data.

Shape of a loss function

To find a reason behind the convergence failure, we draw contour plots of the sum-of-squares loss
function given in Equation (3). To visualize the loss function L (θ|x), we first fix the values of θ1 and
θ4 at ymax and ymin defined as

ymax = max
1≤i≤n

yi + 0.001 ·
(

max
1≤i≤n

yi − min
1≤i≤n

yi

)
,

ymin = min
1≤i≤n

yi − 0.001 ·
(

max
1≤i≤n

yi − min
1≤i≤n

yi

)
, (5)

respectively. The reason for choosing the above estimates is that the R package drc uses them as a
default. Then we draw contour plots of the loss functions in terms of θ2 and θ3 yielding Figure 3
in which the contour plots of the data of Figure 2 are shown. In each plot, the x-axis represents the
IC50 parameter θ2 in a log 10 scale and the y-axis represents the slope parameter θ3. The parameter
values corresponding to the same loss function value are connected as a solid line and the error value
is given as text inserted into that line. It can be seen from the upper two plots that the loss function
monotonically decreases as the IC50 parameter θ2 decreases towards zero. This results in numerical
errors in computing the estimated mean response in Equation (4), since as θ2 → 0, the log10(θ2)→ −∞.
The lower two plots also indicate that the loss function tends to decrease as the values of the IC50
parameter θ2 increase towards infinity. Similarly to the upper two plots, this causes numerical errors
in finding the minimizer of the loss function.

Hill bounds: safeguards on the parameter space

The primary resolution of the convergence failure problem comes from imposing appropriate bound-
aries on the parameter space to prevent parameter estimates from diverging to infinity or converging
to 0. These bounds should be broad enough to contain the global minimum of the loss function when
it has any local minimum. To obtain reasonable sizes of bounds on the parameters, we focus on the
Hill plot. Recall from Equation (2) that the mean response is modelled as

f (x|θ) = θ1 +
θ4 − θ1

1 + 10θ3(x−log10θ2)
,

where x is a log 10 dose. Note that the nonlinear nature of the 4PL model comes from the fact that the
linear function of x, θ3 (x− log10θ2), appears as an exponential in the denominator of the expression.
This motivates us to rearrange the terms to yield the Hill equation modeled as

log10

(
f (x|θ)− θ4
θ1 − f (x|θ)

)
= θ3x− θ3log10(θ2) . (6)

The left hand side of this equation is the logit-transformed mean response and the right hand side is
the linear function of log 10 dose x. Since both the asymptotes θ1 and θ4 are unknown, we use ymax

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 176

Figure 3: Contour plots of data shown in Figure 2. The x-axis represents the IC50 parameter θ2 and
the y-axis represents the slope parameter θ3. The loss functions in the upper two plots decrease as the
IC50 θ2 decreases, and the loss functions in the lower two plots decrease as θ2 increases; a minimum is
not achieved in the plots.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 177

and ymin defined in Equation (5) as their estimates in real data approximation as

log10

(
yi − ymin
ymax − yi

)
≈ −θ3log10(θ2) + θ3xi. (7)

See Chapter 2 of Pratt and Taylor (1990) for detailed discussion of the Hill plot and Hill equation.

To obtain reasonable bounds on the parameters θ2 and θ3, we first view Equation (7) as a linear
regression problem. If we re-parameterize Equation (7) as

log10

(
yi − ymin
ymax − yi

)
= β2 + β3xi + εi, (8)

where β2 = −θ3log10 (θ2), β3 = θ3 and εi ∼ N
(
0, σ2), we can obtain interval estimators of β2 and β3

based on (1− α) confidence intervals based on the normality assumption. That is, we compute(
β̃2 − z1−α/2s.e.

(
β̃2
)

, β̃2 + z1−α/2s.e.
(

β̃2
))

,(
β̃3 − z1−α/2s.e.

(
β̃3
)

, β̃3 + z1−α/2s.e.
(

β̃3
))

, (9)

where β̃2 and β̃3 are the least squares solutions of Equation (8), zp is the p-th quantile of the standard
normal distribution and s.e. is the abbreviation for the standard errors of the regression coefficients.
If the linear model of Equation (7) well approximates the original 4PL model of Equation (2), then
parameter estimates will rarely be out of the bounds in Equation (9) during the optimization process.

However, using these bounds in optimization have limitations in practice in that they may miss
important nonlinear structure inherent in the 4PL model. In real data analysis, such confidence
intervals imposed too narrow bounds on the parameters and hindered optimization processes from
convergence even when data have good logistic shapes. Section 5.1 of Seber and Wild (1989) present
approximate confidence intervals of the true parameters of nonlinear regression models based on the
derivatives of the mean response function f . When data have sufficiently many data points, the least
squares estimators θ̂ have asymptotically normal distributions

θ̂ − θ∗
d→N

(
0, C−1

)
, (10)

where θ∗ is the true parameter vector and C = JT J with J being the Jacobian matrix whose (i, j)-
th element is given as ∂ f (xi|θ) /∂θj. In actual computation of confidence intervals, the parameter

estimators θ̂ are used to approximate J, i.e. we substitute Ĵ whose (i, j)-th element is ∂ f (xi| θ) /∂θj

∣∣∣
θ=θ̂

for J.

Based on this asymptotic theory, the approximate confidence intervals for the true parameters are
given in Section 5.1 of Seber and Wild (1989) as(

θ̂j + tα/(2·p)
n−p s

√
ĉj,j, θ̂j + t1−α/(2·p)

n−p s
√

ĉj,j

)
, (11)

for 1 ≤ j ≤ p where p is the number of parameters, s2 is the residual sum of squares, tα
n is the α-th

quantile of the t-distribution with n degrees of freedom and ĉj,j is the j-th diagonal element of the

matrix Ĉ−1 =
(

ĴT Ĵ
)−1. In the context of the 4PL model, we evaluate the interval estimators based on

parameter estimators θ̃1, θ̃2, θ̃3, θ̃4 obtained from the Hill equation in Equation (7) and standard errors
obtained from Equation (11). That is, we have(

θ̃j + tα/8
n−4s

√
c̃j,j, θ̃j + t1−α/8

n−4 s
√

c̃j,j

)
, (12)

for 1 ≤ j ≤ 4 where c̃jj is the j-th diagonal element of the variance-covariance matrix C̃−1 evaluated at
the initial parameter estimators θ̃ obtained from the Hill equation. Since the bounds in Equation (12)
originate from the Hill model, we call these the Hill bounds. Subsection 5.2.2 of Seber and Wild (1989)
suggests using Ĥ/2 instead of ĴT Ĵ when computing confidence intervals where

Ĥj,k =
∂2L

∂θj∂θk

∣∣∣∣∣
θj=θ̂j ,θk=θ̂k

,

is an estimated Hessian matrix of the loss function L. We implement both versions of the Hill bounds
based on H̃/2 and J̃T J̃ in our R package with the default being the latter, since the latter tends to yield
broader Hill bounds. Users can try using both options in real data analysis. The confidence level α is
set at 0.0001 as a default and can be given by users as a tuning parameter.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 178

Figure 4: Dose response models presented in Table 2 and an example data set generated by Model
7. The left plot shows the dose response curves of the models in Table 2. The right plot shows data
generated by Model 7 of Table 2.

One can wonder if bounds on the upper asymptote θ1 and lower asymptote θ4 are needed as well.
The following theorem shows that such bounds are unnecessary since diverging values of θ1 and θ4
always increase loss function values.

Theorem H.3.1. Let θ2 > 0 and θ3 ∈ R be fixed. Then there exist constants θ′1, θ′4 ∈ R such that

∂L(θ)
∂θ1

> 0 ∀θ1 ≥ θ′1,
∂L(θ)

∂θ4
< 0 ∀θ4 ≤ θ′4

for fixed θ4 ∈ R and θ1 ∈ R, respectively. That is, loss function values increase as the values of parameters θ1
and θ4 grow to the infinity and the negative infinity, respectively, which prevents their estimates from diverging.

Proof. See Appendix.

Analysis of the Hill bounds

In this subsection, we evaluate whether the Hill bounds are appropriate as a criterion for convergence
failure. We simulate data following the 4PL model and check whether the Hill bounds prevent
optimization processes from finding the global minimum of the loss function L. To evaluate this, we
generate data and count the numbers of times the Hill bounds miss the true parameters. We also
count the numbers of times that optimization procedures encounter the Hill bounds at the end of
optimization. Lower counts in both cases indicate that the Hill bounds do not hinder optimization
processes from converging to desired parameter estimates.

Figure 4 shows parameter settings of our simulation. The left plot shows nine dose-response curves
that generate data whose values of parameters are shown in Table 1. The levels of slope parameter
θ3 are denoted by line types while the levels of IC50 parameter are denoted by colors. The right plot
shows the dose-response curve of Model 7 with data generated by the model. This model is chosen
since it exhibits the most severe support problem among all the nine models. Even though data in
the right plot are generated by a normal distribution, it seems that any optimization procedure can
have trouble fitting the 4PL model to that data. We simulate 1,000 data sets with five observations at
each dose level resulting in 25 observations in total. The standard deviation of the underlying normal
distribution of a 4PL model is fixed at 5 throughout the simulations.

Table 2 shows the proportions of times that the Hill bounds miss true parameters of the nine
models given in Figure 4. For each simulated data set, we counted the number of times that the
Hill bounds miss any of the IC50 and slope parameters. Note from the table that the Hill bounds
contain the true parameters for most of the simulated data. The only exception is when data have a
severe support problem (θ2 = 1) and the slope of the dose-response curve is very gradual (θ3 = −0.5).
Since we do not have well-shaped data for this case, we take the fact that the Hill bounds miss the
true parameters for these data as an advantage. When the Hill bounds are attained at the end of the
optimization, it is recommended to look at the scatter plot, to investigate potential support problems.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 179

Model Parameters (θ1, θ2, θ3, θ4) Model Parameters (θ1, θ2, θ3, θ4)

1 (100,0.01,-0.5,0) 6 (100,0.1,-1.5,0)
2 (100,0.01,-1,0) 7 (100,1,-0.5,0)
3 (100,0.01,-1.5,0) 8 (100,1,-1,0)
4 (100,0.1,-0.5,0) 9 (100,1,-1.5,0)
5 (100,0.1,-1,0)

Table 1: Model numbers and their parameters used in our simulation.

Parameters θ3 = −0.5 θ3 = −1 θ3 = −1.5

θ2 = 0.01 0.054 0.014 0
θ2 = 0.1 0 0 0.002
θ2 = 1 0.181 0 0

Table 2: Proportions of times out of 1,000 simulations that the Hill bounds miss any of the true IC50
and slope parameters. The Hill bounds contain the true parameters for most of the cases, except when
data have a support problem (bottom row) and the slope is gradual (leftmost column).

As illustrated in the top two rows of the table, in cases where the range of the data is enough for
estimation on both sides of the IC50, the Hill bounds successfully contain the true parameters.

Table 3 presents the proportion of times the Hill bounds are hit at the end of optimization processes
out of 1,000 simulations. The final parameter estimates are inside the Hill bounds for most cases.
This indicates that the Hill bounds are not too restrictive for optimization procedures to find a local
minimum of the loss function L. However, when there are severe support problems as shown in the
bottom left and bottom middle cells, the Hill bounds restrict optimization processes to be inside the
bounds. As implied in the previous paragraph, this can help users realize that their data suffer from
support problems and actions should be taken.

Remedy for outliers

As seen in the previous section, it seems that the convergence failure results from either outliers or
the support problem. We tackle each of the causes with a different approach. Outlier problems are
often dealt with by robust estimation methods. The paper Riazoshams et al. (2009) reviewed various
methods of outlier detection in the context of nonlinear regression, especially when the form of the
mean response function f is known. On the other hand, Dixon’s Q test in Dean and Dixon (1951)
can be used to detect an outlier without any assumptions on the form of f , but this method is most
effective when a data size is less than or equal to 10. In this paper, we use a novel method presented in
Motulsky and Brown (2006) that combines robust estimation and outlier detection. This method is
currently adopted in GraphPad Prism and called the ROUT method therein as a default outlier detection
method. The indices of outliers in data and a scatter plot with a robust fit are provided to users to
enhance their understanding of problems.

Parameters θ3 = −0.5 θ3 = −1 θ3 = −1.5

θ2 = 0.01 0.038 0.009 0.1
θ2 = 0.1 0.12 0.002 0.195
θ2 = 1 0.398 0.258 0.079

Table 3: Proportions of times out of 1,000 simulations that the Hill bounds are attained by optimization
procedures. The Hill bounds do not prevent optimization processes from achieving local minima of L
for most of cases, except when data have support problems as shown in the bottom row.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 180

Robust regression and outlier detection

As noted in Subsection Motivation: convergence failure, one of the main reasons for convergence failure
is strong outliers. In this case, the contour of the loss function L(θ|x, y) can exhibit monotonicity as a
function of the IC50 parameter θ2 as shown in Figure 2. This implies that the Hill bounds of Subsection
Hill bounds: safeguards on the parameter space can be attained at the end of an optimization process.
The R package dr4pl reports in this case that there seems to exist a problem in data and it requires a
user’s attention. Meanwhile, the R package fits a robust regression model to data and reports indices
of outliers in data with a plot highlighting the outliers in red triangles, which will be shown in Figure
6. By studying the robust fit and the indicated outliers, the user can get some insight into the data and
decide whether the observations denoted as outliers should be removed or not.

To determine which data observations are outliers, we use the method given in Motulsky and
Brown (2006). Define the i-th residual of a fitted dose-response model

ri = yi − f
(

xi|θ̂
)

,

where the mean response f is given in Equation (2) and θ̂ is the estimator obtained by a robust
regression model. The method of that paper approximates the distribution of ri by a t-distribution
and then adjusts p-values by the false discovery rate (FDR). See Benjamini and Yekutieli (2001) for
explanation of FDR. Adapting their algorithm in the context of the 4PL model yields the following.

1. Fit a dose-response model to data using a robust regression model to obtain residuals ri for
i = 1, 2, · · · , n. Detailed description of a robust regression model is given in the following
paragraphs.

2. Compute the median absolute deviation (MAD) of absolute valued residuals r(a)
i = |ri| as

σ̂ = med1≤i≤n

{∣∣∣r(a)
i −med1≤i≤n

{
r(a)

i

}∣∣∣} ,

where med stands for the sample median.

3. Rank the absolute values of the residuals from the smallest to the largest, so that r(a)
i:n is the i-th

order statistic of the absolute valued residuals.

4. Loop from i = b0.7× nc to n

(a) Compute αi = 0.01(n− (i− 1))/n and ti:n = r(a)
i:n /σ̂ for i = 1, 2, · · · , n.

(b) Compute the two-tailed p-value pi of the statistic ti:n from the t distribution with n− 4
degrees of freedom.

(c) If any of pj is less than or equal to αj, then end the loop and report all the observations for
1 ≤ i ≤ j as outliers.

Contrary to the suggestion of Motulsky and Brown (2006) to use their quantile based measure of scale,

σ̃ =
n

n− 4
q0.6827,

where q0.6827 is the 0.6827-th quantile of absolute valued residuals, we use the median absolute
deviation. The reason is that for small sample sizes around 10, the constant factor n/(n− 4) in this
equation significantly increases a scale estimate, often resulting in non-rejection of any observations
in a data set. For example, the method of Motulsky and Brown (2006) with their estimator σ̃ did not
detect any observation in Error Case 2 in Figure 2 as an outlier. We adopt the constant 0.01 in the
definition of αi as recommended by Motulsky and Brown (2006).

For robust regression, we adopt M-estimators. The letter M implies that the M-estimators are
obtained from equations that are in similar forms with maximum likelihood estimators. The M-
estimators are obtained by minimizing

Lρ(θ|x, y) =
1
n

n

∑
i=1

ρ(ri) ,

where ρ : R→ R+ is a differentiable function. See Huber and Ronchetti (2009) for detailed discussion
of the M-estimators. Note that the loss function in Equation (3) is a special case of the loss function Lρ

when ρ(r) = r2. Various forms of the functions ρ for the M-estimation suggested in the literature are

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 181

Figure 5: The functions ρ for different M-estimators. The x-axis represents residual values while the
y-axis represents the values of the function ρ.

as follows,

Absolute : ρ1(r) = |r|,

Huber : ρH(r) =
{

r2, |r| ≤ AH ,
2AH |r| − A2

H , |r| > AH ,

Tukey’s biweight : ρT(r) =
{

r6/A4
T − 3r4/A2

T + 3r2, |r| ≤ AT ,
A2

T , |r| > AT ,
(13)

where AH = 1.345 was suggested by Huber (1964) and AT = 4.685 was suggested by Mosteller and
Tukey (1977). The constant AT was shown in Mosteller and Tukey (1977) to possess 95% efficiency
when errors follow a normal distribution, while guaranteeing resistance to contamination of up to 10%
of outliers in terms of the breakdown point. These definitions are valid when the standard deviation of
the residuals ri is 1, otherwise a robust estimator of the scale of residuals should divide the residuals.

Figure 5 shows the shape of the ρ functions corresponding to different M-estimators. The x-axis
represents residual values while the y-axis represents the values of the function ρ. Note from the
figure that the Huber loss and squared loss coincide with each other for residual values less than
AH , but they deviate from each other as the value of the residual r grows larger. The linearity of
Huber’s loss above AH prevents a regression model from being heavily affected by outliers that have
large absolute values of residuals. Tukey’s biweight loss can be thought of as being more robust since
it gives constant values to all residuals whose absolute values exceed the cutoff AT . This implies
that a strong outlier with a large absolute value will have the same effect on a regression fit with an
observation with an absolute valued residual equal to AT .

Using M-estimators in nonlinear regression has a few problems. First of all, the conditions for
M-estimators to have asymptotic normality are complicated and difficult to be verified as mentioned
in Section 12.3 of Seber and Wild (1989). This prevents us from obtaining approximate confidence
intervals of true parameters based on M-estimators and their standard errors. On top of that, there are
no known general results about consistency of M-estimators in nonlinear regression, which hinders us
from trusting fitted parameter estimates by M-estimators. However, the absolute loss function was
shown in Oberhofer (1982) to exhibit weak consistency in a nonlinear regression setting. Hence, we set
the absolute loss estimator to be a default robust estimation method in our R package when the Hill
bounds are attained.

Figure 6 shows the results of applying the R package dr4pl to the error cases of Figure 2. Unlike
the R packages drc and nplr, the package dr4pl succeeded in fitting a robust regression model to all
four data sets. The x-axis represents doses in a log 10 scale and the y-axis represents responses. The
black solid line shows a fit obtained by the absolute loss function and red triangles show the outliers
detected by the method described in this section. Note from all the plots that the outliers that we
pointed out in Section Motivation: convergence failure are marked as outliers. This implies that the
method of Motulsky and Brown (2006) is successful in solving the convergence failure problem of the

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 182

Figure 6: The dose-response curves fitted by the absolute loss function in Equation (13) denoted by
black curves and outliers detected by the method of Motulsky and Brown (2006) denoted by red
triangles. Note that the curves are reasonably estimated.

4PL model.

Remedy for the support problem

The next cause of the convergence failure is the support problem whose possible solution is presented
in this section. Final parameter estimates of the 4PL model obtained by an optimization procedure
depend on initial estimates supplied to the procedure. The traditional R packages drc and nplr use
the logistic method which computes the initial parameter estimates as

θ̃
(L)
1 = ymax, θ̃

(L)
2 = 10−β̃2/β̃3 , θ̃

(L)
3 = β̃3, θ̃

(L)
4 = ymin

where ymin, ymax, β̃2 and β̃3 are defined in Subsection Hill bounds: safeguards on the parameter space.
As demonstrated in Figure 2, those initial parameter estimates do not always lead the optimization
process to convergence. We present possible improvements to the logistic method and show a new
initialization method that is effective in handling the support problem with data.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 183

Logistic method combined with a grid search

The paper Wang et al. (2010) presented a grid algorithm for fitting the 4PL model to many data sets
generated by a high throughput screening experiment. A main idea of their research is that fitting
the Hill equation in Equation (6) with multiple initial values of the upper and lower asymptotes, θ1
and θ4, and starting from the best parameter estimates can yield a better result. That is, we search the
grids G1 and G4 on θ1 and θ4 for the initial estimates

(
θ̃1, θ̃2, θ̃3, θ̃4

)
with the least loss value where

θ̃1 ∈ G1, θ̃4 ∈ G4 and the other two estimates θ̃2 and θ̃3 are obtained by the Hill equation in Equation
(6). The paper suggested naive grids on θ1 and θ4 based on constant multiples of ymax and ymin, but
we suggest new grids that statistically make sense.

The basic idea of choosing grids resembles the idea of the Hill bounds in that it uses asymptotic
normality of parameter estimators presented in Equation (10). Since we use θ̃

(L)
1 = ymax and θ̃

(L)
4 = ymin

as initial estimators of the upper and lower asymptote parameters in the logistic method, we can
obtain approximate standard errors of those estimators from Equation (12). Based on these standard
errors, we set the grids on θ1 and θ4 as

θ̃1 ∈
{

θ̃
(L)
1 − 2s.e.

(
θ̃

(L)
1

)
, θ̃

(L)
1 − s.e.

(
θ̃

(L)
1

)
, θ̃

(L)
1 , θ̃

(L)
1 + s.e.

(
θ̃

(L)
1

)
, θ̃

(L)
1 + 2s.e.

(
θ̃

(L)
1

)}
,

θ̃4 ∈
{

θ̃
(L)
4 − 2s.e.

(
θ̃

(L)
4

)
, θ̃

(L)
4 − s.e.

(
θ̃

(L)
4

)
, θ̃

(L)
4 , θ̃

(L)
4 + s.e.

(
θ̃

(L)
4

)
, θ̃

(L)
4 + 2s.e.

(
θ̃

(L)
4

)}
,

where s.e.
(

θ̃
(L)
j

)
= s
√

c̃j,j for j = 1, 4, and the two estimators s and c̃j,j are defined in Equations (11)

and (12), respectively. If any of data observations is greater than θ̃1 or smaller than θ̃4, then those
observations are removed from data and the logistic method proceeds with remaining observations.

Mead’s method

An advanced method of obtaining initial parameter estimates is illustrated in Subsection 8.3.2 of
Ratkowsky (1983). The method is basically a variant of the method given in Mead (1970) which used
a weighted least squares criterion to obtain an approximate solution of the ordinary least squares
problem. We call this Mead’s method in this paper. Unlike the logistic method, Mead’s method estimates
the upper asymptote and the IC50 parameter from a linear model by first fixing the slope and lower
asymptote. Since Mead’s method performs a grid search on the slope parameter, it can better obtain
initial parameter estimates when there are support problems like those in the lower row of Figure 2. In
such cases, obtaining a proper initial estimate of the slope parameter is difficult and performing a grid
search for it can be useful.

Mead’s method starts from a model

Y = f (x|µ)ε, (14)

where

f (x|µ) = 1
µ1 + µ2µx

3
, (15)

the parameters satisfy µ1, µ2, µ3 > 0, x is a log 10 dose and ε follows a log-normal distribution, i.e.
log(ε) ∼ N (0, σ2). We call this model the multiplicative error model. This model is easy to work with
because its parameters are related to characteristics of dose-response curves like the 4PL model. For
example,

if 0 < µ3 < 1, then lim
x→−∞

f (x|µ) = 0, lim
x→∞

f (x|µ) = 1
µ1

,

if µ3 > 1, then lim
x→−∞

f (x|µ) = 1
µ1

, lim
x→∞

f (x|µ) = 0.

This implies that 1/µ1 is the upper asymptote of the model and zero is its lower asymptote. The IC50
of the multiplicative error model is more complicated than that of the 4PL model as can be seen in the
following,

f
(

x = logµ3

(
µ1
µ2

)∣∣∣∣ µ

)
=

1
2µ1

.

The parameters of a multiplicative error model are related to those of a 4PL model by

θ1 =
1

µ1
, θ2 =

(
µ1
µ2

)1/log10µ3

, θ3 = log10µ3, θ4 = 0.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 184

It seems that the 4PL model has been preferred due to these more intuitive meanings of the parameters.
This equation shows that the parameter µ3 is related to the slope of a dose-response curve.

To find estimators of µ1, µ2, µ3 in Equations (14) and (15), we consider a weighted least squares
loss function

L(µ|x, y) =
n

∑
i=1

σ2

Var (Yi)
{yi − E (Yi)}2 . (16)

For a differentiable function g : R→ R we have

g (Yi)− g (E (Yi)) ≈
dg(y)

dy

∣∣∣∣
y=E(Yi)

{Yi − E (Yi)} .

Hence, we can approximate Var (g (Yi)) by

Var (g (Yi)) ≈
dg(y)

dy

∣∣∣∣2
y=E(Yi)

Var (Yi) .

If we let g(y) = log(y), then we have

Var (Yi) ≈ Var (logYi) {E (Yi)}2 = σ2 {E (Yi)}2 .

Substituting this into Equation (16) yields

L(µ|x, y) ≈ 1
n

n

∑
i=1

{
yi

E (Yi)
− 1
}2

.

Substituting the expression E (Yi) = f (xi|µ) into this equation yields an approximate linear model

L(µ|x, y) ≈ 1
n

n

∑
i=1

{
yi
(
µ1 + µ2µxi

3
)
− 1
}2 . (17)

To obtain estimates of µ1 and µ2, we take µ3 ∈ G with the grid

G = {q0.04, q0.08, · · · , q0.92, q0.96}

where qp is the p-th quantile of the Cauchy distribution. The Cauchy distribution was chosen because
it can provide a broad range of quantile values due to its heavy tailedness. For each µ3 ∈ G, the
loss function L(µ|x, y) can be minimized over µ1 and µ2 by the standard linear regression. That is,
a linear regression model with the response 1, the first predictor yi and the second predictor yiµ

xi
3

without an intercept can be fitted to obtain parameter estimates. Note that this regression model is
fitted for all µ3 ∈ G and parameter estimates µ̃1, µ̃2, µ̃3 with the smallest value of L(·|x, y) are chosen
as initial parameter estimates. A nonlinear optimization method starts from these estimates to find
final parameter estimates.

Comparison of the logistic and Mead methods

As pointed out in the previous subsection, Mead’s method is expected to find better initial parameter
estimates than the logistic method when data have the support problem. By simulating data and
fitting 4PL models with different initialization techniques, we can see whether the Mead method
actually results in final fitted models with lower loss values than the logistic method. We also compare
the two methods when data do not exhibit a support problem. By doing that, we can get insight into
their relative strengths under various situations.

In this simulation study, we generate data from the models of Subsection Analysis of the Hill
bounds whose mean response curves are presented in the left plot of Figure 4 and whose parameter
values are given in Table 2. As mentioned in that subsection, Models 1, 2 and 3 represent models
without any support problem, while Models 7, 8 and 9 represent severe support problems. Models 4, 5
and 6 exhibit mild levels of support problems. For each model, 1,000 data sets are generated and the
standard deviation of normally distributed errors was fixed at 5.

Table 4 shows the numbers of times that the Mead method outperforms the logistic method in the
sense that it has a lower loss value for final fitted models out of 1,000 simulations. The top row of the
table represents Models 1, 2 and 3 from left to right. As can be seen from the top row, the Mead method
generally performs worse than the logistic method except when the slope is very steep (θ3 = −1.5). In
the middle and bottom rows, the Mead method performs better than the logistic method. The degree

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 185

Parameters θ3 = −0.5 θ3 = −1 θ3 = −1.5

θ2 = 0.01 442 443 697
θ2 = 0.1 651 568 682
θ2 = 1 661 767 843

Table 4: The numbers of times that the Mead method outperforms the logistic method in the sense
that it has a lower loss value for final fitted models. The bottom row (θ2 = 1) represents data with a
support problem. It can be seen that the superiority of Mead’s method is maximal when data have a
support problem.

of outperformance becomes larger when the support problem is more severe (θ2 = 1) or the slope
parameter is more negative (θ3 = −1.5). This coincides with our conjecture made in the previous
subsection that Mead’s method can be particularly useful when data do not sufficiently exist on the
right side of the dose-response curves so that estimating the slope and lower asymptote parameters is
difficult. In addition, the degree of inferiority of the Mead method to the logistic method when there is
no support problem (upper left cell) is not severe, which supports our use of the Mead method as the
default initialization method in dr4pl.

Walk-through in R

In this section, we walk through example R code in which dose-response data are analyzed using our
R package dr4pl. By following steps shown below, users can understand how to use dr4pl to handle
data sets that have the convergence failure issue and what kind of detailed analysis can be done by
setting options of R functions in dr4pl.

Main R function dr4pl

We start with Error Case 1 shown in Figures 2 and 6. As can be seen in those figures, this data set
contains an extreme outlier at the dose level 10−5. If the R package drc is used to fit the 4PL model to
this data set, the following error message is returned.

> library(drc)
>
> drm(Response~Dose, data = drc_error_1, fct = LL.4())
Error in optim(startVec, opfct, hessian = TRUE, method = optMethod, control =
list(maxit = maxIt, : non-finite finite-difference value [4]

Error in drmOpt(opfct, opdfct1, startVecSc, optMethod, constrained, warnVal, :
Convergence failed

Note that this error message indicates convergence failure but no explanation about its cause is
given. On the contrary, fitting the 4PL model with dr4pl returns an object of the class "dr4pl" which
contains useful information about the convergence failure and a possible solution.

> library(dr4pl)
>
> dr4pl.error.1 <- dr4pl(Response~Dose, data = drc_error_1, method.init = "logistic",
+ use.Hessian = TRUE)
> class(dr4pl.error.1)
[1] "dr4pl"
> dr4pl.error.1$convergence # TRUE indicates convergence success,
+ # FALSE indicates convergence failure.
[1] FALSE

In this code, some input arguments such as method.init and use.Hessian are specified as different
values from the default values of dr4pl. For example, the default value of method.init is Mead but it
is specified as logistic in the code. This is to ensure that the function dr4pl works with the same
parameter setting as drc. The R package drc uses the logistic method as its default initialization
method and the Hessian matrix in its confidence interval estimation. Note that the function dr4pl
does not throw an error but returns the member dr4pl.error.1$convergence which indicates that
convergence failure happens during the optimization process.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 186

As a possible solution to the convergence failure, the object dr4pl.error.1 provides a member
object dr4pl.robust that results from robust estimation and the outlier detection algorithm explained
in Subsection Robust regression and outlier detection. We call the object dr4pl.error.1$dr4pl.robust
the robust child object of its parent object dr4pl.error.1.

> dr4pl.robust.1 <- dr4pl.error.1$dr4pl.robust
> class(dr4pl.error.1$dr4pl.robust)
[1] "dr4pl"
> dr4pl.robust.1$convergence
[1] TRUE

It can be seen from these code lines that the robust child object does not report the convergence
failure issue. To check results of robust estimation and outlier detection, we check the plot of the object
dr4pl.robust.1.

> dr4pl.robust.1$idx.outlier
[1] 132 140 127 134 133 137 141 139 130 129 128 102
> plot(dr4pl.robust.1, indices.outlier = dr4pl.robust.1$idx.outlier)

The member idx.outlier of the object dr4pl.robust.1 shows the indices of the outliers in the
input data frame drc_error_1 detected by our algorithm. It can be seen that the last sentence in this
code generates the same plot as the upper left plot of Figure 6. As mentioned in Subsection Robust
regression and outlier detection, the absolute loss is given as the default robust estimation method.
This implies that adopting the absolute loss successfully resolves the convergence failure problem of
Error Case 1.

Our R package dr4pl provides other real-world data sets than Error Cases 1 - 4. We analyze the
data set sample_data_5 to compare the two different initialization methods, the logistic and Mead
methods, which were presented in Section Remedy for the support problem.

> dr4pl.logistic.5 <- dr4pl(Response~Dose,
+ data = sample_data_5,
+ method.init = "logistic")
> ggplot.logistic <- plot(dr4pl.logistic.5, text.title = "Logistic method")
>
> dr4pl.Mead.5 <- dr4pl(Response~Dose,
+ data = sample_data_5)
> ggplot.Mead <- plot(dr4pl.Mead.5, text.title = "Mead's method")
>
> grid.arrange(ggplot.logistic, ggplot.Mead, nrow = 1, ncol = 2)

Running this code generates the two plots in Figure 7. Note that outliers are not denoted by red
triangles in these plots since they are generated by the parent objects but not by their robust child
objects. It can be seen from the figure that the data set has the support problem in the sense that it
is hard to determine an IC50 parameter value visually and data points on the right side of possible
IC50 parameter values are not sufficiently provided. Mead’s method shown in the right plot seems
to yield a closer fit to the right-most data point. This coincides with our explanation in Subsection
Mead’s method that the method can result in better final parameter estimates particularly when data
suffer from the support problem.

Auxiliary R functions

The R function summary of the R package dr4pl shows the 95% asymptotic confidence intervals of
the final parameter estimates of a "dr4pl" object. The following code lines show example output of
summary applied to the data set sample_data_3.

> dr4pl.3 <- dr4pl(Response~Dose, data = sample_data_3)
> summary(dr4pl.3)
$call
dr4pl.formula(formula = Response ~ Dose, data = sample_data_3)

$coefficients
Estimate StdErr 2.5 % 97.5 %

UpperLimit 59858.0700194 1.328219e-01 58678.1496415 61037.9903974
IC50 5.0794918 1.531608e-05 3.7133017 6.9483278
Slope -0.6117371 1.440712e-05 -0.7397224 -0.4837518

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 187

Figure 7: Dose-response curves fitted by dr4pl with two initialization methods: the logistic (left plot)
and Mead (right plot) method. It can be seen that Mead’s method yields a closer fit to the right-most
data point than the logistic method.

LowerLimit 980.8205686 1.354448e-01 -222.4002527 2184.0413899

attr(,"class")
[1] "summary.dr4pl"

Recall from Subsection H.2.1 that the IC50 is the dose level whose response value is halfway
between the upper and lower asymptotes θ1 and θ4. Similarly, other inhibitory concentrations of
interest can be defined according to different proportions between θ1 and θ4 as ιp which satisfies the
following equation,

f
(
ιp
)
= pθ1 + (1− p)θ4

where 0 ≤ p ≤ 1. It can be easily seen that ι0.5 corresponds to the IC50 parameter θ2.

Like the R function ED of drc and the R function getEstimates of nplr, the R package dr4pl
implements the function IC to compute inhibitory concentration parameters ιp for 0 ≤ p ≤ 1. The
following code shows a simple use of IC to compute ι0.1, ι0.3, ι0.5, ι0.7, ι0.9 for the data sample_data_3.

> IC(dr4pl.3, c(10, 30, 50, 70, 90))
InhibPercent:10 InhibPercent:30 InhibPercent:50 InhibPercent:70 InhibPercent:90

184.3784198 20.2930770 5.0794918 1.2714305 0.1399363

Summary and future extension

The 4PL model has often suffered from convergence failure problems preventing experimenters from
obtaining fitted 4PL models to data sets. Without diagnosing problems with data sets, experimenters
should often try many different initial parameter estimates, which still does not guarantee stable
convergence of optimization processes. In this paper, we presented a novel method based on studying
convergence failure problems. By imposing proper conditions on the parameter space of the 4PL
models, our new R package dr4pl reports convergence failure during an optimization process and
presents possible resolutions to users.

Another important issue can be memory usage and speed of dr4pl, relative to other R packages
nplr and drc. Measuring time and memory consumed by the three R packages for the 13 data sets
provided in dr4pl showed that nplr is much slower, and used much more memory, than either of the
other two methods. The enhanced features of dr4pl resulted in its being only slightly slower, with
somewhat more memory usage than drc.

Asymptotic confidence intervals of M-estimators have been developed in Lim et al. (2013). An
interesting open problem is the numerical implementation of these in the 4PL context. Another area of
potential future extension is modelling interaction between different drugs. The R packages drc and
MixLow support functionality for drug interaction modelling. While we are not aware of data sets
reported in the literature that cause the convergence failure problem when there are more than one

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 188

drug, it seems that outliers or the support problem may cause instability of optimization processes in
those cases as well. Analysis of the Hill bounds can be a remedy for those, which is an important area
of future research.

Appendix: proof of Theorem H.3.1

Let Θ = { θ =(θ1, θ2, θ3, θ4)| θ1, θ3, θ4 ∈ R, θ2 > 0}. From Equation (3), it can be seen that

∂L(θ)
∂θj

= − 2
n

n

∑
i=1
{yi − f (xi|θ)}

∂ f (xi|θ)
∂θj

, (18)

for j = 1, 2, 3, 4. In addition, we have from Equation (2) that

∂ f (x|θ)
∂θ1

= 1− 1
1 + (10x/θ2)θ3

> 0,

∂ f (x|θ)
∂θ4

=
1

1 + (10x/θ2)θ3
> 0, (19)

for all x ∈ R and θ ∈ Θ since we have θ2 > 0. From these equations, it can be seen that the function f
is increasing in θ1 and θ4 and

lim
θ1→∞

f (x|θ) = ∞, lim
θ4→−∞

f (x|θ) = −∞.

for all x ∈ R and θ ∈ Θ. Fix θ2 > 0, θ3 ∈ R. Then there exist two constants −∞ < θ′1, θ′4 < ∞ such that

f (xi|θ) > yi ∀θ1 ≥ θ′1, f (xi|θ) < yi ∀θ4 ≤ θ′4, (20)

for fixed θ4 ∈ R and θ1 ∈ R, respectively, for i = 1, 2, · · · , n. Substituting Equations (19) and (20) into
Equation (18) yields

∂L(θ)
∂θ1

> 0 ∀θ1 ≥ θ′1,
∂L(θ)

∂θ4
< 0 ∀θ4 ≤ θ′4,

for those fixed θ4 ∈ R and θ1 ∈ R, respectively.

Bibliography

D. M. Bates and D. G. Watts. Nonlinear regression analysis and its applications. Wiley Series in
Probability and Mathematical Statistics: Applied Probability and Statistics. John Wiley & Sons, 1988. ISBN
0-471-81643-4. URL https://doi.org/10.1002/9780470316757. [p172]

Y. Benjamini and D. Yekutieli. The control of the false discovery rate in multiple testing under
dependency. Ann. Statist., 29(4):1165–1188, 2001. ISSN 0090-5364. [p180]

F. Commo and B. M. Bot. nplr: n-parameter logistic regression, 2016. URL https://CRAN.R-project.
org/package=nplr. R package version 0.1-7. [p172]

R. B. Dean and W. J. Dixon. Simplified statistics for small numbers of observations. Analytical Chemistry,
23(4):636–638, 1951. URL https://doi.org/10.1021/ac60052a025. [p179]

Y. Di Veroli Giovanni, C. Fornari, I. Goldlust, G. Mills, S. B. Koh, J. L. Bramhall, F. M. Richards, and D. I.
Jodrell. An automated fitting procedure and software for dose-response curves with multiphasic
features. Scientific Reports (Nature Publisher Group), 5:14701, 2015. URL https://doi.org/10.1038/
srep14701. [p173]

S. R. Gadagkar and G. B. Call. Computational tools for fitting the Hill equation to dose-response curves.
J Pharmacol Toxicol Methods, 71:68–76, 2015. URL https://doi.org/10.1016/j.vascn.2014.08.006.
[p175]

J. Giraldo, N. M. Vivas, E. Vila, and A. Badia. Assessing the (a) symmetry of concentration-effect
curves: empirical versus mechanistic models. Pharmacology & Therapeutics, 95(1):21–45, 2002. URL
https://doi.org/10.1016/s0163-7258(02)00223-1. [p172]

A. V. Hill. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation
curves. J Physiol (Lond), 40:4–7, 1910. [p172]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1002/9780470316757
https://CRAN.R-project.org/package=nplr
https://CRAN.R-project.org/package=nplr
https://doi.org/10.1021/ac60052a025
https://doi.org/10.1038/srep14701
https://doi.org/10.1038/srep14701
https://doi.org/10.1016/j.vascn.2014.08.006
https://doi.org/10.1016/s0163-7258(02)00223-1

CONTRIBUTED RESEARCH ARTICLES 189

P. J. Huber. Robust estimation of a location parameter. Ann. Math. Statist., 35:73–101, 1964. ISSN
0003-4851. URL http://dx.doi.org.libproxy.lib.unc.edu/10.1214/aoms/1177703732. [p181]

P. J. Huber and E. M. Ronchetti. Robust statistics. Wiley Series in Probability and Statistics. John Wiley &
Sons, 2nd edition, 2009. ISBN 978-0-470-12990-6. URL http://dx.doi.org.libproxy.lib.unc.edu/
10.1002/9780470434697. [p180]

J. T. Landis, H. An, and A. G. Bailey. dr4pl: dose response data analysis using the 4 Parameter
Logistic (4PL) model, 2018. URL https://bitbucket.org/dittmerlab/dr4pl. R package version
1.1.8. [p171]

C. Lim. Robust ridge regression estimators for nonlinear models with applications to high throughput
screening assay data. Stat. Med., 34(7):1185–1198, 2015. ISSN 0277-6715. URL https://doi.org/10.
1002/sim.6391. [p173]

C. Lim, P. K. Sen, and S. D. Peddada. Robust nonlinear regression in applications. J. Indian Soc.
Agricultural Statist., 67(2):215–234, 291, 2013. ISSN 0019-6363. [p187]

R. Mead. Plant density and crop yield. Applied statistics, pages 64–81, 1970. URL https://doi.org/10.
2307/2346843. [p183]

F. Mosteller and J. W. Tukey. Data analysis and regression: a second course in statistics. Addison-Wesley
Series in Behavioral Science: Quantitative Methods, 1977. [p181]

H. J. Motulsky and R. E. Brown. Detecting outliers when fitting data with nonlinear regression - a new
method based on robust nonlinear regression and the false discovery rate. BMC Bioinformatics, 7:
123, 2006. URL https://doi.org/10.1186/1471-2105-7-123. [p179, 180, 181, 182]

W. Oberhofer. The consistency of nonlinear regression minimizing the L1-norm. Ann. Statist., 10(1):
316–319, 1982. ISSN 0090-5364. [p181]

W. B. Pratt and P. Taylor. Principles of drug action: the basis of pharmacology. Churchill Livingstone,
3rd edition, 1990. URL https://doi.org/10.1021/jm00296a900. [p177]

D. A. Ratkowsky. Nonlinear regression modeling. A unified practical approach. Marcel Dekker, Inc.,
New York, 1983. [p183]

A. H. Riazoshams, B. M. Habshah Jr, and A. Adam. On the outlier detection in nonlinear regression.
International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 3
(12):1105–1111, 2009. [p179]

C. Ritz, J. C. Streibig, and others. Bioassay analysis using R. Journal of Statistical Software, 12(5):1–22,
2005. URL https://doi.org/10.18637/jss.v012.i05. [p172]

T. B. Robertson. On the normal rate of growth of an individual, and its biochemical significance.
Archiv für Entwicklungsmechanik der Organismen, 25(4):581–614, 1908. URL https://doi.org/10.
1007/bf02163864. [p171]

G. A. F. Seber and C. J. Wild. Nonlinear regression. Wiley Series in Probability and Mathematical
Statistics: Probability and Mathematical Statistics. John Wiley & Sons, 1989. ISBN 0-471-61760-1. URL
https://doi.org/10.1002/0471725315. [p172, 177, 181]

Y. Wang, A. Jadhav, N. Southal, R. Huang, and D. T. Nguyen. A grid algorithm for high throughput
fitting of dose-response curve data. Curr Chem Genomics, 4:57–66, 2010. URL https://doi.org/10.
2174/1875397301004010057. [p173, 183]

Hyowon An
Department of Statistics and Operations Research
The University of North Carolina at Chapel Hill
USA
ahwbest@gmail.com

Justin T. Landis
Lineberger Comprehensive Cancer Center
The University of North Carolina at Chapel Hill
USA
jtlandis314@gmail.com

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

http://dx.doi.org.libproxy.lib.unc.edu/10.1214/aoms/1177703732
http://dx.doi.org.libproxy.lib.unc.edu/10.1002/9780470434697
http://dx.doi.org.libproxy.lib.unc.edu/10.1002/9780470434697
https://bitbucket.org/dittmerlab/dr4pl
https://doi.org/10.1002/sim.6391
https://doi.org/10.1002/sim.6391
https://doi.org/10.2307/2346843
https://doi.org/10.2307/2346843
https://doi.org/10.1186/1471-2105-7-123
https://doi.org/10.1021/jm00296a900
https://doi.org/10.18637/jss.v012.i05
https://doi.org/10.1007/bf02163864
https://doi.org/10.1007/bf02163864
https://doi.org/10.1002/0471725315
https://doi.org/10.2174/1875397301004010057
https://doi.org/10.2174/1875397301004010057
mailto:ahwbest@gmail.com
mailto:jtlandis314@gmail.com

CONTRIBUTED RESEARCH ARTICLES 190

Aubrey G. Bailey
Lineberger Comprehensive Cancer Center
The University of North Carolina at Chapel Hill
USA
aubreybailey@gmail.com

J. S. Marron
Department of Statistics and Operations Research
The University of North Carolina at Chapel Hill
USA
marron@unc.edu

Dirk P. Dittmer
Lineberger Comprehensive Cancer Center
The University of North Carolina at Chapel Hill
USA
dirkdittmer@me.com

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

mailto:aubreybailey@gmail.com
mailto:marron@unc.edu
mailto:dirkdittmer@me.com

CONTRIBUTED RESEARCH ARTICLES 191

cvcrand: A Package for
Covariate-constrained Randomization
and the Clustered Permutation Test for
Cluster Randomized Trials
by Hengshi Yu, Fan Li, John A. Gallis and Elizabeth L. Turner

Abstract The cluster randomized trial (CRT) is a randomized controlled trial in which randomization is
conducted at the cluster level (e.g., school or hospital) and outcomes are measured for each individual
within a cluster. Often, the number of clusters available to randomize is small (≤ 20), which increases
the chance of baseline covariate imbalance between comparison arms. Such imbalance is particularly
problematic when the covariates are predictive of the outcome because it can threaten the internal
validity of the CRT. Pair-matching and stratification are two restricted randomization approaches
that are frequently used to ensure balance at the design stage. An alternative, less commonly-used
restricted randomization approach is covariate-constrained randomization. Covariate-constrained
randomization quantifies baseline imbalance of cluster-level covariates using a balance metric and
randomly selects a randomization scheme from those with acceptable balance by the balance metric.
It is able to accommodate multiple covariates, both categorical and continuous. To facilitate imple-
mentation of covariate-constrained randomization for the design of two-arm parallel CRTs, we have
developed the cvcrand R package. In addition, cvcrand also implements the clustered permutation
test for analyzing continuous and binary outcomes collected from a CRT designed with covariate-
constrained randomization. We used a real cluster randomized trial to illustrate the functions included
in the package.

Introduction

Cluster randomized trials (CRTs) randomize clusters of individuals, such as schools, hospitals or clinics
(Brown and Li, 2015). The CRT design is chosen when there are concerns of treatment contamination,
when it is logistically easier to conduct the trial using cluster randomization and when intervention of
interest is delivered at the group level (Turner et al., 2017a). CRTs have been used in many disciplines
including social sciences, public policy, medicine and implementation science (Hayes and Moulton,
2009).

In this paper, we focus on the two-arm parallel cluster randomized trial. Usually, there are a total
of (n

nT
) = n!

nT !(n−nT)!
ways to allocate nT clusters to the intervention arm, out of a total of n clusters. For

example, in a CRT with 10 clusters, 5 of which are assigned to the treatment arm and 5 to the control
arm, there are (10

5) = 252 unique allocations in the simple randomization space. Each allocation is
called a randomization scheme and when simple randomization is used, one of the 252 allocations is
randomly selected and implemented in the CRT. Because it is common that there are only a limited
(usually fewer than 20) number of clusters available in a CRT (Fiero et al., 2015), there may be a
non-negligible chance of imbalance between arms regarding the distribution of baseline covariates
(Moulton, 2004). If the covariates are predictive of the outcome, such imbalance may threaten the
internal validity, can lead to loss of power and usually requires statistical adjustment in the analysis
stage (Ivers et al., 2012).

Several design strategies are available to avoid reliance only on statistical adjustment that accounts
for baseline covariate imbalance in the analysis phase. Two most popular ones are pair-matching and
stratification (Ivers et al., 2012), both of which are examples of restricted randomization. Matching
pairs of clusters according to similarity in the baseline covariate profile (e.g., location), and performs
randomization within each pair. Stratification is similar to matching but instead of only considering
pairs of clusters, the procedure forms strata of 2 or more clusters where each stratum includes clusters
with similar baseline covariate profiles. As with matching, the clusters within each stratum are then
randomized into the two arms and, when there are an even number of clusters in each stratum, there
is perfect balance of strata across treatment and control arms. There are several limitations of these
procedures. The power of a pair-matched study might decrease due to a small number of pairs and
a small correlation between the matching covariates and the outcome (Diehr et al., 1995). Loss to
follow-up of a single cluster may require the exclusion of the matched pair in the analysis, and reduces
study power (Ivers et al., 2012). In addition, the intracluster correlation coefficient is not easy to
compute from the matched pairs (Donner and Klar, 2004; Klar and Donner, 1997; Campbell et al.,
2012). In a CRT with a small number of clusters, stratified randomization is only possible with a small

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 192

number of stratification covariates. Otherwise, a single cluster might be in a stratum and will cause an
imbalance between the arms (Ivers et al., 2012). Given that CRTs often identify and recruit all clusters
at the start of the trial, minimization, a common restricted randomization for individually randomized
trials, is rarely applicable to CRTs. To deal with these limitations especially with a small number
of clusters and more than a few baseline covariates to balance, alternative restricted randomization
methods are necessary.

Covariate-constrained randomization is an alternative restricted randomization procedure (Ivers
et al., 2012; Raab and Butcher, 2001). Unlike matching and stratification, covariate-constrained
randomization uses a measure called a balance metric to quantify the difference in mean covariate
values between the two arms for a given randomization scheme across all baseline covariates that
we wish to balance. The simple randomization space is then constrained by keeping the subset of
randomization schemes with which covariates are considered sufficiently balanced by the balance
metric. A final scheme is then selected from this constrained space, and tends to exhibit better baseline
balance on average than a scheme randomly selected without constraints. Compared with pair-
matching and stratification, covariate-constrained randomization may be preferred due to its capacity
to accommodate multiple covariates, both categorical and continuous. Further, the ICC calculation
remains unaffected under constrained randomization.

Although covariate-constrained randomization is a promising design strategy for CRTs, it is not
commonly used in practice. One possible reason is that it requires more programming than simple
randomization, pair-matching or stratification. Therefore, to facilitate its implementation in the design
and analysis of cluster randomized trials, we have developed the cvrall and cvrcov functions in
the cvcrand package. The cvrall function performs constrained randomization based on covariate
balance measured by a scalar balance metric and can assign weights to reflect the relative importance of
candidate covariates. The cvrcov function performs constrained randomization based on multivariate
balance defined through each single covariate, similar to the routine provided in Greene (2017).

From an analysis perspective, when a CRT is designed using covariate-constrained randomization,
this design feature should be reflected in the analysis of the individual-level outcome data collected
during the trial (Li et al., 2016, 2017). To do so, a permutation-based approach can be used. The per-
mutation test, discussed in Gail et al. (1996), should account for the variability within the constrained
randomization space. In other words, the resulting clustered permutation test obtains the p-value
for the treatment effect by referencing the observed test statistics to the permutation distribution
within the constrained space. We provide the cptest function in the cvcrand package to facilitate the
implementation of this permutation test.

Methods

To demonstrate the utility of the cvcrand package, we describe the concepts of covariate-constrained
randomization and the clustered permutation test using an example of a real cluster randomized trial
presented in Dickinson et al. (2015). This CRT aims to compare a collaborative centralized reminder
approach with a practice-based reminder approach for increasing the immunization rate in children
aged 19 to 35 months from 16 counties in Colorado. Each county represents a cluster of children and
eight counties are randomized to each arm. The collaborative reminder approach depends on the joint
efforts between health department leaders and physicians to develop a centralized notification, either
using telephone or mail, for all parents whose pre-school children are not up-to-date on immunizations.
Parents from the practice-based arm are invited to attend a web-based training for reminder using
the Colorado Immunization Information System. Although counties are the randomization unit, the
binary outcome, immunization status, is to be measured for participating children. A list of nine
county-level covariates are collected (see Table 1 for the complete list, of which income is listed twice
as it is coded as both a continuous variable and a derived categorical variable) prior to randomization,
and balance on these covariates are desired during the randomization phase.

Covariate-constrained randomization

Covariate-constrained randomization, henceforth referred to simply as constrained randomization,
is a promising balancing technique for cluster randomized trials (CRTs), especially for those with a
limited number of clusters (Hayes and Moulton, 2009). Constrained randomization usually involves
the following steps: (i) specifying the baseline covariates that one wishes to balance; (ii) enumerat-
ing all possible randomization schemes or randomly simulating a large number of randomization
schemes within the simple randomization space (duplicates are removed if the schemes are randomly
simulated); (iii) retaining a constrained randomization space with a subset of schemes where sufficient
balance across baseline covariates is achieved according to some pre-specified balance metric; (iv)
randomly selecting a scheme from the constrained randomization space for implementation.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=cvcrand

CONTRIBUTED RESEARCH ARTICLES 193

Table 1: County-level variables in the motivating example.

Variable name Variable description

location location (“rural” or “urban”)

inciis
percentage of children aged 19-35 months in the Colorado
Immunization Information System (CIIS)

numberofchildrenages1935months number of children aged 19-35 months
uptodateonimmunizations percentage of up-to-date on immunizations
africanamerican percentage of African American
hispanic percentage of Hispanic ethnicity
income average income ($)
incomecat category of average income (“low”, “medium”, and “high”)
pediatricpracticetofamilymedicin pediatric practice-to-family medicine practice ratio
communityhealthcenters number of community health centers

Stratification can be viewed as a special case of constrained randomization. For instance, we
could consider stratifying on a single binary baseline covariate, geographic location (rural or urban),
for the immunization trial introduced previously. Suppose that 6 counties are located in the rural
area and that 10 counties are located in the urban area. Stratified randomization ensures that half
of the clusters in each stratum, defined by distinct values of the geographic location variable, are
assigned to treatment and the rest to control. If we measure balance by the absolute differences in the
average covariate values between arms, it follows that the stratified randomization space coincides
with a constrained randomization space with zero balance scores when each stratum contains an even
number of clusters.

Constrained randomization generalizes stratification and extends naturally to situations where
there are several, possibly continuous, baseline covariates. The generalization is featured by defining a
balance metric accommodating multiple covariates. A balance metric gives a quantitative assessment
about the balance between the two arms for each randomization scheme, and essentially any sensible
balance metric can be used. We first develop the cvrall function that balances covariates by scalar
balance scores as in Raab and Butcher (2001) and Li et al. (2016, 2017). Suppose we wish to balance
K baseline covariates, either cluster attributes or individual characteristics aggregated at the cluster
level (dummy variables are used for categorical covariates). We denote n as the total number of
clusters, nT , nC as the number of treated and control clusters (i.e., n = nT + nC), xik as the kth covariate
(k = 1, . . . , K) of cluster i. The l2 balance metric, first introduced by Raab and Butcher (2001), can be
written as

B(l2) =
K

∑
k=1

ωk (x̄Tk − x̄Ck)
2 (1)

where x̄Tk = ∑nT
i=1 xik/nT and x̄Ck = ∑n

i=nT+1 xik/nC are the means of the kth cluster-level variable in
the treatment arm and the control arm, respectively, and ωk is a pre-determined weight for the kth
variable. We choose ωk to be the inverse of the variance of the kth variable across all clusters following
Raab and Butcher (2001) and Li et al. (2016), namely

ωk = 1/s2
k =

n− 1

∑n
i=1 (xik − x̄k)

2

where x̄k = ∑n
i=1 xik/n.

An alternative l1 balance metric was introduced by Li et al. (2017) as

B(l1) =
K

∑
k=1

ω̃k |x̄Tk − x̄Ck| (2)

where the notations are consistent with the l2 metric except for the weight ω̃k, which is chosen to be
the inverse of the standard deviation of the kth variable, sk. It has been shown that the two balance
metrics perform similarly in constrained randomization, that both metrics are invariant to affine
transformation of baseline covariates (Li et al., 2016, 2017), and that the resulting balance scores
are free of the unit used to measure the baseline covariates as long as the unit of measurement is
consistent across clusters. Finally, after the randomization schemes are enumerated or simulated, we
simultaneously compute the balance scores for all schemes according to either the l1 or l2 metric,
using the matrix formula given in Li et al. (2017). We refer the reader to Web Appendix B of Li et al.
(2017) for additional computational details.

To reflect the relative importance of different covariates, one may specify different weights in the

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 194

l1 and l2 balance metric. To do so, we can modify the l2 balance metric to be

B(l2) =
K

∑
k=1

dkωk (x̄Tk − x̄Ck)
2 (3)

where dk is the user-defined weight for the kth variable. By default, dk = 1 for all variables and equation
(3) reduces to equation (1). When researchers consider a certain variable to be more “important" (in
terms of prognostic value) than the others, a large user-defined weight dk > 1 could be assigned to that
variable when assessing the balance scores. Similarly, we modify the l1 balance metric by allowing for
user-defined weights as

B(l1) =
K

∑
k=1

dkω̃k |x̄Tk − x̄Ck| (4)

Another important element of constrained randomization is the cutoff value, which we denote
by q ∈ (0, 1]. If we write FB as the empirical cumulative distribution function of the balance scores
calculated using a balance metric, we could define the cutoff value as the percentile such that the
constrained space contains schemes with balance scores no larger than F−1

B (q). Intuitively, the cutoff
value measures the proportion of schemes relative to the simple randomization space. When q = 1,
there is no constraint and simple randomization is implemented. When q < 1, only a subset of
schemes with sufficient balance will be retained and constrained randomization is implemented. In
the immunization trial example, we have in total (16

8) = 12, 870 possible randomization schemes to
allocate 8 clusters each to intervention and control. If we set q = 0.1, the constrained randomization
space contains around 1288 schemes, allowing for ties in the balance scores.

Ideally, the cutoff value q should be small and away from 1 so that only the “more balanced"
randomization schemes are retained in the constrained space. In fact, the power of statistical inference
on the intervention effect tends to increase as q decreases if prognostic covariates are balanced by
constrained randomization. However, the cutoff value q should not be too small since this may risk
deterministic allocation of clusters into arms (Moulton, 2004), and may prohibit permutation inference
given a fixed type I error rate (Li et al., 2016). In addition, the relationship between q and power is not
monotone since power may stabilize once q < 0.1, as seen in a number of simulations presented in
Li et al. (2017). For this reason, we set the default cutoff value of q = 0.1 in cvrall, unless specified
otherwise by the user. Finally, we note that in our cvrall function, one could also specify the exact
number of schemes kept in the constrained randomization instead of the cutoff quantile value, through
the numschemes argument.

In addition to constraining the randomization space via a scalar summary score, we further
developed the cvrcov function to implement constrained randomization with baseline balance defined
directly through each covariate. This covariate-by-covariate constrained randomization places separate
constraints on each covariate and ensures that the final allocation scheme satisfies marginal balance
of each covariate. In particular, we follow the routine developed by Greene (2017) and constrain
the arm mean difference (or arm total difference) to be no larger than a pre-specified value or a
certain percentage of overall mean (or mean arm total). The covariate-by-covariate balance allows
user-specified constraints on different covariates and is more flexible, but simulating the constrained
randomization space usually requires more computations since the balance metric does not reduce to
simple forms as the l1 or l2 scores.

To better understand the constrained randomization space, we also include a check on the ran-
domization validity (Bailey and Rowley, 1987). Constraining the randomization may induce linkage
or correlation between clusters so that certain pairs of clusters may always be allocated to the same
arm (cluster coincidence) or never be allocated to the same arm (cluster separation), both of which
lead to loss of randomization validity. To assess the degree of loss of validity, the cvrall and cvrcov
functions provide summary statistics on cluster pairs that always or never appear together in the same
arm, similar to the routine by Greene (2017). Such descriptive statistics may inform the appropriate
selection of a constrained space.

Finally, enumerating all possible schemes in the entire simple randomization space may be
computationally demanding, when there are quite a few clusters to randomize (e.g., more than 20).
In that case, the cvrall and cvrcov functions in our package will randomly simulate a large number
of randomization schemes and remove duplicates if any. By default, this large number is set to be
50,000, unless specified otherwise by the user through the size option. With this default setting,
when the total number of schemes in the simple randomization space is no greater than 50,000, the
enumeration method will be used. Otherwise, 50,000 schemes will be randomly simulated from the
simple randomization space and duplicates will be removed to approximate the simple randomization
space.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 195

Clustered permutation test

After using constrained randomization in the design of a CRT, a permutation test can be used to test the
intervention effect. We implement the clustered permutation test used in Gail et al. (1996) and Li et al.
(2016) in the cptest function. Specifically, we denote the outcome of the jth individual (j = 1, . . . , mi)
from the ith cluster (i = 1, . . . , n) as Yij. During the analysis stage, researchers may wish to adjust for
baseline covariates, which we denote by a vector zij. The choice of adjustment variables may vary
from study to study, and often depends on expert knowledge. Generally, it is a good practice to adjust
for variables with high prognostic values that are already balanced by constrained randomization. For
the permutation test, such a recommendation is not mandatory since the test size remains valid as
long as the permutation distribution is obtained from the constrained randomization space (Li et al.,
2016), even though adjusting for prognostic variables improves the test power (Li et al., 2016, 2017).
However, if one prefers an unadjusted test, the following permutation inference still holds by setting
zij as the null or empty vector.

The permutation test is implemented in a two-step procedure. In the first step, an outcome
regression model is fitted for response Yij with covariates zij. This is often done by fitting a linear
regression model for continuous responses and a logistic regression model for binary responses,
ignoring the clustering of responses. We then compute the predicted response for each individual
by Ŷij, which could be used to calculate the individual residual rij = Yij − Ŷij. In the second step,
cluster-specific residual averages are obtained as r̄i· = ∑mi

j=1 rij/mi. The observed test statistic is then
computed as

U =
1

nT

n

∑
i=1

Wi r̄i· −
1

nC

n

∑
i=1

(1−Wi) r̄i· (5)

where Wi = 1 if the ith cluster is assigned to the treatment arm and Wi = 0 otherwise, and nT =
∑n

i=1 Wi, nC = ∑n
i=1(1−Wi) are the number of treated and control clusters.

Suppose there are S randomization schemes in the constrained randomization space. To obtain
the permutation distribution of the test statistic, we permute the labels of the treatment indicator
according to the constrained randomization space, and recompute a value for Us (s = 1, . . . , S) based
on equation (5). The collection of these values {Us : s = 1, . . . , S} forms the null distribution of the
permutation test statistic. The p-value is then computed by

p-value =
1
S

S

∑
s=1

I (|Us| ≥ |U|) (6)

where I is the indicator function that equals 1 when |Us| ≥ |U| and 0 otherwise.

Illustrative Examples

Constrained randomization by cvrall

We used the cvrall function to perform constrained randomization based on the CRT data published
in Dickinson et al. (2015). To focus ideas, we selected five variables in Table 1 to balance in the design
stage. These variables include location (categorical), inciis (continuous), uptodateonimmunizations
(continuous) and hispanic (continuous). We further considered incomecat as a categorical variable to
illustrate the use of cvrall in the presence of a factor variable. Of note, the cvrall function automati-
cally converts the categorical variables into dummy variables when implementing the constrained
randomization. For instance, here we categorized the county-level covariate incomecat into three
levels based on sample tertiles: “low”, “medium”, and “high”. Two dummy variables are then intro-
duced to represent these three categories. The “high" level is by default considered as the reference
level by alphanumerical order of the first letter. Similarly, when the permutation test is executed in
the cptest function, each categorical covariates will be transformed into dummy variables before
performing the analysis as well. It is also important to point out that there is more than one way to
define dummy variables because any one of the levels of the categorical variable could be chosen as
the reference level. In the cvrall function, if the variable is not specified as a factor with a specific
reference level, we defined the reference level to be the first level by alphanumerical order. However,
if one would like to specify other reference levels, it is possible to preprocess the data to manually
create dummy variables before invoking the cvrall routines, or to specify the variables as factors with
the specific reference levels.

In this trial, we would like to randomize 8 counties into the arm with a collaborative central-
ized reminder approach and 8 into the other arm with a practice-based approach. So we specified

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 196

ntotal_cluster = 16 and ntrt_cluster = 8 for the total number of clusters and the number of
clusters in the treatment arm. Since the total number of possible schemes is (16

8) = 12, 870, which is less
than the default maximum number of simulated schemes (50,000), we enumerated all 12,870 schemes.
The example syntax of the function is given as the following, where the x= argument references the
data frame of the covariates that will be used in the calculation of balance scores and hence be balanced
by constrained randomization.

Design_result <- cvrall(clustername = Dickinson_design$county,
balancemetric = "l2",
x = data.frame(Dickinson_design[, c("location", "inciis",

"uptodateonimmunizations", "hispanic", "incomecat")]),
ntotal_cluster = 16,
ntrt_cluster = 8,
categorical = c("location", "incomecat"),
savedata = "dickinson_constrained.csv",
bhist = TRUE,
cutoff = 0.1,
seed = 12345,
check_validity = TRUE)

Here we used the balance scores calculated by the l2 metric as indicated by balancemetric = "l2".
The cateogrical variables were specified with categorical = c("location","incomecat"). Location
has two levels: "rural" and code"urban"; the level "rural" is the reference level. As income category
is a three-level categorical variable of "low", "med", and "high", the level "high" is considered as the
reference level and 2 dummy variables were created. Since we specified the cutoff value as cutoff =
0.1, the constrained randomization space only included the schemes with l2 balance scores less than
the 10th percentile of the balance score distribution in the simple randomization space. Finally, we
randomly sampled a scheme from the constrained space.

Figure 1: Histogram of balance scores across all 12870 schemes

We saved the constrained randomization space in a file named dickinson_constrained.csv in the
current working directory. In this file, the first column is an indicator variable of whether the scheme is
the final one selected by the program. The remaining columns records the constrained randomization
matrix; each column of the matrix corresponds to a cluster, and each row of the matrix corresponds to
an allocation scheme coded by 1’s and 0’s (1 if the cluster is assigned to the collaborative centralized
reminder approach and 0 if assigned to the practice-based reminder approach). Furthermore, if simple
randomization is used, namely cutoff = 1, the constrained randomization matrix has 12,870 rows and
16 columns. We provide the option to save the constrained randomization space to a local directory so
that it could be used as an input for the permutation inference during the data analysis stage, which
usually happens at a later calendar time.

To facilitate the understanding of the constrained randomization process, we could specify bhist
= TRUE to generate a histogram displaying the distribution of all balance scores with a red line
indicating the cutoff value (the 10th percentile). The sample histogram of balance scores is in Figure
1. The summary statistics of the balance scores are included in the bscores object, regardless of the
bhist = option. As indicated below, the bscores object contains the cutoff value, the balance score
corresponding to the selected scheme, and other quantiles of the balance score distribution.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 197

> Design_result$bscores
1 score (selected scheme) 6.764
2 cutoff score 7.638
3 Mean 24.000
4 SD 15.775
5 Min 1.161
6 5% 5.826
7 10% 7.638
8 20% 10.849
9 25% 12.221
10 30% 13.840
11 50% 20.578
12 75% 31.621
13 95% 55.486
14 Max 116.656

In order to be transparent about the constrained randomization procedure, we also included
additional summary messages in the following objects: assignment_message, scheme_message,
cutoff_message and choice_message. These objects summarize the sample size and randomization
ratio, the number of schemes used to calculate the balance score distribution, the balance metric and
cutoff value, as well as the balance score of the selected scheme, respectively. For example, the sample
size and randomization ratio are indicated in the following message:

> Design_result$assignment_message
[1] "You have indicated that you want to assign 8 clusters to treatment and 8 to control"

The final randomization scheme is included in the allocation object. In addition, we also provided
a data frame containing the final randomization scheme in the data_CR element. The data frame
includes the covariate values for each cluster in addition to the information on cluster allocation.

> Design_result$data_CR
arm clustername location inciis uptodateonimmunizations hispanic incomecat

1 0 1 Rural 94 37 44 Low
2 0 2 Rural 85 39 23 High
3 0 3 Rural 85 42 12 Low
4 1 4 Rural 93 39 18 High
5 1 5 Rural 82 31 6 High
6 0 6 Rural 80 27 15 Med
7 1 7 Rural 94 49 38 Low
8 0 8 Rural 100 37 39 Low
9 1 9 Urban 93 51 35 Med
10 1 10 Urban 89 51 17 Med
11 0 11 Urban 83 54 7 High
12 1 12 Urban 70 29 13 Med
13 1 13 Urban 93 50 13 High
14 0 14 Urban 85 36 10 Med
15 1 15 Urban 82 38 39 Low
16 0 16 Urban 84 43 28 Med

To assess whether the selected constrained randomization scheme balances the baseline covariates,
we provided a baseline table summarized under the selected randomization scheme. The baseline
table indicates that the covariates are approximately balanced across the two arms, although more
“urban” clusters are assigned to the collaborative centralized reminder approach. The baseline table is
provided in the baseline_table element, and is illustrated below.

> Design_result$baseline_table
arm = 0 arm = 1

n 8 8
location = Urban (%) 3 (37.5) 5 (62.5)
inciis (mean (sd)) 87.00 (6.59) 87.00 (8.45)
uptodateonimmunizations (mean (sd)) 39.38 (7.65) 42.25 (9.18)
hispanic (mean (sd)) 22.25 (13.77) 22.38 (12.94)
incomecat (%)

High 2 (25.0) 3 (37.5)
Low 3 (37.5) 2 (25.0)
Med 3 (37.5) 3 (37.5)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 198

Finally, we considered the validity of the randomization and used the check_validity = argument
to summarize the cluster coincidence (cluster pairs assigned to the same arm) and cluster separation
(cluster pairs assigned to different arms) within the constrained space. If check_validity = TRUE, we
could obtain the relevant descriptive statistics in the cluster_coin_des object. The four rows in this
object summarize the count and fraction of clusters appearing together, as well as count and fraction
of clusters appearing in the different arms across the constrained randomization space. Recall that
under simple randomization, no linkage or correlation is introduced between clusters and so each
cluster pair has a 50% chance to appear together in the same arm and a 50% chance to appear in
different arms. With the 0.1 cutoff value, the cluster pairs has a 47% chance to appear in the same arm
on average, which is not too distant from the reference value 50%. However, there is a cluster pair that
will appear in the same arm for only about 29% of the times (and appear in different arms for 71% of
times), indicating some loss of validity. On the other hand, the constrained randomization routine
offered by Greene (2017) includes default proportion values, 25% and 75%, as thresholds for loss of
validity. That is to say, a reasonable constrained space should ensure each cluster pair appears in the
same arm (and in different arms) for at least 25% of times and at most 75% times. Our constrained
randomization space satisfies this condition.

> Design_result$cluster_coin_des
Mean Std Dev Minimum 25th Pctl Median 75th Pctl Maximum

samecount 600.600 88.807 368.000 551.750 603.000 648.500 804.000
samefrac 0.467 0.069 0.286 0.429 0.469 0.504 0.625
diffcount 686.400 88.807 483.000 638.500 684.000 735.250 919.000
difffrac 0.533 0.069 0.375 0.496 0.531 0.571 0.714

Stratified constrained randomization by cvrall

Of note, the cvrall function could perform constrained randomization with a stratification factor to
ensure exact balance on that stratification factor. We still considered the above trial example, but now
we wish to perform constrained randomization within each strata defined by the binary location
variable. In other words, two strata of eight counties each will be defined depending on location,
and constrained randomization is then performed based on the additional four covariates within
each stratum. Motivated by the weighted l1 and l2 metrics (3), (4), we could assign a large weight
(e.g., 1000) to location and ensure exact balance on that variable, while keeping the weights for other
variables as 1 (weights = c(1000,1,1,1,1)). Intuitively, a large weight assigned to a covariate sharply
penalizes any imbalance of that covariate, therefore the resulting randomization space approximates
the one obtained by stratifying on location. The example syntax is provided below.

Stratification on location, with constrained randomization on other
specified covariates.
Design_stratified_result <- cvrall(clustername = Dickinson_design$county,

balancemetric = "l2",
x = data.frame(
Dickinson_design[,
c("location", "inciis",
"uptodateonimmunizations", "hispanic",
"incomecat")]),

ntotal_cluster = 16,
ntrt_cluster = 8,
categorical = c("location", "incomecat"),
weights = c(1000, 1, 1, 1, 1),
cutoff = 0.1,
seed = 12345)

Depending on the choice of cutoff value, the above syntax may not lead to a randomization space
exactly the same as the one obtained after stratifying on location. The cvrall function also allows
one to directly stratify on the location variable using the stratify option, as shown next. We omitted
the baseline covariate table obtained from stratified constrained randomization, but just comment
that final scheme ensures exact balance on the location variable so that each arm has now 4 urban
counties and 4 rural counties.

An alternative and equivalent way to stratify on location
Design_stratified_result <- cvrall(clustername = Dickinson_design$county,

balancemetric = "l2",
x = data.frame(
Dickinson_design[,

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 199

c("location", "inciis",
"uptodateonimmunizations", "hispanic",
"incomecat")]),

ntotal_cluster = 16,
ntrt_cluster = 8,
categorical = c("location", "incomecat"),
stratify = "location",
cutoff = 0.1,
seed = 12345)

Constrained randomization by cvrcov

We additionally provided the cvrcov function to perform covariate-by-covariate constrained random-
ization, similar to the routine provided by Greene (2017). This approach is particularly attractive for
its flexibility in directly balancing each covariate. We still considered our example trial where we
randomized 8 counties into the each arm for illustration. We specified ntotal_cluster = 16 and
ntrt_cluster = 8 for the total number of clusters and the number of clusters in the treatment arm.
Since the total number of possible schemes is (16

8) = 12, 870, which is less than the default maximum
number of simulated schemes (50,000), we enumerated all 12870 schemes.

As the covariate-by-covariate constrained randomization acts on the numeric values of each
variable, we transformed the values of the location to be numeric with "Rural" being 1 and "Urban"
being 0. For illustrative purposes, we also used the numeric average income values rather than its
categories in this example. The x = argument points to the data frame containing the covariates that
will be balanced by constrained randomization routine.

Table 2: Example syntax of balancing constraints.

Syntax Explanation

any no constraints, any arm means or arm totals are acceptable
s5 arm totals must differ in absolute value by no more than 5
sf.5 arm totals must differ in absolute value by no more than 0.5 times the mean arm total
m10 arm means must differ in absolute value by no more than 10
mf0.2 arm means must differ in absolute value by no more than 0.2 times the overall mean
mf.5 arm means must differ in absolute value by no more than 0.5 times the overall mean

The cvrcov function works the same way as the cvrall function, except for that the former requires
additional syntax to specify the balancing constraints for each covariate. The syntax used to balance
each covariate is the same those used in Greene (2017). Specifically, if the first letter is specified as m,
the balancing constraint acts on means, whereas if the first letter is s, the balancing constraint acts on
sums or totals. If the second letter is f, the balancing constraint will be compared to a fractional of a
population quantity (overall mean or mean arm total), otherwise the constraint will be compared to an
actual value. A numeric constraint will follow the specified letters and indicates the tightness of the
constraint. Additional examples are provided in Table 2.

Dickinson_design_numeric <- Dickinson_design
Dickinson_design_numeric$location = (Dickinson_design$location == "Rural") * 1

Design_cov_result <- cvrcov(clustername = Dickinson_design_numeric$county,
x = data.frame(Dickinson_design_numeric[, c("location", "inciis",

"uptodateonimmunizations",
"hispanic", "income")]),

ntotal_cluster = 16,
ntrt_cluster = 8,
constraints = c("s5", "mf.5", "any", "mf0.2", "mf0.2"),
categorical = c("location"),
savedata = "dickinson_cov_constrained.csv",
seed = 12345,
check_validity = TRUE)

We specified constraints = c("s5","mf.5","any","mf0.2","mf0.2") for the five covariates
respectively. As indicated above, s5 indicates that the allocation scheme should ensure that the arm
totals differ in absolute value by no more than 5. Synaxt mf.5 indicates that the allocation scheme
should ensure that the arm means differ by no more than 0.5 times the overall mean for inciis, among
others. We saved the resulting constrained randomization space as dickinson_cov_constrained.csv.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 200

Similar to cvrall, the cvrcov routine included additional summary messages in the following
objects: assignment_message and scheme_message. These two objects summarize the sample size and
randomization ratio, the number of schemes enumerated or simulated before applying the constraints.
In addition, a data frame containing the selected final allocation scheme is saved in the data_CR
element as follows.

> Design_cov_result$data_CR
arm id location inciis uptodateonimmunizations hispanic income

1 0 1 1 94 37 44 35988
2 1 2 1 85 39 23 67565
3 0 3 1 85 42 12 35879
4 0 4 1 93 39 18 63617
5 1 5 1 82 31 6 59118
6 0 6 1 80 27 15 57179
7 1 7 1 94 49 38 29738
8 1 8 1 100 37 39 37350
9 1 9 0 93 51 35 52923
10 0 10 0 89 51 17 58302
11 0 11 0 83 54 7 93819
12 0 12 0 70 29 13 54839
13 1 13 0 93 50 13 63857
14 1 14 0 85 36 10 53502
15 0 15 0 82 38 39 39570
16 1 16 0 84 43 28 52457

To evaluate whether the selected constrained randomization scheme balances the baseline co-
variates, we provided a baseline table summarized under the that selected randomization scheme.
The baseline table indicates that the covariates are well balanced across the two arms, with an equal
number of “urban" clusters assigned to each reminder approach.

> Design_cov_result$baseline_table
arm = 0 arm = 1

n 8 8
location = 1 (%) 4 (50.0) 4 (50.0)
inciis (mean (sd)) 84.50 (7.76) 89.50 (6.35)
uptodateonimmunizations (mean (sd)) 39.62 (9.44) 42.00 (7.43)
hispanic (mean (sd)) 20.62 (13.38) 24.00 (13.09)
income (mean (sd)) 54899.12 (19130.82) 52063.75 (12800.82)

The cvrcov function permits the check of randomization validity (Bailey and Rowley, 1987), and
summarizes the cluster coincidence and separation statistics in the cluster_coin_des object. The
result indicates that all cluster pairs appear together in the same arm at least 37% and at most 55% of
the times across the constrained randomization space. Using the 25% and 75% threshold, the summary
statistics indicate that the constrained randomization does not severely depart from validity. Finally,
the cvrcov function summarizes the information of the constrained space in the overall_allocations
and overall_summary objects, which are suppressed here due to limited space. In short, the summary
information informs that the there are in total 12,870 allocations and 5,776 (≈ 45%) satisfied the
balancing constraints.

> Design_cov_result$cluster_coin_des
Mean Std Dev Minimum 25th Pctl Median 75th Pctl Maximum

samecount 2695.467 197.148 2138.000 2567.000 2720.000 2824.500 3182.000
samefrac 0.467 0.034 0.370 0.444 0.471 0.489 0.551
diffcount 3080.533 197.148 2594.000 2951.500 3056.000 3209.000 3638.000
difffrac 0.533 0.034 0.449 0.511 0.529 0.556 0.630

Clustered permutation test by cptest

Since the immunization study is an ongoing trial, we used simulated outcome data to demonstrate the
clustered permutation test with the above example where constrained randomization was performed
using cvrall based on the 5 covariates (the selected scheme had a balance score of 6.764). The same
syntax applies to the constrained randomization results obtained from cvrcov and so is not considered
further here. Suppose that the researchers were able to assess 300 children in each county, and the
trial is randomized according to the selected final scheme. For illustration, we chose the covariates to
be adjusted in the test zij as the list of covariates xi balanced by design. This step is in line with the

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 201

recommendation of Li et al. (2017) that adjusting for prognostic factors in the analysis improves the
test power.

To generate the correlated binary outcome of whether the children is eventually up-to-date on
immunizations (1) or not (0), we used a generalized linear mixed model (GLMM) with a logistic link
to induce correlation by including a random intercept at the county level. The intraclass correlation
coefficient (ICC) is usually used to quantify the degree of association between individual outcomes
in a cluster (county). We used the latent response definition of binary ICC defined by variance
components in the GLMM (Eldridge et al., 2009). The ICC was set to be 0.01, which is a reasonable
value for population health studies (Hannan et al., 1994). The outcome variable depends on the
county-level covariates used in performing the constrained randomization, as previously mentioned,
and we simulated a treatment effect so that the collaborative reminder approach increases up-to-
date immunization rates compared to the practice-based reminder approach (odds ratio equals to
e0.5 ≈ 1.649). The binary outcome for each individual child is generated from a Bernoulli model with
event probability specified by the GLMM.

We performed the clustered permutation test using the cptest function for the binary outcome
of the status of up-to-date on immunizations. As indicated in Li et al. (2016), valid permutation test
under constrained randomization should only shuffle the treatment label within the constrained space,
and so it is important to save and input the constrained randomization space in the design stage
(the file named dickinson_constrained.csv). The permutation test is performed by first regressing
the outcome on the five covariates, inciis, uptodateonimmunizations, hispanic, location, and
incomecat. As the last two covariates are categorical, the cptest() function creates dummy variables
and set reference levels according to alphanumerical order, matching the steps in cvrall. Of note,
had different reference levels been selected for the constrained randomization design procedure,
the corresponding dummy coding should be reflected in the analysis phase when the clustered
permutation test is used. We specified outcometype to be “binary” so that logistic regression is
performed to compute the residuals. An example syntax of the function is given as follows.

Analysis_result <- cptest(outcome = Dickinson_outcome$outcome,
clustername = Dickinson_outcome$county,
z = data.frame(Dickinson_outcome[, c("location", "inciis",

"uptodateonimmunizations", "hispanic", "incomecat")]),
cspacedatname = "dickinson_constrained.csv",
outcometype = "binary",
categorical = c("location","incomecat"))

The covariates to be adjusted for in the permutation test is indicated in the z = option, which
matches the covariate matrix used in cvrall for constrained randomization. If one wishes to an
unadjusted permutation test, one could leave out the z = option as it is an optional argument. The
output of Analysis_result includes the final scheme selected by design (FinalScheme object), the
p-value of the test (p-value object) and a sentence to describe the p-value (pvalue_statement object).
We omitted the code output here for brevity, but comment that, in this example, the p-value equals to
0.042, indicating that there is a significant difference in the effect of the interventions on the outcome
of up-to-date on immunizations, if testing is performed at the 5% significance level. Again, if the
constrained randomization is performed by cvrcov, we could use the cptest function in a similar way
once we provided the constrained permutation matrix obtained from cvrcov in the cspacedatname =
argument.

Summary

The cvcrand package contains three main functions for the design and analysis of cluster randomized
trials. Given that it is common for such trials to enroll a small number of clusters and that this gives rise
to chance imbalance in covariates that are predictive of the outcome, the cvrall and cvrcov functions
can be used to implement covariate-constrained randomization in the design phase to ensure better
balance. The cvrall function uses a balance metric to quantify balance across multiple cluster-level
covariates, whereas the cvrcov allows for covariate-by-covariate balance and could potentially be
more flexible. For analysis of the individual-level outcome data collected in the CRT, the cptest
function could help perform the clustered permutation test, which accommodate both continuous and
binary outcomes and should be treated as a flexible alternative to model-based analysis.

There are several limitations of the cvcrand package. First, the cvrall and cvrcov only deal with
two-arm parallel cluster randomized trials and may not be directly applied to balance covariates in
other designs such as the stepped wedge designs (Hussey and Hughes, 2007; Li et al., 2018). Second,
although the cptest function performs a valid analysis for individual-level outcome data when
there is an equal number of clusters per arm, the test may be anti-conservative when there is an

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 202

unequal number of clusters per arm (Gail et al., 1996). Furthermore, our cptest routine does not
provide a confidence interval for the intervention effect estimate, and additional programming is
required to obtain a permutation confidence interval. Essentially, the permutation test will be inverted
to numerically search for the interval limits, as is done in Gail et al. (1996) for an unadjusted test
under simple randomization. For the adjusted test under constrained randomization, the following
steps could be carried out: (i) hypothesize an treatment effect δ on the link function scale; (ii) obtain
the residuals rij = Yij − Ŷij, where Ŷij is estimated from regressing Yij on zij and the hypothesized
treatment effect; (iii) perform the permutation test under the constrained randomization space and
obtain a p-value; (iv) repeat steps (i)-(iii) for different values of δ and the confidence interval is the
collection of δ such that the p-value is at least 0.05. We noticed that few studies were present in the
CRT literature to evaluate the performance of permutation intervals that adjust for covariates under
constrained randomization, and this is an avenue for future research. On the other hand, it is also
important to notice that point and interval estimates could be easily obtained from model-based
approaches, with caveats discussed in Li et al. (2016). In the class of model-based approaches, the
most commonly-used approaches are the generalized linear mixed model (GLMM) model approach,
which estimates the cluster-specific conditional effect, and the generalized estimating equations (GEE)
approach, which estimates the population-averaged or marginal effect (Turner et al., 2017b). In each
case, it has been demonstrated that the model-based analyses should account for the prognostic
covariates used in the design (Li et al., 2016, 2017). Finally, although the cptest function can handle
both continuous and binary outcomes, we have not yet extended the function to accommodate count
outcomes. In summary, these limitations reflect the current research on constrained randomization.
We plan to update the cvcrand package as the theory and knowledge of these procedures develop in
the future.

Acknowledgements

The authors would like to thank Alyssa Platt, Joe Egger, and Ryan Simmons of the Duke Global Health
Institute Research Design and Analysis Core for testing and providing feedback on the programs.
This research was funded in part by National Institutes of Health grant R01 HD075875 (PI: Dr. Joanna
Maselko).

Bibliography

R. Bailey and C. Rowley. Valid randomization. Proceedings of the Royal Society of London. A. Mathematical
and Physical Sciences, 410(1838):105–124, 1987. URL https://doi.org/10.1098/rspa.1987.0030.
[p194, 200]

A. W. Brown and P. Li. Best (but oft-forgotten) practices: Designing, analyzing, and reporting cluster
randomized controlled trials. The American Journal of Clinical Nutrition, 102(2):241–248, 2015. URL
https://doi.org/10.3945/ajcn.114.105072. [p191]

M. K. Campbell, G. Piaggio, D. R. Elbourne, and D. G. Altman. Consort 2010 statement: Extension to
cluster randomised trials. Bmj, 345:e5661, 2012. URL https://doi.org/10.1136/bmj.e5661. [p191]

L. M. Dickinson, B. Beaty, C. Fox, W. Pace, W. P. Dickinson, C. Emsermann, and A. Kempe. Pragmatic
cluster randomized trials using covariate constrained randomization: A method for practice-based
research networks (pbrns). The Journal of the American Board of Family Medicine, 28(5):663–672, 2015.
URL https://doi.org/10.3122/jabfm.2015.05.150001. [p192, 195]

P. Diehr, D. C. Martin, T. Koepsell, and A. Cheadle. Breaking the matches in a paired t-test for
community interventions when the number of pairs is small. Statistics in medicine, 14(13):1491–1504,
1995. URL https://doi.org/10.1002/sim.4780141309. [p191]

A. Donner and N. Klar. Pitfalls of and controversies in cluster randomization trials. American Journal
of Public Health, 94(3):416–422, 2004. URL https://doi.org/10.2105/AJPH.94.3.416. [p191]

S. M. Eldridge, O. C. Ukoumunne, and J. B. Carlin. The intra-cluster correlation coefficient in cluster
randomized trials: A review of definitions. International Statistical Review, 77(3):378–394, 2009. URL
https://doi.org/10.1111/j.1751-5823.2009.00092.x. [p201]

M. Fiero, S. Huang, and M. L. Bell. Statistical analysis and handling of missing data in cluster
randomised trials: Protocol for a systematic review. BMJ open, 5(5):e007378, 2015. URL https:
//doi.org/10.1186/s13063-016-1201-z. [p191]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1098/rspa.1987.0030
https://doi.org/10.3945/ajcn.114.105072
https://doi.org/10.1136/bmj.e5661
https://doi.org/10.3122/jabfm.2015.05.150001
https://doi.org/10.1002/sim.4780141309
https://doi.org/10.2105/AJPH.94.3.416
https://doi.org/10.1111/j.1751-5823.2009.00092.x
https://doi.org/10.1186/s13063-016-1201-z
https://doi.org/10.1186/s13063-016-1201-z

CONTRIBUTED RESEARCH ARTICLES 203

M. H. Gail, S. D. Mark, R. J. Carroll, S. B. Green, and D. Pee. On design considerations and
randomization-based inference for community intervention trials. Statistics in medicine, 15(11):
1069–1092, 1996. URL https://doi.org/10.1002/(SICI)1097-0258(19960615)15:11<1069::AID-
SIM220>3.0.CO;2-Q. [p192, 195, 202]

E. J. Greene. A sas macro for covariate-constrained randomization of general cluster-randomized and
unstratified designs. Journal of statistical software, 77(CS1), 2017. URL https://doi.org/10.18637/
jss.v077.c01. [p192, 194, 198, 199]

P. J. Hannan, D. M. Murray, D. R. Jacobs Jr, and P. G. McGovern. Parameters to aid in the design and
analysis of community trials: Intraclass correlations from the minnesota heart health program. Epi-
demiology, pages 88–95, 1994. URL https://doi.org/10.1097/00001648-199401000-00013. [p201]

R. J. Hayes and L. H. Moulton. Cluster Randomizd Trials, chapter 1-3, pages 3–40. CRC Press,
2009. URL https://www.crcpress.com/Cluster-Randomised-Trials-Second-Edition/Hayes-
Moulton/p/book/9781498728225. ISBN 9781584888178. [p191, 192]

M. A. Hussey and J. P. Hughes. Design and Analysis of Stepped Wedge Cluster Randomized Trials.
Contemporary Clinical Trials, 28(2):182–191, 2007. URL https://doi.org/10.1016/j.cct.2006.05.
007. [p201]

N. M. Ivers, I. J. Halperin, J. Barnsley, J. M. Grimshaw, B. R. Shah, K. Tu, R. Upshur, and M. Zwarenstein.
Allocation techniques for balance at baseline in cluster randomized trials: a methodological review.
Trials, 13(1):120, 2012. URL https://doi.org/10.1186/1745-6215-13-120. [p191, 192]

N. Klar and A. Donner. The merits of matching in community intervention trials: a cautionary
tale. Statistics in medicine, 16(15):1753–1764, 1997. URL https://doi.org/10.1002/(SICI)1097-
0258(19970815)16:15<1753::AID-SIM597>3.0.CO;2-E. [p191]

F. Li, Y. Lokhnygina, D. M. Murray, P. J. Heagerty, and E. R. DeLong. An evaluation of constrained
randomization for the design and analysis of group-randomized trials. Statistics in medicine, 35(10):
1565–1579, 2016. URL https://doi.org/10.1002/sim.6813. [p192, 193, 194, 195, 201, 202]

F. Li, E. L. Turner, P. J. Heagerty, D. M. Murray, W. M. Vollmer, and E. R. DeLong. An evaluation
of constrained randomization for the design and analysis of group-randomized trials with binary
outcomes. Statistics in medicine, 36(24):3791–3806, 2017. URL https://doi.org/10.1002/sim.7410.
[p192, 193, 194, 195, 201, 202]

F. Li, E. L. Turner, and J. S. Preisser. Sample Size Determination for GEE Analyses of Stepped Wedge
Cluster Randomized Trials. Biometrics, 74(4):1450–1458, 2018. URL https://doi.org/10.1111/
biom.12918. [p201]

L. H. Moulton. Covariate-based constrained randomization of group-randomized trials. Clinical Trials,
1(3):297–305, 2004. URL https://doi.org/10.1191/1740774504cn024oa. [p191, 194]

G. M. Raab and I. Butcher. Balance in cluster randomized trials. Statistics in medicine, 20(3):351–365,
2001. URL https://doi.org/10.1002/1097-0258(20010215)20:3<351::AID-SIM797>3.0.CO;2-C.
[p192, 193]

E. L. Turner, F. Li, J. A. Gallis, M. Prague, and D. M. Murray. Review of recent methodological
developments in group-randomized trials: Part 1—design. American Journal of Public Health, 107(6):
907–915, 2017a. URL https://doi.org/10.2105/AJPH.2017.303706. [p191]

E. L. Turner, M. Prague, J. A. Gallis, F. Li, and D. M. Murray. Review of recent methodological
developments in group-randomized trials: Part 2—analysis. American journal of public health, 107(7):
1078–1086, 2017b. URL https://doi.org/10.2105/AJPH.2017.303707. [p202]

Hengshi Yu
Department of Biostatistics, School of Public Health, University of Michigan
Ann Arbor, Michigan 48109
USA
(ORCiD: 0000-0001-9850-9347)
hengshi@umich.edu

Fan Li
Department of Biosatistics, Yale School of Public Health, Yale University
New Haven, Connecticut 06510

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1002/(SICI)1097-0258(19960615)15:11<1069::AID-SIM220>3.0.CO;2-Q
https://doi.org/10.1002/(SICI)1097-0258(19960615)15:11<1069::AID-SIM220>3.0.CO;2-Q
https://doi.org/10.18637/jss.v077.c01
https://doi.org/10.18637/jss.v077.c01
https://doi.org/10.1097/00001648-199401000-00013
https://www.crcpress.com/Cluster-Randomised-Trials-Second-Edition/Hayes-Moulton/p/book/9781498728225
https://www.crcpress.com/Cluster-Randomised-Trials-Second-Edition/Hayes-Moulton/p/book/9781498728225
https://doi.org/10.1016/j.cct.2006.05.007
https://doi.org/10.1016/j.cct.2006.05.007
https://doi.org/10.1186/1745-6215-13-120
https://doi.org/10.1002/(SICI)1097-0258(19970815)16:15<1753::AID-SIM597>3.0.CO;2-E
https://doi.org/10.1002/(SICI)1097-0258(19970815)16:15<1753::AID-SIM597>3.0.CO;2-E
https://doi.org/10.1002/sim.6813
https://doi.org/10.1002/sim.7410
https://doi.org/10.1111/biom.12918
https://doi.org/10.1111/biom.12918
https://doi.org/10.1191/1740774504cn024oa
https://doi.org/10.1002/1097-0258(20010215)20:3<351::AID-SIM797>3.0.CO;2-C
https://doi.org/10.2105/AJPH.2017.303706
https://doi.org/10.2105/AJPH.2017.303707
mailto:hengshi@umich.edu

CONTRIBUTED RESEARCH ARTICLES 204

USA
(ORCiD: 0000-0001-6183-1893)
fan.f.li@yale.edu

John A. Gallis
Department of Biosatistics and Bioinformatics, Duke University
Duke Global Health Institute, Duke University
Durham, North Carolina 27710
USA
(ORCiD: 0000-0003-1921-8424)
john.gallis@duke.edu

Elizabeth L. Turner
Department of Biosatistics and Bioinformatics, Duke University
Duke Global Health Institute, Duke University
Durham, North Carolina 27710
USA
(ORCiD: 0000-0002-7638-5942)
liz.turner@duke.edu

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

mailto:fan.f.li@yale.edu
mailto:john.gallis@duke.edu
mailto:liz.turner@duke.edu

CONTRIBUTED RESEARCH ARTICLES 205

jomo: A Flexible Package for Two-level
Joint Modelling Multiple Imputation
by Matteo Quartagno, Simon Grund and James Carpenter

Abstract Multiple imputation is a tool for parameter estimation and inference with partially observed
data, which is used increasingly widely in medical and social research. When the data to be imputed
are correlated or have a multilevel structure — repeated observations on patients, school children
nested in classes within schools within educational districts — the imputation model needs to include
this structure. Here we introduce our joint modelling package for multiple imputation of multilevel
data, jomo, which uses a multivariate normal model fitted by Markov Chain Monte Carlo (MCMC).
Compared to previous packages for multilevel imputation, e.g. pan, jomo adds the facility to (i) handle
and impute categorical variables using a latent normal structure, (ii) impute level-2 variables, and (iii)
allow for cluster-specific covariance matrices, including the option to give them an inverse-Wishart
distribution at level 2. The package uses C routines to speed up the computations and has been
extensively validated in simulation studies both by ourselves and others.

Introduction

Missing data are ubiquitous in clinical and social research. The most straightforward way to deal with
missing data is to exclude all observations with any item missing from the analysis, i.e. a complete
records analysis. However this strategy is at best inefficient; further unless — given covariates — the
probability of a complete record does not depend on the outcome (dependent) variable, it will lead to
biased results.

Rubin (1976) described different mechanisms causing missing data: Missing Completely At
Random (probability of missingness unrelated to observed and unobserved values, MCAR), Missing
At Random (given observed data, occurrence of missing values is independent of the actual values,
MAR) and Missing Not At Random (given observed data, occurrence of missing values still depends
on the actual values, MNAR).

Multiple Imputation (MI) is a very flexible, practical, tool to deal with missing data. It consists
of imputing missing data several times, creating multiple imputed data sets. Then, the substantive
model is directly fitted to each of the imputed data sets; the results are then combined for inference
using Rubin’s rules (Rubin, 1987). An appropriately specified multiple imputation model gives valid,
efficient inference if data are MAR (Carpenter and Kenward, 2013, Ch. 2; Little and Rubin, 2002). Key
attractions of MI are that it separates the imputation of missing data from the analysis, thus allowing
(a) use of the substantive analysis model that we intended to use with fully observed data and (b)
inclusion of auxiliary variables in the imputation model — which provide information about the
missing values — without having to include them in the substantive analysis model.

There are several models and associated algorithms which can be used to impute missing data;
Schafer (1997) proposed a joint multivariate normal model, fitted by MCMC. The main assumption of
this method is that the partially observed data follow a joint multivariate normal distribution; given
this, a Gibbs sampler uses the proper conditional distributions to update the parameters of the model
and impute the missing data.

One of the advantages of the joint modelling approach is that it extends naturally to multi-
level/hierarchical data structures. Such structures arise commonly, for example, when we have
repeated observations (level 1) on individuals (level 2), or students (level 1) nested in schools (level 2).

A number of joint modelling multiple imputation packages have been written: norm (Novo and
Schafer, 2013; Schafer and Olsen, 2000) assumes a multivariate normal model for imputation of single-
level normal data, cat (Harding et al., 2012) a log-linear model to impute categorical data, and mix
(Schafer., 2010) uses the general location model (Olkin and Tate, 1961) to impute a mix of continuous
and categorical data (Schafer, 1997, Ch. 9). pan (Zhao and Schafer, 2013; Schafer and Yucel, 2002) uses
a multilevel multivariate normal model for imputation of multilevel normal data.

As far as we are aware, jomo is the first R package to extend this to allow for a mix of multilevel
(clustered) continuous and categorical data. It is derived from, but also extends the functionality of
REALCOM (Carpenter et al., 2011), a standalone program written in Matlab. In REALCOM, binary and
categorical variables are handled through a latent normal variables approach presented in Carpenter
and Kenward (2013, Ch. 5). The aim of the jomo package is to provide an efficient implementation of
the REALCOM imputation model in R, while both (i) speeding up the processes through the use of C
sub-routines and (ii) adding the flexibility to specify level-2 specific covariance matrices and level-2
random covariance matrices, the latter following the proposal of Yucel (2011).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=jomo
https://CRAN.R-project.org/package=pan
https://CRAN.R-project.org/package=norm
https://CRAN.R-project.org/package=cat
https://CRAN.R-project.org/package=mix
https://CRAN.R-project.org/package=pan

CONTRIBUTED RESEARCH ARTICLES 206

This paper is organized as follows: after briefly introducing joint modelling multiple imputation
and the principal functions within jomo, we present a series of short tutorials, in which we explain
how to impute (i) single-level continuous and categorical data; (ii) clustered homoscedastic data, (iii)
clustered heteroscedastic data and (iv) level-2 variables. We then present functions to help check
the convergence of the underlying MCMC algorithms and outline the suggested workflow for using
the package. The next section introduces another R package, mitml, which provides both a different
interface to jomo and a number of useful tools to manage and investigate the properties of imputed
data sets. The penultimate section provides an overview of both the simulation studies and the
applications where the package was used. We conclude with a short discussion.

Joint Modelling Multiple Imputation

To introduce the general ideas of joint modelling multiple imputation, we consider a data set made up
of N observations on three continuous variables; we further assume that one of these variables, X,
is fully observed, while the other two, Y1 and Y2, have missing values. The main idea behind joint
modelling imputation is to define a joint multivariate model for all the variables in the data set, to be
used for imputation. The simplest joint model is the multivariate normal model:

Y1,i = β0,1 + β1,1Xi + ε1,i

Y2,i = β0,2 + β1,2Xi + ε2,i(
ε1,i
ε2,i

)
∼ N (0, Ω)

(1)

This model uses X, which is completely observed, as predictor while Y1 and Y2 are included as
outcomes, being partially observed. Another possibility is a tri-variate normal model with all variables,
including X, treated as outcomes. Choosing between these two models has been the matter of debate
in the literature, and is not the focus of this paper. We simply note here that the imputation model
chosen needs to be (at least approximately) congenial with the analysis model of substantial interest,
in order for multiple imputation to lead to correct inference (Meng, 1994).

After having chosen the imputation model, Bayesian methods are used to fit it and impute the
missing data. In particular, Gibbs sampling is used, dealing with missing data via a data augmentation
algorithm (Tanner and Wong, 1987). This consists of repeatedly drawing new values for all the
parameters in the model, one at a time, from the relevant conditional distribution. The parameters of
model (1) are the fixed effects β and the covariance matrix Ω, and the missing data.

The sampler has to be run until it reaches the stationary distribution. Then, the current draw of
the missing values is combined with the observed data to make the first imputed data set. Further
imputed data sets are obtained by running the sampler for a sufficient number of supplementary
iterations to guarantee stochastic independence between consecutive imputations.

Before running the Gibbs sampler, it is necessary to choose starting values for the parameters;
the more plausible these starting values are, the faster the sampler converges. Furthermore, being a
Bayesian method, prior distributions are used. By default, jomo uses flat priors for all the parameters
in the model, except for the covariance matrices, which are given inverse-Wishart priors with the
minimum possible number of degrees of freedom in order to give the greatest possible weight to the
observed data.

Extending the same methodology to more complicated situations is conceptually relatively straight-
forward. For example, binary and categorical variables can be included in the imputation model
by means of latent normal variables. Under this model, if Y1 is binary, a latent continuous variable
Y∗1 is included in the model, such that Y∗1,i > 0 for individuals i for whom Y1,i = 0 and Y∗1,i ≤ 0
for individuals for whom Y1,i = 1 (Goldstein et al., 2009). Similarly, a categorical variable with K
categories can be represented by K − 1 latent normal variables denoting the differences between
categories. In contrast to models without categorical data, this strategy requires constraints on the
variance-covariance matrix to guarantee identifiability of the model (for a wider discussion of model
identifiability see Carpenter and Kenward (2013, Chap.5)). To sample from this constrained covariance
matrix, Metropolis Hastings (MH) steps are introduced to augment the standard Gibbs Sampler.

If observations in the data set are nested in J clusters, model (1), can be readily expanded to include
random intercepts as follows:

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 207

Type of variables

Model type Missing data Continuous Binary/categorical Mixed

Single-level Level 1 jomo1con jomo1cat jomo1mix

Two-level Level 1 jomo1rancon jomo1rancat jomo1ranmix

Both levels jomo2com jomo2com jomo2com

Two-level, heteroscedastic Level 1 jomo1ranconhr jomo1rancathr jomo1ranmixhr

Both levels jomo2hr jomo2hr jomo2hr

Table 1: Summary of subfunctions used by the main "umbrella function" jomo, given the type of
imputation model, the level at which missing data occur, and the type of the variables with missing
data.

Y1,i,j = β0,1 + u1,j + β1,1Xi,j + ε1,i,j

Y2,i,j = β0,2 + u2,j + β1,2Xi,j + ε2,i,j(
ε1,i,j
ε2,i,j

)
∼ N (0, Ω)(

u1,j
u2,j

)
∼ N (0, Ωu)

(2)

More general random effects structures can be modelled as well, as we will show in a later section.

It is similarly possible to consider a joint imputation model for variables at level 2, e.g. patient-
level variables in longitudinal studies (Carpenter and Kenward, 2013, p. 212), or allowing for level-1
heteroscedasticity, which can be particularly appealing in individual patient data (IPD) meta-analyses
among other applications.

Package structure

The jomo package can be used to impute missing data in continuous and categorical variables
in single-level and multilevel data. The main interface to the jomo package is the jomo function,
which automatically selects the correct imputation method for the data, depending on (a) the model
specification (e.g., single-level vs. multilevel) and (b) the variables in the data set (e.g., continuous
variables of type numeric vs. categorical variables as factor vs. a mixture of them). In addition, the
sub-functions called by jomo can be called individually; a list of all sub-functions is given below and
in Table 1.

1. jomo1con, jomo1cat and jomo1mix: these impute single-level continuous, categorical and mixed
data sets. jomo1con is very similar to the imp.norm function of the norm package. However,
jomo1cat and jomo1mix used the latent normal variables approach described in Carpenter and
Kenward (2013, Ch. 5) to impute categorical variables and a mix of continuous and categorical
variables, respectively.

2. jomo1rancon, jomo1rancat and jomo1ranmix: these impute clustered continuous, categorical,
and mixed data, respectively. jomo1rancon is very similar to pan, whereas jomo1rancat and
jomo1ranmix use the latent normal model for the categorical variables. All these functions have
a fixed, common covariance matrix across all the clusters (level-2 units) in the imputation model;

3. jomo1ranconhr, jomo1rancathr and jomo1ranmixhr: these functions extend the above to allow
for either cluster (level-2 unit) specific covariance matrices, or random covariance matrices,
where the covariance matrices follow an inverse-Wishart distribution across level-2 units, as
described by Yucel (2011) and Quartagno and Carpenter (2016).

4. jomo2com and jomo2hr: these functions impute missing values in level-2 variables, and can be
used in the same manner as those in groups (2) and (3) above.

We next illustrate the use of jomo in each of the above situations. Throughout, we assume that the data
are MAR.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 208

jomo: tutorial with single-level data

We begin with single-level data sets. We first assume all variables with missing data are continuous,
that the substantive model is a linear regression of one variable on some or all the others, and that each
variable is approximately normally distributed conditional on the others (so that a joint multivariate
normal model is an appropriate choice for imputation).

A key attraction of multiple imputation is that any variables in the data set that are not in the
substantive model can still be included in the imputation model. If such auxiliary variables are good
predictors of missing values, they will help recover missing information. If they are also predictors
of the data being missing, they may correct bias. Recall that (simply speaking) the MAR assumption
states that, given the observed data, the probability that a value is missing is conditionally independent
of the actual value. Therefore, inclusion of judiciously chosen auxiliary variables (even ones that are
not themselves complete) can improve the plausibility of the MAR assumption.

In joint modelling imputation (Carpenter and Kenward, 2013, Ch. 3), partially observed variables
are dependent variables. However, as hinted above, with fully observed variables we can choose to
either condition on them as predictors or include them in the (multivariate) response. The software is
equally comfortable with both options, and it makes little difference in practice for single-level data.
However, the choice has a bigger impact for clustered data (Quartagno and Carpenter, 2016; Grund
et al., 2016b), as we will see in the multilevel imputation section.

Once we have decided on the variables to include in the imputation model, and whether to
condition on any fully observed variables as covariates, imputation using the jomo function is straight-
forward.

For illustration, we use an educational data set of students’ test scores (JSPmiss), which is a subset
of the Junior School Project (Mortimore et al., 1988). The fully observed data set is freely available with
the MLwiN software (Rasbash et al. (2017); or the related R package R2MLwiN Zhang et al. (2016))
and a partially observed version is included with this package (data are MAR). This data set has
eight variables: a school and an individual identifier, sex, fluency in English language (3 categories,
fluent), a test score at Year 1 (ravens) and at Year 3 (english) and a binary behavioral score at Year 3
(behaviour). Additionally a constant is provided to help the user, as we will see later in this tutorial.

First, we summarize the data:

library(jomo)

> summary(JSPmiss)
school id sex fluent ravens english

48 : 76 280 : 1 Min. :0.0000 0 : 32 Min. : 4.00 Min. : 0.00
42 : 52 281 : 1 1st Qu.:0.0000 1 : 29 1st Qu.:22.00 1st Qu.:24.00
31 : 44 282 : 1 Median :1.0000 2 :823 Median :26.00 Median :40.00
8 : 43 283 : 1 Mean :0.5103 NA's:235 Mean :25.35 Mean :41.36
33 : 43 284 : 1 3rd Qu.:1.0000 3rd Qu.:30.00 3rd Qu.:56.00
5 : 39 285 : 1 Max. :1.0000 Max. :36.00 Max. :98.00
(Other):822 (Other):1113 NA's :246 NA's :236

behaviour cons
lowerquarter:248 Min. :1
upper :871 1st Qu.:1

Median :1
Mean :1
3rd Qu.:1
Max. :1

This shows the data set has (248 + 871) = 1119 observations, of which 236 have missing data on
the outcome english, 235 have missing data on fluent and so on and so forth. For the purpose of
this example, we ignore clustering by school and take as the substantive analysis model the following
linear regression:

Yenglish,i =α0 + α1ravensi + α2sexi + εi (3)

εi ∼ N(0, σ2
e).

To illustrate the use of jomo with continuous variables, let i = 1, . . . , 1119 index observations and use
the following joint imputation model:

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=R2MLwiN

CONTRIBUTED RESEARCH ARTICLES 209

Yenglish,i = β0,e + β1,eXsex,i + εe,i

Yravens,i = β0,r + β1,rXsex,i + εr,i(
εe,i
εr,i

)
∼ N (0, Ω)

(4)

Both responses in this bivariate normal model, english and ravens, are partially observed contin-
uous variables. The binary covariate, sex, is fully observed. This is identical to model (1) with X being
sex.

To impute the missing values we proceed as follows. First, in order to guarantee that the correct
function is being used, we need to make sure that continuous variables are stored as numeric vectors
in the data frame and binary/categorical variables as factors. We can easily test this as follows:

Check that ravens is numeric:
class(JSPmiss$ravens)
[1] "numeric"

Were ravens not numeric, we convert it as follows:
JSPmiss <- within(JSPmiss, ravens <- as.numeric(ravens))

Define the data.frame with the outcomes
Y <- JSPmiss[, c("english", "ravens")]

The imputation model requires an intercept variable (simply a column of 1's)
to include in the covariate matrix X. The JSPmiss data set already contains
such a variable (cons). Were it not present, we could define it as follows:
JSPmiss$cons <- 1

Define the data.frame with the covariates:
X <- JSPmiss[, c("cons", "sex")]

Set the seed (so we can replicate the results exactly if desired)
set.seed(1569)

Run jomo and store the imputed data sets in a new data frame, imp
imp <- jomo(Y = Y, X = X, nburn = 1000, nbetween = 1000, nimp = 5)

Running this code, with the above seed, the following output is shown on screen:

No clustering, using functions for single-level imputation.
Found 2 continuous outcomes and no categorical. Using function jomo1con.
..
..........................First imputation registered.
..
..........................Imputation number 2 registered
..
..........................Imputation number 3 registered
..
..........................Imputation number 4 registered
..
..........................Imputation number 5 registered
The posterior mean of the fixed effects estimates is:
cons sex
english 38.15030 6.408079
ravens 25.32372 -0.556898
#
The posterior covariance matrix is:
english ravens
english 458.39885 64.92863
ravens 64.92863 36.41841

The first sentence informs us that, as we did not pass any clustering indicator to the function, jomo is
using single-level imputation. The second sentence is telling us which of the sub-functions was used.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 210

As we have two numeric dependent variables, jomo1con has been chosen.

Then, the software prints a ‘.’ for each 10 burn-in updates of the MCMC sampler, followed by a
notification that it has created the first imputed data set. It then prints a ‘.’ for each 10 further updates
of the MCMC sampler, before imputations 2, 3, 4, and 5. The default values for the burn-in and
between-imputation updates are both 1000, resulting in 100 dots printed in each case.

Finally, the software prints the estimated posterior mean of the regression coefficients for english
(β0,e, β1,e,), ravens (β0,r, β1,r), and the elements of the covariance matrix:(

εe,i
εr,i

)
∼ N

[
0, Ω =

(
458.40 64.93
64.93 36.42

)]
.

The same results can be obtained by running jomo1con in place of jomo with exactly the same argu-
ments. In general, to exactly replicate the results, you will have to (i) have the data sorted in the same
order and (ii) use the same seed. Sometimes we will wish to suppress the output generated by jomo;
the option output = 0 controls this.

Running jomo creates the object imp, which is a data frame:

class(imp)
#[1] "data.frame"

with the following names:
names(imp)
#[1] "english" "ravens" "cons" "sex" "id" "Imputation"

and dimension:
dim(imp)
[1] 6714 6

The names include the original variable names, inherited from JSPmiss, and a new variable Imputation,
which indexes the original data (0) and the imputed data sets. We have five imputed data sets. Let’s
look at the top of the original data, and the top of the fifth imputation:

View original (partially observed) data:
head(imp)

english ravens cons sex id Imputation
1 39 NA 1 1 1 0
2 NA 15 1 0 2 0
3 65 19 1 1 3 0
4 NA 22 1 0 4 0
5 30 NA 1 1 5 0
6 12 NA 1 0 6 0

View last imputation (the left most column is the row number):
head(imp[imp$Imputation == 5,])

english ravens cons sex id Imputation
5596 39.00000 32.17927 1 1 1 5
5597 54.37720 15.00000 1 0 2 5
5598 65.00000 19.00000 1 1 3 5
5599 46.57598 22.00000 1 0 4 5
5600 30.00000 21.30211 1 1 5 5
5601 12.00000 24.56964 1 0 6 5

Starting values and prior distributions

To impute missing data, jomo fits a Bayesian model using MCMC. Therefore, we need to provide
starting values and priors for each parameter in the model. The default starting values are a matrix
of zeros for the fixed effects parameter β, and the identity matrix for the covariance matrix. In the
majority of situations, changing the starting values will not change the results materially. Nevertheless,
good starting values may considerably reduce the number of iterations needed for the algorithm to
converge.

In order to represent the maximum uncertainty and to give the greatest weight to the data, jomo
assumes flat improper priors for all the parameters in the model, except the covariance matrix. For

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 211

this, an inverse-Wishart prior is used, with degrees of freedom set to the minimum possible, i.e.
the dimension of the covariance matrix; this represents the greatest uncertainty (least information).
Changing the scale matrix of the inverse-Wishart prior may have some impact when we have a very
small number of observations. In our example, with 1119 observations and only two outcomes, the
impact is immaterial.

We now illustrate how to set the starting values for all the parameters, the scale matrix of the
inverse-Wishart prior for the covariance matrix as well as the number of burn-in iterations for the
MCMC sampler, the number of iterations between imputations, and the number of imputations:

Set starting values for fixed effect parameters beta
beta.start <- matrix(1, 2, 2)

Set starting value for covariance matrix
l1cov.start <- diag(2, 2)

Set scale matrix of the inverse-Wishart prior for the covariance matrix:
l1cov.prior <- diag(2, 2);

Set seed to get results below
set.seed(1569)

Impute:
[Note for new R users: the inputs set above have the same names as their
corresponding options in the function. Hence, when we set <option> = <object
name>, we have the same string on both sides of '=']

imp2 <- jomo(Y, X = X, beta.start = beta.start, l1cov.start = l1cov.start,
l1cov.prior = l1cov.prior, nburn = 200,
nbetween = 200, nimp = 5)

....................First imputation registered.
....................Imputation number 2 registered
....................Imputation number 3 registered
....................Imputation number 4 registered
....................Imputation number 5 registered
cons sex
english 38.21636 6.4469156
ravens 25.33982 -0.5456155
#
The posterior covariance matrix is:
english ravens
english 460.37902 65.34086
ravens 65.34086 36.58763

We see no material change from the previous results. In simple problems, the default burn-in of nburn
= 1000 is often enough for the sampler to converge. Further below, we show how to visually check
whether the stationary distribution has been reached.

Analysing the imputed data

Recall our substantive linear regression model above. Once we have created our imputed data sets,
we follow the usual multiple imputation rules and fit our substantive model to each imputed data
set, before summarising the results for final inference using Rubin’s rules, which are implemented in
mitools:

library(mitools) # load if not done so above

Use the object imp which we created with the original run above. First
convert the data frame of results imp to a list of imputations
imp.list <- imputationList(split(imp, imp$Imputation)[-1])

Fit model to each of the 5 imputed data sets
fit.imp <- with(data = imp.list, lm(english ~ ravens + sex))

Extract coefficients and variances

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=mitools

CONTRIBUTED RESEARCH ARTICLES 212

coefs <- MIextract(fit.imp, fun = coef)
vars <- MIextract(fit.imp, fun = function(x) diag(vcov(x)))

Pool results with Rubin's rules
results <- MIcombine(coefs, vars)
summary(results)

Multiple imputation results:
MIcombine.default(coefs, vars)
results se (lower upper) missInfo
(Intercept) -6.549183 3.0013631 -12.618685 -0.4796807 35 %
ravens 1.767782 0.1124461 1.540232 1.9953322 36 %
sex 7.037727 1.3021658 4.424013 9.6514414 31 %

There are multiple alternative implementations of Rubin’s rules in R. These include pool from mice,
runMI from semTools, particularly appealing with Structural Equation Models, MI.inference from
BaBooN (Meinfelder, 2011), and testEstimates from mitml, which we present more in depth in the
penultimate section of this paper. Other packages with their own implementation of Rubin’s rules
include Amelia, mi, and lavaan.survey.

Categorical variables

Fully observed binary covariates can be included in the X matrix of the imputation model as type
numeric, exactly as with sex in this example. To include fully observed categorical covariates with
three or more categories, appropriate dummy variables have to be created. For this purpose, we might
use the R package dummies (Brown, 2012) or the function constrasts in base R.

jomo also readily imputes a mix of binary, categorical and continuous variables. This is done
using a latent normal model (see Goldstein et al., 2009; Carpenter and Kenward, 2013, Ch. 4). To
illustrate this, we continue to use the data set JSPmiss but now also impute the partially observed
fluency level (3 categories). The underlying joint imputation model remains a multivariate normal
model, but fluent is represented by two latent normal variables:

Yenglish,i = β0,e + β1,eXsex,i + εe,i

Yravens,i = β0,r + β1,rXsex,i + εr,i

Y∗f lu,1,i = β0, f 1 + β1, f 1Xsex,i + ε f 1,i

Y∗f lu,2,i = β0, f 2 + β1, f 2Xsex,i + ε f 2,i

(5)

where:

Pr(Yf lu,i = 1) = Pr
(

Y∗f lu,1,i = max
j=1,2

Y∗f lu,j,i and Y∗f lu,1,i > 0
)

Pr(Yf lu,i = 2) = Pr
(

Y∗f lu,2,i = max
j=1,2

Y∗f lu,j,i and Y∗f lu,2,i > 0
)

Pr(Yf lu,i = 3) = Pr
(

Y∗f lu,j,i < 0 for j = 1, 2
)

,

(6)

εe,i
εr,i

ε f 1,i
ε f 2,i

 ∼ N (0, Ω) (7)

As highlighted above, in order for this model to be estimable, we need to constrain the variance-
covariance matrix of (ε f 1,i, ε f 2,i)

T , (i.e. the bottom right 2× 2 submatrix of Ω) to be(
1 0.5

0.5 1

)
.

These constraints are automatically implemented in the software.

The code for imputation is essentially the same as before, but now we need to make sure that fluent,

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=mice
https://CRAN.R-project.org/package=semTools
https://CRAN.R-project.org/package=BaBooN
https://CRAN.R-project.org/package=mitml
https://CRAN.R-project.org/package=Amelia
https://CRAN.R-project.org/package=mi
https://CRAN.R-project.org/package=lavaan.survey
https://CRAN.R-project.org/package=dummies
https://CRAN.R-project.org/package=jomo

CONTRIBUTED RESEARCH ARTICLES 213

being a categorical variable, is included in the dependent variable data frame as a factor:

convert "fluent" to factor
JSPmiss <- within(JSPmiss, fluent <- factor(fluent))

Define the data frame with the dependent (outcome) variables for the imputation model:
Y <- JSPmiss[, c("english", "ravens", "fluent")]

Define the data.frame with the (fully observed) covariates of the imputation model
X <- JSPmiss[, c("cons", "sex")]

fit the model and impute the missing data:
set.seed(1569)
imp <- jomo(Y = Y, X = X)

This will take a little longer than the previous examples, and returns the following output:

The posterior mean of the fixed effects estimates is:
cons sex
english 38.263132 6.3636755
ravens 25.324376 -0.5548762
fluent.1 -1.574369 -0.2318260
fluent.2 -1.836201 0.1829313
#
The posterior covariance matrix is:
english ravens fluent.1 fluent.2
english 458.164036 64.437168 -11.379005 -8.888263
ravens 64.437168 36.743243 -2.141006 -1.500893
fluent.1 -11.379005 -2.141006 1.000000 0.500000
fluent.2 -8.888263 -1.500893 0.500000 1.000000

The output illustrates that jomo recognized that fluent was a factor variable and therefore used the
function for the imputation of mixed data types.

The matrix posterior mean of the fixed effect estimates links directly to (5). Specifically, β̂0,e =
38.26, β̂1,e = 6.36, . . . , β̂0, f 2 = −1.84, β̂1, f 2 = 0.18. Likewise, the posterior means of the covariance
matrix terms are labelled, and correspond directly to (5). Specifically,

V̂ar

εe,i
εr,i

ε f 1,i
ε f 2,i

 =

458.16 64.44 −11.38 −8.89
64.44 36.74 −2.14 −1.50
−11.38 −2.14 1 0.5
−8.89 −1.50 0.5 1

 .

Calling the relevant sub-function (jomo1mix) is possible again but a bit more complex, because contin-
uous and categorical outcomes must be passed as separate arguments.

We can specify starting values explicitly if we wish. To specify all the starting values, we need
to specify n − 1 starting β values for each n-category variable and a proper starting value for the
covariance matrix. For example, in the present case, fluent has 3 categories, which are modelled with
2 latent normal variables. As a result, β is a 2× 4 matrix of regression coefficients, and the covariance
matrix is of size 4× 4 (i.e., two predictors with two continuous and two latent dependent variables).
So, continuing with Y and X defined as above:

Starting value for beta
beta.start <- matrix(0, 2, 4) # Specify a 2 by 4 matrix of zeros

Starting value for covariance matrix; the software disregards impossible values:
l1cov.start <- diag(2, 4)

set.seed(1569)
imp <- jomo(Y = Y, X = X, beta.start = beta.start, l1cov.start = l1cov.start)

As our starting values are different from the default, we get slightly different estimates of the posterior
means.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 214

While the software is designed for unordered categorical data, it can be used for ordinal data
too. Our simulation results show that if variables are truly ordinal it gives good results with only a
marginal loss in efficiency (Quartagno and Carpenter, 2019).

jomo: tutorial with multilevel data

When we wish to impute missing data with a multilevel substantive model, our imputation model
should itself preserve the multilevel structure (Lüdtke et al., 2017; Andridge, 2011); one key benefit of
jomo is that it allows us to do this.

Three different approaches for multilevel multiple imputation have been implemented in jomo,
providing a flexible framework for the treatment of missing data in multilevel data sets. They allow:

1. imputation with a common level-1 covariance matrix across level-2 units (the default);

2. imputation with a cluster-specific level-1 covariance matrices, and

3. imputation allowing for the level-1 covariance matrix to be randomly distributed across level-2
units, following the proposal by Yucel (2011) and as developed by Quartagno and Carpenter
(2016).

Option (2) requires sufficient data within each level-2 unit to estimate the covariance matrix; option (3)
is a practical choice when we suspect there is heterogeneity across level-2 units, but there is insufficient
information within each level-2 unit for option (2).

We illustrate the software again with the JSPmiss data set, distributed with the package. Let j
index school and i students within schools. Our substantive model is:

Yenglish,i,j =α0 + α1ravensi,j + α2sexi,j + α31[fluenti,j == 2] + α41[fluenti,j == 3] + uj + εi,j (8)

uj ∼ N(0, σ2
u)

ei,j ∼ N(0, σ2
e).

(9)

We now use multilevel imputation for the missing data. This is done by extending the joint
imputation model described above to the multilevel setting. As before, the variables english, ravens
and fluent are responses, and the fully observed variable sex a covariate. The imputation model has
random intercepts at level 2, and a common level-1 covariance matrix (approach 1 above).

Yenglish,i,j = β0,e + β1,eXsex,i,j + ue,j + εe,i,j

Yravens,i,j = β0,r + β1,rXsex,i,j + ur,j + εr,i,j

Y∗f lu,1,i,j = β0, f 1 + β1, f 1Xsex,i,j + u f 1,j + ε f 1,i,j

Y∗f lu,2,i,j = β0, f 2 + β1, f 2Xsex,i,j + u f 2,j + ε f 2,i,j

(10)

where:

Pr(Yf lu,i,j = 1) = Pr
(

Y∗f lu,1,i,j = max
k=1,2

Y∗f lu,k,i,j and Y∗f lu,1,i,j > 0
)

Pr(Yf lu,i,j = 2) = Pr
(

Y∗f lu,2,i,j = max
k=1,2

Y∗f lu,k,i,j and Y∗f lu,2,i,j > 0
)

Pr(Yf lu,i,j = 3) = Pr
(

Y∗f lu,k,i,j < 0 for k = 1, 2
)

(11)

εi,j =

εe,i,j
εr,i,j

ε f 1,i,j
ε f 2,i,j

 ∼ N (0, Ωe) uj =

ue,j
ur,j

u f 1,j
u f 2,j

 ∼ N (0, Ωu) (12)

This is the same as model (5), apart from the addition of the covariance matrix Ωu for the vector of
random intercepts, uj.

Apart from specifying the level-two identifier, imputing the missing values proceeds the same as
before:

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=jomo
https://CRAN.R-project.org/package=jomo

CONTRIBUTED RESEARCH ARTICLES 215

Define cluster/group indicator
clus <- JSPmiss$school

Define the data.frame with outcomes of the imputation model
JSPmiss <- within(JSPmiss, fluent <- factor(fluent))
Y <- JSPmiss[, c("english", "ravens", "fluent")]

Define the data frame with covariates of the imputation model
X <- JSPmiss[, c("cons", "sex")]

Perform multilevel imputation:
set.seed(1569)
imp <- jomo(Y = Y, X = X, clus = clus, nburn = 2000, nbetween = 1000, nimp = 5)

Clustered data, using functions for two-level imputation.
Found 2 continuous outcomes and 1 categorical. Using function jomo1ranmix.
...
...
..........................First imputation registered.
...
.............Imputation number 2 registered
...
.............Imputation number 3 registered
...
.............Imputation number 4 registered
...
.............Imputation number 5 registered
The posterior mean of the fixed effects estimates is:
cons sex
english 38.145706 5.7460263
ravens 25.207758 -0.5280992
fluent.1 -1.889772 -0.1980197
fluent.2 -2.133932 0.3046025
#
The posterior mean of the random effects estimates is:
english.Z1 ravens.Z1 fluent.1.Z1 fluent.2.Z1
1 -9.3394300 -2.39167726 0.30978733 0.359526051
2 -0.6734767 0.09111794 0.16371750 -0.140409675
3 2.0366252 1.66523294 -0.52408207 -0.433563083
4 -0.7524001 0.15352258 -0.14147716 0.016889639
5 7.4086502 1.79372314 -0.46164853 0.029898809
[...]
46 7.6419790 1.93470732 -0.43765561 0.099247985
47 0.1680530 0.56124947 1.02219296 1.083265124
48 -1.9106040 -0.10743067 -0.24463642 -0.101618838
49 1.5480441 0.23546197 -0.31258927 -0.072163795
50 2.8932869 1.21095460 -0.46288361 -0.351124776
#
The posterior mean of the level 1 covariance matrices is:
english ravens fluent.1 fluent.2
english 394.192120 53.461640 -9.709166 -7.894670
ravens 53.461640 32.882006 -1.636866 -1.391647
fluent.1 -9.709166 -1.636866 1.000000 0.500000
fluent.2 -7.894670 -1.391647 0.500000 1.000000
#
The posterior mean of the level 2 covariance matrix is:
english.Z1 ravens.Z1 fluent.1.Z1 fluent.2.Z1
english*Z1 67.791552 13.5839586 -4.1394619 -2.2062157
ravens*Z1 13.583959 4.1667944 -1.0068761 -0.5742672
fluent.1*Z1 -4.139462 -1.0068761 0.6051437 0.3374155
fluent.2*Z1 -2.206216 -0.5742672 0.3374155 0.4628897

Simply including clus was enough to tell jomo that we have a multilevel structure and to impute
accordingly. The assumed model included a random intercept for each outcome variable; we will see
later in this section how to specify the design matrix for the random effects differently. The output

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 216

follows the same format as that from fitting (5) above, with two additions:

1. we obtain the posterior mean of the uj, the random intercepts for each of the 5 responses, for
each of the j = 1, . . . , 50 schools. For example, for school 2, the posterior means are

ue,2
ur,2

u f 1,2
u f 2,2

 =

−0.67
0.09
0.16
−0.14

2. we obtain the estimated level-2 variance covariance matrix of the random intercepts (common

across all ten cities):

V̂ar

ue,j
ur,j

u f 1,j
u f 2,j

 =

67.79 13.58 −4.14 −2.21
13.58 4.17 −1.01 −0.57
−4.14 −1.01 0.61 0.34
−2.21 −0.57 0.34 0.46

 .

Analysing the imputed data

To fit the substantive multilevel model to each imputed data set we proceed as before:

imp.list <- imputationList(split(imp, imp$Imputation)[-1])

Fit model to each of the 5 imputed data sets
fit.imp <- with(data = imp.list, lmer(english ~ ravens + sex + factor(fluent) + (1|clus)))

Extract coefficients and variances
coefs <- MIextract(fit.imp, fun = fixef)
vars <- MIextract(fit.imp, fun = function(x) diag(vcov(x)))

Pool results with Rubin's rules
results <- MIcombine(coefs, vars)
summary(results)

Multiple imputation results:
MIcombine.default(coefs, vars)
results se (lower upper) missInfo
(Intercept) -16.133067 3.7371534 -23.521995 -8.744139 18 %
ravens 1.622946 0.1197557 1.374339 1.871554 48 %
sex 6.837264 1.1452177 4.573386 9.101142 18 %
factor(fluent)1 5.000691 4.2413878 -3.420624 13.422006 22 %
factor(fluent)2 14.345070 3.1391521 8.057088 20.633051 29 %

In order to get multiple imputation inference for the random coefficients, we recommend using the
mitml package, as described in the penultimate section below.

Design matrix for random effects

We now show how to specify additional random effects in the imputation model, apart from the
random intercept that is included by default. This is done by specifying the design matrix of the
random effects, Z. When this is not specified, it defaults to a random intercept. When it is specified by
the user, the random intercept has to be included (if desired).

Z <- JSPmiss[, c("cons", "sex")] # intercept and sex have random effects

imp <- jomo(Y = Y, X = X, Z = Z, clus = clus)
Output omitted

Starting values and prior distributions

The starting values of the sampling algorithm can again be overridden by the user, thus potentially
leading to better sampling behaviour and faster convergence. In comparison with the single-level

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 217

case, we now have two additional sets of parameters: (i) the matrix of random effects, whose rows
contain the random effects vectors for all level-2 units (u.start), and (ii) the level-2 covariance matrix
(l2cov.start). Note that with small numbers of level-2 units, the impact of the scale matrix of the
prior for the level-2 covariance matrix can be substantial. We proceed as follows:

beta.start <- matrix(1, 2, 4) # initialise fixed effects to zero
u.start <- matrix(0.5, nlevels(JSPmiss$school), 4) # initialise all random effects to 0.5
l1cov.start <- diag(2, 4) # initialise diagonal covariance matrix of 2's for level 1
l2cov.start <- diag(2, 4) # initialise diagonal covariance matrix of 2's for level 1
l2cov.prior <- diag(2, 4); # set scale matrix of inverse-Wishart prior for level-2

covariance matrix

set.seed(1569)
imp <- jomo(Y = Y, X = X, clus = clus, beta.start = beta.start, u.start = u.start,

l1cov.start = l1cov.start, l2cov.start = l2cov.start,
l2cov.prior = l2cov.prior, nburn = 2000, nbetween = 1000, nimp = 5)

Output omitted; as these are not all the default values, the posterior means differ
from the previous results by Monte Carlo error.

Cluster-specific covariance matrices

In some cases, it is implausible that all of the clusters share the same level-1 covariance matrix. For
example, when aggregating individual patient data from different studies to perform a meta-analysis,
it is often reasonable to assume that covariance matrices are different across studies.

Continuing to use (10) as an example, the only difference from before is that now the level-1
covariance matrix is not modelled as constant but as different across level-2 units. Thus instead of Ωe,
we have Ωe,j, j = 1, . . . , 50. We fit this model by specifying the additional argument meth = "fixed":

Define the data.frame with outcomes of the imputation model
Y <- JSPmiss[, c("english", "ravens", "fluent")]

Define the data.frame with covariates of the imputation model
X <- JSPmiss[, c("cons", "sex")]

Define cluster/group indicator
clus <- JSPmiss$school

Fixed cluster-specific covariance matrices
imp2 <- jomo(Y = Y, X = X, clus = clus, meth = "fixed")
Output omitted

Note that the output is now considerably longer, as the posterior mean for each of the level 1 covariance
matrices is reported. Compared to the previous models, this model is more complex and requires
estimation of a larger number of parameters.

Random cluster-specific covariance matrices

There are several reasons why we may wish to go beyond the setting above and allow the covariance
matrices to be random across level-2 units. For example, we may have reason to believe that different
level-2 units have different covariance matrices but that the number of observations on some of these
level-2 units is insufficient to estimate level-2 specific covariance matrices reliably. In this case, sharing
information across level-2 units is desirable. Another situation is when some variable is fully missing
from some clusters, and therefore it is necessary to share information with clusters where it was
observed through the specification of a hierarchical distribution for the covariance matrices.

Continuing to use (10) as an example, the cluster-specific covariance matrices are now assumed to
follow a specific distribution. Thus instead of Ωe,j, we have Ωe,j ∼ IW(a, S) j = 1, . . . , 10. Here, a and
S are the degrees of freedom and scale matrix of the inverse-Wishart distribution, respectively.

We can simply fit this model by specifying the option meth = "random":

imp3 <- jomo(Y = Y, X = X, clus = clus, meth = "random")

and then analyse the imputed data sets in the usual way. For full details on the algorithm used to
fit the random covariance matrices algorithm initially proposed by Yucel (2011), see the appendix of
Quartagno and Carpenter (2016).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 218

The sub-function called by jomo for this type of data is jomo1ranmixhr, which can be called directly
but with a slightly more complex syntax.

With random covariance matrices, we have one further parameter, a, denoting the degrees of
freedom of the inverse-Wishart distribution for the cluster-specific covariance matrices. The default
starting value for this parameter, a.start, is the minimum possible, i.e., the dimension of the level-1
covariance matrix. This is also the default for the hyperparameter a.prior of the chi-square prior
distribution for a.

With random level-1 covariance matrices we can also specify starting values for the nclus covariance
matrices. Below, we show how to do this by (i) first creating the matrix for the first level 2 unit, a
4-by-4 diagonal matrix with all entries ‘2’, using diag(2,4) then (ii) stacking 50 copies of this:

Starting values for the 5 by 5 level-1 covariance matrix for the first level-2 unit
l1cov.start.1 <- diag(2, 4)
Stack 10 copies of this matrix (one for each of the level-2 units)
l1cov.start <- matrix(l1cov.start.1, nrow = 4 * nlevels(JSPmiss$school), ncol = 4,

byrow = TRUE)

Choose a starting value for the degrees of freedom, a (automatically >= 5)
a.start <- 7

Run jomo
imp <- jomo(Y = Y, X = X, clus = clus, l1cov.start = l1cov.start, a = a.start,

meth = "random")

Imputing level-2 variables

In many applications, we have variables describing aspects of the level-2 units, and these may also
have missing values. For example, in longitudinal studies, time-independent variables related to
individuals (level-2 units), such as sex or the baseline variable ravens, may be affected by missing
data. We can impute any missing level-2 values naturally with jomo (Carpenter and Kenward, 2013,
Ch.9). As described above, we can use either a single common or multiple cluster-specific level-1
covariance matrices.

To illustrate this, we use a new data set, ExamScores. The fully observed version of this data
set is again available with MLwiN and R2MLwiN, and it represents a subset of a larger data set of
examination results from six inner London Education Authorities. The partially observed version that
we use here is available with jomo. As in the previous example, this data set contains data from pupils
(level 1) clustered in schools (level 2). Some of the variables are related to students at level 1 (normexam,
a normalised version of exam score at age 16 and standlrt, London Reading Test (LRT) score at age
11). The other variables describe features of the schools at level 2, for example avslrt (continuous),
representing the average LRT score for pupils in a particular school.

The two-level multivariate normal joint model for normexam (n), standlrt (s) and avslrt (a) is:

Ynormexam,i,j = β0,n + u(1)
n,j + εn,i,j

Ystandlrt,i,j = β0,s + u(1)
s,j + εs,i,j

Yavslrt,j = β0, a + u(2)
a,j

(13)

εi,j =

(
εn,i,j
εs,i,j

)
∼ N (0, Ωe) uj =

u(1)

n,j

u(1)
s,j

u(2)
a,j

 ∼ N (0, Ωu), (14)

where the superscripts (1) and (2) indicate the level-2 random effect for a level-1 and level-2
covariate, respectively (level-2 covariates have no level-1 residuals).

Fitting this model is very similar to fitting previous models; we simply have to define the level-2
variables.

Define data.frame with level-1 outcomes of imputation model

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=jomo

CONTRIBUTED RESEARCH ARTICLES 219

Y <- ExamScores[, c("normexam", "standlrt")]

Define data.frame with level-2 outcomes of imputation model
Y2 <- ExamScores[, "avslrt", drop = FALSE]

Define clustering indicator
clus <- ExamScores$school

Run jomo
set.seed(1569)
imp <- jomo(Y = Y, Y2 = Y2, clus = clus)

2-level data, using functions for two-level imputation.
Found 2 level 1 continuous and 0 level 1 categorical outcomes, 1 level 2 continuous
and 0 level 2 categorical outcomes. Using function jomo2com, assuming common
covariance matrix across clusters

Output partially omitted [...]

The posterior mean of the fixed effects estimates is:
X1
normexam -0.009685026
standlrt -0.002263212

The posterior mean of the level 2 fixed effects estimates is:
X2.1
avslrt -0.03268919

The posterior mean of the random effects estimates is:
normexam.Z1 standlrt.Z1 avslrt
1 0.485259093 0.146952219 0.198863738
2 0.896523031 0.378616363 0.429914831
3 0.871480465 0.464155974 0.546844580
[...]
63 0.586499213 0.161779179 0.188900255
64 0.310554391 0.391077349 0.466833301
65 -0.320429589 -0.086303587 -0.202661000

The posterior mean of the level 1 covariance matrix is:
normexam standlrt
normexam 0.8536697 0.5045721
standlrt 0.5045721 0.8876558

The posterior mean of the level 2 covariance matrix is:
normexam.Z1 standlrt.Z1 avslrt
normexam*Z1 0.2023980 0.10005877 0.10599527
standlrt*Z1 0.1000588 0.12408893 0.09844939
avslrt 0.1059953 0.09844939 0.13067251

As above, we can specify the starting values for all the parameters in the model, and in particular the
parameter of the level-2 variable β2 with the input l2.beta.start. As we noted above, with small
cluster sizes, the scale matrix for the prior of the level 2 covariance matrix, l2cov.prior, may have a
non-negligible impact on the results.

The sub-functions for imputation of level 2 variables are jomo2com and jomo2hr. Cluster-specific
covariance matrices can be specified as before by setting meth = "common" or meth = "random".

Checking convergence of MCMC

When using MCMC for model fitting and imputation, it is crucial to be confident of having reached
the stationary distribution of the sampler before starting to register imputations. We do this by
monitoring the parameter chains generated by the MCMC algorithm. To facilitate this, we introduced
a .MCMCchain version of each function in the package, which allows convergence assessment without
imputation. We illustrate this with a simple example:

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 220

0 1000 3000 5000

45
50

55

Iteration number

β n
or

m
ex

am
,0

0 1000 3000 5000

30
0

35
0

40
0

45
0

50
0

Iteration number

ω
n,

1,
1

2
Figure 1: MCMC chain for βe,0 (left panel) and ω2

e,1,1 (right panel).

Define data.frames with outcomes and covariates of imputation model
Y <- JSPmiss[, c("english", "ravens")]
X <- JSPmiss[, c("cons", "sex")]

Run jomo.MCMCchain
imp <- jomo.MCMCchain(Y = Y, X = X, nburn = 5000)

This updates the sampler nburn times, but does not create any imputed data sets. Instead, the output
of this function is a list containing three elements:

• finimp: the final state of the data set, which would be the first imputation if we ran the jomo
function with nburn burn-in iterations;

• collectbeta: a three-dimensional array containing the fixed effect parameter draws at each of
the nburn iterations;

• collectomega: a three-dimensional array containing the level-1 covariance matrix draws at each
of the nburn iterations;

When running the corresponding .MCMCchain functions for multilevel imputation we will also have:

• collectu: a three-dimensional array containing the random effects draws at each of the nburn
iterations;

• collectcovu: a three-dimensional array containing the level-2 covariance matrix draws at each
of the nburn iterations;

We can then check the convergence of the sampler by looking at the trace plot for each parameter
value. For example, in Figure 1 (left panel), we can see the plot for βe,0, which we obtain by running:

plot(imp$collectbeta[1, 1, 1:5000], type = "l", ylab = expression(beta["e,0"]),
xlab = "Iteration number")

In this case, we can see that a burn in of 100–500 is reasonable; the sampler clearly converges very
quickly.

Plots for elements of the covariance matrix updated though Metropolis-Hastings steps may look
different, because these chains have higher auto-correlation (as they are not guaranteed to be updated
at each iteration). The right panel of Figure 1 gives an example; this was obtained by running the
following commands:

JSPmiss <- within(JSPmiss, fluent <- factor(fluent))
Y <- JSPmiss[, c("english", "ravens", "fluent")]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 221

X <- JSPmiss[, c("cons", "sex")]

imp2 <- jomo.MCMCchain(Y = Y, X = X, nburn = 5000)

plot(imp2$collectomega[1, 1, 1:5000], type = "l", ylab = expression(omega[e,1,1]^2),
xlab = "Iteration number", ylim=c(300,500))

Note there is little point in plotting the constrained elements of the covariance matrix — these will
always give a straight line!

Using jomo in practice

The .MCMCchain functions only register a single imputation, but the state of the sampler at this point is
captured. This provides a mechanism for combining multiple runs of .MCMCchain and/or jomo in a
flexible manner, for example, to obtain the full set of posterior draws for the model parameters with
multiple runs of .MCMCchain or to generate mildly informative prior distributions to be used with
jomo. Specifically, at the end of the .MCMCchain run, the following objects capture the state of the
MCMC sampler:

• start.imp for the level-1 variables with missing values;

• (where present) l2.start.imp for level-2 variables with missing values, and

• finimp.latnorm: the final state of the imputed data set using latent normals in place of categori-
cal variables.

In practice, we typically need to use finimp.latnorm, together with the last value of the fixed parame-
ters and the covariance matrix at level 1 (and at level 2 if present). The following code illustrates the
approach:

Define data frames for outcomes and covariates of imputation model and
convert "fluent" to factor
JSPmiss <- within(JSPmiss, fluent <- factor(fluent))
Y <- JSPmiss[, c("english", "ravens", "fluent")]
X <- JSPmiss[, c("cons", "sex")]

Run jomo to register 2 imputations
set.seed(1569)
imp <- jomo(Y = Y, X = X, nimp = 2)

OR, run jomo.MCMCchain to register first imputation
set.seed(1569)
imp1 <- jomo.MCMCchain(Y = Y, X = X)

Capture the state of the sampler as starting values for the second set of iterations:
beta.start <- imp1$collectbeta[,,1000] # capture the fixed parameter values
l1cov.start <- imp1$collectomega[,,1000] # capture the level-1 covariance matrix values
start.imp <- imp1$finimp.latnorm # capture the final imputed data set (with

latent normals for categorical variables)

Run jomo.MCMCchain to register second imputation
imp2 <- jomo.MCMCchain(Y = Y, X = X, beta.start = beta.start, l1cov.start = l1cov.start,

start.imp = start.imp, nburn = 1000)

In practice, it often works well to use this function to find plausible initial values for the scale matrices
of the level-1 and level-2 covariance matrix priors. This allows us to provide ‘weakly informative’
priors consistent with the data, and avoids imputations being unnecessarily variable.

To do this, we run jomo.MCMCchain first, using the default prior. We retain the last draw (or the
posterior mean of the latter part of the chain) as the covariance matrix prior. We use these to assign
values to l1cov.prior or l2cov.prior and then we apply jomo as usual. Specifically:

Define data frame as usual
JSPmiss <- within(JSPmiss, fluent <- factor(fluent))
Y <- JSPmiss[, c("english", "ravens", "fluent")]
X <- JSPmiss[, c("cons", "sex")]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 222

Run jomo.MCMCchain with default prior
imp1 <- jomo.MCMCchain(Y = Y, X = X)

Collect posterior mean of covariance matrix
l1cov.guess <- apply(imp1$collectomega, c(1, 2), mean)
Multiply by degrees of freedom, i.e. dimension of the matrix (4), to get scale matrix
l1cov.prior <- l1cov.guess*4

Run jomo
imp <- jomo(Y = Y, X = X, l1cov.prior = l1cov.prior)

However, if a proper prior guess for the value of all the parameters was available, this would
be preferable, as it would avoid using the same data twice, to fit the model and to estimate the
hyperparameters of the priors.

When using jomo, we recommended the following workflow:

1. Before running the imputation model (which may take some time), perform a "dry run", to check
the software is fitting the model we intended. We can do this using the .MCMCchain function
with nburn = 2 and checking the output.

2. Re-run the same function for a larger number of iterations (e.g. 5000) and analyse the resulting
trace and autocorrelation plots to choose a sensible number of burn-in and between-imputation
iterations for the final imputation process.

3. Run the jomo function for the chosen number of iterations.
4. Fit the substantive model on the imputed data sets and apply Rubin’s rules.

mitml: an alternative interface to jomo

The mitml package (Grund et al., 2016c) provides an alternative interface to joint modeling multiple
imputation with jomo. Originally created as an interface to the pan package, mitml also provides
access to most of the features implemented in jomo and includes a number of additional tools for
managing, visualising, and analysing multiply imputed data sets.

Specification of the imputation model

The main interface to jomo is provided by the function jomoImpute, which offers two convenient
ways of specifying the imputation model. The first option uses a formula-based syntax similar to
packages for multilevel modelling such as lme4, nlme (Pinheiro et al., 2017), and others. The following
operators can be used to define such a formula:

~ : separates the dependent variables (left-hand side) and predictor variables (right-hand side) of
the imputation model;

+ : adds dependent and predictor variables to the model;
* : adds interactions of two or more predictors to the model;
| : specifies the cluster indicator and adds cluster-specific random effects to the model (e.g.,

1|school), and
I() : defines additional transformation of predictor variables to be included in the model.

For example, to fit the imputation model in (10) for the substantive model in (8) with JSPmiss, the
model formula can be specified as:

fml <- english + ravens + fluent ~ sex + (1|school)

The imputation is then run with jomoImpute by specifying the incomplete data, the imputation
model, the number of imputations (m), and the number of iterations for burn-in (n.burn) and between
imputations (n.iter). Like jomo, jomoImpute requires that categorical variables are formatted as
factors.

Convert "fluent" to factor
JSPmiss <- within(JSPmiss, fluent <- factor(fluent))

Run imputation
imp <- jomoImpute(data = JSPmiss, formula = fml, n.burn = 1000, n.iter = 1000, m = 5,

seed = 1569)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=mitml
https://CRAN.R-project.org/package=nlme

CONTRIBUTED RESEARCH ARTICLES 223

In addition, imputation models can be run independently in subsets of the data. For this purpose,
jomoImpute includes an optional group argument, denoting the name of a variable in the data set. If
specified, the imputation model is run separately for each level of group.

As an alternative to specifying a formula, the imputation model can be specified with the type
argument of jomoImpute. The type argument is an integer vector denoting the role of each variable in
the imputation model. The following values are supported:

1 : dependent variables (fully or partially observed);

2 : predictor variables (fully observed) with fixed effect;

3 : predictor variables (fully observed) with fixed and random effect;

-1 : (optional) grouping variable; if specified, imputations are run separately within each group;

-2 : cluster indicator, and

0 : variables excluded from the imputation model.

In applications with missing data at both level 1 and 2, formula and type are specified as a list of two
formulas or type vectors, denoting the imputation model for variables at level 1 and 2, respectively.

Analysis of the imputed data sets

The mitml package can also be used to manage, visualise, and analyse the imputed data. For example,
the summary and plot methods display information about the imputed data object and the convergence
of the MCMC algorithm.

Summarize model and display convergence statistics
summary(imp)

Call:

jomoImpute(data = JSPmiss, formula = fml, n.burn = 1000, n.iter = 1000,
m = 5, seed = 1569)
#
Cluster variable: school
Target variables: english ravens fluent
Fixed effect predictors: (Intercept) sex
Random effect predictors: (Intercept)
#
Performed 1000 burn-in iterations, and generated 5 imputed data sets,
each 1000 iterations apart.
#
Potential scale reduction (Rhat, imputation phase):
#
Min 25% Mean Median 75% Max
Beta: 1.000 1.002 1.009 1.011 1.013 1.021
Psi: 1.001 1.002 1.006 1.004 1.006 1.019
Sigma: 1.000 1.002 1.054 1.014 1.058 1.258
#
Largest potential scale reduction:
Beta: [1,3], Psi: [4,2], Sigma: [3,1]
#
Missing data per variable:
school english ravens fluent id sex behaviour cons
MD% 0 21.1 22.0 21.0 0 0 0 0
#
Display convergence plots (not shown here)
plot(imp, trace = "all")

The function mitmlComplete can be used to extract a list of imputed data sets. Each data set can
be transformed and analysed with the functions with and within similar to base R. For example, the
following code extracts the imputed data and fits the model in (8) to each of the data sets:

Extract list of completed data sets
imp.list <- mitmlComplete(imp, print = "all")

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 224

Fit the substantive model to each of the imputed data sets
fit.imp <- with(imp.list, lmer(english ~ ravens + sex + fluent + (1|school)))

Finally, mitml allows pooling the results obtained from the imputed data sets. For example,
testEstimates can be used to pool the estimates of individual parameters such as fixed effects and
variance components (Rubin’s rules).

testEstimates(fit.imp, var.comp = TRUE)

Call:
#
testEstimates(model = fit.imp, var.comp = TRUE)
Final parameter estimates and inferences obtained from 5 imputed data sets.
Estimate Std.Error t.value df P(>|t|) RIV FMI
(Intercept) -16.133 3.737 -4.317 139.189 0.000 0.204 0.181
ravens 1.623 0.120 13.552 21.626 0.000 0.755 0.476
sex 6.837 1.145 5.970 142.006 0.000 0.202 0.179
fluent1 5.001 4.241 1.179 94.051 0.241 0.260 0.223
fluent2 14.345 3.139 4.570 56.201 0.000 0.364 0.292
#
Estimate
Intercept~~Intercept|school 32.231
Residual~~Residual 291.538
ICC|school 0.099
Unadjusted hypothesis test as appropriate in larger samples.

Many different pooling methods are supported by mitml, including Rubin’s rules with and without
correction for smaller samples (testEstimates), pooled Wald and likelihood-ratio tests (LRTs) for
multiple parameters and model comparisons (testModels, anova), and tests of constraints on the
model parameters via the “delta method” (testConstraints, see Casella and Berger, 2002).

Note that, in order to use mitml directly with jomo, the imputed data must be converted to the
mitml.list format. This conversion can be achieved with the function jomo2mitml.list.

Simulations and applications

The jomo package has been extensively evaluated in simulation studies and has been used in various
applications. In this section, we provide a brief overview of these studies. For continuous data,
Quartagno and Carpenter (2016); Audigier et al. (2018); Grund et al. (2018c,b) showed that jomo
provides accurate parameter estimates and inferences. Quartagno and Carpenter (2019); Audigier
et al. (2018); Grund et al. (2018c,b) provided similar results for binary categorical data, and Quartagno
and Carpenter (2019) showed that the same procedures can be used for categorical and ordinal data.
Similar findings were reported by Grund et al. (2018a,b,c) for missing data at level 2 and by Quartagno
and Carpenter (2016) for applications with group-specific fixed or random covariance matrices at
level 1. Further, jomo has been used to study the performance of MI for handling missing data in
clustered randomised trials (Hossain et al., 2017a,b) and matched case-control studies (Seaman and
Keogh, 2015). Finally, it has been used in applications, particularly, but not exclusively, for imputation
of missing data in individual patient data meta-analyses (e.g., (Bloos et al., 2017)).

Conclusions and further developments

In this article, we have introduced a flexible new package for performing joint modelling multiple
imputation for multilevel data. This package provides three important contributions: (i) it handles
mixed data types, including continuous, categorical and binary data in a flexible way, (ii) it allows
for either a common level-1 covariance matrix across level-2 units , cluster-specific level-1 covariance
matrices, or random level-1 covariance matrices, and (iii) it gives valid imputation of missing values on
level-2 variables. This makes jomo an effective choice for treating missing data in many applications,
including single-level and multilevel data, cross-sectional and longitudinal data, and meta-analyses
with individual participant data.

As with all statistical techniques, multiple imputation has to be used carefully. In particular:

• We should check that the stationary distribution has been reached, before acting on our results.
As described above, the package provides tools to facilitate this.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 225

• With many (level-1) variables and relatively few observations, a careful choice of the prior for
the level-1 covariance matrix is important. We recommend a weakly informative prior and, in
particular, following the strategy described above, running the .MCMCchain functions to find a
sensible choice for the scale matrices for the inverse-Wishart priors.

• Like most imputation software, ours assumes that data are MAR. If data are MNAR, the results
of analyses under MAR may be biased.

In this paper we present functions for multilevel imputation, which make better and more efficient
use of all the available data compared to ad-hoc strategies, like imputing including cluster as a fixed
effect or imputing separately by cluster. The first approach has been discussed in various publications
(Lüdtke et al., 2017; Audigier et al., 2018; Drechsler, 2015) which broadly concluded that the approach
is unsatisfactory for small clusters and low intra-cluster correlation. Additionally, under this approach
dealing with random slopes is problematic and it is not possible to impute systematically missing
variables. Similar considerations are likely to hold for the second strategy consisting in imputing
separately by cluster, with the additional complication that level 2 variables cannot be imputed with
this method.

If we are imputing a variable which has a random slope in the substantive model (Grund et al.,
2016a), then (i) as usual, this variable will be a response in the imputation model and (ii) we should also
allow its association with the outcome to be cluster-specific in the imputation model by allowing the
level-1 covariance matrix to be random across level-2 units. However, although this approach performs
better than a simpler one using a common covariance matrix, it is not a perfectly compatible approach
(Quartagno and Carpenter, 2018; Enders et al., 2018), and functions for substantive model compatible
imputation (Goldstein et al., 2014) should be preferred to impute missing data in those settings, when
possible. These have been recently added to jomo and they will be presented in a second paper
soon. When interactions or non-linear terms are present in the model of interest, ignoring them in the
imputation model may lead to bias; instead, they should be included as covariates (Carpenter and
Kenward, 2013, p. 130). When these terms involve partially observed variables, the solution consists
again in using substantive model compatible functions.

When using functions for random cluster-specific covariance matrices, users should note that
this specifies an inverse-Wishart distribution matrix for the level-1 covariance matrices across the
level-2 units. Our simulations (Quartagno and Carpenter, 2016) suggest when this assumption is not
appropriate there will be some (usually immaterial) loss of efficiency. In principle, jomo could be
extended to incorporate other distributions.

All the illustrated functions make use of either Gibbs or Metropolis-Hastings sampling; however,
other sampling algorithms such as Hamiltonian Monte-Carlo may provide interesting alternatives in
the future.

Future updates and additions to the package will be advertised on www.missingdata.org.uk,
together with an up-to-date list of publications related to the package. We hope the package is useful
to readers and welcome their feedback.

Sources of funding

Matteo Quartagno was supported by funding from the European Community’s Seventh Framework
Programme FP7/2011: Marie Curie Initial Training Network MEDIASRES ("Novel Statistical Method-
ology for Diagnostic/Prognostic and Therapeutic Studies and Systematic Reviews"; www.mediasres-
itn.eu) with the Grant Agreement Number 290025.
James Carpenter is supported by the MRC grant MC_UU_12023/21

Aknowledgements

The authors of the package would like to thank Christopher Charlton and Professor Harvey Goldstein
from Bristol University for their help in creating the package. We would like to thank Alexander
Robitzsch, Vincent Audigier, Anower Hossain, Manuel Gomes, Nicole Erler and all the other people
that found bugs and imperfections in the code.

Bibliography

P. Mortimore, P. Sammons, L. Stoll, D. Lewis, and R. Ecob. School Matters. Wells: Open Books., 1988.
[p208]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 226

R. R. Andridge. Quantifying the Impact of Fixed Effects Modeling of Clusters in Multiple Imputation
for Cluster Randomized Trials. Biom J, 53(1):57–74, 2011. URL https://doi.org/10.1002/bimj.
201000140. [p214]

V. Audigier, I. R. White, S. Jolani, T. P. A. Debray, M. Quartagno, J. Carpenter, S. van Buuren, and
M. Resche-Rigon. Multiple imputation for multilevel data with continuous and binary variables.
Statist. Sci., 33(2):160–183, 2018. URL https://doi.org/10.1214/18-sts646. [p224, 225]

F. Bloos, H. Ruddel, D. Thomas-Ruddel, D. Schwarzkopf, C. Pausch, S. Harbarth, T. Schreiber,
M. Grundling, J. Marshall, P. Simon, M. M. Levy, M. Weiss, A. Weyland, H. Gerlach, T. Schurholz,
C. Engel, C. Matthaus-Kramer, C. Scheer, F. Bach, R. Riessen, B. Poidinger, K. Dey, N. Weiler, A. Meier-
Hellmann, H. H. Haberle, G. Wobker, U. X. Kaisers, and K. Reinhart. Effect of a Multifaceted Educa-
tional Intervention for Anti-Infectious Measures on Sepsis Mortality: a Cluster Randomized Trial.
Intensive Care Med, 43(11):1602–1612, 2017. URL https://doi.org/10.1177/1094428117703686.
[p224]

C. Brown. Dummies: Create Dummy/Indicator Variables Flexibly and Efficiently, 2012. URL http://CRAN.R-
project.org/package=dummies. R package version 1.5.6. [p212]

J. R. Carpenter and M. G. Kenward. Multiple Imputation and Its Application. John Wiley & Sons, 2013.
ISBN: 978-0-470-74052-1. [p205, 206, 207, 208, 212, 218, 225]

J. R. Carpenter, H. Goldstein, and M. G. Kenward. Realcom-impute software for multilevel multiple
imputation with mixed response types. Journal of Statistical Software., 45(5):1–14, 2011. [p205]

G. Casella and R. L. Berger. Statistical Inference. Duxbury Press, 2nd edition, 2002. [p224]

J. Drechsler. Multiple imputation of multilevel missing data—rigor versus simplicity. Journal of Educa-
tional and Behavioral Statistics, 40(1):69–95, 2015. URL https://doi.org/10.3102/1076998614563393.
[p225]

C. K. Enders, T. Hayes, and H. Du. A comparison of multilevel imputation schemes for ran-
dom coefficient models: Fully conditional specification and joint model imputation with ran-
dom covariance matrices. Multivariate Behavioral Research, 53(5):695–713, 2018. URL https:
//doi.org/10.1080/00273171.2018.1477040. PMID: 30693802. [p225]

H. Goldstein, J. R. Carpenter, M. G. Kenward, and K. A. Levin. Multilevel models with multivariate
mixed response types. Statistical Modelling., 9(3):173–197, 2009. URL https://doi.org/10.1177/
1471082X0800900301. [p206, 212]

H. Goldstein, J. R. Carpenter, and W. J. Browne. Fitting multilevel multivariate models with missing
data in responses and covariates that may include interactions and non-linear terms. Journal of the
Royal Statistical Society A, 177(2):553–564, 2014. URL https://doi.org/10.1111/rssa.12022. DOI:
10.1111/rssa.12022. [p225]

S. Grund, O. Lüdtke, and A. Robitzsch. Multiple Imputation of Missing Covariate Values in Multilevel
Models with Random Slopes: a Cautionary Note. Behav Res Methods, 48(2):640–649, 2016a. URL
https://doi.org/10.3758/s13428-015-0590-3. [p225]

S. Grund, O. Lüdtke, and A. Robitzsch. Multiple imputation of multilevel missing data: An in-
troduction to the r package pan. SAGE Open, 6(4), 2016b. URL https://doi.org/10.1177/
2158244016668220. [p208]

S. Grund, A. Robitzsch, and O. Lüdtke. Mitml: Tools for Multiple Imputation in Multilevel Modeling,
2016c. URL https://CRAN.R-project.org/package=mitml. R package version 0.3-0. [p222]

S. Grund, O. Lüdtke, and A. Robitzsch. Multiple imputation of missing data at level 2: A comparison
of fully conditional and joint modeling in multilevel designs. Journal of Educational and Behavioral
Statistics, 2018a. URL https://doi.org/10.3102/1076998617738087. [p224]

S. Grund, O. Lüdtke, and A. Robitzsch. Multiple imputation of missing data for multilevel models:
Simulations and recommendations. Organizational Research Methods, 21(1):111–149, 2018b. URL
https://doi.org/10.1177/1094428117703686. [p224]

S. Grund, O. Lüdtke, and A. Robitzsch. Missing data in multilevel research. In S. E. Humphrey
and J. M. LeBreton, editors, Handbook for Multilevel Theory, Measurement, and Analysis. American
Psychological Association, Washington, DC, 2018c. ISBN 978-1-4338-3001-3. [p224]

T. Harding, F. Tusell, and J. L. Schafer. Cat: Analysis of Categorical-Variable Datasets with Missing Values,
2012. URL http://CRAN.R-project.org/package=cat. R package version 0.0-6.5. [p205]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1002/bimj.201000140
https://doi.org/10.1002/bimj.201000140
https://doi.org/10.1214/18-sts646
https://doi.org/10.1177/1094428117703686
http://CRAN.R-project.org/package=dummies
http://CRAN.R-project.org/package=dummies
https://doi.org/10.3102/1076998614563393
https://doi.org/10.1080/00273171.2018.1477040
https://doi.org/10.1080/00273171.2018.1477040
https://doi.org/10.1177/1471082X0800900301
https://doi.org/10.1177/1471082X0800900301
https://doi.org/10.1111/rssa.12022
https://doi.org/10.3758/s13428-015-0590-3
https://doi.org/10.1177/2158244016668220
https://doi.org/10.1177/2158244016668220
https://CRAN.R-project.org/package=mitml
https://doi.org/10.3102/1076998617738087
https://doi.org/10.1177/1094428117703686
http://CRAN.R-project.org/package=cat

CONTRIBUTED RESEARCH ARTICLES 227

A. Hossain, K. Diaz-Ordaz, and J. W. Bartlett. Missing continuous outcomes under covariate dependent
missingness in cluster randomised trials. Statistical Methods in Medical Research, 26(3):1543–1562,
2017a. URL https://doi.org/10.1177/0962280216648357. PMID: 27177885. [p224]

A. Hossain, K. DiazOrdaz, and J. W. Bartlett. Missing binary outcomes under covariate-dependent
missingness in cluster randomised trials. Statistics in Medicine, 36(19):3092–3109, 2017b. URL
https://doi.org/10.1002/sim.7334. [p224]

R. J. A. Little and D. B. Rubin. Bayes and Multiple Imputation, chapter 10, pages 200–220. John Wiley &
Sons, 2002. ISBN 9781119013563. URL https://doi.org/10.1002/9781119013563.ch10. [p205]

O. Lüdtke, A. Robitzsch, and S. Grund. Multiple Imputation of Missing Data in Multilevel Designs: A
Comparison of Different Strategies. Psychol Methods, 22(1):141–165, 2017. URL https://doi.org/
10.1037/met0000096. [p214, 225]

F. Meinfelder. BaBooN: Bayesian Bootstrap Predictive Mean Matching - Multiple and Single Imputation for
Discrete Data, 2011. URL http://CRAN.R-project.org/package=BaBooN. R package version 0.1-6.
[p212]

X.-L. Meng. Multiple-imputation inferences with uncongenial sources of input. Statistical Science, 9(4):
538–558, 1994. URL http://doi.org/10.1214/ss/1177010269. [p206]

A. A. Novo and J. L. Schafer. Norm: Analysis of Multivariate Normal Datasets with Missing Values, 2013.
URL http://CRAN.R-project.org/package=norm. R package version 1.0-9.5. [p205]

I. Olkin and R. F. Tate. Multivariate correlation models with mixed discrete and continuous variables.
The Annals of Mathematical Statistics, 32(2):448–465, 1961. URL http://doi.org/10.1214/aoms/
1177705052. [p205]

J. Pinheiro, D. Bates, S. DebRoy, D. Sarkar, and R Core Team. nlme: Linear and Nonlinear Mixed Effects
Models, 2017. URL https://CRAN.R-project.org/package=nlme. R package version 3.1-131. [p222]

M. Quartagno and J. R. Carpenter. Multiple imputation for ipd meta-analysis: Allowing for hetero-
geneity and studies with missing covariates. Statistics in Medicine, 35(17):2938–2954, 2016. ISSN
1097-0258. URL https://doi.org/10.1002/sim.6837. [p207, 208, 214, 217, 224, 225]

M. Quartagno and J. R. Carpenter. Multilevel multiple imputation in presence of interactions, non-
linearities and random slopes. In Studies in Theoretical and Applied Statistics - SIS2018 - 49th Meeting
of the Italian Statistical Society, Palermo 20-22 June 2018. Springer-Verlag, 2018. [p225]

M. Quartagno and J. R. Carpenter. Multiple imputation for discrete data: An evaluation of the joint
latent normal model. Biometrical Journal, 61(4):1003–1019, 2019. URL https://doi.org/10.1002/
bimj.201800222. [p214, 224]

J. Rasbash, F. Steele, W. J. Browne, and H. Goldstein. A user’s guide to mlwin, v3.00. Centre for
Multilevel Modelling, University of Bristol., 2017. [p208]

D. B. Rubin. Inference and missing data. Biometrika., 63(3):581–592, 1976. URL https://doi.org/10.
1093/biomet/63.3.581. [p205]

D. B. Rubin. Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons, New York, 1987. [p205]

J. L. Schafer. Analysis of Incomplete Multivariate Data. Chapman & Hall., 1997. ISBN 0-412-04061-1.
[p205]

J. L. Schafer. Mix: Estimation/Multiple Imputation for Mixed Categorical and Continuous Data, 2010. URL
http://CRAN.R-project.org/package=mix. R package version 1.0-8. [p205]

J. L. Schafer and M. K. Olsen. Multiple imputation for multivariate missing-data problems: A data
analyst’s perspective. Multivariate Behavioral Research, 33(4), 2000. URL https://doi.org/10.1207/
s15327906mbr3304_5. [p205]

J. L. Schafer and R. M. Yucel. Computational strategies for multivariate linear mixed-effects models
with missing values. Journal of Computational and Graphical Statistics, 11(2):437–457, 2002. URL
https://doi.org/10.1198/106186002760180608. [p205]

S. R. Seaman and R. H. Keogh. Handling missing data in matched case-control studies using multiple
imputation. Biometrics, 71(4):1150–1159, 2015. ISSN 1541-0420. URL https://doi.org/10.1111/
biom.12358. [p224]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1177/0962280216648357
https://doi.org/10.1002/sim.7334
https://doi.org/10.1002/9781119013563.ch10
https://doi.org/10.1037/met0000096
https://doi.org/10.1037/met0000096
http://CRAN.R-project.org/package=BaBooN
http://doi.org/10.1214/ss/1177010269
http://CRAN.R-project.org/package=norm
http://doi.org/10.1214/aoms/1177705052
http://doi.org/10.1214/aoms/1177705052
https://CRAN.R-project.org/package=nlme
https://doi.org/10.1002/sim.6837
https://doi.org/10.1002/bimj.201800222
https://doi.org/10.1002/bimj.201800222
https://doi.org/10.1093/biomet/63.3.581
https://doi.org/10.1093/biomet/63.3.581
http://CRAN.R-project.org/package=mix
https://doi.org/10.1207/s15327906mbr3304_5
https://doi.org/10.1207/s15327906mbr3304_5
https://doi.org/10.1198/106186002760180608
https://doi.org/10.1111/biom.12358
https://doi.org/10.1111/biom.12358

CONTRIBUTED RESEARCH ARTICLES 228

M. A. Tanner and W. H. Wong. The calculation of posterior distributions by data augmentation.
Journal of the American Statistical Association, 82(398):528–540, 1987. ISSN 01621459. URL http:
//www.jstor.org/stable/2289457. [p206]

R. M. Yucel. Random-covariances and mixed-effects models for imputing multivariate multilevel
continuous data. Statistical Modelling., 11(4):351–370, 2011. URL https://doi.org/10.1177/
1471082X1001100404. [p205, 207, 214, 217]

Z. Zhang, R. Parker, C. Charlton, G. Leckie, and W. Browne. R2mlwin: A package to run mlwin
from within r. Journal of Statistical Software, Articles, 72(10):1–43, 2016. ISSN 1548-7660. URL
https://doi.org/10.18637/jss.v072.i10. [p208]

J. H. Zhao and J. L. Schafer. Pan: Multiple Imputation for Multivariate Panel or Clustered Data. R
Foundation for Statistical Computing, 2013. R Package, version 0.9. [p205]

Matteo Quartagno
MRC Clinical Trials Unit at UCL
90 High Holborn, London WC1V 6LC
United Kingdom
m.quartagno@ucl.ac.uk

Simon Grund
IPN - Leibniz Institute for Science and Mathematics Education at Kiel University
Olshausenstraße 62, D-24118 Kiel
Germany
grund@ipn.uni-kiel.de

James Carpenter
London School of Hygiene and Tropical Medicine
Keppel Street, Bloomsbury, London WC1E 7HT
United Kingdom
james.carpenter@lshtm.ac.uk

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

http://www.jstor.org/stable/2289457
http://www.jstor.org/stable/2289457
https://doi.org/10.1177/1471082X1001100404
https://doi.org/10.1177/1471082X1001100404
https://doi.org/10.18637/jss.v072.i10
mailto:m.quartagno@ucl.ac.uk
mailto:grund@ipn.uni-kiel.de
mailto:james.carpenter@lshtm.ac.uk

CONTRIBUTED RESEARCH ARTICLES 229

Time Series Forecasting with KNN in R:
the tsfknn Package
by Francisco Martínez, María P. Frías, Francisco Charte and Antonio J. Rivera

Abstract In this paper the tsfknn package for time series forecasting using k-nearest neighbor regres-
sion is described. This package allows users to specify a KNN model and to generate its forecasts.
The user can choose among different multi-step ahead strategies and among different functions to
aggregate the targets of the nearest neighbors. It is also possible to assess the forecast accuracy of the
KNN model.

Introduction

Time series forecasting has been performed traditionally using statistical methods such as ARIMA
models or exponential smoothing (Hyndman and Athanasopoulos, 2014). However, the last decades
have witnessed the use of computational intelligence techniques to forecast time series. Although
artificial neural networks is the most prominent machine learning technique used in time series
forecasting (Zhang et al., 1998), other approaches, such as Gaussian Processes (Andrawis et al., 2011)
or KNN (Martínez et al., 2017), have also been applied. Compared with classical statistical models,
computational intelligence methods exhibit interesting features, such as their nonlinearity or the lack
of an underlying model, that is, they are non-parametric.

Statistical methodologies for time series forecasting are present in R as excellent packages. For
example, the forecast package (Hyndman and Khandakar, 2008) includes implementations of ARIMA,
exponential smoothing, the Theta method (Hyndman and Billah, 2003) or basic techniques that can
be used as benchmark methods—such as the random walk approach. On the other hand, although a
great variety of computational intelligence approaches for regression are available in R, such us the
caret package (Kuhn, 2008), these approaches cannot be directly applied to time series forecasting.
Fortunately, some new packages are filling this gap. For example, the nnfor package (Kourentzes,
2017) or the nnetar function from the forecast package allow users to predict time series using artificial
neural networks.

KNN is a very popular algorithm used in classification and regression (Wu et al., 2007). This
algorithm simply stores a collection of examples. In regression, each example consists of a vector
of features describing the example and its associated numeric target value. Given a new example,
KNN finds its k most similar examples, called nearest neighbors, according to a distance metric such
as the Euclidean distance, and predicts its value as an aggregation of the target values associated
with its nearest neighbors. In this paper we describe the tsfknn R package for univariate time series
forecasting using KNN regression.

The rest of the paper is organized as follows. Firstly, we explain how KNN regression can be
applied in a time series forecasting context using the tsfknn package. Next, the different multi-step
ahead strategies implemented in our package are explained. Some additional features of the package
related to how the KNN model is specified are also discussed. The last sections explain how to assess
the forecast accuracy of a model and compare the package with other R packages based on machine
learning approaches.

Time series forecasting with KNN regression

In this section we first explain how KNN regression can be applied to forecast time series. Next, we
describe how the tsfknn package can be used to forecast a time series.

As described above, KNN regression simply holds a collection of training instances. The i-th
training instance consists of a vector of n features: (f i

1, f i
2, . . . , f i

n), describing the instance and an
associated target vector of m attributes: (ti

1, ti
2, . . . , ti

m). Given a new instance, whose features are
known—(q1, q2, . . . , qn)—but whose target is unknown, the features of the new instance are used
to find its k most similar training instances according to the vectors of features and a similarity or
distance metric. For example, assuming that the similarity metric is the Euclidean distance, the
distance between the new instance and the i-th training instance is computed as follows:

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=forecast
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=nnfor
https://CRAN.R-project.org/package=tsfknn

CONTRIBUTED RESEARCH ARTICLES 230

√
n

∑
x=1

(
f i
x − qx

)2 (1)

The k training instances that are closest to the new instance are considered their k most similar
instances or k nearest neighbors. KNN is based on learning by analogy. Given a new instance, we
think that the targets of its nearest neighbors are probably similar to its unknown target. This way, the
targets of the nearest neighbors are aggregated to predict the target of the new instance. For example,
assuming that the targets or the k nearest neighbors are the vectors: t1, t2, ..., tk, they can be averaged
to predict the target of the new instance as:

k

∑
i=1

ti

k
(2)

In short, KNN stores a collection of training instances described by n features. Each training
instance represents a point in an n-dimensional space. Given a new instance, KNN finds its k closest
instances in the n-dimensional space in the hope that their targets are similar to its unknown target.

Now, let us see how KNN can be applied to time series forecasting. In this case, the target
associated with a training instance is a collection of values of the time series and the features de-
scribing the instance are lagged values of the target—that is, we have an autoregressive model.
For example, let us start with a monthly time series containing 132 observations, i.e., 11 years:
t = {x1, x2, x3, x4, x5, x6, x7, x8, ..., x132} and assume that we want to predict its next future month.
Because we are going to predict only one value the target of a training instance is a value of the time
series. Let us also assume that we decide that the features describing a target are its first twelve
lagged values in the time series—that we will denote as lags 1:12. Therefore, the training instances
or examples associated with the time series t are shown in Table 1. Now, let us see which is the new
instance used to predict the next future value of the time series. Because we are using lags 1 to 12 as
feature vector, the feature vector associated with the next future point is vector (x121, x122, ..., x132),
which is compounded of the last twelve values of the time series. If, for example, k is equal to 2 the
2-nearest neighbors of the new instance are found and their targets will be aggregated to predict the
next future month. The rationale behind the use of KNN for time series forecasting is that a time series
can contain repetitive patterns. Given the last pattern of a time series we look for similar patterns
in the past in the hope that their subsequent patterns will be similar to the future values of the time
series.

Table 1: Training examples for time series t = {x1, x2, x3, x4, x5, x6, x7, x8, ..., x132} for one-step ahead
forecasting and lags 1:12 as feature vector

Features Target

x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12 x13
x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13 x14
x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14 x15
... ...
x120, x121, x122, x123, x124, x125, x126, x127, x128, x129, x130, x131 x132

Let us see now how the tsfknn package can be used to forecast a time series. In our package, you
can consult the training examples associated with a KNN model with the knn_examples function:

> timeS <- window(nottem, end = c(1930, 12))
> pred <- knn_forecasting(timeS, h = 1, lags = 1:12, k = 2)
> head(knn_examples(pred))

Lag12 Lag11 Lag10 Lag9 Lag8 Lag7 Lag6 Lag5 Lag4 Lag3 Lag2 Lag1 H1
[1,] 40.6 40.8 44.4 46.7 54.1 58.5 57.7 56.4 54.3 50.5 42.9 39.8 44.2
[2,] 40.8 44.4 46.7 54.1 58.5 57.7 56.4 54.3 50.5 42.9 39.8 44.2 39.8
[3,] 44.4 46.7 54.1 58.5 57.7 56.4 54.3 50.5 42.9 39.8 44.2 39.8 45.1
[4,] 46.7 54.1 58.5 57.7 56.4 54.3 50.5 42.9 39.8 44.2 39.8 45.1 47.0
[5,] 54.1 58.5 57.7 56.4 54.3 50.5 42.9 39.8 44.2 39.8 45.1 47.0 54.1
[6,] 58.5 57.7 56.4 54.3 50.5 42.9 39.8 44.2 39.8 45.1 47.0 54.1 58.7

Before consulting the training examples with knn_examples, you have to build the model. This is
done with the function knn_forecasting that builds a model associated with a time series and uses the

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 231

Figure 1: Result of plotting a prediction.

model to predict the future values of the time series. Let us see the main arguments of this function:

timeS : the time series to be forecast.

h : the forecasting horizon, that is, the number of future values to be predicted.

lags : an integer vector indicating the lagged values of the target used as its describing features in the
examples—for instance, 1:12 means that lagged values 1 to 12 should be used.

k : the number of nearest neighbors used by the KNN model.

knn_forecasting is very handy because, as commented above, it builds the KNN model and
then uses the model to predict the time series. This function returns a "knnForecast" object with
information of the model and its prediction. As we have seen above, you can use the function
knn_examples to see the training examples associated with the model. You can also consult the
prediction or plot it through the "knnForecast" object:

> pred$prediction
Jan

1931 37.4
> plot(pred)

Figure 1 shows the result of plotting the prediction. It is also possible to see how the prediction was
made. That is, you can consult the new instance whose target was predicted and its nearest neighbors.
This information is obtained with the nearest_neighbors function applied to a "knnForecast" object:

> nearest_neighbors(pred)
$`instance`
Lag 12 Lag 11 Lag 10 Lag 9 Lag 8 Lag 7 Lag 6 Lag 5 Lag 4 Lag 3 Lag 2 Lag 1
41.6 37.1 41.2 46.9 51.2 60.4 60.1 61.6 57.0 50.9 43.0 38.8

$nneighbors
Lag 12 Lag 11 Lag 10 Lag 9 Lag 8 Lag 7 Lag 6 Lag 5 Lag 4 Lag 3 Lag 2 Lag 1 H1

1 40.8 41.1 42.8 47.3 50.9 56.4 62.2 60.5 55.4 50.2 43.0 37.3 34.8
2 39.3 37.5 38.3 45.5 53.2 57.7 60.8 58.2 56.4 49.8 44.4 43.6 40.0

Because we have used lags 1:12 as features, the features associated with the next future value of the
time series are the last twelve values of the time series. The targets of the two most similar examples
or nearest neighbors are 34.8 and 40. Their average is the prediction: 37.4. A nice plot including the
new instance, its nearest neighbors and the prediction can be obtained as follows:

> library(ggplot2)
> autoplot(pred, highlight = "neighbors", faceting = FALSE)

The result of executing this code snippet is shown in Figure 2. To recapitulate, in order to specify a
KNN model you have to set:

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 232

Figure 2: Plotting the instance, its nearest neighbors and the prediction.

• The lags used to build the KNN examples. They determine the lagged values used as features
or autoregressive explanatory variables.

• k, that is, the number of nearest neighbors used in the prediction.

• The forecasting horizon, that is, the number of future points to predict.

Multi-step ahead strategies

In the previous section we have seen an example of one-step ahead prediction with KNN. Nonetheless,
it is very common to forecast more than one value into the future. To this end, a multi-step ahead
strategy has to be chosen (Ben Taieb et al., 2012). Our package implements two common strategies:
the MIMO—Multiple Input Multiple Output—approach and the recursive or iterative approach. It
must be noted that when only one future value is predicted both strategies are equivalent. In the next
subsections these strategies are explained, together with examples of how they can be used in our
package.

The MIMO strategy

The Multiple Input Multiple Output strategy is commonly applied with KNN and it is characterized
by the use of a vector of target values. The length of this vector is equal to the number of periods to
be forecast. For example, let us assume that we are working with a time series giving the monthly
totals of car drivers killed in Great Britain and we want to forecast the number of deaths for the next
12 months. In this situation, a good choice for the lags used as features would be 1:12, i.e., the totals of
car drivers killed in the previous 12 months—an explanation about why lags 1:12 are a good choice is
given in the section about default parameters. If the MIMO strategy is chosen, then a training example
consists of:

• a target vector with the number of deaths of 12 consecutive months and

• a feature vector with the number of deaths in the previous 12 consecutive months—just before
the 12 months of the target vector.

The new instance would be the number of car drivers killed in the last 12 months of the time series.
This way, we would look for the number of deaths most similar to the last 12 months in the time series
and we would predict an aggregation of their subsequent 12 months. In the following example we
predict the next 12 months using the MIMO strategy:

> timeS <- window(UKDriverDeaths, end = c(1979, 12))
> pred <- knn_forecasting(timeS, h = 12, lags = 1:12, k = 2, msas = "MIMO")
> autoplot(pred, highlight = "neighbors", faceting = FALSE)

The forecast for the next 12 months can be seen in Figure 3. The last 12 values of the time series are
the features of the new instance whose target has to be predicted. The two sequences of 12 consecutive
values most similar to this instance are found—in blue—and their subsequent 12 values—in green—are
averaged to obtain the prediction—in red.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 233

Figure 3: Applying the MIMO strategy to forecast the next 12 months.

Figure 4: Applying the recursive strategy to forecast horizon 1.

The recursive strategy

The recursive or iterative strategy is the approach used by ARIMA or exponential smoothing to
forecast several periods. In this strategy a model that only forecasts one-step ahead is used. Therefore,
the model is applied iteratively to forecast all the future periods. When historical observations to be
used as features of the new instance are unavailable, previous predictions are used instead.

Because the recursive strategy uses a one-step ahead model, this means that, in the case of KNN,
the target of a training example only contains one value. For instance, let us see how the recursive
strategy works with the following example in which the next two future months of a monthly time
series are predicted:

> pred <- knn_forecasting(USAccDeaths, h = 2, lags = 1:12, k = 2, msas = "recursive")
> autoplot(pred, highlight = "neighbors")

In this example we have used lags 1:12 to specify the features of an example. To predict the first
future point the last 12 values of the time series are used as “its features”—see Figure 4. To predict the
second future point "its features" are the last eleven values of the time series and the prediction for the
first future point—see Figure 5.

Setting the KNN parameters

In this section several additional features of our package related to model selection are described. In
order to select a KNN model the following parameters have to be chosen:

• The distance function used to find the nearest neighbors.

• The combination function used to aggregate the targets of the nearest neighbors.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 234

Figure 5: Applying the recursive strategy to forecast horizon 2: the previous prediction is used as
feature.

• The number of nearest neighbors, that is, the k parameter.

• The lags used as autoregressive explanatory variables, that is, the features describing the training
examples.

• The multi-step ahead strategy.

In the following subsections some features related to setting the KNN parameters are explained.

Distance and combination function

Our package uses the Euclidean distance to find the nearest neighbors, although we can implement
other distance metrics in the future.

Regarding the combination function, the targets of the k nearest neighbors are averaged by default.
However, it is possible to combine the targets using other aggregation functions. Currently, our
package allows users to choose among the mean, the median and a weighted combination. In order to
select the combination function the cb parameter of the knn_forecasting function has to be used.

Next, we explain how the weighted combination is computed. The goal is to give more weight to
the closer neighbors. Let us denote as di and ti the distance between the i-th nearest neighbor and the
the new instance and the target of the i-th nearest neighbor respectively. Then, we define wi = 1/d2

i to
be the reciprocal of the squared distance to the i-th nearest neighbor and the prediction is computed as
the following weighted combination of the targets:

k
∑

i=1
witi

k
∑

i=1
wi

(3)

This scheme fails when the distance to a training example is 0. In this special case, the target of
this training example, whose features are identical to the new instance, is selected as the prediction.

An ensemble of several models with different k parameters

In order to specify a KNN model the k parameter has to be chosen. If k is too small, then the prediction
can more easily be affected by noise. On the other hand, if k is too large, then we are using examples
far apart from the new instance. Several strategies can be used to choose the k parameter. A first, fast,
straightforward solution is to use some heuristic—it is recommended setting k to the square root of
the number of training examples. Another approach is to select k using an optimization tool on a
validation set. k should minimize a forecast accuracy measure such as MAPE (Hyndman and Koehler,
2006). It should be noted that the optimization strategy is very time-consuming.

A third strategy explored in (Martínez et al., 2017) is to use several KNN models with different k
values. Each KNN model generates its forecasts and the forecasts of the different models are averaged
to produce the final forecast. This strategy is based on the success of model combination in time series

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 235

Figure 6: Quarterly time series with a strong seasonal pattern and lags 1:2.

forecasting (Hibon and Evgeniou, 2005). In this way, the use of a time-consuming optimization tool is
avoided and the forecasts are not based on a unique k value. In our package you can use this strategy
specifying a vector of k values:

> pred <- knn_forecasting(ldeaths, h = 12, lags = 1:12, k = c(2, 4))
> pred$prediction

Jan Feb Mar Apr May Jun Jul Aug Sep
1980 2865.375 2866.250 2728.875 2189.000 1816.000 1625.875 1526.250 1404.250 1354.000

Oct Nov Dec
1980 1541.250 1699.250 2198.750

In this example, two KNN models with k equal to 2 and 4 respectively are built. The forecast is the
average of the forecasts produced by both models.

It also must be noted that if the targets are combined using weights, then the choice of the k
parameter is less important because neighbors lose weight as they move away from the new instance.
When the weighted combination is chosen, it even makes sense to set k to the number of training
examples, as generalized regression neural networks do (Yan, 2012).

Default parameters

Sometimes a great number of time series have to be forecast. In that situation, an automatic way
of generating the forecasts is very useful. In this sense, our package is able to use sensible default
parameters. If the user only specifies the time series and the forecasting horizon the KNN parameters
are selected as follows:

• As multi-step ahead strategy MIMO is chosen.

• The combination function used to aggregate the targets is the mean.

• k is selected as a combination of three models using 3, 5 and 7 nearest neighbors respectively.

• In order to select the autoregressive lags the following strategy is used. If the time series is
seasonal and the length of the seasonal period is m, then lags 1:m are used. For example, for
quarterly data lags 1:4 are selected and for monthly data lags 1:12. This way, seasonal patterns
can be captured more easily. Let us see why—see also (Martínez et al., 2018). In Figure 6 an
artificial quarterly time series with a strong seasonal pattern is shown. The first quarter has a
mean level higher than the other quarters, which have a similar level. The autoregressive lags
are lags 1:2 and we want to generate a one-step ahead forecast using only the nearest neighbor.
These autoregressive lags can lead to an unsuitable forecast. As can be seen in the figure, the
nearest neighbor has a fourth quarter as its target when a first quarter value is going to be
predicted. In Figure 7 lags 1:4 are used and the target associated with the nearest neighbor is a
first quarter value. If the time series is not seasonal, for example yearly data, then the lags with
significant autocorrelation in the partial autocorrelation function (PACF) are selected. Although
the PACF only tests for linear relationships, experience has shown us that this is an effective
way of selecting input variables (Martínez et al., 2017). If none of the previous two conditions
are met, then lags 1:5 are used. Notice that this way of selecting the autoregressive lags is quite
fast.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 236

Figure 7: Quarterly time series with a strong seasonal pattern and lags 1:4.

Evaluating forecast accuracy

Once a model has been built, it is natural to want to assess its forecast accuracy. In the tsfknn package
this is done with the rolling_origin function. This function uses the classical approach of dividing a
dataset into training and test sets. In time series forecasting the test set consists of the last observations
of the time series. For example:

> pred <- knn_forecasting(ldeaths, h = 12, lags = 1:12, k = 2)
> ro <- rolling_origin(pred, h = 6, rolling = FALSE)

As mentioned above, knn_forecasting builds a KNN model and returns a "knnForecast" object
with information about the model. The rolling_origin function takes a "knnForecast" object as its
first parameter. From this, information about the time series and the metaparameters of the KNN
model is obtained; for example, the autoregressive lags, the number of nearest neighbors or the
multi-step ahead strategy. The second parameter of rolling_origin is the size of the test set. In the
example, the size is 6 and, therefore, the last 6 observations of the time series will be used as test set and
the remaining observations as training set. rolling_origin returns a "knnForecastRO" object with
information about the evaluation. For example, the test set, predictions and errors can be consulted:

> print(ro$test_sets)
h=1 h=2 h=3 h=4 h=5 h=6

[1,] 1461 1354 1333 1492 1781 1915
> print(ro$predictions)

h=1 h=2 h=3 h=4 h=5 h=6
[1,] 1513.5 1363.5 1351.5 1567 1587.5 2392
> print(ro$errors)

h=1 h=2 h=3 h=4 h=5 h=6
[1,] -52.5 -9.5 -18.5 -75 193.5 -477

It is also possible to consult several forecasting accuracy measures about the predictions:

> ro$global_accu
RMSE MAE MAPE

213.613748 137.666667 7.747168

The forecasting accuracy measures are: root mean square error, mean absolute error and mean
absolute percentage error. A plot of the time series and the forecasts can be obtained:

> plot(ro)

The result of this plot can be seen in Figure 8. In this figure the last six observations of the time
series are the test set and the forecasts are the red points.

Evaluation based on a rolling origin

A more sophisticated version of training/test sets is to use a rolling origin evaluation. The idea is as
follows. The last n observations of a time series are used as test data. Then n evaluations are performed.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 237

Figure 8: A time series and its forecast for the last 6 observations.

Figure 9: Training (blue) and test (red) sets for rolling origin evaluation with 6 observations.

In the first evaluation the last n observations are the test set and the previous ones the training set.
A model is fitted with the training set, the predictions are generated and the errors observed. In the
second evaluation the last n− 1 observations are used as test set, and so on until the last evaluation
in which the test set is the last value of the time series. Figure 9 illustrates the different training and
test sets for a rolling origin evaluation of the last six values of a time series. As can be observed, the
origin of the forecasts rolls forward in time. The rolling origin technique aims to get the most out
of the test data in terms of evaluation. For example, with n observations in the test data, n one-step
ahead forecasts are generated, n− 1 two-steps ahead forecasts, and so on. On the other hand, the
rolling origin evaluation is a time-consuming task, because several models have to be fitted.

The function rolling_origin uses rolling origin evaluation by default:

> pred <- knn_forecasting(ldeaths, h = 12, lags = 1:12, k = 2)
> ro <- rolling_origin(pred, h = 6)
> print(ro$test_sets)

h=1 h=2 h=3 h=4 h=5 h=6
[1,] 1461 1354 1333 1492 1781 1915
[2,] 1354 1333 1492 1781 1915 NA
[3,] 1333 1492 1781 1915 NA NA
[4,] 1492 1781 1915 NA NA NA
[5,] 1781 1915 NA NA NA NA
[6,] 1915 NA NA NA NA NA
> print(ro$predictions)

h=1 h=2 h=3 h=4 h=5 h=6
[1,] 1513.5 1363.5 1351.5 1567.0 1587.5 2392
[2,] 1363.5 1351.5 1567.0 1587.5 2392.0 NA
[3,] 1351.5 1567.0 1587.5 2392.0 NA NA
[4,] 1567.0 1587.5 2392.0 NA NA NA
[5,] 1587.5 2392.0 NA NA NA NA
[6,] 2392.0 NA NA NA NA NA
> print(ro$errors)

h=1 h=2 h=3 h=4 h=5 h=6
[1,] -52.5 -9.5 -18.5 -75.0 193.5 -477
[2,] -9.5 -18.5 -75.0 193.5 -477.0 NA
[3,] -18.5 -75.0 193.5 -477.0 NA NA
[4,] -75.0 193.5 -477.0 NA NA NA

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 238

Figure 10: Forecast for the test set with the last two observations.

[5,] 193.5 -477.0 NA NA NA NA
[6,] -477.0 NA NA NA NA NA

Each row in the output represents a different evaluation. Now, the global_accu field of the
"knnForecastRO" object stores measures of the accuracy of all the forecasts in all the evaluations:

> ro$global_accu
RMSE MAE MAPE

274.19569 202.69048 11.09727

The forecast accuracy measures for the different prediction horizons can also be consulted:

> ro$h_accu
h=1 h=2 h=3 h=4 h=5 h=6

RMSE 213.613748 232.821283 260.25877 300.33107 363.98575 477.00000
MAE 137.666667 154.700000 191.00000 248.50000 335.25000 477.00000
MAPE 7.747168 8.577916 10.54699 13.60004 17.88665 24.90862

As expected, the errors grow with the increasing horizon. Finally, a plot of any of the different
forecasts performed with the rolling origin evaluation can be obtained. For example:

> plot(ro, h = 2)

produces Figure 10.

A comparison with other time series forecasting packages

In this section our package is compared with other software for univariate time series forecasting in R.
In the CRAN Task Views: Time Series Analysis, Econometrics and Finance some models for time series
forecasting can be found, from GARCH models to ensembles of models, such us the forecastHybrid
package (Shaub and Ellis, 2019). Most of the functions found in these packages use statistical models
such as ARIMA or exponential smoothing. The forecast package is arguably the best package for
time series forecasting. It implements all of the models that can be found in the stats package and
many others such as the Theta method or multilayer perceptron. Furthermore, this package includes
additional tools for plotting seasonal time series, doing Box-Cox transformations, etc.

The packages most closely related to our package are those that are based on machine learning
approaches. Below, a brief description of these packages is given:

GMDH In this package the GMDH-type neural network algorithms are applied in order to perform
short term forecasting for a univariate time series (Dag and Yozgatligil, 2016).

NTS This package contains a function, NNsetting, that allows users to create the examples needed to
feed a neural network. However, the package does not allow forecasts to be generated directly.

tsDyn Allows users to predict a time series using a multi-layer perceptron with one hidden layer
computed using the nnet function from the nnet package.

nnfor Uses the neuralnet package to build multi-layer perceptrons. It is also possible to use extreme
learning machines through the elm function.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=forecastHybrid
https://CRAN.R-project.org/package=GMDH
https://CRAN.R-project.org/package=NTS
https://CRAN.R-project.org/package=tsDyn
https://CRAN.R-project.org/package=nnet
https://CRAN.R-project.org/package=neuralnet

CONTRIBUTED RESEARCH ARTICLES 239

forecast This package contains the nnetar function used to forecast a time series using a multi-layer
perceptron with a hidden layer.

Table 2 shows a comparison of these packages in terms of the following features:

• Is it possible to use arbitrary autoregressive lags? In some packages, for example, the lags have
to be consecutive values.

• Is it possible to generate the forecasts indicating only the time series and the forecasting horizon?

• Does it include the package tools for plotting the forecasts and other information?

• Is rolling origin evaluation implemented?

• Does the package generate prediction intervals for the forecasts?

• Is it possible to include exogenous variables as predictors in the model?

Table 2: Properties of the packages using machine learning approaches.

GMDH tsDyn nnfor forecast tsfknn

Arbitrary lags no no yes no yes
Default parameters yes no yes yes yes
Plotting facilities no yes yes yes yes
Rolling origin evaluation no no yes yes yes
Prediction intervals yes no no yes no
Exogenous variables no no yes yes no

We have also conducted a comparison of the methods found in these packages based on forecast
accuracy and running time. For this purpose, data from the NN3 forecasting competition (Crone et al.,
2011) has been used. In this competition 111 monthly time series of industry data were used. The
length of the series ranges from 52 to 120 observations and there is also a balanced mix of seasonal
and non-seasonal series. As in the NN3 competition, the next 18 future months of every time series
have to be predicted. The MAPE has been used to assess the forecast accuracy. Given the forecast F for
a NN3 time series with actual values X:

MAPE =
100
18

18

∑
t=1

∣∣∣∣Xt − Ft
Xt

∣∣∣∣
Given a certain method, its MAPE is computed for the 111 time series and averaged in order to

obtain a global MAPE. This global MAPE appears in the first row of Table 3 for the different methods.
In the comparison the package GMDH has not been included because at most it allows users to forecast
5-steps ahead. elm and mlp are functions from the nnfor package for computing extreme learning
machines and multi-layer perceptrons respectively. auto.arima and ets are functions belonging to the
forecast package that implement ARIMA and exponential smoothing. When calling the functions we
have specified as few parameters as possible, so that the function selects automatically or by default
the value of the parameters. The statistical models have achieved the best results. Among the machine
learning approaches our package is the winner.

In the second row of Table 3 the time in seconds needed for fitting the model and generating the
forecasts is shown. There are significant differences between the methods, with our package being one
of the fastest methods.

Table 3: Properties of the packages using machine learning approaches.

tsDyn elm mlp nnetar auto.arima ets tsfknn

MAPE 20.73 18.76 20.95 18.38 15.64 15.52 17.06
Time 2 3332 690 15 421 105 4

Functions and methods in the tsfknn package

In this section a succinct description of all the functions and methods in the tsfknn package is given.
Most of the functions have already been described above. For those functions not mentioned above a
brief example of use is given:

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 240

knn_forecasting given a time series and some metaparameters this function builds a KNN model for
forecasting the time series. It also uses this model to make a prediction of the future values of
the time series. Information about the model and the prediction is returned in a "knnForecast"
object.

knn_examples shows the examples associated with a KNN model.
nearest_neighbors shows the new instance used in a prediction and its nearest neighbors.
plot and autoplot plot a time series and its forecast.
rolling_origin assesses the forecast accuracy of a KNN model.
print and summary show information about a model and its prediction.
predict generates new predictions for a given KNN model.
n_training_examples indicates the number of examples that a KNN model would have for a given

time series and some metaparameters.

Now, a quick example of how to use the functions not explained previously in the paper is given.
The methods print and summary produce the expected result, i.e., they show some information about
the model and its prediction:

> pred <- knn_forecasting(mdeaths, h = 3)
> print(pred)

Call: knn_forecasting(timeS = mdeaths, h = 3)

Multiple-Step Ahead Strategy: MIMO
K (number of nearest neighors): 3 models with 3, 5 and 7 neighbors repectively
Autoregressive lags: 1 2 3 4 5 6 7 8 9 10 11 12
Number of examples: 58
Targets are combined using the mean function.
> summary(pred)

Call: knn_forecasting(timeS = mdeaths, h = 3)

Multiple-Step Ahead Strategy: MIMO
K (number of nearest neighors): 3 models with 3, 5 and 7 neighbors repectively
Autoregressive lags: 1 2 3 4 5 6 7 8 9 10 11 12
Number of examples: 58
Targets are combined using the mean function.
Forecasting horizon: 3
Forecast:

Jan Feb Mar
1980 1990.562 2106.390 1999.143

The method predict is used to generate new forecasts using a previously fitted model:

> pred <- knn_forecasting(mdeaths, h = 3, k = 2, msas = "recursive")
> new_pred <- predict(pred, h = 12)
> print(new_pred$prediction)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct
1980 2141.0 2052.0 1894.0 1477.0 1570.5 1216.5 1130.0 1045.5 991.5 1049.5

Nov Dec
1980 1144.5 1520.5

Finally, n_training_examples is a handy function for knowing how many training example would
have a model:

> n_training_examples(mdeaths, h = 3, lags = 1:12, msas = "MIMO")
[1] 58

Summary

There is hardly any package in R for applying computational intelligence regression methods to time
series forecasting. In this paper we have presented the tsfknn package that allows users to forecast
a time series using KNN regression. The interface of the package is quite simple, allowing users to
specify a KNN model and to predict a time series using the model. Furthermore, several plots can be
generated illustrating how the prediction has been computed.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 241

Acknowledgment

Funds: This work was partially supported by the project TIN2015-68854-R (FEDER Founds) of the
Spanish Ministry of Economy and Competitiveness.

We would like to thank the anonymous reviewers whose comments helped improve and clarify
this manuscript.

Bibliography

R. R. Andrawis, A. F. Atiya, and H. El-Shishiny. Forecast combinations of computational intelligence
and linear models for the NN5 time series forecasting competition. International Journal of Forecasting,
27(3):672 – 688, 2011. URL https://doi.org/10.1016/j.ijforecast.2010.09.005. [p229]

S. Ben Taieb, G. Bontempi, A. F. Atiya, and A. Sorjamaa. A review and comparison of strategies for
multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert Syst.
Appl., 39(8):7067–7083, 2012. URL https://doi.org/10.1016/j.eswa.2012.01.039. [p232]

S. F. Crone, M. Hibon, and K. Nikolopoulos. Advances in forecasting with neural networks? Empirical
evidence from the NN3 competition on time series prediction. International Journal of Forecasting, 27
(3):635–660, 2011. URL https://doi.org/10.1016/j.ijforecast.2011.04.001. [p239]

O. Dag and C. Yozgatligil. GMDH: An R package for short term forecasting via GMDH-type neural
network algorithms. The R Journal, 8(1):379–386, 2016. URL https://doi.org/10.32614/RJ-2016-
028. [p238]

M. Hibon and T. Evgeniou. To combine or not to combine: Selecting among forecasts and their
combinations. International Journal of Forecasting, 21(1):15–24, 2005. URL https://doi.org/10.1016/
j.ijforecast.2004.05.002. [p235]

R. Hyndman and Y. Khandakar. Automatic time series forecasting: The forecast package for R. Journal
of Statistical Software, 27(1):1–22, 2008. URL https://doi.org/10.18637/jss.v027.i03. [p229]

R. J. Hyndman and G. Athanasopoulos. Forecasting: Principles and Practice. OTexts, 2014. URL
https://www.otexts.org/book/fpp. [p229]

R. J. Hyndman and B. Billah. Unmasking the Theta method. International Journal of Forecasting, 19(2):
287 – 290, 2003. URL https://doi.org/10.1016/S0169-2070(01)00143-1. [p229]

R. J. Hyndman and A. B. Koehler. Another look at measures of forecast accuracy. International Journal
of Forecasting, pages 679–688, 2006. URL https://doi.org/10.1016/j.ijforecast.2006.03.001.
[p234]

N. Kourentzes. Nnfor: Time Series Forecasting with Neural Networks, 2017. URL https://CRAN.R-
project.org/package=nnfor. R package version 0.9.2. [p229]

M. Kuhn. Building predictive models in R using the caret package. Journal of Statistical Software, 28(5):
1–26, 2008. URL https://doi.org/10.18637/jss.v028.i05. [p229]

F. Martínez, M. P. Frías, M. D. Pérez, and A. J. Rivera. A methodology for applying k-nearest neighbor to
time series forecasting. Artificial Intelligence Review, 2017. URL https://doi.org/10.1007/s10462-
017-9593-z. [p229, 234, 235]

F. Martínez, M. P. Frías, M. D. Pérez, and A. J. Rivera. Dealing with seasonality by narrowing the
training set in time series forecasting with kNN. Expert Systems with Applications, 103:38–48, 2018.
URL https://doi.org/10.1016/j.eswa.2018.03.005. [p235]

D. Shaub and P. Ellis. forecastHybrid: Convenient Functions for Ensemble Time Series Forecasts, 2019. URL
https://CRAN.R-project.org/package=forecastHybrid. R package version 4.2.17. [p238]

X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, P. S.
Yu, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg. Top 10 algorithms in data mining.
Knowl. Inf. Syst., 14(1):1–37, 2007. URL https://doi.org/10.1007/s10115-007-0114-2. [p229]

W. Yan. Toward automatic time-series forecasting using neural networks. IEEE Trans. Neural Netw.
Learning Syst., 23(7):1028–1039, 2012. URL https://doi.org/10.1109/TNNLS.2012.2198074. [p235]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1016/j.ijforecast.2010.09.005
https://doi.org/10.1016/j.eswa.2012.01.039
https://doi.org/10.1016/j.ijforecast.2011.04.001
https://doi.org/10.32614/RJ-2016-028
https://doi.org/10.32614/RJ-2016-028
https://doi.org/10.1016/j.ijforecast.2004.05.002
https://doi.org/10.1016/j.ijforecast.2004.05.002
https://doi.org/10.18637/jss.v027.i03
https://www.otexts.org/book/fpp
https://doi.org/10.1016/S0169-2070(01)00143-1
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://CRAN.R-project.org/package=nnfor
https://CRAN.R-project.org/package=nnfor
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1007/s10462-017-9593-z
https://doi.org/10.1007/s10462-017-9593-z
https://doi.org/10.1016/j.eswa.2018.03.005
https://CRAN.R-project.org/package=forecastHybrid
https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1109/TNNLS.2012.2198074

CONTRIBUTED RESEARCH ARTICLES 242

G. Zhang, B. Eddy Patuwo, and M. Y. Hu. Forecasting with artificial neural networks:: The state of the
art. International Journal of Forecasting, 14(1):35–62, 1998. URL https://doi.org/10.1016/S0169-
2070(97)00044-7. [p229]

Francisco Martínez
Computer Science Department
University of Jaén
Spain
fmartin@ujaen.es

María P. Frías
Statistics and Operations Research Department
University of Jaén
Spain
mpfrias@ujaen.es

Francisco Charte
Computer Science Department
University of Jaén
Spain
fcharte@ujaen.es

Antonio J. Rivera
Computer Science Department
University of Jaén
Spain
arivera@ujaen.es

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1016/S0169-2070(97)00044-7
https://doi.org/10.1016/S0169-2070(97)00044-7
mailto:fmartin@ujaen.es
mailto:mpfrias@ujaen.es
mailto:fcharte@ujaen.es
mailto:arivera@ujaen.es

CONTRIBUTED RESEARCH ARTICLES 243

rollmatch: An R Package for Rolling
Entry Matching
by Kasey Jones, Rob Chew, Allison Witman, Yiyan Liu

Abstract The gold standard of experimental research is the randomized control trial. However,
interventions are often implemented without a randomized control group for practical or ethical
reasons. Propensity score matching (PSM) is a popular method for minimizing the effects of a
randomized experiment from observational data by matching members of a treatment group to similar
candidates that did not receive the intervention. Traditional PSM is not designed for studies that enroll
participants on a rolling basis and does not provide a solution for interventions in which the baseline
and intervention period are undefined in the comparison group. Rolling Entry Matching (REM) is a
new matching method that addresses both issues. REM selects comparison members who are similar
to intervention members with respect to both static (e.g., race) and dynamic (e.g., health conditions)
characteristics. This paper will discuss the key components of REM and introduce the rollmatch R
package.

Introduction

In experimental studies, scientists design research protocols to empirically test their hypotheses of
causal relationships between one or more independent variables and an outcome variable. To isolate
the effects of a treatment while mitigating confounding introduced by allocation or selection bias,
researchers randomly assign treatments whenever possible. In certain scenarios, it is not always
feasible to randomize who receives an intervention, due to cost, coordination, or ethical considerations
(Resnik, 2008). This situation is particularly common in disciplines that study human behavior and
health, including public policy, international development, medicine, and several social sciences
disciplines.

To help address this methodological barrier, researchers have developed quasi-experimental
designs to estimate the causal impact of an intervention where subjects are not randomly assigned
a treatment (Campbell and Stanley (1996); Meyer (1995); Shadish et al. (2001)). Propensity score
matching (Rosenbaum and Rubin (1983); Dehejia and Wahba (2002)) is a popular quasi-experimental
method that attempts to mimic randomization by matching units that received the treatment with
units having similar or identical observable covariates who did not receive treatment. This matching
procedure helps create more meaningful comparisons because variables that might contribute to
individuals receiving the treatment are controlled for. A propensity score, “the conditional probability
of assignment to a particular treatment given a vector of observed covariates" (Rosenbaum and
Rubin, 1983), is used to assess similarities between an individual receiving the treatment and potential
matches. Though historically researchers have used logistic or probit regression to model propensity
scores, machine learning classification methods are becoming attractive alternatives, due to their
ability to deal implicitly with interactions and nonlinearities and empirical evidence supporting their
ability to accurately predict outcomes (Lee et al. (2010); Westreich et al. (2010)).

PSM falls under the larger umbrella of causal inference methods and is used within the Neyman-
Rubin causal modeling framework (Rubin, 1978). Under this framework, obtaining unbiased causal
estimates requires two standard assumptions. First, assignment to treatment must be independent of
potential outcomes. And second, we assume that all treated individuals receive the same treatment
and treatment of one person does not affect the outcome of another.

Rolling Entry Matching

Traditional propensity score matching designs are cross-sectional in nature, matching on covariates
before the intervention and measuring outcomes after the intervention to analyze the effect of a
treatment at a specific point in time. While effective in many situations, this approach inherently
assumes that covariates do not change in a time window relevant for the analysis, or if they do,
that these changes will not also affect the outcome variable. In many areas such as health care and
epidemiology, relevant time-varying covariates are not uncommon and cause difficulties for traditional
matching approaches. Longitudinal settings can also add complexity when exposures or treatments
can vary with time or when the treatment entry date is undefined for the control group (Stuart, 2010).

Rolling entry matching (Witman et al., 2018) is a propensity score matching method designed for
longitudinal or panel studies where participants to be treated are enrolled on a rolling basis, a common

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=rollmatch

CONTRIBUTED RESEARCH ARTICLES 244

practice in health care interventions where delaying treatment may impact patient health. We can
use rolling entry matching to retrospectively select comparison group members who are similar to
intervention members with respect to both static characteristics (e.g., race) and dynamic characteristics
that change over time (e.g., health conditions). Incorporating time-varying characteristics into the
matching procedure is important for health care interventions because a participant’s health and
medicinal utilization often predict entry into an intervention.

REM is also effective when there is no intervention start date for the comparison group. For certain
studies, the comparison group never actually receives an intervention. While this is not a problem
for PSM methods in a pre and post setting, matching individuals based on when they could have
started an intervention is complicated in longitudinal settings with non-uniform intervention start
dates. REM address both the rolling entry and missing intervention start date issues.

Typical propensity score methods are not designed to handle rolling entry because the baseline
period for potential comparison individuals needs to be different for each treatment participant. To
illustrate, consider two hypothetical people: (1) Sue, who started taking a prescription (the treatment),
and (2) Jan, who is similar to Sue in static characteristics but does not take this medicine. If Sue started
her pills in March, we might compare Sue and Jan’s data from February. If Sue started her pills in
June, we might compare Sue and Jan’s data from May. This is done because Jan could have started
taking pills in any month. REM helps in making these comparisons by turning a single comparison
individual into multiple psuedo-comparison individuals, one for each unique intervention period
occurring in the dataset.

Rolling entry matching requires a quasi-panel dataset and is performed in three phases. The
quasi-panel dataset should consist of all available data for both treatment and control subjects and
should be longitudinal.

1. Reduce Data: The quasi-panel dataset is reduced based on two specifications. First, all treatment
observations are filtered to observations whose current time period equals the treatments entry
period minus some value. For example, if Sue was treated in May and we want to look back
1 time period, we would filter to Sue’s data from April. This value is called lookback. And
second, after filtering treatment observations, we filter the control observations to those who
share a time period with any treatment individual. Continuing our example, we would keep all
control data with a time value equal to April.
The lookback value has a default value of 1, as researchers usually consider only the time period
directly before entering the study (i.e. lookback = 1). In certain studies, researchers would want
the lookback to be greater than one. For example, researchers could find participants that will
begin a new diet in 4 weeks. Their health conditions may change between the announcement
and the official beginning of the treatment; lookback would be set to four.

2. Calculate Propensity Scores: Propensity scores are calculated for all data left after the reduction
step.

3. Find Matches: Individuals are matched based on their propensity scores and entry period
through a matching algorithm developed specifically for REM (see Matching algorithm). When
a match is created, the control observation is assigned the intervention start date of the treatment
observation.

Rolling entry matching is one of several matching methods used to select a comparison group for
treatments that occur on a rolling basis, including balance risk set matching (Li et al., 2011), stepwise
matching (Yi, 2014), and sequential cohort matching (Seeger et al. (2005); Schneeweiss et al. (2011);
Mack et al. (2013)). In addition, inverse probability propensity score weighting methods, such as
marginal structural models (Robins et al., 2000), have also been suggested to deal with time-varying
covariates. However, despite its importance across a number of different settings, there are few
implementations of longitudinal propensity score methods for R. At the time of writing, the only
packages that natively support longitudinal propensity score methods are (1) the CBPS package, which
implements covariate balancing propensity score for longitudinal settings to be used in conjunction
with marginal structural models (Imai and Ratkovic, 2015); (2) the ipw package, which allows users to
estimate marginal structural models; and (3) the rollmatch package, which implements rolling entry
matching. Of these three, only rollmatch provides an integrated matching approach, as both CBPS
and ipw rely on propensity score weighting.

We now introduce rollmatch, an R package for performing rolling entry matching. In particular,
we will provide an overview of the main functions in rollmatch, a walk-through of the rolling entry
matching algorithm, and commentary on relevant parameter choices such as caliper selection.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=CBPS
https://CRAN.R-project.org/package=ipw
https://CRAN.R-project.org/package=rollmatch

CONTRIBUTED RESEARCH ARTICLES 245

The rollmatch package

The rollmatch package is comprised of three functions.

• reduce_data(): Step 1 of REM - Reduces the input panel dataset

• score_data(): Step 2 of REM - Calculates propensity scores for the reduced data. This function
is not required if users want to develop their own propensity score models

• rollmatch(): Step 3 of REM - Performs the matching algorithm and produces output

rollmatch example:

library(rollmatch)
data(package = "rollmatch", "rem_synthdata_small")
reduced_data <- reduce_data(data = rem_synthdata_small, treat = "treat",

tm = "quarter", entry = "entry_q",
id = "indiv_id", lookback = 1)

fm <- as.formula(treat ~ qtr_pmt + yr_pmt + age)
vars <- all.vars(fm)
scored_data <- score_data(reduced_data = reduced_data,

model_type = "logistic", match_on = "logit",
fm = fm, treat = "treat",
tm = "quarter", entry = "entry_q", id = "indiv_id")

output <- rollmatch(scored_data, data=rem_synthdata_small, treat = "treat",
tm = "quarter", entry = "entry_q", id = "indiv_id",
vars = vars, lookback = 1, alpha = .2,
standard_deviation = "average", num_matches = 3,
replacement = TRUE)

Rolling entry matching: a walkthrough

This section describes the operations performed in rollmatch through an illustrative example. Though
some of these operations are hidden from the user, understanding the matching algorithm will help
troubleshoot potential errors and better inform the selection of parameter values. In addition to
discussing steps taken to trim potential matches and calculate propensity scores, special attention is
paid to the specifics of the matching algorithm.

Step 1: Trim the treatment data

We begin with a panel dataset that includes individuals who received an intervention at different time
periods, as well as other individuals that are being considered for selection into the comparison group.
For each individual, we have background variables (e.g., demographics, health conditions, spending
habits, etc.) at each time step, an indicator variable for if the individual was treated, a variable
specifying the time period of the observation, and a time period variable for when the participant
entered the intervention. We let Treat = 1 indicate an individual who had an intervention and Treat
= 0 indicate someone who did not. Finally, we will let lookback = 1.

ID Treat Time Entry Background Variables

X 1 1 2

X 1 2 2

X 1 3 2

Y 1 1 2

. .

Table 1: Example dataset of treated observations

In this example, individual X has 3 quarters of data and is part of the treatment group. Since
participant X entered the treatment in time period 2 and lookback = 1, her data from time period
1 will be used for matching with control observations. As REM allows for matching on dynamic

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 246

variables that can change over time, matching individual X on observations prior to the intervention
provides a clean comparison in which we do not need to worry about the influence of the intervention
on the dynamic covariates.

Recall that lookback can be written as entry-time. Rows that do not match entry-time = 1 are
then dropped.

ID Treat Time Entry Background Variables

X 1 1 2

Y 1 1 2

. .

Table 2: Dropping treated observations based on lookback = 1

Step 2: Trim Control data

Let Table 3 represent the control data.

ID Treat Time Background Variables

A 0 1

A 0 2

A 0 3

B 0 1

. .

Table 3: Original control observations

Since rolling entry matching requires that the entry period of any potential comparison observa-
tions be equal to the entry period of a treatment observation, we drop all comparison observations
that do not share a time period with at least one treatment record. Our example treatment observation
data only has individuals that enter the intervention at time periods 2 and 3. Therefore, we only look
at control observations whose time is equal to 1 or 2.

ID Treat Time Background Variables

A 0 1

A 0 2

B 0 1

. .

Table 4: Control data after dropping observations

Step 3: Calculate propensity scores and absolute differences for all possible matches

Users are allowed to calculate their own propensity scores to use with the rollmatch matching
algorithm, or they can use the scoring function provided in the package. If using score_data(), users
can specify either “logistic” or “probit” regression and the formula for the model (i.e., selecting the
covariates to be used). Once a propensity score has been generated for all observations, we look at
the absolute difference in scores for all possible matches between control and treatment observations.
Recall that in order to be a match, the time period of a control observation must match the time period
of a treatment observation. We have provided Table 5 in full so that we can go into detail about the
matching algorithm.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 247

Time Treat ID Treat Score Control ID Control Score Difference

1 X 0.95 A 0.16 0.79

1 X 0.95 B 0.42 0.53

1 X 0.95 C 0.61 0.34

1 X 0.95 D 0.32 0.63

1 X 0.95 E 0.15 0.80

1 Y 0.03 A 0.16 0.13

1 Y 0.03 B 0.42 0.39

1 Y 0.03 C 0.61 0.58

1 Y 0.03 D 0.32 0.29

1 Y 0.03 E 0.15 0.12

2 Z 0.65 A 0.63 0.02

2 Z 0.65 B 0.26 0.39

2 Z 0.65 C 0.05 0.60

2 Z 0.65 D 0.57 0.08

2 Z 0.65 E 0.43 0.22

2 Q 0.11 A 0.63 0.52

2 Q 0.11 B 0.26 0.15

2 Q 0.11 C 0.05 0.06

2 Q 0.11 D 0.57 0.46

2 Q 0.11 E 0.43 0.32

Table 5: Calculated absolute differences for all matches from Table 2 and Table 4.

Step 4: Trim the Comparison Pool

Caliper

For the data in Table 5, treatment id X has been compared to control ids A, B, C, D, and E. The lowest
difference value for these five comparisons is .34, which while being the best match available, may
still be too different to provide a high quality match and may bias estimates of the outcome if included
(Lunt, 2013). To limit the potential matches, an alpha value between 0 and 1 can be specified. The
alpha value is a scaling factor that effects which propensity scores are considered. A value closer to
1 allows for a wider range of propensity scores to be considered, while a value close to 0 provides
stricter requirements for matching. The alpha value is multiplied by the pooled standard deviation of
the propensity scores; this final value is called the caliper and is used as a cutoff.

Consequently, if an alpha is specified, there is no guarantee that each treatment ID will receive a
match. As caliper selection can play a large role in selecting potential matches, we have provided Ap-
pendix A: Theorem and Appendix B: Selecting the appropriate pooled standard deviation discussing
caliper selection.

Number of Matches

When running rollmatch(), the user can specify the maximum number of control matches that should
be assigned, when possible, to each treatment observation. If the user sets this to one, and no additional
steps are taken, every single treatment observation will be assigned one control observation, regardless
of the quality of their best-match (assuming there are enough control observations). However, if the
user specifies an alpha value and a caliper is used, there may be some treatment observations that do
not receive a match. As the value of alpha decreases, the likelihood that some treatment observations
do not have a match will rise. If any treatment observations are not matched, their ids are listed in the
output as ids_not_matched.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 248

Currently, the user can only guarantee that each treatment observation be assigned at least one
match (i.e. by not specifying an alpha). In a future version of rollmatch, the user will be able to specify
the number of matches to attempt to create (num_matches), as well as a minimum number of matches
to create. This would ensure that each treatment observation is matched with some number of control
individuals, regardless of the alpha selected. It would also allow for other treatment observations to
be matched to more observations if enough control individuals are within the caliper.

For simplicity, we will not trim the comparison pool from Table 5 for our example.

Step 5: Assign matches

After the comparison pool has been created and trimmed, treatment and control observations are
matched. Rosenbaum and Rubin (1985) used the following matching rules:

1. Randomly order treatment observations

2. For the first treatment subject, based on the comparison pool find all comparison matches for the
treated observation whose difference is less than the caliper. If no match exists, match treated
observation to control observation with smallest difference

3. From this group, select a match based on the Mahalanobis distance for the background variables

4. Remove the treated and matched observation and repeat steps 2-4 for the next treated observa-
tion

There have already been several R packages released that make use of this original algorithm
while making modifications to the algorithm to fit the specific goal of the package. Packages such as
MatchIt, Matching, and optmatch all offer various matching algorithms for propensity scores.

Rolling entry matching takes a different approach by matching non-participants based on the entry
period for which their data is most similar to their matched participant. Whereas other methods like
sequential cohort matching (Seeger et al., 2005) start from specific cohorts to begin matching (allowing
early cohorts to get the matches that work the best for them without consideration of later cohorts),
rolling entry matching considers all periods when matching non-participants to participants. The
algorithm for rollmatch must be different because control participants are treated as if they could
enter the study at any time. This creates a lot more potential matches per observation. Furthermore,
a control observation could best match multiple treatment observations across multiple quarters of
entry and there must be logic to handle this scenario.

Matching algorithm

Each treated observation is initially assigned to its best-matching control observation based on the
smallest absolute difference between their propensity scores. Recall that the comparison pool only
consists of treatment/control pairs that have already been matched on their entry period. As long
as the control is not the best-match for another treated observation of a different entry quarter, then
the two are matched and the algorithm continues. Recall that any given control individual could
have several data entries (one for each quarter they have data available). It is possible that a control
observation could be matched to two different treatment observations who entered a study in different
time periods. Using Table 5 we have the following matches for iteration one of the algorithm:

Time Treat ID Treat Score Control ID Control Score Difference

1 X 0.95 C 0.61 0.34

1 Y 0.03 E 0.15 0.12

2 Q 0.11 C 0.05 0.06

1 Z 0.65 A 0.63 0.02

Table 6: Possible matches for iteration one

Notice that control individual C has been matched to X in time period 1 and matched to Q in time
period 2. Since the propensity score difference between Q and C is smaller than the difference between
X and C, Q will be matched to C for time period 2, and X will not be matched to any control this round.
If X and Q enrolled in the same quarter, then control C would be matched to both treatments if the
replacement parameter was set to TRUE, indicating matching with replacement is desired. replacement

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=MatchIt
https://CRAN.R-project.org/package=Matching
https://CRAN.R-project.org/package=optmatch

CONTRIBUTED RESEARCH ARTICLES 249

Time Treat ID Treat Score Control ID Control Score Difference

1 X .95 C .61 .34

1 Y .03 E .15 .12

1 W .70 C .61 .09

2 Q .11 C .05 .06

Table 7: Alternative possible matches for iteration one

allows for multiple treatments to be assigned the same control observation if the treatments enrolled
in the same quarter. Consider the alternative set of matches in Table 7.

If replacement is TRUE and a control individual is matched to multiple treatment IDs for multiple
quarters, we take the average difference for all treatment IDs in each quarter to make the final decision.
In Table 7, control C is the best match for X and W in time period 1, and the best match for Q in time
period 2. The average difference for X and W is .215 and the average difference for Q is simply .06. In
this case, Control C will only be matched with treatment Q.

After each iteration of assignment, any matched treatment and control observations are removed
from the pool of potential matches and the process is repeated. Once all treatment observations have
been assigned the desired number of matches, or there are no more possible matches remaining, the
process is complete.

An explaination of caliper selection

Rosenbaum and Rubin used the results of Cochran and Rubin (1973) to conclude that under certain
conditions, specific caliper widths could remove a certain percentage of the bias of confounding
variables (Rosenbaum and Rubin, 1985). Let σ2

1 and σ2
2 be the variances of the logit of the propensity

scores (referred to as just variance going forward) for the treated and control groups, and let:

σ =
√
[(σ2

1 + σ2
2)/2]. (1)

Finally, let our caliper equal α ∗ σ. According to Rosenbaum and Rubin, at different levels of α, we
can remove different levels of bias. Austin (2010) conducted Monte Carlo simulations to verify these
findings. We have outlined the reduction in bias in Table 8 . Note that in this case, the variance for the
treatment and control groups must be equal.

Alpha Rosenbaum and Rubin Austin

.2 99% At least 99.3%

.6 89% 95.2%-99.6%

Table 8: Expected bias reduction at various α levels

The likelihood that the variance of the two groups being equal is unknown, and although Rosen-
baum and Rubin (1985) provided estimates for bias reduction when they are equal, the guidance on
selecting a caliper is minimal. We have left the selection of the caliper width up to the user, but we will
go into further detail about the two parameters effecting the caliper that are included in rollmatch.

The alpha parameter must be 0 or greater. At 0, the trimming function is ignored. For all values
above 0, the dataset of potential control matches is trimmed based on if the difference between scores
is less than α ∗ σ.

The second decision the user can make is on how sigma is calculated. Both Rosenbaum and Rubin,
and Austin use the pooled standard deviation, which we have defined as σ above (Rosenbaum and
Rubin (1983); Austin (2010)). Consider the alternative formula for pooled standard deviation for i
groups:

σ =

√
(n1 − 1)σ2

1 + (n2 − 1)σ2
2 + . . . + (ni − 1)σ2

i
(n1 + n2 + . . . + ni)− i

(2)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 250

Let σf 1 be the average pooled standard deviation that our sources have been using so far, and let
σf 2 be equal to the weighted pooled standard deviation for that we just introduced (for i = 2). These
two calculations are only equal only under specific conditions (see Appendix A: Theorem). If a dataset
has a much larger treatment or control group, or the variances for the two groups propensity scores
are vastly different, the weighted pooled standard deviation may do a better job at selecting a cutoff.

Conclusion

We have presented rollmatch as an R package for performing rolling entry matching. When obser-
vational studies are conducted on a rolling entry basis or when control entry periods do not exist,
rollmatch is an effective package for finding matches between treated and untreated subjects. The
amount of bias introduced by confounding variables can often be reduced by using propensity score
matching. However, rolling entry matching furthers this ability by matching treated individuals to
control individuals as if they were enrolled at the same time. The parameters and options included in
rollmatch create a robust and user friendly package. We hope to continue expanding this package as
further development of rolling entry matching is completed.

Acknowledgements

rollmatch was made possible by the research conducting on rolling entry matching by Allison Witman,
Yiyan Liu, Mahin Manley, and Chris Beadles. The concepts, matching algorithm, and techniques
demonstrated in this paper should be credited to them. We would also like to thank Georgiy Bobashev,
a Fellow at RTI International. This paper would not have been written without him.

Appendix A: Theorem

Theorem 1. σf 1 is equal to σf 2 if and only if n1 = n2 or σ1 = σ2

Proof. Assume σf 1 and σf 2 are equal. We will show that this is true only when n1 = n2 or σ1 = σ2.

σf 1 = σf 2√
σ2

1 + σ2
2

2
=

√
(n1 − 1)σ2

1 + (n2 − 1)σ2
2

n1 + n2 − 2

Variance’s are positive by nature and the number of samples in each group must be greater than 0.
We can remove the square root.

σ2
1 + σ2

2
2

=
(n1 − 1)σ2

1 + (n2 − 1)σ2
2

n1 + n2 − 2

(σ2
1 + σ2

2)(n1 + n2 − 2) = 2[(n1 − 1) ∗ σ2
1 + (n2 − 1) ∗ σ2

2]

σ2
1 ∗ n1 + σ2

1 ∗ n2 + σ2
2 ∗ n1 + σ2

2 ∗ n2 = 2σ2
1 ∗ n1 + 2σ2

2 ∗ n2

σ2
1 ∗ n2 + σ2

2 ∗ n1 = σ2
1 ∗ n1 + σ2

2 ∗ n2

This can be written two ways.

σ2
1 ∗ (n2 − n1) = σ2

2 ∗ (n2 − n1)

n2(σ
2
1 − σ2

2) = n1(σ
2
1 − σ2

2)

Let’s examine these two equations. If n1 6= n2, we can divide (n2 − n1) from both sides of the first
equation, and we end up with σ2

1 = σ2
2 . This implies σ1 = σ2 because variances cannot be negative.

Similarly, if σ1 6= σ2, we can divide (σ2
1 − σ2

2) from both sides of the second equation and we find that
n1 = n2. The original equation can only hold if at least one equality holds: n1 = n2 or σ1 = σ2.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=rollmatch

CONTRIBUTED RESEARCH ARTICLES 251

Appendix B: Selecting the appropriate pooled standard deviation

Selection between σf 1 and σf 2 is important when the variances of the treatment and control group are
not equal. Setting α = .2 may not reduce 99% of the bias due to confounding variables if this is true.

Let us examine how different our results are when using different options. We will use the
following parameters:

formula <- as.formula(treat ~ qtr_pmt + yr_pmt + age)
tm = 'quarter'
entry = 'entry_q'
id = 'indiv_id'
lookback = 1
match_on = 'logit'
model_type = 'logistic'

For the smaller synthetic dataset, the variance (of the logit of the propensity score) of our treated
group is .891. While the variance of the untreated group is 4.690. In this case, σf 1 is equal to 1.658 and
σf 2 equals 2.141. The original comparison pool had 15,000 treatment and control comparison. Table 9
shows how the alpha value and choice of sigma limit the number of potential matches.

Table 9: Pooled standard deviation comparisons

Alpha Sigma Comparions Available
.2 σf 1 414
.2 σf 2 516
.6 σf 1 1044
.6 σf 2 1192
1.0 σf 1 1350
1.0 σf 2 1451

We did not do any simulations of our own to determine how much bias could be reduced when
variances are not equal and when the two σ calculations are implemented. Some studies such as Wang
et al. (2013) have used σf 2 in their calculations. However, when they used only a single treatment
group they still assumed equal variances.

To summarize why this is important, if variances among the groups are not equal, the amount of
bias reduced at certain levels of alpha will not be the same as what is suggested by Table 8.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 252

Bibliography

P. Austin. Optimal caliper widths for propensity-score matching when estimating differences in means
and differences in proportions in observational studies. Pharmaceutical Statistics, 10(2):150–161, 2010.
URL https://doi.org/10.1002/pst.433. [p249]

D. Campbell and J. Stanley. Experimental and Quasi-Experimental Designs for Research. Houghton Mifflin
Company, 1996. [p243]

W. Cochran and D. Rubin. Controlling bias in observational studies: A review. Sankhyā: The Indian
Journal of Statistics, Series A, 35(4):417–446, 1973. URL https://www.jstor.org/stable/25049893.
[p249]

R. Dehejia and S. Wahba. Propensity score-matching methods for nonexperimental causal stud-
ies. Review of Economics and Statistics, 84(1):151–161, 2002. URL https://doi.org/10.1162/
003465302317331982. [p243]

K. Imai and M. Ratkovic. Robust estimation of inverse probability weights for marginal structural
models. Journal of the American Statistical Association, 110, 2015. URL https://doi.org/10.1080/
01621459.2014.956872. [p244]

B. Lee, J. Lessler, and E. Stuart. Improving propensity score weighting using machine learning.
Statistics in Medicine, 29(3):337–346, 2010. URL https://doi.org/10.1002/sim.3782. [p243]

Y. Li, K. Propert, and P. Rosenbaum. Balanced risk set matching. Journal of the American Statistical
Association, 96, 2011. URL https://doi.org/10.1198/016214501753208573. [p244]

M. Lunt. Selecting an appropriate caliper can be essential for achieving good balance with propensity
score matching. American Journal of Epidemiology, 179(2):226–235, 2013. URL https://doi.org/10.
1093/aje/kwt212. [p247]

C. Mack, R. Glynn, M. Brookhart, W. Carpenter, A. Meyer, R. Sandler, and T. Stüurmer. Calendar
time-specific propensity scores and comparative effectiveness research for stage iii colon cancer
chemotherapy. Pharmacoepidemiology and Drug Safety, 22(8):810–818, 2013. URL https://doi.org/
10.1002/pds.3386. [p244]

B. Meyer. Natural and quasi-experiments in economics. Journal of Business and Economic Statistics, 13
(2):151–161, 1995. URL https://doi.org/10.2307/1392369. [p243]

D. Resnik. Randomized controlled trials in environmental health research: Ethical issues. Journal
of Environmental Health, 70(6):28–30, 2008. URL https://www.ncbi.nlm.nih.gov/pubmed/18236934.
[p243]

J. Robins, M. Hernán, and B. Brumback. Marginal structural models and causal inference in epidemi-
ology. Epidemiology, 11(5):550–560, 2000. URL https://www.ncbi.nlm.nih.gov/pubmed/10955408.
[p244]

P. Rosenbaum and D. Rubin. The central role of the propensity score in observational studies for causal
effects. Biometrika, 70(1):41–55, 1983. URL https://doi.org/10.1093/biomet/70.1.41. [p243, 249]

P. Rosenbaum and D. Rubin. Constructing a control group using multivariate matched sampling
methods that incorporate the propensity score. The American Statistician, 39(1):33–38, 1985. URL
https://doi.org/10.2307/2683903. [p248, 249]

D. Rubin. Bayesian inference for causal effects: The role of randomization. The Annals of Statistics, 6(1):
34–58, 1978. URL https://www.jstor.org/stable/2958688. [p243]

S. Schneeweiss, J. Gagne, R. Glynn, M. Ruhl, and J. Rassen. Assessing the comparative effectiveness of
newly marketed medications: Methodological challenges and implications for drug development.
Clinical Pharmacology And Therapeutics, 90(6):777–790, 2011. URL https://doi.org/10.1038/clpt.
2011.235. [p244]

J. Seeger, P. Williams, and A. Walker. An application of propensity score matching using claims data.
Pharmacoepidemiology and Drug Safety, 14(7):465–476, 2005. URL https://doi.org/10.1002/pds.
1062. [p244, 248]

W. Shadish, T. Cook, and D. Campbell. Experimental and Quasi-Experimental Designs for Generalized
Causal Inference. Houghton Mifflin Company, 2001. [p243]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1002/pst.433
https://www.jstor.org/stable/25049893
https://doi.org/10.1162/003465302317331982
https://doi.org/10.1162/003465302317331982
https://doi.org/10.1080/01621459.2014.956872
https://doi.org/10.1080/01621459.2014.956872
https://doi.org/10.1002/sim.3782
https://doi.org/10.1198/016214501753208573
https://doi.org/10.1093/aje/kwt212
https://doi.org/10.1093/aje/kwt212
https://doi.org/10.1002/pds.3386
https://doi.org/10.1002/pds.3386
https://doi.org/10.2307/1392369
https://www.ncbi.nlm.nih.gov/pubmed/18236934
https://www.ncbi.nlm.nih.gov/pubmed/10955408
https://doi.org/10.1093/biomet/70.1.41
https://doi.org/10.2307/2683903
https://www.jstor.org/stable/2958688
https://doi.org/10.1038/clpt.2011.235
https://doi.org/10.1038/clpt.2011.235
https://doi.org/10.1002/pds.1062
https://doi.org/10.1002/pds.1062

CONTRIBUTED RESEARCH ARTICLES 253

E. Stuart. Matching methods for causal inference: A review and a look forward. Statistical science : a
review journal of the Institute of Mathematical Statistics, 25(1):1–21, 2010. URL https://doi.org/10.
1214/09-STS313. [p243]

Y. Wang, C. Hongwei, L. Chanjuan, L. Wang, S. Jiugang, and J. Xia. Optimal caliper width for
propensity score matching of three treatment groups: A monte carlo study. PLOS ONE, 2013. URL
https://doi.org/10.1371/journal.pone.0081045. [p251]

D. Westreich, J. Lessler, and M. Funk. Propensity score estimation: Machine learning and classification
methods as alternatives to logistic regression. Journal of Clinical Epidemiology, 63(8):826–833, 2010.
URL https://doi.org/10.1016/j.jclinepi.2009.11.020. [p243]

A. Witman, C. Beadles, L. Yiyan, A. Larsen, N. Kafali, S. Gandhi, P. Amico, and T. Hoerger. Comparison
group selection in the presence of rolling entry for health services research: Rolling entry matching.
Health Services Research, 2018. URL https://doi.org/10.1111/1475-6773.13086. [p243]

S. Yi. New Matching algorithm?Outlier First Matching (OFM) and Its Performance on Propensity Score
Analysis (PSA) under New Stepwise Matching Framework (SMF). PhD thesis, State University of
New York at Albany, 2014. URL https://pqdtopen.proquest.com/doc/1610821085.html?FMT=ABS.
[p244]

Kasey Jones
Division for Statistical and Data Sciences
RTI International
United States
krjones@rti.org

Rob Chew
Division for Statistical and Data Sciences
RTI International
United States
rchew@rti.org

Allison Witman
Assistant Professor of Economics
University of North Carolina Wilmington
United States
witmana@uncw.edu

Yiyan (Echo) Liu
Research Economist
RTI International
United States
yliu@rti.org

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1214/09-STS313
https://doi.org/10.1214/09-STS313
https://doi.org/10.1371/journal.pone.0081045
https://doi.org/10.1016/j.jclinepi.2009.11.020
https://doi.org/10.1111/1475-6773.13086
https://pqdtopen.proquest.com/doc/1610821085.html?FMT=ABS
mailto:krjones@rti.org
mailto:rchew@rti.org
mailto:witmana@uncw.edu
mailto:yliu@rti.org

CONTRIBUTED RESEARCH ARTICLES 254

Associative Classification in R: arc,
arulesCBA, and rCBA
by Michael Hahsler, Ian Johnson, Tomáš Kliegr and Jaroslav Kuchař

Abstract Several methods for creating classifiers based on rules discovered via association rule
mining have been proposed in the literature. These classifiers are called associative classifiers and
the best-known algorithm is Classification Based on Associations (CBA). Interestingly, only very few
implementations are available and, until recently, no implementation was available for R. Now, three
packages provide CBA. This paper introduces associative classification, the CBA algorithm, and how
it can be used in R. A comparison of the three packages is provided to give the potential user an idea
about the advantages of each of the implementations. We also show how the packages are related to
the existing infrastructure for association rule mining already available in R.

Introduction

Association rule learning (Agrawal et al., 1993) was initially designed for data exploration to discover
interesting patterns in very large and sparse datasets. Several years after its inception, association rule
learning was also adapted to create rule-based classification models. The first algorithm called CBA
(Classification Based on Associations) was introduced by Liu et al. (1998). While there were multiple
follow-up algorithms providing some improvements in classification performance (e.g., CPAR (Yin
and Han, 2003) and FARC-HD-OVO (Elkano et al., 2015)), these performance gains are offset by a
deterioration of comprehensibility of the produced set of rules. For some practical applications, CBA
still provides a very good balance between accuracy, speed, and model comprehensibility. Unlike
many more recent approaches, CBA classifiers are easy to interpret and apply: the resulting ruleset
is relatively small, rules are crisp (i.e., not fuzzy rules), and rules are sorted according to predictive
strength. CBA uses a simple first-match strategy for classification, where the first matching rule
determines the predicted class.

With the exception of fuzzy approaches such as FARC-HD, associative classification approaches
require a dataset in the form of transactions, i.e., all attributes need to be binary indicators and thus
numeric attributes in the input data need to be discretized. This puts additional demands on the user
and may deteriorate model fit on datasets with numerical attributes. Another disadvantage relating to
CBA and most other associative classification approaches is that these algorithms require the user to
specify a minimum support and a minimum confidence threshold for association rule mining. The
performance (accuracy and speed) is typically very sensitive to a proper selection of these threshold
values. Setting these thresholds too high can result in the classifier underfitting the dataset or even an
empty rule list. Too low values can lead to a combinatorial explosion with an excessive number of
rules generated, leading to speed and memory issues. Another limitation that applies specifically to
CBA is that even when the user specifies reasonable thresholds, CBA typically produces more rules
than other related approaches (Alcala-Fdez et al., 2011). These limitations may be the reason why
CBA implementations have not been available in many computational environments for machine
learning and statistics. However, in the last several years, three packages with CBA implementations
appeared on CRAN (listed by date of the first release): rCBA (Kuchar, 2018), arc (Kliegr, 2018) and
arulesCBA (Johnson and Hahsler, 2019). Each of these packages offers some enhancements over the
original CBA algorithm to address some shortcomings of association rule-based classification.

The goal of this paper is to introduce prospective users to the concepts used in associative classifi-
cation and the CBA algorithm in particular. We provide detailed information on the three available R
packages and the enhancements they provide, followed by hands-on examples.

The paper is organized as follows. We first introduce association rule mining, followed by a
discussion of the CBA algorithm. We present existing CBA implementations and focus on the features
and the use of the three new R implementations. We conclude with a short comparison of the features
and a run-time comparison on a typical dataset.

Background: Association rule mining

Associative classifiers like CBA are based on association rules. Mining association rules was first
introduced by Agrawal et al. (1993) and, following the notation used by Agrawal et al. (1993), Hahsler
et al. (2005) and Tan et al. (2006), can formally be defined as:

Let D = {t1, t2, . . . , tm} be a set of transactions called the database, and let I = {i1, i2, . . . , in} be

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arulesCBA

CONTRIBUTED RESEARCH ARTICLES 255

transaction ID items
1 milk, bread
2 bread, butter
3 beer
4 milk, bread, butter
5 bread, butter

Figure 1: An example supermarket database with five transactions.

the set of all items considered in the database. Each transaction in D has a unique transaction ID and
contains a subset of the items in I. To illustrate the concepts, we use a small example from the super-
market domain introduced by Hahsler et al. (2005). The set of items is I = {milk, bread, butter, beer}
and a small database containing five transactions with these items is shown in Figure 1. An example
rule for the supermarket could be {milk, bread} ⇒ {butter}meaning that if milk and bread is bought,
customers also may buy butter.

A rule is defined as an expression X ⇒ Y where X, Y ⊆ I and X ∩ Y = ∅. The sets of items (for
short itemsets) X and Y are called antecedent (left-hand-side or LHS) and consequent (right-hand-side or
RHS) of the rule. Often rules are restricted to only a single item in the consequent. Association rules
are rules which meet user-specified minimum support and minimum confidence thresholds. The
support, supp(X), of an itemset X is a measure of importance defined as the proportion of transactions
in the dataset which contain the itemset. The confidence of a rule is defined as conf(X ⇒ Y) =
supp(X ∪Y)/supp(X), measuring how likely it is to see Y in a transaction containing X.

An association rule X ⇒ Y needs to satisfy

supp(X ∪Y) ≥ σ and conf(X ⇒ Y) ≥ δ,

where σ and δ are the minimum support and minimum confidence thresholds, respectively. For
example, the rule {milk, bread} ⇒ {butter} has a support of 1/5 = 0.2 and a confidence of 0.2/0.4 =
0.5 in the database in Figure 1, which means that for 50% of the transactions containing milk and
bread, the rule is correct. Confidence can be interpreted as an estimate of the probability P(Y | X), the
probability of finding the RHS of the rule in transactions under the condition that these transactions
also contain the LHS (see, e.g., Hipp et al., 2000).

Another popular measure for the importance of a rule is lift (Brin et al., 1997). The lift of a rule is
defined as lift(X ⇒ Y) = supp(X ∪Y)/(supp(X) supp(Y)), and can be interpreted as the deviation
of the support of the whole rule from the support expected under independence given the supports of
the LHS and the RHS. Lift values greater than one indicate positive associations between the rule’s
LHS and RHS.

Because associative classification is based on association rules, transaction data is required as the
input. Here each object (or instance) needs to be converted into a transaction containing only binary
items. Discrete variables can be converted into items using a set of 0-1 dummy variables, one for
each possible value. Continuous variables need to be first discretized and then converted. Typically,
discretization for associative classifiers is performed using a class-based (also called supervised)
discretization strategy, which identifies ranges for several intervals using information from the class
variable (Yin and Han, 2003). The most popular method for class-based discretization is Minimum
Description Length Principle (MDLP) discretization (Fayyad and Irani, 1993), which uses a greedy
procedure to find cut points based on the entropy of the induced partition of the data with respect
to the class variable. MDLP was also used in the initial paper on CBA (Liu et al., 1998). One of the
advantages of MDLP is that there are no external parameters to be set; the optimal number of cut
points is determined automatically using a stopping rule.

The CBA algorithm

Liu et al. (1998) proposed the first approach to associative classification called CBA. In CBA, a special
type of association rules called Class Association Rules (CARs) are used for classification. A CAR is
an association rule that conforms to the additional constraint that the consequent (RHS) of the rule
is a single item that is associated with a class label for the classification problem. CBA proposed the
following steps to perform associative classification (Vanhoof and Depaire, 2010):

1. Mine a set of class association rules (CARs),

2. prune and sort the rules,

3. classify new objects using the RHS of the first matching rule.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 256

Within the original paper, the first step is handled by a modification of the popular APRIORI
algorithm (Agrawal and Srikant, 1994) for mining CARs. The modification includes an optional
pruning step based on the rule’s pessimistic error rate with the goal to reduce the size of the set of
considered CARs. According to results reported in Liu et al. (1998), the absence of pessimistic pruning
does not affect classifier accuracy and a regular implementation of APRIORI can be used. The output
of association rule learning algorithms is determined by two parameters, the minimum confidence and
the support thresholds. In light of classification, confidence gives the proportion of objects correctly
classified by the rule in the training set. Therefore it can be seen as an optimistic estimate of the
accuracy of the rule.

The main obstacles for straightforward use of the discovered CARs as a classifier are the excessive
number of rules discovered even on small datasets, the fact that contradicting rules are generated, and
the absence of a default rule. To address these issues, CBA employs rule sorting and a data coverage
pruning procedure to reduce the number of rules. Two variants were proposed in the original paper
(Liu et al., 1998): the direct M1 version, and the M2 version which reduces data access. Accessing data
fewer times is especially useful if the data is too large to be stored in main memory. The amount of
available main memory has increased substantially since the original paper was published making the
improvements of M2 less relevant. For pruning, the rules are first ranked in the order of their strength:

1. Rule A is ranked higher if confidence of rule A is greater than that of rule B.

2. For rules tied for 1, rule A is ranked higher if support of rule A is greater than that of rule B.

3. For rules tied for 1 and 2, rule A is ranked higher if rule A is produced before rule B in the
mining process. Since APRIORI applies breath-first search, rule A is ranked higher if rule A has
fewer conditions (i.e., a smaller antecedent set) than rule B.

Rules are processed in ranking order. After each rule is processed, the matching (covered) transac-
tions are removed. If a rule does not correctly cover at least one instance, it is deleted (pruned). In
CBA, data coverage pruning is combined with default rule pruning. A default rule is a rule added to the
end of the rule set with the majority class in the uncovered transactions in the RHS and an empty LHS.
This rule ensures that a query instance is always classified even if it is not matched by any other rule
in the classifier. The algorithm prunes all rules below the current rule if a default rule inserted at that
place reduces the total number of errors on the training set.

Other algorithms. Since CBA was introduced, several competing associative classification ap-
proaches have been proposed to improve accuracy, training time, and ruleset size. Two popular
extensions of CBA are CMAR (Li et al., 2001) and CPAR (Yin and Han, 2003). A multiclass-focused
approach called Multiclass Associative Classification (MAC) (Abdelhamid et al., 2012) has been pro-
posed for expanding CBA with the goal of more accurately addressing classification problems with
many different class labels. An approach related to associative classification is used by rule-induction
classifiers which generate a large rulesets and then use greedy pruning strategies to reduce the size
while maintaining classification accuracy. Common examples of this technique are RIPPER (Cohen,
1995) and SLIPPER (Cohen and Singer, 1999).

Recently, instead of relying on heuristics, several optimization approaches have been proposed for
selecting the rules used by the classifier. Scalable Bayesian Rule Lists Model (Yang et al., 2017) tries to
identify a small subset of mined CARs by optimizing the posterior of a Bayesian hierarchical model
over rule lists. The method is implemented in the R package sbrl (Yang et al., 2019). Azmi et al. (2019)
propose to learn optimal rule weights for associative classifiers that use the sum of the class weight of
all matching rules instead of the first rule for classification. The authors use logistic regression with
L1 regularization to learn rule weights while enforcing a small rule set. This approach is available in
arulesCBA as function RCAR().

While several alternative approaches have been introduced, CBA still acts as a strong contender
in associative classification and is typically used as the benchmark against which new methods are
assessed (Alcala-Fdez et al., 2011). A comparison between CBA and selected successors is performed
in Kliegr (2017).

Implementations

There are only a few implementations of CBA available. Table 1 shows them ordered by the first
release date and summarizes the used licenses and programming languages.

In the following, we discuss the three currently available implementations of CBA in R. We will
first present each package individually and then compare the packages by providing code for the same
classification problem implemented with each of the packages. We will use as the example dataset the
well-known iris dataset (Fisher, 1936) and split it into 80% for training and 20% for testing.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=sbrl
https://CRAN.R-project.org/package=arulesCBA

CONTRIBUTED RESEARCH ARTICLES 257

Table 1: Review of existing CBA implementations

Software 1st
release

License Language Notes

DM-II 2001 commercial unknown Original implementation by Liu et al. (1998). See
http://www.comp.nus.edu.sg/~dm2/

LUCS-KDD 2004 not stated Java Endorsed by Bing Liu, the main CBA author. See
http://cgi.csc.liv.ac.uk/~frans/KDD/Software/
CBA/cba.html

KEEL 2010 GPL-3 Java At the writing of this paper not available via RKEEL.
See http://sci2s.ugr.es/keel/

rCBA 2015 Apache 2.0 R See https://CRAN.R-project.org/package=rCBA
arc 2016 AGPL-3 R with Java See https://CRAN.R-project.org/package=arc
arulesCBA 2016 GPL-3 R with C From the authors of the arules R package. See https:

//CRAN.R-project.org/package=arulesCBA

data("iris")
iris <- iris[sample(seq(nrow(iris))),]
iris_train <- iris[1:(nrow(iris)*.8),]
iris_test <- iris[-(1:(nrow(iris)*.8)),]

The data contains 150 flowers described by four quantitative variables representing different
measurements and a categorical variable indicating one of three different species.

head(iris_train)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
18 5.1 3.5 1.4 0.3 setosa
93 5.8 2.6 4.0 1.2 versicolor
91 5.5 2.6 4.4 1.2 versicolor
92 6.1 3.0 4.6 1.4 versicolor
126 7.2 3.2 6.0 1.8 virginica
149 6.2 3.4 5.4 2.3 virginica

The classification problem we use for the examples is to predict a flower’s species using the four
measurements.

All three packages integrate with the infrastructure for association rule mining in R implemented in
package arules (Hahsler et al., 2005) and the ecosystem of related packages (Hahsler et al., 2011). While
the presented packages can perform discretization, the conversion of a dataset with continuous variable
to a set of transactions with binary items, and mining class association rules (CARs) internally and
transparent to the user, we will give here a short example of how the packages arules and arulesCBA
can be used to perform these tasks. First, we discretize the data using supervised discretization based
on the minimum description length principle (MDLP) offered by packages like discretization (Kim,
2012). Here we use the discretizeDF.supervised function provided in arulesCBA.

library("arules")
library("arulesCBA")

iris_train_disc <- discretizeDF.supervised(Species ~ ., data = iris_train,
method = "mdlp")

head(iris_train_disc)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
18 [-Inf,5.55) [3.35, Inf] [-Inf,2.6) [-Inf,0.75) setosa
93 [5.55, Inf] [-Inf,2.95) [2.6,4.75) [0.75,1.75) versicolor
91 [-Inf,5.55) [-Inf,2.95) [2.6,4.75) [0.75,1.75) versicolor
92 [5.55, Inf] [2.95,3.35) [2.6,4.75) [0.75,1.75) versicolor
126 [5.55, Inf] [2.95,3.35) [5.05, Inf] [1.75, Inf] virginica
149 [5.55, Inf] [3.35, Inf] [5.05, Inf] [1.75, Inf] virginica

Now we can convert the discretized data into transactions which automatically converts factors
into binary items with labels composed of variable name and factor labels.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

http://www.comp.nus.edu.sg/~dm2/
http://cgi.csc.liv.ac.uk/~frans/KDD/Software/CBA/cba.html
http://cgi.csc.liv.ac.uk/~frans/KDD/Software/CBA/cba.html
https://CRAN.R-project.org/package=RKEEL
http://sci2s.ugr.es/keel/
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=discretization
https://CRAN.R-project.org/package=arulesCBA

CONTRIBUTED RESEARCH ARTICLES 258

trans_train <- as(iris_train_disc, "transactions")
inspect(head(trans_train, n = 3))

items transactionID
[1] {Sepal.Length=[-Inf,5.55),

Sepal.Width=[3.35, Inf],
Petal.Length=[-Inf,2.6),
Petal.Width=[-Inf,0.75),
Species=setosa} 18

[2] {Sepal.Length=[5.55, Inf],
Sepal.Width=[-Inf,2.95),
Petal.Length=[2.6,4.75),
Petal.Width=[0.75,1.75),
Species=versicolor} 93

[3] {Sepal.Length=[-Inf,5.55),
Sepal.Width=[-Inf,2.95),
Petal.Length=[2.6,4.75),
Petal.Width=[0.75,1.75),
Species=versicolor} 91

Note that the class variable is translated into several items, all starting with Species=. From these
transactions, CARs can be mined by restricting the items which can appear in the right-hand-side
of the rules. This can be done with the APRIORI implementation available in arules by specifying
appearance restrictions.

rules <- apriori(trans_train, parameter = list(support = 0.01, confidence = 0.8),
appearance = list(rhs = grep("Species=", itemLabels(trans_train), value = TRUE),
default = "lhs"))

arulesCBA contains a convenience function called mineCARs to make setting the appropriate
appearance easier using the standard formula interface.

rules <- mineCARs(Species ~ ., data = trans_train, support = 0.01, confidence = 0.8)
rules

set of 78 rules

inspect(head(rules, n = 3))

lhs rhs support confidence lift count
[1] {Sepal.Width=[3.35, Inf]} => {Species=setosa} 0.19 0.85 2.6 23
[2] {Petal.Length=[5.05, Inf]} => {Species=virginica} 0.27 1.00 3.0 32
[3] {Petal.Length=[2.6,4.75)} => {Species=versicolor} 0.29 0.97 2.9 35

Test data can be discretized consistently with the training data using discretizeDF, which applies
the discretization used in the second argument to the data in the first argument. Followed by a
conversion to transactions.

iris_test_disc <- discretizeDF(iris_test, iris_train_disc)
trans_test <- as(iris_test_disc, "transactions")

While these steps are performed in most cases by the discussed packages internally, it is still
helpful to understand the process. One of the advantages of associative classifiers is that the rule base
can be inspected and, therefore, it is important to understand the transformations used to create items.
Next, we will discuss the packages in alphabetical order.

Package arc

The R package arc (Kliegr, 2018) provides a pure R implementation of the rule pruning step of CBA.
The association rule learning step is handled by the implementation of APRIORI in package arules. arc
implements the M1 version of the CBA pruning step (Liu et al., 1998) and offers, in addition, automatic
discretization and threshold tuning. A CBA model can be learned for the iris dataset as follows.

library("arc")
classifier <- arc::cba(iris_train, "Species")

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=arc

CONTRIBUTED RESEARCH ARTICLES 259

The function cba() will create an instance of the S4 class CBARuleModel for the iris dataset using
Species as the class variable. Note that discretization is performed and that the support and confidence
thresholds are automatically found.

The resulting object holds a list of rules, a list of cut points (if discretization was automatically
performed), the name of the class attribute, and a list of attribute types. The slot rules of the
CBARuleModel object contains the rule base, which can be inspected by:

inspect(classifier@rules)

lhs rhs support confidence lift count
[1] {Petal.Length=[-Inf;2.45],

Petal.Width=[-Inf;0.75]} => {Species=setosa} 0.333 1.00 3.0 40
[2] {Sepal.Length=(5.75; Inf],

Petal.Length=(4.95; Inf],
Petal.Width=(1.75; Inf]} => {Species=virginica} 0.258 1.00 3.2 31

[3] {Sepal.Length=(5.75; Inf],
Sepal.Width=[-Inf;3.15],
Petal.Width=(1.75; Inf]} => {Species=virginica} 0.200 1.00 3.2 24

[4] {Sepal.Length=(5.75; Inf],
Petal.Length=(2.45;4.95],
Petal.Width=(0.75;1.75]} => {Species=versicolor} 0.200 1.00 2.8 24

[5] {Sepal.Length=(5.45;5.75],
Sepal.Width=[-Inf;3.15],
Petal.Length=(2.45;4.95],
Petal.Width=(0.75;1.75]} => {Species=versicolor} 0.092 1.00 2.8 11

[6] {Sepal.Length=(5.75; Inf],
Sepal.Width=(3.15; Inf],
Petal.Length=(2.45;4.95]} => {Species=versicolor} 0.042 1.00 2.8 5

[7] {Petal.Length=(2.45;4.95],
Petal.Width=(0.75;1.75]} => {Species=versicolor} 0.333 0.98 2.7 40

[8] {} => {Species=virginica} 0.308 0.31 1.0 0

Predictions for new data can be obtained using predict(). The new data is discretized automati-
cally to match the rules.

predict(classifier, head(iris_test))

[1] virginica setosa versicolor virginica setosa versicolor
Levels: setosa versicolor virginica

Next, we discuss the new features of automatic discretization and threshold tuning.

Automatic discretization. Since association rule classification is a supervised task, the discretization
can take advantage of using the class label. In the arc package, automatic discretization with MDLP
is enabled by default. All numeric explanatory attributes with three or more distinct values are by
default subject to discretization. The package relies on the discretization package (Kim, 2012). The arc
package provides several convenience functions that allow to perform discretization of all attributes at
once, addressing some of the shortcomings of the mdlp function from the discretization package, such
as the inability to handle missing values, or skip non-numeric attributes. Only attributes containing at
least a preset number of distinct values are discretized. The package is also capable of discretizing the
target attribute if necessary. For this purpose, unsupervised discretization (clustering) is used.

Automatic threshold tuning. Association rule learning is notorious for how difficult it is to set
the minimum support and minimum confidence thresholds. The necessity to set these thresholds
also applies to CBA. The arc package contains an optional procedure for automatic setting of these
thresholds detailed in (Kliegr and Kuchar, 2019) . The package contains a wrapper for the apriori
function from the arules package that iterative changes mining parameters (maximum antecedent
length, minimum support threshold and minimum confidence threshold) until a desired number of
rules is obtained, all options are exhausted or a preset time limit is reached. The desired number of
rules can be specified by the target_rule_count parameter.

The arc package also supports manual specification of thresholds:

classifier <- arc::cba(iris_train, "Species",
rulelearning_options = list(minsupp = 0.05, minconf = 0.9,

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=discretization
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=discretization
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=arc

CONTRIBUTED RESEARCH ARTICLES 260

minlen = 1, maxlen = 5, maxtime = 1000, target_rule_count = 50000,
trim=TRUE, find_conf_supp_thresholds = FALSE))

classifier@rules

set of 3 rules

Unlike other implementations of CBA, which also implement the M2 version of CBA described
by Liu et al. (1998), the arc package relies solely on the M1 version. However, the implementation
does not follow the originally proposed way relying on iteratively processing of rules in the sort
order. Instead, the pruning steps in M1 are implemented using a more efficient multiplication of
sparse matrices exposed by the arules package, which relies on the optimized C code from the Matrix
package (Bates and Maechler, 2017).

Package arulesCBA

The arulesCBA package (Johnson and Hahsler, 2019) is an extension of the arules package and strives
to integrate seamlessly with its association rule mining infrastructure. The packages allows the user to
set a time limit for rule mining, exposed by the arules package. The core operations of arulesCBA are
implemented in a mixture of R and C to speed up processing. arulesCBA implements both versions
of the pruning step, M1 and the optimized M2 version. The code for the pruning algorithm is heavily
optimized by using rule-indexed sparse matrix representation, sparse matrix operations via package
Matrix (Bates and Maechler, 2017) and prefix trees.

The arulesCBA interface. In arulesCBA, classifiers are created using the CBA() function. An ad-
vantage of this package for R users is that it consistently uses the well-known formula interface for
building classifier models and for supervised discretization. Users can provide a number of options
to the function to tune discretization, rule mining, and model building. The following is the list of
available parameters to the CBA function.

• formula: A symbolic description of the model to be fitted using a standard formula object of
the from:

class ∼ explanatory variables

The class is the variable name (part of the item label before =). Explanatory variables are
separated using + and the special dot symbol . for all variables is also allowed.

• data: A data.frame containing the training data. If necessary, discretization is automatically
applied. Alternatively, also a transaction set can be supplied.

• support,confidence: Minimum support and confidence thresholds for mining CARs with
APRIORI.

• parameter,control: Parameter and control lists passed on to the apriori() function from the
arules package.

• disc.method: Discretization method for factorizing numeric input (default: "mdlp"). One of
(’mdlp’, ’caim’, ’chi2’, ’caac’, ’ameva’, ’chimerge’, ’extendedchi2’, ’modchi2’).

A classifier for the iris dataset can be learned as follows.

library("arulesCBA")
classifier <- arulesCBA::CBA(Species ~ ., data = iris_train,

supp = 0.05, confidence = 0.9)

classifier

CBA Classifier Object
Class: Species (labels: setosa, versicolor, virginica)
Default Class: Species=setosa
Number of rules: 2
Classification method: first
Description: CBA algorithm by Liu, et al. 1998 with support=0.05 and

confidence=0.9

CBA() returns an object of class CBA which contains all needed information for classification. A
print method shows the settings used for the classifier. Prediction follows the usual approach in R.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arules

CONTRIBUTED RESEARCH ARTICLES 261

predict(classifier, head(iris_test))

[1] virginica setosa versicolor virginica setosa setosa
Levels: setosa versicolor virginica

The rule base is stored as a rules object from arules and can be extracted for inspection using the
rules() function.

inspect(rules(classifier))

lhs rhs support confidence lift count
[1] {Petal.Width=(1.75, Inf]} => {Species=virginica} 0.29 1.00 3.1 35
[2] {Sepal.Length=(5.55, Inf],

Petal.Width=(0.8,1.75]} => {Species=versicolor} 0.26 0.91 2.7 31

Note that only two rules are shown, while arc above produced three rules. The reason is that
arulesCBA stores the default class Species=setosa separate from the rule base while arc includes it.

Advanced use of arulesCBA. arulesCBA is implemented with flexibility and future extensions in
mind. For example, to have optimal control over the discretization process, the user can discretize
the data manually before learning the classifier. The discretization functions in arules and arulesCBA
retain enough information so that predict() can later automatically discretize the new data.

Another extension implemented in CBA_ruleset() allows the user to create an associative classifier
by providing a custom rule base in the form of a rules object. For example, we can easily create a
classifier from a set of CARs using, for example, majority voting instead of CBA’s first-match strategy
for classification.

rules <- mineCARs(Species ~ ., trans_train,
parameter = list(support = 0.01, confidence = 0.8))

classifier <- arulesCBA::CBA_ruleset(Species ~ ., rules, method = "majority")
classifier

CBA Classifier Object
Class: Species (labels: setosa, versicolor, virginica)
Default Class: Species=versicolor
Number of rules: 78
Classification method: majority
Description: Custom rule set

This gives the user the flexibility to experiment with different pruning methods and classification
strategies.

Package rCBA

The rCBA package (Kuchar, 2018) was the first available implementation of the CBA algorithm on
CRAN. The main algorithms are implemented in Java and it is the only R implementation that supports
the use of multiple CPU cores during pruning. The package provides wrapper functions for pruning,
prediction, and the FPGrowth association rule mining algorithm (Han et al., 2004). rCBA includes
both, the M1 and the M2 version of the CBA algorithm. It also includes data coverage pruning and
automatic threshold tuning.

Model building with automatic tuning of parameters and APRIORI is done as follows.

library("rCBA")
classifier <- rCBA::build(iris_train)

inspect(classifier$model)

1 {Petal.Width=0.2} => {Species=setosa} 0.183 1.00 2.9
2 {Petal.Width=1.3} => {Species=versicolor} 0.108 1.00 3.0
3 {Petal.Length=1.4} => {Species=setosa} 0.100 1.00 2.9
4 {Petal.Length=1.5} => {Species=setosa} 0.092 1.00 2.9
5 {Petal.Width=1.8} => {Species=virginica} 0.083 1.00 3.1
6 {Petal.Width=2.3} => {Species=virginica} 0.058 1.00 3.1

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=rCBA

CONTRIBUTED RESEARCH ARTICLES 262

7 {Petal.Width=0.4} => {Species=setosa} 0.058 1.00 2.9
8 {Petal.Width=1.4} => {Species=versicolor} 0.058 1.00 3.0
9 {Sepal.Width=3.5} => {Species=setosa} 0.050 1.00 2.9
10 {Petal.Width=0.3} => {Species=setosa} 0.050 1.00 2.9
11 {Petal.Width=2.1} => {Species=virginica} 0.050 1.00 3.1
12 {Petal.Length=4} => {Species=versicolor} 0.042 1.00 3.0
13 {Petal.Length=4.7} => {Species=versicolor} 0.033 1.00 3.0
14 {Sepal.Length=7.7} => {Species=virginica} 0.033 1.00 3.1
15 {Petal.Width=1.2} => {Species=versicolor} 0.033 1.00 3.0
16 {Petal.Width=0.1} => {Species=setosa} 0.033 1.00 2.9
17 {Petal.Width=1.9} => {Species=virginica} 0.033 1.00 3.1
18 {Petal.Width=1} => {Species=versicolor} 0.033 1.00 3.0
19 {Sepal.Length=5.1} => {Species=setosa} 0.058 0.88 2.6
20 {Petal.Length=4.5} => {Species=versicolor} 0.050 0.86 2.6
21 {Petal.Length=5.1} => {Species=virginica} 0.042 0.83 2.6
22 {Petal.Width=1.5} => {Species=versicolor} 0.058 0.78 2.3
23 {Sepal.Length=5.5} => {Species=versicolor} 0.033 0.67 2.0
24 {} => {Species=virginica} 0.325 0.33 1.0

rCBA::classification(head(iris_test), classifier$model)

[1] versicolor versicolor versicolor versicolor setosa versicolor
Levels: setosa versicolor

Pruning methods. rCBA implements both version of the proposed pruning algorithms (Liu et al.,
1998): the direct M1 version, and the optimized M2 version. It also offers the option to only use data
coverage pruning, called data coverage for business rule (dcbr) (Kliegr et al., 2014).

Selection of algorithms for rule learning. The CBA algorithm can generally rely on any rule learn-
ing algorithm (Liu et al., 1998). By default, it uses the APRIORI implementation in arules, but it can
also use rCBA’s own implementation of the FP-Growth algorithm (Han et al., 2004) for the association
learning step.

rulebase <- rCBA::fpgrowth(iris_train, support = 0.05, confidence = 0.9,
consequent = "Species")

rulebase <- rCBA::pruning(iris_train, rulebase, method = "m2cba")

rCBA::classification(head(iris_test), rulebase)

[1] versicolor versicolor versicolor versicolor setosa versicolor
Levels: setosa versicolor

Automatic threshold tuning. Since pure random or grid search do not use any background knowl-
edge of the algorithm, these approaches are unsuitable for optimizing the parameters of association
rule learning. The implementation for the parameter optimization in rCBA is based on the simulated
annealing (SA) algorithm, which addresses these problems. The objective criterion, which is optimized
against, is the accuracy of the model. A detailed description of the approach can be found in Kliegr
and Kuchar (2019).

Comparison of R implementations

In order to help the user to decide which package addresses best the particular use case, Table 2 presents
a comparison of the features and limitations of the packages. Since all three packages implement
the same algorithm, we did not compare classification accuracy between the implementations, but
performed a small run-time comparison instead.

We compare the different implementations on some standard classification problems. The used
datasets are available in the packages mlbench, datasets, arules, and the Lymphography dataset
(Lymph) (Mickalski et al., 1986) was obtained from the UCI repository1. The most important dataset
characteristics are summarized in Table 3. The number of transactions ranges from 101 to 48842 and
the number of items (after discretization) from 15 to 147. We used for the comparison a minimum

1https://archive.ics.uci.edu/ml/datasets.html

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=mlbench
https://CRAN.R-project.org/package=datasets
https://CRAN.R-project.org/package=arules
https://archive.ics.uci.edu/ml/datasets.html

CONTRIBUTED RESEARCH ARTICLES 263

Table 2: Comparison of features in CBA implementations in R

Feature arc arulesCBA rCBA

CBA pruning M1 M1/M2 M1/M2
Language R R + C R + Java
Built-in discretization MDLP MDLP and others No
Automatic threshold tuning Unsupervised No Supervised
Recommended problem size Small number of

rules and instances
Many rules, many
instances

Medium number of
rules and instances

Table 3: Dataset characteristics. The dataset size ranges from 101 to more than 45,000 transactions and
the datasets produce a wide variety in terms of the number of CARs and rule base size.

Dataset Transactions Items Support Confidence CARs Rule base Accuracy

Zoo 101 26 0.01 0.50 3607 8 0.97
Lymph 147 63 0.10 0.50 16087 40 0.90
Iris 150 15 0.01 0.50 119 8 0.96
Ionosphere 351 147 0.40 0.50 16321 10 0.89
BreastCancer 699 91 0.01 0.50 5541 64 0.99
Pima 768 19 0.01 0.50 3536 76 0.80
Vehicle 846 77 0.08 0.50 13987 143 0.60
Adult 48842 115 0.10 0.50 932 6 0.77

confidence threshold of 0.5, a maximal rule length of 10 and set the minimum support so a reasonable
number of classification association rules (CARs) was produced. CBA pruned the CARs to between 6
and 143 rules and achieves an accuracy (in sample testing) of typically around 90%. Only difficult
datasets like Pima, Vehicle and Adult have worse results.

To compare run time, we conducted experiments on a standard laptop with an Intel Core i5-8250U
CPU @ 1.60GHz with 4 cores and 8GB of RAM running R version 3.6.1 on Ubuntu 19.10. The package
versions used for the comparison are: arc: 1.2, rCBA: 0.4.3, arulesCBA: 1.1.5. We disabled automatic
threshold tuning. To remove the effect of random system load, we executed each algorithm ten times
on each dataset and report the average execution time. The results are summarized in Table 4. arc
produces the longest run times due to its pure R implementation. For Adult, the largest dataset arc
ran out of memory. rCBA executes faster than arc. Both M2 and parallel execution using multi-core
support in Java only improve the run time for the largest dataset. However, there the improvement is
quite significant, reducing the run time to a third. arulesCBA’s M1 implementation is on average the
fastest while the M2 implementation’s performance deteriorates on larger datasets.

Since many datasets of interest are typically larger then the standard datasets, we perform addi-
tional experiments to assess run time sensitivity for the number of input rules and the dataset size. For
the experiments, we use the Lymph dataset. For assessing sensitivity to ruleset size, we oversample the
dataset to 500 transactions and mine CARs with a minimum support of 0.05, a minimum confidence
of 0.5 and a maximal rule length of 10. This results in more than 100000 rules. We then evaluate run
time for building classifiers from the first 100, 1000, 10000, and 100000 mined rules. The results are
shown in Figure 2(a). We see that M2 is generally slower than the corresponding M1 implementations.
This might be due to the fact that the tested implementations hold all data in main memory, while
M2 was designed for situations where the data does not reside in main memory. However, parallel
execution helps rCBA’s M2 implementation. arulesCBA’s M1 implementation is the fastest.

To assess the sensitivity to dataset size, we fixed the ruleset size to 500 and increased the dataset
size by oversampling every round by a factor of 2. In Figure 2(b), we see a similar result to the
sensitivity to the number of rules. Parallel execution in rCBA helps both algorithms and arulesCBA’s
M1 implementation is the fastest. All packages are integrated with the arules infrastructure, where
arulesCBA has the most consistent integration. arc and rCBA offer automatic threshold tuning, which
will help users with applying associative classification for practical applications.

Conclusion

In this paper, we reviewed associative classifiers based on the CBA algorithm. While the algorithm
is cited in many papers about classifiers based on association rule mining, there are only very few
implementations available. This paper discussed three recent implementations in R packages. Due
to the differences in implementation language (R, C, and Java) and additional implemented features,

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arules
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=rCBA

CONTRIBUTED RESEARCH ARTICLES 264

Table 4: Comparison of the run time of the algorihtms for different datasets in milliseconds. arc ran
out of memory (see *) and arulesCBA’s M1 implementation is on average the fastest.

arc rCBA arulesCBA

Dataset M1 M1 parallel M2 M2 parallel M1 M2

Zoo 447.49 344.39 366.09 344.99 345.57 250.40 130.19
Lymph 3153.19 903.75 1070.12 1375.30 966.58 452.91 1539.03
Iris 117.98 282.57 332.43 273.37 283.54 147.33 102.74
Ionosphere 20350.29 13888.05 14180.38 14622.77 15185.99 4786.10 6766.72
BreastCancer 1895.51 488.06 620.62 1239.72 646.96 607.53 775.93
Pima 2508.53 837.69 854.77 847.39 837.06 707.97 982.45
Vehicle 50186.80 2741.48 2961.82 2935.02 3051.59 3966.96 12662.39
Adult N/A* 10549.87 3395.19 9725.68 3091.15 1192.03 11737.05

Average 11237.00* 3754.48 2972.68 3920.53 3051.05 1513.90 4337.06

each of the packages has its strengths. We hope that this review and the provided examples help
users to experiment with associative classifiers and that the packages will be used by the research
community to develop new methods.

Acknowledgments

Tomas Kliegr was supported by long term institutional support of research activities and grant
IGA 12/2019 by Faculty of Informatics and Statistics, University of Economics, Prague.

Ian Johnson was supported by the Goldwater Foundation and the President’s Scholars program at
Southern Methodist University, Dallas, TX, USA.

Bibliography

N. Abdelhamid, A. Ayesh, F. Thabtah, S. Ahmadi, and W. Hadi. Mac: A multiclass associative
classification algorithm. Journal of Information & Knowledge Management, 11(02):1250011, 2012. [p256]

R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In
Proceedings of the 20th International Conference on Very Large Data Bases, VLDB ’94, pages 487–499, San
Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc. ISBN 1-55860-153-8. [p256]

R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large
databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data,
pages 207–216. ACM Press, 1993. URL https://doi.org/10.1145/170035.170072. [p254]

J. Alcala-Fdez, R. Alcala, and F. Herrera. A fuzzy association rule-based classification model for
high-dimensional problems with genetic rule selection and lateral tuning. IEEE Transactions on
Fuzzy Systems, 19(5):857–872, 2011. URL https://doi.org/10.1109/TFUZZ.2011.2147794. [p254,
256]

M. Azmi, G. C. Runger, and A. Berrado. Interpretable regularized class association rules algorithm for
classification in a categorical data space. Information Sciences, 483:313–331, 2019. ISSN 0020-0255.
URL https://doi.org/0.1016/j.ins.2019.01.047. [p256]

D. Bates and M. Maechler. Matrix: Sparse and Dense Matrix Classes and Methods, 2017. URL https:
//CRAN.R-project.org/package=Matrix. R package version 1.2-8. [p260]

S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules
for market basket data. In SIGMOD 1997, Proceedings ACM SIGMOD International Conference on
Management of Data, pages 255–264, Tucson, Arizona, USA, 1997. [p255]

W. W. Cohen. Fast effective rule induction. In Machine Learning Proceedings 1995, Proceedings of the
Twelfth International Conference on Machine Learning, pages 115–123. Elsevier, 1995. URL https:
//doi.org/10.1016/B978-1-55860-377-6.50023-2. [p256]

W. W. Cohen and Y. Singer. A simple, fast, and effective rule learner. In Publication:AAAI ’99/IAAI
’99: Proceedings of the sixteenth national conference on Artificial intelligence and the eleventh Innovative
applications of artificial intelligence conference innovative applications of artificial intelligence, pages 335–
342. AAAI, 1999. [p256]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arulesCBA
https://doi.org/10.1145/170035.170072
https://doi.org/10.1109/TFUZZ.2011.2147794
https://doi.org/0.1016/j.ins.2019.01.047
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=Matrix
https://doi.org/10.1016/B978-1-55860-377-6.50023-2
https://doi.org/10.1016/B978-1-55860-377-6.50023-2

CONTRIBUTED RESEARCH ARTICLES 265

●●

●

●

0
10

20
30

40

Rule set size

T
im

e
[s

]

100 50k 100k

● arc
rCBA M1
rCBA M1 parallel
rCBA M2
rCBA M2 parallel
arulesCBA M1
arulesCBA M2

(a) Sensitivity to ruleset size.

●●●●●
●

●

●

●

●

●

0
5

10
15

20

Dataset size

T
im

e
[s

]

0 100k 200k 300k

● arc
rCBA M1
rCBA M1 parallel
rCBA M2
rCBA M2 parallel
arulesCBA M1
arulesCBA M2

(b) Sensitivity to dataset size.

Figure 2: Comparison of the run time of different implementations on an oversampled Lymphography
dataset

M. Elkano, M. Galar, J. A. Sanz, A. Fernández, E. Barrenechea, F. Herrera, and H. Bustince. Enhancing
multiclass classification in farc-hd fuzzy classifier: On the synergy between n-dimensional overlap
functions and decomposition strategies. IEEE Transactions on Fuzzy Systems, 23(5):1562–1580, 2015.
ISSN 1063-6706. URL https://doi.org/10.1109/TFUZZ.2014.2370677. [p254]

U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous-valued attributes for
classification learning. Artificial intelligence, 13, page 1022–1027, 1993. URL https://doi.org/10.
1007/978-3-642-40897-7_11. [p255]

R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(7):
179–188, 1936. URL https://doi.org/10.1111/j.1469-1809.1936.tb02137.x. [p256]

M. Hahsler, B. Grün, and K. Hornik. Arules - a computational environment for mining association
rules and frequent item sets. Journal of Statistical Software, 14(15):1–25, 2005. ISSN 1548-7660. URL
https://doi.org/10.18637/jss.v014.i15. [p254, 255, 257]

M. Hahsler, S. Chelluboina, K. Hornik, and C. Buchta. The arules R-package ecosystem: Analyzing
interesting patterns from large transaction data sets. Journal of Machine Learning Research, 12(Jun):
2021–2025, 2011. [p257]

J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candidate generation: A frequent-
pattern tree approach. Data Mining and Knowledge Discovery, 8(1):53–87, 2004. ISSN 1384-5810. URL
https://doi.org/10.1023/B:DAMI.0000005258.31418.83. [p261, 262]

J. Hipp, U. Güntzer, and G. Nakhaeizadeh. Algorithms for association rule mining – A general survey
and comparison. SIGKDD Explorations, 2(2):1–58, 2000. URL https://doi.org/10.1145/360402.
360421. [p255]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1109/TFUZZ.2014.2370677
https://doi.org/10.1007/978-3-642-40897-7_11
https://doi.org/10.1007/978-3-642-40897-7_11
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.18637/jss.v014.i15
https://doi.org/10.1023/B:DAMI.0000005258.31418.83
https://doi.org/10.1145/360402.360421
https://doi.org/10.1145/360402.360421

CONTRIBUTED RESEARCH ARTICLES 266

I. Johnson and M. Hahsler. arulesCBA: Classification Based on Association Rules, 2019. URL https:
//CRAN.R-project.org/package=arulesCBA. R package version 1.1.5. [p254, 260]

H. Kim. Discretization: Data Preprocessing, Discretization for Classification., 2012. URL https://CRAN.R-
project.org/package=discretization. R package version 1.0-1. [p257, 259]

T. Kliegr. QCBA: Postoptimization of quantitative attributes in classifiers based on association rules.
arXiv preprint, 2017. URL https://arxiv.org/abs/1711.10166. [p256]

T. Kliegr. Arc: Association Rule Classification, 2018. URL https://CRAN.R-project.org/package=arc.
R package version 1.2. [p254, 258]

T. Kliegr and J. Kuchar. Tuning hyperparameters of classification based on associations (CBA). In
Proceedings of the 19th Conference Information Technologies - Applications and Theory ITAT’19. CEUR-
WS.org, 2019. [p259, 262]

T. Kliegr, J. Kuchař, D. Sottara, and S. Vojíř. Learning business rules with association rule classifiers.
In A. Bikakis, P. Fodor, and D. Roman, editors, International Symposium on Rules and Rule Markup
Languages for the Semantic Web (RuleML 2014): Rules on the Web. From Theory to Applications, pages
236–250. Springer-Verlag, 2014. ISBN 978-3-319-09870-8. URL https://doi.org/10.1007/978-3-
319-09870-8_18. [p262]

J. Kuchar. rCBA: CBA Classifier for R, 2018. URL https://CRAN.R-project.org/package=rCBA. R
package version 0.4.3. [p254, 261]

W. Li, J. Han, and J. Pei. CMAR: Accurate and efficient classification based on multiple class-association
rules. In Proceedings of the 2001 IEEE International Conference on Data Mining, ICDM ’01, pages
369–376, Washington, DC, USA, 2001. IEEE Computer Society. ISBN 0-7695-1119-8. URL https:
//doi.org/10.1109/ICDM.2001.989541. [p256]

B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In Proceedings of the
Fourth International Conference on Knowledge Discovery and Data Mining, KDD’98, pages 80–86. AAAI
Press, 1998. [p254, 255, 256, 257, 258, 260, 262]

R. S. Mickalski, I. Mozetic, H. J., and H. Lavrack. The multi purpose incremental learning system AQ15
and its testing application to three medical domains. In Proceedings of the 5th National Conference on
Artificial Intelligence, 1986. [p262]

P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining, (First Edition). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2006. ISBN 0321321367. [p254]

K. Vanhoof and B. Depaire. Structure of association rule classifiers: a review. In 2010 International
Conference on Intelligent Systems and Knowledge Engineering (ISKE), pages 9–12, 2010. URL https:
//doi.org/10.1109/ISKE.2010.5680784. [p255]

H. Yang, C. Rudin, and M. Seltzer. Scalable Bayesian rule lists. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 3921–3930. JMLR. org, 2017. [p256]

H. Yang, M. Chen, C. Rudin, and M. Seltzer. sbrl: Scalable Bayesian Rule Lists Model, 2019. URL
https://CRAN.R-project.org/package=sbrl. R package version 1.2. [p256]

X. Yin and J. Han. CPAR: Classification based on predictive association rules. In Proceedings of the
SIAM International Conference on Data Mining, pages 369–376, San Franciso, 2003. SIAM Press. [p254,
255, 256]

Michael Hahsler
Office of Information Technology and Department of Engineering Management, Information, and Systems
Bobby B. Lyle School of Engineering
Southern Methodist University
P. O. Box 750123, Dallas, TX 75275, USA
mhahsler@lyle.smu.edu

Ian Johnson
Google,
Boulder, CO, USA
ianjjohnson@icloud.com

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=discretization
https://CRAN.R-project.org/package=discretization
https://arxiv.org/abs/1711.10166
https://CRAN.R-project.org/package=arc
https://doi.org/10.1007/978-3-319-09870-8_18
https://doi.org/10.1007/978-3-319-09870-8_18
https://CRAN.R-project.org/package=rCBA
https://doi.org/10.1109/ICDM.2001.989541
https://doi.org/10.1109/ICDM.2001.989541
https://doi.org/10.1109/ISKE.2010.5680784
https://doi.org/10.1109/ISKE.2010.5680784
https://CRAN.R-project.org/package=sbrl
mailto:mhahsler@lyle.smu.edu
mailto:ianjjohnson@icloud.com

CONTRIBUTED RESEARCH ARTICLES 267

Tomáš Kliegr
Department of Information and Knowledge Engineering
Faculty of Informatics and Statistics
University of Economics, Prague
Winston Churchill Sq. 4, Prague, Czech Republic
ORCiD https://orcid.org/0000-0002-7261-0380
first.last@vse.cz

Jaroslav Kuchař
Web Intelligence Research Group
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9, 160 00, Prague, Czech Republic
first.last@fit.cvut.cz

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://orcid.org/0000-0002-7261-0380
mailto:first.last@vse.cz
mailto:first.last@fit.cvut.cz

CONTRIBUTED RESEARCH ARTICLES 268

Indoor Positioning and Fingerprinting:
The R Package ipft
by Emilio Sansano, Raúl Montoliu, Óscar Belmonte and Joaquín Torres-Sospedra

Abstract Methods based on Received Signal Strength Indicator (RSSI) fingerprinting are in the
forefront among several techniques being proposed for indoor positioning. This paper introduces
the R package ipft, which provides algorithms and utility functions for indoor positioning using
fingerprinting techniques. These functions are designed for manipulation of RSSI fingerprint data
sets, estimation of positions, comparison of the performance of different positioning models, and
graphical visualization of data. Well-known machine learning algorithms are implemented in this
package to perform analysis and estimations over RSSI data sets. The paper provides a description
of these algorithms and functions, as well as examples of its use with real data. The ipft package
provides a base that we hope to grow into a comprehensive library of fingerprinting-based indoor
positioning methodologies.

Introduction

Intelligent spaces, as a particularity of the concept known as Ambient Intelligence (AmI) (Aarts and
Wichert, 2009; Werner et al., 2005), where agents communicate and use technology in a non-intrusive
way, have an interest in both open and closed environments. Since people spend 90% of time indoors
(Klepeis et al., 2001), one of the most relevant aspects of AmI is indoor localization, due to the large
number of potential applications: industrial and hospital applications, passenger transport, residences,
assistance to emergency services and rescue, localization and support guide for the disabled, leisure
applications, etc. It is expected that the global market for this type of location will grow from USD
7.11 billion in 2017 to USD 40.99 billion by 2022 (Research and markets, 2017), being among the key
technologies in the future. This is a technology that has already awakened but that in a short period of
time will suffer a big explosion, as happened with the systems of positioning by satellite in exteriors
and its applications.

This paper introduces the R package ipft (Sansano, 2017), a collection of algorithms and utility
functions to create models, make estimations, analyze and manipulate RSSI fingerprint data sets
for indoor positioning. Given the abundance of potential applications for indoor positioning, the
package may have a broad relevance in fields such as pervasive computing, Internet of Things (IoT) or
healthcare, among many others.

The main progress in indoor location systems has been made during the last years. Therefore,
both the research and commercial products in this area are new, and researchers and industry are
currently involved in the investigation, development and improvement of these systems. We believe
that the R language is a good environment for machine learning and data analysis related research,
as its popularity is constantly growing 1, researchers related to indoor positioning have explicitly
selected R as developing framework for their experiments (Quan et al., 2017; Harbicht et al., 2017;
Popleteev et al., 2011), it is well maintained by an active community, and provides an ecosystem of
good-quality packages that leverage its potential to become a standard programming platform for
researchers. There are some open source applications and frameworks to build indoor positioning
services, such as FIND 2, Anyplace 3 or RedPIN 4, based on fingerprinting techniques but, as far as
we know, there is not any public framework or package that provides functions and algorithms to
manipulate fingerprinting datasets and experiment with positioning algorithms.

RSSI (Received Signal Strength Indicator) positioning systems are based on measuring the intensi-
ties of the received radio signals of the emitting devices (beacons) that are available at a particular
position, and comparing them with a previously built RSSI data set (yub Lee et al., 2013). RSSI is used
to measure the relative quality of a received signal to a client device, and each chipset manufacturer is
free to define their own scale for this term. The value read by a device is given on a logarithmic scale
and can correspond to an instant reading or a mean of some consecutive readings.

In this scenario, a fingerprint is an RSSI feature vector composed of received signal values from
different emitting devices or beacons, associated to a precise position. In the last years, this technique
is becoming increasingly important for indoor localization (Liu et al., 2007; He and Chan, 2016), since
Wi-Fi is generally available in indoor environments where GPS signals cannot penetrate, and the

1https://stackoverflow.blog/2017/10/10/impressive-growth-r/
2https://www.internalpositioning.com#about
3https://anyplace.cs.ucy.ac.cy
4http://redpin.org

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=ipft
https://CRAN.R-project.org/package=ipft
https://CRAN.R-project.org/package=ipft
https://stackoverflow.blog/2017/10/10/impressive-growth-r/
https://www.internalpositioning.com#about
https://anyplace.cs.ucy.ac.cy
http://redpin.org

CONTRIBUTED RESEARCH ARTICLES 269

Figure 1: During the on-line phase, once the radio map has been built, the fingerprinting algorithm
uses it to estimate the device’s position by comparing the RSSI values heard by the device with the
ones stored in the radio map.

wireless access points (WAPs) can be used as emitting devices (Li et al., 2006). Other types of indoor
localization RF emitters, such as Bluetooth (Wang et al., 2013), RFID (Liu et al., 2011), or Ultra Wide
Band (UWB) (Gigl et al., 2007), can be also used in combination with Wi-Fi access points or as a
standalone positioning system.

The RSSI fingerprinting localization approach requires two phases of operation: a training phase,
also known as off-line or survey phase, and a positioning phase, sometimes referred as on-line, runtime
or tracking phase. In the training phase, multidimensional vectors of RSSI values (the fingerprints)
are generated and associated with known locations. These measurements are used to build a data
set (also known as radio map) that covers the area of interest. This data set can include, along with
the collected RSSI values and the location coordinates, many other useful parameters, as the device
type used in the measurements or its orientation. Later, during the positioning phase, an RSSI vector
collected by a device is compared with the stored data to generate an estimation of its position (Figure
1).

Despite the increasing interest in RSSI positioning (Xiao et al., 2016), this topic has not been
explicitly covered yet by any publicly available R package. The proposed package has been developed
to provide users with a collection of fundamental algorithms and tools to manipulate RSSI radio maps
and perform fingerprinting analysis. While fundamental algorithms and similarity measurement
functions are implemented to provide a main framework for research and comparison purposes, these
are highly customizable, to allow researchers to tailor those methods with their own parameters and
functions.

This paper describes these algorithms and their implementation, and provides examples of how to
use them. The remainder of the paper is structured as follows: Section Problem statement. Terminology
and notation defines the fingerprinting problem statement and the nomenclature that will be used in
the rest of the paper. An overview of the implemented algorithms is given in Section An overview of the
implemented algorithms. Section Data wrangling outlines some data wrangling techniques included
in the package. Section Positioning algorithms describes the implemented positioning algorithms.
Section Beacon position estimation presents the included methods for access point position estimation.
Then, Section Data clustering discuses some tools and functions included to create clusters or groups
of fingerprints. Section Plotting functions illustrates the use of the plotting functions also included in
the package. In all these sections, functions are described and explored using practical examples, and
particular emphasis is placed on how to use them with real world examples and data sets. Finally, the
paper is summarized in Section Summary.

Problem statement. Terminology and notation

This section provides a brief and general introduction to the principles of fingerprinting positioning,
as well as a description of the notation and terminology that will be used in the next sections. The
terms described here are related to general concepts of fingerprinting techniques, while the remaining
of the paper describes the particular implementation of these concepts in the ipft package.

The main goal of the indoor localization techniques is to determine the position of a user in an

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 270

indoor environment, where the GPS signal might not be received. This objective might require the
use of an existing infrastructure, the deployment of a new one, the use of the so-called signals-of-
opportunity (Yang et al., 2014), or even a combination of some of these techniques. Many of these
techniques take advantage of the radio-frequency signals emitted by devices, whose position can
be known or not, to estimate the user’s position from the perceived strength of these signals. There
are many kinds of devices that can be used for this purpose, such as Wi-Fi access points, bluetooth
beacons, RFID or UWB devices, but for all of them, the information provided for a given position, the
fingerprint, can be stored as a vector of received signal strength intensities (RSSI), whose length is
determined by the number of detected emitters.

A radio map, or a fingerprinting data set, is composed of a set of collected fingerprints and the
associated positions where the measurements were taken, and may contain some additional variables,
such as the the type of device used or a time stamp of the observation, among any other useful data.
Let D be a fingerprinting data set. Then:

D = {F ,L}

where F is the set of collected fingerprints and L is the set of associated locations.

For research purposes, a fingerprinting data set is usually divided into training and test sets. The
training data set is used to store the fingerprints and location data to create models of the environment
that can be used to estimate the position of a new fingerprint. The test data set is used to test the
models obtained from the training data, and to compute the errors from the results of the position
estimation.

Let Dtrain be a training data set:

Dtrain = {Ftrain,Ltrain}

where

Ftrain =
{

λtr
1 , λtr

2 , ..., λtr
n
}

Ltrain =
{

τtr
1 , τtr

2 , ..., τtr
n
}

Dtrain is composed of n fingerprints, stored as n vectors of RSSI measurements (λtr
i , i ∈ [1, 2, ..., n]),

and n locations (τtr
i , i ∈ [1, 2, ..., n]), stored as vectors, representing the position associated with its

correspondent fingerprint. Each fingerprint consists of q RSSI values (ρtr
h,i, h ∈ [1, ..., q]), where q is the

number of beacons considered when building the training set:

λtr
i =

{
ρtr

1,i, ρtr
2,i, ..., ρtr

q,i

}
, i ∈ [1, ..., n]

and each associated position is composed of one or more values, depending on the number of
dimensions to be considered and the coordinate system used. The position can be given as a vector of
values representing its coordinates, although on multi-floor and multi-building environments labels
can be used to represent buildings, floors, offices, etc. Let l be the number of dimensions of a position
vector. Then:

τtr
i =

{
νtr

1,i, νtr
2,i, ..., νtr

l,i

}
, i ∈ [1, ..., n]

The test data set is also composed of a collection of fingerprints associated to known positions.
This data set is used for testing purposes, during research or during model building adjustments, to
assess the model’s performance by comparing its estimation of the positions with the ground truth.

The situation is different in real applications, where the goal is to estimate the unknown position
of the receiver given the RSSI values detected at a particular location, using a previously built model.
In this case, the test data set is just composed of a unique fingerprint, and the objective is to estimate
the actual location of the receiver. Therefore, no information about its location is provided.

The test data set is composed of m observations:

Dtest = {Ftest,Ltest}

where

Ftest =
{

λts
1 , λts

2 , ..., λts
m
}

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 271

Ltest =
{

τts
1 , τts

2 , ..., τts
m
}

To be able to compare the test observations with the training fingerprints, the number of RSSI
values of its respective fingerprints has to be the same, and the position in the RSSI vector must
represent the same beacon in both data sets. Therefore, each one of the m observations of the test data
set is composed of a fingerprint with q RSSI values:

λts
j =

{
ρts

1,j, ρts
2,j, ..., ρts

q,j

}
, j ∈ [1, ..., m]

and a location vector with the same spatial dimensions as the training location vectors:

τts
j =

{
νts

1,j, νts
2,j, ..., νts

l,j

}
, j ∈ [1, ..., m]

The notation depicted above will be used in the remaining of the paper to represent the finger-
printing data. Symbols i and j will be used to represent iterations over the training and test data sets,
respectively, while h will be used to iterate over the beacons present in each fingerprint.

An overview of the implemented algorithms

This section presents an introduction to the main functions, included in the ipft5 package, that
implement fingerprinting-based indoor localization methods. The package also provides two data sets
for training and validation purposes that are briefly described in this section.

The ipft package implements three algorithms to build models to estimate the position of a
receiver in an indoor environment. Two of these implementations are based on the well known
k-Nearest Neighbors algorithm (knn) (Cover and Hart, 1967) to, given an RSSI vector, select the k
most similar training examples from the radio map. The similarity between the RSSI value vectors
can be measured, for example, as the euclidean distance between them, but other distance functions
may be used (Torres-Sospedra et al., 2015b). The selection of a method to compute this measure can
be provided to the function in two ways, either choosing one of the already implemented distance
measurements (euclidean, manhattan, etc.), or by way of a reference to a function implemented by the
user that returns the distance (the lower, the more similar or ’closer’) between two matrices or vectors.
Once the k neighbors are selected, the location of the user is estimated as the weighted average of the
neighbors positions.

The first implementation, corresponding to the function ipfKnn, may behave in a deterministic way,
finding the k more similar neighbors using a deterministic similarity function such as the euclidean or
manhattan distances, or in a probabilistic way, using similarity functions such as LDG (Logarithmic
Gaussian Distance) or PLGD (Penalized Logarithmic Gaussian Distance) (Cramariuc et al., 2016b),
that are based upon statistical assumptions on the RSSI measurement error. The similarity function
can be chosen from the set of implemented options or provided by the user via a custom function.
This implementation is discussed in the Section The ipfKnn function.

The other implementation of the knn algorithm assumes a probabilistic nature for the received
signal distribution (Roos et al., 2002) and uses collections of many fingerprints at each particular
position, acquired during the training phase. Therefore, the radio map is composed of several
groups, where a group is a set of fingerprints (vectors of RSSI values) that share the same location.
Assuming that the RSSI value for a specific beacon can be modeled as a random variable following a
normal distribution (Haeberlen et al., 2004), any of these collections, or groups, of fingerprints can be
represented by the statistical parameters of this distribution, in this case, the mean and the standard
deviation. This implies that the original data set can be transformed into a new type of data structure
by storing the mean and the standard deviation of every detected beacon for every group. All the
original data for a group is transformed into two vectors, one storing the means and the other the
standard deviations. The trustworthiness of the data in the new data set will depend on the number of
measurements for every location of the original data. It is assumed that the more measurements for a
particular location, the more reliable will be their inferred statistical parameters.

The implementation of this probabilistic-based method takes the original radio map and a set
of group indices, and fits these groups of measurements to a normal (Gaussian) distribution for
every beacon and every location, so that the signal intensity distribution is determined by the mean

5The ipft package is available at CRAN and can be installed as any other R package:
> install.packages("ipft")
The package has to be loaded into the main environment to use it for the first time in an R session:
> library("ipft")

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=ipft
https://CRAN.R-project.org/package=ipft

CONTRIBUTED RESEARCH ARTICLES 272

and the standard deviation of the Gaussian fit. Then, given a test fingerprint, the algorithm esti-
mates its position by selecting the k most probable locations, making explicit use of the statistical
parameters of the data stored in the radio map to optimize the probabilities in the assignment of the
estimated position by computing a similarity function based on a summatory of probabilities. This
approach is implemented through the ipfProbabilistic function and is described in the Section The
ipfProbabilistic function.

Finally, the third implemented algorithm is based on a scenario where the location of the beacons
is known, and an estimation of the fingerprint position can be made using the log-distance path loss
model (Seybold, J.S., 2005). The strength of the received signal at a particular point can be modeled
as a function of the logarithmic distance between the receiver and the emitter and some parameters
related to the environment properties and the devices characteristics. Therefore, as this method uses
an analytical model to evaluate the position, no radio map is needed to train a model to compare
fingerprints with, since the position might be estimated from the fingerprint data and the position of
the beacons. This method is implemented by the function ipfProximity and is described in Section
The ipfProximity function.

The previous functions ipfKnn, ipfProbabilistic and ipfProximity create models based on the
training data and parameters provided. These models can then be evaluated using the ipfEstimate
function, that internally detects the algorithm to apply based on the model that receives as parameter.

The package also includes data from the IPIN20166 Tutorial data set. In the ipftrain data frame
there are n = 927 observations, including the RSSI values for q = 168 wireless access points, the location,
expressed in Cartesian coordinates, for the observation (x, y), and some other variables, as timestamps
for the measurements or an identifier for the user who took the survey. The ipftest data frame
contains m = 702 observations with the same structure, for testing and validation purposes. The
fingerprints included in both data sets where taken in the same building and the same floor. The
ipfpwap data frame contains the position of 39 of the WAPs included in the ipftrain and ipftest
data sets. The unknown positions of the remaining WAPs are stored as NA. The characteristics of these
data sets attributes are:

• RSSI values: Columns from 1 to 168. The values represent the strength of the received signal
expressed in decibels, on a scale that ranges from −30dBm to −97dBm in the training set, and
from −31dBm to −99dBm in the test set. The closer the value to zero, the stronger the signal.

• position: Columns 169 (X) and 170 (Y). The position given in Cartesian coordinates, with its
origin in the same corridor where the data was acquired.

• user id: A numeric value from 1 to 8 to represent each of the 8 users that acquired the train
data set. The test dataset was acquired by a different user, represented by the value 0.

• timestamp: The UNIX time stamp of the observation, in seconds.

There are some other publicly available indoor location data sets that have been used to develop
and test this package and that are not included for size reasons, as the UJIIndoorLoc Data Set (Torres-
Sospedra et al., 2015a) or the Tampere University data set (Cramariuc et al., 2016a).

The theoretical foundations of the algorithms and its uses are discussed in detail in Section
Positioning algorithms. A description of the functions ipfKnn, ipfProximity, ipfProbabilistic and
ipfEstimate is given while presenting some simulations to show how these algorithms can be useful
in practice.

Data wrangling

An RSSI fingerprint is a vector composed of signal strength measurements from all the emitters
received by a client device at a particular point, and can be measured in any unit of power. It is often
expressed in decibels (dBm), or as percentage values between 1-100, and can be a negative or a positive
value. Typically this values are stored as negative figures, where the strongest signals are closer to
zero.

Some algorithms are sensitive to the scale of the data. For example, Neural Networks generally
work better (?) with data scaled to a range between [0, 1] or [−1, 1], since unscaled data may slow
down the learning process and the convergence of the network parameters and, in some cases, prevent
the network from effectively learning the problem. Thus, the first step before the data can be fed to a
positioning algorithm may involve some kind of transformation, depending on the characteristics of
the original data.

The data sets included in this package represent the RSSI data from a set of wireless access points
as negative integer numbers from −99 (weakest detected signal) to −30 (strongest detected signal).

6http://www3.uah.es/ipin2016/

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 273

When the RSSI of a WAP is not available, the value used is NA. This convention may be inconvenient
for some calculations. For example, a similarity measure between two fingerprints as the euclidean
distance will only take into account those WAPs that have been detected in both observations, causing
a loss of information that otherwise could be utilized.

The ipft package contains some functions to manipulate and wrangle raw fingerprint data. The
ipfTransform function mutates the given fingerprint data into a new data set with a specified range
for the RSSI signals. The signature of the function is:

ipfTransform <- function(data, outRange = c(0, 1), outNoRSSI = 0, inRange = NULL,
inNoRSSI = 0, trans = "scale", alpha = 24)

where:

• data: The input data set with the original RSSI fingerprints.

• outRange: A numeric vector with two values indicating the desired range of the output data.

• outNoRSSI: The desired value for not detected beacons in the output data.

• inRange: A numeric vector with two values indicating the range of signal strength values in the
input data. If this parameter is not provided, the function will infer it from the provided data.

• inNoRSSI: The value given to a not detected beacon in the original data.

• trans: The transformation to perform over the RSSI data, either ’scale’ or ’exponential’.

• alpha: The α parameter for the exponential transformation.

The scale transformation scales the input data values to a range specified by the user. The feature
scaling is performed according to Equation 1:

ρout
h,i =

{
a + b · ρin

h,i, if ρin
h,i 6= inNoRSSI

outNoRSSI, otherwise
(1)

b =
outMin− outMax

inMin− inMax
a = outMin− inMin · b

where:

– ρout
h,i and ρin

h,i are the output and input RSSI values, respectively, for the hth beacon from the ith

observation

– outMax and outMin are the maximum and minimum values, respectively, specified for the
output by the outRange parameter.

– inMax and inMin are the maximum and minimum values, respectively, of the input data.

– outNoRSSI and inNoRSSI are the values assigned in the fingerprint to represent a not detected
beacon for the output and input data, respectively, specified by the parameters outNoRSSI and
inNoRSSI.

The exponential transformation (Torres-Sospedra et al., 2015b) changes the data according to the next
equation:

ρout
h,i =

{
exp(

pos(ρin
h,i)

α), if ρin
h,i 6= inNoRSSI

outNoRSSI, otherwise

pos(ρin
h,i) =

{
ρin

h,i − inMin, if ρin
h,i 6= inNoRSSI

0, otherwise

where α is a parameter for the exponential transformation. The authors establish α as a case-based
parameter, and find that 24 is a good value for RSSI fingerprinting data, but they did not study the
effects of α in the transformed data.

The following code scales the ipftrain and ipftest data sets RSSI data, stored in the columns
1:168, to a positive range of values, from 0 to 1, with NA representing a not detected WAP. As a not
detected WAP is represented by a NA value in the original data, this has to be indicated to the function
so it can transform these values to the desired output:

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=ipft

CONTRIBUTED RESEARCH ARTICLES 274

trainRSSI <- ipfTransform(ipftrain[, 1:168], outRange = c(0.1, 1), inNoRSSI = NA,
outNoRSSI = NA)

testRSSI <- ipfTransform(ipftest[, 1:168], outRange = c(0.1, 1), inNoRSSI = NA,
outNoRSSI = NA)

The ipfTransform function returns a new data set with the same structure (vector, matrix or data
frame) as the input.

Positioning algorithms

This section describes three positioning algorithms implemented in the ipft package. The examples
illustrating each description are based on the data previously scaled in Section Data wrangling .

The ipfKnn function.

The ipfKnn and ipfEstimate functions implement a version of the knn algorithm to select the k nearest
neighbors (the k more similar vectors from the training set) to a given RSSI vector. Many different
distance metrics (Torres-Sospedra et al., 2015b) can be used to compare two RSSI vectors and measure
how ’near’ or similar they are.

The distance metrics implemented in the package include some typical functions, as the L1 norm,
or manhattan distance, or the L2, or euclidean distance. The Lu norm between two fingerprints with
indices a and b is defined as follows:

Lu =

(
q

∑
h=1
|(ρh,a − ρh,b|u

)1/u

The package also implements some fingerprinting specific distance estimation functions such as
LDG and PLGD. The LGD between two RSSI vectors λtr

i and λts
j of longitude q is given by:

LGD(λtr
i , λts

j) = −
q

∑
h=1

log max(G(ρtr
h,i, ρts

h,j), ε)

where ε is a parameter to avoid logarithm of zero, as well as having one beacon RSSI value influence
the LGD only above a certain threshold. G(ρtr

h,i, ρts
h,j) represents the Gaussian similarity between ρtr

h,i
and ρts

h,j, defined as

G(ρtr
h,i, ρts

h,j) =

 1√
2πσ2

exp
(
−

(ρtr
h,i−ρts

h,j)
2

2σ2

)
, if ρtr

h,i 6= 0 and ρts
h,j 6= 0

0, otherwise

The σ2 parameter represents the shadowing variance (Shrestha et al., 2013). Values for σ in the
range between 4 and 10 dBm are usually good for indoor scenarios (Lohan et al., 2014).

The PLGD between two RSSI vectors λtr
i and λts

j of longitude q is given as:

PLGD(λtr
i , λts

j) = LGD(λtr
i , λts

j) + α(φ(λtr
i , λts

j) + φ(λts
j , λtr

i))

where φ(λtr
i , λts

j) is a penalty function for the beacons that are visible in the ith training fingerprint but

not in the jth test fingerprint, φ(λts
j , λtr

i) is a penalty function for the beacons that are visible in the jth

test fingerprint but not in the ith training fingerprint, and are defined as follows:

φ(λtr
i , λts

j) =
q

∑
h=1

Tmax − ρtr
h,i, for 0 < ρtr

h,i ≤ Tmax and ri = 0)

φ(λts
j , λtr

i) =
q

∑
h=1

Tmax − ρts
h,j, for 0 < ρts

h,j ≤ Tmax and rj = 0)

Tmax is an upper threshold for the strength of the signal, and α is a scaling factor.

The similarity measurement method can be chosen by means of the parameter method, or by
providing a custom function (parameters FUN and ...). The signature of the ipfKnn function is:

ipfKnn <- function(train_fgp, train_pos, k = 3, method = 'euclidean',

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 275

weights = 'distance', norm = 2, sd = 5, epsilon = 1e-3,
alpha = 1, threshold = 20, FUN = NULL, ...)

where:

• train_fgp: A data frame of n rows and q columns containing the fingerprint vectors of the
training set.

• train_pos: A data frame of n rows and l columns containing the positions of the training
observations.

• k: The k parameter of the knn algorithm, the number of nearest neighbors to consider.

• method: The distance metric to be used by the algorithm. The implemented options are ’eu-
clidean’, ’manhatan’, ’norm’, ’LGD’ and ’PLGD’

• weights: The weight function to be used by the algorithm. The implemented options are
’distance’ and ’uniform’. The default ’distance’ function calculate the weights from the distances
as:

wj,t =
1

(1 + dj,t)Wj

where wj,t is the weight assigned to the tth (t ∈ [1..k]) neighbor of the jth (j ∈ [1..m]) test
observation, dj,t is the distance in the feature (RSSI) space between the tth neighbor and the jth

test fingerprint, andWj is a term used to normalize the values so that the total sum of the k
weights is 1.
The ’uniform’ function assigns the same weight value to each neighbor:

wj,t =
1
k

• norm,sd,epsilon,alpha,threshold: Parameters for the ’norm’, ’LGD’ and ’PLGD’ methods.

• FUN: An alternative function provided by the user to compute the distance.

• ...: Additional parameters for the function FUN.

For a training data set of n RSSI vectors (a data frame or a matrix named tr_fingerprints) and a
data set of n position vectors (a data frame or a matrix named tr_positions), the code for fitting a
knn model with a k value of 4 and the manhattan distance as the distance measurement method is:

knnModel <- ipfKnn(tr_fingerprints, tr_positions, k = 4, method = 'manhattan')

This function returns an S3 object of class ipftModel containing the following properties:

• params: A list with the parameters passed to the function.

• data: A list with the fingerprints and the location data of the radio map.

To estimate the position of a new fingerprint, the ipfEstimate function makes use of the previously
obtained model. An ipfModel object holds the data model needed by the ipfEstimate function to
apply the selected algorithm and returns an estimation of the test fingerprints positions. The signature
of ipfEstimate is:

ipfEstimate <- function(ipfmodel, test_fgp, test_pos = NULL)

where:

• ipfmodel: An S3 object of class ipfModel.

• test_fgp: A data frame of m rows and q columns containing the fingerprints of the test set.

• test_pos: An optional parameter containing a data frame of m rows and l columns with the
position of the test observations.

The ipfEstimate function returns an S3 object of the class ipfEstimation with the following elements:

• location: A m× l matrix with the predicted position for each observation in the test data set.

• errors: If the actual location of the test observations is passed in parameter test_pos, and the
data that represents the position is numeric, this property returns a numeric vector of length
n with the errors, calculated as the euclidean distances between the actual and the predicted
locations.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 276

• confusion: If the actual location of the test observations is passed in parameter test_pos, and
the data that represents the position is a factor, the estimation of the actual position is performed
as a classification task, and this property returns a confusion matrix summarizing the results of
this classification.

• neighbors: A m× k matrix with the indices of the k selected neighbors for each observation in
the test data set.

• weights: A m × k matrix containing the weights assigned by the algorithm to the selected
neighbors.

The following R code shows an example of the usage of the ipfKnn function with the data set
included in the package. This example takes the data previously scaled and generates a positioning
model from the input data trainRSSI (the radio map) that is stored in knnModel. Then, the model is
passed to the ipfEstimate function, along with the test data, to get an estimation of the position of the
702 test observations:

tr_fingerprints <- trainRSSI[, 1:168]
tr_positions <- ipftrain[, 169:170]
knnModel <- ipfKnn(tr_fingerprints, tr_positions, k = 7, method = "euclidean")
ts_fingerprints <- testRSSI[, 1:168]
ts_positions <- ipftest[, 169:170]
knnEstimation <- ipfEstimate(knnModel, ts_fingerprints, ts_positions)

Since the position of the test observations is known, the mean error for the 702 test observations
can be calculated as follows:

> mean(knnEstimation$errors)
[1] 3.302739

The mean positioning error is one of the most common evaluation metrics used in indoor position-
ing (Liu et al., 2007) to assess the system’s accuracy. This metric corresponds to the average Euclidean
distance between the estimated locations and the true locations. As positions in the ipftrain and
ipftest are expressed in meters, this metric represents the average error in meters for this scenario.

The neighbors selected from the training data set for the 6 first test fingerprints are:

> head(knnEstimation$neighbors)
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 71 176 126 125 127 771 130
[2,] 71 176 126 125 127 771 130
[3,] 465 914 915 913 217 77 218
[4,] 465 914 915 176 913 461 217
[5,] 176 126 125 771 130 127 914
[6,] 77 914 915 217 176 465 218

where each row of the output corresponds to the indices of the k = 7 more similar vectors from the
training data set to the ith vector of the test data set.

As an example of how to use ipfKnn with a custom function, the next code shows the definition of
a C++ function that implements a modified version of the manhattan distance. The function needs at
least two parameters, the two matrices representing the training and test data sets. A third parameter
is here introduced to represent a penalization value. This function penalizes the computed distance
between two RSSI measurements when one of the beacons is not detected (represented by the value
∅), by multiplying the resulting distance by a factor F. Given two fingerprints λtr

i and λts
j of length q,

the myD distance is:

myD(λtr
i , λts

j) =
q

∑
h=1

myd(ρtr
h,i, ρts

h,j),

where

myd(ρtr
h,i, ρts

h,j) =

{
|ρtr

h,i − ρts
h,j|, if ρtr

h,i 6= ∅ and ρts
h,j 6= ∅

|ρtr
h,i − ρts

h,j|F, otherwise

The following code implements the myD function and shows an example of its usage with ipfKnn,
as well as the results obtained. The function is coded in C++ to improve its performance when using

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 277

large data sets, although the method also accepts custom plain R functions. The myD function assumes
that the fingerprints are in a positive range:

library('ipft')
library('Rcpp')
cppFunction('
NumericMatrix myD(NumericMatrix train, NumericMatrix test, double F = 2.0) {
NumericMatrix distanceMatrix(test.nrow(), train.nrow());
double d = 0, pv = 0, rssi1 = 0, rssi2 = 0;
for (int itrain = 0; itrain < train.nrow(); itrain++) {
for (int itest = 0; itest < test.nrow(); itest++) {
d = 0;
for (int i = 0; i < train.ncol(); i++) {
rssi1 = R_IsNA(train(itrain, i))? 0 : train(itrain, i);
rssi2 = R_IsNA(test(itest, i))? 0 : test(itest, i);
pv = (rssi1 != 0 && rssi2 != 0)? 1 : F;
d = d + std::abs(rssi1 - rssi2) * pv;

}
distanceMatrix(itest, itrain) = d;

}
}
return distanceMatrix;

}'
)
customModel <- ipfKnn(tr_fingerprints, tr_positions, k = 1, FUN = myD, F = 0.25)
customEstimation <- ipfEstimate(customModel, ts_fingerprints, ts_positions)

> head(customEstimation$neighbors)
[,1]

[1,] 773
[2,] 773
[3,] 776
[4,] 773
[5,] 130
[6,] 130

The previous code outputs the selected neighbors for the first 6 observations in the test data set.
As the ts_positions data frame contains the actual location of the observations, the absolute error
committed by the model is returned in the ipfEstimation object:

> head(customEstimation$errors)
[1] 5.708275 5.708275 5.708275 5.708275 3.380000 3.380000

And the mean error with this custom similarity function is:

> mean(customEstimation$errors)
[1] 3.297342

An ipfEstimation object can be used directly to plot the Empirical cumulative distribution func-
tion of the error (function ipfPlotEcdf()) and the Probability density function (function ipfPlotPdf()).
Figures 1 and 2 show the plots obtained from the following code:

> ipfPlotEcdf(customEstimation)
> ipfPlotPdf(customEstimation)

The plotting functions included in the package are described in detail in Section Plotting functions.

The ipfProbabilistic function.

Given the limitations of sensors accuracy (Luo and Zhan, 2014) and the irregular character of signal
propagation (Ali et al., 2010), the RSSI vector stored for a particular position cannot have completely
reliable and accurate information about the emitters signal strength. This uncertainty is generally
modeled by a normal distribution (Haeberlen et al., 2004), but to do so many readings of the signals
at the same position are needed to obtain a representative set of statistical parameters to model each
RSSI present at that position.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 278

Figure 2: Funtion ipfPlotEcdf. Empirical cumulative distribution function of the error. The plot also
shows the mean (red dotted line) and the median (blue dashed line) of the errors.

Figure 3: Funtion ipfPlotPdf. Probability density function. The plot shows the normalized histogram
of the errors and its density function. The plot also shows the mean (red dotted line) and the median
(blue dashed line) of the errors.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 279

Figure 4: δ parameter for the probabilistic approach. This parameter sets the width of the discretization
steps.

Thus, the initial collection of RSSI observations associated to a particular point is transformed into
a pair of vectors containing the means and the standard deviations of the RSSI for each beacon, and
then the complete training data is stored as a set of statistical parameters that can be used to infer the
location of a test observation as the one that maximizes a probability function.

Let D̂train be the new training set obtained from the previous procedure:

D̂train =
{
F̂train, L̂train

}
F̂train =

{
λ̂tr

1 , λ̂tr
2 , ..., λ̂tr

g

}
L̂train =

{
τ̂tr

1 , τ̂tr
2 , ..., τ̂tr

g

}
where F̂train is the set of statistical parameters obtained from the fingerprints of the training set, g
is the number of groups of fingerprints with the same associated position, and L̂train is the set of
positions associated to each group. Each one of the g observations of the training data set is now
composed of a fingerprint with q values:

λ̂tr
i =

{
θtr

1,i, θtr
2,i, ..., θtr

q,i

}
, i ∈ [1, ..., g]

θtr
h,i ∼ N (µh,i, σ2

h,i)

where µh,i and σ2
h,i are the mean and the variance, respectively, of the hth RSSI of the ith group of

original fingerprints.

Let ρts
h,j be the hth RSSI measurement of the jth test fingerprint (λts

j), and let µh,i and σ2
h,i be the

mean and the standard deviation of the hth beacon distribution obtained for the ith position from the

training set. The probability p(i)h,j , of observing ρts
h,j at the ith position is:

p(i)h,j =
∫ ρts

h,j+δ

ρts
h,j−δ

1
σh,i
√

2π
e
− x−µh,i

2σ2
h,i dx

where δ is a parameter to allow the discretization of the normal distribution (Figure 4).

The set of all probabilities p(i)h,j , h ∈ [1, ..., q] obtained for a given test observation j, expresses the
similarity between the observation measurement and the training data for a particular location. An
evaluation of the total similarity for every location can be computed as a function of these individual
probabilities, like its sum or its product. In the ipft package, this algorithm is implemented by the

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=ipft

CONTRIBUTED RESEARCH ARTICLES 280

ipfProbabilistic and ipfEstimate functions, and by default uses the sum of probabilities as default
operator to evaluate the similarity:

ψ
(i)
j =

p

∑
h=1

p(i)h,j

where ψ
(i)
j is the similarity between the jth test observation and the ith distribution from the training

data set. The function to evaluate the similarity can be passed to ipfProbabilistic as a parameter.

As well as the ipfKnn and ipfProximity funtions, ipfProbabilistic returns a ipfModel object
with the same data structure seen in Section The ipfKnn function, but with the difference that now the
data property returns the probabilistic parameters that define the fitted distributions for every group
of fingerprints on the training set. The clustering or grouping of the training data is performed by
default over the location data provided by the user, but this behavior can be customized by passing a
parameter with the columns over which to group the data, or by passing the group indices directly.
The ipft package implements two functions (ipfGroup() and ipfCluster()) to perform clustering
tasks. These functions are described in Section Data clustering.

The signature of the ipfProbabilistic function is:

ipfProbabilistic <- function(train_fgp, train_pos, group_cols = NULL, groups = NULL,
k = 3, FUN = sum, delta = 1, ...)

where train_fgp, train_pos and k have the same meaning and structure as described in Section The
ipfKnn function, and, given n observations in the training set:

• groups: is a numeric vector of length n, containing the index of the group assigned to each
observation of the training set. This parameter is optional.

• group_cols: is a character vector with the names of the columns to use as criteria to form groups
of fingerprints. This parameter is optional.

• FUN: is a function to estimate a similarity measure from the calculated probabilities.

• delta: is a parameter to specify the interval around the test RSSI value to take into account
when determining the probability.

• ...: are additional parameters for FUN.

The following code shows how to use the ipfProbabilistic function to obtain a probabilistic
model from the ipftrain and ipftest data sets. The default behavior of ipfProbabilistic groups
the training data attending at the position of each observation, in this case, its x and y coordinates:

> probModel <- ipfProbabilistic(tr_fingerprints, tr_positions, k = 7, delta = 10)
> head(probModel$data$positions)

X Y
1 -0.6 24.42
2 -0.6 27.42
3 0.0 0.00
4 0.4 0.00
5 0.4 3.38
6 0.4 6.81

Now the ipfModel$data property returns a list with 3 elements:

• means: a data frame with the means for every beacon and every group of fingerprints.

• sds: a data frame with the standard deviations for every beacon and every group of fingerprints.

• positions: a data frame with the position of each group of fingerprints.

To obtain an estimation from this model, the same code used in section The ipfKnn function can
be used to produce the estimated locations:

> ts_fingerprints <- ipftest[, 1:168]
> ts_positions <- ipftest[, 169:170]
> probEstimation <- ipfEstimate(probModel, ts_fingerprints, ts_positions)

and their errors and its mean value:

> mean(probEstimation$errors)
[1] 6.069336

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 281

An alternative function can be passed to ipfProbabilistic. The following code uses the maximum
value of the probabilities as the similarity measure, and passes a parameter to remove NAs from the
data7:

> probModel <- ipfProbabilistic(tr_fingerprints, tr_positions, k = 9, delta = 10,
+ FUN = max, na.rm = TRUE)
> probEstimation <- ipfEstimate(probModel, ts_fingerprints, ts_positions)
> mean(probEstimation$errors)
[1] 8.652321

The ipfProximity function.

When the location of the access points is known, it’s possible to estimate the position of a fingerprint
using the log-distance path loss model (Seybold, J.S., 2005). Given a set of q beacons, and a fingerprint
vector λ =

{
ρ1, ρ2, ..., ρq

}
of length q, this model is expressed as:

ρh = P1m,h − 10α log10 dh − γ, h ∈ [1, 2, ..., q]

where ρh is the value of the received signal from the hth beacon, dh is the distance from the observation
to the beacon, P1m,h is the received power at 1 meter from the emitter, α is the path loss exponent, and
γ ∼ N (0, σ2

γ) represents a zero mean Gaussian noise that models the random shadowing effects of the
environment.

The estimator of the distance between the emitting beacon and the position where the signal is
received is:

d̂h = 10
ρh−P1m,h

10α

This estimation follows a log-normal distribution that is:

ln d̂h ∼ N (ln dh, σ2
d)

where σd = (σγln10)/(10α).

The mean and the variance of the distribution are:

E[d̂h] = dh eσ2
d /2

Var[d̂h] = d2
h eσ2

d (eσ2
d − 1)

Note that the variance grows quadratically with the distance, making the estimation less reliable
as the distance becomes larger. Therefore, the distances estimated from different beacons will have
different accuracies. To take this into account, the algorithm estimates the position of a fingerprint as a
minimization problem of the overall squared error of the estimated distances. The objective function
to minimize is:

min
τ

J =
p

∑
h=1

ωh(d̂h − ‖sh − τ‖)2

where τ is the position that minimizes the function, that is, the estimated position, q is the number of
beacons present in the fingerprint, and ωh = 1/Var[d̂h] are the weights.

The functions ipfProximity and ipfEstimate implement this design, and uses the Broyden-
Fletcher-Goldfard-Shano algorithm (BFGS) (Broyden, 1969; Fletcher, 1970; Goldfarb, 1970; Shanno,
1970), a quasi-Newton method, to minimize the previous function to make an estimation of the
fingerprint position. The accuracy of the estimation is strongly dependent on the reliability of the
emitters positions. When these positions are unknown, they can be estimated with the function
ipfEstimateBeaconPositions. Section Beacon position estimation details the implementation and
usage of this function. The ipfProximity function returns an ipfModel object with the data needed by
the ipfEstimate function to estimate a fingerprint position.

The signature of the ipfProximity function is:

ipfProximity <- function(bpos, rssirange = c(-100, 0), norssi = NA, alpha = 5,

7The ipfProbabilistic function takes into account the NAs contained in the data when using the default
function (sum), but the user needs to manage this situation when a custom function is provided. In this example,
the data is not previously transformed, is passed as it is, with NAs for not detected WAPs, to illustrate this situation.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 282

wapPow1 = -30)

where:

• bpos: a matrix or a data frame containing the position of the beacons, in the same order as they
appear in fingerprints.

• rssirange: the range of the RSSI data in the fingerprints.

• norssi: the value used to represent a not detected beacon.

• alpha: the path loss exponent (α).

• wapPow1: a numeric vector with the received power at one meter distance from the beacon
(P1m,h). If only one value is supplied, it will be assigned to all beacons.

In the following example, the goal is to estimate the position of the 702 fingerprints included in
the test set, using the known position of the WAPs and the log-distance path loss model. The ipfpwap
dataset contains the location of 39 of the 168 wireless access points of the ipftrain and ipftest
data sets. The ipfProximity function returns a model that is used to estimate the position of the
fingerprints. As the real position of the test fingerprints is known, this information can be also passed
to the ipfEstimate function. Thus, the returned ipfEstimation object will contain, along with the
estimated positions, the associated errors:

> proxModel <- ipfProximity(ipfpwap, alpha = 4, rssirange = c(-100, 0),
+ norssi = NA, wapPow1 = -32)
> fingerprints <- ipftest[, 1:168]
> positions <- ipftest[, 169:170]
> proxEstimation <- ipfEstimate(proxModel, ipftest[, 1:168], ipftest[, 169:170])
> mean(proxEstimation$errors)
[1] 8.0444

Positioning algorithms comparison

In a classical fingerprint-based positioning system, the radio map is constructed in accordance to
the positioning algorithm to be used in the online phase. The knn algorithm follows a deterministic
approach that performs well in most cases, while the probabilistic method is based on the assumption
that there is enough training data for each particular position to obtain reliable parameters to model a
distribution for each signal at each survey location. As regards to the proximity algorithm, it is based
on two assumptions; first, the ability to realistically simulate the propagation model of the signal, and
second, the known positions of the emitter beacons. These conditions are not met in many scenarios,
where changes in occupation, for example, modify the propagation model and thus the performance
of the positioning system.

To illustrate the previous considerations, Table 1 shows the mean and the quartile errors in meters
for the implemented algorithms, computed using the dataset included in the package. In this particular
case, given the characteristics of the training data, knn performs better than the rest.

Quartile error (m)
algorithm mean error (m) 0% 25% 50% 75% 100%

knn 3.3027 0.15172 1.46891 2.61281 4.08992 19.84650
probabilistic 6.0693 0.14289 3.26988 5.63051 8.19933 17.93031
proximity 8.0444 2.49865 5.71055 7.42602 9.88427 20.12029

Table 1: Comparison of the algorithms’ accuracy on the dataset included in the package

To compare the performance of the proposed implementation of the previous positioning algo-
rithms, we ran a benchmark test of 1000 iterations on each function, using the dataset included in
the package. The results for the model fitting functions are shown in Table 2. As it can be seen, the
proximity and knn algorithms are the fastest, as expected, since their model fitting process basically
consists in storing the training data for later processing during the estimation stage. In contrast, the
probabilistic algorith has to fit a normal distribution for each signal received at each position, and thus,
it takes longer to complete the process.

The outcomes are different when considering the results for the estimation function (Table 3).
The position estimation for the probabilistic algorithm is faster that the rest. For the knn algorithm,
the estimation process could be improved using clustering techniques to avoid comparing the test
fingerprint with all the instances in the training set. With regards to the estimation process for the

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 283

function elapsed (sec) relative

ipfKnn 0.031 1.409
ipfProbabilistic 1035.446 47065.727
ipfProximity 0.022 1.000

Table 2: Performance comparison of the model building functions

proximity algorithm, the fact that the result is computed by solving an unconstrained nonlinear
optimization through an iterative method highly penalyzes its performance.

model function elapsed (sec) relative

knn ipfEstimate 2508.079 2.998
probabilistic ipfEstimate 836.651 1.000
proximity ipfEstimate 28259.110 33.776

Table 3: Performance comparison of the estimation functions on each model

Beacon position estimation

If the actual position of the beacons is unknown, it can be estimated in many ways from the RSSI
data. Two basic methods for estimation of the beacons location have been included in the ipft pack-
age through the ipfEstimateBeaconPositions function. The ’centroid’ and the ’weighted centroid’
methods.

Both methods use the fingerprint data to guess the position of the beacons. Let q be the number of
beacons and τB be the set of beacons locations:

τB =
{

νB1,h, νB2,h, νB3,h

}
, h ∈ [1, 2, ..., q]

the position of the hth beacon is given by:

τBh =

{
n

∑
i=1

ωiν
tr
1,i,

n

∑
i=1

ωiν
tr
2,i,

n

∑
i=1

ωiν
tr
3,i

}
where n is the number of fingerprints in the training set. The value of ωi is:

ωi =
1
n

for the ’centroid’ method and:

ωi =
ρtr

h,i

∑n
l=1 ρtr

h,l

for the ’weighted centroid’ method. Since the biggest weights have to be assigned to the strongest RSSI
values, the fingerprint vector values should be positive, or at least, positively correlated to the beacon
received intensity. This is checked by the function implementation so the input data is internally
transformed to a positive range when needed.

This is the signature of the ipfEstimateBeaconPositions function:

ipfEstimateBeaconPositions <- function(fingerprints, positions, method = 'wcentroid',
rssirange = c(-100, 0), norssi = NA)

where:

• fingerprints: is a data frame with the fingerprint vectors as rows.

• positions: a data frame with the position of the fingerprints.

• method: the method to use by the algorithm, either ’centroid’ or ’wcentroid’.

• rssirange: the range of the signal strength values of the fingerprints.

• norssi: the value assigned in the fingerprints to a non detected beacon.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 284

The following code uses the function ipfEstimateBeaconPositions with the ’weighted centroid’
method to estimate the position of the wireless access points, under the assumption that this position
is unknown. Finally, the function ipfProximity estimates the positions of the first 6 test fingerprints:

> bc_positions <- ipfEstimateBeaconPositions(ts_fingerprints, ts_positions,
method = 'wcentroid')

> proxModel <- ipfProximity(bc_positions, rssirange = c(0.1, 1),
+ norssi = NA)
> proxEstimation <- ipfEstimate(proxModel, fingerprints[1:6,],
+ positions[1:6,])
> proxEstimation$location

V1 V2
1 1.686950 12.02117
2 1.686950 12.02117
3 1.654255 10.91767
4 1.682121 10.96035
5 1.711448 10.88966
6 1.695007 10.09507

Data clustering

Clustering techniques can be used with the aim of enhancing localization performance and reducing
computational overhead (Cramariuc et al., 2016b). The ipft package includes some functions for
cluster analysis and grouping of the fingerprinting and location data. These functions can be used to
create or detect clusters based on the position of the observations, on its signal levels, or on any other
criteria that might be useful to group the data by. Performing RSSI clustering before the positioning
process groups a large number of reference points into various clusters that can be used to perform
first-level classification. This allows to assess the testing point location by using only the fingerprints
in the matched cluster rather than the whole radio map. Furthermore, given the amplitude atenuation
that building partitions cause to electromagnetic signals, clusters usually can be related to physical
spaces such as buildings, floors or even rooms.

The main function for clustering tasks is ipfCluster. The more basic usage of the function takes
the provided data and uses the k-means algorithm to classify it into k disjoint sets of observations,
by selecting a set of k cluster centers to minimize the sum of the squared distances between the data
vectors and their corresponding centers.

The k-means clustering procedure begins with an initial set of randomly selected centers, and
iteratively tries to minimize the sum of the squared distances. This makes the algorithm very sensitive
to the arbitrary selection of initial centers, and introduces variability in the results obtained from one
execution to another. Besides, the number of clusters has to be established beforehand, and that may
be inconvenient in some scenarios.

The signature of the ipftCluster function is:

ipfCluster <- function(data, method = 'k-means', k = NULL, grid = NULL, ...)

where

• data: is a data frame with the data to cluster. When using the k-means method, the data frame
must not contain any NA values.

• method: the algorithm used to create clusters. The implemented algorithms are ’k-means’ for
k-means algorithm, ’grid’ for clustering based on spatial grid partition, and ’AP’ for affinity
propagation algorithm.

• k: a numeric parameter for k-means algorithm.

• grid: a numeric vector with the size of the grid for the grid algorithm.

When using the default k-means algorithm, the function behaves as a wrapper around the k-means
function of the stats package, and therefore, the usage can be further customized by passing extra
parameters, as the number of iterations or the algorithm to be used ("Hartigan-Wong" is the default).

The following example will find k = 30 clusters of similar fingerprints in the ipftrain dataset.
First the data set of fingerprints is transformed to eliminate the NA values that represent a not detected
beacon. Then, the data is passed to the ipfCluster function to find the 30 clusters using the ’MacQueen’
algorithm:

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 285

> set.seed(1)
> cl_fingerprints <- ipfTransform(tr_fingerprints, inNoRSSI = NA, outNoRSSI = 0)
> clusterData <- ipfCluster(cl_fingerprints, k = 30, iter.max = 20,
+ algorithm = "MacQueen")
> head(clusterData$clusters)
[1] 3 3 3 3 3 3

The outcome of the ipfCluster function is a list containing the indices of the k clusters and
its centroids. Given the previous example, clusterData$centers will return the k centroids, and
clusterData$clusters will return the cluster index i ∈ [1, .., k] for every observation in ipftrain.

The ipfCluster function includes an implementation of the affinity propagation (AP) algorithm
(Frey and Dueck, 2007) that can be used to estimate the number of distinct clusters present in the radio
map. AP does not require the number of clusters to be determined before running it. It finds members
of the input set, known as ’exemplars’, that are representative of clusters by creating the centers
and the corresponding clusters based on the constant exchanging of reading similarities between the
observations. This message-passing process continues until a good set of centers and corresponding
clusters emerges.

The following code uses AP clustering to find groups of similar RSSI vectors from the ipftrain
data set. With no further parametrization, it will classify the RSSI data into 43 distinct clusters:

> clusterData <- ipfCluster(tr_fingerprints, method = 'AP')
> dim(clusterData$centers)
[1] 43 168

Now, clusterData$centers holds the 43 ’exemplars’, those RSSI vectors from the radio map
that are representative of a cluster, and clusterData$clusters contains the indices that link every
observation of the data set with its assigned cluster.

To perform a more simple grouping based on a precise set of variables, the ipfGroup function
provides a method to group the data by column name. The function signature is:

ipfGroup <- function(data, ...)

where

• data: is a data frame with the data to group.

• ...: The variables to group the data by.

The ipfGroup function returns a numeric vector with the same length as the number of observations
contained in the data data frame, containing the index of the group assigned to each observation. The
following example groups the data according to the position of the observations, that in the ipftrain
and ipftest datasets are represented by the columns ’X’ and ’Y’:

> groups <- ipfGroup(ipftrain, X, Y)
> head(groups)
[1] 4 4 4 4 22 22
> length(unique(groups))
[1] 41

Plotting functions

Indoor positioning generally involves statistical analysis of datasets, and the ipft provides some useful
functions to produce graphs for exploring data. All the graphic functions included in the package are
built upon the ggplot2 package (Wickham, 2011), and return a ggplot object that can be plotted or
further personalized with custom labels, theme, etc.

The ipfPlotPdf and the ipfPlotEcdf have already been introduced in Section The ipfKnn function.
These functions will plot the probability density function and the empirical cumulative distribution
function, respectively. Both functions take an ipfEstimation object to produce the plot, while the axis
labels and plot tittle can be also supplied by the parameters xlab, ylab and tittle. Their respective
signatures are:

ipfPlotPdf <- function(estimation, xlab = 'error', ylab = 'density',
title = 'Probability density function')

ipfPlotEcdf <- function(estimation, xlab = 'error',

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=ipft
https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLES 286

ylab = 'cumulative density of error',
title = 'Empirical cumulative density function')

The function ipfPlotLocation will produce a plot of the location of the data. The following code
shows its signature and presents an example of its use. The example calls the function with parameter
plabel set to TRUE, to plot labels identifying each location, and reverseAxis set to TRUE to swap the
axis. It also modifies the resulting object by changing the default ggplot2 theme to the white one. The
result is shown in Figure 5.

ipfPlotLocation <- function(positions, plabel = FALSE, reverseAxis = FALSE,
xlab = NULL, ylab = NULL, title = '')

library(ggplot2)
ipfPlotLocation(ipftrain[, 169:170], plabel = TRUE, reverseAxis = TRUE) + theme_bw()

The function ipfPlotEstimation plots the estimated position of the test observations based on an
ipfModel object and an ipfEstimation object, as well as the actual position (parameter testpos), if
known, and the position of the k selected fingerprints from the training set used to guess its location
(parameter showneighbors). The green dots indicate the actual position of the observations, while
the black dots indicate the estimated ones. The blue lines connect the estimated positions with the k
neighbors from which the location has been estimated, and the red arrows connect the actual position
of the fingerprint with the estimated one. The following code shows the function signature and
provides an example of its usage. The result plot is shown in Figure 6:

ipfPlotEstimation <- function(model, estimation, testpos = NULL, observations = c(1),
reverseAxis = FALSE, showneighbors = FALSE,
showLabels = FALSE, xlab = NULL, ylab = NULL,
title = '')

library(ggplot2)
probModel <- ipfProbabilistic(ipftrain[, 1:168], ipftrain[, 169:170])
probEst <- ipfEstimate(probModel, ipftest[, 1:168], ipftest[, 169:170])
ipfPlotEstimation(probModel, probEst, ipftest[, 169:170],

observations = c(61:62, 81:82), reverseAxis = TRUE,
showneighbors = TRUE, showLabels = TRUE) + theme_bw()

Summary

In this paper, the package ipft is presented. The main goal of the package is to provide researchers
with a set of functions to manipulate, cluster, transform, create models and make estimations using
indoor localization fingerprinting data. This package enables researchers to use a well established set
of algorithms and tools to manipulate and model RSSI fingerprint data sets, and also allows them to
customize the included algorithms with personalized parameters and functions to adapt the working
mode to their particular research interests.

In this work some of the fundamental algorithms used in indoor fingerprinting localization
techniques have been formally presented and illustrated, while detailed examples and information
about its usage and implementation have been provided.

Future work

This package is an ongoing work, and future versions will implement new algorithms and tools
with the aim of providing a base framework for researchers, and become a reference library for
fingerprinting-based indoor positioning research.

In particular, future lines of work should consider the implementation of deep learning based
algorithms. Many deep learning techniques can be exploited to try to obtain better positioning perfor-
mance. Recurrent neural networks could be used to learn not only spatial but also temporal patterns
of the received signals. Deep autoencoders can be implemented as a way to encode fingerprints and
reduce their dimensionality to a few number of significant features. Their variational and generative
extensions can be of use to better model the stochastic nature of RSSI data. These models can also be
applied to generate new training data for deep learning-based clasisifiers, increasing the robustness of
positioning systems and trying to address problems caused by heterogeneity of devices.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ipft

CONTRIBUTED RESEARCH ARTICLES 287

Figure 5: Location of fingerprints included in the ipftrain data frame. The labels indicate the group
indices.

Figure 6: Estimated and actual positions of test observations 61, 62, 81 and 82 from the ipftrain data
set. The circles indicate the actual positions of the observations. The squares show the estimated
positions. The red arrows connect the actual positions with the estimated ones. The dashed lines
connect the estimated positions with the k neighbors from which the location has been estimated,
represented by the crosses.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 288

Acknowledgements

The authors would like to thank the two anonymous reviewers for providing useful feedback that
helped to improve the paper.

This work has been partially funded by the Spanish Ministry of Economy and Competitiveness
through the "Proyectos I + D Excelencia" programme (TIN2015-70202-P) and by Jaume I University
"Research promotion plan 2017" programme (UJI-B2017-45).

Bibliography

E. Aarts and R. Wichert. Ambient intelligence. In Technology Guide, pages 244–249. Springer-Verlag,
2009. URL https://doi.org/10.1007/978-3-540-88546-7_47. [p268]

A. H. Ali, M. R. A. Razak, M. Hidayab, S. A. Azman, M. Z. M. Jasmin, and M. A. Zainol. Investigation
of Indoor WIFI Radio Signal Propagation. In Proceedings of the Symposium on Industrial Electronics and
Applications, (ISIEA’10), pages 117–119, 2010. URL https://doi.org/10.1109/isiea.2010.5679486.
[p277]

C. Broyden. A new double-rank minimisation algorithm. preliminary report. In Notices of the Amer-
ican Mathematical Society, volume 16, page 670. American Mathematical Society 201 Charles ST,
Providence, RI 02940-2213, 1969. [p281]

T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on Information Theory,
13(1):21–27, 1967. URL https://doi.org/10.1109/tit.1967.1053964. [p271]

A. Cramariuc, H. Huttunen, and E. S. Lohan. Clustering benefits in mobile-centric wifi positioning in
multi-floor buildings. In 2016 International Conference on Localization and GNSS (ICL-GNSS), pages
1–6. IEEE, 2016a. URL https://doi.org/10.1109/icl-gnss.2016.7533846. [p272]

A. Cramariuc, H. Huttunen, and E. S. Lohan. Clustering Benefits in Mobile-Centric WiFi Positioning
in Multi-Floor Buildings. In Proceedings of the 6th International Conference on Localization and GNSS
(ICL-GNSS’16), pages 1–6, 2016b. URL https://doi.org/10.1109/icl-gnss.2016.7533846. [p271,
284]

R. Fletcher. A new approach to variable metric algorithms. The computer journal, 13(3):317–322, 1970.
[p281]

B. J. Frey and D. Dueck. Clustering by Passing Messages between Data Points. Science, 315(5814):
972–976, 2007. URL https://doi.org/10.1126/science.1136800. [p285]

T. Gigl, G. J. M. Janssen, V. Dizdarevic, K. Witrisal, and Z. Irahhauten. Analysis of a uwb indoor
positioning system based on received signal strength. In Proceedings of the 4th Workshop on Positioning,
Navigation and Communication (PNC’07), pages 97–101, 2007. URL https://doi.org/10.1109/wpnc.
2007.353618. [p269]

D. Goldfarb. A family of variable-metric methods derived by variational means. Mathematics of
Computation, 24(109):23–26, 1970. URL https://doi.org/10.1090/s0025-5718-1970-0258249-6.
[p281]

A. Haeberlen, E. Flannery, A. M. Ladd, A. Rudys, D. S. Wallach, and L. E. Kavraki. Practical robust
localization over large-scale 802.11 wireless networks. In Proceedings of the 10th Annual International
Conference on Mobile Computing and Networking (MobiCom’04), pages 70–84, 2004. URL https:
//doi.org/10.1145/1023720.1023728. [p271, 277]

A. B. Harbicht, T. Castro-Santos, W. R. Ardren, D. Gorsky, and D. J. Fraser. Novel, continuous
monitoring of fine-scale movement using fixed-position radiotelemetry arrays and random forest
location fingerprinting. Methods in Ecology and Evolution, 8(7):850–859, 2017. URL https://doi.
org/10.1111/2041-210x.12745. [p268]

S. He and S. H. G. Chan. Wi-Fi Fingerprint-Based Indoor Positioning: Recent Advances and Com-
parisons. IEEE Communications Surveys & Tutorials, 18(1):466–490, 2016. URL https://doi.org/10.
1109/comst.2015.2464084. [p268]

N. E. Klepeis, W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern,
and W. H. Engelmann. The national human activity pattern survey (nhaps): a resource for assessing
exposure to environmental pollutants. Journal Of Exposure Analysis And Environmental Epidemiology,
11:231 EP –, 2001. URL https://doi.org/10.1038/sj.jea.7500165. [p268]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1007/978-3-540-88546-7_47
https://doi.org/10.1109/isiea.2010.5679486
https://doi.org/10.1109/tit.1967.1053964
https://doi.org/10.1109/icl-gnss.2016.7533846
https://doi.org/10.1109/icl-gnss.2016.7533846
https://doi.org/10.1126/science.1136800
https://doi.org/10.1109/wpnc.2007.353618
https://doi.org/10.1109/wpnc.2007.353618
https://doi.org/10.1090/s0025-5718-1970-0258249-6
https://doi.org/10.1145/1023720.1023728
https://doi.org/10.1145/1023720.1023728
https://doi.org/10.1111/2041-210x.12745
https://doi.org/10.1111/2041-210x.12745
https://doi.org/10.1109/comst.2015.2464084
https://doi.org/10.1109/comst.2015.2464084
https://doi.org/10.1038/sj.jea.7500165

CONTRIBUTED RESEARCH ARTICLES 289

B. Li, J. Salter, A. Dempster, and C. Rizos. Indoor positioning techniques based on wireless lan. In
Proceedings of the 1st IEEE International Conference on Wireless Broadband and Ultra Wide-Band Com-
munications (AusWireless’06), pages 13–16, 2006. URL https://opus.lib.uts.edu.au/bitstream/
2100/170/1/113_Li.pdf. [p269]

H. Liu, H. Darabi, P. Banerjee, and J. Liu. Survey of wireless indoor positioning techniques and
systems. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 37(6):
1067–1080, 2007. URL https://doi.org/10.1109/tsmcc.2007.905750. [p268, 276]

Y. Liu, H. Du, and Y. Xu. The research and design of the indoor location system based on rfid. In
Proceedings of the 4th International Symposium on Computational Intelligence and Design (ISCID’11),
pages 87–90, 2011. URL https://doi.org/10.1109/iscid.2011.123. [p269]

E. S. Lohan, K. Koski, J. Talvitie, and L. Ukkonen. WLAN and RFID Propagation Channels for
Hybrid Indoor Positioning. In Proceedings of the 4th International Conference on Localization and GNSS,
(ICL-GNSS’14), 2014. URL https://doi.org/10.1109/icl-gnss.2014.6934184. [p274]

J. Luo and X. Zhan. Characterization of Smart Phone Received Signal Strength Indication for WLAN
Indoor Positioning Accuracy Improvement. Journal of Networks, 9(3):739–746, 2014. URL https:
//doi.org/10.4304/jnw.9.3.739-746. [p277]

A. Popleteev, V. Osmani, O. Mayora, and A. Matic. Indoor localization using audio features of fm
radio signals. In International and Interdisciplinary Conference on Modeling and Using Context, pages
246–249. Springer, 2011. URL https://doi.org/10.1007/978-3-642-24279-3_26. [p268]

Y. Quan, L. Lau, F. Jing, Q. Nie, A. Wen, and S.-Y. Cho. Analysis and machine-learning based
detection of outlier measurements of ultra-wideband in an obstructed environment. In 2017 IEEE
15th International Conference on Industrial Informatics (INDIN), pages 997–1000. IEEE, 2017. URL
https://doi.org/10.1109/indin.2017.8104909. [p268]

Research and markets. Indoor location market by component, deployment mode, appli-
cation, vertical and region - global forecast to 2022. Research and markets, 2017. URL
https://www.researchandmarkets.com/reports/4416241/indoor-location-market-by-
component-deployment. [p268]

T. Roos, P. Myllymäki, H. Tirri, P. Misikangas, and J. Sievänen. A Probabilistic Approach to WLAN
User Location Estimation. International Journal of Wireless Information Networks, 9(3):155–164, 2002.
URL https://doi.org/10.1023/a:1016003126882. [p271]

E. Sansano. ipft: Indoor Positioning Fingerprinting Toolset, 2017. URL https://cran.r-project.org/
web/packages/ipft/index.html. [p268]

Seybold, J.S. Introduction to RF Propagation. John Wiley & Sons, 2005. [p272, 281]

D. F. Shanno. Conditioning of quasi-newton methods for function minimization. Mathematics of
Computation, 24(111):647–656, 1970. URL https://doi.org/10.1090/s0025-5718-1970-0274029-x.
[p281]

S. Shrestha, J. Talvitie, and E. S. Lohan. On the Fingerprints Dynamics in WLAN Indoor Localization.
In Proceedings of the 13th International Conference on ITS Telecommunications (ITST’13), pages 122–126,
2013. URL https://doi.org/10.1109/itst.2013.6685532. [p274]

J. Torres-Sospedra, R. Montoliu, A. Martinez-Uso, J. P. Avariento, T. J. Arnau, M. Benedito-Bordonau,
and J. Huerta. UJIIndoorLoc: A New Multi-Building and Multi-Floor Database for WLAN
Fingerprint-Based Indoor Localization Problems. In Proceedings of the 5th International Confer-
ence on Indoor Positioning and Indoor Navigation (IPIN’14), pages 261–270, 2015a. URL https:
//doi.org/10.1109/ipin.2014.7275492. [p272]

J. Torres-Sospedra, R. Montoliu, S. Trilles, Óscar Belmonte, and J. Huerta. Comprehensive Analysis
of Distance and Similarity Measures for Wi-Fi Fingerprinting Indoor Positioning Systems. Expert
Systems with Applications, 42(23):9263–9278, 2015b. URL https://doi.org/10.1016/j.eswa.2015.
08.013. [p271, 273, 274]

Y. Wang, X. Yang, Y. Zhao, Y. Liu, and L. Cuthbert. Bluetooth positioning using rssi and triangulation
methods. In Proceedings of the 10th IEEE Consumer Communications and Networking Conference,
(CCNC’13), pages 837–842, 2013. URL https://doi.org/10.1109/ccnc.2013.6488558. [p269]

W. Werner, J. Rabaey, and E. H. L. Aarts, editors. Ambient Intelligence. Springer-Verlag, 2005. ISBN
978-3-540-27139-0. URL https://doi.org/10.1007/b138670. [p268]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://opus.lib.uts.edu.au/bitstream/2100/170/1/113_Li.pdf
https://opus.lib.uts.edu.au/bitstream/2100/170/1/113_Li.pdf
https://doi.org/10.1109/tsmcc.2007.905750
https://doi.org/10.1109/iscid.2011.123
https://doi.org/10.1109/icl-gnss.2014.6934184
https://doi.org/10.4304/jnw.9.3.739-746
https://doi.org/10.4304/jnw.9.3.739-746
https://doi.org/10.1007/978-3-642-24279-3_26
https://doi.org/10.1109/indin.2017.8104909
https://www.researchandmarkets.com/reports/4416241/indoor-location-market-by-component-deployment
https://www.researchandmarkets.com/reports/4416241/indoor-location-market-by-component-deployment
https://doi.org/10.1023/a:1016003126882
https://cran.r-project.org/web/packages/ipft/index.html
https://cran.r-project.org/web/packages/ipft/index.html
https://doi.org/10.1090/s0025-5718-1970-0274029-x
https://doi.org/10.1109/itst.2013.6685532
https://doi.org/10.1109/ipin.2014.7275492
https://doi.org/10.1109/ipin.2014.7275492
https://doi.org/10.1016/j.eswa.2015.08.013
https://doi.org/10.1016/j.eswa.2015.08.013
https://doi.org/10.1109/ccnc.2013.6488558
https://doi.org/10.1007/b138670

CONTRIBUTED RESEARCH ARTICLES 290

H. Wickham. ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics, 3(2):180–185, 2011. URL
https://doi.org/10.1002/wics.147. [p285]

J. Xiao, Z. Zhou, Y. Yi, and L. M. Ni. A Survey on Wireless Indoor Localization from the Device
Perspective. ACM Computing Surveys, 49(2):1–31, 2016. URL https://doi.org/10.1145/2933232.
[p269]

C. Yang, T. Nguyen, and E. Blasch. Mobile Positioning via Fusion of Mixed Signals of Opportunity.
IEEE Aerospace and Electronic Systems Magazine, 29(4):34–46, 2014. URL https://doi.org/10.1109/
maes.2013.130105. [p270]

J. yub Lee, C. hwan Yoon, H. Park, and J. So. Analysis of location estimation algorithms for wifi
fingerprint-based indoor localization. In Proceedings of the 2nd International Conference on Software
Technology (SoftTech’13), pages 89–92, 2013. [p268]

Emilio Sansano
Institute of New Imaging Technologies
Universitat Jaume I
Av. de Vicent Sos Baynat, s/n 12017 Castelló de la Plana
Spain
esansano@uji.es

Raúl Montoliu
Institute of New Imaging Technologies
Universitat Jaume I
Av. de Vicent Sos Baynat, s/n 12017 Castelló de la Plana
Spain
montoliu@uji.es

Óscar Belmonte
Institute of New Imaging Technologies
Universitat Jaume I
Av. de Vicent Sos Baynat, s/n 12017 Castelló de la Plana
Spain
oscar.belmonte@uji.es

Joaquín Torres-Sospedra
Institute of New Imaging Technologies
Universitat Jaume I
Av. de Vicent Sos Baynat, s/n 12017 Castelló de la Plana
Spain
jtorres@uji.es

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1002/wics.147
https://doi.org/10.1145/2933232
https://doi.org/10.1109/maes.2013.130105
https://doi.org/10.1109/maes.2013.130105
mailto:esansano@uji.es
mailto:montoliu@uji.es
mailto:oscar.belmonte@uji.es
mailto:jtorres@uji.es

CONTRIBUTED RESEARCH ARTICLES 291

roahd Package: Robust Analysis of High
Dimensional Data
by Francesca Ieva, Anna Maria Paganoni, Juan Romo and Nicholas Tarabelloni

Abstract The focus of this paper is on the open-source R package roahd (RObust Analysis of High
dimensional Data), see Tarabelloni et al. (2017). roahd has been developed to gather recently pro-
posed statistical methods that deal with the robust inferential analysis of univariate and multivariate
functional data. In particular, efficient methods for outlier detection and related graphical tools,
methods to represent and simulate functional data, as well as inferential tools for testing differences
and dependency among families of curves will be discussed, and the associated functions of the
package will be described in details.

Introduction

Functional Data Analysis (FDA) has seen an impressive growth in the statistical research due to
the more and more frequent production of complex data in many different research contexts (i.e.,
healthcare, environmental, engineering, etc.). According to the FDA model, data can be seen as
measurements of a certain quantity (or a set of quantities) along a given, independent and continuous
indexing variable (such as time or space). Observations are then treated as random functions and can be
viewed as trajectories of stochastic processes defined on a given infinite dimensional functional space.
In this context “high dimensional data” is meant in this sense: a high number of covariates/predictors
(e.g., evaluations of a signal on a given grid) for a single sample unit (e.g. signal). We have to face the
traditional “large p, small n” problem: the number of features can exceed the number of observations.
Many research areas deal with this kind of data where features exceed observations, for example,
biomedical signals, high resolution imaging, website analysis of stream data.

The research in FDA dates back to 1970s - 1980s. However, the first edition of Ramsay and
Silverman (2005) and Ramsay and Silverman (2002) made the methods available to a larger audience
with an enormous impact on the spread of this topic. The authors mainly cover exploratory methods,
parametric and semi-parametric approaches. Other important books on functional data analysis are
Ferraty and Vieu (2006), Horvath and Kokoszka (2012) and Kokoszka and Reimherr (2017). In addition
to these monographs there is a vast quantity of scientific papers ranging from theoretical to applied
techniques aimed at modelling and analysing functions.

In R ecosystem, the number of packages focused on general functional data analysis is rapidly
increasing. In particular, fda (Ramsay et al. (2014)) presents functions to implement many methods
of functional data analysis, including smoothing, plotting and regression models (see Ramsay and
Silverman (2005), Ramsay et al. (2009)). The package fda.usc (Febrero-Bande and Oviedo de la Fuente
(2012)) carries out exploratory and descriptive analysis of functional data such as depth measurements
or functional outliers detection, as well as functional regression models (univariate, nonparametric),
basis representation and Functional Principal Component Analysis (FPCA). The package fdasrvf
(Tucker (2017)) performs alignment, FPCA, and modeling of univariate and multivariate functions,
allowing for elastic analysis of functional data through phase and amplitude separation. The core of
the package fdapace (Dai et al. (2018)) is FPCA for sparsely or densely sampled random trajectories
and time courses, via the Principal Analysis by Conditional Estimation (PACE) algorithm or numerical
integration. The package rainbow (Shang and Hyndman (2019)) provides tools for functional data
display, exploratory analysis (plots, bagplots and boxplots) and outlier detection, while the package
fds (cite(fds) contains 19 data sets with functional data. Other packages focus on more specific methods
for functional data analysis, like regression, classification and clustering, registering and aligning,
studying time series of functional data (see Zeileis (2005))

The focus of this paper is on the package roahd (RObust Analysis of High dimensional Data),
Tarabelloni et al. (2017). It has been developed to gather recently proposed statistical methods that
deal with the robust statistical analysis of univariate and multivariate functional data. The latter is the
case where each observation in a dataset is a set of possibly correlated functions, measured at discrete
points. Despite the usefulness of robust statistics methods in data analysis (e.g., median, quantiles,
trimmed means), their generalisation to the functional framework is not straightforward, due to the
infinite-dimensional nature of the spaces embedding data. A possibility is to leverage on the concept
of depth measures in order to create proper order statistics to be used in a suitable robust inferential
framework.

In the multivariate context, there are many possible definitions of depth measures. Among others,
see Tuckey (1975); Liu and Singh (1993); Liu et al. (1999); Zuo and Serfling (2000). For univariate

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 292

and multivariate functional data, two main approaches to the generalisation of depth measures have
been considered so far. A first approach is to average a multivariate depth, say DL, defined on RL

and computed at each point over the domain interval I ⊂ R using suitable weights (see Claeskens
et al. (2014); Lopez-Pintado et al. (2014) and references therein). Without loss of generality we will
refer to I as a compact interval representing the time domain where the (multivariate) functional
data are defined. A second approach, that is followed in roahd, extends the notion of univariate (i.e.
L = 1) functional band depth (introduced in López-Pintado and Romo (2007, 2009)) to the multivariate
framework (i.e., L > 1). In particular, in Ieva and Paganoni (2013) the depth of each component of the
multivariate functional data is defined as a measure of the time each curve spends within the envelope
generated by any other family of curves. Then the global depth is computed weighing in a suitable
way the contributions of each component of the multivariate signal. This approach is based on the
intrinsic functional nature of the data since it looks at the position of the entire function with respect to
envelopes generated by families of functions.

The main contributions of the package, described and detailed in the following sections, are

(a) the implementation of S3 classes representing functional data (fData and mfData for the univari-
ate and multivariate case, respectively), as well as a set of algebraic operations and convenience
functions to expressively operate on them;

(b) the implementation of useful generators for functional data, such as generate_gauss_fdata and
generate_gauss_mfdata. These can be used to simulate artificial datasets of Gaussian functional
data with a target mean and covariance, which must be specified by the researcher as arguments
of the related functions and could be very useful to test or illustrate existing and new methods;

(c) the implementation of efficient functions for computing depth measures and robust statistics,
such as MBD, MEI, median_mfData, cor_spearman, for both univariate and multivariate func-
tional data allowing rank observations from the center of the distribution-outward and down-
upward/up-downard with respect to sample measurements;

(d) the implementation of graphical methods, like the functional boxplot (fbplot) and the outlier-
gram (outliergram). These can be employed to carry out an explorative analysis of a functional
dataset, and to robustify it by discarding shape, magnitude and covariance outliers.

Robust methods for functional data are generally rather computationally intensive, thus the pack-
age’s functions have been implemented with an attention to computational efficiency, in order to allow
the processing of realistic datasets.

The paper is structured as follows: in Section Representation of Functional Data we introduce the
methods and the functions to represent and to generate functional data; in Section Robust Statistics we
describe the robust statistics and indexes implemented in roahd; in Section Graphical tools the main
graphical tools for outlier detection are detailed, and finally Section Conclusions contains discussion,
conclusion and further potential developments.

Representation of Functional Data

The S3 classes fData and mfData implement a simple and compact representation of univariate
and multivariate functional datasets. They can be used by specifying, for each observation in the
functional dataset, a set of measurements over a discrete grid, representing the dependent variable
indexing the functional data (e.g., time). If we denote by I = [t0, t1, . . . , tP−1] an evenly spaced grid
(tj − tj−1 = h > 0 ∀j = 1, . . . , P− 1) and imagine to deal with a dataset Di,j = Xi(tj), ∀i = 1, . . . , N
and ∀j = 0, . . . , P− 1, the object fData requires the evenly spaced grid over which the functional
observations are measured as parameter grid, and the values of the observations in the functional
dataset, provided in form of a two dimensional data structure (e.g., matrix or array) having as rows
the observations and as columns their measurements over the grid of length P values. When the
constructor of the class is created, it checks that the grid is actually evenly spaced.

An example of the function’s call is the following

grid <- seq(0, 1, length.out = 100)
values <- matrix(c(sin(2 * pi * grid),
cos(2 * pi * grid),
4 * grid * (1 - grid),
tan(grid),
log(grid)),
nrow = 5, ncol = 100, byrow = TRUE)
fD <- fData(grid, values)
plot(fD, main = 'Univariate FD', xlab = 'time [s]', ylab = 'values', lwd = 2)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 293

In particular the number of rows is the sample size, i.e. the number of statistical units and each
statistical unit is a function evaluated in the grid of points of length P. In the artificial example above
we have 5 curves evaluated on a evenly spaced grid of 100 points. The resulting plot is shown in
Figure 1.

Figure 1: An example of a fData object, with 5 curves evaluated on a evenly spaced grid of 100 points.

An mfData object, instead, implements a multivariate functional dataset where each component
is defined over the same indexing variable. In practice, we deal with a discrete grid [t0, t1, . . . , tP−1]
and a dataset of N statistical units, each one having L components observed over the same discrete
grid: Di,j,k = Xi,k(tj), ∀i = 1, . . . , N, ∀j = 0, . . . , P− 1 and ∀k = 1, . . . , L. The object mfData requires
the evenly spaced grid of definition as parameter grid and a list containing the L components of the
multivariate functional dataset, defined as 2D data structures (analogously to the constructor of fData
class).

The S3 implementation allows to enrich the package with expressive operations that enable an easy
manipulation of datasets, keeping at the same time a light structure that allow users to easily access
the inner state of objects. For instance, we added an overloaded operator [.fData ([.mfData) that
allows one to use standard slices of matrix and array classes also for fData (mfData). We provided an
overloaded implementation of the four basic algebraic operations, +.fData, -.fData, *.fData, /.fData,
that allow one to write and evaluate simple expressions on fData objects without explicitly carry
them out on the set of measurements. +.fData, -.fData support the sum or subtraction of compatible
functional datasets (e.g, same definition grid I and same sample size N) or perform the element-wise
(along the measurement direction, i.e., columns) sum or subtraction by a one-dimensional vector of
compatible measurements (length P). The latter is useful, for instance, in order to translate or center
data. The *.fData, /.fData operators perform an element-wise multiplication or division by a scalar
quantity. We also added two convenience functions, append_fData and append_mfData, that can be
used to concatenate two compatible (same definition grid I) functional datasets together.

Statistics functions for the computation of the mean (specification of the generic mean function
of R), the median (through median_fData and median_mfData, see Section Robust Statistics for more
details), or the covariance (cov fun and its specifications for fData and mfData), are also implemented
for fData and mfData.

Finally, we implemented dedicated specialisations for the visualisation of functional data in
plot.fData (plot.mfData). In case of mfData the graphical window is split into a rectangular lattice
so that each component is plotted singularly. The rectangular frame has b

√
Lc rows and d L

b
√

Lc e
columns. To give an example of this visualization method, consider the mfD_healthy dataset in the
roahd package (see Figure 2).

data("mfD_healthy", package = "roahd")

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=R

CONTRIBUTED RESEARCH ARTICLES 294

The dataset mfD healthy collects preprocessed (denoised, smoothed and registered) 8-leads
electrocardiographic (ECG) signals during a median heartbeat of a sample of 50 healthy subjects. An
ECG signal records in a of voltage versus time the electrical activity of the heart using electrodes
placed on the skin. These electrodes detect the small electrical changes that are a consequence of
cardiac muscle depolarization followed by repolarization during each cardiac cycle (heartbeat). In a
conventional 12-lead ECG, ten electrodes are placed on the patient’s limbs and on the surface of the
chest. The overall magnitude of the heart’s electrical potential is then measured from twelve different
angles (‘leads’). Of these 12 leads, the first six are derived from the same three measurement points.
Therefore, any two of these six leads include exactly the same information as the other four. So, the
ECG traces are composed of 8 leads, called I, II, V1, V2, V3, V4, V5 and V6. Analogously the dataset
mfD LBBB contains the ECGs of 50 patients affected by Left Bundle Branch Block, LBBB in the following.
These data arise from the project PROMETEO (PROgetto sull’area Milanese Elettrocardiogrammi
Teletrasferiti dall’Extra Ospedaliero) started with the aim of spreading the intensive use of ECG as
pre-hospital diagnostic tool and of constructing a new database of ECGs with features never recorded
before in any other data collection on heart diseases. Measures of electric potential are given in µV
and the final sample grid after preprocessing consists of 1024 points at 1KHz. For more details on the
original dataset, and on the preprocessing steps, see Ieva et al. (2013).

Figure 2: A visualization of the mfD_healthy dataset in the roahd package.

Simulation of functional data

The roahd package contains functions that can be used to simulate artificial data sets of functional
data, both univariate and multivariate. The data are obtained as realisations of a Gaussian process over
a discrete grid with a specific variance-covariance operator and mean, see Rasmussen and Williams
(2006). In general, given a covariance function, C(s, t) := Cov(X(s), X(t)), s, t ∈ I, and a mean
function µ(t) := E[X(t)], the model generating a data sample of size N is:

Xi(t) = µ(t) + ε(t), Cov(ε(s), ε(t)) = C(s, t), i = 1, . . . , N, t ∈ I.

The finite-dimensional approximation on a discrete grid I = [t0, . . . , tP−1], with ti+1 − ti = h, ∀i =
0, . . . , P− 1, instead, is generated according to:

Xi,j = Xi(tj) = µ(tj) + ε(tj), Cov(ε(tj), ε(tk)) = Cj,k, i = 1, . . . , N, tj, tk ∈ I.

The function generate_gauss_fdata requires the sample size N, the mean vector [µ(tj)] as pa-
rameter centerline, the matrix representation of the desired variance-covariance operator [Cj,k] as
parameter Cov or, as alternative to Cov, its Cholesky factor CholCov, which is what is actually used to
impose the desired covariance structure of the errors of the generating formulas. A built-in function
can be used to generate exponential Matérn covariance functions, namely exp_cov_function(grid,

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 295

alpha, beta), returning the discretised version of a covariance of the form C(s, t) = αe−β|s−t|. Here,
the parameter α controls the overall level of variability in the signal, while the parameter β affects the
autocorrelation length of the signal’s noise, with lower values of β leading to wider correlation lengths
and vice-versa. This parameter is particularly useful to produce random distortions in the shape of the
synthetic functional data around the desired centerline. An example of the function is the following:

generate_gauss_fdata(N=50,
centerline = sin(2 * pi * seq(0, 1, length.out = 10^3)),
Cov =exp_cov_function(seq(0, 1, length.out = 10^3),
alpha = 0.2, beta = 0.3))

The simulated data are show in Figure 3.

Figure 3: An example of simulated univariate functional data with 50 curves evaluated on a evenly
spaced grid of 1000 points.

Similarly, we can use the function generate_gauss_mfdata to generate a sample of L-variate
functional data according to the following model:

Xi,k = µk(t) + εk(t), Cov(εk(s), εk(t)) = C(s, t), ∀i = 1, . . . , N, ∀k = 1, . . . , L,

where Cor(ε j(t), ε l(t)) = ρj,l ∈ [−1, 1] specifies the synchronous, constant correlation structure
among the components of the functional dataset.

The function requires the sample size N; the number of components of the multivariate data L; a
matrix containing by rows the means of each component centerline; a vector correlations of length
1/2 · L · (L− 1) containing all the correlation coefficients ρj,l among the components; and either a list
listCov containing the discretised covariance functions over the grid I × I, or a list listCholCov of
their Cholesky factors.

An example of the function is the following

generate_gauss_mfdata(N=100, 2,
centerline = matrix(c(sin(2 * pi * seq(0, 1, length.out = 10^3)),
cos(2 * pi * seq(0, 1, length.out = 10^3))), nrow = 2, byrow = TRUE),
correlations = 0.5,
listCov = list(exp_cov_function(seq(0, 1, length.out = 10^3),
alpha = 0.1, beta = 0.5),
exp_cov_function(seq(0, 1, length.out = 10^3),
alpha = 0.5, beta = 0.1)))

The simulated data are show in Figure 4.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 296

Figure 4: An example of simulated bivariate functional data with 100 bivariates curves evaluated on a
evenly spaced grid of 1000 points.

Robust Statistics

In order to provide a center-outward and a down-upward/up-downward order of data, the Band
Depth (BD) and Modified Band Depth (MBD) are implemented both for functional and multivariate
functional data. Let us recall the empirical version of Band Depth for functional data, as introduced in
López-Pintado and Romo (2009) and in López-Pintado and Romo (2011). Given a stochastic process X
taking values on the space C(I) of real continuous functions on the compact interval I, the empirical
version of the band depth of order J ≥ 2 for a function f ∈ C(I) is

BDJ
X(f) =

J

∑
j=1

(
N
j

)−1

∑
i1<i2<...,<ij

I
{

G(f) ⊂ B(fi1 , ..., fij)
}

, (1)

where the subset of the plane G(f) = {(t, f (t)) : t ∈ I} is the graph of the function f . B(f1, f2, ..., f j) is
the band in R2 delimited by f1, f2, ..., f j, realizations of independent copies of the stochastic process X
(i.e. the functional dataset), and it is defined as:

B(f1, f2, ..., f j) = {(t, y(t)) : t ∈ I, min
r=1,...,j

fr(t) ≤ y(t) ≤ max
r=1,...,j

fr(t)}.

To overcome the problem of heavy ties due to the presence of the indicator function, López-Pintado
and Romo (2009) proposed the Modified Band Depth, where the time interval that f spends in the
random band is weighted over I. The empirical version of the MBD is:

MBDJ
X(f) =

J

∑
j=2

(
N
j

)−1

∑
1≤i1<i2<···<ij≤n

λ̃{E(f ; fi1 , ..., fij)}, (2)

where E(f) := E(f ; fi1 , ..., fij)={t ∈ I, minr=i1,...,ij fr(t) ≤ f (t) ≤ maxr=i1,...,ij fr(t)} and λ̃(g) =

λ(E(g))/λ(I) with λ the Lebesgue measure on I. In López-Pintado and Romo (2009), the authors
state that while the choice of J clearly increases the magnitude of depth, it does not affect the induced
ordering and therefore the ranks. This was supported by a simulation study in Tarabelloni et al. (2015).
To reduce the computational effort we set J = 2. Given a set of curves (f , f1, ... fN), the MBD of f , that
we will denote by MBD{ f1,..., fN}(f), measures the proportion of time interval I where the graph of f
belongs to the envelopes of all the possible couples (fi1 , fi2), i1 < i2 = 1, . . . , N.

Both the functions BD and MBD require either an object of class fData or a matrix-like dataset of functional
data (e.g., fData$values), with observations as rows and measurements over grid points as columns.
They return a vector containing the values of depth for the given dataset. Thanks to these values, the
dataset f1, ..., fN can be center-outward ranked. We will denote f[i] the sample curve associated with

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 297

the i−th largest depth value, so f[1] = argmax f∈{ f1,..., fN} MBD(f) is the median (deepest and most
central) curve, and f[N] = argmin f∈{ f1,..., fN} MBD(f) the most outlying one. Moreover, for α ∈ (0, 1)
we can construct the α% central region determined by a sample of curves as:

Cα =

{
(t, y(t)) : min

r=1,...,dαne
f[r](t) ≤ y(t) ≤ max

r=1,...,dαne
f[r](t)

}
. (3)

As an example, let us compute the depth measures and the median of the simulated dataset shown in
Figure 3:

MBD(fD)
[1] 0.48503510 0.46228408 0.51505469 0.31594122 0.37595102
[6] 0.49060245 0.35306449 0.40934204 0.47676898 0.37799510
[11] 0.22585633 0.45465633 0.49204245 0.34556571 0.14763429
[16] 0.27375020 0.42478041 0.51758041 0.07788571 0.49579265
...

Another interesting down-upward/up-downward order of data can be built on top of Epigraph
Index (EI) and Hypograph Index (HI) or of their corresponding Modified versions (MEI and MHI).
We recall the definition of EI (HI) for univariate functional data as introduced in López-Pintado and
Romo (2011). Given a stochastic process X taking values on the space C(I) the empirical version of the
Epigraph (Hypograph) Index of a function f ∈ C(I) are:

EIX(f) =
1
N

N

∑
i=1

I { fi(t) ≥ f (t), ∀t ∈ I} , (4)

HIX(f) =
1
N

N

∑
i=1

I { fi(t) ≤ f (t), ∀t ∈ I} , (5)

where f1, f2, ..., fN are realizations of independent copies of the stochastic process X (i.e. the functional
dataset). As before, to overcome the problem of heavy ties it is more suitable to use the modified
version of these indexes, whose empirical version are:

MEIX(f) =
1
N

N

∑
i=1

λ̃({t ∈ I, fi(t) ≥ f (t)}). (6)

MHIX(f) =
1
N

N

∑
i=1

λ̃({t ∈ I, fi(t) ≤ f (t)}). (7)

Therefore, given a set of curves (f , f1, ... fN) the MEI (MHI) of f , denoted by MEI{ f1,..., fN}(f) (MHI{ f1,..., fN}(f))
accounts for the mean proportion of time interval I where f lies below (above) the curves of the sample.
Like depths, all the functions EI (HI) and MEI (MHI) require either an object of class fData or a matrix-
like dataset of functional data (e.g., fData$values), with observations as rows and measurements over
grid points as columns. They return a vector containing the values of the corresponding indexes for
the given dataset, that can provide the desired ordering of data. In López-Pintado and Romo (2011)
the authors propose another well-posed definition of depth, the Modified Half Region Depth (MHRD)
for functional data as:

MHRD{ f1,..., fN}(f) = min(MEI{ f1,..., fN}(f), MHI{ f1,..., fN}(f)). (8)

The MHRD funtion in roahd computes the MHRD of elements of a univariate functional dataset, and
has the same usage as the previous functions.

In Ieva et al. (2013) and Ieva and Paganoni (2017), these statistics have been generalized to
multivariate functional framework. Let X be a stochastic process taking values in the space C(I; RL)
of continuous functions f = (f1, ..., fL) : I → RL, with I as before. We have a dataset FN constituted of
N ∈N sample observations of this process, which we indicate by f1, . . . , fN , where fj = (f j1, ..., f jL).
The MBD of f with respect to Fn becomes

MBD{f1 ,...,fn}(f) =
L

∑
k=1

pk MBD J
{ f1k ,..., fNk}

(fk), (9)

with pk > 0, ∀ k = 1, ..., L, ∑L
k=1 pk = 1.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 298

Analogously we define the MEI (MHI) of f with respect to FN as

MEI{f1 ,...,fN}(f) =
L

∑
k=1

pk MEI{ f1k ,..., fNk}(fk), (10)

MHI{f1 ,...,fN}(f) =
L

∑
k=1

pk MHI{ f1k ,..., fNk}(fk), (11)

with pk > 0, k = 1, ..., L, ∑L
k=1 pk = 1. In (9), (10) and (11) the curves that form the envelops

are the components of the curves in FN . In roahd, the function multiMBD computes the MBD for a
dataset of multivariate curves. In particular, multiMBD requires either an object of class mfData or a
list of 2-dimensional matrices (Data) having as rows the units of that component and as columns
the measurements of the functional data over the grid, as well as either a set of weights weights or
the string uniform specifying that a set of uniform weights (of value 1/L, where L is the number of
components of the functional dataset) must be employed. The function returns a vector containing the
depth of each element of the multivariate functional dataset. As an example let us compute the depth
measures of the simulated dataset (named mfD) shown in Figure 4, using uniform weights:

multiMBD(mfD, weights="uniform")
[1] 0.40842020 0.45438788 0.24038384 0.31500606 0.35914343
[6] 0.48603636 0.44544040 0.42960606 0.37119798 0.21466667
[11] 0.46331111 0.37947677 0.46344646 0.39914141 0.30079394
[16] 0.48643838 0.14745657 0.47115354 0.41804242 0.32814545
...

The choice for the weights pk’s averaging the contribution of each component of the multivariate
functional data is usually problem-driven, and in general no gold standards are available. If there is
no a priori knowledge about the dependence structure between components, they could be chosen
uniformly. In Tarabelloni et al. (2015) a different choice has been proposed, taking into account the
distance between the estimated variance-covariance operators of the two groups identified by the
binary outcome which was the focus of the study. In Ieva and Paganoni (2017) the weights pk’s are
chosen taking into account the variability of each component of the multivariate functional process
that generates data, so the weight of each component is proportional to the inverse of spectral norm of
its variance-covariance operator:

qk = 1/λ
(1)
k and pk =

qk

∑ qk
, (12)

where λ
(1)
k is the maximum eigenvalue of the variance-covariance operator of the k−th component.

The functions median_fData (median_mfData) of the package compute the sample median of a
univariate (multivariate) functional dataset based on a definition of depth for univariate (multivariate)
functional data. Their input is the dataset whose median is required, in form of fData or mfData object,
and a string specifying the name of the depth definition to use, as parameter type. This name should
bind to a function actually defined in the workspace, such as the build-in ones of roahd (e.g., MBD,
MHRD, etc.).

Figure 5 shows the plot of healthy ECG data (see mfD_healthy) with superimposed the multivariate
functional median computed maximizing the multivariate MBD (9) with uniform weights.

median_mfData(mfD_healthy, type = "multiMBD")

Correlation coefficient

When dealing with multivariate functional data, it is possible to compute correlation coefficients be-
tween observations’ univariate components that generalise the Spearman’s coefficient ρs, see Valencia
et al. (2015b,a). In particular, let us consider a set of bivariate (L = 2) functional data {f1, ..., fN}. The
Spearman coefficient related to the data set is defined by

ρ̂s = ρ̂p(MEI{ f11,..., fN1}(f1), MEI{ f12,..., fN2}(f2)), (13)

where ρ̂p is the usual Pearson correlation coefficient between vectors and

MEI{ f11,..., fN1}(f1) = (MEI{ f11,..., fN1}(f11), ..., MEI{ f11,..., fN1}(fN1)),

MEI{ f12,..., fN2}(f2) = (MEI{ f12,..., fN2}(f12), ..., MEI{ f12,..., fN2}(fN2)).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 299

Figure 5: Plot of healthy data with superimposed the multivariate functional median computed
maximizing the multivariate MBD (9) with uniform weights.

Another definition can be obtained by replacing MEI by MHI. The properties of ρ̂s are detailed in
Valencia et al. (2015b), where also its consistency is proved.

The function cor_spearman can be used to compute the Spearman correlation coefficient (13) for a
bivariate mfData object, using the ordering definition specified by ordering (the default is to use MEI)
to rank univariate components and then compute the correlation coefficient. Besides MEI, also MHI can
be used to determine ranks.

Another well known measure for concordance in bivariate data is the Kendall’s τ index. In Valencia
et al. (2015a) the authors propose two generalizations of τ based on two different preorders between
curves �. Consider two functions g and h in C(I). Two possible preorders are:

g(t) �m h(t) ≡ max
t∈I

g(t) ≤ max
t∈I

h(t), (14)

g(t) �i h(t) ≡
∫

I
(h(t)− g(t))dt ≥ 0. (15)

Let us consider a set of bivariate (L = 2) functional data {f1, ..., fN}, then the functional τ̂ is

τ̂ =

(
N
2

) N

∑
i<j

2I(fi1 � f j1, fi2 � f j2) + 2I(f j1 � fi1, f j2 � fi2)− 1. (16)

In fact it is possible to prove that τ̂ in (16) measures the difference between the number of concordant
pairs of curves and the number of discordant pairs of curves, using a possible preorder. The function
cor_kendall can be used to compute the Kendall correlation coefficient (16) for a bivariate mfData
object, using the ordering definition specified by ordering (by default max is used, i.e., formula (14)) to
rank univariate components, then to compute concordant and discordant pairs and then the correlation
coefficient. Also area (i.e., formula (15)) can be used. As an example let us compute ρ̂ and τ̂ on the
simulated dataset (named mfD) shown in Figure 4:

cor_spearman(mfD, ordering ="MEI")
[1] 0.6098597

cor_kendall(mfD, ordering="area")
[1] 0.4222222

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 300

Inference on Spearman correlation

In Ieva et al. (2018) a boostrap-based inferential framework for the Spearman coefficient is introduced.
In particular the authors suggest to compute a sample from the bootstrap distribution of the statistic
ρ̂, i.e. (ρ̂∗1 , ...ρ̂∗B), where ρ̂∗j denotes the value of the statistics computed on a random sample of size
N drawn with replacement from the population of N equally likely data, named boostrap sample,
and B is the number of boostrap samples considered. Using the empirical quantiles of the boostrap
distribution of the statistics, it’s possible to compute a confidence interval of a fixed level (say 1− α,
α ∈ (0, 1)):

(θ̂l ; θ̂u) = (ρ̂∗α/2; ρ̂∗1−α/2); (17)

where ρ̂∗α denotes the α% percentile of the sample boostrap distribution (ρ̂∗1 , ...ρ̂∗B). To mitigate the bad
coverage performances of (17), as detailed in Efron and Tibshirani (1993), it’s better to consider an
improved version of the percentile method called Bias-Corrected and Accelerated (BCA) interval. This
improved version of the confidence interval is implemented by the function BCIntervalSpearman. This
function requires: two univariate functional datasets in form of fData objects, fD1, fD2; the ordering
relation to be used in the Spearman’s coefficient computation as the parameter ordering; the number
of bootstrap iterations to use in order to estimate the confidence interval, bootstrap_iterations and
the coverage probability (1-α).
As an example let us compute a BCA interval of confidence 0.95 for the Spearman correlation coefficient
of the simulated dataset (named mfD) shown in Figure 4:

BCIntervalSpearman(mfD$fDList[[1]], mfD$fDList[[2]], ordering = 'MEI',
alpha=0.05, bootstrap_iterations = 1000)
$lower
[1] 0.6520883

$upper
[1] 0.9819355

A verbosity parameter can be set in function BCIntervalSpearman in order to log information
on the function’s progress when the computational time is long. The simple or Bias-Corrected and
Accelerated version of the confidence interval allows for testing the presence of dependency among
two families od univariate curves, i.e. H0 : ρs = 0 vs H1 : ρs 6= 0. Consider now the case of a
multivariate functional dataset, where the observations are realizations of the stochastic process X
taking values in the space C(I; RL), L > 2. In this case, the pattern of dependence between the
components can be expressed in a symmetrix matrix S, named Spearman matrix. Its entry Si,j is the
Spearman coefficient between the data of the i-th and j-th components. Analogously, for each of the
L(L− 1)/2 coefficients the corresponding BCA confidence interval can be computed. The function
cor_spearman applied to a dataset of type mfData returns the pointwise estimate of the Spearman
matrix S, while the function BCIntervalSpearmanMultivariate returns two matrices containing the
lower and upper bounds of the corresponding confidence intervals. To clarify their use, we show the
results corresponding to the first two leads, i.e. I and II of mfD_healthy.

mfD_healthy_subset = as.mfData(list(mfD_healthy$fDList[[1]],
mfD_healthy$fDList[[2]]))

cor_spearman(mfD_healthy_subset, ordering='MEI')
[1] 0.6840466

BCIntervalSpearmanMultivariate(mfD_healthy_subset,
ordering='MEI', alpha=0.05, bootstrap_iterations = 1000)
$lower

[,1] [,2]
[1,] 1.0000000 0.4805781
[2,] 0.4805781 1.0000000

$upper
[,1] [,2]

[1,] 1.000000 0.820072
[2,] 0.820072 1.000000

In order to perform a comparison between correlation patterns across different populations of
multivariate functional data, in Ieva et al. (2018) the authors propose a bootstrap procedure to test the

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 301

equality between the two corresponding Spearman matrices. Consider two multivariate functional
datasets, where the observations are realizations of the stochastic processes X and Y, respectively, both
taking values in the space C(I; RL). We want to perform a bootstrap test to check the hypothesis:

H0 : SX = SY vs H1 : SX 6= SY , (18)

where SX and SY denote the L× L matrices of Spearman correlation coefficients of the two populations.
The proposed bootstrap test statistics is based on a norm of the differences between the two matrices.
In particular, the authors consider three different norms in the space of the L× L matrices:

(i) One norm: ‖W‖1 = maxj=1,··· ,L ∑L
i=1 |wij|;

(ii) Infinity norm: ‖W‖∞ = maxi=1,··· ,L ∑L
j=1 |wij|;

(iii) Frobenius norm: ‖W‖F =
√

∑L
i=1 ∑L

j=1 |wij|2.

The function BTestSpearman performs the test described above and requires: two univariate functional
samples in form of mfData object, mfD1, mfD2; the ordering relation to be used in the Spearman’s coeffi-
cient computation ordering; the number of bootstrap iterations to be performed bootstrap_iterations;
the norm to measure the differences between the Spearman correlation matrices of the two functional
datasets, normtype (the allowed values are the same as for parameter type in R’s base function norm).
The function returns the estimates of the test’s p-value and statistics. As an example let us perform
the test considering the first two components of mfd_healthy and mfD_LBB datasets provided by the
roahd package.

mfD_healthy_subset = as.mfData(list(mfD_healthy$fDList[[1]],
mfD_healthy$fDList[[2]]))

mfD_LBBB_subset = as.mfData(list(mfD_LBBB$fDList[[1]],
mfD_LBBB$fDList[[2]]))

BTestSpearman(mfD_healthy_subset, mfD_LBBB_subset,
bootstrap_iterations = 1000,
ordering = "MEI", normtype = "f")

$pvalue
[1] 0.473

$phi
[1] 0.06562356

Graphical tools

The tools shown in this section (i.e., the functional boxplot and the outliergram) enable a complete
inferential analysis of (multivariate) functional data based on robust statistics, like depth measures, de-
scribed in Section Robust Statistics. These tools are very useful also in the outlier detection framework
which is of primary interest in FDA, since outliers may deeply affect the inference of high dimensional
data, especially whenever the sample size is small.
The functional boxplot (see Sun and Genton (2011)) is obtained by ranking functions from the center
of the distribution outwards thanks to a suitable depth definition, computing the region of 50% most
central functions, see Eq. (3). The fences are obtained by inflating such region by a factor F. Given the
envelope of the functions entirely contained inside the inflated region, the data crossing these fences
even for one time instant are considered outliers. Once the outlying observations have been identified,
they can be isolated from the original dataset and either carefully examined or discarded as corrupted
by undesired factors.

The function fbplot computes the depths of a dataset and marks outlying observations. If used with
graphical option on (default behaviour), it also plots the functional boxplot of the dataset. fbplot
requires: the univariate functional dataset whose functional boxplot must be determined in form of
an fData object Data; either a vector containing the depths for each statistical unit of the dataset, or a
string containing the name of the method you want to use to compute; the value of the inflation factor,
Fvalue (the default value is 1.5). In Figure 6 we show the functional boxplot of the first lead, i.e. I of
mfD_healthy.

fbplot(mfD_healthy$fDList[[1]], Depths="MBD", Fvalue=3,
main="Functional Boxplot")

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=R

CONTRIBUTED RESEARCH ARTICLES 302

$Depth
[1] 0.4399681 0.1534263 0.4097385 0.4116510 0.3872242
[6] 0.4123326 0.2387404 0.3568670 0.3669691 0.4601483
[11] 0.3006872 0.3744531 0.1360906 0.4319324 0.3206186
[16] 0.2400199 0.4340800 0.4462739 0.2805389 0.4638281
...

$Fvalue
[1] 3

$ID_outliers
2

Figure 6: Functional Boxplot of the first lead, i.e., I of healthy data

The function fbplot also allows to automatically compute the best adjustment factor F that yields
a desired proportion of outliers (True Positive Rate, TPR) of a Gaussian dataset with same center and
covariance function as the fData object (see Sun and Genton (2012)). Such automatic tuning involves
the simulation of a number N_trials of separate datasets of Gaussian functional data with same center
and covariance as the original dataset (the covariance is robustly estimated with the function covOGK of
the package robustbase, see Maronna and Zamar (2002)) of size trial_size, and the computation of
N_trials values for Fvalue such that the desired proportion TPR of observations is flagged as outliers.
The optimal value of Fvalue for the original population is then found as the average of the previously
computed values Fvalue. The parameters to control the adjustment procedure can be passed through
the argument adjust, whose default is FALSE and otherwise is a list with (some of) the fields:

• N_trials: the number of repetitions of the adjustment procedure based on the simulation of
a Gaussisan dataset of functional data, each one producing an adjusted value of F, which will
lead to the averaged adjusted value Fvalue. Default is 20;

• trial_size: the number of statistical units in the Gaussian population of functional data that
will be simulated at each repetition of the adjustment procedure. Default is 8× N;

• TPR: the True Positive Rate of outliers, i.e., the proportion of observations in a dataset without
amplitude outliers that have to be considered outliers. Default is 2φ(4z0.25) where φ and zα

denote, respectively, the cumulative distribution function and the quantile of order α of a
standard Gaussian distribution.

• F_min: the minimum value of Fvalue, defining the left boundary for the optimisation problem
aimed at finding the optimal value of Fvalue;

• F_max: the maximum value of Fvalue, defining the right boundary for the optimisation problem
aimed at finding the optimal value of Fvalue;

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 303

• tol: the tolerance to be used in the optimisation problem aimed at finding the optimal value of
Fvalue;

• maxiter: the maximum number of iterations to solve the optimisation problem aimed at finding
the optimal value of Fvalue.

Due to the S3 specialization, fbplot can construct also functional boxplots of a multivariate
functional dataset (see Ieva and Paganoni (2013)). In Figure 7 we show the functional boxplot of the
first two leads, i.e. I and II of mfD_healthy.

mfD_healthy_subset <- as.mfData(list(mfD_healthy$fDList[[1]],
mfD_healthy$fDList[[2]]))

fbplot(mfD_healthy_subset, Fvalue = 1.5, xlab = 'time',
ylab = list('Values 1', 'Values 2'),
main = list('First component', 'Second component'))

$Depth
[1] 0.4061113 0.1695619 0.4086113 0.4204500 0.3005780
[6] 0.4233634 0.3170089 0.3522569 0.3821995 0.4625769
[11] 0.3055684 0.3535029 0.1630668 0.4213114 0.3553795
[16] 0.3079317 0.3853858 0.3711121 0.2640493 0.4489892
...

$Fvalue
[1] 1.5

$ID_outliers
[1] 2 16

$Depth
[1] 0.43298990 0.36373333 0.40771515 0.38667677 0.10381616
[6] 0.44186869 0.36482424 0.34480404 0.45246061 0.36904040
[11] 0.25263232 0.28706869 0.42344040 0.29333333 0.02921414
[16] 0.49872121 0.49638384 0.41457980 0.25275960 0.29689697
....

$Fvalue
[1] 2.5

$ID_outliers
[1] 5 15 27 31 32 33 34 35 44 50 52 55 57 59 63 67 71 73 75 85 23

Let us point out that the functional boxplot has been constructed mainly for detection of magnitude
outliers, i.e., curves that lie far from the range of the majority bulk of data.

Outliergram

A method that can be used to detect shape outliers and covariance outliers is the outliergram (see
Arribas-Gil and Romo (2014)), based on the computation of MBD and MEI (see (2) and (6)) of univariate
functional data. Shape outliers are curves that present a different pattern with respect to the rest of
the data in terms of their derivatives and covariance outliers are curves generated by a model that is
different from the model of the majority of data just in terms of the variance and covariance operator
that affects the second order moments of data. Given a set of data f1, . . . , fn in the space C(I; R) of the
continuous functions the following inequality holds:

MBD{ f1,..., fn}(f j) ≤ a0 + a1 MEI{ f1,..., fn}(f j) + a2n2(MEI{ f1,..., fn}(f j))
2, j = 1, · · · , n, (19)

where a0 = a2 = −2/(n(n− 1)) and a1 = 2(n + 1)/(n− 1). So considering a scatterplot of MBD
against multivariate MEI of data, the points lying far from the quadratic boundary (19) correspond to
shape outliers, and data with very low values of MBD are potential magnitude outliers (see Arribas-
Gil and Romo (2014)). The function outliergram displays the outliergram of a univariate functional
dataset of class fData (see Figure 8) and returns a vector of observation IDs indicating the outlying
observations in the dataset.

The function multivariate_outliergram implements the generalisation of the outliergram to
multivariate functional data, following Ieva and Paganoni (2017). Let X be a stochastic process taking

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 304

Figure 7: Functional Boxplot of the simulated data presented in Figure 4

Figure 8: An example of outliergram on simulated univariate functional data

values in the space C(I; RL) of continuous functions f = (f1, ..., fL) : I → RL, where I is a compact
interval of R. Let us consider a dataset FN constituted of N ∈N sample observations of this process,
which we indicate by f1, . . . , fN , fj = (f j1, ..., f jL). In Ieva and Paganoni (2017) the following inequality
is proved:

MBD J
{f1 ,...,fn}(f) ≤ a0 + a1 MEI{f1 ,...,fn}(f) + a2n2(MEI{f1 ,...,fn}(f))

2, (20)

where a0 = a2 = −2/(n(n− 1)) and a1 = 2(n + 1)/(n− 1), and MBD J
{f1 ,...,fn}(f) and MEI{f1 ,...,fn}(f)

are defined in (9) and (10), respectively.
So the outliergram for multivariate functional data is constructed in analogy with the univariate
one and based on the quadratic boundary 20. The function multivariate_outliergram displays the
outliergram of a multivariate functional dataset of class mfData (see Figure 9) and returns a vector of

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 305

observation IDs indicating the outlying observations in the dataset.

multivariate_outliergram(mfD, Fvalue = 2, shift=TRUE)

$Fvalue
2

$Depth
[1] 0.0386524565 0.0267086844 0.1297124989 0.0474675556
[5] 0.0296031652 0.0446769503 0.0353957777 0.0294200492

$ID_outliers
[1] 12 18 32 47 70 83 91 96

Figure 9: The outliergram of simulated data presented in Figure 4.

Conclusions

In this paper we have described the implementation in the roahd package of several statistical methods
that deal with the robust statistical analysis of univariate and multivariate functional data, and some
graphical tools mainly aimed at identifying and discarding outliers from a dataset of (potentially
multivariate) functional data. The package should simplify the access and use of these strongly
nonparametric methods to perform a suitable robust inferential analysis of high dimensional and
complex data.

Bibliography

A. Arribas-Gil and J. Romo. Shape outlier detection and visualization for functional data: The
outliergram. Biostatistics, 15(4):603–619, 2014. [p303]

G. Claeskens, M. Hubert, L. Slaets, and K. Vakili. Multivariate functional halfspace depth. Journal of
the American Statistical Association, 109(505):411–423, 2014. [p292]

X. Dai, P. Z. Hadjipantelis, K. Han, and H. Ji. Fdapace: Functional Data Analysis and Empirical Dynamics,
2018. URL https://CRAN.R-project.org/package=fdapace. R package version 0.4.0. [p291]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=fdapace

CONTRIBUTED RESEARCH ARTICLES 306

B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall, 1993. [p300]

M. Febrero-Bande and M. Oviedo de la Fuente. Statistical computing in functional data analysis: The
R package fda.usc. Journal of Statistical Software, 51(4):1–28, 2012. [p291]

F. Ferraty and P. Vieu. Nonparametric Functional Data Analysis: Theory and Practice. Springer-Verlag,
New York, 2006. [p291]

L. Horvath and P. Kokoszka. Inference for Functional Data with Applications. Springer-Verlag, New York,
2012. [p291]

F. Ieva and A. M. Paganoni. Depth measures for multivariate functional data. Communication in
Statistics - Theory and Methods, 42(7):1265 – 1276, 2013. [p292, 303]

F. Ieva and A. M. Paganoni. Component-wise outlier detection methods for robustifying multivariate
functional samples. Statistical Papers, 2017. URL https://doi.org/10.1007/s00362-017-0953-1.
[p297, 298, 303, 304]

F. Ieva, A. M. Paganoni, D. Pigoli, and V. Vitelli. Multivariate functional clustering for the morpho-
logical analysis of ecg curves. Journal of the Royal Statistical Society C, 62(3):401 – 418, 2013. [p294,
297]

F. Ieva, F. Palma, and J. Romo. Bootstrap-based inference for dependence in multivariate functional
data. MOX Report 30/2018, Politecnico di Milano, 2018. URL https://www.mate.polimi.it/
biblioteca/add/qmox/30-2018.pdf. [p300]

P. Kokoszka and M. Reimherr. Introduction to Functional Data Analysis. Chapman & Hall, 2017. [p291]

R. Liu and K. Singh. A quality index based on data depth and multivariate rank tests. Journal of the
American Statistical Association, 88(421):252 – 260, 1993. [p291]

R. Liu, J. M. Parelius, and K. Singh. Multivariate analysis by data depth: Descriptive statistics, graphics
and inference. The Annals of Statistics, 27(3):783–858, 1999. [p291]

S. Lopez-Pintado, Y. Sun, and M. G. Genton. Simplicial band depth for multivariate functional data.
Advances in Data Analysis and Classification, 8:321–338, 2014. [p292]

S. López-Pintado and J. Romo. Depth-based inference for functional data. Computational Statistics &
Data Analysis, 51(10):4957–4968, 2007. [p292]

S. López-Pintado and J. Romo. On the concept of depth for functional data. Journal of the American
Statistical Association, 104(486):718 – 734, 2009. [p292, 296]

S. López-Pintado and J. Romo. A half-region depth for functional data. Computational Statistics & Data
Analysis, 55(4):1679–1695, 2011. [p296, 297]

R. A. Maronna and R. H. Zamar. Robust estimates of location and dispersion for high-dimensional
datasets. Technometrics, 44(4):307–317, 2002. [p302]

J. O. Ramsay and B. W. Silverman. Applied Functional Data Analysis: Methods and Case Studies. Springer-
Verlag, New York, 2002. [p291]

J. O. Ramsay and B. W. Silverman. Functional Data Analysis. Springer-Verlag, New York, 2nd edition,
2005. [p291]

J. O. Ramsay, G. Hooker, and S. Graves. Functional Data Analysis with R and MATLAB. Springer-Verlag,
1st edition, 2009. [p291]

J. O. Ramsay, H. Wickham, S. Graves, and G. Hooker. Fda: Functional Data Analysis, 2014. URL
https://CRAN.R-project.org/package=fda. R package version 2.4.4. [p291]

C. E. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006. [p294]

H. L. Shang and R. Hyndman. Rainbow: Bagplots, Boxplots and Rainbow Plots for Functional Data, 2019.
URL https://CRAN.R-project.org/package=rainbow. R package version 3.6. [p291]

Y. Sun and M. G. Genton. Functional boxplots. Journal of Computational and Graphical Statistics, 20(2):
316–334, 2011. [p301]

Y. Sun and M. G. Genton. Adjusted functional boxplots for spatio-temporal data visualization and
outlier detection. Environmetrics, 23(1):54–64, 2012. [p302]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1007/s00362-017-0953-1
https://www.mate.polimi.it/biblioteca/add/qmox/30-2018.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/30-2018.pdf
https://CRAN.R-project.org/package=fda
https://CRAN.R-project.org/package=rainbow

CONTRIBUTED RESEARCH ARTICLES 307

N. Tarabelloni, F. Ieva, R. Biasi, and A. M. Paganoni. Use of depth measure for multivariate functional
data in disease prediction: An application to electrocardiograph signals. The international journal of
biostatistics, 11(2):189–201, 2015. [p296, 298]

N. Tarabelloni, A. Arribas-Gil, F. Ieva, A. M. Paganoni, and J. Romo. Roahd: Robust Analysis of High
Dimensional Data, 2017. URL https://CRAN.R-project.org/package=roahd. R package version 1.3.
[p291]

J. D. Tucker. Fdasrvf: Elastic Functional Data Analysis, 2017. URL https://CRAN.R-project.org/
package=fdasrvf. R package version 1.8.3. [p291]

J. Tuckey. Mathematics and the picturing of data. In Proceedings of the International Congress of
Mathematicians, Vancouver, volume 2, pages 523 – 531, 1975. [p291]

D. Valencia, J. Romo, and R. Lillo. A kendall correlation coefficient for func-
tional dependence. Technical report, Universidad Carlos III de Madrid,
http://EconPapers.repec.org/RePEc:cte:wsrepe:ws133228, 2015a. [p298, 299]

D. Valencia, J. Romo, and R. Lillo. Spearman coefficient for functions. Technical report, Universidad
Carlos III de Madrid, http://EconPapers.repec.org/RePEc:cte:wsrepe:ws133329, 2015b. [p298, 299]

A. Zeileis. CRAN task views. R News, 5(1):39–40, 2005. URL https://CRAN.R-project.org/doc/
Rnews/. [p291]

Y. Zuo and R. Serfling. General notions of statistical depth function. The Annals of Statistics, 28(2):
461–482, 2000. [p291]

Francesca Ieva
MOX - Department of Mathematics
Politecnico di Milano
Italy
francesca.ieva@polimi.it

Anna Maria Paganoni
MOX - Department of Mathematics
Politecnico di Milano
Italy
anna.paganoni@polimi.it

Juan Romo
Department of Statistics
Universidad Carlos III de Madrid
Spain
juan.romo@uc3m.es

Nicholas Tarabelloni
MOX - Department of Mathematics
Politecnico di Milano
Italy
nicholas.tarabelloni@polimi.it

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=roahd
https://CRAN.R-project.org/package=fdasrvf
https://CRAN.R-project.org/package=fdasrvf
https://CRAN.R-project.org/doc/Rnews/
https://CRAN.R-project.org/doc/Rnews/
mailto:francesca.ieva@polimi.it
mailto:anna.paganoni@polimi.it
mailto:juan.romo@uc3m.es
mailto:nicholas.tarabelloni@polimi.it

CONTRIBUTED RESEARCH ARTICLES 308

The IDSpatialStats R Package:
Quantifying Spatial Dependence of
Infectious Disease Spread
by John R. Giles, Henrik Salje, and Justin Lessler

Abstract Spatial statistics for infectious diseases are important because the spatial and temporal
scale over which transmission operates determine the dynamics of disease spread. Many methods
for quantifying the distribution and clustering of spatial point patterns have been developed (e.g. K-
function and pair correlation function) and are routinely applied to infectious disease case occurrence
data. However, these methods do not explicitly account for overlapping chains of transmission and
require knowledge of the underlying population distribution, which can be limiting when analyzing
epidemic case occurrence data. Therefore, we developed two novel spatial statistics that account for
these effects to estimate: 1) the mean of the spatial transmission kernel, and 2) the τ-statistic, a measure
of global clustering based on pathogen subtype. We briefly introduce these statistics and show how to
implement them using the IDSpatialStats R package.

Introduction

The transmission process which drives an epidemic can be characterized by the spatial distance
separating linked cases. When these transmission events accumulate over time, they are observed
as areas of elevated disease prevalence. Knowledge of the extent of the affected area and where new
cases may arise is crucial for many disease control strategies (e.g. ring vaccination, vector control etc).
In epidemiology, case occurrence data—(x,y) coordinates with temporal information (t) and other
covariates—are often used to understand these types of infectious disease dynamics. These data are
typically treated as a generic point process so that they can be described in terms of spatial intensity
(expected number of cases per unit area) or clustering due to spatial dependence (covariance in x,y
space).

In the broader field of spatial statistics, there are many methods that measure the spatial intensity
or clustering of a generic point process on a Cartesian (x,y) coordinate system (Table 1). These methods
primarily fall into three categories: first-order first-moment (FOFM), first-order second-moment
(FOSM), and second-order second-moment (SOSM). The FOFM measures use quadrature (aggregate
counts of points within cells) to quantify intensity of the point pattern continuously over (x,y) space.
Packages such as lgcp (Taylor et al., 2013, 2015) and ppmlasso (Renner and Warton, 2013) allow users
to model first-order intensity as a count process using a regressive function of (x,y) coordinates and
other covariates. The FOSM measures—Moran’s I and Geary’s C (Moran, 1950; Geary, 1954)—also
use quadrature, but they describe general covariance among cell counts across the (x,y) dimensions.
These spatial statistics can be calculated using the spdep R package (Bivand and Piras, 2015). The
SOSM measures, such as the K-function and its non-cumulative analogue, the pair correlation function,
quantify clustering among neighboring points. Both the FOSM and SOSM measures are considered
global spatial statistics because they describe spatial dependence for the entire study area. However,
the SOSM can further describe how spatial dependence changes as a function of distance by comparing
the observed intensity of neighboring points within distance d to that expected under complete spatial
randomness. The K-function and pair correlation function can be calculated using the ads (Pélissier
and Goreaud, 2015), spatstat (Baddeley et al., 2016), and splancs Rowlingson and Diggle (2017) R
packages.

These classic spatial measures are limited in their ability to describe infectious disease dynamics
primarily because they treat case occurrence data as a generic point process. The FOFM and FOSM
measures use quadrature, which make them vulnerable to error associated with data aggregation
(Robinson, 2009) and the modifiable areal unit problem (Openshaw and Taylor, 1979). The SOSM
measures, like the K-function and pair correlation function, are more common in epidemiology.
However, their statistical interpretation is less intuitive in terms of classic epidemiological quantities
of relative disease risk, such as the incidence rate ratio or hazard ratio. Additionally, even the temporal
forms of these functions (e.g. the space-time K-function) do not capture the typical distances traveled
in a single transmission generation as they quantify the overall spatial dependence between all cases,
not just those epidemiologically linked. The mean distance between sequential cases in a transmission
chain is an important epidemiological quantity because it provides insight into potential mechanisms
driving spread as well as helping inform interventions. Therefore, we developed novel measures that
build upon concepts in spatial statistics to characterize infectious disease spread using case occurrence

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=lgcp
https://CRAN.R-project.org/package=ppmlasso
https://CRAN.R-project.org/package=spdep
https://CRAN.R-project.org/package=ads
https://CRAN.R-project.org/package=spatstat
https://CRAN.R-project.org/package=splancs

CONTRIBUTED RESEARCH ARTICLES 309

Table 1: A selective list of R packages for the analysis of spatial point pattern data. This list is not
exhaustive. Visit the Spatial CRAN Task View for a more comprehensive list of resources.

Package Description Citation

ads K function for enclosed point patterns Pélissier and Goreaud (2015)
DCluster disease clustering for count data Gómez-Rubio et al. (2005)
lgcp modeling point patterns Taylor et al. (2013, 2015)

with log-Gaussian Cox processes
ppmlasso modeling point patterns Renner and Warton (2013)

with LASSO regularization
SGCS third order clustering of point processes Rajala (2017)
sparr spatial relative risk functions with kernel smoothing Davies et al. (2011)
spatstat comprehensive tools for analyzing Baddeley et al. (2016)

point patterns in many dimensions
spdep classic statistics to test for spatial dependence Bivand and Piras (2015)
splancs kernel smoothing and Poisson cluster processes Rowlingson and Diggle (2017)

data. Importantly, these measures are robust to heterogeneities in the underlying population, and
substantial case under-reporting, which is common in epidemiology.

We describe these two measures of spatial dependence for infectious diseases and show how
they can be calculated with the IDSpatialStats R package in the following three sections. First, we
introduce a function which simulates infectious disease spread as a spatial branching process. This
function is primarily intended to simulate example datasets for the est.transdist family of functions
and τ-statistics that use temporal information to indicate linked cases. Second, we demonstrate how
to estimate the mean and standard deviation of the spatial transmission kernel (Salje et al., 2016b).
Estimating the spatial transmission kernel requires an understanding of the number of transmission
generations separating cases at different time points of the epidemic. This method provides a measure
of fine-scale spatial dependence between two cases, which can be interpreted as the mean distance
between sequential cases in a transmission chain. Third, we describe a measure of global clustering—
the τ-statistic—that calculates the relative risk of infection given some criteria to identify cases closely
related along a chain of transmission (Lessler et al., 2016). The τ-statistic is a global clustering statistic—
like the K-function and pair correlation function—that provides an overall measure of clustering for
the entire course of an outbreak. Depending on the parameterization, the τ-statistic represents the
odds of observing another case with distance d of an infected case compared with either the underlying
population or other pathogen types. The following sections contain a brief introduction to each statistic
to provide context to the code implementation—for more detailed description of each statistic, see
Lessler et al. (2016) and Salje et al. (2016b).

We have implemented these tools in the IDSpatialStats R package version 0.3.5 and above. The
latest stable release depends on the doParallel and foreach packages (Microsoft and Weston, 2017;
Corporation and Weston, 2018) and can be downloaded from CRAN. A development version of the
package is also available on Github at https://github.com/HopkinsIDD/IDSpatialStats.

Simulating spatial disease spread

We use a stochastic spatial branching process to simulate epidemiological data in the sim.epidemic
function. Simulations begin with an index case at (x, y, t) = (0, 0, 0) and transmission events that
link two cases follow according to a random Markov process in (x, y) space (i.e. Brownian motion).
The number of transmission events occurs according to a Poisson distribution, with its mean and
variance set to the effective reproduction number R of the infecting pathogen. The spatial distance
traversed by each transmission event is given by a user specified probability distribution which serves
as the dispersal kernel function. When specifying the dispersal kernel, the trans.kern.func argument
expects a list object containing a probability distribution function and its named arguments. For
example, to simulate an epidemic where transmission typically occurs at the local level, but long
distance transmission events sometimes occur, an exponential transmission kernel might be used
because of its long tail. Alternatively, if transmission is expected to consistently occur within a given
range, then a normal kernel may be more appropriate.

In simulations where the basic reproductive number R0 is used to define a constant R-value
and R0 > 1, the number of cases will continue to increase with each time step. This effect may
not be appropriate when simulating settings where intervention efforts or depletion of susceptible
individuals causes heterogeneity in R over the course of the epidemic. Thus, the sim.epidemic

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/view=Spatial
https://CRAN.R-project.org/package=DCluster
https://CRAN.R-project.org/package=ppmlasso
https://CRAN.R-project.org/package=SGCS
https://CRAN.R-project.org/package=sparr
https://CRAN.R-project.org/package=IDSpatialStats
https://github.com/HopkinsIDD/IDSpatialStats

CONTRIBUTED RESEARCH ARTICLES 310

function accepts either a scalar value for a constant R value or a vector of R values with a length equal
to tot.generations, allowing simulations with a variable R value, as shown in the following R code.

Epidemic simulations with variable R value
R1 <- 2
R2 <- 0.5
tot.gen <- 12
R.vec <- seq(R1, R2, (R2 - R1)/(tot.gen - 1))
dist.func <- alist(n=1, a=1/100, rexp(n, a))
sim <- sim.epidemic(R=R.vec, gen.t.mean=7, gen.t.sd=2, min.cases=100,

tot.generations=tot.gen, trans.kern.func=dist.func)

head(sim, n=4)
x y t

1 0.00000 0.000000 0
2 24.46125 3.280527 3
3 -60.73475 184.885784 7
4 -12.79933 -57.798696 4

sim.plot(sim)

Figure 1: Left: the spatial distribution of simulated cases with the red cross showing the index case.
Right: the epidemic curve for a simulation with an R value decreasing from 2 to 0.5 over the course of
the epidemic.

The mean transmission distance

In Salje et al. (2016b), we introduced a method to estimate the mean and standard deviation of
the spatial transmission kernel using case occurrence data. These data include location (x, y) and
onset time t of each case (case times) and the infecting pathogen’s generation time g(x). To estimate
these spatial statistics, we use the Wallinga-Teunis (WT) method (Wallinga and Teunis, 2004) to
probabilistically estimate the number of transmission events required to link two cases, denoted as
θ. In settings where a phylogenetic model or contact tracing provide information on transmission
pathways, the spatial kernel can be empirically estimated using the distribution of observed distances
among all linked cases. The mean and standard deviation of this kernel can then be calculated for
any time interval between t1 and t2 to give µobs

t (t1, t2), with the assumption that the number of
transmission events separating all case pairs is homogeneous (θ = 1). When data that indicate case
linkage are lacking, this assumption is incorrect because the distance between two cases depends on
the number of transmission events separating them. In this case, the mean transmission distance at
each time interval µt must be estimated as a weighted mean:

µt(t1, t2, µk, σk) = ∑
i

w(θ = i, t1, t2) · µa(θ = i, µk, σk).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 311

Where, w(θ = i, t1, t2) gives the weight for each of the i elements of θ and the second term µa(θ =
i, µk, σk) gives the mean distance separating case pairs that are linked by the ith value of θ.

We have implemented four nested functions that are used to estimate w(θ = i, t1, t2) and describe
them briefly below. Listed in order, they are comprised of est.wt.matrix.weights, est.wt.matrix,
get.transdist.theta, and est.transdist.theta.weights. Although, these functions are docu-
mented separately, they are all driven by the est.transdist family of functions and do not need to be
run manually unless desired.

Wallinga-Teunis matrices

The est.wt.matrix.weights function builds upon code from the R0 package (Obadia et al., 2012) to
calculate the basic WT matrix (Wallinga and Teunis, 2004). This matrix gives the probability that a
case at time ti (rows) infected a case at time tj (columns), i.e. θ = 1, based on the generation time
distribution of the pathogen g(x). For an epidemic with t unique case times, est.wt.matrix.weights
gives a T × T matrix.

The est.wt.matrix function produces a WT type matrix for all infector-infectee case pairs. Given
the WT matrix produced by est.wt.matrix.weights and total case count n, this function calculates an
n× n matrix giving the probability that case i (rows) infected case j (columns). The WT matrix object
can be handed directly to est.wt.matrix via the basic.wt.weights argument, or if this argument is
NULL, the est.wt.matrix.weights function is called automatically.

Calculating Wallinga-Teunis matrices
case.times <- c(1,2,2,3,3) # times each case occurs
g.x <- c(0, 2/3, 1/3, 0, 0) # hypothetical generation time of a pathogen

mat.wts <- est.wt.matrix.weights(case.times=case.times, gen.t.dist=g.x)

Calculate infector-infectee Wallinga-Teunis matrix
wt.mat1 <- est.wt.matrix(case.times=case.times, gen.t.dist=g.x,

basic.wt.weights=mat.wts)
wt.mat2 <- est.wt.matrix(case.times=case.times, gen.t.dist=g.x)

identical(wt.mat1, wt.mat2) # the two methods are equivalent
[1] TRUE

Estimation of θ weights

The get.transdist.theta function estimates the number of transmission events θ separating pairs
of cases using the probabilities in the infector-infectee WT matrix produced by the est.wt.matrix
function. Sampling all possible transmission trees is impractical for most datasets, so this function
constructs a transmission tree by randomly selecting the infector of each case in the epidemic and then
θ is determined by finding the product of all probabilities in the chain of transmission that link the
randomly sampled case pairs.

The object theta.wts (in the code segment below) contains a three-dimensional array [i,j,k], where
the rows i and columns j represent unique case times and the third dimension k is the number of
transmission events θ. Each cell gives the probability that two cases occurring at times i and j are
connected by θ transmission events in the randomly sampled transmission tree. Probabilities in each
[i,j,·] row are normalized across all θ values. The get.transdist.theta function samples a single
randomized transmission tree from the epidemic data, therefore we want to simulate many iterations
of this random sampling to get a better estimate of the true distribution of θ.

The est.transdist.theta.weights function estimates the distribution of θ across all ti and tj
combinations by simulating many iterations of transmission trees using the get.transdist.theta
function. Its output is the same as the get.transdist.theta function, however, it represents the
normalized probabilities after n.rep number of simulations.

Estimate theta weights
case.times <- c(1,2,2,3,3) # times each case occurs
g.x <- c(0, 2/3, 1/3, 0, 0) # hypothetical generation time distribution of a pathogen
gen.time <- 1 # mean generation time
n.gen <- round((max(case.times) - min(case.times)) / gen.time) + 1 # total generations

Calculate infector-infectee Wallinga-Teunis matrix
wt.mat <- est.wt.matrix(case.times=case.times, gen.t.dist=g.x)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 312

Estimated theta weights from five randomized transmission trees
theta.wts <- est.transdist.theta.weights(case.times=case.times, n.rep=5,

gen.t.mean=gen.time, t1=0, t.density=g.x)
theta.wts[,,1]

[,1] [,2] [,3]
[1,] 0.000 NaN NaN
[2,] 0.625 0.0000 NaN
[3,] 0.000 0.4375 0

Estimating mean of transmission kernel

To estimate the mean transmission distance over the duration of the epidemic we must use the
observed distances between case pairs given the time they occurred µobs

t (ti, tj) and combine them into
an overall estimate of the mean of the transmission kernel µk. The workhorse function est.trandsdist
estimates the overall mean µk and standard deviation σk of the kernel. This function first calls the
est.wt.matrix.weights, est.wt.matrix, get.transdist.theta, and est.transdist.theta.weights
functions described above to estimate the distribution of θ across all case pairs and then calculates each
of the weights w(θ = i, t1, t2). The weights are calculated as the proportion of all case pairs occurring
at ti and tj that are separated by each estimated θ over all simulations:

ŵ(θ = i, t1, t2) =
∑Nsim

k=1 ∑n
i=1 ∑n

j=1 I1(ti = t1, tj = t2, Θij = θ)

Nsim ∑n
i=1 ∑n

j=1 I2(ti = t1, tj = t2)
.

Here, the functions I1 and I2 indicate if two cases occurred at time ti and tj and were linked by θ
transmission events, or if they just occurred at ti and tj respectively. In words this can be written as:

ŵ(θ = i, t1, t2) =
Total cases at t1 and t2 across all simulations separated by θ transmission events

Total cases at t1 and t2 across all simulations
.

Once the weights of the θ values are estimated, the est.transdist function calculates µk and σk as
the average weighted estimate over all combinations of ti and tj. If we now let k index the vector of θ
values, then:

µ̂k = σ̂k =
1

∑i ∑j nij
∑

i
∑

j

2 · µobs
t (ti, tj) · nij

∑k ŵ(θ = k, ti, tj) ·
√

2πk
.

For a derivation of these equations, see sections 2.3 and 2.4 of Salje et al. (2016b).

The est.trandist function requires case occurrence data—a matrix with three columns [x,y,t]—
and the mean and standard deviation of the infecting pathogen’s generation time (for calculating
WT matrices) as input. The function returns estimates of µk and σk of the spatial transmission kernel.
These estimates are made under the assumption that µk = σk, so the upper bound of µ̂k and σ̂k
are also provided for when this assumption is violated. Bound estimates are equal to

√
2 times the

values estimated under the µk = σk assumption (see section 2.5 of Salje et al. (2016b)). Additional
constraints on the estimation of µk and σk can be defined in the remaining arguments, such as the
time step in which the analysis should begin (t1), the maximum number of time steps (max.sep) and
maximum spatial distance (max.dist) to consider when estimating θ, and the number of randomized
transmission tree simulations to run (n.transtree.reps).

To estimate the uncertainty around µ̂k due to sampling or observation error, we have implemented
a wrapper function called est.transdist.bootstrap.ci that performs bootstrap iterations using
the est.transdist function. Upon each iteration, the epidemiological data are resampled with
replacement and µk is re-estimated. The est.transdist.bootstrap.ci function contains all the
same arguments as the est.transdist function, with additional arguments defining the number of
bootstrapped iterations to perform, the high and low boundaries of the desired confidence interval,
and options for running the bootstrap analysis in parallel.

When parallel computation is enabled (the default is parallel = FALSE), the function uses the
makeCluster() function of the parallel package to make the appropriate cluster type for the operating
system of the local machine (SOCK cluster for Windows or a Fork cluster for Unix-like machines). The
cluster is then registered as the parallel backend for the foreach package, which is used to run the
bootstraps in parallel. The user can define the number of cores to use when running in parallel using
the n.cores argument. If parallel = TRUE and n.cores = NULL, the function will use half the total
cores on the local machine.

Estimate transmission distance for simulated data
set.seed(123)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 313

dist.func <- alist(n=1, a=1/100, rexp(n, a)) # Dispersal kernel
sim <- sim.epidemic(R=2, gen.t.mean=7, gen.t.sd=2, min.cases=100,

tot.generations=8, trans.kern.func=dist.func)

Estimate mean transmission distance
sim.transdist <- est.transdist(epi.data=sim, gen.t.mean=7, gen.t.sd=2, t1=0,

max.sep=1e10, max.dist=1e10, n.transtree.reps=10)

sim.transdist
$mu.est
[1] 92.79699
$sigma.est
[1] 91.45614
$bound.mu.est
[1] 131.2348
$bound.sigma.est
[1] 129.3385

Estimate confidence intervals around mean
sim.transdist.ci <- est.transdist.bootstrap.ci(epi.data=sim,

gen.t.mean=7,
gen.t.sd=2,
t1=0,
max.sep=1e10,
max.dist=1e10,
n.transtree.reps=10,
boot.iter=5,
ci.low=0.025,
ci.high=0.975)

sim.transdist.ci
$mu.est
[1] 131.2124
$mu.ci.low
2.5%
128.2505
$mu.ci.high
97.5%
134.3312

Change in mean transmission distance over time

An estimate of µk over the duration of an epidemic is indicative of the overall spatial dependence.
However, conditions may change over the course of an epidemic that alter the spatial scale upon which
transmission operates. To quantify temporal heterogeneity in the mean transmission distance, we have
implemented the est.transdist.temporal and est.transdist.temporal.bootstrap.ci functions,
which estimate the change in µ̂k over time and its bootstrapped confidence intervals respectively.

When applying the temporal versions of the est.transdist functions, it is important to consider
the sample size at each time step because the est.transdist.temporal function estimates µk for all
cases leading up to each unique time step. Some time steps at the beginning of an epidemic may be
returned as NA if there are not enough unique cases to estimate µk. Furthermore, in scenarios where
time steps in the beginning of an epidemic have low sample sizes, such as an epidemic with a low
R0, µ̂k may be over- or under-estimated and display larger confidence intervals due to sampling error.
Therefore, we recommend either setting the t1 argument to the first time step that contains a sufficient
sample size, or plotting results along with cumulative sample size as we have done in Figure 3.

Estimate temporal transmission distance for simulated data
set.seed(123)
dist.func <- alist(n=1, a=1/100, rexp(n, a)) # Dispersal kernel
sim <- sim.epidemic(R=2, gen.t.mean=7, gen.t.sd=2, min.cases=100,

tot.generations=8, trans.kern.func=dist.func)

Estimate mean and confidence intervals at each time step
sim.temp.transdist.ci <- est.transdist.temporal.bootstrap.ci(epi.data=sim,

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 314

gen.t.mean=7,
gen.t.sd=2,
t1=0,
max.sep=1e10,
max.dist=1e10,
n.transtree.reps=10,
boot.iter=5,
ci.low=0.025,
ci.high=0.975)

head(sim.temp.transdist.ci)
t pt.est ci.low ci.high n

1 0 NA NA NA 1
2 3 NA NA NA 2
3 8 NA NA NA 3
4 9 44.61359 35.52047 52.24099 4
5 10 101.55313 43.99469 203.11247 5
6 11 189.29767 113.79560 224.79960 6

Application to foot-and-mouth disease

To provide an example of how the functions shown above can be applied to real data, we estimate
the mean transmission distance for the 2001 foot-and-mouth epidemic among farms in Cumbria,
UK. These data can be found in the fmd data object included in the sparr package (Davies et al.,
2011). It contains transformed (x,y) coordinates of the infected farms and the time step (t) in which
it was infected, which is given in days since the index farm was infected (Figure 2). The generation
time for foot-and-mouth disease is estimated to have a mean of 6.1 days and a standard deviation
of 4.6 days (Haydon et al., 2003), so we use these in the gen.t.mean and gen.t.sd arguments in the
est.transdist.temporal.bootstrap.ci function.

library(sparr)
data(fmd)
fmd <- cbind(fmd$cases$x, fmd$cases$y, fmd$cases$marks)

head(fmd, n=3)
[,1] [,2] [,3]
[1,] 333.0328 541.3405 52
[2,] 336.1428 543.3462 46
[3,] 341.4762 551.1794 38

sim.plot(fmd)

Figure 2: The spatial and temporal distribution of case farms from the 2001 foot-and-mouth epidemic
among farms in Cumbria, UK; plotted using the sim.plot function. The x and y axis in the left plot
represent transformations of UTM coordinates in kilometers. On the right, case counts are plotted by
days since the index case. Data are provided by the sparr package (Davies et al., 2011).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 315

NOTE: this function may take a while depending on the data set
fmd.trans <- est.transdist.temporal.bootstrap.ci(epi.data=fmd,

gen.t.mean=6.1,
gen.t.sd=4.6,
t1=0,
max.sep=1e10,
max.dist=1e10,
n.transtree.reps=5,
boot.iter=10,
ci.low=0.025,
ci.high=0.975,
parallel=TRUE,
n.cores=detectCores())

par(mfrow=c(1,1))
fmd.trans[,2:4] <- fmd.trans[,2:4]/1000 # Convert to km
plot(fmd.trans$t, fmd.trans$pt.est, pch=19, col='grey', ylim=range(fmd.trans[,3:4], na.rm=T),

xlab='Time step', ylab='Estimated mean of transmission kernel (km)')

tmp <- seq(1, nrow(fmd.trans), 5)
axis(3, tmp, fmd.trans[tmp,5])
mtext('Sample size (n)', side=3, line=3)

tmp <- which(fmd.trans$n >= 30)[1]
abline(v=tmp, lty=2)
text(16, 1, 'n = 30')

tmp <- tmp:nrow(fmd.trans)
lty <- c(NA,1,2,2)

for(i in 2:4) {
low <- loess(fmd.trans[tmp,i] ~ as.vector(tmp), span=0.3)
low <- predict(low, newdata=data.frame(as.vector(tmp)))
lines(c(rep(NA, tmp[1]), low), lwd=2, lty=lty[i], col='blue')

}

Using our approach described above, we estimated the mean transmission distance between case
farms in the sparr package foot-and-mouth disease data to be µ̂k = 5.8 km (95% CI = 5.7–6.1 km).
Interestingly, this estimate of µk is lower than that reported in Salje et al. (2016b), where µ̂k = 9.1 km
(95% CI = 8.4–9.7 km). The difference in µ̂k is likely due to differences in data sources. The values
estimated in Salje et al. (2016b) include case farms from both Cumbria and Dumbfriesshire, UK with
the additional constrain that only case farms where the source farm was confirmed were included.
The sparr data set, on the other hand, contains all case farms from only Cumbria.

Global clustering: the τ-statistic

Estimating the mean of the spatial transmission kernel (above) provides information on the small
spatial scale of individual transmission events. After subsequent generations of transmission where
different transmission chains overlap in space, a larger area of elevated disease prevalence will be
observed. To describe this larger-scale process, we introduced the τ-statistic in Lessler et al. (2016).
The τ-statistic measures global clustering with an epidemiological interpretation—the relative risk of
an individual being a related case (under some definition) given they are within a particular distance
from another case. The spatial distances where the relative risk is high represent an area of elevated
prevalence that is likely to have greater public health utility compared with the scale of individual
transmission because interventions must account for ongoing transmission at the population level
to contain an outbreak. Therefore, the τ-statistic provides a more intuitive global measure of spatial
clustering, which can be interpreted as the relative risk of infection.

Formulation of the τ-statistic has a mathematical relationship to the K-function and pair correlation
function. The K-function quantifies the expected number of neighboring points within distance d of a
typical point Z relative to the intensity of the underlying population distribution λ.

K(d) =
1
λ

E[neighbors within distance d | x, y coordinates of Z]

In the simplest scenario, λ is assumed to be homogeneously distributed, so that λ = N/A, where N

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 316

Figure 3: Output from the est.transdist.temporal.bootstrap.ci function showing the change in
the mean transmission distance over the course of the 2001 foot-and-mouth disease epidemic for case
farms in the fmd data set in the sparr package. The point estimates are plotted as grey circles and a loess
smooth of the mean estimate is plotted (blue line) along with its 95% bootstrapped confidence intervals
(dashed blue lines). The loess smooth begins with the first time step that contains a cumulative sample
size of 30, indicated by the dashed line.

is the total number of cases and A is the total study area. Under the assumption of a heterogeneous
underlying population distribution, λ becomes the location specific intensity λ(S), where S ⊂ A
within distance d of location Z. In both cases, the K-function is plotted with the theoretical value of the
K-function for a homogeneous Poisson process πd2, which indicates clustering or dispersion relative
to complete randomness. The cumulative aspect of the K-function (using all neighbors within distance
d) is, however, a well-known constraint that makes it difficult to interpret changes in clustering over
distance. The pair correlation function alleviates this constraint by applying the K-function within
a distance range (d1, d2) and standardizing it by the complete spatial randomness expectation for a
homogeneous Poisson process within this range:

G(d1, d2) =
K(d1 + ∆d)− K(d1)

2πd1∆d + π∆d2 ,

where, ∆d = d2 − d1. Both the K-function and pair correlation functions have seen general application
due to developments that accommodate inhomogeneous underlying population distribution, cluster-
ing between typed points, and edge effects. However, these functions assume complete knowledge
of the underlying population distribution and use a null statistical hypothesis of complete spatial
randomness, which is precarious for scenarios in epidemiology where the underlying population is
unknown and relative risk is used to understand disease dynamics.

To incorporate other metrics of global clustering, the IDSpatialStats package provides wrapper
functions for calculating both the cross K- and cross pair correlation functions using the Kcross and
PCFcross functions from the spatstat package (Baddeley et al., 2016). These wrapper functions allow
for straightforward calculation of these statistics using typed epidemiological data that is formatted
for IDSpatialStats functions (Figure 4).

Calculate cross-K and cross pair correlation functions with simulated data
data(DengueSimRepresentative)

r.vals <- seq(0, 1000, 20)
labs <- seq(0, 1000, 200)

k <- get.cross.K(epi.data=DengueSimRepresentative, type=5, hom=1, het=NULL,
r=r.vals, correction='border')

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 317

head(k, n=3)
r theo border

1 0 0.000 0.000
2 20 1256.637 2166.362
3 40 5026.548 5956.887

g <- get.cross.PCF(epi.data=DengueSimRepresentative, type=5, hom=1, het=NULL,
r=r.vals, correction='border')

head(g, n=3)
r theo pcf

1 0 1 1.000000
2 20 1 1.720848
3 40 1 1.178406

par(mfrow=c(1,2))
plot(k[,3], type='l', lwd=2, xaxt='n', xlab='distance (m)', ylab='cross K function')
lines(k[,2], col='red', lty=2, lwd=2)
axis(1, at=which(r.vals %in% labs), labels=labs)

legend(-3, 4.15e6, legend=c("Theoretical Poisson process", "Observed function"),
col=c("red", "black"), lty=2:1, box.lty=0, bg='transparent',
x.intersp=0.7, y.intersp = 1.2)

plot(g$pcf, type='l', lwd=2, xaxt='n', xlab='distance (m)',
ylab='cross pair correlation function')

abline(h=1, col='red', lty=2, lwd=2)
axis(1, at=which(r.vals %in% labs), labels=labs)

Figure 4: Output from the cross K function (left) and the cross pair correlation function (right) with
the observed function shown in black and the value of a theoretical homogeneous Poisson process
shown in red.

A measure of relative risk that does not assume knowledge of the underlying population distri-
bution was developed for point pattern data in veterinary epidemiology (Diggle et al., 2005). This
function, which is implemented in the sparr (Davies et al., 2011) and spatstat (Baddeley et al., 2016)
packages, uses spatial kernel functions to calculate a ratio of spatial intensity for two different point
types ρ(S) = λ1(S)/λ0(S). This formulation can quantify the relative risk for case-control point data
or case occurrences with multiple types, but it is not a global clustering statistic.

The τ-statistic can be computed in two ways depending on the underlying assumption that the
true population distribution is known. If this assumption is true, then the τ-statistic is similar to
other common measures of global clustering that rely on knowledge of the background population
distribution to quantify generic clustering of a point process.

τ̂(d1, d2) =
π̂(d1, d2)

π̂(0, ∞)
,

where π̂(d1, d2) represents the incidence rate within distance d1 to d2 of a case and π̂(0, ∞) represents
the incidence rate over the entire extent of the study area. This can be implemented by defining
the numerator and denominator using the get.pi function or by using the generalized get.tau

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 318

function with comparison.type = 'representative' argument. The π̂(·) terms in the numerator
and denominator use the occurrence data to calculate the incidence rates for linked cases within
some defined distance. Therefore, a critical step in performing an analysis with the τ-statistic is
specifying which cases are linked through some defined relationship (homologous) and those that are
not (non-homologous). Homology can be defined statically or dynamically. When defined statically,
the get.pi.typed and get.tau.typed functions can be used to assign case types based on a type
column supplied by the data matrix. When defined dynamically, an indicator function I(·) is used to
delineate linked and unlinked cases in the data, which allows greater flexibility when defining case
type homology.

Calculate tau-statistic using get.pi.typed functions
data(DengueSimRepresentative)

type <- 2 - (DengueSimRepresentative[,'serotype'] == 1)
typed.data <- cbind(DengueSimRepresentative, type=type)
d2 <- seq(20, 1000, 20)
d1 <- d2 - 20

Static definition of case type homology
num <- get.pi.typed(typed.data, typeA=1, typeB=2, r.low=d1, r=d2)
den <- get.pi.typed(typed.data, typeA=1, typeB=2, r.low=0, r=1e10)
head(numpi/denpi, n=4)
[1] 0.2641154 0.2104828 0.2451847 0.2487042

tau <- get.tau.typed(typed.data, typeA=1, typeB=2, r.low=d1, r=d2,
comparison.type = "representative") # Equivalent

head(tau, n=4)
r.low r tau

1 0 20 0.2641154
2 20 40 0.2104828
3 40 60 0.2451847
4 60 80 0.2487042

Calculate tau-statistic using dynamic expression indicating serotype homology
ind.func <- function(a, b){

if (a[5] == 1 & b[5] == 1) {
x <- 1

} else {
x <- 2

}
return(x)

}

num <- get.pi(posmat=DengueSimRepresentative, fun=ind.func, r.low=d1, r=d2)
den <- get.pi(posmat=DengueSimRepresentative, fun=ind.func, r.low=0, r=Inf)
head(numpi/denpi, n=4)
[1] 5.084735 4.967885 4.605805 4.409876

tau <- get.tau(posmat=DengueSimRepresentative, fun=ind.func, r.low=d1, r=d2,
comparison.type="representative") # Equivalent

head(tau, n=4)
r.low r tau

1 0 20 5.084735
2 20 40 4.967885
3 40 60 4.605805
4 60 80 4.409876

plot(tau$r.low+tau$r/2, tau$tau, type='l', lwd=2, col='blue', xlab='distance (m)')
abline(h=1, lty=2, lwd=2, col='red')
abline(v=100)

The interpretation of the τ-statistic is analogous to that of the pair-correlation function in two ways.
First, the τ-statistic is not compared to the theoretical measure of a random Poisson process because
the metric is an incidence rate ratio with epidemiological meaning. Instead, this measure is plotted in
comparison to a ratio of 1, indicating no relative difference in disease risk among homologous cases.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 319

Figure 5: The τ-statistic calculated using the get.tau function (blue line) with the theoretical value of
no relative difference in disease risk shown by the dashed red line. The vertical black line indicates the
mean of the spatial dispersal kernel (100m) used to simulate the DengueSimRepresentative data set.

Second, the τ-statistic measures relative risk using case pairs within a distance range (d1 ≤ dij < d2).
This approach can describe how fine-scale spatial dependence changes over distance. However, if the
user wishes to estimate cumulative spatial dependence (analogous to the K-function), then d1 can be
fixed at zero (0 ≤ dij < d2).

Estimating the τ-statistic with θ̂

If the underlying population distribution is unknown, then the τ-statistic can be computed so that it
quantifies global clustering in terms of relative risk. This goes beyond classic measures of clustering
by utilizing some relationship between linked and unlinked cases to distinguish transmission chains
and quantify relative clustering between them. To do so, we use the function θ̂(·) which gives the
odds ratio of cases related to case i to those independent of i to give an estimate of the τ-statistic that
is not biased by assumptions about the underlying population distribution.

τ̂(d1, d2) =
θ̂(d1, d2)

θ̂(0, ∞)
,

where,

θ̂(d1, d2) =
∑∀i ∑∀j I1(zij = 1, d1 ≤ dij < d2)

∑∀i ∑∀j I2(zij = 0, d1 ≤ dij < d2)
.

The indicator function I(·) is applied to all ij case pairs within distance d1 and d2. It returns a binary
response which is equal to 1 when case pairs meet user-specified criteria to be homologous and equal
to 2 when they are non-homologous. The result is an i× j relation matrix zij which is used to find
the sums of homologous and non-homologous case pairs. Using an indicator function also allows
additional criteria to be used to define case type homology, such as temporal proximity (Figure 6).

Calculate tau-statistic using serotype homology and time
data(DengueSimR01)
d2 <- seq(20, 1000, 20)
d1 <- d2 - 20

Dynamic expression indicating serotype homology and temporal proximity
ind.func <- function(a, b, t.limit=20){

if (a[5] == b[5] & (abs(a[3] - b[3]) <= t.limit)){
x <- 1

} else {
x <- 2

}
return(x)

}

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 320

num <- get.theta(DengueSimR01, ind.func, r.low=d1, r=d2)
den <- get.theta(DengueSimR01, ind.func, r.low=0, r=Inf)
head(num$theta/den$theta, n=4)
[1] 3.9148969 3.5145802 4.5963608 5.1082210

tau <- get.tau(posmat=DengueSimR01, fun=ind.func, r.low=d1, r=d2,
comparison.type="independent") # Equivalent

head(tau, n=4)
r.low r tau

1 0 20 3.914897
2 20 40 3.514580
3 40 60 4.596361
4 60 80 5.108221

plot(taur, tautau, type='l', lwd=2, col='blue', xlab='distance (m)')
abline(h=1, lty=2, lwd=2, col='red')
abline(v=100)

Figure 6: The τ-statistic calculated using get.tau with an indicator function based on serotype
homology and temporal proximity (blue line) with the theoretical value of no relative difference in
disease risk shown by the dashed red line. The vertical black line indicates the mean of the spatial
dispersal kernel (100m) used to simulate the DengueSimR01 data set.

Calculating variance in point estimates

In the examples above, the get.pi, get.theta, and get.tau function families calculate point estimates
for π̂, θ̂, and τ̂ respectively. In scenarios where observation error, sampling bias, or measurement error
are expected to introduce additional variance, users may wish to place confidence intervals around
these point estimates. For this purpose, each family of functions contains a function ending with a
.bootstrap suffix, which generates point estimates for boot.iter number of bootstrapped samples of
the data (Efron and Tibshirani, 1994). Functions ending with a .ci suffix are wrappers that calculate
user specified confidence intervals based on the bootstrapped samples (Figure 7).

Calculate variance around point estimates of the tau-statistic
data(DengueSimR02)

d2 <- seq(20, 1000, 20)
d1 <- d2 - 20

Function indicating genotype homology
ind.func <- function(a, b){

if(a[4] == b[4]){
x = 1

} else{

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 321

x = 2
}
return(x)

}

Bootstrapped estimates of tau
tau.boot <- get.tau.bootstrap(DengueSimR02, ind.func, r.low=d1, r=d2, boot.iter=5)
head(tau.boot, n=4)
r.low r X1 X2 X3 X4 X5

1 0 20 51.04283 49.17736 60.45922 43.36588 37.26332
2 20 40 20.80095 29.62483 26.54935 34.11416 31.32279
3 40 60 34.05415 35.66984 40.21975 31.02943 32.77966
4 60 80 30.52361 35.46972 27.77247 36.64628 32.43156

Wrapper function of get.tau.bootstrap calculates confidence intervals
tau.ci <- get.tau.ci(DengueSimR02, ind.func, r.low=d1, r=d2, boot.iter=25)
head(tau.ci, n=4)
r.low r pt.est ci.low ci.high

1 0 20 44.05161 22.73147 59.44465
2 20 40 30.83943 19.68758 42.05249
3 40 60 37.57434 30.48664 45.78121
4 60 80 33.54134 28.12390 38.76330

plot(tau.ci$r, tau.ci$pt.est, ylim=range(tau.ci[,4:5]), type="l", lwd=2, col='blue',
xlab='distance (m)', ylab='tau')

lines(tau.ci$r, tau.ci$ci.low, lty=2, lwd=1, col='blue')
lines(tau.ci$r, tau.ci$ci.high, lty=2, lwd=1, col='blue')
abline(h=1, lty=2, lwd=2, col='red')

Figure 7: The τ-statistic calculated using get.tau with an indicator function based on genotype
homology (blue line). The dashed blue lines show the bounds for the 95% confidence intervals
calculated by the get.tau.ci function. The theoretical value of no relative difference in disease risk
shown by the dashed red line.

Null hypothesis testing

A common approach for interpreting spatial clustering statistics includes hypothesis testing using
simulation envelopes to assess whether an observed spatial measure is statistically significant (Ripley,
1979; Baddeley et al., 2014). To enable null hypothesis tests, we have implemented a permutation
method (Good, 2010) to simulate the nonparametric distribution of π̂, θ̂, and τ̂ under the null hy-
pothesis of no spatial dependence. The permutation algorithm simulates the null distribution by
randomly reassigning case coordinates to observations upon each permutation. Null distributions can
be computed using functions ending in the .permute suffix and then plotted with observed measures
to assess statistical significance as a function of distance (Figure 8).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 322

Compare tau statistic to its null distribution using permutation
data(DengueSimR02)
set.seed(123)

d2 <- seq(20, 1000, 20)
d1 <- d2 - 20

Compare spatial dependence by time case occurs
type <- 2 - (DengueSimR02[,"time"] < 120)
typed.data <- cbind(DengueSimR02, type=type)

typed.tau <- get.tau.typed(typed.data, typeA=1, typeB=2, r.low=d1, r=d2,
comparison.type = "independent")

head(typed.tau, n=4)
r.low r tau

1 0 20 0.4040661
2 20 40 0.5471728
3 40 60 0.7897655
4 60 80 0.8901166

Perform permutations of observed case times and locations for null distribution
typed.tau.null <- get.tau.typed.permute(typed.data, typeA=1, typeB=2, r.low=d1, r=d2,

permutations=100,
comparison.type = "independent")

head(typed.tau.null[,1:7], n=4)
r.low r X1 X2 X3 X4 X5

1 0 20 1.2570945 0.8530284 3.5019060 1.0326133 1.0775095
2 20 40 1.1448539 0.7045255 0.7224212 2.0742058 0.8754765
3 40 60 0.6947101 0.8904419 0.8249682 0.6990984 0.5128531
4 60 80 1.6266250 1.0916873 0.8326210 0.8432683 1.4815756

95% confidence intervals of null distribution
null.ci <- apply(typed.tau.null[,-(1:2)], 1, quantile, probs=c(0.025, 0.975))

plot(typed.tau$r, typed.tau$tau, type='l', lwd=2, ylim=range(c(typed.tau$tau, null.ci)),
xlab="distance (m)", ylab="tau")

lines(typed.tau$r, null.ci[1,], lty=2)
lines(typed.tau$r, null.ci[2,], lty=2)
abline(h=1, lty=2, lwd=2, col='red')

Summary

Conventional spatial statistics are often used to describe the intensity or clustering of point processes.
Quantifying spatial dependence of infectious disease spread, however, requires a modified approach
that considers overlapping transmission chains and the likelihood of case linkage. Therefore, we have
implemented two types of spatial statistics in the IDSpatialStats package (the mean transmission
distance µk, and the τ-statistic) that can be used along with other measures of spatial dependence (e.g.
the cross K-function and cross pair correlation function) to understand the spatial spread of infectious
diseases.

We showed how to simulate epidemiological data and estimate µk, and the τ-statistic, which can
be used as templates for other analyses. First, the transdist family of functions provides a measure
of fine-scale spatial dependence by estimating the mean of the transmission distance µ̂k between
sequentially linked cases in a transmission chain (Salje et al., 2016b). Second, the get.tau family of
functions measure spatial dependence on a larger-scale by estimating the τ-statistic, which describes
the area of elevated prevalence surrounding cases. This family of functions does so by estimating the
relative risk of a case being homologous compared with non-homologous case types. The definition of
case type homology is flexible and can utilize temporal or biological information, such as genotype
and serotype of the pathogen.

The generalized structure of the get.tau family allows for diverse applications of the τ-statistic to
epidemiological data. Previous studies have used the τ-statistic to quantify spatial and/or temporal
dependence of transmission for Dengue, Cholera, HIV, and Measles disease systems (see Table 2 for

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 323

Figure 8: A null hypothesis test for the τ-statistic calculated using the get.tau.typed.permute func-
tion. The point estimate for τ̂ is shown by the black line and the 95% confidence bounds of permuted τ̂
values are indicated by the dashed lines. The theoretical value of no relative difference in disease risk
is shown by the dashed red line. The plot indicates that the point estimates for τ̂ are not statistically
significant in this example because they are within the bounds of the null distribution.

detailed descriptions). These studies illustrate that, regardless of the system under study, analyses are
enhanced when bootstrapping, permutation tests, and/or assessment of observation error is employed
to understand the distribution of error and statistical significance for estimates of the τ-statistic.

The IDSpatialStats package is undergoing continued development. Future directions include
expanding the implementation of the τ-statistic to facilitate estimation of spatio-temporal dependence
by incorporating a temporal interval into the spatial search window. This technique was used by Salje
et al. (2012) in the form of the φ-statistic to estimate φ̂(d1, d2, t1, t2). Additional developments include a
theoretical framework for the τ-statistic that incorporates uncertainty due to pathogen generation time,
and to define case type homology more continuously using genetic distance matrices. We hope these
developments will enable users to address more complex questions and incorporate more sources of
uncertainty into estimates of spatial dependence. Check Github at https://github.com/HopkinsIDD/
IDSpatialStats for latest development release.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://github.com/HopkinsIDD/IDSpatialStats
https://github.com/HopkinsIDD/IDSpatialStats

CONTRIBUTED RESEARCH ARTICLES 324

Table 2: Descriptions of how previous studies have used the τ-statistic to quantify spatial dependence
for infectious diseases. Listed in chronological order.

Description Citation

Spatial and temporal dependence of homotypic and heterotypic Dengue Salje et al. (2012)
virus serotypes over a 5 year period in Bangkok, Thailand

Clustering of HIV prevalence and incidence around HIV-seropositive Grabowski et al. (2014)
individuals using cohort data from rural Rakai District, Uganda

Overview of the τ-statistic, its performance given observation error, Lessler et al. (2016)
and illustrations using Dengue, HIV, and Measles

Spatial dependence of seroconverted individuals in the 2012–2013 Salje et al. (2016a)
Chikungunya outbreak in the Phillipines

Comparison of spatial dependence in endemic transmission of Dengue Quoc et al. (2016)
virus serotypes in Bangkok and Ho Chi Min City, Thailand

Risk of Cholera transmission within spatial and temporal zones after case Azman et al. (2018)
presentation during urban epidemics in Chad and D.R. Congo

Summary statistic to fit micro-simulations of Cholera interventions Finger et al. (2018)
to epidemic data using Approximate Bayesian Computation

Temporal clustering of subclinical infections and homologous serotypes Salje et al. (2018)
within schools using Dengue cohort data in Thailand

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 325

Bibliography

A. S. Azman, F. J. Luquero, H. Salje, N. N. Mbaïbardoum, N. Adalbert, M. Ali, E. Bertuzzo, F. Finger,
B. Toure, L. A. Massing, R. Ramazani, B. Saga, M. Allan, D. Olson, J. Leglise, K. Porten, and J. Lessler.
Micro-hotspots of risk in urban cholera epidemics. 218(7):1164–1168, 2018. ISSN 0022-1899. doi:
10.1093/infdis/jiy283. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107744/. [p324]

A. Baddeley, P. J. Diggle, A. Hardegen, T. Lawrence, R. K. Milne, and G. Nair. On tests of spatial
pattern based on simulation envelopes. Ecological Monographs, 84(3):477–489, 2014. ISSN 0012-9615.
doi: 10.1890/13-2042.1. URL http://doi.wiley.com/10.1890/13-2042.1. [p321]

A. Baddeley, E. Rubak, and R. Turner. Spatial Point Patterns: Methodology and Applications with R. CRC
Press, 2016. ISBN 978-1-4822-1021-7. [p308, 309, 316, 317]

R. Bivand and G. Piras. Comparing implementations of estimation methods for spatial econometrics.
Journal of Statistical Software, 63(18):1–36, 2015. URL https://www.jstatsoft.org/v63/i18/. [p308,
309]

M. Corporation and S. Weston. doParallel: Foreach Parallel Adaptor for the ’parallel’ Package, 2018. URL
https://CRAN.R-project.org/package=doParallel. R package version 1.0.14. [p309]

T. M. Davies, M. L. Hazelton, and J. C. Marshall. sparr: Analyzing spatial relative risk using fixed
and adaptive kernel density estimation in r. 39(1), 2011. ISSN 1548-7660. doi: 10.18637/jss.v039.i01.
URL http://www.jstatsoft.org/v39/i01/. [p309, 314, 317]

P. Diggle, P. Zheng, and P. Durr. Nonparametric estimation of spatial segregation in a multivariate
point process: bovine tuberculosis in Cornwall, UK. Journal of the Royal Statistical Society: Series C
(Applied Statistics), 54(3):645–658, 2005. ISSN 1467-9876. doi: 10.1111/j.1467-9876.2005.05373.x. URL
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9876.2005.05373.x. [p317]

B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. CRC Press, 1994. ISBN 9780412042317.
[p320]

F. Finger, E. Bertuzzo, F. J. Luquero, N. Naibei, B. Touré, M. Allan, K. Porten, J. Lessler, A. Ri-
naldo, and A. S. Azman. The potential impact of case-area targeted interventions in re-
sponse to cholera outbreaks: A modeling study. 15(2):e1002509, 2018. ISSN 1549-1676. doi:
10.1371/journal.pmed.1002509. URL https://journals.plos.org/plosmedicine/article?id=10.
1371/journal.pmed.1002509. [p324]

R. C. Geary. The contiguity ratio and statistical mapping. 5(3):115–146, 1954. ISSN 1466-9404. doi:
10.2307/2986645. URL http://www.jstor.org/stable/2986645. [p308]

P. I. Good. Permutation, Parametric, and Bootstrap Tests of Hypotheses. Springer New York, 2010. ISBN
9781441919076. [p321]

M. K. Grabowski, J. Lessler, A. D. Redd, J. Kagaayi, O. Laeyendecker, A. Ndyanabo, M. I. Nelson,
D. A. T. Cummings, J. B. Bwanika, A. C. Mueller, S. J. Reynolds, S. Munshaw, S. C. Ray, T. Lutalo,
J. Manucci, A. A. R. Tobian, L. W. Chang, C. Beyrer, J. M. Jennings, F. Nalugoda, D. Serwadda,
M. J. Wawer, T. C. Quinn, R. H. Gray, and t. R. H. S. Program. The role of viral introductions in
sustaining community-based HIV epidemics in rural uganda: Evidence from spatial clustering,
phylogenetics, and egocentric transmission models. 11(3):e1001610, 2014. ISSN 1549-1676. doi:
10.1371/journal.pmed.1001610. URL https://journals.plos.org/plosmedicine/article?id=10.
1371/journal.pmed.1001610. [p324]

V. Gómez-Rubio, J. Ferrándiz-Ferragud, and A. Lopez-Quílez. Detecting clusters of disease with r.
Journal of Geographical Systems, 7(2):189–206, 2005. [p309]

D. T. Haydon, M. Chase–Topping, D. J. Shaw, L. Matthews, J. K. Friar, J. Wilesmith, and M. E. J.
Woolhouse. The construction and analysis of epidemic trees with reference to the 2001 UK
foot–and–mouth outbreak. 270(1511):121–127, 2003. ISSN 0962-8452. doi: 10.1098/rspb.2002.2191.
[p314]

J. Lessler, H. Salje, M. K. Grabowski, and D. A. T. Cummings. Measuring Spatial Dependence
for Infectious Disease Epidemiology. PLoS ONE, 11(5):e0155249, 2016. ISSN 1932-6203. doi:
10.1371/journal.pone.0155249. [p309, 315, 324]

Microsoft and S. Weston. foreach: Provides Foreach Looping Construct for R, 2017. URL https://CRAN.R-
project.org/package=foreach. R package version 1.4.4. [p309]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107744/
http://doi.wiley.com/10.1890/13-2042.1
https://www.jstatsoft.org/v63/i18/
https://CRAN.R-project.org/package=doParallel
http://www.jstatsoft.org/v39/i01/
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9876.2005.05373.x
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002509
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002509
http://www.jstor.org/stable/2986645
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001610
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001610
https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=foreach

CONTRIBUTED RESEARCH ARTICLES 326

P. a. P. Moran. Notes on continuous stochastic phenomena. 37(1):17–23, 1950. ISSN 0006-3444. [p308]

T. Obadia, R. Haneef, and P.-Y. Boëlle. The r0 package: a toolbox to estimate reproduction numbers
for epidemic outbreaks. 12:147, 2012. ISSN 1472-6947. doi: 10.1186/1472-6947-12-147. URL
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582628/. [p311]

S. Openshaw and P. Taylor. A million or so correlation coefficients: Three experiments on the modifiable
areal unit problem. Statistical Application in the Spatial Sciences, 1272144, 1979. [p308]

R. Pélissier and F. Goreaud. ads package for R: A fast unbiased implementation of the k-function family
for studying spatial point patterns in irregular-shaped sampling windows. Journal of Statistical
Software, 63(6):1–18, 2015. URL http://www.jstatsoft.org/v63/i06/. [p308, 309]

C. H. Quoc, S. Henrik, R.-B. Isabel, Y. In-Kyu, N. V. V. Chau, N. T. Hung, H. M. Tuan, P. T. Lan,
B. Willis, A. Nisalak, S. Kalayanarooj, D. A. T. Cummings, and C. P. Simmons. Synchrony of
dengue incidence in ho chi minh city and bangkok. 10(12):e0005188, 2016. ISSN 1935-2735. doi:
10.1371/journal.pntd.0005188. URL http://journals.plos.org/plosntds/article?id=10.1371/
journal.pntd.0005188. [p324]

T. Rajala. SGCS: Spatial Graph Based Clustering Summaries for Spatial Point Patterns, 2017. URL https:
//CRAN.R-project.org/package=SGCS. R package version 2.6. [p309]

I. W. Renner and D. I. Warton. Equivalence of maxent and poisson point process models for species
distribution modeling in ecology. Biometrics, 69(6):274–281, 2013. [p308, 309]

B. D. Ripley. Tests of ‘Randomness’ for Spatial Point Patterns. Journal of the Royal Statistical Society.
Series B (Methodological), 41(3):368–374, 1979. ISSN 0035-9246. URL https://www.jstor.org/stable/
2985065. [p321]

W. S. Robinson. Ecological Correlations and the Behavior of Individuals. International Journal of
Epidemiology, 38(2):337–341, 2009. ISSN 0300-5771, 1464-3685. doi: 10.1093/ije/dyn357. URL
http://ije.oxfordjournals.org/content/38/2/337. [p308]

B. Rowlingson and P. Diggle. splancs: Spatial and Space-Time Point Pattern Analysis, 2017. URL
https://CRAN.R-project.org/package=splancs. R package version 2.01-40. [p308, 309]

H. Salje, J. Lessler, T. P. Endy, F. C. Curriero, R. V. Gibbons, A. Nisalak, S. Nimmannitya, S. Kalayanarooj,
R. G. Jarman, S. J. Thomas, D. S. Burke, and D. A. T. Cummings. Revealing the microscale spatial
signature of dengue transmission and immunity in an urban population. 109(24):9535–9538, 2012.
ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1120621109. URL http://www.pnas.org/content/
109/24/9535. [p323, 324]

H. Salje, S. Cauchemez, M. T. Alera, I. Rodriguez-Barraquer, B. Thaisomboonsuk, A. Srikiatkhachorn,
C. B. Lago, D. Villa, C. Klungthong, I. A. Tac-An, S. Fernandez, J. M. Velasco, V. G. Roque, A. Nisalak,
L. R. Macareo, J. W. Levy, D. Cummings, and I.-K. Yoon. Reconstruction of 60 years of chikungunya
epidemiology in the philippines demonstrates episodic and focal transmission. 213(4):604–610,
2016a. ISSN 0022-1899. doi: 10.1093/infdis/jiv470. URL https://academic.oup.com/jid/article/
213/4/604/2459450/Reconstruction-of-60-Years-of-Chikungunya. [p324]

H. Salje, D. A. T. Cummings, and J. Lessler. Estimating infectious disease transmission distances using
the overall distribution of cases. Epidemics, 17:10–18, 2016b. ISSN 1755-4365. doi: 10.1016/j.epidem.
2016.10.001. [p309, 310, 312, 315, 322]

H. Salje, D. A. T. Cummings, I. Rodriguez-Barraquer, L. C. Katzelnick, J. Lessler, C. Klungthong,
B. Thaisomboonsuk, A. Nisalak, A. Weg, D. Ellison, L. Macareo, I.-K. Yoon, R. Jarman, S. Thomas,
A. L. Rothman, T. Endy, and S. Cauchemez. Reconstruction of antibody dynamics and infection
histories to evaluate dengue risk. 557(7707):719–723, 2018. ISSN 1476-4687. doi: 10.1038/s41586-
018-0157-4. URL https://www.nature.com/articles/s41586-018-0157-4. [p324]

B. M. Taylor, T. M. Davies, B. S. Rowlingson, and P. J. Diggle. lgcp: An R package for inference with
spatial and spatio-temporal log-Gaussian Cox processes. Journal of Statistical Software, 52(4):1–40,
2013. URL http://www.jstatsoft.org/v52/i04/. [p308, 309]

B. M. Taylor, T. M. Davies, B. S. Rowlingson, and P. J. Diggle. Bayesian inference and data augmentation
schemes for spatial, spatiotemporal and multivariate log-Gaussian Cox processes in R. Journal of
Statistical Software, 63(7):1–48, 2015. URL http://www.jstatsoft.org/v63/i07/. [p308, 309]

J. Wallinga and P. Teunis. Different epidemic curves for severe acute respiratory syndrome reveal
similar impacts of control measures. American Journal of Epidemiology, 160(6):509–516, 2004. doi:
10.1093/aje/kwh255. [p310, 311]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582628/
http://www.jstatsoft.org/v63/i06/
http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0005188
http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0005188
https://CRAN.R-project.org/package=SGCS
https://CRAN.R-project.org/package=SGCS
https://www.jstor.org/stable/2985065
https://www.jstor.org/stable/2985065
http://ije.oxfordjournals.org/content/38/2/337
https://CRAN.R-project.org/package=splancs
http://www.pnas.org/content/109/24/9535
http://www.pnas.org/content/109/24/9535
https://academic.oup.com/jid/article/213/4/604/2459450/Reconstruction-of-60-Years-of-Chikungunya
https://academic.oup.com/jid/article/213/4/604/2459450/Reconstruction-of-60-Years-of-Chikungunya
https://www.nature.com/articles/s41586-018-0157-4
http://www.jstatsoft.org/v52/i04/
http://www.jstatsoft.org/v63/i07/

CONTRIBUTED RESEARCH ARTICLES 327

John R Giles
Department of Epidemiology
Johns Hopkins Bloomberg School of Public Health
615 N Wolfe St
Baltimore, MD, USA 21205
ORCiD: 0000-0002-0954-4093
giles@jhu.edu

Henrik Salje
Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur
25-28 Rue du Dr Roux, Paris, France 75015
henrik.salje@pasteur.fr

Justin Lessler
Department of Epidemiology
Johns Hopkins Bloomberg School of Public Health
615 N Wolfe St
Baltimore, MD, USA 21205
justin@jhu.edu

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

mailto:giles@jhu.edu
mailto:henrik.salje@pasteur.fr
mailto:justin@jhu.edu

CONTRIBUTED RESEARCH ARTICLES 328

Comparing namedCapture with other R
packages for regular expressions
by Toby Dylan Hocking

Abstract Regular expressions are powerful tools for manipulating non-tabular textual data. For many
tasks (visualization, machine learning, etc), tables of numbers must be extracted from such data before
processing by other R functions. We present the R package namedCapture, which facilitates such
tasks by providing a new user-friendly syntax for defining regular expressions in R code. We begin by
describing the history of regular expressions and their usage in R. We then describe the new features of
the namedCapture package, and provide detailed comparisons with related R packages (rex, stringr,
stringi, tidyr, rematch2, re2r).

Introduction

Today regular expression libraries are powerful and widespread tools for text processing. A regular
expression pattern is typically a character string that defines a set of possible matches in some other
subject strings. For example the pattern o+ matches one or more lower-case o characters; it would
match the last two characters in the subject foo, and it would not match in the subject bar.

The focus of this article is regular expressions with capture groups, which are used to extract subject
substrings. Capture groups are typically defined using parentheses. For example, the pattern [0-9]+
matches one or more digits (e.g. 123 but not abc), and the pattern [0-9]+-[0-9]+ matches a range of
integers (e.g. 9-5). The pattern ([0-9]+)-([0-9]+) will perform matching identically, but provides
access by number/index to the strings matched by the capturing sub-patterns enclosed in parentheses
(group 1 matches 9, group 2 matches 5). The pattern (?P<start>[0-9]+)-(?P<end>[0-9]+) further
provides access by name to the captured sub-strings (start group matches 9, end group matches
5). In R named capture groups are useful in order to create more readable regular expressions
(names document the purpose of each sub-pattern), and to create more readable R code (it is easier to
understand the intent of named references than numbered references).

In this article our original contribution is the R package namedCapture which provides several
new features for named capture regular expressions. The main new ideas are (1) group-specific type
conversion functions, (2) a user-friendly syntax for defining group names with R argument names,
and (3) named output based on subject names and the name capture group.

The organization of this article is as follows. The rest of this introduction provides a brief history
of regular expressions and their usage in R, then gives an overview of current R packages for regular
expressions. The second section describes the proposed functions of the namedCapture package. The
third section provides detailed comparisons with other R packages, in terms of syntax and computation
times. The article concludes with a summary and discussion.

Origin of regular expressions and named capture groups

Regular expressions were first proposed in a theoretical paper by Kleene (1956). Among the first uses
of a regular expression in computers was for searching in a text editor (Thompson, 1968) and lexical
processing of source code (Johnson et al., 1968).

A capture group in a regular expression is used to extract text that matches a sub-pattern. In 1974,
Thompson wrote the grep command line program, which was among the first to support capture
groups (Friedl, 2002). In that program, backslash-escaped parentheses \(\) were used to open and
close each capture group, which could then be referenced by number (\1 for the first capture group,
etc).

The idea for named capture groups seems to have originated in 1994 with the contributions of
Tracy Tims to Python 1.0.0, which used the \(<labelname>...\) syntax (Python developers, 1997a).
Python 1.5 introduced the (?P<labelname>...) syntax for name capture groups (Python developers,
1997b); the P was used to indicate that the syntax was a Python extension to the standard.

Perl-Compatible Regular Expressions (PCRE) is a C library that is now widely used in free/open-
source software tools such as Python and R. PCRE introduced support for named capture in 2003,
based on the Python syntax (Hazel, 2003). Starting in 2006, it supported the (?<labelname>...) syntax
without a P, and the (?'labelname'...) syntax with single quotes, to be consistent with Perl and .NET
(Hazel, 2003).

In the R NEWS files, the first mention of regular expression support was in 1997 with R-0.60,

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=stringi
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=rematch2
https://CRAN.R-project.org/package=re2r
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=namedCapture

CONTRIBUTED RESEARCH ARTICLES 329

C library RE2 PCRE ICU TRE
Output group names yes yes no no
(?<group>pattern) no yes yes no

(?P<group>pattern) yes yes no no
Worst case linear time yes no no no

Backreferences no yes yes yes
Atomic groups / possessive quantifiers no yes yes no

Unicode properties no no yes no
Lookaround no yes yes no

Recursion no yes no no

Table 1: Features of C libraries for regular expressions usable in R.

“Regular expression matching is now done with system versions of the regexp library” (R Core Team,
1997). Starting with R-0.99.0, “R now compiles in the GNU version of regex” (R Core Team, 1997).
PCRE was first included in R version 1.6.0 in 2002 (R Core Team, 2002). R-2.10 in 2009 was the first
version to deprecate basic regular expressions, extended=FALSE, which are no longer supported (R
Core Team, 2009). TRE is another C library for regular expressions that was included in R starting in
R-2.10 (Laurikari, 2019). Although TRE supports capture groups, it does not allow capture groups to
be named. The base R functions regexpr and gregexpr can be given the perl=TRUE argument in order
to use the PCRE library, or perl=FALSE to use the TRE C library. Recently created packages (stringi,
re2r) have provided R interfaces to the ICU and RE2 libraries.

Each library has different characteristics in terms of supported regex features and time complexity
(Table 1). The most important feature for the purposes of this paper is “Output group names” which
means the C library supports specifying capture group names in the regular expression pattern via
(?<group>pattern) or (?P<group>pattern), and then extracting those names for use in R (typically
as column names in the resulting match matrix). “Worst case linear time” means that the match time
is linear in the length of the input string, which is only guaranteed by the RE2 library. “Backreferences”
can be used in patterns such as (.)\1, which means to match any character that appears twice in a row.
“Atomic grouping” or “possessive quantifiers” means that only the greediest option of all possible
alternatives will be considered; an example is the pattern (?>.+)bar which does not match the subject
foobar (whereas the analog without the atomic group does). “Unicode properties” means support
for regular expressions such as \p{EMOJI_Presentation}, which only work with ICU. “Lookaround”
means support for zero-length assertions such as foo(?=bar) which matches foo only when it is
followed by bar (but bar is not included in the match). “Recursion” is useful for matching balanced
parentheses, and is only supported in PCRE; a simple recursive pattern is a(?R)?z which matches one
or more a followed by exactly the same number of z (e.g. aaazzz).

The original versions of regexpr and gregexpr only returned the position/length of the text
matched by an entire regex, not the capture groups (even though this is supported in TRE/PCRE). The
C code that uses PCRE to extract each named capture group was accepted into R starting with version
2.14 (Hocking, 2011a). A lightning talk at useR 2011 showcased the new functionality (Hocking,
2011b).

Related R packages for capturing regular expressions

Since the introduction of named capture support in base R version 2.14, several packages have been
developed which use this functionality, and other packages have been developed which use other C
libraries (Table 2). Each package supports different options for subject/pattern input, extracted text
outputs, named capture groups, and type conversion (Table 3). In this section we give an overview of
the features of each package; in the section “Comparisons with other R packages” we show detailed
comparisons including sample R code and outputs.

The utils package now includes the strcapture function, which uses the base regexec function
(also introduced in R-2.14) to extract the first match as a data.frame with one row per subject, and
one column per capture group. It allows capture group names/types to be specified in a prototype
data.frame argument, but does not allow capture group names in the regex pattern. PCRE is used
with perl=TRUE and TRE is used with perl=FALSE.

The rematch2 package provides the re_match function which extracts the first match using the base
regexpr function (Csárdi, 2017). It also provides bind_re_match for matching data.frame columns,
and re_match_all which extracts all matches using the base gregexpr function. All functions output
a data.frame with one row for each subject (for all matches a list column is used). PCRE is used with
perl=TRUE and TRE is used with perl=FALSE. Although TRE supports capture groups (and can be

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=stringi
https://CRAN.R-project.org/package=re2r
https://CRAN.R-project.org/package=rematch2

CONTRIBUTED RESEARCH ARTICLES 330

Package First match All matches C library
namedCapture *_match_variable str_match_all_variable PCRE/RE2
base regexpr gregexpr PCRE/TRE
utils strcapture NA PCRE/TRE
rematch2 re_match, bind_re_match re_match_all PCRE/TRE
rex re_matches(global=FALSE) re_matches(global=TRUE) PCRE
stringr str_match str_match_all ICU
stringi stri_match stri_match_all ICU
tidyr extract NA ICU
re2r re2_match re2_match_all RE2

Table 2: R packages that provide functions for extracting first/all regex matches, and C library used.

used via the base R regexec function), capture groups are not supported in rematch2 with perl=FALSE
(because it uses the base regexpr/gregexpr functions which do not return group info for TRE). Named
capture groups are supported in rematch2 with perl=TRUE.

The stringi package provides the stri_match and stri_match_all functions, which have strong
unicode support due to the underlying ICU C library (Gagolewski, 2018). The stringr package provides
the str_match and str_match_all functions, which simply call the analogous functions from stringi.
In ICU regular expressions, named groups are supported for use in backreferences since version 55
(ICU developers, 2015a,b). However, the ICU library does not report group names to R, so groups
must be extracted by number in R. The stri_match function returns a character matrix with one row
for each subject and one column for each capture group. The stri_match_all function returns a list
with one element for each subject; each element is a data frame with one row for each match, and one
column for each capture group.

The re2r package provides the re2_match and re2_match_all functions, which use the RE2 C++ li-
brary (Wenfeng, 2017). The outputs of these functions are consistent with the stringi/stringr packages.
The input regex pattern may be specified as a character string or as a pre-compiled regex object (which
results in faster matching if the regex is used with several calls to matching functions). Like TRE, the
RE2 library guarantees linear time complexity, which is useful to avoid denial-of-service attacks from
malicious patterns (see Section “Comparing computation times of R regex packages”).

The rex package provides the re_matches function which supports named capture groups, and
always uses PCRE (Ushey et al., 2017). By default it returns the first match (using the base regexpr
function), as a data.frame with one row for each subject, and one column for each capture group. If
the global=TRUE argument is given, gregexpr is used to return all matches as a list of data.frames.
A unique feature of the rex package is a set of functions for defining a regular expression in R code,
which is then converted to a standard PCRE regex pattern string (for a detailed comparison with
the proposed syntax of the namedCapture package, see Section “Comparing namedCapture variable
argument syntax with rex”).

The tidyr package provides the extract function which uses the ICU library, so does not support
regex patterns with named capture groups (Wickham and Henry, 2018). The subject is specified via the
first two arguments: (1) a data.frame, and (2) a column name. The pattern is specified via the second
two arguments: (3) a character vector for the capture group names, and (4) the regex pattern string (it
is an error if the number of capture group names does not match the number of un-named capture
groups in the regex pattern). The pattern is used to find the first match in each subject. The return
value is a data.frame with the same number of rows as the input, but without the subject column, and
with an additional column for each capture group.

The namedCapture package

The namedCapture package provides functions for extracting numeric data tables from non-tabular
text data using named capture regular expressions. By default, namedCapture uses the RE2 C
library if the re2r package is available, and PCRE otherwise (via the base regexpr and gregexpr
functions). RE2 is preferred because it is guaranteed to find a match in linear time (see Section “Com-
paring computation times of R regex packages”). However, PCRE supports some regex features
(e.g. backreferences) that RE2 does not. To tell namedCapture to use PCRE rather than RE2,
options(namedCapture.engine="PCRE") can be specified. For patterns that are supported by both
engines, namedCapture functions return the resulting match in the standard output format described
below.

The main design features of the namedCapture package are inspired by the base R system, which

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=rematch2
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=stringi
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=re2r
https://CRAN.R-project.org/package=stringi
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=stringi
https://CRAN.R-project.org/package=re2r
https://CRAN.R-project.org/package=stringi
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=re2r
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=namedCapture

CONTRIBUTED RESEARCH ARTICLES 331

Package/function subject pattern outputs named types
namedCapture chr/df chr/verbose mat/list/df yes any
base chr chr mat/list yes no
utils::strcapture chr chr df no some
rematch2 chr/df chr df yes no
rex chr chr/verbose df/list yes no
stringr chr chr mat/list no no
stringi chr chr mat/list no no
tidyr::extract df chr df no some
re2r chr chr/compiled df/list yes no

Table 3: R packages provide different options for subject/pattern input, extracted text outputs, named
capture groups output to R, and type conversion. Abbreviations: chr=character vector, df=data.frame,
mat=character matrix, verbose=regex defined in R code which is translated to a character string,
compiled=regex string may be compiled and saved to an R object for later use.

First match All matches Arguments
str_match_named str_match_all_named chr subject, chr pattern, functions
str_match_variable str_match_all_variable chr subject, chr/list/function, ...
df_match_variable NA df subject, chr/list/function, ...

Table 4: Functions of the namedCapture package. The first argument of each function specifies the
subject, as either a character vector (for str_*) functions, or a data.frame (for df_match_variable). The
*_named functions require three arguments, and are mostly for internal use; the *_variable functions
take a variable number of arguments and are the recommended functions to use.

provides good support for naming objects, and referring to objects by name. In particular, the
namedCapture package supports

• Standard syntax for specifying capture groups with names in a regular expression string, and
stopping with an informative error if there are un-named capture groups.

• A new/alternative syntax for specifying capture group names via named arguments in R code.

• Output with rownames or list names taken from subject names.

• Output with rownames taken from the name capture group.

• Specifying a type conversion function for each named capture group.

• Saving sub-patterns to R variables, and re-using them multiple times in one or several patterns
in order to avoid repetition.

The main functions provided by the namedCapture package are summarized in Table 4. We begin
by introducing the *_named functions, which take three arguments.

Three argument syntax: str_match_named and str_match_all_named

The most basic functions of the namedCapture package are str_match_named and str_match_all_named,
which accept exactly three arguments:

• subject: a character vector from which we want to extract tabular data.

• pattern: the (character scalar) regular expression with named capture groups used for extraction.

• fun.list: a list with names that correspond to capture groups, and values are functions used to
convert the extracted character data to other (typically numeric) types.

Since introduction of the variable argument syntax (explained later in this section), these functions
are mostly for internal use. Here we give an example of their usage, because it is similar to other R
regex packages which some readers are probably already familiar with. Consider subjects containing
genomic positions:

> chr.pos.subject <- c("chr10:213,054,000-213,055,000", "chrM:111,000",
+ "this will not match", NA, "chr1:110-111 chr2:220-222")

These subjects consist of a chromosome name string, a colon, a start position, and optionally a
dash and and end position. The following pattern is used to extract those data:

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=rematch2
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=stringi
https://CRAN.R-project.org/package=re2r
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=namedCapture

CONTRIBUTED RESEARCH ARTICLES 332

> chr.pos.pattern <- paste0(
+ "(?P<chrom>chr.*?)",
+ ":",
+ "(?P<chromStart>[0-9,]+)",
+ "(?:",
+ "-",
+ "(?P<chromEnd>[0-9,]+)",
+ ")?")

The pattern above is defined using paste0, writing each named capture group on a separate line,
which increases readability of the pattern. Note that an optional non-capturing group begins with (?:
and ends with)?. In the code below, we use the str_match_named function on the previously defined
subject and pattern:

> (match.mat <- namedCapture::str_match_named(
+ chr.pos.subject, chr.pos.pattern))

chrom chromStart chromEnd
[1,] "chr10" "213,054,000" "213,055,000"
[2,] "chrM" "111,000" ""
[3,] NA NA NA
[4,] NA NA NA
[5,] "chr1" "110" "111"

When the third argument is omitted, the return value a character matrix with one row for each
subject and one column for each capture group. Column names are taken from the group names
that were specified in the regular expression pattern. Missing values indicate missing subjects or no
match. The empty string is used for optional groups which are not used in the match (e.g. chromEnd
group/column for second subject). This output format is similar to the output of stringi::stri_match
and stringr::str_match; these other functions also report a column for the entire match, whereas
namedCapture::str_match_named only reports a column for each named capture group.

However we often want to extract numeric data; in this case we want to convert chromStart/End to
integers. You can do that by supplying a named list of conversion functions as the third argument. Each
function should take exactly one argument, a character vector (data in the matched column/group),
and return a vector of the same size. The code below specifies the int.from.digits function for both
chromStart and chromEnd:

> int.from.digits <- function(captured.text)as.integer(gsub("[^0-9]", "", captured.text))
> conversion.list <- list(chromStart=int.from.digits, chromEnd=int.from.digits)
> match.df <- namedCapture::str_match_named(
+ chr.pos.subject, chr.pos.pattern, conversion.list)
> str(match.df)

'data.frame': 5 obs. of 3 variables:
$ chrom : chr "chr10" "chrM" NA NA ...
$ chromStart: int 213054000 111000 NA NA 110
$ chromEnd : int 213055000 NA NA NA 111

Note that a data.frame is returned when the third argument is specified, in order to handle
non-character data types returned by the conversion functions.

In the examples above the last subject has two possible matches, but only the first is returned
by str_match_named. Use str_match_all_named to get all matches in each subject (not just the first
match).

> namedCapture::str_match_all_named(
+ chr.pos.subject, chr.pos.pattern, conversion.list)

[[1]]
chrom chromStart chromEnd

1 chr10 213054000 213055000

[[2]]
chrom chromStart chromEnd

1 chrM 111000 NA

[[3]]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 333

data frame with 0 columns and 0 rows

[[4]]
data frame with 0 columns and 0 rows

[[5]]
chrom chromStart chromEnd

1 chr1 110 111
2 chr2 220 222

As shown above, the result is a list with one element for each subject. Each list element is a
data.frame with one row for each match.

Named output for named subjects

If the subject is named, its names will be used to name the output (rownames or list names).

> named.subject <- c(ten="chr10:213,054,000-213,055,000",
+ M="chrM:111,000", two="chr1:110-111 chr2:220-222")
> namedCapture::str_match_named(
+ named.subject, chr.pos.pattern, conversion.list)

chrom chromStart chromEnd
ten chr10 213054000 213055000
M chrM 111000 NA
two chr1 110 111

> namedCapture::str_match_all_named(
+ named.subject, chr.pos.pattern, conversion.list)

$ten
chrom chromStart chromEnd

1 chr10 213054000 213055000

$M
chrom chromStart chromEnd

1 chrM 111000 NA

$two
chrom chromStart chromEnd

1 chr1 110 111
2 chr2 220 222

This feature makes it easy to select particular subjects/matches by name.

The name group specifies row names of output

If the pattern specifies the name group, then it will be used for the rownames of the output, and it will
not be included as a column. However if the subject has names, and the name group is specified, then
to avoid losing information the subject names are used to name the output (and the name column is
included in the output).

> name.pattern <- paste0(
+ "(?P<name>chr.*?)",
+ ":",
+ "(?P<chromStart>[0-9,]+)",
+ "(?:",
+ "-",
+ "(?P<chromEnd>[0-9,]+)",
+ ")?")
> namedCapture::str_match_named(
+ named.subject, name.pattern, conversion.list)

name chromStart chromEnd
ten chr10 213054000 213055000

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 334

M chrM 111000 NA
two chr1 110 111

> namedCapture::str_match_all_named(
+ named.subject, name.pattern, conversion.list)

$ten
chromStart chromEnd

chr10 213054000 213055000

$M
chromStart chromEnd

chrM 111000 NA

$two
chromStart chromEnd

chr1 110 111
chr2 220 222

Readable and efficient variable argument syntax used in str_match_variable

In this section we introduce the variable argument syntax used in the *_variable functions, which
is the recommended way to to use namedCapture. This new syntax is both readable and efficient,
because it is motivated by the desire to avoid repetitive/boilerplate code. In the previous sections
we defined the pattern using the paste0 boilerplate, which is used to break the pattern over several
lines for clarity. We begin by introducing str_match_variable, which extracts the first match from
each subject. Using the variable argument syntax, we can omit paste0, and simply supply the pattern
strings to str_match_variable directly,

> namedCapture::str_match_variable(
+ named.subject,
+ "(?P<chrom>chr.*?)",
+ ":",
+ "(?P<chromStart>[0-9,]+)",
+ "(?:",
+ "-",
+ "(?P<chromEnd>[0-9,]+)",
+ ")?")

chrom chromStart chromEnd
ten "chr10" "213,054,000" "213,055,000"
M "chrM" "111,000" ""
two "chr1" "110" "111"

The variable argument syntax allows further simplification by removing the named capture
groups from the strings, and adding names to the corresponding arguments. For name1="pattern1",
namedCapture internally generates/uses the regex (?P<name1>pattern1).

> namedCapture::str_match_variable(
+ named.subject,
+ chrom="chr.*?",
+ ":",
+ chromStart="[0-9,]+",
+ "(?:",
+ "-",
+ chromEnd="[0-9,]+",
+ ")?")

chrom chromStart chromEnd
ten "chr10" "213,054,000" "213,055,000"
M "chrM" "111,000" ""
two "chr1" "110" "111"

We can also provide a type conversion function on the same line as a named group:

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=namedCapture

CONTRIBUTED RESEARCH ARTICLES 335

> namedCapture::str_match_variable(
+ named.subject,
+ chrom="chr.*?",
+ ":",
+ chromStart="[0-9,]+", int.from.digits,
+ "(?:",
+ "-",
+ chromEnd="[0-9,]+", int.from.digits,
+ ")?")

chrom chromStart chromEnd
ten chr10 213054000 213055000
M chrM 111000 NA
two chr1 110 111

Note the repetition in the chromStart/End lines — the same pattern and type conversion function
is used for each group. This repetition can be avoided by creating and using a sub-pattern list variable,

> int.pattern <- list("[0-9,]+", int.from.digits)
> namedCapture::str_match_variable(
+ named.subject,
+ chrom="chr.*?",
+ ":",
+ chromStart=int.pattern,
+ "(?:",
+ "-",
+ chromEnd=int.pattern,
+ ")?")

chrom chromStart chromEnd
ten chr10 213054000 213055000
M chrM 111000 NA
two chr1 110 111

Finally, the non-capturing group can be replaced by an un-named list:

> namedCapture::str_match_variable(
+ named.subject,
+ chrom="chr.*?",
+ ":",
+ chromStart=int.pattern,
+ list(
+ "-",
+ chromEnd=int.pattern
+), "?")

chrom chromStart chromEnd
ten chr10 213054000 213055000
M chrM 111000 NA
two chr1 110 111

In summary, the str_match_variable function takes a variable number of arguments, and allows
for a shorter, less repetitive, and thus more user-friendly syntax:

• The first argument is the subject character vector.

• The other arguments specify the pattern, via character strings, functions, and/or lists.

• If a pattern (character/list) is named, we use the argument name in R for the capture group
name in the regex.

• Each function is used to convert the text extracted by the previous named pattern argument.
(type conversion can only be used with named R arguments, NOT with explicitly specified
named groups in regex strings)

• R sub-pattern variables may be used to avoid repetition in the definition of the pattern and type
conversion functions.

• Each list generates a group in the regex (named list = named capture group, un-named list =
non-capturing group).

• All patterns are pasted together in the order that they appear in the argument list.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 336

Extract all matches from a multi-line text file via str_match_all_variable

The variable argument syntax can also be used with str_match_all_variable, which is for the
common case of extracting each match from a multi-line text file. In this section we demonstrate how
to use str_match_all_variable to extract data.frames from a non-tabular text file.

> trackDb.txt.gz <- system.file(
+ "extdata", "trackDb.txt.gz", package="namedCapture")
> trackDb.lines <- readLines(trackDb.txt.gz)

Some representative lines from that file are shown below.

> show.width <- 55
> substr(trackDb.lines[78:107], 1, show.width)

[1] "track peaks_summary"
[2] "type bigBed 5"
[3] "shortLabel _model_peaks_summary"
[4] "longLabel Regions with a peak in at least one sample"
[5] "visibility pack"
[6] "itemRgb off"
[7] "spectrum on"
[8] "bigDataUrl http://hubs.hpc.mcgill.ca/~thocking/PeakSegF"
[9] ""
[10] ""
[11] " track bcell_McGill0091"
[12] " parent bcell"
[13] " container multiWig"
[14] " type bigWig"
[15] " shortLabel bcell_McGill0091"
[16] " longLabel bcell | McGill0091"
[17] " graphType points"
[18] " aggregate transparentOverlay"
[19] " showSubtrackColorOnUi on"
[20] " maxHeightPixels 25:12:8"
[21] " visibility full"
[22] " autoScale on"
[23] ""
[24] " track bcell_McGill0091Coverage"
[25] " bigDataUrl http://hubs.hpc.mcgill.ca/~thocking/PeakSe"
[26] " shortLabel bcell_McGill0091Coverage"
[27] " longLabel bcell | McGill0091 | Coverage"
[28] " parent bcell_McGill0091"
[29] " type bigWig"
[30] " color 141,211,199"

Each block of text begins with track and includes several lines of data before the block ends with
two consecutive newlines. That pattern is coded below:

> fields.mat <- namedCapture::str_match_all_variable(
+ trackDb.lines,
+ "track ",
+ name="\\S+",
+ fields="(?:\n[^\n]+)*",
+ "\n")
> head(substr(fields.mat, 1, show.width))

fields
bcell "\nsuperTrack on show\nshortLabel bcell\nlongLabel bcell Ch"
kidneyCancer "\nsuperTrack on show\nshortLabel kidneyCancer\nlongLabel k"
kidney "\nsuperTrack on show\nshortLabel kidney\nlongLabel kidney "
leukemiaCD19CD10BCells "\nsuperTrack on show\nshortLabel leukemiaCD19CD10BCells\nl"
monocyte "\nsuperTrack on show\nshortLabel monocyte\nlongLabel monoc"
skeletalMuscleCtrl "\nsuperTrack on show\nshortLabel skeletalMuscleCtrl\nlongL"

Note that this function assumes that its subject is a character vector with one element for each line
in a file. The elements are pasted together using newline as a separator, and the regex is used to find

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 337

all matches in the resulting multi-line string. The code above creates a data frame with one row for
each track block, with rownames given by the track line (because of the name capture group), and one
fields column which is a string with the rest of the data in that block.

Each block has a variable number of lines/fields. Each line starts with a field name, followed by a
space, followed by the field value. That regex is coded below:

> fields.list <- namedCapture::str_match_all_named(
+ fields.mat[, "fields"], paste0(
+ "\\s+",
+ "(?P<name>.*?)",
+ " ",
+ "(?P<value>[^\n]+)"))
> substr(fields.list$bcell_McGill0091Coverage, 1, show.width)

value
bigDataUrl "http://hubs.hpc.mcgill.ca/~thocking/PeakSegFPOP-/sample"
shortLabel "bcell_McGill0091Coverage"
longLabel "bcell | McGill0091 | Coverage"
parent "bcell_McGill0091"
type "bigWig"
color "141,211,199"

The result is a list of data frames. There is a list element for each block, named by track. Each list
element is a data frame with one row per field defined in that block (rownames are field names). The
names/rownames make it easy to write R code that selects individual elements by name.

In the example above we extracted all fields from all tracks (using two regexes, one for the track,
one for the field). In the example below we use a single regex to extract the name of each track,
and split components into separate columns. It also demonstrates how to use nested named capture
groups, via a named list which contains other named patterns.

> match.df <- namedCapture::str_match_all_variable(
+ trackDb.lines,
+ "track ",
+ name=list(
+ cellType=".*?",
+ "_",
+ sampleName=list(
+ "McGill",
+ sampleID=int.pattern),
+ dataType="Coverage|Peaks",
+ "|",
+ "[^\n]+"))
> match.df["bcell_McGill0091Coverage",]

cellType sampleName sampleID dataType
bcell_McGill0091Coverage bcell McGill0091 91 Coverage

Exercise for the reader: modify the above in order to capture the bigDataUrl field, and three
additional columns (red, green, blue) from the color field.

df_match_variable extracts new columns from character columns in a data.frame

We also provide namedCapture::df_match_variable which extracts text from several columns of a
data.frame, using a different named capture regular expression for each column.

• It requires a data.frame as the first argument.

• It takes a variable number of other arguments, all of which must be named. For each other
argument we call str_match_variable on one column of the input data.frame.

• Each argument name specifies a column of the data.frame which will be used as the subject in
str_match_variable.

• Each argument value specifies a pattern, in list/character/function variable argument syntax.

• The return value is a data.frame with the same number of rows as the input, but with an
additional column for each named capture group. New columns are named using the convention
subjectColumnName.groupName.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 338

This function can greatly simplify the code required to create numeric data columns from character
data columns. For example consider the following data which was output from the SLURM sacct
command line program.

> (sacct.df <- data.frame(
+ Elapsed=c("07:04:42", "07:04:42", "07:04:49", "00:00:00", "00:00:00"),
+ JobID=c("13937810_25", "13937810_25.batch", "13937810_25.extern",
+ "14022192_[1-3]", "14022204_[4]"), stringsAsFactors=FALSE))

Elapsed JobID
1 07:04:42 13937810_25
2 07:04:42 13937810_25.batch
3 07:04:49 13937810_25.extern
4 00:00:00 14022192_[1-3]
5 00:00:00 14022204_[4]

Say we want to filter by the total Elapsed time (which is reported as hours:minutes:seconds), and
base job id (which is the number before the underscore in the JobID column). We begin by defining a
pattern that matches a range of integer task IDs in square brackets, and applying that pattern to the
JobID column:

> range.pattern <- list(
+ "[[]",
+ task1=int.pattern,
+ list(
+ "-",
+ taskN=int.pattern
+), "?",
+ "[]]")
> namedCapture::df_match_variable(sacct.df, JobID=range.pattern)

Elapsed JobID JobID.task1 JobID.taskN
1 07:04:42 13937810_25 NA NA
2 07:04:42 13937810_25.batch NA NA
3 07:04:49 13937810_25.extern NA NA
4 00:00:00 14022192_[1-3] 1 3
5 00:00:00 14022204_[4] 4 NA

The result shown above is another data frame with an additional column for each named capture
group. Next, we define another pattern that matches either one task ID or the previously defined
range pattern:

> task.pattern <- list(
+ "_", list(
+ task=int.pattern,
+ "|",#either one task(above) or range(below)
+ range.pattern))
> namedCapture::df_match_variable(sacct.df, JobID=task.pattern)

Elapsed JobID JobID.task JobID.task1 JobID.taskN
1 07:04:42 13937810_25 25 NA NA
2 07:04:42 13937810_25.batch 25 NA NA
3 07:04:49 13937810_25.extern 25 NA NA
4 00:00:00 14022192_[1-3] NA 1 3
5 00:00:00 14022204_[4] NA 4 NA

Below, we use the previously defined patterns to match the complete JobID column, along with
the Elapsed column:

> future::plan("multiprocess")
> namedCapture::df_match_variable(
+ sacct.df,
+ JobID=list(
+ job=int.pattern,
+ task.pattern,
+ list(

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 339

+ "[.]",
+ type=".*"
+), "?"),
+ Elapsed=list(
+ hours=int.pattern,
+ ":",
+ minutes=int.pattern,
+ ":",
+ seconds=int.pattern))

Elapsed JobID JobID.job JobID.task JobID.task1 JobID.taskN
1 07:04:42 13937810_25 13937810 25 NA NA
2 07:04:42 13937810_25.batch 13937810 25 NA NA
3 07:04:49 13937810_25.extern 13937810 25 NA NA
4 00:00:00 14022192_[1-3] 14022192 NA 1 3
5 00:00:00 14022204_[4] 14022204 NA 4 NA
JobID.type Elapsed.hours Elapsed.minutes Elapsed.seconds

1 7 4 42
2 batch 7 4 42
3 extern 7 4 49
4 0 0 0
5 0 0 0

The code above specifies two named arguments to df_match_variable. Each named argument
specifies a column from which tabular data are extracted using the corresponding pattern. The final
result is a data frame with an additional column for each named capture group.

Comparisons with other R packages

In this section we compare the proposed functions in the namedCapture package with similar func-
tions in other R packages for regular expressions.

Comparing namedCapture variable argument syntax with rex

In this section we compare namedCapture verbose variable argument syntax with the similar rex
package. We have adapted the log parsing example from the rex package:

> log.subject <- 'gate3.fmr.com - - [05/Jul/1995:13:51:39 -0400] "GET /shuttle/
+ curly02.slip.yorku.ca - - [10/Jul/1995:23:11:49 -0400] "GET /sts-70/sts-small.gif
+ boson.epita.fr - - [15/Jul/1995:11:27:49 -0400] "GET /movies/sts-71-mir-dock.MPG
+ 134.153.50.9 - - [13/Jul/1995:11:02:50 -0400] "GET /icons/text.xbm'
> log.lines <- strsplit(log.subject, split="\n")[[1]]

The goal is to extract the time and filetype for each log line. The code below uses the rex function
to define a pattern for matching the filetype:

> library(rex)
> library(dplyr)
> (rex.filetype.pattern <- rex(
+ non_spaces, ".",
+ capture(name = 'filetype',
+ none_of(space, ".", "?", double_quote) %>% one_or_more())))

[^[:space:]]+\.(?<filetype>(?:[^[:space:].?"])+)

Note that rex defines R functions (e.g. capture, one_or_more) and constants (non_spaces, double_quote)
which are translated to standard regular expression syntax via the rex function. These regex objects
can be used as sub-patterns in other calls to rex, as in the code below:

> rex.pattern <- rex(
+ "[",
+ capture(name = "time", none_of("]") %>% zero_or_more()),
+ "]",
+ space, double_quote, "GET", space,
+ maybe(rex.filetype.pattern))

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=rex

CONTRIBUTED RESEARCH ARTICLES 340

Finally, the pattern is used with re_matches in order to extract a data table, and the mutate function
is used for type conversion:

> re_matches(log.lines, rex.pattern) %>% mutate(
+ filetype = tolower(filetype),
+ time = as.POSIXct(time, format="%d/%b/%Y:%H:%M:%S %z"))

time filetype
1 1995-07-05 10:51:39
2 1995-07-10 20:11:49 gif
3 1995-07-15 08:27:49 mpg
4 1995-07-13 08:02:50 xbm

Using the namedCapture package we begin by defining an analogous filetype pattern as a list
containing literal regex strings and a type conversion function:

> namedCapture.filetype.pattern <- list(
+ "[^[:space:]]+[.]",
+ filetype='[^[:space:].?"]+', tolower)

We can then use that as a sub-pattern in a call to str_match_variable, which results in a data table
with columns generated via the specified type conversion functions:

> namedCapture::str_match_variable(
+ log.lines,
+ "\\[",
+ time="[^]]*", function(x)as.POSIXct(x, format="%d/%b/%Y:%H:%M:%S %z"),
+ "\\]",
+ ' "GET ',
+ namedCapture.filetype.pattern, "?")

time filetype
1 1995-07-05 10:51:39
2 1995-07-10 20:11:49 gif
3 1995-07-15 08:27:49 mpg
4 1995-07-13 08:02:50 xbm

Overall both rex and namedCapture provide good support for defining regular expresions using
a verbose, readable, and thus user-friendly syntax. However there are two major differences:

• namedCapture assumes the user knows regular expressions and can write them as R string
literals; rex assumes the user knows its functions, which generate regex strings. For example
the capture group time, none_of("]") %>% zero_or_more() in rex gets translated to the regex
string [^]]*. Thus rex code is a bit more verbose than namedCapture.

• In namedCapture type conversion functions can be specified on the same line as the capture
group name/pattern, whereas in rex type conversions are specified as a post-processing step on
the result of re_matches.

Comparing namedCapture::df_match_variable with other functions for data.frames

The tidyr and rematch2 packages provide functionality similar to namedCapture::df_match_variable,
which was introduced in Section “df_match_variable extracts new columns from character columns
in a data.frame.” Below we show how tidyr::extract can be used to compute a similar result as in
that previous section, using the same data from the SLURM sacct command line program. We begin
by defining a pattern which matches a range of integers in square brackets:

> tidyr.range.pattern <- "\\[([0-9]+)(?:-([0-9]+))?\\]"
> tidyr::extract(
+ sacct.df, "JobID", c("task1", "taskN"),
+ tidyr.range.pattern, remove=FALSE)

Elapsed JobID task1 taskN
1 07:04:42 13937810_25 <NA> <NA>
2 07:04:42 13937810_25.batch <NA> <NA>
3 07:04:49 13937810_25.extern <NA> <NA>
4 00:00:00 14022192_[1-3] 1 3
5 00:00:00 14022204_[4] 4 <NA>

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=rematch2

CONTRIBUTED RESEARCH ARTICLES 341

Note the pattern string includes un-named capture groups, because named capture is not sup-
ported. Names must therefore be specified in the third argument of extract. Next, we define a pattern
which matches either a single task ID, or a range in square brackets:

> tidyr.task.pattern <- paste0("_(?:([0-9]+)|", tidyr.range.pattern, ")")
> tidyr::extract(sacct.df, "JobID", c("task", "task1", "taskN"),
+ tidyr.task.pattern, remove=FALSE)

Elapsed JobID task task1 taskN
1 07:04:42 13937810_25 25 <NA> <NA>
2 07:04:42 13937810_25.batch 25 <NA> <NA>
3 07:04:49 13937810_25.extern 25 <NA> <NA>
4 00:00:00 14022192_[1-3] <NA> 1 3
5 00:00:00 14022204_[4] <NA> 4 <NA>

In the code below we define a pattern that matches the entire job string:

> tidyr.job.pattern <- paste0("([0-9]+)", tidyr.task.pattern, "(?:[.](.*))?")
> (job.df <- tidyr::extract(sacct.df, "JobID",
+ c("job", "task", "task1", "taskN", "type"), tidyr.job.pattern))

Elapsed job task task1 taskN type
1 07:04:42 13937810 25 <NA> <NA> <NA>
2 07:04:42 13937810 25 <NA> <NA> batch
3 07:04:49 13937810 25 <NA> <NA> extern
4 00:00:00 14022192 <NA> 1 3 <NA>
5 00:00:00 14022204 <NA> 4 <NA> <NA>

Finally, we use another pattern to extract the components of the elapsed time. Note that convert=TRUE
means to use utils::type.convert on the result of each extracted group.

> tidyr::extract(job.df, "Elapsed", c("hours", "minutes", "seconds"),
+ "([0-9]+):([0-9]+):([0-9]+)", convert=TRUE)

hours minutes seconds job task task1 taskN type
1 7 4 42 13937810 25 <NA> <NA> <NA>
2 7 4 42 13937810 25 <NA> <NA> batch
3 7 4 49 13937810 25 <NA> <NA> extern
4 0 0 0 14022192 <NA> 1 3 <NA>
5 0 0 0 14022204 <NA> 4 <NA> <NA>

Below we show the same computation using rematch2::bind_re_match, which supports named
capture. Note that we use paste0 to define a regular expression with each named capture group on a
separate line:

> rematch2.range.pattern <- paste0(
+ "\\[",
+ "(?P<task1>[0-9]+)",
+ "(?:-",
+ "(?P<taskN>[0-9]+)",
+ ")?\\]")
> rematch2::bind_re_match(sacct.df, JobID, rematch2.range.pattern)

Elapsed JobID task1 taskN
1 07:04:42 13937810_25 <NA> <NA>
2 07:04:42 13937810_25.batch <NA> <NA>
3 07:04:49 13937810_25.extern <NA> <NA>
4 00:00:00 14022192_[1-3] 1 3
5 00:00:00 14022204_[4] 4

Above we extract a range of task IDs in square brackets, and below we optionally match a single
task ID:

> rematch2.task.pattern <- paste0(
+ "_(?:",
+ "(?P<task>[0-9]+)",
+ "|", rematch2.range.pattern, ")")
> rematch2::bind_re_match(sacct.df, JobID, rematch2.task.pattern)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 342

Elapsed JobID task task1 taskN
1 07:04:42 13937810_25 25
2 07:04:42 13937810_25.batch 25
3 07:04:49 13937810_25.extern 25
4 00:00:00 14022192_[1-3] 1 3
5 00:00:00 14022204_[4] 4

Below we additionally match the job ID and job type:

> rematch2.job.pattern <- paste0(
+ "(?P<job>[0-9]+)",
+ rematch2.task.pattern,
+ "(?:[.]",
+ "(?P<type>.*)",
+ ")?")
> (rematch2.job.df <- rematch2::bind_re_match(
+ sacct.df, JobID, rematch2.job.pattern))

Elapsed JobID job task task1 taskN type
1 07:04:42 13937810_25 13937810 25
2 07:04:42 13937810_25.batch 13937810 25 batch
3 07:04:49 13937810_25.extern 13937810 25 extern
4 00:00:00 14022192_[1-3] 14022192 1 3
5 00:00:00 14022204_[4] 14022204 4

Finally we call the function on the result from above with a new pattern for another column:

> transform(rematch2::bind_re_match(
+ rematch2.job.df, Elapsed,
+ "(?P<hours>[0-9]+):(?P<minutes>[0-9]+):(?P<seconds>[0-9]+)"),
+ hours.int=as.integer(hours),
+ minutes.int=as.integer(minutes),
+ seconds.int=as.integer(seconds))

Elapsed JobID job task task1 taskN type hours minutes
1 07:04:42 13937810_25 13937810 25 07 04
2 07:04:42 13937810_25.batch 13937810 25 batch 07 04
3 07:04:49 13937810_25.extern 13937810 25 extern 07 04
4 00:00:00 14022192_[1-3] 14022192 1 3 00 00
5 00:00:00 14022204_[4] 14022204 4 00 00
seconds hours.int minutes.int seconds.int

1 42 7 4 42
2 42 7 4 42
3 49 7 4 49
4 00 0 0 0
5 00 0 0 0

Overall our comparison demonstrates that tidyr::extract and rematch2::bind_re_match func-
tion similarly to namedCapture::df_match_variable, with the following differences:

• Because tidyr::extract uses the ICU C library, which does not support named capture reg-
ular expressions, it requires specifying the group names in a separate argument. In contrast,
rematch2 supports specifying capture group names in regex string literals; namedCapture
variable argument syntax supports specifying capture group names as R argument names on
the same line as the corresponding sub-pattern.

• Since rematch2::bind_re_match returns character columns, conversion to numeric types must
be accomplished in a post-processing step using a function such as transform. In contrast
tidyr::extract(convert=TRUE) always uses utils::type.convert for type conversion, and
namedCapture::df_match_variable supports arbitrary group-specific type conversion func-
tions, which are specified on the same line as the corresponding name/pattern.

• Because tidyr::extract and rematch2::bind_re_match operate on one column in the subject
data frame, they must be called twice (once for the Elapsed column, once for the JobID column).
In contrast, one call to namedCapture::df_match_variable can be used to extract data from
multiple columns in the subject data frame.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=rematch2
https://CRAN.R-project.org/package=namedCapture

CONTRIBUTED RESEARCH ARTICLES 343

Figure 1: Computation time for finding all matches in a text file is plotted as a function of number
of lines (median lines and quartile bands over 5 timings). Such timings are typical of real-world
subjects/patterns. R-3.5.2 used quadratic time algorithms for gregexpr/substring (left), which were
changed to linear time algorithms in R-3.6.0 due to this research (right).

Comparing computation times of R regex packages

In this section we compare the computation time of the proposed namedCapture package with other
R packages. For all of the comparisons, we used the microbenchmark package to compute the
computation times of each R package/function. We study how the empirical computation time scales
as a function of subject/pattern size. The first three comparisons come from the real-world examples
discussed earlier in this article; the last two comparisons are pathological examples used to show
worst case time complexity.

The first example involves extracting all matches from a multi-line text file, as discussed in
Section “Extract all matches from a multi-line text file via str_match_all_variable.” Figure 1 shows
comparisons with packages re2r, stringr, stringi, rematch2, rex. We expected small differences
between the packages, on the order of constant factors. Using R-3.5.2 (left panel of Figure 1), the
lines for the rex and rematch2 packages have significantly larger slopes than the other packages
(namedCapture, stringr, stringi, and re2r). This can be explained because rex and rematch2 use
the base gregexpr and substring functions, which are implemented using inefficient quadratic time
algorithms in R-3.5.2. As a result of this research, this issue was reported on the R-devel email list, and
R-core member Tomas Kalibera has fixed the problem. In R-3.6.0 (right panel of Figure 1), linear time
algorithms are used.

The second example involves extracting the first match from each line of a log file, as discussed
in Section “Comparing namedCapture variable argument syntax with rex.” Figure 2 (left) shows
comparisons with the previously discussed packages and utils:strcapture. We expected small
differences between the packages, on the order of constant factors. In this comparison we observed
only small constant factor differences, and linear time complexity for all packages.

The third example involves using a different regular expression to extract data for each of two
columns of a data frame, as discussed in Section “Comparing namedCapture::df_match_variable
with other functions for data.frames.” Figure 2 (right) shows a comparison with tidyr and rematch2.
Again we expected small differences between the packages, and we observed linear time complexity
for tidyr, rematch2, and namedCapture (using either PCRE or RE2).

The fourth example shows the worst case time complexity, using a pathological regular expression
of increasing size (with backreferences) on a subject of increasing size. For example with size N = 2
we use the regex (a)?(a)?\1\1 on the pattern aa; the match time complexity is O(2N). Note that
possessive quantifiers, (a)?+, could be used to avoid the exponential time complexity (but possessive
quantifers are only supported in PCRE and ICU, not TRE nor RE2). Figure 3 (left) shows a comparison
between ICU, PCRE, and TRE (RE2 is not included because it does not support backreferences). It
is clear that all three libraries suffer from exponential time complexity. Although these timings are
not typical, they illustrate the worst case time complexity that can be achieved. Such information
should be considered along with other features (Table 1) when choosing a regex library. For example,
guaranteed linear time complexity is essential for avoiding denial-of-service attacks in situations
where potentially malicious users are permitted to define the regular expression pattern.

The final example involves using a pathological regular expression of increasing size (without
backreferences) on a subject of increasing size. Figure 3 (right) shows a comparison between the
previous libraries and additionally RE2. Is is clear that the fastest libraries are TRE and RE2, which

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=re2r
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=stringi
https://CRAN.R-project.org/package=rematch2
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=rematch2
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=stringi
https://CRAN.R-project.org/package=re2r
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=rematch2
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=rematch2
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=rematch2
https://CRAN.R-project.org/package=namedCapture

CONTRIBUTED RESEARCH ARTICLES 344

namedCapture
rex
rematch2
stringi
stringr
re2r
utils::strcapture

rematch2
PCRE

namedCapture
PCRE

tidyr
ICU

namedCapture
RE2

Subject: Character vector Subject: Two data.frame columns

1e+02 1e+03 1e+04 1e+05 1e+02 1e+03 1e+04 1e+05
1e−03

1e−02

1e−01

1e+00

1e+01

Number of subjects

T
im

e
to

 c
om

pu
te

 fi
rs

t m
at

ch
in

 e
ac

h
su

bj
ec

t (
se

co
nd

s)

Figure 2: Computation time for finding the first match is plotted as a function of subject size (median
lines and quartile bands over 5 timings). Such timings are typical for real-world subjects and patterns
such as the two examples shown.

exhibit linear time complexity. The slowest algorithm is clearly ICU, which exhibits exponential time
complexity. The PCRE library is exponential up to a certain pattern/subject size, after which it is
constant, because of a default limit PCRE imposes on backtracking. If other libraries allow configuring
a limit on backtracking, such an option could be used to avoid this exponential time complexity. Again
these timings are on synthetic data which achieve the worst case time complexity, and are not typical
of real data. Overall this comparison suggests that for guaranteed fast matching, RE2 must be used,
via the re2r or namedCapture packages.

Discussion and conclusions

Our comparisons showed how similar operations can be performed by namedCapture and other R
packages (e.g. tidyr and rex). Our empirical timings revealed an inefficient implementation of the
substring/gregexpr functions in R-3.5.2, which was fixed in R-3.6.0 as a result of this research. After
applying that fix, all packages were asymptotically linear in our empirical comparisons of time to
compute matches using typical/real-world patterns and subjects. Finally, we studied the worst-case
time complexity of matching on pathological patterns/subjects, and showed that RE2 must be used
for guaranteed linear time complexity.

The article presented the namedCapture package, along with detailed comparisons with other
R packages for regular expressions. A unique feature of the namedCapture package is its compact
and readable syntax for defining regular expressions in R code. We showed how this syntax can be
used to extract data tables from a variety of non-tabular text data. We also highlighted several other
features of the namedCapture package, which include support for arbitrary type conversion functions,
named output based on subject names and the name capture group, and two regex engines (PCRE and
RE2). PCRE can be used for backreferences (e.g. for matching HTML tags), but otherwise RE2 should
be preferred for guaranteed linear time complexity. The ICU library may be preferred for its strong
unicode support (Table 1), so we are considering implementing ICU as another regex engine usable in
namedCapture.

We thank a reviewer for a suggestion about other choices for the variable argument syntax for
specifying type conversion functions. The current syntax uses a named R argument to specify the
capture group name, then a character string literal to specify the capture group pattern, then a function
name specify the type conversion. Other choices could use formulas or the := operator to define type
conversions. Overall we hope that the unique features of the namedCapture package will be useful
and inspiring for other package developers.

Reproducible research statement. The source code for this article can be freely downloaded from
https://github.com/tdhock/namedCapture-article

Bibliography

G. Csárdi. rematch2: Tidy Output from Regular Expression Matching, 2017. URL https://CRAN.R-
project.org/package=rematch2. R package version 2.0.1. [p329]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=re2r
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=namedCapture
https://github.com/tdhock/namedCapture-article
https://CRAN.R-project.org/package=rematch2
https://CRAN.R-project.org/package=rematch2

CONTRIBUTED RESEARCH ARTICLES 345

TRE
PCRE
ICU

TRE
RE2

PCRE

ICU
N=2 pattern with backreferences: (a)?(a)?\1\1 N=2 pattern without backreferences: a?a?aa

1 5 10 15 20 25 1 5 10 15 20 25

1e−03

1e−01

1e+01

Subject/pattern size N

T
im

e
to

 c
om

pu
te

 fi
rs

t m
at

ch
 (

se
co

nd
s)

Figure 3: Computation time is plotted as a function of subject/pattern size (median lines and quartile
bands over 10 timings). For N = 2 the subject is aa and the pattern is shown in the facet title. Such
slow timings only result from pathological subject/pattern combinations.

J. E. F. Friedl. Mastering Regular Expressions. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2 edition,
2002. [p328]

M. Gagolewski. R package stringi: Character string processing facilities, 2018. URL http://www.
gagolewski.com/software/stringi/. [p330]

P. Hazel. ChangeLog for PCRE, 2003. URL https://github.com/tdhock/regex-tutorial/blob/
master/pcre1-changelog.txt. [p328]

T. D. Hocking. Bug 14518 - wishlist: named capture in regular expressions, 2011a. URL https:
//bugs.r-project.org/bugzilla3/show_bug.cgi?id=14518. [p329]

T. D. Hocking. Fast, named capture regular expressions in R 2.14. In useR 2011 conference proceed-
ings, 2011b. URL http://web.warwick.ac.uk/statsdept/user-2011/TalkSlides/Lightening/2-
StatisticsAndProg_3-Hocking.pdf. [p329]

ICU developers. Download ICU 55, 2015a. URL http://site.icu-project.org/download/55. [p330]

ICU developers. Named capture groups, 2015b. URL http://bugs.icu-project.org/trac/ticket/
5312. [p330]

W. L. Johnson, J. H. Porter, S. I. Ackley, and D. T. Ross. Automatic generation of efficient lexical
processors using finite state techniques. Commun. ACM, 11(12):805–813, Dec. 1968. ISSN 0001-0782.
URL https://doi.org/10.1145/364175.364185. [p328]

S. C. Kleene. Representation of events in nerve nets and finite automata. In C. Shannon and J. McCarthy,
editors, Automata Studies, pages 3–41. Princeton University Press, Princeton, NJ, 1956. URL http:
//www.diku.dk/hjemmesider/ansatte/henglein/papers/kleene1956.pdf. [p328]

V. Laurikari. TRE: The free and portable approximate regex matching library, 2019. URL https://laurikari.
net/tre/. [p329]

Python developers. Python 1.5.2 history, 1997a. URL https://github.com/tdhock/regex-tutorial/
blob/master/python-1.5.2-Misc-HISTORY.txt. [p328]

Python developers. Python documentation for built-in module re, 1997b. URL https://github.com/
tdhock/regex-tutorial/blob/master/python-1.5-Doc-libre.tex. [p328]

R Core Team. News for the 0.x series, 1997. URL https://cloud.r-project.org/src/base/NEWS.0.
[p329]

R Core Team. News for the 1.x series, 2002. URL https://github.com/tdhock/regex-tutorial/blob/
master/R.NEWS.1.txt. [p329]

R Core Team. News for the 2.x series, 2009. URL https://cloud.r-project.org/src/base/NEWS.2.
[p329]

K. Thompson. Programming techniques: Regular expression search algorithm. Commun. ACM, 11(6):
419–422, June 1968. ISSN 0001-0782. [p328]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

http://www.gagolewski.com/software/stringi/
http://www.gagolewski.com/software/stringi/
https://github.com/tdhock/regex-tutorial/blob/master/pcre1-changelog.txt
https://github.com/tdhock/regex-tutorial/blob/master/pcre1-changelog.txt
https://bugs.r-project.org/bugzilla3/show_bug.cgi?id=14518
https://bugs.r-project.org/bugzilla3/show_bug.cgi?id=14518
http://web.warwick.ac.uk/statsdept/user-2011/TalkSlides/Lightening/2-StatisticsAndProg_3-Hocking.pdf
http://web.warwick.ac.uk/statsdept/user-2011/TalkSlides/Lightening/2-StatisticsAndProg_3-Hocking.pdf
http://site.icu-project.org/download/55
http://bugs.icu-project.org/trac/ticket/5312
http://bugs.icu-project.org/trac/ticket/5312
https://doi.org/10.1145/364175.364185
http://www.diku.dk/hjemmesider/ansatte/henglein/papers/kleene1956.pdf
http://www.diku.dk/hjemmesider/ansatte/henglein/papers/kleene1956.pdf
https://laurikari.net/tre/
https://laurikari.net/tre/
https://github.com/tdhock/regex-tutorial/blob/master/python-1.5.2-Misc-HISTORY.txt
https://github.com/tdhock/regex-tutorial/blob/master/python-1.5.2-Misc-HISTORY.txt
https://github.com/tdhock/regex-tutorial/blob/master/python-1.5-Doc-libre.tex
https://github.com/tdhock/regex-tutorial/blob/master/python-1.5-Doc-libre.tex
https://cloud.r-project.org/src/base/NEWS.0
https://github.com/tdhock/regex-tutorial/blob/master/R.NEWS.1.txt
https://github.com/tdhock/regex-tutorial/blob/master/R.NEWS.1.txt
https://cloud.r-project.org/src/base/NEWS.2

CONTRIBUTED RESEARCH ARTICLES 346

K. Ushey, J. Hester, and R. Krzyzanowski. rex: Friendly Regular Expressions, 2017. URL https://CRAN.R-
project.org/package=rex. R package version 1.1.2. [p330]

Q. Wenfeng. pkgre2r: RE2 Regular Expression, 2017. URL https://CRAN.R-project.org/package=re2r.
R package version 0.2.0. [p330]

H. Wickham and L. Henry. tidyr: Easily Tidy Data with ’spread()’ and ’gather()’ Functions, 2018. URL
https://CRAN.R-project.org/package=tidyr. R package version 0.8.2. [p330]

Toby Dylan Hocking
School of Informatics, Computing, and Cyber Systems
Northern Arizona University
Flagstaff, Arizona
USA
toby.hocking@nau.edu

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=re2r
https://CRAN.R-project.org/package=tidyr
mailto:toby.hocking@nau.edu

CONTRIBUTED RESEARCH ARTICLES 347

The Landscape of R Packages for
Automated Exploratory Data Analysis
by Mateusz Staniak and Przemysław Biecek

Abstract The increasing availability of large but noisy data sets with a large number of heterogeneous
variables leads to the increasing interest in the automation of common tasks for data analysis. The
most time-consuming part of this process is the Exploratory Data Analysis, crucial for better domain
understanding, data cleaning, data validation, and feature engineering.

There is a growing number of libraries that attempt to automate some of the typical Exploratory
Data Analysis tasks to make the search for new insights easier and faster. In this paper, we present a
systematic review of existing tools for Automated Exploratory Data Analysis (autoEDA). We explore
the features of fifteen popular R packages to identify the parts of analysis that can be effectively
automated with the current tools and to point out new directions for further autoEDA development.

Introduction

With the advent of tools for automated model training (autoML), building predictive models is
becoming easier, more accessible and faster than ever. Tools for R such as mlrMBO (Bischl et al., 2017),
parsnip (Kuhn and Vaughan, 2019); tools for python such as TPOT (Olson et al., 2016), auto-sklearn
(Feurer et al., 2015), autoKeras (Jin et al., 2018) or tools for other languages such as H2O Driverless AI
(H2O.ai, 2019; Cook, 2016) and autoWeka (Kotthoff et al., 2017) supports fully- or semi-automated
feature engineering and selection, model tuning and training of predictive models.

Yet, model building is always preceded by a phase of understanding the problem, understanding
of a domain and exploration of a data set. Usually, in the process of the data analysis much more time
is spent on data preparation and exploration than on model tuning. This is why the current bottleneck
in data analysis is in the exploratory data analysis (EDA) phase. Recently, a number of tools were
developed to automate or speed up the part of the summarizing data and discovering patterns. Since
the process of building predictive models automatically is referred to as autoML, we will dub the
automation of data exploration autoEDA. The surge in interest in autoEDA tools1 is evident in the
Figure 1. Table 1 describes the popularity of autoEDA tools measured as the number of downloads
from CRAN and usage statistics from Github2.

There is an abundance of R libraries that provide functions for both graphical and descriptive
data exploration. Here, we restrict our attention to packages that aim to automatize or significantly
speed up the process of exploratory data analysis for tabular data. Such tools usually work with full
data frames, which are processed in an automatic or semi-automatic manner, for example by guessing
data types, and return summary tables, groups of plots or full reports. Currently, there is no CRAN
Task View dedicated to packages for automated Exploratory Data Analysis and neither was there any
repository that would catalogue them3. Here, we make a first attempt to comprehensively describe
R tools for autoEDA. We chose two types of packages. The first group explicitly aims to automate
EDA, as stated in the description of the package. These includes packages for fast, easy, interactive or
automated data exploration. The second group contains packages that create data summaries. These
packages were included, as long as they address at least two analysis goals listed in Table 2. We do not
describe in detail packages that are either restricted to one area of application (for example RBioPlot
(Zhang and Storey, 2016) package dedicated to biomolecular data or intsvy (Caro and Biecek, 2017)
package focused on international large-scale assessments), designed for one specific task (for example
creating tables), or in an early development phase. Some of the more task-specific packages are briefly
discussed in the section Other packages. Some packages, such as radiant (Nijs, 2019) cover the full
analysis pipeline and, as such, are too general for our purposes, even though they include an EDA
module.

This paper has two main goals. First is to characterize existing R packages for automated Ex-
ploratory Data Analysis and compare their ranges of capabilities. To our best knowledge, this is first
such a review. Previously, a smaller comparison of seven packages was done in Putatunda et al. (2019).
Second is to identify areas, where automated data exploration could be improved. In particular, we
are interested in gauging the potential of AI-assisted EDA tools.

The first goal is addressed in Sections R packages for automated EDA and Feature comparison

1Access the raw data with archivist::aread("mstaniak/autoEDA-resources/autoEDA-paper/aec9")
2Access the data with archivist::aread("mstaniak/autoEDA-resources/autoEDA-paper/50a7")
3The first author maintains a list of papers related to autoEDA and software tools in different languages at

https://github.com/mstaniak/autoEDA-resources

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=radiant
https://github.com/mstaniak/autoEDA-resources

CONTRIBUTED RESEARCH ARTICLES 348

0

20,000

40,000

60,000

80,000

2015 2016 2017 2018 2019

summarytools (84737)

DataExplorer (82624)

visdat (68978)

funModeling (54232)

arsenal (39234)

dataMaid (23972)

dlookr (13268)

RtutoR (10502)

xray (8300)

exploreR (8112)

ExPanDaR (5713)

SmartEDA (5150)

inspectdf (3252)

explore (808)

Based on CRAN statistics
Total number of downloads

Figure 1: Trends in number of downloads of autoEDA packages available on CRAN since the first
release. Data was gathered on 12.07.2019 with the help of the cranlogs package (Csardi, 2015).

where we first briefly describe each package and the compare, how are different EDA tasks are tackled
by these packages. Then, in Section Discussion Summary, we compile a list of strong and weak points
of the automated EDA software and detail some open problems.

The tasks of Exploratory Data Analysis

Exploratory Data Analysis is listed as an important step in most methodologies for data analysis
(Biecek, 2019; Grolemund and Wickham, 2019). One of the most popular methodologies, the CRISP-DM
(Wirth, 2000), lists the following phases of a data mining project:

1. Business understanding.

2. Data understanding.

3. Data preparation.

4. Modeling.

5. Evaluation.

6. Deployment.

Automated EDA tools aim to make the Data understanding phase as fast and as easy as possible.
This part of a project can be further divided into smaller tasks. These include a description of a
dataset, data exploration, and data quality verification. All these tasks can be achieved both by
providing descriptive statistics and numerical summaries and by visual means. AutoEDA packages
provide functions to deal with these challenges. Some of them are also concerned with simple variable
transformations and data cleaning. Both these tasks belong in the Data preparation phase, which
precedes and supports the model building phase. Let us notice that business understanding is affected
by data understanding, which makes this part of the analysis especially important.

Goals of autoEDA tools are summarised in Table 2. The Phase and Tasks columns are taken
from the CRISP-DM standard, while Type and Examples columns provide examples based on current
functionalities of autoEDA packages.

Each task should be summarised in a report, which makes reporting another relevant problem
of autoEDA. Uni- and bivariate data exploration is a part of the analysis that is most thoroughly
covered by the existing autoEDA tools. The form of univariate summaries depends on the variable
type. For numerical variables, most packages provide descriptive statistics such as centrality and
dispersion measures. For categorical data, unique levels and associated counts are reported. Bivariate
relationships descriptions display either dependency between one variable of interest and all other
variables, which includes contingency tables, scatter plots, survival curves, plots of distribution by

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=cranlogs

CONTRIBUTED RESEARCH ARTICLES 349

CRAN GitHub
package downl. debut age stars commits contrib. issues forks
arsenal 39234 2016-12-30 2y 6m 59 637 3 200 4
autoEDA - - - 41 20 1 4 12
DataExplorer 82624 2016-03-01 3y 4m 235 187 2 121 44
dataMaid 23972 2017-01-02 2y 6m 68 473 2 45 18
dlookr 13268 2018-04-27 1y 2m 35 54 3 9 12
ExPanDaR 5713 2018-05-11 1y 2m 32 197 2 3 14
explore 808 2019-05-16 0y 1m 15 114 1 1 0
exploreR 8112 2016-02-10 3y 5m 1 1 1 0 0
funModeling 54232 2016-02-07 3y 5m 58 126 2 13 18
inspectdf 3252 2019-04-24 0y 2m 117 200 2 12 11
RtutoR 10502 2016-03-12 3y 3m 13 7 1 4 8
SmartEDA 5150 2018-04-06 1y 3m 4 4 1 1 2
summarytools 84737 2014-08-11 4y 11m 255 981 6 76 33
visdat 68978 2017-07-11 2y 0m 313 426 12 122 39
xray 8300 2017-11-22 1y 7m 63 33 4 10 5

Table 1: Popularity of R packages for autoEDA among users and package developers. First two
columns summarise CRAN statistics, last five columns summarise package development at GitHub.
When a repository owned by the author is not available, the data were collected from a CRAN mirror
repository. Data was gathered on 12.07.2019.

values of a variable (histograms, bar plots, box plots), or between all pairs of variables (correlation
matrices and plots), or chosen pairs of variables.

R packages for automated EDA

In this section, fifteen R libraries are shortly summarised. One of them is only available on GitHub
(autoEDA), all others are available at CRAN. For each library, we include example outputs. The exact
versions of packages that were used to create them can be found in the reference section. All examples
are based on a subset of typical_data4 dataset from visdat package. Whenever possible, archivist
(Biecek and Kosinski, 2017) hooks are provided for easy access to the presented objects. When a
function call only gives side-effects, a link is provided to the full result (PDF/PNG files). Tables were
prepared with the xtable package (Dahl et al., 2018).

The arsenal package

The arsenal package (Heinzen et al., 2019) is a set of four tools for data exploration:

1. table of descriptive statistics and p-values of associated statistical tests, grouped by levels of a
target variable (the so-called Table 1). Such a table can also be created for paired observation, for
example longitudinal data (tableby and paired functions),

2. comparison of two data frames that can detect shared variables (compare function),

3. frequency tables for categorical variables (freqlist function),

4. fitting and summarizing simple statistical models (linear regression, Cox model, etc) in tables of
estimates, confidence intervals and p-values (modelsum function).

Results of each function can be saved to a short report using the write2 function. An example5 can be
found in Figure 2.

A separate vignette is available for each of the functions. arsenal is the most statistically-oriented
package among reviewed libraries. It borrows heavily from SAS-style procedures used by the authors
at the Mayo Clinic.

The autoEDA package

autoEDA package (Horn, 2018a) is a GitHub-based tool for univariate and bivariate visualizations and

4Access the data with archivist::aread("mstaniak/autoEDA-resources/autoEDA-paper/278c7")
5Access the table with archivist::aread("mstaniak/autoEDA-resources/autoEDA-paper/d951")

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=visdat
https://CRAN.R-project.org/package=archivist
https://CRAN.R-project.org/package=xtable
https://CRAN.R-project.org/package=arsenal

CONTRIBUTED RESEARCH ARTICLES 350

Phase Task Type Examples

Data understanding

Data description
dimensions variables number

variables variable type
meta-data size in RAM

Data validity
invalid values typos
missing values NA count
atypical values outliers

Data exploration
univariate histogram
bivariate scatter plot

multivariate Parallel coord. plot

Data preparation

Data cleaning Imputation Impute mean
Outlier treatment Impute median

Derived attributes

Dimension reduction PCA

Continuous Box-Cox transform
Binning

Categorical Merge rare factors

Table 2: Early phases of data mining project according to CRISP-DM standard, their specific goals and
examples of how they are aided by autoEDA tools. (Wirth, 2000)

Figure 2: An example output from the arsenal::tableby function saved using arsenal::write2
(arsenal v 2.0). Smokes and Race variables are compared by the levels of Died variable.

summaries. The dataOverview function returns a data frame that describes each feature by its type,
number of missing values, outliers and typical descriptive statistics. Values proposed for imputation
are also included. Two outlier detection methods are available: Tukey and percentile-based. A PDF
report can be created using the autoEDA function. It consists of the plots of distributions of predictors
grouped by outcome variable or distribution of outcome by predictors.

The package can be found on Xander Horn’s GitHub page: https://github.com/XanderHorn/
autoEDA. It does not include a vignette, but a short introduction article was published to LinkedIn
(Horn, 2018b) and similar examples can be found in the readme of the project. Plots from a report6

generated by autoEDA are displayed in Figure 3.

The DataExplorer package

DataExplorer (Cui, 2019) is a recent package that helps automatize EDA and simple data transforma-
tions. It provides functions for:

1. whole dataset summary: dimensions, types of variables, missing values, etc (introduce and

6Find the full report at https://github.com/mstaniak/autoEDA-resources/blob/master/autoEDA-paper/
plots/autoEDA/autoEDA_report.pdf

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://github.com/XanderHorn/autoEDA
https://github.com/XanderHorn/autoEDA
https://CRAN.R-project.org/package=DataExplorer
https://github.com/mstaniak/autoEDA-resources/blob/master/autoEDA-paper/plots/autoEDA/autoEDA_report.pdf
https://github.com/mstaniak/autoEDA-resources/blob/master/autoEDA-paper/plots/autoEDA/autoEDA_report.pdf

CONTRIBUTED RESEARCH ARTICLES 351

Figure 3: Sample pages from the report generated by the autoEDA::autoEDA function (autoEDA v. 1.0)
displaying bivariate relationships between the target and explanatory variable.

plot_intro functions),

2. missing values profile as a plot of missing values fraction per column (plot_missing function)
or summary statistics and suggested actions (profile_missing function),

3. plotting distributions of variables, separately numerical and categorical (plot_histogram and
plot_bar functions),

4. QQ Plots (plot_qq function),

5. plotting correlation matrices (plot_correlation function),

6. visualizing PCA results by plotting percentage of explained variance and correlations with each
original feature for every principal component (plot_prcomp function),

7. plotting relationships between the target variable and predictors - scatterplots and boxplots
(plot_scatterplot and plot_boxplot functions),

8. data transformation: replacing missing values by a constant (set_missing function), grouping
sparse categories (group_category function), creating dummy variables, dropping columns
(dummify, drop_features functions) and modifying columns (update_columns function).

The create_report function generates a report. By default, it consists of all the above points except
for data transformations and it can be further customized. An introductory vignette Introduction to
DataExplorer that showcases all the functionalities is included in the package. It is noticeable that the
package almost entirely relies on visual techniques. Plots taken from an example report7 are presented
in Figure 4.

The dataMaid package

The dataMaid (Petersen and Ekstrom, 2018) package has two central functions: the check function,
which performs checks of data consistency and validity, and summarize, which summarizes each
column. Another function, makeDataReport, automatically creates a report in PDF, DOCX or HTML
format. The goal is to detect missing and unusual - outlying or incorrectly encoded - values. The
report contains whole dataset summary: variables and their types, number of missing values, and
univariate summaries in the form of descriptive statistics, histograms/bar plots and an indication of
possible problems.

7Access the full report https://github.com/mstaniak/autoEDA-resources/blob/master/autoEDA-paper/
plots/DataExplorer/dataexplorer_example.pdf

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=dataMaid
https://github.com/mstaniak/autoEDA-resources/blob/master/autoEDA-paper/plots/DataExplorer/dataexplorer_example.pdf
https://github.com/mstaniak/autoEDA-resources/blob/master/autoEDA-paper/plots/DataExplorer/dataexplorer_example.pdf

CONTRIBUTED RESEARCH ARTICLES 352

Figure 4: A visualization of PCA results - correlation with original variables for each principal
component - and a wall of bar plots taken from a report generated by the DataExplorer::create_report
function (DataExplorer v. 0.7).

User-defined checks and summaries can be also included in the analysis. The vignette Extending
dataMaid explains how to define them. It is also possible to customize the report. In particular, variables
for which no problems were detected can be ommited. An example report8 can be found in Figure 5.

The dlookr package

The dlookr (Ryu, 2019) package provides tools for 3 types of analysis: data diagnosis including
correctness, missing values, outlier detection; exploratory data analysis; and variable transformations:
imputation, dichotomization, and transformation of continuous features. It can also automatically
generate a PDF report for all these analyses.

For data diagnosis, types of variables are reported along with counts of missing values and unique
values. Variables with a low proportion of unique values are described separately. All the typical
descriptive statistics are provided for each variable. Outliers are detected and distributions of variables
before and after outlier removal are plotted. Both missing values and outliers can be treated using
impute_na and impute_outlier functions.

In the EDA report, descriptive statistics are presented along with normality tests, histograms of
variables and their transformations that reduce skewness: logarithm and root square. Correlation plots
are shown for numerical variables. If the target variable is specified, plots that show the relationship
between the target and each predictor are also included.

A transformation report compares descriptive statistics and plots for each variable before and
after imputation, skewness-removing transformation and binning. If the right transformation is found
among the candidate transformations, it can be applied to the feature through one of the binning,
binning_by, or transform functions.

Every operation or summary presented in the reports can also be performed manually. A dedicated
vignette explains each of the main functionalities (Data quality diagnosis, Data Transformation, Exploratory
Data Analysis vignettes). An example9 taken from one of the reports can be found in Figure 6.

The ExPanDaR package

Notably, while the ExPanDaR package (Gassen, 2018) was designed for panel data exploration, it can
also be used for standard EDA after adding an artificial constant time index. In this case, the package
offers interactive shiny application for exploration. Several types of analysis are covered:

1. missing values and outlier treatment,

8Find the full report at https://github.com/mstaniak/autoEDA-resources/blob/master/autoEDA-paper/
plots/dataMaid/dataMaid_report.pdf

9Access the full report at https://github.com/mstaniak/autoEDA-resources/blob/master/autoEDA-paper/
plots/dlookr/dlookr_eda.pdf

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=dlookr
https://CRAN.R-project.org/package=ExPanDaR
https://github.com/mstaniak/autoEDA-resources/blob/master/autoEDA-paper/plots/dataMaid/dataMaid_report.pdf
https://github.com/mstaniak/autoEDA-resources/blob/master/autoEDA-paper/plots/dataMaid/dataMaid_report.pdf
https://github.com/mstaniak/autoEDA-resources/blob/master/autoEDA-paper/plots/dlookr/dlookr_eda.pdf
https://github.com/mstaniak/autoEDA-resources/blob/master/autoEDA-paper/plots/dlookr/dlookr_eda.pdf

CONTRIBUTED RESEARCH ARTICLES 353

Figure 5: Two pages from a data validity report generated using the dataMaid::makeDataReport
function (dataMaid v. 1.2). Atypical values are listed under the variable summary.

Figure 6: Two pages from a report generated by the dlookr::eda_report function (dlookr v. 0.3.8).
First, the dataset is summarised, than each variable is described. Optionally, plots of bivariate
relationships can be added.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 354

0

50000

100000

150000

80 100 120 140
IQ

In
co

m
e Died

FALSE

TRUE

Figure 7: Scatter plot with of Income and IQ variables with Died variable denoted by the color. Created
with the prepare_scatter_plot function (ExPanDaR v0.4.0).

2. univariate summaries (descriptive statistics) and plots (histograms/bar plots),

3. bivariate analysis via correlation matrices and plots. Interestingly, scatter plots can be enriched
by associating size and color of points with variables,

4. multivariate regression analysis.

For each functionality of the application, there is a corresponding standalone function.

Three vignettes describe how the library can be used for data exploration (Using the functions of the
ExPanDaR package), how to customize it (Customize ExPanD) and how to analyze panel data (Using
ExPanD for Panel Data Exploration) Example instances of ExPanDaR shiny applications are available
online. Links and other examples can be found in the GitHub repository of the package: https:
//github.com/joachim-gassen/ExPanDaR. An example of a scatter plot10 created by the package can
be found in Figure 7.

The explore package

The functionalities of the explore package (Krasser, 2019) can be accessed in three ways: through an
interactive shiny (Chang et al., 2019) application, through an automatically generated HTML report or
via standalone functions. In addition to data exploration, relationships with a binary target can be
explored. The package includes functions for

1. full dataset summaries - dimensions, data types, missing values and summary statistics
(describe function),

2. uni- and bivariate visualizations, including density plots, bar plots and boxplots (a family of
explore functions, in particular explore_all function that creates plots for all variables),

3. simple modeling based on decision trees (explain_tree function) or logistic regression (explain_logreg
function).

All result can be saved to HTML via the report function. Dataset and variable summaries can also
be save to an MD file using the data_dict_md function11. The explore vignette includes a thorough
description of the package. An example decision tree12 can be found in Figure 8.

10Access the R object with the archivist::aread("mstaniak/autoEDA-resources/autoEDA-paper/9c5d")
11Find examples at https://github.com/mstaniak/autoEDA-resources/tree/master/autoEDA-paper/plots/

explore
12Access the R object with the archivist::aread("mstaniak/autoEDA-resources/autoEDA-paper/dc47").

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://github.com/joachim-gassen/ExPanDaR
https://github.com/joachim-gassen/ExPanDaR
https://CRAN.R-project.org/package=explore
https://CRAN.R-project.org/package=shiny
https://github.com/mstaniak/autoEDA-resources/tree/master/autoEDA-paper/plots/explore
https://github.com/mstaniak/autoEDA-resources/tree/master/autoEDA-paper/plots/explore

CONTRIBUTED RESEARCH ARTICLES 355

 Race = White,Hispanic,Black,Asian,Hawaiian

 Race = Black,Asian,Hawaiian

 Race = Asian,Hawaiian Race = Hispanic

 Race = Bi−Racial

target = 0.51
100%

target = 0.51
98%

target = 0.49
16%

target = 0.48
4%

target = 0.49
12%

target = 0.51
82%

target = 0.51
17%

target = 0.51
65%

target = 0.57
2%

target = 0.55
2%

target = 0.62
1%

yes no

yes no

yes no yes no

yes no

Figure 8: A decision tree fitted using the explain_tree function (explore v. 0.4.3). The tree can also be
based on multiple explanatory variables.

80

100

120

140

160 180 200
IQ

ge
t(

dv
.v

ar
)

Figure 9: Univariate regression plot created using the exploreR::massregplot (exploreR v. 0.1).

The exploreR package

The exploreR package (Coates, 2016) takes a unique approach to data exploration compared to other
packages. The analysis is based on linear regression. There are three functionalities:

1. fitting univariate regression model for each independent variable and summarizing the results
in a table that consists of estimated parameters, p-values, and R2 values (masslm function),

2. plotting target variable against each independent variable along with the fitted least squares
line (massregplot function),

3. feature standardization by scaling to the interval [0, 1] or subtracting mean and dividing by
standard deviation.

Regression plots can be saved to a PDF file. A vignette called The How and Why of Simple Tools explains
all the functions and provides examples. One of the regression plots13 is presented in Figure 9.

13A PDF file with all the plots can be found at https://github.com/mstaniak/autoEDA-resources/blob/
master/autoEDA-paper/plots/exploreR.pdf

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=exploreR
https://github.com/mstaniak/autoEDA-resources/blob/master/autoEDA-paper/plots/exploreR.pdf
https://github.com/mstaniak/autoEDA-resources/blob/master/autoEDA-paper/plots/exploreR.pdf

CONTRIBUTED RESEARCH ARTICLES 356

47.5

52.5

42.4

57.6

0%

25%

50%

75%

100%

FA
LS

E
TRUE

Smokes

D
ie

d
 (

%
)

384
425

81
110

0

100

200

300

400

FA
LS

E
TRUE

Smokes

D
ie

d
 (

co
un

t)

TRUE

FALSE

Figure 10: An example output from the funModeling::cross_plot function (funModeling v. 1.7).
Such a plot is drawn for every variable in the dataset or for a specified subset of variables. Continuous
features are discretized.

The funModeling package

The package funModeling (Casas, 2019) is a rich set of tools for EDA connected to the book Casas
(2018). These tools include

1. dataset summary (df_status function),

2. plots and descriptive statistics for categorical and numerical variables (plot_num, profiling_num
and freq functions),

3. classical and information theory-based correlation analysis for target variable vs other vari-
ables - (correlation_table function for numerical predictors, var_rank_info function for all
predictors),

4. plots of distribution of target variables vs predictors (bar plots, box plots and histograms via
cross_plot and plotar functions),

5. quantitative analysis for binary target variables (categ_analysis function),

6. different methods of binning continuous features (discretize_df, convert_df_to_categoric
and discretize_rgr functions),

7. variable normalization by transforming to the [0, 1] interval (range01 function),

8. outlier treatment (prep_outliers, tukey_outlier and hampel_outlier functions),

9. gain and lift curves (gain_lift function).

It is the only library that encompasses visualizations related to predictive models and non-standard
correlation analysis. The range of tools covered by funModeling is very wide. The package includes an
exhaustive introduction vignette called funModeling quick-start. One of the bivariate visualizations14

offered by the package can be found in Figure 10.

The inspectdf package

The inspectdf package (Rushworth, 2019) provides several tools for basic data exploration with a
consistent interface. Each of the inspect_* functions returns a data frame with summaries (and
additional attributes). The results can be then plotted using the show_plot function. The function are
related to three aspects of EDA:

1. whole dataset can be summarised by numbers of missing values, number of variables of
each type and memory used by each variable (inspect_na, inspect_types and inspect_mem
functions),

14Find all the plots at https://github.com/mstaniak/autoEDA-resources/tree/master/autoEDA-paper/
plots/funmodeling

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=funModeling
https://CRAN.R-project.org/package=inspectdf
https://github.com/mstaniak/autoEDA-resources/tree/master/autoEDA-paper/plots/funmodeling
https://github.com/mstaniak/autoEDA-resources/tree/master/autoEDA-paper/plots/funmodeling

CONTRIBUTED RESEARCH ARTICLES 357

Income & Age

IQ & Age

Height & Age

Income & Height

IQ & Height

Income & IQ

0.00 0.25 0.50 0.75 1.00
Pearson correlation (..)

Data frame

typical_data_proper_types

typical_data_proper_types_2

Comparison of .. between df::typical_data_proper_types and typical_data_proper_types_2

Figure 11: A comparison of correlations between numerical variables in two data frames. Plot created
using the inspectdf package v. 0.0.3.

2. univariate analysis is done via summary statistics and histograms for numerical variables
(inspect_num function), bar plots for categorical variables (inspect_cat function). Additionally,
factors dominated by a single level can be found with the inspect_imb function,

3. bivariate relationships are described by Pearson correlation coefficient for numerical variables
(inspect_cor function).

Notably, each function can take two data frames as parameters and return their comparison. An
example of a correlation analysis plot comparing two data frames can be found in Figure 11 While
the library does not include a vignette, extensive documentation with examples is provided on the
GitHub webpage of the project: https://github.com/alastairrushworth/inspectdf.

The RtutoR package

The RtutoR package (Nair, 2018a) is a tool for automated reporting. There are three options for
creating a report that contains univariate and bivariate data summaries:

1. plots can be created interactively in a shiny app (launch_plotter function),

2. the whole report can be generated from a shiny app that allows the user to tweak the report
(gen_exploratory_report_app function),

3. the report can be created by a direct call to the generate_exploratory_analysis_ppt function.

The report is saved in the PPTX format. Notably, this package can identify the top k relevant variables
based on a chosen criterion, for example, information gain, and display plots only for these variables.
An example report can be found in the GitHub repository of the package15. The package was
introduced in an R-Bloggers blog post (Nair, 2018b).

The SmartEDA package

The SmartEDA package (Ubrangala et al., 2018), is focused entirely on data exploration through
graphics and descriptive statistics. It does not provide any functions which modify existing variables.
The range of tools it includes is wide:

1. dataset summary (ExpData function),

15Find the report at https://github.com/anup50695/RtutoR/blob/master/titanic_exp_report_2.pptx

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://github.com/alastairrushworth/inspectdf
https://CRAN.R-project.org/package=RtutoR
https://CRAN.R-project.org/package=SmartEDA
https://github.com/anup50695/RtutoR/blob/master/titanic_exp_report_2.pptx

CONTRIBUTED RESEARCH ARTICLES 358

Figure 12: Sample pages from a report generated by the SmartEDA::ExpReport function (SmartEDA v.
0.3), including dataset overview and bivariate dependency for categorical variables.

2. descriptive statistics that may include correlation with target variable and density or bar plots
(ExpNumStat, ExpNumViz, ExpCatStat and ExpCatViz functions). All visualizations may include
the target variable,

3. QQ plots (ExpOutQQ function),

4. contingency tables (ExpCTable function),

5. information value and Weight of the Evidence coding (ExpWoETable, ExpInfoValue functions),

6. parallel coordinate plot for multivariate visualization (ExpParcoord function).

Plotting functions return grids of ggplot2 object. The results can be written to a HTML report
(ExpReport function). There are also additional functionalities dedicated to data.table objects from
data.table package (Dowle and Srinivasan, 2019). An introductory vignette called Explore data using
SmartEDA (Intro) is attached to the library. Another vignette Custom summary statistics describe cus-
tomizing output tables. The package is also described in the Putatunda et al. (2019) paper. Examples16

can be found in Figure 12.

The summarytools package

The summarytools package (Comtois, 2019) builds summary tables for whole datasets, individual
variables, or pairs of variables. In addition, the output can be formatted to be included in knitr(Xie,
2015) or plain documents, HTML files and shiny apps (Chang et al., 2019). The are four main
functionalities:

1. whole dataset summary including variable types and a limited number of descriptive statistics,
counts of unique values and missing values and univariate plots within the output table
(dfSummary function),

2. descriptive statistics, including skewness and kurtosis, for numerical variables, possibly grouped
by levels of a factor (descr, stby functions),

3. counts and proportions for levels of categorical features (freq function),

4. contingency tables for pairs of categorical variables (ctable function).

All results can be saved and displayed in different formats. The package includes a vignette titled
Introduction to summarytools. An example of univariate summaries17 can be found in Figure 3.

16A full report is available at https://github.com/mstaniak/autoEDA-resources/blob/master/autoEDA-
paper/plots/SmartEDA/smarteda_report_target.pdf

17Access the R object with archivist::aread("mstaniak/autoEDA-resources/autoEDA-paper/9e12").

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=summarytools
https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=shiny
https://github.com/mstaniak/autoEDA-resources/blob/master/autoEDA-paper/plots/SmartEDA/smarteda_report_target.pdf
https://github.com/mstaniak/autoEDA-resources/blob/master/autoEDA-paper/plots/SmartEDA/smarteda_report_target.pdf

CONTRIBUTED RESEARCH ARTICLES 359

Height(cm) IQ
Mean 175.09 100.23

Std.Dev. 9.83 10.03
Min 146.30 68.00

Q1 168.20 93.00
Median 175.30 100.00

Q3 182.05 107.00
Max 207.20 137.00

MAD 10.38 10.38
IQR 13.83 14.00
CV 0.06 0.10

Skewness -0.08 0.08
SE.Skewness 0.08 0.08

Kurtosis -0.30 -0.04
N.Valid 1000.00 898.00
% Valid 100.00 89.80

Table 3: An example table of descriptive statistics generated by the summarytools::descr function
(summarytools v. 0.9.2).

The visdat package

The package visdat (Tierney, 2017) is maintained by rOpenSci. It consists of six functions that help
visualize:

1. variables types and missing data (vis_dat function),

2. types of each value in each column (vis_guess function),

3. clusters of missing values (vis_miss function),

4. differences between the two datasets (vis_compare function),

5. where given conditions are satisfied in the data (vis_expect function),

6. correlation matrix for the numerical variables (vis_cor function).

Each of these functions returns a single ggplot2 (Wickham, 2016) plot that shows a rectangular
representation of the dataset where the expected information is denoted by colors. An example of this
visualization18 can be seen in Figure 13.

The package includes a vignette Using visdat that provides examples for all package options.
Interestingly, it is the only package that use solely visual means of exploring the data.

The xray package

The xray (Seibelt, 2017) package has three functions for the analysis of data prior to statistical modeling:

1. detecting anomalies: missing data, zero values, blank strings, and infinite numbers (anomalies
function),

2. drawing and printing univariate distributions of each variable through histograms, bar plots
and quantile tables (distributions function),

3. drawing plots of variables over time for a specified time variable (timebased function).

Examples are presented in the readme file in the GitHub repository of the project (https://github.
com/sicarul/xray), but no vignette is attached to it. Plots19 generated by the package are presented
in Figure 14.

Other packages

As mentioned before, there are numerous R packages that aim to make data exploration faster or the
outputs more polished.

For table summaries of data that often include statistical tests, there are a few packages worth
mentioning. The package tableone (Yoshida and Bohn., 2018) provides a CreateTableOne function to

18Access the plot object with archivist::aread("mstaniak/autoEDA-resources/autoEDA-paper/3cfd")
19Access the associated table with archivist::aread("mstaniak/autoEDA-resources/autoEDA-paper/a3a3")

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=xray
https://github.com/sicarul/xray
https://github.com/sicarul/xray
https://CRAN.R-project.org/package=tableone

CONTRIBUTED RESEARCH ARTICLES 360

ID Rac
e

Age Sex

Heig
ht

(c
m

)

IQ
Sm

ok
es

In
co

m
e

Died

0

250

500

750

1000

O
bs

er
va

tio
ns

Type

character

double

integer

logical

NA

Figure 13: Example output of the visdat::vis_guess function (visdat v. 0.5.3), which displays types
of each value in the data frame and the missing values. We can see that the Age variable consists of
integer values, even though it is coded as a character.

FALSE

TRUE

0
20

0
40

0
60

0
80

0

Rows

S
m

ok
es

Bar Chart of Smokes

FALSE

TRUE

0
20

0
40

0

Rows

D
ie

d

Bar Chart of Died

21
22
23
26
27
29
32
33
35

Others
NA

0
10

0
20

0
30

0

Rows

A
ge

Bar Chart of Age

Asian
Bi−Racial

Black
Hispanic

Native
Other
White

NA

0
20

0
40

0
60

0

Rows

R
ac

e

Bar Chart of Race

Figure 14: Example output from the xray::distributions function (xray v. 0.2). Such plots are
created for each variable in the dataset along with a table of descriptive statistics.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 361

make publication-ready tables referred to as Table 1 - traditional name of tables that describe patients’
characteristics, usually stratified and including p-values from significance tests. The describe function
from describer package (Hendricks, 2015) prints a summary of a data.frame or a vector which
includes data types, counts and descriptive statistics. Similarly, the skimr (Quinn et al., 2019) package
summarises data frames, vectors and matrices. It can also handled grouped data frames. The summary
consist of data dimensions, missing and complete value counts, typical descriptive statistics and
simple histograms. A function of the same name from prettyR (Lemon and Grosjean, 2018) returns
descriptive statistics for each column in a data.frame. This package is focused on improving the
aesthetics of R statistical outputs. Similarly, the package Hmisc (Harrell Jr et al., 2019) includes a
describe function that displays typical descriptive statistics and number of unique and missing values
for each column. The plot method called on the result of the describe function returns a dot plot
for each categorical and a spike histogram for each continuous column. The scope of this package is
bigger than just Exploratory Data Analysis, as it includes many tools related to regression models.

There are also many packages related to data visualization. Two of them are particularly worth
mentioning. The ggfortify package (Tang et al., 2016) serves as a uniform interface to plots of different
statistical objects, including PCA results that can be used for data exploration and time series plots.
The autoplotly library (Tang, 2018) was built on top of ggfortify to provide automatically generated,
interactive visualizations of many statistical models. While these two packages are focused on
statistical modeling, they can be helpful in exploratory analysis and exemplify the potential of quick
and interactive visualization in R.

Two more packages are relevant to our interest. gpairs (Emerson and Green, 2014) and GGally
(Schloerke et al., 2018) packages implement the generalized pairs plot (Emerson et al., 2013). This
type of plot extends well known scatter plot matrices, that visualize bivariate relationships for many
variables, by handling both numerical and categorical variables. It is helpful in data exploration and
shares similarities to walls of histograms that can be found in automated EDA libraries.

Feature comparison

In this section, we compare how different packages address autoEDA tasks as described in Section
The tasks of Exploratory Data Analysis. A quick overview of the functionalities of different packages
can be found in Table 4.

Data description

Almost all packages contain functions for summarizing datasets. Tools that support data validity
analysis are less common.

Whole dataset summaries

Most packages that provide a whole dataset summary take a similar approach and present names
and types of variables, number of missing values and sometimes unique values or other statistics.
This is true for summarytools (dfSummary function), autoEDA (dataOverview function), dataMaid
(makeDataReport result), funModeling (df_status function), explore (describe function), ExPanDaR
(prepare_descriptive_table function), and DataExplorer (introduce function). These outputs are
sometimes mixed with univariate summaries. That is the case for one of the most popular summary-
type functions: the dfSummary functions from the summarytools package. An example is given in
Figure 15.

In the dlookr package, summaries for numerical variables and categorical variables are only
presented separately in the report (describe function).

The visdat package introduces the most original summaries of full dataset. The drawback of this
approach is that it is not well suited for high dimensional data. But for a smaller number of variables,
it gives a good overview of the dataset.

Data validity

Some packages can perform automated checks for the data, including at least outlier detection. The
dataMaid package’s main purpose is to find inconsistencies and errors in the data. It finds possible
outliers, missing values, low-frequency and possibly miscoded factor levels. All this information
can be summarised in a quality report. The dlookr package covers similar functionality. There are
two main differences: the report does not describe possibly miscoded factors, but outlier analysis is

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=describer
https://CRAN.R-project.org/package=skimr
https://CRAN.R-project.org/package=prettyR
https://CRAN.R-project.org/package=Hmisc
https://CRAN.R-project.org/package=ggfortify
https://CRAN.R-project.org/package=autoplotly
https://CRAN.R-project.org/package=gpairs
https://CRAN.R-project.org/package=GGally

CONTRIBUTED RESEARCH ARTICLES 362

Figure 15: An example of whole data frame description that includes univariate summary and simple
graphics. Created with the dfSummary function (summarytools package v. 0.9.3).

supplemented with plots showing variable distribution before and after removing the outliers. In all
cases, the analysis is rather simple, for example in zero-inflated variables non-zero values are treated
as outliers (dlookr). The ExPanDaR packages handles outliers by providing function that calculate
winsorized or trimmed mean. Other packages only provide information about the number of missing
values/outliers and identify columns that consist of a single value.

Data exploration

While multivariate analysis is rarely supported, there are many tools for descriptive and graphical
exploration of uni- and bivariate patterns in the data.

Univariate statistics

All the tools that support univariate analysis take a similar approach to univariate analysis. For
categorical variables, counts are reported and bar plots are presented, while histogram or boxplots
and typical descriptive statistics (including quantiles, sometimes skewness) are used for continuous
variables.

In dataMaid and dlookr packages, these plots are presented variable-by-variable in the report.
In other packages (DataExplorer, funModeling, SmartEDA, inspectdf) groups of plots of the same
type are shown together - as a wall of histograms or bar plots. Similarly, the explore package present
all the plots at once. The ExPanDaR package allows user to choose variables to display in a shiny
applications. Notably, dlookr reports skewness of variables and in case a skewed variable is found, it
shows the distribution after some candidate transformations to reduce the skewness have been applied.
This library also reports normality. The SmartEDA package also reports skewness and displays QQ
plots against normal distribution, but it does not provide any means of reducing skewness.

Bivariate statistics

The funModeling and SmartEDA packages only support calculating correlations between variables
and a specified target. DataExplorer and visdat packages can plot correlation matrices. They differ in
categorical variables treatment. Some packages require only numerical features (visdat). Interestingly,
in DataExplorer20, low-cardinality categorical features are converted to 0-1 variables and plotted
alongside numerical variables, as seen in Figure 16.

The arsenal package only presents variable summaries by levels of a chosen categorical variable.
The report from the autoEDA package consists of a limited number of bar plots/boxplots with target
variable as one of the dimensions. Similarly, in DataExplorer, dlookr, funModeling and SmartEDA,
scatter plots and box plots or histograms with a specified target variable on one of the axis can be
plotted. Additionally, funModeling and dlookr draw histograms/densities of continuous features
by the target. In shiny applications provided by ExPanDaR and explore packages, the user can
choose target variables and explanatory variables to display bivariate plots. Interestingly, scatter
plots provided by the ExPanDaR package can be extended to display multivariate dependencies

20Access the plot with archivist::aread("mstaniak/autoEDA-resources/autoEDA-paper/0526")

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 363

1 −0.03 0.03 −0.02 0.02 −0.08 0.08
1

−0.03 1 −1 0.04 −0.04 −0.08 0.08
0.03 −1 1 −0.04 0.04 0.08 −0.08

−0.02 0.04 −0.04 1 −1 0.04 −0.04
0.02 −0.04 0.04 −1 1 −0.04 0.04

−0.08 −0.08 0.08 0.04 −0.04 1 −1
0.08 0.08 −0.08 −0.04 0.04 −1 1

Height_cm_
IQ

Sex_Female
Sex_Male

Smokes_FALSE
Smokes_TRUE

Died_FALSE
Died_TRUE

H
ei

gh
t_

cm
_

IQ

S
ex

_F
em

al
e

S
ex

_M
al

e

S
m

ok
es

_F
A

LS
E

S
m

ok
es

_T
R

U
E

D
ie

d_
FA

LS
E

D
ie

d_
T

R
U

E

Features

F
ea

tu
re

s

−1.0 −0.5 0.0 0.5 1.0
Correlation Meter

Figure 16: Correlation plot as returned by the DataExplorer::plot_correlation function.

by mapping variables to size and color of the points. The funModeling package also has unique
options: drawing bar plots of discretized variables by the target and quantitative analysis for binary
outcome based on representativeness and accuracy. arsenal, summarytools and SmartEDA also
feature contingency tables. Moreover, exploreR and ExPanDaR packages use linear regression plots
and statistics to find relationships between the target and other variables. The explore package can
only handle binary targets, but it allows user to fit and plot a decision tree model.

Data cleaning and data transformation

The dataMaid package assumes that every decision regarding the data should be made by the
analyst and does not provide any tools for data manipulation after diagnosis. Most of the packages
only provide exploration tools. Exceptions are dlookr, funModeling, DataExplorer and exploreR.
DataExplorer provides tools for normalization, imputation by a constant, merging levels of factors,
creating dummy variables and transforming columns.

The dlookr package can create a report that presents different possible transformations of features.
Missing values can be imputed by mean/median/mode and distributions of variables before and
after the procedure can be compared. The same is done for imputation of outliers. Logarithmic and
root square transforms are proposed for skewed variables. Different methods of binning continuous
variables are also presented, including Weight of the Evidence.

The funModeling package can perform discretization of a variable using an equal frequency
criterion or gain ratio maximization. It can also scale variables to the interval [0, 1]. Outliers can be
treated using the Tukey or Hampel method.

Reporting

DataExplorer, dlookr, dataMaid, SmartEDA, explore and RtutoR have an option of generating a
report and saving it to a file. Such a report usually consists of all or most possible outputs of the
package. The plots and summaries are organized by the exploration task (for example univariate, then
bivariate analysis) and either simply variable-by-variable (dataMaid, dlookr) or grouped by variable
type (DataExplorer, SmartEDA). The autoEDA package generates a minimal report with bivariate
plots. Packages arsenal, funModeling, xray, summarytools and exploreR have an option of saving
outputs - plots or tables - to files.

Discussion

Automated EDA can be either directed towards a general understanding of a particular dataset or be
more model-oriented, serving as a foundation for good modeling. While presented packages include

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 364

some tools related to simple variable transformations, they are more focused on data understanding.
For this task, they have many advantages. In this section, we summarize the strong points of existing
tools and point out some possible improvements and new directions for autoEDA.

Strengths of autoEDA packages

1. The packages dlookr, dataMaid, DataExplorer, SmartEDA are capable of creating good quality
reports.

2. DataExplorer has very good visualizations for PCA.

3. DataExplorer handles categorical variables on correlation plots by creating dummy features,
which is a unique idea compared to other packages.

4. The visdat package, while probably not the best choice for high dimensional data, features
interesting take on initial whole dataset exploration.

5. The dlookr package is capable of selecting skewed variables and proposing transformations.
Some of the other packages display binned continuous variables, which can also help in seeing
visualizing dependencies.

6. dataMaid is a good tool for finding problems in the data. Thanks to the structure of check and
summarize functions results, discovered issues can be treated effectively.

7. For datasets with a moderate number of features, DataExplorer, funModeling, dlookr and
SmartEDA give a reasonable insight into variables distributions and simple relationships.

8. SmartEDA package provides a method of visualizing multivariate relationships - parallel
coordinate plot.

9. The exploreR package provides usefuls tool for assessing bivariate relationship through linear
regression.

We can see that tasks related to data quality and whole dataset summary are well by the existing
libraries. Getting the big picture of the data and finding possible data quality problems is easy,
especially with the dataMaid package. For classical applications, for example, statistical analyses
in medicine, the current tools provide very good tables, such as the ones from tableone or arsenal
packages, and uni-/bivariate plots. The inspectdf and summarytools packages can also provide quick
insights into a dataset. Univariate analysis can be performed either variable-after-variable (dlookr,
dataMaid), where we can see the statistical properties of each variable, or as groups of plots based
on variable type (DataExplorer, funModeling). Both ways can be useful for a reasonable number of
predictors. While multivariate tools are scarce, the available tools, PCA in DataExplorer and PCP in
SmartEDA, are very well done. Notably, the ExPanDaR package provides very high flexibility thanks
to the possibility of interactively choosing variables to display, adding new variables on-the-fly and
customizing plots in the shiny application.

Future directions and possible improvements

The field of autoEDA is growing. New packages are being developed rapidly - there are recent
additions from April and May. Features are added to existing packages and bugs are corrected, as new
issues are suggested by users on GitHub. At this moment, we can identify the following problems and
challenges.

All the presented tools can fail in situations with imperfect data. In particular, they are usually not
robust to issues like zero-variance/constant variables. Such problems are expected to be solved in the
nearest future, as suggested for example by issues in the GitHub repo of the DataExplorer package. In
general, error messages can be uninformative. Moreover, in some situations, they lack flexibility. For
example, in DataExplorer arguments can be passed to cor function, but not to corrplot function.

In case of walls of histograms (or bar plots), no selection is being done and no specific order is chosen
to promote most interesting distributions. The same is true for automatically created reports. This
problem is only addressed by the RtutoR package, which allows to select top k relevant variables.
Moreover, for high-dimensional data or high-cardinality factors, the plots often become unreadable
or impractical. Partial solutions to this problems are applied, for example DataExplorer removes too
large factors from the panels. More generally, many GitHub issues for the described packages are
related to customizing and improving plots and output tables. It is a challenging task due to the
diversity of possible input data and a major concern for developers of autoEDA packages.

Typical EDA tasks are limited to exploring bivariate relationships. Searching for higher dimen-
sional dependencies would be interesting, for example by adding color and size dimensions to the
plots, which was already done in the ExPanDaR package. For wall of plots type of display, such an

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 365

addition would result in a large number of new plots. Thus, it would require a proper method of
finding the most relevant visualization. Interactivity partially helps address this issue. PCA, parallel
coordinate plots and model summaries are supported, but each by a separate package. It is evident
that there is a shortage of multivariate tools. Univariate regression models can be plotted by the
exploreR package. The explore package plots decision trees for binary target variables. In other cases,
exploration based on simple statistical models (such as scatter plot smoothing) is not an option. Using
regression models and feature transformations to identify and measure relevant relationships could
improve bivariate or multivariate analyses supported by automated EDA.

Regarding variable transformation, only one of the packages addresses the issue of skewed
variables. Proposing transformations of continuous features other than binning would be helpful
and could improve visualizations, for example, scatter plots with skewed variables. Missing data
imputation more advanced than imputing a constant is delegated to other packages, although, it is
known that imputation by a constant is usually not the best method of missing values treatment.
Some of the above issues limit the packages’ usefulness in iterative work. Though, the comparisons of
transform and original features and the possibility of applying discovered transformations to data in
dlookr package are steps in the right direction.

Support for time-varying variables and non-classical (not IID) problems such as survival analysis
is limited or non-existent. For survival analysis, the automation level is low, but there are two notable
tools for summarizing dependencies. First is the recognized package survminer (Kassambara and
Kosinski, 2018), which helps visualize survival curves, while also displaying survival tables and
other information. The other tool is the cr17 package (Młynarczyk and Biecek, 2017), which includes
summarizeCR function that returns several tables and plots for competing risks analysis. More tools for
fast visualization of at least bivariate relationships in such problems would be a big help for analysts.
Cluster analysis is sometimes regarded a part of the EDA process, but it is not available in any of the
packages.

The tools available in R have similar range to other languages’ libraries, for example from Python.
Python packages such as Dora (Epstein, 2017) or lens (Zabalza and Engineers, 2018) also cover
feature-by-feature descriptive statistics and plots, bivariate visualizations of the relationships between
predictors and target variable, contingency tables, basic data transformations, and imputation. Tools
for visual data exploration supports also tools for visual model exploration like DALEX (Biecek, 2018)
or iml (Casalicchio et al., 2018). In both cases visual summaries help to quickly grasp key relations
between variables or between input features and model predictions.

Since EDA is both closely connected to feature engineering and based on visual insights, automated
EDA can draw from existing tools for automated feature extraction like SAFE ML (Gosiewska et al.,
2019) or TPOT (Olson et al., 2016) and visualization recommendations. When it comes to aiding visual
exploration of a dataset, standalone software carries possibilities beyond what we can expect from
R packages or analogous libraries in other languages. A recent notable example is DIVE (Hu et al.,
2018). It is an example of a growing number of tools for visual data exploration that aim to distinguish
between relevant and irrelevant visualization and help the analyst find the most interesting plots.
DIVE is one of the mixed-initiative visualization systems, meaning it uses both statistical properties of
the dataset and user interactions to find the relevant plots. Building recommendation systems into
autoEDA tools can help address the issue of dealing with high-dimensional data and multivariate
dependencies by letting the ML-based system deal with the complexity of a large number of candidate
visualizations. AI-assisted data exploration can be even faster and more efficient.

As autoEDA tools are still maturing, the efforts in the field are somewhat fragmented. Many
packages try to achieve similar goals, but they can be quite inconsistent. It is especially visible in the
multiplicity of names for the summary-type function to describe a whole data frame. As the libraries
develop, new standards and conventions should be proposed.

Acknowledgement

This work was financially supported by the NCN Opus grant 2016/21/B/ST6/02176.

Bibliography

P. Biecek. DALEX: Explainers for Complex Predictive Models in R. Journal of Machine Learning Research,
19(84):1–5, 2018. URL http://jmlr.org/papers/v19/18-416.html. [p365]

P. Biecek. Model Development Process. arXiv e-prints, 2019. URL https://arxiv.org/abs/1907.04461.
[p348]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=survminer
https://CRAN.R-project.org/package=cr17
https://CRAN.R-project.org/package=DALEX
https://CRAN.R-project.org/package=iml
http://jmlr.org/papers/v19/18-416.html
https://arxiv.org/abs/1907.04461

CONTRIBUTED RESEARCH ARTICLES 366

P. Biecek and M. Kosinski. archivist: An R package for managing, recording and restoring data analysis
results. Journal of Statistical Software, 82(11):1–28, 2017. URL https://doi.org/10.18637/jss.v082.
i11. [p349]

B. Bischl, J. Richter, J. Bossek, D. Horn, J. Thomas, and M. Lang. mlrMBO: A Modular Framework for
Model-Based Optimization of Expensive Black-Box Functions, 2017. [p347]

D. H. Caro and P. Biecek. intsvy: An R package for analyzing international large-scale assessment
data. Journal of Statistical Software, 81(7):1–44, 2017. URL https://doi.org/10.18637/jss.v081.i07.
[p347]

G. Casalicchio, C. Molnar, and B. Bischl. Visualizing the feature importance for black box models, 2018.
URL https://arxiv.org/abs/1804.06620 [p365]

P. Casas. Data Science Live Book. https://livebook.datascienceheroes.com/, 2018. Retrieved on
14 March 2019. [p356]

P. Casas. funModeling: Exploratory Data Analysis and Data Preparation Tool-Box Book, 2019. URL
https://CRAN.R-project.org/package=funModeling. R package version 1.7. [p356]

W. Chang, J. Cheng, J. Allaire, Y. Xie, and J. McPherson. Shiny: Web Application Framework for R, 2019.
URL https://CRAN.R-project.org/package=shiny. R package version 1.3.2. [p354, 358]

M. Coates. exploreR: Tools for Quickly Exploring Data, 2016. URL https://CRAN.R-project.org/
package=exploreR. R package version 0.1. [p355]

D. Comtois. Summarytools: Tools to Quickly and Neatly Summarize Data, 2019. URL https://CRAN.R-
project.org/package=summarytools. R package version 0.9.2. [p358]

D. Cook. Practical Machine Learning with H2O: Powerful, Scalable Techniques for Deep Learning and AI.
O’Reilly Media, 2016. [p347]

G. Csardi. Cranlogs: Download Logs from the ’RStudio’ ’CRAN’ Mirror, 2015. URL https://CRAN.R-
project.org/package=cranlogs. R package version 2.1.0. [p348]

B. Cui. DataExplorer: Automate Data Exploration and Treatment, 2019. URL https://CRAN.R-project.
org/package=DataExplorer. R package version 0.8.0. [p350]

D. B. Dahl, D. Scott, C. Roosen, A. Magnusson, and J. Swinton. Xtable: Export Tables to LaTeX or HTML,
2018. URL https://CRAN.R-project.org/package=xtable. R package version 1.8-3. [p349]

M. Dowle and A. Srinivasan. Data.table: Extension of ‘data.frame‘, 2019. URL https://CRAN.R-project.
org/package=data.table. R package version 1.12.0. [p358]

J. W. Emerson and W. A. Green. Gpairs: Gpairs: The Generalized Pairs Plot, 2014. URL https://CRAN.R-
project.org/package=gpairs. R package version 1.2. [p361]

J. W. Emerson, W. A. Green, B. Schloerke, J. Crowley, D. Cook, H. Hofmann, and H. Wickham. The
generalized pairs plot. Journal of Computational and Graphical Statistics, 22(1):79–91, 2013. URL
https://doi.org/10.1080/10618600.2012.694762. [p361]

N. Epstein. Dora: Exploratory data analysis toolkit for python, 2017. URL https://github.com/
NathanEpstein/Dora. Python library version 0.0.2. [p365]

M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. Efficient and robust
automated machine learning. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing Systems 28, pages 2962–2970. Curran Associates,
Inc., 2015. [p347]

J. Gassen. ExPanDaR: Explore Panel Data Interactively, 2018. URL https://CRAN.R-project.org/
package=ExPanDaR. R package version 0.3.0. [p352]

A. Gosiewska, A. Gacek, P. Lubon, and P. Biecek. SAFE ML: Surrogate Assisted Feature Extraction for
Model Learning. arXiv e-prints, 2019. URL https://arxiv.org/abs/1902.11035. [p365]

G. Grolemund and H. Wickham. R for Data Science, 2019. URL https://r4ds.had.co.nz/. [p348]

H2O.ai. H2O, 2019. version 3.22.1.6. [p347]

F. E. Harrell Jr, with contributions from Charles Dupont, and many others. Hmisc: Harrell Miscellaneous,
2019. URL https://CRAN.R-project.org/package=Hmisc. R package version 4.2-0. [p361]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.18637/jss.v082.i11
https://doi.org/10.18637/jss.v082.i11
https://doi.org/10.18637/jss.v081.i07
https://arxiv.org/abs/1804.06620
https://livebook.datascienceheroes.com/
https://CRAN.R-project.org/package=funModeling
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=exploreR
https://CRAN.R-project.org/package=exploreR
https://CRAN.R-project.org/package=summarytools
https://CRAN.R-project.org/package=summarytools
https://CRAN.R-project.org/package=cranlogs
https://CRAN.R-project.org/package=cranlogs
https://CRAN.R-project.org/package=DataExplorer
https://CRAN.R-project.org/package=DataExplorer
https://CRAN.R-project.org/package=xtable
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=gpairs
https://CRAN.R-project.org/package=gpairs
https://doi.org/10.1080/10618600.2012.694762
https://github.com/NathanEpstein/Dora
https://github.com/NathanEpstein/Dora
https://CRAN.R-project.org/package=ExPanDaR
https://CRAN.R-project.org/package=ExPanDaR
https://arxiv.org/abs/1902.11035
https://r4ds.had.co.nz/
https://CRAN.R-project.org/package=Hmisc

CONTRIBUTED RESEARCH ARTICLES 367

E. Heinzen, J. Sinnwell, E. Atkinson, T. Gunderson, and G. Dougherty. Arsenal: An Arsenal of ’R’
Functions for Large-Scale Statistical Summaries, 2019. URL https://CRAN.R-project.org/package=
arsenal. R package version 2.0.0. [p349]

P. Hendricks. Describer: Describe Data in R Using Common Descriptive Statistics, 2015. URL https:
//CRAN.R-project.org/package=describer. R package version 0.2.0. [p361]

X. Horn. autoEDA: Automated Univariate and Bivariate Exploratory Data Analysis, 2018a. R package
version 1.0. [p349]

X. Horn. Automated exploratory data analysis in r. https://www.linkedin.com/pulse/automated-
exploratory-data-analysis-r-xander-horn/, 2018b. Retrieved on 14 March 2019. [p350]

K. Hu, D. Orghian, and C. Hidalgo. Dive: A mixed-initiative system supporting integrated data
exploration workflows. In ACM SIGMOD Workshop on Human-In-the-Loop Data Analytics (HILDA).
ACM, 2018. URL https://doi.org/10.1145/3209900.3209910. [p365]

H. Jin, Q. Song, and X. Hu. Auto-Keras: Efficient Neural Architecture Search with Network Morphism.
arXiv e-prints, 2018. [p347]

A. Kassambara and M. Kosinski. Survminer: Drawing Survival Curves Using ’ggplot2’, 2018. URL
https://CRAN.R-project.org/package=survminer. R package version 0.4.3. [p365]

L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-Brown. Auto-weka 2.0: Automatic
model selection and hyperparameter optimization in weka. Journal of Machine Learning Research, 18
(1):826–830, 2017. [p347]

R. Krasser. Explore: Simplifies Exploratory Data Analysis, 2019. URL https://CRAN.R-project.org/
package=explore. R package version 0.4.3. [p354]

M. Kuhn and D. Vaughan. parsnip: A Common API to Modeling and Analysis Functions, 2019. URL
https://CRAN.R-project.org/package=parsnip. R package version 0.0.2. [p347]

J. Lemon and P. Grosjean. prettyR: Pretty Descriptive Stats, 2018. URL https://CRAN.R-project.org/
package=prettyR. R package version 2.2-2. [p361]

C. Molnar, B. Bischl, and G. Casalicchio. Iml: An r package for interpretable machine learning. JOSS, 3
(26):786, 2018. URL https://doi.org/10.21105/joss.00786. [p]

M. Młynarczyk and P. Biecek. Cr17: Testing Differences Between Competing Risks Models and Their
Visualisations, 2017. URL https://CRAN.R-project.org/package=cr17. R package version 0.1.0.
[p365]

A. Nair. RtutoR: Shiny Apps for Plotting and Exploratory Analysis, 2018a. URL https://CRAN.R-project.
org/package=RtutoR. R package version 1.2. [p357]

A. Nair. Automating basic eda. https://www.r-bloggers.com/automating-basic-eda/, 2018b. Re-
trieved on 25 March 2019. [p357]

V. Nijs. Radiant: Business Analytics Using R and Shiny, 2019. URL https://CRAN.R-project.org/
package=radiant. R package version 0.9.9.1. [p347]

R. S. Olson, R. J. Urbanowicz, P. C. Andrews, N. A. Lavender, L. C. Kidd, and J. H. Moore. Applications
of Evolutionary Computation: 19th European Conference, EvoApplications 2016, Porto, Portugal, March 30
– April 1, 2016, Proceedings, Part I, chapter Automating Biomedical Data Science Through Tree-Based
Pipeline Optimization, pages 123–137. Springer-Verlag, 2016. URL https://doi.org/10.1007/978-
3-319-31204-0_9. [p347, 365]

A. H. Petersen and C. T. Ekstrom. dataMaid: A Suite of Checks for Identification of Potential Errors in a
Data Frame as Part of the Data Screening Process, 2018. URL https://CRAN.R-project.org/package=
dataMaid. R package version 1.2.0. [p351]

S. Putatunda, K. Rama, D. Ubrangala, and R. Kondapalli. SmartEDA: An R Package for Automated
Exploratory Data Analysis. arXiv e-prints, art. arXiv:1903.04754, 2019. [p347, 358]

M. Quinn, A. McNamara, E. Arino de la Rubia, H. Zhu, and S. Ellis. Skimr: Compact and Flexible
Summaries of Data, 2019. URL https://CRAN.R-project.org/package=skimr. R package version
1.0.7. [p361]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=arsenal
https://CRAN.R-project.org/package=arsenal
https://CRAN.R-project.org/package=describer
https://CRAN.R-project.org/package=describer
https://www.linkedin.com/pulse/automated-exploratory-data-analysis-r-xander-horn/
https://www.linkedin.com/pulse/automated-exploratory-data-analysis-r-xander-horn/
https://doi.org/10.1145/3209900.3209910
https://CRAN.R-project.org/package=survminer
https://CRAN.R-project.org/package=explore
https://CRAN.R-project.org/package=explore
https://CRAN.R-project.org/package=parsnip
https://CRAN.R-project.org/package=prettyR
https://CRAN.R-project.org/package=prettyR
https://doi.org/10.21105/joss.00786
https://CRAN.R-project.org/package=cr17
https://CRAN.R-project.org/package=RtutoR
https://CRAN.R-project.org/package=RtutoR
https://www.r-bloggers.com/automating-basic-eda/
https://CRAN.R-project.org/package=radiant
https://CRAN.R-project.org/package=radiant
https://doi.org/10.1007/978-3-319-31204-0_9
https://doi.org/10.1007/978-3-319-31204-0_9
https://CRAN.R-project.org/package=dataMaid
https://CRAN.R-project.org/package=dataMaid
https://CRAN.R-project.org/package=skimr

CONTRIBUTED RESEARCH ARTICLES 368

A. Rushworth. Inspectdf: Inspection, Comparison and Visualisation of Data Frames, 2019. URL https:
//CRAN.R-project.org/package=inspectdf. R package version 0.0.3. [p356]

C. Ryu. Dlookr: Tools for Data Diagnosis, Exploration, Transformation, 2019. URL https://CRAN.R-
project.org/package=dlookr. R package version 0.3.8. [p352]

B. Schloerke, J. Crowley, D. Cook, F. Briatte, M. Marbach, E. Thoen, A. Elberg, and J. Larmarange.
GGally: Extension to ’ggplot2’, 2018. URL https://CRAN.R-project.org/package=GGally. R package
version 1.4.0. [p361]

P. Seibelt. Xray: X Ray Vision on Your Datasets, 2017. URL https://CRAN.R-project.org/package=xray.
R package version 0.2. [p359]

Y. Tang. Autoplotly: An r package for automatic generation of interactive visualizations for statistical
results. Journal of Open Source Software, 3, 2018. URL https://doi.org/10.21105/joss.00657.
[p361]

Y. Tang, M. Horikoshi, and W. Li. ggfortify: Unified Interface to Visualize Statistical Results of Popular
R Packages. The R Journal, 8(2):474–485, 2016. URL https://doi.org/10.32614/rj-2016-060.
[p361]

N. Tierney. Visdat: Visualising whole data frames. JOSS, 2(16):355, 2017. URL https://doi.org/10.
21105/joss.00355. [p359]

D. Ubrangala, K. Rama, and R. Kondapalli. SmartEDA: Summarize and Explore the Data, 2018. URL
https://CRAN.R-project.org/package=SmartEDA. R package version 0.3.0. [p357]

H. Wickham. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, 2016. ISBN 978-3-319-24277-4.
URL https://doi.org/10.1007/978-0-387-98141-3. [p359]

R. Wirth. Crisp-dm: Towards a standard process model for data mining. In Proceedings of the Fourth
International Conference on the Practical Application of Knowledge Discovery and Data Mining, pages
29–39, 2000. [p348, 350]

Y. Xie. Dynamic Documents with R and Knitr. Chapman and Hall/CRC, Boca Raton, Florida, 2nd edition,
2015. URL https://doi.org/10.18637/jss.v056.b02. [p358]

K. Yoshida and J. Bohn. Tableone: Create ’Table 1’ to Describe Baseline Characteristics, 2018. URL
https://github.com/kaz-yos/tableone. R package version 0.9.3. [p359]

V. Zabalza and F. Engineers. lens, 2018. URL https://doi.org/10.5281/zenodo.2593337. Python
library version 0.4.5. [p365]

J. J. Zhang and K. B. Storey. RBioplot: An Easy-to-Use R Pipeline for Automated Statistical Analysis
and Data Visualization in Molecular Biology and Biochemistry. PeerJ, 2016(9), 2016. URL https:
//doi.org/10.7717/peerj.2436. [p347]

Mateusz Staniak
Faculty of Mathematics and Information Science
Warsaw University of Technology
Poland
mtst@mstaniak.pl

Przemysław Biecek
Faculty of Mathematics, Informatics and Mechanics
University of Warsaw
Poland
Samsung R&D Institute Poland (SRPOL)
ORCiD: 0000-0001-8423-1823
przemyslaw.biecek@gmail.com

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=inspectdf
https://CRAN.R-project.org/package=inspectdf
https://CRAN.R-project.org/package=dlookr
https://CRAN.R-project.org/package=dlookr
https://CRAN.R-project.org/package=GGally
https://CRAN.R-project.org/package=xray
https://doi.org/10.21105/joss.00657
https://doi.org/10.32614/rj-2016-060
https://doi.org/10.21105/joss.00355
https://doi.org/10.21105/joss.00355
https://CRAN.R-project.org/package=SmartEDA
https://doi.org/10.1007/978-0-387-98141-3
https://doi.org/10.18637/jss.v056.b02
https://github.com/kaz-yos/tableone
https://doi.org/10.5281/zenodo.2593337
https://doi.org/10.7717/peerj.2436
https://doi.org/10.7717/peerj.2436
mailto:mtst@mstaniak.pl
mailto:przemyslaw.biecek@gmail.com

CONTRIBUTED RESEARCH ARTICLES 369

Task type Task a aE DE dM d EPD e eR fM i R SE s v x

Dataset

Variable types x x x x x x x x x x
Dimensions x x x x x x x x x
Other info x x x
Compare datasets x x x x

Validity

Missing values x x x x x x x x x x x x
Redundant col. x x x x x x x x
Outliers x x x x x
Atypical values x x x
Level encoding x

Univar.

Descriptive stat. x x x x x x x x x x x
Histograms x x x x x x x x x x x
Other dist. plots x x
Bar plots x x x x x x x x x x x
QQ plots x x x

Bivar.

Descriptive stat. x x x x x x
Correlation matrix x x x x x
1 vs each corr. x x x x
Time-dependency x x x
Bar plots by target x x x x x x x x
Num. plots by target x x x x x x
Scatter plots x x x x x
Contigency tables x x x x
Other stats. (factor) x x x

Multivar.
PCA x
Stat. models x x x
PCP x

Transform.

Imputation x x x
Scaling x x x
Skewness x
Outlier treatment x x x x
Binning x x x
Merging levels x x

Reporting Reports x x x x x x x
Saving outputs x x x x x

Table 4: Overview of functionalities of all described packages. Package names were shortened to
make the table as compact as possible. a denotes arsenal, aE - autoEDA, DE - DataExplorer, dM -
dataMaid, d - dlookr, EPD - ExPanDaR, e - explore, eR - exploreR, fM - funModeling, i - inspectdf,
R - RtutoR, SE - SmartEDA, s - summarytools, v - visdat, x denotes xray. Num. plots by target refers
to either histogram, density, violin or box plot.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 370

HCmodelSets: An R Package for
Specifying Sets of Well-fitting Models in
High Dimensions
by Henrique Hoeltgebaum and Heather Battey

Abstract In the context of regression with a large number of explanatory variables, Cox and Battey
(2017) emphasize that if there are alternative reasonable explanations of the data that are statistically
indistinguishable, one should aim to specify as many of these explanations as is feasible. The standard
practice, by contrast, is to report a single effective model for prediction. This paper illustrates the R
implementation of the new ideas in the package HCmodelSets, using simple reproducible examples
and real data. Results of some simulation experiments are also reported.

Introduction

In a recent paper Cox and Battey (2017) outline a procedure for regression analysis when there are
more explanatory features than study individuals, a situation that arises particularly in genomics.
Their emphasis is on understanding the true data-generating mechanism rather than prediction.
The distinction is important. For prediction there may be several models that are essentially equally
effective and any choice between them is rather arbitrary. On the other hand, since different well-fitting
models typically have different subject-matter implications, it is insufficient, and often misleading,
to report an arbitrary one. Even if the immediate goal is prediction, a causal explanation is likely to
produce more stable and more generalizable predictions. A key message of Cox and Battey (2017) is
that if there are several models that fit the data essentially equally well, one should aim to specify as
many as is feasible. This view is in contraposition to that implicit in the use of the lasso (Tibshirani,
1996) and other variable selection methods, which produce a single model effective for prediction.

The methods of Cox and Battey (2017) are summarized in Section Methodology. Software imple-
menting these ideas in R has been written by Hoeltgebaum (2018) and is available in the HCmodelSets
package. The software supports most widely used models of dependency including the linear model,
the linear logistic model for binary data (Cox, 1958), and the proportional hazards model fitted by
partial likelihood (Cox, 1972, 1975b). The present article aims to provide a detailed guide to usage
based on simple examples.

Methodology

Suppose that data are available on n units, for each of which an outcome y is observed along with
a vector x of d potential explanatory variables, where d is much larger than n. For progress an
assumption of sparsity is needed, and the most explicit and interpretable such assumption is that
relatively few of the potential explanatory features have a real effect, an assumption central to the
formulation of the lasso and similar penalized regression procedures.

Cox and Battey (2017) suggest a different approach whose aim is essentially a confidence set of
models. There are three stages to a discussion, and conditionally on the first two, the resulting set of
models can be made to have the formal statistical properties associated with confidence sets.

In the first stage, an initial reduction is made in which a large number of variables are discarded on
the basis that they have no explanatory power, or that any explanatory power that they appear to have
is explained away by other variables. The assessment is made by fitting a suitable low-dimensional
regression model several times to each variable, each time alongside a different set of k companion
variables. A variable is retained for further study if it satisfies a particular criterion in at least half of the
analyses in which it appears. The sets of variables to be considered together are specified by a partially
balanced incomplete block design (Yates, 1936) in which variable indices are arranged in a hypercube
of appropriate dimension. This initial dimension is determined by d and a constraint on k to mitigate
the effect of dependence between p-values, or the associated test statistics, in any single analysis.
Ideally k will be between 10 and 15; see §7 of Battey and Cox (2018) for a discussion of this choice.
Successive reductions are made using arrangements in successively lower-dimensional hypercubes,
where the criterion for retaining variables in each stage is guided by the theoretical discussion of
Battey and Cox (2018), the need to keep the number of rows, columns, etc., of successive hypercubes
ideally ≤ 15, and the requirement for a degree of stability over rerandomization of the variable indices
in the hypercube. Thus, judgement is required at various stages.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=HCmodelSets

CONTRIBUTED RESEARCH ARTICLES 371

On the resulting set of variables, of which there will be roughly 10-20 by construction, an ex-
ploratory analysis is performed, of the kind that is standard in much statistical work. For instance,
inspection of interaction plots or probability plots of t statistics. The objective is to detect possible
nonlinearities or outliers.

All variables retained through the reduction phase and any squared or interaction terms suggested
at the exploratory phase comprise the so called comprehensive model. All low dimensional subsets of
the comprehensive model are then tested for their compatibility with the data using a likelihood ratio
test, and all models that pass this test are reported. If, among this set, there are models that contain
interaction terms without the corresponding main effects, the main effects are added.

For the resulting sets of models to have the formal statistical properties associated with confidence
sets, conditional on the first two phases, it is necessary to either split the sample, see Cox (1975a) for
a discussion, or to adjust standard tests of model adequacy in account of the alternative hypothesis
being selected in the light of the data.

Illustration of usage: a simple reproducible example

Some simple data generating processes

We illustrate the functions available in HCmodelSets, and their appropriate usage, using simple
examples. These functions include DGP, which can be used to reproduce the simulation study of Battey
and Cox (2018) and to explore further sensitivities.

library(HCmodelSets)
dgp = DGP(s=5, a=3, sigStrength=1, rho=0.9, n=100,

intercept=5, noise=1, var=1, d=1000, DGP.seed = 2018)

This generates normally distributed responses as Yi = µ + xT
i β + εi (i = 1, . . . , n) where, in the present

example n = 100, µ = intercept = 5, the εi are independently standard normally distributed and
the xi are realizations of a d = 1000 dimensional normal random vector of mean zero and covariance
matrix Σ. The vector of regression coefficients β is sparse in the sense that only s = 5 entries are
non-zero, equal to sigStrength = 1, and Σ is such that a correlation rho = 0.9 is induced between the
corresponding entries of xi, the so called signal variables, and among a = 3 of the remaining variables.
All potential explanatory variables have variance var = 1. The results of the subsequent analysis can
be reproduced by setting DGP.seed = 2018 as above, but this argument is not needed.

With the appropriate modification to its arguments, the DGP function also generates survival times
from a proportional hazards model with Weibull baseline hazard. The hazard function for the ith
individual is

hi(t; β) = κτ(τt)κ−1 exp{xT
i β},

where h(t) = κτ(τt)κ−1 is the Weibull hazard function. From this, the density and distribution
functions of survival times conditional on xi are obtained as

fi(t; β) = κτ(τt)κ−1 exp{xT
i β} exp{−exT

i β(τt)κ},

Fi(t; β) = exp{−exT
i β(τt)κ}.

Thus, given covariates xi, uncensored survival times from the above proportional hazards model are
generated as Ti = {− log U/(τκexT

i β)}1/κ , where U is a uniform random variable on (0, 1).

In the section entitled Illustration of performance in some idealized settings a minor modification
to the previous code is given to generate (potentially censored) survival time data from this model.
Simulation results for the procedure fitted to both types of data are also reported in the same section.

Reduction phase

Based on the previous output, typical usage of the function Reduction.Phase is:

out = Reduction.Phase(X = dgp$X,Y = dgp$Y,
family = gaussian, seed.HC = 1012)

In particular, this arranges the indices of the columns of dgp$X in a hypercube of appropriate dimension,
and fits a linear regression model to each set of variables indexed by the rows, columns, etc., of the
hypercube. Other choices of the argument family are illustrated in section entitled Real example. The
arrangement of the variable indices in the hypercube is at random. However, seed.HC = 1012 allows

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 372

the results of the analyses reported here to be reproduced. If the argument dmHC is left unspecified (the
recommendation), as in this example, the dimension of the initial hypercube is set to be the smallest
dimension such that the number of rows, columns etc., is no greater than 15. Thus, the present example
initially has the 1000 variable indices arranged in a 10× 10× 10 cube.

Because the comprehensive model obtained from the full data achieves better fit than an arbitrary
model embedding the one to be tested, a test of adequacy of the smaller model rejects too often in
hypothetical repeated application. It is therefore usually sensible to split the sample in two and use,
say 70%, for the reduction and exploratory phases, and the remaining 30% for construction of the
conditional confidence sets of models. The appropriate modification to the previous code, so that only
the first 70 observations are used for the reduction phase, is:

outSplit1 = Reduction.Phase(X = dgp$X[1:70,],
Y = dgp$Y[1:70], family = gaussian, seed.HC = 1012)

If the initial sample size is rather small and the model to be fitted is non-Gaussian, the sample
size available for the final phase of the procedure is likely to be too small for the distribution of the
maximum likelihood estimator to be well-approximated by its asymptotic distribution. Correspond-
ingly, the coverage probability of the confidence sets of models conditional on the reduction phase
is likely to differ from the nominal value. This could be mitigated through a Bartlett correction to
the likelihood ratio statistic, but this has not been implemented in the current version of the package.
See Bartlett (1937); Barndorff-Nielsen and Cox (1984) and Barndorff-Nielsen and Cox (1994) (p133,
p152–53) for a discussion of the theory of Bartlett correction.

A strong reassurance over the security of one’s conclusions is given if the set of retained vari-
ables does not alter much upon rerandomization of the arrangement of the variable indices in the
(hyper)cube, and this is a suitably cautious check in practice. Indeed, if the answers so obtained differ
appreciably, the suggestion is that too severe a reduction has been performed. Thus we consider also
the outcome outSplit2, obtained when no argument seed.HC is provided, so that variable indices are
arranged in their original order. Some variables will appear in all or almost all analyses.

outSplit2 = Reduction.Phase(X = dgp$X[1:70,],
Y = dgp$Y[1:70], family = gaussian)

The outcomes outSplit1 and outSplit2 of the previous two analyses are two lists of variable
indices from each successive reduction. Only the latter reductions are of ultimate interest, but the
intermediate reductions should be inspected to ensure that the number of variables retained is not
so large as to be detrimental to the subsequent stage of the reduction. In the present example, the
final lists of variables are arrived at by an implementation of the default decision rules, to some extent
guided by the analysis of Battey and Cox (2018). These are to retain variables if they are among the
two most significant in at least half the analyses in which they appear in the first stage reduction, and
if they are significant at the 1% level in at least half the analysis in which they appear in subsequent
reductions. The 1% threshold is arbitrary and judgement should be exercised if the output of such an
analysis is unreasonable, for instance if too many variables are retained in any stage of the reduction.
This is particularly important when the initial number of variables is very large, so that variables are
initially arranged in a four or five dimensional hypercube. The Real example illustrates appropriate
use of judgement through the optional argument vector.signif of the Reduction.Phase function.
The objective of the reduction phase is to reduce the number of candidate signal variables to ideally
not more than 20, to be subjected to more detailed joint analysis.

The sorted lists of retained variables using the default decision rules and the two initial arrange-
ments of variables indices in the cube are:

v1=sort(outSplit1$List.Selection$`Hypercube with dim 2`$numSelected1)
v2=sort(outSplit2$List.Selection$`Hypercube with dim 2`$numSelected1)
v1
#> [1] 46 51 66 156 229 263 272 319 423 496 531 559 735 804 827 897 929 984 1000
v2
#> [1] 46 156 272 291 319 397 531 559 642 827 897 929 984

Of these variables, ten are in common, an appreciable overlap. The indices of the five true signal
variables are contained in v1 and v2 (and their intersection). These are

dgp$TRUE.idx
#> [1] 46 531 559 897 929

Usage of the other functions in the package is illustrated using the output of the second analysis, i.e.,
the variables in v2.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 373

An alternative to the reduction phase is to use a deliberately undertuned lasso fit. The lasso is
typically fitted by the coordinate descent algorithm in general regression settings, or by the least angle
regression algorithm in the linear model. Thus, the practical implementation of the lasso is essentially
forward selection. By contrast, the reduction phase of Cox and Battey (2017) is a version of backward
elimination. Both forward selection and backward elimination are likely to be effective in many cases,
although a theoretical elucidation of the conditions on the design matrix to ensure this has not been
attempted. If the objective is to obtain a superset of the comprehensive model, as here, backward
elimination has advantages in simpler settings. See Illustration of performance in some idealized
settings for an empirical comparison in idealized examples.

The lasso, fitted by coordinate descent as implemented in the R package glmnet, and undertuned
to produce at least the same number of variables as in v2, is obtained by

library(glmnet)
lasso.fit = glmnet(x = dgp$X[1:70,],y = dgp$Y[1:70])
n.coefs = apply(coef(lasso.fit), 2, function(x) length(which(x!=0)))
idx.coefs = which(n.coefs == length(v2))
if(length(idx.coefs)==0){

idx.coefs = min(which(n.coefs >= length(v2)))}
lasso.var = which(coef(lasso.fit)[,idx.coefs[1]]!=0)

In the present example, the associated variables excluding the intercept, are

lasso.var[-1]-1
#> [1] 40 46 161 341 384 511 531 559 827 897 929 984

Seven of these are in common with v1 and v2, including the five signal variables.

Exploratory phase

The analysis discussed by Cox and Battey (2017) is intended to be largely exploratory, and a key
aspect of the procedure is that it allows informal checks, standard in much statistical work. The
function Exploratory.Phase automates some, but by no means all, of what would typically take place
in an exploratory data analysis, and is provided as a rough guide. Usage of the silent argument is
illustrated in the Real example section, in which silent = FALSE forces a certain degree of judgement
to be exercised.

The following code detects potentially important squared or interaction terms among the variables
whose indices are stored in v2.

out.exp.phase = Exploratory.Phase(X = dgp$X[1:70,],
Y = dgp$Y[1:70], list.reduction = v2,
family = gaussian, signif = 0.01)

Neither squared terms nor interaction terms are suggested as potentially important.

Model selection phase

The final stage of the procedure is to test all low-dimensional subsets of the comprehensive model
for compatibility with the data. The comprehensive model is that containing all variables from the
reduction phase and any squared or interaction terms suggested at the exploratory phase, of which
there are none in the present example. Usage is:

out.MS = ModelSelection.Phase(X = dgp$X[71:100,],
Y = dgp$Y[71:100], list.reduction = v2, signif = 0.01)

The appropriate modification to the arguments of this function when squared or interaction terms are
to be considered is illustrated in the Real example section.

The above finds all models of dimension 5 or smaller whose likelihood ratio test against the com-
prehensive is not rejected at the signif = 0.01 significance level. The optional argument modelSize
specifies the maximum size of the models to be searched over. The true model appears in the set of
all well-fitting models identified, i.e., in the list of models displayed by out.MS$goodModels$`Model
Size 5`. All models that are found to be compatible with the data should be reported. Specifically, the
output of the function ModelSelection.Phase should be used to produce (sometimes large) tables like
those appearing in the supplementary file of Cox and Battey (2017), available at:
https://www.pnas.org/content/pnas/suppl/2017/07/20/1703764114.DCSupplemental

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=glmnet
https://www.pnas.org/content/pnas/suppl/2017/07/20/1703764114.DCSupplemental

CONTRIBUTED RESEARCH ARTICLES 374

Provided that the sample is split as in the example above, such tables constitute a conditional
confidence set of models. Conditional on the reduction phase, these have, in principle, exact nomi-
nal coverage in the linear regression model and asymptotically nominal coverage in more general
regression models fitted by maximum likelihood.

Illustration of performance in some idealized settings

The present section explores empirical sensitivities of the procedure to modifications to the data
generating mechanism. Several aspects are of interest: sensitivity of the reduction phase as described
by Cox and Battey (2017) (a version of backward elimination) and of the undertuned lasso (a version of
forward selection) in terms of retaining the true model in its entirety; efficacy of the model confidence
sets in terms of their coverage probabilities and size. Full sample and split sample properties of both
approaches are considered.

It is an open problem to elucidate the conditions on the design matrix and signal strength in
order for the procedure based on traversal of successively lower dimensional hypercubes to retain a
reasonably sized superset of the true set of signal variables with quantifiable high probability. Some
related discussion for the undertuned lasso is given by Bühlmann and Van De Geer (2011) chapter 7
and Belloni and Chernozhukov (2013).

In the tables below, S is the true set of signal variables, Ŝ is the set of variables surviving the
reduction phase, M is the set of low-dimensional models whose likelihood ratio test against the
comprehensive model is not rejected at the 1% level. In all the simulation experiments considered,
the first stage of the reduction phase arranges the 1000 variables in a 10× 10× 10 cube and retains
variables if they are among the two most significant in at least two of the three analyses in which they
appear. The second stage reduction is tuned so that approximately 10-20 variables are retained through
the reduction phase, however the associated threshold for the significance tests is fixed across Monte
Carlo replications so that the number of retained variables is random. Results for the linear model
with a sample of size n = 100 are reported in Table 1, where ‘CB’ is the procedure of Cox and Battey
(2017) implemented using HCmodelSets package. The threshold of the second-stage significance test
is 0.1%.

pr(S ⊆ Ŝ) pr(S ∈ M) E|M\S|

vS0 vC0 ρ
signal undertuned undertuned CB CB CB CB CB CB
noise lasso (full) lasso (split) (full) (split) (full) (split) (full) (split)

1 1 0.9 1 1.00 (0.04) 0.99 (0.08) 1.00 (0.00) 1.00 (0.00) 0.57 (0.49) 0.98 (0.14) 6.16 (7.25) 16.3 (28.6)
1 1 0.9 0.6 0.94 (0.24) 0.84 (0.37) 0.98 (0.15) 0.83 (0.37) 0.41 (0.49) 0.83 (0.38) 4.93 (4.82) 16.1 (31.5)
1 1 0.5 1 0.92 (0.27) 0.87 (0.34) 1.00 (0.00) 1.00 (0.00) 0.56 (0.50) 0.98 (0.13) 4.63 (5.89) 8.73 (18.7)
1 1 0.5 0.6 0.85 (0.36) 0.75 (0.43) 0.99 (0.11) 0.85 (0.35) 0.39 (0.49) 0.84 (0.36) 2.29 (2.73) 8.68 (19.2)

1 3 0.9 1 1.00 (0.04) 0.99 (0.08) 1.00 (0.04) 0.99 (0.08) 0.62 (0.49) 0.96 (0.19) 24.6 (24.8) 77.2 (126)
1 3 0.9 0.6 0.92 (0.27) 0.79 (0.41) 0.97 (0.16) 0.81 (0.39) 0.48 (0.50) 0.79 (0.41) 22.7 (18.4) 44.6 (78.1)
1 3 0.5 1 0.97 (0.16) 0.92 (0.27) 1.00 (0.00) 1.00 (0.00) 0.59 (0.49) 0.98 (0.13) 10.9 (14.0) 14.3 (36.1)
1 3 0.5 0.6 0.89 (0.31) 0.82 (0.39) 0.97 (0.17) 0.87 (0.34) 0.36 (0.48) 0.85 (0.35) 3.66 (5.01) 10.3 (25.0)

5 1 0.9 1 0.98 (0.15) 0.95 (0.21) 1.00 (0.00) 1.00 (0.00) 0.94 (0.23) 0.98 (0.13) 7.15 (7.19) 80.4 (85.7)
5 1 0.9 0.6 0.79 (0.40) 0.57 (0.50) 1.00 (0.04) 0.98 (0.15) 0.89 (0.31) 0.96 (0.19) 40.9 (35.7) 146 (149)
5 1 0.5 1 1.00 (0.04) 0.98 (0.15) 1.00 (0.00) 1.00 (0.00) 0.96 (0.20) 0.99 (0.11) 0.01 (0.10) 8.64 (13.0)
5 1 0.5 0.6 0.99 (0.10) 0.96 (0.21) 1.00 (0.00) 0.99 (0.10) 0.88 (0.32) 0.98 (0.15) 1.18 (2.04) 51.6 (64.2)

5 3 0.9 1 0.99 (0.11) 0.95 (0.22) 1.00 (0.00) 1.00 (0.00) 0.94 (0.24) 0.98 (0.15) 16.7 (18.4) 212 (202)
5 3 0.9 0.6 0.77 (0.42) 0.51 (0.50) 1.00 (0.06) 0.96 (0.20) 0.86 (0.35) 0.94 (0.24) 101 (88.2) 418 (351)
5 3 0.5 1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.96 (0.20) 0.98 (0.14) 0.01 (0.10) 20.0 (35.0)
5 3 0.5 0.6 1.00 (0.06) 0.98 (0.13) 1.00 (0.00) 0.99 (0.12) 0.89 (0.32) 0.96 (0.20) 2.85 (4.03) 123 (137)

Table 1: Monte Carlo estimates and their estimated standard errors (in parentheses) from 500 Monte
Carlo draws from the linear model with parameter combinations as displayed. In the split sample
case, 70 observations are used for reduction and 30 for construction of the confidence sets of models.

The same experiment is performed on survival time data, generated according to a proportional
hazards model with Weibull baseline hazard as described in the section entitled Some simple data
generating processes. The survival times are censored, with the censoring times generated from an
exponential distribution of rate 0.1. In particular, our previous code fragment is modified so that in
each Monte Carlo replication, data are generated as:

dgp = DGP(s=Vs0, a=Vc0, sigStrength=sigNoise, rho=corr, n=150, intercept=0,
DGP.seed = (n.rand + cont.error),
var=1, d=1000, type.response = "S", scale=1, shape=1, rate=0.1)

adopting the values c(1,5) for Vs0, c(1,3) for Vc0, c(0.9,0.5) for corr and c(1,0.6) for sigNoise
as previously done for the linear theory model in Table 1.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 375

In the notation of Section Some simple data generating processes, the parameters of the Weibull
distribution are set as τ = scale = 1, and κ = shape = 1. Knowledge of the baseline hazard is
ignored and the data are fit by partial likelihood as implemented in the coxph function of the survival
package. Summary statistics over 500 Monte Carlo replications are reported in Table 2. The threshold
of the second-stage significance test is 0.25%.

pr(S ⊆ Ŝ) pr(S ∈ M) E|M\S|

vS0 vC0 ρ
signal undertuned undertuned CB CB CB CB CB CB
noise lasso (full) lasso (split) (full) (split) (full) (split) (full) (split)

1 1 0.9 1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.03 (0.17) 0.95 (0.23) 54.1 (92.2) 1273 (1490)
1 1 0.9 0.6 0.99 (0.12) 0.94 (0.24) 1.00 (0.04) 0.97 (0.17) 0.00 (0.04) 0.89 (0.31) 15.6 (57.3) 1863 (2264)
1 1 0.5 1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.04 (0.21) 0.95 (0.21) 57.4 (97.4) 962 (1085)
1 1 0.5 0.6 1.00 (0.00) 0.98 (0.13) 0.99 (0.08) 0.96 (0.20) 0.00 (0.00) 0.90 (0.31) 13.0 (31.6) 1734 (2374)

1 3 0.9 1 1.00 (0.00) 0.99 (0.09) 1.00 (0.00) 1.00 (0.04) 0.07 (0.25) 0.95 (0.22) 102 (209) 2468 (2738)
1 3 0.9 0.6 0.97 (0.18) 0.90 (0.30) 0.98 (0.13) 0.95 (0.21) 0.01 (0.09) 0.91 (0.29) 45.0 (98.5) 3182 (3700)
1 3 0.5 1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.07 (0.25) 0.95 (0.22) 105 (158) 1094 (1090)
1 3 0.5 0.6 1.00 (0.00) 1.00 (0.06) 1.00 (0.00) 0.97 (0.17) 0.00 (0.04) 0.91 (0.28) 18.6 (51.1) 1955 (2859)

5 1 0.9 1 0.98 (0.15) 0.90 (0.30) 1.00 (0.00) 1.00 (0.04) 0.78 (0.41) 0.91 (0.29) 30.9 (46.5) 916 (1165)
5 1 0.9 0.6 0.79 (0.41) 0.52 (0.50) 1.00 (0.00) 0.99 (0.08) 0.59 (0.49) 0.94 (0.24) 136 (180) 2216 (2390)
5 1 0.5 1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.80 (0.40) 0.91 (0.28) 0.00 (0.09) 59.0 (118)
5 1 0.5 0.6 1.00 (0.00) 0.99 (0.12) 1.00 (0.00) 1.00 (0.04) 0.54 (0.50) 0.90 (0.31) 1.46 (4.22) 382 (572)

5 3 0.9 1 0.98 (0.13) 0.86 (0.35) 1.00 (0.00) 1.00 (0.04) 0.80 (0.40) 0.86 (0.35) 46.4 (66.2) 1383 (1682)
5 3 0.9 0.6 0.71 (0.45) 0.48 (0.50) 1.00 (0.00) 0.99 (0.11) 0.63 (0.48) 0.90 (0.30) 242 (310) 2846 (2603)
5 3 0.5 1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.83 (0.38) 0.87 (0.34) 0.09 (1.03) 73.4 (175)
5 3 0.5 0.6 1.00 (0.00) 0.99 (0.11) 1.00 (0.00) 1.00 (0.04) 0.59 (0.49) 0.90 (0.30) 2.35 (5.25) 575 (925)

Table 2: Monte Carlo estimates and their estimated standard errors (in parentheses) from 500 Monte
Carlo draws from the Weibull proportional hazards model with parameter combinations as displayed.

The results are qualitatively similar to those for the linear model. The main difference is that
the coverage probability of the confidence sets of models, conditional on all variables being retained
through the first stage reduction, is lower than the 0.99 nominal level. The reason is that the distribution
theory underpinning the associated likelihood ratio tests is, in principle, exact for the linear model
and is at best asymptotically valid for most other types of regression model. This could be mitigated
through a Bartlett correction to the likelihood ratio statistic, but this has not been implemented in
the current version of the package. The results of Table 2 are for n = 150 with 100 observations
used for reduction and 50 for construction of confidence sets of models in the split sample case. As
mentioned previously, adjustments to the likelihood ratio statistic to improve the χ2 approximation to
its distribution are possible, but these have not been implemented in HCmodelSets.

Real example

We now illustrate the use of HCmodelSets to construct conditional confidence sets of models for the
survival times of lymphoma patients. The data1 are from the study of Alizadeh et al. (2000) and also
used by Simon et al. (2011). There are measurements on d = 7399 genetic variants for n = 240 patients.
The indices of these variables are arranged in a 4 dimensional hypercube, which is the default starting
dimension. As before, the data are divided into those to be used in the reduction and exploratory
phases and those to be used in the model selection phases.

data(LymphomaData)
x = t(patient.data$x)
y = patient.data$time
status = patient.data$status
Data Splitting
X.in = x[1:168,]
Y.in = y[1:168]
status.in = status[1:168]
Y = cbind(Y.in,status.in)
X.out = x[169:240,]
Y.out = y[169:240]
status.out = status[169:240]

The first stage decision rule is to retain all variables that are among the two most significant in at
least two of the three analyses in which they appear. The decision rules for the remaining reduction
stages are specified by the argument vector.signif in the Reduction.Phase function:

1Avaliable at https://www.jstatsoft.org/article/view/v039i05

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=survival
https://www.jstatsoft.org/article/view/v039i05

CONTRIBUTED RESEARCH ARTICLES 376

library(HCmodelSets)
out.1 = Reduction.Phase(X = X.in,Y = Y,Cox.Hazard = TRUE,

vector.signif = c(2,0.0025,0.001), seed.HC = 2)

The choice vector.signif = c(2,0.0025,0.001) means that the second stage decision rule retains
variables if they are significant at the 0.25% level in at least two of the three analyses in which they
appear and the third stage decision rule retains variables if they are significant at the 0.1% level in
at least one of the two analyses in which they appear. This choice was determined by checking that
the numbers of variables retained through each stage of the reduction is sensible, that the number
of variables ultimately retained is within the target range, and that the outcome is not too sensitive
to changes to the original arrangement of the variable indices in the hypercube. The set of variables
ultimately retained is

v1 = out.1$List.Selection$`Hypercube with dim 2`$numSelected1
sort(v1)
#> [1] 1188 1660 1825 2437 2879 2902 3172 3177 3800 3814 3822 3824 5027 6134 6706 6896 7357

Rerandomizing the variable indices in the hypercube produces the set of variables

out.2 = Reduction.Phase(X = X.in,Y = Y,Cox.Hazard = TRUE,
vector.signif = c(2,0.0025,0.001), seed.HC = 11)

v2 = out.2$List.Selection$`Hypercube with dim 2`$numSelected1
sort(v2)
#> [1] 1188 1675 1714 1825 1984 2437 2900 3172 3800 3811 3818 3819 3822 3833 4126

5027 6134 6706 7069 7357

Ten of the variables in the original list of 17 are also in the second list. The lasso, undertuned
to select at least the same number of variables as in v1 produces an overlap of 8 variables with v1,
namely,

library(glmnet)
lasso.fit = glmnet(X.in, Surv(Y.in,status.in),

family = "cox", alpha = 1)
n.coefs = apply(coef(lasso.fit), 2, function(x) length(which(x!=0)))
idx.coefs = which(n.coefs == length(v1))
if(length(idx.coefs)==0){

idx.coefs = min(which(n.coefs >= v1))}
lasso.var = which(coef(lasso.fit)[,idx.coefs[1]]!=0)
lasso.var
#> [1] 394 1072 1188 1456 1662 1681 1825 2902 3172 3180 3801

3822 4882 5027 6134 6896 7357

The variable 3801, found by the lasso, has empirical correlation greater than 0.9 with variable 3800 in
v1 and v2.

The exploratory phase now uses significance tests as an informal guide to suggesting potential
squared or interaction terms. For each of the variables in v1, a regression is fitted by partial likelihood
with its squared term added. Extreme t statistics on squared terms suggest a potentially important
effect. The linear interactions of pairs of variables are checked in a similar way, with silent = FALSE
in Exploratory.Phase producing plots of the response variable as a function of pairs of variables for
any interaction suggested as potentially important. Example usage is

out.exp.phase = Exploratory.Phase(X=X.in,Y=Y,
list.reduction = v1, silent = FALSE,
Cox.Hazard = TRUE, signif=0.01)

which produces a sequence of plots and questions of the form

Discard interaction term? [Y/N].

For illustrative purposes, we answer N (no) to the questions for which the plots are displayed in
Figure 1, although the suggestion from an interaction plot ought to be much stronger to justify an
interaction’s inclusion. See Cox and Battey (2017) for an example.

Thus we have 20 variables in all, the seventeen variables contained in v1, one squared term
contained in out.Exploratory.Phase$mat.select.SQ and two interaction terms given by the rows of
out.Exploratory.Phase$mat.select.INTER. The analysis proceeds as follows:

sq.terms = out.exp.phase$mat.select.SQ
in.terms = out.exp.phase$mat.select.INTER

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 377

−4

−2

0

2

−2 −1 0 1 2
6134

3
8

2
4

5
10
15
20

Y

−2

−1

0

1

2

−2 0 2
3814

6
7

0
6

5
10
15
20

Y

Figure 1: Interaction plots of variables (6134, 3824) and (3814, 6706)

A B
12 14 19 10 4 15 20 3 7 9 18 1 11 17 13 5 6 16 2 8

12 0.26 0.24 0.87 0.81 0.84 0.76 0.75 0.77 0.74 0.72 0.73 0.73 0.72 0.72 0.71 0.71 0.71 0.71 0.70
14 0.22 0.20 0.85 0.80 0.83 0.75 0.74 0.75 0.73 0.71 0.72 0.71 0.70 0.71 0.70 0.69 0.69 0.69 0.69
19 0.00 0.00 0.82 0.75 0.79 0.69 0.67 0.70 0.65 0.63 0.65 0.63 0.62 0.63 0.61 0.61 0.61 0.61 0.60
10 0.75 0.73 0.73 0.47 0.35 0.37 0.45 0.46 0.44 0.47 0.47 0.48 0.47 0.47 0.48 0.48 0.48 0.47 0.48
4 0.62 0.63 0.63 0.45 0.41 0.48 0.48 0.40 0.46 0.47 0.43 0.43 0.45 0.44 0.43 0.44 0.44 0.45 0.44

15 0.68 0.68 0.68 0.31 0.40 0.31 0.42 0.43 0.43 0.42 0.43 0.43 0.44 0.44 0.44 0.44 0.45 0.44 0.44
20 0.48 0.47 0.48 0.28 0.43 0.26 0.40 0.40 0.40 0.40 0.39 0.39 0.39 0.40 0.39 0.39 0.39 0.39 0.39
3 0.44 0.44 0.44 0.34 0.41 0.36 0.38 0.38 0.39 0.37 0.37 0.37 0.37 0.36 0.37 0.37 0.37 0.38 0.37
7 0.48 0.48 0.48 0.37 0.32 0.37 0.38 0.38 0.39 0.37 0.37 0.38 0.38 0.38 0.38 0.37 0.37 0.36 0.37
9 0.38 0.38 0.38 0.30 0.35 0.34 0.35 0.35 0.35 0.35 0.34 0.32 0.34 0.34 0.34 0.33 0.34 0.34 0.34

18 0.33 0.34 0.32 0.33 0.37 0.32 0.33 0.33 0.32 0.34 0.34 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
1 0.35 0.35 0.35 0.32 0.31 0.32 0.32 0.32 0.32 0.32 0.33 0.32 0.32 0.33 0.32 0.32 0.32 0.32 0.32

11 0.32 0.31 0.30 0.32 0.28 0.29 0.30 0.30 0.31 0.29 0.30 0.31 0.30 0.30 0.30 0.31 0.30 0.30 0.30
17 0.29 0.29 0.28 0.30 0.30 0.30 0.29 0.30 0.30 0.30 0.29 0.30 0.30 0.29 0.30 0.30 0.30 0.30 0.30
13 0.30 0.30 0.28 0.30 0.29 0.30 0.31 0.28 0.30 0.30 0.30 0.31 0.30 0.29 0.29 0.30 0.29 0.30 0.30
5 0.25 0.25 0.24 0.28 0.26 0.28 0.27 0.27 0.28 0.28 0.27 0.27 0.28 0.28 0.27 0.28 0.27 0.27 0.27
6 0.24 0.23 0.22 0.28 0.26 0.27 0.26 0.26 0.26 0.26 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27

16 0.23 0.23 0.22 0.27 0.25 0.28 0.26 0.26 0.25 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26
2 0.23 0.23 0.21 0.27 0.27 0.27 0.26 0.27 0.25 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26
8 0.20 0.20 0.18 0.26 0.24 0.26 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.25 0.24 0.24 0.25 0.25

Table 3: The proportion of the models in the confidence set not containing variable B that contain
variable A, i.e. |M(A ∩ ¬B)|/|M(¬B)|, whereM(¬B) is the set of models in the confidence set that
do not contain variable B.

out.MS = ModelSelection.Phase(X = X.out,
Y = cbind(Y.out,status.out),
list.reduction = v1,Cox.Hazard = TRUE, sq.terms = sq.terms,
in.terms = in.terms,signif = 0.05, modelSize = 7)

Sets of well-fitting models of different sizes, up to modelSize = 7, are contained in the list
out.MS$goodModels. For instance, out.MS$goodModels$`Model Size 2` produces a list of well-fitting
models of size 2. If there are models for which an interaction term is present without the corre-
sponding main effects, the main effects are added. Thus, there are 23 models of size 2, statistically
indistinguishable from the comprehensive model at the 5% significance level.

Of all the well-fitting models identified 72% involve the variable 3824 and 70% involve the variable
6134. A very small proportion of models contain neither 3814 nor 6134. Indeed variables 3814 and
6134 occur frequently, but rarely together. Table 3 reports the proportion of models containing variable
A, given that they do not contain variable B, say. While one should be cautious over overinterpretting
the output, these give an indication of which variables might be substitutes for one another. The
variables have been ordered, from left to right and from top to bottom, in order of their frequency
of appearance in the sets of models. For typographical reasons their indices have been recoded as:
1=1188; 2=1660; 3=1825; 4=2437; 5=2879; 6=2902; 7=3172; 8=3177; 9=3800; 10=3814; 11=3822; 12=3824;
13=5027; 14=6134; 15=6706; 16=6896; 17=7357; 18=squared term on 3814; 19=interaction between 6134
and 3824; 20=interaction between 3814 and 6706. For an example of other summary tables of potential
interest, see the supplementary file of Cox and Battey (2017).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 378

Summary

In the context of regression with a large number of potential explanatory variables Cox and Battey
(2017) emphasize that if there are several statistically indistinguishable explanations of the data, one
should aim to specify as many as is feasible, a view that is in contraposition to that implicit in the use
of the lasso and similar methods. The approach of Cox and Battey (2017) entails reducing the set of
variables to those that potentially have an individual effect on the response, followed by more detailed
joint exploration, requiring judgement at various stages. We have discussed the R implementation
of these new ideas in HCmodelSets. Matlab code is also available at http://wwwf.imperial.ac.uk/
~hbattey/softwareCube.html.

Acknowledgments

We thank D. R. Cox for valuable comments and M. Avella Medina for a helpful reference. The work
of H. H. Hoeltgebaum was fully supported by the National Council for Research and Development,
CNPq, Ministry of Science and Technology, Brazil. The development of HCmodelSets and the work
of H. S. Battey was supported by a UK Engineering and Physical Sciences Research Fellowship (grant
number EP/P002757/1). We also would like to thank the anonymous referees for helpful comments.

Bibliography

A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos, A. Rosenwald, J. C. Boldrick, H. Sabet,
T. Tran, X. Yu, J. I. Powell, L. Yang, G. E. Marti, T. Moore, J. Hudson Jr, L. Lu, D. B. Lewis, R. Tibshirani,
G. Sherlock, W. C. Chan, T. C. Greiner, D. D. Weisenburger, J. O. Armitage, R. Warnke, R. Levy,
W. Wilson, M. R. Grever, J. C. Byrd, D. Botstein, P. O. Brown, and L. M. Staudt. Distinct types of
diffuse large b-cell lymphoma identified by gene expression profiling. Nature, 403(6769):503, 2000.
[p375]

O. E. Barndorff-Nielsen and D. R. Cox. Bartlett adjustments to the likelihood ratio statistic and the
distribution of the maximum likelihood estimator. J. of the Royal Statistical Society B, 46(3):483–495,
1984. [p372]

O. E. Barndorff-Nielsen and D. R. Cox. Inference and Asymptotics, volume 13. Chapman & Hall London,
1994. [p372]

M. S. Bartlett. Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London.
Series A-Mathematical and Physical Sciences, 160(901):268–282, 1937. [p372]

H. Battey and D. R. Cox. Large numbers of explanatory variables: a probabilistic assessment. Pro-
ceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474, 2018. [p370, 371,
372]

A. Belloni and V. Chernozhukov. Least squares after model selection in high-dimensional sparse
models. Bernoulli, 19(2):521–547, 2013. [p374]

P. Bühlmann and S. Van De Geer. Statistics for High-Dimensional Data: Methods, Theory and Applications.
Springer-Verlag, 2011. [p374]

D. R. Cox. The regression analysis of binary sequences. J. of the Royal Statistical Society B, 20(2):215–232,
1958. [p370]

D. R. Cox. Regression models and life tables (with discussion). J. of the Royal Statistical Society, 34(2):
187–220, 1972. [p370]

D. R. Cox. A note on data-splitting for the evaluation of significance levels. Biometrika, 62(2):441–444,
1975a. [p371]

D. R. Cox. Partial likelihood. Biometrika, 62:269–276, 1975b. [p370]

D. R. Cox and H. Battey. Large numbers of explanatory variables, a semi-descriptive analysis. Pro-
ceedings of the National Academy of Sciences, 114(32):8592–8595, 2017. [p370, 373, 374, 376, 377,
378]

H. H. Hoeltgebaum. HCmodelSets: Regression with a Large Number of Potential Explanatory Variables, 2018.
URL https://CRAN.R-project.org/package=HCmodelSets. R package version 1.0.2. [p370]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

http://wwwf.imperial.ac.uk/~hbattey/softwareCube.html
http://wwwf.imperial.ac.uk/~hbattey/softwareCube.html
https://CRAN.R-project.org/package=HCmodelSets

CONTRIBUTED RESEARCH ARTICLES 379

N. Simon, J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for Cox’s proportional
hazards model via coordinate descent. Journal of statistical software, 39(5):1, 2011. [p375]

R. Tibshirani. Regression shrinkage and selection via the lasso. J. of the Royal Statistical Society B, 58(1):
267–288, 1996. [p370]

F. Yates. A new method of arranging variety trials involving a large number of varieties. The Journal of
Agricultural Science, 26(3):424–455, 1936. [p370]

Henrique Helfer Hoeltgebaum
Electrical Engineering Department, Pontifical Catholic University of Rio de Janeiro
R. Marquês de São Vicente, 225 - Gávea,
Rio de Janeiro - RJ, 22451-900, Brazil
Department of Mathematics, Imperial College London
180 Queen’s Gate, South Kensington,
London, SW7 2AZ, UK
hh3015@ic.ac.uk

Heather S. Battey
Department of Mathematics, Imperial College London
180 Queen’s Gate, South Kensington,
London, SW7 2AZ, UK
h.battey@imperial.ac.uk

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

mailto:hh3015@ic.ac.uk
mailto:h.battey@imperial.ac.uk

CONTRIBUTED RESEARCH ARTICLES 380

Resampling-Based Analysis of
Multivariate Data and Repeated
Measures Designs with the R Package
MANOVA.RM
by Sarah Friedrich, Frank Konietschke and Markus Pauly

Abstract Nonparametric statistical inference methods for a modern and robust analysis of longitudinal
and multivariate data in factorial experiments are essential for research. While existing approaches
that rely on specific distributional assumptions of the data (multivariate normality and/or equal
covariance matrices) are implemented in statistical software packages, there is a need for user-friendly
software that can be used for the analysis of data that do not fulfill the aforementioned assumptions
and provide accurate p value and confidence interval estimates. Therefore, newly developed nonpara-
metric statistical methods based on bootstrap- and permutation-approaches, which neither assume
multivariate normality nor specific covariance matrices, have been implemented in the freely available
R package MANOVA.RM. The package is equipped with a graphical user interface for plausible
applications in academia and other educational purpose. Several motivating examples illustrate the
application of the methods.

Introduction

Nowadays, a large amount of measurements are taken per experimental unit or subject in many
experimental studies—requiring inferential methods from multivariate analysis in a unified way. Here
we distinguish between two cases:

1. If the same quantity is measured under different treatment conditions or at different time points,
a repeated measures (RM) design is present. Therein, observations are measured on the same
scale and are combinable. This is also the case if the measuring instrument produces multiple
responses, e.g., microarrays in bioinformatics.

2. If different quantities are measured on the same unit or subject, a multivariate analysis of
variance (MANOVA) design is apparent. In such a situation, data is measured on different
scales and not combinable (e.g., height and weight).

These two different definitions do not only lead to different questions of interest but also require
different inference procedures as outlined below. In particular, the main difference between the two
approaches is that in repeated measures designs comparisons between the response variables are
meaningful. This means that also hypotheses regarding sub-plot or within subject factors (e.g., time)
are of interest. On the other hand, MANOVA settings are usually designed to detect effects of the
observed factors (and interactions thereof) on the multivariate outcome vectors, thus allowing —in
contrast to multiple univariate ANOVA analyses—to evaluate the combined changes of the outcome
variables with respect to the factor levels.

Despite their differences, MANOVA- and RM-type techniques share the same advantages over
classical univariate endpoint-wise—ANOVA-type—analyses:

• They provide joint inference and take the dependency across the endpoints into account, thus
leading to possibly larger power to detect underlying effects.

• They allow for testing of additional factorial structures and

• can easily be equipped with a closed testing procedure for subsequently detecting local effects
in specific components, i.e. to perform post-hoc analyses.

Focusing on metric data and mean-based procedures, MANOVA and RM models are typically
inferred by means of “classical” procedures such as Wilks’ Lambda, Lawley-Hotelling, Roy’s largest
root (Davis, 2002; Johnson and Wichern, 2007; Anderson, 2001) or (generalized) linear mixed models
with generalized estimating equations. For the classical one-way layout, these methods are imple-
mented in R within the manova function in the stats package, where one can choose between the
options ‘Pillai’, ‘Wilks’, ‘Hotelling-Lawley’ and ‘Roy’. Nonparametric rank-based methods for null
hypotheses formulated in distribution functions are implemented within the packages npmv for one-
and two-way MANOVA (Burchett et al., 2017) and nparLD for several repeated measures designs

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=stats
https://CRAN.R-project.org/package=npmv
https://CRAN.R-project.org/package=nparLD

CONTRIBUTED RESEARCH ARTICLES 381

(Noguchi et al., 2012). In case of fixed block effects, the GFD package (Friedrich et al., 2017b), which
implements a permutation Wald-type test in the univariate setting, can also be used.

(Generalized) linear mixed models are implemented in the lm and the glm function (package stats)
for univariate data as well as in the SCGLR package for Generalized Linear Model estimation in the
context of multivariate data (Cornu et al., 2018). The Anova and Manova function in the car package
(Fox and Weisberg, 2011) calculate type-II and type-III analysis-of-variance tables for objects produced
by, e.g., lm, glm or manova in the univariate and multivariate context, respectively. In the MANOVA
context, repeated measures designs can be included as well.

Furthermore, the packages flip (Finos et al., 2018) and ffmanova (Øyvind Langsrud and Mevik,
2019) contain interesting permutation and rotation tests, which, however, require certain invariances
resulting in model restrictions (see, e.g., the discussion in Huang et al., 2006; Chung and Romano,
2013) .

Most of these procedures, however, rely on specific distributional assumptions (such as multivari-
ate normality) and/or specific covariance or correlation structures (e.g., homogeneity between groups
or, for RM, compound symmetry; possibly implying equal correlation between measurements) which
may often not be justifiable in real data. In particular, with decreasing sample sizes and increasing
dimensions, such presumptions are almost impossible to verify in practice and may lead to inflated
type-I-errors, cf. Vallejo et al. (2001); Lix and Keselman (2004); Vallejo Seco et al. (2007); Livacic-Rojas
et al. (2010). To this end, several alternative procedures have been developed that tackle the above
problems and have been compared in extensive simulation studies, see amongst others Brunner (2001);
Lix and Lloyd (2007); Gupta et al. (2008); Zhang (2011); Harrar and Bathke (2012); Konietschke et al.
(2015); Xiao and Zhang (2016); Bathke et al. (2018); McFarquhar et al. (2016); Friedrich et al. (2017a);
Livacic-Rojas et al. (2017); Friedrich and Pauly (2018) and the references cited therein. Here, we focus
on nonparametric statistical methods that are valid in the multivariate Behrens-Fisher situation—equal
covariance matrices across the groups are not assumed—and provide accurate inferential results in
terms of p value estimates and confidence intervals for the parameters of interest. In particular, we
implemented bootstrap- and permutation-based approaches to approximate the distribution of the test
statistics in a robust way. Simulation studies comparing these approaches to the traditional methods
mentioned above can, e. g. be found in the main papers and the supplements of Friedrich et al. (2017a)
and Bathke et al. (2018).

More precisely, we focus on nonparametric methods for testing main and interaction effects of
fixed factors in repeated measures designs and multivariate data. In particular, general Wald-type test
statistics (for MANOVA and RM), ANOVA-type statistics (for RM) and modified ANOVA-type tests
(for MANOVA) are implemented in MANOVA.RM (Friedrich et al., 2019) because

• they can be used to test hypotheses in various factorial designs in a flexible way,

• their sampling distribution can be approximated by resampling techniques, even allowing their
application for small sample sizes,

• and they are appropriate methods in the Behrens-Fisher situation.

To make the methods freely accessible we have provided the R package MANOVA.RM for routine
statistical analyses. It is available from the R Archive at

https://CRAN.R-project.org/package=MANOVA.RM

The main functions RM (for RM designs) and MANOVA (for MANOVA designs) are developed in style
of the well known ANOVA functions lm or aov. Its user-friendly application not only provides the p
values and test statistics of interest but also a descriptive overview together with component-wise
two-sided confidence intervals. Moreover, the MANOVA function even allows for an easy calculation
and confidence ellipsoid plots for specified multivariate contrasts as described in Friedrich and Pauly
(2018).

Specifically, for testing multivariate main- and interaction effects in one-, two- and higher-way
MANOVA models, the MANOVA function provides

• the Wald-type statistic (WTS) proposed by Konietschke et al. (2015) using a parametric bootstrap,
a wild bootstrap or its asymptotic χ2-distribution for p value computations, and

• the modified ANOVA-type statistic (MATS) proposed by Friedrich and Pauly (2018) using a
parametric or wild bootstrap procedure for p value computations.

In addition to multivariate group-wise effects, the RM function also allows to test hypotheses formulated
across within subject factors. The implemented test statistics are

• the ANOVA-type statistic (ATS) using an F-approximation as considered in Brunner (2001) as
well as a parametric and a wild bootstrap approach and

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=GFD
https://CRAN.R-project.org/package=SCGLR
https://CRAN.R-project.org/package=car
https://CRAN.R-project.org/package=flip
https://CRAN.R-project.org/package=ffmanova
https://CRAN.R-project.org/package=MANOVA.RM
https://CRAN.R-project.org/package=MANOVA.RM

CONTRIBUTED RESEARCH ARTICLES 382

• the Wald-type statistic (WTS) using the asymptotic χ2-distribution (Brunner, 2001), the permu-
tation technique proposed in Friedrich et al. (2017a) as well as a parametric (Bathke et al., 2018)
and a wild bootstrap approach for p value estimation.

The paper is organized as follows: In Section Statistical model and inference methods the multivari-
ate statistical model as well as the implemented inference procedures are described. The application of
the R package MANOVA.RM is exemplified on several Repeated Measures and MANOVA Examples
in Section Examples. Finally, the paper closes with a discussion in Section Discussion and Outlook.

Throughout the paper we use the subsequent notation from multivariate linear models: For a ∈N

we denote by Pa = Ia − 1
a Ja the a-dimensional centering matrix, by Ia the a-dimensional identity

matrix and by Ja the a× a matrix of 1’s, i.e., Ja = 1a1′a, where 1a = (1, . . . , 1)′ is the a-dimensional
column vector of 1’s.

Statistical model and inference methods

For both the RM and the MANOVA design equipped with an arbitrary number of fixed factors, we
consider the general linear model given by d-variate random vectors

v>Xik = (Xijk)
d
j=1 = µi + εik. (1)

Here, k = 1, . . . , ni denotes the experimental unit or subject in group i = 1, . . . , a. Note, that
a higher-way factorial structure on the groups/between subject or within subject factors can be
achieved by sub-indexing the indices i (group/between subject factors) or j (within subject fac-
tors) into i1, . . . , ip or j1, . . . , jq. In this model µi = (µi1, . . . , µid)

′ ∈ Rd is the mean vector in group
i = 1, . . . , a and for each fixed i it is assumed that the error terms εik, k = 1, . . . , ni, are independent
and identically distributed d-variate random vectors with mean E(εi1) = 0 and existing variances
0 < σ2

ij = var(Xijk) < ∞, j = 1, . . . , d. For the WTS-type procedures we additionally assume posi-

tive definite covariance matrices cov(εi1) = V i > 0 and existing finite fourth moments E(||εi1||4) < ∞.

Within this framework, hypotheses for RM or MANOVA can be formulated by means of an
adequate contrast hypothesis matrix H by

H0 : Hµ = 0,

where µ = (µ1, . . . , µa)
′.

Let X• = (X ′1·, . . . , X ′a·)′ denote the vector of pooled group means X i· =
1
ni

∑ni
k=1 v>Xik, i =

1, . . . , a and Σ̂N = N · diag{V̂1/n1, . . . , V̂ a/na} the estimated covariance of
√

NX•. Here, N = ∑i ni
and V̂ i =

1
ni−1 ∑ni

k=1(v
>Xik − X i·)(v>Xik − X i·)

′. In this set-up Konietschke et al. (2015) propose a
statistic of Wald-type (WTS)

TN = TN(v>X) = NX ′•T(TΣ̂N T)+TX•, (2)

for testing H0, where T = H ′(HH ′)+H, v>X = {v>X11, . . . , v>Xana}, and A+ denotes the Moore-
Penrose inverse of the matrix A. Since its asymptotic χ2

rank(T) null distribution provides a poor finite
sample approximation, they propose the following asymptotic model-based bootstrap approach: Given
the data v>X let v>X ?

ik ∼ N(0, V̂ i), i = 1, . . . , a, k = 1, . . . , ni, be independent random vectors that
are used for recalculating the test statistic as T?

N = TN(v>X ?), where v>X ? = {v>X ?
11, . . . , v>X ?

ana
}.

Denoting by c? the corresponding (1− α)-quantile of the (conditional) distribution of T?
N the test

rejects H0 if TN > c?. The validity of this procedure (also named parametric bootstrap WTS) is proven
in Konietschke et al. (2015).

This procedure is not only applicable for MANOVA but also for RM designs (Bathke et al., 2018).
However, Friedrich et al. (2017a) proposed a more favourable technique for Repeated Measurements.
It is based on an at first blush chaotic resampling method: Wild permutation of all pooled components
without taking group membership or possible dependencies into account. Denoting the resulting
permuted data set as v>X π their permutation test for RM models rejects H0 if TN > cπ . Here cπ

denotes the (1− α)-quantile of the (conditional) distribution of the permutation version of the test
statistic Tπ

N = TN(v>X π). As shown in extensive simulations in Friedrich et al. (2017a) and the
corresponding supporting information this ’wild’ permutation WTS method controls the type-I error
rate very well. Note that this procedure is only applicable for RM due to the commensurate nature
of their components. In MANOVA set-ups the permutation would stir different scalings making
comparisons meaningless.

In addition to these WTS procedures two other statistics are considered as well. For RM the

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 383

well-established ANOVA-type statistic (ATS)

QN = NX ′•TX• (3)

by Brunner (2001) is implemented together with the enhanced F-approximation of the statistic pro-
posed in Brunner et al. (1997, 2002) and implemented in the SAS PROC Mixed procedure. Although
known to be rather conservative it has the advantage (over the WTS) of being applicable in case of
eventually singular covariance matrices V i or V̂ i since it waives the Moore-Penrose inverse involved
in Equation 2.

Similar to the permuted WTS the ATS given in Equation 3 is only applicable for RM since it
is not invariant under scale transformations (e.g., change of units) of the univariate components.
To nevertheless provide a robust method for MANOVA settings which is also applicable in case of
singular V i or V̂ i, Friedrich and Pauly (2018) have recently proposed the novel MATS (modified ATS)

MN = MN(v>X) = NX ′•T(TD̂N T)+TX•.

Here, the involved diagonal matrix D̂N = ⊕1≤i≤a,1≤s≤d Nσ̂2
is/ni of the empirical variances σ̂2

is of
component s in group i, deduces an invariance under component-wise scale transformations of
the MATS for null hypotheses as described in Section Special designs and hypotheses, i.e., of the
form T = M ⊗ Id, see Friedrich and Pauly (2018) for details. To obtain an accurate finite sample
performance, it is also equipped with an asymptotic model based bootstrap approach. That is,
MATS rejects H0 if MN > c̃?, where c̃? is the (1− α)-quantile of the (conditional) distribution of the
bootstrapped statistic M?

N = MN(v>X ?). In addition, we implemented a wild bootstrap approach,
which is based on multiplying the centered data vectors (v>Xik − v>Xi·) with random weights
Wik fulfilling E(Wik) = 0, var(Wik) = 1 and supi,k E(W4

ik) < ∞. In the package, we implemented
Rademacher distributed weights, i.e., random signs. Extensive simulations in Friedrich and Pauly
(2018) not only confirm its applicability in case of singular covariance matrices but also disclose a
very robust behaviour that even seems to be advantageous over the parametrically bootstrapped WTS
of Konietschke et al. (2015). However, both procedures, as well as the ’usual’ asymptotic WTS are
displayed within the MANOVA functions. All of the aforementioned procedures are applicable in
various factorial designs in a unified way, i.e., when more than one factor may impact the response.
The specific models and the hypotheses being tested will be discussed in the next section.

Special designs and hypotheses

In order to provide a general overview of different statistical designs and layouts that can be analyzed
with MANOVA.RM we exemplify few designs that occur frequently in practical applications and
discuss the model, hypotheses and limitations. All of the methods implemented in MANOVA.RM are
even applicable in higher-way layouts than being presented here; and the list should not be seen as the
limited application of the package. The models are derived by sub-indexing the index i in Equation 1
in the following ways:

• One-Way (A): Writing µi = ν + αi we have v>Xik = ν + αi + εik with ∑a
i=1 αi = 0 and obtain

the null hypothesis of ’no group’ or ’factor A’ effect as

H0(A) : {(Pa ⊗ Id)µ = 0} = {µ1 = · · · = µa}
= {α1 = · · · = αa = 0}.

In case of a = 2 this includes the famous multivariate Behrens-Fisher problem as, e.g., analyzed in
Yao (1965); Nel and Van der Merwe (1986); Christensen and Rencher (1997); Krishnamoorthy
and Yu (2004) or Yanagihara and Yuan (2005).

• Crossed Two-Way (A× B): Splitting the index into two and writing µij = ν + αi + βj + γij we

obtain the model v>Xijk = ν + αi + βj + γij + εijk, 1 ≤ i ≤ a, 1 ≤ j ≤ b, 1 ≤ k ≤ nij with
∑i αi = ∑j βj = ∑i γij = ∑j γij = 0. The corresponding null hypotheses of no main effects in A
or B and no interaction effect between A and B can be written as:

H0(A) : {(Pa ⊗ b−1 Jb ⊗ Id) µ = 0} = {α1 = · · · = αa = 0},
H0(B) : {(a−1 Ja ⊗ Pb ⊗ Id) µ = 0} = {β1 = · · · = βb = 0},

H0(AB) : {(Pa ⊗ Pb ⊗ Id) µ = 0} = {γ11 = · · · = γab = 0}.

Note that the interpretation of main effects is complicated by the presence of significant interac-
tion effects and further analyses are necessary to determine the direction of the effects.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 384

• Hierarchically nested Two-Way (B(A)): A fixed subcategory B within factor A can be intro-
duced via the model v>Xijk = ν + αi + βj(i) + εijk, 1 ≤ i ≤ a, 1 ≤ j ≤ bi , 1 ≤ k ≤ nij with
∑i αi = ∑j βj(i) = 0. Here, the hypotheses of no main effect A or no sub-category main effect B
can be written as

H0(A) : {(Pa J̃b ⊗ Id) µ = 0} = {α1 = · · · = αa = 0},
H0(B(A)) : {(P̃b ⊗ Id) µ = 0} = {βj(i) = 0∀ 1 ≤ i ≤ a, 1 ≤ j ≤ bi}

with P̃b =
⊕a

j=1 Pbj
, J̃b =

⊕a
j=1 b−1

j 1′bj
and µ := (µ′11, ..., µ′1b1

, µ′21, ..., µ′2b2
, ..., µ′aba

)′.

We only implemented balanced designs, i.e., bi = b for all i = 1, . . . , a. Hierarchically nested
three-way designs or arbitrary crossed higher-way layouts can be introduced similarly and are
implemented as well.

• Repeated Measures and Split Plot Designs are covered by setting d = t, where even hypothe-
ses about within subject factors can be formulated. We exemplify this for profile analyses in the
special case of a one-sample RM design with a = 1

H0(Time) : {Pt µ = 0} = {µ11 = · · · = µ1t},

as well as for a two-sample RM design with a = 2:

H0(Parallel) : {TP µ = 0} = {µ1 − µ2 = γ 1t for some γ ∈ R}
H0(Flat) : {TF µ = 0} = {µ1s + µ2s = µ̄1· + µ̄2· for all s}

H0(Identical) : {T I µ = 0} = {µ1 = µ2}

with TF = Pt (It It), TP = (1t−1 − It−1) T I and T I = (It − It).

parallel flat identical

Note, that we could also employ more complex factorial structures on the repeated measure-
ments (i.e., more within subject factors) by splitting up the index j.

Examples

To demonstrate the use of the RM and the MANOVA function, we provide several examples for both
repeated measures designs and multivariate data in the following. Furthermore, the MANOVA.RM
package is equipped with an optional GUI (graphical user interface), based on RGtk2 (Lawrence and
Temple Lang, 2010), which will be explained in detail in Section Graphical user interface below.

Both functions are structured similarly: The main input parameters are the formula specifying
the outcome on the left hand side and the factor variables of interest on the right, the data and
the resampling approach. The latter varies according to the design: the user can choose between a
parametric and a wild bootstrap and in the RM design, additionally a permutation approach for the
WTS is implemented.

Repeated Measures Designs

The function RM is built as follows:

R> RM(formula, data, subject, no.subf = 1, iter = 10000, alpha = 0.05,
+ resampling = "Perm", CPU, seed, CI.method = "t-quantile", dec = 3)

Data need to be provided in long format, i.e., one row per measurement. Here, subject specifies
the column name of the subjects variable in the data frame, while no.subf denotes the number of
within subject factors considered. Note that in a setting with more than one between subjects factor,
the subject ids in the different groups need to be different. Otherwise the program will erroneously
assume that these measurements belong to the same subject. The number of cores used for parallel
computing as well as a random seed can optionally be specified using CPU and seed, respectively. For
calculating the confidence intervals, the user can choose between t-quantiles (the default) and the
quantiles based on the resampled WTS. The results are rounded to dec digits.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=RGtk2

CONTRIBUTED RESEARCH ARTICLES 385

The function RM returns an object of class "RM" from which the user may obtain plots and summaries
of the results using plot(), print() and summary(), respectively. Here, print() returns a short
summary of the results, i.e., the values of the test statistics along with degrees of freedom and
corresponding p values whereas summary() also displays some descriptive statistics such as the means,
sample sizes and confidence intervals for the different factor level combinations. Plotting is based on
plotrix (Lemon, 2006). For two- and higher-way layouts, the factors for plotting can be additionally
specified in the plot call, see the examples below.

Example 1: One between subject and two within subject factors

For illustration purposes, we consider the data set o2cons, which is included in MANOVA.RM. This
data set contains measurements of the oxygen consumption of leukocytes in the presence and absence
of inactivated staphylococci at three consecutive time points. Due to the study design, both time and
staphylococci are within subject factors while the treatment (Verum vs. Placebo) is a between subject
factor (see Friedrich et al., 2017a, for more details).

R> data("o2cons")
R> model1 <- RM(O2 ~ Group * Staphylococci * Time, data = o2cons,
+ subject = "Subject", no.subf = 2, iter = 1000,
+ resampling = "Perm", seed = 1234)
R> summary(model1)

Call:
O2 ~ Group * Staphylococci * Time
A repeated measures analysis with 2 within-subject and 1 between-subject factors.

Descriptive:
Group Staphylococci Time n Means Lower 95 % CI Upper 95 % CI

1 P 0 6 12 1.322 1.150 1.493
5 P 0 12 12 2.430 2.196 2.664
9 P 0 18 12 3.425 3.123 3.727
3 P 1 6 12 1.618 1.479 1.758
7 P 1 12 12 2.434 2.164 2.704
11 P 1 18 12 3.527 3.273 3.781
2 V 0 6 12 1.394 1.201 1.588
6 V 0 12 12 2.570 2.355 2.785
10 V 0 18 12 3.677 3.374 3.979
4 V 1 6 12 1.656 1.471 1.840
8 V 1 12 12 2.799 2.500 3.098
12 V 1 18 12 4.029 3.802 4.257

Wald-Type Statistic (WTS):
Test statistic df p-value

Group "11.167" "1" "0.001"
Staphylococci "20.401" "1" "<0.001"
Group:Staphylococci "2.554" "1" "0.11"
Time "4113.057" "2" "<0.001"
Group:Time "24.105" "2" "<0.001"
Staphylococci:Time "4.334" "2" "0.115"
Group:Staphylococci:Time "4.303" "2" "0.116"

ANOVA-Type Statistic (ATS):
Test statistic df1 df2 p-value

Group "11.167" "1" "316.278" "0.001"
Staphylococci "20.401" "1" "Inf" "<0.001"
Group:Staphylococci "2.554" "1" "Inf" "0.11"
Time "960.208" "1.524" "Inf" "<0.001"
Group:Time "5.393" "1.524" "Inf" "0.009"
Staphylococci:Time "2.366" "1.983" "Inf" "0.094"
Group:Staphylococci:Time "2.147" "1.983" "Inf" "0.117"

p-values resampling:
Perm (WTS)

Group "0.005"

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=plotrix

CONTRIBUTED RESEARCH ARTICLES 386

Staphylococci "0.001"
Group:Staphylococci "0.145"
Time "<0.001"
Group:Time "<0.001"
Staphylococci:Time "0.144"
Group:Staphylococci:Time "0.139"

The output consists of four parts: model1$Descriptive gives an overview of the descriptive
statistics: The number of observations, mean and confidence intervals are displayed for each factor
level combination. Second, model1$WTS contains the results for the Wald-type test: The test statistic,
degree of freedom and p values based on the asymptotic χ2-distribution are displayed. Note that
the χ2-approximation is highly anti-conservative for small sample sizes, cf. Konietschke et al. (2015);
Friedrich et al. (2017a). The corresponding results based on the ATS are contained within model1$ATS.
This test statistic tends to rather conservative decisions in case of small sample sizes and is even
asymptotically only an approximation, thus not providing an asymptotic level α test, see Brunner
(2001); Friedrich et al. (2017a). Finally, model1$resampling contains the p values based on the chosen
resampling approach. For the ATS, the permutation approach is not feasible since it would result in an
incorrect covariance structure, and is therefore not implemented. Due to the above mentioned issues
for small sample sizes, the respective resampling procedure is recommended for such situations.

In this example, we find significant effects of all factors as well as a significant interaction between
group and time.

Example 2: Two within subject and two between subject factors

We consider the data set EEG from the MANOVA.RM package: At the Department of Neurology,
University Clinic of Salzburg, 160 patients were diagnosed with either Alzheimer’s Disease (AD),
mild cognitive impairment (MCI), or subjective cognitive complaints without clinically significant
deficits (SCC), based on neuropsychological diagnostics (Bathke et al., 2018). This data set contains
z-scores for brain rate and Hjorth complexity, each measured at frontal, temporal and central electrode
positions and averaged across hemispheres. In addition to standardization, complexity values were
multiplied by −1 in order to make them more easily comparable to brain rate values: For brain rate
we know that the values decrease with age and pathology, while Hjorth complexity values are known
to increase with age and pathology. The three between subject factors considered were sex (men vs.
women), diagnosis (AD vs. MCI vs. SCC), and age (< 70 vs. ≥ 70 years). Additionally, the within
subject factors region (frontal, temporal, central) and feature (brain rate, complexity) structure the
response vector.

Note that due to the small number of subjects in some groups (e.g., only 2 male patients aged < 70
were diagnosed with AD) we restrict our analyses to two between subject factors at a time. However,
more complex factorial designs can also be analyzed with MANOVA.RM as outlined above.

R> data("EEG")
R> EEG_model <- RM(resp ~ sex * diagnosis * feature * region, data = EEG,
+ subject = "id", no.subf = 2, resampling = "WildBS",
+ iter = 1000, alpha = 0.01, CPU = 4, seed = 123)
R> summary(EEG_model)

Call:
resp ~ sex * diagnosis * feature * region
A repeated measures analysis with 2 within-subject and 2 between-subject factors.

Descriptive:
sex diagnosis feature region n Means Lower 99 % CI Upper 99 % CI
1 M AD brainrate central 12 -1.010 -4.881 2.861
13 M AD brainrate frontal 12 -1.007 -4.991 2.977
25 M AD brainrate temporal 12 -0.987 -4.493 2.519
7 M AD complexity central 12 -1.488 -10.053 7.077
19 M AD complexity frontal 12 -1.086 -6.906 4.735
31 M AD complexity temporal 12 -1.320 -7.203 4.562
3 M MCI brainrate central 27 -0.447 -1.591 0.696
15 M MCI brainrate frontal 27 -0.464 -1.646 0.719
27 M MCI brainrate temporal 27 -0.506 -1.584 0.572
9 M MCI complexity central 27 -0.257 -1.139 0.625
21 M MCI complexity frontal 27 -0.459 -1.997 1.079
33 M MCI complexity temporal 27 -0.490 -1.796 0.816

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 387

5 M SCC brainrate central 20 0.459 -0.414 1.332
17 M SCC brainrate frontal 20 0.243 -0.670 1.156
29 M SCC brainrate temporal 20 0.409 -1.210 2.028
11 M SCC complexity central 20 0.349 -0.070 0.767
23 M SCC complexity frontal 20 0.095 -1.037 1.227
35 M SCC complexity temporal 20 0.314 -0.598 1.226
2 W AD brainrate central 24 -0.294 -1.978 1.391
14 W AD brainrate frontal 24 -0.159 -1.813 1.495
26 W AD brainrate temporal 24 -0.285 -1.776 1.206
8 W AD complexity central 24 -0.128 -1.372 1.116
20 W AD complexity frontal 24 0.026 -1.212 1.264
32 W AD complexity temporal 24 -0.194 -1.670 1.283
4 W MCI brainrate central 30 -0.106 -1.076 0.863
16 W MCI brainrate frontal 30 -0.074 -1.032 0.885
28 W MCI brainrate temporal 30 -0.069 -1.064 0.925
10 W MCI complexity central 30 0.094 -0.464 0.652
22 W MCI complexity frontal 30 0.131 -0.768 1.031
34 W MCI complexity temporal 30 0.121 -0.652 0.895
6 W SCC brainrate central 47 0.537 -0.049 1.124
18 W SCC brainrate frontal 47 0.548 -0.062 1.159
30 W SCC brainrate temporal 47 0.559 -0.015 1.133
12 W SCC complexity central 47 0.384 0.110 0.659
24 W SCC complexity frontal 47 0.403 -0.038 0.845
36 W SCC complexity temporal 47 0.506 0.132 0.880

Wald-Type Statistic (WTS):
Test statistic df p-value

sex "9.973" "1" "0.002"
diagnosis "42.383" "2" "<0.001"
sex:diagnosis "3.777" "2" "0.151"
feature "0.086" "1" "0.769"
sex:feature "2.167" "1" "0.141"
diagnosis:feature "5.317" "2" "0.07"
sex:diagnosis:feature "1.735" "2" "0.42"
region "0.07" "2" "0.966"
sex:region "0.876" "2" "0.645"
diagnosis:region "6.121" "4" "0.19"
sex:diagnosis:region "1.532" "4" "0.821"
feature:region "0.652" "2" "0.722"
sex:feature:region "0.423" "2" "0.81"
diagnosis:feature:region "7.142" "4" "0.129"
sex:diagnosis:feature:region "2.274" "4" "0.686"

ANOVA-Type Statistic (ATS):
Test statistic df1 df2 p-value

sex "9.973" "1" "657.416" "0.002"
diagnosis "13.124" "1.343" "657.416" "<0.001"
sex:diagnosis "1.904" "1.343" "657.416" "0.164"
feature "0.086" "1" "Inf" "0.769"
sex:feature "2.167" "1" "Inf" "0.141"
diagnosis:feature "1.437" "1.562" "Inf" "0.238"
sex:diagnosis:feature "1.031" "1.562" "Inf" "0.342"
region "0.018" "1.611" "Inf" "0.965"
sex:region "0.371" "1.611" "Inf" "0.644"
diagnosis:region "1.091" "2.046" "Inf" "0.337"
sex:diagnosis:region "0.376" "2.046" "Inf" "0.691"
feature:region "0.126" "1.421" "Inf" "0.81"
sex:feature:region "0.077" "1.421" "Inf" "0.864"
diagnosis:feature:region "0.829" "1.624" "Inf" "0.415"
sex:diagnosis:feature:region "0.611" "1.624" "Inf" "0.51"

p-values resampling:
WildBS (WTS) WildBS (ATS)

sex "<0.001" "<0.001"

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 388

diagnosis "<0.001" "<0.001"
sex:diagnosis "0.119" "0.124"
feature "0.798" "0.798"
sex:feature "0.152" "0.152"
diagnosis:feature "0.067" "0.249"
sex:diagnosis:feature "0.445" "0.362"
region "0.967" "0.98"
sex:region "0.691" "0.728"
diagnosis:region "0.182" "0.338"
sex:diagnosis:region "0.863" "0.814"
feature:region "0.814" "0.926"
sex:feature:region "0.881" "0.951"
diagnosis:feature:region "0.098" "0.519"
sex:diagnosis:feature:region "0.764" "0.683"

We find significant effects at level α = 0.01 of the between subject factors sex and diagnosis, while
none of the within subject factors or interactions become significant.

Plotting

The RM() function is equipped with a plotting option, displaying the calculated means along with
(1− α) confidence intervals based on t-quantiles. The plot function takes an RM object as argument.
In addition, the factor of interest may be specified. If this argument is omitted in a two- or higher-
way layout, the user is asked to specify the factor for plotting. Furthermore, additional graphical
parameters can be used to customize the plots. The optional argument legendpos specifies the position
of the legend in higher-way layouts, whereas gap (default 0.1) is the distance introduced between error
bars in a higher-way layout. Additionally, the parameter CI.info can be set to TRUE in order to output
the means and confidence intervals for the desired interaction.

R> plot(EEG_model, factor = "sex", main = "Effect of sex on EEG values")
R> plot(EEG_model, factor = "sex:diagnosis", legendpos = "topleft",
+ col = c(4, 2), ylim = c(-1.8, 0.8), CI.info = TRUE)

$mean
AD MCI SCC

M -1.1496245 -0.43724352 0.3114978
W -0.1723434 0.01624054 0.4897902

$lower
AD MCI SCC

M -1.6714757 -0.6251940 0.1732354
W -0.3874841 -0.1290226 0.3848516

$upper
AD MCI SCC

M -0.62777339 -0.2492930 0.4497601
W 0.04279732 0.1615037 0.5947288

R> plot(EEG_model, factor = "sex:diagnosis:feature",
+ legendpos = "bottomright", gap = 0.05)

The resulting plots are displayed in Figure 1 and Figure 2, respectively.

MANOVA Design

For the analysis of multivariate data, the functions MANOVA and MANOVA.wide are implemented. The
difference between the two functions is that the response must be stored in long and wide format
for using MANOVA or MANOVA.wide, respectively. The structure of both functions is very similar. They
both calculate the WTS for multivariate data in a design with crossed or nested factors. Additionally,
the modified ANOVA-type statistic (MATS) is calculated which has the additional advantage of
being applicable to designs involving singular covariance matrices and is invariant under scale
transformations of the data (Friedrich and Pauly, 2018). The resampling methods provided are a
parametric bootstrap approach and a wild bootstrap using Rademacher weights. Note that only
balanced nested designs (i.e., the same number of factor levels b for each level of the factor A) with

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 389

−
0.

4
−

0.
2

0.
0

0.
2

Effect of sex on EEG values

sex

M
ea

ns

●

●

M W

Figure 1: Plot for factor "sex" in the RM model of the EEG data example.

up to three factors are implemented. Designs involving both crossed and nested factors are not
implemented. Note that in nested designs, the levels of the nested factor usually have the same labels
for all levels of the main factor, i.e., for each level i = 1, . . . , a of the main factor A the nested factor
levels are labeled as j = 1, . . . , bi. If the levels of the nested factor are named uniquely, this has to be
specified by setting the parameter nested.levels.unique to TRUE.

R> MANOVA(formula, data, subject, iter = 10000, alpha = 0.05,
+ resampling = "paramBS", CPU, seed,
+ nested.levels.unique = FALSE, dec = 3)
R> MANOVA.wide(formula, data, iter = 10000, alpha = 0.05,
+ resampling = "paramBS", CPU, seed,
+ nested.levels.unique = FALSE, dec = 3)

The only difference between MANOVA and MANOVA.wide in the function call except from the different
shape of the formula (see examples below) is the subject variable, which needs to be specified for
MANOVA only.

Data Example MANOVA: Two crossed factors

We again consider the data set EEG from the MANOVA.RM package, but now we ignore the within
subject factor structure. Therefore, we are now in a multivariate setting with 6 measurements per
patient and three crossed factors sex, age and diagnosis. Due to the small number of subjects in some
groups we restrict our analyses to two factors at a time. The analysis of this example is shown below.

R> data("EEG")
R> EEG_MANOVA <- MANOVA(resp ~ sex * diagnosis, data = EEG, subject = "id",
+ resampling = "paramBS", iter = 1000, alpha = 0.01,
+ CPU = 1, seed = 987)
R> summary(EEG_MANOVA)

Call:
resp ~ sex * diagnosis

Descriptive:
sex diagnosis n Mean 1 Mean 2 Mean 3 Mean 4 Mean 5 Mean 6

1 M AD 12 -0.987 -1.007 -1.010 -1.320 -1.086 -1.488
3 M MCI 27 -0.506 -0.464 -0.447 -0.490 -0.459 -0.257
5 M SCC 20 0.409 0.243 0.459 0.314 0.095 0.349
2 W AD 24 -0.285 -0.159 -0.294 -0.194 0.026 -0.128

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 390

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

diagnosis

M
ea

ns

●

●

●

AD MCI SCC

M
W

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

feature

M
ea

ns

●

●

brainrate complexity

●
●

●

●

●

sex
M
W
diagnosis
AD
MCI
SCC

Figure 2: Plot for the interaction between "sex" and "diagnosis" (upper panel) as well as additionally
taking "feature" into account (lower panel) in the RM model of the EEG data example.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 391

4 W MCI 30 -0.069 -0.074 -0.106 0.121 0.131 0.094
6 W SCC 47 0.559 0.548 0.537 0.506 0.403 0.384

Wald-Type Statistic (WTS):
Test statistic df p-value

sex "12.604" "6" "0.05"
diagnosis "55.158" "12" "<0.001"
sex:diagnosis "9.79" "12" "0.634"

modified ANOVA-Type Statistic (MATS):
Test statistic

sex 45.263
diagnosis 194.165
sex:diagnosis 18.401

p-values resampling:
paramBS (WTS) paramBS (MATS)

sex "0.124" "0.003"
diagnosis "<0.001" "<0.001"
sex:diagnosis "0.748" "0.223"

The output consists of several parts: First, some descriptive statistics of the data set are displayed,
namely the sample size and mean for each factor level combination and each dimension (dimensions
occur in the same order as in the original data set). In this example, Mean 1 to Mean 3 correspond to
the brainrate (temporal, frontal, central) while Mean 4–6 correspond to complexity. Second, the results
based on the WTS are displayed. For each factor, the test statistic, degree of freedom and p value is
given. For the MATS, only the value of the test statistic is given, since here inference is only based on
resampling. The resampling-based p values are finally displayed for both test statistics.

To demonstrate the use of the MANOVA.wide() function, we consider the same data set in wide
format, which is also included in the package. In the formula argument, the user now needs to specify
the variables of interest bound together via cbind. A subject variable is no longer necessary, as every
row of the data set belongs to one patient in wide format data. The output is almost identically to the
one obtained from MANOVA with the difference that the mean values are now labeled according to the
variable names supplied in the formula argument.

R> data("EEGwide")
R> EEG_wide <- MANOVA.wide(cbind(brainrate_temporal, brainrate_frontal,
+ brainrate_central, complexity_temporal,
+ complexity_frontal, complexity_central) ~ sex * diagnosis,
+ data = EEGwide, resampling = "paramBS", iter = 1000,
+ alpha = 0.01, CPU = 1, seed = 987)
R> summary(EEG_wide)

Call:
cbind(brainrate_temporal, brainrate_frontal, brainrate_central,
complexity_temporal, complexity_frontal, complexity_central) ~
sex * diagnosis

Descriptive:
sex diagnosis n brainrate_temporal brainrate_frontal brainrate_central
1 M AD 12 -0.987 -1.007 -1.010
2 W AD 27 -0.506 -0.464 -0.447
3 M MCI 20 0.409 0.243 0.459
4 W MCI 24 -0.285 -0.159 -0.294
5 M SCC 30 -0.069 -0.074 -0.106
6 W SCC 47 0.559 0.548 0.537
complexity_temporal complexity_frontal complexity_central
1 -1.320 -1.086 -1.488
2 -0.490 -0.459 -0.257
3 0.314 0.095 0.349
4 -0.194 0.026 -0.128
5 0.121 0.131 0.094
6 0.506 0.403 0.384

Wald-Type Statistic (WTS):

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 392

Test statistic df p-value
sex "12.604" "6" "0.05"
diagnosis "55.158" "12" "<0.001"
sex:diagnosis "9.79" "12" "0.634"

modified ANOVA-Type Statistic (MATS):
Test statistic

sex 45.263
diagnosis 194.165
sex:diagnosis 18.401

p-values resampling:
paramBS (WTS) paramBS (MATS)

sex "0.122" "0.005"
diagnosis "<0.001" "<0.001"
sex:diagnosis "0.742" "0.21"

In this example, MATS detects a significant effect of sex, a finding that is not shared by the p value
based on the parametric bootstrap WTS.

Confidence Regions

The MANOVA functions are equipped with a function for calculating and plotting of confidence regions.
Details on the methods can be found in Friedrich and Pauly (2018). We would like to point out,
however, that the MATS-based confidence regions have to be interpreted differently from the more
usual WTS-based ones. For the latter, the WTS is compared to a fixed critical value (in the asymptotic
choice from a χ2-distribution) and we thus obtain geometric ellipsoids as the WTS is more or less
a Mahalanobis distance in the inverse covariance matrix. The MATS statistic only involves the
variances of the covariance matrix and we thus obtain a different geometric shape of the corresponding
confidence region. However, here the correlation is implicitly involved in the critical value which now
(different to the WTS) depends on the covariance matrix. More precisely, a confidence region for the
vector of contrasts Hµ based on the MATS is determined by the set of all Hµ such that

N(HX · − Hµ)>(HD̂N H>)+(HX · − Hµ) ≤ c∗1−α,

where c∗1−α denotes the quantile of the respective resampling distribution. A confidence ellipsoid is
now obtained based on the eigenvalues λ̂s and eigenvectors ês of HD̂N H>. The classical WTS-based
confidence ellipsoids, in contrast, are based on eigenvectors and eigenvalues of HΣ̂N H> instead.
Confidence regions can be calculated using the conf.reg function. Note that confidence regions can
only be plotted in designs with 2 dimensions.

R> conf.reg(object, nullhypo)

Object must be an object of class "MANOVA", i.e., created using either MANOVA or MANOVA.wide,
whereas nullhypo specifies the desired null hypothesis, i.e., the contrast of interest in designs involving
more than one factor. As an example, we consider the data set water from the HSAUR package (Everitt
and Hothorn, 2017). The data set contains measurements of mortality and drinking water hardness
for 61 cities in England and Wales. Suppose we want to analyse whether these measurements differ
between northern and southern towns. Since the data set is in wide format, we need to use the
MANOVA.wide function.

R> library("HSAUR")
R> data("water")
R> test <- MANOVA.wide(cbind(mortality, hardness) ~ location, data = water,
+ iter = 1000, resampling = "paramBS", CPU = 1, seed = 123)
R> summary(test)
R> cr <- conf.reg(test)
R> cr
R> plot(cr, xlab = "Difference in mortality",
+ ylab ="Difference in water hardness")

Call:
cbind(mortality, hardness) ~ location

Descriptive:

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=HSAUR

CONTRIBUTED RESEARCH ARTICLES 393

location n mortality hardness
1 North 35 1633.600 30.400
2 South 26 1376.808 69.769

Wald-Type Statistic (WTS):
Test statistic df p-value

location "51.584" "2" "<0.001"

modified ANOVA-Type Statistic (MATS):
Test statistic

location 69.882

p-values resampling:
paramBS (WTS) paramBS (MATS)

location "<0.001" "<0.001"

We find significant differences in mortality and water hardness between northern and southern
towns.

The confidence region is returned as an ellipsoid specified by its center as well as its axes, which
extend Scale units into the direction of the respective eigenvector. For two-dimensional outcomes as
in this example, the confidence ellipsoid can also be plotted using the ellipse package (Murdoch and
Chow, 2018), see Figure 3.

Center:
[,1]
[1,] 256.792
[2,] -39.369

Scale:
[1] 10.852716 2.736354

Eigenvectors:
[,1] [,2]
[1,] -1 0
[2,] 0 -1

100 200 300 400

−
80

−
60

−
40

−
20

0
20

Confidence ellipsoid for factor location

Difference in mortality

D
iff

er
en

ce
 in

 w
at

er
 h

ar
dn

es
s

Figure 3: Plot of the confidence region for factor location in the water example from package HSAUR.

Nested design

To create a data example for a nested design, we use the curdies data set from the GFD package
and extend it by introducing an artificial second outcome variable. In this data set, the levels of the
nested factor (site) are named uniquely, i.e., levels 1-3 of factor site belong to "WINTER", whereas
levels 4-6 belong to "SUMMER". Therefore, nested.levels.unique must be set to TRUE. The code for
the analysis using both wide and long format is presented below.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=ellipse

CONTRIBUTED RESEARCH ARTICLES 394

R> library("GFD")
R> data("curdies")
R> set.seed(123)
R> curdies$dug2 <- curdies$dugesia + rnorm(36)

R> # first possibility: MANOVA.wide
R> fit1 <- MANOVA.wide(cbind(dugesia, dug2) ~ season + season:site,
+ data = curdies, iter = 1000,
+ nested.levels.unique = TRUE, seed = 123, CPU = 1)

R> # second possibility: MANOVA (long format)
R> dug <- c(curdies$dugesia, curdies$dug2)
R> season <- rep(curdies$season, 2)
R> site <- rep(curdies$site, 2)
R> curd <- data.frame(dug, season, site, subject = rep(1:36, 2))
R> fit2 <- MANOVA(dug ~ season + season:site, data = curd,
+ subject = "subject", nested.levels.unique = TRUE,
+ seed = 123, iter = 1000, CPU = 1)

R> # comparison of results
R> summary(fit1)
R> summary(fit2)

Call:
cbind(dugesia, dug2) ~ season + season:site

Descriptive:
season site n dugesia dug2
1 SUMMER 4 6 0.419 -0.050
2 SUMMER 5 6 0.229 0.028
3 SUMMER 6 6 0.194 0.763
4 WINTER 1 6 2.049 2.497
5 WINTER 2 6 4.182 4.123
6 WINTER 3 6 0.678 0.724

Wald-Type Statistic (WTS):
Test statistic df p-value

season 6.999 2 0.030
season:site 16.621 8 0.034

modified ANOVA-Type Statistic (MATS):
Test statistic

season 12.296
season:site 15.064

p-values resampling:
paramBS (WTS) paramBS (MATS)

season 0.064 0.032
season:site 0.275 0.216

Call:
dug ~ season + season:site

Descriptive:
season site n Mean 1 Mean 2
1 SUMMER 4 6 0.419 -0.050
2 SUMMER 5 6 0.229 0.028
3 SUMMER 6 6 0.194 0.763
4 WINTER 1 6 2.049 2.497
5 WINTER 2 6 4.182 4.123
6 WINTER 3 6 0.678 0.724

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 395

Wald-Type Statistic (WTS):
Test statistic df p-value

season 6.999 2 0.030
season:site 16.621 8 0.034

modified ANOVA-Type Statistic (MATS):
Test statistic

season 12.296
season:site 15.064

p-values resampling:
paramBS (WTS) paramBS (MATS)

season 0.064 0.032
season:site 0.275 0.216

Post-hoc comparisons

In addition to global testing, the package MANOVA.RM allows for post-hoc comparisons. In particu-
lar, the following comparisons are implemented:

1. calculation of simultaneous multivariate p values for contrasts of the mean vector,

2. calculation of simultaneous confidence intervals based on summary effects (i. e. averaged across
all dimensions) and

3. univariate comparisons for separate endpoints.

Calculation of simultaneous confidence intervals and p values for contrasts of the mean vector
is based on the sum statistic, see Friedrich and Pauly (2018) for details. Confidence intervals are
calculated based on summary effects, i.e., averaging over all dimensions, whereas the returned p-
values are multivariate. Note that the confidence intervals and p values returned are simultaneous, i. e.,
they maintain the given alpha-level. Such contrasts include, e. g., Tukey’s all-pairwise comparisons or
Dunnett’s many-to-one comparisons, see e. g. Hothorn et al. (2008a) for more examples. Confidence
intervals for contrasts of the mean vector can be calculated using the function simCI, which is build on
contrMat from the multcomp package (Hothorn et al., 2008b):

simCI(object, contrast, contmat, type, base)

Here, object is an object of class "MANOVA". The user can choose between pairwise or user-defined
contrasts. For user-defined constrast (contrast = "user-defined"), the contrast matrix of interest
must be specified in contmat. Pairwise comparisons (contrast = "pairwise") are calculated using
the contrMat function of multcomp and accordingly, type and base specify the type of the pairwise
comparison and the baseline group for Dunnett contrasts, see Hothorn et al. (2008b) for details on
these parameters. To exemplify its application we reconsider the EEG example from above:

R> # pairwise comparison using Tukey contrasts
R> simCI(EEG_MANOVA, contrast = "pairwise", type = "Tukey")

#------ Call -----#

- Contrast: Tukey
- Confidence level: 99 %

#------Multivariate post-hoc comparisons: p-values -----#

contrast p.value
1 M MCI - M AD 0.961
2 M SCC - M AD 0.548
3 W AD - M AD 0.899
4 W MCI - M AD 0.775
5 W SCC - M AD 0.417
6 M SCC - M MCI 0.368
7 W AD - M MCI 0.995
8 W MCI - M MCI 0.843
9 W SCC - M MCI 0.111
10 W AD - M SCC 0.845
11 W MCI - M SCC 0.938

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=multcomp

CONTRIBUTED RESEARCH ARTICLES 396

12 W SCC - M SCC 0.989
13 W MCI - W AD 1.000
14 W SCC - W AD 0.526
15 W SCC - W MCI 0.563

#-----------Confidence intervals for summary effects-------------#

Estimate Lower Upper
M MCI - M AD 4.275 -16.181707 24.731707
M SCC - M AD 8.767 -11.126510 28.660510
W AD - M AD 5.864 -14.947797 26.675797
W MCI - M AD 6.995 -12.978374 26.968374
W SCC - M AD 9.835 -9.799574 29.469574
M SCC - M MCI 4.492 -4.040216 13.024216
W AD - M MCI 1.589 -8.907565 12.085565
W MCI - M MCI 2.720 -5.996803 11.436803
W SCC - M MCI 5.560 -2.349709 13.469709
W AD - M SCC -2.903 -12.254617 6.448617
W MCI - M SCC -1.772 -9.069776 5.525776
W SCC - M SCC 1.068 -5.243764 7.379764
W MCI - W AD 1.131 -8.389330 10.651330
W SCC - W AD 3.971 -4.816350 12.758350
W SCC - W MCI 2.840 -3.719140 9.399140

The output is two-fold: First, the multivariate p values for the desired contrasts are returned.
The second part of the output provides simultaneous confidence intervals for summary effects by
averaging over all dimensions.

As another example using a user-defined contrast matrix, we consider the following one-way
layout of the EEG data:

R> oneway <- MANOVA.wide(cbind(brainrate_temporal, brainrate_central)
+ ~ diagnosis, data = EEGwide, iter = 1000,
+ CPU = 1)
R> # a user-defined contrast matrix
R> H <- as.matrix(cbind(rep(1, 5), -1*Matrix::Diagonal(5)))
R> simCI(oneway, contrast = "user-defined", contmat = H)

#------ Call -----#

- Contrast: user-defined
- Confidence level: 95 %

#------Multivariate post-hoc comparisons: p-values -----#

[1] 1.000 0.673 0.655 0.008 0.008

#-----------Confidence intervals for summary effects-------------#

Estimate Lower Upper
1 0.013 -1.003489 1.0294895
2 -0.243 -1.050099 0.5640992
3 -0.251 -1.058376 0.5563761
4 -1.033 -1.812577 -0.2534227
5 -1.033 -1.791749 -0.2742508

Note that interpretation of the results depends on the user-defined contrast matrix.

If the global null hypothesis, e. g.

H0(A) : {(Pa ⊗ Id)µ = 0} = {µ1 = · · · = µa}

has been rejected, it is usually of interest to further investigate which univariate endpoints caused the
rejection. A straight-forward way to do this is to calculate the univariate p values and adjust them
for multiple testing, e. g., using Bonferroni correction. Consider the one-way layout above: Since the
global null hypothesis can be rejected, we now wish to analyze which of the two univariate endpoints
caused this rejection.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 397

R> EEG1 <- MANOVA.wide(brainrate_temporal ~ diagnosis, data = EEGwide,
+ iter = 1000, seed = 987, CPU = 1)
R> EEG2 <- MANOVA.wide(brainrate_central ~ diagnosis, data = EEGwide,
+ iter = 1000, seed = 987, CPU = 1)
R> p.adjust(c(EEG1$resampling[, 2], EEG2$resampling[, 2]),
+ method = "bonferroni")
[1] 0 0

Thus, in this example both endpoints showed significant effects.
Note that it is often possible to conduct post-hoc comparisons according to the closure principle, thus
avoiding the need to correct for multiple comparisons. Implementation of these methods for both
MANOVA and RM designs is part of future research.

Graphical user interface

The GUI is started in R with the command GUI.RM(), GUI.MANOVA() and GUI.MANOVAwide() for re-
peated measures designs and multivariate data in long or wide format, respectively. Note that the GUI
depends on RGtk2 and will only work if RGtk2 is installed. The user can specify the data location
(either directly or via the "load data" button) and the formula as well as the number of iterations,
the significance level α, the number of within subject factors (for repeated measures designs) and
the name of the subject variable, see Figure 4. Furthermore, the user has the choice between the
three resampling approaches "Perm" (only for RM designs), "paramBS" and "WildBS" denoting the
permutation procedure, the parametric bootstrap and the wild bootstrap, respectively. Additionally,
one can specify whether or not headers are included in the data file, and which separator and character
symbols are used for decimals in the data file. The GUI for repeated measures also provides a plotting
option, which generates a new window for specifying the factors to be plotted (in higher-way layouts)
along with a few plotting parameters, see Figure 5.

R> library("MANOVA.RM")
R> GUI.RM()

Figure 4: The GUI for tests in repeated measures designs (upper panel) and multivariate data (lower
panel): The user can specify the data location and the formula as well as the resampling approach.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 398

Figure 5: Graphical user interfaces for plotting: The left GUI is for the one-way layout (no choice of
factors possible), the right one is for a two-way layout with an example for plotting interactions.

Discussion and Outlook

We have explicitly described the usage of the R package MANOVA.RM for analyzing various non-
parametric multivariate MANOVA and RM designs making use of novel bootstrap- and permutation-
approaches. Moreover, the corresponding models and inference procedures that have been derived
and theoretically analyzed in previous papers are explained as well. In particular, three different
test statistics of Wald-, ANOVA- and modified ANOVA-type are implemented together with appro-
priate critical values derived from asymptotic considerations, approximations or novel resampling
approaches. Here, the latter is recommended in case of small to moderate sample sizes. All meth-
ods can be applied without assuming usual presumptions such as multivariate normality or specific
covariance structures. Moreover, all procedures are particularly constructed to tackle covariance
matrix heterogeneity across groups or even covariance singularity (in case of the MATS). In this way
MANOVA.RM provides a flexible tool box for inferring hypotheses about (i) main and interaction
effects in general factorial MANOVA and (ii) between and within subject effects in RM designs with
possibly complex factorial structures on both, between and within subject factors.

In addition, we have placed a graphical user interface (GUI) at the users disposal to allow for
a simple and intuitive use. It is planned to update the package on a regular basis; respecting the
development of new procedures for general RM and MANOVA designs. For example, our working
group is currently investigating the implementation of covariates in the above model in theoretical
research and the resulting procedure may be incorporated in the future. Other topics include the
possible implementation/improvement of subsequent multiple comparisons by the closure principle,
as in Burchett et al. (2017), for both MANOVA and RM designs.

Acknowledgments

The work of Sarah Friedrich and Markus Pauly was supported by the German Research Foundation
project DFG-PA 2409/3-1.

Bibliography

M. J. Anderson. A new method for non-parametric multivariate analysis of variance. Austral Ecology,
26(1):32–46, 2001. [p380]

A. C. Bathke, S. Friedrich, F. Konietschke, M. Pauly, W. Staffen, N. Strobl, and Y. Höller. Testing
Mean Differences Among Groups: Multivariate and Repeated Measures Analysis with Minimal
Assumptions. Multivariate Behavioral Research, 2018. URL https://doi.org/10.1080/00273171.
2018.1446320. [p381, 382, 386]

E. Brunner. Asymptotic and approximate analysis of repeated measures designs under heteroscedas-
ticity. Mathematical Statistics with Applications in Biometry, 2001. [p381, 382, 383, 386]

E. Brunner, H. Dette, and A. Munk. Box-type approximations in nonparametric factorial designs.
Journal of the American Statistical Association, 92(440):1494–1502, 1997. [p383]

E. Brunner, S. Domhof, and F. Langer. Nonparametric Analysis of Longitudinal Data in Factorial Experi-
ments. John Wiley & Sons, New York, USA, 2002. [p383]

W. W. Burchett, A. R. Ellis, S. W. Harrar, and A. C. Bathke. Nonparametric inference for multivariate
data: The R package npmv. Journal of Statistical Software, 76(4):1–18, 2017. URL https://doi.org/
10.18637/jss.v076.i04. [p380, 398]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1080/00273171.2018.1446320
https://doi.org/10.1080/00273171.2018.1446320
https://doi.org/10.18637/jss.v076.i04
https://doi.org/10.18637/jss.v076.i04

CONTRIBUTED RESEARCH ARTICLES 399

W. F. Christensen and A. C. Rencher. A Comparison of Type I Error Rates and Power Levels for Seven
Solutions to the Multivariate Behrens-Fisher Problem. Communications in Statistics - Simulation and
Computation, 26(4):1251–1273, 1997. [p383]

E. Chung and J. P. Romano. Exact and asymptotically robust permutation tests. The Annals of Statistics,
41(2):484–507, 2013. [p381]

G. Cornu, F. Mortier, C. Trottier, and X. Bry. SCGLR: Supervised Component Generalized Linear Regression,
2018. URL https://CRAN.R-project.org/package=SCGLR. R package version 3.0. [p381]

C. S. Davis. Statistical Methods for the Analysis of Repeated Measurements. Springer-Verlag, 2002. [p380]

B. S. Everitt and T. Hothorn. HSAUR: A Handbook of Statistical Analyses Using R (1st Edition), 2017. URL
https://CRAN.R-project.org/package=HSAUR. R package version 1.3-9. [p392]

L. Finos, with contributions by Florian Klinglmueller, D. Basso, A. Solari, L. Benetazzo, J. Goeman, and
M. Rinaldo. Flip: Multivariate Permutation Tests, 2018. URL https://CRAN.R-project.org/package=
flip. R package version 2.5.0. [p381]

J. Fox and S. Weisberg. An R Companion to Applied Regression. Sage, Thousand Oaks CA, 2nd edition,
2011. URL http://socserv.socsci.mcmaster.ca/jfox/Books/Companion. [p381]

S. Friedrich and M. Pauly. MATS: Inference for potentially singular and heteroscedastic MANOVA.
Journal of Multivariate Analysis, 165:166–179, 2018. [p381, 383, 388, 392, 395]

S. Friedrich, E. Brunner, and M. Pauly. Permuting longitudinal data in spite of the dependencies.
Journal of Multivariate Analysis, 153:255–265, 2017a. [p381, 382, 385, 386]

S. Friedrich, F. Konietschke, and M. Pauly. Gfd: An r package for the analysis of general factorial
designs. Journal of Statistical Software, Code Snippets, 79(1):1–18, 2017b. URL https://doi.org/10.
18637/jss.v079.c01. [p381]

S. Friedrich, F. Konietschke, and M. Pauly. MANOVA.RM: Resampling-Based Analysis of Multivariate
Data and Repeated Measures Designs, 2019. URL http://github.com/smn74/MANOVA.RM. R package
version 0.4.1. [p381]

A. K. Gupta, S. W. Harrar, and Y. Fujikoshi. MANOVA for large hypothesis degrees of freedom under
non-normality. Test, 17(1):120–137, 2008. [p381]

S. W. Harrar and A. C. Bathke. A modified two-factor multivariate analysis of variance: Asymptotics
and small sample approximations. Annals of the Institute of Statistical Mathematics, 64(1):135–165,
2012. [p381]

T. Hothorn, F. Bretz, and P. Westfall. Simultaneous inference in general parametric models. Biometrical
Journal, 50(3):346–363, 2008a. [p395]

T. Hothorn, F. Bretz, and P. Westfall. Simultaneous inference in general parametric models. Biometrical
Journal, 50(3):346–363, 2008b. [p395]

Y. Huang, H. Xu, V. Calian, and J. C. Hsu. To permute or not to permute. Bioinformatics, 22(18):
2244–2248, 2006. [p381]

R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical Analysis. Prentice Hall, 2007. [p380]

F. Konietschke, A. C. Bathke, S. W. Harrar, and M. Pauly. Parametric and nonparametric bootstrap
methods for general MANOVA. Journal of Multivariate Analysis, 140:291–301, 2015. [p381, 382, 383,
386]

K. Krishnamoorthy and J. Yu. Modified Nel and Van Der Merwe Test for the Multivariate Behrens–
Fisher Problem. Statistics & Probability Letters, 66(2):161–169, 2004. [p383]

M. Lawrence and D. Temple Lang. RGtk2: A graphical user interface toolkit for R. Journal of Statistical
Software, 37(8):1–52, 2010. URL http://www.jstatsoft.org/v37/i08/. [p384]

J. Lemon. Plotrix: a package in the red light district of r. R-News, 6(4):8–12, 2006. [p385]

P. Livacic-Rojas, G. Vallejo, and P. Fernandez. Analysis of type i error rates of univariate and mul-
tivariate procedures in repeated measures designs. Communications in Statistics - Simulation and
Computation, 39(3):624–640, 2010. [p381]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=SCGLR
https://CRAN.R-project.org/package=HSAUR
https://CRAN.R-project.org/package=flip
https://CRAN.R-project.org/package=flip
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
https://doi.org/10.18637/jss.v079.c01
https://doi.org/10.18637/jss.v079.c01
http://github.com/smn74/MANOVA.RM
http://www.jstatsoft.org/v37/i08/

CONTRIBUTED RESEARCH ARTICLES 400

P. Livacic-Rojas, G. Vallejo, P. Fernández, and E. Tuero-Herrero. Power of modified brown-forsythe
and mixed-model approaches in split-plot designs. Methodology, 13:9–22, 2017. [p381]

L. M. Lix and H. Keselman. Multivariate tests of means in independent groups designs: Effects of
covariance heterogeneity and nonnormality. Evaluation & the Health Professions, 27(1):45–69, 2004.
[p381]

L. M. Lix and A. M. Lloyd. A comparison of procedures for the analysis of multivariate repeated
measurements. Journal of Modern Applied Statistical Methods, 6(2):380–398, 2007. [p381]

M. McFarquhar, S. McKie, R. Emsley, J. Suckling, R. Elliott, and S. Williams. Multivariate and repeated
measures (mrm): A new toolbox for dependent and multimodal group-level neuroimaging data.
NeuroImage, 132:373–389, 2016. [p381]

D. Murdoch and E. D. Chow. Ellipse: Functions for Drawing Ellipses and Ellipse-Like Confidence Regions,
2018. URL https://CRAN.R-project.org/package=ellipse. R package version 0.4.1. [p393]

D. Nel and C. Van der Merwe. A Solution to the Multivariate Behrens-Fisher Problem. Communications
in Statistics-Theory and Methods, 15(12):3719–3735, 1986. [p383]

K. Noguchi, Y. R. Gel, E. Brunner, and F. Konietschke. nparld: An r software package for the
nonparametric analysis of longitudinal data in factorial experiments. Journal of Statistical Software,
50(12):1–23, 2012. URL http://www.jstatsoft.org/v50/i12/. [p381]

G. Vallejo, A. Fidalgo, and P. Fernandez. Effects of covariance heterogeneity on three procedures for
analyzing multivariate repeated measures designs. Multivariate Behavioral Research, 36(1):01–27,
2001. [p381]

G. Vallejo Seco, J. A. Gras, and M. Ato García. Comparative robustness of recent methods for analyzing
multivariate repeated measures designs. Educational and Psychological Measurement, 67(3):410–432,
2007. [p381]

S. Xiao and J.-T. Zhang. Modified Tests for Heteroscedastic Two-Way MANOVA. Journal of Advanced
Statistics, 1(1):1–16, 2016. [p381]

H. Yanagihara and K.-H. Yuan. Three Approximate Solutions to the Multivariate Behrens–Fisher
Problem. Communications in Statistics - Simulation and Computation, 34(4):975–988, 2005. [p383]

Y. Yao. An Approximate Degrees of Freedom Solution to the Multivariate Behrens–Fisher Problem.
Biometrika, 52(1/2):139–147, 1965. [p383]

J.-T. Zhang. Two-way MANOVA with unequal cell sizes and unequal cell covariance matrices.
Technometrics, 53(4):426–439, 2011. [p381]

Øyvind Langsrud and B.-H. Mevik. Ffmanova: Fifty-Fifty MANOVA, 2019. URL https://CRAN.R-
project.org/package=ffmanova. R package version 1.1.0. [p381]

Sarah Friedrich
Department of Medical Statistics, University Medical Center Göttingen
Humboldtallee 32, 37073 Göttingen
Germany
sarah.friedrich@med.uni-goettingen.de

Frank Konietschke
Charité — Universitätsmedizin Berlin
Corporate Member of Freie Universität Berlin
Humboldt-Universität zu Berlin, and
Berlin Institute of Health, Institute of Biometry and Clinical Epidemiology
Charitéplatz 1, 10117 Berlin
Germany
frank.konietschke@charite.de

Markus Pauly
Fakultät Statistik, Technische Universität Dortmund
44221 Dortmund
Germany
markus.pauly@tu-dortmund.de

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=ellipse
http://www.jstatsoft.org/v50/i12/
https://CRAN.R-project.org/package=ffmanova
https://CRAN.R-project.org/package=ffmanova
mailto:sarah.friedrich@med.uni-goettingen.de
mailto:frank.konietschke@charite.de
mailto:markus.pauly@tu-dortmund.de

CONTRIBUTED RESEARCH ARTICLES 401

spGARCH: An R-Package for Spatial and
Spatiotemporal ARCH and GARCH
models
by Philipp Otto

Abstract In this paper, a general overview on spatial and spatiotemporal ARCH models is provided.
In particular, we distinguish between three different spatial ARCH-type models. In addition to the
original definition of Otto et al. (2016), we introduce an logarithmic spatial ARCH model in this paper.
For this new model, maximum-likelihood estimators for the parameters are proposed. In addition, we
consider a new complex-valued definition of the spatial ARCH process. Moreover, spatial GARCH
models are briefly discussed. From a practical point of view, the use of the R-package spGARCH is
demonstrated. To be precise, we show how the proposed spatial ARCH models can be simulated and
summarize the variety of spatial models, which can be estimated by the estimation functions provided
in the package. Eventually, we apply all procedures to a real-data example.

Introduction

Whereas autoregressive conditional heteroscedasticity (ARCH) models are applied widely in time
series analysis, especially in financial econometrics, spatial conditional heteroscedasticity has not
been seen as critical issue in spatial econometrics up to now. Although it is well-known that classical
least squares estimators are biased for spatially correlated data as well as for spatial data with
an inhomogeneous variance across space, there are just a few papers proposing statistical models
accounting for spatial conditional heteroscedasticity in terms of the ARCH and GARCH models of
Engle (1982) and Bollerslev (1986). The first extensions to spatial models attempted were time series
models incorporating spatial effects in temporal lags (see Borovkova and Lopuhaa 2012 and Caporin
and Paruolo 2006, for instance). Instantaneous spatial autoregressive dependence in the conditional
second moments, i.e., the conditional variance in each spatial location is influenced by the variance
nearby, has been introduced by Otto et al. (2016). Further details and derivations can also be found in
Otto et al. (2018, 2019). Their models allow for these instantaneous effects but require certain regularity
conditions. In this paper, we propose an alternative specification of spatial autoregressive conditional
heteroscedasticity based on an exponential definition of the conditional variance. This new model can
be seen as the spatial equivalent of the log-GARCH model by Pantula (1986); Geweke (1986); Milhøj
(1987). Other recent papers propose a mixture of these two approaches (see Sato and Matsuda 2017,
2018b). Moreover, all these models can be used in spatiotemporal settings (see Otto et al. 2018; Sato
and Matsuda 2018a).

In addition to the novel spatial logarithmic ARCH model, this paper demonstrates the use of the
R-package spGARCH. From this practical point of view, the simulation of several spatial ARCH-type
models as well as the estimation of a variety of spatial models with conditional heteroscedasticity
are shown. There are several packages implementing geostatistical models, kriging approaches, and
other spatial models (cf. Cressie 1993; Cressie and Wikle 2011). One of the most powerful packages
used to deal with models of spatial dependence is spdep, written by Bivand and Piras (2015). It
implements most spatial models in a user-friendly way, such as spatial autoregressive models, spatial
lag models, and so forth (see, also, Elhorst 2010 for an overview). These models are typically called
spatial econometrics models, although they are not tied to applications in economics. In contrast, the
package gstat provides functions for geostatistical models, variogram estimation, and various kriging
approaches (see Pebesma 2004 for details). For dealing with big geospatial data, the Stem package
uses an expectation-maximization (EM) algorithm for fitting hierarchical spatiotemporal models (see
Cameletti 2015 for details). For a distributed computing environment, the MATLAB software D-STEM
from Finazzi and Fasso (2014) also provides powerful tools for dealing with heterogeneous spatial
supports, large multivariate data sets, and heterogeneous spatial sampling networks. Additionally,
these fitted models are suitable for spatial imputation. Contrary to these EM approaches, Bayesian
methods for modeling spatial data are implemented in the R-INLA package (see Rue et al. 2009 for
technical details of the integrated nested Laplace approximations and Martins et al. 2013 for recently
implemented features). Along with this package, the R-INLA project provides several functions for
diverse spatial models incorporating integrated nested Laplace approximations.

In contrast to the above mentioned software for spatial models, the prevalent R-package for time
series GARCH-type models is rugarch from Ghalanos (2018). Since spGARCH has been developed
mainly to deal with spatial data, we aim to provide a package which is user-friendly for researchers

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=spGARCH
https://CRAN.R-project.org/package=spGARCH
https://CRAN.R-project.org/package=spdep
https://CRAN.R-project.org/package=gstat
https://CRAN.R-project.org/package=Stem
https://CRAN.R-project.org/package=rugarch
https://CRAN.R-project.org/package=spGARCH

CONTRIBUTED RESEARCH ARTICLES 402

and data scientists working in applied spatial science. Thus, the package is coordinated with the
objects and ideas of R packages for spatial data rather than packages for dealing with time series.

We structure the paper as follows. In the next Section Spatial ARCH-type models, we discuss all
covered spatial and spatiotemporal ARCH-type models. In addition, we introduce a novel logarithmic
spatial ARCH model, which has weaker regularity conditions than the other spatial ARCH models. In
the subsequent section, parameter estimation based on the maximum-likelihood principle is discussed
for both the previously proposed spatial ARCH models as well as the new logarithmic spatial ARCH
model. Furthermore, spatial GARCH models are briefly discussed. However, the focus of this paper
should be on ARCH-type models. After these theoretical sections, we demonstrate the use of the
R-package spGARCH in Section Overview of the R-Package spGARCH. Further, we fit a spatial
autoregressive model with exogenous regressors and spatial ARCH residuals for a real-world data set.
In particular, we analyze prostate cancer incidence rates in southeastern U.S. states. Section Summary
and discussion concludes the paper.

Spatial ARCH-type models

Let {Y(s) ∈ R : s ∈ D} be a univariate stochastic process having a spatial autoregressive structure
in the conditional variance. The process is defined in a multidimensional space D, which is typically
a subset of the q-dimensional real numbers Rq, as space is usually finite. For dealing with spatial
lattice data, D is subset of the q-dimensional integers Zq. For both cases, it is important that the subset
contains a q-dimensional rectangle of positive volume (cf. Cressie and Wikle 2011). Moreover, this
definition is suitable for modeling spatiotemporal data, as one might assume that D is the product set
Rk ×Zl with k + l = d.

To define spatial models, in particular areal spatial models such as the simultaneous autoregressive
(SAR) models, it is convenient to consider a vector of observations
Y = (Y(s1), . . . , Y(sn))′ at all locations s1, . . . , sn. For spatial ARCH models, we specify this vec-
tor as

Y = diag(h)1/2ε , (1)

an analogue to the well-known time series ARCH models (cf. Engle 1982; Bollerslev 1986). However,
note that the vector h does not necessarily coincide with the conditional variance

Var(Y(si)|Y(s1), . . . , Y(si−1)) ,

as the variance in any location sj also depends on Y(si) for j 6= i (see Otto et al. 2018 for details). We
now distinguish between several spatial ARCH-type models via the definition of h.

Spatial ARCH model

First, we define this vector h in such a way as to be analogous to the definition in Otto et al. (2018). For
this model, the vector hO is given by

hO = α1 + ρWdiag(Y)Y , (2)

where diag(a) is a diagonal matrix with the entries of a on the diagonal. In order to be consistent with
the implementation in the R-package spGARCH, we focus on the special case with two parameters α
and ρ, whereas Otto et al. (2018) proposed a more general model with a vector α = (α1, . . . , αn)′ and
the first-order spatial lag Wdiag(Y)Y .

For this definition, there is a one-to-one relation between Y and ε via the squared observations
Y (2) = (Y(s1)

2, . . . , Y(sn)2)′ and squared errors ε(2) = (ε(s1)
2, . . . , ε(sn)2)′ with

Y (2) = α (I−A)−1 ε(2) , (3)

where W is a predefined spatial weighting matrix and

A = ρ diag
(

ε(s1)
2, . . . , ε(sn)

2
)

W .

Thus,
hO = α1 + ραW (I−A)−1 ε(2) .

It is important to assume that the spatial weighting matrix is a non-stochastic, positive matrix with
zeros on the main diagonal to ensure that a location is not influenced by itself (cf. Elhorst 2010; Cressie

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=spGARCH
https://CRAN.R-project.org/package=spGARCH

CONTRIBUTED RESEARCH ARTICLES 403

and Wikle 2011). The vector of random errors is denoted by ε. Due to the complex dependence implied
by the weighting matrix W, hO is not necessarily positive; thus, diag(h)1/2 does not necessarily have
a solution in the real numbers such that the process in (1) is well-defined. This is only the case if the
condition of the following lemma is fulfilled.

Lemma 1 (Otto et al. 2018). Suppose that α ≥ 0, ρ ≥ 0 and that det(I−A2) 6= 0. If all elements of the
matrix

(I−A2)−1 (4)

are nonnegative, then all components of Y (2) are nonnegative, i.e., Y(si)
2 ≥ 0 for i = 1, . . . , n. Moreover,

hO(si) ≥ 0 for i = 1, . . . , n.

It is important to note that A depends on both the weighting matrix and the realizations of the
errors. In order to ensure that this condition is fulfilled, Otto et al. (2018) propose to truncate the
support of the error distribution on the interval (−a, a) with

a =

{
∞ ∃k > 0 : ρWk = 0

1/ 4
√

ρ2||W2||1 ρ2||W2||1 > 0
,

where || · ||1 denotes the matrix norm based on the Manhattan norm.

There are two cases in which the support of the errors does not need to be constrained. If ρ = 0,
the process coincides with a spatial white noise process such that a equals ∞. Moreover, all entries
of h are non-negative if W is similar to a strictly triangular matrix. Then, W is nilpotent. This case
covers the classical time-series ARCH(p) models introduced by Engle (1982) as well as the so-called
oriented spARCH processes. For these processes, the spatial dependence has a certain direction, e.g.,
observations are only influenced by observations in a southward direction or by observations which
are closer to an arbitrarily chosen center. The setting also covers recent time-series GARCH models
incorporating spatial information (e.g., Borovkova and Lopuhaa 2012; Caporin and Paruolo 2006).

Of course, the truncated support of the errors has an impact on the extent of the spatial dependence
on the conditional variances. Obviously, the support need not be constrained regarding ρ = 0.
However, this support decreases with increasing values of ρ. For instance, if ρ = 1, then the parameter
a is equal to 0.968 for Rook’s contiguity matrices on a two-dimensional lattice. As a measure of
the spatial dependence of the variance, one might consider Moran’s I for the squared observations
(see Moran 1950). Moreover, we observe that the growth rate of I decreases with increasing spatial
weights. This trend can be explained by the compact support of the errors. Since there cannot be large
variations ε(si) in absolute terms, there also cannot be large spatial clusters of high or low variance.
To illustrate this behavior, Figure 1 depicts Moran’s I for simulated observations Y and their squares
for ρ ∈ {0, 0.05, . . . , 2}. For the Monte Carlo simulation study, we simulate n = 400 observation on
a two-dimensional lattice D = {s = (s1, s2)

′ ∈ Z2 : 0 ≤ s1, s2 ≤ 20}. The weighting matrix is a
common Rook’s contiguity matrix, and the simulation is done for 105 replications. Although the
exact distribution of Moran’s statistic is bounded, the standardized statistic is asymptotically normally
distributed for the “majority of spatial structures” (Tiefelsdorf and Boots 1995, see also Cliff and Ord
1981). Thus, the asymptotic 95% confidence intervals are plotted in Figure 1, as well.

Spatial Log-ARCH model

Next, we consider an logarithmic spatial ARCH process (log-spARCH). In this setting, we define the
natural logarithm of hE = (hE(s1), . . . , hE(sn))′ as

ln hE = α1 + ρWgb(ε) , (5)

with a function gb : Rn → Rn. Like Nelson (1991), we assume that

gb(ε) = (ln |ε(s1)|b, . . . , ln |ε(sn)|b)′

for positive values of b. For this definition, there is a one-to-one relation between Y and ε, as we show
in the following theorem.

Theorem 2. Suppose that α > 0, ρ ≥ 0, and wij ≥ 0 for all i, j = 1, . . . , n and gb(ε) = (ln |ε(s1)|b, . . . , ln |ε(sn)|b)′.
Then there exists one and only one Y(s1), . . . , Y(sn) that corresponds to each ε(s1), . . . , ε(sn) for b > 0.

At location si, the value of hE(si) is then given by

ln hE(si) = α +
n

∑
v=1

ρbwiv ln |ε(sv)| for i = 1, . . . , n .

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 404

ρ

M
or

an
's

 I

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.4 0.8 1.2 1.6 2.0

−
0.

05
0.

05
0.

15
0.

25

−
1.

25
1.

25
3.

75
5

6.
25

Y Y(2) a

a

Figure 1: Moran’s I of the observations Y and the squared observations Y (2), including the asymptotic
95% confidence intervals of I for ρ ∈ {0, 0.05, . . . , 2}. The resulting bound a is plotted as a bold, black
line.

For this definition of gb, one could rewrite ln h as

ln hE = S (α1 + ρbW ln |Y |) (6)

with

S = (sij)i,j=1,...,n =

(
I +

1
2

ρbW
)−1

.

In contrast to the spARCH process described in Section Spatial ARCH model, Corollary 1 shows that
the entries of hE are positive for all ρ ≥ 0 and α > 0. Hence, the process is well-defined and there are
no further restrictions needed, as in the case for the spARCH model.

Corollary 1. Assume that the assumptions of Theorem 2 are fulfilled, then hE(si) ≥ 0 for all i = 1, . . . , n.

For all proofs, we refer to the Appendix.

Complex Spatial ARCH model

Now, we propose a complex-valued spARCH process. In order to obtain a solution of diag(h)1/2

in the n-dimensional space of real numbers for the model defined in (2), all elements of the matrix
(I−A2)−1 must be nonnegative (see Otto et al. 2018). For the complex spARCH process, we relax
the assumption that there should be a solution to diag(h)1/2 in the real numbers and also consider
complex solutions. Thus, the definition of h coincides with hO of the original model, i.e.,

hC(si) = α +
n

∑
v=1

ρwivY(sv)
2 . (7)

Spatiotemporal ARCH model

Finally, we show that spatiotemporal processes are covered directly by these approaches. For spa-
tiotemporal data, the vector s simply includes both the spatial location ss and the point in time t,
i.e., s = (ss, t)′. In addition, it is important to assume that future observations do not influence past
observations, i.e., the weights wij must be zero if tj ≥ ti. However, the dimension of the weighting
matrix W might become very large for this representation. More precisely, the matrix has dimension
NT × NT, where N is the total number of spatial locations and T stands for the total number of time
points. From a computational perspective, this is not necessarily a drawback since W is usually sparse
and could also have a block diagonal structure. Moreover, it is often reasonable to assume that h(si) is
only influenced by the neighbors of ss,i at the same point of time and by past observations at the same

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 405

Process
type

Definition of h Comments

spARCH hO = α1 + ρW (I−A)−1 (αε(2)) ε is simulated from multivariate normal
distribution (MN) truncated on the
interval[
−1/ 4

√
||ρ2W2||1, 1/ 4

√
||ρ2W2||1

]
spARCH
(oriented)

hO = α1 + ρW (I−A)−1 (αε(2)) ε ∼ MN(0, I), W must be a strictly
triangular weighting matrix

spatial log-
ARCH

ln hE = S (α1 + ρbW ln |Y |) ε ∼ MN(0, I), but moments of Y differ
from the moments of classical spARCH
process (cf. Otto et al. 2018)

spARCH
(complex)

hC = α1 + ρW (I−A)−1 (αε(2)) ε ∼ MN(0, I), but complex-valued Y

Table 1: Overview of all types of spARCH models implemented in the spGARCH package.

location. Then the weighting matrix would have the following structure

W =

W1 0 · · · 0

I W2 · · · 0
...

...
. . .

...
0 0 · · · WT

 .

Indeed, it is plausible to weight the spatial and temporal lags differently by replacing ρW by a sum

ρ

W1 0 · · · 0
0 W2 · · · 0
...

...
. . .

...
0 0 · · · WT

+ φ1

0 0 · · · 0
I 0 · · · 0
...

...
. . .

...
0 0 · · · 0

+ . . .

with positive weights φk for all temporal lags 1 ≤ k ≤ p.

Spatial ARCH Disturbances

Since all conditional and unconditional odd moments of spatial ARCH processes are equal to zero,
these ARCH-type models can easily be added to any kind of (spatial) regression model without
influencing the mean equation as well as the spatial dependence in the first conditional and uncon-
ditional moments. This makes the spatial ARCH models flexible tools for dealing with conditional
spatial heteroscedasticity in the residuals of spatial models. For instance, one can consider spatial
autoregressive models for Y , i.e.,

Y = λBY + Xβ + u (8)

with u following either a spatial ARCH model with the original definition hO or the logarithmic model
with hE. Thus,

u = diag(h)1/2ε . (9)

Further, we call this model the SARspARCH model. For λ = 0, the model collapses to a simple linear
regression model; if, additionally, β = 0, the model coincides with the previously discussed ARCH
models. Thus, these coefficients can be used for testing against nested models.

In contrast to other models for heteroscedastic errors, such as the SARAR or SARMA models,
which assume spatial autoregressive or spatial moving average error terms (cf. Kelejian and Prucha
2010; Fingleton 2008; Haining 1978), the SARspARCH model does not affect the spatial autocorrelation
of the process, just the spatial heteroscedasticity, because all conditional and unconditional odd
moments are equal to zero. Thus, λB can be interpreted directly as the spatial dependence of the
process, while ρW describes the spatial dependence in the second conditional moments. Moreover,
these two parts can be interpreted separately, as we will demonstrate in the last section via an empirical
example.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=spGARCH

CONTRIBUTED RESEARCH ARTICLES 406

Generalized Spatial ARCH Models

Additionally, one may include spatially lagged observations of h to construct spatial GARCH-type
models. For instance, a spatial GARCH model is given by

hG = α1 + ρWdiag(Y)Y + λW̆hG (10)

= (I− λW̆)−1 (α1 + ρWdiag(Y)Y) , (11)

where W̆ is a second spatial weighting matrix and λ is the corresponding spatial GARCH parameter.
Obviously, the spatial GARCH-type models requires that (I − λW̆) is non-singular. In a similar
manner, hLG can be specified as

ln hLG = α1 + ρWgb(ε) + λW̆hLG , (12)

to define a spatial log-GARCH model. For theoretical details of spatial GARCH-type models, we refer
to Otto and Schmid (2019) introducing a unified spatial GARCH model covering various spatial ARCH
and GARCH models. Moreover, Otto and Schmid (2019) introduce an exponential spatial GARCH
model allowing for asymmetry via an alternative definition of g in (5). To be precise, g is given by

g(ε) = (Θε1 + ζ(|ε1| − E(|ε1|)), . . . , Θεn + ζ(|εn| − E(|εn|))′

for the exponential spatial GARCH model.

Parameter Estimation

The parameters of a spatial ARCH process can be estimated by the maximum-likelihood approach.
To obtain the joint density for Y = k(ε), the Jacobian matrix of k−1 at the observed values y must be
computed (e.g., Bickel and Doksum 2015). If fε is the distribution of the error process, then the joint
density fY of Y is given by

fY (y) = f(Y(s1),...,Y(sn))(y1, . . . , yn)

= fε

(
y1√
h1

, . . . ,
yn√
hn

)
|det

 ∂yj/

√
hj

∂yi

i,j=1,...,n

 | . (13)

If the residuals are additionally independent and identically distributed, the parameter estimates can
be obtained from the maximization of the log-likelihood as follows

(α̂, ρ̂) = arg max
α>0,ρ≥0

ln |det

 ∂yj/

√
hj

∂yi

i,j=1,...,n

 |+ n

∑
i=1

ln fε(yi) .

The Jacobian matrix, of course, depends on the definition of h. For the spARCH process, this
Jacobian matrix can be specified as

∂yj/
√

hj

∂yi
=

{
1 /
√

hj for i = j
− yiyj

h3/2
j

ρwji for i 6= j .

In contrast, the Jacobian matrix for the log-spARCH process is slightly different, namely

∂yj/
√

hj

∂yi
=

 1 /
√

hj for i = j

− byj

2yih3/2
j

ρsjiwji for i 6= j

with

hj = exp

(
n

∑
v=1

sjv

(
α + ρwjv ln |yv|

))
.

From a computational perspective, the computation of the log determinant of this matrix is feasible
for large data sets. To be precise, the log-determinant is equal to

ln |det

(
diag

(
h1

y2
1

, . . . ,
hn

y2
n

)
− ρW′

)
|+

n

∑
i=1

ln
y2

i

h3/2
i

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 407

for the spARCH process. Similarly, it is given by

ln |det
(

diag
(

2h1
b

, . . . ,
2hn

b

)
− ρS′ ◦W′

)
|+

n

∑
i=1

ln
b

2h3/2
i

.

for the log-spARCH process, where ◦ stands for the Hadamard product.

In the spGARCH package, we implemented the iterative maximization algorithm with inequality
constraints proposed by Ye (1988), which is implemented in the R-package Rsolnp (see Ghalanos and
Theussl 2012). It is important to note that the log determinant of the Jacobian also depends on the
parameters in such a way that it needs to be computed in each iteration (see, also, Theorem 13.7.3 of
Harville (2008) for the computation of a determinant for the sum of a diagonal matrix and an arbitrary
matrix), but W, and therefore S ◦W, are usually sparse. Thus, the required time for the estimation of
the parameters depends mainly on the dimension and sparsity of W.

Certainly, the choice of the weighting matrices are an important design choice of the models, which
has to be prespecified. However, the true structure of W is rarely known in practice. Moreover, all
estimated parameters depend on the selection of this matrix. Hence, inference on these parameters
and the coefficients itself must be interpreted based on the choice of W. For empirical applications,
one might gain insights on the structure of W by looking at spatial autocorrelation functions or
variograms. It is worth noting that the observations are uncorrelated for spatial ARCH models, so
one should also look at squared observations. Then, the weighting scheme is typically chosen from
a set of candidate schemes by maximizing certain goodness-of-fit criteria, like information criteria
or out-of-sample prediction errors. For instance, W could be chosen as contiguity matrix, i.e., two
locations are connected having positive weights, if they share a common border or if their distance
is less than a certain threshold. For instance, in studies in spatial econometrics or epidemiology,
the spatial domain is often a set of municipalities or counties (e.g., Amin et al. 2014; Buettner 2003).
In this case, contiguity matrices are straightforward and if these binary matrices are additionally
row-standardized, Wdiag(Y)Y can be interpreted as average of the squared neighboring observations.
Alternatively, W can be specified as k-nearest-neighbor matrix, i.e., only the k nearest locations get
positive weights, or as inverse-distance matrix, i.e., the weight between two locations is based on the
distance between these locations. Further choices of W are discussed by Otto et al. (2018). Finally,
it is worthy to mention that the weights could also depend on exogenous variables or other factors.
For instance, they could incorporate economic disparities, e.g., differences in the gross domestic
products, poverty rates, household incomes etc., or other covariates, like the wind direction and speed
when modeling spatial dependence of air pollutants (cf. Merk and Otto 2019). For spatiotemporal
autoregressive processes, there are also some approaches to estimate the entire spatial dependence
structure using machine learning methods (e.g., Lam and Souza 2016; Otto and Steinert 2018).

Overview of the R-Package spGARCH

The R-package spGARCH provides several basic functions for the analysis of spatial data showing
spatial conditional heteroscedasticity. In particular, the process can be simulated for arbitrarily chosen
weighting matrices according to the definitions in Section Spatial ARCH-type models. Moreover,
we implement a function for the computation of the maximum-likelihood estimators. To generate
a user-friendly output, the object generated by the estimation function can easily be summarized
by the generic summary() function. We also provide all common generic methods, such as plot(),
print(), logLik(), and so forth. To maximize the computational efficiency, the actual version of the
package contains compiled C++ code (using the packages Rcpp and RcppEigen, cf. Eddelbuettel and
François 2011; Bates and Eddelbuettel 2013). A brief overview of the package and its main functions
is given in Table 2. Further, we focus on the two main aspects of the package, i.e., the simulation
(described in detail in Section Simulation of ARCH-type stochastic processes) and estimation (Section
Maximum-likelihood estimation) aspects of the spARCH, log-spARCH, and SARspARCH processes.

Simulation of ARCH-type stochastic processes

The simulations of all spatial ARCH-type models are implemented in one function, namely, the
sim.spARCH() function. The different definitions of the model are specified via the argument type.
The use of sim.spARCH() is very similar to how a basic random number generator is used, meaning
that the first argument n is the number of generated values and all further arguments specify the
parameters of the spARCH process. For instance, one might simulate an oriented spARCH process
(meaning W is triangular) on a d× d spatial lattice with ρ = 0.7 and α = 1 using the following lines.

R> require("spdep")
R> rho <- 0.7

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=spGARCH
https://CRAN.R-project.org/package=Rsolnp
https://CRAN.R-project.org/package=spGARCH
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=RcppEigen

CONTRIBUTED RESEARCH ARTICLES 408

Function Description
Main functions

sim.spARCH() Simulation of spARCH and log-spARCH processes
sim.spGARCH() Simulation of spGARCH, E-spGARCH, and log-spGARCH

processes
qml.spARCH() Quasi-maximum-likelihood estimation for spARCH models
qml.SARspARCH() Quasi-maximum-likelihood estimation for SAR models

with spARCH residuals
Generic methods

summary() Summary of an object of ‘spARCH’ class generated by
qml.spARCH() or qml.SARspARCH()

print() Printing method for ‘spARCH’ class or summary.spARCH class
fitted() Extracts the fitted values of an object of ‘spARCH’ class
residuals() Extracts the residuals of an object of ‘spARCH’ class
logLik() Extracts the log-likelihood of an object of ‘spARCH’ class
extractAIC() Extracts the AIC of an object of ‘spARCH’ class
plot() Provides several descriptive plots of the residuals of an

object of ‘spARCH’ class

Table 2: Summary of the main functions of the spGARCH package.

R> alpha <- 1
R> d <- 50
R> n <- d^2
R> nblist <- cell2nb(d, d, type = "queen")
R> W <- nb2mat(nblist)
R> W[upper.tri(W)] <- 0
R> Y <- sim.spARCH(n = n, rho = rho, alpha = alpha, W = W,
+ type = "spARCH", control = list(seed = 5515))

To build the spatial weighting matrix, we used cell2nb() from the spdep package, returning an nb
object of a d× d lattice (see Cressie 1993; Bivand and Piras 2015). Further, we converted the nb object
into a contiguity matrix, as sim.spARCH() requires either a matrix (class matrix) or a sparse matrix
(class dgCMatrix) as an argument. Usually, spatial weighting matrices are sparse by construction. Thus,
W is always converted internally to a dgCMatrix matrix or rather to a SparseMatrix object defined in
the eigen library in C++. Via the control parameter, a random seed might be passed to the simulation
function. If not, a random seed is assigned randomly from a uniform distribution and printed in
console in order that one might reproduce the result even without having a random seed specified
in advance. We prefer to print a single number in the console rather than returning to the random
number generator (RNG) state as an attribute of the returned vector. Thus, a random seed might either
be passed as an optional argument to sim.spARCH() or set before calling sim.spARCH() by set.seed().

There are several types of spatial ARCH processes which can be simulated by sim.spARCH(). They
are all specified by the argument type. If

• type = "spARCH", then the original spARCH process according to the definition in Otto et al.
(2018) is simulated.

– If there exists a permutation such that W is a strictly triangular matrix, then the function
simulates automatically an oriented spARCH process with independent and identically
gaussian distributed errors.

– If there is no such permutation, then the errors are simulated from a truncated normal
distribution with a = 1/ 4

√
ρ2||W||1.

• type = "log-spARCH", an log-spARCH process is simulated with an user-specified value of b
(default 2) and standard normal random errors.

• type = "complex-spARCH", complex solutions of diag(h)1/2 are considered in order to simulate
the spARCH process.

Figure 2 illustrates the behavior of different types of spatial ARCH processes. All of them are
simulated with the same parameters and random seeds in such a manner that the vector ε is identical
for all types of processes, except for the spARCH process with the truncated normal errors. In the
first row, the spatial weighting is achieved via a strictly triangular Queen’s contiguity matrix, which

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=spGARCH
https://CRAN.R-project.org/package=spdep

CONTRIBUTED RESEARCH ARTICLES 409

s1

s 2

−3 −2 −1 0 1 2 3

s1

s 2

−4 −2 0 2 4

s1

s 2

−4 −2 0 2 4

s1

s 2

−1.0 −0.5 0.0 0.5 1.0

s1

s 2

−4 −2 0 2 4

s1

s 2

−20 −10 0 10 20

Above left: spatial white noise for comparison; center: oriented spARCH (type = ``gaussian''); right: spatial
E-ARCH (type = ``exp'').

Below left: spARCH with truncated normal errors (type = ``gaussian''); center: spatial E-ARCH (type =

``exp''), right: complex spARCH (type = ``complex'').

Figure 2: Simulations on a two-dimensional lattice for triangular matrices (above) and non-triangular
matrices (below). For all simulations, we set ρ = 0.7 and α = 1, and W is chosen to be the Queen’s
contiguity matrix.

means that the spatial dependence has its origin in the upper left corner. To the contrary, W presents
a classical Queen’s contiguity matrix in the second row. We additionally plot a spatial white noise
process for comparison, as we used a rather unconventional two-color scheme. Using this kind of
color scheme, one might distinguish between positive and negative observations, such that it is easier
to see the spatial volatility clusters. Areas of smaller volatility are characterized by rather evenly gray
pixels, whereas clusters of high volatility have rather intense colors. Moreover, the colors fluctuate
irregularly between blue and red.

As pointed out in Section Spatial ARCH-type models, spatiotemporal ARCH models are directly
covered if time is considered as one dimension of the q-dimensional space D. Thus, a two-dimensional
spatiotemporal process {Yt(s) : t = 1, . . . , T; s ∈ Ds} with Ds being a d× d unit grid and T = 20
points of time could be simulated as follows.

R> d <- 4
R> T <- 20
R> D_s <- 1:(d^2)
R> D_t <- 1:T
R> n <- length(D_s) * length(D_t)
R> nblist <- cell2nb(d, d, type = "queen")
R> W_list <- nb2listw(nblist)
R> W_s <- Matrix(listw2mat(W_list))
R> W <- W_s
R> for(t in D_t[-1]){
R> W <- bdiag(W, W_s)
R> }
R> diag(W[-c(1:length(D_s)), -c((n - length(D_s)+1):n)]) <- 0.2
R> set.seed(1)
R> Y <- sim.spARCH(n = n, rho = 0.8, alpha = 1, W = W, type = "log-spARCH")

The spatial weighting scheme has been chosen as block diagonal matrix like proposed above,
i.e., constant matrices W1 = W2 = . . . = WT = Ws along the diagonal define the instantaneous

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 410

Location 1

t

Y
(s

)
●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

2 4 6 8 10 12 14 16 18 20

−
2.

5
−

1.
5

−
0.

5
0.

5
1.

0

Location 2

t

Y
(s

)

●

●

●

● ●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

2 4 6 8 10 12 14 16 18 20

−
2.

0
−

1.
0

0.
0

0.
5

1.
0

1.
5

2.
0

Location 3

t

Y
(s

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

2 4 6 8 10 12 14 16 18 20

−
2.

0
−

1.
0

0.
0

0.
5

1.
0

Location 4

t

Y
(s

)

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

2 4 6 8 10 12 14 16 18 20

−
4.

0
−

3.
0

−
2.

0
−

1.
0

0.
0

1.
0

2.
0

Location 5

t

Y
(s

)

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

2 4 6 8 10 12 14 16 18 20

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

Location 6

t

Y
(s

)

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

2 4 6 8 10 12 14 16 18 20

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

2.
0

Location 7

t

Y
(s

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

2 4 6 8 10 12 14 16 18 20

−
2.

0
−

1.
0

0.
0

0.
5

1.
0

1.
5

Location 8

t

Y
(s

)

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

2 4 6 8 10 12 14 16 18 20

−
2.

5
−

1.
5

−
0.

5
0.

5
1.

5

Location 9

t

Y
(s

)

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

2 4 6 8 10 12 14 16 18 20

−
2.

0
−

1.
0

0.
0

1.
0

2.
0

Location 10

t

Y
(s

)

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

2 4 6 8 10 12 14 16 18 20

−
2.

0
−

1.
0

0.
0

1.
0

2.
0

Location 11

t

Y
(s

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

2 4 6 8 10 12 14 16 18 20

−
1.

5
−

0.
5

0.
0

0.
5

1.
0

1.
5

Location 12

t

Y
(s

) ●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

2 4 6 8 10 12 14 16 18 20

−
2.

5
−

1.
5

−
0.

5
0.

5
1.

0

Location 13

t

Y
(s

)

●

●

● ●

●

● ●

●

●

●

●

●

● ●

●

● ●

●

● ●

2 4 6 8 10 12 14 16 18 20

−
3.

0
−

2.
0

−
1.

0
0.

0
1.

0
2.

0

Location 14

t

Y
(s

)

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

2 4 6 8 10 12 14 16 18 20

−
1.

5
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

Location 15

t

Y
(s

)

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

2 4 6 8 10 12 14 16 18 20

−
2.

5
−

1.
5

−
0.

5
0.

5
1.

5

Location 16

t

Y
(s

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10 12 14 16 18 20

−
3.

0
−

2.
0

−
1.

0
0.

0
1.

0

Note that the true spatial orientation is preserved in this representation (4× 4 grid), i.e., plots appearing close to
each other are also located close to each other in space and they are, therefore, more related than more distant
locations. An alternative representation as consecutive spatial random fields is shown in Figure 4.

Figure 3: Simulated spatiotemporal log-ARCH process depicted as individual time series. The process
has been simulated on a 4× 4 spatial unit grid and for 20 points in time. The spatial ARCH parameter
ρ equals 0.9 and α = 1.

spatial interactions, while constant weights of 0.2 below the diagonal define the extend of the temporal
dependence. For instance, a central location would be weighted equally by all eight spatial neighbors
with a weight of 0.125 and by the observation of the same location at the previous time point by 0.2.
Thus, W describes the structure and the extend of the dependence in space and time. Eventually, ρ has
been chosen as 0.8 and we simulated the process as logarithmic spatial ARCH process.

The resulting simulation is depicted in Figures 3 and 4. Whereas the simulated values are shown
as time series plots placed at their correct spatial locations in Figure 3, 4 depicts the observations
as consecutive spatial random fields. Note that the same color coding has been chosen for both
representations. On the one hand side, one can observe spatial volatility clusters (e.g. in the pre-last
plot in Figure 4, t = 19, in which the conditional variance is low in the upper left corner, whereas the
conditional variance of the remaining locations is high). On the other hand, temporal volatility cluster
can be observed as well. For example, at location 16, the variance is high at the first and last five time
points, while it is lower between t = 6 and t = 14.

For sake of completeness, we briefly demonstrate the simulation of spatial GARCH-type models
using the sim.spGARCH() function. Like for sim.spARCH(), the type of the spatial GARCH model can
be chosen by the argument type. More precisely, there are the following options

• type = "spGARCH" for simulation of spatial GARCH models according to the definition in (10),

• type = "e-spGARCH" for simulation of exponential spatial GARCH models according to the

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 411

t = 1 t = 2 t = 3 t = 4 t = 5

...

t = 19 t = 20

The first five and the last two time points are plotted as spatial random fields, i.e., the simulations are shown in
their natural temporal ordering. An alternative representation as time series in their true spatial ordering is shown
in Figure 3.

Figure 4: Simulated spatiotemporal log-ARCH process depicted as consecutive spatial random fields.
The process has been simulated on a 4× 4 spatial unit grid and for 20 points in time. The spatial
ARCH parameter ρ equals 0.9 and α = 1.

definition in (12) with g,

• type = "log-spGARCH" for simulation of logarithmic spatial GARCH models according to the
definition in (12) with gb, and

• type = "complex-spGARCH" for simulation of a complex-valued spatial GARCH model.

To simulate a spatial GARCH process, two spatial weights matrices need to be specified via the
arguments W1 and W2. Moreover, two parameters ρ and λ are passed to the simulation function by the
arguments rho and lambda. For instance, a spatial GARCH model can be simulated on a d× d spatial
unit grid as follows

R> require("spdep")
R> rho <- 0.5
R> lambda <- 0.3
R> alpha <- 1
R> d <- 20
R> nblist <- cell2nb(d, d, type = "rook") # Rook's contiguity matrix
R> W_1 <- nb2mat(nblist)
R> W_2 <- W_1
R> Y <- sim.spGARCH(rho = rho, lambda = lambda, alpha = alpha,
+ W1 = W_1, W2 = W_2, type = "spGARCH")

Similarly, spatial log-GARCH processes and exponential spatial GARCH processes can be simulated
by changing the argument type. In this case, the parameters b must be provided for the log-GARCH
or Θ and ζ for the e-spGARCH, respectively. These parameters can easily passed to sim.spGARCH() by
the arguments b, theta, and zeta.

Maximum-likelihood estimation

Other important functions of the package are the qml.spARCH() and qml.SARspARCH() functions, which
implement a quasi-maximum-likelihood estimation algorithm (QML). As for the sim.spARCH() func-
tion, many spARCH models are covered in the qml.spARCH() and
qml.SARspARCH() function. Thus, the user needs to specify which particular spARCH model is
to be fitted via the argument type. Moreover, the model for the mean equation is a user-specified
formula, making the use of the estimation functions similar to the use of the common lm() or glm()
functions.

In general, the estimators exhibited good performances for a variety of error distributions in
simulation studies, although the likelihood function was derived under the normality assumption.
This is not surprising, as the maximum-likelihood estimators have good properties under mild
assumptions for the error processes of a variety of similar spatial econometrics models (cf. Lee 2004;
Lee and Yu 2012, 2010b,a). Thus, we refer to the approach as the QML approach, and the name of the
estimation functions start with qml instead of ml. In the following paragraphs, we start the simulation
of one specific sample, which is then used further to illustrate the log-likelihood functions as well as to
demonstrate parameter estimation.

Compared to the log-spARCH processes, the likelihood functions of spARCH models are rather
flat around the global maximum. This behavior is illustrated for simulated processes in Figure 5. The
observations for the log-spARCH process have been simulated as follows.

R> nblist <- cell2nb(20, 20, type = "queen")
R> W <- nb2mat(nblist)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 412

spARCH process

al
ph

a

0.5

1.0

1.5
2.0

rho

0.2
0.4

0.6
0.8

1.0

LL

−8000

−6000

−4000

−2000

α

ρ

 −3700
 −2400

 −
1800

 −1600

 −
1500

 −1300

 −
1200

 −1100

 −1000

 −900
 −800

 −700

●

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.
25

0.
50

0.
75

1.
00

α

ρ

 −636
 −635.4 −635.2

 −635

 −634.6

 −634.4

 −634.4

 −634.2

 −634

 −634

 −633.8

 −633.8

 −633.6

 −633.6

 −633.4

 −633.4

 −633.2

 −633.2

 −633

 −633

 −632.8

 −632.8

 −632.6

 −632.6

 −632.4

 −632.4

 −632.2

 −632.2

 −632

●

0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.
55

0.
60

0.
65

0.
70

log-spARCH process

al
ph

a

0.5

1.0

1.5
2.0

rho

0.2
0.4

0.6
0.8

1.0

LL

−900
−850

−800
−750

−700

−650

α

ρ
 −895

 −865

 −850
 −835

 −825

 −815

 −810
 −790

 −785

 −785

 −780

 −775

 −770

 −760

 −760

 −755

 −755

 −750

 −745

 −740

 −735

 −735

 −730

 −730

 −725

 −725

 −720

 −720

 −715

 −715

 −710

 −710

 −705

 −705

 −700

 −700

 −695

 −695

 −690

 −690

 −685

 −685

 −680

 −680

 −680

 −675

 −675

 −670

 −670

 −665

 −665

 −660

 −655

 −650

 −645

 −640

●

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.
25

0.
50

0.
75

1.
00

α

ρ

 −
64

6.
5

 −
64

5

 −
64

5

 −
64

4.
5 −

64
3.

5

 −
64

3.
5

 −
64

3

 −
64

3

 −
64

2.
5

 −
64

2

 −
64

2

 −
64

1.
5

 −
64

1.
5

 −
64

1

 −
64

1

 −
64

0.
5

 −
64

0.
5

 −
64

0

 −
64

0

 −
63

9.
5

 −
63

9.
5

 −639

 −639

 −
63

8.5

 −
63

8.5

 −638

 −638

 −637.5

 −637

 −636.5

●

0.65 0.75 0.85 0.95 1.05 1.15

0.
35

0.
40

0.
45

0.
50

Figure 5: Logarithmic likelihood function.

R> y <- sim.spARCH(n = 20^2, rho = 0.5, alpha = 1, W = W,
+ type = "log-spARCH", control = list(seed = 5515))

To simulate an oriented process, the entries of W above the diagonal must be set to zero and the
argument type must be changed to "spARCH", i.e.,

R> W[upper.tri(W)] <- 0
R> y2 <- sim.spARCH(n = 20^2, rho = 0.5, alpha = 1, W = W,
+ type = "spARCH",
+ control = list(seed = 5515))

To estimate the parameters of an intercept-free log-spARCH model without any regressors, the
formula passed to the function qml.spARCH() should be specified as y 0. In addition, a data.frame
can be passed via the data argument to the qml functions. Although the likelihood function of a
spARCH process is flat, good estimates can be obtained through iterative maximization. Otto et al.
(2018) analyze the performance of the estimators in detail. The algorithm implemented in the packages
is based on the Rsolnp package, allowing for both equality and inequality parameter constraints (cf.
Ghalanos and Theussl 2012).

The results of the estimation procedure are returned via an object of the class ‘spARCH’, for which
we provide additionally several generic functions. First, there is a summary() function for the ‘spARCH’
object. The summary shows all important estimation results, i.e., the parameter estimates, standard
errors, test statistics, and asymptotic p-values, including significance stars. The estimation of the above
simulated log-spARCH process would return the following results.

R> spARCH_object <- qml.spARCH(y ~ 0, W = W, type = "log-spARCH")
R> summary(spARCH_object)
Call:
qml.spARCH(formula = y ~ 0, W = W, type = "log-spARCH")

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.6867629 -0.6197315 -0.0053580 -0.0002615 0.5708346 2.8576621

Coefficients:
Estimate Std. Error t value Pr(>|t|)

alpha 0.919324 0.128544 7.1518 8.564e-13 ***

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=Rsolnp

CONTRIBUTED RESEARCH ARTICLES 413

rho 0.402998 0.056519 7.1304 1.001e-12 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

AIC: 543.01, BIC: 539.01 (Log-Likelihood: -269.51)

Moran's I (residuals): -0.028568, p-value: 0.31795

Moran's I (squared residuals): 0.035239, p-value: 0.14479

The standard errors are estimated as Cramer-Rao bounds from the Hessian matrix of the log-likelihood
function. For triangular weighting matrices, the estimators are asymptotically normally distributed
(Otto et al. 2018). In addition to the Akaike and Bayesian Schwarz information criteria, the results of
Moran’s test on the residuals and squared residuals are reported for the spatial autocorrelation of the
residuals. However, it is possible to use functions like AIC() or BIC(), since there is a logLik() method
for the objects from class ‘spARCH’. Additionally, the fitted values and residuals can be extracted by
fitted() and residuals(), respectively.

To analyze the residuals, we provide additionally several descriptive plots via the generic plot()
function. The first two plots are produced by moran.plot() imported from the package spdep. They
inspect the spatial autocorrelation of the residuals and the squared residuals. In addition, the error
distribution is depicted in the third graphic by a normal Q-Q-plot. The output obtained for the above
numerical example is given below and in Figure 6.

%\begin{CodeInput}
%R> AIC(spARCH_object)
%R> BIC(spARCH_object)
%R> par(mfcol = c(1,3))
%R> plot(spARCH_object)
%\end{CodeInput}
R> AIC(spARCH_object)
[1] 543.0126
R> BIC(spARCH_object)
[1] 550.9956
R> par(mfcol = c(1,3))
R> plot(spARCH_object)
Reproduce the results as follows:

eps <- residuals(x)
W <- as.matrix(x$W)
moran.plot(eps, mat2listw(W), zero.policy = TRUE,

xlab = "Residuals", ylab = "Spatially Lagged Residuals")
Reproduce the results as follows:

eps <- residuals(x)
W <- as.matrix(x$W)
moran.plot(eps, mat2listw(W), zero.policy = TRUE,

xlab = "Residuals", ylab = "Spatially Lagged Residuals")
Reproduce the results as follows:

eps <- residuals(x)
std_eps <- (eps - mean(eps))/sd(eps)
qqnorm(eps, ylab = "Standardized Residuals")
qqline(eps)

The mean equation can be specified as formula for all models, i.e., the spARCH, log-spARCH,
and SARspARCH models. Thus, there is a huge variety of possible spatial ARCH models as well as
regression models with spARCH residuals which can be fitted by the estimation functions. In addition
to linear models of the form y a + b, more sophisticated models can also be fitted, e.g., models with
interactions y a + b:c, factor models y factor, polynomial models y poly(a,3), seasonally
or regularly varying models of the form y sin(t) + cos(t) or y sin(long) + cos(long) +
sin(lat) + cos(lat), and so forth. We also implement an extractAIC() method for ‘spARCH’ objects,
such that one might also use step() for stepwise model selection. Table 3 provides an overview of
possible combinations of the arguments formula and type and shows the resulting models, which can
be fitted by the functions qml.spARCH() and qml.SARspARCH(), respectively.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=spdep

CONTRIBUTED RESEARCH ARTICLES 414

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Residuals

S
pa

tia
lly

 L
ag

ge
d

R
es

id
ua

ls

7:1

9:1

7:2 11:2

8:3

13:3

18:3

18:4

7:5

14:5

11:6

6:7

10:7

1:10

3:10

6:10

15:10
1:117:11

10:1113:11

14:11

18:11

8:12
9:12

10:12

4:15

12:16

1:17

2:17

11:17

17:17

3:18

11:18

2:20

3:20

4:20

20:20

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Squared Residuals
S

pa
tia

lly
 L

ag
ge

d
S

qu
ar

ed
 R

es
id

ua
ls

6:1

7:1

8:1

7:2

8:2

11:2

12:2

13:3

18:3

8:4

18:4

6:5

7:5

10:7

3:10

6:10

15:10

1:11
10:11

13:11

18:11

9:12

4:15

12:1617:17

3:18

11:18

2:192:20

3:20

20:20

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

Normal Q−Q Plot

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

Figure 6: Resulting graphical output of plot().

Function formula type Resulting model
qml.spARCH() y 0 "spARCH" spARCH model (see (1) and (2))
qml.spARCH() y 1 "spARCH" spARCH model with an additional intercept

for the mean equation
qml.spARCH() y a + b "spARCH" Linear Regression with regressors a and b and

spARCH residuals
qml.spARCH() y a + b:c "spARCH" Linear Regression with more complex expres-

sions and spARCH residuals
qml.spARCH() y 0 "log-spARCH"log-spARCH model (see (1) and (5))
qml.spARCH() y 1 "log-spARCH"log-spARCH model with an additional inter-

cept for the mean equation
qml.spARCH() y a + b "log-spARCH"Linear Regression with regressors a and b and

log-spARCH residuals
qml.spARCH() y a + b:c "log-spARCH"Linear Regression with more complex expres-

sions and log-spARCH residuals
qml.SARspARCH() y 0 "spARCH" SAR model without an intercept, but with

spARCH residuals (see (8) and (9))
qml.SARspARCH() y 1 "spARCH" SAR model with an intercept and spARCH

residuals
qml.SARspARCH() y a + b "spARCH" SAR model with an intercept and the regres-

sors a and b and spARCH residuals
qml.SARspARCH() y a + b:c "spARCH" SAR model with more complex expressions

and spARCH residuals
qml.SARspARCH() y 0 "log-spARCH"SAR model without an intercept, but with log-

spARCH residuals (see (8) and (9))
qml.SARspARCH() y 1 "log-spARCH"SAR model with an intercept and log-

spARCH residuals
qml.SARspARCH() y a + b "log-spARCH"SAR model with an intercept and the regres-

sors a and b plus log-spARCH residuals
qml.SARspARCH() y a + b:c "log-spARCH"SAR model with more complex expressions

and log-spARCH residuals

Table 3: Overview of spatial models, which can be fitted by qml.spARCH() and qml.SARspARCH().

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 415

Real-data example: prostate cancer incidence rates

Below, the focus is on the incidence rates (2008–2012) for prostate cancer provided by the Centers for
Disease Control and Prevention (of Health et al. 2015). In particular, we analyze the incidence rates in
all counties of several southeastern U.S. states, namely Arkansas, Louisiana, Mississippi, Tennessee,
North and South Carolina, Georgia, Alabama, and Florida. This area also covers the counties along
the Mississippi River collectively known as “cancer alley” (see Nitzkin 1992; Brent 2010; Berry 2003).
All rates are age-adjusted to the 2000 U.S. standard population (cf. of Health et al. 2015). To reproduce
the example, the logarithmic incidence rates as well as several covariates are included in the package.

As explanatory variables, we included a large set of environmental, climate, behavioral, and health
covariates, which might have an influence on incidence rates for prostate cancer. For instance, we
consider air pollution, such as PM2.5, PM10, SO2, NO2, CO, O3, and CH2O, as potential environmental
hazard factors. Moreover, we account for smoking, drinking, sport activities, and further healthcare-
related variables as potential influences on the cancer incidence rates. In total, we account for 34
explanatory variables, which were obtained by inverse-distance-kriging from spatial points processes.
Most of the variables are correlated, so we performed a factor analysis on 5 subgroups to identify 10
common factors. The factor loadings are summarized in Table 4. Note that the factor scores are directly
included in the dataset prostate_cancer. Eventually, the final explanatory factors were chosen by
minimizing the Bayesian information criterion using the generic function step() as follows.

R> data(prostate_cancer)
R> out <- step(qml.SARspARCH(formula, B = B, W = W, type = "spARCH",
+ data = prostate_cancer), k = log(length(Y)))

The formula object simply defines a linear model between the logarithmic incidence rates and all
factors. Further, matrix B describes the predefined spatial dependence structure in the mean equation.
For this analysis, B has been chosen as a row-standardized contiguity matrix of the direct neighbors.
For the spatial dependence in the spatial ARCH term of the residuals, we also included all neighbors
up to order 4. Hence, W is the row-standardized matrix of the sum of the first-, second-, third-, and
fourth-lag neighbors.

By minimizing the BIC criterion, the 2nd and 10th factor has been selected. Whereas the 2nd factor
has positive loadings mainly for fine particulate matters, PM2.5 and PM10, the 10th describes the
tendency for high blood pressure and cholesterol in the county’s population. However, note that this
analysis is based on aggregated data rather than individual patients; hence, the selected factors cannot
be interpreted as carcinogenic factors.

Using the generic summary() for the ‘spARCH’ class, the estimated model can be summarized as
follows.

Call:
qml.SARspARCH(formula = formula, B = B, W = W, type = "spARCH",

data = prostate_cancer)

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.7492270 -0.1079639 -0.0001509 -0.0005261 0.1121190 0.6404564

Coefficients:
Estimate Std. Error t value Pr(>|t|)

alpha (spARCH) 0.0203839 0.0042674 4.7766 1.783e-06 ***
rho (spARCH) 0.3782104 0.1309656 2.8879 0.003879 **
lambda (SAR) 0.6768133 0.0356765 18.9708 < 2.2e-16 ***
(Intercept) 1.5388985 0.1702222 9.0405 < 2.2e-16 ***
F_2 0.0192857 0.0069917 2.7584 0.005809 **
F_10 -0.0205693 0.0064450 -3.1915 0.001415 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

AIC: -1734.2, BIC: -1746.2 (Log-Likelihood: 873.11)

Moran's I (residuals): -0.022899, p-value: 0.32023

Moran's I (squared residuals): 0.021409, p-value: 0.00050052

First, we see that the model has a significant spatial autocorrelation in the mean equation since λ̂

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 416

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●
●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−
0.

05
0.

00
0.

05

Residuals

S
pa

tia
lly

 L
ag

ge
d

R
es

id
ua

ls

1059
10871119

5007

5041
5071

5073

5075

5079

5113

5147

12005

12041

1204312059 12063

12077
12079

12087

12125

12133

13017

13027

13065
13083

13155

13179

13183

13185

13197

13271
13279

13281

13317

22001

22003

22005

22007

22027

22033

22039

22045 2205122053
22057

22063

22067

22089

22091

22093
22095

22121

22123

28003

28011

28157

37053

37075

37103
45067

45069

4703547129

4713747161

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●
●

●●

●
●

●

● ●
●

●

●

●

●

●
●

●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●
●

●
●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●● ●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

0.0 0.1 0.2 0.3 0.4 0.5

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

Squared Residuals

S
pa

tia
lly

 L
ag

ge
d

S
qu

ar
ed

 R
es

id
ua

ls

1059

5017

5071

5075

5079

5113

5147

12003

12005

12007

12013

12019

12031
12037

12041

12043

12045

12059

12063

12065

12067

12073

12077

12079
12083

12086

12087

12089

12091

12113
12121

12123

12125

12129

13007

13017

13025
13027

1303913049

1306513071

13075

13083

13087
13101

13127

13131

13155

13173

13179

13185

13197

13205
13229

13275

13279

13281

13299

22025

22027

22123

28003

28011

28063

28157
45069

47127

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

Normal Q−Q Plot

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

Figure 7: Resulting graphical output of plot() for the real-data example.

(lambda (SAR)) differs significantly from zero. This implies that there are clusters of higher prostate
cancer incidence rates and, vice versa, lower incidence rates. Second, the error process shows condi-
tional, autoregressive heteroscedasticity in space, which is captured by the spARCH component of the
model, i.e., ρ̂ = 0.378 and α̂ = 0.020. This can be interpreted as differences in the local uncertainty
of the model. Hence, there are regions where the model predicts the true incidence rates more accu-
rately, and there are regions with a worse fit. This can also be interpreted as local risks coming from
unobserved, hidden factors. Note additionally that it is important to account for spatial conditional
heteroscedasticity, as the estimates of spatial autoregressive models are biased if the error variance is
not homogeneous across space. Inspecting the residuals, one can see that the spatial autocorrelation
has been fully captured by the model, as Moran’s I of the residuals is close to zero. In contrast, there
is a weak spatial dependence in the squared residuals. To inspect the reason for this dependence
graphically, the function plot() can be used to produce the plots shown in Figure 7.

After fitting the model, one also may include further regressors or estimate an intercept-only
model via update(). For illustration, we added the percentage of positive results for a prostate-specific
antigen (PSA) test in each county as an additional explanatory variable by

R> out2 <- update(out, . ~ . + PSA_test)

The PSA test is used for prostate cancer screening, meaning that there should definitely be a positive
dependence between the PSA test and the incidence rates. In fact, the estimated parameter is positive,
and the AIC is lower compared to the previous model. To be precise, the updated parameters are

Estimate Std. Error t value Pr(>|t|)
alpha (spARCH) 0.0199281 0.0043105 4.6231 3.78e-06 ***
rho (spARCH) 0.3902185 0.1280266 3.0479 0.0023041 **
lambda (SAR) 0.6643605 0.0366748 18.1149 < 2.2e-16 ***
(Intercept) 1.1349551 0.2301554 4.9313 8.17e-07 ***
F_2 0.0198504 0.0069903 2.8397 0.0045159 **
F_10 -0.0224035 0.0065828 -3.4034 0.0006656 ***
PSA_test 0.0095962 0.0042728 2.2459 0.0247125 *

Summary and discussion

This paper examines spatial models for autoregressive conditional heteroscedasticity. In contrast to
previously proposed spatial GARCH models, these models allow for instantaneous autoregressive
dependence in the second conditional moments. Previous approaches only allowed for spatial
dependence in the first temporal lag. However, these models are also captured by the spatial ARCH
approach, since temporal dependence can be included by appropriate choices of the weighting matrix.
In addition to discussing previously proposed models, we introduced a novel spatial logarithmic
ARCH model, for which the probability density has been derived and maximum-likelihood estimators
discussed.

In addition to this theoretical model, we focus on the computational implementation of all consid-
ered spatial ARCH models in the R-package spGARCH. In particular, the simulation and estimation
has been demonstrated. Regarding maximum-likelihood estimation, a broad range of spatial models
are implemented in the package. Furthermore, the spatial weights matrices, as well as the mean model,
can easily be specified by the user, providing a flexible and easy-to-use tool for spatial ARCH models.
All estimation functions return an object for class ‘spARCH’, for which several generic functions are
provided, such as summary(), plot(), and AIC(). This setup also allows the use of the R-base functions,

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=spGARCH

CONTRIBUTED RESEARCH ARTICLES 417

F. 1 F. 2 F. 3 F. 4 F. 5 F. 6 F. 7 F. 8 F. 9 F. 10
PM2.5 concentration 0.69 0.72
SO2 concentration 0.33 -0.03
NO2 concentration 0.13 -0.12
CO concentration 0.31 0.05
PM10 concentration 0.07 0.44
O3 concentration 1.00 -0.02
Solar radiation 0.60 0.44
Precipitation -0.08 -0.26
Outdoor temperature 1.00 -0.05
Temperature differences 0.32 0.94
Ambient maximal temperature 0.08 -0.39
CH2O -0.23 0.32
Percentage of current smokers 0.47 -0.85
Percentage of former smokers 0.92 0.37
Smoke some days -0.07 -0.62
Never smoked -0.96 0.25
Aerobic activity -0.05 0.58
Exercises 0.41 0.33
Physical activity index -0.09 0.99
Alcohol consumption 0.04 0.62
Binge drinking 0.07 0.44
Heavy drinking 0.43 0.02
High cholesterol 0.00 1.00
Cholesterol checked 0.55 0.00
Overweight (BMI 25.0-29.9) 0.99 0.09
Obese (BMI 30.0 - 99.8) -0.75 0.01
Blood stool test 0.56 -0.23
Sigmoidoscopy 0.14 -0.16
High blood pressure 0.03 0.79
Flu shot 0.81 -0.13
Pneumonia vaccination 0.51 -0.26
Health care coverage 0.58 0.18
Seatbelt use -0.58 0.10

Table 4: Overview of all included regressors and factor loading for the 10 common factors. The
regressors were divided into 5 subgroups to allow for distinctions between the factors.

such as step() for stepwise model selection or update() for updating the results of different mean
models. Eventually, the use of these functions are demonstrated by an empirical example, namely
county-level incidence rates of prostate cancer.

In the future, the package should be extended for further spatial ARCH-type models. Along
this vein, a class for model specifications should be added alongside the actual implementations via
arguments for the fitting functions. In that way, the package can be aligned to common time series
ARCH packages, such as the rugarch package. Furthermore, the package could benefit from robust
estimation methods, another focus for future research.

Bibliography

R. Amin, M. Hendryx, M. Shull, and A. Bohnert. A Cluster Analysis of Pediatric Cancer Incidence
Rates in Florida: 2000–2010. Statistics and Public Policy, 1(1):69–77, 2014. [p407]

D. Bates and D. Eddelbuettel. Fast and elegant numerical linear algebra using the RcppEigen package.
Journal of Statistical Software, 52(5):1–24, 2013. URL http://www.jstatsoft.org/v52/i05/. [p407]

G. R. Berry. Organizing against multinational corporate power in cancer alley the activist community
as primary stakeholder. Organization & Environment, 16(1):3–33, 2003. [p415]

P. J. Bickel and K. A. Doksum. Mathematical Statistics: Basic Ideas and Selected Topics, volume 117. CRC
Press, 2015. [p406]

R. Bivand and G. Piras. Comparing implementations of estimation methods for spatial econometrics.
Journal of Statistical Software, Articles, 63(18):1–36, 2015. ISSN 1548-7660. URL https://doi.org/10.
18637/jss.v063.i18. [p401, 408]

T. Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3):
307–327, 1986. [p401, 402]

S. Borovkova and R. Lopuhaa. Spatial GARCH: A spatial approach to multivariate volatility modeling.
Available at SSRN 2176781, 2012. [p401, 403]

K. Brent. Gender, race, and perceived environmental risk: The “white male” effect in cancer alley, la.
Sociological Spectrum, 2010. [p415]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=rugarch
http://www.jstatsoft.org/v52/i05/
https://doi.org/10.18637/jss.v063.i18
https://doi.org/10.18637/jss.v063.i18

CONTRIBUTED RESEARCH ARTICLES 418

T. Buettner. Tax base effects and fiscal externalities of local capital taxation: Evidence from a panel of
german jurisdictions. Journal of Urban Economics, 54(1):110–128, 2003. [p407]

M. Cameletti. Stem: Spatio-Temporal EM, 2015. R package version 1.0. [p401]

M. Caporin and P. Paruolo. GARCH models with spatial structure. SIS Statistica, pages 447–450, 2006.
[p401, 403]

A. Cliff and K. Ord. Spatial Processes: Models & Applications, volume 44. Pion London, 1981. [p403]

N. Cressie. Statistics for Spatial Data. John Wiley & Sons, 1993. URL https://books.google.de/books?
id=4L_dCgAAQBAJ. [p401, 408]

N. Cressie and C. K. Wikle. Statistics for Spatio-Temporal Data. John Wiley & Sons, 2011. [p401, 402]

D. Eddelbuettel and R. François. Rcpp: Seamless R and C++ integration. Journal of Statistical Software,
40(8):1–18, 2011. URL https://doi.org/10.18637/jss.v040.i08. [p407]

J. P. Elhorst. Applied spatial econometrics: Raising the bar. Spatial Economic Analysis, 5(1):9–28, 2010.
URL https://doi.org/10.1080/17421770903541772. [p401, 402]

R. F. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of united
kingdom inflation. Econometrica, 50(4):987–1007, 1982. [p401, 402, 403]

F. Finazzi and A. Fasso. D-STEM: a Software for the Analysis and Mapping of Environmental Space-
Time Variables. Journal of Statistical Software, 62(6):1–29, 2014. [p401]

B. Fingleton. A generalized method of moments estimator for a spatial panel model with an endoge-
nous spatial lag and spatial moving average errors. Spatial Economic Analysis, 3(1):27–44, 2008. URL
https://doi.org/10.1080/17421770701774922. [p405]

J. Geweke. Comment on modelling the persistence of conditional variances. Econometric Reviews, (1):
57–61, 1986. [p401]

A. Ghalanos. Rugarch: Univariate GARCH Models., 2018. R package version 1.4-0. [p401]

A. Ghalanos and S. Theussl. Rsolnp: General Non-Linear Optimization Using Augmented Lagrange
Multiplier Method, 2012. R package version 1.14. [p407, 412]

R. P. Haining. The moving average model for spatial interaction. Transactions of the Institute of British
Geographers, 3(2):202–225, 1978. [p405]

D. A. Harville. Matrix Algebra from a Statistician’s Perspective, volume 1. Springer-Verlag, 2008. [p407]

H. H. Kelejian and I. R. Prucha. Specification and estimation of spatial autoregressive models with
autoregressive and heteroskedastic disturbances. Journal of Econometrics, 157(1):53–67, 2010. [p405]

C. Lam and P. C. Souza. Detection and estimation of block structure in spatial weight matrix. Econo-
metric Reviews, 35(8-10):1347–1376, 2016. [p407]

L.-F. Lee. Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive
models. Econometrica, 72(6):1899–1925, 2004. URL https://doi.org/10.1111/j.1468-0262.2004.
00558.x. [p411]

L.-F. Lee and J. Yu. Some recent developments in spatial panel data models. Regional Science and Urban
Economics, 40(5):255–271, 2010a. [p411]

L.-F. Lee and J. Yu. A spatial dynamic panel data model with both time and individual fixed effects.
Econometric Theory, 26(2):564–597, 2010b. URL https://doi.org/10.1017/s0266466609100099.
[p411]

L.-F. Lee and J. Yu. QML Estimation of Spatial Dynamic Panel Data Models with Time Varying Spatial
Weights Matrices. Spatial Economic Analysis, 7(1):31–74, 2012. URL https://doi.org/10.1080/
17421772.2011.647057. [p411]

T. G. Martins, D. Simpson, F. Lindgren, and H. Rue. Bayesian computing with INLA: New features.
Computational Statistics & Data Analysis, 67:68–83, 2013. [p401]

M. S. Merk and P. Otto. Estimation of anisotropic, time-varying spatial spillovers of fine particulate
matter due to wind direction. Geographical Analysis, 2019. URL https://doi.org/10.1111/gean.
12205. [p407]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://books.google.de/books?id=4L_dCgAAQBAJ
https://books.google.de/books?id=4L_dCgAAQBAJ
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1080/17421770903541772
https://doi.org/10.1080/17421770701774922
https://doi.org/10.1111/j.1468-0262.2004.00558.x
https://doi.org/10.1111/j.1468-0262.2004.00558.x
https://doi.org/10.1017/s0266466609100099
https://doi.org/10.1080/17421772.2011.647057
https://doi.org/10.1080/17421772.2011.647057
https://doi.org/10.1111/gean.12205
https://doi.org/10.1111/gean.12205

CONTRIBUTED RESEARCH ARTICLES 419

A. Milhøj. A multiplicative parameterization of ARCH models. Unpublished manuscript, 1987. [p401]

P. A. P. Moran. Notes on continuous stochastic phenomena. Biometrika, 37:17–23, 1950. [p403]

D. B. Nelson. Conditional heteroskedasticity in asset returns: A new approach. Econometrica: Journal of
the Econometric Society, pages 347–370, 1991. [p403]

J. L. Nitzkin. Cancer in louisiana: A public health perspective. The Journal of the Louisiana State Medical
Society: official organ of the Louisiana State Medical Society, 144(4):162–162, 1992. [p415]

U. S. D. of Health, C. for Disease Control Human Services, Prevention, and ational Cancer Institute.
United States Cancer Statistics 1999-2012 Incidence and Mortality Web-Based Report, 2015. [p415]

P. Otto and W. Schmid. Spatial and spatiotemporal GARCH models - A unified approach. arXiv
preprint arXiv:1908.08320, 2019. [p406]

P. Otto and R. Steinert. Estimation of the spatial weighting matrix for spatiotemporal data under the
presence of structural breaks. arXiv preprint arXiv:1810.06940, 2018. [p407]

P. Otto, W. Schmid, and R. Garthoff. Generalized spatial and spatiotemporal autoregressive conditional
heteroscedasticity. arXiv preprint arXiv:1609.00711, 2016. [p401]

P. Otto, W. Schmid, and R. Garthoff. Generalised spatial and spatiotemporal autoregressive conditional
heteroscedasticity. Spatial Statistics, 26:125–145, 2018. [p401, 402, 403, 404, 405, 407, 408, 412, 413]

P. Otto, W. Schmid, and R. Garthoff. Stochastic properties of spatial and spatiotemporal arch models.
Statistical Papers, 2019. ISSN 1613-9798. URL https://doi.org/10.1007/s00362-019-01106-x.
[p401]

S. G. Pantula. Comment on modelling the persistence of conditional variances. Econometric Reviews, 5
(1):71–74, 1986. [p401]

E. J. Pebesma. Multivariable geostatistics in S: The gstat package. Computers & Geosciences, 30:683–691,
2004. [p401]

H. Rue, S. Martino, and N. Chopin. Approximate Bayesian inference for latent Gaussian models by
using integrated nested Laplace approximations. J. of the Royal Statistical Society-B, 71(2):319–392,
2009. [p401]

T. Sato and Y. Matsuda. Spatial autoregressive conditional heteroskedasticity models. Journal of the
Japan Statistical Society, 47(2):221–236, 2017. [p401]

T. Sato and Y. Matsuda. Spatiotemporal ARCH models. Technical report, Graduate School of Economics
and Management, Tohoku University, 2018a. [p401]

T. Sato and Y. Matsuda. Spatial GARCH models. Technical report, Graduate School of Economics and
Management, Tohoku University, 2018b. [p401]

M. Tiefelsdorf and B. Boots. The exact distribution of Moran’s I. Environment and Planning A, 27(6):
985–999, 1995. [p403]

Y. Ye. Interior Algorithms for Linear, Quadratic, and Linearly Constrained Non-Linear Programming. PhD
thesis, Department of ESS, Stanford University, 1988. [p407]

Appendix

Proof of Theorem 2. For this definition of gb, one could rewrite ln h as

ln hE = S (α1 + ρbW ln |Y |) (14)

with

S = (sij)i,j=1,...,n =

(
I +

1
2

ρbW
)−1

.

Since wij ≥ 0 for all i, j = 1, . . . , n, W is positive definite and it holds that

det
(

I +
1
2

ρbW
)
≥ 1 +

1
2

ρb det(W) > 0 .

Thus, the relation between Y(s1), . . . , Y(sn) and ε(s1), . . . , ε(sn) is given by (1) and (14).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://doi.org/10.1007/s00362-019-01106-x

CONTRIBUTED RESEARCH ARTICLES 420

Proof of Corollary 1. For ρ ≥ 0, b ≥ 0, and wij ≥ 0 for all i, j, the inverse

S = (sij)i,j=1,...,n =

(
I +

1
2

ρbW
)−1

.

is a non-negative matrix. Thus,
ln hE = S (α1 + ρbW ln |Y |)

is positive for α > 0.

Philipp Otto
Leibniz University Hannover
Appelstraße 9a
30167 Hannover
Germany
otto@ikg.uni-hannover.de

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

mailto:otto@ikg.uni-hannover.de

CONTRIBUTED RESEARCH ARTICLES 421

lpirfs: An R Package to Estimate Impulse
Response Functions by Local Projections
by Philipp Adämmer

Abstract Impulse response analysis is a cornerstone in applied (macro-)econometrics. Estimating
impulse response functions using local projections (LPs) has become an appealing alternative to the
traditional structural vector autoregressive (SVAR) approach. Despite its growing popularity and
applications, however, no R package yet exists that makes this method available. In this paper, I
introduce lpirfs, a fast and flexible R package that provides a broad framework to compute and
visualize impulse response functions using LPs for a variety of data sets.

Introduction

Since the seminal paper of Sims (1980), analysing economic time series by Vector Auto Regressive (VAR)
models has become a main pillar in empirical macroeconomic analysis. VARs have been traditionally
used to recover structural shocks in order to estimate their propagating effects on economic variables.
This approach, however, has been criticized for several drawbacks such as the imposed dynamics on
the (economic) system, the curse of dimensionality and the more difficult application to nonlinearities
(Auerbach and Gorodnichenko, 2013).

Estimating impulse response functions using local projections (LPs) has become an appealing
alternative, which is reflected in the over 1,000 citations of the pioneering paper by Jordà (2005).
Instead of extrapolating the parameters into increasingly distant horizons, LPs estimate the parameters
sequentially at each point of interest. It is argued that LPs offer three advantages over the traditional
structural vector autoregressive (SVAR) approach: first, LPs are easier to estimate since they rely solely
on simple linear regressions; second, the point or joint-wise inference is easily conducted; and third,
impulse responses that are estimated using LPs are more robust when a (linear) VAR is misspecified
(Jordà, 2005). Although the latter argument has been questioned by Kilian and Kim (2011), the recent
study by Brugnolini (2018) shows equal and even better performance of LPs when the lag lengths
for each forecast horizon are adequately fixed. Yet, Plagborg-Møller and Wolf (2019) proved that LPs
and VAR models estimate the same impulse responses when the lag structures are unrestricted. This
finding implies that empirical impulse responses that are estimated using LPs and SVARs are likely
similar at short horizons but differ at longer ones.1

Since their introduction in 2005, LPs have been broadly applied to investigate, among others, the
macroeconomic effects of oil price shocks (Hamilton, 2011); state-dependent government spending
multipliers (Owyang et al., 2013; Auerbach and Gorodnichenko, 2012, 2013); the effects of monetary
policy on financial markets and economic aggregates (Tenreyro and Thwaites, 2016; Swanson, 2017;
Jordà et al., 2019); and the link between credit growth, monetary policy, house prices, and financial
stability (Jordà et al., 2015; Favara and Imbs, 2015; Jordà and Taylor, 2016). Apart from the different
research questions, these studies further differ regarding the data structures because they use panel
and nonpanel data.

Despite the rising popularity and applications, no R package yet exists that can estimate impulse
responses using LPs. The only exception is the code for the smooth LP approach by Barnichon and
Brownlees (2019). The approach reduces the variance of the LP parameters with a linear B-spline basis
function because LP coefficients can suffer from high variance, sometimes making the interpretation
more difficult. The code is partly available on GitHub and has been applied by Garín et al. (2019). The
vars package by Pfaff (2008) only allows estimating impulse response functions that are based on the
traditional SVAR approach.

As a remedy, this paper introduces lpirfs (Adämmer, 2019), a fast and flexible R package that
enables estimating and visualizing impulse responses using LPs for a variety of data sets. The first
part of this paper outlines the theory of LPs and the differences from the traditional SVAR approach.
The second part outlines the main functions and options of the package, and the last section applies
lpirfs by replicating the empirical results from the economic literature.

1The appendix contains a comparison of impulse responses that are estimated using LPs and the traditional
SVAR approach.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://github.com/ctbrownlees/R-Package-lproj
https://CRAN.R-project.org/package=vars
https://CRAN.R-project.org/package=lpirfs

CONTRIBUTED RESEARCH ARTICLES 422

Estimating impulse response functions using local projections

An SVAR with n variables can be written as follows:

β0
11 . . . β0

1n
...

. . .
...

β0
n1 . . . β0

nn

y1

...
yn

t

=

α1
...

αn

+

β1
11 . . . β1

1n
...

. . .
...

β1
n1 . . . β1

nn

y1

...
yn

t−1

+ · · ·+

β
p
11 . . . β

p
1n

...
. . .

...
β

p
n1 . . . β

p
nn

y1

...
yn

t−p

+

ε1
...

εn

t

,

which more concisely becomes the following:

B0Yt = αt + B(L)Yt + εt.

The residuals εt are assumed to be white noise with zero mean.2 This representation is appealing
from an economic perspective because the structural shocks are contemporaneously uncorrelated, and
the variables have a contemporaneous effect on each other. The contemporaneous effect is measured
by the square matrix B0. However, estimating this SVAR without further assumptions is not possible
because of the simultaneous identification problem. Merely assuming that the structural shocks are
orthogonal does not fully identify the system.

The SVAR in reduced form (henceforth VAR) equals:

Yt = α̃ + B̃(L)Yt + ut,

where
α̃ = B0

−1α, B̃(L) = B0
−1B(L)

and

E[ut, u
′
τ] =

 σ2

1 . . . σ2
1,n

...
. . .

...
σn,1 . . . σ2

n

 , for t = τ

0, else.

The coefficient matrix B̃(L) is a nonlinear function of the contemporaneous parameter matrix B0
and the structural parameter matrix B(L). In contrast to the SVAR, the VAR residuals ut are contem-
poraneously correlated, which impedes an unbiased economic interpretation. The VAR residuals are
assumed to be linked to the SVAR shocks by the following:

ut = B0
−1εt , E[utu

′
t] = Σu = B0

−1B0
−1′ .

Given that the covariance matrix of εt equals the identity matrix, one must still impose n(n− 1)/2
restrictions to estimate the structural form. The most general approach is to separate the residuals
into orthogonal shocks by calculating a Cholesky decomposition of the covariance matrix Σu. The
first variable in such a system responds to its own exogenous shock, the second variable to the first
variable plus an exogenous shock to the second variable, and so on. The results thus depend on
ordering (Keating, 1992). The Wold representation states that any covariance-stationary time series can
be rewritten as a sum of present and past innovations. This theorem enables mapping the estimated
VAR(p) coefficients recursively to the infinite-order vector moving-average coefficients (Brugnolini,
2018). Impulse response functions are estimated iteratively by rewriting VAR(p) into its companion
form (i.e., a VAR(1)):

2The assumption of independent and identically distributed innovations is common in applied work but can be
relaxed (Kilian and Kim, 2011).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 423

ˆIR(0) = B0
−1

ˆIR(1) = Φ1B0
−1

ˆIR(2) = Φ2B0
−1

... ,

where the matrix Φ contains the coefficients of the VAR(1).

In his pioneering paper, Jordà (2005) proposed an alternative approach to estimate impulse
responses. His first step consists of ordinary least squares (OLS) regressions for each forecast horizon:

yt+h = αh + Bh
1yt−1 + · · ·+ Bh

pyt−p + uh
t+h, h = 0, 1, . . . , H − 1, (1)

where αh is a vector of constants, and Bh
i are parameter matrices for lag p and forecast horizon h.

The vector elements uh
t+h are autocorrelated and/or heteroscedastic disturbances. The collection of all

regressions of Eq. (1) are called LPs. The slope matrix Bh
1 can be interpreted as the response of yt+h to

a reduced form shock in t (Kilian and Kim, 2011). Structural impulse responses are then estimated by
the following:

ˆIR(t, h, di) = B̂h
1di,

where di = B−1
0 . As in the SVAR approach, the shock matrix di must be identified from a

linear VAR. The LP approach thus does not overcome the problem of identification. Given the serial
correlation of uh

t+h, Jordà (2005) proposed to estimate robust standard errors using the approach by
Newey and West (1987).

A great advantage of LPs is their easy extension to nonlinear frameworks. The simplest approach
to separate data into two regimes is using a binary (dummy) variable. The drawback, however, is that it
lowers the degrees of freedom. As a remedy, Auerbach and Gorodnichenko (2012) proposed computing
state probabilities with a logistic function that allows using all observations for the estimations. The
logistic function equals the following:

F(zt) =
e(−γzt)(

1 + e(−γzt)
) , (2a)

var(zt) = 1, E(zt) = 0, (2b)

where zt is standardized so that γ (> 0) is scale-invariant. The value of γ must be provided by
the user. For example, if zt corresponds to changes in the gross domestic product (GDP) at time t,
an increase in zt would lead to a decrease in F(zt). Values close to zero of F(zt) would thus indicate
periods of economic expansion. Auerbach and Gorodnichenko (2013) proposed standardizing the
cyclical components of the filter according to the method by Hodrick and Prescott (1997) to obtain the
variable zt. The observations for the two regimes are the product of the transition function and the
endogenous variables:

Regime 1 (R1) : yt−l · (1− F(zt−1)), l = 1, . . . , p,

Regime 2 (R2) : yt−l · F(zt−1), l = 1, . . . , p.
(3)

Auerbach and Gorodnichenko (2012) used the values of the transition function at t− 1 to avoid
contemporaneous feedback from policy actions regarding whether the economy is in a recession or an
expansion. Structural nonlinear impulse responses are estimated using the following:

ˆIRR1 (t, h, di) = B̂h
1,R1

di, h = 0, . . . , H − 1,

ˆIRR2 (t, h, di) = B̂h
1,R2

di, h = 0, . . . , H − 1,

where B̂0
1,R1 = I and B̂0

1,R2 = I. The coefficient matrices B̂h
1,R1

and B̂h
1,R2

are obtained from the

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 424

following LPs:

yt+h = αh + Bh
1,R1

(yt−1 · (1− F(zt−1)) + . . . + Bh
p,R1

(
yt−p · (1− F(zt−1)

)
+

Bh
1,R2

(yt−1 · F(zt−1)) + . . . + Bh
p,R2

(
yt−p · F(zt−1

)
) + uh

t+h,
(4)

with h = 0, . . . , H − 1. This nonlinear approach has been used by Ahmed and Cassou (2016) to
investigate the effect of consumer confidence on durable goods during periods of economic expansion
and recession.

Estimating impulse responses with an identified shock

Besides the easy extension to nonlinear frameworks, another advantage of LPs is their flexible applica-
tion to situations in which an exogenous shock can be identified outside of an SVAR. For example,
Ramey and Zubairy (2018) constructed a military news shock to investigate whether US government
spending multipliers are higher during periods of economic slack or when interest rates are near the
zero lower bound. Once an exogenous shock has been identified, impulse responses can be directly
estimated using OLS regressions:

yt+h = αh + βhshockt + φxt + uh
t+h, h = 0, 1, . . . , H − 1,

where αh denotes the regression constant, xt is a vector of control variables, and shockt is the
identified shock variable. The coefficient βh corresponds to the response of y at time t + h to the shock
variable (shock) at time t. The impulse responses are the sequence of all estimated βh. As above, robust
standard errors can be estimated using the approach by Newey and West (1987). If the shock variable
is endogenous, shockt can be estimated using the two-stage least squares (2SLS) regression. In the case
of nonlinearities, the variables can either be multiplied with a dummy variable or with the values of
the transition function in Eq. (3).

Estimating impulse responses for panel data

Another advantage of LPs is that they can be applied to panel data as well. Estimating impulse
responses based on panel data have been put forward by Auerbach and Gorodnichenko (2013),
Owyang et al. (2013), and Jordà et al. (2015), among others. The general equation for panel data is the
following:

yi,t+h = αi,h + shocki,tβh + xi,tγh + εi,t+h, h = 0, 1, . . . , H − 1,

where αi,h denotes (cross-section) fixed effect, xi,t is a vector of control variables, and shocki,t
denotes the identified shock variable. Besides using the absolute values of yt, lpirfs also allows
estimating cumulative impulse responses using (yi,t+h − yi,t−1) as the endogenous variable, which is
often done for panel data (see, e.g., Jordà et al., 2015). Similar to the univariate approach, shockt can
also be first estimated by an instrument variable approach (see, e.g., Jordà et al., 2019). It is further
crucial to account for heteroskedasticity and autocorrelation in panel models. The importance of
robust standard errors in the context of corporate finance and asset pricing has been shown by Petersen
(2009).

The lpirfs package

lpirfs enables estimating all of the above models and specifications. The main functions of the package
are the following:

i.) lp_lin() and lp_nl(), which estimate linear and nonlinear impulse responses based on struc-
tural VARs,

ii.) lp_lin_iv() and lp_nl_iv(), which estimate linear and nonlinear impulse responses for a
shock that has been identified outside of the VAR, and

iii.) lp_lin_panel() and lp_nl_panel(), which estimate linear and nonlinear impulse responses
for panel data.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 425

The functions lp_lin() and lp_nl() estimate linear and nonlinear impulse responses based on
SVARs whose shocks are identified by the Cholesky decomposition. The functions lp_lin_iv() and
lp_nl_iv() allow estimating impulse responses when a shock has been identified outside of the VAR.
The functions lp_lin_panel() and lp_nl_panel() can be used for panel data.

Nonpanel functions rely on several routines written with Rcpp by Eddelbuettel et al. (2011),
making the computations very fast. The functions for panel data are based on the well-established
plm package by Croissant and Millo (2008). Parallel computation, which is optional and available for
all functions, can further reduce the computation time.

Nonpanel functions allow computing ordinary and heteroskedasticity and autocorrelation consis-
tent (HAC) estimators for the impulse responses based on the approach by Newey and West (1987).
By default, lpirfs increases the truncation parameter with the number of horizons h, but a fixed value
can also be manually provided. In addition, pre-whitening is another option that might improve the
confidence interval coverage (Andrews and Monahan, 1992). The user can also apply an information
criterion for each forecast horizon to find the optimal number of lags. The included criteria are
those developed by Akaike (1974), Schwarz (1978), and Hurvich and Tsai (1989). The endogenous,
exogenous, and switching variables must be given separately as a data.frame. Table 1 summarizes
the input options of the nonpanel functions.

Applying lpirfs to panel data works slightly differently than using nonpanel functions due to
the dependency on the plm package. Instead of providing the endogenous and exogenous variables
separately, the user must provide the entire panel data set first, and then give the column names for
the endogenous, exogenous, and other variables. The default is to estimate a fixed-effects model, but
all options available for the plm package are also available within lpirfs. Table 2 summarizes the input
options for the linear and nonlinear panel functions.

Each function output becomes an S3 object, which enables using the generic R functions plot()
and summary(). In addition, the package also contains the functions plot_lin() and plot_nl(), which
enable creating individual graphs of impulse responses.

Table 1: Comparison of linear and nonlinear LP functions.

Function names

Input name lp_lin() lp_nl() lp_lin_iv() lp_nl_iv() Input description

endog_data X X X X Data.frame with endogenous variables for VAR model.
shock - - X X One column data.frame with the identified shock.
use_twosls - - X - Option to estimate shock with 2SLS approach.
instrum - - X - Data.frame with the instrument(s) for the 2SLS approach.
lags_endog_lin X X X - Number of lags for linear model.
lags_endog_nl - X - X Number of lags for nonlinear model in Eq. (4).
lags_criterion X X X X Choose lags based on information criterion (AICc, AIC or BIC).
max_lags X X X X Maximum number of lags for information criterion.
trend X X X X Options to include constant, trend and quadratic trend.
shock_type X X - - Two types of shock: standard deviation or unit shock.
use_nw X X X X Option to estimate standard errors by Newey and West (1987).
nw_lag X X X X Option to manually fix the truncation parameter.
nw_prewhite X X X X Option for pre-whitening (Andrews and Monahan, 1992).
adjust_se X X X X Option to adjust standard errors for small samples.
confint X X X X Value of width for confidence bands.
hor X X X X Number of horizons for impulse responses.
switching - X - X Switching variable zt. See Eq. (2).
lag_switching - X - X Option to lag the values of the logistic function F(zt).
use_logistic - X - X Option to use the logistic function. See Eq. (2).
use_hp - X - X Option to use the filter by Hodrick and Prescott (1997).
lambda - X - X Value of λ for the HP-filter. See Ravn and Uhlig (2002).
gamma - X - X Value of γ. See Eq. (2a).
exog_data X X X X Optional data for exogenous variables.
lags_exog X X X X Number of lags for exogenous variables.
contemp_data X X X X Variables with contemporaneous impact.
num_cores X X X X Option to choose number of cores.

The table compares the options for lp_lin(), lp_nl(), lp_lin_iv(), and lp_nl_iv(). The symbol X indicates whether the option,
denoted by the row, is available for the function, denoted by the column. The optional lag length criteria are those by Hurvich and
Tsai (1989), Akaike (1974) and Schwarz (1978).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=plm

CONTRIBUTED RESEARCH ARTICLES 426

Table 2: Comparison of linear and nonlinear LP functions for panel data.

Function names

Input name lp_lin_panel() lp_nl_panel() Input description

data_set X X A data.frame, containing the panel data set.
data_sample X X Option to estimate a subset of the data.
endog_data X X Character name of the endogenous variable.
cumul_mult X X Option to estimate cumulative multipliers.
shock X X Character name of the variable to shock with.
diff_shock X X Option to use first differences of the shock variable.
iv_reg X - Option to use instrument variable approach.
instrum X - The name(s) of the instrument variable(s).
panel_model X X Option to choose type of panel model. See plm package.
panel_effect X X The effects introduced in the panel-model. See plm package.
robust_cov X X Options for robust covariance matrix estimator. See plm package.
robust_method X X Option for robust_cov. See plm package.
robust_type X X Option for robust_cov. See plm package.
robust_cluster X X Option for robust_cov. See plm package.
robust_maxlag X X Option for robust_cov. See plm package.
use_gmm X X Option to use GMM for estimation.
gmm_model X X Option to use "onestep" or "twosteps" approach. See plm package.
gmm_effect X X The effects introduced in the panel-model. See plm package.
gmm_transformation X X Additional option for GMM model. See plm package.
c_exog_data X X Name(s) of the exogenous variable(s) with contemporaneous impact.
l_exog_data X X Name(s) of the exogenous variable(s) with lagged impact.
lags_exog_data X X Lag length for the exogenous variable(s) with lagged impact.
c_fd_exog_data X X Exogenous variable(s) with contemporaneous impact of first differences.
l_fd_exog_data X X Exogenous variable(s) with lagged impact of first differences.
lags_fd_exog_data X X Number of lags for variable(s) with impact of first differences.
confint X X Value of width for confidence bands.
switching - X Column name of the switching variable.
use_logistic - X Option to use the logistic function. See Eq. (2).
use_hp - X Option to use the filter by Hodrick and Prescott (1997) to obtain zt.
lag_switching - X Option to lag the values of the logistic function F(zt).
lambda - - Value of λ for the HP-filter. See Ravn and Uhlig (2002).
gamma - - Value of γ. See Eq. (2a).
hor X X Number of horizons for impulse responses.

The table compares the options for lp_lin_panel() and lp_nl_panel(). The symbol X indicates whether the option, denoted by
the row, is available for the function, denoted by the column. The functions estimate linear and nonlinear impulse responses for
models with panel data.

Examples and replications

In this section, I apply all the main functions of lpirfs to three different settings. The impulse responses
are visualized by the generic plot() function, which serves as a wrapper for the built-in functions
plot_lin() and plot_nl().

Two exercises replicate empirical results by Jordà (2005) and Ramey and Zubairy (2018). The data
sets are included in lpirfs. The third example uses the external Jordà-Schularick-Taylor Macrohistory
Database, which covers 17 advanced economies since 1870 on an annual basis and comprises 25 real
and nominal variables. I estimate how an increase in the interest rate affects mortgage lending. This
example is based on a STATA code provided on Oscar Jordá’s website. Due to copyright issues, the
database could not be included in the package, but I show how it can be easily downloaded with R.

Traditional approach: Replicating results by Jordà (2005)

The following code replicates parts of Figure 5 in Jordà (2005, p. 176). It shows how the output gap,
inflation rate, and federal funds rate react to the corresponding structural shocks. The results are
shown in Figure 1.3 lpirfs follows the convention by Jordà (2005), namely that the first horizon,
denoted on the x-axis, equals h = 0. Applying the generic function summary() to the output returns
a list of several matrices with OLS diagnostics. The first level of the list corresponds to the shock
variable and the second level to the horizon. Table 3 shows OLS diagnostics for the first horizon of the
first shock (output gap).

3In the appendix, I compare these results with those estimated by a general SVAR.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://sites.google.com/site/oscarjorda/home/local-projections

CONTRIBUTED RESEARCH ARTICLES 427

--- Code to replicate Figure 5 in Jordá (2005, p. 176)

Load packages
library(lpirfs)

Load data set
endog_data <- interest_rules_var_data

Estimate linear model
results_lin <- lp_lin(endog_data = endog_data,

lags_endog_lin = 4,
trend = 0,
shock_type = 1,
confint = 1.96,
hor = 12)

Show impulse responses
plot(results_lin)

Show OLS diagnostics for the first shock of the first horizon
summary(results_lin)[[1]][1]

--- End example code

Table 3: OLS diagnostics shown by using summary().

R.sqrd. Adj. R.sqrd. F.stat p.value

h 1: GDP_gap 0.91 0.90 146.88 0.00
h 1: Infl 0.84 0.83 77.17 0.00
h 1: FF 0.94 0.93 218.74 0.00

The table shows OLS diagnostics for the Jordà (2005) example of the
first horizon for the first identified shock (output gap).

The example above only estimates impulse responses for the linear case, but Jordà (2005) also
tested for nonlinearities. Although he found no “business-cycle” asymmetries, he identified significant
asymmetries for several lags of both inflation and the federal funds rate. The following code uses
a dummy approach to estimate the nonlinear impulse responses of the variables to a shock in the
federal funds rate. Jordà (2005) used a threshold of 4.75% for the inflation rate, applied to its third
lag. Figure 2 shows the empirical results for the nonlinear example. The results are comparable to the
findings by Jordà (2005), namely that the magnitudes of responses of inflation and output to interest
rates are more responsive in the low-inflation regime (left panel) than in the high-inflation regime
(right panel).

--- Code for nonlinear effects of the federal funds rate.

Load packages for creating plots
library(dplyr)
library(gridExtra)
library(ggpubr)

Create dummy: apply threshold of 4.75 percent to the third lag of the inflation rate
switching_data <- if_else(dplyr::lag(endog_data$Infl, 3) > 4.75, 1, 0)

Estimate nonlinear model
results_nl <- lp_nl(endog_data,

lags_endog_lin = 4, lags_endog_nl = 4,
trend = 1, shock_type = 0,
confint = 1.67, hor = 12,
switching = switching_data, lag_switching = FALSE,

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 428

0.0

0.5

1.0

2 4 6 8 10 12

GDP_gap on GDP_gap

−0.50

−0.25

0.00

0.25

2 4 6 8 10 12

Infl on GDP_gap

−0.75

−0.50

−0.25

0.00

2 4 6 8 10 12

FF on GDP_gap

0.0

0.2

0.4

0.6

2 4 6 8 10 12

GDP_gap on Infl

0.00

0.25

0.50

0.75

2 4 6 8 10 12

Infl on Infl

−0.75

−0.50

−0.25

0.00

0.25

2 4 6 8 10 12

FF on Infl

0.0

0.3

0.6

0.9

2 4 6 8 10 12

GDP_gap on FF

0.00

0.25

0.50

0.75

1.00

2 4 6 8 10 12

Infl on FF

−0.5

0.0

0.5

1.0

2 4 6 8 10 12

FF on FF

Figure 1: Replication of Figure 5 in Jordà (2005, p. 176).

use_logistic = FALSE)

Create nonlinear impulse responses
nl_plots <- plot_nl(results_nl)

Combine and show plots using 'ggpubr' and 'gridExtra'
single_plots <- nl_plots$gg_s1[c(3, 6, 9)]
single_plots[4:6] <- nl_plots$gg_s2[c(3, 6, 9)]
all_plots <- sapply(single_plots, ggplotGrob)
marrangeGrob(all_plots, nrow = 3, ncol = 2, top = NULL)

--- End example code

Using an external shock: Replicating results by Ramey and Zubairy (2018)

In this section, I replicate the empirical results by Ramey and Zubairy (2018). The authors, among
others, re-evaluate the findings by Auerbach and Gorodnichenko (2012), who argued that government
spending multipliers are more pronounced during economic recession than during economic expan-
sion. Auerbach and Gorodnichenko (2012) applied a smooth transition VAR (STVAR) to estimate
state-dependent fiscal multipliers. Ramey and Zubairy (2018), however, showed that the estimated
fiscal multipliers are much smaller when the impulse responses are estimated using LPs. The reason is
that the LP approach does not assume that the system remains in a fixed regime once it has entered it.

The following code replicates parts of Figure 12 in the supplementary appendix by Ramey and
Zubairy (2018, p. 35). The results are depicted in Figure 3. It shows how government spending and the
GDP react to a government spending shock in the linear case as well as during periods of economic
expansion and recession. The linear shock is identified according to Blanchard and Perotti (2002). The
absolute values of the figures differ because Ramey and Zubairy (2018) multiplied the log output
response by a conversion factor of 5.6.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 429

−1.5

−1.0

−0.5

0.0

0.5

2 4 6 8 10 12

FF on GDP_gap

−1.0

−0.5

0.0

0.5

2 4 6 8 10 12

FF on Infl

−1.0

−0.5

0.0

0.5

1.0

2 4 6 8 10 12

FF on FF

−0.75

−0.50

−0.25

0.00

2 4 6 8 10 12

FF on GDP_gap

−0.50

−0.25

0.00

0.25

2 4 6 8 10 12

FF on Infl

−0.5

0.0

0.5

1.0

2 4 6 8 10 12

FF on FF

Figure 2: Nonlinear impulse responses based on Jordà (2005).

The figure depicts nonlinear impulse responses of the output gap, inflation rate, and federal funds rate to a shock
in the federal funds rate during periods of low (left panel) and high (right panel) inflation rates. The threshold of
4.75 is applied to the third lag of the inflation rate.

--- Code to replicate parts of Figure 12 in the supplementary appendix by
--- Ramey and Zubairy (2018, p.35)

Load packages for creating plots
library(gridExtra)
library(ggpubr)

Load data from package
ag_data <- ag_data
sample_start <- 7
sample_end <- dim(ag_data)[1]

Endogenous data
endog_data <- ag_data[sample_start:sample_end,3:5]

Shock variable
shock <- ag_data[sample_start:sample_end, 3]

Estimate linear model
results_lin_iv <- lp_lin_iv(endog_data = endog_data, lags_endog_lin = 4,

shock = shock, trend = 0,
confint = 1.96, hor = 20)

Make and save linear plots
iv_lin_plots <- plot_lin(results_lin_iv)

Nonlinear shock (estimated by Ramey and Zubairy (2018))
shock <- ag_data[sample_start:sample_end, 7]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 430

Use moving average growth rate of GDP as exogenous variable
exog_data <- ag_data[sample_start:sample_end, 6]

Use moving average growth rate of GDP as switching variable
switching_variable <- ag_data$GDP_MA[sample_start:sample_end] - 0.8

Estimate nonlinear model
results_nl_iv <- lp_nl_iv(endog_data = endog_data, lags_endog_nl = 3,

shock = shock, exog_data = exog_data,
lags_exog = 4, trend = 0,
confint = 1.96, hor = 20,
switching = switching_variable, use_hp = FALSE,
gamma = 3)

Make and save nonlinear plots
plots_nl_iv <- plot_nl(results_nl_iv)

Make list to save all plots
combine_plots <- list()

Save linear plots in list
combine_plots[[1]] <- iv_lin_plots[[1]]
combine_plots[[2]] <- iv_lin_plots[[3]]

Save nonlinear plots for expansion period
combine_plots[[3]] <- plots_nl_iv$gg_s1[[1]]
combine_plots[[4]] <- plots_nl_iv$gg_s1[[3]]

Save nonlinear plots for recession period
combine_plots[[5]] <- plots_nl_iv$gg_s2[[1]]
combine_plots[[6]] <- plots_nl_iv$gg_s2[[3]]

Show all plots
lin_plots_all <- sapply(combine_plots, ggplotGrob)
marrangeGrob(lin_plots_all, nrow = 2, ncol = 3, top = NULL)

--- End example code

Estimating impulse responses for panel data

Using the Jordà-Schularick-Taylor Macrohistory Database, the following example estimates the impulse
responses of the ratio of mortgage lending divided by the GDP to a 1% increase in the short-term
interest rate. Observations during World Wars I and II and observations after 2013 are excluded.4 The
empirical results are shown in Figure 4. An increase in the short-term interest rate leads to a decrease
in the mortgage lending rate, whose effect attenuates after approximately 8 years.

#--- Begin code for panel data

Load libraries to download and read excel file from the website
library(httr)
library(readxl)
library(dplyr)

Retrieve the external JST Macrohistory Database
url_jst <-"http://www.macrohistory.net/JST/JSTdatasetR3.xlsx"
GET(url_jst, write_disk(jst_link <- tempfile(fileext = ".xlsx")))
jst_data <- read_excel(jst_link, 2L)

4lpirfs first computes all lags and lags of the first differences of the exogenous data. If the user wants to use a
sub-sample (see example), the observations will be dropped after the lags have been constructed.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 431

−0.5

0.0

0.5

1.0

1.5

2 4 6 8 10 12 14 16 18 20

Shock on Gov

−0.2

0.0

0.2

0.4

2 4 6 8 10 12 14 16 18 20

Shock on GDP

−1.0

−0.5

0.0

0.5

1.0

2 4 6 8 10 12 14 16 18 20

Shock on Gov

−0.50

−0.25

0.00

0.25

0.50

2 4 6 8 10 12 14 16 18 20

Shock on GDP

0

1

2

2 4 6 8 10 12 14 16 18 20

Shock on Gov

−0.5

0.0

0.5

1.0

2 4 6 8 10 12 14 16 18 20

Shock on GDP

Figure 3: The figure replicates empirical results of Figure 12 from the supplementary appendix by Ramey and
Zubairy (2018, p. 35). The left column shows the (linear) reaction of government spending (first row) and GDP
(second row) to a government spending shock. The middle column shows the reactions during periods of economic
expansion and the right column during periods of economic slack.

Remove observations after 2013 and swap the first two columns
jst_data <- jst_data %>%

dplyr::filter(year <= 2013) %>%
dplyr::select(country, year, everything())

Prepare variables
data_set <- jst_data %>%

mutate(stir = stir) %>%
mutate(mortgdp = 100*(tmort/gdp)) %>%
mutate(hpreal = hpnom/cpi) %>%
group_by(country) %>%
mutate(hpreal = hpreal/hpreal[year==1990][1]) %>%
mutate(lhpreal = log(hpreal)) %>%

mutate(lhpy = lhpreal - log(rgdppc)) %>%
mutate(lhpy = lhpy - lhpy[year == 1990][1]) %>%
mutate(lhpreal = 100*lhpreal) %>%
mutate(lhpy = 100*lhpy) %>%
ungroup() %>%

mutate(lrgdp = 100*log(rgdppc)) %>%
mutate(lcpi = 100*log(cpi)) %>%
mutate(lriy = 100*log(iy*rgdppc)) %>%
mutate(cay = 100*(ca/gdp)) %>%
mutate(tnmort = tloans - tmort) %>%
mutate(nmortgdp = 100*(tnmort/gdp)) %>%
dplyr::select(country, year, mortgdp, stir, ltrate,
lhpy, lrgdp, lcpi, lriy, cay, nmortgdp)

Exclude observations from WWI and WWII
data_sample <- seq(1870, 2016)[which(!(seq(1870, 2016) %in%

c(seq(1914, 1918),
seq(1939, 1947))))]

Estimate linear panel model with robust covariance matrix
results_panel <- lp_lin_panel(data_set = data_set, data_sample = data_sample,

endog_data = "mortgdp", cumul_mult = TRUE,

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 432

shock = "stir", diff_shock = TRUE,
panel_model = "within", panel_effect = "individual",
robust_cov = "vcovSCC", c_exog_data = "cay",
c_fd_exog_data = colnames(data_set)[c(seq(4,9),11)],
l_fd_exog_data = colnames(data_set)[c(seq(3,9),11)],
lags_fd_exog_data = 2, confint = 1.67,
hor = 10)

Show irfs
plot(results_panel)

#--- End example

−0.6

−0.4

−0.2

0.0

2 4 6 8 10

Shock on mortgdp

Figure 4: The figure shows the reaction of the ratio of mortgage lending divided by the GDP to a +1% change in
the short-term interest rate.

The following example uses the Hodrick–Prescott filter to decompose the log-GDP time series
for each country to obtain the standardized variable zt for the logistic function in Eq. (2). Figure 5
shows the impulse responses for both regimes. The mortgage lending ratio declines in both regimes,
although it is more pronounced during periods of economic expansion (left panel) than periods of
economic slack (right panel).

--- Begin example

Estimate panel model
results_panel <- lp_nl_panel(data_set = data_set, data_sample = data_sample,

endog_data = "mortgdp", cumul_mult = TRUE,
shock = "stir", diff_shock = TRUE,
panel_model = "within", panel_effect = "individual",
robust_cov = "vcovSCC", switching = "lrgdp",
lag_switching = TRUE, use_hp = TRUE,
lambda = 6.25, gamma = 10,
c_exog_data = "cay",
c_fd_exog_data = colnames(data_set)[c(seq(4,9),11)],
l_fd_exog_data = colnames(data_set)[c(seq(3,9),11)],
lags_fd_exog_data = 2,
confint = 1.67,
hor = 10)

Show irfs
plot(results_panel)

--- End example

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 433

−0.9

−0.6

−0.3

0.0

0.3

2 4 6 8 10

Shock on mortgdp

−1.0

−0.5

0.0

2 4 6 8 10

Shock on mortgdp

Figure 5: The figure shows the reaction of the ratio of mortgage lending divided by the GDP to a +1% change in
the short-term interest rate during periods of economic expansions (left panel) and economic slack (right panel).

Summary

Since the 1980s, impulse response analysis has become a cornerstone in (macro-)econometrics. The
traditional approach of recovering the impulse responses recursively from a (linear) VAR has been
criticized due to some drawbacks, such as the imposed dynamics on the (economic) system, the curse
of dimensionality, and the more difficult application to nonlinear frameworks.

The LPs by Jordà (2005) have become a widely applied alternative to estimate impulse response
functions. This paper introduced lpirfs, an R package that provides a broad framework for estimating
and visualizing impulse response functions using LPs for a variety of data sets. I replicated the
empirical results from the economic literature to prove the validity of the package and to show its
usefulness for future research.

Appendix

This appendix contains a comparison between impulse responses estimated using the vars package
and lpirfs. In addition, I conduct sensitivity analyses regarding the choices of γ in Eq. (2) for the
switching function and different values of λ for the filter by Hodrick and Prescott (1997). The code for
all examples can be found in the vignette of lpirfs.

Comparison of impulse responses between lpirfs and vars

Plagborg-Møller and Wolf (2019) showed that LPs and VARs compute the same impulse responses
when the lag structure is unrestricted. For empirical studies, this implies that impulse responses that
are estimated by LPs and SVARs are likely to agree at short horizons but differ at longer ones. To
verify this implication, I compare the impulse responses estimated using the lpirfs and vars packages.
The latter relies on the common SVAR approach.

Figure 6 shows the empirical results. The black lines and gray-shaded areas are the same as
in Figure 1, which replicates Figure 5 in Jordà (2005, p. 176). The orange lines and shaded areas
correspond to impulse responses estimated by the vars package (i.e., a standard SVAR). The results
show that impulse responses are similar up to that horizon, which equals the lag length p. For example,
when the lag length p equals 2, the impulse responses and confidence intervals diverge very quickly
(first column). When the lag length p equals 6, however, the impulse responses are much more similar.
This finding coincides with the empirical results by Plagborg-Møller and Wolf (2019), who compared
the dynamic response of corporate bond spreads to a monetary policy shock.

Sensitivity analyses for γ

The nonlinear functions in lpirfs allow separating the data into two regimes by either using a dummy
approach or computing state probabilities with the logistic function given in Eq. (2). The logistic
function depends on the parameter γ, which defines how sharply the two regimes are separated.
To investigate how different choices of γ might affect the results, I compare the nonlinear impulse
responses for a shock of the federal funds rate on the output gap.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 434

−0.5

0.0

0.5

1.0

2 4 6 8 10 12

GDP_gap on GDP_gap

−0.25

0.00

0.25

0.50

0.75

1.00

2 4 6 8 10 12

GDP_gap on Infl

0.0

0.5

1.0

2 4 6 8 10 12

GDP_gap on FF

lpirfs vars

a.) p = 2

−0.5

0.0

0.5

1.0

2 4 6 8 10 12

GDP_gap on GDP_gap

−0.25

0.00

0.25

0.50

0.75

1.00

2 4 6 8 10 12

GDP_gap on Infl

0.0

0.5

1.0

2 4 6 8 10 12

GDP_gap on FF

lpirfs vars

b.) p = 4

−0.5

0.0

0.5

1.0

2 4 6 8 10 12

GDP_gap on GDP_gap

−0.25

0.00

0.25

0.50

0.75

1.00

2 4 6 8 10 12

GDP_gap on Infl

0.0

0.5

1.0

2 4 6 8 10 12

GDP_gap on FF

lpirfs vars

c.) p = 6

Figure 6: Comparison of impulse responses estimated by the packages lpirfs and vars. Each column shows the
results for a fixed number of lags (i.e., p = 2, 4, and 6). The shaded areas correspond to the 95% confidence intervals.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 435

Figure 7 shows the empirical results. Each column corresponds to one choice of γ, namely γ = 1, 5,
and 10. I use the output gap as a switching variable and decompose it using the filter by Hodrick and
Prescott (1997). The penalty term λ is set to 1 600 as suggested by Ravn and Uhlig (2002). The first row
of Figure 7 shows the evolution of the transition variable F(zt), along with NBER-dated recessions.
By construction, a high value of the transition variable corresponds to a low output gap (i.e., periods
of economic slack). Choosing a low value of γ makes the regime-switching smooth, whereas higher
values of γ cause the switching to be quick. The second and third rows show nonlinear impulse
responses for Regimes 1 (economic expansion) and 2 (economic recession). Although the choice of γ
has an effect on the results, it does not change the overall conclusion, namely that no “business-cycle”
effects exist regarding the changes in the federal funds rate, which is in accordance with the findings by
Jordà (2005). At most, the effect would be very shortly negative during periods of economic downturn.

0.00

0.25

0.50

0.75

1965 1975 1985 1995

NBER Recessions

NBER dates and transition variable

−1.0

−0.5

0.0

0.5

1.0

2 4 6 8 10 12

Regime 1: FF on GDP_gap

−1.0

−0.5

0.0

0.5

1.0

2 4 6 8 10 12

Regime 2: FF on GDP_gap

a) Results for γ = 1

0.00

0.25

0.50

0.75

1965 1975 1985 1995

NBER Recessions

NBER dates and transition variable

−1.0

−0.5

0.0

0.5

1.0

2 4 6 8 10 12

Regime 1: FF on GDP_gap

−1.0

−0.5

0.0

0.5

1.0

2 4 6 8 10 12

Regime 2: FF on GDP_gap

b) Results for γ = 5

0.00

0.25

0.50

0.75

1965 1975 1985 1995

NBER Recessions

NBER dates and transition variable

−1.0

−0.5

0.0

0.5

1.0

2 4 6 8 10 12

Regime 1: FF on GDP_gap

−1.0

−0.5

0.0

0.5

1.0

2 4 6 8 10 12

Regime 2: FF on GDP_gap

c) Results for γ = 10

Figure 7: Comparison of nonlinear impulse responses for different values of γ. Each column shows the results
for one parameter value (i.e., γ = 1, 5, and 10). The gray shaded areas in the first row correspond to NBER-dated
recessions. The gray shaded areas in the second and third rows correspond to the 95% confidence intervals of the
impulse responses.

Sensitivity analyses for λ

To use the switching function in Eq. (2), one must provide a standardized variable zt. One option is to
decompose a time series into a trend and a cyclical component using the filter by Hodrick and Prescott
(1997) (hereafter the HP-filter). lpirfs includes this option whose routine is written in Rcpp, making
the computation very fast. If applied, the cyclical component of the HP-filter will be standardized
and used for zt. The filter depends on a penalty term λ, which must be given by the user. Ravn and
Uhlig (2002) argued that the parameter should be 6.25 for annual data, 1 600 for quarterly data, and
129 600 for monthly data. To see how different choices of λ influence the nonlinear impulse responses,
I decompose the output gap for three different values of λ and compare the results, which are shown
in Figure 8. The value of γ is fixed to 5. The first row shows the cyclical component of the HP-filter
along with the NBER-dated recessions. A low value in the cyclical component denotes periods of
economic downturn. Note that the results of the second column in Figure 8 are identical to those

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 436

in the second column of Figure 7. In contrast to the previous analysis, empirical results do change
significantly, depending on the choice of λ. Thus, it is important to set the penalty term adequately.

−1

0

1

1965 1975 1985 1995

NBER Recessions

NBER dates and cyclical HP component

−1

0

2 4 6 8 10 12

Regime 1: FF on GDP_gap

−1.0

−0.5

0.0

0.5

2 4 6 8 10 12

Regime 2: FF on GDP_gap

a) Results for λ = 6.25

−4

−2

0

2

4

1965 1975 1985 1995

NBER Recessions

NBER dates and cyclical HP component

−1

0

2 4 6 8 10 12

Regime 1: FF on GDP_gap

−1.0

−0.5

0.0

0.5

2 4 6 8 10 12

Regime 2: FF on GDP_gap

b) Results for λ = 1600

−6

−3

0

3

1965 1975 1985 1995

NBER Recessions

NBER dates and cyclical HP component

−1

0

2 4 6 8 10 12

Regime 1: FF on GDP_gap

−1.0

−0.5

0.0

0.5

2 4 6 8 10 12

Regime 2: FF on GDP_gap

c) Results for λ = 129 600

Figure 8: Comparison of nonlinear impulse responses with different values of λ for the filter by Hodrick and
Prescott (1997). Each column shows the results for one parameter value (i.e., λ = 6.25, 1 600, and 129 600). The gray
shaded areas in the first row correspond to NBER-dated recessions. The gray shaded areas in the second and third
rows correspond to the 95% confidence intervals of the impulse responses.

Acknowledgement

I am grateful to the two anonymous reviewers, Philipp Wittenberg, Jon Danielsson, Rainer Schüssler,
Tom Philipp Dybowski, and Detlef Steuer for their helpful comments and suggestions on the paper
and package.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 437

Bibliography

P. Adämmer. lpirfs: Local Projections Impulse Response Functions, 2019. URL https://CRAN.R-project.
org/package=lpirfs. R package version: 0.1.6. [p421]

M. I. Ahmed and S. P. Cassou. Does consumer confidence affect durable goods spending during
bad and good economic times equally? Journal of Macroeconomics, 50:86–97, 2016. doi: https:
//doi.org/10.1016/j.jmacro.2016.08.008. [p424]

H. Akaike. A new look at the statistical model identification. IEEE transactions on automatic control, 19
(6):716–723, 1974. doi: https://doi.org/10.1109/TAC.1974.1100705. [p425]

D. W. K. Andrews and J. C. Monahan. An improved heteroskedasticity and autocorrelation consistent
covariance matrix estimator. Econometrica, 60(4):953–966, 1992. doi: https://doi.org/10.2307/
2951574. [p425]

A. J. Auerbach and Y. Gorodnichenko. Measuring the output responses to fiscal policy. American
Economic Journal: Economic Policy, 4(2):1–27, 2012. doi: https://doi.org/10.1257/pol.4.2.1. [p421,
423, 428]

A. J. Auerbach and Y. Gorodnichenko. Output spillovers from fiscal policy. American Economic Review,
103(3):141–46, 2013. doi: https://doi.org/10.1257/aer.103.3.141. [p421, 423, 424]

R. Barnichon and C. Brownlees. Impulse response estimation by smooth local projections. Review of
Economics and Statistics, 101(3):522–530, 2019. doi: https://doi.org/10.1162/rest_a_00778. [p421]

O. Blanchard and R. Perotti. An Empirical Characterization of the Dynamic Effects of Changes in
Government Spending and Taxes on Output. The Quarterly Journal of Economics, 117(4):1329–1368,
2002. doi: https://doi.org/10.1162/003355302320935043. [p428]

L. Brugnolini. About local projection impulse response function reliability. CEIS Working Paper, 2018.
URL https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3229218. [p421, 422]

Y. Croissant and G. Millo. Panel data econometrics in R: The plm package. Journal of Statistical Software,
27(2):1–43, 2008. doi: https://doi.org/10.18637/jss.v027.i02. [p425]

D. Eddelbuettel, R. François, J. Allaire, K. Ushey, Q. Kou, N. Russel, J. Chambers, and D. Bates.
Rcpp: Seamless r and c++ integration. Journal of Statistical Software, 40(8):1–18, 2011. doi: https:
//doi.org/10.18637/jss.v040.i08. [p425]

G. Favara and J. Imbs. Credit supply and the price of housing. American Economic Review, 105(3):
958–92, 2015. doi: https://doi.org/10.1257/aer.20121416. [p421]

J. Garín, R. Lester, and E. Sims. Are supply shocks contractionary at the zlb? evidence from utilization-
adjusted tfp data. Review of Economics and Statistics, 101(1):160–175, 2019. doi: https://doi.org/10.
1162/rest_a_00723. [p421]

J. D. Hamilton. Nonlinearities and the macroeconomic effects of oil prices. Macroeconomic Dynamics,
15(S3):364–378, 2011. doi: https://doi.org/10.1017/S1365100511000307. [p421]

R. J. Hodrick and E. C. Prescott. Postwar us business cycles: an empirical investigation. Journal of
Money, Credit, and Banking, pages 1–16, 1997. doi: https://doi.org/10.2307/2953682. [p423, 425, 426,
433, 435, 436]

C. M. Hurvich and C.-L. Tsai. Regression and time series model selection in small samples. Biometrika,
76(2):297–307, 1989. doi: https://doi.org/10.1093/biomet/76.2.297. [p425]

Ò. Jordà. Estimation and inference of impulse responses by local projections. American Economic
Review, 95(1):161–182, 2005. doi: https://doi.org/10.1257/0002828053828518. [p421, 423, 426, 427,
428, 429, 433, 435]

Ò. Jordà and A. M. Taylor. The time for austerity: estimating the average treatment effect of fiscal
policy. The Economic Journal, 126(590):219–255, 2016. doi: https://doi.org/10.1111/ecoj.12332. [p421]

Ò. Jordà, M. Schularick, and A. M. Taylor. Betting the house. Journal of International Economics, 96:
S2–S18, 2015. doi: https://doi.org/10.1016/j.jinteco.2014.12.011. [p421, 424]

Ò. Jordà, M. Schularick, and A. M. Taylor. The effects of quasi-random monetary experiments. Journal
of Monetary Economics, In press, 2019. doi: https://doi.org/10.1016/j.jmoneco.2019.01.021. [p421,
424]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=lpirfs
https://CRAN.R-project.org/package=lpirfs
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3229218

CONTRIBUTED RESEARCH ARTICLES 438

J. Keating. Structural approaches to vector autoregressions. Federal Reserve Bank of St. Louis Review, 74
(September/October), 1992. URL https://files.stlouisfed.org/files/htdocs/publications/
review/92/09/Vector_Sep_Oct1992.pdf. [p422]

L. Kilian and Y. J. Kim. How reliable are local projection estimators of impulse responses? Review of
Economics and Statistics, 93(4):1460–1466, 2011. doi: https://doi.org/10.1162/REST_a_00143. [p421,
422, 423]

W. K. Newey and K. D. West. Hypothesis testing with efficient method of moments estimation.
International Economic Review, pages 777–787, 1987. doi: https://doi.org/10.2307/2526578. [p423,
424, 425]

M. T. Owyang, V. A. Ramey, and S. Zubairy. Are government spending multipliers greater during
periods of slack? evidence from twentieth-century historical data. American Economic Review, 103(3):
129–134, 2013. doi: https://doi.org/10.1257/aer.103.3.129. [p421, 424]

M. A. Petersen. Estimating standard errors in finance panel data sets: Comparing approaches. The
Review of Financial Studies, 22(1):435–480, 2009. doi: https://doi.org/10.1093/rfs/hhn053. [p424]

B. Pfaff. VAR, SVAR and SVEC models: Implementation Within R Package vars. Journal of Statistical
Software, 27(4), 2008. doi: https://doi.org/10.18637/jss.v027.i04. [p421]

M. Plagborg-Møller and C. K. Wolf. Local projections and vars estimate the same impulse responses.
Unpublished paper: Department of Economics, Princeton University, 2019. URL https://scholar.
princeton.edu/sites/default/files/mikkelpm/files/lp_var.pdf. [p421, 433]

V. A. Ramey and S. Zubairy. Government spending multipliers in good times and in bad: evidence
from us historical data. Journal of Political Economy, 126(2):850–901, 2018. doi: https://doi.org/10.
1086/696277. [p424, 426, 428, 431]

M. O. Ravn and H. Uhlig. On adjusting the hodrick-prescott filter for the frequency of obser-
vations. Review of Economics and Statistics, 84(2):371–376, 2002. doi: https://doi.org/10.1162/
003465302317411604. [p425, 426, 435]

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464, 1978. doi:
https://doi.org/10.1214/aos/1176344136. [p425]

C. A. Sims. Macroeconomics and reality. Econometrica: Journal of the Econometric Society, pages 1–48,
1980. doi: https://doi.org/10.2307/1912017. [p421]

E. T. Swanson. Measuring the effects of federal reserve forward guidance and asset purchases on
financial markets. Technical report, National Bureau of Economic Research, 2017. URL https:
//www.nber.org/papers/w23311. [p421]

S. Tenreyro and G. Thwaites. Pushing on a string: Us monetary policy is less powerful in recessions.
American Economic Journal: Macroeconomics, 8(4):43–74, 2016. doi: https://doi.org/10.1257/mac.
20150016. [p421]

Philipp Adämmer
Department of Mathematics and Statistics
Helmut Schmidt University
Hamburg, Germany
(ORCiD: 0000-0003-3770-0097)
adaemmer@hsu-hh.de

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://files.stlouisfed.org/files/htdocs/publications/review/92/09/Vector_Sep_Oct1992.pdf
https://files.stlouisfed.org/files/htdocs/publications/review/92/09/Vector_Sep_Oct1992.pdf
https://scholar.princeton.edu/sites/default/files/mikkelpm/files/lp_var.pdf
https://scholar.princeton.edu/sites/default/files/mikkelpm/files/lp_var.pdf
https://www.nber.org/papers/w23311
https://www.nber.org/papers/w23311
mailto:adaemmer@hsu-hh.de

NEWS AND NOTES 439

Conference Report: ConectaR 2019
by Marcela Alfaro Córdoba, Frans van Dunné, Agustín Gómez Meléndez, and Jacob van Etten

About the event

ConectaR 2019: Encuentro de Usuarios R en Latinoamérica, took place during January 24-26,
2019 at the University of Costa Rica, in San José, Costa Rica. It was the first event in Central
America endorsed by The R Foundation, and it was held completely in Spanish. The majority
of the attendants were from Costa Rica (85%), but we had participants from 12 countries:
Costa Rica, Guatemala, Peru, Colombia, Mexico, Argentina, Uruguay, Chile, Spain, the
Netherlands, France and the USA. The three-day event consisted of talks, workshops, and
poster sessions.

The primary purpose of ConectaR conference was to provide a space to create a commu-
nity among R users in industry, academia, citizen science and teaching. In this way, we aim
to encourage the use of R, promote learning and advance the development of R packages
adapted to our regional needs.

ConectaR 2019 was organized by the University of Costa Rica -through the School of
Statistics, the Development Observatory, and the Research Center for Pure and Applied
Mathematics- the company ixpantia, and the research institution Bioversity International.
The initiative originated thanks to the encouragement of Heather Turner, who contacted
several networks in the region, through the R Users Groups, R-ladies groups and other
connections.

From the 150 registered participants, 33% were female and 23% were full time students.
Professionals from finance, government and data companies were present, as well as faculty
members from all four major universities in the country. The event was possible thanks to
the effort of a team of about 50 people including 4 chairs, a 23-member scientific committee
and a motivated group of 23 volunteers.

Figure 1: The logo of ConectaR.

Conference program

The first two days of the conference were dedicated to talks (invited and contributed) and
poster presentations. On the third day of the event (a Saturday) four workshops ran in
parallel: two during the morning and two during the afternoon.

The event had four invited talks: two that were in person and two via video conference.
Edgar Ruiz from RStudio, was the first keynote. He gave a remarkably clear explanation
about how to use R and Spark for Data Science. During the afternoon, Maëlle Salmon
from rOpenSci and Locke Data, presented the second keynote (remote), where she talked
about the ROpenSci initiative (https://ropensci.org/), and about her experience curating
R packages. She gave the audience tips on how to write R packages, a clear explanation
on the importance of citing, curating and recognizing R packages as part of the scientific
process.

During the second day of the event, Robert Hijmans from UC Davis, explained the use of

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://ropensci.org/

NEWS AND NOTES 440

Figure 2: Picture from the event.

R for spatial data science, and talked about his experience using R for scientific production
and teaching, including the creation of new packages. His talk ended with an invitation to
translate the material from his web page into Spanish: https://rspatial.org/. To close
the last day of talks, Antonio Vasquez Brust from Buenos Aires University (UBA), Argentina
gave a detailed description on how to use R and Open Data to understand our cities. His
discussion encouraged good practices in visualization as well as a conversation about city
planning using R when Open Data is available.

A panel named “Connecting data innovation initiatives in Latin America with R” was
facilitated by Diego May (ixpantia) during the second day of the event. The intention of the
panel was to have professionals talk about the opportunities and challenges around the use
of R in their different work contexts. Alexia Pacheco of ICE, the largest utility company in
Costa Rica, explained how data science and R has pervaded their work since its origin. Jacob
van Etten (Bioversity International) explained how R is used in a multi-country team in an
international agricultural research institute. It has provided important opportunities for
quick methodological innovation to support a large citizen science initiative. Alvaro Pabón
of Finsocial Colombia, explained how he has set up a data science team in a Colombian
company, the challenges to build this capacity and the support needed for it.

Eleven contributed talks and fourteen posters were presented during the event. The
selection process had two stages: during the first one, the reviewers gave recommendations
to the authors on how to improve their abstract, and during the second stage, the talks that
had a satisfactory level were accepted. The posters were then reviewed by the chairs to
ensure all of them had a satisfactory level. Two out of the eleven contributed talks and six
out of the fourteen posters were presented by women.

The topics of the contributed talks followed the four themes of the conference. First
government and citizen science, where we saw how shiny apps are used at the Costa Rican
national comptroller’s office. We also heard how the national statistics office is transitioning
from SPSS to R. In the industry track a talk about the transition from Excel to R at the
national insurance institute showed how this has lead to significant reduction in time spent
on data processing. In academia the visualization and analysis of complex climate data
took center stage in two separate talks. The teaching track included a fun example of how
to predict the outcome of soccer matches, and showcased experiences from Mexico of the
power of R as a didactic tool in statistics and mathematics.

After the last break of the first day, the poster session was opened and accompanied by
the conference cocktail reception. As organizers we felt strongly about including sufficient
opportunities for people to mingle and talk. The posters were well visited and led to spirited
discussions. The conference dinner had a lower attendance than the reception, but served
its purpose just as well in offering an opportunity for people in the community to connect
and re-connect.

During the last day of the event four workshops were held, each of which managed to

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://rspatial.org/

NEWS AND NOTES 441

attract full classrooms:

• Crear API’s con código R usando plumber by Frans van Dunné.

• Documentos dinámicos, trabajo colaborativo y control de versiones con Rmarkdown y
GitHub by Natalia da Silva.

• Análisis de texto by Riva Quiroga.

• Introducción al análisis Bayesiano con aplicaciones en STAN by Ignacio Álvarez-
Castro.

ConectaR served to connect different communities, announce exciting projects and to
create new ones. Examples are the visit and help of two of the three chairs of LatinR
to teach workshops and their LatinR2019 announcement during the closing remarks of
ConectaR. Also, Riva Quiroga explained details about the R4DS translation project (https:
//es.r4ds.hadley.nz) to the community, and Frans van Dunné asked for volunteers to start
the (already advanced) Plumber translation project (https://github.com/fontanero-api/).

Communities outside R were also involved, such as Women in Engineering, who orga-
nized an introduction to R workshop for its members two months after the event, with the
help of Marcela Alfaro Córdoba. DataLatam did several interviews for their podcast thanks
to the connections established during ConectaR, and the School of Statistics made the first
arrangements to invite Edgar Ruiz to give a week of workshops to its students and faculty
in June.

Evaluation

An evaluation questionnaire was circulated after the event, and 70% of the participants
filled it out. The results were overwhelmingly positive, having a median rate of 5 (on a
scale from 1=bad job to 5=good job) for all the questions, with very small variability in each
distribution. A word cloud of the comment section of the questionnaire was constructed
and is shown in Figure 3, where it is clear that positive words such as excellent (excelente),
good (bien, bueno) and quality (calidad) were among the most used in the comments.

Figure 3: Word cloud for the evaluation comments.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://es.r4ds.hadley.nz
https://es.r4ds.hadley.nz
https://github.com/fontanero-api/
https://www.datalatam.com

NEWS AND NOTES 442

Corporate Sponsors

ConectaR was possible thanks to the main sponsors: INCAE Business School, R Consor-
tium, RStudio, Inc., Hivos Latinoamerica, The Trust for the Americas. Also, a small job fair
was organized parallel to the conference, in which the some of the main sponsors partici-
pated, along with companies like McKinsey & Company, Alteryx, Growth Acceleration and
Partners, ThermoFisher Scientific and ixpantia.

Other Events and Future Steps

Future plans for the chairs of ConectaR include ConectaR 2021, where the expectation is
to improve the network with communities in Mexico, Colombia, Panamá, and search for
funding sources to overcome our most important limitation for this edition: lack of funding
to cover travel expenses. Also, the organization of more local events such as a Datathon
for 2020, is on the agenda. The idea is to gather momentum to get different R communities
from the region to participate in a visualization competition, inspired in Open Data from
the Costa Rican Government.

Further information

• ConectaR materials: https://github.com/ConectaR2019.

• Twitter account: @conecta_R, #ConectaR2019.

• Webpage: http://www.conectar2019.ucr.ac.cr

• Facebook account: conectar2019

Marcela Alfaro Córdoba
Escuela de Estadística, Facultad de Ciencias Económicas
Universidad de Costa Rica
Ciudad Universitaria Rodrigo Facio
Costa Rica
ORCiD: 0000-0002-7703-3578
marcela.alfarocordoba@ucr.ac.cr

Agustín Gómez Meléndez
Observatorio de Desarrollo
Escuela de Estadística, Facultad de Ciencias Económicas
Universidad de Costa Rica
Costa Rica
agustin.gomez@ucr.ac.cr

Frans van Dunné
ixpantia
Costa Rica
frans@ixpantia.com

Jacob van Etten
Bioversity International
Spain
j.vanetten@cgiar.org

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://github.com/ConectaR2019
http://www.twitter.com/conecta_R
https://twitter.com/hashtag/ConectaR2019?src=hash
http://www.conectar2019.ucr.ac.cr
https://www.facebook.com/conectar2019/
mailto:marcela.alfarocordoba@ucr.ac.cr
mailto:agustin.gomez@ucr.ac.cr
mailto:frans@ixpantia.com
mailto:j.vanetten@cgiar.org

NEWS AND NOTES 443

R Foundation News
by Torsten Hothorn

Donations and members

Membership fees and donations received between 2019-09-05 and 2020-02-24.

Donations

Amy Tzu-Yu Chen (United States) Murat D (France) Charles Geyer (United States) Susan
Gruber (United States) Francesco Maria Lo Russo (Italy) Søren Lophaven (Denmark) J+Brian
Loria (United States) Heramb Modak (India) Nikola Motik (Croatia) Kem Phillips (United
States) Nick Redell (United States) Ravinderpal Vaid (United States) Dr. Alfred Wagner
(Germany) Merck Research Laboratories, Kenilwort (United States)

Supporting benefactors

Thomas Levine (United States) b-data GmbH, Winterthur (Switzerland)

Supporting institutions

Fumihiko Makiyama (Japan) Code Ocean, Jenkintown (United States)

Supporting members

Antoniade Ciprian Alexandru (Romania) Tim Appelhans (Germany) Srinivas B (India)
Michael Blanks (United States) Gordon Blunt (United Kingdom) Shannon Callan (United
States) Gilberto Camara (Brazil) Susan M Carlson (United States) Michael Chirico (United
States) Gerard Conaghan (United Kingdom) Terry Cox (United States) Robin Crockett
(United Kingdom) Robert Daly (Australia) Gergely Daroczi (Hungary) Steph de Silva (Aus-
tralia) Ajit de Silva (United States) Elliott Deal (United States) Jasja Dekker (Netherlands)
Michael Dorman (Israel) Johan Eklund (Sweden) Shalese Fitzgerald (United States) Neil
Frazer (United States) Keita Fukasawa (Japan) Laura Gabrysiak (United States) J. Antonio
García (Mexico) Brian Gramberg (Netherlands) Krushi Gurudu (United States) Hlynur
Hallgrímsson (Iceland) Joe Harwood (United Kingdom) Bela Hausmann (Austria) Arnošt
Komárek (Czechia) Miha Kosmac (United Kingdom) Jan Herman Kuiper (United Kingdom)
Hoonjeong Kwon (Republic of Korea) Mauro Lepore (United States) Chin Soon Lim (Singa-
pore) Daniel McNichol (United States) Tore Christian Michaelsen (Norway) Guido Möser
(Germany) Yoshinobu Nakahashi (Japan) Dan Orsholits (Switzerland) George Ostrouchov
(United States) Antonio Paez (Canada) Peter Perez (United States) Elgin Perry (United States)
Fergus Reig Gracia (Spain) Ingo Ruczinski (United States) Antonio J. Saez-Castillo (Spain)
Pieta Schofield (United Kingdom) Jagat Sheth (United States) Rachel Smith-Hunter (United
States) Berthold Stegemann (Germany) Tobias Strapatsas (Germany) Robert Szabo (Sweden)
Waldemar T Talen (United States) Koray Tascilar (Germany) Michael Tiefelsdorf (United
States) Uku Vainik (Estonia) Marcus Vollmer (Germany) Jaap Walhout (Netherlands) Sandra
Ware (Australia)

Torsten Hothorn
Universität Zürich, Switzerland Torsten.Hothorn@R-project.org

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

mailto:Torsten.Hothorn@R-project.org

NEWS AND NOTES 444

Changes on CRAN
2019-09-01 to 2019-12-31

by Kurt Hornik, Uwe Ligges and Achim Zeileis

In the past 4 months, 632 new packages were added to the CRAN package repository. 27
packages were unarchived and 182 were archived. The following shows the growth of the
number of active packages in the CRAN package repository:

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●●●●●●●●●●●

2000 2005 2010 2015 2020

0
50

00
10

00
0

15
00

0

Number of CRAN Packages

●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●
●●●
●●
●●
●●●
●●
●●
●●
●●
●●●
●●
●●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●●
●●
●●●
●●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●●
●●
●●●
●●●
●●●
●●●

●●
●●

●●●
●●●

●●●

2000 2005 2010 2015 2020

50
10

0
20

0
50

0
10

00
20

00
50

00
10

00
0

Number of CRAN Packages (Log−Scale)

On 2019-12-31, the number of active packages was around 15227.

Changes in the CRAN Repository Policy

The Checklist for CRAN submissions now says the following:

• Make the Description as informative as possible for potential new users of your
package. If in doubt, make the Description longer rather than shorter, but try to avoid
redundancies such as repetitions of the package name.

• Write function names including parentheses as in foo() but without quotes.

CRAN package submissions

CRAN mirror security

Currently, there are 97 official CRAN mirrors, 67 of which provide both secure downloads
via ‘https’ and use secure mirroring from the CRAN master (via rsync through ssh tunnels).
Since the R 3.4.0 release, chooseCRANmirror() offers these mirrors in preference to the others
which are not fully secured (yet).

New CRAN task views

Tracking Topic: Processing and Analysis of Tracking Data. Maintainer: Rocío Joo, Matthew
E. Boone, Michael Sumner and Mathieu Basille. Packages: BBMM, BayesianAn-
imalTracker, EMbC, FLightR, GGIR, GeoLight, PhysicalActivity, SDLfilter, SiM-

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/web/packages/submission_checklist.html
https://CRAN.R-project.org/view=Tracking
https://CRAN.R-project.org/package=BBMM
https://CRAN.R-project.org/package=BayesianAnimalTracker
https://CRAN.R-project.org/package=BayesianAnimalTracker
https://CRAN.R-project.org/package=EMbC
https://CRAN.R-project.org/package=FLightR
https://CRAN.R-project.org/package=GGIR
https://CRAN.R-project.org/package=GeoLight
https://CRAN.R-project.org/package=PhysicalActivity
https://CRAN.R-project.org/package=SDLfilter
https://CRAN.R-project.org/package=SiMRiv
https://CRAN.R-project.org/package=SiMRiv

NEWS AND NOTES 445

Riv, SimilarityMeasures, TrackReconstruction, TrajDataMining, VTrack, acc, ac-
celerometry, adehabitatHR, adehabitatLT∗, amt, animalTrack, anipaths, argosfilter,
bcpa, bsam, caribou, crawl, ctmcmove, ctmm, diveMove, foieGras, m2b, marcher,
mkde, momentuHMM, move∗, moveHMM, moveVis, moveWindSpeed, nparACT,
pawacc, recurse, rpostgisLT, rsMove, segclust2d, smam, spatsoc, trackdem, trackeR,
trajectories, trajr, trip, tripEstimation, wildlifeDI.

(* = core package)

New packages in CRAN task views

ChemPhys RadData, radsafer.

Distributions MomTrunc, OwenQ, TruncatedNormal, distr6, distributions3, parameters,
spam, truncdist.

Econometrics durmod, lpirfs.

HighPerformanceComputing RxODE.

Hydrology FedData, VICmodel, baseflow, echor, nasapower, openair.

MachineLearning mlr3.

MetaAnalysis BayesCombo, CopulaDTA, EValue, GENMETA, GMCM, HSROC, Ken-
Syn, MBNMAdose, MBNMAtime, NMAoutlier, PRISMAstatement, Publication-
Bias, RBesT, RcmdrPlugin.MA, SingleCaseES, baggr, catmap, effectsize, har-
monicmeanp, jarbes, mc.heterogeneity, metaBLUE, metacart, metapro, mixmeta,
nmadb.

MissingData MatchThem.

NumericalMathematics HypergeoMat, SQUAREM, calculus, commonsMath, daarem,
freealg, jack, kubik, matlib, mbend, turboEM, wedge.

OfficialStatistics MatchThem, RJDemetra, diyar, simPop, tidyqwi.

Optimization GPareto, Jaya, OOR, SCOR, nonneg.cg, roptim.

Pharmacokinetics RxODE, nlmixr.

Psychometrics conquestr, jrt, psychonetrics.

ReproducibleResearch DataPackageR, ProjectTemplate, RSuite, RepoGenerator, adapr,
cabinets, drake, exreport, here, madrat, makeProject, orderly, prodigenr, projects,
renv, repo, reports, represtools, storr, tinyProject, usethis, workflowr, zoon.

SpatioTemporal AtmRay, EMbC, SDLfilter, SiMRiv, SpaTimeClus, amt, anipaths, bsam,
caribou, eyelinker, eyetracking, eyetrackingR, foieGras, gazepath, marcher, mdf-
tracks, momentuHMM, mousetrack, mousetrap, moveVis, moveWindSpeed, move-
cost, oce, opentraj, psyosphere, rerddapXtracto, riverdist, rpostgisLT, rsMove, sac-
cades, spatsoc, stampr, stplanr, trackdem, trackdf, trackeRapp, trajectories, trajr.

TeachingStatistics BetaBit, DALEX, HH, car, carData, effects, regtools, resampledata.

TimeSeries VARshrink, fable∗, feasts∗, forecastML, fpp3, nsarfima, sazedR.

gR bnclassify, mgm, qgraph, sna.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=SiMRiv
https://CRAN.R-project.org/package=SiMRiv
https://CRAN.R-project.org/package=SimilarityMeasures
https://CRAN.R-project.org/package=TrackReconstruction
https://CRAN.R-project.org/package=TrajDataMining
https://CRAN.R-project.org/package=VTrack
https://CRAN.R-project.org/package=acc
https://CRAN.R-project.org/package=accelerometry
https://CRAN.R-project.org/package=accelerometry
https://CRAN.R-project.org/package=adehabitatHR
https://CRAN.R-project.org/package=adehabitatLT
https://CRAN.R-project.org/package=amt
https://CRAN.R-project.org/package=animalTrack
https://CRAN.R-project.org/package=anipaths
https://CRAN.R-project.org/package=argosfilter
https://CRAN.R-project.org/package=bcpa
https://CRAN.R-project.org/package=bsam
https://CRAN.R-project.org/package=caribou
https://CRAN.R-project.org/package=crawl
https://CRAN.R-project.org/package=ctmcmove
https://CRAN.R-project.org/package=ctmm
https://CRAN.R-project.org/package=diveMove
https://CRAN.R-project.org/package=foieGras
https://CRAN.R-project.org/package=m2b
https://CRAN.R-project.org/package=marcher
https://CRAN.R-project.org/package=mkde
https://CRAN.R-project.org/package=momentuHMM
https://CRAN.R-project.org/package=move
https://CRAN.R-project.org/package=moveHMM
https://CRAN.R-project.org/package=moveVis
https://CRAN.R-project.org/package=moveWindSpeed
https://CRAN.R-project.org/package=nparACT
https://CRAN.R-project.org/package=pawacc
https://CRAN.R-project.org/package=recurse
https://CRAN.R-project.org/package=rpostgisLT
https://CRAN.R-project.org/package=rsMove
https://CRAN.R-project.org/package=segclust2d
https://CRAN.R-project.org/package=smam
https://CRAN.R-project.org/package=spatsoc
https://CRAN.R-project.org/package=trackdem
https://CRAN.R-project.org/package=trackeR
https://CRAN.R-project.org/package=trajectories
https://CRAN.R-project.org/package=trajr
https://CRAN.R-project.org/package=trip
https://CRAN.R-project.org/package=tripEstimation
https://CRAN.R-project.org/package=wildlifeDI
https://CRAN.R-project.org/view=ChemPhys
https://CRAN.R-project.org/package=RadData
https://CRAN.R-project.org/package=radsafer
https://CRAN.R-project.org/view=Distributions
https://CRAN.R-project.org/package=MomTrunc
https://CRAN.R-project.org/package=OwenQ
https://CRAN.R-project.org/package=TruncatedNormal
https://CRAN.R-project.org/package=distr6
https://CRAN.R-project.org/package=distributions3
https://CRAN.R-project.org/package=parameters
https://CRAN.R-project.org/package=spam
https://CRAN.R-project.org/package=truncdist
https://CRAN.R-project.org/view=Econometrics
https://CRAN.R-project.org/package=durmod
https://CRAN.R-project.org/package=lpirfs
https://CRAN.R-project.org/view=HighPerformanceComputing
https://CRAN.R-project.org/package=RxODE
https://CRAN.R-project.org/view=Hydrology
https://CRAN.R-project.org/package=FedData
https://CRAN.R-project.org/package=VICmodel
https://CRAN.R-project.org/package=baseflow
https://CRAN.R-project.org/package=echor
https://CRAN.R-project.org/package=nasapower
https://CRAN.R-project.org/package=openair
https://CRAN.R-project.org/view=MachineLearning
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/view=MetaAnalysis
https://CRAN.R-project.org/package=BayesCombo
https://CRAN.R-project.org/package=CopulaDTA
https://CRAN.R-project.org/package=EValue
https://CRAN.R-project.org/package=GENMETA
https://CRAN.R-project.org/package=GMCM
https://CRAN.R-project.org/package=HSROC
https://CRAN.R-project.org/package=KenSyn
https://CRAN.R-project.org/package=KenSyn
https://CRAN.R-project.org/package=MBNMAdose
https://CRAN.R-project.org/package=MBNMAtime
https://CRAN.R-project.org/package=NMAoutlier
https://CRAN.R-project.org/package=PRISMAstatement
https://CRAN.R-project.org/package=PublicationBias
https://CRAN.R-project.org/package=PublicationBias
https://CRAN.R-project.org/package=RBesT
https://CRAN.R-project.org/package=RcmdrPlugin.MA
https://CRAN.R-project.org/package=SingleCaseES
https://CRAN.R-project.org/package=baggr
https://CRAN.R-project.org/package=catmap
https://CRAN.R-project.org/package=effectsize
https://CRAN.R-project.org/package=harmonicmeanp
https://CRAN.R-project.org/package=harmonicmeanp
https://CRAN.R-project.org/package=jarbes
https://CRAN.R-project.org/package=mc.heterogeneity
https://CRAN.R-project.org/package=metaBLUE
https://CRAN.R-project.org/package=metacart
https://CRAN.R-project.org/package=metapro
https://CRAN.R-project.org/package=mixmeta
https://CRAN.R-project.org/package=nmadb
https://CRAN.R-project.org/view=MissingData
https://CRAN.R-project.org/package=MatchThem
https://CRAN.R-project.org/view=NumericalMathematics
https://CRAN.R-project.org/package=HypergeoMat
https://CRAN.R-project.org/package=SQUAREM
https://CRAN.R-project.org/package=calculus
https://CRAN.R-project.org/package=commonsMath
https://CRAN.R-project.org/package=daarem
https://CRAN.R-project.org/package=freealg
https://CRAN.R-project.org/package=jack
https://CRAN.R-project.org/package=kubik
https://CRAN.R-project.org/package=matlib
https://CRAN.R-project.org/package=mbend
https://CRAN.R-project.org/package=turboEM
https://CRAN.R-project.org/package=wedge
https://CRAN.R-project.org/view=OfficialStatistics
https://CRAN.R-project.org/package=MatchThem
https://CRAN.R-project.org/package=RJDemetra
https://CRAN.R-project.org/package=diyar
https://CRAN.R-project.org/package=simPop
https://CRAN.R-project.org/package=tidyqwi
https://CRAN.R-project.org/view=Optimization
https://CRAN.R-project.org/package=GPareto
https://CRAN.R-project.org/package=Jaya
https://CRAN.R-project.org/package=OOR
https://CRAN.R-project.org/package=SCOR
https://CRAN.R-project.org/package=nonneg.cg
https://CRAN.R-project.org/package=roptim
https://CRAN.R-project.org/view=Pharmacokinetics
https://CRAN.R-project.org/package=RxODE
https://CRAN.R-project.org/package=nlmixr
https://CRAN.R-project.org/view=Psychometrics
https://CRAN.R-project.org/package=conquestr
https://CRAN.R-project.org/package=jrt
https://CRAN.R-project.org/package=psychonetrics
https://CRAN.R-project.org/view=ReproducibleResearch
https://CRAN.R-project.org/package=DataPackageR
https://CRAN.R-project.org/package=ProjectTemplate
https://CRAN.R-project.org/package=RSuite
https://CRAN.R-project.org/package=RepoGenerator
https://CRAN.R-project.org/package=adapr
https://CRAN.R-project.org/package=cabinets
https://CRAN.R-project.org/package=drake
https://CRAN.R-project.org/package=exreport
https://CRAN.R-project.org/package=here
https://CRAN.R-project.org/package=madrat
https://CRAN.R-project.org/package=makeProject
https://CRAN.R-project.org/package=orderly
https://CRAN.R-project.org/package=prodigenr
https://CRAN.R-project.org/package=projects
https://CRAN.R-project.org/package=renv
https://CRAN.R-project.org/package=repo
https://CRAN.R-project.org/package=reports
https://CRAN.R-project.org/package=represtools
https://CRAN.R-project.org/package=storr
https://CRAN.R-project.org/package=tinyProject
https://CRAN.R-project.org/package=usethis
https://CRAN.R-project.org/package=workflowr
https://CRAN.R-project.org/package=zoon
https://CRAN.R-project.org/view=SpatioTemporal
https://CRAN.R-project.org/package=AtmRay
https://CRAN.R-project.org/package=EMbC
https://CRAN.R-project.org/package=SDLfilter
https://CRAN.R-project.org/package=SiMRiv
https://CRAN.R-project.org/package=SpaTimeClus
https://CRAN.R-project.org/package=amt
https://CRAN.R-project.org/package=anipaths
https://CRAN.R-project.org/package=bsam
https://CRAN.R-project.org/package=caribou
https://CRAN.R-project.org/package=eyelinker
https://CRAN.R-project.org/package=eyetracking
https://CRAN.R-project.org/package=eyetrackingR
https://CRAN.R-project.org/package=foieGras
https://CRAN.R-project.org/package=gazepath
https://CRAN.R-project.org/package=marcher
https://CRAN.R-project.org/package=mdftracks
https://CRAN.R-project.org/package=mdftracks
https://CRAN.R-project.org/package=momentuHMM
https://CRAN.R-project.org/package=mousetrack
https://CRAN.R-project.org/package=mousetrap
https://CRAN.R-project.org/package=moveVis
https://CRAN.R-project.org/package=moveWindSpeed
https://CRAN.R-project.org/package=movecost
https://CRAN.R-project.org/package=movecost
https://CRAN.R-project.org/package=oce
https://CRAN.R-project.org/package=opentraj
https://CRAN.R-project.org/package=psyosphere
https://CRAN.R-project.org/package=rerddapXtracto
https://CRAN.R-project.org/package=riverdist
https://CRAN.R-project.org/package=rpostgisLT
https://CRAN.R-project.org/package=rsMove
https://CRAN.R-project.org/package=saccades
https://CRAN.R-project.org/package=saccades
https://CRAN.R-project.org/package=spatsoc
https://CRAN.R-project.org/package=stampr
https://CRAN.R-project.org/package=stplanr
https://CRAN.R-project.org/package=trackdem
https://CRAN.R-project.org/package=trackdf
https://CRAN.R-project.org/package=trackeRapp
https://CRAN.R-project.org/package=trajectories
https://CRAN.R-project.org/package=trajr
https://CRAN.R-project.org/view=TeachingStatistics
https://CRAN.R-project.org/package=BetaBit
https://CRAN.R-project.org/package=DALEX
https://CRAN.R-project.org/package=HH
https://CRAN.R-project.org/package=car
https://CRAN.R-project.org/package=carData
https://CRAN.R-project.org/package=effects
https://CRAN.R-project.org/package=regtools
https://CRAN.R-project.org/package=resampledata
https://CRAN.R-project.org/view=TimeSeries
https://CRAN.R-project.org/package=VARshrink
https://CRAN.R-project.org/package=fable
https://CRAN.R-project.org/package=feasts
https://CRAN.R-project.org/package=forecastML
https://CRAN.R-project.org/package=fpp3
https://CRAN.R-project.org/package=nsarfima
https://CRAN.R-project.org/package=sazedR
https://CRAN.R-project.org/view=gR
https://CRAN.R-project.org/package=bnclassify
https://CRAN.R-project.org/package=mgm
https://CRAN.R-project.org/package=qgraph
https://CRAN.R-project.org/package=sna

NEWS AND NOTES 446

(* = core package)

Kurt Hornik
WU Wirtschaftsuniversität Wien, Austria
Kurt.Hornik@R-project.org

Uwe Ligges
TU Dortmund, Germany
Uwe.Ligges@R-project.org

Achim Zeileis
Universität Innsbruck, Austria
Achim.Zeileis@R-project.org

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

mailto:Kurt.Hornik@R-project.org
mailto:Uwe.Ligges@R-project.org
mailto:Achim.Zeileis@R-project.org

NEWS AND NOTES 447

News from the Bioconductor Project
by Bioconductor Core Team

The Bioconductor project provides tools for the analysis and comprehension of high-
throughput genomic data. Bioconductor 3.10 was released on 30 October, 2019. It is
compatible with R 3.6.1 and consists of 1823 software packages, 384 experiment data pack-
ages, 953 up-to-date annotation packages, and 27 workflows. The release announcement
includes descriptions of 94 new software packages, and updated NEWS files for many
additional packages. Start using Bioconductor by installing the most recent version of R and
evaluating the commands

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install()

Install additional packages and dependencies, e.g., SingleCellExperiment, with

BiocManager::install("SingleCellExperiment")

Docker and Amazon images provides a very effective on-ramp for power users to rapidly
obtain access to standardized and scalable computing environments. Key resources include:

• The bioconductor.org web site to install, learn, use, and develop Bioconductor pack-
ages.

• A list of available software, linking to pages describing each package.

• A question-and-answer style user support site and developer-oriented mailing list.

• A community slack (sign up) for extended technical discussion.

• The F1000Research Bioconductor channel for peer-reviewed Bioconductor work flows.

• Our package submission repository for open technical review of new packages.

Our annual conference will be on July 29 - 31, 2020 in Boston, USA.

Bioconductor Core Team
Biostatistics and Bioinformatics
Roswell Park Cancer Institute, Buffalo, NY
USA maintainer@bioconductor.org

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bioconductor.org
https://bioconductor.org/news/bioc_3_10_release/
https://www.bioconductor.org/packages/release/bioc/html/SingleCellExperiment.html
http://bioconductor.org/help/docker/
http://bioconductor.org/help/bioconductor-cloud-ami/
https://bioconductor.org
https://bioconductor.org/packages
https://support.bioconductor.org
https://stat.ethz.ch/mailman/listinfo/bioc-devel
https://bioc-community.herokuapp.com/
https://f1000research.com/channels/bioconductor
https://github.com/Bioconductor/Contributions
https://bioc2020.bioconductor.org
mailto:maintainer@bioconductor.org

NEWS AND NOTES 448

R News
by R Core Team

CHANGES IN R 3.6.2

NEW FEATURES

• runmed(x,*) gains a new option na.action determining how to handle NaN or NA in x.

• dotchart() gains new options ann, xaxt, frame.plot and log.

INSTALLATION on a UNIX-ALIKE

• Detection of the C stack direction has been moved from run-time to configure: this is
safer with LTO builds and allows the detection to be overridden – see file ‘config.site’.

• Source-code changes enable installation on platforms using gcc -fno-common (the
expected default for gcc 10.x).

C-LEVEL FACILITIES

• installTrChar (which is nowadays is wrapped by installChar) is defined in ‘Rinternals.h’.
(Neither are part of the API.)

PACKAGE INSTALLATION

• Header ‘Rconfig.h’ contains the value of FC_LEN_T deduced at installation which is
used by the prototypes in headers ‘R_ext/BLAS.h’ and ‘R_ext/Lapack.h’ but to avoid
extensive breakage this is only exposed when USE_FC_LEN_T is defined.

If a package’s C/C++ calls to BLAS/LAPACK allow for the ‘hidden’ arguments used
by most Fortran compilers to pass the lengths of Fortran character arguments, define
USE_FC_LEN_T and include ‘Rconfig.h’ (possibly via ‘R.h’) before including ‘R_ext/BLAS.h’
or ‘R_ext/Lapack.h’.

• A package with Fortran source code and perhaps C (but not C++) sources can request
for its shared object/DLL to be linked by the Fortran compiler by including a line
USE_FC_TO_LINK= in ‘src/Makevars[.win]’ and using $(SHLIB_OPENMP_FFLAGS) as part of
PKG_LIBS.

The known reason for doing so is a package which uses Fortran (only) OpenMP
on a platform where the Fortran OpenMP runtime is incompatible with the C one
(e.g. gfortran 9.x with clang).

UTILITIES

• R CMD check has a new option to mitigate checks leaving files/directories in ‘/tmp’. See
the ‘R Internals’ manual – this is part of --as-cran.

Windows

• The default standard for C++ in package installation is C++11 (as it has been on
other platforms where available since R 3.6.0: the default toolchain on Windows was
defaulting to C++98).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

NEWS AND NOTES 449

DEPRECATED AND DEFUNCT

• Support for specifying C++98 in package installation is deprecated.

• Support in R CMD config for ‘F77’, ‘FCPIFCPLAGS’, ‘CPP’, ‘CXXCPP’ and ‘CXX98’ and
similar is deprecated. (‘CPP’ is found from the system make and may well not be set.)

Use ‘$CC -E’ and ‘$CXX -E’ instead of ‘CPP’ and ‘CXXCPP’.

BUG FIXES

• runmed(x,*) when x contains missing values now works consistently for both algorithm="Stuetzle"
and "Turlach", and no longer segfaults for "Turlach", as reported by Hilmar Berger.

• apply(diag(3),2:3,mean) now gives a helpful error message.

• dgamma(x,shape,log=TRUE) now longer overflows to Inf for shape < 1 and very small
x, fixing PR#17577, reported by Jonathan Rougier.

• Buffer overflow in building error messages fixed. Reported by Benjamin Tremblay.

• options(str = .) is correctly initialized at package utils load time, now. A conse-
quence is that str() in scripts now is more consistent to interactive use, e.g., when
displaying function(**) argument lists.

• as.numeric(<call>) now gives correct error message.

• Printing ls.str() no longer wrongly shows "<missing>" in rare cases.

• Auto-printing S4 objects no longer duplicates the object, for faster speed and reduced
memory consumption. Reported by Aaron Lun.

• pchisq(<LRG>,<LRG>,ncp=100) no longer takes practically forever in some cases. Hence
ditto for corresponding qchisq() calls.

• x %% L for finite x no longer returns NaN when L is infinite, nor suffers from cancellation
for large finite L, thanks to Long Qu’s PR#17611.

Analogously, x %/% L and L %/% x suffer less from cancellation and return values
corresponding to limits for large L.

• grepl(NA,*) now returns logical as documented.

• options(warn=1e11) is an error now, instead of later leading to C stack overflow
because of infinite recursion.

• R_tryCatch no longer transfers control for all conditions. Reported and patch provided
by Lionel Henry in PR#17617.

• format(object.size(.),digits=NULL) now works, fixing PR#17628 reported by Jonathan
Carroll.

• get_all_vars(f,d) now also works for cases, e.g. where d contains a matrix. Reported
by Simon Wood in 2009 and patch provided by Ben Bolker in PR#13624.

Additionally, it now also works when some variables are data frames, fixing PR#14905,
reported by Patrick Breheny.

• barplot() could get spacings wrong if there were exactly two bars PR#15522. Patch
by Michael Chirico.

• power.t.test() works in more cases when returning values of n smaller than 2.

• dotchart(*,pch=.,groups=.) now works better. Reported by Robert and confirmed
by Nic Rochette in PR#16953.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17577
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17611
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17617
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17628
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=13624
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=14905
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15522
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16953

NEWS AND NOTES 450

• canCoerce(obj,cl) no longer assumes length(class(obj)) == 1.

• plot.formula(*,subset = *) now also works in a boundary case reported by Robert
Schlicht (TU Dresden).

• readBin() and writeBin() of a rawConnection() now also work in large cases, thanks
to a report and proposal by Taeke Harkema in PR#17665.

CHANGES IN R 3.6.1

INSTALLATION on a UNIX-ALIKE

• The default detection of the shell variable libNN is overridden for derivatives of Debian
Linux, some of which have started to have a ‘/usr/lib64’ directory. (E.g. Ubuntu 19.04.)
As before, it can be specified in ‘config.site’.

UTILITIES

• R CMD config knows the values of AR and RANLIB, often set for LTO builds.

DEPRECATED AND DEFUNCT

• The use of a character vector with .Fortran() is formally deprecated and gives a non-
portability warning. (It has long been strongly discouraged in ‘Writing R Extensions’.)

BUG FIXES

• On Windows, GUI package installation via menuInstallPkgs() works again, thanks
to Len Weil’s and Duncan Murdoch’s PR#17556.

• R CMD check on data() fixing PR#17558 thanks to Duncan Murdoch.

• quasi(*,variance = list(..)) now works more efficiently, and should work in all
cases fixing PR#17560. Further, quasi(var = mu(1-mu)) and quasi(var = "mu ^ 3")
now work, and quasi(variance = "log(mu)") now gives a correct error message.

• Creation of lazy loading database during package installation is again robust to Rpro-
file changing the current working directory (PR#17559).

• boxplot(y ~ f,horizontal=TRUE) now produces correct x- and y-labels.

• rbind.data.frame() allows to keep <NA> levels from factor columns (PR#17562) via
new option factor.exclude.

Additionally, it works in one more case with matrix-columns which had been reported
on 2017-01-16 by Krzysztof Banas.

• Correct messaging in C++ pragma checks in tools code for R CMD check, fixing
PR#17566 thanks to Xavier Robin.

• print()ing and auto-printing no longer differs for functions with a user defined
print.function, thanks to Bill Dunlap’s report.

• On Windows, writeClipboard(..,format = <n>) now does correctly pass format to
the underlying C code, thanks to a bug report (with patch) by Jenny Bryan.

• as.data.frame() treats 1D arrays the same as vectors, PR#17570.

• Improvements in smoothEnds(x,*) working with NAs (towards runmed() working in
that case, in the next version of R).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17665
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17556
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17558
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17560
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17559
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17562
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17566
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17570

NEWS AND NOTES 451

• vcov(glm(<quasi>),dispersion = *) works correctly again, fixing PR#17571 thanks
to Pavel Krivitsky.

• R CMD INSTALL of binary packages on Windows now works also with per-directory
locking.

• R CMD INSTALL and install.packages() on Windows are now more robust against a
locked file in an earlier installation of the package to be installed. The default value of
option install.lock on Windows has been changed to TRUE.

• On Unix alikes (when readline is active), only expand tilde (~) file names starting
with a tilde, instead of almost all tildes.

• In R documentation (‘*.Rd’) files, ‘\item [..]’ is no longer treated specially when
rendered in LaTeX and hence pdf, but rather shows the brackets in all cases.

CHANGES IN R 3.6.0

SIGNIFICANT USER-VISIBLE CHANGES

• Serialization format version 3 becomes the default for serialization and saving of the
workspace (save(), serialize(), saveRDS(), compiler::cmpfile()). Serialized data
in format 3 cannot be read by versions of R prior to version 3.5.0. Serialization format
version 2 is still supported and can be selected by version = 2 in the save/serialization
functions. The default can be changed back for the whole R session by setting envi-
ronment variables R_DEFAULT_SAVE_VERSION and R_DEFAULT_SERIALIZE_VERSION to 2.
For maximal back-compatibility, files ‘vignette.rds’ and ‘partial.rdb’ generated by R CMD
build are in serialization format version 2, and resave by default produces files in
serialization format version 2 (unless the original is already in format version 3).

• The default method for generating from a discrete uniform distribution (used in
sample(), for instance) has been changed. This addresses the fact, pointed out by
Ottoboni and Stark, that the previous method made sample() noticeably non-uniform
on large populations. See PR#17494 for a discussion. The previous method can
be requested using RNGkind() or RNGversion() if necessary for reproduction of old
results. Thanks to Duncan Murdoch for contributing the patch and Gabe Becker for
further assistance.

The output of RNGkind() has been changed to also return the ‘kind’ used by sample().

NEW FEATURES

• Sys.setFileTime() has been vectorized so arguments path and time of length greater
than one are now supported.

• axis() gets new option gap.axis = NA for specifying a multiplication factor for the
minimal “gap” (distance) between axis labels drawn. Its default is 1 for labels parallel
to the axis, and 0.25 for perpendicular ones.

Perpendicular labels no longer overlap, fixing bug PR#17384.

• The default method of plot() gains new arguments xgap.axis = NA and ygap.axis
= NA to be passed to the x– and y– axis(..,gap.axis=*) calls.

• removeSource() now works not only for functions but also for some language objects.

• as.call(), rep.int(), rep_len() and nchar() dispatch internally.

• is(object,class2) looks for class2 in the calling namespace after looking in the
namespace of class(object).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17571
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17494
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17384

NEWS AND NOTES 452

• extendrange(..,f) with a length-2 f now extends separately to the left and the right.

• lengths() dispatches internally to S4 methods.

• download.file() on Windows now uses URLdecode() to determine the file extension,
and uses binary transfer (mode = "wb") also for file extension ‘.rds’.

The help page for download.file() now contains the same information on all plat-
forms.

• Setting ‘C’ locale for collation via environment variables LC_ALL and LC_COLLATE
and via a call to Sys.setlocale() now takes precedence over environment variable
R_ICU_LOCALE.

• There is a new function, nullfile(), to give the file name of the null system device
(e.g., ‘/dev/null’) on the current platform.

• There are two new options, keep.parse.data and keep.parse.data.pkgs, which con-
trol whether parse data are included into sources when keep.source or keep.source.pkgs
is TRUE. By default, keep.parse.data.pkgs is now FALSE, which changes previous be-
havior and significantly reduces space and time overhead when sources are kept when
installing packages.

• In rapply(x,..), x can also be “list-like” and of length ≥ 231.

• trimws() gets new optional whitespace argument, allowing more extensive defini-
tions of “space”, such as including Unicode spaces (as wished in PR#17431).

• weighted.mean() no longer coerces the weights to a double/numeric vector, since
sum() now handles integer overflow. This makes weighted.mean() more polymorphic
and endomorphic, but be aware that the results are no longer guaranteed to be a vector
of type ‘double’.

• When loading namespaces, S3 method registrations which overwrite previous regis-
trations are now noted by default (using packageStartupMessage()).

• compiler::cmpfile() gains a version argument, for use when the output file should
be saved in serialization format 2.

• The axis labeling in the default method of pairs() may now be toggled by new options
horOdd and verOdd.

• (Not Windows nor macOS.) Package tcltk now supports an environment variable
R_DONT_USE_TK which if set disables Tk initialization. This is intended for use to
circumvent errors in loading the package, e.g. with recent Linux running under an
address sanitizer.

• The numeric method of all.equal() gets optional arguments countEQ and formatFUN.
If countEQ is true, the mean error is more sensible when many entries are equal.

• outer(x,y,FUN = "*") is more efficient using tcrossprod(u,v) instead of u %*% t(v).

• vcov(<mlm>) is more efficient via new optional arguments in summary.mlm().

• The default method of summary() gets an option to choose the kind of quantile()s to
use; wish of PR#17438.

• Fitting multiple linear models via lm() does work with matrix offsets, as suggested in
PR#17407.

• The new functions mem.maxVSize() and mem.maxMSize() allow the maximal size of
the vector heap and the maximal number of nodes allowed in the current R process to
be queried and set.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17431
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17438
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17407

NEWS AND NOTES 453

• news() gains support for ‘NEWS.md’ files.

• An effort has been started to have our reference manuals, i.e., all help pages. show
platform-independent information (rather than Windows or Unix-alike specifics visible
only on that platform). Consequently, the Windows version of X11() / x11() got
identical formal arguments to the Unix one.

• sessionInfo()$running has been factored out in a new variable osVersion.

• slice.index() now also works for multi-dimensional margins.

• untar() used with an external tar command assumes this supports decompression
including xz and automagically detecting the compression type. This has been true
of all mainstream implementations since 2009 (for GNU tar, since version 1.22):
older implementations are still supported via the new argument support_old_tars
whose default is controlled by environment variable R_SUPPORT_OLD_TARS. (It looks
like NetBSD and OpenBSD have ‘older’ tar commands for this purpose.)

• The new function asplit() allow splitting an array or matrix by its margins.

• New functions errorCondition() and warningCondition() provide a convenient way
to create structured error and warning objects.

.Deprecated() now signals a warning of class "deprecatedWarning", and .Defunct()
now signals an error of class "defunctError".

• Many ‘package not found’ errors are now signaled as errors of class "packageNotFoundError".

• As an experimental feature, when loadNamespace() fails because the requested pack-
age is not available the error is initially signaled with a retry_loadNamespace restart
available. This allows a calling handler to try to install the package and continue.

• S3method() directives in ‘NAMESPACE’ can now also be used to perform delayed S3
method registration.

• Experimentally, setting environment variable _R_CHECK_LENGTH_1_LOGIC2_ will lead
to warnings (or errors if the variable is set to a ‘true’ value) when && or || encounter
and use arguments of length more than one.

• Added "lines" and "chars" coordinate systems to grconvertX() and grconvertY().

• getOption() is more efficient notably for the rare case when called with two arguments,
from several contributors in PR#17394.

• In .col(dim) and .row(dim), dim now may also be an integer-valued "double".

• sQuote() and dQuote() get an explicit q argument with obvious default instead of
using getOption("fancyQuotes") implicitly and unconditionally.

• unzip() can list archives with comments and with spaces in file names even using an
external unzip command.

• Command line completion has a new setting rc.settings(dots = FALSE) to remove
... from the list of possible function arguments.

• library() no longer checks packages with compiled code match ‘R.version$platform’.
loadNamespace() never has, and increasingly the ‘canonical name’ does not reflect the
important characteristics of compiled code.

• The primitive functions drop() and unclass() now avoid duplicating their data
for atomic vectors that are large enough, by returning ALTREP wrapper objects with
adjusted attributes. R-level assignments to change attributes will also use wrapper ob-
jects to avoid duplicating data for larger atomic vectors. R functions like structure()
and unname() will therefore not duplicate data in these settings. Generic vectors as
produced by list() are not yet covered by this optimization but may be in due course.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17394

NEWS AND NOTES 454

• In formals(), envir becomes an optional argument instead of being hardwired.

• Instead of signalling an error for an invalid S4 object x, str(x) now gives a warning
and subsequently still shows most parts of x, e.g., when slots are missing.

• gamma(x) and lgamma(x) no longer warn when correctly returning Inf or underflowing
to zero. This helps maximum likelihood and similar computations.

• convertColor() is now vectorized, so a lot faster for converting many colours at once.
The new argument vectorized to colorConverter() ensures that non-vectorized
colour converters still work. (Thanks to Brodie Gaslam.)

• download.file() and url() get new argument headers for custom HTTP headers,
e.g., allowing to perform basic http authentication, thanks to a patch contributed by
Gábor Csárdi.

• File-based connection functions file(), gzfile(), bzfile() and xzfile() now signal
an error when used on a directory.

• For approx(), splinefun() etc, a new setting ties = c("ordered",<fun>) allows
skipping the sorting and still treat ties.

• format(x) gives a more user friendly error message in the case where no method is
defined. A minimal method is provided in format.default(x) when isS4(x) is true.

• which(x) now also works when x is a long vector, thanks to Suharto Anggono’s
PR#17201. NB: this may return a double result, breaking the previous guarantee of an
integer result.

• seq.default() is more careful to return an integer (as opposed to double) result
when its arguments are large and/or classed objects; see comment #9 of Suharto
Anggono’s PR#17497.

• The plot() method for lm and glm fits, plot.lm(), gains a new option iter.smooth
with a default of 0 for binomial fits, no longer down-weighting when smoothing the
residuals.

• zip() passes its list of files via standard input to the external command when too long
for the command line (on some platforms).

• data() gains an overwrite argument.

• t.test() now also returns the standard error (in list component stderr).

• model.matrix(*,contrasts.arg = CC) now warns about invalid contrasts.args.

• Performance of substr() and substring() has been improved.

• stopifnot() has been simplified thanks to Suharto Anggono’s proposals to become
considerably faster for cheap expressions.

• The default ‘user agent’ has been changed when accessing ‘http://’ and ‘https://’
sites using ‘libcurl’. (A site was found which caused ‘libcurl’ to infinite-loop with
the previous default.)

• sessionInfo() now also contains RNGkind() and prints it when it differs from the de-
fault; based on a proposal and patch by Gabe Becker in PR#17535. Also, RNGversion(getRversion())
works directly.

• library() and require() now allow more control over handling search path conflicts
when packages are attached. The policy is controlled by the new conflicts.policy
option.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17201
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17497
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17535

NEWS AND NOTES 455

• barplot() gets a formula method, thanks to a patch proposal by Arni Magnusson in
PR#17521.

• pmax() and pmin(x) now also work for long vectors, thanks to Suharto Anggono’s
PR#17533.

• bxp() now warns when omitting duplicated arguments.

• New hcl.colors() function to provide wide range of HCL-based colour palettes with
much better perceptual properties than the existing RGB/HSV-based palettes like
rainbow().

Also a new hcl.pals() function to list available palette names for hcl.colors().

Contributed by Achim Zeileis.

• The default colours for image() and filled.contour() are now based on hcl.colors().

• The palette-generating functions rainbow(), gray.colors(), etc. get a new rev argu-
ment to facilitate reversing the order of colors.

• New str2lang() and str2expression() as streamlined versions of parse(text=.,keep.source=FALSE)
allow to abstract typical call constructions, e.g., in formula manipulations. (Somewhat
experimental)

• Add update_PACKAGES() for incrementally updating a package repository index, in-
stead of rebuilding the index from scratch. Thanks to Gabe Becker in PR#17544 for the
patch, based on part of his switchr package.

INSTALLATION on a UNIX-ALIKE

• The options selected for the C++ compiler default to the C++11 standard if supported,
otherwise to the C++98 standard.

• Visibility macros such as ‘C_VISIBILITY’ can now be user-set (including to empty),
e.g. in ‘config.site’.

• Macro ‘FCLIBS’, which has sometimes been needed on Solaris, has been renamed to
‘FCLIBS_XTRA’.

• Macro ‘F77’ is always set to the value of ‘FC’, so the latter should be set to user-select
the Fortran compiler for both fixed-form and free-form Fortran. In particular, gfortran
is now the first choice for ‘F77’, not f95.

Macros ‘FFLAGS’ and ‘FCFLAGS’ remain distinct to allow for a compiler which needs a
flag to select free- or fixed-form Fortran (most use the source-file extension to choose:
‘.f’ is fixed-form and ‘.f90’ and ‘.f95’ are free-form).

If only one of them is set, its value is used for both.

• The special-casing of ‘CFLAGS’, ‘CXXFLAGS’ and ‘FFLAGS’ for Intel compilers on Linux
has been removed: we do not have recent experience but the generic defaults now
chosen are the same as those previously special-cased for ‘x86_64’.

If necessary, override the defaults on the configure command line or in file ‘config.site’.

• Long-untested configure support for HP-UX and very old versions of Linux has been
removed.

• configure --with-blas (without specifying a value) includes OpenBLAS in its search
(before ATLAS and a generic BLAS). This follows recent versions of the ‘ax_blas’
autoconf macro.

• The configure macro ‘MAKEINFO’ has been updated to ‘TEXI2ANY’.

• Support for make install-strip has been enhanced.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17521
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17533
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17544

NEWS AND NOTES 456

PACKAGE INSTALLATION

• Source package installation is by default ‘staged’: the package is installed into a
temporary location under the final library directory and moved into place once the
installation is complete. The benefit is that partially-installed packages are hidden
from other R sessions.

The overall default is set by environment variable R_INSTALL_STAGED. R CMD INSTALL
has new options ‘--staged-install’ and ‘--no-staged-install’, and packages can
use the ‘StagedInstall’ field in their ‘DESCRIPTION’ file to opt out. (That opt-out is a
temporary measure which may be withdrawn in future.)

Staged installation requires either ‘--pkglock’ or ‘--lock’, one of which is used by
default.

• The interpretation of source code with extension ‘.f’ is changing. Previously this
denoted FORTRAN 77 code, but current compilers no longer have a FORTRAN 77
mode and interpret it as ‘fixed-form’ Fortran 90 (or later where supported) code.
Extensions ‘.f90’ and ‘.f95’ continue to indicate ‘free-form’ Fortran code.

Legal FORTRAN 77 code is also legal fixed-form Fortran 9x; however this change legit-
imizes the use of later features, in particular to replace features marked ‘obsolescent’
in Fortran 90 and ‘deleted’ in Fortran 2018 which gfortran 8.x and later warn about.

• Packages containing files in the ‘src’ directory with extensions ‘.f90’ or ‘.f95’ are now
linked using the C or C++ compiler rather than the Fortran 9x compiler. This is
consistent with fixed-form Fortran code and allows mixing of C++ and free-form
Fortran on most platforms.

Consequentially, a package which includes free-form Fortran 9x code which uses
OpenMP should include ‘SHLIB_OPENMP_CFLAGS’ (or the ‘CXXFLAGS’ version if they also
include C++ code) in ‘PKG_LIBS’ rather than ‘SHLIB_OPENMP_FCFLAGS’ — fortunately
on almost all current platforms they are the same flag.

• Macro ‘PKG_FFLAGS’ will be used for the compilation of both fixed-form and free-form
Fortran code unless ‘PKG_FCFLAGS’ is also set (in ‘src/Makevars’ or ‘src/Makevars.win’).

• The make macro ‘F_VISIBILITY’ is now preferred for both fixed-form and free-form
Fortran, for use in ‘src/Makevars’ and similar.

• R CMD INSTALL gains a new option ‘--strip’ which (where supported) strips in-
stalled shared object(s): this can also be achieved by setting the environment variable
_R_SHLIB_STRIP_ to a true value.

The new option ‘--strip-lib’ attempts stripping of static and shared libraries installed
under ‘lib’.

These are most useful on platforms using GNU binutils (such as Linux) and compil-
ing with ‘-g’ flags.

• There is more support for installing UTF-8-encoded packages in a strict Latin-1 lo-
cale (and probably for other Latin locales): non-ASCII comments in R code (and
‘NAMESPACE’ files) are worked around better.

UTILITIES

• R CMD check now optionally checks makefiles for correct and portable use of the
‘SHLIB_OPENMP_*FLAGS’ macros.

• R CMD check now evaluates \Sexpr{} expressions (including those in macros) be-
fore checking the contents of ‘Rd’ files and so detects issues both in evaluating the
expressions and in the expanded contents.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

NEWS AND NOTES 457

• R CMD check now lists missing packages separated by commas and with regular
quotes such as to be useful as argument in calling install.packages(c(..)); from a
suggestion by Marcel Ramos.

• tools::Rd2latex() now uses UTF-8 as its default output encoding.

• R CMD check now checks line endings of files with extension ‘.hpp’ and those under
‘inst/include’. The check now includes that a non-empty file is terminated with a
newline.

R CMD build will correct line endings in such files.

• R CMD check now tries re-building all vignettes rather than stopping at the first error:
whilst doing so it adds ‘bookmarks’ to the log. By default (see the ‘R Internals’ manual)
it re-builds each vignette in a separate process.

It now checks for duplicated vignette titles (also known as ‘index entries’): they are
used as hyperlinks on CRAN package pages and so do need to be unique.

• R CMD check has more comprehensive checks on the ‘data’ directory and the functioning
of data() in a package.

• R CMD check now checks autoconf-generated ‘configure’ files have their corresponding
source files, including optionally attempting to regenerate them on platforms with
autoreconf.

• R CMD build has a new option ‘--compression’ to select the compression used for the
tarball.

• R CMD build now removes ‘src/*.mod’ files on all platforms.

C-LEVEL FACILITIES

• New pointer protection C functions R_PreserveInMSet and R_ReleaseFromMSet have
been introduced to replace UNPROTECT_PTR, which is not safe to mix with UNPROTECT
(and with PROTECT_WITH_INDEX). Intended for use in parsers only.

• NAMEDMAX has been raised to 7 to allow further protection of intermediate results from
(usually ill-advised) assignments in arguments to BUILTIN functions. Properly written
package code should not be affected.

• R_unif_index is now considered to be part of the C API.

• R_GetCurrentEnv() allows C code to retrieve the current environment.

DEPRECATED AND DEFUNCT

• Argument compressed of untar() is deprecated — it is only used for external tar
commands which increasingly for extraction auto-detect compression and ignore their
‘zjJ’ flags.

• var(f) and hence sd(f) now give an error for factor arguments; they gave a depre-
cation warning since R 3.2.3, PR#16564.

• Package tools’ vignetteDepends() has been deprecated (it called a function depre-
cated since Feb 2016), being partly replaced by newly exported vignetteInfo().

• The f77_f2c script has been removed: it no longer sufficed to compile the ‘.f’ files in R.

• The deprecated legacy support of make macros such as ‘CXX1X’ has been removed: use
the ‘CXX11’ forms instead.

• Make macro ‘F77_VISIBILITY’ is deprecated in favour of ‘F_VISIBILITY’.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16564

NEWS AND NOTES 458

• Make macros ‘F77’, ‘FCPIFCPLAGS’ and ‘SHLIB_OPENMP_FCFLAGS’ are deprecated in
favour of ‘FC’, ‘FPICFLAGS’ and ‘SHLIB_OPENMP_FFLAGS’ respectively.

• $.data.frame had become an expensive version of the default method, so has been
removed. (Thanks to Radford Neal for picking this up and to Duncan Murdoch for
providing a patch.)

BUG FIXES

• replayPlot(r) now also works in the same R session when r has been “reproduced”
from serialization, typically after saving to and reading from an RDS file.

• substr() and substring() now signal an error when the input is invalid UTF-8.

• file.copy() now works also when its argument to is of length greater than one.

• mantelhaen.test() no longer suffers from integer overflow in largish cases, thanks to
Ben Bolker’s PR#17383.

• Calling setGeneric("foo") in a package no longer fails when the enclosing environ-
ment of the implicit generic foo() is .GlobalEnv.

• untar(file("<some>.tar.gz"),*) now gives a better error message, suggesting to
use gzfile() instead.

• Method dispatch uses more relevant environments when looking up class definitions.

• The documentation for identify() incorrectly claimed that the indices of identified
points were returned in the order that the points were selected. identify() now has a
new argument order to allow the return value to include the order in which points
were identified; the documentation has been updated. Reported by Richard Rowe and
Samuel Granjeaud.

• order(....,decreasing=c(TRUE,FALSE)) could fail in some cases. Reported from
StackOverflow via Karl Nordström.

• User macros in Rd files now accept empty and multi-line arguments.

• Changes in print.*(), thanks to Lionel Henry’s patches in PR#17398:

– Printing lists, pairlists or attributes containing calls with S3 class no longer evalu-
ate those.

– Printing S4 objects within lists and pairlists dispatches with show() rather than
print(), as with auto-printing.

– The indexing tags (names or [[<n>]]) of recursive data structures are now printed
correctly in complex cases.

– Arguments supplied to print() are now properly forwarded to methods when
printing lists, pairlists or attributes containing S3 objects.

– The print parameters are now preserved when printing S3 objects or deparsing
symbols and calls. Previously, printing lists containing S3 objects or expressions
would reset these parameters.

– Printing lists, pairlists or attributes containing functions now uses srcref at-
tributes if present.

• Calling install.packages() with a length zero pkgs argument now is a no-op (PR#17422).

• unlist(x) now returns a correct factor when x is a nested list with factor leaves,
fixing PR#12572 and PR#17419.

• The documentation help(family) gives more details about the aic component, thanks
to Ben Bolker’s prompting.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17383
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17398
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17422
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=12572
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17419

NEWS AND NOTES 459

• The documentation for attributes and `attributes<-` now gives x as name of
the first and main argument which the implementation has been requiring, fixing
PR#17434. For consistency, the first argument name is also changed from obj to x for
`mostattributes<-`.

• strwidth() now uses par("font") as default font face (PR#17352).

• plot(<table>,log="x") no longer warns about log.

• The print() method for "htest" objects now formats the test statistic and parameter
directly and hence no longer rounds to units before the decimal point. Consequently,
printing of t.test() results with a small number of digits now shows non-large df’s
to the full precision (PR#17444).

• kruskal.test() and fligner.test() no longer erroneously insist on numeric g group
arguments (PR#16719).

• Printing a news db via the browser now does a much better job (PR#17433).

• print.aov() missed column names in the multivariate case due to misspelling (re-
ported by Chris Andrews).

• axis() now creates valid at locations also for small subnormal number ranges in log
scale plots.

• format.POSIXlt() now also recycles the zone and gmtoff list components to full
length when needed, and its internal C code detects have_zone in more cases. In some
cases, this changes its output to become compatible with format.POSIXct().

• On Windows, detectCores() in package parallel now detects processors in all proces-
sor groups, not just the group R is running in (impacts particularly systems with more
than 64 logical processors). Reported by Arunkumar Srinivasan.

• On Windows, socketSelect() would hang with more than 64 sockets, and hence
parallel::clusterApplyLB() would hang with more than 64 workers. Reported by
Arunkumar Srinivasan.

• as(1L,"double") now does coerce (PR#17457).

• lm.influence(), influence.measures(), rstudent() etc now work (more) correctly
for multivariate models ("mlm"), thanks to (anonymous) stackoverflow remarks.

• sample.int(2.9,*,replace=TRUE) again behaves as documented and as in R < 3.0.0,
namely identically to sample.int(2,..).

• Fixes to convertColor() for chromatic adaptation; thanks to Brodie Gaslam PR#17473.

• Using \Sexpr[stage=install]{..} to create an ‘Rd’ section no longer gives a warning
in R CMD check; problem originally posted by Gábor Csárdi, then reported as PR#17479
with a partial patch by Duncan Murdoch.

• Parse data now include a special node for equal assignment.

• split.default() no longer relies on [[<-(), so it behaves as expected when splitting
an object by a factor with the empty string as one of its levels. Thanks to Brad Friedman
for the report.

• Line numbers in messages about ‘.Rd’ files are now more reliable, thanks to a patch
from Duncan Murdoch.

• In the numeric method for all.equal(), a numeric scale argument is now checked to
be positive and allowed to be of length > 1. (The latter worked originally and with a
warning in recent years).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17434
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17352
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17444
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16719
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17433
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17457
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17473
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17479

NEWS AND NOTES 460

• Deferred string conversions now record the OutDec option setting when not equal to
the default. Reported by Michael Sannella.

• When y is numeric and f a factor, plot(y ~ f) nicely uses "y" and "f" as y- and
x-labels. The more direct boxplot(y ~ f) now does too. The new argument ann =
FALSE may be used to suppress these.

• Subassignment to no/empty rows of a data frame is more consistent and typically a
no-op in all cases instead of sometimes an error; part of Emil Bode’s PR#17483.

• Calls like formatC(*,zero.print = "<0.001") no longer give an error and are further
improved via new optional argument replace.zero. Reported by David Hugh-Jones.

• methods::formalArgs("<fn>") now finds the same function as formals("<fn>"), fix-
ing Emil Bode’s PR#17499.

• The methods package better handles duplicated class names across packages.

• The default method of seq() now avoids integer overflow, thanks to the report and
"cumsum" patch of Suharto Anggono’s PR#17497.

• sub() no longer loses encodings for non-ASCII replacements (PR#17509).

• Fix for rotated raster image on X11 device. (Partial fix for PR#17148; thanks to Mikko
Korpela).

• formula(model.frame(frml,..)) now returns frml in all cases, thanks to Bill Dunlap.
The previous behavior is available as DF2formula(<model.frame>).

• ar.ols() also returns scalar var.pred in univariate case (PR#17517).

• normalizePath() now treats NA path as non-existent and normalizes it to NA. file.access()
treats NA file name as non-existent. file.edit() and connection functions such as
file() now treat NA file names as errors.

• The internal regularize.values() auxiliary of approx(), splinefun() etc now warns
again when there are ties and the caller did not specify ties. Further, it no longer
duplicates x and y unnecessarily when x is already sorted (PR#17515).

• strtoi("",base) now gives NA on all platforms, following its documentation. Re-
ported by Michael Chirico.

• In the definition of an S4 class, prototype elements are checked against the slots of the
class, with giving a prototype for an undefined slot now being an error. (Reported by
Bill Dunlap.)

• From setClassUnion(), if environment variable _R_METHODS_SHOW_CHECKSUBCLASSES
is set to true, the internal .checkSubclasses() utility prints debugging info to see
where it is used.

• max.col(m) with an m of zero columns now returns integer NA (instead of 1).

• axTicks() no longer returns small “almost zero” numbers (in exponential format)
instead of zero, fixing Ilario Gelmetti’s PR#17534.

• isSymmetric(matrix(0,dimnames=list("A","b"))) is FALSE again, as always docu-
mented.

• The cairo_pdf graphics device (and other Cairo-based devices) now clip correctly to
the right and bottom border.

There was an off-by-one-pixel bug, reported by Lee Kelvin.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17483
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17499
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17497
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17509
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17148
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17517
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17515
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17534

NEWS AND NOTES 461

• as.roman(3) <= 2:4 and all other comparisons now work, as do group "Summary" func-
tion calls such as max(as.roman(sample(20))) and as.roman(NA). (Partly reported by
Bill Dunlap in PR#17542.)

• reformulate("x",response = "sin(y)") no longer produces extra back quotes,
PR#17359, and gains new optional argument env.

• When reading console input from ‘stdin’ with re-encoding (R --encoding=enc <input)
the code on a Unix-alike now ensures that each converted input line is terminated
with a newline even if re-encoding fails.

• as.matrix.data.frame() now produces better strings from logicals, thanks to PR#17548
from Gabe Becker.

• The S4 generic signature of rowSums(), rowMeans(), colSums() and colMeans() is
restricted to "x".

• match(x,tab) now works for long character vectors x, thanks to PR#17552 by Andreas
Kersting.

• Class unions are unloaded when their namespace is unloaded (PR#17531, adapted
from a patch by Brodie Gaslam).

• selectMethod() is robust to ANY-truncation of method signatures (thanks to Herve
Pages for the report).

CHANGES IN R 3.5.3

INSTALLATION on a UNIX-ALIKE

• Detection of flags for C++98/11/14/17 has been improved: in particular if CXX??STD
is set, it is tried first with no additional flags.

PACKAGE INSTALLATION

• New macro ‘F_VISIBILITY’ as an alternative to ‘F77_VISIBILITY’. This will become
the preferred form in R 3.6.0.

BUG FIXES

• writeLines(readLines(fnam),fnam) now works as expected, thanks to Peter Meiss-
ner’s PR#17528.

• setClassUnion() no longer warns, but uses message() for now, when encountering
“non local” subclasses of class members.

• stopifnot(exprs = T) no longer fails.

CHANGES IN R 3.5.2

PACKAGE INSTALLATION

• New macro ‘CXX_VISIBILITY’ analogous to ‘C_VISIBILITY’ (which several packages
have been misusing for C++ code) for the default C++ compiler (but not necessarily
one used for non-default C++ dialects like C++14).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17542
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17359
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17548
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17552
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17531
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17528

NEWS AND NOTES 462

TESTING

• The random number generator tests in ‘tests/p-r-random-tests.R’ no longer fail occasion-
ally as they now randomly sample from “certified” random seeds.

BUG FIXES

• The "glm" method of drop1() miscalculated the score test (test="Rao") when the
model contained an offset.

• Linear multiple empty models such as lm(y ~ 0) now have a correctly dimensioned
empty coefficient matrix; reported by Brett Presnell.

• vcov(<empty mlm>) and hence confint() now work (via a consistency change in
summary.lm()).

• confint(<multiple lm()>) now works correctly; reported on R-devel by Steven Pav.

• quade.test() now also works correctly when its arguments are not yet sorted along
groups, fixing PR#15842.

• Installation on a Unix-alike tries harder to link to the ‘pthread’ library where required
(rather than relying on OpenMP to provide it: configuring with ‘--disable-openmp’
was failing on some Linux systems).

• The data.frame method for print(x) is fast now also for large data frames x and got
an optional argument max, thanks to suggestions by Juan Telleria.

• hist() no longer integer overflows in very rare cases, fixing PR#17450.

• untar() ignored a character compressed argument: however many external tar pro-
grams ignore the flags which should have been set and automagically choose the
compression type, and if appropriate gzip or bzip2 compression would have been
chosen from the magic header of the tarball.

• zapsmall(x) now works for more “number-like” objects.

• The tools-internal function called from R CMD INSTALL now gets a warnOption = 1
argument and only sets options(warn = warnOption) when that increases the warning
level (PR#17453).

• Analogously, the tools-internal function called from R CMD check gets a warnOption
= 1 argument and uses the larger of that and getOption("warn"), also allowing to be
run with increased warning level.

• Parse data now have deterministic parent nodes (PR#16041).

• Calling match() with length one x and POSIXlt table gave a segfault (PR#17459).

• Fork clusters could hang due to a race condition in cluster initialization (makeCluster()).

• nextn(n) now also works for larger n and no longer loops infinitely for e.g, n <-214e7.

• cooks.distance() and rstandard() now work correctly for multiple linear models
("mlm").

• polym() and corresponding lm() prediction now also work for a boundary "vector"
case fixing PR#17474, reported by Alexandre Courtiol.

• With a very large number of variables terms() could segfault (PR#17480).

• cut(rep(0,7)) now works, thanks to Joey Reid and Benjamin Tyner (PR#16802).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15842
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17450
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17453
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16041
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17459
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17474
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17480
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16802

NEWS AND NOTES 463

• download.file(*,method = "curl",cacheOK = FALSE) should work now on Windows,
thanks to Kevin Ushey’s patch in PR#17323.

• duplicated(<dataframe with 'f'>) now works, too, thanks to Andreas Kersting’s
PR#17485; ditto for anyDuplicated().

• legend(*,cex = 1:2) now works less badly.

• The print() method for POSIXct and POSIXlt now correctly obeys getOption("max.print"),
fixing a long-standing typo, and it also gets a corresponding optional max argument.

• Unserialization of raw vectors serialized in ASCII representation now works correctly.

• <data frame>[TRUE,<new>] <-list(c1,c2) now works correctly, thanks to Suharto
Anggono’s PR#15362 and Emil Bode’s patch in PR#17504.

• seq.int(*,by=by,length=n) no longer wrongly “drops fractional parts” when by is
integer, thanks to Suharto Anggono’s report PR#17506.

• Buffering is disabled for file() connections to non-regular files (like sockets), as well
as fifo() and pipe() connections. Fixes PR#17470, reported by Chris Culnane.

CHANGES IN R 3.5.1

BUG FIXES

• file("stdin") is no longer considered seekable.

• dput() and dump() are no longer truncating when options(deparse.max.lines = *)
is set.

• Calls with an S3 class are no longer evaluated when printed, fixing part of PR#17398,
thanks to a patch from Lionel Henry.

• Allow file argument of Rscript to include space even when it is first on the command
line.

• callNextMethod() uses the generic from the environment of the calling method. Re-
ported by Hervé Pagès with well documented examples.

• Compressed file connections are marked as blocking.

• optim(*,lower = c(-Inf,-Inf)) no longer warns (and switches the method), thanks
to a suggestion by John Nash.

• predict(fm,newdata) is now correct also for models where the formula has terms
such as splines::ns(..) or stats::poly(..), fixing PR#17414, based on a patch
from Duncan Murdoch.

• simulate.lm(glm(*,gaussian(link = <non-default>))) has been corrected, fixing
PR#17415 thanks to Alex Courtiol.

• unlist(x) no longer fails in some cases of nested empty lists. Reported by Steven
Nydick.

• qr.coef(qr(<all 0,w/ colnames>)) now works. Reported by Kun Ren.

• The radix sort is robust to vectors with >1 billion elements (but long vectors are still
unsupported). Thanks to Matt Dowle for the fix.

• Terminal connections (e.g., stdin) are no longer buffered. Fixes PR#17432.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17323
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17485
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15362
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17504
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17506
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17470
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17398
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17414
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17415
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17432

NEWS AND NOTES 464

• deparse(x), dput(x) and dump() now respect c()’s argument names recursive and
use.names, e.g., for x <-setNames(0,"recursive"), thanks to Suharto Anggono’s
PR#17427.

• Unbuffered connections now work with encoding conversion. Reported by Stephen
Berman.

• ‘.Renviron’ on Windows with Rgui is again by default searched for in user documents
directory when invoked via the launcher icon. Reported by Jeroen Ooms.

• printCoefmat() now also works with explicit right=TRUE.

• print.noquote() now also works with explicit quote=FALSE.

• The default method for pairs(..,horInd=*,verInd=*) now gets the correct order,
thanks to reports by Chris Andrews and Gerrit Eichner. Additionally, when horInd or
verInd contain only a subset of variables, all the axes are labeled correctly now.

• agrep("..|..",..,fixed=FALSE) now matches when it should, thanks to a reminder
by Andreas Kolter.

• str(ch) now works for more invalid multibyte strings.

CHANGES IN R 3.5.0

SIGNIFICANT USER-VISIBLE CHANGES

• All packages are by default byte-compiled on installation. This makes the installed
packages larger (usually marginally so) and may affect the format of messages and
tracebacks (which often exclude .Call and similar).

NEW FEATURES

• factor() now uses order() to sort its levels, rather than sort.list(). This allows
factor() to support custom vector-like objects if methods for the appropriate generics
are defined. It has the side effect of making factor() succeed on empty or length-one
non-atomic vector(-like) types (e.g., "list"), where it failed before.

• diag() gets an optional names argument: this may require updates to packages defin-
ing S4 methods for it.

• chooseCRANmirror() and chooseBioCmirror() no longer have a useHTTPS argument,
not needed now all R builds support ‘https://’ downloads.

• New summary() method for warnings() with a (somewhat experimental) print()
method.

• (methods package.) .self is now automatically registered as a global variable when
registering a reference class method.

• tempdir(check = TRUE) recreates the tempdir() directory if it is no longer valid
(e.g. because some other process has cleaned up the ‘/tmp’ directory).

• New askYesNo() function and "askYesNo" option to ask the user binary response
questions in a customizable but consistent way. (Suggestion of PR#17242.)

• New low level utilities ...elt(n) and ...length() for working with ... parts inside
a function.

• isTRUE() is more tolerant and now true in

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17427
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17242

NEWS AND NOTES 465

x <- rlnorm(99)
isTRUE(median(x) == quantile(x)["50%"])

New function isFALSE() defined analogously to isTRUE().

• The default symbol table size has been increased from 4119 to 49157; this may improve
the performance of symbol resolution when many packages are loaded. (Suggested by
Jim Hester.)

• line() gets a new option iter = 1.

• Reading from connections in text mode is buffered, significantly improving the perfor-
mance of readLines(), as well as scan() and read.table(), at least when specifying
colClasses.

• order() is smarter about picking a default sort method when its arguments are objects.

• available.packages() has two new arguments which control if the values from the
per-session repository cache are used (default true, as before) and if so how old cached
values can be used (default one hour).

These arguments can be passed from install.packages(), update.packages() and
functions calling that: to enable this available.packages(), packageStatus() and
download.file() gain a ... argument.

• packageStatus()’s upgrade() method no longer ignores its ... argument but passes
it to install.packages().

• installed.packages() gains a ... argument to allow arguments (including noCache)
to be passed from new.packages(), old.packages(), update.packages() and packageStatus().

• factor(x,levels,labels) now allows duplicated labels (not duplicated levels!).
Hence you can map different values of x to the same level directly.

• Attempting to use names<-() on an S4 derivative of a basic type no longer emits a
warning.

• The list method of within() gains an option keepAttrs = FALSE for some speed-up.

• system() and system2() now allow the specification of a maximum elapsed time
(‘timeout’).

• debug() supports debugging of methods on any object of S4 class "genericFunction",
including group generics.

• Attempting to increase the length of a variable containing NULL using length()<- still
has no effect on the target variable, but now triggers a warning.

• type.convert() becomes a generic function, with additional methods that operate
recursively over list and data.frame objects. Courtesy of Arni Magnusson (PR#17269).

• lower.tri(x) and upper.tri(x) only needing dim(x) now work via new functions
.row() and .col(), so no longer call as.matrix() by default in order to work effi-
ciently for all kind of matrix-like objects.

• print() methods for "xgettext" and "xngettext" now use encodeString() which
keeps, e.g. "\n", visible. (Wish of PR#17298.)

• package.skeleton() gains an optional encoding argument.

• approx(), spline(), splinefun() and approxfun() also work for long vectors.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17269
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17298

NEWS AND NOTES 466

• deparse() and dump() are more useful for S4 objects, dput() now using the same
internal C code instead of its previous imperfect workaround R code. S4 objects now
typically deparse perfectly, i.e., can be recreated identically from deparsed code.

dput(), deparse() and dump() now print the names() information only once, using
the more readable (tag = value) syntax, notably for list()s, i.e., including data
frames.

These functions gain a new control option "niceNames" (see .deparseOpts()), which
when set (as by default) also uses the (tag = value) syntax for atomic vectors. On
the other hand, without deparse options "showAttributes" and "niceNames", names
are no longer shown also for lists. as.character(list(c (one = 1))) now includes
the name, as as.character(list(list(one = 1))) has always done.

m:n now also deparses nicely when m > n.

The "quoteExpressions" option, also part of "all", no longer quote()s formulas as
that may not re-parse identically. (PR#17378)

• If the option setWidthOnResize is set and TRUE, R run in a terminal using a recent
readline library will set the width option when the terminal is resized. Suggested by
Ralf Goertz.

• If multiple on.exit() expressions are set using add = TRUE then all expressions will
now be run even if one signals an error.

• mclapply() gets an option affinity.list which allows more efficient execution with
heterogeneous processors, thanks to Helena Kotthaus.

• The character methods for as.Date() and as.POSIXlt() are more flexible via new
arguments tryFormats and optional: see their help pages.

• on.exit() gains an optional argument after with default TRUE. Using after = FALSE
with add = TRUE adds an exit expression before any existing ones. This way the
expressions are run in a first-in last-out fashion. (From Lionel Henry.)

• On Windows, file.rename() internally retries the operation in case of error to attempt
to recover from possible anti-virus interference.

• Command line completion on ‘::’ now also includes lazy-loaded data.

• If the TZ environment variable is set when date-time functions are first used, it is
recorded as the session default and so will be used rather than the default deduced
from the OS if TZ is subsequently unset.

• There is now a [method for class "DLLInfoList".

• glm() and glm.fit get the same singular.ok = TRUE argument that lm() has had
forever. As a consequence, in glm(*,method = <your_own>), user specified methods
need to accept a singular.ok argument as well.

• aspell() gains a filter for Markdown (‘.md’ and ‘.Rmd’) files.

• intToUtf8(multiple = FALSE) gains an argument to allow surrogate pairs to be
interpreted.

• The maximum number of DLLs that can be loaded into R e.g. via dyn.load() has been
increased up to 614 when the OS limit on the number of open files allows.

• Sys.timezone() on a Unix-alike caches the value at first use in a session: inter alia this
means that setting TZ later in the session affects only the current time zone and not the
system one.

Sys.timezone() is now used to find the system timezone to pass to the code used
when R is configured with ‘--with-internal-tzcode’.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17378

NEWS AND NOTES 467

• When tar() is used with an external command which is detected to be GNU tar
or libarchive tar (aka bsdtar), a different command-line is generated to circumvent
line-length limits in the shell.

• system(*,intern = FALSE), system2() (when not capturing output), file.edit() and
file.show() now issue a warning when the external command cannot be executed.

• The “default” ("lm" etc) methods of vcov() have gained new optional argument
complete = TRUE which makes the vcov() methods more consistent with the coef()
methods in the case of singular designs. The former (back-compatible) behavior is
given by vcov(*,complete = FALSE).

• coef() methods (for lm etc) also gain a complete = TRUE optional argument for
consistency with vcov().
For "aov", both coef() and vcov() methods remain back-compatibly consistent, using
the other default, complete = FALSE.

• attach(*,pos = 1) is now an error instead of a warning.

• New function getDefaultCluster() in package parallel to get the default cluster set
via setDefaultCluster().

• str(x) for atomic objects x now treats both cases of is.vector(x) similarly, and
hence much less often prints "atomic". This is a slight non-back-compatible change
producing typically both more informative and shorter output.

• gc() gets new argument full.

• write.dcf() gets optional argument useBytes.

• New, partly experimental packageDate() which tries to get a valid "Date" object from
a package ‘DESCRIPTION’ file, thanks to suggestions in PR#17324.

• tools::resaveRdaFiles() gains a version argument, for use when packages should
remain compatible with earlier versions of R.

• ar.yw(x) and hence by default ar(x) now work when x has NAs, mostly thanks to a
patch by Pavel Krivitsky in PR#17366. The ar.yw.default()’s AIC computations have
become more efficient by using determinant().

• New warnErrList() utility (from package nlme, improved).

• By default the (arbitrary) signs of the loadings from princomp() are chosen so the first
element is non-negative.

• If ‘--default-packages’ is not used, then Rscript now checks the environment vari-
able R_SCRIPT_DEFAULT_PACKAGES. If this is set, then it takes precedence over R_DEFAULT_PACKAGES.
If default packages are not specified on the command line or by one of these environ-
ment variables, then Rscript now uses the same default packages as R. For now, the
previous behavior of not including methods can be restored by setting the environ-
ment variable R_SCRIPT_LEGACY to ‘yes’.

• When a package is found more than once, the warning from find.package(*,verbose=TRUE)
lists all library locations.

• POSIXt objects can now also be rounded or truncated to month or year.

• stopifnot() can be used alternatively via new argument exprs which is nicer and
useful when testing several expressions in one call.

• The environment variable R_MAX_VSIZE can now be used to specify the maximal vector
heap size. On macOS, unless specified by this environment variable, the maximal
vector heap size is set to the maximum of 16GB and the available physical memory.
This is to avoid having the R process killed when macOS over-commits memory.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17324
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17366

NEWS AND NOTES 468

• sum(x) and sum(x1,x2,..,x<N>) with many or long logical or integer vectors no
longer overflows (and returns NA with a warning), but returns double numbers in such
cases.

• Single components of "POSIXlt" objects can now be extracted and replaced via [
indexing with 2 indices.

• S3 method lookup now searches the namespace registry after the top level environment
of the calling environment.

• Arithmetic sequences created by 1:n, seq_along, and the like now use compact internal
representations via the ALTREP framework. Coercing integer and numeric vectors to
character also now uses the ALTREP framework to defer the actual conversion until
first use.

• Finalizers are now run with interrupts suspended.

• merge() gains new option no.dups and by default suffixes the second of two duplicated
column names, thanks to a proposal by Scott Ritchie (and Gabe Becker).

• scale.default(x,center,scale) now also allows center or scale to be “numeric-
alike”, i.e., such that as.numeric(.) coerces them correctly. This also eliminates a
wrong error message in such cases.

• par*apply and par*applyLB gain an optional argument chunk.size which allows to
specify the granularity of scheduling.

• Some as.data.frame() methods, notably the matrix one, are now more careful in
not accepting duplicated or NA row names, and by default produce unique non-NA
row names. This is based on new function .rowNamesDF(x,make.names = *) <-rNms
where the logical argument make.names allows to specify how invalid row names rNms
are handled. .rowNamesDF() is a “workaround” compatible default.

• R has new serialization format (version 3) which supports custom serialization of
ALTREP framework objects. These objects can still be serialized in format 2, but less
efficiently. Serialization format 3 also records the current native encoding of unflagged
strings and converts them when de-serialized in R running under different native en-
coding. Format 3 comes with new serialization magic numbers (RDA3, RDB3, RDX3).
Format 3 can be selected by version = 3 in save(), serialize() and saveRDS(),
but format 2 remains the default for all serialization and saving of the workspace.
Serialized data in format 3 cannot be read by versions of R prior to version 3.5.0.

• The "Date" and “date-time” classes "POSIXlt" and "POSIXct" now have a working
length<-() method, as wished in PR#17387.

• optim(*,control = list(warn.1d.NelderMead = FALSE)) allows to turn off the warn-
ing when applying the default "Nelder-Mead" method to 1-dimensional problems.

• matplot(..,panel.first = .) etc now work, as log becomes explicit argument and
... is passed to plot() unevaluated, as suggested by Sebastian Meyer in PR#17386.

• Interrupts can be suspended while evaluating an expression using suspendInterrupts.
Subexpression can be evaluated with interrupts enabled using allowInterrupts.
These functions can be used to make sure cleanup handlers cannot be interrupted.

• R 3.5.0 includes a framework that allows packages to provide alternate representations
of basic R objects (ALTREP). The framework is still experimental and may undergo
changes in future R releases as more experience is gained. For now, documentation is
provided in https://svn.r-project.org/R/branches/ALTREP/ALTREP.html.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17387
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17386
https://svn.r-project.org/R/branches/ALTREP/ALTREP.html

NEWS AND NOTES 469

UTILITIES

• install.packages() for source packages now has the possibility to set a ‘timeout’
(elapsed-time limit). For serial installs this uses the timeout argument of system2():
for parallel installs it requires the timeout utility command from GNU coreutils.

• It is now possible to set ‘timeouts’ (elapsed-time limits) for most parts of R CMD check
via environment variables documented in the ‘R Internals’ manual.

• The ‘BioC extra’ repository which was dropped from Bioconductor 3.6 and later has
been removed from setRepositories(). This changes the mapping for 6–8 used by
setRepositories(ind=).

• R CMD check now also applies the settings of environment variables _R_CHECK_SUGGESTS_ONLY_
and _R_CHECK_DEPENDS_ONLY_ to the re-building of vignettes.

• R CMD check with environment variable _R_CHECK_DEPENDS_ONLY_ set to a true value
makes test-suite-management packages available and (for the time being) works
around a common omission of rmarkdown from the ‘VignetteBuilder’ field.

INSTALLATION on a UNIX-ALIKE

• Support for a system Java on macOS has been removed — install a fairly recent Oracle
Java (see ‘R Installation and Administration’ §C.3.2).

• configure works harder to set additional flags in ‘SAFE_FFLAGS’ only where necessary,
and to use flags which have little or no effect on performance.

In rare circumstances it may be necessary to override the setting of ‘SAFE_FFLAGS’.

• C99 functions expm1, hypot, log1p and nearbyint are now required.

• configure sets a ‘-std’ flag for the C++ compiler for all supported C++ standards (e.g.,
‘-std=gnu++11’ for the C++11 compiler). Previously this was not done in a few cases
where the default standard passed the tests made (e.g. clang 6.0.0 for C++11).

C-LEVEL FACILITIES

• ‘Writing R Extensions’ documents macros MAYBE_REFERENCED, MAYBE_SHARED and MARK_NOT_MUTABLE
that should be used by package C code instead NAMED or SET_NAMED.

• The object header layout has been changed to support merging the ALTREP branch.
This requires re-installing packages that use compiled code.

• ‘Writing R Extensions’ now documents the R_tryCatch, R_tryCatchError, and R_UnwindProtect
functions.

• NAMEDMAX has been raised to 3 to allow protection of intermediate results from (usually
ill-advised) assignments in arguments to BUILTIN functions. Package C code using
SET_NAMED may need to be revised.

DEPRECATED AND DEFUNCT

• Sys.timezone(location = FALSE) is defunct, and is ignored (with a warning).

• methods:::bind_activation() is defunct now; it typically has been unneeded for
years.

The undocumented ‘hidden’ objects .__H__.cbind and .__H__.rbind in package base
are deprecated (in favour of cbind and rbind).

• The declaration of pythag() in ‘Rmath.h’ has been removed — the entry point has not
been provided since R 2.14.0.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=rmarkdown

NEWS AND NOTES 470

BUG FIXES

• printCoefmat() now also works without column names.

• The S4 methods on Ops() for the "structure" class no longer cause infinite recursion
when the structure is not an S4 object.

• nlm(f,..) for the case where f() has a "hessian" attribute now computes LL′ =
H + µI correctly. (PR#17249).

• An S4 method that “rematches” to its generic and overrides the default value of a
generic formal argument to NULL no longer drops the argument from its formals.

• Rscript can now accept more than one argument given on the ‘#!’ line of a script.
Previously, one could only pass a single argument on the ‘#!’ line in Linux.

• Connections are now written correctly with encoding "UTF-16LE". (PR#16737).

• Evaluation of ..0 now signals an error. When ..1 is used and ... is empty, the error
message is more appropriate.

• (Windows mainly.) Unicode code points which require surrogate pairs in UTF-16 are
now handled. All systems should properly handle surrogate pairs, even those systems
that do not need to make use of them. (PR#16098)

• stopifnot(e,e2,...) now evaluates the expressions sequentially and in case of an
error or warning shows the relevant expression instead of the full stopifnot(..) call.

• path.expand() on Windows now accepts paths specified as UTF-8-encoded character
strings even if not representable in the current locale. (PR#17120)

• line(x,y) now correctly computes the medians of the left and right group’s x-values
and in all cases reproduces straight lines.

• Extending S4 classes with slots corresponding to special attributes like dim and
dimnames now works.

• Fix for legend() when fill has multiple values the first of which is NA (all colours
used to default to par(fg)). (PR#17288)

• installed.packages() did not remove the cached value for a library tree that had
been emptied (but would not use the old value, just waste time checking it).

• The documentation for installed.packages(noCache = TRUE) incorrectly claimed it
would refresh the cache.

• aggregate(<data.frame>) no longer uses spurious names in some cases. (PR#17283)

• object.size() now also works for long vectors.

• packageDescription() tries harder to solve re-encoding issues, notably seen in some
Windows locales. This fixes the citation() issue in PR#17291.

• poly(<matrix>,3) now works, thanks to prompting by Marc Schwartz.

• readLines() no longer segfaults on very large files with embedded '\0' (aka ‘nul’)
characters. (PR#17311)

• ns() (package splines) now also works for a single observation. interpSpline() gives
a more friendly error message when the number of points is less than four.

• dist(x,method = "canberra") now uses the correct definition; the result may only
differ when x contains values of differing signs, e.g. not for 0-1 data.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17249
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16737
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16098
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17120
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17288
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17283
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17291
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17311

NEWS AND NOTES 471

• methods:::cbind() and methods:::rbind() avoid deep recursion, thanks to Suharto
Anggono via PR#17300.

• Arithmetic with zero-column data frames now works more consistently; issue raised
by Bill Dunlap.

Arithmetic with data frames gives a data frame for ^ (which previously gave a numeric
matrix).

• pretty(x,n) for large n or large diff(range(x)) now works better (though it was
never meant for large n); internally it uses the same rounding fuzz (1e-10) as seq.default()
— as it did up to 2010-02-03 when both were 1e-7.

• Internal C-level R_check_class_and_super() and hence R_check_class_etc() now
also consider non-direct super classes and hence return a match in more cases. This
e.g., fixes behaviour of derived classes in package Matrix.

• Reverted unintended change in behavior of return calls in on.exit expressions intro-
duced by stack unwinding changes in R 3.3.0.

• Attributes on symbols are now detected and prevented; attempt to add an attribute to
a symbol results in an error.

• fisher.test(*,workspace = <n>) now may also increase the internal stack size which
allows larger problem to be solved, fixing PR#1662.

• The methods package no longer directly copies slots (attributes) into a prototype that
is of an “abnormal” (reference) type, like a symbol.

• The methods package no longer attempts to call length<-() on NULL (during the
bootstrap process).

• The methods package correctly shows methods when there are multiple methods with
the same signature for the same generic (still not fully supported, but at least the user
can see them).

• sys.on.exit() is now always evaluated in the right frame. (From Lionel Henry.)

• seq.POSIXt(*,by = "<n>DSTdays") now should work correctly in all cases and is
faster. (PR#17342)

• .C() when returning a logical vector now always maps values other than FALSE and
NA to TRUE (as documented).

• Subassignment with zero length vectors now coerces as documented (PR#17344).
Further, x <-numeric(); x[1] <-character() now signals an error ‘replacement has
length zero’ (or a translation of that) instead of doing nothing.

• (Package parallel.) mclapply(), pvec() and mcparallel() (when mccollect() is used
to collect results) no longer leave zombie processes behind.

• R CMD INSTALL <pkg> now produces the intended error message when, e.g., the
LazyData field is invalid.

• as.matrix(dd) now works when the data frame dd contains a column which is a data
frame or matrix, including a 0-column matrix/d.f. .

• mclapply(X,mc.cores) now follows its documentation and calls lapply() in case
mc.cores = 1 also in the case mc.preschedule is false. (PR#17373)

• aggregate(<data.frame>,drop=FALSE) no longer calls the function on <empty> parts
but sets corresponding results to NA. (Thanks to Suharto Anggono’s patches in PR#17280).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17300
https://CRAN.R-project.org/package=Matrix
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=1662
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17342
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17344
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17373
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17280

NEWS AND NOTES 472

• The duplicated() method for data frames is now based on the list method (instead
of string coercion). Consequently unique() is better distinguishing data frame rows,
fixing PR#17369 and PR#17381. The methods for matrices and arrays are changed
accordingly.

• Calling names() on an S4 object derived from "environment" behaves (by default) like
calling names() on an ordinary environment.

• read.table() with a non-default separator now supports quotes following a non-
whitespace character, matching the behavior of scan().

• parLapplyLB and parSapplyLB have been fixed to do load balancing (dynamic schedul-
ing). This also means that results of computations depending on random number
generators will now really be non-reproducible, as documented.

• Indexing a list using dollar and empty string (l$"") returns NULL.

• Using \usage{ data(<name>,package="<pkg>") } no longer produces R CMD check
warnings.

• match.arg() more carefully chooses the environment for constructing default choices,
fixing PR#17401 as proposed by Duncan Murdoch.

• Deparsing of consecutive ! calls is now consistent with deparsing unary - and + calls
and creates code that can be reparsed exactly; thanks to a patch by Lionel Henry
in PR#17397. (As a side effect, this uses fewer parentheses in some other deparsing
involving ! calls.)

CHANGES IN R 3.4.4

NEW FEATURES

• Sys.timezone() tries more heuristics on Unix-alikes and so is more likely to succeed
(especially on Linux). For the slowest method, a warning is given recommending that
TZ is set to avoid the search.

• The version of LAPACK included in the sources has been updated to 3.8.0 (for the
routines used by R, a very minor bug-fix change).

• parallel::detectCores(logical = FALSE) is ignored on Linux systems, since the
information is not available with virtualized OSes.

INSTALLATION on a UNIX-ALIKE

• configure will use pkg-config to find the flags to link to jpeg if available (as it should
be for the recently-released jpeg-9c and libjpeg-turbo). (This amends the code
added in R 3.3.0 as the module name in jpeg-9c is not what that tested for.)

DEPRECATED AND DEFUNCT

• Sys.timezone(location = FALSE) (which was a stop-gap measure for Windows long
ago) is deprecated. It no longer returns the value of environment variable TZ (usually
a location).

• Legacy support of make macros such as ‘CXX1X’ is formally deprecated: use the ‘CXX11’
forms instead.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17369
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17381
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17401
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17397

NEWS AND NOTES 473

BUG FIXES

• power.prop.test() now warns when it cannot solve the problem, typically because
of impossible constraints. (PR#17345)

• removeSource() no longer erroneously removes NULL in certain cases, thanks to Dénes
Tóth.

• nls(`NO [mol/l]` ~ f(t)) and nls(y ~ a) now work. (Partly from PR#17367)

• R CMD build checks for GNU cp rather than assuming Linux has it. (PR#17370 says
‘Alpine Linux’ does not.)

• Non-UTF-8 multibyte character handling fixed more permanently (PR#16732).

• sum(<large ints>,<stuff>) is more consistent. (PR#17372)

• rf() and rbeta() now also work correctly when ncp is not scalar, notably when
(partly) NA. (PR#17375)

• is.na(NULL) no longer warns. (PR#16107)

• R CMD INSTALL now correctly sets C++ compiler flags when all source files are in
sub-directories of ‘src’.

CHANGES IN R 3.4.3

INSTALLATION on a UNIX-ALIKE

• A workaround has been added for the changes in location of time-zone files in macOS
10.13 ‘High Sierra’ and again in 10.13.1, so the default time zone is deduced correctly
from the system setting when R is configured with ‘--with-internal-tzcode’ (the
default on macOS).

• R CMD javareconf has been updated to recognize the use of a Java 9 SDK on macOS.

BUG FIXES

• raw(0) & raw(0) and raw(0) | raw(0) again return raw(0) (rather than logical(0)).

• intToUtf8() converts integers corresponding to surrogate code points to NA rather
than invalid UTF-8, as well as values larger than the current Unicode maximum of
0x10FFFF. (This aligns with the current RFC3629.)

• Fix calling of methods on S4 generics that dispatch on ... when the call contains

• Following Unicode ‘Corrigendum 9’, the UTF-8 representations of U+FFFE and
U+FFFF are now regarded as valid by utf8ToInt().

• range(c(TRUE,NA),finite = TRUE) and similar no longer return NA. (Reported by
Lukas Stadler.)

• The self starting function attr(SSlogis,"initial") now also works when the y val-
ues have exact minimum zero and is slightly changed in general, behaving symmetri-
cally in the y range.

• The printing of named raw vectors is now formatted nicely as for other such atomic
vectors, thanks to Lukas Stadler.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17345
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17367
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17370
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16732
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17372
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17375
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16107

NEWS AND NOTES 474

CHANGES IN R 3.4.2

NEW FEATURES

• Setting the LC_ALL category in Sys.setlocale() invalidates any cached locale-specific
day/month names and the AM/PM indicator for strptime() (as setting LC_TIME has
since R 3.1.0).

• The version of LAPACK included in the sources has been updated to 3.7.1, a bug-fix
release.

• The default for tools::write_PACKAGES(rds_compress=) has been changed to "xz"
to match the compression used by CRAN.

• c() and unlist() are now more efficient in constructing the names(.) of their return
value, thanks to a proposal by Suharto Anggono. (PR#17284)

UTILITIES

• R CMD check checks for and R CMD build corrects CRLF line endings in shell scripts
configure and cleanup (even on Windows).

INSTALLATION on a UNIX-ALIKE

• The order of selection of OpenMP flags has been changed: Oracle Developer Studio
12.5 accepts ‘-fopenmp’ and ‘-xopenmp’ but only the latter enables OpenMP so it is now
tried first.

BUG FIXES

• within(List,rm(x1,x2)) works correctly again, including when List[["x2"]] is
NULL.

• regexec(pattern,text,*) now applies as.character(.) to its first two arguments,
as documented.

• write.table() and related functions, writeLines(), and perhaps other functions
writing text to connections did not signal errors when the writes failed, e.g. due to a
disk being full. Errors will now be signalled if detected during the write, warnings if
detected when the connection is closed. (PR#17243)

• rt() assumed the ncp parameter was a scalar. (PR#17306)

• menu(choices) with more than 10 choices which easily fit into one getOption("width")-
line no longer erroneously repeats choices. (PR#17312)

• length()<- on a pairlist succeeds. (https://stat.ethz.ch/pipermail/r-devel/2017-
July/074680.html)

• Language objects such as quote(("\n")) or R functions are correctly printed again,
where R 3.4.1 accidentally duplicated the backslashes.

• Construction of names() for very large objects in c() and unlist() now works, thanks
to Suharto Anggono’s patch proposals in PR#17292.

• Resource leaks (and similar) reported by Steve Grubb fixed. (PR#17314, PR#17316,
PR#17317, PR#17318, PR#17319, PR#17320)

• model.matrix(~1,mf) now gets the row names from mf also when they differ from
1:nrow(mf), fixing PR#14992 thanks to the suggestion by Sebastian Meyer.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17284
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17243
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17306
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17312
https://stat.ethz.ch/pipermail/r-devel/2017-July/074680.html
https://stat.ethz.ch/pipermail/r-devel/2017-July/074680.html
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17292
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17314
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17316
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17317
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17318
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17319
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17320
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=14992

NEWS AND NOTES 475

• sigma(fm) now takes the correct denominator degrees of freedom for a fitted model
with NA coefficients. (PR#17313)

• hist(x,"FD") no longer “dies” with a somewhat cryptic error message when x has
extreme outliers or IQR() zero: nclass.FD(x) tries harder to find a robust bin width h
in the latter case, and hist.default(*,breaks) now checks and corrects a too large
breaks number. (PR#17274)

• callNextMethod() works for ... methods.

• qr.coef(qd,y) now has correct names also when qd is a complex QR or stems from
qr(*,LAPACK=TRUE).

• Setting options(device = *) to an invalid function no longer segfaults when plotting
is initiated. (PR#15883)

• encodeString(<very large string>) no longer segfaults. (PR#15885)

• It is again possible to use configure --enable-maintainer-mode without having
installed notangle (it was required in R 3.4.[01]).

• S4 method dispatch on ... calls the method by name instead of .Method (for consis-
tency with default dispatch), and only attempts to pass non-missing arguments from
the generic.

• readRDS(textConnection(.)) works again. (PR#17325)

• (1:n)[-n] no longer segfaults for n <-2.2e9 (on a platform with enough RAM).

• x <-1:2; tapply(x,list(x,x),function(x) "")[1,2] now correctly returns NA.
(PR#17333)

• Running of finalizers after explicit GC request moved from the R interface do_gc to
the C interface R_gc. This helps with reclaiming inaccessible connections.

• help.search(topic) and ??topic matching topics in vignettes with multiple file
name extensions (e.g., ‘*.md.rsp’ but not ‘*.Rmd’) failed with an error when using
options(help_type = "html").

• The X11 device no longer uses the Xlib backing store (PR#16497).

• array(character(),1) now gives (a 1D array with) NA as has been documented for a
long time as in the other cases of zero-length array initialization and also compatibly
with matrix(character(),*). As mentioned there, this also fixes PR#17333.

• splineDesign(..,derivs = 4) no longer segfaults.

• fisher.test(*,hybrid=TRUE) now (again) will use the hybrid method when Cochran’s
conditions are met, fixing PR#16654.

CHANGES IN R 3.4.1

INSTALLATION on a UNIX-ALIKE

• The deprecated support for PCRE versions older than 8.20 has been removed.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17313
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17274
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15883
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15885
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17325
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17333
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16497
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17333
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16654

NEWS AND NOTES 476

BUG FIXES

• getParseData() gave incorrect column information when code contained multi-byte
characters. (PR#17254)

• Asking for help using expressions like ?stats::cor() did not work. (PR#17250)

• readRDS(url(....)) now works.

• R CMD Sweave again returns ‘status = 0’ on successful completion.

• Vignettes listed in ‘.Rbuildignore’ were not being ignored properly. (PR#17246)

• file.mtime() no longer returns NA on Windows when the file or directory is being
used by another process. This affected installed.packages(), which is now protected
against this.

• R CMD INSTALL Windows .zip file obeys --lock and --pkglock flags.

• (Windows only) The choose.files() function could return incorrect results when
called with multi = FALSE. (PR#17270)

• aggregate(<data.frame>,drop = FALSE) now also works in case of near-equal num-
bers in by. (PR#16918)

• fourfoldplot() could encounter integer overflow when calculating the odds ratio.
(PR#17286)

• parse() no longer gives spurious warnings when extracting srcrefs from a file not
encoded in the current locale.

This was seen from R CMD check with ‘inst/doc/*.R’ files, and check has some additional
protection for such files.

• print.noquote(x) now always returns its argument x (invisibly).

• Non-UTF-8 multibyte character sets were not handled properly in source references.
(PR#16732)

CHANGES IN R 3.4.0

SIGNIFICANT USER-VISIBLE CHANGES

• (Unix-alike) The default methods for download.file() and url() now choose "libcurl"
except for ‘file://’ URLs. There will be small changes in the format and wording
of messages, including in rare cases if an issue is a warning or an error. For example,
when HTTP re-direction occurs, some messages refer to the final URL rather than the
specified one.

Those who use proxies should check that their settings are compatible (see ?download.file:
the most commonly used forms work for both "internal" and "libcurl").

• table() has been amended to be more internally consistent and become back compati-
ble to R ≤ 2.7.2 again. Consequently, table(1:2,exclude = NULL) no longer contains
a zero count for <NA>, but useNA = "always" continues to do so.

• summary.default() no longer rounds, but its print method does resulting in less
extraneous rounding, notably of numbers in the ten thousands.

• factor(x,exclude = L) behaves more rationally when x or L are character vectors.
Further, exclude = <factor> now behaves as documented for long.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17254
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17250
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17246
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17270
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16918
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17286
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16732

NEWS AND NOTES 477

• Arithmetic, logic (&, |) and comparison (aka ‘relational’, e.g., <, ==) operations with
arrays now behave consistently, notably for arrays of length zero.

Arithmetic between length-1 arrays and longer non-arrays had silently dropped the
array attributes and recycled. This now gives a warning and will signal an error in
the future, as it has always for logic and comparison operations in these cases (e.g.,
compare matrix(1,1) + 2:3 and matrix(1,1) <2:3).

• The JIT (‘Just In Time’) byte-code compiler is now enabled by default at its level 3.
This means functions will be compiled on first or second use and top-level loops will
be compiled and then run. (Thanks to Tomas Kalibera for extensive work to make this
possible.)

For now, the compiler will not compile code containing explicit calls to browser():
this is to support single stepping from the browser() call.

JIT compilation can be disabled for the rest of the session using compiler::enableJIT(0)
or by setting environment variable R_ENABLE_JIT to 0.

• xtabs() works more consistently with NAs, also in its result no longer setting them
to 0. Further, a new logical option addNA allows to count NAs where appropriate.
Additionally, for the case sparse = TRUE, the result’s dimnames are identical to the
default case’s.

• Matrix products now consistently bypass BLAS when the inputs have NaN/Inf values.
Performance of the check of inputs has been improved. Performance when BLAS is
used is improved for matrix/vector and vector/matrix multiplication (DGEMV is now
used instead of DGEMM).

One can now choose from alternative matrix product implementations via options(matprod
=). The "internal" implementation is not optimized for speed but consistent in pre-
cision with other summations in R (using long double accumulators where available).
"blas" calls BLAS directly for best speed, but usually with undefined behavior for
inputs with NaN/Inf.

NEW FEATURES

• User errors such as integrate(f,0:1,2) are now caught.

• Add signature argument to debug(), debugonce(), undebug() and isdebugged() for
more conveniently debugging S3 and S4 methods. (Based on a patch by Gabe Becker.)

• Add utils::debugcall() and utils::undebugcall() for debugging the function
that would be called by evaluating the given expression. When the call is to an
S4 generic or standard S3 generic, debugcall() debugs the method that would be
dispatched. A number of internal utilities were added to support this, most notably
utils::isS3stdGeneric(). (Based on a patch by Gabe Becker.)

• Add utils::strcapture(). Given a character vector and a regular expression contain-
ing capture expressions, strcapture() will extract the captured tokens into a tabular
data structure, typically a data.frame.

• str() and strOptions() get a new option drop.deparse.attr with improved but
changed default behaviour for expressions. For expression objects x, str(x) now may
remove extraneous white space and truncate long lines.

• str(<looooooooong_string>) is no longer very slow; inspired by Mikko Korpela’s
proposal in PR#16527.

• str(x)’s default method is more “accurate” and hence somewhat more generous
in displaying character vectors; this will occasionally change R outputs (and need
changes to some ‘*.Rout(.save)’ files).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16527

NEWS AND NOTES 478

For a classed integer vector such as x <-xtabs(~ c(1,9,9,9)), str(x) now shows
both the class and "int", instead of only the latter.

• isSymmetric(m) is much faster for large asymmetric matrices m via pre-tests and a new
option tol1 (with which strict back compatibility is possible but not the default).

• The result of eigen() now is of class "eigen" in the default case when eigenvectors
are computed.

• Zero-length date and date-time objects (of classes "POSIX[cl]?t") now print() “rec-
ognizably”.

• xy.coords() and xyz.coords() get a new setLab option.

• The method argument of sort.list(), order() and sort.int() gains an "auto" option
(the default) which should behave the same as before when method was not supplied.

• stopifnot(E,..) now reports differences when E is a call to all.equal() and that is
not true.

• boxplot(<formula>,*) gain optional arguments drop, sep, and lex.order to pass to
split.default() which itself gains an argument lex.order to pass to interaction()
for more flexibility.

• The plot() method for ppr() has enhanced default labels (xmin and main).

• sample.int() gains an explicit useHash option (with a back compatible default).

• identical() gains an ignore.srcref option which drops "srcref" and similar at-
tributes when true (as by default).

• diag(x,nrow = n) now preserves typeof(x), also for logical, integer and raw x (and
as previously for complex and numeric).

• smooth.spline() now allows direct specification of lambda, gets a hatvalues() method
and keeps tol in the result, and optionally parts of the internal matrix computations.

• addNA() is faster now, e.g. when applied twice. (Part of PR#16895.)

• New option rstandard(<lm>,type = "predicted") provides the “PRESS”–related
leave-one-out cross-validation errors for linear models.

• After seven years of deprecation, duplicated factor levels now produce a warning
when printed and an error in levels<- instead of a warning.

• Invalid factors, e.g., with duplicated levels (invalid but constructable) now give a
warning when printed, via new function .valid.factor().

• sessionInfo() has been updated for Apple’s change in OS naming as from ‘10.12’
(‘macOS Sierra’ vs ‘OS X El Capitan’).

Its toLatex() method now includes the running component.

• options(interrupt=) can be used to specify a default action for user interrupts. For
now, if this option is not set and the error option is set, then an unhandled user
interrupt invokes the error option. (This may be dropped in the future as interrupt
conditions are not error conditions.)

• In most cases user interrupt handlers will be called with a "resume" restart available.
Handlers can invoke this restart to resume computation. At the browser prompt the
r command will invoke a "resume" restart if one is available. Some read operations
cannot be resumed properly when interrupted and do not provide a "resume" restart.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16895

NEWS AND NOTES 479

• Radix sort is now chosen by method = "auto" for sort.int() for double vectors (and
hence used for sort() for unclassed double vectors), excluding ‘long’ vectors.

sort.int(method = "radix") no longer rounds double vectors.

• The default and data.frame methods for stack() preserve the names of empty ele-
ments in the levels of the ind column of the return value. Set the new drop argument
to TRUE for the previous behavior.

• Speedup in simplify2array() and hence sapply() and mapply() (for the case of
names and common length > 1), thanks to Suharto Anggono’s PR#17118.

• table(x,exclude = NULL) now sets useNA = "ifany" (instead of "always"). Together
with the bug fixes for this case, this recovers more consistent behaviour compatible to
older versions of R. As a consequence, summary() for a logical vector no longer reports
(zero) counts for NA when there are no NAs.

• dump.frames() gets a new option include.GlobalEnv which allows to also dump the
global environment, thanks to Andreas Kersting’s proposal in PR#17116.

• system.time() now uses message() instead of cat() when terminated early, such that
suppressMessages() has an effect; suggested by Ben Bolker.

• citation() supports ‘inst/CITATION’ files from package source trees, with lib.loc
pointing to the directory containing the package.

• try() gains a new argument outFile with a default that can be modified via options(try.outFile
= .), useful notably for Sweave.

• The unexported low-level functions in package parallel for passing serialized R objects
to and from forked children now support long vectors on 64-bit platforms. This
removes some limits on higher-level functions such as mclapply() (but returning
gigabyte results from forked processes via serialization should be avoided if at all
possible).

• Connections now print() without error even if invalid, e.g. after having been de-
stroyed.

• apropos() and find(simple.words = FALSE) no longer match object names starting
with ‘.’ which are known to be internal objects (such as .__S3MethodsTable__.).

• Convenience function hasName() has been added; it is intended to replace the common
idiom !is.null(x$name) without the usually unintended partial name matching.

• strcapture() no longer fixes column names nor coerces strings to factors (suggested
by Bill Dunlap).

• strcapture() returns NA for non-matching values in x (suggested by Bill Dunlap).

• source() gets new optional arguments, notably exprs; this is made use of in the new
utility function withAutoprint().

• sys.source() gets a new toplevel.env argument. This argument is useful for frame-
works running package tests; contributed by Tomas Kalibera.

• Sys.setFileTime() and file.copy(copy.date = TRUE) will set timestamps with
fractions of seconds on platforms/filesystems which support this.

• (Windows only.) file.info() now returns file timestamps including fractions of
seconds; it has done so on other platforms since R 2.14.0. (NB: some filesystems do not
record modification and access timestamps to sub-second resolution.)

• The license check enabled by options(checkPackageLicense = TRUE) is now done
when the package’s namespace is first loaded.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17118
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17116

NEWS AND NOTES 480

• ppr() and supsmu() get an optional trace argument, and ppr(..,sm.method = ..spline)
is no longer limited to sample size n ≤ 2500.

• The POSIXct method for print() gets optional tz and usetz arguments, thanks to a
report from Jennifer S. Lyon.

• New function check_packages_in_dir_details() in package tools for analyzing
package-check log files to obtain check details.

• Package tools now exports function CRAN_package_db() for obtaining information
about current packages in the CRAN package repository, and several functions for
obtaining the check status of these packages.

• The (default) Stangle driver Rtangle allows annotate to be a function and gets a new
drop.evalFALSE option.

• The default method for quantile(x,prob) should now be monotone in prob, even in
border cases, see PR#16672.

• bug.report() now tries to extract an email address from a ‘BugReports’ field, and if
there is none, from a ‘Contacts’ field.

• The format() and print() methods for object.size() results get new options standard
and digits; notably, standard = "IEC" and standard = "SI" allow more standard
(but less common) abbreviations than the default ones, e.g. for kilobytes. (From
contributions by Henrik Bengtsson.)

• If a reference class has a validity method, validObject will be called automatically
from the default initialization method for reference classes.

• tapply() gets new option default = NA allowing to change the previously hardcoded
value.

• read.dcf() now consistently interprets any ‘whitespace’ to be stripped to include
newlines.

• The maximum number of DLLs that can be loaded into R e.g. via dyn.load() can now
be increased by setting the environment variable R_MAX_NUM_DLLS before starting R.

• Assigning to an element of a vector beyond the current length now over-allocates
by a small fraction. The new vector is marked internally as growable, and the true
length of the new vector is stored in the truelength field. This makes building up a
vector result by assigning to the next element beyond the current length more efficient,
though pre-allocating is still preferred. The implementation is subject to change and
not intended to be used in packages at this time.

• Loading the parallel package namespace no longer sets or changes the .Random.seed,
even if R_PARALLEL_PORT is unset.

NB: This can break reproducibility of output, and did for a CRAN package.

• Methods "wget" and "curl" for download.file() now give an R error rather than a
non-zero return value when the external command has a non-zero status.

• Encoding name "utf8" is mapped to "UTF-8". Many implementations of iconv accept
"utf8", but not GNU libiconv (including the late 2016 version 1.15).

• sessionInfo() shows the full paths to the library or executable files providing the
BLAS/LAPACK implementations currently in use (not available on Windows).

• The binning algorithm used by bandwidth selectors bw.ucv(), bw.bcv() and bw.SJ()
switches to a version linear in the input size n for n >nb/2. (The calculations are the
same, but for larger n/nb it is worth doing the binning in advance.)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16672

NEWS AND NOTES 481

• There is a new option PCRE_study which controls when grep(perl = TRUE) and friends
‘study’ the compiled pattern. Previously this was done for 11 or more input strings:
it now defaults to 10 or more (but most examples need many more for the difference
from studying to be noticeable).

• grep(perl = TRUE) and friends can now make use of PCRE’s Just-In-Time mechanism,
for PCRE ≥ 8.20 on platforms where JIT is supported. It is used by default whenever
the pattern is studied (see the previous item). (Based on a patch from Mikko Korpela.)

This is controlled by a new option PCRE_use_JIT.

Note that in general this makes little difference to the speed, and may take a little
longer: its benefits are most evident on strings of thousands of characters. As a side
effect it reduces the chances of C stack overflow in the PCRE library on very long
strings (millions of characters, but see next item).

Warning: segfaults were seen using PCRE with JIT enabled on 64-bit Sparc builds.

• There is a new option PCRE_limit_recursion for grep(perl = TRUE) and friends to
set a recursion limit taking into account R’s estimate of the remaining C stack space (or
10000 if that is not available). This reduces the chance of C stack overflow, but because
it is conservative may report a non-match (with a warning) in examples that matched
before. By default it is enabled if any input string has 1000 or more bytes. (PR#16757)

• getGraphicsEvent() now works on X11(type = "cairo") devices. Thanks to Freder-
ick Eaton (for reviving an earlier patch).

• There is a new argument onIdle for getGraphicsEvent(), which allows an R function
to be run whenever there are no pending graphics events. This is currently only
supported on X11 devices. Thanks to Frederick Eaton.

• The deriv() and similar functions now can compute derivatives of log1p(), sinpi()
and similar one-argument functions, thanks to a contribution by Jerry Lewis.

• median() gains a formal ... argument, so methods with extra arguments can be
provided.

• strwrap() reduces indent if it is more than half width rather than giving an error.
(Suggested by Bill Dunlap.)

• When the condition code in if(.) or while(.) is not of length one, an error instead of
a warning may be triggered by setting an environment variable, see the help page.

• Formatting and printing of bibliography entries (bibentry) is more flexible and better
documented. Apart from setting options(citation.bibtex.max = 99) you can also
use print(<citation>,bibtex=TRUE) (or format(..)) to get the BibTeX entries in the
case of more than one entry. This also affects citation(). Contributions to enable
style = "html+bibtex" are welcome.

C-LEVEL FACILITIES

• Entry points R_MakeExternalPtrFn and R_ExternalPtrFn are now declared in header
‘Rinternals.h’ to facilitate creating and retrieving an R external pointer from a C function
pointer without ISO C warnings about the conversion of function pointers.

• There was an exception for the native Solaris C++ compiler to the dropping (in R
3.3.0) of legacy C++ headers from headers such as ‘R.h’ and ‘Rmath.h’ — this has now
been removed. That compiler has strict C++98 compliance hence does not include
extensions in its (non-legacy) C++ headers: some packages will need to request C++11
or replace non-C++98 calls such as lgamma: see §1.6.4 of ‘Writing R Extensions’.

Because it is needed by about 70 CRAN packages, headers ‘R.h’ and ‘Rmath.h’ still
declare

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16757

NEWS AND NOTES 482

use namespace std;

when included on Solaris.

• When included from C++, the R headers now use forms such as std::FILE directly
rather than including the line

using std::FILE;

C++ code including these headers might be relying on the latter.

• Headers ‘R_ext/BLAS.h’ and ‘R_ext/Lapack.h’ have many improved declarations includ-
ing const for double-precision complex routines. Inter alia this avoids warnings when
passing ‘string literal’ arguments from C++11 code.

• Headers for Unix-only facilities ‘R_ext/GetX11Image.h’, ‘R_ext/QuartzDevice.h’ and
‘R_ext/eventloop.h’ are no longer installed on Windows.

• No-longer-installed headers ‘GraphicsBase.h’, ‘RGraphics.h’, ‘Rmodules/RX11.h’ and
‘Rmodules/Rlapack.h’ which had a LGPL license no longer do so.

• HAVE_UINTPTR_T is now defined where appropriate by Rconfig.h so that it can be
included before Rinterface.h when CSTACK_DEFNS is defined and a C compiler (not
C++) is in use. Rinterface.h now includes C header ‘stdint.h’ or C++11 header ‘cstdint’
where needed.

• Package tools has a new function package_native_routine_registration_skeleton()
to assist adding native-symbol registration to a package. See its help and §5.4.1 of
‘Writing R Extensions’ for how to use it. (At the time it was added it successfully
automated adding registration to over 90% of CRAN packages which lacked it. Many
of the failures were newly-detected bugs in the packages, e.g. 50 packages called entry
points with varying numbers of arguments and 65 packages called entry points not in
the package.)

INSTALLATION on a UNIX-ALIKE

• readline headers (and not just the library) are required unless configuring with
‘--with-readline=no’.

• configure now adds a compiler switch for C++11 code, even if the compiler supports
C++11 by default. (This ensures that g++ 6.x uses C++11 mode and not its default
mode of C++14 with ‘GNU extensions’.)

The tests for C++11 compliance are now much more comprehensive. For gcc < 4.8,
the tests from R 3.3.0 are used in order to maintain the same behaviour on Linux
distributions with long-term support.

• An alternative compiler for C++11 is now specified with ‘CXX11’, not ‘CXX1X’. Likewise
C++11 flags are specified with ‘CXX11FLAGS’ and the standard (e.g., ‘-std=gnu++11’) is
specified with ‘CXX11STD’.

• configure now tests for a C++14-compliant compiler by testing some basic features.
This by default tries flags for the compiler specified by ‘CXX11’, but an alternative
compiler, options and standard can be specified by variables ‘CXX14’, ‘CXX14FLAGS’ and
‘CXX14STD’ (e.g., ‘-std=gnu++14’).

• There is a new macro CXXSTD to help specify the standard for C++ code, e.g. ‘-std=c++98’.
This makes it easier to work with compilers which default to a later standard: for
example, with CXX=g++6 CXXSTD=-std=c++98 configure will select commands for g++
6.x which conform to C++11 and C++14 where specified but otherwise use C++98.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

NEWS AND NOTES 483

• Support for the defunct IRIX and OSF/1 OSes and Alpha CPU has been removed.

• configure checks that the compiler specified by ‘$CXX $CXXFLAGS’ is able to compile
C++ code.

• configure checks for the required header ‘sys/select.h’ (or ‘sys/time.h’ on legacy sys-
tems) and system call select and aborts if they are not found.

• If available, the POSIX 2008 system call utimensat will be used by Sys.setFileTime()
and file.copy(copy.date = TRUE). This may result in slightly more accurate file
times. (It is available on Linux and FreeBSD but not macOS.)

• The minimum version requirement for libcurl has been reduced to 7.22.0, although
at least 7.28.0 is preferred and earlier versions are little tested. (This is to support
Debian 7 ‘Wheezy’ LTS and Ubuntu ‘Precise’ 12.04 LTS, although the latter is close to
end-of-life.)

• configure tests for a C++17-compliant compiler. The tests are experimental and
subject to change in the future.

INCLUDED SOFTWARE

• (Windows only) Tcl/Tk version 8.6.4 is now included in the binary builds. The
‘tcltk*.chm’ help file is no longer included; please consult the online help at http:
//www.tcl.tk/man/ instead.

• The version of LAPACK included in the sources has been updated to 3.7.0: no new
routines have been added to R.

PACKAGE INSTALLATION

• There is support for compiling C++14 or C++17 code in packages on suitable platforms:
see ‘Writing R Extensions’ for how to request this.

• The order of flags when ‘LinkingTo’ other packages has been changed so their include
directories come earlier, before those specified in CPPFLAGS. This will only have an
effect if non-system include directories are included with ‘-I’ flags in CPPFLAGS (and so
not the default -I/usr/local/include which is treated as a system include directory
on most platforms).

• Packages which register native routines for .C or .Fortran need to be re-installed for
this version (unless installed with R-devel SVN revision r72375 or later).

• Make variables with names containing CXX1X are deprecated in favour of those using
CXX11, but for the time being are still made available via file ‘etc/Makeconf’. Packages
using them should be converted to the new forms and made dependent on ‘R (>=
3.4.0)’.

UTILITIES

• Running R CMD check --as-cran with _R_CHECK_CRAN_INCOMING_REMOTE_ false now
skips tests that require remote access. The remaining (local) tests typically run quickly
compared to the remote tests.

• R CMD build will now give priority to vignettes produced from files in the ‘vignettes’
directory over those in the ‘inst/doc’ directory, with a warning that the latter are being
ignored.

• R CMD config gains a ‘--all’ option for printing names and values of all basic configure
variables.

It now knows about all the variables used for the C++98, C++11 and C++14 standards.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

http://www.tcl.tk/man/
http://www.tcl.tk/man/

NEWS AND NOTES 484

• R CMD check now checks that output files in ‘inst/doc’ are newer than the source files
in ‘vignettes’.

• For consistency with other package subdirectories, files named ‘*.r’ in the ‘tests’ direc-
tory are now recognized as tests by R CMD check. (Wish of PR#17143.)

• R CMD build and R CMD check now use the union of R_LIBS and .libPaths(). They
may not be equivalent, e.g., when the latter is determined by R_PROFILE.

• R CMD build now preserves dates when it copies files in preparing the tarball. (Previ-
ously on Windows it changed the dates on all files; on Unix, it changed some dates
when installing vignettes.)

• The new option R CMD check --no-stop-on-test-error allows running the remaining
tests (under ‘tests/’) even if one gave an error.

• Check customization via environment variables to detect side effects of .Call() and
.External() calls which alter their arguments is described in §8 of the ‘R Internals’
manual.

• R CMD check now checks any ‘BugReports’ field to be non-empty and a suitable single
URL.

• R CMD check --as-cran now NOTEs if the package does not register its native
routines or does not declare its intentions on (native) symbol search. (This will become
a WARNING in due course.)

DEPRECATED AND DEFUNCT

• (Windows only) Function setInternet2() is defunct.

• Installation support for readline emulations based on editline (aka libedit) is
deprecated.

• Use of the C/C++ macro ‘NO_C_HEADERS’ is defunct and silently ignored.

• unix.time(), a traditional synonym for system.time(), has been deprecated.

• structure(NULL,..) is now deprecated as you cannot set attributes on NULL.

• Header ‘Rconfig.h’ no longer defines ‘SUPPORT_OPENMP’; instead use ‘_OPENMP’ (as docu-
mented for a long time).

• (C-level Native routine registration.) The deprecated styles member of the R_CMethodDef
and R_FortranMethodDef structures has been removed. Packages using these will need
to be re-installed for R 3.4.0.

• The deprecated support for PCRE versions older than 8.20 will be removed in R 3.4.1.
(Versions 8.20–8.31 will still be accepted but remain deprecated.)

BUG FIXES

• Getting or setting body() or formals() on non-functions for now signals a warning
and may become an error for setting.

• match(x,t), duplicated(x) and unique(x) work as documented for complex num-
bers with NAs or NaNs, where all those containing NA do match, whereas in the case of
NaN’s both real and imaginary parts must match, compatibly with how print() and
format() work for complex numbers.

• deparse(<complex>,options = "digits17") prints more nicely now, mostly thanks
to a suggestion by Richie Cotton.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17143

NEWS AND NOTES 485

• Rotated symbols in plotmath expressions are now positioned correctly on x11(type =
"Xlib"). (PR#16948)

• as<-() avoids an infinite loop when a virtual class is interposed between a subclass
and an actual superclass.

• Fix level propagation in unlist() when the list contains zero-length lists or factors.

• Fix S3 dispatch on S4 objects when the methods package is not attached.

• Internal S4 dispatch sets .Generic in the method frame for consistency with standardGeneric().
(PR#16929)

• Fix order(x,decreasing = TRUE) when x is an integer vector containing MAX_INT.
Ported from a fix Matt Dowle made to data.table.

• Fix caching by callNextMethod(), resolves PR#16973 and PR#16974.

• grouping() puts NAs last, to be consistent with the default behavior of order().

• Point mass limit cases: qpois(-2,0) now gives NaN with a warning and qgeom(1,1) is
0. (PR#16972)

• table() no longer drops an "NaN" factor level, and better obeys exclude = <chr>,
thanks to Suharto Anggono’s patch for PR#16936. Also, in the case of exclude = NULL
and NAs, these are tabulated correctly (again).

Further, table(1:2,exclude = 1,useNA = "ifany") no longer erroneously reports
<NA> counts.

Additionally, all cases of empty exclude are equivalent, and useNA is not overwritten
when specified (as it was by exclude = NULL).

• wilcox.test(x,conf.int=TRUE) no longer errors out in cases where the confidence
interval is not available, such as for x = 0:2.

• droplevels(f) now keeps <NA> levels when present.

• In integer arithmetic, NULL is now treated as integer(0) whereas it was previously
treated as double(0).

• The radix sort considers NA_real_ and NaN to be equivalent in rank (like the other sort
algorithms).

• When index.return=TRUE is passed to sort.int(), the radix sort treats NAs like
sort.list() does (like the other sort algorithms).

• When in tabulate(bin,nbin) length(bin) is larger than the maximal integer, the
result is now of type double and hence no longer silently overflows to wrong values.
(PR#17140)

• as.character.factor() respects S4 inheritance when checking the type of its argu-
ment. (PR#17141)

• The factor method for print() no longer sets the class of the factor to NULL, which
would violate a basic constraint of an S4 object.

• formatC(x,flag = f) allows two new flags, and signals an error for invalid flags also
in the case of character formatting.

• Reading from file("stdin") now also closes the connection and hence no longer leaks
memory when reading from a full pipe, thanks to Gábor Csárdi, see thread starting at
https://stat.ethz.ch/pipermail/r-devel/2016-November/073360.html.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16948
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16929
https://CRAN.R-project.org/package=data.table
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16973
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16974
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16972
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16936
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17140
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17141
https://stat.ethz.ch/pipermail/r-devel/2016-November/073360.html

NEWS AND NOTES 486

• Failure to create file in tempdir() for compressed pdf() graphics device no longer
errors (then later segfaults). There is now a warning instead of error and compression
is turned off for the device. Thanks to Alec Wysoker (PR#17191).

• Asking for methods() on "|" returns only S3 methods. See https://stat.ethz.ch/
pipermail/r-devel/2016-December/073476.html.

• dev.capture() using Quartz Cocoa device (macOS) returned invalid components if
the back-end chose to use ARGB instead of RGBA image format. (Reported by Noam
Ross.)

• seq("2","5") now works too, equivalently to "2":"5" and seq.int().

• seq.int(to = 1,by = 1) is now correct, other cases are integer (instead of double)
when seq() is integer too, and the "non-finite" error messages are consistent between
seq.default() and seq.int(), no longer mentioning NaN etc.

• rep(x,times) and rep.int(x,times) now work when times is larger than the largest
value representable in an integer vector. (PR#16932)

• download.file(method = "libcurl") does not check for URL existence before at-
tempting downloads; this is more robust to servers that do not support HEAD or
range-based retrieval, but may create empty or incomplete files for aborted download
requests.

• Bandwidth selectors bw.ucv(), bw.bcv() and bw.SJ() now avoid integer overflow for
large sample sizes.

• str() no longer shows "list output truncated", in cases that list was not shown at
all. Thanks to Neal Fultz (PR#17219)

• Fix for cairo_pdf() (and svg() and cairo_ps()) when replaying a saved display list
that contains a mix of grid and graphics output. (Report by Yihui Xie.)

• The str() and as.hclust() methods for "dendrogram" now also work for deeply
nested dendrograms thanks to non-recursive implementations by Bradley Broom.

• sample() now uses two uniforms for added precision when the uniform generator is
Knuth-TAOCP, Knuth-TAOCP-2002, or a user-defined generator and the population size
is 225 or greater.

• If a vignette in the ‘vignettes’ directory is listed in ‘.Rbuildignore’, R CMD build would
not include it in the tarball, but would include it in the vignette database, leading to a
check warning. (PR#17246)

• tools::latexToUtf8() infinite looped on certain inputs. (PR#17138)

• terms.formula() ignored argument names when determining whether two terms
were identical. (PR#17235)

• callNextMethod() was broken when called from a method that augments the formal
arguments of a primitive generic.

• Coercion of an S4 object to a vector during sub-assignment into a vector failed to
dispatch through the as.vector() generic (often leading to a segfault).

• Fix problems in command completion: Crash (PR#17222) and junk display in Windows,
handling special characters in filenames on all systems.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17191
https://stat.ethz.ch/pipermail/r-devel/2016-December/073476.html
https://stat.ethz.ch/pipermail/r-devel/2016-December/073476.html
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16932
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17219
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17246
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17138
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17235
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17222

NEWS AND NOTES 487

CHANGES IN R 3.3.3

NEW FEATURES

• Changes when redirection of a ‘http://’ URL to a ‘https://’ URL is encountered:

– The internal methods of download.file() and url() now report that they cannot
follow this (rather than failing silently).

– (Unix-alike) download.file(method = "auto") (the default) re-tries with method
= "libcurl".

– (Unix-alike) url(method = "default") with an explicit open argument re-tries
with method = "libcurl". This covers many of the usages, e.g. readLines() with
a URL argument.

INSTALLATION on a UNIX-ALIKE

• The configure check for the zlib version is now robust to versions longer than 5
characters, including 1.2.11.

UTILITIES

• Environmental variable _R_CHECK_TESTS_NLINES_ controls how R CMD check reports
failing tests (see §8 of the ‘R Internals’ manual).

DEPRECATED AND DEFUNCT

• (C-level Native routine registration.) The undocumented styles field of the compo-
nents of R_CMethodDef and R_FortranMethodDef is deprecated.

BUG FIXES

• vapply(x,*) now works with long vectors x. (PR#17174)

• isS3method("is.na.data.frame") and similar are correct now. (PR#17171)

• grepRaw(<long>,<short>,fixed = TRUE) now works, thanks to a patch by Mikko
Korpela. (PR#17132)

• Package installation into a library where the package exists via symbolic link now
should work wherever Sys.readlink() works, resolving PR#16725.

• "Cincinnati" was missing an "n" in the precip dataset.

• Fix buffer overflow vulnerability in pdf() when loading an encoding file. Reported by
Talos (TALOS-2016-0227).

• getDLLRegisteredRoutines() now produces its warning correctly when multiple
DLLs match, thanks to Matt Dowle’s PR#17184.

• Sys.timezone() now returns non-NA also on platforms such as ‘Ubuntu 14.04.5 LTS’,
thanks to Mikko Korpela’s PR#17186.

• format(x) for an illegal "POSIXlt" object x no longer segfaults.

• methods(f) now also works for f "(" or "{".

• (Windows only) dir.create() did not check the length of the path to create, and so
could overflow a buffer and crash R. (PR#17206)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17174
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17171
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17132
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16725
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17184
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17186
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17206

NEWS AND NOTES 488

• On some systems, very small hexadecimal numbers in hex notation would underflow
to zero. (PR#17199)

• pmin() and pmax() now work again for ordered factors and 0-length S3 classed objects,
thanks to Suharto Anggono’s PR#17195 and PR#17200.

• bug.report() did not do any validity checking on a package’s ‘BugReports’ field. It
now ignores an empty field, removes leading whitespace and only attempts to open
‘http://’ and ‘https://’ URLs, falling back to emailing the maintainer.

• Bandwidth selectors bw.ucv() and bw.SJ() gave incorrect answers or incorrectly
reported an error (because of integer overflow) for inputs longer than 46341. Similarly
for bw.bcv() at length 5793.

Another possible integer overflow is checked and may result in an error report (rather
than an incorrect result) for much longer inputs (millions for a smooth distribution).

• findMethod() failed if the active signature had expanded beyond what a particular
package used. (Example with packages XR and XRJulia on CRAN.)

• qbeta() underflowed too early in some very asymmetric cases. (PR#17178)

• R CMD Rd2pdf had problems with packages with non-ASCII titles in ‘.Rd’ files (usually
the titles were omitted).

CHANGES IN R 3.3.2

NEW FEATURES

• extSoftVersion() now reports the version (if any) of the readline library in use.

• The version of LAPACK included in the sources has been updated to 3.6.1, a bug-fix
release including a speedup for the non-symmetric case of eigen().

• Use options(deparse.max.lines=) to limit the number of lines recorded in .Traceback
and other deparsing activities.

• format(<AsIs>) looks more regular, also for non-character atomic matrices.

• abbreviate() gains an option named = TRUE.

• The online documentation for package methods is extensively rewritten. The goals
are to simplify documentation for basic use, to note old features not recommended
and to correct out-of-date information.

• Calls to setMethod() no longer print a message when creating a generic function in
those cases where that is natural: S3 generics and primitives.

INSTALLATION and INCLUDED SOFTWARE

• Versions of the readline library >= 6.3 had been changed so that terminal window
resizes were not signalled to readline: code has been added using a explicit signal
handler to work around that (when R is compiled against readline >= 6.3). (PR#16604)

• configure works better with Oracle Developer Studio 12.5.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17199
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17195
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17200
https://CRAN.R-project.org/package=XR
https://CRAN.R-project.org/package=XRJulia
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17178
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16604

NEWS AND NOTES 489

UTILITIES

• R CMD check reports more dubious flags in files ‘src/Makevars[.in]’, including ‘-w’ and
‘-g’.

• R CMD check has been set up to filter important warnings from recent versions of
gfortran with ‘-Wall -pedantic’: this now reports non-portable GNU extensions
such as out-of-order declarations.

• R CMD config works better with paths containing spaces, even those of home directo-
ries (as reported by Ken Beath).

DEPRECATED AND DEFUNCT

• Use of the C/C++ macro ‘NO_C_HEADERS’ is deprecated (no C headers are included by
R headers from C++ as from R 3.3.0, so it should no longer be needed).

BUG FIXES

• The check for non-portable flags in R CMD check could be stymied by ‘src/Makevars’
files which contained targets.

• (Windows only) When using certain desktop themes in Windows 7 or higher, Alt-Tab
could cause Rterm to stop accepting input. (PR#14406; patch submitted by Jan
Gleixner.)

• pretty(d,..) behaves better for date-time d (PR#16923).

• When an S4 class name matches multiple classes in the S4 cache, perform a dynamic
search in order to obey namespace imports. This should eliminate annoying mes-
sages about multiple hits in the class cache. Also, pass along the package from the
ClassExtends object when looking up superclasses in the cache.

• sample(NA_real_) now works.

• Packages using non-ASCII encodings in their code did not install data properly on
systems using different encodings.

• merge(df1,df2) now also works for data frames with column names "na.last",
"decreasing", or "method". (PR#17119)

• contour() caused a segfault if the labels argument had length zero. (Reported by Bill
Dunlap.)

• unique(warnings()) works more correctly, thanks to a new duplicated.warnings()
method.

• findInterval(x,vec = numeric(),all.inside = TRUE) now returns 0s as docu-
mented. (Reported by Bill Dunlap.)

• (Windows only) R CMD SHLIB failed when a symbol in the resulting library had the
same name as a keyword in the ‘.def’ file. (PR#17130)

• pmax() and pmin() now work with (more ?) classed objects, such as "Matrix" from
the Matrix package, as documented for a long time.

• axis(side,x = D) and hence Axis() and plot() now work correctly for "Date" and
time objects D, even when “time goes backward”, e.g., with decreasing xlim. (Reported
by William May.)

• str(I(matrix(..))) now looks as always intended.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=14406
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16923
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17119
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17130
https://CRAN.R-project.org/package=Matrix

NEWS AND NOTES 490

• plot.ts(), the plot() method for time series, now respects cex, lwd and lty. (Re-
ported by Greg Werbin.)

• parallel::mccollect() now returns a named list (as documented) when called with
wait = FALSE. (Reported by Michel Lang.)

• If a package added a class to a class union in another package, loading the first package
gave erroneous warnings about “undefined subclass”.

• c()’s argument use.names is documented now, as belonging to the (C internal) default
method. In “parallel”, argument recursive is also moved from the generic to the
default method, such that the formal argument list of base generic c() is just (...).

• rbeta(4,NA) and similarly rgamma() and rnbinom() now return NaN’s with a warning,
as other r<dist>(), and as documented. (PR#17155)

• Using options(checkPackageLicense = TRUE) no longer requires acceptance of the
licence for non-default standard packages such as compiler. (Reported by Mikko
Korpela.)

• split(<very_long>,*) now works even when the split off parts are long. (PR#17139)

• min() and max() now also work correctly when the argument list starts with character(0).
(PR#17160)

• Subsetting very large matrices (prod(dim(.)) >= 2^31) now works thanks to Michael
Schubmehl’s PR#17158.

• bartlett.test() used residual sums of squares instead of variances, when the argu-
ment was a list of lm objects. (Reported by Jens Ledet Jensen).

• plot(<lm>,which = *) now correctly labels the contour lines for the standardized
residuals for which = 6. It also takes the correct p in case of singularities (also for
which = 5). (PR#17161)

• xtabs(~ exclude) no longer fails from wrong scope, thanks to Suharto Anggono’s
PR#17147.

• Reference class calls to methods() did not re-analyse previously defined methods,
meaning that calls to methods defined later would fail. (Reported by Charles Tilford).

• findInterval(x,vec,left.open = TRUE) misbehaved in some cases. (Reported by
Dmitriy Chernykh.)

CHANGES IN R 3.3.1

BUG FIXES

• R CMD INSTALL and hence install.packages() gave an internal error installing a
package called description from a tarball on a case-insensitive file system.

• match(x,t) (and hence x %in% t) failed when x was of length one, and either
character and x and t only differed in their Encoding or when x and t where complex
with NAs or NaNs. (PR#16885.)

• unloadNamespace(ns) also works again when ns is a ‘namespace’, as from getNamespace().

• rgamma(1,Inf) or rgamma(1,0,0) no longer give NaN but the correct limit.

• length(baseenv()) is correct now.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17155
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17139
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17160
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17158
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17161
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17147
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16885

NEWS AND NOTES 491

• pretty(d,..) for date-time d rarely failed when "halfmonth" time steps were tried
(PR#16923) and on ‘inaccurate’ platforms such as 32-bit Windows or a configuration
with --disable-long-double; see comment #15 of PR#16761.

• In text.default(x,y,labels), the rarely(?) used default for labels is now correct
also for the case of a 2-column matrix x and missing y.

• as.factor(c(a = 1L)) preserves names() again as in R < 3.1.0.

• strtrim(""[0],0[0]) now works.

• Use of Ctrl-C to terminate a reverse incremental search started by Ctrl-R in the
readline-based Unix terminal interface is now supported when R was compiled
against readline >= 6.0 (Ctrl-G always worked). (PR#16603)

• diff(<difftime>) now keeps the "units" attribute, as subtraction already did, PR#16940.

CHANGES IN R 3.3.0

SIGNIFICANT USER-VISIBLE CHANGES

• nchar(x,*)’s argument keepNA governing how the result for NAs in x is determined,
gets a new default keepNA = NA which returns NA where x is NA, except for type =
"width" which still returns 2, the formatting / printing width of NA.

• All builds have support for ‘https:’ URLs in the default methods for download.file(),
url() and code making use of them.

Unfortunately that cannot guarantee that any particular ‘https:’ URL can be accessed.
For example, server and client have to successfully negotiate a cryptographic protocol
(TLS/SSL, . . .) and the server’s identity has to be verifiable via the available certificates.
Different access methods may allow different protocols or use private certificate
bundles: we encountered a ‘https:’ CRAN mirror which could be accessed by one
browser but not by another nor by download.file() on the same Linux machine.

NEW FEATURES

• The print method for methods() gains a byclass argument.

• New functions validEnc() and validUTF8() to give access to the validity checks for
inputs used by grep() and friends.

• Experimental new functionality for S3 method checking, notably isS3method().

Also, the names of the R ‘language elements’ are exported as character vector tools::langElts.

• str(x) now displays "Time-Series" also for matrix (multivariate) time-series, i.e.
when is.ts(x) is true.

• (Windows only) The GUI menu item to install local packages now accepts ‘*.tar.gz’
files as well as ‘*.zip’ files (but defaults to the latter).

• New programmeR’s utility function chkDots().

• D() now signals an error when given invalid input, rather than silently returning NA.
(Request of John Nash.)

• formula objects are slightly more “first class”: e.g., formula() or new("formula",y ~
x) are now valid. Similarly, for "table", "ordered" and "summary.table". Packages
defining S4 classes with the above S3/S4 classes as slots should be reinstalled.

• New function strrep() for repeating the elements of a character vector.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16923
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16761
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16603
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16940

NEWS AND NOTES 492

• rapply() preserves attributes on the list when how = "replace".

• New S3 generic function sigma() with methods for extracting the estimated standard
deviation aka “residual standard deviation” from a fitted model.

• news() now displays R and package news files within the HTML help system if it is
available. If no news file is found, a visible NULL is returned to the console.

• as.raster(x) now also accepts raw arrays x assuming values in 0:255.

• Subscripting of matrix/array objects of type "expression" is now supported.

• type.convert("i") now returns a factor instead of a complex value with zero real
part and missing imaginary part.

• Graphics devices cairo_pdf() and cairo_ps() now allow non-default values of the
cairographics ‘fallback resolution’ to be set.

This now defaults to 300 on all platforms: that is the default documented by cairo-
graphics, but apparently was not used by all system installations.

• file() gains an explicit method argument rather than implicitly using getOption("url.method","default").

• Thanks to a patch from Tomas Kalibera, x[x != 0] is now typically faster than
x[which(x != 0)] (in the case where x has no NAs, the two are equivalent).

• read.table() now always uses the names for a named colClasses argument (pre-
viously names were only used when colClasses was too short). (In part, wish of
PR#16478.)

• (Windows only) download.file() with default method = "auto" and a ‘ftps://’ URL
chooses "libcurl" if that is available.

• The out-of-the box Bioconductor mirror has been changed to one using ‘https://’:
use chooseBioCmirror() to choose a ‘http://’ mirror if required.

• The data frame and formula methods for aggregate() gain a drop argument.

• available.packages() gains a repos argument.

• The undocumented switching of methods for url() on ‘https:’ and ‘ftps:’ URLs is
confined to method = "default" (and documented).

• smoothScatter() gains a ret.selection argument.

• qr() no longer has a ... argument to pass additional arguments to methods.

• [has a method for class "table".

• It is now possible (again) to replayPlot() a display list snapshot that was created by
recordPlot() in a different R session.

It is still not a good idea to use snapshots as a persistent storage format for R plots,
but it is now not completely silly to use a snapshot as a format for transferring an R
plot between two R sessions.

The underlying changes mean that packages providing graphics devices (e.g., Cairo,
RSvgDevice, cairoDevice, tikzDevice) will need to be reinstalled.

Code for restoring snapshots was contributed by Jeroen Ooms and JJ Allaire.

Some testing code is available at https://github.com/pmur002/R-display-list.

• tools::undoc(dir = D) and codoc(dir = D) now also work when D is a directory
whose normalizePath()ed version does not end in the package name, e.g. from a
symlink.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16478
https://CRAN.R-project.org/package=Cairo
https://CRAN.R-project.org/package=RSvgDevice
https://CRAN.R-project.org/package=cairoDevice
https://CRAN.R-project.org/package=tikzDevice
https://github.com/pmur002/R-display-list

NEWS AND NOTES 493

• abbreviate() has more support for multi-byte character sets – it no longer removes
bytes within characters and knows about Latin vowels with accents. It is still only
really suitable for (most) European languages, and still warns on non-ASCII input.

abbreviate(use.classes = FALSE) is now implemented, and that is more suitable
for non-European languages.

• match(x,table) is faster (sometimes by an order of magnitude) when x is of length
one and incomparables is unchanged, thanks to Peter Haverty (PR#16491).

• More consistent, partly not back-compatible behavior of NA and NaN coercion to com-
plex numbers, operations less often resulting in complex NA (NA_complex_).

• lengths() considers methods for length and [[on x, so it should work automatically
on any objects for which appropriate methods on those generics are defined.

• The logic for selecting the default screen device on OS X has been simplified: it is now
quartz() if that is available even if environment variable DISPLAY has been set by the
user.

The choice can easily be overridden via environment variable R_INTERACTIVE_DEVICE.

• On Unix-like platforms which support the getline C library function, system(*,intern
= TRUE) no longer truncates (output) lines longer than 8192 characters, thanks to Karl
Millar. (PR#16544)

• rank() gains a ties.method = "last" option, for convenience (and symmetry).

• regmatches(invert = NA) can now be used to extract both non-matched and matched
substrings.

• data.frame() gains argument fix.empty.names; as.data.frame.list() gets new
cut.names, col.names and fix.empty.names.

• plot(x ~ x,*) now warns that it is the same as plot(x ~ 1,*).

• recordPlot() has new arguments load and attach to allow package names to be
stored as part of a recorded plot. replayPlot() has new argument reloadPkgs to
load/attach any package names that were stored as part of a recorded plot.

• S4 dispatch works within calls to .Internal(). This means explicit S4 generics are no
longer needed for unlist() and as.vector().

• Only font family names starting with ‘"Hershey"’ (and not ‘"Her"’ as before) are given
special treatment by the graphics engine.

• S4 values are automatically coerced to vector (via as.vector) when subassigned into
atomic vectors.

• findInterval() gets a left.open option.

• The version of LAPACK included in the sources has been updated to 3.6.0, including
those ‘deprecated’ routines which were previously included. Ca 40 double-complex
routines have been added at the request of a package maintainer.

As before, the details of what is included are in ‘src/modules/lapack/README’ and this
now gives information on earlier additions.

• tapply() has been made considerably more efficient without changing functionality,
thanks to proposals from Peter Haverty and Suharto Anggono. (PR#16640)

• match.arg(arg) (the one-argument case) is faster; so is sort.int(). (PR#16640)

• The format method for object_size objects now also accepts “binary” units such as
"KiB" and e.g., "Tb". (Partly from PR#16649.)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16491
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16544
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16640
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16640
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16649

NEWS AND NOTES 494

• Profiling now records calls of the form foo::bar and some similar cases directly rather
than as calls to <Anonymous>. Contributed by Winston Chang.

• New string utilities startsWith(x,prefix) and endsWith(x,suffix). Also provide
speedups for some grepl("^...",*) uses (related to proposals in PR#16490).

• Reference class finalizers run at exit, as well as on garbage collection.

• Avoid parallel dependency on stats for port choice and random number seeds. (PR#16668)

• The radix sort algorithm and implementation from data.table (forder) replaces the
previous radix (counting) sort and adds a new method for order(). Contributed by
Matt Dowle and Arun Srinivasan, the new algorithm supports logical, integer (even
with large values), real, and character vectors. It outperforms all other methods, but
there are some caveats (see ?sort).

• The order() function gains a method argument for choosing between "shell" and
"radix".

• New function grouping() returns a permutation that stably rearranges data so that
identical values are adjacent. The return value includes extra partitioning information
on the groups. The implementation came included with the new radix sort.

• rhyper(nn,m,n,k) no longer returns NA when one of the three parameters exceeds the
maximal integer.

• switch() now warns when no alternatives are provided.

• parallel::detectCores() now has default logical = TRUE on all platforms – as this
was the default on Windows, this change only affects Sparc Solaris.

Option logical = FALSE is now supported on Linux and recent versions of OS X (for
the latter, thanks to a suggestion of Kyaw Sint).

• hist() for "Date" or "POSIXt" objects would sometimes give misleading labels on
the breaks, as they were set to the day before the start of the period being displayed.
The display format has been changed, and the shift of the start day has been made
conditional on right = TRUE (the default). (PR#16679)

• R now uses a new version of the logo (donated to the R Foundation by RStudio).
It is defined in ‘.svg’ format, so will resize without unnecessary degradation when
displayed on HTML pages—there is also a vector PDF version. Thanks to Dirk
Eddelbuettel for producing the corresponding X11 icon.

• New function .traceback() returns the stack trace which traceback() prints.

• lengths() dispatches internally.

• dotchart() gains a pt.cex argument to control the size of points separately from the
size of plot labels. Thanks to Michael Friendly and Milan Bouchet-Valat for ideas and
patches.

• as.roman(ch) now correctly deals with more diverse character vectors ch; also arith-
metic with the resulting roman numbers works in more cases. (PR#16779)

• prcomp() gains a new option rank. allowing to directly aim for less than min(n,p)
PC’s. The summary() and its print() method have been amended, notably for this
case.

• gzcon() gains a new option text, which marks the connection as text-oriented (so
e.g. pushBack() works). It is still always opened in binary mode.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16490
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16668
https://CRAN.R-project.org/package=data.table
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16679
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16779

NEWS AND NOTES 495

• The import() namespace directive now accepts an argument except which names
symbols to exclude from the imports. The except expression should evaluate to a
character vector (after substituting symbols for strings). See Writing R Extensions.

• New convenience function Rcmd() in package tools for invoking R CMD tools from
within R.

• New functions makevars_user() and makevars_site() in package tools to determine
the location of the user and site specific ‘Makevars’ files for customizing package
compilation.

UTILITIES

• R CMD check has a new option ‘--ignore-vignettes’ for use with non-Sweave vi-
gnettes whose ‘VignetteBuilder’ package is not available.

• R CMD check now by default checks code usage (via codetools) with only the base
package attached. Functions from default packages other than base which are used in
the package code but not imported are reported as undefined globals, with a suggested
addition to the NAMESPACE file.

• R CMD check --as-cran now also checks DOIs in package ‘CITATION’ and Rd files.

• R CMD Rdconv and R CMD Rd2pdf each have a new option ‘--RdMacros=pkglist’ which
allows Rd macros to be specified before processing.

DEPRECATED AND DEFUNCT

• The previously included versions of zlib, bzip2, xz and PCRE have been removed, so
suitable external (usually system) versions are required (see the ‘R Installation and
Administration’ manual).

• The unexported and undocumented Windows-only devices cairo_bmp(), cairo_png()
and cairo_tiff() have been removed. (These devices should be used as e.g. bmp(type
= "cairo").)

• (Windows only) Function setInternet2() has no effect and will be removed in due
course. The choice between methods "internal" and "wininet" is now made by the
method arguments of url() and download.file() and their defaults can be set via
options. The out-of-the-box default remains "wininet" (as it has been since R 3.2.2).

• [<- with an S4 value into a list currently embeds the S4 object into its own list such
that the end result is roughly equivalent to using [[<-. That behavior is deprecated.
In the future, the S4 value will be coerced to a list with as.list().

• Package tools’ functions package.dependencies(), pkgDepends(), etc are deprecated
now, mostly in favor of package_dependencies() which is both more flexible and
efficient.

INSTALLATION and INCLUDED SOFTWARE

• Support for very old versions of valgrind (e.g., 3.3.0) has been removed.

• The included libtool script (generated by configure) has been updated to version
2.4.6 (from 2.2.6a).

• libcurl version 7.28.0 or later with support for the https protocol is required for
installation (except on Windows).

• BSD networking is now required (except on Windows) and so capabilities("http/ftp")
is always true.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=codetools

NEWS AND NOTES 496

• configure uses pkg-config for PNG, TIFF and JPEG where this is available. This
should work better with multiple installs and with those using static libraries.

• The minimum supported version of OS X is 10.6 (‘Snow Leopard’): even that has been
unsupported by Apple since 2012.

• The configure default on OS X is ‘--disable-R-framework’: enable this if you intend
to install under ‘/Library/Frameworks’ and use with R.app.

• The minimum preferred version of PCRE has since R 3.0.0 been 8.32 (released in Nov
2012). Versions 8.10 to 8.31 are now deprecated (with warnings from configure), but
will still be accepted until R 3.4.0.

• configure looks for C functions __cospi, __sinpi and __tanpi and uses these if cospi
etc are not found. (OS X is the main instance.)

• (Windows) R is now built using gcc 4.9.3. This build will require recompilation of at
least those packages that include C++ code, and possibly others. A build of R-devel
using the older toolchain will be temporarily available for comparison purposes.

During the transition, the environment variable R_COMPILED_BY has been defined to
indicate which toolchain was used to compile R (and hence, which should be used
to compile code in packages). The COMPILED_BY variable described below will be a
permanent replacement for this.

• (Windows) A make and R CMD config variable named COMPILED_BY has been added.
This indicates which toolchain was used to compile R (and hence, which should be
used to compile code in packages).

PACKAGE INSTALLATION

• The make macro AWK which used to be made available to files such as ‘src/Makefile’ is
no longer set.

C-LEVEL FACILITIES

• The API call logspace_sum introduced in R 3.2.0 is now remapped as an entry point to
Rf_logspace_sum, and its first argument has gained a const qualifier. (PR#16470)

Code using it will need to be reinstalled.

Similarly, entry point log1pexp also defined in ‘Rmath.h’ is remapped there to Rf_log1pexp

• R_GE_version has been increased to 11.

• New API call R_orderVector1, a faster one-argument version of R_orderVector.

• When R headers such as ‘R.h’ and ‘Rmath.h’ are called from C++ code in packages
they include the C++ versions of system headers such as ‘<cmath>’ rather than the
legacy headers such as ‘<math.h>’. (Headers ‘Rinternals.h’ and ‘Rinterface.h’ already did,
and inclusion of system headers can still be circumvented by defining NO_C_HEADERS,
including as from this version for those two headers.)

The manual has long said that R headers should not be included within an extern
"C" block, and almost all the packages affected by this change were doing so.

• Including header ‘S.h’ from C++ code would fail on some platforms, and so gives a
compilation error on all.

• The deprecated header ‘Rdefines.h’ is now compatible with defining R_NO_REMAP.

• The connections interface now includes a function R_GetConnection() which allows
packages implementing connections to convert R connection objects to Rconnection
handles. Code which previously used the low-level R-internal getConnection() entry
point should switch.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16470

NEWS AND NOTES 497

BUG FIXES

• C-level asChar(x) is fixed for when x is not a vector, and it returns "TRUE"/"FALSE"
instead of "T"/"F" for logical vectors.

• The first arguments of .colSums() etc (with an initial dot) are now named x rather
than X (matching colSums()): thus error messages are corrected.

• A coef() method for class "maov" has been added to allow vcov() to work with
multivariate results. (PR#16380)

• method = "libcurl" connections signal errors rather than retrieving HTTP error pages
(where the ISP reports the error).

• xpdrows.data.frame() was not checking for unique row names; in particular, this
affected assignment to non-existing rows via numerical indexing. (PR#16570)

• tail.matrix() did not work for zero rows matrices, and could produce row “labels”
such as "[1e+05,]".

• Data frames with a column named "stringsAsFactors" now format and print cor-
rectly. (PR#16580)

• cor() is now guaranteed to return a value with absolute value less than or equal to 1.
(PR#16638)

• Array subsetting now keeps names(dim(.)).

• Blocking socket connection selection recovers more gracefully on signal interrupts.

• The data.frame method of rbind() construction row.names works better in borderline
integer cases, but may change the names assigned. (PR#16666)

• (X11 only) getGraphicsEvent() miscoded buttons and missed mouse motion events.
(PR#16700)

• methods(round) now also lists round.POSIXt.

• tar() now works with the default files = NULL. (PR#16716)

• Jumps to outer contexts, for example in error recovery, now make intermediate
jumps to contexts where on.exit() actions are established instead of trying to run
all on.exit() actions before jumping to the final target. This unwinds the stack
gradually, releases resources held on the stack, and significantly reduces the chance
of a segfault when running out of C stack space. Error handlers established using
withCallingHandlers() and options("error") specifications are ignored when han-
dling a C stack overflow error as attempting one of these would trigger a cascade of C
stack overflow errors. (These changes resolve PR#16753.)

• The spacing could be wrong when printing a complex array. (Report and patch by
Lukas Stadler.)

• pretty(d,n,min.n,*) for date-time objects d works again in border cases with large
min.n, returns a labels attribute also for small-range dates and in such cases its
returned length is closer to the desired n. (PR#16761) Additionally, it finally does cover
the range of d, as it always claimed.

• tsp(x) <-NULL did not handle correctly objects inheriting from both "ts" and "mts".
(PR#16769)

• install.packages() could give false errors when options("pkgType") was "binary".
(Reported by Jose Claudio Faria.)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16380
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16570
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16580
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16638
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16666
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16700
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16716
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16753
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16761
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16769

NEWS AND NOTES 498

• A bug fix in R 3.0.2 fixed problems with locator() in X11, but introduced problems in
Windows. Now both should be fixed. (PR#15700)

• download.file() with method = "wininet" incorrectly warned of download file
length difference when reported length was unknown. (PR#16805)

• diag(NULL,1) crashed because of missed type checking. (PR#16853)

CHANGES IN R 3.2.5

BUG FIXES

• format.POSIXlt() behaved incorrectly in R 3.2.4. E.g. the output of format(as.POSIXlt(paste0(1940:2000,"-01-01"),tz
= "CET"),usetz = TRUE) ended in two "CEST" time formats.

CHANGES IN R 3.2.4

NEW FEATURES

• install.packages() and related functions now give a more informative warning
when an attempt is made to install a base package.

• summary(x) now prints with less rounding when x contains infinite values. (Request
of PR#16620.)

• provideDimnames() gets an optional unique argument.

• shQuote() gains type = "cmd2" for quoting in cmd.exe in Windows. (Response to
PR#16636.)

• The data.frame method of rbind() gains an optional argument stringsAsFactors
(instead of only depending on getOption("stringsAsFactors")).

• smooth(x,*) now also works for long vectors.

• tools::texi2dvi() has a workaround for problems with the texi2dvi script supplied
by texinfo 6.1.

It extracts more error messages from the LaTeX logs when in emulation mode.

UTILITIES

• R CMD check will leave a log file ‘build_vignettes.log’ from the re-building of vignettes
in the ‘.Rcheck’ directory if there is a problem, and always if environment variable
_R_CHECK_ALWAYS_LOG_VIGNETTE_OUTPUT_ is set to a true value.

DEPRECATED AND DEFUNCT

• Use of ‘SUPPORT_OPENMP’ from header ‘Rconfig.h’ is deprecated in favour of the standard
OpenMP define ‘_OPENMP’.

(This has been the recommendation in the manual for a while now.)

• The make macro AWK which is long unused by R itself but recorded in file ‘etc/Makeconf’
is deprecated and will be removed in R 3.3.0.

• The C header file ‘S.h’ is no longer documented: its use should be replaced by ‘R.h’.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15700
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16805
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16853
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16620
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16636

NEWS AND NOTES 499

BUG FIXES

• kmeans(x,centers = <1-row>) now works. (PR#16623)

• Vectorize() now checks for clashes in argument names. (PR#16577)

• file.copy(overwrite = FALSE) would signal a successful copy when none had taken
place. (PR#16576)

• ngettext() now uses the same default domain as gettext(). (PR#14605)

• array(..,dimnames = *) now warns about non-list dimnames and, from R 3.3.0,
will signal the same error for invalid dimnames as matrix() has always done.

• addmargins() now adds dimnames for the extended margins in all cases, as always
documented.

• heatmap() evaluated its add.expr argument in the wrong environment. (PR#16583)

• require() etc now give the correct entry of lib.loc in the warning about an old
version of a package masking a newer required one.

• The internal deparser did not add parentheses when necessary, e.g. before [] or [[]].
(Reported by Lukas Stadler; additional fixes included as well).

• as.data.frame.vector(*,row.names=*) no longer produces ‘corrupted’ data frames
from row names of incorrect length, but rather warns about them. This will become
an error.

• url connections with method = "libcurl" are destroyed properly. (PR#16681)

• withCallingHandler() now (again) handles warnings even during S4 generic’s argu-
ment evaluation. (PR#16111)

• deparse(...,control = "quoteExpressions") incorrectly quoted empty expressions.
(PR#16686)

• format()ting datetime objects ("POSIX[cl]?t") could segfault or recycle wrongly.
(PR#16685)

• plot.ts(<matrix>,las = 1) now does use las.

• saveRDS(*,compress = "gzip") now works as documented. (PR#16653)

• (Windows only) The Rgui front end did not always initialize the console properly, and
could cause R to crash. (PR#16698)

• dummy.coef.lm() now works in more cases, thanks to a proposal by Werner Stahel
(PR#16665). In addition, it now works for multivariate linear models ("mlm", manova)
thanks to a proposal by Daniel Wollschlaeger.

• The as.hclust() method for "dendrogram"s failed often when there were ties in the
heights.

• reorder() and midcache.dendrogram() now are non-recursive and hence applicable
to somewhat deeply nested dendrograms, thanks to a proposal by Suharto Anggono
in PR#16424.

• cor.test() now calculates very small p values more accurately (affecting the result
only in extreme not statistically relevant cases). (PR#16704)

• smooth(*,do.ends=TRUE) did not always work correctly in R versions between 3.0.0
and 3.2.3.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16623
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16577
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16576
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=14605
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16583
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16681
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16111
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16686
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16685
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16653
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16698
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16665
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16424
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16704

NEWS AND NOTES 500

• pretty(D) for date-time objects D now also works well if range(D) is (much) smaller
than a second. In the case of only one unique value in D, the pretty range now is more
symmetric around that value than previously.
Similarly, pretty(dt) no longer returns a length 5 vector with duplicated entries for
Date objects dt which span only a few days.

• The figures in help pages such as ?points were accidentally damaged, and did not
appear in R 3.2.3. (PR#16708)

• available.packages() sometimes deleted the wrong file when cleaning up temporary
files. (PR#16712)

• The X11() device sometimes froze on Red Hat Enterprise Linux 6. It now waits for
MapNotify events instead of Expose events, thanks to Siteshwar Vashisht. (PR#16497)

• [dpqr]nbinom(*,size=Inf,mu=.) now works as limit case, for ‘dpq’ as the Poisson.
(PR#16727)
pnbinom() no longer loops infinitely in border cases.

• approxfun(*,method="constant") and hence ecdf() which calls the former now cor-
rectly “predict” NaN values as NaN.

• summary.data.frame() now displays NAs in Date columns in all cases. (PR#16709)

CHANGES IN R 3.2.3

NEW FEATURES

• Some recently-added Windows time zone names have been added to the conversion
table used to convert these to Olson names. (Including those relating to changes for
Russia in Oct 2014, as in PR#16503.)

• (Windows) Compatibility information has been added to the manifests for ‘Rgui.exe’,
‘Rterm.exe’ and ‘Rscript.exe’. This should allow win.version() and Sys.info() to
report the actual Windows version up to Windows 10.

• Windows "wininet" FTP first tries EPSV / PASV mode rather than only using active
mode (reported by Dan Tenenbaum).

• which.min(x) and which.max(x) may be much faster for logical and integer x and
now also work for long vectors.

• The ‘emulation’ part of tools::texi2dvi() has been somewhat enhanced, including
supporting quiet = TRUE. It can be selected by texi2dvi = "emulation".

(Windows) MiKTeX removed its texi2dvi.exe command in Sept 2015: tools::texi2dvi()
tries texify.exe if it is not found.

• (Windows only) Shortcuts for printing and saving have been added to menus in
Rgui.exe. (Request of PR#16572.)

• loess(...,iterTrace=TRUE) now provides diagnostics for robustness iterations, and
the print() method for summary(<loess>) shows slightly more.

• The included version of PCRE has been updated to 8.38, a bug-fix release.

• View() now displays nested data frames in a more friendly way. (Request with patch
in PR#15915.)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16708
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16712
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16497
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16727
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16709
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16503
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16572
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15915

NEWS AND NOTES 501

INSTALLATION and INCLUDED SOFTWARE

• The included configuration code for libintl has been updated to that from gettext
version 0.19.5.1 — this should only affect how an external library is detected (and the
only known instance is under OpenBSD). (Wish of PR#16464.)

• configure has a new argument ‘--disable-java’ to disable the checks for Java.

• The configure default for MAIN_LDFLAGS has been changed for the FreeBSD, NetBSD
and Hurd OSes to one more likely to work with compilers other than gcc (FreeBSD 10
defaults to clang).

• configure now supports the OpenMP flags ‘-fopenmp=libomp’ (clang) and ‘-qopenmp’
(Intel C).

• Various macros can be set to override the default behaviour of configure when detect-
ing OpenMP: see file ‘config.site’.

• Source installation on Windows has been modified to allow for MiKTeX installations
without texi2dvi.exe. See file ‘MkRules.dist’.

BUG FIXES

• regexpr(pat,x,perl = TRUE) with Python-style named capture did not work correctly
when x contained NA strings. (PR#16484)

• The description of dataset ToothGrowth has been improved/corrected. (PR#15953)

• model.tables(type = "means") and hence TukeyHSD() now support "aov" fits with-
out an intercept term. (PR#16437)

• close() now reports the status of a pipe() connection opened with an explicit open
argument. (PR#16481)

• Coercing a list without names to a data frame is faster if the elements are very long.
(PR#16467)

• (Unix-only) Under some rare circumstances piping the output from Rscript or R -f
could result in attempting to close the input file twice, possibly crashing the process.
(PR#16500)

• (Windows) Sys.info() was out of step with win.version() and did not report Win-
dows 8.

• topenv(baseenv()) returns baseenv() again as in R 3.1.0 and earlier. This also fixes
compilerJIT(3) when used in ‘.Rprofile’.

• detach()ing the methods package keeps .isMethodsDispatchOn() true, as long as
the methods namespace is not unloaded.

• Removed some spurious warnings from configure about the preprocessor not finding
header files. (PR#15989)

• rchisq(*,df=0,ncp=0) now returns 0 instead of NaN, and dchisq(*,df=0,ncp=*) also
no longer returns NaN in limit cases (where the limit is unique). (PR#16521)

• pchisq(*,df=0,ncp >0,log.p=TRUE) no longer underflows (for ncp > ~60).

• nchar(x,"w") returned -1 for characters it did not know about (e.g. zero-width spaces):
it now assumes 1. It now knows about most zero-width characters and a few more
double-width characters.

• Help for which.min() is now more precise about behavior with logical arguments.
(PR#16532)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16464
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16484
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15953
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16437
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16481
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16467
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16500
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15989
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16521
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16532

NEWS AND NOTES 502

• The print width of character strings marked as "latin1" or "bytes" was in some cases
computed incorrectly.

• abbreviate() did not give names to the return value if minlength was zero, unlike
when it was positive.

• (Windows only) dir.create() did not always warn when it failed to create a directory.
(PR#16537)

• When operating in a non-UTF-8 multibyte locale (e.g. an East Asian locale on Win-
dows), grep() and related functions did not handle UTF-8 strings properly. (PR#16264)

• read.dcf() sometimes misread lines longer than 8191 characters. (Reported by Hervé
Pagès with a patch.)

• within(df,..) no longer drops columns whose name start with a ".".

• The built-in HTTP server converted entire Content-Type to lowercase including param-
eters which can cause issues for multi-part form boundaries (PR#16541).

• Modifying slots of S4 objects could fail when the methods package was not attached.
(PR#16545)

• splineDesign(*,outer.ok=TRUE) (splines) is better now (PR#16549), and interpSpline()
now allows sparse=TRUE for speedup with non-small sizes.

• If the expression in the traceback was too long, traceback() did not report the source
line number. (Patch by Kirill Müller.)

• The browser did not truncate the display of the function when exiting with options("deparse.max.lines")
set. (PR#16581)

• When bs(*,Boundary.knots=) had boundary knots inside the data range, extrapola-
tion was somewhat off. (Patch by Trevor Hastie.)

• var() and hence sd() warn about factor arguments which are deprecated now.
(PR#16564)

• loess(*,weights = *) stored wrong weights and hence gave slightly wrong predic-
tions for newdata. (PR#16587)

• aperm(a,*) now preserves names(dim(a)).

• poly(x,..) now works when either raw=TRUE or coef is specified. (PR#16597)

• data(package=*) is more careful in determining the path.

• prettyNum(*,decimal.mark,big.mark): fixed bug introduced when fixing PR#16411.

CHANGES IN R 3.2.2

SIGNIFICANT USER-VISIBLE CHANGES

• It is now easier to use secure downloads from ‘https://’ URLs on builds which
support them: no longer do non-default options need to be selected to do so. In
particular, packages can be installed from repositories which offer ‘https://’ URLs,
and those listed by setRepositories() now do so (for some of their mirrors).

Support for ‘https://’ URLs is available on Windows, and on other platforms if
support for libcurl was compiled in and if that supports the https protocol (system
installations can be expected to do). So ‘https://’ support can be expected except on
rather old OSes (an example being OS X ‘Snow Leopard’, where a non-system version
of libcurl can be used).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16537
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16264
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16541
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16545
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16549
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16581
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16564
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16587
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16597
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16411

NEWS AND NOTES 503

(Windows only) The default method for accessing URLs via download.file() and
url() has been changed to be "wininet" using Windows API calls. This changes the
way proxies need to be set and security settings made: there have been some reports
of ‘ftp:’ sites being inaccessible under the new default method (but the previous
methods remain available).

NEW FEATURES

• cmdscale() gets new option list. for increased flexibility when a list should be
returned.

• configure now supports texinfo version 6.0, which (unlike the change from 4.x to
5.0) is a minor update. (Wish of PR#16456.)

• (Non-Windows only) download.file() with default method = "auto" now chooses
"libcurl" if that is available and a ‘https://’ or ‘ftps://’ URL is used.

• (Windows only) setInternet2(TRUE) is now the default. The command-line option
--internet2 and environment variable R_WIN_INTERNET2 are now ignored.

Thus by default the "internal" method for download.file() and url() uses the
"wininet" method: to revert to the previous default use setInternet2(FALSE).

This means that ‘https://’ URLs can be read by default by download.file() (they
have been readable by file() and url() since R 3.2.0).

There are implications for how proxies need to be set (see ?download.file).

• chooseCRANmirror() and chooseBioCmirror() now offer HTTPS mirrors in preference
to HTTP mirrors. This changes the interpretation of their ind arguments: see their
help pages.

• capture.output() gets optional arguments type and split to pass to sink(), and
hence can be used to capture messages.

C-LEVEL FACILITIES

• Header ‘Rconfig.h’ now defines HAVE_ALLOCA_H if the platform has the ‘alloca.h’ header
(it is needed to define alloca on Solaris and AIX, at least: see ‘Writing R Extensions’
for how to use it).

INSTALLATION and INCLUDED SOFTWARE

• The libtool script generated by configure has been modified to support FreeBSD >=
10 (PR#16410).

BUG FIXES

• The HTML help page links to demo code failed due to a change in R 3.2.0. (PR#16432)

• If the na.action argument was used in model.frame(), the original data could be
modified. (PR#16436)

• getGraphicsEvent() could cause a crash if a graphics window was closed while it
was in use. (PR#16438)

• matrix(x,nr,nc,byrow = TRUE) failed if x was an object of type "expression".

• strptime() could overflow the allocated storage on the C stack when the timezone
had a non-standard format much longer than the standard formats. (Part of PR#16328.)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16456
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16410
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16432
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16436
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16438
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16328

NEWS AND NOTES 504

• options(OutDec = s) now signals a warning (which will become an error in the
future) when s is not a string with exactly one character, as that has been a documented
requirement.

• prettyNum() gains a new option input.d.mark which together with other changes,
e.g., the default for decimal.mark, fixes some format()ting variants with non-default
getOption("OutDec") such as in PR#16411.

• download.packages() failed for type equal to either "both" or "binary". (Reported
by Dan Tenenbaum.)

• The dendrogram method of labels() is much more efficient for large dendrograms,
now using rapply(). (Comment #15 of PR#15215)

• The "port" algorithm of nls() could give spurious errors. (Reported by Radford
Neal.)

• Reference classes that inherited from reference classes in another package could invali-
date methods of the inherited class. Fixing this requires adding the ability for methods
to be “external”, with the object supplied explicitly as the first argument, named .self.
See "Inter-Package Superclasses" in the documentation.

• readBin() could fail on the SPARC architecture due to alignment issues. (Reported by
Radford Neal.)

• qt(*,df=Inf,ncp=.) now uses the natural qnorm() limit instead of returning NaN.
(PR#16475)

• Auto-printing of S3 and S4 values now searches for print() in the base namespace
and show() in the methods namespace instead of searching the global environment.

• polym() gains a coefs = NULL argument and returns class "poly" just like poly()
which gets a new simple=FALSE option. They now lead to correct predict()ions, e.g.,
on subsets of the original data. (PR#16239)

• rhyper(nn,<large>) now works correctly. (PR#16489)

• ttkimage() did not (and could not) work so was removed. Ditto for tkimage.cget()
and tkimage.configure(). Added two Ttk widgets and missing subcommands for
Tk’s image command: ttkscale(), ttkspinbox(), tkimage.delete(), tkimage.height(),
tkimage.inuse(), tkimage.type(), tkimage.types(), tkimage.width(). (PR#15372,
PR#16450)

• getClass("foo") now also returns a class definition when it is found in the cache
more than once.

CHANGES IN R 3.2.1

NEW FEATURES

• utf8ToInt() now checks that its input is valid UTF-8 and returns NA if it is not.

• install.packages() now allows type = "both" with repos = NULL if it can infer the
type of file.

• nchar(x,*) and nzchar(x) gain a new argument keepNA which governs how the result
for NAs in x is determined. For nzchar() in general and nchar() in the R 3.2.x series,
the default remains FALSE which is fully back compatible. From R 3.3.0, nchar()’s
default will change to keepNA = NA and you are advised to consider this for code
portability.

• news() more flexibly extracts dates from package ‘NEWS.Rd’ files.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16411
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15215
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16475
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16239
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16489
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15372
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16450

NEWS AND NOTES 505

• lengths(x) now also works (trivially) for atomic x and hence can be used more
generally as an efficient replacement of sapply(x,length) and similar.

• The included version of PCRE has been updated to 8.37, a bug-fix release.

• diag() no longer duplicates a matrix when extracting its diagonal.

• as.character.srcref() gains an argument to allow characters corresponding to a
range of source references to be extracted.

BUG FIXES

• acf() and ccf() now guarantee values strictly in [−1, 1] (instead of sometimes very
slightly outside). PR#15832.

• as.integer("111111111111") now gives NA (with a warning) as it does for the corre-
sponding numeric or negative number coercions. Further, as.integer(M + 0.1) now
gives M (instead of NA) when M is the maximal representable integer.

• On some platforms nchar(x,"c") and nchar(x,"w") would return values (possibly
NA) for inputs which were declared to be UTF-8 but were not, or for invalid strings
without a marked encoding in a multi-byte locale, rather than give an error. Additional
checks have been added to mitigate this.

• apply(a,M,function(u) c(X = .,Y = .)) again has dimnames containing "X" and
"Y" (as in R < 3.2.0).

• (Windows only) In some cases, the --clean option to R CMD INSTALL could fail.
(PR#16178)

• (Windows only) choose.files() would occasionally include characters from the result
of an earlier call in the result of a later one. (PR#16270)

• A change in RSiteSearch() in R 3.2.0 caused it to submit invalid URLs. (PR#16329)

• Rscript and command line R silently ignored incomplete statements at the end of a
script; now they are reported as parse errors. (PR#16350)

• Parse data for very long strings was not stored. (PR#16354)

• plotNode(), the workhorse of the plot method for "dendrogram"s is no longer recur-
sive, thanks to Suharto Anggono, and hence also works for deeply nested dendrograms.
(PR#15215)

• The parser could overflow internally when given numbers in scientific format with
extremely large exponents. (PR#16358)

• If the CRAN mirror was not set, install.packages(type = "both") and related
functions could repeatedly query the user for it. (Part of PR#16362)

• The low-level functions .rowSums() etc. did not check the length of their argument, so
could segfault. (PR#16367)

• The quietly argument of library() is now correctly propagated from .getRequiredPackages2().

• Under some circumstances using the internal PCRE when building R from source
would cause external libs such as -llzma to be omitted from the main link.

• The .Primitive default methods of the logic operators, i.e., !, & and |, now give correct
error messages when appropriate, e.g., for `&`(TRUE) or `!`(). (PR#16385)

• cummax(x) now correctly propagates NAs also when x is of type integer and begins
with an NA.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15832
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16178
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16270
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16329
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16350
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16354
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15215
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16358
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16362
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16367
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16385

NEWS AND NOTES 506

• summaryRprof() could fail when the profile contained only two records. (PR#16395)

• HTML vignettes opened using vignette() did not support links into the rest of the
HTML help system. (Links worked properly when the vignette was opened using
browseVignettes() or from within the help system.)

• arima(*,xreg = .) (for d ≥ 1) computes estimated variances based on a the number
of effective observations as in R version 3.0.1 and earlier. (PR#16278)

• slotNames(.) is now correct for "signature" objects (mostly used internally in meth-
ods).

• On some systems, the first string comparison after a locale change would result in NA.

CHANGES IN R 3.2.0

NEW FEATURES

• anyNA() gains a recursive argument.

• When x is missing and names is not false (including the default value), Sys.getenv(x,names)
returns an object of class "Dlist" and hence prints tidily.

• (Windows.) shell() no longer consults the environment variable SHELL: too many
systems have been encountered where it was set incorrectly (usually to a path where
software was compiled, not where it was installed). R_SHELL, the preferred way to
select a non-default shell, can be used instead.

• Some unusual arguments to embedFonts() can now be specified as character vectors,
and the defaults have been changed accordingly.

• Functions in the Summary group duplicate less. (PR#15798)

• (Unix-alikes.) system(cmd,input =) now uses ‘shell-execution-environment’ redi-
rection, which will be more natural if cmd is not a single command (but requires a
POSIX-compliant shell). (Wish of PR#15508)

• read.fwf() and read.DIF() gain a fileEncoding argument, for convenience.

• Graphics devices can add attributes to their description in .Device and .Devices.
Several of those included with R use a "filepath" attribute.

• pmatch() uses hashing in more cases and so is faster at the expense of using more
memory. (PR#15697)

• pairs() gains new arguments to select sets of variables to be plotted against each
other.

• file.info(,extra_cols = FALSE) allows a minimal set of columns to be computed
on Unix-alikes: on some systems without properly-configured caching this can be
significantly faster with large file lists.

• New function dir.exists() in package base to test efficiently whether one or more
paths exist and are directories.

• dput() and friends gain new controls ‘hexNumeric’ and ‘digits17’ which output dou-
ble and complex quantities as, respectively, binary fractions (exactly, see sprintf("%a"))
and as decimals with up to 17 significant digits.

• save(), saveRDS() and serialize() now support ascii = NA which writes ASCII
files using sprintf("%a") for double/complex quantities. This is read-compatible
with ascii = TRUE but avoids binary->decimal->binary conversions with potential
loss of precision. Unfortunately the Windows C runtime’s lack of C99 compliance
means that the format cannot be read correctly there in R before 3.1.2.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16395
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16278
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15798
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15508
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15697

NEWS AND NOTES 507

• The default for formatC(decimal.mark =) has been changed to be getOption("OutDec");
this makes it more consistent with format() and suitable for use in print methods,
e.g. those for classes "density", "ecdf", "stepfun" and "summary.lm".

getOption("OutDec") is now consulted by the print method for class "kmeans", by
cut(), dendrogram(), plot.ts() and quantile() when constructing labels and for the
report from legend(trace = TRUE).

(In part, wish of PR#15819.)

• printNum() and hence format() and formatC() give a warning if big.mark and
decimal.mark are set to the same value (period and comma are not uncommonly
used for each, and this is a check that conventions have not got mixed).

• merge() can create a result which uses long vectors on 64-bit platforms.

• dget() gains a new argument keep.source which defaults to FALSE for speed (dput()
and dget() are most often used for data objects where this can make dget() many
times faster).

• Packages may now use a file of common macro definitions in their help files, and may
import definitions from other packages.

• A number of macros have been added in the new ‘share/Rd’ directory for use in
package overview help pages, and promptPackage() now makes use of them.

• tools::parse_Rd() gains a new permissive argument which converts unrecognized
macros into text. This is used by utils:::format.bibentry to allow LaTeX markup
to be ignored.

• options(OutDec =) can now specify a multi-byte character, e.g., options(OutDec =
"\u00b7") in a UTF-8 locale.

• is.recursive(x) is no longer true when x is an external pointer, a weak reference or
byte code; the first enables all.equal(x,x) when x <-getClass(.).

• ls() (aka objects()) and as.list.environment() gain a new argument sorted.

• The "source" attribute (which has not been added to functions by R since before R
version 2.14.0) is no longer treated as special.

• Function returnValue() has been added to give on.exit() code access to a function’s
return value for debugging purposes.

• crossprod(x,y) allows more matrix coercions when x or y are vectors, now equalling
t(x) %*% y in these cases (also reported by Radford Neal). Similarly, tcrossprod(x,y)
and %*% work in more cases with vector arguments.

• Utility function dynGet() useful for detecting cycles, aka infinite recursions.

• The byte-code compiler and interpreter include new instructions that allow many
scalar subsetting and assignment and scalar arithmetic operations to be handled more
efficiently. This can result in significant performance improvements in scalar numerical
code.

• apply(m,2,identity) is now the same as the matrix m when it has named row names.

• A new function debuggingState() has been added, allowing to temporarily turn off
debugging.

• example() gets a new optional argument run.donttest and tools::Rd2ex() a corre-
sponding commentDonttest, with a default such that example(..) in help examples
will run \donttest code only if used interactively (a change in behaviour).

• rbind.data.frame() gains an optional argument make.row.names, for potential speedup.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15819

NEWS AND NOTES 508

• New function extSoftVersion() to report on the versions of third-party software in
use in this session. Currently reports versions of zlib, bzlib, the liblzma from xz,
PCRE, ICU, TRE and the iconv implementation.

A similar function grSoftVersion() in package grDevices reports on third-party
graphics software.

Function tcltk::tclVersion() reports the Tcl/Tk version.

• Calling callGeneric() without arguments now works with primitive generics to some
extent.

• vapply(x,FUN,FUN.VALUE) is more efficient notably for large length(FUN.VALUE); as
extension of PR#16061.

• as.table() now allows tables with one or more dimensions of length 0 (such as
as.table(integer())).

• names(x) <-NULL now clears the names of call and ... objects.

• library() will report a warning when an insufficient dependency version is masking
a sufficient one later on the library search path.

• A new plot() method for class "raster" has been added.

• New check_packages_in_dir_changes() function in package tools for conveniently
analyzing how changing sources impacts the check results of their reverse dependen-
cies.

• Speed-up from Peter Haverty for ls() and methods:::.requirePackage() speeding
up package loading. (PR#16133)

• New get0() function, combining exists() and get() in one call, for efficiency.

• match.call() gains an envir argument for specifying the environment from which to
retrieve the ... in the call, if any; this environment was wrong (or at least undesirable)
when the definition argument was a function.

• topenv() has been made .Internal() for speedup, based on Peter Haverty’s proposal
in PR#16140.

• getOption() no longer calls options() in the main case.

• Optional use of libcurl (version 7.28.0 from Oct 2012 or later) for Internet access:

– capabilities("libcurl") reports if this is available.

– libcurlVersion() reports the version in use, and other details of the "libcurl"
build including which URL schemes it supports.

– curlGetHeaders() retrieves the headers for ‘http://’, ‘https://’, ‘ftp://’ and
‘ftps://’ URLs: analysis of these headers can provide insights into the ‘existence’
of a URL (it might for example be permanently redirected) and is so used in R
CMD check --as-cran.

– download.file() has a new optional method "libcurl" which will handle more
URL schemes, follow redirections, and allows simultaneous downloads of multi-
ple URLs.

– url() has a new method "libcurl" which handles more URL schemes and fol-
lows redirections. The default method is controlled by a new option url.method,
which applies also to the opening of URLs via file() (which happens implicitly
in functions such as read.table.)

– When file() or url() is invoked with a https:// or ftps:// URL which the
current method cannot handle, it switches to a suitable method if one is available.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16061
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16133
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16140

NEWS AND NOTES 509

• (Windows.) The DLLs ‘internet.dll’ and ‘internet2.dll’ have been merged. In this version
it is safe to switch (repeatedly) between the internal and Windows internet functions
within an R session.

The Windows internet functions are still selected by flag ‘--internet2’ or setInternet2().
This can be overridden for an url() connection via its new method argument.

download.file() has new method "wininet", selected as the default by ‘--internet2’
or setInternet2().

• parent.env<- can no longer modify the parent of a locked namespace or namespace
imports environment. Contributed by Karl Millar.

• New function isNamespaceLoaded() for readability and speed.

• names(env) now returns all the object names of an environment env, equivalently to
ls(env,all.names = TRUE,sorted = FALSE) and also to the names of the correspond-
ing list, names(as.list(env,all.names = TRUE)). Note that although names() returns
a character vector, the names have no particular ordering.

• The memory manager now grows the heap more aggressively. This reduces the
number of garbage collections, in particular while data or code are loaded, at the
expense of slightly increasing the memory footprint.

• New function trimws() for removing leading/trailing whitespace.

• cbind() and rbind() now consider S4 inheritance during S3 dispatch and also obey
deparse.level.

• cbind() and rbind() will delegate recursively to methods::cbind2 (methods::rbind2)
when at least one argument is an S4 object and S3 dispatch fails (due to ambiguity).

• (Windows.) download.file(quiet = FALSE) now uses text rather than Windows
progress bars in non-interactive use.

• New function hsearch_db() in package utils for building and retrieving the help
search database used by help.search(), along with functions for inspecting the con-
cepts and keywords in the help search database.

• New function .getNamespaceInfo(), a no-check version of getNamespaceInfo() mostly
for internal speedups.

• The help search system now takes ‘\keyword’ entries in Rd files which are not standard
keywords (as given in ‘KEYWORDS’ in the R documentation directory) as concepts.
For standard keyword entries the corresponding descriptions are additionally taken
as concepts.

• New lengths() function for getting the lengths of all elements in a list.

• New function toTitleCase() in package tools, tailored to package titles.

• The matrix methods of cbind() and rbind() allow matrices as inputs which have 231

or more elements. (For cbind(), wish of PR#16198.)

• The default method of image() has an explicit check for a numeric or logical matrix
(which was always required).

• URLencode() will not by default encode further URLs which appear to be already
encoded.

• BIC(mod) and BIC(mod,mod2) now give non-NA numbers for arima() fitted models,
as nobs(mod) now gives the number of “used” observations for such models. This
fixes PR#16198, quite differently than proposed there.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16198
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16198

NEWS AND NOTES 510

• The print() methods for "htest", "pairwise.htest" and "power.htest" objects now
have a digits argument defaulting to (a function of) getOption("digits"), and influ-
encing all printed numbers coherently. Unavoidably, this changes the display of such
test results in some cases.

• Code completion for namespaces now recognizes all loaded namespaces, rather than
only the ones that are also attached.

• The code completion mechanism can now be replaced by a user-specified completer
function, for (temporary) situations where the usual code completion is inappropriate.

• unzip() will now warn if it is able to detect truncation when unpacking a file of 4GB
or more (related to PR#16243).

• methods() reports S4 in addition to S3 methods; output is simplified when the class ar-
gument is used. .S3methods() and methods::.S4methods() report S3 and S4 methods
separately.

• Higher order functions such as the apply functions and Reduce() now force arguments
to the functions they apply in order to eliminate undesirable interactions between lazy
evaluation and variable capture in closures. This resolves PR#16093.

INSTALLATION and INCLUDED SOFTWARE

• The \donttest sections of R’s help files can be tested by
make check TEST_DONTTEST=TRUE .

• It is possible to request the use of system valgrind headers via configure option
‘--with-system-valgrind-headers’: note the possible future incompatibility of such
headers discussed in the ’R Installation and Administration’ manual. (Wish of PR#16068.)

• The included version of liblzma has been updated to xz-utils 5.0.7 (minor bug fixes
from 5.0.5).

• configure options ‘--with-system-zlib’, ‘--with-system-bzlib’ and ‘--with-system-pcre’
are now the default. For the time being there is fallback to the versions included in the
R sources if no system versions are found or (unlikely) if they are too old.

Linux users should check that the -devel or -dev versions of packages zlib, bzip2/libbz2
and pcre as well as xz-devel/liblzma-dev (or similar names) are installed.

• configure by default looks for the texi2any script from texinfo 5.1 or later, rather
than the makeinfo program. (makeinfo is a link to the Perl script texi2any in texinfo
5.x.)

• R CMD INSTALL gains an option ‘--built-timestamp=STAMP’ allowing 100% repro-
ducible package building, thanks to Dirk Eddelbuettel.

UTILITIES

• There is support for testing the \dontrun and \donttest parts of examples in packages.

tools::testInstalledPackage() accepts new arguments commentDontrun = FALSE
and commentDonttest = FALSE.

R CMD check gains options ‘--run-dontrun’ and ‘--run-donttest’.

• The HTML generated by tools::Rd2HTML() and tools::toHTML() methods is now
‘XHTML 1.0 Strict’.

• The compiler package’s utility function setCompilerOptions() now returns the old
values invisibly. The initial optimization level can also be set with the environment
variable R_COMPILER_OPTIMIZE.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16243
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16093
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16068

NEWS AND NOTES 511

• R CMD build adds a ‘NeedsCompilation’ field if one is not already present in the
‘DESCRIPTION’ file.

• R CMD check gains option ‘--test-dir’ to specify an alternative set of tests to run.

• R CMD check will now by default continue with testing after many types of errors, and
will output a summary count of errors at the end if any have occurred.

• R CMD check now checks that the ‘Title’ and ‘Description’ fields are correctly termi-
nated.

• R CMD check --as-cran now:

– checks a ‘README.md’ file can be processed: this needs pandoc installed.

– checks the existence and accessibility of URLs in the ‘DESCRIPTION’, ‘CITATION’,
‘NEWS.Rd’ and ‘README.md’ files and in the help files (provided the build has
libcurl support).

– reports non-ASCII characters in R source files when there is no package encoding
declared in the ‘DESCRIPTION’ file.

– reports (apparent) S3 methods exported but not registered.

– reports overwriting registered S3 methods from base/recommended packages.
(Such methods are replaced in the affected package for the rest of the session,
even if the replacing namespace is unloaded.)

– reports if the Title field does not appear to be in title case (see ‘Writing R
Extensions’: there may be false positives, but note that technical words should be
single-quoted and will then be accepted).

Most of these checks can also be selected by environment variables: see the ‘R Internals’
manual.

C-LEVEL FACILITIES

• New C API utility logspace_sum(logx[],n).

• Entry points rbinom_mu, rnbinom_mu and rmultinom are remapped (by default) to
Rf_rbinom_mu etc. This requires packages using them to be re-installed.

• .C(DUP = FALSE) and .Fortran(DUP = FALSE) are now ignored, so arguments are
duplicated if DUP = TRUE would do so. As their help has long said, .Call() is much
preferred.

• New entry point R_allocLD, like R_alloc but guaranteed to have sufficient alignment
for long double pointers.

• isPairList() now returns TRUE for DOTSXP.

WINDOWS BUILD CHANGES

A number of changes to the Windows build system are in development. The following are
currently in place.

• Installation using external binary distributions of zlib, bzip2, liblzma, pcre, libpng,
jpeglib and libtiff is now required, and the build instructions have been revised.

• A new make target rsync-extsoft has been added to obtain copies of the external
libraries from CRAN.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

NEWS AND NOTES 512

• Building the manuals now requires texi2any from texinfo 5.1 or later. CRAN binary
builds include the manuals, but by default builds from source will not, and they will
be accessed from CRAN. See the comments in ‘src/gnuwin32/MkRules.dist’ for how to
specify the location of texi2any.

• (Windows) Changes have been made to support an experimental Windows toolchain
based on GCC 4.9.2. The default toolchain continues to be based on GCC 4.6.3, as
the new toolchain is not yet stable enough. A change to a new toolchain is expected
during the R 3.2.x lifetime.

PACKAGE INSTALLATION

• (Windows) The use of macro ZLIB_LIBS in file ‘src/Makevars.win’ (which has not been
documented for a long time) now requires an external ‘libz.a’ to be available (it is part
of the ‘goodies’ used to compile Windows binary packages). It would be simpler to
use -lz instead.

• The default for option pkgType on platforms using binary packages is now "both", so
source packages will be tried if binary versions are not available or not up to date.

There are options for what install.packages(type = "both") (possibly called via
update.packages()) will do if compilation of a source package is desirable: see
?options (under utils).

If you intend not to accept updates as source packages, you should use update.packages(type
= "binary").

DEPRECATED AND DEFUNCT

• download.file(method = "lynx") is defunct.

• Building R using the included versions of zlib, bzip2, xz and PCRE is deprecated:
these are frozen (bar essential bug-fixes) and will be removed for R 3.3.0.

• The configure option ‘--with-valgrind-instrumentation=3’ has been withdrawn,
as it did not work with recent valgrind headers: it is now treated as level 2.

• The MethodsList class in package methods had been deprecated in R 2.11.0 and is
defunct now. Functions using it are defunct if they had been deprecated in R 2.11.0,
and are deprecated now, otherwise.

BUG FIXES

• Fixed two obscure bugs in pairlist subassignment, reported by Radford Neal as part of
pqR issue 16.

• Fixes for bugs in handling empty arguments and argument matching by name in
log().

• all.equal() gains methods for environments and refClasses.

• [<- and [[<- gain S4 data.frame methods to avoid corruption of S4 class information
by the S3 methods.

• callNextMethod() should now work within a .local call when ... is absent from
formals(.local).

• dput(pairlist(x)) generates a call to the pairlist constructor instead of the list
constructor.

• Fix missing() when arguments are propagated through (PR#15707)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15707

NEWS AND NOTES 513

• eigen(m) now defaults to symmetric = TRUE even when the dimnames are asymmetric
if the matrix is otherwise symmetric. (PR#16151)

• Fix issues with forwarding ... through callGeneric() and callNextMethod(). (PR#16141)

• callGeneric() now works after a callNextMethod().

• Subclass information is kept consistent when replacing an ordinary S4 class with
an “old class” via the S4Class argument to setOldClass(). Thus, for example, a
data.frame is valid for a list argument in the signature, and a factor is valid for
vector arguments.

• In qbeta() the inversion of pbeta() is much more sophisticated. This works better in
corner cases some of which failed completely previously (PR#15755), or were using
too many iterations.

• Auto-printing no longer duplicates objects when printing is dispatched to a method.

• kmeans(x,k) would fail when nrow(x) >= 42949673. (Comment 6 of PR#15364)

• ‘Abbreviated’ locale-specific day and month names could have been truncated in those
rare locales where there are the same as the full names.

• An irrelevant warning message from updating subclass information was silenced (the
namespace would not be writable in this case).

CHANGES IN R 3.1.3

NEW FEATURES

• The internal method of download.file() can now handle files larger than 2GB on
32-bit builds which support such files (tested on 32-bit R running on 64-bit Windows).

• kruskal.test() warns on more types of suspicious input.

• The as.dendrogram() method for "hclust" objects gains a check argument protecting
against memory explosion for invalid inputs.

• capabilities() has a new item long.double which indicates if the build uses a long
double type which is longer than double.

• nlm() no longer modifies the callback argument in place (a new vector is allocated
for each invocation, which mimics the implicit duplication that occurred in R < 3.1.0);
note that this is a change from the previously documented behavior. (PR#15958)

• icuSetCollate() now accepts locale = "ASCII" which uses the basic C function
strcmp and so collates strings byte-by-byte in numerical order.

• sessionInfo() tries to report the OS version in use (not just that compiled under, and
including details of Linux distributions).

• model.frame() (used by lm() and many other modelling functions) now warns when
it drops contrasts from factors. (Wish of PR#16119)

• install.packages() and friends now accept the value type = "binary" as a synonym
for the native binary type on the platform (if it has one).

• Single source or binary files can be supplied for install.packages(type = "both")
and the appropriate type and repos = NULL will be inferred.

• New function pcre_config() to report on some of the configuration options of the
version of PCRE in use. In particular, this reports if regular expressions using ‘\p{xx}’
are supported.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16151
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16141
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15755
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15364
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15958
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16119

NEWS AND NOTES 514

• (Windows.) download.file(cacheOK = FALSE) is now supported when ‘internet2.dll’
is used.

• browseURL() has been updated to work with Firefox 36.0 which has dropped support
for the ‘-remote’ interface.

INSTALLATION and INCLUDED SOFTWARE

• The included version of PCRE has been updated to 8.36.

• configure accepts ‘MAKEINFO=texi2any’ as another way to ensure texinfo 5.x is used
when both 5.x and 4.x are installed.

UTILITIES

• R CMD check now checks the packages used in \donttest sections of the examples are
specified in the ‘DESCRIPTION’ file. (These are needed to run the examples interac-
tively.)

• R CMD check checks for the undeclared use of GNU extensions in Makefiles, and for
Makefiles with a missing final linefeed.

R CMD build will correct line endings in all Makefiles, not just those in the ‘src’
directory.

• R CMD check notes uses of library() and require() in package code: see the section
‘Suggested packages’ of ‘Writing R Extensions’ for good practice.

DEPRECATED AND DEFUNCT

• The configure option ‘--with-valgrind-instrumentation=3’ is deprecated and will
be removed in R 3.2.0.

BUG FIXES

• (Windows.) Rscript.exe was missing a manifest specifying the modern style for
common controls (e.g., the download progress bar).

• If a package had extra documentation files but no vignette, the HTML help system
produced an empty index page.

• The parser now gives an error if a null character is included in a string using Unicode
escapes. (PR#16046)

• qr.Q() failed on complex arguments due to pre-3.0(!) typo. (PR#16054)

• abs() failed with named arguments when the argument was complex. (PR#16047)

• "noquote" objects may now be used as columns in data frames. (PR#15997)

• Some values with extremely long names were printed incorrectly. (PR#15999)

• Extremely large exponents on zero expressed in scientific notation (e.g. 0.0e50000)
could give NaN. (PR#15976)

• download.file() reported downloaded sizes as 0KB if less than 1MB, only for R 3.1.2
and only on big-endian platforms.

• prompt() did not escape percent signs in the automatically generated usage section of
help files.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16046
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16054
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16047
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15997
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15999
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15976

NEWS AND NOTES 515

• drop.terms() dropped some of the attributes of the object it was working with.
(PR#16029)

• (Windows.) The command completion in Rgui.exe messed up the console. (PR#15791)

• (Windows.) The choose.files() command returned a blank string when the user
asked for a single file but cancelled the request. (PR#16074)

• Math2 S4 group generics failed to correctly dispatch "structure"- and "nonStructure"-
derived classes.

• loadNamespace() imposed undocumented restrictions on the versionCheck parameter.
(Reported by Geoff Lee.)

• Rare over-runs detected by AddressSanitizer in substr() and its replacement version
have been avoided.

Inter alia that fix gives the documented behaviour for substr(x,1,2) <-"" (subse-
quently reported as PR#16214).

• Loading packages incorrectly defining an S4 generic followed by a function of the
same name caused an erroneous cyclic namespace dependency error.

• Declared vignette encodings are now always passed to the vignette engine.

• Port Tomas Kalibera’s fix from R-devel that restores the loadMethod() fast path, effec-
tively doubling the speed of S4 dispatch.

• power.t.test() and power.prop.test() now make use of the extendInt option of
uniroot() and hence work in more extreme cases. (PR#15792)

• If a package was updated and attached when its namespace was already loaded, it
could end up with parts from one version and parts from the other. (PR#16120)

• tools:::.Rdconv() didn’t accept --encoding= due to a typo. (PR#16121)

• Unix-alike builds without a suitable makeinfo were documented to link the missing
HTML manuals to CRAN, but did not.

• save(*,ascii=TRUE) and load() now correctly deal with NaN’s. (PR#16137)

• split.Date() retains fractional representations while avoiding incomplete class prop-
agation.

• ‘R_ext/Lapack.h’ had not been updated for changes made by LAPACK to the argument
lists of its (largely internal) functions dlaed2 and dlaed3. (PR#16157)

• RShowDoc("NEWS","txt") had not been updated for the layout changes of R 3.1.0.

• The xtfrm() method for class "Surv" has been corrected and its description expanded.

• mode(x) <-y would incorrectly evaluate x before changing its mode. (PR#16215)

• besselJ(1,2^64) and besselY(..) now signal a warning, returning NaN instead of
typically segfaulting. (Issue 3 of PR#15554)

• HTML conversion of ‘\href’ markup in ‘.Rd’ files did not remove the backslash from
‘\%’ and so gave an invalid URL. In a related change, the ‘\’ escape is now required in
such URLs.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16029
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15791
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16074
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16214
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15792
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16120
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16121
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16137
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16157
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16215
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15554

NEWS AND NOTES 516

CHANGES IN R 3.1.2

NEW FEATURES

• embedFonts() now defaults to format = "ps2write" for ‘.ps’ and ‘.eps’ files. This
is available in Ghostscript 9.x (since 2010) whereas the previous default, format =
"pswrite", was removed in Ghostscript 9.10.

• For consistency with [dpqr]norm(), [dp]lnorm(sdlog = 0) model a point mass at
exp(mulog) rather than return NaN (for an error).

• capabilities() now reports if ICU is compiled in for use for collation (it is only
actually used if a suitable locale is set for collation, and never for a C locale).

• (OS X only.) Package tcltk checks when loaded if it is linked against the CRAN X11-
based Tcl/Tk and if so that the Tcl/Tk component and the X11 libraries are installed.
This allows more informative error messages to be given advising the installation of
the missing component or of XQuartz.

The X11() device and X11-based versions of the data editor and viewer (invoked by
edit() and View() for data frames and matrices from command-line R) check that the
X11 libraries are installed and if not advises installing XQuartz.

• icuSetCollate() allows locale = "default", and locale = "none" to use OS services
rather than ICU for collation.

Environment variable R_ICU_LOCALE can be used to set the default ICU locale, in case
the one derived from the OS locale is inappropriate (this is currently necessary on
Windows).

• New function icuGetCollate() to report on the ICU collation locale in use (if any).

• utils::URLencode() was updated to use unreserved and reserved characters from
RFC 3986 (http://tools.ietf.org/html/rfc3986) instead of RFC 1738.

• unique(warnings()) and c(warnings()) are now supported.

• The Bioconductor ‘version’ used by setRepositories() now defaults to 3.0. (It can
be set at runtime via environment variable R_BIOC_VERSION.)

• Omegahat is no longer listed as providing Windows binary packages, e.g. by setRepositories().
It has no binary packages available for R 3.1.x and those for earlier versions were 32-bit
only.

INSTALLATION and INCLUDED SOFTWARE

• The configure script reports on the more important capabilities/options which will
not be compiled in.

More types of external BLAS are recognized by name in that report.

• When building R as a shared library, the ‘-L${R_HOME}/lib${R_ARCH}’ flag is placed
earlier in the link commands used during installation and when packages are installed:
this helps ensure that the current build has priority if an R shared library has already
been installed by e.g. install-libR in a library mentioned in LDFLAGS (and not in
‘your system’s library directory’ as documented). (Wish of PR#15790.)

• LaTeX package upquote is no longer required for R’s use of inconsolata.

• (Windows only) If both 32- and 64-bit versions of R are installed, the ‘bin/R.exe’ and
‘bin/Rscript.exe’ executables now run 64-bit R. (To run 32-bit R, overwrite these files
with copies of ‘bin/i386/Rfe.exe’.)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

http://tools.ietf.org/html/rfc3986
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15790

NEWS AND NOTES 517

UTILITIES

• Running R CMD check with _R_CHECK_DEPENDS_ONLY_ true now makes the ‘VignetteBuilder’
packages available even if they are listed in ‘Suggests’, since they are needed to recog-
nise and process non-Sweave vignettes.

• R CMD check now reports empty importFrom declarations in a ‘NAMESPACE’ file,
as these are common errors (writing importFrom(Pkg) where import(Pkg) was in-
tended).

• R CMD check now by default checks code usage directly on the package namespace
without loading and attaching the package and its suggests and enhances. For good
practice with packages in the ‘Suggests’ field, see §1.1.3.1 of ‘Writing R Extensions’.
For use of lazy-data objects in the package’s own code, see ?data.

BUG FIXES

• dmultinom() did not handle non-finite probabilities correctly.

• prettyNum(x,zero.print=*) now also works when x contains NAs.

• A longstanding bug exhibited by nlminb() on Windows was traced to a compiler bug
in gcc 4.6.3; a workaround has been put in place. (PR#15244 and PR#15914).

• Rendering of \command in HTML versions of help pages has been improved: this is
particularly evident on the help page for INSTALL.

• as.hexmode(x) and as.octmode(x) now behave correctly for some numeric x, e.g.,
c(NA,1) or c(1,pi).

• drop1() failed if the scope argument had no variables to drop. (PR#15935)

• edit() (and hence fix()) failed if an object had a non-character attribute named
"source" (an attribute that had been used in R prior to version 2.14.0).

• callGeneric() could fail if the generic had ... as a formal argument. (PR#15937).

• Forking in package parallel called C entry point exit in the child. This was unsafe
(_exit should have been called), and could flush stdin of the main R process (seen
most often on Solaris).

As good practice, stdout is now flushed before forking a child.

• R objects such as list(`a\b` = 1) now print correctly.

• getAnywhere("C_pbinom") now returns correctly a single object (rather than unlisting
it).

• The confint() method for nls() fits failed it these has specified parameter limits
despite using an algorithm other than "port". (PR#15960)

• Subclassing an S4 class failed if the class required arguments to the generator, through
its initialize() method.

• removeSource() did not properly handle expressions containing arguments that were
supplied as missing, e.g. x[i,]. (PR#15957)

• as.environment(list()) now works, and as.list() of such an environment is now
the same as list(). (PR#15926)

• Several tcltk functions failed when run in unusual environments. (PR#15970)

• options(list()) now works (trivially). (PR#15979)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15244
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15914
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15935
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15937
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15960
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15957
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15926
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15970
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15979

NEWS AND NOTES 518

• merge(<dendrogram>,..) now works correctly for two ‘independent’ dendrograms
(PR#15648), and still compatibly via adjust = "auto" e.g. for two branches of an
existing dendrogram.

• The plot method for "hclust" objects gets an optional argument check; when that is
true (the default) it checks more carefully for valid input.

• (Windows only) If a user chose to install 64 bit R but not 32 bit R, the ‘bin/R’ and
‘bin/Rscript’ executables failed to run. (PR#15981)

• Various possible buffer overruns have been prevented, and missed memory protection
added. (PR#15990)

• Rscript no longer passes --args to R when there are no extra (“user”) arguments.

• objects like getClass("refClass")@prototype now print() and str() without error.

• identical() now also looks at the S4 bit.

• hist(x,breaks) is more robust in adding a small fuzz to few breaks when some are
very large. (PR#15988)

• sub() and gsub() did not handle regular expressions like "\s{2,}" properly if the text
contained NA or non-ASCII elements in a UTF-8 locale. Part of this was due to a bug in
the TRE library. (PR#16009)

• RShowDoc("NEWS") now displays the PDF version.

• Matrices and arrays with last dimension zero did not print at all or incompletely.
(PR#16012)

• plot.histogram() and hence hist() now respect the xaxs, yaxs and lab graphics
parameters. (PR#16021)

• bw.SJ(x) and other bw.*() no longer segfault when x contains non-finite values.
(PR#16024)

• R CMD Rd2pdf unintentionally ignored its ‘--os’ option.

• The internal method of download.file() was not reporting file sizes and progress
correctly on files larger than 2GB (inherited from libxml2). This is corrected for 64-
bit builds (32-bit platforms may not support such files, but where possible will be
supported in future versions of R).

• Work around a bug in OS X Yosemite where key environment variables may be
duplicated causing issues in subprocesses. The duplicates are now removed on R
startup (via Rprofile). (PR#16042)

• Adjust X11 auto-launch detection in DISPLAY on OS X to recognize latest XQuartz.

CHANGES IN R 3.1.1

NEW FEATURES

• When attach() reports conflicts, it does so compatibly with library() by using
message().

• R CMD Sweave no longer cleans any files by default, compatibly with versions of R prior
to 3.1.0. There are new options ‘--clean’, ‘--clean=default’ and ‘--clean=keepOuts’.

• tools::buildVignette() and tools::buildVignettes() with clean = FALSE no
longer remove any created files. buildvignette() gains a keep argument for more
cleaning customization.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15648
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15981
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15990
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15988
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16009
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16012
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16021
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16024
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16042

NEWS AND NOTES 519

• The Bioconductor ‘version’ used by setRepositories() can now be set by environ-
ment variable R_BIOC_VERSION at runtime, not just when R is installed. (It has been
stated that Bioconductor will switch from ‘version’ 2.14 to ‘version’ 3.0 during the
lifetime of the R 3.1 series.)

• Error messages from bugs in embedded ‘Sexpr’ code in Sweave documents now report
the source location.

• type.convert(), read.table() and similar read.*() functions get a new numerals
argument, specifying how numeric input is converted when its conversion to double
precision loses accuracy. The default value, "allow.loss" allows accuracy loss, as in
R versions before 3.1.0.

• For some compilers, integer addition could overflow without a warning. R’s internal
code for both integer addition and subtraction is more robust now. (PR#15774)

• The function determining the default number of knots for smooth.spline() is now
exported, as .nknots.smspl().

• dbeta(,a,b), pbeta(), qbeta() and rbeta() are now defined also for a = 0, b = 0, or
infinite a and b (where they typically returned NaN before).

• Many package authors report that the RStudio graphics device does not work correctly
with their package’s use of dev.new(). The new option dev.new(noRStudioGD =
TRUE) replaces the RStudio override by the default device as selected by R itself, still
respecting environment variables R_INTERACTIVE_DEVICE and R_DEFAULT_DEVICE.

• readRDS() now returns visibly.

• Modifying internal logical scalar constants now results in an error instead of a warning.

• install.packages(repos = NULL) now accepts ‘http://’ or ‘ftp://’ URLs of package
archives as well as file paths, and will download as required. In most cases repos =
NULL can be deduced from the extension of the URL.

• The warning when using partial matching with the $ operator on data frames is now
only given when options("warnPartialMatchDollar") is TRUE.

• Package help requests like package?foo now try the package foo whether loaded or
not.

• General help requests now default to trying all loaded packages, not just those on the
search path.

• Added a new function promptImport(), to generate a help page for a function that
was imported from another package (and presumably re-exported, or help would not
be needed).

INSTALLATION and INCLUDED SOFTWARE

• configure option ‘--with-internal-tzcode’ can now be used with variable rsharedir.

• The included version of PCRE has been updated to 8.35.

• There is a new target make uninstall-libR to remove an installed shared/static ‘libR’.

make install-libR now works if a sub-architecture is used, although the user will
need to specify libdir differently for different sub-architectures.

• There is more extensive advice on which LaTeX packages are required to install R
or to make package manuals (as done by R CMD check) in the ‘Writing R Extensions’
manual.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15774

NEWS AND NOTES 520

• Compilers/linkers were handling the visibility control in ‘src/extra/xz’ inconsistently
(and apparently in some cases incorrectly), so it has been simplified. (PR#15327)

• (Windows) There is updated support for the use of ICU for collation: see the ‘R
Installation and Administration Manual’.

BUG FIXES

• dbinom(x,n), pbinom(), dpois(), etc, are slightly less restrictive in checking if n is
integer-valued. (Wish of PR#15734.)

• pchisq(x,df,ncp,log.p = TRUE) is more accurate and no longer underflows for small
x and ncp <80, e.g, for pchisq(1e-5,df = 100,ncp = 1,log = TRUE). (Based on
PR#15635 and a suggestion by Roby Joehanes.)

• The s (“step into”) command in the debugger would cause R to step into expressions
evaluated there, not just into functions being debugged. (PR#15770)

• The C code used by strptime() rejected time-zone offsets of more than +1200 (+1245,
+1300 and +1400 can occur). (PR#15768)

• (Windows only.) png(type = "cairo",antialias = "gray") was not accepted.
(PR#15760)

• Use of save(...,envir=) with named objects could fail. (PR#15758)

• Sweave() mis-parsed ‘Sexpr’ expressions that contained backslashes. (PR#15779)

• The return value from options(foo = NULL) was not the previous value of the option.
(PR#15781)

• enc2utf8() and enc2native() did not always mark the encoding of the return values
when it was known.

• dnbinom(x,size = <large>,mu,log = TRUE) no longer underflows to -Inf for large
mu, thanks to a suggestion from Alessandro Mammana (MPI MolGen, Berlin).

• pbeta(x,a,b,log = TRUE) no longer behaves discontinuously (in a small x-region)
because of denormalized numbers. Also, pbeta(1-1e-12,1e30,1.001,log=TRUE) now
terminates “in real time”.

• The "CRAN" filter (see available.packages()) no longer removes duplicates other
than of packages on CRAN, and does not fail if there is no CRAN repository in
getOption("repos").

• The device listing from dev2bitmap() and bitmap() was truncated to 1000 characters:
modern versions of GhostScript on most platforms have many more devices.

• (Windows.) Commands such as Sys.which() and pipe() which needed to find the
full path to a command could segfault if the ‘long’ path name was much longer than
the ‘short’ path name (which Sys.which() returns), as the behaviour of the Windows
API call had changed.

• R CMD build will fail with an error if one of the packages specified in the ‘VignetteBuilder’
field is not installed. (Without loading those packages it cannot be ascertained which
files are intended to be vignettes. This means that the ‘VignetteBuilder’ packages
have to be installed for package checking too.) (Wish of PR#15775.)

• Misguided attempts to use chull() with non-finite points now give an error (related
to PR#15777).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15327
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15734
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15635
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15770
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15768
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15760
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15758
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15779
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15781
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15775
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15777

NEWS AND NOTES 521

• For a formula with exactly 32 variables the 32nd variable was aliased to the intercept
in some C-level computations of terms, so that for example attempting to remove it
would remove the intercept instead (and leave a corrupt internal structure). (PR#15735)

• anyDuplicated() silently returned wrong values when the first duplicate was at an
index which was too large to be stored in an integer vector (although a lot of RAM
and patience would have been needed to encounter this).

• tools::Rd2ex(commentDontrun = FALSE) failed if the block had only one line.

• Hexadecimal constants such as 0x110p-5L which were incorrectly qualified by L were
parsed incorrectly since R 3.0.0, with a slightly garbled warning. (PR#15753)

• system() returned success on some platforms even if the system was unable to launch
a process. (PR#15796)

• (Windows Rgui console.) Unbuffered output was sometimes not output immediately
if the prompt was not on the last line of the console.

• The built-in help server did not declare the encoding for the ‘DESCRIPTION’ or other
text files to be the package encoding, so non-ASCII characters could be displayed
incorrectly.

• R is now trying harder to not cleanup child processes that were not spawned by
mcparallel() on platforms that provide information about the source process of the
SIGCHLD signal. This allows 3rd party libraries to manage the exit status of children
that they spawn without R interfering.

• mcmapply() was only parallelizing if the number of jobs was bigger than the number
of cores. It now parallelizes if the number of jobs is more than one.

• Auto-printing would re-evaluate its argument when trying to dispatch to a print
method. This is now avoided when possible.

• Unserializing (including load() and readRDS()) could silently return incorrect nu-
meric values from ASCII saves if there was a read error.

• getParseData() could return incorrect values for the parents of some elements. (Re-
ported by Andrew Redd.)

• Attempting to use data frames of 2^31 or more rows with merge() or to create a
merged data frame of that size now gives a clearer error message.

• parse() did not check its file argument was a connection if it was not a character
string, so e.g. parse(FALSE) attempted to read from stdin.

Nor did dump() and dput().

• The "help.try.all.packages" option was ignored when the shortcut syntax for help
was used, e.g. ?foo.

• A potential segfault in string allocation has been fixed. (Found by Radford Neal.)

• Potential memory protection errors in sort() and D() have been fixed. (Found by
Radford Neal.)

• Fixed a lack of error checking in graphics event functions. (Found by Radford Neal; a
different patch used here than the one in pqR.)

• numericDeriv() sometimes miscalculated the gradient. (PR#15849, reported originally
by Radford Neal)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15735
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15753
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15796
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15849

NEWS AND NOTES 522

CHANGES IN R 3.1.0

NEW FEATURES

• type.convert() (and hence by default read.table()) returns a character vector or
factor when representing a numeric input as a double would lose accuracy. Similarly
for complex inputs.

If a file contains numeric data with unrepresentable numbers of decimal places that are
intended to be read as numeric, specify colClasses in read.table() to be "numeric".

• tools::Rdiff(useDiff = FALSE) is closer to the POSIX definition of diff -b (as
distinct from the description in the man pages of most systems).

• New function anyNA(), a version of any(is.na(.)) which is fast for atomic vectors,
based on a proposal by Tim Hesterberg. (Wish of PR#15239.)

• arrayInd(*,useNames = TRUE) and, analogously, which(*,arr.ind = TRUE) now
make use of names(.dimnames) when available.

• is.unsorted() now also works for raw vectors.

• The "table" method for as.data.frame() (also useful as as.data.frame.table())
now passes sep and base arguments to provideDimnames().

• uniroot() gets new optional arguments, notably extendInt, allowing to auto-extend
the search interval when needed. The return value has an extra component, init.it.

• switch(f,...) now warns when f is a factor, as this typically happens accidentally
where the useR meant to pass a character string, but f is treated as integer (as always
documented).

• The parser has been modified to use less memory.

• The way the unary operators (+ -!) handle attributes is now more consistent. If there
is no coercion, all attributes (including class) are copied from the input to the result:
otherwise only names, dims and dimnames are.

• colorRamp() and colorRampPalette() now allow non-opaque colours and a ramp in
opacity via the new argument alpha = TRUE. (Suggested by Alberto Krone-Martins,
but optionally as there are existing uses which expect only RGB values.)

• grid.show.layout() and grid.show.viewport() get an optional vp.ex argument.

• There is a new function find_gs_cmd() in the tools package to locate a GhostScript
executable. (This is an enhanced version of a previously internal function there.)

• object.size() gains a format() method.

• There is a new family, "ArialMT", for the pdf() and postscript() devices. This will
only be rendered correctly on viewers which have access to Monotype TrueType fonts
(which are sometimes requested by journals).

• The text and PDF news files, including ‘NEWS’ and ‘NEWS.2’, have been moved to the
‘doc’ directory.

• combn(x,simplify = TRUE) now gives a factor result for factor input x (previously
user error). (Related to PR#15442.)

• Added utils::fileSnapshot() and utils::changedFiles() functions to allow snap-
shots and comparison of directories of files.

• make.names(names,unique=TRUE) now tries to preserve existing names. (Suggestion
of PR#15452.)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15239
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15442
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15452

NEWS AND NOTES 523

• New functions cospi(x), sinpi(x), and tanpi(x), for more accurate computation of
cos(pi*x), etc, both in R and the C API. Using these gains accuracy in some cases, e.g.,
inside lgamma() or besselI(). (Suggested by Morten Welinder in PR#15529.)

• print.table(x,zero.print = ".") now also has an effect when x is not integer-
valued.

• There is more support to explore the system’s idea of time-zone names. Sys.timezone()
tries to give the current system setting by name (and succeeds at least on Linux, OS
X, Solaris and Windows), and OlsonNames() lists the names in the system’s Olson
database. Sys.timezone(location = FALSE) gives the previous behaviour.

• Platforms with a 64-bit time_t type are allowed to handle conversions between the
"POSIXct" and "POSIXlt" classes for date-times outside the 32-bit range (before 1902
or after 2037): the existing workarounds are used on other platforms. (Note that
time-zone information for post-2037 is speculative at best, and the OS services are
tested for known errors and so not used on OS X.)

Currently time_t is usually long and hence 64-bit on Unix-alike 64-bit platforms:
however in several cases the time-zone database is 32-bit. For R for Windows it is
64-bit (for both architectures as from this version).

• The "save.defaults" option can include a value for compression_level. (Wish of
PR#15579.)

• colSums() and friends now have support for arrays and data-frame columns with 231

or more elements.

• as.factor() is faster when f is an unclassed integer vector (for example, when called
from tapply()).

• fft() now works with longer inputs, from the 12 million previously supported up to
2 billion. (PR#15593)

• Complex svd() now uses LAPACK subroutine ZGESDD, the complex analogue of the
routine used for the real case.

• Sweave now outputs ‘.tex’ files in UTF-8 if the input encoding is declared to be UTF-8,
regardless of the local encoding. The UTF-8 encoding may now be declared using a
LaTeX comment containing the string %\SweaveUTF8 on a line by itself.

• file.copy() gains a copy.date argument.

• Printing of date-times will make use of the time-zone abbreviation in use at the time,
if known. For example, for Paris pre-1940 this could be ‘LMT’, ‘PMT’, ‘WET’ or ‘WEST’.
To enable this, the "POSIXlt" class has an optional component "zone" recording the
abbreviation for each element.

For platforms which support it, there is also a component "gmtoff" recording the
offset from GMT where known.

• (On Windows, by default on OS X and optionally elsewhere.) The system C function
strftime has been replaced by a more comprehensive version with closer conformance
to the POSIX 2008 standard.

• dnorm(x,log = FALSE) is more accurate (but somewhat slower) for |x| > 5; as sug-
gested in PR#15620.

• Some versions of the tiff() device have further compression options.

• read.table(), readLines() and scan() have a new argument to influence the treat-
ment of embedded nuls.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15529
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15579
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15593
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15620

NEWS AND NOTES 524

• Avoid duplicating the right hand side values in complex assignments when possible.
This reduces copying of replacement values in expressions such as Z$a <-a0 and
ans[[i]] <-tmp: some package code has relied on there being copies.

Also, a number of other changes to reduce copying of objects; all contributed by or
based on suggestions by Michael Lawrence.

• The fast argument of KalmanLike(), KalmanRun() and KalmanForecast() has been
replaced by update, which instead of updating mod in place, optionally returns the
updated model in an attribute "mod" of the return value.

• arima() and makeARIMA() get a new optional argument SSinit, allowing the choice of
a different state space initialization which has been observed to be more reliable close
to non-stationarity: see PR#14682.

• warning() has a new argument noBreaks., to simplify post-processing of output with
options(warn = 1).

• pushBack() gains an argument encoding, to support reading of UTF-8 characters using
scan(), read.table() and related functions in a non-UTF-8 locale.

• all.equal.list() gets a new argument use.names which by default labels differing
components by names (if they match) rather than by integer index. Saved R output in
packages may need to be updated.

• The methods for all.equal() and attr.all.equal() now have argument check.attributes
after ... so it cannot be partially nor positionally matched (as it has been, uninten-
tionally).

A side effect is that some previously undetected errors of passing empty arguments
(no object between commas) to all.equal() are detected and reported.

There are explicit checks that check.attributes is logical, tolerance is numeric and
scale is NULL or numeric. This catches some unintended positional matching.

The message for all.equal.numeric() reports a "scaled difference" only for scale
!= 1.

• all.equal() now has a "POSIXt" method replacing the "POSIXct" method.

• The "Date" and "POSIXt" methods of seq() allows by = "quarter" for completeness
(by = "3 months" always worked).

• file.path() removes any trailing separator on Windows, where they are invalid
(although sometimes accepted). This is intended to enhance the portability of code
written by those using POSIX file systems (where a trailing / can be used to confine
path matching to directories).

• New function agrepl() which like grepl() returns a logical vector.

• fifo() is now supported on Windows. (PR#15600)

• sort.list(method = "radix") now allows negative integers (wish of PR#15644).

• Some functionality of print.ts() is now available in .preformat.ts() for more mod-
ularity.

• mcparallel() gains an option detach = TRUE which allows execution of code inde-
pendently of the current session. It is based on a new estranged = TRUE argument
to mcfork() which forks child processes such that they become independent of the
parent process.

• The pdf() device omits circles and text at extremely small sizes, since some viewers
were failing on such files.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=14682
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15600
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15644

NEWS AND NOTES 525

• The rightmost break for the "months", "quarters" and "years" cases of hist.POSIXlt()
has been increased by a day. (Inter alia, fixes PR#15717.)

• The handling of DF[i,] <-a where i is of length 0 is improved. (Inter alia, fixes
PR#15718.)

• hclust() gains a new method "ward.D2" which implements Ward’s method correctly.
The previous "ward" method is "ward.D" now, with the old name still working. Thanks
to research and proposals by Pierre Legendre.

• The sunspot.month dataset has been amended and updated from the official source,
whereas the sunspots and sunspot.year datasets will remain immutable. The docu-
mentation and source links have been updated correspondingly.

• The summary() method for "lm" fits warns if the fit is essentially perfect, as most of
the summary may be computed inaccurately (and with platform-dependent values).

Programmers who use summary() in order to extract just a component which will be
reliable (e.g., $cov.unscaled) should wrap their calls in suppressWarnings().

INSTALLATION and INCLUDED SOFTWARE

• The included version of LAPACK has been updated to 3.5.0.

• There is some support for parallel testing of an installation, by setting TEST_MC_CORES
to an integer greater than one to indicate the maximum number of cores to be used
in parallel. (It is worth specifying at least 8 cores if available.) Most of these require
a make program (such as GNU make and dmake) which supports the $MAKE -j nproc
syntax.

Except on Windows: the tests of standard package examples in make check are done
in parallel. This also applies to running tools::testInstalledPackages().

The more time-consuming regression tests are done in parallel.

The package checks in make check-devel and make check-recommended are done in
parallel.

• More of make check will work if recommended packages are not installed: but recom-
mended packages remain needed for thorough checking of an R build.

• The version of ‘tzcode’ included in ‘src/extra/tzone’ has been updated. (Formerly used
only on Windows.)

• The included (64-bit) time-zone conversion code and Olson time-zone database can be
used instead of the system version: use configure option ‘--with-internal-tzcode’.
This is the default on Windows and OS X. (Note that this does not currently work if a
non-default rsharedir configure variable is used.)

(It might be necessary to set environment variable TZ on OSes where this is not already
set, although the system timezone is deduced correctly on at least Linux, OS X and
Windows.)

This option also switches to the version of strftime included in directory ‘src/extra/tzone’.

• configure now tests for a C++11-compliant compiler by testing some basic features.
This by default tries flags for the compiler specified by ‘CXX’, but an alternative com-
piler, options and standard can be specified by variables ‘CXX1X’, ‘CXX1XFLAGS’ and
‘CXX1XSTD’ (e.g., ‘-std=gnu++11’).

• R can now optionally be compiled to use reference counting instead of the NAMED
mechanism by defining SWITCH_TO_REFCNT in ‘Rinternals.h’. This may become the
default in the future.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15717
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15718

NEWS AND NOTES 526

• There is a new option ‘--use-system-tre’ to use a suitable system tre library: at
present this means a version from their git repository, after corrections. (Wish of
PR#15660.)

PACKAGE INSTALLATION

• The CRANextra repository is no longer a default repository on Windows: all the binary
versions of packages from CRAN are now on CRAN, although CRANextra contains
packages from Omegahat and elsewhere used by CRAN packages.

• Only vignettes sources in directory ‘vignettes’ are considered to be vignettes and hence
indexed as such.

• In the ‘DESCRIPTION’ file,

License: X11

is no longer recognized as valid. Use ‘MIT’ or ‘BSD_2_clause’ instead, both of which
need ‘+ file LICENSE’.

• For consistency, entries in ‘.Rinstignore’ are now matched case-insensitively on all
platforms.

• Help for S4 methods with very long signatures now tries harder to split the description
in the ‘Usage’ field to no more than 80 characters per line (some packages had over
120 characters).

• R CMD INSTALL --build (not Windows) now defaults to the internal tar() unless
R_INSTALL_TAR is set.

• There is support for compiling C++11 code in packages on suitable platforms: see
‘Writing R Extensions’.

• Fake installs now install the contents of directory ‘inst’: some packages use this to
install e.g. C++ headers for use by other packages that are independent of the package
itself. Option ‘--no-inst’ can be used to get the previous behaviour.

DEBUGGING

• The behaviour of the code browser has been made more consistent, in part following
the suggestions in PR#14985.

• Calls to browser() are now consistent with calls to the browser triggered by debug(),
in that Enter will default to n rather than c.

• A new browser command s has been added, to “step into” function calls.

• A new browser command f has been added, to “finish” the current loop or function.

• Within the browser, the command help will display a short list of available commands.

UTILITIES

• Only vignettes sources in directory ‘vignettes’ are considered to be vignettes by R CMD
check. That has been the preferred location since R 2.14.0 and is now obligatory.

• For consistency, R CMD build now matches entries in ‘.Rbuildignore’ and ‘vignettes/.install_extras’
case-insensitively on all platforms (not just on Windows).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15660
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=14985

NEWS AND NOTES 527

• checkFF() (called by R CMD check by default) can optionally check foreign func-
tion calls for consistency with the registered type and argument count. This is
the default for R CMD check --as-cran or can be enabled by setting environment
variable _R_CHECK_FF_CALLS_ to ‘registration’ (but is in any case suppressed by
‘--install=no’). Because this checks calls in which .NAME is an R object and not just a
literal character string, some other problems are detected for such calls.

Functions suppressForeignCheck() and dontCheck() have been added to allow pack-
age authors to suppress false positive reports.

• R CMD check --as-cran warns about a false value of the ‘DESCRIPTION’ field
‘BuildVignettes’ for Open Source packages, and ignores it. (An Open Source package
needs to have complete sources for its vignettes which should be usable on a suitably
well-equipped system).

• R CMD check --no-rebuild-vignettes is defunct:
R CMD check --no-build-vignettes has been preferred since R 3.0.0.

• R CMD build --no-vignettes is defunct:
R CMD build --no-build-vignettes has been preferred since R 3.0.0.

• R CMD Sweave and R CMD Stangle now process both Sweave and non-Sweave vignettes.
The tools::buildVignette() function has been added to do the same tasks from
within R.

• The flags returned by R CMD config --ldflags and (where installed) pkg-config
--libs libR are now those needed to link a front-end against the (shared or static) R
library.

• ‘Sweave.sty’ has a new option ‘[inconsolata]’.

• R CMD check customizations such as _R_CHECK_DEPENDS_ONLY_ make available pack-
ages only in ‘LinkingTo’ only for installation, and not for loading/runtime tests.

• tools::checkFF() reports on .C and .Fortran calls with DUP = FALSE if argument
check_DUP is true. This is selected by R CMD check by default.

• R CMD check --use-gct can be tuned to garbage-collect less frequently using gctorture2()
via the setting of environment variable _R_CHECK_GCT_N_.

• Where supported, tools::texi2dvi() limits the number of passes tried to 20.

C-LEVEL FACILITIES

• (Windows only) A function R_WaitEvent() has been added (with declaration in
header‘R.h’) to block execution until the next event is received by R.

• Remapping in the ‘Rmath.h’ header can be suppressed by defining ‘R_NO_REMAP_RMATH’.

• The remapping of rround() in header ‘Rmath.h’ has been removed: use fround()
instead.

• ftrunc() in header ‘Rmath.h’ is now a wrapper for the C99 function trunc(), which
might as well be used in C code: ftrunc() is still needed for portable C++ code.

• The never-documented remapping of prec() to fprec() in header ‘Rmath.h’ has been
removed.

• The included LAPACK subset now contains ZGESDD and ZGELSD.

• The function LENGTH() now checks that it is only applied to vector arguments. How-
ever, in packages length() should be used. (In R itself LENGTH() is a macro without
the function overhead of length().)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

NEWS AND NOTES 528

• Calls to SET_VECTOR_ELT() and SET_STRING_ELT() are now checked for indices which
are in-range: several packages were writing one element beyond the allocated length.

• allocVector3 has been added which allows custom allocators to be used for individual
vector allocations.

DEPRECATED AND DEFUNCT

• chol(pivot = TRUE,LINPACK = TRUE) is defunct.

Arguments EISPACK for eigen() and LINPACK for chol(), chol2inv(), solve() and
svd() are ignored: LAPACK is always used.

• .find.package() and .path.package() are defunct: only the versions without the
initial dot introduced in R 2.13.0 have ever been in the API.

• Partial matching when using the $ operator on data frames now throws a warning and
may become defunct in the future. If partial matching is intended, replace foo$bar by
foo[["bar",exact = FALSE]].

• The long-deprecated use of \synopsis in the ‘Usage’ section of ‘.Rd’ files has been
removed: such sections are now ignored (with a warning).

• package.skeleton()’s deprecated argument namespace has been removed.

• Many methods are no longer exported by package stats. They are all registered on
their generic, which should be called rather than calling a method directly.

• Functions readNEWS() and checkNEWS() in package tools are defunct.

• download.file(method = "lynx") is deprecated.

• .C(DUP = FALSE) and .Fortran(DUP = FALSE) are now deprecated, and may be
disabled in future versions of R. As their help has long said, .Call() is much preferred.

R CMD check notes such usages (by default).

• The workaround of setting R_OSX_VALGRIND has been removed: it is not needed in
current valgrind.

BUG FIXES

• Calling lm.wfit() with no non-zero weights gave an array-overrun in the Fortran
code and a not very sensible answer. It is now special-cased with a simpler answer
(no qr component).

• Error messages involving non-syntactic names (e.g., as produced by `\r` when that
object does not exist) now encode the control characters. (Reported by Hadley Wick-
ham.)

• getGraphicsEvent() caused 100% usage of one CPU in Windows. (PR#15500)

• nls() with no start argument may now work inside another function (scoping issue).

• pbeta() and similar work better for very large (billions) ncp.

• Where time zones have changed abbreviations over the years, the software tries to
more consistently use the abbreviation appropriate to the time or if that is unknown,
the current abbreviation. On some platforms where the C function localtime changed
the tzname variables the reported abbreviation could have been that of the last time
converted.

• all.equal(list(1),identity) now works.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15500

NEWS AND NOTES 529

• Bug fix for pushing viewports in grid (reported by JJ Allaire and Kevin Ushey).

NOTE for anyone poking around within the graphics engine display list (despite the
warnings not to) that this changes what is recorded by grid on the graphics engine
display list.

• Extra checks have been added for unit resolution and conversion in grid, to catch
instances of division-by-zero. This may introduce error messages in existing code
and/or produce a different result in existing code (but only where a non-finite location
or dimension may now become zero).

• Some bugs in TRE have been corrected by updating from the git repository. This
allows R to be installed on some platforms for which this was a blocker (PR#15087
suggests Linux on ARM and HP-UX).

• ? applied to a call to an S4 generic failed in several cases. (PR#15680)

• The implicit S4 generics for primitives with ... in their argument list were incorrect.
(PR#15690)

• Bug fixes to methods::callGeneric(). (PR#15691)

• The bug fix to aggregrate() in PR#15004 introduced a new bug in the case of no
grouping variables. (PR#15699)

• In rare cases printing deeply nested lists overran a buffer by one byte and on a few
platforms segfaulted. (PR#15679)

• The dendrogram method of as.dendrogram() was hidden accidentally, (PR#15703),
and order.dendrogram(d) gave too much for a leaf d. (PR#15702)

• R would try to kill processes on exit that have pids ever used by a child process
spawned by mcparallel even though the current process with that pid was not actually
its child.

• cophenetic() applied to a "dendrogram" object sometimes incorrectly returned a
"Labels" attribute with dimensions. (PR#15706)

• printCoefmat() called from quite a few print() methods now obeys small getOption("width")
settings, line wrapping the ‘"signif. codes"’ legend appropriately. (PR#15708)

• model.matrix() assumed that the stored dimnames for a matrix was NULL or length 2,
but length 1 occurred.

• The clipping region for a device was sometimes used in base graphics before it was
set.

CHANGES IN R 3.0.3

NEW FEATURES

• On Windows there is support for making ‘.texi’ manuals using texinfo 5.0 or later: the
setting is in file ‘src/gnuwin32/MkRules.dist’.

A packaging of the Perl script and modules for texinfo 5.2 has been made available at
http://www.stats.ox.ac.uk/pub/Rtools/.

• write.table() now handles matrices of 231 or more elements, for those with large
amounts of patience and disc space.

• There is a new function, La_version(), to report the version of LAPACK in use.

• The HTML version of ‘An Introduction to R’ now has links to PNG versions of the
figures.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15087
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15680
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15690
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15691
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15004
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15699
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15679
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15703
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15702
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15706
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15708
http://www.stats.ox.ac.uk/pub/Rtools/

NEWS AND NOTES 530

• There is some support to produce manuals in ebook formats. (See ‘doc/manual/Makefile’.
Suggested by Mauro Cavalcanti.)

• On a Unix-alike Sys.timezone() returns NA if the environment variable TZ is unset, to
distinguish it from an empty string which on some OSes means the ‘UTC’ time zone.

• The backtick may now be escaped in strings, to allow names containing them to be
constructed, e.g. `\``. (PR#15621)

• read.table(), readLines() and scan() now warn when an embedded nul is found
in the input. (Related to PR#15625 which was puzzled by the behaviour in this
unsupported case.)

• (Windows only.) file.symlink() works around the undocumented restriction of the
Windows system call to backslashes. (Wish of PR#15631.)

• KalmanForecast(fast = FALSE) is now the default, and the help contains an example
of how fast = TRUE can be used in this version. (The usage will change in 3.1.0.)

• strptime() now checks the locale only when locale-specific formats are used and
caches the locale in use: this can halve the time taken on OSes with slow system
functions (e.g., OS X).

• strptime() and the format() methods for classes "POSIXct", "POSIXlt" and "Date"
recognize strings with marked encodings: this allows, for example, UTF-8 French
month names to be read on (French) Windows.

• iconv(to = "utf8") is now accepted on all platforms (some implementations did
already, but GNU libiconv did not: however converted strings were not marked as
being in UTF-8). The official name, "UTF-8" is still preferred.

• available.packages() is better protected against corrupt metadata files. (A recurring
problem with Debian package shogun-r: PR#14713.)

• Finalizers are marked to be run at garbage collection, but run only at a somewhat
safer later time (when interrupts are checked). This circumvents some problems with
finalizers running arbitrary code during garbage collection (the known instances being
running options() and (C-level) path.expand() re-entrantly).

INSTALLATION and INCLUDED SOFTWARE

• The included version of PCRE has been updated to 8.34. This fixes bugs and makes
the behaviour closer to Perl 5.18. In particular, the concept of ‘space’ includes ‘VT’ and
hence agrees with POSIX’s.

PACKAGE INSTALLATION

• The new field ‘SysDataCompression’ in the ‘DESCRIPTION’ file allows user control
over the compression used for ‘sysdata.rda’ objects in the lazy-load database.

• install.packages(dependencies = value) for value = NA (the default) or value =
TRUE omits packages only in LinkingTo for binary package installs.

C-LEVEL FACILITIES

• The long undocumented remapping of rround() to Rf_fround() in header ‘Rmath.h’
is now formally deprecated: use fround() directly.

• Remapping of prec() and trunc() in the ‘Rmath.h’ header has been disabled in C++
code (it has caused breakage with libc++ headers).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15621
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15625
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15631
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=14713

NEWS AND NOTES 531

BUG FIXES

• getParseData() truncated the imaginary part of complex number constants. (Re-
ported by Yihui Xie.)

• dbeta(x,a,b) with a or b within a factor of 2 of the largest representable number could
infinite-loop. (Reported by Ioannis Kosmidis.)

• provideDimnames() failed for arrays with a 0 dimension. (PR#15465)

• rbind() and cbind() did not handle list objects correctly. (PR#15468)

• replayPlot() now checks if it is replaying a plot from the same session.

• rasterImage() and grid.raster() now give error on an empty (zero-length) raster.
(Reported by Ben North.)

• plot.lm() would sometimes scramble the labels in plot type 5. (PR#15458 and
PR#14837)

• min() did not handle NA_character_ values properly. (Reported by Magnus Thor
Torfason.)

• (Windows only.) readRegistry() would duplicate default values for keys. (PR#15455)

• str(...,strict.width = "cut") did not handle it properly when more than one line
needed to be cut. (Reported by Gerrit Eichner.)

• Removing subclass back-references when S4 classes were removed or their namespace
unloaded had several bugs (e.g., PR#15481).

• aggregate() could fail when there were too many levels present in the by argument.
(PR#15004)

• namespaceImportFrom() needed to detect primitive functions when checking for du-
plicated imports (reported by Karl Forner).

• getGraphicsEvent() did not exit when a user closed the graphics window. (PR#15208)

• Errors in vignettes were not always captured and displayed properly. (PR#15495)

• contour() could fail when dealing with extremely small z values. (PR#15454)

• Several functions did not handle zero-length vectors properly, including browseEnv(),
format(), gl(), relist() and summary.data.frame(). (E.g., PR#15499)

• Sweave() did not restore the R output to the console if it was interrupted by a user in
the middle of evaluating a code chunk. (Reported by Michael Sumner.)

• Fake installs of packages with vignettes work again.

• Illegal characters in the input caused parse() (and thus source()) to segfault. (PR#15518)

• The nonsensical use of nmax = 1 in duplicated() or unique() is now silently ignored.

• qcauchy(p,*) is now fully accurate even when p is very close to 1. (PR#15521)

• The validmu() and valideta() functions in the standard glm() families now also
report non-finite values, rather than failing.

• Saved vignette results (in a ‘.Rout.save’ file) were not being compared to the new ones
during R CMD check.

• Double-clicking outside of the list box (e.g., on the scrollbar) of a Tk listbox widget
generated by tk_select.list() no longer causes the window to close. (PR#15407)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15465
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15468
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15458
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=14837
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15455
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15481
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15004
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15208
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15495
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15454
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15499
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15518
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15521
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15407

NEWS AND NOTES 532

• Improved handling of edge cases in parallel::splitindices(). (PR#15552)

• HTML display of results from help.search() and ?? sometimes contained badly
constructed links.

• c() and related functions such as unlist() converted raw vectors to invalid logical
vectors. (PR#15535)

• (Windows only) When a call to system2() specified one of stdin, stdout or stderr
to be a file, but the command was not found (e.g., it contained its arguments, or the
program was not on the PATH), it left the file open and unusable until R terminated.
(Reported by Mathew McLean.)

• The bmp() device was not recording res = NA correctly: it is now recorded as 72 ppi.

• Several potential problems with compiler-specific behaviour have been identified
using the ‘Undefined Behaviour Sanitizer’ in conjunction with the clang compiler.

• hcl() now honours NA inputs (previously they were mapped to black).

• Some translations in base packages were being looked up in the main catalog rather
than that for the package.

• As a result of the 3.0.2 change about ‘the last second before the epoch’, most conver-
sions which should have given NA returned that time. (The platforms affected include
Linux and OS X, but not Windows nor Solaris.)

• rowsum() has more support for matrices and data frames with 231 or more elements.
(PR#15587)

• predict(<lm object>,interval = "confidence",scale = <something>) now works.
(PR#15564)

• The bug fix in 3.0.2 for PR#15411 was too aggressive, and sometimes removed spaces
that should not have been removed. (PR#15583)

• Running R code in a tcltk callback failed to set the busy flag, which will be needed to
tell OS X not to ‘App Nap’.

• The code for date-times before 1902 assumed that the offset from GMT in 1902 was a
whole number of minutes: that was not true of Paris (as recorded on some platforms).

• Using Sys.setlocale to set LC_NUMERIC to "C" (to restore the sane behavior) no longer
gives a warning.

• deparse() now deparses complex vectors in a way that re-parses to the original values.
(PR#15534, patch based on code submitted by Alex Bertram.)

• In some extreme cases (more than 1015) integer inputs to dpqrxxx() functions might
have been rounded up by one (with a warning about being non-integer). (PR#15624)

• Plotting symbol pch = 14 had the triangle upside down on some devices (typically
screen devices). The triangle is supposed to be point up. (Reported by Bill Venables.)

• getSrcref() did not work on method definitions if rematchDefinition() had been
used.

• KalmanForecast(fast = FALSE) reported a (harmless) stack imbalance.

• The count of observations used by KalmanRun() did not take missing values into
account.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15552
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15535
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15587
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15564
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15411
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15583
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15534
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15624

NEWS AND NOTES 533

• In locales where the abbreviated name of one month is a partial match for the full
name of a later one, the %B format in strptime() could fail. An example was French
on OS X, where ‘juin’ is abbreviated to ‘jui’ and partially matches juillet. Similarly
for weekday names.

• pbeta(x,a,b,log.p = TRUE) sometimes underflowed to zero for very small and very
differently sized a, b. (PR#15641)

• approx() and approxfun() now handle infinite values with the "constant" method.
(PR#15655)

• stripchart() again respects reversed limits in xlim and ylim. (PR#15664)

CHANGES IN R 3.0.2

NEW FEATURES

• The ‘NEWS’ files have been re-organized.

This file contains news for R >= 3.0.0: news for the 0.x.y, 1.x.y and 2.x.y releases is
in files ‘NEWS.0’, ‘NEWS.1’ and ‘NEWS.2’. The latter files are now installed when R is in-
stalled. An HTML version of news from 2.10.0 to 2.15.3 is available as ‘doc/html/NEWS.2.html’.

• sum() for integer arguments now uses an integer accumulator of at least 64 bits and
so will be more accurate in the very rare case that a cumulative sum exceeds 253

(necessarily summing more than 4 million elements).

• The example() and tools::Rd2ex() functions now have parameters to allow them to
ignore \dontrun markup in examples. (Suggested by Peter Solymos.)

• str(x) is considerably faster for very large lists, or factors with 100,000 levels, the
latter as in PR#15337.

• col2rgb() now converts factors to character strings not integer codes (suggested by
Bryan Hanson).

• tail(warnings()) now works, via the new `[` method.

• There is now support for the LaTeX style file ‘zi4.sty’ which has in some distributions
replaced ‘inconsolata.sty’.

• unlist(x) now typically returns all non-list xs unchanged, not just the “vector” ones.
Consequently, format(lst) now also works when the list lst has non-vector elements.

• The tools::getVignetteInfo() function has been added to give information about
installed vignettes.

• New assertCondition(), etc. utilities in tools, useful for testing.

• Profiling now records non-inlined calls from byte-compiled code to BUILTIN functions.

• Various functions in stats and elsewhere that use non-standard evaluation are now
more careful to follow the namespace scoping rules. E.g., stats::lm() can now find
stats::model.frame() even if stats is not on the search path or if some package
defines a function of that name.

• If an invalid/corrupt .Random.seed object is encountered in the workspace it is ignored
with a warning rather than giving an error. (This allows R itself to rely on a working
RNG, e.g. to choose a random port.)

• seq() and seq.int() give more explicit error messages if called with invalid (e.g., NaN)
inputs.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15641
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15655
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15664
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15337

NEWS AND NOTES 534

• When parse() finds a syntax error, it now makes partial parse information available
up to the location of the error. (Request of Reijo Sund.)

• Methods invoked by NextMethod() had a different dynamic parent to the generic. This
was causing trouble where S3 methods invoked via lazy evaluation could lose track of
their generic. (PR#15267)

• Code for the negative binomial distribution now treats the case size == 0 as a one-
point distribution at zero.

• abbreviate() handles without warning non-ASCII input strings which require no
abbreviation.

• read.dcf() no longer has a limit of 8191 bytes per line. (Wish of PR#15250.)

• formatC(x) no longer copies the class of x to the result, to avoid misuse creating
invalid objects as in PR#15303. A warning is given if a class is discarded.

• Dataset npk has been copied from MASS to allow more tests to be run without recom-
mended packages being installed.

• The initialization of the regression coefficients for non-degenerate differenced mod-
els in arima() has been changed and in some examples avoids a local maximum.
(PR#15396)

• termplot() now has an argument transform.x to control the display of individual
terms in the plot. (PR#15329)

• format() now supports digits = 0, to display nsmall decimal places.

• There is a new read-only par() parameter called "page", which returns a logical value
indicating whether the next plot.new() call will start a new page.

• Processing Sweave and Rd documents to PDF now renders backticks and single quotes
better in several instances, including in ‘\code’ and ‘\samp’ expressions.

• utils::modifyList() gets a new argument keep.null allowing NULL components in
the replacement to be retained, instead of causing corresponding components to be
deleted.

• tools::pkgVignettes() gains argument check; if set to TRUE, it will warn when it
appears a vignette requests a non-existent vignette engine.

UTILITIES

• R CMD check --as-cran checks the line widths in usage and examples sections of the
package Rd files.

• R CMD check --as-cran now implies ‘--timings’.

• R CMD check looks for command gfile if a suitable file is not found. (Although file
is not from GNU, OpenCSW on Solaris installs it as gfile.)

• R CMD build (with the internal tar) checks the permissions of ‘configure’ and ‘cleanup’
files and adds execute permission to the recorded permissions for these files if needed,
with a warning. This is useful on OSes and file systems which do not support execute
permissions (notably, on Windows).

• R CMD build now weaves and tangles all vignettes, so suggested packages are not
required during package installation if the source tarball was prepared with current R
CMD build.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15267
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15250
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15303
https://CRAN.R-project.org/package=MASS
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15396
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15329

NEWS AND NOTES 535

• checkFF() (used by R CMD check) does a better job of detecting calls from other
packages, including not reporting those where a function has been copied from another
namespace (e.g., as a default method). It now reports calls where .NAME is a symbol
registered in another package.

• On Unix-alike systems, R CMD INSTALL now installs packages group writably whenever
the library (lib.loc) is group writable. Hence, update.packages() works for other
group members (suggested originally and from a patch by Dirk Eddelbuettel).

• R CMD javareconf now supports the use of symbolic links for JAVA_HOME on platforms
which have realpath. So it is now possible to use

R CMD javareconf JAVA_HOME=/usr/lib/jvm/java-1.7.0

on a Linux system and record that value rather than the frequently-changing full path
such as ‘/usr/lib/jvm/java-1.7.0-openjdk-1.7.0.25.x86_64’.

• (Windows only.) Rscript -e requires a non-empty argument for consistency with
Unix versions of R. (Also Rterm -e and R -e.)

• R CMD check does more thorough checking of declared packages and namespaces. It
reports

– packages declared in more than one of the ‘Depends’, ‘Imports’, ‘Suggests’ and
‘Enhances’ fields of the ‘DESCRIPTION’ file.

– namespaces declared in ‘Imports’ but not imported from, neither in the ‘NAMESPACE’
file nor using the :: nor ::: operators.

– packages which are used in library() or requires() calls in the R code but were
already put on the search path via ‘Depends’.

– packages declared in ‘Depends’ not imported via the ‘NAMESPACE’ file (except the
standard packages). Objects used from ‘Depends’ packages should be imported
to avoid conflicts and to allow correct operation when the namespace is loaded
but not attached.

– objects imported via ::: calls where :: would do.

– objects imported by :: which are not exported.

– objects imported by ::: calls which do not exist.

See ‘Writing R Extensions’ for good practice.

• R CMD check optionally checks for non-standard top-level files and directories (which
are often mistakes): this is enabled for ‘--as-cran’.

• LaTeX style file upquote.sty is no longer included (the version was several years
old): it is no longer used in R. A much later version is commonly included in LaTeX
distributions but does not play well with the ae fonts which are the default for Sweave
vignettes.

• R CMD build makes more use of the ‘build’ sub-directory of package sources, for
example to record information about the vignettes.

• R CMD check analyses ::: calls.

INSTALLATION and INCLUDED SOFTWARE

• The macros used for the texinfo manuals have been changed to work better with the
incompatible changes made in texinfo 5.x.

• The minimum version for a system xz library is now 5.0.3 (was 4.999). This is in part
to avoid 5.0.2, which can compress in ways other versions cannot decompress.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

NEWS AND NOTES 536

• The included version of PCRE has been updated to 8.33.

• The included version of zlib has been updated to 1.2.8, a bug-fix release.

• The included version of xz utils’s liblzma has been updated to 5.0.5.

• Since javareconf (see above) is used when R is installed, a stable link for JAVA_HOME
can be supplied then.

• Configuring with ‘--disable-byte-compilation’ will override the ‘DESCRIPTION’
files of recommended packages, which typically require byte-compilation.

• More of the installation and checking process will work even when TMPDIR is set to a
path containing spaces, but this is not recommended and external software (such as
texi2dvi) may fail.

PACKAGE INSTALLATION

• Installation is aborted immediately if a LinkingTo package is not installed.

• R CMD INSTALL has a new option --no-byte-compile which will override a ‘ByteCompile’
field in the package’s ‘DESCRIPTION’ file.

• License ‘BSD’ is deprecated: use ‘BSD_3_clause’ or ‘BSD_2_clause’ instead.

License ‘X11’ is deprecated: use ‘MIT’ or ‘BSD_2_clause’ instead.

• Version requirements for LinkingTo packages are now recognized: they are checked
at installation. (Fields with version requirements were previously silently ignored.)

• The limit of 500 S3method entries in a NAMESPACE file has been removed.

• The default ‘version’ of Bioconductor for its packages has been changed to the upcom-
ing ‘2.13’, but this can be set by the environment variable R_BIOC_VERSION when R is
installed.

C-LEVEL FACILITIES

• ‘Rdefines.h’ has been tweaked so it can be included in C++ code after ‘R_ext/Boolean.h’
(which is included by ‘R.h’).

Note that ‘Rdefines.h’ is not kept up-to-date, and ‘Rinternals.h’ is preferred for new
code.

• eval and applyClosure are now protected against package code supplying an invalid
rho.

DEPRECATED AND DEFUNCT

• The unused namespace argument to package.skeleton() is now formally deprecated
and will be removed in R 3.1.0.

• plclust() is deprecated: use the plot() method for class "hclust" instead.

• Functions readNEWS() and checkNEWS() in package tools are deprecated (and they
have not worked with current ‘NEWS’ files for a long time).

DOCUMENTATION

• ‘An Introduction to R’ has a new chapter on using R as a scripting language including
interacting with the OS.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

NEWS AND NOTES 537

BUG FIXES

• help.request() could not determine the current version of R on CRAN. (PR#15241)

• On Windows, file.info() failed on root directories unless the path was terminated
with an explicit ".". (PR#15302)

• The regmatches<-() replacement function mishandled results coming from regexpr().
(PR#15311)

• The help for setClass() and representation() still suggested the deprecated argu-
ment representation=. (PR#15312)

• R CMD config failed in an installed build of R 3.0.1 (only) when a sub-architecture was
used. (Reported by Berwin Turlach.)

• On Windows, the installer modified the ‘etc/Rconsole’ and ‘etc/Rprofile.site’ files even
when default options were chosen, so the MD5 sums did not refer to the installed
versions. (Reported by Tal Galili.)

• plot(hclust(),cex =) respects cex again (and possibly others similarly). (Reported
by Peter Langfelder.)

• If multiple packages were checked by R CMD check, and one was written for a different
OS, it would set --no-install for all following packages as well as itself.

• qr.coef() and related functions did not properly coerce real vectors to complex when
necessary. (PR#15332)

• ftable(a) now fixes up empty dimnames such that the result is printable.

• package.skeleton() was not starting its search for function objects in the correct place
if environment was supplied. (Reported by Karl Forner.)

• Parsing code was changing the length field of vectors and confusing the memory
manager. (PR#15345)

• The Fortran routine ZHER2K in the reference BLAS had a comment-out bug in two
places. This caused trouble with eigen() for Hermitian matrices. (PR#15345 and
report from Robin Hankin)

• vignette() and browseVignettes() did not display non-Sweave vignettes properly.

• Two warning/error messages have been corrected: the (optional) warning produced
by a partial name match with a pairlist, the error message from a zero-length argument
to the : operator. (Found by Radford Neal; PR#15358, PR#15356)

• svd() returned NULL rather than omitting components as documented. (Found by
Radford Neal; PR#15360)

• mclapply() and mcparallel() with silent = TRUE could break a process that uses
stdout output unguarded against broken pipes (e.g., zip will fail silently). To work
around such issues, they now replace stdout with a descriptor pointed to ‘/dev/null’
instead. For this purpose, internal closeStdout and closeStderr functions have
gained the to.null flag.

• log(), signif() and round() now raise an error if a single named argument is not
named x. (PR#15361)

• deparse() now deparses raw vectors in a form that is syntactically correct. (PR#15369)

• The jpeg driver in Sweave created a JPEG file, but gave it a ‘.png’ extension. (PR#15370)

• Deparsing of infix operators with named arguments is improved. (PR#15350)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15241
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15302
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15311
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15312
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15332
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15345
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15345
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15358
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15356
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15360
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15361
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15369
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15370
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15350

NEWS AND NOTES 538

• mget(), seq.int() and numericDeriv() did not duplicate arguments properly. (PR#15352,
PR#15353, PR#15354)

• kmeans(algorithm = "Hartigan-Wong") now always stops iterating in the QTran
stage. (PR#15364).

• read.dcf() re-allocated incorrectly and so could segfault when called on a file with
lines of more than 100 bytes.

• On systems where mktime() does not set errno, the last second before the epoch could
not be converted from POSIXlt to POSIXct. (Reported by Bill Dunlap.)

• add1.glm() miscalculated F-statistics when df > 1. (Bill Dunlap, PR#15386).

• stem() now discards infinite inputs rather than hanging. (PR#15376)

• The parser now enforces C99 syntax for floating point hexadecimal constants (e.g.,
0x1.1p0), rather than returning unintended values for malformed constants. (PR#15234)

• model.matrix() now works with very long LHS names (more than 500 bytes). (PR#15377)

• integrate() reverts to the pre-2.12.0 behaviour: from 2.12.0 to 3.0.1 it sometimes failed
to achieve the requested tolerance and reported error estimates that were exceeded.
(PR#15219)

• strptime() now handles ‘%W’ fields with value 0. (PR#15915)

• R is now better protected against people trying to interact with the console in startup
code. (PR#15325)

• Subsetting 1D arrays often lost dimnames (PR#15301).

• Unary + on a logical vector did not coerce to integer, although unary - did.

• na.omit() and na.exclude() added a row to a zero-row data frame. (PR#15399)

• All the (where necessary cut-down) vignettes are installed if R was configured with
‘--without-recommended-packages’.

• source() did not display filenames when reporting syntax errors.

• Syntax error reports misplaced the caret pointing out the bad token.

• (Windows only) Starting R with R (instead of Rterm or Rgui) would lose any zero-length
strings from the command line arguments. (PR#15406)

• Errors in the encoding specified on the command line via --encoding=foo were not
handled properly. (PR#15405)

• If x is a symbol, is.vector(x,"name") now returns TRUE, since "name" and "symbol"
should be synonyms. (Reported by Hervé Pagès.)

• R CMD rtags works on platforms (such as OS X) with a XSI-conformant shell command
echo. (PR#15231)

• is.unsorted(NA) returns false as documented (rather than NA).

• R CMD LINK did not know about sub-architectures.

• system() and system2() are better protected against users who misguidedly have
spaces in the temporary directory path.

• file.show() and edit() are now more likely to work on file paths containing spaces.
(Where external utilities are used, not the norm on Windows nor in R.app which
should previously have worked.)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15352
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15353
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15354
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15364
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15386
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15376
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15234
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15377
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15219
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15915
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15325
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15301
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15399
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15406
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15405
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15231

NEWS AND NOTES 539

• Packages using the methods package are more likely to work when they import it but
it is not attached. (Several parts of its C code were looking for its R functions on the
search path rather than in its namespace.)

• lgamma(-x) is no longer NaN for very small x.

• (Windows) system2() now respects specifying stdout and stderr as files if called
from Rgui. (PR#15393)

• Closing an x11() device whilst locator() or identify() is in progress no longer
hangs R. (PR#15253)

• list.dirs(full.names = FALSE) was not implemented. (PR#15170)

• format() sometimes added unnecessary spaces. (PR#15411)

• all.equal(check.names = FALSE) would ignore the request to ignore the names and
would check them as attributes.

• The symbol set by tools::Rd2txt_options(itemBullet=) was not respected in some
locales. (PR#15435)

• mcMap() was not exported by package parallel. (PR#15439)

• plot() for TukeyHSD objects did not balance dev.hold() and dev.flush() calls on
multi-page plots. (PR#15449)

CHANGES IN R 3.0.1

NEW FEATURES

• chooseCRANmirror() and chooseBioCmirror() gain an ind argument (like setRepositories()).

• mcparallel has a new argument mc.interactive which can modify the interactive
flag in the child process. The new default is FALSE which makes child processes non-
interactive by default (this prevents lock-ups due to children waiting for interactive
input).

• scan() now warns when end-of-file occurs within a quoted string.

• count.fields() is now consistent with scan() in its handling of newlines in quoted
strings. Instead of triggering an error, this results in the current line receiving NA as the
field count, with the next line getting the total count of the two lines.

• The default method of image() will plot axes of the class of xlim and ylim (and hence
of x and y if there is a suitable range() method). Based on a suggestion of Michael
Sumner.

• load() now has a verbose argument for debugging support, to print the names of
objects just before loading them.

• When loading a serialized object encounters a reference to a namespace which cannot
be loaded, this is replaced by a reference to the global environment, with a warning.

• pairs() gains a line.main option for title placement.

• The remaining instances in which serialization to a raw vector was limited to 2GB
have been unlimited on a 64-bit platform, and in most cases serialization to a vector of
more than 1GB will be substantially faster.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15393
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15253
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15170
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15411
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15435
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15439
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15449

NEWS AND NOTES 540

UTILITIES

• R CMD config now make use of personal ‘Makevars’ files under ‘~/.R’ and a site file
‘Makevars.site’, in the same way as R CMD SHLIB and R CMD INSTALL. This makes the
utility more useful in package configure scripts.

On Windows finding the personal files may require the environment variable HOME set.

The old behaviour can be obtained with the new options ‘--no-user-files’ and
‘--no-site-files’.

PACKAGE INSTALLATION

• Alternatives to the site and user customization files ‘Makevars.site’ and ‘~/.R/Makevars’
can be specified via the environment variables R_MAKEVARS_SITE and R_MAKEVARS_USER
respectively. These can be used to suppress the use of the default files by setting an
empty value (where possible) or a non-existent path.

BUG FIXES

• sys.source() did not report error locations when keep.source = TRUE.

• as.POSIXct.numeric was coercing origin using the tz argument and not "GMT" as
documented (PR#14973).

• The active binding to assign fields in reference classes has been cleaned up to reduce
dependence on the class’ package environment, also fixing bug in initializing read-only
fields (inspired by a report from Hadley Wickham).

• str(d) no longer gives an error when names(d) contain illegal multibyte strings
(PR#15247).

• Profiling of built-in functions with line.profiling= TRUE did not record the line from
which they were called.

• citation(pkg) dropped the header and footer specified in the ‘CITATION’ file (PR#15257).

• Quotes were handled differently when reading the first line and reading the rest, so
read.table() misread some files that contained quote characters (PR#15245).

• cat() with sep a character vector of length greater than one and more than one
argument was using separators inconsistently (PR#15261).

• On Windows in R 3.0.0, savePlot() failed because of an incorrect check on the argu-
ment count.

• unzip(list = TRUE) returned Names as a factor and not a character vector (as docu-
mented) for the internal method. (Noticed by Sean O’Riordain.)

• contourLines() now checks more comprehensively for conformance of its x, y and z
arguments (it was used incorrectly in package R2G2).

• Saved graphics display lists are R version-specific. Attempting to load workspaces
containing them (or some other version-specific objects) aborted the load in R 3.0.0
and earlier; now it does a partial load and generates a warning instead.

• In R 3.0.0, identify() and locator() did not record information correctly, so replaying
a graph (e.g., by copying it to another device) would fail. (PR#15271)

• Calling file.copy() or dirname() with the invalid input "" (which was being used in
packages, despite not being a file path) could have caused a segfault.

dirname("") is now "" rather than "." (unless it segfaulted).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=14973
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15247
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15257
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15245
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15261
https://CRAN.R-project.org/package=R2G2
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15271

NEWS AND NOTES 541

• supsmu() could read/write outside its input vectors for very short inputs (seen in
package rms for n = 4).

• as.dendrogram()’s hclust method uses less memory and hence gets considerably
faster for large (n ~ 1000) clusterings, thanks to Daniel Müllner. (PR#15174)

• The return value when all workers failed from parallel::mclapply(mc.preschedule
= TRUE) was a list of strings and not of error objects. (Spotted by Karl Forner and
Bernd Bischl.)

• In R 3.0.0, when help() found multiple pages with the same alias, the HTML display
of all the selections was not produced. (PR#15282)

• splinefun(method="monoH.FC") now produces a function with first argument named
x and allows deriv=3, as documented. (PR#15273)

• summaryRprof() would only read the first chunksize lines of an Rprof file produced
with line.profiling=TRUE. By default, this is the first 100 seconds. (PR#15288)

• lsfit() produced an incorrect error message when argument x had more columns
than rows or x had a different number of rows than y. (Spotted by Renaud Gaujoux.)

• Binary operations on equal length vectors copied the class name from the second
operand when the first had no class name, but did not set the object bit. (PR#15299)

• The trace() method for reference generator objects failed after those objects became
function definitions.

• write.table() did not check that factors were constructed correctly, and so caused a
segment fault when writing bad ones. (PR#15300)

• The internal HTTP server no longer chokes on POST requests without body. It will
also pass-through other request types for custom handlers (with the method stored in
Request-Method header) instead of failing.

CHANGES IN R 3.0.0

SIGNIFICANT USER-VISIBLE CHANGES

• Packages need to be (re-)installed under this version (3.0.0) of R.

• There is a subtle change in behaviour for numeric index values 231 and larger. These
never used to be legitimate and so were treated as NA, sometimes with a warning. They
are now legal for long vectors so there is no longer a warning, and x[2^31] <-y will
now extend the vector on a 64-bit platform and give an error on a 32-bit one.

• It is now possible for 64-bit builds to allocate amounts of memory limited only by the
OS. It may be wise to use OS facilities (e.g., ulimit in a bash shell, limit in csh), to set
limits on overall memory consumption of an R process, particularly in a multi-user
environment. A number of packages need a limit of at least 4GB of virtual memory to
load.

64-bit Windows builds of R are by default limited in memory usage to the amount of
RAM installed: this limit can be changed by command-line option ‘--max-mem-size’
or setting environment variable R_MAX_MEM_SIZE.

• Negative numbers for colours are consistently an error: previously they were some-
times taken as transparent, sometimes mapped into the current palette and sometimes
an error.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=rms
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15174
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15282
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15273
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15288
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15299
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15300

NEWS AND NOTES 542

NEW FEATURES

• identical() has a new argument, ignore.environment, used when comparing func-
tions (with default FALSE as before).

• There is a new option, options(CBoundsCheck=), which controls how .C() and .Fortran()
pass arguments to compiled code. If true (which can be enabled by setting the en-
vironment variable R_C_BOUNDS_CHECK to ‘yes’), raw, integer, double and complex
arguments are always copied, and checked for writing off either end of the array
on return from the compiled code (when a second copy is made). This also checks
individual elements of character vectors passed to .C().

This is not intended for routine use, but can be very helpful in finding segfaults in
package code.

• In layout(), the limits on the grid size have been raised (again).

• New simple provideDimnames() utility function.

• Where methods for length() return a double value which is representable as an
integer (as often happens for package Matrix), this is converted to an integer.

• Matrix indexing of data frames by two-column numeric indices is now supported for
replacement as well as extraction.

• setNames() now has a default for its object argument, useful for a character result.

• StructTS() has a revised additive constant in the loglik component of the result: the
previous definition is returned as the loglik0 component. However, the help page
has always warned of a lack of comparability of log-likelihoods for non-stationary
models. (Suggested by Jouni Helske.)

• The logic in aggregate.formula() has been revised. It is now possible to use a formula
stored in a variable; previously, it had to be given explicitly in the function call.

• install.packages() has a new argument quiet to reduce the amount of output
shown.

• Setting an element of the graphics argument lwd to a negative or infinite value is now
an error. Lines corresponding to elements with values NA or NaN are silently omitted.

Previously the behaviour was device-dependent.

• Setting graphical parameters cex, col, lty, lwd and pch in par() now requires a length-
one argument. Previously some silently took the first element of a longer vector, but
not always when documented to do so.

• Sys.which() when used with inputs which would be unsafe in a shell (e.g., absolute
paths containing spaces) now uses appropriate quoting.

• as.tclObj() has been extended to handle raw vectors. Previously, it only worked in
the other direction. (Contributed by Charlie Friedemann, PR#14939.)

• New functions cite() and citeNatbib() have been added, to allow generation of in-
text citations from "bibentry" objects. A cite() function may be added to bibstyle()
environments.

• A sort() method has been added for "bibentry" objects.

• The bibstyle() function now defaults to setting the default bibliography style. The
getBibstyle() function has been added to report the name of the current default
style.

• scatter.smooth() now has an argument lpars to pass arguments to lines().

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=Matrix
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=14939

NEWS AND NOTES 543

• pairs() has a new log argument, to allow some or all variables to be plotted on
logarithmic scale. (In part, wish of PR#14919.)

• split() gains a sep argument.

• termplot() does a better job when given a model with interactions (and no longer
attempts to plot interaction terms).

• The parser now incorporates code from Romain Francois’ parser package, to support
more detailed computation on the code, such as syntax highlighting, comment-based
documentation, etc. Functions getParseData() and getParseText() access the data.

• There is a new function rep_len() analogous to rep.int() for when speed is required
(and names are not).

• The undocumented use rep(NULL,length.out = n) for n >0 (which returns NULL)
now gives a warning.

• demo() gains an encoding argument for those packages with non-ASCII demos: it
defaults to the package encoding where there is one.

• strwrap() converts inputs with a marked encoding to the current locale: previously it
made some attempt to pass through as bytes inputs invalid in the current locale.

• Specifying both rate and scale to [dpqr]gamma is a warning (if they are essentially
the same value) or an error.

• merge() works in more cases where the data frames include matrices. (Wish of
PR#14974.)

• optimize() and uniroot() no longer use a shared parameter object across calls. (nlm(),
nlminb() and optim() with numerical derivatives still do, as documented.)

• The all.equal() method for date-times is now documented: times are regarded as
equal (by default) if they differ by up to 1 msec.

• duplicated() and unique() gain a nmax argument which can be used to make them
much more efficient when it is known that there are only a small number of unique
entries. This is done automatically for factors.

• Functions rbinom(), rgeom(), rhyper(), rpois(), rnbinom(), rsignrank() and rwilcox()
now return integer (not double) vectors. This halves the storage requirements for large
simulations.

• sort(), sort.int() and sort.list() now use radix sorting for factors of less than
100,000 levels when method is not supplied. So does order() if called with a single
factor, unless na.last = NA.

• diag() as used to generate a diagonal matrix has been re-written in C for speed and
less memory usage. It now forces the result to be numeric in the case diag(x) since it
is said to have ‘zero off-diagonal entries’.

• backsolve() (and forwardsolve()) are now internal functions, for speed and support
for large matrices.

• More matrix algebra functions (e.g., chol() and solve()) accept logical matrices (and
coerce to numeric).

• sample.int() has some support for n ≥ 231: see its help for the limitations.

A different algorithm is used for (n,size,replace = FALSE,prob = NULL) for n >1e7
and size <= n/2. This is much faster and uses less memory, but does give different
results.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=14919
https://CRAN.R-project.org/package=parser
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=14974

NEWS AND NOTES 544

• approxfun() and splinefun() now return a wrapper to an internal function in the
stats namespace rather than a .C() or .Call() call. This is more likely to work if the
function is saved and used in a different session.

• The functions .C(), .Call(), .External() and .Fortran() now give an error (rather
than a warning) if called with a named first argument.

• Sweave() by default now reports the locations in the source file(s) of each chunk.

• clearPushBack() is now a documented interface to a long-existing internal call.

• aspell() gains filters for R code, Debian Control Format and message catalog files,
and support for R level dictionaries. In addition, package utils now provides functions
aspell_package_R_files() and aspell_package_C_files() for spell checking R and
C level message strings in packages.

• bibentry() gains some support for “incomplete” entries with a ‘crossref’ field.

• gray() and gray.colors() finally allow alpha to be specified.

• monthplot() gains parameters to control the look of the reference lines. (Suggestion of
Ian McLeod.)

• Added support for new %~% relation (“is distributed as”) in plotmath.

• domain = NA is accepted by gettext() and ngettext(), analogously to stop() etc.

• termplot() gains a new argument plot = FALSE which returns information to al-
low the plots to be modified for use as part of other plots, but does not plot them.
(Contributed by Terry Therneau, PR#15076.)

• quartz.save(), formerly an undocumented part of R.app, is now available to copy
a device to a quartz() device. dev.copy2pdf() optionally does this for PDF output:
quartz.save() defaults to PNG.

• The default method of pairs() now allows text.panel = NULL and the use of
<foo>.panel = NULL is now documented.

• setRefClass() and getRefClass() now return class generator functions, similar to
setClass(), but still with the reference fields and methods as before (suggestion of
Romain Francois).

• New functions bitwNot(), bitwAnd(), bitwOr() and bitwXor(), using the internal
interfaces previously used for classes "octmode" and "hexmode".

Also bitwShiftL() and bitwShiftR() for shifting bits in elements of integer vectors.

• New option "deparse.cutoff" to control the deparsing of language objects such as
calls and formulae when printing. (Suggested by a comment of Sarah Goslee.)

• colors() gains an argument distinct.

• New demo(colors) and demo(hclColors), with utility functions.

• list.files() (aka dir()) gains a new optional argument no.. which allows to
exclude "." and ".." from listings.

• Multiple time series are also of class "matrix"; consequently, head(), e.g., is more
useful.

• encodeString() preserves UTF-8 marked encodings. Thus if factor levels are marked
as UTF-8 an attempt is made to print them in UTF-8 in RGui on Windows.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15076

NEWS AND NOTES 545

• readLines() and scan() (and hence read.table()) in a UTF-8 locale now discard a
UTF-8 byte-order-mark (BOM). Such BOMs are allowed but not recommended by the
Unicode Standard: however Microsoft applications can produce them and so they are
sometimes found on websites.

The encoding name "UTF-8-BOM" for a connection will ensure that a UTF-8 BOM is
discarded.

• mapply(FUN,a1,..) now also works when a1 (or a further such argument) needs a
length() method (which the documented arguments never do). (Requested by Hervé
Pagès; with a patch.)

• .onDetach() is supported as an alternative to .Last.lib. Unlike .Last.lib, this does
not need to be exported from the package’s namespace.

• The srcfile argument to parse() may now be a character string, to be used in error
messages.

• The format() method for ftable objects gains a method argument, propagated to
write.ftable() and print(), allowing more compact output, notably for LaTeX for-
matting, thanks to Marius Hofert.

• The utils::process.events() function has been added to trigger immediate event
handling.

• Sys.which() now returns NA (not "") for NA inputs (related to PR#15147).

• The print() method for class "htest" gives fewer trailing spaces (wish of PR#15124).

Also print output from HoltWinters(), nls() and others.

• loadNamespace() allows a version specification to be given, and this is used to check
version specifications given in the ‘Imports’ field when a namespace is loaded.

• setClass() has a new argument, slots, clearer and less ambiguous than representation.
It is recommended for future code, but should be back-compatible. At the same time,
the allowed slot specification is slightly more general. See the documentation for
details.

• mget() now has a default for envir (the frame from which it is called), for consistency
with get() and assign().

• close() now returns an integer status where available, invisibly. (Wish of PR#15088.)

• The internal method of tar() can now store paths too long for the ‘ustar’ format,
using the (widely supported) GNU extension. It can also store long link names, but
these are much less widely supported. There is support for larger files, up to the
‘ustar’ limit of 8GB.

• Local reference classes have been added to package methods. These are a technique for
avoiding unneeded copying of large components of objects while retaining standard R
functional behavior. See ?LocalReferenceClasses.

• untar() has a new argument restore_times which if false (not the default) discards
the times in the tarball. This is useful if they are incorrect (some tarballs submitted
to CRAN have times in a local time zone or many years in the past even though the
standard required them to be in UTC).

• replayplot() cannot (and will not attempt to) replay plots recorded under R < 3.0.0.
It may crash the R session if an attempt is made to replay plots created in a different
build of R >= 3.0.0.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15147
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15124
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15088

NEWS AND NOTES 546

• Palette changes get recorded on the display list, so replaying plots (including when
resizing screen devices and using dev.copy()) will work better when the palette is
changed during a plot.

• chol(pivot = TRUE) now defaults to LAPACK, not LINPACK.

• The parse() function has a new parameter keep.source, which defaults to options("keep.source").

• Profiling via Rprof() now optionally records information at the statement level, not
just the function level.

• The Rprof() function now quotes function names in in its output file on Windows, to
be consistent with the quoting in Unix.

• Profiling via Rprof() now optionally records information about time spent in GC.

• The HTML help page for a package now displays non-vignette documentation files in
a more accessible format.

• To support options(stringsAsFactors = FALSE), model.frame(), model.matrix()
and replications() now automatically convert character vectors to factors without a
warning.

• The print method for objects of class "table" now detects tables with 0-extents and
prints the results as, e.g., ‘<table of extent 0 x 1 x 2 >’. (Wish of PR#15198.)

• Deparsing involving calls to anonymous functions has been made closer to reversible
by the addition of extra parentheses.

• The function utils::packageName() has been added as a lightweight version of
methods::getPackageName().

• find.package(lib.loc = NULL) now treats loaded namespaces preferentially in the
same way as attached packages have been for a long time.

• In Windows, the Change Directory dialog now defaults to the current working direc-
tory, rather than to the last directory chosen in that dialog.

• available.packages() gains a "license/restricts_use" filter which retains only
packages for which installation can proceed solely based on packages which are
guaranteed not to restrict use.

• New check_packages_in_dir() function in package tools for conveniently checking
source packages along with their reverse dependencies.

• R’s completion mechanism has been improved to handle help requests (starting with a
question mark). In particular, help prefixes are now supported, as well as quoted help
topics. To support this, completion inside quotes are now handled by R by default on
all platforms.

• The memory manager now allows the strategy used to balance garbage collection and
memory growth to be controlled by setting the environment variable R_GC_MEM_GROW.
See ?Memory for more details.

• (‘For experts only’, as the introductory manual says.) The use of environment variables
R_NSIZE and R_VSIZE to control the initial (= minimum) garbage collection trigger for
number of cons cels and size of heap has been restored: they can be overridden by the
command-line options --min-nsize and --min-vsize; see ?Memory.

• On Windows, the device name for bitmap devices as reported by .Device and .Devices
no longer includes the file name. This is for consistency with other platforms and was
requested by the lattice maintainer.

win.metafile() still uses the file name: the exact form is used by package tkrplot.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15198
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=tkrplot

NEWS AND NOTES 547

• set.seed(NULL) re-initializes .Random.seed as done at the beginning of the session if
not already set. (Suggestion of Bill Dunlap.)

• The breaks argument in hist.default() can now be a function that returns the break-
points to be used (previously it could only return the suggested number of break-
points).

• File ‘share/licenses/licenses.db’ has some clarifications, especially as to which variants
of ‘BSD’ and ‘MIT’ is intended and how to apply them to packages. The problematic
licence ‘Artistic-1.0’ has been removed.

LONG VECTORS

This section applies only to 64-bit platforms.

• There is support for vectors longer than 231 − 1 elements. This applies to raw, logical,
integer, double, complex and character vectors, as well as lists. (Elements of character
vectors remain limited to 231 − 1 bytes.)

• Most operations which can sensibly be done with long vectors work: others may return
the error ‘long vectors not supported yet’. Most of these are because they explicitly
work with integer indices (e.g., anyDuplicated() and match()) or because other limits
(e.g., of character strings or matrix dimensions) would be exceeded or the operations
would be extremely slow.

• length() returns a double for long vectors, and lengths can be set to 231 or more by
the replacement function with a double value.

• Most aspects of indexing are available. Generally double-valued indices can be used
to access elements beyond 231 − 1.

• There is some support for matrices and arrays with each dimension less than 231 but
total number of elements more than that. Only some aspects of matrix algebra work
for such matrices, often taking a very long time. In other cases the underlying Fortran
code has an unstated restriction (as was found for complex svd()).

• dist() can produce dissimilarity objects for more than 65536 rows (but for example
hclust() cannot process such objects).

• serialize() to a raw vector is unlimited in size (except by resources).

• The C-level function R_alloc can now allocate 235 or more bytes.

• agrep() and grep() will return double vectors of indices for long vector inputs.

• Many calls to .C() have been replaced by .Call() to allow long vectors to be sup-
ported (now or in the future). Regrettably several packages had copied the non-API
.C() calls and so failed.

• .C() and .Fortran() do not accept long vector inputs. This is a precaution as it is very
unlikely that existing code will have been written to handle long vectors (and the R
wrappers often assume that length(x) is an integer).

• Most of the methods for sort() work for long vectors.

rank(), sort.list() and order() support long vectors (slowly except for radix sort-
ing).

• sample() can do uniform sampling from a long vector.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

NEWS AND NOTES 548

PERFORMANCE IMPROVEMENTS

• More use has been made of R objects representing registered entry points, which is
more efficient as the address is provided by the loader once only when the package is
loaded.

This has been done for packages base, methods, splines and tcltk: it was already in
place for the other standard packages.

Since these entry points are always accessed by the R entry points they do not need to
be in the load table which can be substantially smaller and hence searched faster. This
does mean that .C / .Fortran / .Call calls copied from earlier versions of R may no
longer work – but they were never part of the API.

• Many .Call() calls in package base have been migrated to .Internal() calls.

• solve() makes fewer copies, especially when b is a vector rather than a matrix.

• eigen() makes fewer copies if the input has dimnames.

• Most of the linear algebra functions make fewer copies when the input(s) are not
double (e.g., integer or logical).

• A foreign function call (.C() etc) in a package without a PACKAGE argument will only
look in the first DLL specified in the ‘NAMESPACE’ file of the package rather than
searching all loaded DLLs. A few packages needed PACKAGE arguments added.

• The @<- operator is now implemented as a primitive, which should reduce some
copying of objects when used. Note that the operator object must now be in package
base: do not try to import it explicitly from package methods.

PACKAGE INSTALLATION

• The transitional support for installing packages without namespaces (required since R
2.14.0) has been removed. R CMD build will still add a namespace, but a .First.lib()
function will need to be converted.

R CMD INSTALL no longer adds a namespace (so installation will fail), and a .First.lib()
function in a package will be ignored (with an installation warning for now).

As an exception, packages without a ‘R’ directory and no ‘NAMESPACE’ file can still be
installed.

• Packages can specify in their ‘DESCRIPTION file’ a line like

Biarch: yes

to be installed on Windows with ‘--force-biarch’.

• Package vignettes can now be processed by other engines besides Sweave; see ‘Writing
R Extensions’ and the tools::vignetteEngine help topic for details.

• The ‘*.R’ tangled source code for vignettes is now included in tarballs when R CMD
build is used to produce them. In R 3.0.0, ‘*.R’ files not in the sources will be produced
at install time, but eventually this will be dropped.

• The package type "mac.binary" now looks in a path in the repository without any Mac
subtype (which used to be ‘universal’ or ‘leopard’): it looks in ‘bin/macosx/contrib/3.0’
rather than ‘bin/macosx/leopard/contrib/2.15’). This is the type used for the CRAN binary
distribution for OS X as from R 3.0.0.

• File ‘etc/Makeconf’ makes more use of the macros $(CC), $(CXX), $(F77) and $(FC),
so the compiler in use can be changed by setting just these (and if necessary the
corresponding flags and FLIBS) in file ‘~/.R/Makevars’.

This is convenient for those working with binary distributions of R, e.g. on OS X.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

NEWS AND NOTES 549

UTILITIES

• R CMD check now gives a warning rather than a note if it finds calls to abort, assert
or exit in compiled code, and has been able to find the ‘.o’ file in which the calls occur.

Such calls can terminate the R process which loads the package.

• The location of the build and check environment files can now be specified by the
environment variables R_BUILD_ENVIRON and R_CHECK_ENVIRON, respectively.

• R CMD Sweave gains a ‘--compact’ option to control possibly reducing the size of the
PDF file it creates when ‘--pdf’ is given.

• R CMD build now omits Eclipse’s ‘.metadata’ directories, and R CMD check warns if it
finds them.

• R CMD check now does some checks on functions defined within reference classes,
including of .Call() etc calls.

• R CMD check --as-cran notes assignments to the global environment, calls to data()
which load into the global environment, and calls to attach().

• R CMD build by default uses the internal method of tar() to prepare the tarball. This is
more likely to produce a tarball compatible with R CMD INSTALL and R CMD check: an
external tar program, including options, can be specified via the environment variable
R_BUILD_TAR.

• tools::massageExamples() is better protected against packages which re-define base
functions such as cat() and get() and so can cause R CMD check to fail when checking
examples.

• R CMD javareconf has been enhanced to be more similar to the code used by configure.

There is now a test that a JNI program can be compiled (like configure did) and only
working settings are used.

It makes use of custom settings from configuration recorded in ‘etc/javaconf’.

• The ‘--no-vignettes’ argument of R CMD build has been renamed to the more accurate
‘--no-build-vignettes’: its action has always been to (re)build vignettes and never
omitted them.

R CMD check accepts ‘--no-build-vignettes’ as a preferred synonym for ‘--no-rebuild-vignettes’.

DEPRECATED AND DEFUNCT

• The ENCODING argument to .C() is defunct. Use iconv() instead.

• The .Internal(eval.with.vis) non-API function has been removed.

• Support for the converters for use with .C() has been removed, including the oft
misused non-API header ‘R_ext/RConverters.h’.

• The previously deprecated uses of array() with a 0-length dim argument and tapply()
with a 0-length INDEX list are now errors.

• ‘Translation’ packages are defunct.

• Calling rep() or rep.int() on a pairlist or other non-vector object is now an error.

• Several non-API entry points have been transferred to packages (e.g., R_zeroin2) or
replaced by different non-API entry points (e.g., R_tabulate).

• The ‘internal’ graphics device invoked by .Call("R_GD_nullDevice",package = "grDevices")
has been removed: use pdf(file = NULL) instead.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

NEWS AND NOTES 550

• The .Fortran() entry point "dqrls" which has not been used by R since version 2.15.1
is no longer available.

• Functions traceOn() and traceOff() in package methods are now defunct.

• Function CRAN.packages() is finally defunct.

• Use of col2rgb(0) is defunct: use par("bg") or NA instead.

• The long-defunct functions Rd_parse(), anovalist.lm(), categpry(), clearNames(),
gammaCody(), glm.fit.null(), lm.fit.null(), lm.wfit.null(), manglePackageNames(),
mauchley.test(), package.contents(), print.coefmat(), reshapeLong(), reshapeWide(),
tkclose(), tkcmd(), tkfile.dir(), tkfile.tail(), tkopen(), tkputs(), tkread(),
trySilent() and zip.file.extract() have been removed entirely (but are still docu-
mented in the help system).

• The unused dataPath argument to attachNamespace() has been removed.

• grid.prompt() has been removed: use devAskNewPage() instead.

• The long-deprecated intensities component is no longer returned by hist().

• mean() for data frames and sd() for data frames and matrices are defunct.

• chol(pivot = FALSE,LINPACK = TRUE), ch2inv(LINPACK = TRUE), eigen(EISPACK =
TRUE), solve(LINPACK = TRUE) and svd(LINPACK = TRUE) are defunct: LAPACK will
be used, with a warning.

• The keep.source argument to library() and require() is defunct. This option needs
to be set at install time.

• Documentation for real(), as.real() and is.real() has been moved to ‘defunct’
and the functions removed.

• The maxRasters argument of pdf() (unused since R 2.14.0) has been removed.

• The unused fontsmooth argument has been removed from the quartz() device.

• All the (non-API) EISPACK entry points in R have been removed.

• chol(pivot = TRUE,LINPACK = TRUE) is deprecated.

• The long-deprecated use of \synopsis in the ‘Usage’ section of ‘.Rd’ files will be
removed in R 3.1.0.

• .find.package() and .path.package() are deprecated: only the public versions with-
out the dot have ever been in the API.

• In a package’s ‘DESCRIPTION’ file,

License: X11

is deprecated, since it includes ‘Copyright (C) 1996 X Consortium’ which cannot be
appropriate for a current R package. Use ‘MIT’ or ‘BSD_2_clause’ instead.

CODE MIGRATION

• The C code underlying base graphics has been migrated to the graphics package (and
hence no longer uses .Internal() calls).

• Most of the .Internal() calls used in the stats package have been migrated to C code
in that package.

This means that a number of .Internal() calls which have been used by packages no
longer exist, including .Internal(cor) .Internal(cov), .Internal(optimhess) and
.Internal(update.formula).

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

NEWS AND NOTES 551

• Some .External() calls to the base package (really to the R executable or shared
library) have been moved to more appropriate packages. Packages should not have
been using such calls, but some did (mainly those used by integrate()).

PACKAGE parallel

• There is a new function mcaffinity() which allows getting or setting the CPU affinity
mask for the current R process on systems that supports this (currently only Linux has
been tested successfully). It has no effect on systems which do not support process
affinity. Users are not expected to use this function directly (with the exception of
fixing libraries that break affinity settings like OpenBLAS) – the function is rather
intended to support affinity control in high-level parallel functions. In the future,
R may supplement lack of affinity control in the OS by its own bookkeeping via
mcaffinity() related to processes and threads it spawns.

• mcparallel() has a new argument mc.affinity which attempts to set the affinity of
the child process according to the specification contained therein.

• The port used by socket clusters is chosen randomly: this should help to avoid clashes
observed when two users of a multi-user machine try to create a cluster at the same
time. To reproduce the previous behaviour set environment variable R_PARALLEL_PORT
to 10187.

C-LEVEL FACILITIES

• There has been some minor re-organization of the non-API header files. In particular,
‘Rinternals.h’ no longer includes the non-API header ‘R_exts/PrtUtil.h’, and that no
longer includes ‘R_exts/Print.h’.

• Passing NULL to .C() is now an error.

• .C() and .Fortran() now warn if "single" arguments are used with DUP = FALSE, as
changes to such arguments are not returned to the caller.

• C entry points R_qsort and R_qsort_I now have start and end as size_t to allow
them to work with longer vectors on 64-bit platforms. Code using them should be
recompiled.

• A few recently added C entry points were missing the remapping to Rf_, notably
[dpq]nbinom_mu.

• Some of the interface pointers formerly available only to R.app are now available to
front-ends on all Unix-alikes: one has been added for the interface to View().

• PACKAGE = "" is now an error in .C() etc calls: it was always contrary to the documen-
tation.

• Entry point rcont2 has been migrated to package stats and so is no longer available.

• R_SVN_REVISION in ‘Rversion.h’ is now an integer (rather than a string) and hence
usable as e.g. #if R_SVN_REVISION <70000.

• The entry points rgb2hsv and hsv2rgb have been migrated to package grDevices and
so are no longer available.

• R_GE_version has been increased to 10 and name2col removed (use R_GE_str2col
instead). R internal colour codes are now defined using the typedef rcolor.

• The REPROTECT macro now checks that the protect index is valid.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

NEWS AND NOTES 552

• Several non-API entry points no longer used by R have been removed, including the
Fortran entry points chol, chol2inv, cg, ch and rg, and the C entry points Brent_fmin,
fft_factor and fft_work.

• If a .External call is registered with a number of arguments (other than -1), the
number of arguments passed is checked for each call (as for other foreign function
calls).

• It is now possible to write custom connection implementations outside core R us-
ing ‘R_ext/Connections.h’. Please note that the implementation of connections is still
considered internal and may change in the future (see the above file for details).

INTERNATIONALIZATION

• The management of translations has been converted to R code: see ?tools::update_pkg_po.

• The translations for the R interpreter and RGui.exe are now part of the base package
(rather than having sources in directory ‘po’ and being installed to ‘share/locale’). Thus
the base package supports three translation domains, R-base, R and RGui.

• The compiled translations which ship with R are all installed to the new package
translations for easier updating. The first package of that name found on .libPaths()
at the start of the R session will be used. (It is possible messages will be used before
.libPaths() is set up in which case the default translations will be used: set environ-
ment variable R_TRANSLATIONS to point to the location of the intended translations
package to use this right from the start.)

• The translations form a separate group in the Windows installer, so can be omitted if
desired.

• The markup for many messages has been changed to make them easier to translate,
incorporating suggestions from Łukasz Daniel.

INSTALLATION

• There is again support for building without using the C ‘long double’ type. This is
required by C99, but system implementations can be slow or flawed. Use configure
option ‘--disable-long-double’.

• make pdf and make install-pdf now make and install the full reference index (in-
cluding all base and recommended packages).

• The ’reference manual’ on the Windows GUI menu and included in the installer is
now the full reference index, including all base and recommended packages.

• R help pages and manuals have no ISBNs because ISBN rules no longer allow con-
stantly changing content to be assigned an ISBN.

• The Windows installer no longer installs a Start Menu link to the static help pages; as
most pages are generated dynamically, this led to a lot of broken links.

• Any custom settings for Java configuration are recorded in file ‘etc/javaconf’ for subse-
quent use by R CMD javareconf.

• There is now support for makeinfo version 5.0 (which requires a slightly different ‘.texi’
syntax).

• The minimum versions for ‘--use-system-zlib’ and --use-system-pcre are now
tested as 1.2.5 and 8.10 respectively.

• On Windows, the stack size is reduced to 16MB on 32-bit systems: misguided users
were launching many threads without controlling the stack size.

• configure no longer looks for file ‘~/.Rconfig’: ‘~/.R/config’ has long been preferred.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

NEWS AND NOTES 553

BUG FIXES

• When R CMD build is run in an encoding other than the one specified in the pack-
age’s ‘DESCRIPTION’ file it tries harder to expand the authors@R field in the specified
encoding. (PR#14958)

• If R CMD INSTALL is required to expand the authors@R field of the ‘DESCRIPTION’ file,
it tries harder to do so in the encoding specified for the package (rather than using
ASCII escapes).

• Fix in package grid for pushing a viewport into a layout cell, where the layout is
within a viewport that has zero physical width OR where the layout has zero total
relative width (likewise for height). The layout column widths (or row heights) in this
case were being calculated with non-finite values. (Reported by Winston Chang.)

• solve(A,b) for a vector b gave the answer names from colnames(A) for LINPACK =
TRUE but not in the default case.

• La.svd() accepts logical matrices (as documented, and as svd() did).

• legend() now accepts negative pch values, in the same way points() long has.

• Parse errors when installing files now correctly display the name of the file containing
the bad code.

• In Windows, tcltk windows were not always properly constructed. (PR#15150)

• The internal functions implementing parse(), tools::parseLatex() and tools::parse_Rd()
were not reentrant, leading to errors in rare circumstances such as a garbage collection
triggering a recursive call.

• Field assignments in reference class objects via $<- were not being checked because
the magic incantation to turn methods on for that primitive operator had been inad-
vertently omitted.

• setHook(hookname,value,action="replace") set the hook to be the value, rather than
a list containing the value as documented. (PR#15167)

• If a package used a ‘NEWS.Rd’ file, the main HTML package index page did not link
to it. (Reported by Dirk Eddelbuettel.)

• The primitive implementation of @<- was not checking the class of the replacement. It
now does a check, quicker but less general than slot<-. See the help.

• split(x,f) now recycles classed objects x in the same way as vectors. (Reported by
Martin Morgan.)

• pbeta(.28,1/2,2200,lower.tail=FALSE,log.p=TRUE) is no longer -Inf; ditto for cor-
responding pt() and pf() calls, such as pt(45,df=5000,lower.tail=FALSE,log.p=TRUE).
(PR#15162)

• The Windows graphics device would crash R if a user attempted to load the graphics
history from a variable that was not a saved history. (PR#15230)

• The workspace size for the predict() method for loess() could exceed the maximum
integer size. (Reported by Hiroyuki Kawakatsu.)

• ftable(x,row.vars,col.vars) now also works when the *.vars arguments are (inte-
ger or character vectors) of length zero.

• Calling cat() on a malformed UTF-8 string could cause the Windows GUI to lock up.
(PR#15227)

• removeClass(cc) gave "node stack overflow" for some class definitions containing
"array" or "matrix".

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=14958
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15150
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15167
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15162
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15230
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15227

NEWS AND NOTES 554

CHANGES in previous versions

• Older news can be found in text format in files ‘NEWS.0’, ‘NEWS.1’ and ‘NEWS.2’ in
the ‘doc’ directory. News in HTML format for R versions from 2.10.0 to 2.15.3 is in
‘doc/html/NEWS.2.html’.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

	Editorial
	In this issue

	Using Web Services to Work with Geodata in R
	Introduction and outline
	Background maps - download via Map Tile Servers
	Geocoding with Aplication Programming Interfaces (APIs)
	Downloading general OSM-data
	Processing OSM-data
	Summary

	orthoDr: Semiparametric Dimension Reduction via Orthogonality Constrained Optimization
	Introduction
	Model description
	Counting process based dimension reduction
	Orthogonality preserving updating scheme

	The R package orthoDr
	Semiparametric dimension reduction models for survival data
	Semiparametric dimension reduction models for regression
	Parallelled gradient approximation through OpenMP
	General solver for orthogonality constrained optimization

	Examples
	Discussion
	Acknowledgement

	coxed: An R Package for Computing Duration-Based Quantities from the Cox Proportional Hazards Model
	Introduction
	The methodology
	Method 1: GAM
	Method 2: Nonparametric step-function

	Implementation in R and empirical example
	Conclusions

	Modeling regimes with extremes: the bayesdfa package for identifying and forecasting common trends and anomalies in multivariate time-series data
	Overview
	Label switching

	The Bayesian dynamic factor model with extremes
	Including autoregressive and moving average components
	Rotation of trends and loadings
	Identifying data support for the number of trends
	Anomalies or black-swan events
	Simulation tests

	Using HMMs to classify regimes in latent DFA trends
	Example application: identifying common patterns in sea surface temperatures in the Northeast Pacific Ocean
	Visualizing the trends and loadings
	Identifying regimes in the latent DFA trends with Hidden Markov Models

	Extensions
	Conclusion
	Acknowledgements

	Fitting Tails by the Empirical Residual Coefficient of Variation: The ercv Package
	Introduction and overview
	Mathematical Background
	Threshold models
	The power law distribution and GPD
	The residual CV approach

	Exploratory data analysis with cvplot function
	The empirical residual CV and confidence intervals.
	Examples

	Estimation and Model diagnostics with Tm function
	Threshold selection algorithm (thrselect)
	Transformation from heavy to light tails (tdata)
	Fitting PoT parameters and tail plots (fitpot ccdfplot)

	biclustermd: An R Package for Biclustering with Missing Values
	Introduction
	Biclustering with missing data
	Notation
	Biclustering with missing data algorithm

	Overview of biclustermd
	Example with NYCflights13
	Analyzing the NYCflights13 biclustering
	Further capabilities

	Example with soybean yield data
	Algorithm time study with movie ratings data
	Summary
	Acknowledgments

	auditor: an R Package for Model-Agnostic Visual Validation and Diagnostics
	Introduction
	Related work
	Data diagnostics before model fitting
	Diagnostics methods for linear models
	Other model-specific approaches
	Model-agnostic approach
	Model-agnostic audit

	Package Architecture
	Notation
	Illustrations
	Model Ranking Plot
	REC Curve Plot
	Residual Boxplot Plot
	Residual Density Plot
	Two-sided ECDF Plot

	Conclusion and future work
	Acknowledgements

	The R Package trafo for Transforming Linear Regression Models
	Introduction
	Transformations
	Study case
	Additional features
	Extract the transformed model and vector
	Customized transformation

	Introduction
	Acknowledgment
	Appendix: Likelihood derivation of the transformations
	Log (shift) transformation
	Glog transformation
	Neglog transformation
	Reciprocal transformation
	Box-Cox (shift) transformation
	Log-shift opt transformation
	Bickel-Docksum transformation
	Yeo-Johnson transformation
	Square root-shift opt transformation
	Manly transformation
	Modulus transformation
	Dual power transformation
	Gpower transformation

	BondValuation: An R Package for Fixed Coupon Bond Analysis
	Introduction
	The BondValuation package
	Day count conventions
	Bond-specific temporal structure
	Cash flows, accrued interest, and dirty price
	Yield to maturity, duration, and convexity

	Application of the package BondValuation
	Checking the data with AnnivDates()
	Applying BondVal.Yield() to long format data

	Conclusion
	Acknowledgments

	ConvergenceClubs: A Package for Performing the Phillips and Sul's Club Convergence Clustering Procedure
	Introduction
	Methodology
	The log–t test
	The clustering algorithm
	The merging algorithms

	The ConvergenceClubs package
	Application to the country GDP dataset
	Conclusions

	PPCI: an R Package for Cluster Identification using Projection Pursuit
	Introduction
	Projection pursuit, hyperplanes and divisive hierarchical clustering
	Finding optimal hyperplanes via projection pursuit
	Divisive hierarchical clustering using hyperplanes

	Clustering and Projection Pursuit in PPCI
	Minimum Density Hyperplanes (````mdh and ````mddc)
	Maximum clusterability clustering (````mch and ````mcdc)
	Minimum normalised cut hyperplanes (````ncuth and ````ncutdc)

	Modifying and validating a clustering solution
	Extensions
	Maximum margin hyperplanes for clustering
	Non-linear separators using Kernel PCA

	Conclusions

	dr4pl: A Stable Convergence Algorithm for the 4 Parameter Logistic Model
	Introduction
	Existing methods
	4 Parameter Logistic model
	Motivation: convergence failure

	Diagnosis of convergence failure
	Shape of a loss function
	Hill bounds: safeguards on the parameter space
	Analysis of the Hill bounds

	Remedy for outliers
	Robust regression and outlier detection

	Remedy for the support problem
	Logistic method combined with a grid search
	Mead's method
	Comparison of the logistic and Mead methods

	Walk-through in R
	Main R function dr4pl
	Auxiliary R functions

	Summary and future extension
	Appendix: proof of Theorem H.3.1

	cvcrand: A Package for Covariate-constrained Randomization and the Clustered Permutation Test for Cluster Randomized Trials
	Introduction
	Methods
	Covariate-constrained randomization
	Clustered permutation test

	Illustrative Examples
	Constrained randomization by ````cvrall
	Stratified constrained randomization by ````cvrall
	Constrained randomization by ````cvrcov
	Clustered permutation test by ````cptest

	Summary
	Acknowledgements

	jomo: A Flexible Package for Two-level Joint Modelling Multiple Imputation
	Introduction
	Joint Modelling Multiple Imputation
	Package structure
	jomo: tutorial with single-level data
	Starting values and prior distributions
	Analysing the imputed data
	 Categorical variables

	jomo: tutorial with multilevel data
	Analysing the imputed data
	Design matrix for random effects
	Starting values and prior distributions
	Cluster-specific covariance matrices
	Random cluster-specific covariance matrices

	Imputing level-2 variables
	Checking convergence of MCMC
	Using jomo in practice
	mitml: an alternative interface to jomo
	Specification of the imputation model
	Analysis of the imputed data sets

	Simulations and applications
	Conclusions and further developments
	Sources of funding
	Aknowledgements

	Time Series Forecasting with KNN in R: the tsfknn Package
	Introduction
	Time series forecasting with KNN regression
	Multi-step ahead strategies
	The MIMO strategy
	The recursive strategy

	Setting the KNN parameters
	Distance and combination function
	An ensemble of several models with different k parameters
	Default parameters

	Evaluating forecast accuracy
	Evaluation based on a rolling origin

	A comparison with other time series forecasting packages
	Functions and methods in the tsfknn package
	Summary
	Acknowledgment

	rollmatch: An R Package for Rolling Entry Matching
	Introduction
	Rolling Entry Matching
	The rollmatch package
	rollmatch example:

	Rolling entry matching: a walkthrough
	Step 1: Trim the treatment data
	Step 2: Trim Control data
	Step 3: Calculate propensity scores and absolute differences for all possible matches
	Step 4: Trim the Comparison Pool
	Step 5: Assign matches

	Matching algorithm
	An explaination of caliper selection
	Conclusion
	Acknowledgements
	Appendix A: Theorem
	Appendix B: Selecting the appropriate pooled standard deviation

	Associative Classification in R: arc, arulesCBA, and rCBA
	Introduction
	Background: Association rule mining
	The CBA algorithm
	Implementations
	Package arc
	Package arulesCBA
	Package rCBA
	Comparison of R implementations

	Conclusion
	Acknowledgments

	Indoor Positioning and Fingerprinting: The R Package ipft
	Introduction
	Problem statement. Terminology and notation
	An overview of the implemented algorithms
	Data wrangling
	Positioning algorithms
	The ipfKnn function.
	The ipfProbabilistic function.
	The ipfProximity function.
	Positioning algorithms comparison

	Beacon position estimation
	Data clustering
	Plotting functions
	Summary
	Future work
	Acknowledgements

	roahd Package: Robust Analysis of High Dimensional Data
	Introduction
	Representation of Functional Data
	Simulation of functional data

	Robust Statistics
	Correlation coefficient
	Inference on Spearman correlation

	Graphical tools
	Outliergram

	Conclusions

	The IDSpatialStats R Package: Quantifying Spatial Dependence of Infectious Disease Spread
	Introduction
	The mean transmission distance
	Wallinga-Teunis matrices
	Estimation of weights
	Estimating mean of transmission kernel
	Change in mean transmission distance over time
	Application to foot-and-mouth disease

	Global clustering: the -statistic
	Estimating the -statistic with
	Calculating variance in point estimates
	Null hypothesis testing

	Summary

	Comparing namedCapture with other R packages for regular expressions
	Introduction
	Origin of regular expressions and named capture groups
	Related R packages for capturing regular expressions

	The namedCapture package
	Three argument syntax: ````str_match_named and ````str_match_all_named
	Named output for named subjects
	The ````name group specifies row names of output
	Readable and efficient variable argument syntax used in ````str_match_variable
	Extract all matches from a multi-line text file via ````str_match_all_variable
	````df_match_variable extracts new columns from character columns in a data.frame

	Comparisons with other R packages
	Comparing namedCapture variable argument syntax with rex
	Comparing ````namedCapture::df_match_variable with other functions for data.frames
	Comparing computation times of R regex packages

	Discussion and conclusions

	The Landscape of R Packages for Automated Exploratory Data Analysis
	Introduction
	The tasks of Exploratory Data Analysis

	R packages for automated EDA
	The arsenal package
	The autoEDA package
	The DataExplorer package
	The dataMaid package
	The dlookr package
	The ExPanDaR package
	The explore package
	The exploreR package
	The funModeling package
	The inspectdf package
	The RtutoR package
	The SmartEDA package
	The summarytools package
	The visdat package
	The xray package
	Other packages

	Feature comparison
	Data description
	Data exploration
	Data cleaning and data transformation
	Reporting

	Discussion
	Strengths of autoEDA packages
	Future directions and possible improvements

	Acknowledgement

	HCmodelSets: An R Package for Specifying Sets of Well-fitting Models in High Dimensions
	Introduction
	Methodology
	Illustration of usage: a simple reproducible example
	Some simple data generating processes
	Reduction phase
	Exploratory phase
	Model selection phase

	Illustration of performance in some idealized settings
	Real example
	Summary

	Resampling-Based Analysis of Multivariate Data and Repeated Measures Designs with the R Package MANOVA.RM
	Introduction
	Statistical model and inference methods
	Special designs and hypotheses

	Examples
	Repeated Measures Designs
	MANOVA Design
	Graphical user interface

	Discussion and Outlook

	spGARCH: An R-Package for Spatial and Spatiotemporal ARCH and GARCH models
	Introduction
	Spatial ARCH-type models
	Spatial ARCH model
	Spatial Log-ARCH model
	Complex Spatial ARCH model
	Spatiotemporal ARCH model
	Spatial ARCH Disturbances

	Generalized Spatial ARCH Models
	Parameter Estimation
	Overview of the R-Package spGARCH
	Simulation of ARCH-type stochastic processes
	Maximum-likelihood estimation

	Real-data example: prostate cancer incidence rates
	Summary and discussion
	Appendix

	lpirfs: An R Package to Estimate Impulse Response Functions by Local Projections
	Introduction
	Estimating impulse response functions using local projections
	Estimating impulse responses with an identified shock
	Estimating impulse responses for panel data

	The lpirfs package
	Examples and replications
	Traditional approach: Replicating results by Jordà (2005)
	Using an external shock: Replicating results by Ramey and Zubairy (2018)
	Estimating impulse responses for panel data

	Summary
	Appendix
	Comparison of impulse responses between lpirfs and vars
	Sensitivity analyses for 
	Sensitivity analyses for 

	Acknowledgement

	Conference Report: ConectaR 2019
	About the event
	Conference program
	Evaluation
	Corporate Sponsors
	Other Events and Future Steps
	Further information

	R Foundation News
	Donations and members
	Donations
	Supporting benefactors
	Supporting institutions
	Supporting members


	Changes on CRAN
	Changes in the CRAN Repository Policy
	CRAN package submissions
	CRAN mirror security
	New CRAN task views
	New packages in CRAN task views


	News from the Bioconductor Project
	R News
	 CHANGES IN R 3.6.2
	NEW FEATURES
	INSTALLATION on a UNIX-ALIKE
	C-LEVEL FACILITIES
	PACKAGE INSTALLATION
	UTILITIES
	Windows
	DEPRECATED AND DEFUNCT
	BUG FIXES

	 CHANGES IN R 3.6.1
	INSTALLATION on a UNIX-ALIKE
	UTILITIES
	DEPRECATED AND DEFUNCT
	BUG FIXES

	 CHANGES IN R 3.6.0
	SIGNIFICANT USER-VISIBLE CHANGES
	NEW FEATURES
	INSTALLATION on a UNIX-ALIKE
	PACKAGE INSTALLATION
	UTILITIES
	C-LEVEL FACILITIES
	DEPRECATED AND DEFUNCT
	BUG FIXES

	 CHANGES IN R 3.5.3
	INSTALLATION on a UNIX-ALIKE
	PACKAGE INSTALLATION
	BUG FIXES

	 CHANGES IN R 3.5.2
	PACKAGE INSTALLATION
	TESTING
	BUG FIXES

	 CHANGES IN R 3.5.1
	BUG FIXES

	 CHANGES IN R 3.5.0
	SIGNIFICANT USER-VISIBLE CHANGES
	NEW FEATURES
	UTILITIES
	INSTALLATION on a UNIX-ALIKE
	C-LEVEL FACILITIES
	DEPRECATED AND DEFUNCT
	BUG FIXES

	 CHANGES IN R 3.4.4
	NEW FEATURES
	INSTALLATION on a UNIX-ALIKE
	DEPRECATED AND DEFUNCT
	BUG FIXES

	 CHANGES IN R 3.4.3
	INSTALLATION on a UNIX-ALIKE
	BUG FIXES

	 CHANGES IN R 3.4.2
	NEW FEATURES
	UTILITIES
	INSTALLATION on a UNIX-ALIKE
	BUG FIXES

	 CHANGES IN R 3.4.1
	INSTALLATION on a UNIX-ALIKE
	BUG FIXES

	 CHANGES IN R 3.4.0
	SIGNIFICANT USER-VISIBLE CHANGES
	NEW FEATURES
	C-LEVEL FACILITIES
	INSTALLATION on a UNIX-ALIKE
	INCLUDED SOFTWARE
	PACKAGE INSTALLATION
	UTILITIES
	DEPRECATED AND DEFUNCT
	BUG FIXES

	 CHANGES IN R 3.3.3
	NEW FEATURES
	INSTALLATION on a UNIX-ALIKE
	UTILITIES
	DEPRECATED AND DEFUNCT
	BUG FIXES

	 CHANGES IN R 3.3.2
	NEW FEATURES
	INSTALLATION and INCLUDED SOFTWARE
	UTILITIES
	DEPRECATED AND DEFUNCT
	BUG FIXES

	 CHANGES IN R 3.3.1
	BUG FIXES

	 CHANGES IN R 3.3.0
	SIGNIFICANT USER-VISIBLE CHANGES
	NEW FEATURES
	UTILITIES
	DEPRECATED AND DEFUNCT
	INSTALLATION and INCLUDED SOFTWARE
	PACKAGE INSTALLATION
	C-LEVEL FACILITIES
	BUG FIXES

	 CHANGES IN R 3.2.5
	BUG FIXES

	 CHANGES IN R 3.2.4
	NEW FEATURES
	UTILITIES
	DEPRECATED AND DEFUNCT
	BUG FIXES

	 CHANGES IN R 3.2.3
	NEW FEATURES
	INSTALLATION and INCLUDED SOFTWARE
	BUG FIXES

	 CHANGES IN R 3.2.2
	SIGNIFICANT USER-VISIBLE CHANGES
	NEW FEATURES
	C-LEVEL FACILITIES
	INSTALLATION and INCLUDED SOFTWARE
	BUG FIXES

	 CHANGES IN R 3.2.1
	NEW FEATURES
	BUG FIXES

	 CHANGES IN R 3.2.0
	NEW FEATURES
	INSTALLATION and INCLUDED SOFTWARE
	UTILITIES
	C-LEVEL FACILITIES
	WINDOWS BUILD CHANGES
	PACKAGE INSTALLATION
	DEPRECATED AND DEFUNCT
	BUG FIXES

	 CHANGES IN R 3.1.3
	NEW FEATURES
	INSTALLATION and INCLUDED SOFTWARE
	UTILITIES
	DEPRECATED AND DEFUNCT
	BUG FIXES

	 CHANGES IN R 3.1.2
	NEW FEATURES
	INSTALLATION and INCLUDED SOFTWARE
	UTILITIES
	BUG FIXES

	 CHANGES IN R 3.1.1
	NEW FEATURES
	INSTALLATION and INCLUDED SOFTWARE
	BUG FIXES

	 CHANGES IN R 3.1.0
	NEW FEATURES
	INSTALLATION and INCLUDED SOFTWARE
	PACKAGE INSTALLATION
	DEBUGGING
	UTILITIES
	C-LEVEL FACILITIES
	DEPRECATED AND DEFUNCT
	BUG FIXES

	 CHANGES IN R 3.0.3
	NEW FEATURES
	INSTALLATION and INCLUDED SOFTWARE
	PACKAGE INSTALLATION
	C-LEVEL FACILITIES
	BUG FIXES

	 CHANGES IN R 3.0.2
	NEW FEATURES
	UTILITIES
	INSTALLATION and INCLUDED SOFTWARE
	PACKAGE INSTALLATION
	C-LEVEL FACILITIES
	DEPRECATED AND DEFUNCT
	DOCUMENTATION
	BUG FIXES

	 CHANGES IN R 3.0.1
	NEW FEATURES
	UTILITIES
	PACKAGE INSTALLATION
	BUG FIXES

	 CHANGES IN R 3.0.0
	SIGNIFICANT USER-VISIBLE CHANGES
	NEW FEATURES
	LONG VECTORS
	PERFORMANCE IMPROVEMENTS
	PACKAGE INSTALLATION
	UTILITIES
	DEPRECATED AND DEFUNCT
	CODE MIGRATION
	PACKAGE parallel
	C-LEVEL FACILITIES
	INTERNATIONALIZATION
	INSTALLATION
	BUG FIXES

	CHANGES in previous versions


